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“The hermaphrodite class contains two interesting sub-groups, namely, heterostyled 

and cleistogamic plants; but there are several other less important subdivisions, 

presently to be given, in which flowers differing in various ways from one another are 

produced by the same species.” 

Charles Darwin 

(In: Darwin, C. (1877). The different forms of flowers on plants of the same species. London.)
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i. Abbreviations 

2C – two copies of the nuclear DNA content  

2x – diploid 

2n – diploid number of chromossomes 

3x – triploid  

4x – tetraploid 

5x – pentaploid 

Aus – Australia 

Ca – California  

Ch – Chile  

CV – coefficient of variation 

e.g. – (L. exempli gratia) for example 

et al. – (L. et alia) and other 

FCM – flow citometry 

GLM/ GLZ – general linear model/ generalized linear model 

ID – identification 

i.e. – (L. id est) that is 

L-morph – long-styled floral morph 

LSmeans – least square means 

MB – Mediterranean basin 

M-morph – mid-styled floral morph 

n – number of  

Na2PO4.12H2O – sodium phosphate dodecahydrate 

pg – picograms 

PI – propidium iodide 

SA – South Africa 

SD – standard deviation 

SE – standard error 

S-morph – short-styled floral morph 

sp. – (L. species) species 

spp. - (L. species) species in plural  

St – sterile multipetal form 

x – monoploid number of chromosomes 

Note: all the units used follow the SI (Système International d’Unités) 
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ii. Resumo 

 

A reprodução é um factor chave no estabelecimento e dispersão de uma espécie 

exótica, determinando as oportunidades para a adaptação local. Oxalis pes-caprae é 

uma espécie tristílica dotada de um sistema de auto- e morfo-incompatibilidade. Na área 

invadida da bacia do Mediterrâneo ocidental, esta planta foi forçada à assexualidade 

como resultado da introdução de um único morfotipo floral. No entanto, novas formas 

florais e citotipos, assim como eventos de reprodução sexual foram recentemente 

detectados em algumas populações. Os objectivos desta tese de Mestrado foram 1) 

estudar o sistema de incompatibilidade heteromórfica de O. pes-caprae nesta região 

invadida e 2) determinar o sucesso reproductivo em populações naturais da área 

invadida com diferentes composições de morfotipos florais. Para tal, o sistema de auto- 

e morfo-incompatibilidade, assim como a capacidade do morfotipo curto 5x produzir 

gâmetas viáveis foram testados através de polinizações controladas. Para responder ao 

segundo objectivo, foram seleccionadas três populações com diferentes composições de 

morfotipos florais (populações mono-, di- e trimórficas), nas quais se monitorizou o 

comportamento dos polinizadores e se quantificaram os sucessos reproductivos 

masculino e feminino. Os resultados revelaram uma quebra no sistema de morfo-

incompatibilidade, assim como a produção de gâmetas viáveis, permitindo dessa forma 

a reprodução sexual na área de estudo. O. pes-caprae revelou-se uma planta generalista 

em termos de polinizadores, tendo já estabelecido novas interacções mutualísticas na 

área invadida que permitiram o fluxo de pólen e, consequentemente, a produção de 

frutos e sementes. As relações mutualísticas estabelecidas com polinizadores nativos 

assim como a capacidade do morfotipo curto 5x se reproduzir sexuadamente podem ter 

importantes consequências na dinâmica das populações invasoras de O. pes-caprae, 

sendo este um dos possíveis factores envolvidos na ocorrência de populações com 

diferentes composições de formas florais nesta região invadida. 

 

Palavras-chave: espécie invasora; heterostilia; pentaplóide; polinizadores; sistema de 

incompatibilidade. 

 

*Este resumo não foi escrito segundo o novo acordo ortográfico em vigor. 
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iii. Abstract 

 

Reproduction is a key factor for the successful establishment and spread of 

exotic species determining the opportunities for local adaptation. Oxalis pes-caprae is a 

tristylous species with a self- and morph-incompatibility system that, in the invaded 

range of the Mediterranean basin, was forced to asexuality due to the introduction of 

only one floral morph. Recently, in Portugal, new floral morphs and cytotypes and the 

occurrence of sexual reproduction in some populations were detected. The main 

objectives of this MSc thesis were: 1) to test the heteromorphic incompatibility system 

of O. pes-caprae in the invaded range and 2) to assess its sexual reproductive success in 

natural populations from the invaded range differing in morph’s composition. To 

achieve the first objective, the ability of the 5x S-morph to produce viable offspring was 

evaluated through controlled hand-pollinations to assess self- and morph-

incompatibility and the production of viable gametes by the 5x S-morph. Regarding the 

second objective, mono-, di- and trimorphic populations were selected, pollinator’s 

assemblage and behavior were monitored and male and female reproductive success 

were quantified. Results revealed that the self-incompatibility system is still operating, 

but a breakdown in the morph-incompatibility system combined with the production of 

viable gametes was observed, allowing its sexual reproduction in the study area. Sexual 

reproductive success of O. pes-caprae depended of generalist pollinators, with new 

mutualistic interactions having already been established in the invaded range. This 

allowed pollen movement within the populations and, consequently, fruit and seed 

production was observed in both di- and trimorphic populations. The mutualistic 

interactions already established and the ability of the 5x S-morph to reproduce sexually 

may have major consequences on the dynamics of the invasive populations of O. pes-

caprae and could be one of the factors involved in the occurrence of populations with 

new floral morph’s composition in this invaded area of the Mediterranean basin. 

 

Key words: heterostyly; incompatibility system; invader; pollinators; sexual 

reproduction.
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0.1. Floral biology: brief historical considerations 

In Nature, flower traits such as colour, size and shape are found to fluctuate 

under a continuous of variation. Because of plant immobility, this variability is 

extremely important for mating success of flowering plants depending on their pollen 

transport vectors (e.g., Lloyd and Barrett 1996; Barrett 2010). Sexual characters are so 

important that Linnaeus used them as the basis for the plant classification presented in 

Systema Naturae in 1735. Still, the study of floral biology was only born in the 18
th

 and 

19
th 

centuries and aimed to understand the functioning of flowers and the role of floral 

design in pollinator’s attraction (e.g., reviewed in Ferrero 2009; Barrett 2010). The first 

experimental studies on pollination biology were undertaken by manipulating floral 

rewards, e.g., nectar, or by altering pollinator’s senses through antennae removal. These 

manipulative studies were important because they provided insights on plant-pollinators 

coevolution (Kearns and Inouye 1993). The sexual systems of flowering plants are 

highly diverse and have long intrigued biologists. In fact, the ancestral condition of the 

flower sexual system, i.e., hermaphroditism, has always attracted biologist’s attention. 

This can be confirmed by the work developed by many authors since the 19
th

 century. 

For example, the important contributions given by Müller (1983), Kerner von Marilaun 

(1902) or Percival (1965) regarding floral biology in a descriptive way or the significant 

contributions of Darwin (1862, 1876, 1877) and Stebbins (1950) with numerous studies 

of floral biology as a mechanism to understand evolution. 

 

0.2. Sexual polymorphisms and heterostyly 

Hermaphroditic plants are an interesting study group because they experienced a 

huge physiological and morphological variability to enable cross-fertilization, while 

preventing selfing (Barrett 2010). To promote cross-pollination, some hermaphroditic 

plants developed different sexual polymorphisms that are characterized by the presence, 

in the same population, of distinct morphological mating groups of the same species, 

differing in their sexual characters (Barrett 2002).  

Heterostyly is a stylar polymorphism that comprises populations of a given 

species bearing two (distyly, Fig. 1A) or three floral morphs (tristyly, Fig. 1B) (Barrett 

et al. 2000; Barrett 2002; Ferrero 2009). These morphs differ in the reciprocal 

arrangement of anthers and stigmas within the flowers (Fig. 1; Barrett and Shore 2008). 

In distylous populations, long-styled flowers (L-morph) have the stigma at the highest 



INTRODUCTION 

14 
 

level and the anthers below, while the short-styled flowers (S-morph) are characterized 

by a whorl of anthers at the highest position and the stigma below (Fig. 1A). Similarly, 

tristylous populations have L-morph and S-morph flowers, but also mid-styled flowers 

(M-morph) with the stigma located between the two sets of anthers (Fig. 1B). 

Additionally to the reciprocal arrangement of anthers and stigmas, known as reciprocal 

herkogamy, heterostylous species present a diallelic sporophytic heteromorphic 

incompatibility system apparently controlled by two loci, Ss and Mm (Lewis and Jones 

1992). This incompatibility system is responsible for self- and morph-incompatibility, 

with legitimate pollinations occurring only between reciprocal anthers and stigma of 

flowers from different individuals (Barrett and Shore 2008; Ferrero 2009). Finally, 

ancillary characters such as differences between morphs in pollen size and production, 

papillae size and shape or corolla size can also occur in heterostylous species (Barrett et 

al. 2000; Ferrero 2009). 

 

 

 

 

Other sexual polymorphisms have been described with the common feature of a 

variable position of the stigma in relation to the anthers (Barrett et al. 2000). As 

examples: stylar dimorphism, in which only the stigma length varies in relation to the 

anthers (Barrett et al. 1996, 2000); enantiostyly, involving flowers comprising mirror 

images (Barrett et al. 2000; Jesson et al. 2003); flexistyly, involving stigma movement 

out of the way when anthers are dehiscent (Li et al. 2001); and inversostyly, a 

Figure 1. Schematic representation of heterostylous flowers: A. Distyly; B. Tristyly. Floral 

morphs: S-morph, short-styled; M-morph, mid-styled; L-morph, long-styled. The whorls of 

anthers are also illustrated: l, m and s for long, mid and short anther levels, respectively. 
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polymorphism in which the floral morphs display reciprocal vertical positioning of 

sexual organs (Pauw 2005). 

