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Resumo

Os algoritmos evolucionários (AE) são procedimentos de pesquisa estocástica em paralelo, va-
gamente inspirados pelos conceitos de selecção natural, genética, e hereditariedade. Estes têm
sido aplicados com sucesso em muitos domínios e a Computação Evolucionária (CE) atrai hoje
um número cada vez maior de investigadores das mais variadas áreas.

O final do século XX trouxe inúmeras descobertas na esfera biológica, permitidas pelas ino-
vações tecnológicas subjacentes. Genomas completos foram sequenciados, incluindo o humano,
e graças à crescente interdisciplinaridade dos investigadores sabe-se hoje que evolução é muito
mais do que apenas selecção natural. Há também a influência do meio ambiente, a regulação
genética, e o desenvolvimento. No cerne destes processos existe uma peça fundamental de
maquinaria biológica, a Rede de Regulação Genética (Gene Regulatory Network - GRN). Esta
rede resulta da interacção entre os genes e proteínas, bem como o meio ambiente, decidindo a
expressão dos genes e, consequentemente, o desenvolvimento do organismo.

É reconhecido por vários investigadores que os conhecimentos biológicos têm avançado mais
rápido do que a nossa capacidade de incorporá-los nos AEs, independentemente do facto de
ainda estar por provar se é ou não benificial fazê-lo. Uma das principais críticas apontadas é
que a abordagem à relação genótipo-fenótipo é diferente da observada na natureza. Um grande
esforço tem sido feito por alguns investigadores para desenvolver novas representações, tendo
alcançado não só melhores resultados em problemas de teste, mas também maior flexibilidade
e aplicabilidade dos algoritmos. Para além disso, outros começaram recentemente a estudar
computacionalmente o novo conhecimento da multiplicidade de mecanismos de regulação, que
são fundamentais para ambos os processos de hereditariedade, e de desenvolvimento dos or-
ganismos, tentando incluir esses mecanismos nos AEs. No entanto, ainda são poucos os que
são aplicados a problemas de aprendizagem e optimização, e muitos destes são normalmente
desenvolvidos com um problema específico como alvo.

A principal contribuição desta tese é um modelo que integra redes de regulação artificiais
como a representação genotípica de um sistema de Programação Genética (PG), e um algoritmo
que mapeia estas redes em grafos de programas executáveis. Para além disso, variantes do mo-
delo original foram também desenvolvidas, estendendo as capacidades do modelo às classes de
problemas com definições recursivas, e com múltiplos resultados em paralelo. O modelo desen-
volvido foi validado experimentalmente usando problemas de referência para sistemas de PG,
desde regressão simbólica a controlo, e aprendizagem, com ou sem memória. As experiências
realizadas permitiram avaliar a eficácia e a eficiência do algoritmo, bem como a influência de di-
ferentes operadores e parameterizações. Apesar de algumas limitações que foram identificadas,
a análise dos resultados mostra que este novo método é competitivo na maioria dos problemas
testados, superando mesmo nalguns casos os resultados da literatura.
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Abstract

Evolutionary Algorithms (EA) are parallel stochastic search procedures that are loosely inspired
by the concepts of natural selection and genetic heredity. They have been successfully applied
to many domains, and today Evolutionary Computation (EC) attracts a growing number of re-
searchers from the most varied fields.

The end of the 20th century brought uncountable discoveries in the biological realm, enabled
by the underlying technological breakthroughs. Complete genomes have been sequenced, in-
cluding the human one, and thanks to the increasing interdisciplinarity of researchers it is known
today that there is much more to evolution than just natural selection, namely the influence of the
environment, gene regulation, and development. At the core of these processes there is a fun-
damental piece of complex biological machinery, the Genetic Regulatory Network (GRN). This
network results from the interaction amongst the genes and proteins, as well as the environment,
governing gene expression and consequently the development of the organism.

It is a true fact that the biological knowledge has advanced faster than our ability to incorpo-
rate it into the EAs, despite of whether or not it is beneficial to do so. One of the main critics
pointed-out is that the approach to the genotype-phenotype relationship is different from nature.
A lot of effort has been put by some researchers into developing new representations, achiev-
ing not only improved benchmark results, but also extended flexibility and applicability of the
algorithms. Moreover, others have recently started exploring computationally the new compre-
hension of the multitude of regulatory mechanisms that are fundamental in both the processes
of inheritance and of development in natural systems, by trying to include those mechanisms in
the EAs. However, few of these target machine learning problems, and most are usually devel-
oped with a specific problem domain in mind. The work presented here addresses this issue by
incorporating a model of GRN in a Genetic Programming (GP) architecture.

This thesis main contribution is a model that incorporates Artificial Regulatory Networks as
the genotypic representation in a GP-like system, and an algorithm that maps these networks into
executable program graphs. Moreover, variants of the model were also developed, extending the
capabilities of the approach to classes of problems with recursive definitions, and with multiple
outputs. The efficacy and efficiency of this alternative were tested experimentally using typical
benchmark problems for Genetic Programming systems, from regression to control, and logic
design. Despite some limitations that were identified, the analysis of the results shows that this
new method is competitive in most problem domains, even outperforming the state-of-the-art
results in some cases.

Keywords

Computational Evolution, Artificial Genetic Regulatory Network, Developmental Systems, Evo-
lutionary Strategies, Genetic Programming.
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1
Introduction

It was at the very beginning of an introductory computer programming course that I first

heard what is perhaps the oldest cliché in Computer Science (CS), that “computers are

dumb, they can only do what you tell them to”. Apparently as simple as an affirmation

can be (and to me in that context it sounded like a valid statement), it points to the rather

philosophical question that is the foundation of Artificial Intelligence (AI).

Even before the first AI conference [Russell and Norvig, 2010], Alan Turing proposed

“The Imitation Game” (a.k.a “The Turing Test”), addressing the question of whether ma-

chines can or cannot think1. Few decades later, Marvin Minsky2, one of the founders of

the AI research field, also addressed the issue, stressing the point that computers can

also manipulate symbols and that Turing and other researchers had written programs

that tried to mirror human intellectual capabilities, using machines that were designed

with only arithmetic operations as their goal. He finishes his article raising the question

“Can computers do only what they are told?”, and provides food for thought with an anal-

ogy with musical composition. Richard Dawkins3 graciously points out that “The cliché is

true only in the crashingly trivial sense, the same sense in which Shakespeare never wrote

anything except what his first schoolteacher taught him to write – words”.

1In Computing Machinery and Intelligence, V.59, 1950 (http://www.loebner.net/Prizef/
TuringArticle.html)

2In The AI Magazine, Fall 1982 (http://www-rci.rutgers.edu/~cfs/472_html/Intro/
MinskyArticle/MM1.html)

3In The Blind Watchmaker

1

http://www.loebner.net/Prizef/TuringArticle.html
http://www.loebner.net/Prizef/TuringArticle.html
http://www-rci.rutgers.edu/~cfs/472_html/Intro/MinskyArticle/MM1.html
http://www-rci.rutgers.edu/~cfs/472_html/Intro/MinskyArticle/MM1.html


2 CHAPTER 1. INTRODUCTION

Several decades later, AI research has still a long way to pave until the real machine

intelligence (or AI) as envisioned by the pioneers of the field is achieved. Along the path

some researchers saw the potential of using nature-inspired algorithms to solve design,

learning, and optimisation problems. The field of Evolutionary Computation (EC) [Eiben

and Smith, 2003] is one example of this scientific endeavour, and is now mature. Its

beginnings can be traced back to the 1960’s. At that time, inspired in Darwin’s theory

of natural selection, different researchers started developing techniques to evolve artifi-

cial systems. The first three areas of study arising were evolutionary programming (EP),

genetic algorithms (GA), and evolution strategies (ES). Only by the early 1990’s the sep-

arate areas were unified as different representatives of the same technology - EC. At the

same time, another stream following the same principles emerged: Genetic Programming

(GP) [Koza, 1992]. GP is the result of an attempt to deal with the automatic program-

ming of computers, a specialisation of the central question of AI presented before, posed

by Arthur Samuel in 1959: how can computers learn to solve problems without being

explicitly programmed? Or, in other words, how can computers be made to do what

needs to be done, without being told exactly how to do it?

These approaches are reminiscent of the Central Dogma of Biology [Hartl, 2014]

that posits an unidirectional relationship among DNA, RNA and Proteins. In fact, evolu-

tionary algorithms are a simplification of this idea, for they implement a simple and direct

(one-to-one) mapping between the genotype and the phenotype. Even if there are dif-

ferent algorithms each of them tuned for a specific problem or class of problems, they all

rely in a similar approach: (1) randomly define an initial population of solution candidates;

(2) select, according to the fitness, some individuals for reproduction with variation; (3)

define the survivors for the next generation; (4) repeat steps (2) and (3) until some con-

dition is fulfilled. Typically, the objects manipulated by the algorithms are represented at

two different levels. At a low-level, the genotype, the representations are manipulated

by the variation operators; at a high-level, the phenotype, the objects are evaluated to

determine their fitness and are selected accordingly. Because of that, we need a mapping

between these two levels.

Biological knowledge has greatly evolved since the times of the modern synthesis of

evolution. Today it is clear that there are many processes and mechanisms that influence
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the way we came to being, involving evolution and development [Carroll, 2006, David-

son, 2010, Jablonka and Lamb, 2005]. The study of how the environment can influence

evolution and development led to the appearance of computational epigenetics, aiming

to understand the mechanisms of inheritable gene regulation. Thus it is indisputable that

there is much more to evolution than just natural selection.

Two particular advances marked the last years. The first was finding that the genes

governing the construction of major parts of organisms’ bodies have exact counterparts

in most animals, humans included. The second was the discovery that the development

of several body parts which are very different across species (like eyes, fingertips, and

others), is also governed by the same genes in different animals. Moreover, remarkable

similarities in the genetic codes of species have been found thanks to the development

of genome sequencing technologies, showing that the evolution of species is achieved

through small changes in existing genetic material, rather than built from scratch. The

central point of these findings is that gene expression is governed by different switches

that when activated/deactivated in different times of the developmental process, and in

different environments yield different outcomes. These switches form complex dynamic

gene regulatory networks (GRN) whose outcome varies throughout the developmen-

tal process. Moreover, small changes in the DNA (the blueprint) of the GRN can yield

different timings of gene expression, which in turn may produce a significant phenotype

modification.

Many of these aspects have been studied computationally. There are studies about

the role of DNA methylation in the context of Artificial Life Models [Sousa and Costa,

2011] or about the importance of histone modifications in the realm of Genetic Pro-

gramming [Tanev and Yuta, 2008]. Gene Regulatory Networks (GRN) have been inten-

sively studied in recent years, from a biological perspective, to understand their structure

and dynamics [Davidson, 2010]. These studies are supported by computational simula-

tions [Schlitt and Brazma, 2007,Geard and Willadsen, 2009]. These biological and com-

putational models of GRNs have made clear the role of regulation in development [Car-

roll, 2006, Shubin, 2009]. Moreover, many computer scientists are well aware of the

potential of applying the new ideas of development to problem solving in computer sys-

tems [Kumar and Bentley, 2003].
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One of the criticisms addressed to the traditional evolutionary algorithms mentioned

before, is that they are a simplification of nature’s principles, for they implement a simple

and direct (one-to-one) mapping between the genotype and the phenotype. There is

nothing in between, and there are no regulation links. For example, typically in an EA, the

two phases of transcription and translation are merged into just one and the regulatory

processes are missing. At a larger scale, we could add the lack of epigenetic phenomena

that contribute to the evolution and all the mechanisms involved in the construction of

an organism (see Figure 1.1).
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Figure 1.1: From genes to an organism.

It is thus without surprise that recently some researchers, reflecting about the new

insights and comprehension of biological systems, proposed a research agenda whose

main goal is to foster the inclusion, at least partially, of this knowledge into Evolutionary

Algorithms, transforming the artificial evolution perspective into a computational evolu-

tion approach [Banzhaf et al., 2006]. They criticise many of the assumptions made by

artificial evolution, namely: (1) the genotype is composed of discrete and independent
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units, (2) the absence on non-coding material, (3) the environment doesn’t influence nei-

ther evolution nor the development, (4) the genetic material is transferred directly to

offsprings, (5) variation operates only at the genotype, (6) selection operates only at the

phenotype level, and (7) the organisation of the genotype does not change during evo-

lution. All these limitations can be summarised in just three aspects: (a) the influence of

the environment, (b) gene expression, and (c) development. One can abstract further

these three aspects to end up with just one concept: gene regulation.

The working hypothesis behind the automatic computation methodology described

in this thesis is that EC representations can be improved by integrating these different

perspectives of the same mechanism (regulation) in the architecture of evolutionary al-

gorithms, with the aim of solving complex design, learning, and optimisation problems.

The main contribution of this thesis is a new representation for GP based on GRNs,

and aimed at improving the results of traditional EAs. For that purpose a model of artifi-

cial GRNs was used as the genotypic representation, coupled with an algorithm to reduce

the complexity of the network graph and map the artificial GRN into a program. Asex-

ual variation operators were also developed, as well as recombination operators, to deal

with the specific genotypic representation. Variants to the method are also described,

extending its capabilities to a broader range of problem classes, from the traditional GP

benchmarks to domains with intrinsic recursion, and problems that require solutions with

multiple outputs. Moreover, a modular evolutionary framework was developed4 (using

Python), that allows the usage of different representations both at the genotypic and phe-

notypic levels.

The experimental work that was carried out studied some design alternatives of the

underlying artificial GRN model (aimed at a better tuning of the algorithm). Experiments

were also designed to assess the efficiency of the variation operators with different pa-

rameterisations. The best parameterisation found in these experiments was used as the

basic configuration to handle the remaining classes of problems.

4Publicly available under the GNU General Public License 3.0+, at https://github.com/rmlopes/
code.

https://github.com/rmlopes/code
https://github.com/rmlopes/code
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The remaining of this thesis is organised as follows. The biological background, and

the state-of-the-art on GRN models and EAs are presented in Chapter 2. Then the new

algorithm and its feedback variant are described, along with the variation operators in

Chapter 3, followed by the benchmark problems used to assess the algorithm’s perfor-

mance, in Chapter 4. The setup for the different experiments that were carried out is

then presented in Chapter 5, and the corresponding results are presented and discussed

in Chapter 6. Following this, an extension of the model which deals with multiple outputs

is also studied in Chapter 7. Finally, the author’s remarks and possible future endeavours

are presented in Chapter 8.



2
State of the Art

The origin of life and of the Universe are the two fundamental problematics of both

religion and science [Dawkins, 2008]. While in religion there is no knowledge per se,

what we learn from science is meaningful, even though provisional. As Nick Lane wrote:

“It is a joy to be alive at this time, when we know so much, and yet can look forward to

so much more” [Lane, 2010].

In this chapter, the main characters and their contributions to our current body of

knowledge are briefly presented in Section 2.1 [Jablonka and Lamb, 2005,Carroll, 2007].

Particular emphasis is given to gene regulation and expression in Section 2.2 [Carroll,

2006, Nüsslein-Volhard, 2006], which is the main biological mechanism behind the hy-

pothesis of this thesis. An overview of the use of analogies and models that incorporate

this biological knowledge into Evolutionary Algorithms is then presented in Section 2.3.

The proposals described represent successful approaches to some of the issues men-

tioned in the previous chapter, and its results will be used as reference for the discussion

in Chapter 6.

2.1 Background

What is life? How did it start? How did man come into existence? These are questions

that have troubled mankind since before the ancient greek society. Common thoughts

amongst greek philosophers were that life had spontaneously generated from water or

air, and that there was a common guiding principle from which all living things were cre-

ated. In particular, Aristoteles studied the development of chicks from the egg and pro-

7
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posed a theory for the creation of living beings based on the (not well-known) mecha-

nisms of reproduction.

This view of spontaneous generation and reproduction with the passing of information

between generations was left aside during the medieval era, because of the Christian

theory of special creation: all living beings came into existence in their current form,

designed by divine intervention. Although some philosophers proposed theories closer

to evolutionary thought, these were still relying on a divine form as the starting point of

life.

It was not until the late 18th century that a theory of evolution was proposed. The

revolution in evolutionary thinking started with George Leclerc - Comte de Buffon, and

Erasmus Darwin. The first argued that living beings do change over time, probably as

the result of environmental influences or even chance (although he still believed that the

original form would have been spontaneously generated). The latter wrote poetry by

which he not only claimed that all warm blooded animals had a common ancestor, but

also had some vague ideas of what might be responsible for the changes in species. He

was the first to discuss the effects of sexual reproduction and competition on possible

changes in species. However, a mechanism that drives modifications from generation to

generation was still missing.

Jean Baptiste Lamarck, one of Buffon’s pupils, was the first to theorise a mechanism

for heredity, and thus a theory of evolution. The main argument of his theory was that or-

ganisms are not fixed and they must adapt in reaction to environmental changes in order

to survive, passing those changes along to the descendants. The most known example

is perhaps that of the giraffe’s neck. According to Lamarck as the giraffes stretched their

necks to reach leafs their necks would become longer, this trait would be inherited by the

offspring, and over several generations the continued stretching would result in the longer

necks. Accordingly, organs that are not used by the organism would tend to shrink. Be-

sides the inheritance of acquired traits, he also argued that organisms were continuously

evolving from simpler to more complex forms, towards perfection. Moreover, species

would not become extinct but rather change into other species.

Lamarckian evolution was the first public statement of a theory for the evolution of

life as the result of natural processes rather than divine intervention. In the highly clerical

society of the 18th century these revolutionary ideas were not well accepted. Moreover,

his theory was easily discredited since, for instance, a cowboy’s offspring is not born with



2.1. BACKGROUND 9

arched legs. Despite him being discredited and exiled from the scientific community, the

notion of evolutionary change did not die with Lamarck1.

In the 19th century, following the ideals of his grandfather, Charles Darwin also delved

into the study of the diversification of species. Because of the society’s reluctance in ac-

cepting revolutionary ideas, he worked quietly for decades on his theory, collecting as

much observational data as he could, anticipating possible refutations. His work focused

mainly on breeding experiments with pigeons and his thorough survey on the species of

South America, on board of the Beagle. Alfred Russel Wallace, another great natural-

ist of the time, was also intrigued by the diversity of life. In 1855 he published “On the

law which has regulated the introduction of new species”, which showed that he was

reaching similar conclusions to Darwin. After exchange of thoughts and observations

(by correspondence), Wallace shared his essay “On the Tendency of Varieties to De-

part Indefinitely From the Original Type”, which would be presented in 1858 jointly with

excerpts from an unpublished essay previously written by Darwin.

Following this, in 1859 Darwin publishes “On the Origin of Species”, where he ex-

poses his theory of natural selection as the driving force of evolution. Darwin’s theory

states that variations in the traits of species are essentially random, and that the most

adapted individuals (with better traits) are more likely to survive and reproduce, thus

passing the characteristic traits to the offspring (later coined as the survival of the fittest).

Despite failing to explain the reproduction heritability mechanisms or the origin of new

traits, natural selection was the first plausible theory for the evolution of species from a

common ancestor.

In 1865 Gregor Mendel, an Augustinian friar and botanist presented his work with pea

plants, demonstrating that the inheritance of certain traits followed particular patterns.

He formulated two generalisations, later coined as the “Mendelian laws of inheritance”.

The first states that an individual has two factors for each trait, one from each parent

(diploidy). The different forms of a factor are called alleles. During reproduction the

offspring receives a random allele from each parent, and the genotype of an individual

is the complete set of alleles. The second states that separate genes for different traits

are passed to the offsprings independently from one another. Despite the paramount

1As a matter of fact, the inheritance of acquired traits is still discussed in the 21st century, in the context
of epigenetics. The concept of epigenetics is not discussed here, but the interested reader can refer to
[Jablonka and Lamb, 2005] for an introduction.
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importance of his work it would only be recognised some decades later when it was

rediscovered by other researchers.

At the end of the 1880s August Weissmann, a german evolutionary biologist, made

an important contribution with the germ plasm theory. According to this theory in eu-

karyotic organisms inheritance takes place only through germ cells (egg cells and sperm

cells). The somatic cells (the other cells of the body) do not work as agents of heredity.

In other words, genetic information does not pass from soma to germ plasm, and into the

next generation. One can easily see how this view refutes Lamarck’s theory of acquired

characteristics.

By the end of the century Hugo deVries was working on inheritance and reached

approximately the same observations as Mendel. He concluded that the inheritance of

specific traits in organisms comes in particles (the Mendelian elements), which he called

pangenes (decades later shortened to genes). DeVries’ work led to the rediscovery of

Mendel’s work, who is nowadays considered the “father of genetics”.

DeVries became best known for his mutation theory. He coined the term mutations

for the variations found in successive generations of a plant. He postulated in his theory

that evolution, especially the origin of species, might occur more frequently with large-

scale changes (the ones he called mutations) rather than via the continuous Darwinian

evolution. Moreover, he was the first to suggest the occurrence of recombinations be-

tween homologous chromosomes, which is nowadays known as chromosomal crossover.

At the beginning of the 20th century there were still many reluctant to accept that

evolution had happen through natural selection. Moreover, many theories were thought

to be contradictory, like the Mendelian concepts of hard-inheritance, or the large-scale

changes observed by palaeontologists, against Darwin’s natural selection and its contin-

uous view of evolution. Also against Mendelian genetics were biometricians, for whom

empirical evidence indicated that variation was continuous in most organisms.

Ronald A. Fisher was the first to reconcile some of these theories. He first showed

how the continuous variation measured by the biometricians, could result from the action

of many discrete genetic loci. His work culminated with the publication of his book “The

Genetical Theory of Natural Selection”, and he was able to show that Mendelian genetics

is actually compatible with the notion of evolution driven by natural selection. John B. S.

Haldane corroborated his work by applying mathematical analysis to real world examples

of natural selection. Sewall Wright in turn focused on gene complexes, that is, combi-
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nations of genes that interact with each other. This was the beginning of the discipline

of population genetics. Fisher and Wright were also the first to propose a mathematical

model for the random genetic drift (alleles frequency) in populations (rather than only

change guided through natural selection), suggesting it plays a minor role in evolution and

showing that its effect varies with the population size.

A unifying theory of evolution was still missing though. Most naturalists believed that

there was more to evolution than natural selection could explain. It was the work of

Theodosius Dobzhansky “Genetics and the Origin of Species” that brought together

geneticists and naturalists. It presented the same conclusions as Fisher, Haldane, and

Wright, in a form that was more accessible to others. Moreover, it emphasised the im-

portance of genetically distinct sub-populations, and that the real-world populations had

much more genetic variability than what was thought. This work was complemented by

Edmund Ford, who was the first to define genetic polymorphism, that is, the maintenance

of different phenotypes within the same population of a given species. In 1942, Ernst

Mayr emphasised the role of allopatric speciation as a mechanism for the emergence of

new species, where geographically isolated sub-populations diverge so far that reproduc-

tive isolation occurs. Moreover he introduced the biological species concept, defining a

species as a group of potentially interbreeding populations that are reproductively iso-

lated from all other populations. In the same year, Julian Huxley published “Evolution:

the Modern Synthesis”. In his book he uses the term “evolutionary synthesis” to refer

to general acceptance of two conclusions: i) continuous evolution could be explained in

terms of small discrete genetic changes and recombination (micro-evolution); ii) speci-

ation (macro-evolution) could be explained consistently with the known genetic mech-

anisms. In 1944, George Gaylord Simpson showed that under careful examination, the

fossil records of mammals were consistent with the mechanisms of population genetics

known at the time. He argued that the gaps found in the fossil records which are incon-

sistent with the irregular branching, and non-directional pattern predicted by the modern

synthesis could be explained by rapid quantum evolution in small populations. Quantum

evolution suggested drastic shifts in small populations, where transitional forms would be

unstable, and perish quickly therefore providing little fossil evidence. He complemented

his theory with the random genetic drift proposed before by Wright as an adaptive mech-

anism within species, arguing that only rarely it could have driven a transition to a new

adaptive zone (a new species). Despite controversy, his work was crucial since at that



12 CHAPTER 2. STATE OF THE ART

time most palaeontologists did not believe that natural selection was the main evolution-

ary mechanism. Finally, the synthesis was extended by George Stebbins to encompass

botany, including the important effects of hybridisation and polyploidy (multiple homol-

ogous chromosomes) in some species of plants.

