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Abbreviations 

 

AMPK: AMP-activated protein kinase 

E. coli: Escherichia coli 

EDTA: Ethylenediaminetetraacetic acid 

GS: glycogen synthase 

GSK3: glycogen synthase kinase 3 

GST: Glutathione-S-transferase 

HPLC: high pressure liquid chromatography  

IMAC: Immobilized Metal ion Affinity Chromatography 

IPTG: Isopropyl β-D-1-thiogalactopyranoside 

LB: Luria Bertani Broth 

MBP: Maltose Binding Protein 

Nus-A: N-utilizing substance A  

OD600: Optical Density, measured at a wavelength of 600nm 

PCR: polymerase chain reaction 

PKA: Protein kinase A 

PP1: protein phosphatase 1 

PVDF: Polyvinylidene Fluoride 

SDS-PAGE: Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

SEC: Size-exclusion chromatography 

TBS: Tris-Buffered Saline 

TBS-T: Tris-Buffered Saline with Tween20 

TEV: Tobacco Etch Virus 

Trx: thioredoxin 

UDP-glucose: uridine diphosphate glucose 

WB: Western Blot 

 

 

http://en.wikipedia.org/wiki/AMP-activated_protein_kinase
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Abstract 

 

Glycogen is a branched and soluble polymer of glucose, present in cells functioning as 

energy storage. Its accumulation and utilization, synthesis and degradation are 

controlled primarily by covalent phosphorylation and allosteric ligand binding of the 

enzymes involved in glycogen metabolism. It is suggested that such enzymes are 

controlled by two enzymes, laforin and malin, which form a complex that is able to 

ubiquitinate those targets and target them for degradation, as a way of controlling 

glycogen synthesis. Mutations in the genes coding for these two proteins are the cause 

of Lafora disease, a type of myoclonic progressive epilepsy. Laforin is a unique human 

dual-specificity phosphatase (DSP), as it contains a carbohydrate binding module 

(CBM) at its N-terminal along with the Dual-Specificity Phosphatase Domain (DSPD) at 

its C-terminal, whereas malin is an E3 ubiquitin ligase of RING type. Malin was shown 

to interact with laforin within the region between the CBM and DSPD domains. Based 

on this, the aim of this work is the optimization of expression and purification of 

protein to obtain sufficient amounts of protein for further identification of a minimal 

laforin amino acid sequence required for the interaction with malin.  

To achieve this, several constructs coding for either the CBM or DSPD domains with 

increasing length of the inter-domain region were obtained by molecular biology 

techniques. The protein expression was performed using E. coli as host system, and 

the results have shown that, apart from the shorter CBM constructs, most protein is 

expressed in the form of insoluble inclusion bodies. The attempts to refold such 

proteins using the protocol previously developed for the refolding of laforin and its 

CBM proved unsuccessful. Laforin CBM domain was successfully expressed in soluble 

form and has been purified with a yield of 1,73 mg/L of expression media. Malin 

expression revealed that the protein is very poorly expressed in E. coli, being only 

detected by western-blot. Most of the protein was expressed as inclusion bodies, and 

despite some attempts to obtain soluble protein expression, no protein could be 

purified. 

This work has evidenced the difficulties of expressing protein domains and the 

importance of choosing the correct boundaries of such domains. Nevertheless, this 

work paves the way for the further optimization necessary for the expression and 

purification of both malin and the laforin constructs developed during this work. 
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Resumo 

 

O glicogénio consiste num polímero de glucose, solúvel e ramificado que se encontra 

presente no citoplasma celular e funciona como reserva energética. A acumulação e 

utilização, bem como a síntese e degradação são processos controlados pela regulação 

da atividade das enzimas envolvidas no metabolismo do glicogénio, por reações de 

fosforilação e interações alostéricas. Duas enzimas, a laforina e a malina, estão 

envolvidas nesta regulação enzimática. Formam um complexo que promove a 

ubiquitinação dos respectivos substratos e o seu direcionamento para degradação 

permitindo uma regulação da síntese do glicogénio. Mutações nos genes que 

codificam ambas as proteínas levam ao aparecimento da doença da Lafora que 

consiste num tipo de epilepsia mioclónica progressiva. A laforina é a única fosfatase de 

dupla especificidade (DSP) humana devido à presença de um respectivo domínio DSP 

no C-terminal apresentando também um módulo de ligação a carbohidratos (CBM) no 

N-terminal. Por sua vez, a malina é uma ligase de ubiquitina E3 do tipo RING finger e 

interage com a laforina na região entre os domínios CBM e DSPD. Com base nesta 

informação, o objectivo do projecto consistiu na optimização da expressão e 

purificação das proteínas de modo a obter quantidades suficientes para uma posterior 

identificação da região mínima da laforina necessária para interagir com a malina. Para 

isto, várias construções contendo quer o domínio CBM ou o domínio DSP com um 

aumento da sequência da região entre os domínios foram obtidas por técnicas de 

biologia molecular. A expressão de proteína foi feita utilizando a E. coli como sistema 

de expressão e de acordo com os resultados obtidos, à parte das construções mais 

curtas contendo o domínio CBM, a maior parte da proteína das restantes construções 

é expressa na forma de corpos de inclusão. Tentativas de refolding destas proteínas 

com base num protocolo previamente desenvolvido para expressão de laforina e do 

seu domínio CBM falharam. No entanto, o domínio CBM da laforina foi expresso na 

forma solúvel e purificado com um rendimento de 1,73 mg/L de meio de expressão. 

Relativamente à malina, os rendimentos de expressão em E. Coli são muito baixos no 

qual a proteína só é detectada em western-blot. A maior parte da proteína é expressa 

como corpos de inclusão e apesar de algumas tentativas no sentido de obter proteína 

solúvel, ainda assim não foi possível purificar a malina. 

Este trabalho mostra a dificuldade na expressão de domínios proteicos e na 

importância de uma escolha correcta dos limites destes domínios. No entanto, este 
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trabalho abre caminho para futuras optimizações necessárias para a expressão e 

purificação da malina assim como das construções derivadas da laforina desenvolvidas 

ao longo deste trabalho. 
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1. Introduction 

1.1. Glycogen function, localization and structure 

Glycogen consists of a branched glucose polymer present in all mammals, stored 

mainly in skeletal muscle and liver. However this particle can also be synthesized and 

accumulated in the brain, kidneys, cardiac and smooth muscle, and in adipose tissue. 

This polymer functions as storage of energy and carbon and is used when blood 

glucose levels are low. The glucose levels in the cell are tightly regulated by two 

hormones - one is insulin, a hormone involved in cell signaling for glucose uptake and 

storage as glycogen when blood glucose levels are high; the other is glucagon, which is 

more secreted than insulin leading to glucose production from glycogen in the liver 

that is then sent to the bloodstream and distributed to the other cells. However, 

glucose released from glycogen in skeletal muscle is only used by this organ when 

rapid supply of energy is needed. 

Relatively to the structure, glycogen is formed by primarily glucose chains with 

branching points with a certain frequency that will give the final and characteristic 

spherical and symmetric structure (fig. 1). This particle is localized in the cell cytoplasm 

due to its solubility characteristic conferred by the hydroxyl groups from the glucose 

monomers1. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Structure of glycogen. Adapted from Marks DB, Marks AD and Marks CM (eds) (1996) Medical 

Biochemistry: A Clinical Approach. 
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1.2. Glycogen metabolism 

 

1.2.1 Glycogen synthesis and degradation 

 

The synthesis of glycogen is dependent on three enzymes. The first one is glycogenin 

(E.C. 2.4.1.186), a glycosyltransferase that initiates the synthesis by attaching 10 

glucose units, forming a base chain as a starting point for the central synthesis by 

glycogen synthase (EC 2.4.1.11) and the branching enzyme (EC 2.4.1.18). Glycogen 

synthase is also a glycosyltransferase which catalyzes α-1-4-glycosidic linkages by 

adding a UDP-glucose monomer (Uridine diphosphate glucose), to ensure the elongation 

of the polyglucose chains. Finally the branching enzyme is responsible for introducing 

branching points. It cleaves an α-1-4 glycosidic linkage and excises a segment of an 

oligosaccharide forming an α-1-6 glycosidic linkage. Glycogen contains small amounts 

of phosphate covalently linked in form of C2 and C3 phosphomonoesters that are 

incorporated by glycogen synthase through β-phosphate UDP-glucose substrate. For 

instance in muscle glycogen it is estimated the presence of one phosphate per 600-

1500 glucose residues. This event is a side reaction of GS, at a rate of one phosphate 

per 10 000 glucoses, which is believed to be a catalytic error2. 

 The degradation of glycogen involves two enzymes. Glycogen phosphorylase which 

cleaves α-1-4 glycosidic linkages to yield glucose-1-phosphate which is then converted 

to glucose-6-phosphate. Besides, the debranching enzyme (amylo-1,6-glucosidase,4-α-

glucanotransferase) (EC 3.2.1.68) is responsible for cleavage of α-1-6 glycosidic linkage. 

 

1.2.2 Glycogen metabolism regulation 

 

Glycogen homeostasis is maintained by the regulation of synthesis and degradation, 

through mechanisms involving phosphorylation and even allosteric regulation3,4. At the 

level of synthesis, glycogen synthase is inhibited by phosphorylation through kinases 

such as AMPK, PKA, and GSK3. On the other hand, GS is only activated by the type-1 

protein phosphatase (PP1). The PP1 can also inactivate glycogen phosphorylase 

leading to glycogen accumulation. The action and recruitment of PP1 to glycogen is 

mediated by the glycogen targeting protein R5/PTG, which functions as a scaffold since 
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it binds to PP1, glycogen and GS or GP, targeting PP1 to dephosphorylate each of the 

two enzymes, activating GS and inactivating GP. 

 

1.2.3 The involvement of laforin and malin proteins in glycogen synthesis 

regulation 

 

1.2.3.1 Laforin and malin characterization 

 

Laforin is a human protein phosphatase encoded by the EPM2A gene with 3128 bp and 

four exons forming the 996 bp coding sequence (fig. 2).This gene is located on 

chromosome 6q24. It is expressed mainly in liver, heart, skeletal muscle, pancreas and 

brain5,6. Laforin has 331 amino acid residues and is present in vivo in monomeric 

and/or dimeric forms depending on cell redox conditions7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Human laforin coding sequence and amino acid sequence (UniProt: O95278). The nucleotide 

sequence is in black and the amino acid sequence is in grey, while the CBM domain is underlined and 

the DSP domain is dashed underlined.  

