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0. ABSTRACT

The aim of this thesis, consisting of four chapters, is the mathematical anal-
ysis of transport in viscoelastic and biodegradable materials and their appli-
cation in controlled drug release in ophthalmology.

From the physical point of view the problem lies in understanding the
mechanisms that regulate absorption of a solvent by a polymeric matrix
and/or the release of a dispersed solute. These transport phenomena are
classically described by Fick’s Law. In the case of polymeric materials, ex-
perimental results show that it doesn’t provide an accurate description. Many
researchers, experimentalists and theoreticians, consider this lack of accuracy
is justified by the neglecting of the rheological properties of the materials and
that Fick’s law must be modified to include the influence of viscoelasticity.
When the polymer is biodegradable, transport is governed in addition by
degradation, which is characterized by the breaking of the bonds between
the polymeric chains.

In Chapter 1 the problem of transport in viscoelastic and biodegradable
materials is presented.

In Chapter 2 a model that describes in vitro transport of a solute through
a viscoelastic, biodegradable material is studied. The model is based on three
partial differential equations which include Fickian diffusion, viscoelasticity
and material degradation. The stability of the continuous model and of the
discrete model are proved, under a mathematical condition that hides a solid
physical sense.

In Chapter 3 the transport of a drug in the vitreous chamber of the eye is
addressed. A mathematical model obtained by coupling the system studied
in Chapter 2, with another system which describes the transport of drug into
the vitreous humor is used to describe in vivo delivery.

In Chapter 4 a complete model of in vitro drug delivery is presented. It
comprises the sorption of a solvent, the dissolution of a drug and its release.
The model is defined by a system of quasi-linear partial differential equations.
The stability of an initial value problem associated with the system is studied.
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For all models studied in this thesis, numerical simulations that illustrate
their dynamic behaviour and their dependence on the parameters involved
are exhibited.

In Chapter 5 we present some concluding remarks and describe issues
that were raised in the course of the work of recent years and that we plan
to address in the near future.



0. RESUMO

O objectivo desta tese, composta por quatro caṕıtulos, é a análise matemática
da difusão em materiais viscoelásticos e biodegradáveis e a sua aplicação em
libertação controlada de fármacos no campo da oftalmologia.

Do ponto de vista f́ısico o problema que importa conhecer é a absorção de
um solvente através de uma matriz polimérica e/ou a libertação de um so-
luto disperso nessa matriz. Estes fenómenos de transporte são classicamente
descritos pela Lei de Fick. No caso dos materiais poliméricos os resultados
experimentais mostram que o comportamento da difusão se afasta muito do
comportamento prescrito pela Lei de Fick. Muitos investigadores consideram
que este afastamento se justifica pelas propriedades mecânicas dos materiais
e que a Lei de Fick deve ser modificada de modo a incluir a influência da
viscoelasticidade. Quando o poĺımero é biodegradável a difusão é governada
também pela degradação do poĺımero que caracterizada pela ruptura das
ligações entre as suas cadeias.

No Caṕıtulo 1 introduz-se o problema da difusão em meios viscoelásticos
e biodegradáveis.

No Caṕıtulo 2 apresenta-se um modelo que descreve o transporte in vitro
de um soluto através de um material viscoelástico e biodegradável. O modelo
baseia-se num sistema de três equações de derivadas parciais que incluem
difusão Fickiana, viscoelasticidade e degradação. A estabilidade, do modelo
cont́ınuo e de um modelo discreto, é provada, através da imposição de uma
condição de carácter matemático, que se revela com sólido sentido f́ısico.

No caṕıtulo 3 aborda-se o transporte de um fármaco in vivo. O prob-
lema que se estuda é a libertação de um fármaco através de um implante
biodegradável que é colocado no v́ıtreo. O sistema que descreve o fenómeno
resulta do acoplamento do sistema estudado no Caṕıtulo 2, com um outro
que descreve o transporte de fármaco no tecido vivo.

No caṕıtulo 4 apresenta-se um modelo completo de libertação in vitro.
A matriz, contendo um fármaco disperso, entra em contacto com o solvente
e inicia-se o processo de degradação, com a progressiva diminuição do peso
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molecular. O modelo é definido por um sistema de equações de derivadas
parciais quase-lineares. É estudada a estabilidade de um problema de valor
inicial associado ao sistema.

São exibidas simulações numéricas que ilustram o comportamento dinâmico
de todos os modelos apresentados e a sua dependência em relação aos parâmetros
envolvidos.

No caṕıtulo 5 apresentamos algumas observações finais e descrevemos
problemas suscitados ao longo do trabalho dos últimos anos e que planeamos
abordar num futuro próximo.
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1. INTRODUCTION

In the past few decades diffusion through viscoelastic materials has attracted
the attention of many researchers ([1, 2, 3, 4, 5]). Apart from the mathemati-
cal interest of the topic such research focus is also explained by the increasing
practical use of polymer in coatings, packaging, membranes for transdermal
drug delivery or more generally in controlled drug delivery ([3, 6]). There is
a huge literature in the field of controlled drug delivery. Some of these stud-
ies have an experimental character, others are completed with mathematical
models. We mention without being exhaustive [7, 8, 9, 10] for the first type of
studies and [9, 11, 12, 13, 14] for the second type of approach. Mathematical
modeling of drug delivery is a domain of great academic and industrial im-
portance because the computational simulation of new drug delivery systems
significantly increases their accuracy and avoids costly laboratorial experi-
ments.

In this dissertation we address the analytical and numerical study of the
diffusion of a solute in a viscoelastic degradable material and its release to an
external medium. The mathematical results established will be used to study
the pharmacokinetics of drug eluting from ophtalmic intravitreal implants.
Our study has a theoretical character in the sense that the results obtained
have not yet been compared with in vitro or in vivo experiments.

It is well known that the diffusion of a solute through a viscoelastic ma-
terial does not obey Fick’s law [5, 14, 15, 16, 17]. Though all the mecha-
nisms that affect Brownian motion are not completely known, many scien-
tists consider that the building up of a viscoelastic stress in the material is
a determinant factor. In fact the viscoelastic matrix opposes a resistance
to the Brownian motion of molecules that can be quantified by the stress
response to the strain induced by these molecules (Figure 1.1). Several au-
thors ([1, 2, 3, 4, 5, 9, 13, 14, 18, 19]) have proposed a general model where
the flux is caused by two separate phenomena: a concentration gradient of
a solute dispersed in a polymeric matrix and a stress gradient developed by
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the matrix. This flux is represented by

J = −D1∇C1 −Dv∇σ, (1.1)

where C1 is a solute concentration, σ represents the stress response of the
matrix to the strain exerted by drug molecules, D1 stands for the diffusion
tensor of the solute and Dv is a stress driven tensor whose meaning will be
clarified in Chapter 2. Equation (1.1) replaces the classical Fick’s first law,
that is obtained considering Dv = 0. Equation (1.1) is coupled with the mass
conservation equation

∂C1

∂t
= −∇ · J. (1.2)

Fig. 1.1: Drug molecules dispersed in a viscoelastic matrix
(http://itn-snal.net/2013/12/01/polymer-micelles-drug-carriers/)

The viscoelastic stress σ is related to the concept of relaxation time, τ ,
that is defined as the time it takes a polymeric chain to react to a change in
another chain. To have a better insight of the delaying effect of the relaxation
time we can interpret the non Fickian part of the flux (1.1), JNF ,

JNF = −Dv∇σ, (1.3)

under that viewpoint. As the non Fickian flux acts as a counterflux which
represents the opposition of the polymer to the release of the solute, and for
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this reason it points in the direction of higher concentrations, we can write

JNF (t + τ) = −D̃1JF (t), (1.4)

where D̃1 is a positive constant and JF represents the Fickian flux with

JF = −D1∇C1.

For τ small enough and for one dimensional situation, equation (1.4) leads
to an ordinary differential equation whose approximated solution can be ex-
pressed by the memory term

JNF = −
D̃1

τ

∫ t

0

e−
t−s
τ JF (s)ds, (1.5)

where JF (0) = 0. Equations (1.3) and (1.5) suggest that, for a homogeneous
initial stress, we have

∇σ = −
D̃1D1

Dvτ

∫ t

0

e−
t−s
τ ∇C1(s)ds. (1.6)

An analogous explanation holds to describe the stress response of a viscoelas-
tic material to the strain exerted by the molecular of an incoming solvent.
We postpone until Chapter 2 an explanation of the relation existing between
this approach and the direct use of mechanistic models to define the stress
in function of the strain exerted by the molecules of drug.

In recent years the need to control polymer waste has become a great
concern. The replacement of synthetic polymers by biodegradable polymers
which degrade due to microbial action can give a contribution to soften
the problem. When the polymeric matrix is biodegradable the transport
of molecules is no more described by (1.1)-(1.2) and a more complex sys-
tem must be considered. In the case of medical applications, as drug eluting
implants for ophtalmic drug delivery to the vitreous or implants to deliver
drugs to other specific sites, the use of biodegradable matrices avoids the
need of an a posteriori surgery to remove the device after the drug has been
released.

In this case a biodegradable device containing a drug is implanted in the
human body (Figure 1.2). When the polymeric implant containing a drug
contacts with a biological fluid, the first event that occurs is solvent uptake,
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Fig. 1.2: -Top: An intravitreal implant(http://retinavitreouscenter.net
/wbcntntprd/wp-content/uploads/Retisert-300x234.png)
-Bottom: A subcutaneous implant with an anticancerigenous drug
(http : //www.nanotech − now.com/news.cgi?storyid = 27008)
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that can be accompanied by the swell of the matrix. The molecules of the
solute (drug) begin then to diffuse by the coupled action of Brownian mo-
tion and the opposition of the polymer chains as described by (1.1)-(1.2).
Simultaneously an irreversible phenomenon called hydrolisis- the cleavage of
chemical bonds by the addition of water or other solvent- causes the progres-
sive breakage of the chemical bonds between polymeric chains, enhancing
the release of the solute. This is followed by bioassimilation of the polymer
fragments. This bioassimilation explains why a surgery is not required to
remove the implant.

The enhancement of drug release has two causes. One is due to the fact
that the cleavage of bonds creates more void spaces inside the polymer and
consequently the drug has new paths to diffuse; another is that as the chains
have a smaller molecular weight they can more easily migrate from the matrix
core dragging the molecules of drug. The delivery of a drug dispersed in a
polymeric matrix is then governed by:

- the Fickian diffusion of the molecules in the void spaces of the polymer;

- the opposition of the polymeric chains that exerts a stress on the
molecules as a response to the strain they induce in the polymeric
structure;

- the enhancement caused by the material degradation.

As degradation proceeds the polymer molecular weight decreases and the
new diffusional paths opened through the matrix create void spaces that is
increase the permeability of the matrix. The diffusion tensor of the solute
is no more constant and its dependence on the molecular weight must be
considered ([20]). A first order reaction term that describes the degradation
of the polymeric chains is then added to (1.1), (1.2). The equation that
describes the diffusion of a solute dispersed in a polymeric degradable matrix
is then

∂C1

∂t
= ∇ · (D1(M)∇C1 +Dv∇σ)− k1C1, (1.7)

where k1 represents the degradation rate. In (1.7) D1(M) represents a dif-
fusion tensor depending on the molecular weight M of the polymer. Degra-
dation can occur homogeneously in the matrix bulk or only in the surface
(Figure 1.3) [20, 21, 22, 23]. In the first case- bulk degradation- the penetra-
tion of the solvent is much faster than polymer degradation; in the second
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case- surface erosion- polymer degradation proceeds at a faster rate than the
water uptake.

Fig. 1.3: Bulk erosion (A) and surface erosion (B)
(http : //openi.nlm.nih.gov/imgs/512/203/3124394/3124394ijn − 6 −
877f3.png)

All degradable polymers can undergo surface erosion or bulk erosion.
Following [24] the way a matrix degrades depends on the diffusivity of the
solvent inside the matrix, the degradation rate of the polymeric chains and
also the matrix dimension. The release of a solute from a bulk degrading
polymer is mainly driven by diffusion; in the case of a surface- degrading
polymer it is not possible to indicate which of the three phenomenon, diffu-
sion, visco-elasticity and erosion is dominant. It depends on the properties
of the polymer and the solute.

To describe diffusion from a biodegradable polymeric matrix, equation
(1.7) is completed with two other equations: one that describes the mecha-
nistic behaviour of the polymer, that is a relation between stress and strain;
and another equation that represents the evolution of the polymer molecular
weight as the solute concentration evolves. The model composed by these
three equations is completed with initial and boundary conditions. To the
best of our knowledge the simultaneous effect of diffusion, viscoelasticity and
degradation has not been studied in the mathematical literature.

The description we have previously presented assumes an instantaneous
uptake of the matrix after contact with a solvent. However instantaneous
uptake represents an approximation of the real phenomenon. To model ac-
curately the release of a solute we consider the sorption of the solvent and
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evolution of its concentration inside the matrix. The system of three par-
tial differential equation considered in Chapter 2, which variables are solute
concentration, stress and molecular weight, must be completed with a fourth
equation that describes the evolution of solvent concentration.

This thesis is organized in four chapters where we address the pharma-
cokinetics of a solute dispersed in a biodegradable viscoelastic matrix in
progressively more complex frameworks. In Figure 1.4 we summarize the
content of Chapters 2, 3 and 4. We remark that the existence and regularity
of the solution will not be addressed in this thesis. In all the problems treated
we assume that the solutions exist and have the regularity required by the
mathematical techniques used.

In Chapter 2 a mathematical model of the diffusion of a solute through a
viscoelastic biodegradable material is presented. The qualitative behaviour of
the released mass of solute is studied through an a priori energy estimate. We
show that the continuous model is stable, under initial perturbations, and for
bounded intervals of time, by imposing some conditions on the parameters.
These conditions which at a first sight appear as a technical tool, in the sense
that they represent mathematical constraints needed to establish the result,
revealed to have a sound physical meaning. In fact they essentially say that
if the Fickian diffusion dominates the non Fickian one, the mathematical
model is stable. If we translate this constraint in physical terms it indicates
that to have an effective release of the solute, the Fickian diffusion must
overcome the opposition of the polymer represented by the stress it exerts
on the solute molecules. Following an approach first introduced in [25] we
obtain a sharper stability inequality which holds for any time. We consider
a semi-discrete version of the model by discretizing the spatial derivatives
with finite differences operators and we establish energy estimates which are
semi-discrete versions of the continuous ones. Finally a fully discrete method
is analyzed and an energy estimate analogous to the continuous one, from a
formal viewpoint, is obtained. To illustrate the behaviour of the model and
to give some insight on the dependence of the solution on the parameters, we
exhibit several numerical simulations. Physical and physiological values of
the parameters are used in these numerical simulations. These values satisfy
the constraints assumed to establish the theoretical stability results. This
fact suggests that such constraints are not artificial mathematical artifacts
but represent natural conditions.

The results presented in Chapter 2 are extensions of the results included
in the work:
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CHAPTER 2

PROBLEM: In vitro release of solute

PHENOMENA: Diffusion, Viscoelasticity, Degradation

THEORETICAL RESULTS: Qualitative and Stability results for the

continuous problem, Energy estimates for the semi-discrete, fully-discrete problem

SIMULATIONS: Numerical study of the dependence of solute

concentration on the physical properties of the drug and the matrix

CHAPTER 3

PROBLEM: In vivo release of a drug in the vitreous

PHENOMENA: Diffusion, Viscoelasticity, Degradation, Body Absorpion

SIMULATIONS: Numerical study of the dependence of drug

concentration on physical properties of the matrix

CHAPTER 4

PROBLEM: Uptake of solvent and in vitro release of a solute

PHENOMENA: Solven uptake, Diffusion, Viscoelasticity, Bulk

Degradation

THEORETICAL RESULTS: Stability analysis

SIMULATIONS: Numerical study of the dependence of solute

concentration on the physical properties of the matrix, the solute and

the solvent

Fig. 1.4: Content of chapters
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E. Azhdari, J.A. Ferreira, P. de Oliveira, P.M. da Silva, Analytical and
numerical study of diffusion through biodegradable viscoelastic materials,
Proceedings of the 13th International Conference on Computational and
Mathematical Methods in Science and Engineering, CMMSE 2013, I (2013),
174-184.