Despite the synthesis being widely accepted, there were still many open questions in

the entire evolutionary process. For instance, the referenced assorted elements (genes)

that are transferred to the offsprings were still an abstract entity. Chromosomal recombi-

nation was accepted, the nucleic acids were known, but the role of DNA in heredity was

not yet confirmed. This happened in 1952 and one year later James Watson and Francis

Crick proposed the double-helix model of DNA structure, providing a physical basis for

heredity. Not long after Crick stated the Central Dogma of Biology in 1958, explaining the

flow of genetic information within a biological system: DNA → RNA → protein. It states

that genetic information cannot be transferred back from protein to either nucleic acid.

However, how exactly genetic information produced proteins was still to be unveiled.

In the beginning of the 1960’s François Jacob and Jacques Monod explained for the first

time how gene expression is controlled, proposing the first model of gene regulation in

prokaryotes (this model is described with more detail in Section 2.2). RNA was known to

have the information necessary for the ribosomes to produce the chain of amino-acids we

call protein. How the information was delivered to the ribosomes remained a mystery,

until 1961 when Jacob, Monod, Sydney Brenner, and Matt Meselson discovered the exis-

tence of another molecule (which they called messenger RNA, mRNA) that presents to

the ribosome the information contained in DNA. Following this work, in 1966 the genetic

code was “cracked”, that is, it was deciphered which codons code for which amino-acid.

This was the point of departure to read the human genetic code, and genome sequencing

methods started being developed.

In the light of the growing knowledge in molecular biology, two refinements of the

Darwinian evolutionary theory emerged in the early 1970s. First, the gene-centric view

of Richard Dawkins. He metaphorically described genes as “selfish”, since he theorised

them to be the basic units of evolution, the organism serving only the purpose of hosting

so that successful genes can replicate. In his own words [Dawkins, 2006]: “They are the

replicators and we are their survival machines. When we have served our purpose we

are cast aside”. This was controversial, applauded for providing an extended explanation

to natural selection, but also highly contested for the oversimplification of the relation-
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ship between the genes and the organism. Second, in 1972 Stephen J. Gould and Niles

Eldredge proposed the punctuated equilibrium theory. The idea behind this extension to

the evolutionary theory is that species do not slowly change or morph from one to an-

other (continuous evolution as first proposed by Darwin, also referred to as gradualism),

but rather they experience long periods of stagnation (morphological stasis), and major

evolutionary changes that lead to speciation are rapid and rare. Moreover, they oppose

to Dawkins “selfish gene”, advocating that genes act more as a record of evolutionary

change, attributing the main role to the organisms since these are the entities interacting

with the environment.

Until 1977 mRNA was thought to be a faithful copy of DNA, which is true in bacteria.

However, Richard Roberts’ and Phil Sharp’s labs showed that the genes in eukaryotic

animals contain many interruptions, named introns. These introns are cut out from the

mRNA before it is translated into protein by the ribosome. The discovery of these split

genes modified the way researchers thought about the architecture of the genome, so

far based only on experimentation with bacteria. Typically the introns contain 90% of

the DNA sequence in the whole gene, and were thought of as junk-DNA (sequences that

apparently serve no purpose, although its function may just be unknown).

In the same year, Gould published a book that explored the relationship between em-

bryonic development (ontogeny) and biological evolution (phylogeny). He showed how

variations in the timing and rate of development (heterochrony) can provide the raw

material upon which natural selection can operate, and its influence in macroevolution

(the major evolutionary transitions). Entitled “Ontogeny and Phylogeny” his work was

to a large degree the inspiration behind the modern field of evolutionary-developmental

biology (evo-devo for short). It is worth mentioning that in 1917, D’Arcy Thompson pos-

tulated that differential growth rates could produce variations in form. In his book “On

Growth and Form”, he showed the underlying similarities in body plans and how geo-

metric transformations could be used to explain the variations. This was not taken into

account in the modern evolutionary synthesis, perhaps because Thompson advocated

his theory as an alternative to the survival of the fittest.

Before the end of the 20th century the biological world would be revolutionised yet

again by the discovery of mutated versions of the homeotic genes in different species

[Nüsslein-Volhard, 2006]. These genes act as switches for other genes and can them-

selves be induced by other transcription factors (proteins that inhibit/enhance the tran-
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scription of a gene) and/or morphogens (signalling proteins). First identified in fruit flies

by Edward B. Lewis in the 1930’s, this set of genes controls the embryonic development

of the organism, being related to the segmentation of the body, and the controlling the

construction of the different body parts. The identification of the same homeotic gene

complexes (with mutations) across different animals provides further proof for the the-

ory of the common descent. Despite the high conservation of these genes, the resulting

differences in gene regulation can be highly divergent. The conclusion to be drawn here

is that the variety observed at the level the phenotype does not arise so much from indi-

vidual variations in the genes, but rather from the second-order effects of these variations

on the expression and timing of the gene networks.

2.2 Gene Regulation

The study of gene complexes and their interactions dates to the time of the modern

evolutionary synthesis. But it was not until 1960 that with the available knowledge from

studying populations of Escherichia-coli F. Jacob and J. Monod made the distinction be-

tween structural and regulatory genes, and described the first well-understood example

of how gene expression is controlled. It is still used nowadays to explain gene expression

and regulation as it is a simple example.

A gene is expressed when the DNA is transcribed and translated to produce proteins

(as stated by the central dogma of Biology). The central dogma explains the basic process

of gene expression into proteins, but is unable to explain several essential phenomena

such as cellular differentiation, where cells with the same genetic information behave

differently according to their function in the organism [Davidson, 2010].

In bacteria (prokaryotes) a set of genes with related functionality and a common con-

trol of gene expression is called an operon. Jacob and Monod studied the lac-operon,

the set of genes controlling the expression of enzymes that metabolise lactose, one of

the possible sources of energy. This operon only needs to operate if lactose is present

and glucose is not, as this is the preferred energy source. Figure 2.1 shows a lactose

molecule. The function of the enzymes produced by the lac-operon is to breakdown the

lactose molecules.

In Figure 2.2 one can see a summary of the activities involved in the expression of the

enzymes responsible for metabolising lactose molecules. Three genes are transcribed
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Figure 2.1: The lactose molecule and the break-down products ( from WikimediaCommons, by
Telliott, Public Domain).

into RNA and each codes for one of the enzymes. There are two regulatory regions, the

promoter and the operator. The former enables the start of the transcription, and it is

where the RNA polymerase binds to begin transcribing, as long as the latter is free. As

one can see in Figure 2.3 there is a repressor protein (lac-repressor) that binds either to

the operator or to lactose molecules. If lactose is present it will bind to the repressor,

changing its structure, and unbinding from the operator. Otherwise it blocks the RNA-

polymerase from transcribing the genes. This is the default behaviour and is known as

negative control.

But there is also a positive control mechanism in this example. The main actor of this

mechanism is the CAP (catabolite activator protein) which can bind to the DNA if glucose

levels are low, and enhances the binding of the RNA-polymerase, thus increasing the final

enzyme levels. If glucose levels are high, the CAP production is inhibited and although

the genes are still expressed in the presence of lactose, the expression levels will be low.

This provides the basic example of gene expression and regulation in prokaryotic or-

ganisms. For further details the reader can refer to [Jablonka and Lamb, 2005, Carroll,

2006]. In eukaryotes the regulatory mechanisms are more complicated as for instance

there are no operons, and multiple regulatory regions can be found for different transcrip-

tion factors. Nevertheless the principles of gene regulation and expression are similar.

2The product of the lac Z gene is β-galactosidase, which converts lactose into glucose and galactose;
the lac Y gene produces β-galactoside permease, that transports lactose into the cell; finally, the lac A gene
is responsible for the production of β-galactoside transacetylase, whose function as part of the lac-operon
is unknown.
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Figure 2.2: Transcription and translation in prokaryotes, particularly the lac-operon as presented
by Jacob e Monod. The RNA-polymerase binds to the promoter region and, if the operator site
is free, transcribes the three contiguous genes into mRNA. The resulting strand is then translated
into the enzymes that will metabolise lactose2.
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inhibits gene expression by binding to the operator. When the concentration of lactose increases
it binds to the repressor releasing the operator and enabling transcription. When lactose levels
fall, the repressor is free and binds again to the operator.
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In eukaryotic organisms, the gene regulation mechanisms result in differential gene

expression, and this leads to cell specialisation. It is known since Watson and Crick that

the eukaryotic DNA is tightly wrapped by histones, which provide one of the mechanisms

for interaction between proteins and genetic material (what is called epigenetic control).

In the next paragraphs the focus will be on the regulatory mechanisms rather than the

epigenetic ones, since it is more relevant for the theme of this thesis.

In terms of cellular machinery, the main distinction between prokaryotes and eukary-

otes is that the latter have a well defined nucleus (amongst other structures) enclosed

within membranes. Of course this leads to other major differences, particularly in cell

division. There are two types of cell-division mechanisms. One is mitosis, by which a

cell divides to produce two genetically identical cells. This is the procedure that builds

a multi-cellular organism from a single cell during development. If the replicated cells

have the same genetic information it must rely on differential gene expression to achieve

differentiation. The other is meiosis, used in sexual reproduction by diploid cells (con-

taining one chromosome from each parent). After two stages of cell division and recom-

bination of each pair of parental chromosomes, it results in four haploid cells (known

as gametes). Other important distinctions in eukaryotes include: i) three distinct types

of RNA-polymerase; ii) most mRNA encodes a single product; iii) many genes contain

introns, whose RNA product is spliced out before mRNA transport to the cytoplasm

(leaving only exons in mature mRNA).

The control of gene expression can happen at different points of the protein pro-

duction line, from the transcription stage (inside the nucleus) to the expressed product

stage (Figure 2.4). These moment-to-moment adjustments are influenced not only by

the environment, but also by internal and external signals, and may effect on both the

quantities and structure of the produced proteins. Despite the many possibilities, the

majority of gene control happens at the transcriptional level. Similarly to the bacterial

mechanisms, different proteins (called transcription factors) can bind to the regulatory

regions upstream or downstream of a gene, either helping or hindering RNA-polymerase

from binding to the promoter region of the DNA in order to start transcription. Figure

2.5 presents a simplified model. For further information on the regulatory and signalling

mechanisms in eukaryotes the interested reader can refer to [Bray, 2009].
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Since these regulatory networks are highly non-linear and have several thousand vari-

ables obtaining a model from biological data is a complex task. Computational approaches

to this problem try to reconstruct the GRN from experimental data, for instance, from

gene expression data provided by microarrays. Within this perspective devising a GRN

is viewed as a reverse engineering problem, where you build a model from data. At-

tempts were made to use evolutionary algorithms to solve this problem for some of the

formal models. In particular, there have been proposed solutions based on genetic algo-

rithms [Marbach et al., 2007], genetic programming [Sakamoto and Iba, 2001], evolution

strategies [Streichert et al., 2004], and differential evolution [Noman and Iba, 2007]. For

surveys on the area the reader can refer to [Filkov, 2005,Choi et al., 2007,Hecker et al.,

2009]

Various approaches for formally modelling gene regulatory networks (GRN) appeared

in the last decades. The proposed models can be classified according to the following as-

pects: variables such as product concentrations are discrete, continuous or mixed; time

is discrete and the update of the variables is either synchronous or asynchronous3; space

is discrete, continuous or absent. Examples of models include directed graphs, bayesian

networks, ordinary and partial differential equations, random boolean networks, neural

networks, and rule-based formalisms. Reviews of the proposals can be found in [de Jong,

2002, Schlitt and Brazma, 2007,Geard and Willadsen, 2009,Vijesh, 2013].

2.3 Evolutionary Computation

Living beings are extraordinary creatures, with such complex mechanisms that only mil-

lions of years of evolution could have shaped. Witnessing the outstanding quality of the

evolutionary result some computer scientists decided to mimic natural evolution in their

computers, giving rise to a new biologically inspired research field - Evolutionary Compu-

tation (EC) [Eiben and Smith, 2003]. Over time several stochastic iterative population-

based search algorithms (Evolutionary Algorithms - EA) were proposed, that have been

especially tuned for some problems and/or situations (for instance, algorithms for dealing

with noisy, uncertain, or dynamic environments, for evolving rather than designing the al-

gorithm’s parameters or some of its components, algorithms with local search operators,

3There are, however, cases where time is continuous
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and for multi-objective optimisation).

The first approaches to EC emerged in parallel during the late 1960s: Evolutionary

Programming (EP) [Fogel and Burgin, 1969] and Evolution Strategies(ES) [Schwefel, 1995]

(originally published in german as an internal report, dated 1968). Both rely on the the-

ory of natural selection actuating over the phenotypes, there is no distinction between

genotype and phenotype, and the core procedure is about the same (Fig. 2.6): (1) ran-

domly define an initial population of solution candidates; (2) select, according to the fit-

ness, some individuals for reproduction (sexual or asexual) with variation; (3) define the

survivors for the next generation; (4) repeat steps (2) and (3) until some termination

condition is fulfilled.

Initialise Population

Select parents and 
reproduce with 

variation

Select survivors

Terminate?

1)

2)

3)

4)

No

Yes

Figure 2.6: Flow diagram of an Evolutionary Algorithm.

The main difference between these two approaches is that while Lawrence Fogel

addressed the problem of evolving artificial intelligence (that is, programs with predictive

capabilities, specifically finite state machines), Schwefel and Rechenberg used vectors of

real values to solve optimisation problems. Moreover, despite both using mutation as

the main variation operator, EP focuses on behavioural changes in species, rather than

behavioural changes at the level of the individual. Another difference is that selection
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in EP is typically based on a tournament (solutions dispute a tournament based on the

fitness value and the most ranked are selected) while in ES mainly greedy selection is used

based directly on the fitness evaluation of each individual in the population.

Not long after a third approach was proposed by John Holland which stresses chro-

mosomal operators: Genetic Algorithms (GA) [Holland, 1973]. The main difference

of his proposal lies on the representation of the individuals. Solutions are now seen as

genomes that codify the phenotypes to be evaluated. Moreover, it is based on Holland’s

schema theory which states that low-order schemata (or building-blocks) with improved

fitness increase exponentially across the population in successive generations. Neverthe-

less the mapping from genotype to phenotype is direct, i.e., there is a one-to-one mapping

from genotype to phenotype. Typically the values are represented as a binary string, and

the variation operators actuate on the genotype rather than directly on the phenotype.

The main variation operator in a GA is recombination, typically called crossover (mim-

icking sexual reproduction), in which two individuals contribute with genetic material to

form two different offsprings.

In the early 1990’s Genetic Programming emerged. John Koza’s technique evolves

computer programs (similarly to Fogel), inspired by the concepts of the GA’s building-

blocks. Programs are represented by trees, upon which the variation operators act, and

are artificially selected according to their phenotypic effect (the program execution re-

sult). The main difference to EP is that the programs structure is evolved and the main

operator is recombination. Differently from GA’s, in GP the mapping from genotype to

phenotype is still direct as the programs themselves are being manipulated by the opera-

tors. Nevertheless, it is well documented that introns (sub-trees with neutral effect) can

be found in GP individuals [Langdon and Banzhaf, 2000] resulting in genotypes with the

same phenotypic effect (the same execution result) and in the propagation of this code4.

In the last two decades this paradigm has been applied with success in many different

fields, from engineering to linguistics, and many others. Amongst the examples of such

applications are antennae design [Lohn et al., 2008,Casula et al., 2009,Lohn et al., 2004],

amplifier design [Koza et al., 1997b,Koza et al., 1997a,Koza et al., 1998], neural-network

design [Esparcia-Alcazar and Sharman, 1997], and brain computer interfaces [Poli et al.,

2011]. A compilation of human-competitive results by GP is presented in [Koza, 2010].

4This phenomenon of propagation of neutral code is called bloat; for a comprehensive study of bloat in
GP please refer to [Silva and Costa, 2009]
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By the end of the 1990’s indirect mappings started emerging, introducing more com-

plexity into the phenotype-genotype relationship by defining many-to-one mappings (dif-

ferent genotypes map the same phenotype). Whether this approach provides benefits

and to what extent is a controversial question that remains. David Fogel argues that

there is a misplaced emphasis on emulating the genetic mechanisms [Fogel, 2006]. Others

have found self-adaptation capabilities deriving from these types of representation [Igel

and Toussaint, 2003]. The point of this section is to provide an overview of the research

made towards the inclusion of more realistic mechanisms into EC representations, rather

than discuss which is better over which.

The different representations that have been developed as an alternative to the typical

GP can be abstracted to two general categories. In the first, one has many-to-one, redun-

dant mappings with linearised genomes which rely on recombination and mutation as the

main variation operators. Although in some cases researchers argue to have used devel-

opmental analogies, there is no specific simulated development in these representations

(Section2.3.1). The second is composed of proposals that integrate simulated develop-

ment, usually more robust and reaching classes of problems that the more conventional

methods would not allow (Section 2.3.2).

2.3.1 Non-developmental Representations

The proposals described in this section use many-to-one, redundant mappings, by which

many genomes are mapped into the same phenotype. Typically the genome representa-

tion is linear (as suggested by the models of the natural genomes). Each offers advantages

and disadvantages, but only a few were widely adopted by practitioners.

Grammatical Evolution

Grammar-Guided Genetic Programming (GGGP) is a class of population-based stochas-

tic search techniques applied to context-free grammar-based representations5. A context-

free grammar (CFG) is a tupleG = (N, T, S, P), whereN is a non-empty set of non terminal

symbols, T is a non-empty set of terminal symbols, S is an element ofN called axiom, and P

is a set of production rules of the form A ::= α, with A ∈ N and α ∈ (N∪T)∗. N and T are

5Other types of grammars have been used, for instance Tree-Adjunct, or annotated grammars
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disjoint. A language associated with a grammar G, L(G), is the set of all sequences of ter-

minal symbols that can be derived from the axiom, that is L(G) = {w : S ∗⇒ w, w ∈ T∗}.
Fitness evaluation is performed by reading an expression tree generated using the

defined grammar, and evaluating it as a standard GP program. This method has the reg-

ular GP parameters (population size, maximum generations, maximum tree depth, and

operator probabilities), as well as the same mechanisms for selection and reproduction.

The crossover and mutation operators are slightly modified since now there is a grammar

restricting the search space (see [Byrne et al., 2009] and [O’Neill et al., 2003] for a dis-

cussion related with this issue). Known examples of GGGP systems are the Context-free

Grammar GP [Freeman, 1998], LOGENPRO [Wong and Leung, 1995], and Grammatical

Evolution (GE) [O’Neill and Ryan, 2003].

GE is the most successful form of GGGP. It introduces a genotype to phenotype

mapping, where the genome is a linear sequence which is translated into a derivation

tree (the phenotype), and will be further decoded to an expression tree (the common

approach approach to GGGP linearisation). Each codon6 is usually defined as an 8-bit

binary sequence (integers may be adopted instead), which is used to determine the rule

for a non-terminal symbol when it is expanded. The biological analogy that is usually

described includes development (non-simulated), viewed as the derivation process from

the DNA (the binary string) until the proteins (the terminal operands), resulting in a

program (the phenotypic effect), as shown in Figure 2.7.

Suppose that we have the following production rule,

< expr >::= < expr >< op >< expr > (0)

|(< expr >< op >< expr >) (1)

| < pre− op > (< expr >) (2)

| < var > (3)

where there are four options to rewrite its left hand side symbol < expr >. In the

6In biology, a codon is a set of three adjacent nucleotides in mRNA that specify the amino-acid to be
produced; in GE it is a set of bits or an integer that define the grammar rule to be used in the next derivation
step.
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Figure 2.7: Grammatical Evolution analogy with biological systems, including non-simulated de-
velopment, as the derivation from the DNA (the binary string) until the proteins (the terminal
operands) resulting in a program (the phenotypic effect). Adapted from [O’Neill and Ryan, 2003].

beginning we have our genome transcribed into a string of integers and a syntactical form

equal to the axiom < expr >. We want to rewrite the axiom and must choose which

alternative will be used. We take the first integer and divide it by the number of options

for < expr >. The remainder of that operation will indicate the option to be used. In

the example above, if we admit that the integer is 9 then we will have 9%4 = 1 and the

axiom will be rewritten in (< expr >< op >< expr >). Then we read the second integer

and apply the same method to the left most non-terminal of the derivation. We iterate

this process, that stops when we don’t have more non-terminals to rewrite. But what

happens if we run out of integers, because we arrive to the end of the genome, and still

have non-terminals to expand? This is when we use a wrapping mechanism: we restart

from the beginning of the string of integers. The existence of redundancy is also worth

noting, for different integers may correspond to the same alternative due to the nature
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of the operation remainder. In the example above, the integers 5, 9, 13, . . . all code the

same production alternative for < expr >.

Three main innovations were introduced with this algorithm: genomes have variable

length, redundancy, and wrapping is allowed. However, this linearised version still has

some issues. First, there is positional dependence, that is, when a codon is moved to

another part of the genome its function maybe very different. Second, an apparently

valid genotype may code an infeasible phenotype (that cannot be evaluated). Finally, the

locality principle (small changes is the genotype resulting in small changes in the pheno-

type) may not be fulfilled. As GE is the most widely used grammar-based system, many

improvements have been proposed addressing these issues. For a comprehensive sur-

vey on grammar-based GP developments and applications please refer to [McKay et al.,

2010].

Linear Genetic Programming

In Linear Genetic Programming (LGP) programs are written in an imperative language

(like C), rather than in tree-based expressions, like in standard GP7 [Brameier and Banzhaf,

2007].

In LGP an individual is a variable-length sequence of simple imperative language in-

structions. These instructions work with one, two, or three variables (the registers), or

with constants from a predefined set, storing the result in a destination register (one of

the registers is chosen as the output, and it is usually kept during the evolutionary pro-

cess). The inputs to a given problem instance are given through the register’s initialisation.

Despite the linear representation, initialisation issues common in GP still apply: the user

must set a lower and upper bound for initial population generation, influencing the per-

formance of the search. The operators used are common to the standard technique,

except that two mutations are performed: micro (which changes the properties of an

instruction), and macro mutation (which inserts or deletes a random instruction).

For instance, 3-register instructions operate on two registers or constants, and assign

the result to a third register. Such an instruction is represented by a vector of indices, as

7There is however similar work in the literature, using machine code [Nordin, 1994].
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in the following example:

ri := rj + rk

<id(+), i, j, k >

This representation allows to code an instruction as a 4-byte integer value, similarly to

a representation as machine code, but it can be adapted to a particular processor. Thus,

a program is represented by an array of integers.

This representation has the advantage of being able to directly run the generated pro-

grams without the need for an interpreter, thus making the evolutionary process quicker.

Moreover, solving multiple-output problems is as simple as defining more than one output

register. The main problem with this representation is the number of registers (or vari-

ables) to use. This parameter is problem dependent and increases in function of problem

complexity, leading to poor results when inappropriately chosen.

Cartesian Genetic Programming (CGP)

CGP was first presented by [Miller, 1999, Miller and Thomson, 2000], and rapidly be-

came a subject of interest for several researchers. In the original proposal the genomic

representation is a grid of nodes, each represented by a string of integers, addressed in a

Cartesian coordinate system. The integers define the nodes function, and how the con-

nections between them are built. After identification of the output node, the solution

is built backwards until the input nodes are reached (nodes without input connections),

resulting in a feed-forward circuit. No crossover is applied, only mutation. Similarly to

GE this representation introduces a genotype-to-phenotype mapping, illustrated in Fig.