 

0.3. Functional significance of heterostyly 

Sexual polymorphisms have been described in approximately 28 botanical 

families (Barrett et al. 2000; Barrett and Shore 2008). Darwin postulated that reciprocal 

herkogamy was of major importance in promoting efficient cross-pollinations between 

reciprocal floral morphs (disassortative mating; Darwin 1877; Barrett 1992). This 

hypothesis has been successfully tested by several authors through controlled 

pollination experiments in heterostylous species (reviewed in Lloyd and Webb 1992). 

Currently, it is well recognized that heterostyly enhances both female and male sexual 

fitness (Barrett 2002). On one hand, the reciprocal arrangement of anthers and stigma 

between floral morphs has been described as a mechanism to (1) minimize sexual 

interference between male and female functions and to (2) increase the precision of 

pollen transfer between reciprocal floral morphs, promoting cross-pollination (Fig.2; 

Barrett 2002). This is achieved by a precise deposition of pollen along the pollinator’s 

body corresponding to the reciprocal level of stigma, thus favoring male function 

requirements (Barrett 2002). On the other hand, the sporophytic heteromorphic 

incompatibility system prevents self-fertilization, as well as, intra-morph pollinations 

(assortative mating), reducing inbreeding depression and contributing to the 

maintenance of genetic variability of the species, thus enhancing female function 

(Barrett 2002).  

 

 

 

 

Figure 2. Illustration of the pollen deposition along the 

pollinator’s body and transference between reciprocal floral 

morphs in a distylous species (adapted from Barrett 2002). 
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Due to the incompatibility system described above, heterostylous species are 

pollinator’s dependent in order to spread its pollen and reach a reciprocal stigma. After 

long-distance dispersal and facing a new and unpredictable environment, the absence of 

compatible mates (Baker 1955, 1965) and the loss of pollinator mutualisms may 

negatively affect sexual reproduction (Traveset and Richardson 2006; Roig 2008). 

Thus, the replacement of the native mutualisms for new ones is a key factor for the 

successful establishment and subsequent colonization success of species with peculiar 

reproductive systems, like the heterostylous ones (Mitchell et al. 2006).  

 

0.4. Establishment of new mutualisms and reproduction during invasion 

Biological invasions are a serious threat to biodiversity, leading to significant 

ecological and evolutionary consequences, both for the invaded communities and for the 

invasive species themselves (e.g., Mack et al. 2000; Marchante et al. 2011). After 

introduction, one main barrier must be overpassed in order to a species become 

invasive: reproduction. When an alien is introduced in a new range, the replacement of 

the native mutualisms by others is the first step for successful sexual reproduction; this 

hypothesis is commonly known as the mutualism facilitation hypothesis (Mitchell et al. 

2006). The establishment of new mutualistic interactions is particularly important in 

self-incompatible species due to the need of pollination vectors for successful seed 

production (Traveset and Richardson 2006; Roig 2008). However, this issue is 

frequently overpassed because most invasive species are pollinator generalists and 

easily establish new pollination interactions (Traveset and Richardson 2006). Another 

problem that invasive species may face to reproduce is the absence of compatible mates 

(Baker 1955, 1967). This question is particularly important in species with special 

reproductive systems, such as sexual polymorphisms (e.g., heterostyly; Barrett 1979; 

Luo et al. 2006; Castro et al. 2007). It is known that founder events during invasion 

processes frequently lead to the loss of floral morphs in heterostylous populations and 

this effect is often preserved for long periods, limiting the sexual reproduction of the 

species (Barrett and Shore 2008). In this case, invasive heterostylous species may 

become strictly clonal (e.g., Oxalis debilis, Luo et al. 2006; O. corymbosa, Tsai et al. 

2010) or they may experience a breakdown in the self- and/or morph-incompatibility, 

which allows their sexual reproduction (e.g., Eichhornia paniculata, Barrett 1979; 

Lythrum salicaria, Colautti et al. 2010).  
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0.5. Study system: Oxalis pes-caprae 

Oxalidaceae family is composed by approximately 880 species distributed in 

five genera of herbaceous annuals and perennials plants: Averrhoa L., Biophytum DC., 

Dapania Korth., Oxalis L. and Sarcotheca Blume. This family is distributed all over the 

world, especially in tropical and subtropical regions, with few species also occurring in 

temperate climate areas (Sánchez-Pedraja 2008). Heterostylous flowers, namely 

tristylous ones are frequently found in several species of this family (Weller 1992).  

The genus Oxalis consists of about 800 species (Hussey et al. 1997) and is 

found, mostly, in South America and Africa (Luo et al. 2006), with some invasive 

species occurring in other parts of the world, such as Mediterranean climate regions 

(Ornduff 1987; Castro et al. 2007) and Asia (Luo et al. 2006; Tsai et al. 2010).  

 

 

 

 

Oxalis pes-caprae L. is a south-African geophyte that was introduced as an 

ornamental plant in several areas of the world and has become a widespread invasive 

weed in regions with Mediterranean climate (Fig. 3E; Ornduff 1987; Vilà et al. 2006; 

Castro et al. 2007). In its native range, this species displays tristylous flowers (Fig. 1B; 

Fig. 3A-C) and presents three cytotypes (2x, 4x and 5x) (Fig. 4, Ornduff 1987). In the 

invaded area of the Mediterranean basin, a shift to obligate asexuality through clonal 

Figure 3. Oxalis pes-caprae: A. – C. S-, M- and L-morph, respectively; D. Multipetal sterile 

form; E. Invaded field; F. Bulbs produced by this invasive species.  
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propagation was observed as a result of founder events, as a consequence of the 

introduction of only one floral morph, the S-morph (Ornduff 1987). Successful clonal 

propagation is guaranteed in O. pes-caprae not only by the high production of bulbils 

(Fig. 3F; Ornduff 1987; Pütz 1994), but also by the contractive capacities of its roots 

(Galil 1968; Pütz 1994). However, in the last years, new floral morphs and cytotypes 

(Castro et al. 2007; Castro et al. 2009; Ferrero et al 2011) and the sporadic observation 

of fruits have been described in the invaded range of the Mediterranean basin (Costa et 

al. 2010; Ferrero et al. 2011). Facing these observations, O. pes-caprae revealed to be 

an excellent study system to address questions concerning its reproductive strategy 

during the invasion process and providing new insights on the function and evolution of 

heterostyly. 

 

 

 

 

 

 

 

0.6. Objectives and structure of the thesis 

This Master Thesis was integrated within a broader FCT project on the 

evolutionary changes of reproductive systems during the invasion process of the 

polyploid O. pes-caprae and had two main objectives centred in the invaded range of 

Figure 4. Distribution patterns of Oxalis pes-caprae from its native and invasive ranges, South 

Africa and Mediterranean climate regions of the world, respectively. The floral morphs and 

cytotypes reported for each area are also provided (South Africa, California, Chile, Ornduff 1987; 

Mediterranean basin, Castro et al 2007, Castro et al 2009; and Australia, Symon 1961, Michael 

1964). Additionally, a multipetal sterile form (St) is reported for South Africa and for the 

Mediterranean region (see also Fig. 3D).   
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the western Mediterranean region: 1) to assess the reproductive system of O. pes-caprae 

in the invaded range by investigating the ability of the 5x S-morph to produce viable 

offspring; and 2) to determine the new mutualistic interactions at the pollination level 

established in the invaded area and their role in the successful sexual reproduction of the 

5x S-morph. 

The first objective addresses part of a broader question aiming to assess the 

origin of the new floral morphs and cytotypes recently detected in the invaded range of 

the Mediterranean basin, where the following two hypothesis (not mutually exclusive) 

were proposed: 1) the new forms have originated in this region through incompatibility 

breakdown (tested in this Thesis) and/or 2) the new forms have originated after multiple 

introductions (in progress). The second objective addresses the new mutualistic 

interactions established in the invaded range and their role in successful sexual 

reproduction and invasion, and is also integrated in a broader question aiming to assess 

sexual reproductive success in invaded (studied in this thesis) versus native ranges (in 

progress). The answers to these questions will contribute for a better comprehension on 

the processes involved in the reacquisition of sexuality, and consequent production of 

viable offspring, which may have several important implications for the continuous 

spread of this invasive species. The present study combines an experimental approach 

integrating both greenhouse experiments with controlled hand-pollinations and field 

observations on pollinators’ behaviour. 

In accordance with the proposed objectives, this Master Thesis was organized in 

two main chapters as follows: 

Chapter I: Reacquisition of sexual reproduction in the invasive short-styled 

Oxalis pes-caprae. In this chapter, the morph- and self-incompatibility system of this 

invasive species were tested through controlled hand-pollination experiments in order to 

assess if its breakdown could be one of the factors involved with the emergence of new 

forms. 

Chapter II: Reproductive success of Oxalis pes-caprae in populations with 

different morph proportions. In this chapter, through floral visitor’s observation in 

natural populations, pollinator’s assemblage and foraging behaviour were determined to 

assess the role of the new established mutualisms in the successful sexual reproduction 

of this species in the invaded area. 
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1.1. Introduction 

 One key factor for the successful establishment and spread of introduced 

species, at least after overcoming long-distance dispersal, is reproduction and, among 

other strategies, vegetative propagation has been largely correlated with invasion 

success (e.g., Godfrey et al. 2004; Lloret et al. 2005; Pyšek and Richardson 2007). 

Because clonality affects the spatial distribution of genets and its flowers determining 

the opportunities for cross-fertilization, clonal species are expected to have increased 

rates of self-pollination because of the higher probability of pollen dispersal between 

individuals of the same clone (Handel 1985; Charpentier 2002). In self-incompatible 

plants an increase of self-pollination has important reproductive consequences affecting 

negatively both male (e.g., Harder and Barrett 1996) and female fitness (e.g., Vallejo-

Marín and Uyenoyama 2004; Porcher and Lande 2005; Wang et al. 2005).  