In Chapter 3 a medical application in the field of controlled drug delivery
is addressed. In a drug delivery process the main actors are the living system,
the composition of the drug, the polymeric matrix where it is dispersed and
the external conditions of release as for example the presence of an electric
field or a heat source.

To obtain a predefined release profile, the mechanisms of control can act
essentially on the polymeric matrix and the external conditions. Deliver-
ing drugs to the vitreous chamber of the eye assumes a crucial role and is a
challenging problem due to the presence of various physiological and anatom-
ical barriers. Classical ocular drug delivery systems for segment diseases fall
under one of the following categories:

• Systemic delivery: systemic administration of drugs to the blood stream
directly, in the form of injections, or by absorption into the blood
stream in the form of pills.

• Topical delivery: topical delivery in the form of ophthalmic drops which
is the most common method used to treat ocular diseases.

However none of these drug delivery systems are effective. In fact systemic
delivery is not effective because the drug concentration carried by the blood
stream is not enough, which means that it does not reach the therapeu-
tic window. With topical delivery just a small fraction of drug reaches the
posterior segment of the eye due to physiological barriers. These classical
drug delivery systems are being replaced by direct intravitreal injection or
intravitreal implants of drug (Figure 1.5). As vitreal injections imply sev-
eral treatments and can cause deleterious side effects, intravitreal implants
have deserved much attention these last years ([26, 27, 28]). In fact there
are a number of severe diseases that can affect the vitreous and the retina,
which must be treated over long periods of time and where drugs must be
maintained in their therapeutic windows . Among these diseases we mention:

• Age-related macular degeneration which is a medical condition that
usually affects older adults and results in a loss of vision in the center
of the visual field because of damage to the retina;
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• Glaucoma that is an eye disease in which the optic nerve is damaged
and that is normally associated with an increased fluid pressure in the
anterior chamber of the eye;

• Diabetic retinopathy which is a retinopathy caused by complications
of diabetes, that affect the blood vessels of the retina. Usually affects
older adults and results in a loss of vision in the center of the visual
field because of damage to the retina.

Many drugs have a narrow concentration window of effectiveness and may
be toxic at higher concentration ([29]), so the ability to predict local drug
concentrations is necessary for proper designing of the delivery system. A big
challenge in the drug delivery field is the study of the mathematical models
that describe the simultaneous processes of drug release and absorption by
the human body. Mathematical models which couple drug delivery from a
device with the transport in the living system play a central role because not
only they can be used to explain the kinetics of the delivery by describing
the interplay of the different phenomena but also they quantify the effect of
physical and physiological parameters in the delivery trend. Several authors
have studied Fickian mathematical models to describe transport and elimi-
nation of drugs in the vitreous [29, 30, 31, 32, 33, 34]. However at the best of
our knowledge the in vivo delivery of drug from a viscoelastic biodegradable
implant has not yet been addressed.

In Chapter 3 we will propose a model to simulate intravitreal delivery of
drug through viscoelastic biodegradable implants (Figure 1.6). The model
consists of coupled systems of partial differential equations linked by interface
conditions. One of the systems describes the diffusion of drug in the poly-
meric biodegradable implant; the other models the transport of drug in the
vitreous, which is a porous medium. The geometry of the vitreous chamber
of the eye and of the intravitreal implant are described and the mathemat-
ical coupled model is presented. We briefly explain the mass behaviour of
the materials in the phenomenological approach. We present a variational
formulation for the continuous model and using an implicit- explicit finite
element method, we establish a discrete variational form. Finally, numerical
simulations that illustrate the kinetics of the drug release and show the effect
of degradation and viscoelasticity are exhibited in the last section.

The results presented in Chapter 3 are generalizations of the results in-
cluded in the works:
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Fig. 1.5: Applicator used to insert an implant in the vitreous
(http : //eyewiki.aao.org/F ile : Ozurdex.ipg)

Fig. 1.6: An intravitreal implant composed of a biodegradable polymer
(http : //eyewiki.aao.org/images/1/8/85/Device.ipg)
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• E. Azhdari, J.A. Ferreira, P. de Oliveira, P.M. da Silva, Drug delivery
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ematics (2014).

In Chapters 2 and 3 the uptake of solvent, by the polymeric matrix, that
initiates the kinetics of drug is not taken into account. In these chapters
we assume that the sorption of solvent has already taken place which means
that the sorption of the solvent is much faster than the degradation rate and
consequently that a bulk erosion is occurring. In Chapter 4 we present a
detailed model of in vitro release, where the kinetics of the solvent is coupled
with the kinetics of drug. We consider a biodegradable viscoelastic polymeric
matrix with a limited amount of drug which is in contact with water. As
the water diffuses into the matrix, a hydration process takes place and the
viscoelastic properties of the polymer are modified. In contact with water, the
polymeric weight decreases and the drug dissolves and diffuses. The whole
model is composed by a set of partial differential equations that describe the
entrance of water into the polymer, the hydrolysis process, the decreasing of
the molecular weight, the evolution of the stress and strain, the dissolution
process and the diffusion of the dissolved drug. Numerical simulations that
illustrate the evolution of drug concentration in the case of bulk erosion are
exhibited.



2. ANALYTICAL AND NUMERICAL STUDY OF
DIFFUSION, VISCOELASTICITY AND DEGRADATION

In this chapter the transport of a drug through a biodegradable viscoelastic
material is studied. The phenomenon is described by a set of three coupled
partial differential equations that take into account passive diffusion, stress
driven diffusion and the degradation of the material. The qualitative be-
haviour of the released mass is studied through an a priori energy estimate.
A semi-discrete and a fully-discrete version of this energy estimate is also
studied. We show that the solution of the continuous model is bounded for
bounded intervals of time. By following [25] and imposing some conditions
on the parameters we obtain a sharper inequality which holds for any time.
By using energy estimates we also establish the stability of the model under
initial perturbations. When Dirichlet boundary conditions for concentration
are replaced by Robin boundary conditions we prove that the solution of
the problem presents the same boundedness properties. Finally, in the last
section, numerical simulations that illustrate the influence of diffusion, vis-
coelasticity and degradation parameters are exhibited. In these simulations,
as in several other numerical experiments that have been carried on, qual-
itative agreement with the expected physical behaviour is observed. These
findings suggest the effectiveness of our approach.

2.1 Mathematical model

We consider a biodegradable viscoelastic material filling a bounded domain
Ω1 ⊂ R

2 with boundary ∂Ω1. A certain amount of drug is dispersed in
Ω1. We suppose that when Ω1 enters in contact with a penetrant solvent an
instantaneous swelling occurs. The drug then dissolves in the solvent and its
transport through Ω1 is driven by diffusion, viscoelasticity and degradation.
We describe these phenomena by the system of
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∂C1

∂t
= ∇ · (D1(M)∇C1) +∇ · (Dv∇σ)− k1C1 in Ω1 × (0, T ],

∂σ

∂t
+

E

µ
σ = EC1 in Ω1 × (0, T ],

∂M

∂t
+ β1M = β2C1 in Ω1 × (0, T ].

(2.1)

In (2.1) C1 represents the unknown concentration of the drug inside the
material, σ is the unknown stress response of the material to the strain ex-
erted by the dissolved drug and M is the unknown molecular weight of the
material. The viscoelastic influence in the drug transport is represented by
the term ∇ · (Dv∇σ) where Dv is a viscoelastic tensor. The term −k1C1

describes the degradation of drug inside the material and the positive con-
stant k1 represents the degradation rate. The viscoelastic term states that
the polymer acts as a barrier to the diffusion of the drug: as the drug strains
the polymer it reacts with a stress of opposite sign ([35, 36, 37, 38, 39, 40]).
To account for the increasing permeability of the system upon degradation,
the diffusion tensor is defined by ([20])

D1(M) = D0e
k̄
M0−M

M0 , (2.2)

where D0 is the diffusion tensor of the drug in the non hydrolyzed polymer, k̄
is a positive constant and M0 is the initial molecular weight of the polymeric
matrix.

The second equation in (2.1) defines the viscoelastic behaviour of the
polymer as described by the Maxwell fluid model ([1, 2, 18, 19, 41])

∂σ

∂t
+

E

µ
σ = E

∂ǫ

∂t
, (2.3)

where E represents the Young modulus of the material, µ is its viscosity and
ǫ is the strain produced by the drug molecules. Assuming that the polymer
acts as a barrier to the release of the drug, σ and ǫ are of opposite sign, and a
minus sign should be considered in the right hand side of (2.3). To eliminate
the strain ǫ in (2.3) we assume

ǫ(x, t) = k

∫ t

0

C1(x, s)ds, (2.4)
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where k is a dimensional positive constant ([3]). We note that the strain ǫ is
a function of x and t. Whenever no confusion case arise we will omit in this
thesis the arguments in the variables. Consequently we will write equation
(2.4) as

ǫ = k

∫ t

0

C1(s)ds.

Replacing (2.4) in (2.3) and considering the minus sign in the right hand
side of (2.3) we obtain the second equation in (2.1) where E = −Ek. The
solution of the second equation in (2.1) gives

σ = −Ek

∫ t

0

e−
t−s
τ C1(s)ds+ σ(0)e−

1
τ
t, (2.5)

where the relaxation τ is defined as τ = µ
E

([41]). We remark that the
expression of ∇σ obtained from (2.5) coincides in the one dimensional case

with the expression in equation (1.6) for k = D̃1D1

Dvµ
. The viscoelastic tensor

Dv has a precise physical meaning that has been established in [38] and for a
one dimensional model it can be proved that Dv > 0 ([35, 38]). In [9, 13, 14]
the authors considered Dv < 0 and the stress σ and the strain ǫ with the
same sign. Underlying this approach we can find the same physical idea of
the polymeric matrix as a barrier to diffusion.

In the third equation of (2.1), β1 and β2 are positive constants that char-
acterize the degradation properties of the material ([22]). The meaning and
units of all variables and parameters used along the work are presented in
the Appendix.

System (2.1) is completed with the initial conditions





C1(0) = C0 in Ω1,

σ(0) = σ0 in Ω1,

M(0) = M0 in Ω1,

(2.6)

where C0 represents the initial concentration of the drug in the polymeric
matrix and σ0 is the initial stress response of the polymer to the strain
exerted by the initial dissolved drug. The boundary condition

C1 = 0 on ∂Ω1 × (0, T ], (2.7)

which means that the drug is immediately removed as it attains the boundary,
closes the model.
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2.2 Qualitative behaviour of the solution

In this section we study the qualitative behaviour of the energy functional

Q(t) =

∥∥∥∥C1(t)

∥∥∥∥
2

, t ≥ 0, (2.8)

where
∥∥∥ ·
∥∥∥ represents the usual norm in L2(Ω1) which is induced by the

corresponding inner product (·, ·).
The following lemma, Gronwall’s Lemma, will be used in the proof of

Theorem 1.

Lemma 1. (Gronwall’s Lemma([42])) Let u and g be non-negative functions
on [0, T ] having one-sided limits for every t ∈ [0, T ], and K a non-negative
constant. If for every 0 ≤ t ≤ T we have

u ≤ K +

∫ t

0

g(s)u(s)ds,

then

u ≤ K exp
(∫ t

0

g(s)ds
)
,

for all 0 ≤ t ≤ T .

In what follows we establish a qualitative result for the solution C1 of
system (2.1). We begin by deducing an estimate that holds in bounded
intervals of time (0, T ]. This result is then sharpened in Theorem 1 for any
T .

From the second equation of (2.1) we easily get

σ = E

∫ t

0

e−
E
µ
(t−s)C1(s)ds+ σ(0)e−

E
µ
t, t ≥ 0,

with E = −Ek. Replacing this last expression in the first equation of (2.1)
and assuming that σ0 is constant, we obtain for C1

∂C1

∂t
= ∇ · (D1(M)∇C1) − Ek

∫ t

0

e−
E
µ
(t−s)∇ · (Dv∇C1(s))ds

− k1C1 in Ω1 × (0, T ]. (2.9)
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In what follows we assume that D1 and Dv are diagonal matrices where
the nonzero entries of D1, (D1)ii, i = 1, 2, satisfy (D1)ii ≥ D0 > 0, i = 1, 2,
and the nonzero entries of Dv, (Dv)ii, i = 1, 2, satisfy |(Dv)ii| ≤ Dv. As
1

2

dQ

dt
= (C1,

∂C1

∂t
) we deduce, from (2.9), after multiplying scalarly by C1

and using the equation (2.7), the following equation:

1

2

dQ

dt
= −

∥∥∥∥
√

D1(M)∇C1

∥∥∥∥
2

+

(
Ek

∫ t

0

e−
E
µ
(t−s)Dv∇C1(s)ds,∇C1

)

− k1

∥∥∥∥C1

∥∥∥∥
2

, (2.10)

where
√
D1(M) is defined as the matrix which entries are the square root

of the entries of D1(M). In (2.10) the inner product in (L2(Ω1))
2 and the

corresponding norm
∥∥∥ ·
∥∥∥ are denoted as the inner product in L2(Ω1) and

its associated norm, respectively. From (2.10) and using Cauchy-Schwarz
inequality, we have

1

2

dQ

dt
+D0

∥∥∥∥∇C1

∥∥∥∥
2

≤
Ek

4δ2

∥∥∥∥
∫ t

0

e−
E
µ
(t−s)∇C1(s)ds

∥∥∥∥
2

+ Dv
2
Ekδ2

∥∥∥∥∇C1

∥∥∥∥
2

− k1Q, (2.11)

where δ 6= 0 is an arbitrary constant. We note that in the application of
Cauchy- Schwarz inequality the factors have been defined as to be dimen-
sionally sound. From the previous inequality we deduce

1

2

dQ

dt
+ k1Q+ (D0 −Dv

2
Ekδ2)

∥∥∥∥∇C1

∥∥∥∥
2

≤

Ek

4δ2

∫ t

0

e−2E
µ
(t−s)ds

∫ t

0

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds,

and then, by considering
∫ t

0

e−2E
µ
(t−s)ds ≤

1

2E
µ

,
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we have

Q+ 2k1

∫ t

0

Q(s)ds+ 2(D0 −Dv
2
Ekδ2)

∫ t

0

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds ≤

Ek

4δ2E
µ

∫ t

0

∫ s

0

∥∥∥∥∇C1(µ)

∥∥∥∥
2

dµds+Q(0).

If δ2 is such that

D0 −Dv
2
Ekδ2 > 0, (2.12)

we obtain

Q+

∫ t

0

Q(s)ds+

∫ t

0

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds ≤

kµ

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}4δ2

∫ t

0

∫ s

0

∥∥∥∥∇C1(µ)

∥∥∥∥
2

dµds

+
1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

Q(0).