2.8. In this case three different types of redundancy are introduced: node redundancy

(genes associated with nodes that are not part of the connected graph); functional redun-

dancy (a group of nodes implements functionality that could be implemented with fewer

nodes); and input redundancy (when some node functions are not connected to some

of the input nodes).

In [Miller and Thomson, 2000] CGP is applied to two different types of problems -

regression and artificial ant - reporting very competitive results for the artificial ant. It

was not compared in the symbolic regression case since the authors only used the fixed

constant 1.0, in contrast to choosing random ephemeral constants, conferring great ad-
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Figure 2.8: Adapted from [Miller and Thomson, 2000]: Genotype-phenotype mapping. Top:
genotype. Bottom: phenotype. For a program with six inputs and 3 outputs, and three functions
(0, 1, 2 inside square nodes, in italics in genotype). The grey squares indicate unconnected nodes.

vantage8. Despite the initial grid format proposal, several studies conducted afterwards

have shown that the best representation is a linear genome, and this is now the com-

mon option for CGP. A notable extension is the Embedded-CGP (ECGP) [Walker and

Miller, 2004a], that uses an operator to compress parts of the genome which are then

used as sub-circuits, similarly to automatically defined functions. For a description of this

representation and its extensions the reader should refer to [Miller, 2011].

Gene Expression Programming (GEP)

GEP is an alternative linear representation for GP that also introduces a new genotype-

to-phenotype mapping. It was published by [Ferreira, 2002], and although less expressive

than CGP it also revealed to be of interest for several researchers.

The genome in GEP is a linear fixed-length string composed of one or more genes

with equal length. Despite the fixed length genes, the open-reading frames (ORF), i.e., the

coding sequence of a gene, has variable length and thus it is common to have non-coding

sequences at the tail of the genomes. As an example, consider the genome defined in Eq.

2.1. From this representation we can construct an expression tree9, as illustrated in Fig.

2.9.

8There are well-known over-fitting issues in symbolic regression when using random constants
9The expression is read from left to right, constructing the expression tree in a breadth-first fashion.
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Figure 2.9: Reproduced from [Ferreira, 2002]: the expression tree for the gene presented in
Eq. 2.1.

As one can see in the example, if there is more genetic material composing the gene

than it is necessary, it will not be used. In [Ferreira, 2002] the author argues that “because

of this apparently trivial fact, the genome of GEP individuals can be easily modified using

any genetic operator. This means that, for the first time in evolutionary computation, a

truly functional genotype/phenotype system is created in which the search space can be

thoroughly explored by a myriad of genetic operators”. This is more clear if one looks at

the structure of the complete genes when the genomes are built.

Genes are structured in two parts: a head and a tail. The first may be composed of

symbols from either the terminal or the function set, whether the second can only be

composed of terminal symbols (so that ORFs will always terminate before the end of the

gene). The head length (h) is problem dependent according to the author, whereas the

tail length is a function of h and of the maximum arity. Using this scheme, no matter what

mutation is performed, it will always render feasible expression trees, which may vary

in length. Given this, multigenic chromosomes may be easily built by glueing genes to
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one another with a randomly chosen function with appropriate arity. This promotes the

evolution of complex modular hierarchical structures, where each small building block is

coded by a gene.

The results reported in [Ferreira, 2002] show good success rates, although highly

dependent on the right parameterisation of the number of genes, and the head and tail

lengths. Moreover, like in GP, it revealed to be prone to the propagation of bloat (neu-

tral sub-trees). Finally, the author also showed the importance of having neutral coding

regions, by comparing multigenic less compact instances with unigenic compact ones.

Enzyme GP (EGP)

Enzyme GP [Lones and Tyrrell, 2001] is a form of GP that uses a biomimetic representa-

tion, which particularly mimics metabolic pathways between special proteins. The princi-

ple behind EGP is that the programs structure is not explicitly defined in the genome, but

it rather results from the connection choices of the individual components (the enzymes)

which carry a developmental process during evaluation resulting in a static executional

structure.

The enzymes in an enzyme system have three attributes - shape, activity, and speci-

ficity - specifying respectively its structure (how it is seen by the other enzymes), its role

in the system (wether it is an input, terminal, or some function), and the input prefer-

ences (similarly to the binding domains that determine which substrates will be bound, in

biological enzymes). Consequently, input enzymes (or glands) do not have specificities

(they do not receive inputs from within the system), and output enzymes (receptors) do

not have a shape since their product is not used within the system.

The resulting executional structure is obtained from the interactions between en-

zymes, resembling the formation of metabolic pathways in biology. The receptors are

the first to choose their substrates according to their specificities, until all the active en-

zymes have bound the necessary substrates. This is a deterministic process and thus a

determined enzyme system will always develop into the same program. In [Lones and

Tyrrell, 2002] the author provides a good illustration of this process, reproduced in Fig.

2.10.

In [Lones and Tyrrell, 2002], a slightly different implementation is provided, called

the functionality model. This version uses a more advanced definition of shape which au-
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Figure 2.10: From [Lones and Tyrrell, 2002]: Development of an enzyme system. Shape is
indicated by pattern and specificity strengths are not shown for clarity. Enzyme ‘OUT’ selects
enzyme ‘AND’ as its input according to its strongest specificity. Enzyme ‘AND’ then selects its
inputs, followed by enzyme ‘OR’. However, due to the non- recurrence constraint, ‘OR’ may not
choose ‘AND’ as an input. Enzyme ‘IN1’ is bound to more than one enzyme, demonstrating a
capacity for reuse. Notice that enzyme ‘XOR’ is not expressed during execution.

tomatically supports variable-length programs, a limitation of the original activity model.

The idea behind functionalities is that these are functions of the activity (role) of the en-

zyme and also its specificities, relating both the role and the preferences of the enzyme

in one attribute. This is useful, for instance, when an enzyme does not have the appro-

priate substrate in the system. In the activity model when connecting to a less preferred

substrate this does not have necessarily some relationship with the most preferred one,

meaning that the enzyme’s role could change dramatically in function of the environment.

With functionalities it is possible to connect to a less preferred but similar substrate.

The evolution of the population is done in a distributed GA platform10 but no com-

parative studies with a standard evolutive platform has been performed to this date. The

genome is a linear collection of enzymes composed of a complete set of glands and recep-

tors (common to every genotype), and enzymes. The operators used were a two-step

crossover (combining gene recombination and shuffling, similarly to meiosis) and muta-

tion.

10The individuals are distributed across a grid, and selection operates locally based on the neighbourhood
of each grid position.
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Its application in problems of logic design did not improve on known results from

other techniques, although it showed some interesting properties, like the preclusion of

bloat. Nevertheless, the results reported are very competitive with the ones presented

in the literature.

2.3.2 Developmental Representations

The particularity of the proposals that will be presented in the remaining of this section

is that they integrate some type of regulatory and/or developmental analogy into the

algorithm, and have been used to solve typical optimisation and automatic programming

benchmarks. Some of the models are extensions of those presented in the previous

category. Several other developmental computational models have been proposed to

investigate the intricate relationship between evolution, heredity, and development. The

interested reader can find examples of these models in [Kumar and Bentley, 2003], as

well as a review of artificial development results in [Harding and Banzhaf, 2008].

Ontogenetic Programming

[Spector and Stoffel, 1996] proposed an enhancement to GP, inspired by Koza’s au-

tomatically defined functions (ADFs), and as an alternative dynamic version of these11.

The authors implemented functions that are able to modify the program during run-time,

using their technique in a Lisp implementation of HiGP, a stack-based GP framework.

The analogy to development was provided by three self-modifying functions: segment-

copy, shift-left, and shift-right. The first replaces a part of the program with a segment

copied from another location of the genome. The second and third functions rotate the

code of the program by some number of instructions, either to the left or to the right

respectively.

The model was applied to the prediction of a binary sequence and compared against

regular HiGP, showing that it would be impossible to solve without the self-modification

functions. The methodology was not widely used by other researchers, but as one will

see in the next section it became a model of reference in the field.

11ADFs are pre-evolved functions which are used as part of the function set, and are not changed during
run-time
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Self-Modifying CGP

Self-Modifying CGP was first published by [Harding et al., 2007], and it was revised in

2009 [Harding et al., 2009b, Harding et al., 2009a, Harding et al., 2010], solving some

issues of the first version. As the nomenclature indicates this is an extension of CGP

(see Sect. 2.3.1) that allows a phenotype to modify itself during evaluation (the develop-

mental process). The technique is essentially the same as described in the “Ontogenetic

Programming” model, although in this case it is applied to the CGP representation.

The inclusion of self-modifying functions is the main difference to the original version

of CGP. These allow the phenotype to manipulate its own structure by duplicating a node

and its surrounding neighbours, or by deleting nodes, amongst other operations, in con-

secutive iterations of the circuit. As an example, the duplication function is presented

in Fig. 2.11, reproduced from [Harding et al., 2009a]. Another important change was

on the input function, which at each iteration addresses the next input in the inputs-set,

instead of addressing a fixed one.

Figure 2.11: In [Harding et al., 2009a]: showing the DUP(licate) operator being activated, and
inserting a copy of a section of the graph (itself and a neighbouring functions on either side) else-
where in the graph in next iteration.

These modifications allowed the authors to solve a different class of problems, where

a static structure will simply not be able to reproduce the desired behaviour. Examples of

this class of problems are the n-bit parity generator, the Fibonacci sequence, the squares

sequence, and learning tasks, amongst others. For a comprehensive survey on SM-CGP

techniques and applications please refer to [Harding et al., 2010].
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Fractal Proteins

In 2009, Krohn et al. presented a model to compute the digits of π [Krohn et al., 2009],

based on the interactions between proteins (similarly to Enzyme GP, see Sect. 2.3.1). This

work was motivated by and relied on an evolutionary model of fractal proteins, described

in [Bentley, 2004]. Bentley demonstrated that it was possible to evolve regulatory genes

that code for complex fractal proteins (subsets of the Mandelbrot set), which then interact

forming a dynamic GRN that can exhibit interesting behaviours.

The representation for generating the digits of π using fractal proteins comprises dif-

ferent types of objects, illustrated in Figure 2.12. As mentioned before, the fractal pro-

teins are represented as subsets of the Mandelbrot set; the Environment is composed of

one or more proteins (expressed from the environment gene(s)) and one or more cells;

the Cell comprises a genome and cytoplasm, and has some behaviours; the Cytoplasm con-

tains one or more fractal proteins; the Genome is formed by structural genes and regulatory

genes; a regulatory gene is composed of a promoter and a coding region; a cell receptor

gene is a structural gene which will define which proteins will enter the cell’s cytoplasm from

the environment; another type of structural gene, the environmental gene determines which

proteins will be present in the cell environment (as maternal factors); finally, a behavioural

gene is also a type of structural gene which contains operator and cell behavioural regions.

Figure 2.12: From [Krohn et al., 2009]: Representation using fractal proteins.
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Every iteration, each of the cells will perform a developmental process comprising the

following steps12: 1) the environmental genes are expressed and its merged fractal pro-

teins shape is calculated; 2) Cell receptor genes are expressed and then used to mask the

new environmental proteins into the cytoplasm; 3) the regulatory genes are expressed (if

their promoter matches a cytoplasm protein) and the corresponding proteins are added

to the cytoplasm; 4) the behavioural genes are then used in the same form as regulatory

genes but specifying a cellular function instead; 5) finally, the concentrations of all proteins

in the cytoplasm are updated.

Each gene has a promoter and a coding region. The promoter is used to match the

gene with fractal proteins. The coding region comprises a region for the product fractal

protein’s parameters and another for the type of the gene. Each gene may be multi-

functional, i.e., the type can be any combination of environment, receptor, behavioural or

regulatory, resulting in the gene being expressed with different functions through the devel-

opmental process. This feature eliminates problems with positional dependence enabling

also variable length genomes.

The problem of finding the digits of π was addressed in two different ways: through

the binary representation (which also does not contain patterns) and through the values

of the digits, both using an incremental fitness approach. According to the author the

reported results are “impressive”, as very few iterations are needed to successfully reach

solutions up to 15 decimal places.

The model was later adapted to evolve behavioural genes able to control an inverted

pendulum, in [Krohn and Gorse, 2010,Krohn and Gorse, 2012].

Extended Artificial Regulatory Network

The Artificial Regulatory Network (ARN) is a model proposed by [Banzhaf, 2003] which

replicates some aspects of biological regulatory networks and has been shown to have

potential for application in GP (this model is described in detail in Section 3.1).

To use the ARN model as a representation formalism for genetic programming one

needs to define what are the inputs and what are the outputs. For that purpose Banzhaf ’s

model was extended in two directions, in [Nicolau et al., 2010]. First, some extra pro-

teins, not produced by genes but contributing to regulation, were introduced and act as

12For the sake of simplicity some details on fractal proteins manipulation are omitted. Please refer to
the original publications for a complete description of the implementation.
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inputs. Second, the genes were divided into two sets, one producing proteins that are

used in regulation (i.e., transcription factors), and a second one with proteins without reg-

ulatory function which are used as outputs. These two types of genes are distinguished

by having different promoters (Fig. 2.13).

Prt

Gene A

Prt

Prm

Output

Prm Gene BRegulation Gene C

Prt
Input

Figure 2.13: The modified ARN

This model was tested with the classic control problem known as the pole balancing

problem. At every n iterations the output is read by choosing the output protein with

highest concentration (or alternatively, the biggest gradient) and feeding this action to

the controller. Consequently with a new iteration at the controller simulation, the extra

proteins concentration will be modified, introducing feedback from the controller’s state

into the system, which will have n iterations to stabilise until a sampling is performed. The

results reported are very competitive with the ones found in literature.

This representation has further been used in different contexts. In [Nicolau et al.,

2012] the model is used as a predictor for financial time-series. In [Murphy et al., 2012]

it is used again to control an inverted pendulum. In this case the controller is still the dy-

namic behaviour of the regulatory network by means of protein expression as described

earlier, but with a different mapping applied to the output proteins, by means of tree-

adjunct grammars. Finally, in a different framework by [Cussat-Blanc et al., 2011], the

model was used with the extra-proteins serving as morphogens to differentiate cell be-

haviour in a grid, colouring the cell based on the location of the active genes towards a

French flag.

The Artificial Epigenetic Network

[Turner et al., 2013] propose a model of artificial epigenetic networks (AEN), including

a layer of epigenetic control, using the same representation of the GRN layer. They apply

the model to evolve controllers for the coupled inverted pendulum problem showing

significant performance improvement.
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The model is composed of a set of genes, each coding its properties using real values

(including the expression function properties, and the neighbourhood). Contrary to the

ARN model presented in the last section, this proposal uses an indirect reference space

to represent the connections between genes (based on a real value as the identifier - or

position - of the gene, and another real value as the proximity, defining the neighbourhood

of the gene). The authors have demonstrated that this scheme presents advantages in

terms of the evolvability of the underlying structure. Moreover, it provides an efficient

way of evaluating the dynamic networks in run-time. The architecture handles inputs and

outputs through designated genes in the network, respectively the lowest and highest

(ordered by the identifier). The input values are mapped into the expression values of

the lowest genes, each gene updates its expression value (ordered by the identifier), and

the output is extracted from the expression values of the highest genes.

The epigenetic layer is coded in the same way as the genetic one, but the elements

are called epigenetic molecules. The real values in these molecules define an identifier

and neighbourhood in the same way as with the genes, as well as the activation func-

tion properties. In this case, there is not an expression value, each iteration the result of

the function is calculated and it is used as a binary switch, activating or deactivating the

molecules. The active molecules inhibit the genes that fall in their inhibition neighbour-

hood (also coded by an identifier and proximity real values) by setting their expression

value to 0.0 and effectively removing them from the network. The evolutionary process

is run using a typical GA, since the AENs are arrays of real values.

The authors found that the evolved controllers partition the gene network using the

dynamic (de)activation of the epigenetic molecules. A set of genes is used to balance the

pole until the upright position, and a different one is activated to keep it there. This is

a plausible behaviour according to what is known from biological systems (see Section

2.1), making this a promising model to use in more complex problems.



3
The Regulatory Network Computational Device

We have seen in the previous chapter that the depth of the knowledge about biological

systems has largely increased since Darwin. In contrast, the paradigms used in Evolu-

tionary Computation (EC) are typically centred on the evolutionary principles from the

times of the modern synthesis. Nevertheless, some researchers have started exploring

the application of this new biological knowledge to the representations of the evolution-

ary algorithms (see Section 2.3), for instance, through the implementation of indirect

encodings, and the introduction of development analogies.

Despite the many proposals of more or less plausible computational models for di-

verse evolutionary and developmental mechanisms, particularly for genetic regulatory

networks (GRN) (see Section 2.2), few attempts have been made to incorporate these

models into Artificial Evolution (AE). As mentioned in Chapter 1, a paradigm shift from

AE to Computational Evolution (CE) is recommended by some researchers, to be ac-

complished by incorporating algorithmic analogues of our current knowledge on natural

evolution. In particular, (a) the influence of the environment, (b) gene expression, and

(c) development. As demonstrated by some of the examples of developmental models

presented before (Section 2.3.2), the proposed paradigm shift may have (slowly) started

already.

The Regulatory Network Computational Device (ReNCoDe) [Lopes and Costa, 2011a,

Lopes and Costa, 2011c, Lopes and Costa, 2011b, Lopes and Costa, 2012, Lopes and

Costa, 2013a], is the author’s contribution to integrate gene regulatory networks into a

general problem solving framework in EC. This architecture uses the Artificial Regulatory

37
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Network (ARN) proposed by [Banzhaf, 2003] as the genotype of the individuals. This

model mimics not only topological properties of natural GRN, but also the expression

behaviour of the proteins coded in the genome (Section 3.1). Moreover, the genome is

linearised, a property common in the latest representations in the field. Given the ARN

of the individual (composed of a network of genes that each map a protein), the network

graph is reduced and a GP-like program graph is extracted from the network (Section

3.2). In order to apply this framework to problems with inherent recurrence a variant

of the algorithm was created, where feedback mechanisms are allowed (Section 3.3).Fi-

nally, biologically inspired asexual and sexual variation operators were also implemented

to deal with the genotypic representation of the ARN (Section 3.4).

3.1 TheArtificial RegulatoryNetworkModel

The Artificial Regulatory Network (ARN) [Banzhaf, 2003] is an attempt to incorporate

regulatory mechanisms between the genotype and the phenotype. There are no other

products, i.e., DNA, and processes in between these two levels. The genome has fixed

length and is constructed by simple duplication with mutation events. Regulation between

genes is a mediated process, achieved by means of a binding process between proteins

(i.e., transcription factors) and special zones in the genome that appear upstream of the

promoter of a gene. The remaining of this section will describe this with more detail.

Genome and Gene Expression

The ARN model uses a binary genome and implements a simple algorithm to transcribe

and then translate it into proteins. The genome can be generated randomly or by a

process of duplication with mutation, also called DM, that is considered the driving force

for creating new genes in biological genomes and has an important role in the growth

of gene regulatory networks [Teichmann and Babu, 2004]. In the latter case we start

with a random 32-bit binary sequence, that is followed by several DM episodes. As we

will see later the number of duplications is an important parameter. So, if we have 10

duplication events then the final length of the genome is 25×210 = 32768. The mutation

rate is typically of 1%. Each gene in the genome is divided in several regions, namely a

regulatory site, the promoter, and the coding region of the gene itself. The first 32 bits
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of the regulation zone are the enhancer site, while the following 32 bits are the inhibitory

site. The promoter is located downstream and has the form XYZ01010101.The first 24

bits (the sequence represented by XYZ) can be either 0 or 1, while the last 8 bits are

fixed. This way, the probability for a promoter to occur is 2−8 = 0, 39%. The idea is to

model what happens in nature, where we have a small consensus sequence where the

RNA polymerase binds (in our case 01010101), inside a larger promoter. A gene is a set

of five 32-bit long consecutive sequences, i.e., a 160-bit string. The choice of the method

to obtain the genome, including the values for the parameters, is guided by what happens

in the natural world.

Figure 3.1 gives an idea of the representation. P is the promoter region, that indicates

the beginning of the gene; G1 to G5 are the five parts of a gene; E is the gene activation

binding site (enhancer) for the protein, andH is the repression binding site for the protein

(inhibitor).

H PE G1 G2 G3 G4 G5

Prt

GeneRegulation

Protein

Promoter

Figure 3.1: A genome element in the ARN.

The genotype - phenotype mapping is defined by expressing each 160-bit long gene,

resulting in a 32-bit protein. A gene expresses a protein by a majority rule: if we consider

a gene, for example Gm, divided into 5 parts of size 32 each, Gm
1 to Gm

5 , at position i, say,

the protein’s bit will have a value corresponding to the most frequent value in each of

these 5 parts, at the same position, i.e.,

Pmi = majority(Gm
ki , ∀k = 1, . . . , 5), ∀i = 1, . . . , 32

Figure 3.2 shows a simple illustrative example.

Regulation

Genes interact mediated by proteins, which bind to the regulatory region of each gene.

If, say, gene A expresses protein pA and that protein contributes to the activation of
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Figure 3.2: The majority rule: a simple example for a gene with three regions of size three and
the corresponding protein. Here just the process for the second position.

gene B, we say that gene A regulates B (see Fig. 3.3).

Prm Gene BRegulation Gene A

Prt

(a)

Gene A

Gene B

(b)

Figure 3.3: Gene - Protein - Gene interaction

Notice that in order for a link to exist between any two genes, the concentration of

the corresponding protein must attain a certain level, and that depends on the strength

of the binding. The strength of the binding is computed by calculating the degree of

complementarity between the protein and each of the regulatory regions, according to

formula 3.1:

xi =
1
N

∑
0<j≤N
j̸=i

cj expβ(µji−µmax) (3.1)

where xi represents the binding strength of the enhancer (ei) or the inhibitory (hi) region,

N is the number of proteins, cj the concentration of protein j, µji is the number of bits that

are different in the protein j and in each of the regulation sites of protein i (ri), that is,
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µji =
32∑
k=1

jk ⊕ rik (3.2)

µmax is the maximum match achievable, and β is a scaling factor. The production of a

protein over time depends on its concentration, which in turn is a function of the way each

protein binds to that gene’s regulatory regions. It is defined by the differential equation

dci
dt

= δ(ei − hi)ci (3.3)

where ei and hi are defined by equation 3.1, and δ is a scaling factor.

Computational Device

Using this process we can build for each genome the corresponding artificial gene regu-

latory network. These networks can be studied in different ways. We can be concerned

with topological aspects (i.e., to study the degrees distribution, the clustering coefficient,

small world or scale free, etc.) or the dynamics of the ARNs (i.e., attractors, influence

of the protein-gene binding threshold) [Nicolau and Schoenauer, 2009,Kuo et al., 2006].

This is interesting, but from a problem-solving perspective what we want is to see how

the model can be used as a computational device. In order to transform an ARN into

a computational problem-solver we need to clarify what we put in the system (including

the establishment of what is the relationship with the environment) and what we extract

from the system. At the same time we need to define the semantics, that is, the meaning

of the computation in which the network is engaged. Finally, and as a consequence of

the points just identified, it is also fundamental to determine if we are interested in the

input/output relationship or if what we want is just the output. A solution for the latter

situation was proposed in [Kuo et al., 2004] in the context of optimisation problems. The

idea is to define (randomly) two new contiguous 32-bit sequences in the genome. The

first one being a new inhibitory site (hi), and the second one a new activation site (ei). All

generated proteins can bind to these sites. The levels of activation and inhibition can be

computed as before (see equation 3.1), but there is no gene (thus no protein) attached

(see figure 3.4).