Conflicts between sexual and asexual reproduction can be even more intricate 

when the invader has a complex breeding system, such as heterostyly. In heterostylous 

populations, the plants present two or three floral morphs that differ reciprocally in the 

position of their sexual organs (Barrett 1992). Heterostylous plants are usually self-

incompatible and, in addition, present an incompatibility system that only allows 

crosses among reciprocal stamens and stigmas of compatible morphs (intra-morph 

incompatibility). In these cases, when just one of the floral morphs is introduced in a 

new area, the sexual contribution to the fitness of the newly established plant/population 

is expected to be null (e.g., Oxalis pes-caprae, Castro et al. 2007; O. debilis, Luo et al. 

2006; O. corymbosa, Tsai et al. 2010). 

Reproduction by vegetative means has several ecological advantages for an 

invader, enabling, for example, the growth and persistence in the new range when the 

conditions are unfavourable for sexual reproduction due to the absence of pollinators 

(Richardson et al. 2000) or to the loss of compatible mating partners (e.g., Barrett 1979; 

Castro et al. 2007). However, asexual reproduction also bears strong negative 

consequences. Populations of obligate clonal plants are expected to have lower levels of 

genetic variability, being less able to respond adaptively to changing environments 

(Holsinger 2000). This is clearly a disadvantage for an invader in a new and 

unpredictable habitat. Under this scenario, selection may favour the breakdown of the 

self-incompatibility, as individuals with some levels of compatibility would have 

advantage under low density conditions and would be able to establish new populations 
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after dispersal (Baker’s law, Baker 1955; Stebbins 1957; Baker 1967). In heterostylous 

systems, such phenomena has been described in several taxa and is usually associated 

with a re-arrangement of sexual organ position (i.e., secondary homostyly), as a 

mechanism of reproductive assurance (e.g., distylous taxa: Amsinckia spp., Schoen et 

al. 1997; Primula spp., Mast et al. 2006; Turnera ulmifolia, Barrett and Shore 1987; and 

Psychotria spp, Sakai and Wright 2008; tristylous taxa: Eichhornia spp., Barrett 1985; 

Barrett 2011; and Oxalis corymbosa, Tsai et al. 2010). 

Oxalis pes-caprae L. is a tristylous species (Fig. 1) native from South Africa 

with a typical heteromorphic incompatibility system responsible for self- and morph-

incompatibility (Ornduff 1987). This geophyte was introduced in Mediterranean climate 

regions all over the world where it became a widespread invasive weed (Symon 1960; 

Baker 1965; Ornduff 1987). In most invaded regions a shift to obligate asexuality was 

observed as a result of founder events after the introduction of the short-styled morph, 

only (Baker 1965; Ornduff 1987). However, in the last years, new floral morphs (mid- 

and long-styled) and the occurrence of sexual reproduction have been described in the 

invaded range of the western Mediterranean basin where the pentaploid short-styled 

morph (5x S-morph) is the most frequent floral morph (Castro et al. 2007, Ferrero et al. 

2011).  

The classical genetic studies in tristylous plants indicates that the floral morph is 

controlled by two loci, Ss and Mm, with the long-styled being homozygous recessive for 

both of them (ssmm), the mid-styled dominant over the long one but recessive for the 

other (ssMx) and the short-styled dominant over both (Sxxx) (Lewis and Jones 1992). 

This system has also been demonstrated in some Oxalis species (Weller 1976). In a 

parallel study, Ferrero et al. (2011) suggest that the occurrence of new morphs in the 

invaded area could have resulted from a breakdown of the incompatibility system that 

enabled the occurrence of sexual reproduction events in the short-styled morph and/or 

from multiple introduction events. The objective of the present study was to assess the 

incompatibility system of O. pes-caprae in the invaded region of the western 

Mediterranean basin by investigating the ability of the short-styled morph to produce 

viable offspring. For this, controlled hand pollinations involving legitimate (between 

morphs) and illegitimate (within morph) crosses were performed and pollen 

germination, pollen tube development along the style, fruit and seed production and 

seed germination were assessed. The ploidy level of the offspring was also estimated. 
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1.2. Material and Methods 

1.2.1. Plant material and study area 

 Oxalis pes-caprae L. (Oxalidaceae) is a perennial bulbous plant with a profuse 

production of bulbils that, associated with the contractile properties of its roots, confers 

a high ability to reproduce asexually (Pütz 1994; see also Fig. 3E-F from Introduction). 

O. pes-caprae is a tristylous species (short-, mid- and long-styled floral morphs, S-

morph, M-morph and L-morph, respectively; Fig. 1), with actinomorphic yellow 

flowers arranged in terminal umbellate cymes (Coutinho 1939; Ornduff 1987; Sánchez-

Pedraja 2008). In its native range, this species is composed by three cytotypes (diploids, 

2x; tetraploids, 4x; and pentaploids, 5x) (Ornduff 1987), while in the invaded region of 

the Mediterranean basin a shift to obligate asexuality was observed as a result of 

founder events with the introduction of the 5x S-morph, only (Ornduff 1987). Recently, 

new floral morphs (M-morph, L-morph and a sterile form) and cytotypes (4x) have been 

described in this invaded area (Castro et al. 2007; Ferrero et al. 2011; see also Fig. 4 

from Introduction). The flowering occurs from early January to late April. 

 

 

 

 

 

 

 

 

This study was carried out during 2009 and 2010 with plants from Colares 

(Estremadura province, Portugal). Plants were collected in the field during winter of 

2009 before flowering. Thirty-five plants per floral morph (S-morph, M-morph and L-

Figure 1. Oxalis pes-caprae floral morphs and crosses performed in hand pollination 

experiments: self-pollinations with pollen from the mid- (a) and long-anther levels (b) and 

intra-morph pollinations with pollen from the mid- (c) and long-anther levels (d) and inter-

morph legitimate pollinations with 5x S-morph as pollen recipient (e, f) and as pollen donor 

(g, h). S-morph, M-morph and L-morph for short-, mid- and long-styled floral morphs. The 

anther levels are represented by l, m and s for long-, mid- and short-whorl, respectively. 
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morph) were directly collected to pots, identified with an ID number and maintained in 

the nurseries of the Botanical Garden of the University of Coimbra under natural 

conditions. The plants collected were separated at least 5 m apart to guarantee the 

sampling of different individuals.  

 

1.2.2. Ploidy level analysis 

 Because there are two cytotypes reported to occur in the invaded range of the 

Mediterranean region (4x and 5x; Castro et al. 2007; Ferrero et al. 2011), ploidy level of 

all plants collected was analysed using flow cytometry (FCM). Samples were prepared 

following Galbraith et al. (1993) procedure and the two-step nuclear isolation method 

with Otto’s buffers (Otto 1992; Doležel and Göhde 1995). Briefly, nuclei from fresh 

leaves of O. pes-caprae and Bellis perennis (internal reference standard with 2C = 3.38 

pg; Schönswetter et al. 2007) were released after chopping the leaves in 0.5 ml of Otto I 

solution (100 mM citric acid, 0.5 % (v/v) Tween 20); the solution was filtered into a 

cytometer sample tube using a 50 m nylon filter and 1 ml of Otto II solution (400 mM 

Na2PO4.12H2O) was added; finally, 50 μg mL-1 propidium iodide was added to stain the 

nuclei and 50 μg mL-1 of RNAse for digestion of the double stranded RNA (Doležel et 

al. 2007). At least 3000 nuclei per sample were analysed in a Partec CyFlow Space flow 

cytometer (Partec GmbH, Görlitz, Germany). The flow cytometer was equipped with a 

green solid state laser (Cobolt Samba 532 nm, 100 mW; Cobolt, Stockholm, Sweden) 

for PI excitation. Only histograms with a coefficient of variation (CV) below 5% for 

both sample’s and standard’s G1 peaks were accepted as a quality standard. The DNA 

index was calculated for all the samples by dividing the O. pes-caprae G0/G1 peak mean 

fluorescence by that of B. perennis and plants were identified as 4x or 5x for genome 

size values of 1.37  0.056 (n = 39) and 1.66  0.030 (n = 248)(mean  SD, followed by 

sample size in parenthesis), respectively (Castro et al. 2007). 

 

1.2.3. Hand pollination experiments 

 To assess the ability of the 5x S-morph to produce offspring, both illegitimate 

and legitimate pollinations were performed (Fig. 1). Illegitimate pollinations were 

carried out to assess the self- and morph-incompatibility of the 5x S-morph and the 

following treatments were performed: self-pollinations with pollen from the mid- and 

long-anther levels (selfing 5x Sm and selfing 5x Sl, respectively) and intra-morph 

pollinations with pollen from the mid and long anther levels (5x S × 5x Sm and 5x S × 5x 
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Sl, respectively) (Fig. 1). Legitimate pollinations were carried out to assess the ability of 

the 5x S-morph to produce viable offspring through its ovules and pollen grains and, 

thus, the following treatments were performed: inter-morph legitimate pollinations with 

5x S-morph as pollen recipient (5x S × 4x Ms and 5x S × 4x Ls) and as pollen donor (4x 

M × 5x Sm and 4x L × 5x Sl) (Fig. 1). Plants were covered with a nylon mesh before 

flowering to prevent natural pollinations and maintained bagged until fruiting. Recipient 

flowers were emasculated to prevent self-pollination. Up to 33 pollinations per 

treatment were done in distinct individuals. Cross-pollinations were performed by 

gently rubbing anthers from 3-5 distinct individuals against the recipient stigmas.  

When the ovaries started to swell, most stigmas and styles were cut and 

harvested in ethanol 70% to assess pollen germination and pollen tube development in 

the style. Stigmas and styles were softened with 8 N sodium hydroxide for 3h, washed 

in distilled water and placed overnight in 0.05% (w/v) aniline blue prepared in 0.1 N 

potassium phosphate (Dafni et al. 2005). Then, they were placed in a microscope slide 

with a drop of glycerine 50%, squashed beneath a coverslip and observed using a Nikon 

Eclipse 80i epifluorescence microscope (Nikon Instruments, Kanagawa, Japan) with the 

UV-2A filter cube. Pollen germination and pollen tube development along the style 

were assessed by counting the number of germinated grains from 50 randomly selected 

grains deposited in the stigmatic papillae and by counting the number of pollen tubes in 

the upper part of the style, respectively. The mean number of ovules of each floral 

morph was also assessed in more than 15 flowers from distinct individuals under 

fluorescence microscopy using the procedure described above. 