Finally using Gronwall’s Lemma we obtain

Q+

∫ t

0

Q(s)ds+

∫ t

0

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds ≤

1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

Q(0)ec̄t, (2.13)

where

c̄ =
kµ

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}4δ2

. (2.14)

This last inequality establishes that Q,

∫ t

0

Q(s)ds and

∫ t

0

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds are

bounded for bounded intervals of time. Inequality (2.13) can be improved by
eliminating the exponential factor in its right hand side. Following [25] we
multiply (2.9) by eγt, where γ is a positive constant to be selected, obtaining
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eγt
∂C1

∂t
= ∇ · (D1(M)∇C1)e

γt − Ek

∫ t

0

e−
E
µ
(t−s)eγt∇ · (Dv∇C1(s))ds

− k1e
γtC1. (2.15)

Adding γeγtC1 to both sides of (2.15) we have

∂C1,γ

∂t
= ∇ · (D1(M)∇C1,γ) − Ek

∫ t

0

e(γ−
E
µ
)(t−s)∇ · (Dv∇C1,γ(s))ds

+ (γ − k1)C1,γ, (2.16)

where C1,γ = eγtC1. The last equation leads to

(
dC1,γ

dt
, C1,γ

)
+ (D1(M)∇C1,γ ,∇C1,γ)

= Ek

(∫ t

0

e(γ−
E
µ
)(t−s)Dv∇C1,γ(s)ds,∇C1,γ

)

+(γ − k1)(C1,γ, C1,γ).

Using the Cauchy-Schwarz inequality, equation (2.7) and the notation

Qγ =

∥∥∥∥C1,γ

∥∥∥∥
2

, we easily deduce that

d

dt
Qγ + 2k1Qγ − 2γQγ + 2D0

∥∥∥∥∇C1,γ

∥∥∥∥
2

≤

2Dv
2
Ek

∫ t

0

e(γ−
E
µ
)(t−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
∥∥∥∥∇C1,γ

∥∥∥∥ds ≤

2δ2Dv
2
Ek

∥∥∥∥∇C1,γ

∥∥∥∥
2

+
βγEk

2δ2

∫ t

0

e(γ−
E
µ
)(t−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds,

for an arbitrary positive constant δ and γ such that γ − E
µ
< 0, where βγ is

defined by

∫ t

0

e(γ−
E
µ
)(t−s)ds <

1
E
µ
− γ

= βγ . (2.17)
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Since

∥∥∥∥C1,γ

∥∥∥∥ ≤ KΩ

∥∥∥∥∇C1,γ

∥∥∥∥, where KΩ represents the Poincaré’s constant

([43]), we have

Qγ + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2Dv

2
Ek)

∫ t

0

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds ≤

Q(0) +
βγEk

2δ2

∫ t

0

∫ η

0

e(γ−
E
µ
)(η−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

dsdη. (2.18)

Changing the order of integration in the double integral on the right hand
side of (2.18) we have

Qγ + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2Dv

2
Ek)

∫ t

0

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds ≤

Q(0) +
βγEk

2δ2

∫ t

0

∫ t

s

e(γ−
E
µ
)(η−s)dη

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds. (2.19)

Computing now the interior integral in the right hand side of (2.19) and
considering (2.17) we obtain

Qγ + 2k1

∫ t

0

Qγ(s)ds+ (2D0 − 2γK2
Ω − 2δ2Dv

2
Ek)

∫ t

0

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds ≤

Q(0) +
β2
γEk

2δ2

∫ t

0

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds. (2.20)

As Qγ = e2γtQ we have from (2.20)

Q+ 2k1

∫ t

0

e−2γ(t−s)Q(s)ds

+

(
2D0 − 2γK2

Ω − 2δ2Dv
2
Ek −

Ek

2δ2(E
µ
− γ)2

)∫ t

0

e−2γ(t−s)

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds

≤ e−2γtQ(0).

We now look for a positive γ such that
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2D0 − 2γK2
Ω − 2δ2Dv

2
Ek −

Ek

2δ2(E
µ
− γ)2

> 0,

with
E

µ
− γ > 0.

The parameter δ is arbitrary so we select δ = 1. The function f defined
by

f(γ) = 2D0 − 2γK2
Ω − 2Dv

2
Ek −

Ek

2(E
µ
− γ)2

,

is a continuous function for γ ∈ [0, E
µ
). We have

f(0) = 2D0 − 2Dv
2
Ek −

µ2k

2E
,

and lim
γ→E

µ

f(γ) < 0. If we impose

D0 −Dv
2
Ek −

µ2k

4E
> 0, (2.21)

the non linear equation
f(γ) = 0,

has a positive root in (0, E
µ
).

We have then proved the following result for the energy functional defined
in (2.8).

Theorem 1. If D0, Dv, E, k and µ are such that (2.21) holds, then there
exists γ ∈ (0, E

µ
) such that

Q +

∫ t

0

e−2γ(t−s)Q(s)ds+

∫ t

0

e−2γ(t−s)

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds ≤ Ce−2γtQ(0), t ≥ 0,

(2.22)
where

C =
1

min
{
1, 2k1, 2

(
D0 − γK2

Ω −Dv
2
Ek − Ek

4(E
µ
−γ)2

)} . (2.23)

�
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We note that the restriction on the parameters imposed in Theorem 1
have a physical meaning. In fact if we make a dimensional analysis of (2.21)
for the one dimensional case with Ω1 = (0, 1), we conclude that all the terms

are consistent with dimension
L2

T
, where L2 stands for the square length

and T for the time. The condition establishes that the Fickian contribution
dominates the non Fickian one, which is a physically sound restriction.

In what follows we analyze the stability and the uniqueness of the solution
of (2.1), (2.6) and (2.7).

Let C̃1, M̃ and σ̃ be another solution of the initial boundary value problem
(2.1), (2.7) with the initial conditions





C̃1(0) = C̃0 in Ω1,

σ̃(0) = σ̃0 in Ω1,

M̃(0) = M̃0 in Ω1.

Let EC , EM and Eσ be defined by

EC = C1 − C̃1, EM = M − M̃, Eσ = σ − σ̃.

It can be shown that EC , EM and Eσ satisfy

∂EC

∂t
= ∇ · (D1(M)∇C1 −D1(M̃)∇C̃1)

− Ek

∫ t

0

e−
E
µ
(t−s)∇ · (Dv∇EC(s))ds

− k1EC + e−
E
µ
t∇ · (Dv∇Eσ(0)) in Ω1 × (0, T ],

∂EM

∂t
+ β1EM = β2EC in Ω1 × (0, T ],

with initial conditions




EC(0) = C1(0)− C̃1(0) in Ω1,

EM(0) = M(0)− M̃(0) in Ω1,

Eσ(0) = σ(0)− σ̃(0) in Ω1,

and boundary conditions

EC = 0 on ∂Ω1 × (0, T ].
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In what follows we use the notations

QC =

∥∥∥∥EC

∥∥∥∥
2

, QM =

∥∥∥∥EM

∥∥∥∥
2

.

For QC and QM we have

1

2

dQC

dt
= −(D1(M)∇C1 −D1(M̃)∇C̃1,∇EC)

+ Ek

∫ t

0

e−
E
µ
(t−s)(Dv∇EC(s),∇EC)ds

− k1QC + e−
E
µ
t(∇ · (Dv∇Eσ(0)), EC) in (0, T ], (2.24)

1

2

dQM

dt
+ β1QM = β2(EC , EM) in (0, T ]. (2.25)

As

D1(M)∇C1 −D1(M̃)∇C̃1 = EMD1,d(
˜̃M)∇C1

+ D1(M̃)∇EC ,

where D1,d is the diagonal matrix of the derivatives of entries of D1 and
˜̃M = θM̃ + (1− θ)M, θ ∈ [0, 1]. Taking this representation in (2.24) we get

1

2

dQC

dt
+ k1QC + (D0 −Dv

2
Ekδ2)

∥∥∥∥∇EC

∥∥∥∥
2

≤

µk

8δ2

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds+D1,dmax

∥∥∥∥∇C1

∥∥∥∥
∞

∥∥∥∥EM

∥∥∥∥
∥∥∥∥∇EC

∥∥∥∥

+e−
E
µ
t

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
∥∥∥∥EC

∥∥∥∥ in (0, T ], (2.26)

where D1,dmax ≥
∣∣(D1,d)ii

∣∣, i = 1, 2,
∥∥ ·
∥∥
∞

denotes the usual norm and δ 6= 0
is an arbitrary constant. Inequality (2.26) leads to

1

2

dQC

dt
+ (k1 − ǫ22)QC + (D0 −Dv

2
Ekδ2 − ǫ21)

∥∥∥∥∇EC

∥∥∥∥
2

≤

µk

8δ2

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds+
D2

1,dmax

4ǫ21

∥∥∥∥∇C1

∥∥∥∥
2

∞

∥∥∥∥EM

∥∥∥∥
2

+e−2E
µ
t 1

4ǫ22

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
2

in (0, T ], (2.27)
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where ǫi 6= 0 i = 1, 2, are arbitrary constants.

As from (2.25) we have

1

2

dQM

dt
+ β1QM ≤

β2
2

4ǫ23
QM + ǫ23QC in (0, T ], (2.28)

where ǫ3 6= 0 is an arbitrary constant, we deduce from (2.27) and (2.28)

dQC

dt
+

dQM

dt
+ 2(k1 − ǫ22 − ǫ23)QC + 2β1QM

+ 2(D0 −Dv
2
Ekδ2 − ǫ21)

∥∥∥∥∇EC

∥∥∥∥
2

≤

µk

4δ2

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds+
(D2

1,dmax

2ǫ21

∥∥∥∥∇C1

∥∥∥∥
2

∞

+
β2
2

2ǫ23

)
QM + e−2E

µ
t 1

2ǫ22

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
2

in (0, T ].

Consequently

QC +QM + 2(k1 − ǫ22 − ǫ23)

∫ t

0

QC(s)ds+ 2β1

∫ t

0

QM (s)ds

+ 2(D0 −Dv
2
Ekδ2 − ǫ21)

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds ≤

QC(0) +QM (0) +
µk

4δ2

∫ t

0

∫ s

0

∥∥∥∥∇EC(ν)

∥∥∥∥
2

dνds

+

∫ t

0

( β2
2

2ǫ23
+

D2
1,dmax

2ǫ21

∥∥∥∥∇C1(s)

∥∥∥∥
2

∞

)
QM (s)ds

+
µ

4ǫ22E

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
2

. (2.29)

Fixing in (2.29) ǫi 6= 0, i = 1, 2, 3, such that

k1 − ǫ22 − ǫ23 > 0,

D0 −Dv
2
Ekδ2 − ǫ21 > 0,
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we obtain

QC +QM +

∫ t

0

(
QC(s) + QM(s)

)
ds+

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds ≤

1

min
{
1, 2(k1 − ǫ22 − ǫ23), 2β1, 2(D0 −Dv

2
Ekδ2 − ǫ21)

}
(
QC(0)

+ QM(0) +
µ

4ǫ22E

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
2)

+
max

{
µk
4δ2

,
β2
2

2ǫ23
+

D2
1,dmax

2ǫ21

∥∥∇C1

∥∥2
∞

}

min
{
1, 2(k1 − ǫ22 − ǫ23), 2β1, 2(D0 −Dv

2
Ekδ2 − ǫ21)

}
∫ t

0

(
QM(s)

+

∫ s

0

∥∥∥∥∇EC(ν)

∥∥∥∥
2

dν
)
ds, (2.30)

where
∥∥∇C1

∥∥
∞

= max
[0,T ]

∥∥∇C1(t)
∥∥
∞
.

Finally, applying the Gronwall’s Lemma to inequality (2.30) we deduce

QC +QM +

∫ t

0

(
QC(s) +QM (s)

)
ds+

∫ t

0

∥∥∥∥∇EC(s)

∥∥∥∥
2

ds ≤

1

min
{
1, 2(k1 − ǫ22 − ǫ23), 2β1, 2(D0 −Dv

2
Ekδ2 − ǫ21)

}
(
QC(0)

+ QM(0) +
µ

4ǫ22E

∥∥∥∥∇ · (Dv∇Eσ(0))

∥∥∥∥
2)
ec̄t, t ∈ [0, T ], (2.31)

where

c̄ =
max

{
µk
4δ2

,
β2
2

2ǫ23
+

D2
1,dmax

2ǫ21

∥∥∇C1

∥∥2
∞

}

min
{
1, 2(k1 − ǫ22 − ǫ23), 2β1, 2(D0 −Dv

2
Ekδ2 − ǫ21)

} .

Inequality (2.31) allows us to conclude the stability of the initial boundary
value problem (2.1), (2.6), (2.7) in bounded time intervals, provided that this
problem has a solution with the smoothness required in the establishment
of (2.31). Moreover, (2.31) implies the uniqueness of the solution of (2.1),
(2.6) and (2.7). The results in this section, namely Theorem 1, also hold for
Ω ⊂ R

3.
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2.3 Qualitative behaviour of the solution in the case of Robin

boundary conditions

To simulate in vivo the drug release, the polymeric matrix is coupled with a
living system. In this case the Dirichlet boundary conditions for C1, (2.7),
should be replaced by a Robin boundary condition of type

J · η = AcC1 on ∂Ω1 × (0, T ], (2.32)

where J stands for the flux, η is the unit outward normal to ∂Ω1 and Ac is
a positive constant. The problem to be solved is then





∂C1

∂t
= ∇ · (D1(M)∇C1)− Ek

∫ t

0

e−
E
µ
(t−s)∇ · (Dv∇C1(s))ds

−k1C1 in Ω1 × (0, T ],
∂M

∂t
+ β1M = β2C1 in Ω1 × (0, T ],

coupled with initial condition (2.6) and the equation (2.32), where J is given
by

J = −D1(M)∇C1 +DvEk

∫ t

0

e−
E
µ
(t−s)∇C1(s)ds, (2.33)

provided that σ0 is a constant.
The arguments used in the proof of Theorem 1 still hold. In fact equation

(2.9) is of form

∂C1

∂t
= −∇ · J − k1C1, (2.34)

and multiplying scalarly by C1 we have

1

2

dQ

dt
= −

(
J · η, C1

)
∂Ω1

+
(
J,∇C1

)
− k1

∥∥∥∥C1

∥∥∥∥
2

,

where the scalar product in ∂Ω1 is defined by
(
J · η, C1

)
∂Ω1

=

∫

∂Ω1

J · ηC1ds.

From (2.32) we obtain, instead of (2.10), the inequality

1

2

dQ

dt
≤ (J,∇C1)− k1

∥∥∥∥C1

∥∥∥∥
2

,
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and replacing J defined in (2.33) in the last inequality we have

1

2

dQ

dt
≤
(
−D1(M)∇C1 +DvEk

∫ t

0

e−
E
µ
(t−s)∇C1(s)ds,∇C1

)
− k1Q.

So we easily obtain

1

2

dQ

dt
≤ −

∥∥∥∥
√
D1(M)∇C1

∥∥∥∥
2

+
(
Ek

∫ t

0

e−
E
µ
(t−s)Dv∇C1(s)ds,∇C1

)
− k1Q,

and estimate (2.13) then follows.
To eliminate the exponential factor we multiply (2.32) and (2.34) by eγt,

where γ is a positive constant, obtaining

J · ηeγt = AcC1e
γt, (2.35)

and

eγt
∂C1

∂t
= −∇ · Jeγt − k1C1e

γt, (2.36)

respectively, where J is defined by (2.33). Adding γeγtC1 to both sides of
(2.36) we have

∂C1,γ

∂t
= −∇ · Jeγt + γC1,γ − k1C1,γ ,

where C1,γ = eγtC1. Multiplying the last equality scalarly by C1,γ we get

(dC1,γ

dt
, C1,γ

)
= −(J · ηeγt, C1,γ)∂Ω1

+ (Jeγt,∇C1,γ)

+ γ

∥∥∥∥C1,γ

∥∥∥∥
2

− k1

∥∥∥∥C1,γ

∥∥∥∥
2

. (2.37)

Using (2.35) in (2.37) we obtain

1

2

dQγ

dt
≤ (Jeγt,∇C1,γ) + γQγ − k1Qγ .
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By replacing J from (2.33) in the last inequality and using the Cauchy-
Schwarz inequality we easily deduce

dQγ

dt
+ 2k1Qγ − 2γQγ + 2D0

∥∥∥∥∇C1,γ

∥∥∥∥
2

≤

2DvEk

∫ t

0

e(γ−
E
µ
)(t−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
∥∥∥∥∇C1,γ

∥∥∥∥ds ≤

2δ2Dv
2
Ek

∥∥∥∥∇C1,γ

∥∥∥∥
2

+
βγEk

2δ2

∫ t

0

e(γ−
E
µ
)(t−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds,

for any δ 6= 0, where γ is such that γ − E
µ
< 0 and βγ is defined by (2.17).