1   atgcgcttccgctttggggtggtggtgccacccgccgtggccggcgcccggccggagctg 

     1 M  R  F  R  F  G  V  V  V  P  P  A  V  A  G  A  R  P  E  L 

61  ctggtggtggggtcgcggcccgagctggggcgttgggagccgcgcggtgccgtccgcctg 

 61   L  V  V  G  S  R  P  E  L  G  R  W  E  P  R  G  A  V  R  L 

121 aggccggccggcaccgcggcgggcgacggggccctggcgctgcaggagccgggcctgtgg 

    41 R  P  A  G  T  A  A  G  D  G  A  L  A  L  Q  E  P  G  L  W 

181 ctcggggaggtggagctggcggccgaggaggcggcgcaggacggggcggagccgggccgc 

   61 L  G  E  V  E  L  A  A  E  E  A  A  Q  D  G  A  E  P  G  R  

241 gtggacacgttctggtacaagttcctgaagcgggagccgggaggagagctctcctgggaa 

    81 V  D  T  F  W  Y  K  F  L  K  R  E  P  G  G  E  L  S  W  E 

301 ggcaatggacctcatcatgaccgttgctgtacttacaatgaaaacaacttggtggatggt 

   101 G  N  G  P  H  H  D  R  C  C  T  Y  N  E  N  N  L  V  D  G 

361 gtgtattgtctcccaataggacactggattgaggccactgggcacaccaatgaaatgaag 

   121 V  Y  C  L  P  I  G  H  W  I  E  A  T  G  H  T  N  E  M  K 

421 cacacaacagacttctattttaatattgcaggccaccaagccatgcattattcaagaatt 

   141 H  T  T  D  F  Y  F  N  I  A  G  H  Q  A  M  H  Y  S  R  I 

481 ctaccaaatatctggctgggtagctgccctcgtcaggtggaacatgtaaccatcaaactg 

   161 L  P  N  I  W  L  G  S  C  P  R  Q  V  E  H  V  T  I  K  L 

541 aagcatgaattggggattacagctgtaatgaatttccagactgaatgggatattgtacag 

  181 K  H  E  L  G  I  T  A  V  M  N  F  Q  T  E  W  D  I  V  Q  

601 aattcctcaggctgtaaccgctacccagagcccatgactccagacactatgattaaacta 

  201 N  S  S  G  C  N  R  Y  P  E  P  M  T  P  D  T  M  I  K  L 

661 tatagggaagaaggcttggcctacatctggatgccaacaccagatatgagcaccgaaggc 

  221 Y  R  E  E  G  L  A  Y  I  W  M  P  T  P  D  M  S  T  E  G  

721 cgagtacagatgctgccccaggcggtgtgcctgctgcatgcgctgctggagaagggacac 

   241 R  V  Q  M  L  P  Q  A  V  C  L  L  H  A  L  L  E  K  G  H 

781 atcgtgtacgtgcactgcaacgctggggtgggccgctccaccgcggctgtctgcggctgg 

   261 I  V  Y  V  H  C  N  A  G  V  G  R  S  T  A  A  V  C  G  W 

841 ctccagtatgtgatgggctggaatctgaggaaggtgcagtatttcctcatggccaagagg 

281  L  Q  Y  V  M  G  W  N  L  R  K  V  Q  Y  F  L  M  A  K  R  

901 ccggctgtctacattgacgaagaggccttggcccgggcacaagaagattttttccagaaa 

   301 P  A  V  Y  I  D  E  E  A  L  A  R  A  Q  E  D  F  F  Q  K 

961 tttgggaaggttcgttcttctgtgtgtagcctgtag 

  311 F  G  K  V  R  S  S  V  C  S  L  -   2
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Two isoforms are produced by alternative splicing from EPM2A gene and both are 

similar from residues 1 to 309, however they have different C-terminal. The canonical 

form is isoform laforin 1-331 which localizes in the cytoplasm and endoplasmic 

reticulum. The minor isoform laforin 1-317 is targeted to the nucleus and lacks 

phosphatase activity8,9. Laforin contains a carbohydrate-binding module (CBM) from 

residues 1 to 124, at the N terminal and a C-terminal dual-specificity phosphatase 

domain (DSPD) (residues 157 to 326). The laforin CBM belongs to the family CBM20, 

one of the 64 families of CBMs in which classification was based on evolutionary 

relationships, polypeptide folds and substrates (CAZY database). The structure of CBM 

20 family consists of seven β-strands forming an open-sided distorted β-barrel (fig. 3). 

The CBM allows laforin to bind to complex carbohydrates such as glycogen and starch, 

amylopectin and amylose, and contains three conserved aromatic residues involved in 

this binding10. Since no crystal structure of CBM is yet available, a model of CBM is 

suggested based on the most similar structure used as template (fig. 3). 

 

 

 

 

 

 

 

 

 

Figure 3. Structure model of Laforin CBM. |A. Schematic representation of human laforin where the 

CBM and DSPD domains are evidenced. |B. The CBM model was generated in silico using the crystal 

structure of Geobacillus stearothermophilus cyclodextrin glycosyltransferase as template (PDB: 1CYG). 

The homology model suggests that laforin CBM folding consists of characteristic two β-sheets fold, each 

consisting of three to six antiparallel β-strands and with the N- and C-termini pointing towards opposite 

ends. Conserved aromatic residues involved in carbohydrate binding are outlined in green: Trp32 Trp85, 

and Trp
99

. Adapted from Roma-Mateo et al 2011 . 

 

The DSPs belong to the protein tyrosine phosphatase (PTP) superfamily of cysteine-

dependent phosphatases. Dual-specificity phosphatase domain folding is the 

characteristic αβα PTP fold and from in silico modeling it’s suggested to have four or 

five β strands surround by α-helices11. This domain comprises a conserved CysX5Arg 

A B 
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motif that hydrolyzes phosphoester bonds and cysteine functions as the nucleophile 

(fig. 4). In addition, DSP active site allows dephosphorylation of phosphotyrosine or 

phosphoserine/phosphothreonine residues. In vivo human laforin dephosphorylates 

glycogen along with the dephosphorylation of various proteins, namely GSK3β and 

tau12,13,14,15. 

 

 

 

Figure 4. Model 3D structure of laforin DSP domain. The laforin DSPD 

(residues 157–326) was in silico modeled, using the crystal structure of 

human DUSP22 (PDB code: 1WRM) as a template. The position of the 

characteristic P-loop, containing the catalytic Cys266 residue (in red), 

and the WPD-loop, containing the conserved Asp235 (in yellow), is 

indicated. The positions of other residues described in the present 

study (Ser168, Thr187 and Thr194; in green) and the C-terminus are 

also indicated. 

 

 

 

Regarding laforin activity, it was evidenced that dimerization through its CBM domain 

is important for phosphatase activity and it was observed that recombinant laforin 

produced in bacteria, cell culture or even tissue form dimers16. However the 

mechanism responsible for this dimerization and its real function purpose is not well 

understood17,18. Relatively to human malin, this protein is encoded by EPM2B or 

NHLRC1 gene of 1344 bp located in chromosome 6p22.3. The coding sequence has 

1188 bp and product protein has 395 amino acids (fig. 5). Malin is highly expressed in 

brain, spinal cord, heart, liver, skeletal muscle and pancreas. The subcellular 

localization is mainly in the cytoplasm and some at the nucleus19.  
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1    atggcggccgaagcctcggagagcgggccagcgctgcatgagctcatgcgcgaggcggag 

1     M  A  A  E  A  S  E  S  G  P  A  L  H  E  L  M  R  E  A  E  

61   atcagcctgctcgagtgcaaggtgtgctttgagaagtttggccaccggcagcagcggcgc 

21    I  S  L  L  E  C  K  V  C  F  E  K  F  G  H  R  Q  Q  R  R  

121  ccgcgcaacctgtcctgcggccacgtggtctgcctggcctgcgtggccgccctggcgcac 

41    P  R  N  L  S  C  G  H  V  V  C  L  A  C  V  A  A  L  A  H  

181  ccgcgcactctggccctcgagtgcccattctgcaggcgagcttgccggggctgcgacacc 

61    P  R  T  L  A  L  E  C  P  F  C  R  R  A  C  R  G  C  D  T  

241  agcgactgcctgccggtgctgcacctcatagagctcctgggctcagcgcttcgccagtcc 

81    S  D  C  L  P  V  L  H  L  I  E  L  L  G  S  A  L  R  Q  S  

301  ccggccgcccatcgcgccgcccccagcgccctcggagccctcacctgccaccacaccttc 

101   P  A  A  H  R  A  A  P  S  A  L  G  A  L  T  C  H  H  T  F  

361  ggcggctgggggaccctggtcaaccccaccggactggcgctttgtcccaagacggggcgt 

121   G  G  W  G  T  L  V  N  P  T  G  L  A  L  C  P  K  T  G  R  

421  gtcgtggtggtgcacgacggcaggaggcgtgtcaagatttttgactcagggggaggatgc 

141   V  V  V  V  H  D  G  R  R  R  V  K  I  F  D  S  G  G  G  C  

481  gcgcatcagtttggagagaagggggacgctgcccaagacattaggtaccctgtggatgtc 

161   A  H  Q  F  G  E  K  G  D  A  A  Q  D  I  R  Y  P  V  D  V  

541  accatcaccaacgactgccatgtggttgtcactgacgccggcgatcgctccatcaaagtg 

181   T  I  T  N  D  C  H  V  V  V  T  D  A  G  D  R  S  I  K  V  

601  tttgatttttttggccagatcaagcttgtcattggaggccaattctccttaccttggggt 

201   F  D  F  F  G  Q  I  K  L  V  I  G  G  Q  F  S  L  P  W  G  

661  gtggagaccacccctcagaatgggattgtggtaactgatgcggaggcagggtccctgcac 

221   V  E  T  T  P  Q  N  G  I  V  V  T  D  A  E  A  G  S  L  H  

721  ctcctggacgtcgacttcgcggaaggggtccttcggagaactgaaaggttgcaagctcat 

241   L  L  D  V  D  F  A  E  G  V  L  R  R  T  E  R  L  Q  A  H  

781  ctgtgcaatccccgaggggtggcagtgtcttggctcaccggggccattgcggtcctggag 

261   L  C  N  P  R  G  V  A  V  S  W  L  T  G  A  I  A  V  L  E  

841  caccccctggccctggggactggggtttgcagcaccagggtgaaagtgtttagctcaagt 

281   H  P  L  A  L  G  T  G  V  C  S  T  R  V  K  V  F  S  S  S  

901  atgcagcttgtcggccaagtggatacctttgggctgagcctctactttccctccaaaata 

301   M  Q  L  V  G  Q  V  D  T  F  G  L  S  L  Y  F  P  S  K  I  

961  actgcctccgctgtgacctttgatcaccagggaaatgtgattgttgcagatacatctggt 

321   T  A  S  A  V  T  F  D  H  Q  G  N  V  I  V  A  D  T  S  G  

1021 ccagctatcctttgcttaggaaaacctgaggagtttccagtaccgaagcccatggtcact 

341   P  A  I  L  C  L  G  K  P  E  E  F  P  V  P  K  P  M  V  T  

1081 catggtctttcgcatcctgtggctcttaccttcaccaaggagaattctcttcttgtgctg 

361   H  G  L  S  H  P  V  A  L  T  F  T  K  E  N  S  L  L  V  L  

1141 gacacagcatctcattctataaaagtctataaagttgactgggggtga 

381   D  T  A  S  H  S  I  K  V  Y  K  V  D  W  G  -   

 

 

Figure 5. Coding sequence and amino acid sequence of human malin (UniProt: Q6VVB1). 

Gene nucleotide sequence is denoted in black and the protein sequence is in grey. The RING finger 

domain is highlighted in grey and the 6 NHL motifs are underlined. 

 

 

 

 

Regarding the domains, it presents a RING zinc finger motif in its N-terminal (C-X2-C-

X16-C-X1-H-X2-C-X2-C-X13-C-X2-C) between 26th and 72nd residues which is similar with 

those RING-HG types (fig. 6). That means a linear series of conserved cysteine and 

histidine residues, where X can be any amino acid. Two Zn2+ ions are coordinated to 

the cysteines and/or the histidines with a four coordination number. This motif folds 

into a compact domain with a central β-sheet and an α-helix (fig. 6)19,20. The RING 
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finger confers E3 ubiquitin ligase function to malin, being the E3 ligase role to choose 

specific targets for ubiquitination. This means that E3 ubiquitin ligases bind to the 

respective target proteins and the E2 conjugative enzymes which then promote the 

transfer of ubiquitin from E2 to a lysine residue of the target protein21.  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6. The Malin primary structure and models structure of RING finger |A. Schematic overview of 

primary structure of malin. The RING finger domain is outlined in red and the 6 NHL repeats domain ate 

blue. |B. Schematic organization of the characteristic RING-HC domain type. The first cysteine that 

coordinates zinc ion (II) is labeled as C1, and so on. H1 corresponds to the histidine ligand. Xn is the 

number of any amino acid residues in the spacer regions between the ligands. |C. Example of 3D model 

structure of the RING finger domain using tripartite motif protein 32 as template (PDB code: 2ct2A). 

 

 

At the C-terminal, malin contains a NHL repeat domain, a conserved structural motif of 

six bladed β propeller, arranged in a radial fashion around a central axis, and each 

blade consists of twisted four stranded antiparallel β-sheet with an example of this 

domain present in Brat protein (fig. 7)22. This domain was first identified from three 

proteins, NCL-1, HT2A and LIN-41 and that’s the origin of NHL name23. Concerning 

malin protein, the NHL domain is involved in protein-protein interactions24 as it will be 

shown in the next topic. 

 

 

 

 

 

A 

B 
C 

http://www.pdb.org/pdb/cgi/explore.cgi?pdbId=2ct2
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Figure 7. Brat NHL domain structure and surface. |A The NHL domain displayed at the “top” surface, 

with loops connecting the β-strands of each blade. |B NHL domain side view. The innermost strand of 

each blade is labeled 'a' and the outermost strand by 'd'. Adapted from Edwards 2003. 