The state of this site is just the sum of all bindings (see equation 3.4) and is defined as
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Figure 3.4: Fabricating an output

the output. This additional binding is thus a method to extract a meaning from the varia-

tion of the proteins’ concentrations over time, and was used to evolve simple functions,

like the sin(t).

s(t) =
∑
i

(ei − hi) (3.4)

As mentioned before, in order to use the model as a representation formalism for

GP one needs to define what are the inputs and what are the outputs. For that purpose

the ARN model was extended in two directions [Nicolau et al., 2010]. First, some extra

proteins, not produced by genes but contributing to regulation, were introduced and act

as inputs. These have the following distinct signatures:

00000000000000000000000000000000

00000000000000001111111111111111

11111111111111110000000000000000

11111111111111111111111111111111

Second, the genes were divided into two sets, one producing proteins that are used

in regulation (i.e., transcriptional factors), and a second one with proteins without regu-

latory function which are used as outputs. These two types of genes are distinguished by

having different promoters: XYZ00000000 and XYZ11111111, respectively (see figure

3.5). Moreover, the differential equations that model the protein concentrations were

also adapted to accommodate the new proteins type and behaviour.

This representation has further been used in different contexts. In [Nicolau et al.,

2012] the model is used as a predictor for financial time-series. In [Murphy et al., 2012]

it is used again to control an inverted pendulum. In the latter case the pendulum is still

controlled by the dynamic behaviour of the regulatory network (by means of protein ex-

pression as described earlier), but with a different mapping applied to the output proteins,

this time using tree-adjunct grammars. Finally, in a different framework by [Cussat-Blanc
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Figure 3.5: The modified ARN

et al., 2011], the model was used with the extra-proteins serving as morphogens to dif-

ferentiate cell behaviour in a grid, colouring the cell based on the location of the active

genes towards a French flag.

In the present work a different path is followed, that does not take into account the

proteins’ concentration but only the regulatory network graph. Both the original and

the extended ARN model formulations will be used in different contexts, the former

when the problems only require one output (either with or without recursion) and the

latter when multiple outputs are required. The model presented in [Lopes and Costa,

2012], in which the ARN architecture is used as the genotypical representation for a new

computational model will be described in detail in the following sections.

3.2 Extracting Programs from

Regulatory Networks

The main idea of the Regulatory Network Computational Device - ReNCoDe - is to

simplify the ARN to produce a graph that can be computed similarly to a GP system.

The networks resulting from ARN genomes are very complex, composed of multiple

links (inhibition and excitation) between different nodes (genes). In order to extract a

circuit from these networks they must first be reduced, input and output nodes must be

identified, and one must ascribe a semantic to its nodes. In the simplest cases, the final

product will be an executable feed-forward circuit.

Algorithm 1 shows the pseudocode for the reduction algorithm. First, every pair of

connections - excitation (e) and inhibition (h) - is transformed into one single connection

with strength equal to the difference of the originals (e-h) (line 2). Second, every con-

nection with negative or null strength is discarded (lines 3-5). Finally, a directed graph is
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built adding only the nodes with positive edges and the strongest edge between each pair

of nodes (lines 7-13). This process is illustrated in Figure 3.6a (initial network) and 3.6b

(after applying the algorithm).

Algorithm 1 Artificial regulatory network reduction.

1: for all gene in network do

2: replace bindings by edge (e-h)

3: if (e− h) ≤ 0 then

4: remove edge

5: end if

6: end for

7: for all edge(i, j) in network do

8: if edge(i, j) ≤ edge(j, i) then

9: remove egde(i, j)

10: else

11: remove edge(j, i)

12: end if

13: end for
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Figure 3.6: a) ARN example. The dotted and full edges represent, respectively, inhibition and
excitation relationships between genes. The numbers are just identifiers. b) The same network
after application of the Algorithm 1.

Next, the node with the highest input connectivity is chosen as the output and inserted

into a queue. After this, the circuit is built backwards from the output function until the
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terminals (nodes without input edges) are reached. The pseudo-code for this process is

given in Algorithm 2.

Algorithm 2 Extracting a program from an ARN

1: sort nodes by input-edge number

2: add top-node to queue

3: while queue is not empty do

4: map top-node to function

5: add function to program

6: add input-edges to list

7: remove top-node from queue

8: for all input in list do

9: if no dependencies and not in program and not in queue then

10: add input to queue

11: remove input from list

12: end if

13: end for

14: if queue is empty and list is not empty then

15: sort list by input number

16: add top-node to queue

17: end if

18: sort queue by input-edge number

19: end while

Each time a node is added to the program and mapped to a function, the correspond-

ing inputs are added to a temporary list (line 7) and those without dependencies (that is,

those that are not input to another node already in the queue) are added to the queue

(lines 8-13) and ordered by input-edge number. By choosing the nodes with the most

input-edges one reduces the dependencies of nodes in the list with the queue, avoiding

more cycles. Nevertheless, it is possible to encounter cycles at some point of the pro-

cess. When this happens the queuewill be empty, and there is a deadlock in the list (every

function is input to some other). To resolve this again the gene with highest connectivity

is chosen (lines 14-17).

Each time a node is mapped (line 4), the inputs from nodes already in the program
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are simply discarded resulting in state-less feed-forward program graphs (see Figure 3.7).

This corresponds to line 1 in the pseudo-code for the mapping function, which is given in

Algorithm 3.

3
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6

5
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(a) (b)

Figure 3.7: a) The executable graph extracted from the reduced network depicted in Fig. 3.6b.
This circuit is obtained by choosing node 3 as the output and then successively adding the inputs
of each node until the terminal nodes are reached. Note that one of the cycles in Fig. 3.6b is
composed of the nodes 3, 4, and 2 and the connections from 3 to 4 and 2 are discarded. Functions
take their inputs from the nodes where their in-edges come from. b) The same graph with the
nodes mapped to functions/terminals.

To map nodes (i.e., genes) to functions and terminals the gene-protein correspon-

dence is used. The protein’s signature is subjected to a majority vote process, obtaining

the function/terminal index (each protein codifies a function/terminal).

As an example, to code the function set {+,−,×,÷} only two bits are necessary.

The protein’s signature is split into sixteen two-bit chunks. Then we obtain the function

set index (two bits) by applying the majority vote rule over each bit (two positions) of

the sixteen chunks (since the number of chunks is even, in case of a tie the result holds

1). If the function set size is not a power of two, then dummy functions1 may be added

to the set. If some determined problem has more than one input, for instance four, then

the majority rule is applied over the terminal protein signature (its binary stream) in order

1A dummy function is an empty function that maintains the state of the program and does not influence
the result.
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Algorithm 3 Mapping nodes to program functions.

1: filter node-inputs already in the program

2: if node-inputs not empty then

3: funindex← apply majorityrule to protein-signature

4: map node to corresponding function

5: else {node-inputs is empty}

6: termindex← apply majorityrule to protein-signature

7: map node to corresponding terminal

8: end if

to define which input it corresponds to. Figure 3.8 exemplifies the majority rule applied

over a protein signature for a function set with four elements.

0 1 1 ...0 ... 1 1

11

Protein Signature

Majority Result

{ + , ×, − , ÷}

112 = 310

1 2 ... 16

Figure 3.8: Example of the mapping of a protein’s signature to a program function, by applying
the majority rule over the bitstream. In the example the result is 11, which converted to the
decimal base gives the index 3 on the function set.

Finally, the resulting program can be executed in a feed-forward fashion by propagat-

ing the output value of each node through the graph until the output is reached (similarly

to a lazy-evaluation), or be recursively translated into nested function calls of a given

language.
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3.3 Using Feedback Connections

Feed-forward circuits may not be adequate for every type of problem. For instance,

problems where memory is necessary or with inherent recursion may be approached

differently. For that purpose the possibility of using feedback connections in the program’s

graph was added to the original model [Lopes and Costa, 2011c].

As mentioned in the previous section, in the original formulation of ReNCoDe each

time a node is mapped to a function in the program (Alg. 2, line 4), the input edges from

nodes already in the program are simply discarded (Alg. 3) resulting in state-less feed-

forward circuits (Fig. 3.7). However, if one assumes that a node in the program holds

its value until it is re-written, then these recurrent connections become useful and it is

possible to map ARNs to state-full programs.

The difference is that when a node is mapped into a function in the program, if there

are input-edges from nodes previously mapped these are not discarded. Instead they are

marked as negative input-edges, as described in Algorithm 4. This results in a cyclic graph

which when iterated is able to store information from the previous iterations (see Figure

3.9 for an example where this type of connection is represented by dotted edges).

Algorithm 4 Mapping nodes to program functions with feedback connections.

1: for all input in node-inputs do

2: if input in program then

3: negate input

4: end if

5: end for

6: if node-inputs not empty then

7: funindex← apply majorityrule to protein-signature

8: map node to corresponding function

9: else {node-inputs is empty}

10: termindex← apply majorityrule to protein-signature

11: map node to corresponding terminal

12: end if

The marking serves the purposes of tracking and displaying the programs only. During

program execution the negative sign is actually ignored. Reading a node yields its output
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value, which is written only when the node is evaluated. In the case of (input) nodes

upper in the graph, when the program is iterated these store the value from the previous

iteration. In the case of the first iteration the functions return the default value (1.0).
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Figure 3.9: The resulting circuit from the reduced network depicted in Fig. 3.6b. The connections
from node 3 to the other nodes are used as feedback, since node 3 was already in the circuit.
Functions take their inputs from the nodes where their in-edges come from. The dotted edges
represent feedback connections (negative input-edges).

3.4 Genetic Operators

The basic operator for ReNCoDe to be used with Evolution Strategies (ES) is the bit-flip

mutation, which based on an uniform distribution will randomly flip individual bits of the

genome. This allows the corresponding networks to be modified but the genome’s length

is fixed.

Variable length genome’s are known to improve evolvability with different represen-

tations [Trefzer et al., 2011]. The ARN representation has implicit variable length, since

the number of coded genes may vary with mutations. With the goal of making the length

of the ARN genomes explicitly variable, three biologically inspired operators were devel-

oped and presented in [Lopes and Costa, 2012] to be applied to ARN genomes before

bit-flip mutation, without taking into account the network elements (genes, promoters,

regulatory sites). Besides these bitwise operators, genewise operators developed for the

ARN will also be presented in this section. Finally, typical crossover operators (both
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bitwise and genewise) will also be described.

3.4.1 Bitwise Operators

In order to increase the size of the noncoding regions of the genome, a junk operator

was created. This introduces a stream of zeros at a random location in the genome (see

Fig.3.10). Since promoters are not duplicated with this operator nor directly inserted, the

number of genes will typically be lower, and may increase the number and size of neutral

regions in the genome.

Inspired by the concept of asexual transposition in nature, a transposon-like operator

was developed, that copies and pastes a random portion of the genome at a random

location (Fig. 3.11), increasing the genome size.

In order to allow the genomes to be manipulated to smaller sizes as well as avoid

indefinite growth, a delete operator was also implemented (Fig. 3.12). This removes a

random genome part of the genome, being designed to use in conjunction with any of

the operators presented before.

Finally, any of these operators can be applied with a predefined (fixed) portion length.

The sensitivity of the model to this parameter will also be investigated (see Chapter 5).

To perform crossover of individuals three typical operators were implemented: one-

point, two-point, and uniform crossover. These are the typical crossover operators used

in EC [Eiben and Smith, 2003]. In a nutshell, these operators select one or more cutting

points in the progenitors and create offsprings by swapping the genetic material between

them.

3.4.2 Genewise Operators

Inspired by the operators used in [Crombach and Hogeweg, 2008], two genewise oper-

ators were developed. One is functionally similar to transposon, copies a random gene

(regulatory sites, promoter, and coding region) to the end of the genome. When a com-

plete gene is copied it can be inserted into any non-coding region of the genome, since

the regulatory network is independent of gene position. The other removes a random

gene from the genome. The copy example is presented in Figure 3.13.
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Figure 3.10: The effect of using an operator inspired by the concept of junk DNA, by inserting a
stream of 0’s into a random location on the genome.
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Figure 3.11: The effect of using a transposon-like operator on modifying the genome: the copy
example.
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Figure 3.12: The effect of using a delete operator on the genome: a random portion is removed.
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Figure 3.13: The effect of using a genewise operator on modifying the genome: the copy exam-
ple.

A similar approach was used for the crossover operators. One-point, two-point, and

uniform crossover were implemented, restricting the cutting points to the non-coding

regions contiguous to the genes. This way the individuals exchange between them sets

of (one or more) complete genes.



4
Benchmark Problems

The previous chapter presented a new computational model using artificial regulatory

networks as the genotypic representation of the individuals, and clarified how to extract

GP-like program graphs from those networks. Every new algorithm needs testing, and

for that purpose benchmark problems are used.

Benchmarks come in different flavours and from several problem domains. The ul-

timate solver would be able to solve problems from every class possible. However, all

algorithms are limited to some classes of problems or perform badly outside the prob-

lem domain they were targeted to (the no free lunch theorem). Nowadays there is a GP

community-driven effort to find agreement on appropriate benchmarks for the field. The

latest progress includes a complete survey of the problems used in the field [McDermott

et al., 2012] and an inquiry to the community researchers [White et al., 2012]. This effort

resulted so far in a list of problems that should not be used, and proposes some alterna-

tives in the corresponding problem domains. These guidelines were taken into account

when choosing the tests for the model described in the previous chapter.

The basic ReNCoDe is adequate for the traditional GP benchmarks, and was tested

using four problems: the harmonic curve regression, a polynomial regression, the in-

verted pendulum, and the Santa Fe ant trail (Section 4.1). Allowing feedback connections

during the program extraction, allows one to solve problems that have a recursive or

iterative nature like the Fibonacci sequence, the squares generator, the even n-bit parity,

or a factorial-like sequence (Section 4.2).
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4.1 Without Recursion

The traditional benchmark problems in GP require a program that is able to deal with

one or more inputs, and that outputs a single value to be interpreted. There are several

domains of application and countless benchmarks. In this section a representative set is

presented, which was used to test ReNCoDe.

4.1.1 Symbolic Regression

Symbolic regression is perhaps the most acclaimed and studied problem in GP. It is easily

implemented and tested, allowing the quick investigation of many aspects of the algo-

rithms.

Many different functions have been used by researchers as the target. For the purpose

of testing ReNCoDe two instances were chosen: a traditional polynomial regression, and

the harmonic number. These will be described in the remaining of this section.

Polynomial Regression

Traditionally in GP the goal of symbolic regression is to fit a polynomial expression to a

set of points over some pre-determined range.

The function set is composed by the arithmetic operators {+,−,×,÷}, while the

terminal set has only the input {x}. Protected division is used, returning 1.0whenever the

denominator is 0. Usually the arithmetic operators have a fixed arity of 2. In ReNCoDe,

however, the arity is defined by the regulatory network structure, in order to allow higher

function reusability.

The typical expression that is used as the target was defined by [Koza, 1992] and

corresponds to the following polynomial of sixth degree:

f(x) = x6 − 2x4 + x2

The function is sampled over the range [−1, 1], with a step s = 0.1 . The fitness func-

tion used is the sum of the absolute errors over the sampled points, and the evolutionary

run stops when either an individual is found for which this value is inferior to 10−3 or the
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maximum number of evaluations is reached. For the sake of reference, [Miller and Thom-

son, 2000] report a success rate of 61% in experiments limited to 80000 evaluations.

The Harmonic Number

One of the new problems identified by the authors of the supra-cited survey in the sym-

bolic regression domain, was the harmonic number (defined in Equation 4.1). This series

can be approximated using the asymptotic expansion presented in Equation 4.2, where

γ is the Euler’s constant (γ ≈ 0.57722).

Hn =
n∑

i=1

1
i

(4.1)

Hn = γ + ln(n) +
1
2n
− 1

12n2
+

1
120n4

− . . . (4.2)

This problem is particularly interesting because there is not only an interpolation task

(during the evolutionary process), but also a generalisation task with the evolved solution.

The goal is to evolve a program that approximates the harmonic number, given an input

belonging to the set of natural integers from 1 to 50. Upon the evolutionary phase the

best solution is tested for generalisation over the set of natural integers from 1 to 120.

This problem was studied in the context of GP by [Streeter, 2001], and the proposed

approach was able to rediscover the asymptotic approximations, with absolute error sum

in the order of 10−2 .

The function set used is composed of {+,×, reciprocalsum, ln, sqrt, cos}. The (pro-

tected) division function is not explicitly available. Instead, it is replaced by the reciprocalsum

function, which returns the sum of the reciprocals of each input. If one of the inputs is

zero the result is 106. All non-terminal nodes have variable arity in ReNCoDe, thus the

unary functions have to be adapted. A node mapped to any of {ln, sqrt, cos} with more

than one input, will first sum the corresponding inputs and then apply the function. The

terminal set is composed only of {n}. Every function is protected: in case of overflow or

impossible values provided as inputs the return value is 106.

The fitness function used in this work was the Mean Squared Error (MSE) between

the output of the individual and the target function. A linear-scaling approach to fitness is

used [Keijzer, 2003]. Given y = gp(x) as the output of an expression evolved by GP on the
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input data x, a linear regression on the target values t can be performed using Equations

4.3 and 4.4, where y and t denote respectively the average output and the average target

value. These equations calculate the slope and intercept of the set of outputs y, minimising

the sum of squared errors between t and a + by (with a different from 0 and b different

from 1). With the constants a and b calculated by this simple regression, all that is left

to the evolutionary run is to find a function with the correct shape, using as fitness the

modified MSE presented in Equation 4.5.

b =
∑

[(t− t)(y− y)]∑
[(y− y)2]

(4.3)

a = t− by (4.4)

MSE(t, a+ by) =
1
N

N∑
i

(a+ by− t)2 (4.5)

It is worth mentioning that individuals who generate a constant output for every input

are considered invalid, since the denominator in Equation 4.3 would result in 0, and thus

the fitness returned is 106. By avoiding these individuals this linear scaling technique of-

fers great advantage, since in our previous experiments with various symbolic regression

problems, it was noticed that individuals generating a constant output correspond many

times to local minima and many generations may be necessary to step out.

During the generalisation testing the constants a and b1 are used to compute the

output of the individual over the set of natural integers from 1 to 120, and compare with

the target result. In this case, the fitness measure used was the Normalised Root Mean

Square Error (NRMSE) as defined in [Keijzer, 2003] (Equation 4.6). The result reported

for this function was NRMSE = 1%.

NRMSE = 100%×

√
N

N−1MSE

σt
(4.6)

1Determined during the evolutionary phase
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4.1.2 Artificial Ant

Imagine a 2D toroidal grid of size 32x32, laying on it a specific trail of 89 food pellets with

a few gaps in between (Figure 4.1). Then imagine an artificial ant placed at the upper left

corner of the grid facing east, whose goal is to collect the food pellets along the trail. The

problem consists in evolving a controller for the artificial ant that successfully collects the

food pellets in a limited number of actions.

Figure 4.1: The Santa Fe trail for the Artificial Ant problem. The black squares represent the
food pellets, and the grey squares the gaps in the trail.

The function set is composed of {if-food-ahead, progn} and the terminal set consists of

{left, right, move}. The function if-food-ahead allows the ant to check whether there is food

in the cell directly in front of it and perform some action (or group of actions) according

to this result. With progn the ant will perform a set of consecutive actions, depending on

the arity of the function. This is the replacement for the prog2 and prog3 used originally,

with variable arity defined automatically by the network. The terminals allow the agent to

turn 90 degrees left or right without moving, and to move to the adjacent cell it is facing.

If a cell contains a food pellet it is immediately eaten when the ant stands on it.

Using the described functions and terminals a foraging strategy is built and each ant
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is given a determined number of steps, 600 in this case, to apply it repeatedly searching

for the 89 food pellets available in the trail. The fitness function used for this problem is

the remaining number of food pellets, after the foraging strategy is applied.

The best result found in the literature is reported by [Christensen and Oppacher,

2007], and fairly compared to several other approaches in the literature. The reported

computational effort for their best attempt is CE = 20696 2. Note that the results dis-

cussed in Section 6.1 do not use the CE and thus are not directly comparable, but con-

sidering that the success rate for ReNCoDe is 100% such comparison should not be

harmful.

4.1.3 The Inverted Pendulum

The inverted pendulum is a typical control benchmark, in which the goal is to keep a

pole (the inverted pendulum) balanced on top of a cart, and the cart within the track

boundaries. The controller actuates on the cart by applying a constant force F in either

direction [Whitley et al., 1993].

Typically, to evolve or train a controller for the cart the following four input variables

are used:

x ∈ [−2.4, 2.4]m, the position of the cart relative to the center of the track;

θ ∈ [−12, 12]◦, the angle of the pole with the vertical axis;

ẋ ∈ [−1, 1]ms−1, the velocity of the cart;

θ̇ ∈ [−1.5, 1.5]◦s−1, the angular velocity of the pole.

During evaluation of the controllers the system is simulated using the equations of

motion presented below (Eq. 4.7 and 4.8), where the gravity is g = 9.8ms−2, l = 0.5m is

the pole’s length, m = 0.1Kg is the pole’s mass, mc = 1.0Kg is the mass of the cart, and

F(t) = ±10N is the force applied by the allowed commands (push left or right).

2Computational Effort (CE) is an estimate of the number of individuals that need to be evaluated so that
the cumulative probability of success reaches some level (usually 99%). Note that very large populations
of runs should be considered. The interested reader may consult [Koza, 1992,Koza, 1994] for details and
weaknesses of this measure.
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θ̈(t) =
g sin θ(t)− cos θ(t)

(
F(t)+mlθ̇(t)2 sin θ(t)

mc+m

)
l
(

4
3 −

m cos2 θ(t)
mc+m

) (4.7)

ẍ(t) =
F(t)+mlθ̇(t)2 sin θ(t)

mc+m − mlθ̈(t) cos θ(t)

mc + m
(4.8)

The timestep used in the simulation is ∆t = 0.02s, ending when either the cart

reaches the track boundaries (x = ±2.4m), or the pole falls (|θ| > 12◦).

The function set used to build solutions to this problem with ReNCoDe is {+,−,×,÷}.
The terminal set is composed of the input variables described earlier {x, θ, ẋ, θ̇}. Using

these building-blocks a controller is constructed whose output is translated into a push

to the left if negative, or to the right if positive.

Each individual was tested with a randomised initial position, using the same fitness

function as in [Nicolau et al., 2010]:

F(x) =
120000

number_of_successful_steps

The evolutionary run terminates when an individual is found that successfully bal-

ances the pole for 120000 steps for each trial, or the maximum number of evaluations is

reached. After the evolutionary process the controller is tested for generalisation over

54 = 625 trials (this corresponds to combining the four input variables, with five different

rates for each {0.05, 0.275, 0.5, 0.725, 0.95}), during 1000 steps, as described in [Whitley

et al., 1993,Nicolau et al., 2010]. The best results known for this exact problem specifi-

cation to the best of the author’s knowledge are those reported in [Nicolau et al., 2010]

(transcribed in Table 4.1).

Table 4.1: Summary of the best generalisation results for the cart-pole problem presented in
[Nicolau et al., 2010], by number of successful start positions.

#Runs 50

Best 422

Mean 202.18

Std. Dev. 110.01
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4.2 With Recursion

There are many problems that require some kind of memory embedded in the represen-

tation, in order to be possible to find a correct solution. The task in these problems is

to evolve a solution using a small subset of test-cases, and verify its generalisation abilities

using a different, and broader subset. As these problems have infinite test cases, it is not

possible to computationally evaluate the solution correctness for the complete domains.

Nevertheless, given that a solution passes the generalisation test, it can be manually in-

spected and formalised in order to demonstrate its generality.

4.2.1 Even Parity

The goal of this problem is to evolve a boolean function (or circuit) that takes a binary

string as input and returns a single output which indicates whether the number of 1s in

the string is even (0) or odd (1). The typical function set is {and, or, nand, nor}, using the

input bits {x1, x2, ..., xn} as the terminal set.