Integrating and rearranging the terms we get

Qγ + 2(k1 − γ)

∫ t

0

Qγ(s)ds+ 2(D0 − δ2Dv
2
Ek)

∫ t

0

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

ds ≤

Qγ(0) +
βγEk

2δ2

∫ t

0

∫ η

0

e(γ−
E
µ
)(η−s)

∥∥∥∥∇C1,γ(s)

∥∥∥∥
2

dsdη. (2.38)

Following the proof of Theorem 1, by assuming k1 − γ > 0, we conclude the
following result.

Theorem 2. If D0, Dv, E, k and µ are such that (2.21) holds and

E

µ
< k1

then there exists γ ∈ (0, E
µ
) such that

Q+

∫ t

0

e−2γ(t−s)Q(s)ds+

∫ t

0

e−2γ(t−s)

∥∥∥∥∇C1(s)

∥∥∥∥
2

ds ≤ Ce−2γtQ(0), t ≥ 0,

(2.39)
where

C =
1

min
{
1, 2(k1 − γ), 2

(
D0 −Dv

2
Ek − Ek

4(E
µ
−γ)2

)} .

�

Estimate (2.39) is formally analogous to estimate (2.22). The constants
that appear in the right hand side of these estimates are only slightly different
but its comparison in a general framework can not be done.
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2.4 Energy estimates for the semi-discrete approximation

In this section we consider semi-discrete approximations for C1 and M , de-
fined by the IBVP (2.9), the third equation of (2.1), the first and third
equations of (2.6) and equation (2.7). For such semi-discrete approxima-
tions we establish a discrete version of Theorem 1. We start by considering
Ω1 = (0, L) and then we analyze the case Ω1 = (0, L)× (0, L).

2.4.1 One dimensional case

Let us consider in Ω1 = [0, L] a grid Ih = {xi, i = 0, . . . , N} with x0 = 0,
xN = L and xi − xi−1 = h. By ∂Ω1h we represent the boundary points. We
introduce the following finite-difference operators

D−xuh(xi) =
uh(xi)− uh(xi−1)

h
,

and

Dxuh(xi) =
uh(xi+1)− uh(xi)

h
.

We denote by L2(Ih) the space of grid functions uh defined in Ih and by L2
0(Ih)

the subspace of L2(Ih) such that uh = 0 on ∂Ω1h. In L2
0(Ih) we consider the

discrete inner product

(uh, vh)h =

N−1∑

i=1

huh(xi)vh(xi), uh, vh ∈ L2
0(Ih).

We denote by
∥∥∥ ·
∥∥∥
h
the norm induced by the above inner product. For

uh, vh ∈ L2(Ih) we introduce the notations

(uh, vh)+ =
N∑

i=1

huh(xi)vh(xi),

and
∥∥∥uh

∥∥∥
2

+
=

N∑

i=1

h
(
uh(xi)

)2
.
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Let ∥∥∥uh

∥∥∥
1
=
(∥∥∥uh

∥∥∥
2

h
+
∥∥∥D−xuh

∥∥∥
2

+

)1/2
, uh ∈ L2(Ih).

We note that
∥∥∥ ·
∥∥∥
1
represents a norm which can be viewed as a discretization

of the usual Sobolev norm of the space H1(0, 1).
To discretize the spatial derivative in (2.9) we introduce the finite differ-

ence operator

D∗

x(D1(vh)D−xuh)(xi) =
1

h

(
D1(Ahvh(xi+1))D−xuh(xi+1)

−D1(Ahvh(xi))D−xuh(xi)
)
, i = 1, . . . , N − 1,

where vh and uh are grid functions and Ah denotes the average operator

Ahvh(xi) =
1

2

(
vh(xi) + vh(xi−1)

)
.

Using summation by parts, it can be shown that, for vh ∈ L2(Ih), uh, wh ∈
L2
0(Ih), we have

(
D∗

x(D1(vh)D−xuh), wh

)
h
= −

(
D1(vh)D−xuh, D−xwh

)
+
. (2.40)

Semi-discrete approximations for C1 and M are then defined by the system
of differential equations

dC1h

dt
= D∗

x

(
D1(Mh)D−xC1h

)
− Ek

∫ t

0

e
−E
µ

(t−s)D∗

x(DvD−xC1h(s))ds

− k1C1h in Ω1h × (0, T ], (2.41)

and

dMh

dt
+ β1Mh = β2C1h in Ω1h × (0, T ], (2.42)

which is complemented by the following conditions

C1h(0) = RhC0, Mh(0) = RhM0 in Ω1h, (2.43)

and

C1h = 0 on ∂Ω1h × (0, T ], (2.44)
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where Rh : C0(Ω1) → L2(Ih) denotes the restriction operator.
To complete the finite difference equation (2.41) for i = 1, . . . , N , the

values Mh on ∂Ω1h are needed. We assume that

Mh = M0e
−β1t on ∂Ω1h × (0, T ]. (2.45)

We remark that this condition was obtained by extending the differential
equation for the molecular weight to the boundary points.

In what follows we study the qualitative behaviour of the energy func-
tional

Qh(t) =

∥∥∥∥C1h(t)

∥∥∥∥
2

h

, t ≥ 0. (2.46)

Multiplying (2.41) by C1h, with respect to the inner product (·, ·)h, and
using (2.40) and the boundary condition (2.44) we obtain

(dC1h

dt
, C1h

)
h

+
(
D1(Mh)D−xC1h, D−xC1h

)
+

= Ek
(∫ t

0

e−
E
µ
(t−s)DvD−xC1h(s)ds,D−xC1h

)
+

− k1(C1h, C1h)h. (2.47)

Using in (2.47) Cauchy-Schwarz inequality, we have

1

2

dQh

dt
+D0

∥∥∥∥D−xC1h

∥∥∥∥
2

+

≤
Ek

4δ2

∥∥∥∥
∫ t

0

e−
E
µ
(t−s)D−xC1h(s)ds

∥∥∥∥
2

+

+ Dv
2
Ekδ2

∥∥∥∥D−xC1h

∥∥∥∥
2

+

− k1Qh,

where δ 6= 0 is an arbitrary constant. From the previous inequality we deduce

1

2

dQh

dt
+ k1Qh + (D0 −Dv

2
Ekδ2)

∥∥∥∥D−xC1h

∥∥∥∥
2

+

≤

Ek

4δ2

∫ t

0

e−2E
µ
(t−s)ds

∫ t

0

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds,

and then

Qh + 2k1

∫ t

0

Qh(s)ds+ 2(D0 −Dv
2
Ekδ2)

∫ t

0

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds ≤
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Ek

4δ2E
µ

∫ t

0

∫ s

0

∥∥∥∥D−xC1h(µ)

∥∥∥∥
2

+

dµds+Qh(0).

If δ2 is such that (2.12) holds we obtain

Qh +

∫ t

0

Qh(s)ds+

∫ t

0

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds ≤

kµ

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}4δ2

∫ t

0

∫ s

0

∥∥∥∥D−xC1h(µ)

∥∥∥∥
2

+

dµds

+
1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

Qh(0).

Finally Gronwall’s Lemma leads to

Qh +

∫ t

0

Qh(s)ds+

∫ t

0

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds ≤

1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

Qh(0)e
c̄t, (2.48)

where c̄ is defined by (2.14). This last inequality establishes that Qh,∫ t

0

Qh(s)ds and

∫ t

0

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds are bounded for bounded intervals of

time. Inequality (2.48) can be improved by eliminating the exponential factor
in its right hand side. Following the proof of Theorem 1, Theorem 3 can be
proved.

Theorem 3. If D0, Dv, E, k and µ are such that (2.21) holds, then there
exists γ ∈ (0, E

µ
) such that

Qh +

∫ t

0

e−2γ(t−s)Qh(s)ds+

∫ t

0

e−2γ(t−s)

∥∥∥∥D−xC1h(s)

∥∥∥∥
2

+

ds

≤ Ce−2γtQh(0), t ≥ 0,

where C is defined by (2.23). �
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2.4.2 Two dimensional case

In Ω1 = [0, L]× [0, L] we introduce the grid

Ω1H =
{
(xi, yj), i = 0, . . . , N, j = 0, . . . ,M, x0 = y0 = 0, xN = yM = L

}
,

where

H = (h1, h2), xi − xi−1 = h1, yj − yj−1 = h2, for i = 1, . . . , N, j = 1, . . . ,M.

Let Ω1H be the set of grid points of Ω1H which are in Ω1 and let ∂Ω1H

be the set of grid points on ∂Ω1. By C we denote the set of corner points{
(0, 0), (0, L), (L, 0), (L, L)

}
. We introduce the following notations

(wH , qH)Ω1H
=

N−1∑

i=1

M−1∑

j=1

h1h2wH(xi, yj)qH(xi, yj),

(wH , qH)x =
N∑

i=1

M−1∑

j=1

h1h2wH(xi, yj)qH(xi, yj),

(wH , qH)y =
N−1∑

i=1

M∑

j=1

h1h2wH(xi, yj)qH(xi, yj),

where wH , qH are grid functions defined in Ω1H . Let ∇HuH be the discrete
gradient ∇HuH = (D−xuH , D−yuH). We use also the notations

(∇HwH ,∇HqH)H = (D−xwH , D−xqH)x + (D−ywH, D−yqH)y,

and

∥∥∥∥∇HwH

∥∥∥∥
2

H

= (∇HwH ,∇HwH)H , where D−x and D−y denote the usual

backward finite difference operators in the x and y directions, respectively.
To discretize the spatial partial derivatives of (2.9) we introduce the second
order finite difference operator

D∗

x(a(vH)D−xuH)(xi, yj) =
1

h1

(
a(AH,xvH(xi+1, yj))D−xuH(xi+1, yj)

− a(AH,xvH(xi, yj))D−xuH(xi, yj)
)
,
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i = 1, . . . , N − 1, j = 1, . . . ,M − 1, where AH,x is the average operator

AH,xvH(xl, yj) =
1

2

(
vH(xl, yj) + vH(xl−1, yj)

)
.

The finite difference operator D∗
y(b(vH)D−yuH) is defined analogously, con-

sidering the average operator AH,y which is defined as AH,x but considering
the y direction.

The discretization of ∇ · (D1(M)∇C1) is made with the finite difference
operator

∇∗

H · (B(vH)∇HuH) = D∗

x(a(vH)D−xuH) +D∗

y(b(vH)D−yuH),

where B is the diagonal matrix with entries a and b.
Using summation by parts it can be shown the following equality
(
∇∗

H · (B(vH)∇HuH), wH

)
Ω1H

= −
(
a(AH,xvH)D−xuH , D−xwH

)
x

−
(
b(AH,yvH)D−yuH, D−ywH

)
y

= −
(
B(AHvH)∇HuH ,∇HwH

)
H
,(2.49)

where B(AHvH) is the diagonal matrix whose entries are a(AH,xvH) and
b(AH,yvH).

Let us consider the semi-discrete approximation for (2.8) defined by

QH(t) =

∥∥∥∥C1H(t)

∥∥∥∥
2

Ω1H

, t ≥ 0, (2.50)

where
∥∥∥ ·
∥∥∥
Ω1H

denotes the norm induced by the inner product (·, ·)Ω1H
.

The semi-discrete approximations C1H and MH of the solution of the sys-
tem composed by the IBVP (2.9), the third equation in (2.1), with initial
condition defined by the first and third equations of (2.6) and boundary con-
dition (2.7) are then defined by the following system of differential equations

dC1H

dt
= ∇∗

H ·
(
D1(MH)∇HC1H

)

− Ek

∫ t

0

e−
E
µ
(t−s)∇∗

H · (Dv∇HC1H(s))ds

− k1C1H in Ω1H × (0, T ], (2.51)
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and

dMH

dt
+ β1MH = β2C1H in Ω1H × (0, T ]. (2.52)

The initial and boundary semi-discrete conditions are defined respectively by

C1H(0) = RHC1(0), MH(0) = RHM(0) in Ω1H , (2.53)

and

C1H = 0 on ∂Ω1H × (0, T ]. (2.54)

In (2.53) RH denotes the restriction operator defined from C0(Ω1) into the
space of gird functions defined in Ω1H .

Analogously to the one dimensional case, to give sense to the finite dif-
ference equation (2.51) for i = 1, . . . , N and j = 1, . . . ,M we need to define
MH on ∂Ω1H . We assume that

MH = M0e
−β1t on ∂Ω1H × (0, T ]. (2.55)

Multiplying (2.51), with respect to the inner product (·, ·)Ω1H
, by C1H and

using (2.49) and (2.54) we easily establish

(
dC1H

dt
, C1H

)

Ω1H

+ (D1(MH)∇HC1H ,∇HC1H)H

= Ek
(∫ t

0

e−
E
µ
(t−s)Dv∇HC1H(s)ds,∇HC1H

)
H

− k1(C1H , C1H)Ω1H
. (2.56)

Considering in (2.56), Cauchy-Schwarz inequality, the conditions imposed on
the entries of the diagonal matrices D1 and Dv and following the proof of
(2.11) it can be shown that

1

2

dQH

dt
+D0

∥∥∥∥∇HC1H

∥∥∥∥
2

H

≤
Ek

4δ2

∥∥∥∥
∫ t

0

e−
E
µ
(t−s)∇HC1H(s)ds

∥∥∥∥
2

H

+ Dv
2
Ekδ2

∥∥∥∥∇HC1H

∥∥∥∥
2

H

− k1QH ,

where δ 6= 0 is an arbitrary constant.
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From the previous inequality we deduce

1

2

dQH

dt
+ k1QH + (D0 −Dv

2
Ekδ2)

∥∥∥∥∇HC1H

∥∥∥∥
2

H

≤

Ek

4δ2

∫ t

0

e−2E
µ
(t−s)ds

∫ t

0

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds,

and then

QH + 2k1

∫ t

0

QH(s)ds+ 2(D0 −Dv
2
Ekδ2)

∫ t

0

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds ≤

Ek

4δ2E
µ

∫ t

0

∫ s

0

∥∥∥∥∇HC1H(µ)

∥∥∥∥
2

H

dµds+QH(0).

If δ2 is such that (2.12) holds, we obtain

QH +

∫ t

0

QH(s)ds+

∫ t

0

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds ≤

kµ

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}4δ2

∫ t

0

∫ s

0

∥∥∥∥∇HC1H(µ)

∥∥∥∥
2

H

dµds

+
1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

QH(0).

Finally Gronwall’s Lemma leads to

QH +

∫ t

0

QH(s)ds+

∫ t

0

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds ≤

1

min{1, 2k1, 2(D0 −Dv
2
Ekδ2)}

QH(0)e
c̄t, (2.57)

where c̄ is defined by (2.14).