 

 

1.2.3.1. The role of laforin and malin in glycogen metabolism: the laforin-

malin complex  

 

Laforin functions as a mammalian glycogen phosphatase in vivo to detect, control and 

repair levels of glycogen phosphorylation above a certain threshold, in part due to the 

enzymatic error of glycogen synthase mentioned above. Otherwise, glycogen would 

accumulate phosphate residues and longer unit chains overtime, due to inhibited 

branching by the phosphates, along with the branching enzyme saturation and would 

eventually form insoluble polyglucosans (poorly branched glycogen particles)25,26. 

Laforin is a binding partner of malin and it was shown their interaction in vitro and in 

vivo. Laforin establish interactions with malin with the region between the CBM and 

DSP domains27. Both proteins form a complex, and laforin recruits substrates to be 

ubiquitinated by malin. These substrates are specific and many of them are enzymes 

involved in glycogen synthesis. Thus, besides the role as glycogen phosphatase, laforin 

functions also as an adaptor protein of malin targeting it to the respective substrates. 

The ubiquitination process consists of three steps (fig. 8). The first one is the activation 

of ubiquitin protein by E1 (ubiquitin activating enzyme) and transfer to E2, a 

conjugating enzyme. E3 ubiquitin ligase then interacts with the E2 promoting the 

transfer of Ub from E2 to the target protein. If a chain of at least four Ub is formed and 

attached to the Lys48 residue, the substrate protein is targeted for degradation in 26 S 

proteasome. However, mono or polyubiquitination of chains linked to the Lys63 it is a 

 A B 
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signal of intracellular trafficking, activity modulation, cellular localization, DNA repair 

or signal transduction response. The outcome of ubiquitination in the cell, degradation 

or signaling purpose, is usually driven by ubiquitin receptors (UbR) that bind and 

interpret the ubiquitin signal20. 

 

 

 

 

 

 

 

 

Figure 8. The ubiquitin system. a) Ubiquitin (Ub) and ubiquitin-like proteins are activated for transfer by 

E1(ubiquitin-activating enzyme). b) Activated ubiquitin is transferred from the active-site cysteine of E1 

to the active-site cysteine of an E2 ubiquitin-conjugating enzyme. c) The E2-Ub thioester linkage 

interacts with an E3 ubiquitin ligase, which catalyzes transfer of Ub from E2-Ub to the substrate. 

Monoubiquitinated substrate can dissociate from E3 (d) or can acquire additional Ub modifications in 

the form of multiple single attachments (multiubiquitination, not shown) or an ubiquitin chain 

(polyubiquitination) (e). The chain can be attached via different lysine residues of ubiquitin. Concerning 

monoubiquitin and some types of chains, those assembled via Lys63 of ubiquitin serve mainly to change 

the protein function (f), polyubiquitin chains assembled via the Lys48 residue directs the substrate to 

the proteasome for degradation (g).  

 

The laforin–malin complex binds and ubiquitinates the muscle isoform of glycogen 

synthase (MGS), and the protein targeting to glycogen R5/PTG17. These proteins are 

then degraded by the proteasome. There are two isoforms of glycogen synthase, one 

that is only expressed in liver and the muscle isoform which is expressed in muscle and 

the other tissues like neurons. Although neurons have the enzymes for glycogen 

synthesis, the process is blocked due to MGS and R5/PTG degradation ensured by the 

laforin-malin complex and phosphorylation28. In the liver, however, the laforin-malin 

complex only degrades the R5/PTG and not the LGS29. This suggests the existence of 

tissue-specific differences in the regulation of glycogen synthesis by the laforin–malin 

complex. Moreover, the complex also mediates ubiquitination of the debranching 

enzyme30 and even laforin itself as control manner, that is, when laforin levels are 

reduced, no laforin-malin complex is formed and metabolic proteins will not be 

degraded (fig. 9). 
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Considering this, the laforin-malin complex downregulates glycogen synthesis and 

prevent poorly branched glycogen accumulation. Furthermore, the interaction of 

laforin and malin is a controlled process and enhanced through laforin Ser25 residue 

desphosphorylation by AMPK. It also phosphorylates R5/PTG accelerating its 

ubiquitination by the complex. AMPK is a AMP dependent-kinase that functions as a 

metabolic sensor-protein and when activated, it upregulates catabolic pathways3,11,29. 

 

 

 

 

 

Figure 9: A model for the role of laforin-malin complex in glycogen metabolism. R5/PTG, AGL and GS 

bind to glycogen during its metabolism. Glycogen suffers phosphorylation (P) due to GS and laforin 

releases these phosphate when binds to glycogen via CBM. In addition, laforin directly interacts with 

PTG. Malin interacts with laforin which allows malin to ubiquitinate R5/PTG, AGL, GS and laforin 

signaling them to be degraded in proteasome system. Adapted from Worby et al. 2008. 

 

Besides the role of laforin-malin complex in the regulation of glycogen metabolic 

enzymes, many findings support other pathways to control the activity of GS. One is 

through neuronatin degradation. This protein is expressed in several tissues and is 

involved in regulation of adipogenesis, in glucose-mediated insulin secretion at β 

pancreatic cells and stimulates glycogen synthase. Neuronatin inactivates GSK3β (an 

inhibitor of GS) through phosphorylation, which in turn allows GS to stay activated. 

Malin interacts with neuronatin via NHL domain promoting its ubiquitination and 

consequent degradation. Since degraded, neuronatin cannot inactivate GSK3β, which 

in turns decreases GS activity (fig. 10)31. 

Another pathway is the activation of GSK3β by direct interaction with laforin which 

finally suppresses GS activate state too (fig. 10)3,11,27,29. 
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Figure 10. Representative model of different pathways of glycogen synthase downregulation by 

laforin and malin. Malin forms a stable complex with laforin which then polyubiquitinates debranching 

enzyme, glycogen synthase and R5/PTG as a signal to be degraded in proteasome. Another pathway is 

the ubiquitination of neuronatin that inhibits GSK3β. Thus, degraded neuronatin maintains GSK3β 

activated which then inhibits GS activity. Laforin can also act directly with GSK3β activating it and them 

GS is inhibited. Line in red refers to ubiquitination and degradation. 

 

 

 

1.3.  Lafora disease (LD):  

 

1.3.1 Genetics 

 

Lafora disease is an autossomal recessive neurodegenerative disorder and is the most 

common of the five forms of progressive myoclonic epilepsy. This disease is caused by 

recessive inherited mutations along the EPM2A or EPM2B genes. To date, 48 

mutations were detected in EPM2A gene and 51 mutations in the EPM2B gene in LD 

families and has been reported that approximately 58% of LD patients have mutations 

in EPM2A gene and 35% present mutations in EPM2B gene. These mutations distribute 

more frequently in Mediterranean countries, including Spain, Italy and France, also in 

North Africa, Middle East and central Asia32,33.  
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1.3.2 Phenotype 

 

The first symptom usually appears during adolescence, between 12-17 years but in 

some cases it can be manifested in 6-year-old children34,35. In an early stage, the 

patients have generalized tonic-clonic, absence, myoclonic and visual seizures with 

temporary blindness and visual hallucinations. Cognitive deficits including school 

performance, apathy and emotional disturbance are also present and tend to be 

progressive. As the disease proceeds, ataxia, dysarthria, and gradually neurologic 

degeneration are common, paralleled by frequently myoclonic and absence seizures. 

Dementia sets in progressively and after 10 years from onset, patients become into a 

vegetative state and then die due to muscle wasting, central nervous system 

deterioration and status epilepticus. The estimated prevalence of Lafora disease in 

Europe is 1-9/106 because patient’s life is limited13,34,35. 

Among the progressive myoclonus epilepsies, Lafora disease is clinically characterized  

by the presence of aggregates of glycogen-like polyglucosans called Lafora bodies. 

These polysaccharides are less branched and more phosphorylated, so they lack the 

soluble symmetry structure of the glycogen and thus they precipitate in the cytoplasm 

of the cell34,35. Lafora bodies accumulate in the central nervous system, in the 

perikarya and dendrites, and in another tissues such as retina, liver, cardiac and 

skeletal muscle, and skin13,36. 

 

 

1.3.3 Lafora disease pathogenesis: Molecular mechanisms  

 

Laforin acts during the glycogen synthesis preventing formation of glycogen 

hyperphosphorylated and the development of polyglucosans formation 

overtime37,38,39,40. Indeed, it was showed that laforin is like a sensor of glycogen as it 

increases, the levels of laforin also increase41. This was confirmed from analyzes of 

glycogen of a mouse model of Lafora disease, Epm2a -/- mice that showed increased 

content of phosphate in muscle and tissue. This study was extended to demonstrate 

that in absence or deficiency of laforin there is a hyperphosphorylation of glycogen 

and tends to develop gradually into insoluble and less branched polyglucosans, which 

accumulate and forms the Lafora bodies typical of Lafora disease, in an age-dependent 

manner26,42. 
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Concerning the laforin-malin complex, it was shown recently in an extended study that 

in Epm2b-/- mice, the levels of MGS increased in the Lafora bodies accumulated in the 

neurons. These mice had progressive loss of neuronal cells and propensity to suffer 

myoclonic seizures, which emphasizes the laforin-malin complex importance and that 

less branched glycogen accumulation, may also be a contributor to neurodegeneration 

in LD43. This means, the impairment of this complex (due to loss of function of one of 

the proteins or the interaction between them is affected) leads to less inactivation of 

the glycogenic targets and then to less branched glycogen accumulation. This is 

evident to contribute to LB formation even in neurons and probably related with 

neurodegeneration observed in LD, since neurons do not synthesize glycogen28,37.  

Recent studies have shown that both laforin and malin form centrosomal aggresomes 

(inclusions of E3 enzymes that ubiquitinate and degrade misfolded proteins when they 

accumulate) when proteosomal activity is inhibited, which suggests that both proteins 

are involved in UPS and these agressomes facilitate malin ubiquitination of it 

substrates to be degraded. In this way, malin-laforin complex with Hsp 70, a heat-

shock protein, may contribute to rescue cells from endoplasmic reticulum stress and a 

deficiency in malin or laforin leads to an increase of misfolded proteins that confer 

toxicity to the cells, and thereby is supported that this phenomenon triggers primarily 

LD44,45.  

Although the carbohydrate metabolism disorder and impairment in protein clearance 

are likely to be the cause of LD, it was suggested that alterations in autophagy can also  

contribute to the pathology, since it was observed that laforin regulates autophagy 

process and defected laforin-malin complex in mice led to accumulation of autophagy 

substrates, before Lafora bodies detection. Those animals showed memory deficits 

and epileptiform activity similar to LD patients46,47,48. 

Moreover it was shown that laforin dephosphorylates tau protein. In the absence of 

laforin, in Epm2a -/- mice, tau protein became hyperphosphorylated and accumulated 

as NTFs (neurofibrillary tangles) which means that NTFs formation can contribute to 

some of the symptoms of LD like dementia, that appears in diseases resulted from 

abnormal regulation of tau, such as  Alzheimer’s disease49. 

All this findings suggests that multiple mechanisms drive the progression of LD. The 

disease may result from defective protein clearance and degradation, and 

consequently cell death, including neuron degeneration, and the appearance and 
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formation of Lafora bodies, however more studies are needed to understand the 

pathways driving those mechanisms. 

 

1.4. Laforin and malin interaction: mapping regions involved in complex 

formation 

 

Initially Gentry and co-workers mapped the domains responsible for the malin–laforin 

interaction, by yeast two-hybrid experiments. They have tested two constructs, malin’s 

RING domain and NHL domain to interact with laforin and CBM or DSP domain. Only 

the NHL domain interacted with laforin. Later, it was shown that this region of 

interaction is confined to residues from 208 to 39328. 

Another study performed by Lohi had the purpose to check the critical regions 

involved in the interaction, with several constructs with laforin and malin domains 

done (fig. 11). It was concluded that the region encoded by exon 2, (102-160 residues) 

between the CBM and DSP domains of laforin is critical for the interaction between the 

two proteins.  

 

 

 

 

 

 

 

 

Figure 11. Representation of constructs used in mapping interaction regions in yeast two-hybrid 

experiments. Adapted from Lohi et al 2005. 
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All these interactions were determined by yeast-to-hybrid or mammalian-two-hybrid, 

to give the suitable conditions of post-translational changes for the proteins, and 

confirmed by immunoprecipitation assays. 