It has been recognised as a difficult problem for evolutionary systems by different

authors [Koza, 1992, Ferreira, 2002]. The traditional GP method is to directly evolve

circuits (represented by trees). This approach does not scale well though, for instance 5-

bit parity solutions are usually very difficult to evolve, and many times unsuccessful [Koza,

1992]. There have been improvements to this representation, amongst others the use

of automatically defined functions [Koza, 1994], but still were not tackling n-bit parity.

Modern developmental systems have been proposed that solve the n-bit parity prob-

lem. In Self-Modifying Cartesian Genetic Programming (SM-CGP), the solutions are pro-

grams that construct circuits that modify themselves during execution [Harding et al.,

2009b]. In [Kuyucu et al., 2009a] an artificial development system is evolved that also is

capable of growth to generate a circuit that outputs the parity bit of any binary string.

In the latter case however, the function set used was composed of multiplexers only,

making the task easier. Other examples worth mentioning are the use of adaptive gram-

mars [Wong and Mun, 2005], and the use of specific recursive functions [Wong and

Leung, 1996].

When the aim is to find a general solution one possible approach is to use direct

connections to the output of the previous evaluation or to iterate over the bits of the
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binary input string, producing solutions suitable for any input size [Hohil et al., 1999,

Harding et al., 2010]. Particularly, in [Harding et al., 2010] (the second version of SM-

CGP), using CGP with functions that can directly modify the phenotype, the authors

incrementally evolve solutions which through a developmental process generate parity

checkers for each input stream length. To solve the input scalability issue special input

pointers were designed which in successive evaluations allow to access different bits of

the input. In this work they experimented with both the typical function set, and a more

complete set, with several composed boolean functions. As described in Sect. 3.3 it is

possible to use feedback connections in ReNCoDe, creating state-full circuits. Making

use of this feature circuits which iterate over the input string bits will be evolved, similarly

to recursive approaches, generating the parity bit as output.

The 3-bit even parity problem is used as the fitness function. That is, the evolutionary

process halts when a solution that generates the correct parity bit for the eight (23) input

combinations is found. If unsuccessful, it terminates when the maximum number of eval-

uations is reached. After the evolutionary process finds a solution for the 3-bit parity it is

tested for generalisation, to a maximum of 24-bit input streams. Moreover, the evolved

graph can be translated into boolean algebra allowing a formal analysis of the program’s

generalisation capabilities.

Although the results are not directly comparable amongst the approaches mentioned

before, the best performance figures reported are presented for reference in Table 4.2.

Table 4.2: Summary of the n-bit parity results reported in the literature

Approach [Harding et al., 2010] [Wong and Mun, 2005]

#Runs 50 N.A.

Successful Runs (%) 100 90

General Solutions (%) 100 100

Max. #Evaluations 50K 50K

Avg. #Evaluations 150721 N.A.

4.2.2 The Fibonacci Sequence

The Fibonacci sequence is a recursive sequence that is defined by the following set of

equations:
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F(0) = 0 (4.9)

F(1) = 1 (4.10)

F(n) = F(n− 1) + F(n− 2) (4.11)

This sequence has many real-world applications, for instance, in financial markets’s

analysis and computer algorithms. Moreover, it can be found in nature in diverse forms,

such as the branching in trees or the arrangement of a pine cone.

This problem was first solved in genetic programming using recursive tree structures

[Koza, 1992]. The results found in the literature show that obtaining general solutions is

not an easy task. Most of the approaches take a very high number of evaluations to find

a solution and are not completely effective. Moreover, the generalisation is usually poor,

although some approaches managed to obtain good generalisation results3.

The approach followed with ReNCoDe is to evolve circuits using the arithmetic oper-

ators as the function set {+,−,×,÷} and {0, 1} as the terminal set. Protected division

is used, returning 1.0 whenever the denominator is 0.

The program graphs are iterated to produce the sequence elements. The fitness

function is the amount of correct numbers for the first ten elements of the Fibonacci

sequence, in contrast to other approaches where the first 12 or the first 50 elements are

used for training [Harding et al., 2009a]. The evolutionary process ends when the first

ten elements are correctly generated or when the maximum amount of evaluations is

reached.

Finally, the circuits are tested for generalisation over the first 74 elements of the

Fibonacci sequence, in order to compare with the results reported in [Harding et al.,

2009a]. The results for SM-CGP are transcribed in Table 4.3, although the approaches

are not directly comparable. SM-CGP is a developmental approach, 12 elements of the

sequence were used as fitness measure in that work, and the function set has more func-

tions than the typical arithmetic operators.

3For a good summary of these results please refer to [Harding et al., 2009a].
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Table 4.3: Summary of the Fibonacci sequence results for SM-CGP [Harding et al., 2009a], based
on 287 runs. The first 12 elements of the sequence are used as fitness, and {0,1} as the starting
condition.

Successful Runs (%) 89.1

General Solutions (%) 88.6

Avg. #Evaluations 1019981

4.2.3 The Squares Sequence

The sequence of squares is a sequential regression problem, where the target function

x2, over the non-negative integers, is to be evolved. The terminal set is composed of

{1.0}. The particularity of this problem is that the function set is composed of only

{+,−}. This limited function set only allows the regression of linear functions, and so

this problem would be impossible to solve with traditional GP methods4. Based on the

use of self-modification functions in the phenotype, different developmental approaches

have been proposed that solve this problem with success, amongst them [Harding et al.,

2009a].

In this problem we take advantage of the feedback connections in ReNCoDe to ob-

tain circuits that, when iterated, will produce the correct squared value for the current

iteration. Similarly to [Harding et al., 2009a] (which results are transcribed in Table 4.4)

the evolutionary process tries to find a circuit that generates correctly the first ten terms

of the sequence. Once a correct solution is reached the circuit is tested over the first

hundred terms of the sequence to assess the generalisation capabilities of this approach.

Table 4.4: Summary of the squares’ sequence results for SM-CGP [Harding et al., 2009a], aver-
aged over 110 runs.

Successful Runs (%) N.A.

General Solutions (%) 84.3

Min. #Evaluations 392

Avg. #Evaluations (Std. Dev.) 141846 (513008)

4Even if x is provided as input to the program, the number of operations necessary to generate the
squared value varies with x itself, since the product is not available.
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4.2.4 Modified Factorial

The modified factorial is a geometric sequence defined as F(n) = k ∗ F(n − s) where k

and s are constants, respectively, a growth factor and a step. If n < s, then F(n) = 1 is

used. For instance, for k = 2 and s = 1, the following sequence is generated:

F(0) = 1

F(n) = 2F(n− 1) , n > 0

The recurrence relation can be solved by telescoping F(n) for the first step instances,

and one reaches the conclusion that:

F(n) = k⌊
n
s ⌋

The function set is composed by the arithmetic operators {+,−,×,÷}, while only 1

is provided as terminal. Protected division is used, returning 1.0 whenever the denomina-

tor is 0. Similarly to the symbolic regression problem the arity is defined by the regulatory

network. A reduced function set is also used, which is composed of only {+,−}. As

mentioned before, this limited function set only allows the regression of linear functions,

and so this would be impossible to solve with traditional GP methodologies.

The evolutionary process will search for a solution that solves correctly the first 10

elements of the sequence. The final solution will then be tested for generalisation over

the first 100 elements of the sequence.



5
Empirical Validation

The benchmark problems presented in the previous chapter provide the substrate in

which one can put the computational model described in Chapter 3 and its variants to

the test. Having described the tools and the tasks to solve, this chapter provides a detailed

configuration of the experiences that were designed to assess the model’s performance

in the different classes of problems.

Section 5.1 describes the Evolution Strategy (ES) and parameter configurations com-

mon to every experiment. The basic ReNCoDe was used to explore some design al-

ternatives of the underlying ARN model (Section 5.2), as well as to investigate the per-

formance of the variation operators (Section 5.3). Using the best configuration resultant

from the previous experiments, the ReNCoDe variants - with feedback, and with multiple

outputs - were tested in the respective problem classes (Section 5.4).

Finally, in order to properly compare the results it is necessary to verify the statistical

significance of the differences found across the experiments. Non-parametric statistical

tests were used for this purpose (Section 5.5).

5.1 Evolution Strategy

A standard ES(10 + 100) was used for all the experiments, determined by preliminary

experimentation with the model. This is a steady-state approach, and a greedy selection

scheme was used, i.e., every generation all the population (parents and offsprings) is com-

peting and the 10 most fit are selected. The parents reproduce asexually, each breeding

65
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ten offsprings, and variation is produced with the bit-flip mutation operator, at the typical

rate of 1%. A run of the ES is completed when a correct solution is found or the max-

imum number of evaluations is reached, which was set to 106. Finally, in random-based

methodologies the results may show great variance and thus it is important to have an ap-

propriate number of repetitions (100 runs was the choice in this case). These parameters

are summarised in Table 5.1.

Parameter Value

ES type steady-state

Initial Population 100

Selection greedy

Mutation Operator bit-flip

Mutation Rate 0.01

Max. Evaluations 106

Number of Runs 100

Table 5.1: Evolution Strategy parameters used across the experiments.

5.2 ARN Design Alternatives

The experiments described in this section are aimed at testing some design alternatives

of the underlying ARN, providing the best configuration to use with the original proposal

of ReNCoDE. The networks are produced as described in Section 3.1, and the problems

used were the polinomial regression, the harmonic regression, the artificial ant, and the

inverted pendulum (described in Section 4.1).

As the networks are never simulated, there are few parameters affecting ReNCoDe.

Duplication and mutation (DM) is known to generate scale-free and small-world net-

works, similar to those found in bacteria genomes [Kuo et al., 2006]. Nonetheless, this is

not necessarily beneficial in the context of optimisation as shown in [Nicolau et al., 2010]

by comparing against randomly generated genomes. This study of randomly initialised

genomes versus DM ones was also performed in the context of ReNCoDe. Another as-

pect is the genome size, which in turn influences the number of coded proteins. Different

lengths were tested to find out how it affects the performance of the approach. More-
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over, genes may overlap or not, changing the number of coded proteins, the organisation

of the genome, and also the mutational landscape. Finally, both the threshold param-

eter used to trim the ARN edges (by removing every edge witch a matching strength

below that value) and the DM-event mutation rate were not subject of testing, but were

chosen based on the topology experiments reported by [Kuo et al., 2006, Nicolau and

Schoenauer, 2009].

The summary of the values for each design detail is presented in Table 5.2. This sums

a total of 20 experiments for each problem. However, the experiments with genome

size 1024 bits and without overlapping genes were discarded, resulting in a total of 18

experiments. The reason behind this removal is that the total coding area of a gene with

promoter and binding sites is 256 bits, making it hard for a genome with only 1024 bits

to code for any proteins.

Table 5.2: Values of the different design alternatives. Initialisation may be random (rnd) or use
DM events (dm). Genes may overlap or not (True/False). The size of the genome varies from
1024 to 16364 bits, with the corresponding number of DM events.

Parameter Value

Problems {Polynomial,Harmonic, Ant, Pendulum}
Initialisation {dm, rnd}
Size {#nbits(#DM)} {1024(5), 2048(6), 4096(7), 8192(8), 16364(9)}
Overlapping genes {True, False}
DM Mutation Rate 0.02

Protein Bind Threshold 16

5.3 Genetic Operators

In Section 3.4 two types of operators are introduced - bitwise and genewise. The same

categorisation was applied relatively to typical crossover operators used in EC. The ex-

periments described in this section test the different operators in various classes of prob-

lems, with the basic parameterisation found in previous experiments (Table 5.3).

Three bitwise operators were developed to manipulate the length of the genome.

The delete operator enables the reduction of the genome’s length, and is to be used in
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Table 5.3: Base parameterisation of the experiments with the genetic operators. The set of
problems is also presented.

Parameter Values

Problems {Polynomial,Harmonic, Ant, Pendulum}
Initialisation rnd

Size 4096

Overlapping genes False

Protein Bind Threshold 16

conjunction with either the transposon-like or the junk operators which increase the length

of the genome. These will be tested in the different domains with different length’s of the

section to be manipulated, from 50 bits to 400 bits. The genewise alternatives include two

operators that operate in a similar fashion to the bitwise: one is able to copy complete

genes, the other has the capability of removing them. Since these operate on complete

genes the size parameterisation is not applicable. Moreover, for each type of operators

combination, different rates of application were tested, always summing a total of 0.5, so

that half the times no operator is used.

The summary of these experiments is presented in Table 5.4. The results obtained

in these experiments will be compared against a control group without operators, using

the same initialisation procedure and size (detailed in the previous section).

Table 5.4: Summary of the experiments with the asexual genetic operators. The different com-
binations of operators are presented, as well as the rates and different lengths if applicable.

Parameter Length Rate

transposon & delete
{50, 100, 200, 400}

{0.1/0.4, 0.2/0.3, 0.3/0.2, 0.4/0.1}junk & delete

gene-copy & delete −

5.3.1 Crossover

Concerning the crossover operators there are two variants to test - bitwise and genewise

- for each of the operators. The bitwise correspond to the traditional crossover opera-
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tors, while the genewise consider only non-coding regions as cutting points. The rate for

crossover application is also tested, as summarised in Table 5.5.

Table 5.5: Summary of the experiments with the crossover operators. The different combina-
tions of operators are presented, as well as the different modalities if applicable.

Parameter Mode Rate

one-point crossover

{bitwise, genewise} {0.1, 0.3, 0.5, 0.7, 0.9}two-point crossover

uniform crossover

5.4 Validation of the Feedback Variant

To validate the feedback variant of the original proposal, the n-bit parity, the Fibonacci

sequence, the squares sequence, and the modified factorial problems(Section 4.2) were

addressed.

The best performing parameterisation obtained from the experiments described in

the previous section was used, summarised in Table 5.6.

Table 5.6: Parameterisation of the experiments with the feedback variant of ReNCoDe, obtained
from previous experiments.

Parameter Values

Initialisation rnd

Size 4096

Overlapping genes False

Protein Bind Threshold 16

The modified factorial problem (detailed in Section 4.2.4) was developed with the

specific target of evaluating the scalability of ReNCoDe. It has the particularity of being

tuneable by using different steps . Three experiments were designed with this problem,

keeping the growth factor constant (k = 2), while the step of the sequence was varied

from 1 to 3 in order to investigate the scalability of the method, using the reduced function

set composed of {+,−} (Table 5.7).
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Table 5.7: Summary of the experiments aimed at assessing the scalability of the ReNCoDe pro-
posal. The growth factor is constant (k = 2); the reduced function set is {+,−}

Parameter Value

Step (s) {1, 2, 3}
Function Set {+,−}

5.5 Statistical Validation.

In order to compare the different experiments it is necessary to perform a statistical

analysis of the results. Since the samples do not follow a normal distribution the analysis

was performed using non-parametric tests. Moreover, since there are more than two

groups to analyse and different populations were used, the appropriate statistical test is

the Kruskal-Wallis test.

This test was used at a significance level of 5%. For the significant differences, pairwise

post-hoc comparisons were made using the Mann-Whitney-Wilcoxon test [R Develop-

ment Core Team, 2008]. Particularly, one-tailed tests were performed in both directions

(greater and lesser). This means that for each pair two tests were performed, in order

to be able to assess if there is a statistically significant difference, either positive or nega-

tive. Since we are dealing with multiple pairwise comparisons, Bonferroni correction was

applied [Field, 2003].



6
Results and Discussion

Having described the experimental setup for the different classes of problems in the last

chapter, here the results obtained from those experiments will be analysed and discussed.

The original ReNCoDe is discussed in Section 6.1, followed by the use of variation opera-

tors besides bit-flip mutation in Section 6.2. Finally, the variant with feedback connections

is analysed in Section 6.3.

6.1 ARN Design Alternatives

In Section 5.2 a set of experiments was presented whose goal is to determine what is

the best configuration for underlying ARN model in ReNCoDe, using the basic model

described in Section 3.2.

In this section we present the results obtained from those experiments. Using the

problems from Section 4.1, three parameters were investigated: i) initialisation by DM-

events (dm) opposed to random initialisation (rnd), ii) the size of the genome (indicated

by the number of DM events from 5 to 9), and iii) whether genes overlap or not (indicated

by a T or F respectively).

The algorithm was effective in finding optimal solutions for all the problems, as shown

by the success rates displayed in Figure 6.1. With exception of the extreme size cases

(5/9 DM events), the algorithm finds a solution to the problems in most of the runs, espe-

cially when random initialisation is used. The evidence that randomly initialised genomes

perform better is more clear when one looks at the distribution of the number of eval-

uations necessary to find an optimal solution (Figure 6.2). Despite the high number of

71
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outliers, one can see that runs with randomly initialised genomes of moderate size (7/8

DM events, 4096/8192 bits) tend to find an optimal solution with less effort and more

often. Examples of the programs extracted for each of the problems are presented in

Figure 6.3, with exception of the controller for the inverted pendulum which can be seen

in Figure A.3. To see the detailed summary of the results for each experiment and prob-

lem the reader may consult Table A.1.
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Figure 6.1: Success rates for ReNCoDe in typical benchmarks. The results are split by problem
and the labels refer the initialisation method (dm or rnd), the size (using the corresponding DM
event number from 5 to 9), and if genes overlap or not (T or F). With exception of the extreme
cases (where dm = 5 or dm = 9) the algorithm finds a solution to the problems in most of the
runs, especially when random initialisation is used.
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Figure 6.2: Distribution of the number of evaluations necessary to find a solution using ReNCoDe
in typical benchmarks. The results are split by problem and the labels refer the initialisation method
(dm or rnd), the size (using the corresponding DM event number from 5 to 9), and if genes overlap
or not (T or F). The algorithm is more efficient using random initialisation and moderate genome
sizes.

The overlap observed amongst the experiments in Figure 6.2 and the high number of

outliers indicate that the differences amongst the means may not be statistically significant.

In order to confirm the data was split by problem and the statistical tests were performed

as described in Section 5.5. The results from the Kruskal-Wallis test indicate that there is

significant difference amongst the populations in every problem (Table 6.1). However, the

results of the pairwise comparisons shown in Figure 6.4 and 6.5 indicate that most of the

differences are not statistically significant (for the polinomial and santa fe trail problems

see Figures A.1 and A.2). In these figures the tiles are marked with less if the number of

evaluations of the experiment in the y axis is significantly less than the one on the x axis,

with greater otherwise, or not significant if the difference is not statistically significant (the
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Figure 6.3: Examples of the programs evolved for each of the standard problems. Due to its size,
the controller for the inverted pendulum is presented in Figure A.3.
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detailed results can be found in Listings A.1-A.8). Although there are some configurations

that consistently perform worse (where the difference is significantly greater), as is the

case of random initialisation with size 16Kbits (dm9T,dm9F,rnd9T,rnd9F), there is not any

configuration that is best across all domains. However the tendency is that runs with

randomly initialised genomes need less evaluations to find a solution (see the cases of the

configurations from rnd7F to rnd8F).

Table 6.1: Kruskal-Wallis test for each problem using ReNCoDe.

Problem chi-squared df p-value

Harmonic 129.5448 17 < 2.2× 10−16

Pendulum 596.3981 17 < 2.2× 10−16

Polinomial 174.6874 17 < 2.2× 10−16

SantaFeTrail 161.0365 17 < 2.2× 10−16
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Figure 6.4: Mann-Whitney-Wilcoxon test results for the design alternatives with the harmonic
regression problem, showing less if the number of evaluations of the experiment in the y axis is
significantly less than the one on the x axis, with greater otherwise, or not significant if the difference
is not statistically significant.
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Figure 6.5: Mann-Whitney-Wilcoxon test results for the design alternatives with the inverted
pendulum problem, showing less if the number of evaluations of the experiment in the y axis is
significantly less than the one on the x axis, with greater otherwise, or not significant if the difference
is not statistically significant.

Generalisation

Two of the problems presented in Section 4.1 have a generalisation task. First, in the

harmonic curve regression the best solution found in each run is tested with an extended

set of points. Second,in the inverted pendulum problem the best controller found in

each run is tested with a set of 625 initial positions that cover the full range of values of

the control variables. Statistical tests were performed to compare the parameterisations

in each problem (the detailed results of which are presented in Listings A.9-A.12). The

complete numerical results on the generalisation tasks can be found in Table A.2.

In the case of the harmonic curve regression one is interested in solutions whose

generalisation error is minimum. Figure 6.6 shows the mean fitness obtained in the gen-
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Table 6.2: Kruskal-Wallis test for the generalisation tasks of the harmonic curve regression and
the inverted pendulum problems.

Problem chi-squared df p-value

Harmonic 82.3739 17 1.448× 10−10

Pendulum 236.7037 17 < 2.2× 10−16

eralisation task plotted with the minimum and maximum values found. The fitness is

measured by the normalised root mean squared error, in percentage. Performing the

statistical analysis (presented in Table 6.2 and Figure 6.7) one can see that randomly

initialised genomes perform better (lower error), with statistically significant difference

against de DM initialisation in the case of genomes with moderate size (see the cases

from rnd6T to rnd7T).
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Figure 6.6: Results for the generalisation task of the harmonic curve regression problem. The
mean fitness approximating the function is presented with standard error. The fitness corresponds
to the normalised root mean square error (in percentual points).
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Figure 6.7: Mann-Whitney-Wilcoxon test results for the generalisation task of the harmonic
curve regression problem, showing less if the number of evaluations of the experiment in the y
axis is significantly less than the one on the x axis, with greater otherwise, or not significant if the
difference is not statistically significant.

In the inverted pendulum scenario we are interested in the solutions with the highest

generalisation fitness, which in this case corresponds to the number of successful simula-

tions out of 625. In Figure A.4, that shows the mean fitness obtained in the generalisation

task plotted with the minimum and maximum values found, one can see that DM gener-

ated genomes tend to generalise better. Moreover, the mean is very low compared to

the maximum value, which indicates that most of the solutions evolved generalise poorly

over the complete range of the input variables. The statistical pairwise tests results (dis-

played in Figure A.5) indicate that there is not a configuration that is better than the others,

although one can conclude that randomly initialised genomes with extreme sizes (either

small or large) generalise worst than the remaining configurations.

The best controller successfully kept the pole balanced in 495 out of the 625 initial
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positions. The summary of the tests is presented in Figure 6.8. One can see that the

controller only fails on extreme positions (when the input variables are close to either

the maximum or the minimum), and that it is consistent since the displayed graph is sym-

metric.
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Figure 6.8: Summary of the results of the generalisation tests for the best controller of the in-
verted pendulum, which was successful in 495 of the 625 initial states. All the combinations of the
four input variables used in the generalisation test are displayed in the matrix: the cart position
(x), the pole angle (θ), the velocity (ẋ), and the angular velocity (θ̇)

6.2 Genetic Operators

With the insights obtained in the previous section about the underlying ARN model pa-

rameterisation, the experiments to determine if the introduction of the operators is ben-

eficial (and under what conditions) were performed (see Section 5.3). For that purpose

the baseline configuration chosen from the results presented in the previous section was

rnd7F, meaning that genomes were randomly initialised with 4096 bits, and without over-

lapping genes. Both the bitwise and genewise asexual operators were investigated.
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As mentioned in Section 3.4, two bitwise operators were used (junk, and transposon)

coupled with a delete operator. These pairs will be referred to as JD and TD. In the case

of the gene wise operators there is only one combination of the genecopy and genedelete

operators, which will be identified by GCD. The rates configuration indicates the rate

used for each option in a pair of operators, with the delete always in the last position.

In the tables and graphics they are shortened to the digit behind the decimal point. For

instance, TD.32.100 indicates that the transposon-delete pair was used with 0.3 and 0.2 as

the respective rates, and with section length of 100 bits.

Let us analyse the results amongst the operators only. The complete numerical results

can be consulted in Table A.3. In terms of success rates (Figure 6.9), although there is

not much variation there is some tendency to reach more often an optimum using the

rates configurations 0.3-0.2 and 0.4-0.1. Such a conclusion is not possible relative to the

operator length (there is not a tendency generalisable to all the problems/operators).