This last inequality establishes that QH ,

∫ t

0

QH(s)ds and
∫ t

0

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds are bounded for bounded intervals of time. Inequality

(2.57) can be improved by eliminating the exponential factor in its right hand
side. Analogously as in the previous section, following [25] and the proof of
the Theorem 1 the next result can be proved.
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Theorem 4. If D0, Dv, E, k and µ are such that (2.21) holds, then there
exists γ ∈ (0, E

µ
) such that

QH +

∫ t

0

e−2γ(t−s)QH(s)ds+

∫ t

0

e−2γ(t−s)

∥∥∥∥∇HC1H(s)

∥∥∥∥
2

H

ds ≤

Ce−2γtQH(0), t ≥ 0,

where C is defined by (2.23). �

2.5 Energy estimates for the fully discrete implicit-explicit

approximation

In this section, following [44], we analyze a fully discrete FDM that can
be obtained by combining the spatial discretization introduced in the last
section with an implicit-explicit Euler’s method to integrate in time and a
rectangular rule to discretize the time integral term in (2.51). An essential
tool is the following lemma:

Lemma 2. (Discrete Gronwall inequality (Lemma 4.3 of [45])) Let {ηn} be
a sequence of nonnegative real numbers satisfying

ηn ≤

n−1∑

j=0

wjηj + βn for n ≥ 1,

where wj ≥ 0 and {βn} is a nondecreasing sequence of nonnegative numbers.
Then

ηn ≤ βn exp(

n−1∑

j=0

wj) for n ≥ 1.

�

We introduce in [0, T ] a uniform grid {tn, n = 0, . . . , N∆t} with t0 = 0,
tN∆t

= T and tn − tn−1 = ∆t.
Let D−t be the backward finite-difference operator. Then the fully dis-

crete approximation for the concentration C1, C1
m
H , and for the molecular
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weight M , Mm
H , are defined by the following set of equations

D−tC1
m+1
H = ∇∗

H · (D1(M
m
H )∇HC1

m+1
H )

− ∆tEk
m∑

j=0

e−
E
µ
(tm+1−tj)∇∗

H · (Dv∇HC1
j
H)

− k1C1
m+1
H in Ω1H , (2.58)

D−tM
m+1
H + β1M

m
H = β2C

m+1
1H in Ω1H , (2.59)

for m = 0, . . . , N∆t − 1, with initial conditions

C1
0
H = RHC0, M0

H = RHM0 in Ω1H , (2.60)

and the boundary conditions

C1
m
H = 0 on ∂Ω1H for m = 1, . . . , N△t, (2.61)

Mm
H = M0e

−β1tm on ∂Ω1H for m = 1, . . . , N△t. (2.62)

We study in what follows the qualitative behaviour of the energy functional

Qn
H =

∥∥∥∥C1
n
H

∥∥∥∥
2

Ω1H

, n = 0, . . . , N∆t. (2.63)

Multiplying (2.58) by Cm+1
1H , with respect to the inner product (·, ·)Ω1H

, we
obtain

(C1
m+1
H , Cm+1

1H )Ω1H
− (C1

m
H , C

m+1
1H )Ω1H

+∆t
(
D1(M

m
H )∇HC1

m+1
H ,∇HC

m+1
1H

)
H

= ∆t2Ek

m∑

j=0

e−
E
µ
(tm+1−tj)(Dv∇HC1

j
H ,∇HC

m+1
1H )H

−∆tk1(C1
m+1
H , Cm+1

1H )Ω1H
, (2.64)

for m = 0, . . . , N∆t − 1.
Considering Cauchy-Schwarz inequality and the conditions on D1 and Dv

as in the previous section, we establish

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

−

∥∥∥∥C1
m
H

∥∥∥∥
2

Ω1H

+ 2∆tD0

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
2

H

≤
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2∆t2EkDv

m∑

j=0

e−
E
µ
(tm+1−tj)

∥∥∥∥∇HC1
j
H

∥∥∥∥
H

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
H

− 2∆tk1

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

. (2.65)

As we have

∆tEkDv

m∑

j=0

e−
E
µ
(tm+1−tj)

∥∥∥∥∇HC1
j
H

∥∥∥∥
H

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
H

≤

EkDv
2
δ2
∥∥∥∥∇HC1

m+1
H

∥∥∥∥
2

H

+
TEk∆t

4δ2

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

,

where δ 6= 0 is an arbitrary constant, from (2.65) we deduce

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

−

∥∥∥∥C1
m
H

∥∥∥∥
2

Ω1H

+ 2D0∆t

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
2

H

≤

2∆tEkDv
2
δ2
∥∥∥∥∇HC1

m+1
H

∥∥∥∥
2

H

+
Ek∆t2T

2δ2

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

− 2∆tk1

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

.

So we have

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

−

∥∥∥∥C1
m
H

∥∥∥∥
2

Ω1H

+ 2∆tk1

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

+ 2∆t(D0 − EkDv
2
δ2)

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
2

H

≤

Ek∆t2T

2δ2

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

. (2.66)
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Summing (2.66) over m = 0, . . . , n− 1, we get

∥∥∥∥C1
n
H

∥∥∥∥
2

Ω1H

−

∥∥∥∥C1
0
H

∥∥∥∥
2

Ω1H

+ 2∆tk1

n−1∑

m=0

∥∥∥∥C1
m+1
H

∥∥∥∥
2

Ω1H

+ 2∆t(D0 −EkDv
2
δ2)

n−1∑

m=0

∥∥∥∥∇HC1
m+1
H

∥∥∥∥
2

H

≤

Ek∆t2T

2δ2

n−1∑

m=0

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

,

and consequently

∥∥∥∥C1
n
H

∥∥∥∥
2

Ω1H

+ 2∆tk1

n∑

m=0

∥∥∥∥C1
m
H

∥∥∥∥
2

Ω1H

+ 2∆t(D0 − EkDv
2
δ2)

n∑

m=0

∥∥∥∥∇HC1
m
H

∥∥∥∥
2

H

≤

(1 + 2∆tk1)

∥∥∥∥C1
0
H

∥∥∥∥
2

Ω1H

+ 2∆t(D0 − EkDv
2
δ2)

∥∥∥∥∇HC1
0
H

∥∥∥∥
2

H

+
n−1∑

m=0

Ek∆tT

2δ2
∆t

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

. (2.67)

Choosing in (2.67) δ such that (2.12) holds, we obtain

∥∥∥∥C1
n
H

∥∥∥∥
2

Ω1H

+∆t
n∑

m=0

∥∥∥∥C1
m
H

∥∥∥∥
2

Ω1H

+∆t
n∑

m=0

∥∥∥∥∇HC1
m
H

∥∥∥∥
2

H

≤

n−1∑

m=0

φ1∆t

m∑

j=0

∥∥∥∥∇HC1
j
H

∥∥∥∥
2

H

+ φ2

(
(1 + 2∆tk1)

∥∥∥∥C1
0
H

∥∥∥∥
2

Ω1H

+ 2∆t(D0 − EkDv
2
δ2)

∥∥∥∥∇HC1
0
H

∥∥∥∥
2

H

)

with

φ1 =
EkT∆t
2δ2

min
{
1, 2k1, 2(D0 − EkDv

2
δ2)
} , (2.68)
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and

φ2 =
1

min
{
1, 2k1, 2(D0 −EkDv

2
δ2)
} . (2.69)

An application of the discrete Gronwall’s Lemma, leads to the following
theorem for the energy functional defined by (2.63).

Theorem 5. If D0, Dv, E and k are such that equation (2.12) holds, then
the energy functional defined by (2.63) satisfies

Qn
H +∆t

n∑

m=0

Qm
H +∆t

n∑

m=0

∥∥∥∥∇HC1
m
H

∥∥∥∥
2

H

≤

C̃

(
(1 + 2∆tk1)Q

0
H + 2∆t(D0 −EkDv

2
δ2)

∥∥∥∥∇HC1
0
H

∥∥∥∥
2

H

)
, (2.70)

with

C̃ = φ2 exp(φ2
EkT 2

2δ2
), (2.71)

where φ2 is defined by (2.69). �

2.6 Numerical simulations

In this section we present some numerical results that illustrate the behaviour
of the system composed by the IBVP (2.9) and the third equation in (2.1).
The influence of the parameters of the model is also analyzed.

2.6.1 One dimensional case

In order to study the influence of the parameters and the behaviour of the
model we consider in what follows Ω1 = (0, 1). The results are obtained
with the one dimensional version IMEX method (2.58) defined by using an
implicit-explicit Euler method to integrate (2.41)-(2.45) and a rectangular
rule to integrate the time integral in (2.41).

The values used for the parameters and initial values of the variables are
presented in Table 2.1. We observe that the values in Table 2.1 satisfy the
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Variable/ Unit Value Equation
Parameter

C0 mol/mm3 1 (2.6)
M0 Da 5× 10−1 (2.2)
D0 mm2/s 10−2 (2.6)
Dv mol/(mm.s.Pa) 10−4 (2.1)
k1 1/s 10−3 (2.1)
k mm3/mol 1 (2.4)
k̄ – 1 (2.2)
µ Pa.s 10−3 (2.1)
E Pa 10−4 (2.1)
β1 1/s 10−1 (2.1)
β2 Da.mm3/(mol.s) 10−3 (2.1)
∆t s 10−3 (2.58)
h mm 10−2 (2.41)

Tab. 2.1: Values of the parameters and variables at t = 0. The column on the
right display the number of the equation where they first appear.
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Fig. 2.1: Concentration at different times.
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constraints in Theorem 1.

In Figure 2.1 the evolution of C1 in time is illustrated. As expected the
drug concentration decreases in time.

The evolution of M is plotted in Figure 2.2. The decrease in time of the
molecular weight is a consequence of the polymer degradation. In fact as
a solvent penetrates a degradable matrix the polymeric chains are broken
and consequently they loose molecular weight. To observe that the evolution
inside the polymer is not spatially homogeneous, a zoom of the plot of the
molecular weight at t = 6s is presented in Figure 2.2 (right).
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Fig. 2.2: Molecular weight at different times (left) and a zoom of molecular weight
at t = 6s (right).

In Figure 2.3 the influence of the diffusion coefficient on the released mass
is shown. As the diffusion coefficient of the drug in the non hydrolyzed poly-
mer, D0, increases the released mass increases because the diffusion process
becomes faster. Consequently, as D0 increases, the concentration inside the
polymer decreases.

The influence of the degradation rate is presented in Figure 2.4. As ex-
pected if the degradation rate increases the delivery rate of the drug also
increases. In Figure 2.4 (right) we observe that the increase of the degrada-
tion rate is closely related with the loss of molecular weight.

In Figure 2.5 we illustrate the dependence of the released mass on the
viscoelastic diffusion coefficient Dv. We observe that the polymer acts as a
barrier that difficults drug diffusion. The drug molecules strain the polymer
and it exerts a stress of opposite sign. The non Fickian flux −Dv∇σ is,
in a certain sense an antiflux which decreases the Fickian flux −D1∇C1.
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Fig. 2.3: Influence of the diffusion D0 on the released mass.
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In agreement with this description, the increase of Dv represents a large
opposition of the polymer and consequently leads to a delay in the release.
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Fig. 2.5: Influence of viscoelastic diffusion Dv on the released mass.

In Figure 2.6 the influence of Young modulus, E, on the drug concentra-
tion inside the polymer is presented at t = 6s. To explain the behaviour in
Figure 2.6 we must consider the relation existing between Young modulus
and the crosslinks between the polymeric chains. These crosslinks are bonds
that link the polymeric chains. More crosslinks exist in a polymeric material
and less flexible in the material. The crosslink density of a polymer is pro-
portional to Young modulus E and consequently as this constant increases
the polymer offers more resistance to the exit of the drug, which is delayed.

2.6.2 Two dimensional case

We consider Ω1 = [0, 1] × [0, 1] and h1 = h2. The numerical results that
we presented in what follows were obtained with the IMEX method (2.58)-
(2.62) and with the diffusion tensor of the drug in the non hydrolyzed polymer
D0I2 and with the viscoelastic tensor DvI2 where I2 is the identity matrix.
The values of the parameters presented in Table 2.1 have been used.

In Figure 2.7 we present plots of the concentration of drug at t = 0.1s,
t = 1s, t = 5s and t = 10s. As expected the concentration decreases as time
increases.
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Fig. 2.6: Influence of Young modulus E on the drug concentration in the polymeric
matrix at t = 6s.

In Figure 2.8 we present the molecular weight for different times. We
observe that due to polymer degradation the molecular weight decreases.

2.7 Final comments

A model to simulate transport through a biodegradable viscoelastic mate-
rial is studied. The analytical treatment of the system of partial differen-
tial equations lead to the establishment of stability results. The influence
of mechanistic and degradation parameters is analyzed, showing agreement
with the physical behaviour. We believe that with future improvements the
model can be used as a tool to design biodegradable polymers with predefined
properties.
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Fig. 2.7: Concentration of drug at different times.
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Fig. 2.8: Molecular weight of the polymer at different times.



3. DRUG DELIVERY FROM AN OCULAR IMPLANT
INTO THE VITREOUS CHAMBER OF THE EYE

In this chapter we present a medical application of a biodegradable viscoelas-
tic drug eluting implant. As described in Chapter 1 this type of implant is
used for instance in the vitreous chamber of the eye to release drug to the
retina ([27]). The model presented here describes in vivo drug delivery as it
couples system (2.1) with the kinetics of drug in the vitreous chamber of the
eye. The geometry of the vitreous chamber of the eye and of the intravitreal
implant are described and the mathematical coupled model is presented. We
briefly explain the mass behaviour of the materials within a phenomenologi-
cal approach. We present a variational formulation for the continuous model
and using an implicit-explicit finite element method, we establish a discrete
variational form. Finally, numerical simulations that illustrate the kinetics
of the drug release and show the effect of degradation and viscoelasticity are
exhibited in the last section.

3.1 Geometry

The 2D geometric model of the human eye adopted in the present study is
shown in Figure 3.1 and is based on physiological dimensions ([31]). The
vitreous chamber, Ω2, is mainly composed by vitreous humor and it occupies
about two-thirds of the eye. The lens is located behind the iris and is modeled
here as an ellipsoid. The hyaloid membrane and the lens separate the anterior
chamber and the posterior chamber of the eye from the vitreous chamber.
The retina forms the boundary of the vitreous on the posterior surface and
is modeled as a spherical surface with a radius of 11 mm. The intravitreal
implant, Ω1, is placed into the vitreous, as shown in Figure 3.1, and it is
geometrically represented by a cylinder with radius 0.023 mm and height 0.6
mm.
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Hyaloid membrane

∂Ω2

Hyaloid membrane

∂Ω3Lens

∂Ω4

Retina
∂Ω5

Vitreous chamber

Ω2

Ω1 ∂Ω1

Fig. 3.1: Top: Anatomy of the human eye(http://marcelohosoume.blogspot.pt
/2010/10/iluvien-and-future-of-ophthalmic-drug.html)
Bottom: Geometry of the vitreous chamber of the human eye(Ω2),
hyaloid membrane(∂Ω2, ∂Ω3), lens (∂Ω4), retina(∂Ω5), ocular implant
(Ω1) and its boundary (∂Ω1).
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3.2 Mathematical model

The implant, Ω1, containing dispersed drug, is placed into the vitreous, near
the retina (Figure 3.1-Bottom). The drug is released in a controlled manner
through the vitreous which is a porous media, and its target is the retina
affected by an inflammatory process.