Considering the importance of laforin and malin interactions and the stability of the 

respective complex, additional studies, from expression and purification to interaction 

characterization may be promising for structure studies, since the crystal structure of 

both proteins and the complex are not available yet. 
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2. Objectives 

Laforin and malin, as a complex, play essential functions in terms of glycogen 

regulation and in the system responsible for the degradation of misfolded proteins. 

Regarding this, the main goal of the project was the optimization of the protein 

expression and purification conditions of malin and laforin derived constructs for later 

identification of a minimal amino acid sequence, within the inter-domain region of 

laforin, required for interaction with malin. 
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3. Materials and Methods 

3.1. Materials 

The different reagents used in the following procedures were obtained from Sigma-

Aldrich. 

 

3.2 Methods 

3.2.1 PCR 

The DNA coding sequence of laforin was used as template to generate and amplify 

eight constructs. The PCR reactions were performed using, PfuTurbo DNA polymerase 

(2,5 U), 0,5µM of each primer (forward and reverse), 25 µM dNTP, 1x enyme buffer (20 

mM Tris-HCl (pH 8,8), 2 mM MgSO4, 10 mM KCl, 10 mM (NH4)2SO4, 0,1 % Triton X-100, 

0,1 mg/ml nuclease-free BSA). The PCR conditions were: denaturation at 95ºC during 

2min, annealing at 56ºC during 30 s and extension at 72ºC, during 10 min with 30 

cycles, , followed by an extra extension step at 72 ºC during 10 min. 

The bands correspondent to each amplified construct were purified from agarose gel 

with the NZYGelpure kit (nzytech) according to manufacturer’s instructions. 

 

Table 1. Sequence of primers used to generate CBM and DSP constructs from the original full length 

laforin sequence.  

Construct Primers (5’→3’) 

CBM 120 For ATATATGCTCTTCTAGTCGCTTCCGCTTTGGGGTG 
Rev TATATAGCTCTTCATGCACCATCCACCAAGTTGTTTTC 

CBM140 For ATATATGCTCTTCTAGTCGCTTCCGCTTTGGGGTG 
Rev TATATAGCTCTTCATGCCTTCATTTCATTGGTGTGCCC 

CBM159 For ATATATGCTCTTCTAGTCGCTTCCGCTTTGGGGTG 
Rev TATATAGCTCTTCATGCTCTTGAATAATGCATGGCTTGG 

DSP111 For ATATATGCTCTTCTAGTACTTACAATGAAAACAACTTGGTG 
Rev TATATAGCTCTTCATGCCAGGCTACACACAGAAGAAC 

DSP130 For ATATATGCTCTTCTAGTATTGAGGCCACTGGGCACAC 
Rev TATATAGCTCTTCATGCCAGGCTACACACAGAAGAAC 

DSP150 For ATATATGCTCTTCTAGTTTTAATATTGCAGGCCACCAAG 
Rev TATATAGCTCTTCATGCCAGGCTACACACAGAAGAAC 

The recognition site of Sap I endonuclease is underlined and the cleavage site is dashed underlined. 
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Table 2. Sequence of the different primers used to generate CBM and DSP constructs from the codon 

optimized laforin coding sequence.  

Construct Primers (5’→3’) 

CBM 120 For ATATATGCTCTTCTAGTCGTTTTCGTTTTGGTGTTGTTG 
Rev TATATAGCTCTTCATGCACCATCCACCAGATTGTTTTC 

CBM140 For ATATATGCTCTTCTAGTCGTTTTCGTTTTGGTGTTGTTG 
Rev TATATAGCTCTTCATGCTTTCATTTCATTGGTATGACCG 

CBM159 For ATATATGCTCTTCTAGTCGTTTTCGTTTTGGTGTTGTTG 
Rev TATATAGCTCTTCATGCACGGCTATAATGCATTGCCTG 

DSP 111 For ATATATGCTCTTCTAGTACCTATAATGAAAACAATCTG 
Rev TATATAGCTCTTCATGCCAGGCTGCAAACGCTGCTA 

DSP 130 For ATATATGCTCTTCTAGTATTGAAGCAACCGGTCATACC 
Rev TATATAGCTCTTCATGCCAGGCTGCAAACGCTGCTA 

DSP 150 For ATATATGCTCTTCTAGTGCAGGTCATCAGGCAATGC 
Rev TATATAGCTCTTCATGCCAGGCTGCAAACGCTGCTA 

The recognition site of Sap I endonuclease is underlined and the cleavage site is dashed underlined. 
 

 

 

3.2.2 Cloning of PCR products 

The cloning of the amplified constructs was performed by fragment exchange (FX) 

cloning strategy59. This method uses a type IIS restriction enzyme, SapI, which cleaves 

the DNA outside the recognition site generating two overhangs with variable 

sequence. This allows a directional cloning of the insert by using just one 

endonuclease. Both PCR product and vector are digested simultaneously by the 

enzyme followed by ligation. An initial cloning is performed in pINITIAL vector for 

sequencing and then subcloning is done by digesting simultaneously the pINITIAL-

derivative plus the final expression vector again with SapI. The two SapI restriction 

sites in the vectors flank the ccdB gene which codes a toxin functioning as a counter 

selection marker and is the region of the insertion of the sequence of interest. This 

marker plus the sacB gene, which confers sucrose sensitivity, confer a double colonies’ 

selection to cells that just have incorporated the recombinant expression vector.  

For initial cloning of PCR products, 50ng of pINITIAL vector was mixed with each 

amplified construct to a final molar ratio of 1:5 (vector:insert). It was added 1µL of 10x 

buffer 4 (New England Biolabs)   and 1µL of SapI (2U) (New England Biolabs). The 

mixture was digested for 1h at 37ºC and the enzyme was then inactivated at 65ºC by 

20 min. Ligation of the fragments was performed by 1,25µL of T4 ligase (1U/µL) (New 



Materials and Methods 

 Optimization of Protein Expression and Purification for the Characterization of Laforin-Malin 
Interaction 19 

England Biolabs) in the presence of 0,4 µL of 25mM ATP for 1h at 25ºC followed by 

heat-inactivation at 65ºC ºC during 20 min.. All the mixture volume was used to 

transform competent TOP10F’ E. coli cells. Aliquots were plated on LB-agar in the 

presence of 50µg/mL of kanamycin. A clone of each recombinant pINITIAL was 

selected for miniprep plasmid purification using the NZYminiprep (nzytech). 

Each cloned laforin construct was verified by Sanger sequencing by an external 

sequencing service provider, either by STABVida (Oeiras – Portugal) or by Macrogen 

(Seoul – Korea). 

 

3.2.3 Subcloning 

The expression vectors used for subcloning of the laforin constructs are p7XNH3 and 

p7XC3H which are compatible with the FX cloning method. These vectors result from 

modified pET26a in which the two SapI sites were introduced along with the coding 

sequence for CcdB toxin59. A 10His-tag with a 3C cleavage site was added on the N-

terminal giving the final p7XNH3 or at the C-terminal yielding the p7XCH vector. 

After sequencing verification, each pINITIAL-laforin construct was mixed with the 

respective expression vector at a final molar ratio of 1:4 (expression vector:pINITIAL-

derivative). In the case of laforin constructs containing the CBM domain, subcloning 

was performed with the p7XNH3 vector and for laforin constructs with the DSP domain 

it was used the p7XC3H vector.  The same procedure as described in cloning section 

was followed, however the final recombinant expression vectors were incorporated in 

competent E. coli BL21 star.  

 

3.2.4. Malin constructs 

Regarding Malin, two constructs were already available in the laboratory. The first 

consists of malin fused with a His6-tag and a TEV cleavage site at the N-terminal, 

inserted in a modified pET-28b named pSKB3. The second one, pET-GST is a modified 

pET21b vector, where GST coding sequence was cloned. The construct Malin_pET-GST 

codes for a N-terminal T7 tag, followed by GST, a thrombin cleavage site, malin and a 
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C-terminal His6 tag. The next table displays these three constructs. Note all the 

constructs were sequenced prior to the expression experiences. 

These both constructs contain a GST-tag (26 kDa) at the N-terminal of malin that 

besides improving malin solubility, it can also be used to purify the protein by a GST 

affinity chromatography. Furthermore GST-tag might also protect the protein from 

possible intracellular proteolysis. In addiction of GST, malin is also fused to a His-tag at 

the C-terminal or at the N-terminal prior of the GST. The position of His-tag at the 

terminal is an important factor to evaluate, because the malin native conformation 

may contain one or both the terminus buried inside the protein core. The construct 

malin in pET-GST is also fused to a T7 epitope tag at the N-terminal that was carried by 

the initial vector pET 21b. This T7 tag is a peptide (~4 kDa) that can be used to 

immunoaffinity purification, immunoblotting, immunofluorescence assays and 

immunoprecipitations. 

 

Table 4 | List of the different malin fusion constructs and the scheme of the elements codified.  

Construct  

Malin_pSKB3   His6-TEV-Malin 
Malin_pET-GST T7-GST-trombin site-Malin-His6 
 

 

3.2.5 Small-scale soluble expression screenings  

E. coli BL21 star was transformed with each amplified laforin derived constructs. A 

fresh colony from each construct was grown overnight at 37ºC in 10mL of LB medium 

supplemented with 50 µg/mL of kanamycin antibiotic. Each pre-inoculum was diluted 

1:40 into 50mL of LB medium containing 50µg/mL of kanamycin and grown at 37ºC 

until O.D600 reaches 0,5. At this point, the protein expression was induced for all the 

constructs with 0,1mM of IPTG and incubated overnight at 18ºC. 1mL aliquots were 

collected before adding IPTG (final concentration), after 3 hours of induction and after 

overnight induction. BugBuster Protein Extraction Reagent (Novagen) was used to 

extract total protein and to obtain soluble and insoluble fraction. This reagent is 

composed by a mixture of non-ionic detergents that enable the gentle cell wall 
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disruption of E. coli releasing the proteins including the target protein expressed, 

without denaturing the soluble protein. The presence of the endonuclease benzonase 

on this reagent allows the degradation of DNA and RNA giving low viscosity and 

clarified extracts. The protocol suggested by BugBuster manufacturer was followed. 

Soluble and insoluble fractions were separated by centrifugation and the insoluble 

fraction resuspended in 200 μL of PBS buffer 1x. Both fractions were analyzed by SDS-

PAGE to evaluate the soluble form of the laforin constructs. 

 

3.2.6 Small-scale soluble expression screenings in the presence of oxidases 

and foldases 

 

Malin_PSK3 and Malin_pET-GST constructs were screened by expression in E. coli BL21 

star which co-expresses an oxidase and a foldase57. The transformed cells were grown 

overnight at 37ºC in 10mL of LB medium with 34 µg/mL of chloramphenicol to select 

the cells with the expression vector that codes the oxidase and foldase and 50 µg/mL 

of ampicillin or 50 µg/mL of kanamycin concerning the malin construct. The pre-

inoculum was diluted 1:40 into 50mL of LB medium containing 34 µg/mL of 

chloramphenicol and 50 µg/mL of ampicillin or 50µg/mL of kanamycin and grown at 

37ºC until reaches an O.D600 of 0,5. Then 0,5% of L-arabinose was added 30 minutes 

before the addiction of 0,1mM IPTG, to pre-induce the expression of the foldases and 

oxidase. The cell culture was then incubated overnight at 18ºC. BugBuster reagent was 

used to extract all the protein and to obtain the soluble and insoluble fractions as 

mentioned above. The collected fractions were analyzed by SDS-PAGE and by Western 

blotting to determine the best expression condition with higher malin soluble form. 

 

3.2.7 Large-scale expression of recombinant protein 

A pre –inoculum of transformed E. coli BL21 star with each cloned laforin construct 

and with malin constructs were grown overnight at 37ºC in LB medium supplemented 

with 50 µg/mL of kanamycin or 50 µg/mL of ampicillin . LB medium was inoculated 

with 1:40 of the pre-inoculum and grown at 37ºC until reaching an OD600 of 0,5. At this 

point, expression was induced by addition of 0,1mM of IPTG and carried out overnight 
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at 18°C. The induced cells were then harvested by centrifugation (Beckman Avanti J-26 

XPI, JLA 8.1000 rotor, 6000 rpm for 30 minutes at 4°C), resuspended in 10 mL per 1 L of 

culture with binding buffer (20 mM sodium phosphate buffer pH 7,5 with 20 mM 

imidazole and 0,5 M NaCl for His-tagged protein or PBS 1x pH 7,4 containing 1 mM 

phenylmethylsulfonyl fluoride, 2 mM EDTA and 1 mM DTT for GST-tagged protein). 