The fruit and seed production were recorded when mature and seeds were 

characterized as morphologically viable or aborted. Fruit set was calculated for each 

pollination treatment as the percentage of treated flowers that developed into fruit.  

 

1.2.4. Seed germination 

 The seeds obtained from the hand pollination experiments were placed to 

germinate in 6 × 6 cm pots filled with common garden substrate at the nurseries of the 

Botanical Garden (University of Coimbra) under natural conditions in September 2010. 

Pots were monitored weekly during 3 months to count the number of seedlings. Ploidy 

level of the germinated offspring was assessed following the procedure described in the 

section Ploidy level analysis. 
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1.2.5. Statistical analysis 

 Descriptive statistics (mean and standard error of the mean) were calculated for 

pollen germination, number of pollen tubes developed along the style, fruit set, number 

of morphologically viable and aborted seeds per fruit, and seed germination.  

Differences among pollination treatments in pollen germination, number of 

pollen tubes along the style, number of viable seeds and seed germination were 

analysed using a GLZ with a gamma distribution and a power(-1) link function. A 

similar approach was used for fruit set with a binomial distribution and logit link 

function. LSmeans were used to analyse differences between treatments. All the 

analyses were performed in STATISTICA 7.0 (Stat Soft. Inc., Tulsa, OK, USA), except 

LSmeans that were carried in SAS version 9.2 (SAS Institute Inc, Cary, North 

Carolina). 

 

1.3. Results 

 Results from hand pollination experiments are given in Figure 2 and Appendix 

1.1. Pollen grains from 5x S-morph, 4x M-morph and 4x L-morph were able to 

germinate on the recipient stigmas but statistically significant differences were observed 

in germination rates (
7

2 = 14.57, P = 0.0419): higher germination rates were observed 

in legitimate crosses (although no significant differences were found for 5x S × 4x Ls 

and 4x L × 5x Sl crosses) and in self and intra-morph pollinations when pollen from the 

mid-anthers of 5x S-morph was used (Fig. 2A). Pollen tube development was observed 

in all illegitimate (Fig. 3A) and legitimate crosses despite the significant differences 

observed between pollination treatments (
7

2= 9.14, P < 0.0001), with legitimate 

pollinations having significantly higher pollen tubes than in illegitimate ones (Fig. 2B).  

 The mean number of ovules produced by each floral morph was not significantly 

different (mean ± SE: 39.6 ± 1.0; F = 0.53, P = 0.59). Fruit production and number of 

viable and aborted seeds per fruit were significantly different between pollination 

treatments (
7

2= 65.65, P < 0.0001; 
5

2= 2.90, P = 0.0005; 
5

2 = 33.26, P < 0.0001 

respectively; Fig. 2C-E). Selfing crosses did not yield any fruits and significantly 

greater fruit set was found in legitimate crosses when 5x S-morph was used as pollen 

donor (Fig. 2C). Legitimate crosses tend to produced greater numbers of viable seeds 

per fruit (Fig. 3B) than illegitimate crosses but no significant differences were found 

between them and the 5x S × 5x Sl (Fig. 2D). Concerning the number of aborted seed in  
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Figure 2. Oxalis pes-caprae sexual reproduction in the invaded range of the Mediterranean 

basin: A. percentage of pollen germination; B. mean number of pollen tube development 

along the style; C. fruit set; D. mean number of viable seeds; E. mean number of aborted 

seeds and F. percentage of seed germination. In pollination treatments, the first individual 

represents the pollen receptor and the second the pollen donor; for pollen donors anther 

level is also provided: s, m and l for short, mid and long whorls of anthers, respectively. 
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legitimate crosses two statistically different groups could be distinguished with greater 

seed abortion in pollinations where 5x S-morph was used as pollen donor (Fig. 2E). 

 Seed germination revealed no statistically significant differences among 

pollination treatments (
5

2 = 1.38, P = 0.8891) and ranged between 11.1 and 34.7%, 

being possible to obtain seedlings from both illegitimate and legitimate crosses (Fig. 2F 

and 3C). Flow cytometric analysis of the germinated offspring revealed that both 4x and 

5x were produced in illegitimate and legitimate crosses (Appendix 1). The low number 

of seedlings obtained from illegitimate crosses made it difficult to entangle the cytotype 

patterns in the offspring. In legitimate crosses, 5x offspring was only obtained when 5x 

S-morph was used as pollen recipient; still, the 4x was the most frequent cytotype in the 

offspring; when 5x S-morph was used as pollen donor, the offspring was composed by 

4x, only (Appendix 1). 

 

 

 

 

 

 

1.4. Discussion 

 After long-distance dispersal, reproductive strategies are of major importance for 

the successful colonization of invasive species (e.g., Pyšek and Richardson 2007; 

Barrett 2011). In heterostylous plants, the introduction of only one floral morph leads to 

the loss of compatible mates, forcing, in many cases, the emergence of novel 

reproductive adaptations to the new conditions (e.g., Barrett 1979). Under low-density 

of mating partners and pollen limitation, the transition from incompatibility to 

compatibility is expected to be advantageous because selection will favour self- and/or 

morph-compatible individuals (Allee et al. 1949; Baker 1966; Charlesworth 1979; 

Figure 3. Oxalis pes-caprae sexual reproduction in the invaded range of the Mediterranean 

basin. A. pollen germination and pollen tube development in the style after illegitimate 

pollinations (5x S × 5x Sm); B. fruit with morphologically viable seeds after legitimate 

pollinations (5x S × 4x Ms; bar = 1 mm); C. seedlings obtained after illegitimate pollinations. 
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Barrett et al. 1987). Self-incompatibility breakdown has been already documented in 

several heterostylous species (Ornduff 1972; Barrett 1989; Barrett 1992; Weller 1992), 

including some invasive ones (Barrett and Shore 2008; Colautti et al. 2010). Despite 

fruit and seed production had not been completely ruled out in the invaded range of O. 

pes-caprae where the 5x S-morph dominated (Vignoli 1937; Ornduff 1987; Ater 2005; 

Castro et al. 2007), this is the first study quantifying its potential production of viable 

offspring as a result of a breakdown in its morph-incompatibility system. 

In the native range, O. pes-caprae is known to present a sporophytic 

heteromorphic incompatibility system (Ornduff 1987); however at which level the 

incompatibility occurs is still unknown. Incompatibility responses in heterostylous 

plants include lack of adhesion, hydration and germination of pollen, inability of pollen 

tubes to penetrate the stigmatic zone, and cessation of pollen tube growth in the style 

and ovary (Dulberger 1992; Barrett and Cruzan 1994). The present study shows that, in 

the invaded area of the western Mediterranean region, the self-incompatibility system is 

still operating, as no fruit and seed production were observed after self-pollinations. 

However, as pollen tube development along the style was observed, the incompatibility 

system seems to be operating at several levels of the style and ovary which suggest a 

possible late-acting self-incompatibility system in O. pes-caprae. This system has been 

described in several others species such as Cyrtanthus breviflorus (Vaughton et al. 

2010), Narcissus spp. (Dulberger 1964, Sage et al. 1999), Anchusa officinalis (Schou 

and Philipp 1983), Asclepias exaltata (Lipow and Wyatt 2000) and Spathodea 

campanulata (Bittencourt et al. 2003), however further work must be done in order to 

confirm this in O. pes-caprae.  

Contrarily to self-pollinations, intra-morph crosses resulted in the production of 

fruits, seeds and seedlings, showing a breakdown in the morph-incompatibility system 

of O. pes-caprae in this invaded area. Still, pollen tube development and fruit and seed 

production were slightly lower than in legitimate crosses indicating that the breakdown 

was not complete and that morph-incompatibility still reduces the reproductive success 

of within-morph pollinations at several levels of the style and ovary. Despite no fruit 

production was observed, Castro et al. (2007) had already reported sporadic pollen tube 

development after within-morph pollinations in other populations of O. pes-caprae from 

the same geographic range. Indeed, a recent large scale reassessment of natural 

reproductive success across this range reported a remarkable diversity in floral morph 

and cytotype composition with variable sexual reproductive outcomes across the 
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surveyed area (Ferrero et al. 2011). The acquisition of morph-compatibility increases 

the number of mating partners within the population and has major implications for the 

population dynamics and, potentially, for its genetic structure (Ray and Chisaki 1957; 

Ganders 1979; O'Brien and Calder 1989). In addition, the breakdown in the morph-

incompatibility system may be one of the factors involved in the occurrence of 

additional floral morphs reported recently in this invaded range, despite multiple 

introduction events could be also involved in the process.  

Legitimate pollinations were performed to assess the ability of the 5x S-morph to 

produce viable offspring through its ovules and pollen grains. Plants with odd ploidy 

levels, such as triploids and pentaploids, are reported to have meiotic abnormalities and 

to produce a high number of aneuploids, as well as 1x, 2x, 3x, 4x and/or 5x gametes in 

lower numbers (Ramsey and Schemske 1998; Risso-Pascotto et al. 2003). 

Consequently, they are expected to be mostly sterile (Ramsey and Schemske 1998). 

Meiotic abnormalities producing microspores with variable number of chromosomes 

have been described in O. pes-caprae (Vignoli 1937). Despite no differences were 

observed in pollen tube development along the style, 5x S-morph individuals were more 

successful as pollen recipient than as pollen donor. Still, our results showed that 5x S-

morph individuals were able to produce some viable pollen grains and ovules that, after 

legitimate pollinations, yielded viable offspring. The prevalence of 4x in the offspring 

also seems to indicate that 2x gametes were favourably recruited for seed production. 

Bi-nucleate microspores and 2n microspores resulting from nucleus restitution were 

already reported in the pentaploid Brachiaria brizantha (Risso-Pascotto et al. 2003). 