The diffusion-reaction equation that describes the drug kinetics in the
polymeric implant is represented by system (2.1), completed with initial con-
ditions (2.6). We couple with this system the drug dynamics in the vitreous,
where the diffusion of drug occurs from the polymer towards the vitreous and
the retina. Mass transport in the vitreous is described by diffusion and con-
vection. Convection is due to the steady permeation of the aqueous humor
through the vitreous, and diffusion is driven by the concentration gradient
([31]). To simulate the kinetics of the drug in the vitreous we use a diffusion-
convection equation where the permeation velocity of the aqueous humor is
given by Darcy’s law ([29, 31, 32, 34, 46, 47]), as follows:

∂C2

∂t
+∇ · (C2v)−∇ · (D2∇C2) = 0 in Ω2 × (0, T ], (3.1)

and




v = −

K

µ1
∇p in Ω2 × (0, T ],

∇ · v = 0 in Ω2 × (0, T ].
(3.2)

In equation (3.1) C2 represents the concentration of the drug in the vitre-
ous, D2 is the diffusion tensor of the drug in the vitreous and v is the velocity
of aqueous humor permeation given by (3.2). In this last system K is the
permeability of the vitreous and µ1 is the viscosity of the permeating aqueous

humour ([31]). The term
K

µ1
is referred to as the hydraulic conductivity.

3.3 Initial and boundary conditions

Equations (2.1), (3.1) and (3.2) are completed with initial conditions repre-
sented by
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C1(0) = C0 in Ω1,

σ(0) = σ0 in Ω1,

M(0) = M0 in Ω1,

C2(0) = 0 in Ω2.

(3.3)

Boundary conditions of different types will be used in the model:

- Boundary conditions for the pressure:

p = 2000 Pa on (∂Ω2 ∪ ∂Ω3)× (0, T ],

and
p = 1200 Pa on ∂Ω5 × (0, T ].

We note that ∂Ω2 ∪ ∂Ω3 represents the hyaloid membrane and ∂Ω5

represents the retina. The two previous values of the pressure that we
have considered correspond to a limit value of an healthy intraocular
pressure in the anterior chamber near the lens and a normal pressure
of the blood system, respectively.

- As the retina is a permeable membrane, a realistic boundary condition
can be defined by

J2 · η = ArC2 on ∂Ω5 × (0, T ],

where J2 = −D2∇C2 + vC2 stands for the flux, η is the unit outward
normal to ∂Ω5 and Ar is the permeability constant of the retina. The
convective part of the flux is due to a convective field generated by the
porous structure of the vitreous.

As the lens and the hyaloid membrane are not permeable to the drug
then

J2 · η = 0 on (∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4)× (0, T ],

where η is the unit outward normal to ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4.

- Wall conditions for the velocity: we assume a no slip condition for the
velocity

v · η = 0, (3.4)

on the boundary ∂Ω4 of the vitreous chamber Ω2 and on the boundary
∂Ω1 of the implant Ω1 (Figure 3.1-Bottom), that is the fluid has zero
velocity with respect to the normal to the boundary ∂Ω1 ∪ ∂Ω2\∂Ω5.
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- Interface boundary conditions for the flux of drug: on the boundary of
the implant

J1 · ηθ = Ac(C1 − C2) on ∂Ω1 × (0, T ],

J1 · ηθ = −J2 · ηi on ∂Ω1 × (0, T ],

where J1 = −D1(M)∇C1 −Dv∇σ, Ac is the permeability constant
and ηθ and ηi are the unit outward and inward normals to ∂Ω1. As
ηθ = −ηi, the last equation represents the continuity of the flux on
∂Ω1.

The previous boundary and interface conditions are summarized as fol-
lows: 




J2 · η = ArC2 on ∂Ω5 × (0, T ],

p = 2000 on (∂Ω2 ∪ ∂Ω3)× (0, T ],

p = 1200 on ∂Ω5 × (0, T ],

v · η = 0 on (∂Ω1 ∪ ∂Ω4)× (0, T ],

J2 · η = 0 on (∂Ω2 ∪ ∂Ω3 ∪ ∂Ω4)× (0, T ],

J1 · ηθ = Ac(C1 − C2) on ∂Ω1 × (0, T ],

J1 · ηθ = −J2 · ηi on ∂Ω1 × (0, T ].

(3.5)

3.4 Qualitative behaviour of the total mass

In what follows we analyze the time behaviour of the total mass of drug,

M(t) =

∫

Ω1

C1dX +

∫

Ω2

C2dX,

where Ω1 and Ω2 stand for the implant and the vitreous chamber, respec-
tively.
As we have

M′(t) =

∫

Ω1

∂C1

∂t
dX +

∫

Ω2

∂C2

∂t
dX,

for C1 and C2 regular enough considering the first equation of (2.1), equation
(3.1) and integrating by parts, we obtain

M′(t) =

∫

∂Ω1

(
D1(M)∇C1 +Dv∇σ

)
ηds−

∫

Ω1

k1C1dX

+

∫

Γ

(
D2∇C2 − C2v

)
ηds,
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where Γ =

5⋃

i=1

∂Ωi. Taking into account the boundary conditions (3.5), we

get

M′(t) = −k1

∫

Ω1

C1dX − Ar

∫

∂Ω5

C2ds,

that leads to

M(t) +

∫ t

0

∫

Ω1

k1C1(τ)dXdτ +

∫ t

0

∫

∂Ω5

ArC2(τ)dsdτ = M(0).

Phenomenologically, we can assume that the second and third terms of the
left side of the last equality are positive. We can then conclude that M(t) ≤
M(0).

3.5 Weak formulation

3.5.1 Weak formulation of Darcy’s Law

To introduce a variational formulation of the boundary value problem defined
by the system (3.2) we start by writing such system in the following form:

−∇ · (
K

µ1
∇p) = 0 in Ω2,

which is complemented by the boundary conditions

p = 2000 Pa on ∂Ω2 ∪ ∂Ω3,

p = 1200 Pa on ∂Ω5,

∇p · η = 0 on ∂Ω1 ∪ ∂Ω4.

Let

V =
{
v ∈ H1(Ω2) : ∇v · η = 0 on ∂Ω1 ∪ ∂Ω4

}
,

and

VD =
{
v ∈ H1(Ω2) : v = 0 on ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5

}
.

We then consider the following variational problem:
Find p ∈ V such that



p = 2000 on ∂Ω2 ∪ ∂Ω3, p = 1200 on ∂Ω5,

(
K

µ1
∇p,∇u) = 0, ∀u ∈ VD.

(3.6)
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3.5.2 Weak formulation of the coupled problems

We introduce a variational problem induced by the concentration equations
(2.1), (3.1), (3.3) and (3.5). Let C in Ω = Ω1 ∪ Ω2 be defined by

C =

{
C1 in Ω1,

C2 in Ω2,
(3.7)

and the diffusion tensor of the drug by

D =

{
D0e

k̄
M0−M

M0 in Ω1,

D2 in Ω2.
(3.8)

We replace (2.1), (3.1), (3.3) and (3.5) by the following variational prob-
lem:

Find C ∈ H1(Ω), σ ∈ H1(Ω1) and M ∈ L2(Ω1), such that
∂C

∂t
∈ L2(Ω),

∂σ

∂t
,
∂M

∂t
∈ L2(Ω1) and





(∂C
∂t

, v
)
Ω
+
(∂σ
∂t

, w1

)
Ω1

+
(∂M

∂t
, w2

)
Ω1

= −(D∇C,∇v)Ω

−(Dv∇σ,∇v)Ω1
− k1(C, v)Ω1

+ (vC,∇v)Ω2

−
E

µ
(σ, w1)Ω1

+ E(C,w1)Ω1
− β1(M,w2)Ω1

+β2(C,w2)Ω1
−
(
ArC, v

)
∂Ω5

,

∀v ∈ H1(Ω), ∀w1 ∈ H1(Ω1), ∀w2 ∈ L2(Ω1),

C(0) = Ĉ0, σ(0) = σ0, M(0) = M0,

(3.9)

where

Ĉ0 =

{
C0 in Ω1,

0 in Ω2.

3.6 Finite element approximation

To define a finite element approximation for the solution of (3.6) coupled with
(3.9), we introduce in Ω = Ω1 ∪ Ω2 an admissible triangulation Jh defining
in Ω1 and Ω2 two compatible triangulations Jh,1 and Jh,2, respectively, that
is, triangulations that share the same edges on ∂Ω1 (Figure 3.2-Bottom).
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Fig. 3.2: Admissible triangulation with 30042 elements (top) and a zoom of the
mesh near the implant (bottom).
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3.6.1 Darcy’s Law

To define a finite dimensional approximation for the solution of the varia-
tional problem (3.6) we introduce

Vh(Ω2) =
{
v ∈ C0(Ω2) : v |k is linear, k ∈ Jh,2, ∇v · η = 0 on ∂Ω1 ∪ ∂Ω4

}
,

VD,h(Ω2) =
{
v ∈ C0(Ω2) : v |k is linear, k ∈ Jh,2, v = 0 on ∂Ω2 ∪ ∂Ω3 ∪ ∂Ω5

}
,

then the finite dimensional approximation for the pressure is obtained solving
the variational problem:
Find ph ∈ Vh such that




ph = 2000 Pa on ∂Ω2 ∪ ∂Ω3, ph = 1200 Pa on ∂Ω5,

(
K

µ1
∇ph,∇vh) = 0, ∀vh ∈ VD,h(Ω2).

The finite dimensional approximation for the velocity is then obtained con-

sidering vh = −
K

µ1
∇ph.

3.6.2 Coupled problems

To compute the numerical approximations for the concentration, stress and
molecular weight we introduce the following finite dimensional spaces

V 0
h (Ω1) =

{
v : Ω1 7→ R, v |k is constant, k ∈ Jh,1

}
,

Vh(Ω1) =
{
v ∈ C0(Ω1) : v |k is linear, k ∈ Jh,1

}
,

Vh(Ω) =
{
v ∈ H1(Ω) : v |k is linear, k ∈ Jh

}
.

So, the variational problem (3.9) is replaced by the finite dimensional varia-
tional problem:
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Find Ch ∈ Vh(Ω), σh ∈ Vh(Ω1), Mh ∈ V 0
h (Ω1) such that





(∂Ch

∂t
, vh

)
Ω
+
(∂σh

∂t
, w1

)
Ω1

+
(∂Mh

∂t
, w2

)
Ω1

= −(Dh∇Ch,∇vh)Ω − (Dv∇σh,∇w1)Ω1

−k1(Ch, vh)Ω1
+ (vC,∇vh)Ω2

−
E

µ
(σh, w1)Ω1

+ E(Ch, w1)Ω1
− β1(Mh, w2)Ω1

+β2(Ch, w2)Ω1
−
(
ArCh, vh

)
∂Ω5

,

∀vh ∈ Vh(Ω), ∀w1 ∈ Vh(Ω1), ∀w2 ∈ V 0
h (Ω1),

Ch(0) = PC,hĈ0, σh(0) = Pσ,hσ0, Mh(0) = PM,hM0,

(3.10)

where PC,h, Pσ,h and PM,h denote the projection operators in the spaces
Vh(Ω), Vh(Ω1) and V 0

h (Ω1), respectively.
In (3.10) Dh is defined by

Dh =

{
D0e

k̄
M0−Mh

M0 in Ω1,

D2 in Ω2.

3.7 Numerical simulations

In this section we illustrate the behaviour of drug concentration in the im-
plant and in the vitreous chamber. In the time integration of the differential
problem for the finite element solutions an adaptive Backward Differentia-
tion Formula with order between 1 and 2, with adaptive time step, has been
used ([48]). The results that we present in this section were obtained using
the software Comsol (v4.2a).

The values of some of the constants used to model the implant are not
available in the literature. In these cases we use values that make physical
sense but that may not correspond to the exact characteristics of the intrav-
itreous implants in the market. For this reason the present study has, for
the moment, mainly a qualitative character.

The numerical simulations have been obtained with C0 = 1.7887 × 10−6

mol/mm3, M0 = 0.5 × 10−6Da and σ0 = 0.5 × 10−6 Pa, representing the
initial drug concentration, initial stress and the initial molecular weight in the
implant, respectively. All the units of the variables and parameters are listed
in Table 3.1. The units are selected such that the equations are dimensionally
correct.
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The diffusion tensor of the drug in the implant is defined considering
D0 = 1 × 10−11I2 in (3.8), where I2 is the identity matrix, and its diffusion
tensor in the vitreous is defined by D2 = 1 × 10−8I2. We recall that the
diffusion tensor in the polymer will increase as the molecular weight decreases
that is as degradation occurs. We took the viscoelastic tensor DvI2. We

Variable/ Unit Value Equation
Parameter

k1 1/s 10−10 (3.9)
β1 1/s 5× 10−4 (3.9)
β2 Da.mm3/(mol.s) 10−9 (3.9)
µ Pa.s 2× 10−8 (3.9)
E Pa 10−7 (3.9)
k mm3/mol 10−4 (3.9)
k̄ – 1 (3.8)
Ac mm/s 5× 10−5 (3.5)
Dv mol/(mm.s.Pa) 10−11 (3.5)
K
µ1

mm2/(Pa.s) 8.4× 10−8 (3.2)

Ar mm/s 5× 10−3 (3.5)

Tab. 3.1: Values of the parameters. The column on the right display the number
of the equation where they first appear.

observe that the parameters which are used in the numerical simulations are
in agreement with condition (2.21) imposed in Theorem 1.

In Figure 3.3 the drug concentration at time t = 5min and t = 2 h are
presented. It can be observed that as time evolves the drug is released and
less drug concentration is inside the implant. As expected the concentration
for t = 5min is higher than the concentration for t = 2 h.

The pressure in the vitreous chamber is shown in Figure 3.4. The evo-
lution of the pressure from the top (p = 2000Pa) to the boundary of the
vitreous chamber, that is in contact with the retina (p = 1200Pa), can be
observed.

In Figure 3.5 the drug concentration in the vitreous chamber is plotted
for t = 5min and t = 2 h.

During the first instants of the delivery process, no drug is observed in
the vitreous, except near the ocular implant, and as time increases more
drug concentration is available to diffuse. For a better understanding of the
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Fig. 3.3: Drug concentration in the implant at t = 5min (left) and t = 2h (right).

Fig. 3.4: Steady pressure in the vitreous chamber.
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Fig. 3.5: Drug concentration in the vitreous chamber at t = 5min (left) and t = 2h
(right).

qualitative behaviour of the drug concentration in the vitreous chamber, we
present in Figure 3.6, the plot of the mean drug concentration vs time inside
the implant and the vitreous chamber. It can be observed that the drug
concentration in the vitreous chamber increases until it attains a maximum
value at t = 30min; for t > 30min the drug concentration decreases until
no drug concentration is present in the ocular implant. This qualitative be-
haviour is in agreement with medical data, which suggest that for a duration
of T units of time the maximum concentration of drug is attained for T ,
where T

4
< T < T

3
.

Fig. 3.6: Mean drug concentration in the implant (left) and in the vitreous chamber
(right) during two hours.

In Figure 3.7 the influence of the degradation rate is illustrated: a smaller
value of β1 leads to a slower degradation process and consequently more
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Fig. 3.7: Mean drug concentration in the implant during two hours- influence of
degradation rate.

concentration is observed inside the polymeric implant.

In Figure 3.8 the influence of Young’s modulus is illustrated. As expected
the increase of Young’s modulus, E, delays the drug release and consequently
more drug concentration is observed inside the polymer. In fact as crosslink-
ing density is proportional to E, the larger is this parameter, the stiffer is
the material and a more significant barrier difficults the release of drug.

In Figure 3.9 the influence of the diffusion tensor of drug in the non
hydrolyzed polymer, D0I2, on the mean drug concentration in the vitreous
is shown. We observe that as D0 increases the drug concentration increases
because the diffusion process becomes faster.