600µL of DNAse I and 1mL 1M MgCl2 were added to the suspension and cells were 

disrupted mechanically by an Emulsiflex C3 homogeneizer (Avestin). Following that, 

the lysed cell cultures were centrifuged (Beckman Avanti J-26 XPI, JA 25.50 rotor, 15 

000rpm for 30 minutes at 4°C) to remove cell debris and inclusion bodies. The 

supernatant was filtered through 0,2 μm filter and applied to an affinity 

chromatography column.   

 

3.2.8 Large-scale co-expression of recombinant protein with pre-expression of 

oxidases and foldases 

 

E. coli BL21 cells which pre-express the oxidase and foldase and transformed with 

malin_pSKB3 and malin_pET-GST constructs were grown at 37ºC in LB medium in the 

presence of 34 µg/mL of chloramphenicol and 50 µg/mL of ampicillin or 50µg/mL of 

kanamycin respectively. LB medium was then inoculated with 1:40 of the pre-inoculum 

and grown at 37ºC until reaching an OD600 of 0,5. The pre-induction of the oxidase and 

foldases was performed by adding 0,5% L-arabinose. 30 minutes later, protein 

expression was induced by 0,1mM of IPTG and cell cultures were incubated overnight 

at 18ºC.  

The induced cells were then harvested by centrifugation (Beckman Avanti J-26 XPI, JLA 

8.1000 rotor, 6000 rpm for 30 minutes at 4°C), resuspended in 10 mL per 1 L of culture 

with binding buffer (20 mM sodium phosphate buffer pH 7,5 with 20 mM imidazole 

and 0,5 M NaCl for His-tagged protein or PBS 1x pH 7,4 containing 1 mM 

phenylmethylsulfonyl fluoride, 2 mM EDTA and 1 mM DTT for GST-tagged protein). 

DNAse I and MgCl2 were added to the suspension and cells were disrupted 

mechanically by an Emulsiflex homogeneizer. Following that, the lysed cell cultures 

were centrifuged (Beckman Avanti J-26 XPI, JA 25.50 rotor, 15 000rpm for 30 minutes 
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at 4°C) to remove cell debris and inclusion bodies. The supernatant was filtered 

through 0,2 μm filter and immediately applied to an affinity chromatography column. 

 

3.2.9 Purification of His-tagged recombinant protein 

 

The presence of imidazole is important during cell lysis to reduce nonspecific 

interactions of host cell proteins to the column when protein is loaded into the 

column. 

The recombinant protein in the supernatant was purified by immobilized metal ion 

affinity chromatography, using nickel HisTrapTM HP 5 mL column (Amersham 

Biosciences). The column was previously equilibrated in the binding buffer, using a 

peristaltic pump (Bio-Rad) at a flow rate of 5 mL/min The clarified cell extract was 

loaded into the column at a flow rate of 0,5 mL/min and the column was washed at a 

flow rate of 5 mL/min with binding buffer in a low-pressure system chromatography 

(Bio-Rad BioLogic LP) until A280 reached the baseline. Elution was performed at 5 

mL/min with four elution steps with increasing concentrations of imidazole (50 mM, 

100 mM, 300 mM and 500 mM).       

 

3.2.10 Purification of GST-tagged recombinant protein 

 

The supernatant with the recombinant protein is previously treated with Triton X-100 

1% and then applied to a 5 mL GSTrapTM HP column equilibrated in PBS pH 7,4 buffer 

(140 mM NaCl, 2,7 mM KCl, 10 mM Na2HPO4, and 1,8 mM KH2PO4) at a flow rate of 0,5 

mL/min. Wash step was performed at a flow rate of 5 mL/min with the binding buffer 

in a low-pressure system chromatography (Bio-Rad BioLogic LP) until A280 reached the 

baseline. Elution was carried out in a single step using 50 mM Tris-HCl, 10 mM reduced 

glutathione, pH 8,0 as elution buffer.  
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3.2.11 Purification by Size exclusion chromatography 

 

The selected fractions eluted from the HisTrapTM HP column were pooled and then 

concentrated in an Amicon Ultra Centrifugal Filter Unit concentrator (Millipore) 

(molecular cutoff of 3 kDa) to a final volume of 700µL. The concentrated pool was then 

applied to a Superdex 200 10/300 GL column (GE Healthcare) previously equilibrated 

in 20mM sodium phosphate pH 7,5 with 150 mM NaCl, and the size-exclusion 

chromatography was performed at a flow rate of 0,4 mL/min, in a fast-protein liquid 

chromatography (FPLC) system (Bio-Rad BioLogic DuoFlow), collecting fractions of 

1mL. 

 

3.2.12 Recombinant protein analysis by Analytical size exclusion 

chromatography 

 

Analytical size exclusion chromatography was performed in high-pressure liquid 

chromatography (HPLC) Shimadzu system equipped with an automated sample 

injection and a photo diode array detector, using a Superdex 200 5/150 GL analytical 

column previously equilibrated in 20 mM Tris pH 8,0 and 150 mM NaCl). Column 

calibration was performed by the manufacturer’s instructions using gel filtration 

calibration kits (GE Healthcare). 50 µL of dialyzed and concentrated protein sample 

was applied to the column. Separation was performed at a flow rate of 0,4 mL/min. 

 

3.2.13 Total protein quantification 

Total protein quantifications were performed using the Thermo Scientific Pierce® 

Micro-BCA Protein Assay Kit (Thermo Scientific), accordingly to the standard protocol 

described in the instructions manual. The plates were read in a microplate UV-Vis 

reader (PowerWave XS Microplate Spectrophotometer, Biotek®).  

 

3.2.14  SDS-PAGE and Western blotting 

SDS-PAGE was performed in 12,5% polyacrylamide gels. All samples were 1:1 diluted in 

2x loading solution (250 mM Tris-HCl pH 7,4, 8 M Urea, 4 % SDS, 1,76 % β-
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mercaptoethanol and 0,02% Bromophenol Blue) followed by 10 minutes denaturation 

at 90 °C. The gels were run in a MiniProtean 3 system (Bio-Rad) at room temperature  

using a constant voltage of 150 V. The running buffer was 100 mM Tris, 100 mM Bicine 

with 0,1% SDS. The gel was stained by 0,2% Coomassie Brilliant Blue R in 10 % acetic 

acid and 50 % methanol and destained with 5% acetic acid, 25% methanol solution 

until background staining was cleared. 

For Western blotting analysis, polyacrylamide gels were electrotransferred onto PVDF 

membranes (Roche) previously activated in methanol and equilibrated in transfer 

buffer (25 mM Tris, 192 mM Glycine, 20 % methanol). The protein transference was 

performed overnight at 4°C using a constant voltage of 40 V in transfer buffer, using a 

Trans-Blot® Electrophoretic Transfer cell apparatus (Bio-Rad). PDVF membranes were 

blocked for one hour with TBS-T buffer (150 mM NaCl, 10 mM Tris, pH 8,0, 0,1% Tween 

20) containing 5% of skim milk. Membranes were then incubated with His tag primary 

antibody (mAB, Mouse – GenScript) with a 1:10 000 dilution in TBS-T buffer containing 

0,5% of skim milk for one hour at room temperature. Membrane was then washed at  

least 5 × 5 minutes in TBS-T buffer containing 0,5% of skim milk. The incubations with 

the secondary antibody were also performed with TBS-T buffer with 0,5% skim milk. 

The secondary antibody used in these incubations was anti-mouse IgG + IgM antibody 

alkaline phosphatase linked (GE Healthcare) in a 1:10 000 dilution. After a washing 

process of at least 5 x 5 minutes in TBS-T buffer, membranes were incubated with 

ECFTM substrate for a maximum of 5 minutes and finally revealed by fluorescence 

detection in a Molecular Imager FX (Bio-Rad). 

 

3.2.15 Sequence analysis  

 

Protein secondary structure prediction of Laforin by three different software: 

PSIPRED60,61, SABLE62,63,64,65 and Jpred366. 

PSIPRED server link: http://bioinf.cs.ucl.ac.uk/psipred/ 

SABLE server link: http://sable.cchmc.org/ 

Jpred3 server link: http://www.compbio.dundee.ac.uk/www-jpred/ 
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4. Results and Discussion 

 

4.1. Laforin constructs cloning 

 

To achieve the objective of identifying the minimal laforin amino acid region 

responsible for malin interaction, a series of 6 laforin constructs covering the inter 

CBM-DSP domain were obtained for later interaction studies. The combination of the 

interactions between malin and the protein domains coded by these six constructs 

(represented in fig. 12) would allow the identification of the minimal 10-amino acid 

blocks required for such interaction.  

 

 

 

Figure 12. Schematic view of the final six constructs. The first sequence corresponds to full length 

laforin. The next three DNA constructs coding for the CBM domain, with a His10-tag and 3C cleavage site 

at the N-terminal. The last three constructs code for the DSP domain, fused with a His10-tag and a 3C 

cleavage at the C-terminal. The restriction sites of SapI endonuclease are displayed by arrows, used for 

cloning and subcloning steps.  
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Three constructs contain the CBM domain extended with 20 and 40 amino acids and 

fused to a His10-tag and a 3C cleavage site. The other three constructs contain the DSP 

domain along with 20 and 40 amino acids, a His10-tag and a 3C cleavage site fused at 

the C-terminal. The CBM construct which extends to the 159 residue and the DSP 

construct that lacks the first 111 residues would function as positive controls for 

interaction analysis. The presence of the His-tag facilitates the purification procedure 

and allows the identification of each laforin construct by using an antibody against His-

tag. Moreover, this fusion strategy was aimed to prevent the possible interference of 

the tag with the interaction region of these constructs with malin.  

 

The traditional cloning strategies involving two restriction enzymes and ligation step 

are somehow limited. The sequential steps of amplified DNA product and vector 

digestion, ligation and consequent transformation with intermediate purifications of 

the products are labor intensive and time consuming. In addition, when cloning 

method is set up for several different DNA sequences, the traditional cloning is limited 

by the possible occurrence of restrictions sites in those sequences. Therefore the FX-

cloning strategy developed by Eric Geertsma and Raimund Dutzler was chosen due to 

its advantages (fig 13). This method is based on the use of type IIS restriction 

endonucleases, in particular SapI, which recognizes a non-palindromic sequence and 

cleaves at a fixed distance outside the recognition site. 
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Figure 13. Schematic representation of FX cloning strategy. |A. SapI restriction site. Letters in bold 

correspond to the recognition site and letters in green the cleavage site. |B. Cloning of the PCR product 

to the pINITIAL vector. The amplified product displayed in green with the overhangs colored. The genes 

coding for the counterselection markers ccdB and sacB at the pINITIAL are outlined in pink and orange 

respectively. |C. Subcloning of the insert into an expression vector. The three nucleotides added to the 

sequence terminus are outlined at circles. |D. Orientation of the Sap I cleavage sites in the amplified 

product and pINITIAL vector and in the pEXPRESSION vector (E). Adapted from Eric R. Geertsma et al. 

2011. 

 

 

A 
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The choice of SapI was based on commercial availability, with long and low frequency 

occurring recognition sequences and producing three base-pair overhangs. Thus, SapI 

originates 5’ cohesive overhangs of three nucleotides of variable sequence, which 

allows directional cloning and prevents self-ligation of the vector using only one 

restriction enzyme. Both PCR product and vector are digested simultaneously by the 

enzyme followed by ligation. An initial cloning is performed in pINITIAL vector (fig. 13B) 

for sequencing as mentioned above and then subcloning is done by digesting 

simultaneously the pINITIAL-derivative plus the final expression vector with SapI (fig. 

13C). 