Moreover, exploring the ploidy of the offspring produced by triploids of Aloineae, 

Brandham (1982) showed that plants with odd ploidy levels (3x) still bear some fertility 

contributing with either 1x or 2x gametes when crossed with 2x or 4x plants, 

respectively. The bias in the frequency of progeny ploidy levels resulted from seed 

abortion when the ratio of material to paternal genomes in the endosperm tissue 

deviated from 2:1 (Brandham 1982; Grossniklaus et al. 2001). A similar mechanism 

could be actually guiding the prevalence of 4x seedlings in the 4x × 5x and 5x × 4x 

crosses with O. pes-caprae plants.  

In conclusion, the breakdown in the morph-incompatibility system combined 

with the ability of the 5x S-morph to produce some viable gametes opened the 

possibility for the sexual reproduction and may be one of the mechanisms involved in 

the emergence of new floral morphs and cytotypes in this invaded region. These results 
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are in accordance with our hypothesis; however, in order to fully understand the patterns 

of the incompatibility breakdown and their contribution for reproductive success and 

morph proportions of O. pes-caprae in this invaded region, large-scale pollination 

experiments are currently being performed through the invasive range of the western 

Mediterranean region.  
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2.1. Introduction 

 Under a global changing World, biological invasions are among the most 

concerning threats to Biodiversity (Walker and Steffen 1997; Richardson and Pyšek 

2008; Vilà et al. 2011). After long-distance dispersal, the reproductive strategies of 

alien plants are one of the critical steps for their establishment and spread (Lloret et al. 

2005; Pyšek and Richardson 2007). According to Baker’s Law (Baker 1955, 1967), 

pollinator’s limitation and lack of compatible mates are the major barriers to invader’s 

sexual reproduction in the new range, possibly forcing them to clonality or selfing. 

Vegetative reproduction has already been reported for several invasive species (e.g., 

Oxalis pes-caprae, Ornduff 1987; Castro et al. 2007; Elodea canadiensis, Bowmer et 

al. 1995; Fallopia japonica, Forman and Kesseli 2003), acting as an initial strong 

advantage that enables their persistence and growth in the new area (Richardson et al. 

2000). Nevertheless, exclusive clonal populations are expected to present less genetic 

diversity, which may be disadvantageous in long-term when facing new and 

unpredictable scenarios (Holsinger 2000). Another strategy is selfing; individuals with 

some levels of compatibility will have advantage in the establishment of new 

populations under low density conditions in comparison with self-incompatible ones 

(Baker 1955; Stebbins 1957; Baker 1967). 

 Pollination mutualisms play an important role in plant’s diversification, with 

most flowering plants depending on pollinators to reproduce (Bronstein et al. 2006). 

Thus, when an exotic plant is introduced in a new area, the scarcity or inexistence of 

pollinators may limit the reproductive success of the introduced plant and, 

consequently, restrict their expansion range (Baker 1955, 1967). The replacement of the 

lost plant-pollinator mutualisms from the native range by new ones from the novel area 

is fundamental for a successful invasion and is commonly recognized as the mutualism 

facilitation hypothesis (Richardson et al. 2000; Mitchell et al. 2006). However, because 

exotic plants are mostly pollinator’s generalists, their integration into the new 

mutualistic networks is usually straightforward (e.g., Crawley 1989; Richardson et al. 

2000; Traveset and Richardson 2006; Lopezaraiza-Mikel et al. 2007). Indeed, it has 

been suggested that the absence of compatible mates, rather than the limitation in 

pollination services, is one of the main barriers for the establishment of alien species 

(van Kleunen and Johnson 2007). This is especially critical for obligate out-crosser 

plants, such as heterostylous or strong self-incompatible species (e.g., Mal et al. 1992; 

Harrod and Taylor 1995). Compatible mates limitation has already been observed not 
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only in large scale surveys (van Kleunen and Johnson 2007), but also in particular 

invasive species (e.g., Centaurea spp. and Acroptilon repens, Harrod and Taylor 1995; 

Lytrhum salicaria, reviewed in Mal et al. 1992). 

 Heterostylous species are characterized by the presence of two or three floral 

morphs (distyly and tristyly, respectively) differing reciprocally in the positioning of 

their sexual organs (anthers and stigmas; see Fig. 1 from Introduction; Barrett 1992). 

Most heterostylous species are self-incompatible and, additionally, only crosses 

between reciprocal stamens and stigmas of compatible morphs are allowed (intra-morph 

incompatibility; Barrett 1992). Through negative-frequency dependent selection, 

disassortative mating together with heteromorphic incompatibility leads natural 

populations of heterostylous species to isoplethy (i.e., equal floral morph proportions). 

However, deviations from isoplethy may occur in clonal species, in newly established 

populations, and/or after population disturbance (Morgan and Barrett 1988; Barrett 

1992). Founder events after the introduction of a single morph in a new range will also 

lead to anisoplethic populations with strong negative consequences on the plant’s sexual 

reproductive success due to the lack of compatible mates (e.g., Oxalis pes-caprae, 

Castro et al. 2007; O. debilis, Luo et al. 2006). Thus, studies assessing reproductive 

success in anisoplethic populations from the invaded range are of major importance to 

understand the contribution of reproduction to the successful spreading of heterostylous 

species.  

 Oxalis pes-caprae L. is a tristylous invasive species in regions with 

Mediterranean climate (Ornduff 1987; Castro et al. 2007) that was forced to asexuality 

as a result of founder events due to the introduction of only one floral morph (the S-

morph; Michael 1964; Ornduff 1987). However, the occurrence of mixed populations 

composed by different floral morphs and cytotypes has been recently reported in the 

western Mediterranean basin (Castro et al. 2007; Ferrero et al. 2011). A weakening in 

the self-incompatibility and a breakdown in the morph-incompatibility system in this 

area was shown in Chapter I and was proposed as a possible explanation for the 

appearance of new forms. Thus, after observing the recent reacquisition of sexuality in 

this invasive species, the next step is now to assess the sexual reproductive success in 

the invasive populations under natural conditions. In addition, deviations from isoplethy 

are a relatively common feature in some species of Oxalis in the native range (e.g., 

Marco and Arroyo 1998; Turketti 2010). Facing all these observations, the main 

objective of the present study was to assess the sexual reproductive success of O. pes-
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caprae in invasive populations from the western Mediterranean basin presenting 

different floral morph compositions. It is expected that, (1) O. pes-caprae establishes 

new interactions with pollinators from the novel area independently of the population’s 

morph composition, and, regardless of the breakdown in the incompatibly system 

(Chapter I), (2) an increasing morph number within the population leads to higher 

disassortative pollen flow and, consequently, higher female reproductive success. To 

achieve this objective, mono-, di- and trimorphic populations were selected, floral 

morphs were characterized morphologically, pollinator assemblage and behaviour were 

monitored and the male and female reproductive success were quantified. 

 

2.2. Material and methods 

2.2.1. Plant material and study area 

 Oxalis pes-caprae L. (Oxalidaceae) is a south-African bulbous plant that was 

introduced as ornamental in several areas of the world and has become a widespread 

invasive weed in regions with Mediterranean climate (Ornduff 1987; Vilà et al. 2006; 

Castro et al. 2007). A rosette of leaves emerges from the rhizome apex with green heart-

shaped leaflets usually presenting purple spots. The flowers are actinomorphic yellow 

and are arranged in terminal umbellate cymes (Coutinho 1939; Sánchez-Pedraja 2008). 

This species is described as tristylous, being composed by three floral morphs (short-, 

mid- and long-styled floral morphs; S-, M- and L-morphs, respectively; see Figure 1 

from Chapter I; Ornduff 1987). In the invaded range of the western Mediterranean 

basin, it flowers from January to April (Castro et al. 2007). 

 This study was carried out during the flowering season of 2012 in three natural 

populations from the invaded range differing in the floral morphs composition: 

Coimbra, monomorphic population of the S-morph (40°12’21’’N, 8°25’26’’W); 

Cortegaça, dimorphic population of the S- and L-morphs (40°56’25’’N, 8°39’19’’W); 

and Alto da Praia Grande, trimorphic population bearing the three floral morphs 

(38°47’52’’N, 9°28’35’’W).  

 

2.2.2. Floral characterization  

 Two to three longitudinal transects across each population studied were 

performed to assess floral morph proportions. The floral morph of a minimum of 100 

individuals separated 5 m apart was recorded. One flower per plant from 10 distinct 

individuals of each floral morph was collected and harvested in 70% ethanol for 
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morphological measurements. In the laboratory, the corolla was removed, the sexual 

organs were photographed and the following parameters were measured using Image 

Tool v. 3.00 for Windows (Wilcox et al. UTHSCSA): (1) corolla length; (2) style length 

(from the corolla insertion up to the stigma); and (3) stamen height (from the corolla 

insertion up to the midpoint of the anther for each of the two anther whorls). Descriptive 

statistics (mean and standard error of the mean) were calculated for all the floral 

measurements. The reciprocity indices were calculated for dimorphic and trimorphic 

populations using the Excel macro RECIPRO (Sánchez et al. submitted). The 

reciprocity index enables to compare stigma and stamen height gaps among potential 

mates in the population, considering both distance and dispersion of this measure 

without influence of the morph frequency (Sánchez et al. 2008; Sánchez et al. 

submitted). This index enables comparisons between populations and species and varies 

between 0 (not reciprocal) and 1 (maximum reciprocity) (Sánchez et al. 2008; Sánchez 

et al submitted). Due to the presence of only one morph the reciprocity index in the 

monomorphic population is zero. 