It also noticeable that in the symbolic regression problems the junk operator does not

perform as well as the others, as there is a visible decrease in the success rates.

Concerning the effort (the number of evaluations before termination), the analysis

for the harmonic regression is presented in Figure 6.10, while for the remaining problems

is in Figures A.6-A.11. The Kruskal-Wallis test results are displayed in Table 6.3, indicating

the presence of statistically significant differences. One can conclude that using the rates

parameterisations 0.3-0.2 and 0.4-0.1 the operators perform better. However, only in

few cases there is statistical significance, see for instance TD.41.400 in the harmonic re-

gression problem (Fig. 6.11). Moreover, one confirms that in the symbolic regression

domain both the transposon and the genewise operators perform better than the junk

(rarely with statistical significance, see the case of JD.14.200). In the pendulum and Santa

Fe trail such a generalisation is not possible though.

Table 6.3: Kruskal-Wallis test for the asexual operators parameterisation in each problem.

Problem chi-squared df p-value

Harmonic 98.6959 44 4.461× 10−6

Pendulum 62.3817 44 3.535× 10−2

Polynomial 95.608 44 1.095× 10−5

SantaFeTrail 72.0114 44 4.869× 10−3
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Figure 6.9: Success rates for the experiments on the ReNCoDe asexual operators (both bitwise
and genewise operators). The results are split by problem and operator, where JD, TD, and GCD
correspond respectively to the bitwise junk and tranposon (coupled with the delete operator), and
to the genecopy and genedelete operators. The rates are represented by the first decimal place,
that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.
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Figure 6.10: Distribution of the number of evaluations necessary to find an optimal solution for
the harmonic regression problem, using the asexual operators. The results are split by operator,
where JD, TD, and GCD correspond respectively to the bitwise junk and tranposon (coupled with
the delete operator), and to the genecopy and genedelete operators. The rates are represented
by the first decimal place, that is, 14 stands for 0.1-0.4, the order consistent with the operators
labels.
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Figure 6.11: Pairwise statistical tests results for the number of evaluations necessary to find an
optimal solution for the harmonic regression problem, using the asexual operators. In the labels
JD, TD, and GCD correspond respectively to the bitwise junk and tranposon (coupled with the
delete operator), and to the genecopy and genedelete operators. The rates are represented by the
first decimal place, that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.
The section length is appended at the end.

Finally, the results were compared with the baseline parameterisation chosen from the

experiments discussed in the previous section (rnd7F). For this effect the results were split

by operator and every configuration was used in the contrasts. The summary of the sta-

tistical comparisons is shown in Figure A.12, indicating that only one situation (harmonic

regression, using the transposon and delete operators at 0.4-0.1 rates respectively and

size 400 bits) performs better with statistical significance.
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6.2.1 Crossover

The application of typical crossover operators (presented in Section 3.4) was also in-

vestigated using different rates, as described in Section 5.3.1. Both bitwise and genewise

versions of the 1-point, 2-point, and uniform crossover operators were implemented.

As mentioned before, the bitwise version is blind to the genome structure, while the gene

wise operators are aware of the start and end bits of the genes.

The analysis was performed as with the previously discussed operators. First, com-

parisons were drawn amongst the operators, and then the operators were compared to

the baseline experiment (rnd7F, see Section 6.1). The complete numerical results can be

found in Table A.4.

The effectiveness of the crossover operators can be observed in Figure 6.12. While

there is no distinguishable difference between most of the operators at any of the rates,

the genewise uniform crossover is clearly less effective, reaching optimal solutions in

fewer experiments than the remaining.

The efficiency of the operators presents a bigger variation amongst the different rates

of application. As one can see by the distribution of the number of evaluations presented

in Figure 6.13 ( for the harmonic regression problem), there is a tendency that points out

the 0.5 rate as the appropriate choice amongst the different types of operators1. How-

ever, the statistical tests indicate that there is no statistical significant difference amongst

the experiments, as shown by the results of the Kruskal-Wallis test presented in Table

6.4. Moreover, although we can reject the null hypothesis in the remaining cases (there

is significant difference amongst the populations), the post-hoc tests2 indicate that only

a reduced number of differences are significant. The few cases where there is a statis-

tical significant difference, allow to conclude only that the uniform genewise crossover

performs worse than the remaining.

Finally, the results were compared with the baseline parameterisation chosen from the

experiments discussed in the previous section (rnd7F). For this effect the results were split

by crossover operator and every rate configuration was used in the contrasts. The results

of the statistical comparisons indicated that none of the operators performed better than

the baseline with statistical significance.

1The box-plots for the remaining problems can be found in the Appendices, Fig. A.13, A.15, and A.17
2The results of the post-hoc comparisons for each of the remaining problems are presented in the Ap-

pendices, Fig. A.14, A.16, and A.18
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Table 6.4: Kruskal-Wallis test for the crossover operators parameterisation in each problem.

Problem chi-squared df p-value

Harmonic 31.3092 29 0.351

Pendulum 64.5194 29 1.639× 10−4

Polynomial 48.1773 29 1.409× 10−2

SantaFeTrail 49.4243 29 1.041× 10−2
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Figure 6.12: Success rates for the experiments on the ReNCoDe crossover operators (both
bitwise and genewise). The results are split by operator, where 1P, 2P, and uni correspond re-
spectively to the bitwise 1-point, 2-point, and uniform crossover operators, with the suffix gene
applied to the genewise versions.
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Figure 6.13: Distribution of the number of evaluations necessary to find an optimal solution for
the harmonic regression problem, using the crossover operators. The results are split by problem
and operator, where 1P, 2P, and uni correspond respectively to the bitwise 1-point, 2-point, and
uniform crossover operators, with the suffix gene applied to the genewise versions.

6.3 Validation of the Feedback Variant

To validate the applicability of the feedback variant of the original proposal to the different

problems presented in Section 4.2, the best performing parameterisation obtained from

the experiments in the previous section was used (Table 6.5).

The n-bit parity, the Fibonacci sequence, the squares sequence, and the modified

factorial (Section 4.2) have in common that the fitness cases used during the evolutionary

runs are a small subset of those used to assess the generalisation abilities of the evolved

solutions.

The task is to extrapolate some function from a reduced set of known cases (either
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Table 6.5: Parameterisation of the experiments with the feedback variant of ReNCoDe, obtained
from previous experiments.

Parameter Values

Initialisation rnd

Size 4096

Overlapping genes False

Protein Bind Threshold 16

the first terms of a sequence or the results for some points of a function). The subset

of the fitness cases used during the evolutionary run is usually an easy task, with most

runs taking only few thousand evaluations to reach optimal individuals and a success rate

close to 100% in every problem (Table 6.6). Actually, in all of the problems there were

runs in which a fit individual was found on the initial - randomly generated - population

(MinEval). This demonstrates the adequacy of the representation to map artificial gene

regulatory networks into program graphs in these problem domains.

Table 6.6: Summary of the results for the problems with recursion: n-bit parity, the squares
sequence, the fibonacci sequence, and the modified factorial (k = 2, s = {1, 2, 3}). The success
rate, the average, standard deviation, and the minimum number of evaluations, as well as the
average and minimum number of functions are presented, respectively. The generalisation rate in
the last column is relative to the successful runs only.

Problem S.R. AvgEval StdDev MinEval AvgFun MinFun G.R.

nbitparity 100 10871 34290 100 5.4 4 91

squares 100 16478 45725 100 4.8 4 99

fibonacci 100 37009 65622 100 5.4 4 100

modfactorial-k2s1 100 3087 3890 100 5.3 4 78

modfactorial-k2s2 100 22065 34791 100 5.1 4 100

modfactorial-k2s3 5 567500 274475 220600 7.4 7 100

The exception was the modified factorial problem, showing that there are scalability

issues. The success rate achieved (percentage of runs that solved the problem for the

first ten elements) decreased drastically when s = 3. The results of the first two levels of

the step are in line with those obtained in the squares sequence (similar to s = 1) or the

Fibonacci sequence (similar to s = 2), but finding solutions that are able to keep track of



88 CHAPTER 6. RESULTS AND DISCUSSION

the values from three iterations earlier was more difficult.

An interesting property of the evolved solutions is the reduced number of functions

in the programs (AvgFun and MinFun). Although there is evidence of bloat even in the

graphs where the number of functions was minimal, it is negligible when compared to typ-

ical GP. One can see particular cases of minimal programs with bloat in the next section,

where the generality of exemplar solutions for each problem is discussed.

Generality

Most of the evolved solutions were able to solve correctly the generalisation task (Table

6.6, G.R.). The reported values suggest that the failures are due to premature conver-

gence in the easier problems, since that the quicker it is to find a correct solution (column

AvgEval), the lower is the generalisation rate.

As mentioned before, given the recursive nature of the problems, experimental eval-

uation over the complete range of possible values is not viable because of i) the com-

putational effort (and consequently the total computation time necessary), and ii) the

limitations intrinsic to computer architectures (for instance, the limited range of the num-

ber types). Although the number of fitness cases used in generalisation is usually at least

ten times greater than the size of the training set, it still is just a subset of the possible

universe. The only way to determine whether the evolved solutions are general or not

is to verify analytically each particular phenotype that successfully solved the experimen-

tal generalisation task. With that in mind, an example solution for each problem will be

formalised in the remaining of this section.

Even n-bit parity. In this problem one wants to know whether the programs

return the correct parity bit for any input size. Taking the program graph depicted in

Figure 6.14 as an example one can prove that the evolved solution is correct for the

entire domain of the problem. In the program graph each node represents either a gate

or the binary string input. The functions get their input values from the nodes connected

through the in-edges. The dotted edges represent the feedback connections (because it

is a feed-forward circuit, the function was not evaluated yet and keeps the previous result

similarly to a flip-flop in a digital circuit3). If a function has only one in-edge the neutral

3A flip-flop is a circuit that has two stable states, and it is the basic storage element in sequential logic.
The feedback connections behave in particular like a delay or data flip-flop by capturing the value of the
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element of the basic operation (and or or) is added. Before the first evaluation all the

nodes hold 1 as the result. As described earlier, in nodes with more than two inputs the

corresponding function is successively applied with arity two (from left to right), so that

for instance nor(a, b, c) = nor(nor(a, b), c) or nand(a, b, c) = nand(nand(a, b), c). For the

remaining operators it is irrelevant due to the associativity and commutativity properties

of boolean algebra.

nor

inp

and_

and_

(a) Evolved.

nor

and_

inp

(b) Simplified.

Figure 6.14: One of the smallest programs evolved that generates the parity bit of any binary
string: a) the evolved solution, b) a simplification by removal of a neutral node with only one
input. The nodes represent gates or the input stream. The output of the program is taken from
the top (the nor node). The binary string is streamed through the inp node. Functions take their
inputs from the nodes where their in-edges point from. The dotted edges represent feedback
connections.

Considering the simplified program, let fn denote the output at the nor node, gn the

output of the and node, and xn the input bit at iteration n (corresponding also to the

position in the string). Due to the initialisation procedure, one has f−1 = g−1 = 1. Then,

gn = xn ∧ fn−1

fn = (fn−1 ⊻ xn) ⊻ gn−1

which leads us to the algebraic expression that defines the n-bit even parity function:

input node between each evaluation (the rising edge of the clock).
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fn = (fn−1 ⊻ xn) ⊻ (xn ∧ fn−1)

= fn−1 ⊕ xn

= 1⊕
n⊕

i=0

xi , n = 0, 1, . . . ,∞

Despite the approaches being different and not directly comparable, the achieve-

ments of ReNCoDe are competitive with those presented in Section 4.2.1, showing less

effort. However, as one can see from the generality demonstration presented above,

and given that the circuits are iterated over the input stream, the evolutionary process

just has to find a program that successively performs a ‘XOR’ of the current input with

the previous result, actually making the task easier.

The Fibonacci sequence. This sequence has been subject of study for many

mathematicians and other scientists for a long time. From the results that can be found in

the literature, it is hard to evolve systems that generalise correctly, specially after the first

74 elements (although this may be due to losses of precision in the conversions from in-

teger to floating point values, for instance when using protected division operators). The

goal here is to show that the evolved programs are able to generate Fibonacci numbers

sequentially beyond the first hundred elements, only limited by the hardware constraints.

Consider the program presented in Figure 6.15, one of the smallest evolved. Similarly

to the binary program presented for the n-bit parity, each function takes its input values

from the in-edges, and the dotted edges represent feedback connections. If a node has

only one in-edge connection the respective neutral element of the operation is used. The

circuit is then iterated updating the functions in a bottom-up fashion. In each iteration the

result at the top node is retrieved as an element of the sequence. Every node holds the

value 1 before the first evaluation, and there are not conversions from integer to floating

point precision. In nodes with more than two inputs the corresponding function is suc-

cessively applied with left associativity, so that for instance sub(a, b, c) = sub(sub(a, b), c).

Let fn denote the output of the program, and gn the output of the lower subtraction

node at iteration n. One can write the general expression for the sequence generated

by gn , and the sequence generated at the output node which depends of the former
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sub_

1

mul_

sub_

sub_

(a) Evolved.

sub_

1 sub_

(b) Simplified.

Figure 6.15: One of the smallest programs evolved that generates the Fibonacci sequence: a)
the evolved solution, b) a simplification by removal of a neutral node with only one input and one
multiplication by 1. The nodes represent arithmetic operators. The output of the circuit is taken
from the top. Each iteration the nodes are updated from bottom to top and the result is taken
as an element of the sequence. Functions take their inputs from the nodes where their in-edges
come from. The dotted edges represent feedback connections.

(Equations 6.1 and 6.2), knowing that g−1 = 1 and f−1 = 1.

gn = gn−1 − fn−1 = 1−
n∑

k=0

fk−1 (6.1)

fn = 1− gn − fn−1 (6.2)

Hence, replacing gn in Eq. 6.2 holds the definition of the Fibonacci number, as shown

in Equation 6.3:
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fn = (
n∑

k=0

fk−1)− fn−1

= (
n∑

k=0

fk−1)− (
n−1∑
k=0

fk−1) + fn−2

= fn−1 + fn−2 (6.3)

The squares sequence. The goal of this problem is to find a solution that gen-

erates the function fn = n2, without using multiplication or division, as this would render

the problem trivial. The functionality can still be achieved using the feedback connections

to access previous results, as will be demonstrated.

Consider the program presented in Figure 6.16, one of the smallest evolved (the

program graph is initialised and executed as described for the previous problem). Let

fn represent the output of the program, gn of the addition node, and hn of the lowest

subtraction node at iteration n, one can write the corresponding symbolic expressions

(Equations 6.4 to 6.6), given that h−1 = g−1 = f−1 = 1.

sub_

sub_

add_

inp

Figure 6.16: One of the smallest programs evolved that generates the squares sequence. The
nodes represent arithmetic operators. The output of the circuit is taken from the top node. Each
iteration the nodes are updated from bottom to top and the result is taken as an element of
the sequence. Functions take their inputs from the nodes where their in-edges come from. The
dotted edges represent feedback connections.
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hn = hn−1 − 1 = −
n∑

k=0

1 = −n (6.4)

gn = hn + 1 = 1− n (6.5)

fn = fn−1 − hn − gn

= fn−1 + 2n− 1 (6.6)

If fn is telescoped through the previous terms, it follows that:

fn = fn−1 + 2n− 1

= fn−2 + (2(n− 1) + 1) + 2n− 1

= fn−2 + (2n− 3) + (2n− 1)

= fn−3 + (2n− 5) + (2n− 3) + (2n− 1)

= fn−3 + 3(2n)− (5+ 3+ 1)

= fn−k + k(2n)−
k∑

i=1

(2i− 1) (6.7)

Hence, using Equation 6.7, for k = n+ 1, it follows4:

fn = fn−(n+1) + (n+ 1)2n−
n+1∑
i=1

2i− 1

= f−1 + 2n(n+ 1)− (n+ 1)2

= 1+ 2n2 + 2n− n2 − 2n− 1 = n2

This demonstrates that the program returns the squares sequence based on the sum

of the result from the previous iteration with the consecutive odd integers, being valid for

every n ∈ N0.

4Note that the sum of the first n odd numbers is n2, that is,
∑n

i=1 2i− 1 = n2.
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Modified factorial with varying steps. As mentioned earlier the reported

results show that finding adequate solutions that memorise values from 3 or more iter-

ations backwards is not an easy task for the algorithm, demonstrating some scalability

issues in the representation. This is due to the increasing complexity of the programs

when the step goes beyond 2, which is illustrated by the examples of minimal evolved

solutions in Figure 6.17. One can see that when step 3 is reached there is practically

the double of the minimum number of nodes and connections than in the previous step,

close to 50% increase in the average number of functions, contrasting with the negligible

difference from step 1 to 2 (see Table 6.6).

The generalisation values show that practically every solution found is able to cor-

rectly generate the first 100 elements of the sequence, with the exception of s = 1 (Ta-

ble 6.6). As mentioned previously, the low rate of general programs observed with the

smallest step may be an effect of early convergence, as the mean number of evaluations

required to find a solution for the first ten elements is very small.

The generality of the solutions presented in Figure 6.17 can be manually verified, sim-

ilarly to the previous problems. The simplified program for s = 1 is presented in Figure

6.18. Let the top node be fn and the bottom subtraction node be gn. The values for the

first iteration can be directly calculated: g0 = 0, and f0 = 1. The logical expression of the

nodes can then be written as presented in Equations 6.8 and 6.9.

gn = gn−1 − fn−1 (6.8)

fn = 1− gn (6.9)

By telescoping gn, it follows that:

gn = gn−1 − fn−1

= gn−2 − fn−2 − fn−1

= gn−k −
k∑

i=1

fk−i

Then, for k = n, one has:
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sub_

sub_ sub_

sub_

(a) step = 1.

sub_

add_

sub_

sub_

(b) step = 2.

add_

add_

sub_

sub_

sub_ sub_

sub_

(c) step = 3.

Figure 6.17: Examples of the smallest programs evolved that generates the fibonacci sequence
for the step varying from 1 to 3. The nodes represent arithmetic operators. The output of the
circuit is taken from the top. Each iteration the nodes are updated from bottom to top and the
result is taken as an element of the sequence. Functions take their inputs from the nodes where
their in-edges come from. The dotted edges represent feedback connections.
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sub_

1 sub_

(a) step = 1.

Figure 6.18: The program from Fig. 6.17a, after simplification by removal of two functions with
a single input.

gn = g0 −
n∑

i=1

fn−i = −
n∑

i=1

fn−i

Replacing gn in Equation 6.9, it holds:

fn = 1+
n∑

i=1

fn−i

= 1+
n−1∑
i=0

fi (6.10)

fn−1 = 1+
n−2∑
i=0

fi (6.11)

If one inspects the difference between Eq. 6.11 and Eq. 6.10, we see that the program

exhibits the correct behavior:

fn − fn−1 =
n−1∑
i=0

fi −
n−2∑
i=0

fi

fn − fn−1 = fn−1

fn = 2fn−1

For the second instance the simplified program is presented in Figure 6.19. Let the

top subtraction node be fn, the bottom subtraction node be gn, and the addition node

be hn. The logical expression of the nodes can then be written as presented in Equations

6.12-6.14.
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sub_

add_

sub_

(a) step = 2.

Figure 6.19: The program from Fig. 6.17b, simplified by the removal of a single input node.

hn = fn−1 + hn−1 (6.12)

gn = hn − gn−1 (6.13)

fn = hn − gn

= gn−1 (6.14)

Then, by replacing hn in Equation 6.13, one has:

gn = fn−1 + hn−1 − gn−1

Since hn−1 − gn−1 = fn−1 (Eq. 6.14), it follows that:

gn = 2fn−1

fn = gn−1

= 2fn−2

For the last case, when the step is 3, a simplified version of the program is presented

in Figure 6.20, and the simulation of the circuit depicted in Table 6.7 shows how the target

sequence is produced through the first iterations.

The demonstration is not as straightforward as with the previous instances. As men-

tioned before, the recurrence relation that defines the modified factorial can be solved

by telescoping, and in this case one ends up with:
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Table 6.7: Simulation of the program graph execution for the modified factorial with step s = 3.

Iteration Init 0 1 2 3 4 5 6 7 8 9 10 11 12

Node Value

add (output) 1 1 1 1 2 2 2 4 4 4 8 8 8 16

sub1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

sub2 1 0 0 1 0 0 2 0 0 4 0 0 8 0

sub3 1 0 0 1 0 0 2 0 0 4 0 0 8 0

sub4 1 0 1 0 0 2 0 0 4 0 0 8 0 0

sub5 1 0 0 0 1 0 0 2 0 0 4 0 0 8

add

sub5

sub1

sub2 sub3

sub4

(a) step = 3.

Figure 6.20: The program from Fig. 6.17c, simplified through the removal of a node with a single
input.
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F(n) = 2⌊
n
3 ⌋

From the data in Table 6.7 it is clear a pattern, and one can use a generating function

to characterise the sequence.

G(z) = 1+ z+ z2 + 2z3 + 2z4 + 2z5 + 4z6 + 4z7 + 4z8 + 8z9 + . . .

Then, one can find the closed form for this generating function, as follows:

G(z) =
1+ z+ z2

1− 2z3

Now, what is needed is to find the coefficient of order n, an, because F(n) = an.

One way to do this is to expand G(z) as a Taylor series, but that implies calculating the

derivatives, which is a task not that simple. Nevertheless, one may decompose G(z) using

the technique of partial functions:

G(z) =
1+ z+ z2

1− 2z3
=

1
1− 2z3

+
z

1− 2z3
+

z2

1− 2z3
= A(z) + zA(z) + z2A(z)

So, each element of the original sequence may be obtained as the sum of three com-

ponents. A closer inspection shows that the second operand is the right shift of the first,

and the third operand is the right shift twice of the first operand. Let’s see what the

expansion of A(z) looks like:

A(z) = 1+ 2z3 + 4z6 + 8z9 + 16z12 + . . .

and the sequence is:

1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, . . .
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It only outputs non-zero values when the exponent is a multiple of three. Using that

information one can easily come to the conclusion that when n = 3k, k = 0, 1, 2, 3, . . .

the coefficient of order n is 2
n
3 . Now, all one has to do is to repeat the process with the

other two components, which is easy because they result of a shift right operation of A(z).

A(z) : 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, . . .

zA(z) : 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, . . .

z2A(z) : 0, 0, 1, 0, 0, 2, 0, 0, 4, 0, 0, 8, 0, . . .

It becomes clear that, for a particular n, only one component is non zero. Now

suppose we are considering a value, n, that is a multiple of three. In that situation only

the A(z) component will be non zero and we have an = 2
n
3 . If we choose a number

whose antecessor, of order n, is a multiple of three, only the zA(z) component will be

non zero, and again one has that an+1 = 2
n+1
3 . Using the same reasoning for a number

that is equal to n+ 2 we come also to the conclusion that an+2 = 2
n+2
3 . Summing up the

three possible situations, we can say that ∀n = 0, 1, 2, 3, . . . : an = 2⌊
n
3 ⌋. This shows that

our program computes the target F(n).
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ReNCoDe with Multiple Outputs

The ReNCoDe model described in Chapter 3 is not ready to build programs that are

able to deal with multiple parallel outputs. In order to be able to address this class of

problems, the model was adapted by integrating an extended model of the ARN, with

input and output proteins as proposed by [Nicolau et al., 2010]. The remaining of this

chapter describes the modifications to the architecture, as well as the problems used as

benchmark, and presents the results achieved.

7.1 Extending ReNCoDe

The merge of ReNCoDe (see Section 3.2) with the extended ARN model presented

in [Nicolau et al., 2010] involves three aspects: the definition of the inputs and the outputs,

the algorithm for extracting the program from the network, and the mapping of proteins

to functions. The proof of concept for this model was presented in [Lopes and Costa,

2013b].