 Moreover these triplets, in this case, AGT and GCA were chosen, code small and 

uncharged amino acids, a serine and alanine respectively and thus, the final protein 

will only have one additional amino acid at each terminal that should not interfere 

with protein structure. The presence of toxin ccdB in both original pINITIAL and 

expression vectors,  prevents the appearance of false positive clones in each cloning 

step, resulting from self religated vector or incomplete vector digestion, keeping this 

strategy fast, uniform, robust and efficient.  

 

The laforin constructs were generated by PCR using full-length laforin coding sequence 

as template (fig. 2). The PCR primers (table 1) used to amplify the constructs 

introduced different SapI sites allowing for the PCR products to be directionally cloned 

into the pINITIAL and subcloned into the expression vectors. An initial PCR reaction 

was tested using Pfu Turbo DNA polymerase (Stratagene). The results showed no 

amplification or very low yields of amplification for the different constructs. Since this, 

several PCR optimizations were performed to circumvent this problem. It was tested 

the amplification by two different DNA polimerases: the Pfu Turbo DNA polymerase 

and Taq polymerase. The presence of DMSO, an organic additive which stabilizes the 

DNA template and primers minimizing formation of secondary structures50,51 was 

tested and touchdown PCR approach was performed to avoid the amplification of 

nonspecific sequences, enhancing the specificity of the initial primer–template duplex 

formation and thus the specificity of the final PCR product52. After successive attempts 
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by changing PCR conditions, good amplification yields were obtained. In fig. 14, is 

displayed an example of this result. 

 

 

 

 

 

 

 

 

Figure 14. Agarose gel electrophoresis of DSP 111, 130 and 150 constructs amplification. Lane 1 

corresponds to 1 kb DNA Ladder. Lanes 2, 3 and 4 correspond to duplicates of DSP 111, DSP 130 and DSP 

150 constructs respectively. 20µL of each PCR product were applied in each lane. 

 

The band correspondent to each amplified construct was excised from the agarose gel 

and DNA was purified. The amplified laforin constructs were then cloned into the 

pINITIAL vector for sequencing analysis following the FX cloning strategy. The 

respective sequencing results of most of the laforin constructs failed consecutively as 

shown in  figure 15.  

 

Figure 15. Failed Sequencing electrophorectogram of part of the CBM 120 construct cloned into 

pINITIAL vector. This is an illustrative result of the failed DNA sequencing obtained with wild-type laforin 

sequence constructs (Visualized on ContigExpress – Vector NTI Advance 11.0). 
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1    atgcgttttcgttttggtgttgttgttccgcctgcagttgccggtgcacgtccggaactg 

1     M  R  F  R  F  G  V  V  V  P  P  A  V  A  G  A  R  P  E  L  

61   ctggttgttggtagccgtcctgaactgggtcgttgggaaccgcgtggtgcagttcgtctg 

21    L  V  V  G  S  R  P  E  L  G  R  W  E  P  R  G  A  V  R  L  

121  cgtccggcaggtacagcagccggtgatggtgcactggcactgcaagaaccgggtctgtgg 

41    R  P  A  G  T  A  A  G  D  G  A  L  A  L  Q  E  P  G  L  W  

181  ctgggtgaagttgaactggcagccgaagaggcagcacaggatggtgcagaacctggtcgt 

 61    L  G  E  V  E  L  A  A  E  E  A  A  Q  D  G  A  E  P  G  R 

241  gttgataccttttggtataaattcctgaaacgtgaaccgggtggtgaactgagctgggaa 

 81    V  D  T  F  W  Y  K  F  L  K  R  E  P  G  G  E  L  S  W  E 

301  ggtaatggtccgcatcatgatcgttgttgtacctataatgaaaacaatctggtggatggt 

 101   G  N  G  P  H  H  D  R  C  C  T  Y  N  E  N  N  L  V  D  G 

361  gtttattgtctgccgattggtcattggattgaagcaaccggtcataccaatgaaatgaaa 

121   V  Y  C  L  P  I  G  H  W  I  E  A  T  G  H  T  N  E  M  K  

421  cataccaccgacttctacttcaatattgcaggtcatcaggcaatgcattatagccgtatt 

141   H  T  T  D  F  Y  F  N  I  A  G  H  Q  A  M  H  Y  S  R  I  

481  ctgccgaatatttggctgggtagctgtccgcgtcaggttgaacatgttaccattaaactg 

161   L  P  N  I  W  L  G  S  C  P  R  Q  V  E  H  V  T  I  K  L  

541  aaacatgaactgggcattaccgcagtgatgaattttcagaccgaatgggatattgttcag 

181   K  H  E  L  G  I  T  A  V  M  N  F  Q  T  E  W  D  I  V  Q  

601  aatagcagcggttgtaatcgttatccggaaccgatgacaccggataccatgattaaactg 

201   N  S  S  G  C  N  R  Y  P  E  P  M  T  P  D  T  M  I  K  L  

661  tatcgtgaagaaggcctggcctatatttggatgccgactccggatatgagcaccgaaggt 

221   Y  R  E  E  G  L  A  Y  I  W  M  P  T  P  D  M  S  T  E  G  

721  cgtgttcagatgctgccgcaggcagtttgtctgctgcatgcactgctggaaaaaggtcat 

241   R  V  Q  M  L  P  Q  A  V  C  L  L  H  A  L  L  E  K  G  H  

781  attgtttatgtgcattgtaatgccggtgttggtcgtagcaccgcagccgtttgtggttgg 

261   I  V  Y  V  H  C  N  A  G  V  G  R  S  T  A  A  V  C  G  W  

841  ctgcagtatgttatgggttggaatctgcgtaaagtgcagtattttctgatggcaaaacgt 

281   L  Q  Y  V  M  G  W  N  L  R  K  V  Q  Y  F  L  M  A  K  R  

901  cctgccgtgtatattgatgaagaagcgctggcacgcgcacaagaagatttttttcagaaa 

301   P  A  V  Y  I  D  E  E  A  L  A  R  A  Q  E  D  F  F  Q  K  

961  tttggtaaagtgcgtagcagcgtttgcagcctgtaa 

321   F  G  K  V  R  S  S  V  C  S  L  -   

 

Successive attempts of cloning were performed to overcome this limitation, however 

the sequencing experiments were consistently unsuccessful. The possible reason for 

this problem is on the high GC content present along the first half of laforin DNA 

sequence (fig. 2). It is known that GC rich regions (greater than 60%) of the template 

DNA are difficult to amplify and to sequence under standard conditions. To overcome 

this problem, a codon and GC content-optimized laforin coding sequence was obtained 

from Invitrogen using the Geneart Gene Optimizer® Process with multi-parameter 

gene optimization. The optimized laforin coding sequence is shown in fig. 16 and was 

used as template for the following PCR amplifications. Primers are listed in table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Sequence of the codon-optimized laforin gene, coding for the 311 amino acid sequence. The 

underlined sequence corresponds to the CBM domain and the dashed sequence is the DSP domain.  
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With the codon optimized laforin sequence the problem was circumvented, since high 

yields of amplification (fig 17) were obtained for each laforin construct along with 

readily sequencing results (fig. 18). 

 

 

 

 

 

 

Figure 17. Agarose gel electrophoresis of CBM 120, CBM 140 and DSP 130 amplified constructs.  Lane 1 

corresponds to 1 kb DNA Ladder. A. Lane 2 corresponds to CBM 120 construct. B.  Lane 2 and 3 

corresponds to duplicates of CBM 140. C. Lanes 2 and 3 corresponds to duplicates of DSP 130. 20µL of 

each PCR product were applied in each lane. 

 

 

Figure 18. Part of sequencing electrophorectogram of CBM 140 in pINITIAL. The letters correspond to 

the initials of the nucleotides. Below is represented part of the sequence in base pairs. (Visualized on 

ContigExpress – Vector NTI Advance 11.0). 

 

 

 

 

 

 

 

 

A B C 



Results and Discussion 

 Optimization of Protein Expression and Purification for the Characterization of Laforin-Malin 
Interaction 33 

Indeed, when comparing the GC content of the original laforin sequence with the 

optimized sequence, as displayed in the fig. 19, it is observed that the first half of the 

wild-type sequence has high GC content with percentages reaching around 90%. These 

values were markedly decreased through optimization.  

 

 

 

 

 

 

 

 

 

Figure 19. Plots showing the GC content of the original laforin sequence (A) and the optimized laforin 

sequence (B). The X axis represents the nucleotide position. 

 

The next plots demonstrate the significant increase in codon quality of the optimized 

laforin sequence from the original one which may be favorable for further successful 

laforin constructs expression. 

 

 

 

 

 

 

 

 

 

 

Figure 20. Plots showing the quality of used codon of the original laforin sequence (A) and the optimized 

laforin sequence (B). The X axis represents the nucleotide position. 
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After DNA sequencing analysis, laforin constructs were subcloned into the expression 

vectors p7XNH3 and p7XC3H. These vectors were adapted from the FX cloning strategy 

and were developed based on pET28a backbone, coding respectively for an N-terminal 

decahistidine tag followed by a 3C recognition site and the gene of interest, or for the 

gene of interest followed by a 3C recognition site followed by a  decahistidine tag. 

  

4.2. Small-scale expression screening of laforin constructs  

  

Constructs coding for 120, 140 and 159 and coding for DSP 111 and 130 were 

transformed into BL21 star cells and expression trials were performed with expression 

volumes of 50 mL of LB/kan, carried out at 18 ºC with expression being induced by 0,1 

mM IPTG.  At this temperature the transcription and translation rates are slower, 

which may avoid insoluble protein aggregation. Moreover, the p7X series vectors 

contains the T7lac promoter and lacI gene which codes the lac repressor that 

suppresses the basal transcription of T7 RNA polymerase in the host genome and at 

the level of the vector itself, inhibiting the expression of the target gene by T7 RNA 

polymerase. Only after IPTG addiction, the bacteria start the production of the T7 RNA 

polymerase and consequent target protein expression. After expression, cells were 

harvested and disrupted by BugBusterTMProtein Extraction Reagent (Novagen). This 

reagent is a mixture of non-ionic detergents which allows the gentle chemical 

disruption of the cell wall, without denaturating the protein. Then, soluble and 

insoluble fractions were obtained after centrifugation. 

 Both soluble and insoluble fractions collected at the end of expression, along with 

total protein samples collected before IPTG induction and after protein expression 

were run on SDS-PAGE gel (fig. 21). This allows not only to address if protein 

expression is efficiently repressed until IPTG induction but also to address if protein 

was expressed in soluble form or accumulated as inclusion bodies. 
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Figure 21. SDS-PAGE analysis of CBM and DSP constructs small scale expression screening. Overnight 

expression of different constructs in BL21 star cells, grown in LB medium and protein expression induced 

by 0,1mM IPTG at 18ºC. 20µL of sample was applied in each lane. Gel was stained with Comassie Blue. 

1-Total protein prior to IPTG induction; 2-Total protein after 3h of IPTG induction; 3-Overnight 

expression soluble fraction and 4- Overnight expression insoluble fraction. The arrows correspond to the 

expected molecular weight of each protein.  CBM 120-15,5 kDa, CBM 140- 17,5 kDa, CBM 159- 20 kDa, 

DSP 111- 25,3 kDa, DSP 130- 23 kDa. 

 

As it is observed in fig. 21, all constructs were expressed and highly accumulated in 

inclusion bodies (Lanes 4), only CBM 120 shows significant expression in the soluble 

form (CBM 120 – Lane 3). It is clear that the presence of additional amino acids from 

both CBM and DSP domains contributes to the improper folding of those proteins 

leading to consequent accumulation as inclusion bodies. One possible reason is due to 

the type of secondary structure of this region. Secondary structure predictions of the 

inter-domain region shows a random coil type conformation that is expected to be  

exposed and may difficult the proper protein folding, leading to aggregation. In 

addition, it is known that small variations in few amino acid residues at the boundaries 

of protein structural domains can dramatically affect the yield, solubility and stability 

of the final constructs53. Taking these results into account and CBM 120 was obtained 

in soluble form, scale-up expression was carried out for this protein. 
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4.3. Large-scale soluble expression and purification of CBM 120 protein 

 

For the scale-up expression of CBM 120 the same conditions of the screening were 

used as an attempt to obtain soluble expression at large quantities, without changing 

parameters such as E. coli strain, media, IPTG concentrations temperature and time of 

expression. For each construct, E. coli BL21 star strain was transformed with the 

expression construct and protein expression was performed in 4L of LB medium. 