In Figure 3.10 we observe that increasing the diffusion coefficient D2 of
drug in the vitreous, the drug concentration is decreasing as expected.

3.8 Final comments

A coupled model to simulate in vivo drug delivery from an intravitreal vis-
coelastic biodegradable implant has been developed. The whole process is
described by a set of partial differential equations that take into account pas-
sive diffusion, convection resulting from the permeation of aqueous humor,
stress driven diffusion and the degradation of the polymer. To the best of
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Fig. 3.8: Influence of E on the mean drug concentration in the implant around
t = 1h.

Fig. 3.9: Influence of parameterD0 on the mean drug concentration in the vitreous.
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Fig. 3.10: Influence of parameter D2 on the mean drug concentration in the vitre-
ous.

our knowledge the dynamics of drug desorption has not been described so far
in the literature considering the simultaneous interplay between mechanical,
physical and chemical effects. The numerical simulations show qualitative
agreement with the physical expected behaviour. The model clarifies the
large influence of the degradation parameter in sustained drug delivery. The
viscoelastic properties of the polymeric implant are also shown to be an ef-
fective control mechanism to delay or to speed up the release of drug. Math-
ematical modeling is a unique tool to explain transport mechanisms, and to
help in implant design, avoiding expensive and extensive experimentation.
In future work physical values for all the parameters of the model should
be retrieved. Also more realistic mechanical models will be considered and
the heterogeneous structure of the vitreous, that is characteristic of elderly
patients, should be taken into account.



4. A COMPLETE MODEL OF IN VITRO DELIVERY:
FROM SOLVENT SORPTION TO DRUG RELEASE

In this chapter we present a mathematical model for drug delivery from vis-
coelastic polymers characterized by bulk erosion. In the previous chapters
we study the process assuming that solvent uptake was instantaneous and
we assumed that the swell of the polymer under contact with the solvent
was instantaneous. In this chapter we describe mathematically the whole
process: the solvent uptake, drug dissolution, followed by drug diffusion, the
progressive bulk degradation of the polymer, and the release of drug from the
polymer in the external medium. The interplay between these phenomena
is described by a system of partial differential equations linked by interface
conditions. We study the stability of the mathematical model studying lin-
earized versions for small and large times. An IMEX method is proposed
and its convergence is numerically studied. The qualitative behaviour of the
model will be also analyzed numerically.

In [22] the authors address the problem of drug delivery from a biodegrad-
able polymer. However the rheological behaviour of the matrix is not con-
sidered. Moreover the authors in [22] are not concerned with the theoretical
study of the model they propose.

4.1 Mathematical model

We consider a biodegradable viscoelastic polymeric matrix Ω ⊂ R
2 with

boundary ∂Ω, and with a limited amount of drug dispersed. The matrix
is in contact with a solvent. As the solvent diffuses into the matrix, an
hydratation process takes place that modifies the viscoelastic properties of
the polymer, and its molecular weight that decreases. The drug dissolves,
diffuses and is released in the external medium.

In what follows we consider a set of partial differential equations that
describe the entrance of a solvent, as for example water, into the polymer



70 4. A complete model of in vitro delivery: from solvent sorption to drug release

and its consumption in the hydrolysis process, the decreasing of the molecular
weight, the evolution of the stress and strain, the dissolution process and the
diffusion of the dissolved drug:





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)− kCWM in Ω× (0, T ],

∂M

∂t
= −kCWM in Ω× (0, T ],

∂σ

∂t
+

E(M)

µ(M)
σ = −E(M)

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −kdisCSnCAnCWn in Ω× (0, T ],

∂CA

∂t
= ∇ · (D(M)∇CA) + kdisCSnCAnCWn in Ω× (0, T ].

(4.1)

In (4.1) CW , CS and CA represent the concentration of solvent, let us say
water, solid drug and dissolved drug in the polymeric matrix, respectively,
M is the molecular weight of the polymer and σ is the stress response to
the strain exerted by the water molecules. We remark that in the partial
differential system considered in [22] the viscoelastic response of the polymer
to the uptake of water was not considered (see for instance [49, 50, 51, 52,
53, 54]).

The first diffusion-reaction equation of (4.1) describes the diffusion of
water into the matrix and its consumption in the hydrolysis of the polymer
matrix. In this equation DW represents the diffusion tensor of water in the
polymeric matrix. The viscoelastic behaviour of the matrix is taken into
account by the term ∇ · (Dv∇σ), where Dv is a viscoelastic tensor and σ
is the stress response of the matrix to the strain exerted by the incoming
molecules of solvent. This term represents the opposition of the polymer
to the entrance of the solvent. In the previous chapters the viscoelastic
behaviour of the polymer is also taken into account but as a response of the
polymeric matrix to the strain exerted by the dispersed drug. No other type
of strain was considered because our description of the process begin, in those
chapters, with a polymer completely swelled. In (4.1) we assume that the
main viscoelastic response is due to the strain exerted by the incoming fluid
and the strain of the diffusing drug is neglected. This is the case of drug
molecules, which are much smaller than the void spaces in the matrix. For
this reason in the last equation of (4.1) which represents the dissolved drug,
CA, we just include Fickian diffusion and a source term that quantifies the
dissolution of solid drug as we detail in what follows.
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Since water diffuses into the polymeric matrix the molecules of water
react with the molecules of polymer and polymer bonds are broken leading
to a decrease in the molecular weight of the polymeric matrix. This process
is described by the second equation of (4.1). The term −kCWM represents
the degradation of the polymer in contact with the water, with rate k, due
to the hydrolysis of the polymer matrix.

As in Chapter 2, the viscoelastic behaviour of the polymer can be mod-
elled by equation (2.3), where ǫ is the strain produced by the incoming water
molecules. As the polymer acts as a barrier to the entrance of the water, then
σ and ǫ are of opposite sign, and a minus sign should be considered in the
right hand side of (2.3) ([35, 36, 37, 38, 39, 40]). We assume that the strain
and the concentration of water are proportional, that is, there is k1 > 0 such
that ǫ = k1CW .

In chapters 2 and 3 the Young modulus E and the viscosity µ are con-
sidered constants. In this chapter we assume that the Young modulus and
the viscosity depend on the molecular weight ([49, 50, 51, 52, 53, 54]). In
fact the Young modulus varies significantly in a biodegradable polymeric
matrix due to the heterogeneous nature of the hydrolysis reaction that leads
to the polymer-chain cleavages. As the degradation processes evolves, the
Young modulus decreases ([55]). We remark that Mark-Houwink equation
([56]) establishes a functional relation between the viscosity and the molec-
ular weight. We consider the particular expressions E(M) = E0M

α and
µ(M) = µ0M

β , where E0, µ0, α and β are constant (see [55, 56]).
The evolution in time of the solid drug is described by the fourth equation

of (4.1) where kdis is the dissolution rate, CSn is the normalized concentration
of solid drug in the polymeric matrix, CAn is the difference between the
dissolved drug concentration and its maximum solubility (CAmx), normalized

by CAmx and CWn is the normalized concentration of water (
CW

CWout
). In this

case CWout is the concentration of water outside of the polymeric matrix. As
already mentioned the evolution of the concentration of dissolved drug in the
polymeric matrix is defined by the last equation of (4.1) where only Fick’s
second law and the dissolution source were taken into account.

Analogously, as in Chapter 2, the diffusion tensor of the dissolved drug
is defined by

D(M) = DAe
k̄
M0−M

M0 , (4.2)

where DA is the diffusion tensor of the drug in the non hydrolyzed polymer,
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M0 is its initial molecular weight and k̄ is a positive constant.
System (4.1) is completed with the initial conditions





CW (0) = 0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = 0 in Ω,

(4.3)

where σ0 represents the initial stress of the molecules of the polymer and CS0

is the initial solid drug concentration in the polymeric matrix.
Degradation of the polymeric matrix can be one of the two types: surface

and bulk. Surface degradation occurs because the degradation is faster than
the entrance of water in the system. The break of polymer chains occurs
mainly in the outermost polymer layers. Bulk degradation occurs when the
degradation is slower than the water uptake. The entirely system is rapidly
hydrated and polymer chains are cleaved through all polymer structure ([20,
21, 22, 23]).

In this chapter we consider that bulk degradation occurs. In this case the
physical domain will be maintained in time and system (4.1) is completed
with initial conditions (4.3) and the following boundary conditions

{
J · η = Ac(CW − CWout) on ∂Ω× (0, T ],

CA = 0 on ∂Ω× (0, T ].
(4.4)

In (4.4) J represents the flux of solvent defined by J = −DW∇CW −Dv∇σ,
η is the unit outward normal to ∂Ω and Ac is the permeability constant.
The second condition in (4.4) means that the dissolved drug that attains
the boundary is immediately removed. We will study the stability of the
mathematical model (4.1), (4.3) and (4.4). Numerical simulations will be
used to illustrate the qualitative behaviour of the model.

4.2 Stability analysis

In order to simplify the presentation, we assume in this section that E and
µ are constant. We also assume that the diffusion tensor is only space de-
pendent.
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To gain some insight on the stability behaviour of the initial value problem
(4.1),(4.3) and (4.4) we study in what follows the stability of a linearization
of (4.1) for short and long times. For short times we linearize the system in
the neighborhood of the initial state; for large times the system is linearized
in the neighborhood of the steady state solution. Let C̃W , M̃ , C̃A and C̃S be
a solution of (4.1). The linearized system at this solution can be written in
the following form





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)− kC̃WM − kM̃CW ,

∂M

∂t
= −kC̃WM − kM̃CW ,

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
,

∂CS

∂t
= −K

(
(CAmx − C̃A)C̃WCS − C̃W C̃SCA

+C̃S(CAmx − C̃A)CW

)
,

∂CA

∂t
= ∇ · (D∇CA) +K

(
(CAmx − C̃A)C̃WCS

−C̃W C̃SCA + C̃S(CAmx − C̃A)CW

)
,

(4.5)

where K =
kdis

CS0CAmxCWout
is a constant.

For small times the concentration of water and dissolved drug is very
small so we consider

C̃W = 0, C̃A = 0, C̃S = CS0, M̃ = M0. (4.6)

For large times, that is when the matrix is practically degraded and the drug
released, we assume

M̃ = 0, C̃W = CWout, C̃S = 0, C̃A = 0. (4.7)

Solution (4.6) defines the state of the system as t → 0. So for small times,
the stability of system (4.1) is obtained studying the stability of (4.5) and
(4.4) when (4.6) is considered. When t → +∞, the solution of system
(4.1) approaches the steady solution (4.7). In fact, phenomenologically, the
molecular weight decreases and vanishes, the concentration of water goes to
the equilibrium, that is CWout, the concentrations of solid and dissolved drug
inside of the polymeric matrix vanish.
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Stability for short times: To study the stability of (4.4) and (4.5), we
consider in this case





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)

−kM0CW in Ω× (0, T ],
∂M

∂t
= −kM0CW in Ω× (0, T ],

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −

kdis
CWout

CW in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CWout

CW in Ω× (0, T ],

(4.8)

where T > 0 is fixed, with the boundary conditions
{
J · η = AcCW on ∂Ω × (0, T ],

CA = 0 on ∂Ω × (0, T ].
(4.9)

In what follows we use the energy method to analyze (4.8) and (4.9)
complemented with the initial condition





CW (0) = CW0 in Ω,

σ(0) = σ0 in Ω,

M(0) = M0 in Ω,

CS(0) = CS0 in Ω,

CA(0) = CA0 in Ω.

(4.10)

From the third equation of (4.8) we easily get

σ =
E2

µ

∫ t

0

e−
E
µ
(t−s)CW (s)ds − ECW + ECW (0)e−

E
µ
t

+ σ(0)e−
E
µ
t, t ≥ 0, (4.11)

and using this equality in the first equation of (4.8) we obtain for CW the
following equation

∂CW

∂t
= ∇ · (D1∇CW ) +

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇CW (s))ds− kM0CW

+Ee−
E
µ
t∇.(Dv∇CW (0)) + e−

E
µ
t∇.(Dv∇σ(0)),

(4.12)
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where

D1 = DW −EDv, D2 =
E2

µ
Dv. (4.13)

We assume that, in (4.13), DW , Dv and D are 2 × 2 diagonal matrices and
E and µ are such that the entries of D1 and D2 are positive and satisfy the
following conditions:

D1,jj ≥ Dmin, D2,jj, Dv,jj ≤ Dmax, Djj ≥ D0, for j = 1, 2. (4.14)

Let V = H1(Ω) ×
(
L2(Ω)

)2
×H1

0 (Ω) and let (CW ,M,CS, CA) ∈ V be such

that
∂CW

∂t
,
∂M

∂t
,
∂CS

∂t
,
∂CA

∂t
∈ L2(Ω) and (4.10) holds and





(∂CW

∂t
, v1

)
= −(D1∇CW ,∇v1)

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇v1)ds

−(AcCW , v1)∂Ω − kM0(CW , v1)

+e−
E
µ
tE(∇ · (Dv∇CW (0)), v1)

+e−
E
µ
t(∇ · (Dv∇σ(0)), v1), ∀v1 ∈ H1(Ω),(∂M

∂t
, v2

)
= −k(M0CW , v2), ∀v2 ∈ L2(Ω),

(∂CS

∂t
, v3

)
= −

kdis
CWout

(CW , v3), ∀v3 ∈ L2(Ω),
(∂CA

∂t
, v4

)
= −(D∇CA,∇v4)

+
kdis

CWout
(CW , v4), ∀v4 ∈ H1

0 (Ω),

(4.15)

where the same notation is used to represent the usual inner products in

L2(Ω) and
(
L2(Ω)

)2
.

We establish in what follows an estimate for the energy functional

E(t) = ECM(t) +

∫ t

0

(∥∥∥∇CW (s)
∥∥∥
2

+
∥∥∥∇CA(s)

∥∥∥
2
)
ds, t ∈ [0, T ], (4.16)

with

ECM (t) =
∥∥∥CW (t)

∥∥∥
2

+
∥∥∥M(t)

∥∥∥
2

+
∥∥∥CS(t)

∥∥∥
2

+
∥∥∥CA(t)

∥∥∥
2

, (4.17)
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where the same notation ‖.‖ was used to represent the norm induced by the

usual inner products in L2(Ω) and
(
L2(Ω)

)2
.

Theorem 6. Let (CW ,M,CS, CA) ∈ V be a solution of the variational prob-
lem (4.15). Then

E(t) ≤
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
( µ

4Eǫ22

(
E2
∥∥∥∇ · (Dv∇CW (0))

∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ ECM(0)
)
ect (4.18)

where ǫ1 6= 0 satisfies

Dmin − ǫ21 > 0, (4.19)

and

c =
max

{
D2

maxµ

4ǫ21E
, 2ǫ23

(
k2M2

0 + 2
k2dis

C2
Wout

)
+ 4ǫ22 − 2kM0,

1
2ǫ23

}

min
{
1, 2(Dmin − ǫ21), 2D0

} (4.20)

with ǫ2, ǫ3 6= 0 arbitrary constants.

Proof. Taking in (4.15) v1 = CW , v2 = M, v3 = CS and v4 = CA, we easily
obtain from the first equation

1

2

d

dt

∥∥∥CW

∥∥∥
2

= −(D1∇CW ,∇CW )

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇CW )ds

−Ac

∥∥∥CW

∥∥∥
2

∂Ω
+ e−

E
µ
tE(∇ · (Dv∇CW (0)), CW )

+e−
E
µ
t(∇ · (Dv∇σ(0)), CW )− kM0

∥∥∥CW

∥∥∥
2

,

where ‖.‖∂Ω denotes the usual norm in L2(∂Ω). The remaining three equa-
tions of (4.15) lead to

1

2

d

dt

∥∥∥M
∥∥∥
2

= −kM0(CW ,M),
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1

2

d

dt

∥∥∥CS

∥∥∥
2

= −
kdis

CWout

(CW , CS),

and

1

2

d

dt

∥∥∥CA

∥∥∥
2

= −(D∇CA,∇CA) +
kdis

CWout
(CW , CA).