 

2.2.3. Floral visitor’s assemblage  

 To assess the mutualistic interactions established between O. pes-caprae and the 

native insects in the invaded range, floral visitor’s assemblage was determined by direct 

field observations. The observations were performed during the flowering peak of 2012 

in the three populations studied. Six plots of approximately 2 m2 were arbitrarily 

selected in each population. The observer was placed at approximately 1 m away from 

the plot being able to monitor all the flowers without disturbing the pollinator’s 

behaviour. When more than one floral morph was present, stakes with flags with two or 

three different colours were used to identify them; this procedure enabled to record 

pollinator’s movements between and within floral morphs. Observation sessions of 15 

min per plot were conducted at different hours of the day (from 1130 to 1615h, GMT, 

the period of the day of corolla opening). The following variables were recorded: 

insect’s visitor and number, morph and sequence of the flowers visited. A minimum of 

18h of observation per population were performed. At the end, one specimen of each 

insect type/taxon was collected for further identification. After identification, the insects 

were assembled in functional groups concerning their taxonomical position, behaviour, 

morphology and type of collected rewards (pollen and/or nectar). 
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 Within each population, the percentage of floral interactions to each morph was 

calculated for all the insect taxa by dividing the number of visits of the insect to a given 

morph by the total number of visits to that floral morph. The visitation rate to each 

morph within population was calculated for each functional group by dividing the 

number of flowers visited by the insects of each functional group by the total number of 

open flowers of the morph in the plot. Descriptive statistics (mean and standard error of 

the mean) were calculated for the number of legitimate (between morphs) and 

illegitimate (within morphs) pollinator visits per population and for visitation rates per 

population along the day. The probability to receive a visit in a 15 min period was 

calculated for each population by dividing the total number of flowers visited by the 

total number of flowers monitored (global visitation rate for each population studied); a 

similar approach was used to calculate the probability of a given morph to receive a 

visit in a 15 min period (floral morph visitation rates within a population). 

 

2.2.4. Male reproductive success 

 Male efficiency was assessed using fluorescent powder dyes as pollen analogues 

(Waser and Price 1982; Campbell and Waser 1989). Despite of some differences in the 

properties of fluorescent powder dyes and pollen grains (Thomson et al. 1986), it has 

been found that powder dye closely resembles pollen, being a useful and realistic tool to 

asses pollen flow in the field (e.g., Waser and Price 1982; Adler and Irwin 2006; Van 

Rossum et al. 2011). Thus, in each plot selected (see Floral visitor’s assemblage), five 

flowers per morph were randomly chosen and fluorescent powder dye was applied to its 

anthers, with each floral morph having its own colour. After three days, up to 150 

inflorescences per floral morph were collected across the population and the open 

flowers were observed in a stereo binocular microscope with UV light. The 

presence/absence, colour and place of dye deposition were recorded for all the flowers 

observed.  

 To assess the natural pollen flow within populations with different morph 

compositions, the percentage of flowers with fluorescent dye from the total number of 

observed flowers was calculated. To assess where the pollen was deposited (in the 

stigma or in other structures), the percentage of flowers with dye in the stigma from the 

total number of flowers that have received dye (e.g., in the style or anthers), 

independently of its colour, was calculated. To assess the provenience of the pollen, the 

percentage of disassortative versus assortative dye transfer (considering transfer to the 
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stigmas, only) was calculated; disassortative dye transfer was the percentage of stigmas 

with dye from a reciprocal morph and assortative dye transfer was the percentage of 

stigmas with dye from the same floral morph. 

 

2.2.5. Female reproductive success 

 Sexual reproductive success was assessed in natural conditions by recording 

fruit and seed production in the populations studied. During fruiting, a minimum of 17 

infructescences per morph were randomly collected for paper bags. Afterwards, the 

number of flowers and fruits per inflorescence and the number of morphologically 

viable seeds per fruit were counted using a stereo binocular microscope.  

 Descriptive statistics (mean and standard error of the mean) were calculated for 

fruit set (percentage of flowers that developed into fruit) and mean number of seeds per 

fruit. The overall reproductive success of each population was calculated by summing 

the fruit set of each floral morph present in the population weighted by its proportion in 

the corresponding population. 

 

2.2.6. Statistical analysis 

 Differences in visitation rates among populations were assessed using Kruskal-

Wallis one-way ANOVA on ranks, followed by Dunn’s method for pairwise multiple 

comparisons. Differences in visitation rates among morphs and in legitimate versus 

illegitimate visits were analyzed independently for both di- and trimorphic populations, 

using GLZ with gamma and Poisson distributions, respectively, and a log link function. 

Additionally, differences in the legitimate versus illegitimate visits among populations 

were assessed using a comparison of more than two proportions (Zar 1984). To assess if 

the functional groups had a preference for a specific morph, differences in visitation 

rates among floral morphs and populations (using only di- and trimorphic populations) 

were tested for each functional group using a GLM approach. A GLZ with gamma 

distribution and a log function was used when normality assumptions were not fulfilled. 

Functional groups that only visited one morph within population were not considered in 

the analysis. 

 Differences among populations and floral morphs for natural dye flow, dye loss 

and disassortative versus assortative dye transfer were analysed using GLZ models 

(binomial distribution for the first and the last variable and multinomial for dye loss; 

and logit link function for all). Differences in fruit set and seed production among 



CHAPTER II 

53 
 

populations and morphs were assessed using Kruskal-Wallis one-way ANOVA on 

ranks, followed by Dunn’s method for pairwise multiple comparisons. All the analyses 

were performed in STATISTICA 7.0 (Stat Soft. Inc., Tulsa, OK, USA). 

 

2.3. Results 

 Floral morph composition and floral measurements of the populations studied 

are provided in Table 1 and Figure 1 (raw data is also given in Appendix 2.1). The S-

morph had bigger flowers, followed by the M-morph with intermediate ones and the L-

morph with the smallest flowers (Appendix 2.1). This was already visible in the field 

where corolla lengths enabled easy recognition of floral morphs. When analyzing sexual 

organ’s disposition within morph, it was possible to observe that the stigmas of the S-

morph tend to approach the first levels of the anthers, while the L-morph tend to have 

smaller anthers whorls and thus a bigger separation between stigmas and anthers 

(Figure 1). As a consequence, in di- and trimorphic populations, the level of anthers 

reciprocal to the stigma of the S-morph was the mid-level of the L-morph (Figure 1B-

C). The low anther levels are located approximately at the same height in M- and L-

morphs, not being reciprocal to the stigmas of the S-morph (Figure 1B-C). The 

monomorphic population had a reciprocity index of zero, while di- and trimorphic 

populations had high values of reciprocity (Table 1).  

 O. pes-caprae floral visitor’s assemblage is presented in Appendix 2 and the 

most common visitors are illustrated in Figure 2. Significant differences were observed 

in visitation rates between populations (H2 = 105.28, P < 0.001), with the monomorphic 

population having the highest global visitation rates and the trimorphic having the 

lowest (P < 0.05; Table 2). Concerning the visitation rates among floral morphs in di- 

and trimorphic populations, significant differences between morphs were only obtained 

in the trimorphic population (
2
2 = 3.66; P = 0.06 and 

2
2 = 6.76; P = 0.03, 

respectively). In any case, the S-morph always had the highest visitation rates (Table 2).  

Within population (considering di- and trimorphic, only), illegitimate visitation rates 

were always significantly higher than legitimate ones (
1

2 = 681.11 and 
1

2 = 68.97, P < 

0.001, for di- and trimorphic populations, respectively). As expected, the illegitimate 

visitation rates were significantly higher in the monomorphic population (
1

2 = 246.87; 

P < 0.05), but not significantly different between the di- and trimorphic populations (P 

< 0.05).  
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 Despite of some common functional groups, pollinator assemblage differed 

among populations (Figure 3; Appendix 2.2). In general, floral visitors did not have a 

preference for a specific morph, except for Psithyrus sp. and Lepidoptera that mostly 

foraged S-morph flowers in the dimorphic population, and Syrphidae that visited 

preferentially the M-morph in the trimorphic population (Figure 3 and Appendices 2.2 

and 2.3). 

 Results obtained for male efficiency measured as fluorescent powder dye flow 

are illustrated in Figure 4. Natural dye flow varied significantly between morphs (
2

2= 

Figure 1.  Sexual whorls morphometric measurements for the populations 

studied: A. Coimbra, monomorphic population; B. Cortegaça, dimorphic 

population; C. Alto da Praia Grande, trimorphic population. Stigma: closed 

circles, anthers levels: open circles. Floral morphs: S-, M- and L- for short-, mid- 

and long-styled floral morphs, respectively. 
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7.27; P = 0.03) but, surprisingly, not among populations with different morph 

compositions (
2

2 = 2.15; P = 0.34), ranging from 13% to 21% (Figure 4 A-C). 

 Statistically significant differences were observed for the pollen lost in other 

floral structures rather than in the stigma among populations (
2

2 = 71.44; P < 0.05). 

Despite similar dye flow (Figure 4 A-C), the monomorphic population had significantly 

higher pollen deposition in other structures (Figure 4 D-F; P < 0.05). The dimorphic 

population had the lowest dye loss, independently of the floral morph. Despite not 

significant, in the trimorphic population the L-morph had the highest values of dye 

deposition in the stigma (see Appendix 2.3). 

 

 

 

 

 

 

Population 
Geographical 
coordinates 

Population 
type 

Floral morphs (%) Reciprocity 
index S- M- L- 

1. Coimbra 40º12’21’’N 8º25’26’’W Monomorphic 100.0 - - 0.00 

2. Cortegaça 40º56’25’’N 8º39’19’’W Dimorphic 57.4 - 42.6 0.74 

3. Alto da Praia 
Grande 

38º47’52’’N 9º28’35’’W Trimorphic 21.2 27.2 51.6 0.70 

Figure 2. Oxalis pes-caprae pollinators. A. Apis mellifera; B. Anthophora sp.; C. Bombus 

terrestris; D. Pieris brassicae; E. Psithyrus sp.; F. Xylocopa violaceae.  

Table 1. Location, floral morph composition (%) and reciprocity index for each population studied. 