Input and Output

The original proposal of the ARN models a regulatory network as a closed self-contained

system. In order to extend the model with input/output capabilities two directions were

taken by [Nicolau et al., 2010]. First, extra proteins were introduced to represent the

inputs (receptors), which are not coded in the genome. Second, the proteins coded by

the genome are distinguished between transcription factors (TFs) and products, based on

101
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using two promotersXYZ00000000 andXYZ11111111, respectively. The receptors have

distinct 32-bit signatures as presented in the extended ARN (see Section 3.1). If there

are more than four inputs, for instance the following signatures may be used alongside

the ones presented before:

00000000111111110000000011111111

11111111000000001111111100000000

00001111000011110000111100001111

11110000111100001111000011110000

The receptors participate in the regulation mechanism, thus they can bind to the regions

upstream of the genes. As these are external to the network and are not coded in the

genome, they are not regulated. The products are regulated by all proteins but do not

regulate. This means that, in the resulting network, there are no connections towards

the inputs, nor from the output(s) towards other proteins (see Fig. 3.5).

The number of products encoded in a genome is variable, as it depends on the occur-

rence of the specific promoter. In this variant of ReNCoDe, only the necessary amount

of products is used, and the remaining are discarded. The next section illustrates how to

build a program graph from this ARN model, and clarifies how the products are used as

outputs.

Extracting the program graph

First the ARN of the individual is built, composed of multiple links (inhibition and excita-

tion) between different nodes (genes). In order to extract a graph from this network it

must first be reduced. This is achieved with Algorithm 1, described in Section 3.2. An

ARN with inputs and outputs, as well as the corresponding reduced graph is presented

in Figure 7.1. In this example one can see that after reducing the network node 6 is not

input to node 2 anymore, meaning that the inhibition from node 6 to node 2 is stronger

than excitation and thus was discarded.

The graph is constructed in a top-down fashion, starting from the output node(s).

The process is illustrated by the pseudo-code in Algorithm 5. When only one output is

necessary each product is tested as the graph output (a graph is built and tested for each
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Figure 7.1: a) Extended ARN example. The dotted and full edges represent, respectively, inhibi-
tion and excitation relationships between genes. The numbers are just identifiers. The hexagonal
nodes correspond the output proteins, the rectangular represent the extra input proteins, and
the oval nodes correspond to the transcription factors. b) The graph obtained from the same
network after application of Algorithm 1.

product). If one wants N outputs from the graph, then the first N products are used as

outputs and the graph is built from these in the same fashion (there are no connections

amongst the outputs since they do not regulate). The program graph is initialised by

mapping the products into the output functions. Then a queue is initialised with the

nodes which are input to the output nodes - corresponding to the TFs in the extended

ARN model (lines 1-2).

Then , the following process is repeated until the queue is empty and there are no TFs

left to map (lines 3-13). First, the queue is sorted by the edge strength1. The top node

on the queue is mapped into a function and added to the final program. Any TFs that

are input to this node are also added to the queue. Then, the node is removed from the

queue, and the next on the queue can be processed. Finally, when the queue is empty,

the extra input proteins are added to the program graph, mapped into the corresponding

input value/variable (line 14).

Recursive connections are avoided during the mapping of the node into a program

function (line 5) similarly to the original model. The mapping process is detailed in the

next section.

Figure 7.2 shows an example of a program with two outputs, built from the reduced

1As mentioned in Section 3.2, the ARN network graph is reduced by transforming the inhibition and
excitation edges into a single edge with the difference (e−h). This is the value that is used to sort the input
edges.
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Algorithm 5 Program extraction for the extended ReNCoDe

1: initialise program with output functions

2: initialise queue with the inputs for the output functions

3: while queue is not empty do

4: sort nodes by matching strength

5: map top node in queue to function

6: add function to program

7: for all input in top node do

8: if not in program and not a receptor then

9: add input to queue with respective strength

10: end if

11: end for

12: remove the top node from queue

13: end while

14: add receptors to program

graph presented in Figure 7.1b. Note that node 3 has disappeared since it was not input

to another node. If there are not enough products in a network, 0 will be returned for

the missing outputs.

0
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6

1
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(a)

or_

or_

inputs[0]

inputs[2]

or_

inputs[1]

(b)

Figure 7.2: a) The executable graph extracted from the reduced network depicted in Fig. 7.1b.
Functions take their inputs from the nodes where their in-edges come from, and the labels are
identifiers. The hexagonal nodes correspond the output proteins, the rectangular represent the
extra input proteins, and the oval nodes correspond to the transcription factors. b) The same
graph after the mapping process.
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Mapping Proteins to Functions

A mapping is needed to translate nodes (i.e., genes/proteins) to functions. The termi-

nals are mapped sequentially using the input proteins (disregard of their signature). For

instance, if a problem has only four inputs, they are mapped as follows (proteinsignature→
input):

00000000000000000000000000000000 → inputs[0]

00000000000000001111111111111111 → inputs[1]

11111111111111110000000000000000 → inputs[2]

11111111111111111111111111111111 → inputs[3]

If a problem has more than four inputs then it is necessary to provide more input proteins

with distinct signatures, as shown before. In the support library this model has been

implemented to handle from one to twelve inputs. For the remaining nodes we use

the gene-protein correspondence, as described in the original ReNCoDe, obtaining the

function by a majority vote process. Differently from the original model it is possible for

some node to be included in the graph, while not having any input connection available. In

this case the proteins’ signature is mapped to the interval [0, 1] and rounded to the closest

integer, generating either a 0 or a 1. This way, the mapping is valid either as a decimal or

a boolean value. The pseudo-code in Algorithm 6 illustrates this mapping algorithm.

7.2 Problems

[White et al., 2012] propose the full adder and the multiplier as the reference benchmarks

for boolean logic. Multiple output programs are common in real-world applications, but

are usually avoided by researchers in GP. Typically, as one increases the number of inputs

and outputs the problem instances become exponentially harder.

The Binary Adder

In general terms, a binary adder takes two n-bit inputs, and a 1-bit carry-in totalling 2n+1

inputs. Likewise it returns a n-bit sum, and a 1-bit carry-out, giving a total of n+1 outputs.
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Algorithm 6 Mapping nodes to program functions for the variant with multiple outputs.

1: filter node-inputs already in program

2: if node is not a receptor then

3: if node-inputs not empty then

4: funindex← apply majorityrule to protein-signature

5: map node to corresponding function

6: else {node-inputs is empty}

7: value← map protein-signature to float

8: map node to round(value)

9: end if

10: else {node is a receptor}

11: map node into corresponding input variable/value

12: end if

The full adder is a logical unit that performs the sum of two 1-bit inputs (A and B),

taking into account the carry-in bit (Cin) and outputs the sum (S) and the carry-out (Cout).

The block diagram for the 1-bit full adder is presented in Figure 7.3, and the corresponding

truth table is given in Table 7.1.

Table 7.1: The truth table for the full adder.

A B Cin Cout S

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1

This problem has not been extensively studied in GP. Traditionally specific instances

are tackled [Koza and Rice, 1991,Miller et al., 1998,Sen, 1998,Walker and Miller, 2005b,

Kuyucu et al., 2009b], but the most interesting approaches to this problem use artifi-
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S

Cout

Figure 7.3: Block diagram for the 1-bit full adder.

cial development to achieve scalability, evolving circuits that grow providing n-bit adders

[Gordon and Bentley, 2005,Harding et al., 2010].

The function set used throughout the literature vary, with some functions providing

shortcuts to the successful evolution of circuits. In ReNCoDe the traditional function set

{and, or, nand, nor} is used, while the terminal set is composed of {A, B, Cin}. Typically,

the fitness measure used is the number of wrong bits in the output of the solutions.

To the best of our knowledge, [Walker and Miller, 2004b] present the best approach,

reaching a success rate of 100%, and a median number of evaluations below 10000

(for both CGP and Embedded-CGP). Moreover, they also address the 2-bit and 3-bit

instances.

The Binary Multiplier

The binary multiplier takes two n-bit inputs, and returns their product as a 2n-bit output.

The simplest instance of this problem is the 2-bit multiplier. This circuit multiplies two

2-bit inputs (A and B), resulting in a 4-bit output (P). The block diagram is presented in

Figure 7.4, and the corresponding truth table is given in Table 7.2.

A1

A2

B1

B2

P1

P2

P3

P4

Figure 7.4: Block diagram for the 2-bit multiplier.
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Table 7.2: The truth table for the 2-bit multiplier.

A1 A2 B1 B2 P4 P3 P2 P1

0 0 0 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

0 1 0 0 0 0 0 0

0 1 0 0 0 1

1 0 0 0 1 0

1 1 0 0 1 1

1 0 0 0 0 0 0 0

0 1 0 0 1 0

1 0 0 1 0 0

1 1 0 1 1 0

1 1 0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 1 0

1 1 1 0 0 1

The literature shows that this is an interesting problem with challenging fitness land-

scapes [Vassilev et al., 1999]. Despite work on the design of multiplier circuits being

scarce, there are some proposals, for instance [Kuyucu et al., 2009b, Miller, 1999, Vas-

silev and Miller, 2000,Walker and Miller, 2005a,Poli, 1998,Helmuth and Spector, 2013].

Similarly to the full adder approaches, varied function sets are used throughout the

proposals. In this case the same function set as in the full-adder was used {and, or, nand, nor},
and the terminal set is composed of {A1, A2, B1, B2}. The typical fitness function is the

number of incorrect bits in the outputs, similarly to the previous problem.

The best approaches to this boolean regression problem that are more close to tra-

ditional GP are reported by [Walker and Miller, 2004b], again achieving a success rate

of 100% on the simplest instance, with the median number of evaluations below 10000.

Moreover, the 3-bit instance was also solved although with much higher computational

effort. [Helmuth and Spector, 2013] also report a 99% success rate for the 2-bit multi-

plier, but were not able to scale up.
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7.3 Experiments and Results

The parameterisation of the base ES is the same as described before (please refer to Table

5.1 for the details). However, the ARN configuration used in the previous experiments

was not adequate for these problems. Consequently, some trial and error was necessary

to find a better configuration for the parameters. In both cases the first instances of the

problems were tackled: the 1-bit adder (a.k.a. full adder), and the 2-bit multiplier (since

the 1-bit multiplier is simply the and function).

Using randomly initialised genomes with 211 bits of length, 90% of the runs were

able to find a solution for the full-adder problem. Other configurations with smaller

genome sizes were also able to find solutions, but with lower success rates. In the case

of the multiplier it was not possible to find solutions using the typical fitness measure

and function set. Nevertheless, some solutions were evolved for this problem using the

same function set of the adder and randomly initialised genomes with 27 bits of length,

with a success rate of 3%, using as the fitness function the number of incorrect outputs

(in contrast to the number of incorrect bits in the outputs).

These results are summarised in Table 7.3, showing that this variant of ReNCoDe is

able to generate programs for multiple output binary logic. Despite being able to evolve

correct programs, the success rates are low and too many evaluations are necessary be-

fore an optimum is evolved. In Figure 7.5 an example of the evolved solutions is presented

for each problem.

Table 7.3: Summary of the results for the multiple output problems.

Problem Adder Multiplier

% of Successful Runs 90 3

Min. Numb. of Evaluations 31300 352600

Avg. Numb. of Evaluations (Std. Dev.) 2160448 (2097275) 1139067 (714228)

The binary adder depicted can be described by the following equations:

S = (((A ∨ Cin) ∧ (A ⊼ Cin)) ⊻ B) ⊻ ((B ∧ (A ⊼ Cin)) ∧ (A ∨ Cin))

Cout = (((B ∧ (A ⊼ Cin)) ∧ (A ∨ Cin)) ⊼ B) ⊼ (A ⊼ Cin)

The equations that follow in turn translate and simplify the multiplier displayed in the
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same figure:

P4 = A1 ∧ A2 ∧ B1 ∧ B2

P3 = A1 ∧ ¬(A2 ∧ B2) ∧ B1

P2 = (¬A1 ∨ ¬A2 ∨ ¬B1 ∨ ¬B2) ∨ (A1 ∨ A2) ∧ (A1 ∨ B1) ∧ (A2 ∨ B2) ∧ (B1 ∨ B2)

P1 = A2 ∧ B2

Multiple output binary logic problems are considered to be a difficult class of prob-

lems. Despite being easy to extend the representation to deal with multiple outputs, and

the fact that correct solutions were evolved to these problems, the performance achieved

so far has room for improvement. Typically the difficulty increases exponentially with the

increase of the size of the inputs, and with ReNCoDe this was not an exception.
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Figure 7.5: Examples of the simplest programs evolved that solve each of the multiple output
problems presented. The nodes represent binary operators. The output of the circuit is taken
from the hexagon shaped nodes. Functions take their inputs from the nodes where their in-edges
come from. a) Adder: the outputs correspond to the sum (S) and Cout, respectively from left to
right. b) Multiplier: the outputs correspond to P4, P3, P2, and P1, respectively from left to right;
each input has the connections coloured differently for easy tracking.
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Conclusion and Future Work

While the pioneers of Artificial Intelligence (AI) envisioned fast progress towards real

machine intelligence, most of their prophecies still belong to the realm of science fiction.

Nonetheless, progress has been made, and AI is nowadays a huge interdisciplinary field

of research, with applications in the most varied domains.

Much of the inspiration for AI systems comes from natural organisms (like bacteria,

viruses, the human brain, colonies of insects and more), shaped by evolution over mil-

lions of years. Some researchers used evolution itself as an analogy to breed solutions

for optimisation problems and even problem solvers, in the computational world. Evolu-

tion Strategies, Evolutionary Programming, and Genetic Algorithms were the first Evolu-

tionary Computation (EC) methodologies, followed by Genetic Programming which has

special relevance in this thesis.

These methodologies rely on the concept of natural selection as presented by C.

Darwin more than one century ago, and the consequent Modern Synthesis of Evolution.

However, it is well known that there is much more to evolution than just natural selection.

The knowledge on the biological mechanisms that shape life has greatly evolved since

Francis and Crick proposed the physical medium for inheritance. However, most of it

has been disregarded amongst the EC practitioners.

The main issues pointed out to the traditional approaches are the over-simplification

of the genotype-phenotype relationship (one-to-one mapping), the absence of develop-

mental processes, or the absence of interaction between the individuals and the envi-

ronment. Behind these issues there is a common mechanism, the Genetic Regulatory

Network (GRN), formed by the interactions between the genes and the proteins. The

113



114 CHAPTER 8. CONCLUSION AND FUTURE WORK

activity of each gene is influenced not only by the other genes and their products, but

also by signalling molecules coming from neighbouring cells and the environment. It is the

differences in gene expression, and the interaction with the environment, that allow the

myriad of different species we have on the blue planet.

The working hypothesis in this thesis is that the inclusion of GRN models in Evolu-

tionary Algorithms (EAs) may not only improve its efficacy and efficiency in benchmark

results, but also broaden the classes of problems that can be addressed.

In this work a new EA was developed, which uses an Artificial Regulatory Network

(ARN) as the genotypic representation, coupled with an algorithm to reduce the com-

plexity of the network graph and map it into an executable program: the Regulatory

Network Computational Device (ReNCoDe). A variant of the algorithm with embed-

ded memory was also developed, extending the capabilities of the approach to a different

class of problems. Moreover, this work also contributes with biologically inspired asex-

ual variation operators, designed to deal with linear genotypes, and also specific for the

ARN model. These were inspired by the biological concepts of transposons and junk-DNA.

ReNCoDe was validated with a set of traditional benchmarks from symbolic regres-

sion and control, to learning. The ARN model was tuned using this set of problems, and

the results show that ReNCoDe is competitive with other methodologies. The success

rates with these problems are around 100%, and it even outperforms other approaches

in the number of evaluations necessary to find a solution, as well as in the generalisa-

tion capabilities of the evolved programs. Moreover, the bloat present in the solutions is

practically insignificant, resulting in simple program graphs that can be later analysed and

manipulated by the researcher.

The efficiency of the variation operators (both sexual and asexual) was also evaluated

using the same benchmarks, and compared with the baseline from the previous experi-

ments. Different configurations and rates of application were tested, but none of them

performed significantly better than the baseline.

The variant with feedback connections was tested with a set of recursive benchmarks,

using the best parameterisation from the previous results. ReNCoDe was able to solve

all the problems, achieving 100% of success rate, and in most of the problems every so-
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lution found was able to pass the generalisation test. The results are competitive with the

reports in the literature, even outperforming them in some cases. Moreover, the sim-

plicity of the evolved solutions allows the analysis and formalisation of the corresponding

programs, as demonstrated with the examples for each of the recursive problems. There

seems to be however an Achilles’ heel in this representation: the experiments with the

modified factorial have shown a scalability issue. When it is necessary to access results

from three (or more) iterations earlier, evolution is difficult and often unsuccessful.

Even though ReNCoDe has been tested over several classes of problems, there are

other classes of problems left to address. One example are programs with multiple out-

puts. An initial study of this class of problems was also presented. The full adder and the

2-bit multiplier were investigated with a variant of the original ReNCoDe algorithm. This

variant uses an extended model of the ARN, that discriminates the proteins encoded in

the genome between products and transcription factors. The results are promising, with

both problems solved, but with room for improvement in performance. The multiple-

output domain is not limited to binary problems, thus future work should research other

domains, like symbolic regression and classification. Another topic of interest nowadays

are the dynamic environments, where the properties of the system change through time

during the evolutionary process, which is the case of most of the real-world problems.

Clearly the interaction with the environment must have special relevance in this domain,

and this is a point that is still missing in most of the GRN models. Thus, this is another

focal point for future work: how to include the interaction with the environment without

loosing the generality of the approach.

The ARN model was the starting point for the architecture described in this work,

a sensible choice since it has been published for about a decade and it has been studied

from several points of view by other researchers. Despite its completeness and accor-

dance to the natural counterpart, some aspects are missing that only in the last decade

were revealed by the Biological Sciences. A clear example of that is epigenetics, a mech-

anism that is still not well-known, but for which there are already some models that were

able to mimic the natural behaviour. With that in mind, future work should try to include

epigenetics into the ARN, and test different models that already have some epigenetic

mechanism implemented.
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The founders of the AI research field were rather optimistic concerning the develop-

ments that would be achieved in the first decades of research towards machine intelli-

gence. Despite all the science-fiction around the field, the rather slow start proved them

wrong, as researchers realised that just like Turing had adverted before “we can only see

a short distance ahead, but we can see plenty there that needs to be done”.
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A
Results Data

A.1 ARN Design Alternatives

Table A.1: Summary of the number of evaluations necessary to find an optimal solution for each
experiment. The results are split by problem (group1) and the labels refer the initialisation method
(dm or rnd), the size (using the corresponding DM event number from 5 to 9), and if genes overlap
or not (T or F).

group1 group2 n mean sd min se

harmonic dm5T 87 191741 223816 2100 23996

dm6F 9 508656 349203 74300 116401

dm6T 94 122181 175782 900 18131

dm7F 96 156253 216054 1300 22051

dm7T 99 78432 112175 1700 11274

dm8F 98 87309 116153 1200 11733

dm8T 100 94243 132647 2200 13265

dm9F 100 97575 131345 1700 13135

dm9T 100 100882 125924 2100 12592

rnd5T 60 278952 247265 11100 31922

rnd6F 1 139500 - 139500 -

rnd6T 89 168591 209128 1600 22168

rnd7F 88 159231 170690 7200 18196

rnd7T 97 84428 136959 1200 13906

rnd8F 100 75877 111795 2400 11179
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group1 group2 n mean sd min se

rnd8T 100 75364 89049 400 8905

rnd9F 100 96587 76640 2200 7664

rnd9T 97 144086 139594 9100 14174

pendulum dm5T 79 179547 255981 1200 28800

dm6F 89 149474 202240 1000 21437

dm6T 98 96476 164282 1000 16595

dm7F 97 47960 106445 400 10808

dm7T 98 83473 169394 400 17111

dm8F 99 46912 102801 200 10332

dm8T 98 31938 81535 700 8236

dm9F 99 32343 92714 400 9318

dm9T 98 34514 69219 400 6992

rnd5T 100 63906 172779 300 17278

rnd6F 100 20247 39836 500 3984

rnd6T 100 14889 37210 600 3721

rnd7F 100 6145 5476 600 548

rnd7T 100 8345 8332 100 833

rnd8F 100 27203 33610 1300 3361

rnd8T 99 68134 104728 1100 10526

rnd9F 96 220117 189965 2700 19388

rnd9T 84 298185 252157 11200 27513

polinomial dm5T 78 246759 253963 900 28756

dm6F 3 329333 33780 296400 19503

dm6T 85 162938 204734 1300 22207

dm7F 92 150627 198799 2800 20726

dm7T 80 195655 229185 1900 25624

dm8F 88 136610 186692 1900 19901

dm8T 48 192200 266103 500 38409

dm9F 38 224224 307084 2100 49816

dm9T 27 177381 276550 2300 53222

rnd5T 92 147192 180510 5900 18819

rnd6F 4 171075 119946 39900 59973
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group1 group2 n mean sd min se

rnd6T 99 87134 170443 1100 17130

rnd7F 99 71065 122588 400 12321

rnd7T 100 111402 204648 600 20465

rnd8F 98 89632 156127 300 15771

rnd8T 77 240995 243760 2900 27779

rnd9F 20 541315 307080 79200 68665

rnd9T 1 234800 - 234800 -

santafetrail dm5T 60 194322 248017 4400 32019

dm6F 13 475346 272753 98700 75648

dm6T 75 216364 253941 1800 29323

dm7F 78 153764 209470 2100 23718

dm7T 67 128975 190983 600 23332

dm8F 61 183038 235093 2600 30101

dm8T 50 180538 176333 1300 24937

dm9F 47 219617 256043 6700 37348

dm9T 39 208095 220295 11400 35275

rnd5T 76 265547 257747 5900 29566

rnd6F 22 404250 298110 5100 63557

rnd6T 94 134336 188945 2700 19488

rnd7F 94 101879 128448 4200 13248

rnd7T 93 121020 191712 3600 19880

rnd8F 99 133993 175230 1700 17611

rnd8T 90 166123 170124 6400 17933

rnd9F 53 459532 248736 102700 34166

rnd9T 2 166200 49073 131500 34700
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Figure A.1: Mann-Whitney-Wilcoxon test results for the design alternatives with the polinomial
regression problem, showing less if the number of evaluations of the experiment in the y axis is
significantly less than the one on the x axis, with greater otherwise, or not significant if the difference
is not statistically significant. The labels refer the initialisation method (dm or rnd), the size (using
the corresponding DM event number from 5 to 9), and if genes overlap or not (T or F).