Expression was induced with 0,1 mM IPTG (final concentration) and cells were cultured 

overnight at 18˚C.  

Protein purification was performed by immobilized metal affinity chromatography 

(IMAC), which is based upon the affinity of the histidine tags for metal divalent cations, 

such as Ni2+, Co2+ or Cu2+.  Both proteins were eluted from the column by a four – step 

imidazole elution (50, 100, 300 and 500mM). The chromatogram obtained by the IMAC 

purification is shown in fig. 22. Fractions representative of each elution step were 

analyzed by SDS-PAGE and western blot (fig. 23). 

 

 

 

 

 

 

 

 

Figure 22. Chromatogram of purification of CBM 120 by immobilized metal affinity chromatography. 

Soluble fraction from 4L expression were loaded into a HisTrap HP 5mL column previously equilibrated 

in 20mM imidazole, 500mM NaCl and 20mM sodium phosphate buffer at pH 7.5. Protein elution was 

carried out in a four-step imidazole gradient - 50, 100, 300 and 500mM. Vertical lines outline the 

collected fractions in each imidazole elution step. 
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Figure 23. SDS-PAGE and Western blot analysis of recombinant CBM 120 expression and purification 

in HisTrap column. Overnight expression in BL21 star cells in LB medium by 0,1 mM IPTG 

induction, at 18 ºC. Analysis of fractions from 50, 100, 300 and 500mM imidazole elution steps. |A. 

20µL of each sample denaturated with 2x solution buffer were applied in a 12,5% polyacrylamide gel. 

Gel was stained with Comassie Blue. |B. Western blotting. Protein´s separation by SDS-PAGE and 

transferred to a PVDF membrane, probed with an anti-His primary antibody (1:10 000) and detected by 

fluorescence using ECF as a substrate for the secondary antibody. 1-Before IPTG induction; 2-After 3h of 

IPTG induction; 3-Insoluble fraction and 4-Soluble fraction, after cell lysis; 5-Flowthrough; 6-9 fraction of 

50 mM, 100 mM, 300 mM and 500 mM imidazole steps, respectively. 

 

From the SDS-PAGE analysis, it is observed that part of the CBM 120 protein is 

accumulated as inclusion bodies in accordance with the results from the small-scale 

expression screening. The initial fraction collected from the 300mM imidazole peak 

presents a major band close to 15 kDa correspondent to the CBM 120 visible with 

Coomassie staining. The western blot analysis confirmed the nature of the protein  

band at approximately 15 kDa. 

A second purification step was performed for CBM 120 by analytical size exclusion 

chromatography in a Superdex 200 10/300 GL column. This step was used to further 

purify the protein and also to evaluate the protein oligomerization state. 

The collected fractions from the 300 mM imidazole step were kept at 4 ºC overnight 

and then pooled with a final volume of 15 mL. The pooled protein sample was 

concentrated to a final volume of 700 µL, from where 500 µL were applied to the 

Superdex 200 10/300 GL column. The chromatogram (fig. 24A) shows a first peak at 

around the column void volume (8,16 mL) which corresponds to aggregated protein, 
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followed a broad peak at 10,5 mL which, according to the column calibration, should 

correspond to lesser aggregated forms of CBM 120. At 16 mL a lower intensity peak 

was detected with a elution volume compatible with dimeric form of CBM 120. The 

1mL fractions collected during size-exclusion chromatography were then analyzed by 

SDS-PAGE followed by Coomassie staining (fig. 24B). 

 

 

 

 

 

 

 

 

 

 

Figure 24. Analytical size-exclusion chromatography of the CBM 120 fractions eluted at the 

HisTrap 300mM imidazole step. |A. Chromatogram of Superdex 200 analytical purification 

step. 500µL the pool was applied to a Superdex 10/300 GL column equilibrated in 20mM 

sodium phosphate, 150mM NaCl pH 7,5.  Relevant fractions are identified with the numbers. 

|B. SDS-PAGE analysis of the ASEC profile. 20µL were applied in the polyacrylamide gel, then 

stained with Comassie Blue. 

 

In the SDS-PAGE it is observed in fraction 5 and 6 intense bands at the expected 

molecular weight for CBM 120 (15,5 kDa) however the protein presence in this fraction 

should be in aggregated state, as they are early eluted from the size-exclusion 

chromatography. Fractions 13 e 14 have shown to be mostly the CBM 120 protein, as 

the detection of protein dimers (band at around 37 kDa) resistant to protein 

denaturation have been previously described18,54.  The protein band in sample 14 

detected with a molecular weight around 15 kDa might correspond to protein 

truncation, protein degradation or by a non-specific removal of the His-tag by E. coli 

proteases.  
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The quantification of the results obtained along the protocol is summarized in the 

following purification table (Table 3).  

 

Table 3 

Purification table of recombinant CBM 120 construct expressed in soluble form.  

Step 
Volume 

(mL) 
Total protein 

(mg) 
Estimated amount of 

CBM 120 (mg) 
Yield% Purity% 

Cell extract 22,5 429,9 147,4 100 34 

Histrap 15 231,6 115,8 79 50 

Superdex 200 15 2,25 1,73 1 77 

Data obtained from 1L of E. coli expression culture. 

 

The purification table shows that CBM 120 has a high tendency to aggregate, as shown 

by the extensive protein loss at the last chromatography step where the protein is able 

to be separated in to non-aggregated forms of protein and the proteins that despite in 

soluble form are aggregated. 

To confirm if this loss of soluble CBM 120 protein occurs after the HisTrap purification 

or prior the purification, an analytical size exclusion chromatography was performed to 

evaluate the oligomerization state of the CBM 120 after the HisTrap purification and 

after the fraction’s pool concentration. The chromatogram is shown in fig. 25.  
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Figure 25. Analytical size-exclusion chromatography of CBM 120 first eluted fraction at 

300mM imidazole step and the concentrated pool fractions of this imidazole step. 50µL of 

samples were applied to a Superdex 200 5/150 GL column equilibrated in 50 mM sodium 

phosphate pH 7.5, 150 mM NaCl and elution was carried out at 0,4 mL/min, in high pressure 

liquid chromatography system. Protein elution was monitored by photo diode array, and the 

A280 is displayed. Calibration proteins are outlined as symbols, positioned in the respective 

elution time. |A- Concentrated pool fractions of 300mM imidazole step; |B- First eluted 

fraction of 300 mM imidazole step. At the right, is displayed the calibration curve.  

 

The two elution profiles, one  from the sample eluted  from the HisTrap with 300mM i 

and the same sample after being concentrated, are overlapped in fig. 25. Observing 

the profile A, the concentrated sample has a high content of aggregates, eluting with 

an elution time around 2,9 min., which corresponds to the column void volume.  The 

less intense peak eluting at a volume of 2,2 mL (elution time 5,5 min) should 

correspond to the dimeric form of the CBM 120 according to the column calibration. 

Concerning the elution profile B that corresponds to the fraction from the Histrap 

directly applied to the column, it seems that some of the protein is already aggregated, 

right after the Histrap purification, although with a higher percentage of lower 

molecular weight aggregates as it is observed by the higher area of the peak right after 

A 
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the void volume, indicating that protein concentration has some impact on the 

aggregation magnitude of the protein. 

The fraction 14 eluted from the superdex 200 10/300 GL was also analyzed in 

analytical size exclusion chromatography to confirm its oligomerization state as a 

dimer using a higher resolution size exclusion chromatography column. The resulting 

chromatogram is displayed in fig. 26 demonstrating that the eluted protein is mostly in 

dimeric form as represented by the well-defined peak.  

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Analytical size-exclusion chromatography of CBM 120 fraction 14 eluted in 

superdex 200 10/300 GL. 50 µL of sample were injected in a Superdex 200 5 /150 GL 

equilibrated in 50mM sodium phosphate pH 7.5, 150mM NaCl at a flow rate of 0,4 mL/min in 

HPLC system. Protein elution was monitored by A280. The elution time of standard proteins are 

denoted as symbols in the chromatogram. 

 

CBM 120 protein is already aggregated during the HisTrap purification and the 

concentration of protein seems to increase its aggregation. Keeping the eluted 

fractions overnight with high imidazole concentration might also confer some protein 

instability and propensity to form aggregates. Thus, one alternative for this would be 

the introduction of an overnight dialysis step to remove the imidazole from the sample 

to prevent the long exposure with the high concentration of imidazole or the 
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introduction of a fast desalting step using small size-exclusion chromatography 

columns able to separate proteins from non-protein content. Moreover, in order to 

stabilize the native state of the CBM 120, additives may also be added in cell lysate 

such as glycerol, sorbitol, arginine, glycine or detergents. These additives might 

contribute to the formation of hydration shells stabilizing intramolecular protein 

interactions and preventing intermolecular protein interaction resulting in aggregation. 

 

4.4. Large-scale soluble expression and purification of CBM 140 protein 

 

 

 

 

 

 

 

 

Figure  27. Chromatogram of purification of CBM 140 by immobilized metal affinity chromatography. 

Soluble fraction from 2L expression were loaded into a HisTrap HP 5mL column previously equilibrated 

in 20mM imidazole, 500mM NaCl and 20mM sodium phosphate buffer at pH 7.5. Protein elution was 

carried out in a four-step imidazole gradient - 50, 100, 300 and 500mM. Vertical lines outline the 

collected fractions in each imidazole elution step. 
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Figure 28. SDS-PAGE analysis of recombinant CBM 140 expression and purification in HisTrap column. 

Overnight expression in BL21 star cells in LB medium by 0,1 mM IPTG induction, at 18 ºC. 

Analysis of fractions from 50, 100, 300 and 500mM imidazole elution steps. 20µL of each sample were 

applied in a 12,5% polyacrylamide gel. 1-Before IPTG induction; 2-After 3h of IPTG induction; 3-Insoluble 

fraction and 4-Soluble fraction, after cell lysis; 5-Flowthrough; 6-9 fraction of 50 mM, 100 mM, 300 mM 

and 500 mM imidazole steps, respectively. 

 

Since some of the CBM 140 protein was detected in the soluble fraction during the 

small scale screening, an attempt to express in larger scale and to purify such protein 

in soluble was performed. From the SDS-PAGE analysis of the purification process (fig. 

28) almost all the protein was accumulated as inclusion bodies, which resulted in no 

protein being purified by IMAC, at least within the levels detected by the coomassie 

stained SDS-PAGE analysis.  

Taking this result into account, we have attempted the expression of CBM 140 and 

CBM 159 in the form of inclusion bodies, followed by a rapid dilution refolding step, 

following the protocol described by Castanheira et al. The oligomerization/aggregation 

state of refolded protein was evaluated by analytical size exclusion chromatography 

(Superdex 200 5/150 GL) with results revealing that both proteins were completely 

aggregated (data not shown).  
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4.5. Large-scale overexpression and purification of Malin 

 

Regarding malin, two constructs were available in the laboratory as mentioned in the 

section of materials and methods (table 4). The malin_pET-GST, kindly provided by Dr. 

Matthew Gentry (University of Kentucky, USA), coding for GST fusing tag at N-terminal 

of malin and a C-terminal 6×His tag and malin_pSKB3, coding a 6×His tag at malin N-

terminal. We have started by expressing malin_pSKB3 construct in 4L of LB medium. 

The expression was carried out overnight at 18 ºC after induction with 0,1mM of IPTG. 

The cells were harvested and ressuspended in binding buffer, and purification was 

performed by a HisTrap column, being the respective chromatogram displayed in 

figure 29 A. It is observed a major peak at 300 mM of imidazole step. Fractions were 

collected during expression and also along the protein elution then analyzed by SDS-

PAGE and western blot as demonstrated in fig. 29 B and C.  