Notes: Floral morphs: S-, M- and L- for short-, mid- and long-styled floral morphs, respectively; “-“ indicates 

absence of a given floral morph in the population. Reciprocity index was calculated using RECIPRO and varies 

between 0 (not reciprocal) and 1 (maximum reciprocity; Sánchez et al submitted). 
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 Disassortative and assortative dye deposition differed significantly among 

populations (
2

2 = 43.32; P < 0.05) and floral morphs (
2

2 = 13.24; P < 0.05; Figure 4 

G-I). As a result of the monomorphic condition of the Coimbra population, all the dye 

deposition was assortative. Overall, there was an increase in disassortative dye 

deposition from di- to trimorphic populations. Considering the exposed stigmas, it was 

surprising that the L-morph had the lowest disassortative dye deposition in comparison 

with the other morphs in both di- and trimorphic populations; the S- and M-morphs had 

higher values especially in the trimorphic population (Figure 4 G-I). 

 The results of female efficiency are provided in Figure 5 and Appendix 2.4. 

Statistically significant differences among populations were obtained for fruit 

production (H2 = 90.05; P < 0.001; H2 = 118.29; P < 0.001, respectively), with the 

monomorphic population having no sexual output and the others having similar fruit 

production (P < 0.05; Figure 3). Statistically significant differences in fruit production 

were also observed among floral morphs (H2 = 118.29; P < 0.001), with the S-morph 

having lower fruit production than the others morphs (P < 0.05). 

 With the exception of the monomorphic population where no fruit was observed, 

all the floral morphs yielded morphologically viable seeds (Appendix 2.4). When 

considering the di- and trimorphic populations, no statistically significant differences 

were obtained for seed set among populations and morphs (Appendix 2.3 and 2.4). 

 

 

 

 

 

 

  

 

Population n 
Floral morphs visitation rate Global visitation 

rate S- M- L- 

1. Coimbra 82 0.30 ± 0.994 - - 0.30 ± 0.994 

2. Cortegaça 80 0.22 ± 0.028 - 0.09 ± 0.017 0.16 ± 0.017 

3. Alto da Praia Grande 76 0.04 ± 0.018 0.01 ± 0.004 0.01 ± 0.002 0.02 ± 0.006 

Table 2. Floral morph visitation rates and global visitation rates for each population studied. 

Notes: Floral morphs: S-, M- and L- for short-, mid- and long-styled floral morphs, respectively; “-“ indicates 

absence of a given floral morph in the population. The number of census performed is also provided (n). Values are 

given as mean and standard error of the mean. 
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Figure 3. Visitation rates of each 

functional group per morph for the 

three populations studied: A. 

Coimbra, monomorphic population; 

B. Cortegaça, dimorphic population; 

C. Alto da Praia Grande, trimorphic 

population. Values are given as mean 

and standard error of the mean. 

Black, grey and white bars for for 

short-, mid- and long-styled floral 

morphs, respectively. 
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Figure 4. Male reproductive success 

within the populations studied given 

as dye flow per floral morph: A-C. 

Natural dye flow (percentage of 

flowers with and without dye are 

represented by black and white bars, 

respectively); D-F. Percentage of 

flowers with dye deposited in the 

stigma (black bars) versus lost in 

other organs (white bars); G-I. 

Percentage of disassortative (black 

bars) versus assortative (white bars) 

dye deposition in the stigma. 



CHAPTER II 

59 

 

 

 

 

 

 

 

 

  

 

2.4. Discussion 

 Reproduction is a key factor for the successful establishment of an exotic species 

after introduction (García-Ramos and Rodríguez 2002; Kinlan and Hastings 2005). 

Lack of suitable pollinators and compatible mate’s loss are known to negatively affect 

sexual reproduction of heterostylous species during the invasion processes (reviewed in 

Barrett and Shore 2008; Barrett et al. 2008). In the present study it was observed that 

the invasive O. pes-caprae established new mutualistic interactions at the pollination 

level with different insect’s functional groups from the invaded range as expected for a 

generalist species; and that, regardless of a breakdown in the incompatibly system 

(Chapter I), an increase in morph diversity (i.e., compatible mates diversity) increased 

disassortative pollen flow and, consequently, the female reproductive success. Up to 

date, to our knowledge, this is the first study assessing both male and female 

Figure 5. Female reproductive success within the populations 

studied given as fruit set: A. Coimbra, monomorphic population; 

B. Cortegaça, dimorphic population; C. Alto da Praia Grande, 

trimorphic population. The overall fruit set (%) for each 

population is given in the left side of the graphs. Values are given 

in percentage, as mean and standard error of the mean. Floral 

morphs: S-, M- and L- for short-, mid- and long-styled floral 

morphs, respectively. 
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contributions to the reproductive success of an invasive heterostylous species in 

populations with different morph compositions in its invaded area.  

 The morphometric analysis of O. pes-caprae flowers revealed a close 

positioning of the stigma and the first level of anthers in the S-morph. Also, the two 

levels of anthers in the L-morph were closer together than with the stigma in a way that 

the second level of anthers was more reciprocal with the stigmas of the S-morph, rather 

than the lower level. These findings indicate that the system is dynamic and might be 

changing towards semi-homostyly, i.e., flowers composed by a long whorl of anthers 

and a short level that coincides with the stigma in height (Lewis 1954; Barrett 1989). 

This evolution from tristyly towards semi-homostyly (Lewis 1954) may result from 

recombination phenomena and from the accumulation of modifier genes (Ganders 1979) 

in a medium-long term and has already been described for several heterostylous species 

(reviewed in Turketti 2010). For example, in some Oxalis species, the semi-

homostylous flowers observed seemed to point out for a modification of the S- and M-

morphs (Ganders 1979; Ornduff 1972). Also, in Eichhornia genus, semi-homostylous 

flowers resulted from the breakdown of tristyly, which was associated with a change in 

the breeding system from out-crossing to selfing. The relaxation and subsequent loss of 

self-incompatibility preceded modifications in floral structures, and both had major 

impacts in population dynamics, floral morph composition and flower architecture 

(Barrett 1988, 1989; reviewed in Weller 1992). Despite the genetic basis of semi-

homostyly in tristylous species is rather complex, O. pes-caprae might be following a 

similar pathway: incompatibility system is collapsing (Chapter I) and, regardless of the 

few observed flowers, some individuals were semi-homostylous (results herein). Large 

scale morphometric analyses in the subsequent years should be performed to assess how 

floral morphology is evolving. 

 O. pes-caprae flowers were visited by a wide array of insects from different 

functional groups and the majority of them were moving pollen and, consequently, 

pollinating the flowers. Considering the open corolla with rewards accessible to most 

floral visitors, O. pes-caprae profits from a substantial variety of different pollinators, 

and thus can be viewed as a pollinator’s generalist. Indeed, few invaders are pollinator’s 

specialists and, consequently, the integration of an exotic plant species into the existent 

plant-pollinator’s networks is quite common (Richardson et al. 2000; Traveset and 

Richardson 2006). Indeed, this has already been confirmed for several invasive species 

(e.g., reviewed in Richardson et al. 2000; Cytisus scoparius, Morales and Aizen 2002; 
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Impatia glandulifera, Lopezaraiza-Mikel et al. 2007; Opuntia maxima, Padrón et al. 

2009), and pollinators are not usually considered among the barriers that a plant must 

overpass to become a successful invader (Rambuda and Johnson 2004). 

 Different floral visitor’s assemblage and visitation rates were observed between 

O. pes-caprae populations, with the monomorphic population having the highest 

visitation rate, and the trimorphic one the lowest. Several factors are known to influence 

floral visitors assemblage and abundance, namely environmental conditions (reviewed 

in Burkle and Alarcón 2011) and food resources, such as the presence of co-flowering 

species that may be offering better and/or more floral rewards (e.g., Horvitz and 

Schemske 1988; Stone et al. 2003). In the mono- and dimorphic populations, O. pes-

caprae was the only resource available for insects and thus, it was continuously foraged 

for nectar and pollen. Contrarily, in the trimorphic population, O. pes-caprae was 

flowering simultaneously with Acacia longifolia. Species from the genus Acacia are 

known to produce high amounts of floral rewards (Stone et al. 2003). Thus, A. 

longifolia was probably actively competing with O. pes-caprae for pollinators, 

significantly reducing its visitation rates. In addition, the environmental conditions of 

this population were more adverse the pollinators; this population is located near the 

coast, having strong winds and low temperatures during the census, overall contributing 

to lower pollinator’s abundances than in the other two populations.  

 When analyzing visitation rates to each floral morph within population, the S-

morph flowers had higher visitation rates than the flowers of the other morphs in both 

di- and trimorphic populations, despite its low representation in the later. It has been 

demonstrated that larger corollas attract more insects (e.g., Ganders 1979; Brown et al. 

2002), and the higher visitation rates to S-morph flowers could be due exactly to this. 

Higher visitation rates of the S-morph flowers have been obtained for some other 

heterostylous species, but not always the corolla’s size was the attracting factor (e.g., 

Pontederia cordata, Wolfe and Barrett 1987; Eichhornia paniculata, Husband and 

Barrett 1992). Insects from distinct functional groups with different behaviours were 

observed visiting O. pes-caprae flowers, including mostly Hymenoptera, but also, 

Syrphidae and Lepidoptera. The Syrphidae have suctorial or sponging mouthparts and 

were mainly feeding on pollen. They stayed for long periods in the same flower in the 

longest sexual whorl and as a result of their feeding preferences they had a clear 

preference for the S-morph. In some study systems, they do not play any role on plant’s 

reproduction (e.g., Geonoma irena, Borchsenius 1997; Lonicera japonica, Larson et al. 
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2002); however, in other plant species, depending on their body and tongue sizes 

(Gilbert et al. 1985; Stone et al. 2003), they revealed to be constant and efficient 

pollinators (e.g., Gilbert 1980; Sugiura 1996; Goulson and Wright 1997). In O. pes-

caprae, given their behaviour during field observations, this does not seem to be the 

case, but future studies are necessary to assess the efficiency of these visitors as 

pollinators. Within Hymenoptera, O. pes-caprae was visited by several bees with 

different body and proboscis sizes and different foraging strategies when exploiting the 

flowers for nectar and pollen. However, in most cases they performed quick visits 

moving rapidly across the population and visiting many flowers. Most of them inserted 

the tongue and/or proboscis in the corolla and, depending on their size, touched the 

anthers depositing pollen at different heights along their bodies, potentially allowing the 

segregation of the pollen from different anther levels and subsequent disassortative 

pollen transfer (Barrett 2002). It is however important to notice that many were clumsy 

and clearly had pollen all over the body. Lepidoptera were also sporadically observed 

collecting nectar in O. pes-caprae flowers and, according with previous studies, are 

considered to be more accurate in pollen transfer (Ferrero et al. 2011b).  