A.1. ARN DESIGN ALTERNATIVES 137

rnd9T

rnd9F

rnd8T

rnd8F

rnd7T

rnd7F

rnd6T

rnd6F

rnd5T

dm9T

dm9F

dm8T

dm8F

dm7T

dm7F

dm6T

dm6F

dm
5T

dm
6F

dm
6T

dm
7F

dm
7T

dm
8F

dm
8T

dm
9F

dm
9T

rnd5T

rnd6F

rnd6T

rnd7F

rnd7T

rnd8F

rnd8T

rnd9F

Difference

greater

indifferent

less

Figure A.2: Mann-Whitney-Wilcoxon test results for the design alternatives with the Santa Fe
ant trail problem, showing less if the number of evaluations of the experiment in the y axis is
significantly less than the one on the x axis, with greater otherwise, or not significant if the difference
is not statistically significant. The labels refer the initialisation method (dm or rnd), the size (using
the corresponding DM event number from 5 to 9), and if genes overlap or not (T or F).
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Table A.2: Summary of the generalisation results for each experiment in the harmonic and pen-
dulum problems. The results are split by problem (group1) and the labels refer the initialisation
method (dm or rnd), the size (using the corresponding DM event number from 5 to 9), and if
genes overlap or not (T or F).

group1 group2 n mean sd median min max

harmonic dm5T 87 0.0122 0.0102 0.0085 0.0022 0.0546

dm6F 9 0.0140 0.0081 0.0175 0.0022 0.0215

dm6T 94 0.0131 0.0089 0.0107 0.0022 0.0626

dm7F 96 0.0114 0.0078 0.0093 0.0022 0.0403

dm7T 99 0.0122 0.0092 0.0093 0.0010 0.0563

dm8F 98 0.0134 0.0094 0.0104 0.0022 0.0578

dm8T 100 0.0152 0.0111 0.0128 0.0021 0.0678

dm9F 100 0.0129 0.0086 0.0104 0.0022 0.0418

dm9T 99 0.0139 0.0110 0.0101 0.0010 0.0616

rnd5T 60 0.0109 0.0107 0.0073 0.0020 0.0695

rnd6F 1 0.0054 - 0.0054 0.0054 0.0054

rnd6T 89 0.0089 0.0075 0.0068 0.0010 0.0482

rnd7F 88 0.0103 0.0085 0.0068 0.0020 0.0367

rnd7T 97 0.0098 0.0073 0.0067 0.0010 0.0400

rnd8F 100 0.0105 0.0081 0.0080 0.0015 0.0449

rnd8T 100 0.0125 0.0080 0.0107 0.0010 0.0408

rnd9F 100 0.0138 0.0093 0.0107 0.0022 0.0467

rnd9T 92 0.0136 0.0083 0.0112 0.0026 0.0414

pendulum dm5T 79 156.5063 77.0271 171.0000 0.0000 291.0000

dm6F 89 139.1236 77.2524 171.0000 3.0000 291.0000

dm6T 98 144.5918 88.9009 171.0000 1.0000 357.0000

dm7F 97 142.1959 87.4940 171.0000 3.0000 359.0000

dm7T 98 157.5918 83.4451 171.0000 0.0000 397.0000

dm8F 99 156.9394 99.4830 163.0000 5.0000 495.0000

dm8T 98 174.2959 102.2860 171.0000 2.0000 400.0000

dm9F 99 160.1010 92.4362 163.0000 5.0000 365.0000

dm9T 98 154.2959 104.5345 136.0000 0.0000 429.0000

rnd5T 100 94.2200 70.5898 63.0000 5.0000 247.0000
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group1 group2 n mean sd median min max

rnd6F 100 85.2400 65.4194 31.0000 31.0000 171.0000

rnd6T 100 133.4700 76.1173 171.0000 17.0000 291.0000

rnd7F 100 134.5900 68.7863 171.0000 31.0000 253.0000

rnd7T 100 146.7000 67.9496 171.0000 0.0000 291.0000

rnd8F 100 133.8300 82.2874 165.5000 1.0000 323.0000

rnd8T 99 106.7172 81.2754 65.0000 1.0000 305.0000

rnd9F 96 71.2917 74.6813 41.0000 1.0000 379.0000

rnd9T 84 60.7143 70.9098 35.5000 1.0000 350.0000
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Figure A.4: Results of the generalisation task for the design alternatives with the inverted pen-
dulum problem. The mean number of sucessful simulations (out of 625) is presented, with the
minimum and maximum. The labels refer the initialisation method (dm or rnd), the size (using the
corresponding DM event number from 5 to 9), and if genes overlap or not (T or F).
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or not significant if the difference is not statistically significant. The labels refer the initialisation
method (dm or rnd), the size (using the corresponding DM event number from 5 to 9), and if
genes overlap or not (T or F).
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A.2 Genetic Operators

Table A.3: Summary of the number of evaluations necessary to find an optimal solution for each
asexual operator in every problem. The results are split by problem and operator, where JD,
TD, and GCD correspond respectively to the bitwise junk and tranposon (coupled with the delete
operator), and to the genecopy and genedelete operators. The rates are represented by the first
decimal place, that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.

Problem Op. Rates Op.Size n mean sd median min

harmonic GCD 14 other 89 180190 201659 119200 3100

23 other 94 148788 197714 70500 1200

32 other 97 129692 178891 59400 1800

41 other 97 150749 216362 49200 5500

55 other 93 167513 204068 96400 1700

JD 14 100 81 222394 238749 118000 6400

200 77 250703 245534 167900 5600

400 65 268578 251066 188700 800

50 86 173967 200895 100350 600

23 100 91 195074 210020 107200 1300

200 85 219489 229231 130000 7900

400 78 175724 199701 103050 4100

50 83 201727 241319 98600 1800

32 100 87 205680 253974 92100 1600

200 80 176262 190947 112400 1900

400 85 191591 225796 89400 3000

50 94 167280 206685 88700 3900

41 100 90 182084 229433 86300 3200

200 87 166245 198126 92000 300

400 89 168366 229950 72700 4100

50 91 168543 180474 100300 3000

55 100 87 195111 227507 102300 2900

200 89 187578 201695 109900 2400

400 79 214358 241079 94900 3100

50 93 184461 220184 92100 2900
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Problem Op. Rates Op.Size n mean sd median min

TD 14 100 75 215280 234738 123400 5200

200 76 226470 234050 140600 9700

400 77 187839 209220 123500 2300

50 86 214600 223298 133750 3200

23 100 87 177366 189084 106000 1500

200 94 215413 252928 97000 800

400 88 185547 217761 104350 3600

50 88 198600 245828 87100 2100

32 100 91 142353 189298 74000 3000

200 96 187396 215465 91450 400

400 97 139571 172985 84600 3300

50 89 192946 238185 80300 2600

TD 41 100 92 152337 192001 81800 1600

200 98 115340 141839 66600 1200

400 100 116725 164787 44650 4800

50 91 183074 211511 92500 400

55 100 93 209734 229610 138200 1000

200 87 211952 224918 115500 3400

400 90 197939 224316 106550 2200

50 91 172747 212367 84900 1800

pendulum GCD 14 other 100 13482 25434 6450 600

23 other 100 7580 6915 5550 700

32 other 100 8447 9000 5550 900

41 other 100 7298 6680 5300 400

55 other 100 7905 5334 7150 1000

JD 14 100 100 6502 5887 4700 900

200 100 9359 12467 5650 500

400 100 9782 13345 6400 800

50 100 7502 9275 4600 300

23 100 100 7179 9004 5500 1000

200 100 7674 7665 5200 200

400 100 8107 8159 5900 300
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Problem Op. Rates Op.Size n mean sd median min

50 100 7554 7995 4750 400

32 100 100 7101 6634 4750 400

200 100 7040 6338 5200 800

400 100 6698 6381 4350 800

50 100 6887 6214 5000 900

41 100 100 6703 6063 5000 800

200 100 7329 5972 5150 400

400 100 5921 4672 5050 600

50 100 6214 7373 4800 400

55 100 100 7205 6722 5300 400

200 100 6683 6284 5200 700

400 100 7077 6715 4900 500

50 100 5866 5415 4050 400

TD 14 100 100 7395 6457 5150 1100

200 100 8355 9499 5750 1000

400 100 20318 81923 5950 300

50 100 8574 8857 5700 700

23 100 100 7103 6510 5000 900

200 100 6986 6221 4850 100

400 100 6718 6803 5100 400

50 100 7137 6236 4800 200

32 100 100 6116 6858 4400 200

200 100 6816 6306 4600 400

400 100 7933 9587 5350 500

50 100 6716 5852 5250 400

41 100 100 6956 5738 5100 200

200 100 7140 6356 5350 400

400 100 7107 6542 5000 700

50 100 7038 7521 5150 400

55 100 100 8459 7879 5750 900

200 100 5882 5915 4350 200

400 100 10355 16816 5900 200
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Problem Op. Rates Op.Size n mean sd median min

50 100 7513 8943 4700 900

polinomial GCD 14 other 98 99019 169192 24300 200

23 other 99 73864 122857 19000 1100

32 other 97 77951 171638 11500 1100

41 other 98 84059 157914 19700 500

55 other 98 73063 112767 25950 800

JD 14 100 95 70194 142283 16600 1800

200 91 96502 159656 22000 1300

400 94 109971 182039 24050 100

50 96 78851 143225 20500 200

23 100 93 125342 204288 21900 600

200 91 89093 163164 17600 1900

400 93 93044 163854 27400 1300

50 97 102342 183919 16500 900

32 100 92 101664 177648 24000 300

200 89 128078 197466 22300 1300

400 91 182801 254668 33900 900

50 95 85295 151331 19300 400

41 100 97 116162 193904 17400 400

200 92 107585 195085 21000 1300

400 83 115401 196940 21500 1000

50 92 96197 162986 26000 300

55 100 94 97834 201617 13500 900

200 93 99240 174813 14900 1100

400 95 106785 190604 28100 300

50 93 123237 227992 24500 1100

TD 14 100 95 86493 166484 16000 200

200 94 74745 165458 18700 1300

400 100 90201 162899 25150 1100

50 100 44115 92876 13800 500

23 100 96 69020 135604 14550 600

200 99 76910 157627 17200 200
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Problem Op. Rates Op.Size n mean sd median min

400 99 55495 125444 11900 200

50 97 73994 129626 17100 1300

32 100 100 61988 124277 14150 100

200 99 48234 90248 13000 500

400 99 82492 148358 11800 300

50 100 88581 160445 27400 1700

41 100 98 74642 141258 18000 1500

200 100 46437 78942 12200 500

400 97 66955 125965 11600 200

50 97 46851 102973 14300 400

55 100 99 56018 109088 13800 800

200 100 82390 145448 15800 500

400 99 85452 156866 18600 800

50 98 69040 122151 16400 200

santafetrail GCD 14 other 98 156062 183619 77650 300

23 other 96 107096 153006 46100 800

32 other 98 104526 151325 43150 600

41 other 99 91581 134514 41100 2100

55 other 98 108326 149834 45150 900

JD 14 100 99 115774 162720 49500 1000

200 93 126617 160887 64400 1300

400 90 168204 218792 85200 300

50 100 114803 157577 51300 1900

23 100 100 118293 183401 41700 2100

200 97 136079 202116 55700 3100

400 99 134276 187061 56400 2400

50 98 100564 128734 45450 3100

32 100 100 91987 99947 58800 3600

200 100 94232 150485 39400 1700

400 97 104519 158176 42000 1200

50 98 121138 167057 52100 2200

41 100 99 69427 76134 42200 1600



154 APPENDIX A. RESULTS DATA

Problem Op. Rates Op.Size n mean sd median min

200 98 68270 92909 31050 1100

400 100 86289 114518 40850 1500

50 100 77954 124846 32150 1100

55 100 97 118431 172861 54300 1700

200 97 121013 176845 48800 3100

400 97 117176 159897 63900 800

50 98 99891 139062 43750 1300

TD 14 100 99 95881 115408 52400 2000

200 98 115971 152992 48600 1400

400 97 115028 150499 70100 1400

50 99 107813 138621 52100 2600

23 100 99 138353 167405 65900 500

200 99 102665 143457 48700 2200

400 99 110231 142079 61200 300

50 99 133382 174059 60300 2700

32 100 96 129911 173209 61800 1700

200 96 90411 128585 41000 1000

400 100 84268 118954 44350 1300

50 98 116948 163460 57800 900

41 100 99 89938 123661 45800 600

200 99 99363 105340 62000 1500

400 97 110934 164791 55400 1400

50 99 116661 151654 64200 2600

55 100 97 135514 189976 50700 2500

200 100 108436 159779 43900 1800

400 97 88369 133080 42800 1400

50 98 127205 175522 63750 1400
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Figure A.6: Efficiency of the asexual operators with the inverted pendulum problem (see Section
6.2). The results are split by operator type and section length (OpLength), where JD, TD, and GCD
correspond respectively to the bitwise junk and tranposon (coupled with the delete operator), and
to the genecopy and genedelete operators. The rates are represented by the first decimal place,
that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.
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Figure A.7: Pairwise statistical tests results of the efficiency of the asexual operators with the
inverted pendulum problem (see Section 6.2). It shows less if the number of evaluations of the
experiment in the y axis is significantly less than the one on the x axis, with greater otherwise, or
not significant if the difference is not statistically significant. In the labels JD, TD, and GCD corre-
spond respectively to the bitwise junk and tranposon (coupled with the delete operator), and to
the genecopy and genedelete operators. The rates are represented by the first decimal place, that
is, 14 stands for 0.1-0.4, the order consistent with the operators labels. The section length is
appended at the end.
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Figure A.8: Efficiency of the asexual operators with the polinomial regression problem (see Sec-
tion 6.2). The results are split by operator type and section length (OpLength), where JD, TD, and
GCD correspond respectively to the bitwise junk and tranposon (coupled with the delete opera-
tor), and to the genecopy and genedelete operators. The rates are represented by the first decimal
place, that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.
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Figure A.9: Pairwise statistical tests results of the efficiency of the asexual operators with the
polinomial regression problem (see Section 6.2). It shows less if the number of evaluations of the
experiment in the y axis is significantly less than the one on the x axis, with greater otherwise, or
not significant if the difference is not statistically significant. In the labels JD, TD, and GCD corre-
spond respectively to the bitwise junk and tranposon (coupled with the delete operator), and to
the genecopy and genedelete operators. The rates are represented by the first decimal place, that
is, 14 stands for 0.1-0.4, the order consistent with the operators labels. The section length is
appended at the end.
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Figure A.10: Efficiency of the asexual operators with the Santa Fe trail problem (see Section 6.2).
The results are split by operator type and section length (OpLength), where JD, TD, and GCD
correspond respectively to the bitwise junk and tranposon (coupled with the delete operator), and
to the genecopy and genedelete operators. The rates are represented by the first decimal place,
that is, 14 stands for 0.1-0.4, the order consistent with the operators labels.
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Figure A.11: Pairwise statistical tests results of the efficiency of the asexual operators with the
Santa Fe trail problem (see Section 6.2). It shows less if the number of evaluations of the ex-
periment in the y axis is significantly less than the one on the x axis, with greater otherwise, or
not significant if the difference is not statistically significant. In the labels JD, TD, and GCD corre-
spond respectively to the bitwise junk and tranposon (coupled with the delete operator), and to
the genecopy and genedelete operators. The rates are represented by the first decimal place, that
is, 14 stands for 0.1-0.4, the order consistent with the operators labels. The section length is
appended at the end.
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Figure A.12: Comparison of the efficiency results from each asexual operator against the baseline
(rnd7F), showing less if the number of evaluations of the experiment is significantly less than the
baseline, with greater otherwise, or not significant if the difference is not statistically significant.
The results are split by problem and operator, with the rates of application on the x axis, and
the section length on the y axis. In the labels JD, TD, and GCD correspond respectively to the
bitwise junk and tranposon (coupled with the delete operator), and to the genecopy and genedelete
operators. The rates are represented by the first decimal place, that is, 14 stands for 0.1-0.4, the
order consistent with the operators labels.
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Table A.4: Summary of the number of evaluations necessary to find an optimal solution for each
crossover operator in every problem. The results are grouped by problem and operator, where
1P, 2P, and uni correspond respectively to the bitwise 1-point, 2-point, and uniform crossover
operators, with the suffix gene applied to the genewise versions.

Problem Op. Rate n mean sd median min se

harmonic 1P 0.1 88 162877 194607 96200 400 20745

0.3 95 176988 208300 95600 1300 21371

0.5 89 162396 182416 115000 1800 19336

0.7 89 156020 166938 99100 900 17695

0.9 94 185513 223280 85100 1800 23030

1Pgene 0.1 89 180861 204291 98400 400 21655

0.3 87 144517 183405 75100 1000 19663

0.5 85 133326 163783 72900 2700 17765

0.7 86 159377 198950 69900 2100 21453

0.9 90 171964 196779 101900 2600 20742

2P 0.1 88 177710 215307 93850 2000 22952

0.3 90 148421 171781 84400 5200 18107

0.5 90 134860 189654 57050 1700 19991

0.7 86 222823 243727 124550 2000 26282

0.9 82 179444 217565 90750 1900 24026

2Pgene 0.1 87 167515 193230 124800 800 20716

0.3 88 144595 183904 78750 2000 19604

0.5 90 165371 183866 91800 1200 19381

0.7 84 151011 189109 77850 1600 20633

0.9 88 214969 240910 123700 400 25681

uni 0.1 87 157307 178623 81300 3800 19150

0.3 91 185174 219806 80300 1900 23042

0.5 92 123902 143122 72500 500 14922

0.7 88 192489 240348 95800 1900 25621

0.9 89 143587 179956 76900 1500 19075

unigene 0.1 49 156012 171783 93000 700 24540

0.3 31 284684 324955 156500 2500 58364

0.5 34 264385 273922 158900 6700 46977
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Problem Op. Rate n mean sd median min se

0.7 26 246562 300909 84300 6100 59013

0.9 19 297211 347018 122500 5300 79611

pendulum 1P 0.1 99 7948 6993 5400 1200 703

0.3 100 8314 9866 5950 400 987

0.5 100 6876 6063 5500 800 606

0.7 100 9367 13896 4800 600 1390

0.9 100 11288 26088 5300 600 2609

1Pgene 0.1 100 6540 5000 4500 700 500

0.3 100 7389 7923 5150 300 792

0.5 100 8409 12968 5200 600 1297

0.7 99 12481 23317 5400 500 2343

0.9 100 13174 22546 6250 500 2255

2P 0.1 100 7065 8520 4800 600 852

0.3 100 8241 10947 5800 500 1095

0.5 100 9279 19643 4650 900 1964

0.7 100 8640 12992 5100 400 1299

0.9 100 11174 17054 6150 300 1705

2Pgene 0.1 98 10604 36640 4400 600 3701

0.3 97 7056 8508 4000 900 864

0.5 100 7989 7746 5450 600 775

0.7 97 9107 10840 5300 300 1101

0.9 93 8989 10469 5800 600 1086

uni 0.1 100 6816 6077 4850 600 608

0.3 100 7098 6306 5050 800 631

0.5 100 7583 7197 5500 600 720

0.7 100 7640 7966 5150 900 797

0.9 100 10690 16933 6100 700 1693

unigene 0.1 100 7498 9045 4500 200 904

0.3 96 14529 23832 6650 300 2432

0.5 90 21811 101585 6350 800 10708

0.7 87 31545 84017 5400 200 9008



164 APPENDIX A. RESULTS DATA

Problem Op. Rate n mean sd median min se

0.9 80 99628 199381 10450 300 22291

polinomial 1P 0.1 99 67572 127894 18300 100 12854

0.3 97 87012 166667 13700 100 16922

0.5 95 100741 198086 20300 100 20323

0.7 99 94557 170920 20200 100 17178

0.9 97 85654 162044 15000 100 16453

1Pgene 0.1 98 72781 170684 18150 100 17242

0.3 99 56863 105628 12500 100 10616

0.5 92 58235 120336 12900 100 12546

0.7 100 107489 213060 13200 100 21306

0.9 99 87064 166356 13900 100 16719

2P 0.1 100 93460 174873 19000 100 17487

0.3 100 73707 160260 13750 100 16026

0.5 98 97897 157128 22300 100 15872

0.7 99 79988 156752 15800 100 15754

0.9 99 78081 150903 15500 100 15166

2Pgene 0.1 99 88453 168801 14900 100 16965

0.3 99 55278 100419 13000 100 10092

0.5 97 62373 125545 16200 100 12747

0.7 100 103494 188872 20200 100 18887

0.9 99 126870 211770 16100 100 21284

uni 0.1 99 70137 134862 19400 100 13554

0.3 96 74040 131723 14850 100 13444

0.5 98 67812 122872 14150 100 12412

0.7 97 100089 196968 20400 100 19999

0.9 99 104264 169065 18800 100 16992

unigene 0.1 79 96762 172410 18400 100 19398

0.3 79 102511 192743 29900 100 21685

0.5 61 98851 146292 30800 100 18731

0.7 61 131480 179045 62700 100 22924

0.9 59 123317 176451 42700 100 22972

santafetrail 1P 0.1 96 103008 122106 55900 2300 12462
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Problem Op. Rate n mean sd median min se

0.3 97 158592 215375 74600 600 21868

0.5 98 97270 124600 50600 300 12586

0.7 96 122852 172517 52800 1600 17607

0.9 95 116949 147755 60100 3800 15159

1Pgene 0.1 99 128879 167825 67100 600 16867

0.3 96 119890 182818 52350 2500 18659

0.5 99 113890 167049 49400 1900 16789

0.7 98 140607 177010 67900 1600 17881

0.9 96 132772 187143 58350 1300 19100

2P 0.1 97 125575 139335 69500 900 14147

0.3 97 121991 158145 54400 2600 16057

0.5 94 131297 189348 49650 2900 19530

0.7 100 102584 133906 51600 300 13391

0.9 98 134617 162658 72400 1400 16431

2Pgene 0.1 98 128122 173681 49000 2400 17544

0.3 98 141537 162903 83850 1600 16456

0.5 97 120663 161420 61400 1900 16390

0.7 98 136723 174273 70300 200 17604

0.9 100 136829 176997 65300 2100 17700

uni 0.1 90 151003 207666 67250 1100 21890

0.3 98 114629 143789 67200 1400 14525

0.5 97 121549 154496 67300 1300 15687

0.7 99 142509 155257 91300 1600 15604

0.9 100 100414 154179 37350 700 15418

unigene 0.1 82 133704 175022 59950 1100 19328

0.3 62 173711 198962 124050 3400 25268

0.5 63 180851 224671 95000 800 28306

0.7 53 231719 262548 124100 1200 36064

0.9 59 234481 246403 161600 5000 32079
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Figure A.13: Distribution of the number of evaluations necessary to find an optimal solution
for the inverted pendulum problem, using crossover operators. The results are split by operator
type, where 1P, 2P, and uni correspond respectively to the bitwise 1-point, 2-point, and uniform
crossover operators, with the suffix gene applied to the genewise versions.
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Figure A.14: Pairwise statistical tests results of the number of evaluations necessary to find an
optimal solution for the inverted pendulum problem, using crossover operators. It shows less if
the number of evaluations of the experiment in the y axis is significantly less than the one on the
x axis, with greater otherwise, or not significant if the difference is not statistically significant. The
results are split by operator and rate of application, where 1P, 2P, and uni correspond respectively
to the bitwise 1-point, 2-point, and uniform crossover operators, with the suffix gene applied to the
genewise versions.
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Figure A.15: Distribution of the number of evaluations necessary to find an optimal solution for
the polinomial regression problem, u sing crossover operators. The results are split by operator,
where 1P, 2P, and uni correspond respectively to the bitwise 1-point, 2-point, and uniform crossover
operators, with the suffix gene applied to the genewise versions.
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Figure A.16: Pairwise statistical tests results of the number of evaluations necessary to find an
optimal solution for the polinomial regression problem, using crossover operators. It shows less
if the number of evaluations of the experiment in the y axis is significantly less than the one on the
x axis, with greater otherwise, or not significant if the difference is not statistically significant. The
results are split by operator and rate of application, where 1P, 2P, and uni correspond respectively
to the bitwise 1-point, 2-point, and uniform crossover operators, with the suffix gene applied to the
genewise versions.
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Figure A.17: Distribution of the number of evaluations necessary to find an optimal solution for
the Santa Fe trail problem, using crossover operators. The results are split by operator, where
1P, 2P, and uni correspond respectively to the bitwise 1-point, 2-point, and uniform crossover
operators, with the suffix gene applied to the genewise versions.
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Figure A.18: Pairwise statistical tests results of the number of evaluations necessary to find an
optimal solution for the Santa Fe trail problem, using crossover operators. It shows less if the
number of evaluations of the experiment in the y axis is significantly less than the one on the x
axis, with greater otherwise, or not significant if the difference is not statistically significant. The
results are split by operator and rate of application, where 1P, 2P, and uni correspond respectively
to the bitwise 1-point, 2-point, and uniform crossover operators, with the suffix gene applied to the
genewise versions.
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