From the SDS-PAGE analysis it is observed that low levels of protein were purified 

under the IMAC purification (lanes 6-9), being malin only detected by western blot 

(band at around 42 kDa in lanes 6-8) without correspondence to any band detected by 

coomassie stained SDS-PAGE. It is visible that, in resemblance with the CBM results, 

almost all the protein was retained in the insoluble fraction (lane 4). The detection of  

25 and 15 kDa bands in western blot may represent products from degradation of 

malin by E. coli proteases which are already visible during the expression step. Despite 

E. coli BL21 star strain is deficient of lon and OmpT proteases, other proteases are 

present and may degrade the target protein. 
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Figure 29. Purification of His6-Malin expressed in E. Coli BL21 Star by immobilized metal ion affinity 

chromatography (expression volume-4L). |A. Chromatogram obtained in HisTrap HP 5mL purification 

step. Protein elution was carried out in a four-step imidazole gradient-50, 100, 300 and 500mM-in the 

same buffer, Vertical lines outline the collected fractions in each imidazole elution step. |B. SDS-PAGE 

analysis of expression and purification profile20µL of sample was loaded in 12.5% polyacrylamide gels 

|C. Western blotting. Protein´s separation by SDS-PAGE and transferred to a PVDF membrane, probed 

with an anti-His primary antibody (1:10 000) and detected by fluorescence using ECF as a substrate for 

the secondary antibody. 1-Before IPTG induction; 2-After 3h of IPTG induction; 3-Soluble fraction and 4-

Insoluble fraction, after cell lysis; 5-Flowthrough; 6-9 fraction of 50 mM, 100 mM, 300 mM and 500 mM 

imidazole steps, respectively. 

 

The other construct, malin_pET-GST was also expressed in E. coli and purified by the 

GST-tag, however we have observed the same tendency of the protein to accumulate 

as inclusion bodies and low levels of protein expression, without a clear accumulation 

of protein visible by coomassie stained SDS-PAGE, were obtained. 

 

A 
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4.6. Small-scale overexpression screening of recombinant Malin 

 

The incorrect or absence of disulfide bonds formation can become a drawback in 

obtaining soluble and active recombinant protein. In the case of malin it was observed 

inclusion bodies formation in the previous results. Malin contains 17 cysteine residues 

along the protein sequence and the E coli cell cytoplasm is a reducing environment 

difficult for disulfide bond formation. This process only takes place in the periplasm 

through the Dsb system56. This limitation may contribute to the low levels of soluble 

purified malin. Based on this, screenings were performed for malin_pSKB3 and malin_ 

pET-GST with E coli BL21 star expressing Erv1p sulfhydryl oxidase and DsbC disulfide 

isomerase or PDI protein disulfide isomerase57. The bacteria is previously transformed 

with pBAD promotor vectors containing the coding genes for Erv1p and DsbC or Erv1p 

and PDI. The Erv1p is a sulfhydryl oxidase from the inter-membrane mitochondrial 

space of S. cerevisiae. This enzyme is a natural catalyst of de novo disulfide bond 

formation. The DsbC is an E Coli. periplasmic isomerase that catalysis disulfide bond 

isomerization and PDI is a protein disulfide isomerase present in the endoplasmic 

reticulum of eukaryotes and also catalyzes the rearrangement of disulfide bonds 

within proteins as they fold. The use of these enzymes showed efficient production of 

eukaryotic proteins with multiple disulfide bonds in the cytoplasm of E. coli57. Taking 

this into account, double screening was performed using E coli BL21 star,   E coli BL21 

star pre-expressing Erv1p and DsbC, and E coli BL21 star pre-expressing Erv1p and PDI. 

The screenings were performed in 50 mL of cell culture, with 0,5% arabinose being 

added to induce the pre-expression of the folding inducing enzymes. Then malin 

expression was induced by 0.1 mM of IPTG and expression allowed to occur overnight 

at 18 ºC. Expression was analyzed by SDS-PAGE gel and Anti-His Western blotting for 

malin_pSKB3 (fig. 30) and malin_pET-GST (fig. 31). 

 

 

 

 

http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Endoplasmic_reticulum
http://en.wikipedia.org/wiki/Disulfide_bond
http://en.wikipedia.org/wiki/Protein
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Figure 30. Small-scale overexpression screening of recombinant His6-Malin in E. Coli BL21 

star and E. Coli BL21 star pre-expressing Erv1p oxidase and isomerases DsbC or PDI. 

Expression was carried out using LB medium at 18ºC, for overnight growth. |A. SDS-PAGE. |B. 

Western blotting. All samples were denaturated with 2x loading solution and 20µL were 

applied in 12.5% polyacrylamide gels. For WB, proteins were transferred to a PVDF membrane, 

probed with an anti-His primary antibody (1:10 000) and detected by chemiluminescense using 

ECF as a substrate of the secondary antibody. 1- Before IPTG induction, 2- After IPTG induction, 

3- Soluble fraction and 4- Insoluble fraction after cell lysis. 

 

 

 

 

 

 

 

 

 

Figure 31. Small-scale overexpression screening of recombinant T7-GST-Malin-His6 in E. Coli 

BL21 star and E. Coli BL21 star plus Erv1p oxidase and isomerases DsbC or PDI. Expression 

was carried out using LB medium at 18ºC, for overnight growth. |A. SDS-PAGE. |B. Western 

blotting. 20µL of sample were applied in 12.5% polyacrylamide gels. For WB, proteins were 

transferred to a PVDF membrane, probed with an anti-His primary antibody (1:10 000) and 

detected by fluorescence using ECF as a substrate of the secondary antibody. 1- Before IPTG 

induction, 2- After IPTG induction, 3- Soluble fraction and 4- Insoluble fraction after cell lysis. 
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Concerning the SDS-PAGE and western blot analysis of His6-Malin, more protein seems 

to be present in the soluble form, when co-expressed with Erv1p + PDI (fig. 30 lane 3 

Erv1p + PDI condition) in comparison with the expression conditions or no pre-

expression of “foldases” was performed (fig. 30 BL21 star condition – lane 3), 

nevertheless the levels of protein expression remained low. Relatively to the GST-

Malin-His6, it is observed mainly in the WB the presence of malin near 75kDa. 

Expression in E Coli BL21 star, the low amount of the protein expressed was 

aggregated as observed in the insoluble fraction (lane 4). In the E Coli (Erv1p+ DsbC) a 

band detected by the WB at 75 kDa in the soluble fraction demonstrates the increase 

of protein in the soluble form and in E Coli (Erv1p+ PDI) the same is observed however 

the band is not so intense. A band pattern is also present at 37 kDa in the WB. Since 

the antibody used is against His and malin’s molecular weight is about 42 kDa, these 

bands should correspond to His-malin without the T7-GST tag. This was already 

observed in the previous expressions and purifications. Here, is shown an increase in 

soluble protein for the E coli strains with the oxidase and isomerases being more 

evident in the presence of the Erv1p with DsbC. Taking this into account, the E. coli 

strain selected for the scale-up expression of malin_PET-GST was Coli (Erv1p+ DsbC). 

 

4.7 Large-scale overexpression and GST-Malin-His6 constructs in the presence of 

disulfide bond catalysts. 

 

The next attempt was to express 2L of GST-Malin-His6 in the presence of the plasmid 

coding for Erv1p and DsbC. The pre-expression of Erv1p and PDI was induced by 0,5% 

arabinose and after that, 0,1 mM of IPTG was added to induce malin expression that 

was allowed to occur overnight at 18ºC. The purification was carried out by IMAC. 

Fractions from expression and from purification were analyzed in SDS-PAGE and WB 

(fig. 32). 

This results demonstrate that at the presence of the oxidase and foldase, a 

considerable increase in soluble form of malin is obtained at soluble fraction (fig. 32 B, 

lane 3), however the increase in the soluble protein being purified could again only 

observed by the western blot analysis (fig. 32 C), with no corresponding visible band 

being detected by the SDS-PAGE analysis (fig. 32 B). 
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Figure  32. Purification of GST-Malin-His6 expressed in E. Coli BL21 Star (Erv1p + DsbC) by immobilized 

metal ion affinity chromatography (expression volume-2L). |A. Chromatogram obtained in HisTrap HP 

5mL purification step. Vertical lines outline the collected fractions in each imidazole elution step. |B. 

SDS-PAGE analysis of expression and purification profile. 20µL of sample was loaded in 12.5% 

polyacrylamide gels 1- Before IPTG induction, 2- After IPTG induction (after 3h), 3- Soluble fraction and 

4- Insoluble fraction after cell lysis, 5- fraction of 50mM imidazole step, 6- fraction of 100mM imidazole 

step, 7- fraction of 300mM imidazole step, 8- fraction of 500mM imidazole step, 9- Flow through. |C. 

Western blotting. Protein´s separation by SDS-PAGE and transferred to a PVDF membrane, probed with 

an anti-His primary antibody (1:10 000) and detected by chemiluminescense using ECF as a substrate for 

the secondary antibody. 1-Before IPTG induction; 2-After 3h of IPTG induction; 3-Soluble fraction and 4-

Insoluble fraction, after cell lysis; 5-Flowthrough; 6-9 fraction of 50 mM, 100 mM, 300 mM and 500 mM 

imidazole steps, respectively. 
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The fractions collected in the 300mM imidazole step were pooled, dialyzed overnight 

and concentrated to a final volume of 700µL. The protein was monitored relatively to 

its oligomerization state by analytical size exclusion chromatography, confirming very 

low yields of expressed and purified malin and a major presence of the GST tag (data 

not shown). 

A possible reason for these results is the divergent codon usage between humans and 

E. coli, since recombinant protein expression in heterologous systems can be impaired 

by different codon usage because the concentrations of host tRNAs, in this case E coli, 

are insufficient for the less-used codons to optimally translate the mRNA. Indeed, it is 

visible the difference of the codon quality for E. coli from the original to the codon 

optimized malin coding sequence (fig. 33). 

 

 

 

 

 

 

 

 

 

Figure 33. Plots showing the quality of used codon of the original malin sequence (A) and the optimized 

malin sequence (B). The X axis represents the nucleotide position. 
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5. Conclusions and future perspectives 

 

The major goal of the developed work was to optimize the expression and purification 

of the laforin derived constructs and malin not only in sufficient amounts but also in a 

soluble and stable form suitable for later interaction characterization.  

The generation of the laforin derived constructs using the original laforin coding 

sequence as the template gave amplification problems for almost all constructs and 

unreadable sequencing results of the cloned DNA sequences due to the high GC 

content present at the first half of laforin sequence. This drawback was successfully 

circumvented by using an optimized GC content and codon optimized laforin coding 

sequence with clearly improvement in codon quality and decreased GC levels. This 

sequence optimization besides promoting efficiency on the amplification and cloning 

process it also contributes to optimize the expression levels. 

From the expression screening of the CBM constructs, CBM 120, 140 and 159 along 

with DSP 111 and 130, it’s concluded that an increase of the sequence from the inter-

domain region contributes to increasing in protein accumulation in the form of 

inclusion bodies. Published data supports this evidence that in the presence of soluble 

domains, the addition of extra amino acid sequence tends to affect negatively the 

solubility and expression yields of the domains.  

Expressing CBM 120 construct in large scale in E. coli Bl21 star it was visible the 

presence of soluble protein however, a high amount was accumulated in inclusion 

bodies as expected from the screening analysis. CBM 120 was further purified and 

concentrated with a good final yield of 1,73 mg per liter of expression however, the 

protein concentration promoted more aggregation of CBM 120 . Attempts in refolding 

of the CBM 120 and CBM 140 proteins from inclusion bodies were unsuccessful, since 

protein was aggregated. 

Malin expression was followed, using a previously described expression protocol, 

however protein was poorly expressed in E. coli, being only detected by western-blot, 

being the small amounts expressed, accumulated as inclusion bodies. Attempts of 

expressing malin in the presence of sulfhydryl oxidase and isomerases as way of 

prevent insoluble aggregation and proper folding of malin were marginally successful 
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since soluble protein levels were higher, but were still insufficient for protein to be 

purified. The possible reason is the expression of a non-codon optimized malin 

sequence for E. coli.  Recombinant protein expression in heterologous systems can be 

impaired by different codon usage because the concentrations of host tRNAs, in this 

case E coli, are insufficient for the less-used codons to optimally translate the mRNA58. 

The final result is no protein expressed or partial expression of the first amino acids, 

including tags if present on the N-terminal giving final products of incomplete protein 

synthesis. 

Considering this, further work including obtaining an optimized malin coding sequence 

for expression in E. coli; testing fusion tags in laforin derived constructs which increase 

solubility of target proteins, such as MBP, Thioredoxin, Nus A or SUMO; the co-

expression of chaperones to improve the correct folding and thus solubility of the 

proteins; the use of pET Duet vector to co-express each laforin derived construct and 

malin allowing in vivo interaction and final purification of the complex, is proposed. 
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