 Pollen flow in all the populations surveyed was registered and, in the 

monomorphic population, surprisingly, fluorescence dye deposition in the stigmas of 

the S-morph was observed. The flower morphology discussed above combined with 

each insect’s particular pattern of visiting the flowers (Lloyd and Webb 1992) and with 

a latter redistribution of pollen along their bodies during the flight (Wolfe and Barrett 

1989), may have led to some pollen transfer to the stigmas of the S-morph in this 

population. Given the presence of only one floral morph, the considerably high dye loss 

observed was expected. 

 Disassortative pollen analogue deposition was higher when the three floral 

morphs were growing together, despite the low visitation rates registered. Considering 

the high level of reciprocity of both di- and trimorphic populations, the efficient pollen 

deposition along the pollinator’s body (Lau and Bosque 2003; Sánchez et al. 2008) that 

contributed to the inter-morph dye transfer was expectable. The low level of 

disassortative dye transfer in dimorphic population was related with its most common 

floral visitor, Psithyrus sp. Its hairless thorax prevents pollen removal from the anthers 

(Thorp 2000) and together with its bumbling behaviour (flight near the ground, 

frequently rising and falling from flower to flower) contributes to its negligible role on 

pollination. The S-morph from di- and trimorphic populations and the M-morph 
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received the highest levels of disassortative dye transfer in comparison with the L-

morph. This pattern is similar to the one that was found for the tristylous Pontederia 

cordata (Wolfe and Barrett 1989) and can be attributed to higher exposition of the 

stigma in the L-morph. In fact, higher percentages of random pollinations are expected 

to occur as a result of the exposed stigma location in L- morph, consequently decreasing 

the opportunity for disassortative pollen transfers in this floral morph (reviewed in 

Dulberger 1992).  

 An increase in disassortative dye flow from di- to trimorphic populations was 

observed, thus allowing fruit production. Considering the monomorphic population, no 

fruit set was recorded. This was most probably due to a combination of factors; first, to 

low pollen transfer to the stigmas between flowers of the same morph (results herein); 

second, the incompatibility system may still be operating (completely or in some 

degree) in this population (Chapter I; Castro et al. 2007; Ferrero et al. 2011a) and 

finally, the pentaploid level of the individuals limits the development of viable gametes 

(Chapter I; Castro et al., 2007). For a more detailed discussion on this subject see 

Discussion from Chapter I. Despite the proportional increase in disassortative dye 

transfer with the diversity of floral morphs (i.e., compatible mates) the trimorphic 

population registered significantly lower fruit production. The factors affecting 

pollinator’s assemblage and abundance discussed above (i.e., environmental conditions 

and co-flowering species) are clearly involved in the reduced fruit set observed. 

However, no differences in the seed set between both populations were found. Thus, 

pollinators from the trimorphic population can be considered more efficient than the 

ones from dimorphic population.   

 O. pes-caprae revealed to be a generalist plant concerning pollinators, having 

already established new mutualistic interactions in the invaded range of the western 

Mediterranean basin. This condition allowed pollen flow in populations differing in 

morph composition. High levels of disassortative fluorescence dye transfer revealed 

inter-morph pollinations, allowing fruit and seed production, regardless of the biased 

floral morph ratios in di- and trimorphic populations. Factors affecting pollen transfer 

(i.e., pollinator’s assemblage, abundance and behaviour; environmental conditions and 

co-flowering species) played a crucial role in pollen transfer efficiency and, 

consequently, in fruit and seed set. The absence of fruits in the monomorphic population 

reveals that the reported breakdown in the morph-incompatibility (Chapter I) may not 

be a generalized event in the entire invaded range. A positive correlation between floral 
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morph’s diversity and efficient pollen transfer was also confirmed. Future work 

encompassing more populations characterized at the vegetation and co-flowering 

species level and contemplating pollen grain’s analyzes from the different whorls of 

anthers and subsequent capture of pollinator’s to analyse pollen segregation along their 

bodies, will allow a better comprehension on how this invasive species is successfully 

reproducing by sexual means in the invaded area of the Mediterranean basin.  
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Appendix 2.1. Floral morphometric measurements. 

 

 

 

 

 

  

 

 

 

Population 
Floral 
morph 

n Corolla 
length (mm) 

Stigma 
height (mm) 

Anther level (mm) 

s m l 

1. Coimbra 
S-morph 10 24.6 ± 0.6 5.2 ± 0.2 - 6.6 ± 0.1 9.6 ± 0.2 

       

2. Cortegaça 
S-morph 10 22.6 ± 0.4 4.7 ± 0.1 - 5.8 ± 0.1 8.3 ± 0.1 
L-morph 10 13.8 ± 0.3 8.0 ± 0.2 3.0 ± 0.1 4.6 ± 0.1 - 

       

3. Alto da Praia 
Grande 

S-morph 10 22.9 ± 0.5 5.4 ± 0.1 - 7.1 ± 0.1 9.9 ± 0.1 
M-morph 10 20.5 ± 0.7 6.6 ± 0.1 4.5 ± 0.1 - 9.1 ± 0.1 
L-morph 10 18.2 ± 0.6 9.3 ± 0.2 4.2 ± 0.1 5.9 ± 0.1 - 

Notes: Values are given as mean and standard error of the mean. Floral morph: S-, M- and L-morph for short-, mid- 

and long-styled floral morph. Anther level is given as follows: s, m and l for short-, mid- and long-whorls of anthers, 

respectively. Sample size is also provided (n). 
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Variables 
Factors 

Population Morph 

Pollinator’s assemblage   

Global visitation rates H2 = 105.28; p < 0.001 - 

Andrena sp. - 
1

2 = 1.52; p = 0.29 

Anthophora sp.♯ - F2 = 1.52; p =0.35 

A. mellifera ♯ F1 = 4.30; p = 0.13 F1 = 3.45; p = 0.16 

Bombus sp. 
1

2 = 0.34; p = 0.56 
2

2 = 0.38; p = 0.83 

Lepidoptera 
1

2 = 0.06; p = 0.81 - 

Psithyrus sp. - 
1

2
= 6.73; p < 0.05 

Xylocopa violaceae - - 

Syrphidae 
1

2 = 1.65; p = 0.20 
2

2 = 6.08; p = 0.04 

Legitimate vs illegitimate visits 
2

2 = 246.87; p < 0.05 - 

Male reproductive success   

Natural dye flow 
1

2 = 2.15; p = 0.34 
2

2 = 7.27; p = 0.03 

Total dye lost 
4

2 = 71.44; p < 0.05 
2

2 = 5.70; p = 0.22 

Disassortative vs assortative 
2

2 = 43.32; p < 0.05 
2

2 = 13.24; p < 0.05 

Female reproductive success   

Fruit set H
2
 = 90.05; p < 0.05 H

2
 = 118.29; p < 0.05 

Seed set H
1
 = 0.005; p = 0.94 H

2
 = 4.19; p = 0.12 

Appendix 2.3. Results of the statistical analyses for differences among populations and 

floral morphs in pollinator’s assemblage and male and female reproductive success 

variables.  

Notes:  “#” indicates the functional groups tested with GLM; in bold are highlighted the 

statistically significant results; “-“ indicates that no statistical test was performed.   
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Conclusions 

The results obtained in this MSc thesis allowed obtaining further insights 

regarding the reproductive system of Oxalis pes-caprae in the invaded area (Chapter 1) 

and the sexual reproduction success in natural populations from the invaded range 

differing in morph composition (Chapter 2). The obtained results proved that a 

breakdown in the morph-incompatibility system of O. pes-caprae occurred in the study 

area. Additionally, we detected the ability of the 5x S-morph to produce some viable 

gametes, which opened the possibility for the sexual reproduction to occur in the 

invaded area of the Mediterranean basin. The ability to reproduce sexually may, thus, be 

one of the mechanisms involved in the emergence of new floral morphs and cytotypes 

in this range of the invaded area. Regarding sexual reproduction in natural populations, 

it was confirmed that O. pes-caprae is a pollinators’ generalist plant that has already 

integrated the existent pollination networks in the invaded range of the western 

Mediterranean basin. These interactions allowed pollen flow within the populations and, 

ultimately, fruit and seed production. The biased floral morph ratios resulted in different 

rates of seed set among populations.  

The work developed opens new insights in the knowledge of the invasion 

process of a primarily obligate out-crosser in a new environment. The shift from strict 

clonality for sexual reproduction confirms the importance of studies like this to 

understand the dynamics associated with the invasion of species with a peculiar sexual 

system such as heterostyly.  

 

Future Perspectives 

The results obtained shed light in some important questions concerning the 

reproductive system during the invasion process of O. pes-caprae. However, the 

answers obtained lead to new and pertinent questions for future work.  

In order to reach a full understanding of the patterns associated with the 

incompatibility breakdown and their contribution for the reproductive success and 

morph biased populations of O. pes-caprae in this study region, large-scale pollination 

experiments through the invasive range of the western Mediterranean basin are 

necessary. Additionally, improvements of the FCM methodology using pollen grains 

are needed to confirm the ploidy level of the gametes produced by the 5x S-morph.  

Also, a more exhaustive field work encompassing a higher number of 

populations, differing in morph composition, characterized at vegetation and co-
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flowering species level are needed to fully understand the patterns of fruit production 

obtained. A deeper nectar characterization would also be interesting to completely rule 

out the importance of the floral rewards provided by O. pes-caprae. Palinological 

studies of the pollen grains from the different whorls of anthers together with 

pollinator’s capture and observation of pollen segregation along their bodies are also 

necessary for a better evaluation of the sexual reproduction success of this invasive 

species in the Mediterranean basin. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