For any non zero constants ǫ1, ǫ2 and ǫ3 we have the following inequalities

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇CW )ds ≤ ǫ21

∥∥∥∇CW

∥∥∥
2

+
D2

maxµ

8ǫ21E

∫ t

0

∥∥∥∇CW (s)
∥∥∥
2

ds,

+e−
E
µ
tE(∇ · (Dv∇CW (0)), CW ) + e−

E
µ
t(∇ · (Dv∇σ(0)), CW )

≤
1

4ǫ22
e−2E

µ
t
(
E2
∥∥∥∇ · (Dv∇CW (0))

∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ 2ǫ22

∥∥∥Cw

∥∥∥
2

,

kM0(CW ,M) ≤ k2M2
0 ǫ

2
3

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥M
∥∥∥
2

,

kdis
CWout

(CW , CS) ≤
k2
dis

C2
Wout

ǫ23

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥CS

∥∥∥
2

,

kdis
CWout

(CW , CA) ≤
k2
dis

C2
Wout

ǫ23

∥∥∥CW

∥∥∥
2

+
1

4ǫ23

∥∥∥CA

∥∥∥
2

.

Summing up the preceeding three equations we obtain

d

dt
ECM + 2(Dmin − ǫ21)

∥∥∥∇CW

∥∥∥
2

+ 2D0

∥∥∥∇CA

∥∥∥
2

≤
D2

maxµ

4ǫ21E

∫ t

0

∥∥∥∇CW (s)
∥∥∥
2

ds

+
(
2ǫ23

(
k2M2

0 + 2
k2
dis

C2
Wout

)
+ 4ǫ22 − 2kM0

)∥∥∥CW

∥∥∥
2

+
1

2ǫ23

(∥∥∥M
∥∥∥
2

+
∥∥∥CS

∥∥∥
2

+
∥∥∥CA

∥∥∥
2)

+
1

2ǫ22
e−2E

µ
t
(
E2
∥∥∥∇ · (Dv∇CW (0))

∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)
,
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where ECM is defined in (4.17). If we fix ǫ1 satisfying (4.19) then

E(t) ≤ c

∫ t

0

E(s)ds+
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
( µ

4Eǫ22

(
E2
∥∥∥∇ · (Dv∇CW (0))

∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2)

+ ECM(0)
)
,

where c is defined by (4.20). Finally by using Gronwall’s Lemma we obtain
(4.18).

The energy estimate (4.18) leads to the uniqueness of solution of the
variational problem (4.15) and (4.10). It enables also to conclude the stability
of such solution in bounded time intervals. These results hold provided that
the initial data are smooth enough.

Stability for large times : To analyze the stability of the initial boundary
value problem (4.1),(4.3) and (4.4) for large times we consider system (4.5),
that arise from the linearization of system (4.1) in the neighborhood of the
steady solution defined by (4.7). That is, we study the stability of the initial
boundary value problem





∂CW

∂t
= ∇ · (DW∇CW ) +∇ · (Dv∇σ)

−kCWoutM in Ω× (0, T ],
∂M

∂t
= −kCWoutM in Ω× (0, T ],

∂σ

∂t
+

E

µ
σ = −E

∂CW

∂t
in Ω× (0, T ],

∂CS

∂t
= −

kdis
CS0

CS in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CS0

CS in Ω× (0, T ],

(4.21)

where T > 0 is fixed, with initial conditions





CW (0) = CW,∞ in Ω,

σ(0) = σ∞ in Ω,

M(0) = M∞ in Ω,

CS(0) = CS∞ in Ω,

CA(0) = CA,∞ in Ω,

(4.22)
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and boundary conditions (4.9).

From the third equation of (4.21) we easily get an expression for the stress
σ analogous to (4.11). Replacing then that expression in the first equation
of (4.21) we obtain





∂CW

∂t
= ∇ · (D1∇CW )

+

∫ t

0

e−
E
µ
(t−s)∇ · (D2∇CW (s))ds

−kCWoutM + Ee−
E
µ
t∇.(Dv∇CW (0))

+e−
E
µ
t∇.(Dv∇σ(0)) in Ω× (0, T ],

∂M

∂t
= −kCWoutM in Ω× (0, T ],

∂CS

∂t
= −

kdis
CS0

CS in Ω× (0, T ],

∂CA

∂t
= ∇ · (D∇CA) +

kdis
CS0

CS in Ω× (0, T ],

(4.23)

where D1 and D2 are given by (4.13). The original initial boundary value
problem (4.21), (4.9) and (4.22) is then replaced by (4.23), completed with
(4.22) and (4.9).

In what follows we consider the weak formulation of (4.23), (4.22) and
(4.9) defined by the variational problem:

Find (CW ,M,CS, CA) ∈ V such that
∂CW

∂t
,
∂M

∂t
,
∂CS

∂t
,
∂CA

∂t
∈ L2(Ω), and
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(4.22) holds and





(∂CW

∂t
, v1

)
= −(D1∇CW ,∇v1)

−

∫ t

0

e−
E
µ
(t−s)(D2∇CW (s),∇v1)ds

−(AcCW , v1)∂Ω − kCWout(M, v1)

+Ee−
E
µ
t(∇ · (Dv∇CW (0)), v1)

+e−
E
µ
t(∇ · (Dv∇σ(0)), v1), ∀v1 ∈ H1(Ω),(∂M

∂t
, v2

)
= −kCWout(M, v2), ∀v2 ∈ L2(Ω),

(∂CS

∂t
, v3

)
= −

kdis
CS0

(CS, v3), ∀v3 ∈ L2(Ω),
(∂CA

∂t
, v4

)
= −(D∇CA,∇v4)

+
kdis
CS0

(CS, v4), ∀v4 ∈ H1
0 (Ω).

(4.24)

Following the proof of Theorem 6 it can be shown an upper bound for
E(t) analogous to the one defined by (4.16).

Theorem 7. If (CW ,M,CS, CA) ∈ V is a solution of the variational problem
(4.24), then

E(t) ≤
1

min
{
1, 2(Dmin − ǫ21), 2D0

}
(
ECM (0)

+
µ

4Eǫ22

(
E2
∥∥∥∇ · (Dv∇CW (0))

∥∥∥
2

+
∥∥∥∇ · (Dv∇σ(0))

∥∥∥
2))

ec̄t, t ≥ 0,

where ǫ1 is fixed by (4.19),

c̄ =
max

{
µD2

max

4ǫ21E
, 2kCWout

(
kCWout

4ǫ22
− 1
)
, 2kdis

CS0

(
kdis
CS0

ǫ23 − 1
)
, 1
2ǫ23

, 6ǫ22

}

min
{
1, 2(Dmin − ǫ21), 2D0

} ,

and ǫ2, ǫ3 are arbitrary nonzero constants. �

From Theorem 7 we conclude the uniqueness of the solution of (4.24) and
(4.22) and its stability for bounded time intervals, provided that the initial
data are smooth enough.
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4.3 Qualitative behaviour of the model

Let Ω = (0, L) × (0, L). In this section in order to study numerically the
qualitative behaviour of the model we discretize the initial boundary value
problem (4.1), (4.3) and (4.4) with the IMEX method




D−tC
n+1
W,H = ∇∗

H ·
(
DW∇HC

n+1
W,H

)
+∇∗

H ·
(
Dv∇Hσ

n
H

)

−kCn
W,HM

n
H in ΩH ,

D−tM
n+1
H = −kCn+1

W,HM
n
H in ΩH ,

D−tσ
n+1
H +

E0(M
n+1
H )α

µ0(M
n+1
H )β

σn
H = −E0(M

n+1
H )αD−tC

n+1
W,H in ΩH ,

D−tC
n+1
S,H = −

kdis
CS0CAmxCWout

Cn
S,H(CAmx − Cn

A,H)C
n+1
W,H in ΩH ,

D−tC
n+1
A,H = ∇∗

H ·
(
D(Mn+1

H )∇HC
n+1
A,H

)

+
kdis

CS0CAmxCWout

Cn+1
S,H

(
CAmx − Cn

A,H

)
Cn+1

W,H in ΩH ,

(4.25)

where H = (h, h) and ΩH denotes the rectangular grid defined in Ω for n =
0, . . . , N∆t−1. The IMEX method (4.25) is completed with initial conditions





C0
W,H = 0 in ΩH ,

σ0
H = RHσ(0) in ΩH ,

M0
H = RHM(0) in ΩH ,

C0
S,H = RHCS(0) in ΩH ,

C0
A,H = 0 in ΩH .

(4.26)

In (4.26) RH represents the restriction operator defined from the space of
continuous functions in Ω into the space of grid functions defined in ΩH .

The boundary conditions are given by



Jn+1
H .η = Ac(C

n+1
W,H − CWout) on ∂ΩH ,

Cn+1
A,H = 0 on ∂ΩH ,

(4.27)

where
Jn+1
H · η = −DwDηC

n+1
W,H −DvDησ

n
H ,
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and Dη represents the boundary operator

DηvH(xi, yj) =





−DxvH(x0, yj) i = 0,

D−xvH(xN , yj) i = N,

−DyvH(xi, y0) j = 0,

D−yvH(xi, yN) j = N,

(4.28)

for (xi, yj) ∈ ∂ΩH . In (4.27), ∂ΩH denotes the set of grid points placed on
∂Ω.

The numerical results that we present were obtained considering the pa-
rameters listed in Table 4.1.

To illustrate the convergence behaviour of method (4.25), (4.26) and
(4.27) we present in Table 4.2 the errors of C, C = CW , CA, with these
errors defined by

Error(C) = max
n=1,...,N∆t

∥∥∥Cn
H − C

n

H

∥∥∥
ΩH

,

where C
n

H is a reference solution obtained with ∆t = 10−5 and h = 0.001.
The results exhibited in Table 4.2 show the convergence rates given by

rate =
ln

Errorh1 (C)

Errorh2 (C)

ln h1

h2

,

where h1 and h2 are two consecutive step sizes.
The last part of this section is devoted to the study of the dependence of

the solution of the problem on different physical parameters. We take that
the diffusion tensors and the viscoelastic tensor are given by DwI, DI and
DvI, respectively, where I is the identity matrix of order 2.

To analyze the behaviour of the mass of dissolved drug and water inside
the polymer we define it

Mi(t) =

∫

Ω

Ci(t)dX,

where i = W,A, for each t ∈ [0, T ], which are numerically computed at each
time level using the trapezoidal rule.

In Figure 4.1 we plot the mass of water in the polymeric matrix for
different values of Dv. We observe that the polymer acts as a barrier to the
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Variable/ Unit Value Equation
Parameter

DA mm2/s 5.94× 10−2 (4.2)
Dv mol/(mm.s.Pa) 2× 10−4 (4.1)
DW mm2/s 4.61× 10−2 (4.1)
k 1/s 10−2 (4.1)
σ0 Pa 5× 10−2 (4.3)

CAmx mol/mm3 2.184× 10−2 (4.5)
CS0 mol/mm3 288.42× 10−2 (4.3)
β − 7× 10−1 (4.25)
E0 Pa 10−4 (4.25)
µ0 Pa.s 10−1 (4.25)
kdis mol/(mm3.s) 4.6× 10−2 (4.1)
M0 Da 8.3× 10−2 (4.2)

CWout mol/mm3 5.55× 10−1 (4.5)
Ac mm/s 10−2 (4.4)
α − 2× 10−1 (4.25)
h mm 10−2 (4.25)
∆t s 10−4 (4.25)

Tab. 4.1: Values of the parameters and variables at t = 0. The column on the
right display the number of the equation where they first appear.

h Error(CW ) PW Error(CA) PA

0.01 3.23× 10−5 1.38 5.29× 10−10 1.08
0.005 1.24× 10−5 1.35 2.50× 10−10 1.30
0.004 9.17× 10−6 2.01 1.87× 10−10 1.61
0.002 2.28× 10−6 6.13× 10−11

Tab. 4.2: Convergence orders for CW and CA, respectively, PW and PA.
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entrance of water. In other words, the norm of non Fickian flux,
∥∥∥Dv∇σ

∥∥∥,

decreases the Fickian flux,
∥∥∥Dw∇CW

∥∥∥. According to this description the

increase of Dv leads to the decreasing of the mass of water in the polymeric
matrix.

22.8 22.85 22.9 22.95 23 23.05 23.1 23.15 23.2

0.0896

0.0898

0.09

0.0902

0.0904

0.0906

t

M
as

s 
of

 w
at

er

 

 
D

v
=10−2

D
v
=10−4

110 120 130 140 150 160 170

0.23

0.24

0.25

0.26

0.27

0.28

0.29

t
M

as
s 

of
 w

at
er

 

 
D

v
=10−2

D
v
=10−4

Fig. 4.1: Influence of Dv on the mass of the water for short times (left) and larger
times (right).

The influence of Young modulus, E, on the mass of water is presented
in Figure 4.2 near t = 2. The crosslink density of the polymer is propor-
tional to the Young modulus E. Consequently, as this constant increases the
polymer offers more resistance to the entrance of water and then the water
concentration is lower.

The behaviour of the mass of dissolved drug for different dimensions of
the matrix is presented in Figure 4.3. As the thickness increases more mass
of drug is initially in the polymer and consequently more time is needed to
attain the steady state.

In Figure 4.4 we illustrate the behaviour of the mass of water uptaken by
the polymeric matrix when the thickness of the polymeric matrix increases.
We also observe that the value of the steady mass in the polymer with L = 0.1
is 0.0555 while in the polymer with L = 0.5 is 0.2769.

The influence of the degradation rate, k, is presented in Figure 4.5. As
expected, if the degradation rate increases the delivery rate of the dissolved
drug also increases. Consequently, we have less concentration of the dissolved
drug inside the polymeric matrix.

In Figure 4.6 we exhibit the behaviour of the concentration of water in
the polymeric matrix at different times. We observe that the concentration
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Fig. 4.2: Influence of E on the mass of the water.
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Fig. 4.3: Mass of dissolved drug inside the polymer with L = 0.1 (left) and L = 0.5
(right).
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Fig. 4.4: Mass of water inside the polymer with L = 0.1 (left) and L = 0.5 (right).
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of water increases as time increases and the behaviour is homogeneous in the
polymeric matrix since the diffusion coefficient is assumed constant.

Fig. 4.6: Concentration of water for different times.

In Figures 4.7 and 4.8 the concentrations of solid drug and dissolved
drug, respectively, at different times are shown. We observe that regions
where the concentration of the water is high correspond to regions where the
concentration of solid drug is low and dissolved drug is high. We also observe
that when the concentration of solid drug decreases, the concentration of
dissolved drug increases.

4.4 Final comments

The whole process of sorption of a solvent by a biodegradable polymeric
matrix and release of a drug, which is dispersed in the matrix, is described
in Chapter 4. Theoretical and numerical results are presented. As far as
theoretical results are concerned we establish stability results for short and
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Fig. 4.7: Concentration of solid drug for different times.
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Fig. 4.8: Concentration of dissolved drug for different times.
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long times. The technique used consists essentially in applying the energy
method to a linearized system. In the case of short times this system is a
linearization of the initial problem in the neighborhood of the initial state.
For long times the initial system is linearized in the neighborhood of the
steady state. The estimates, presented in theorems 6 and 7 hold for bounded
intervals of time. The positivity imposed to all entries of D1, (4.13), which
assume that solvent effectively penetrates the matrix, is used to select the
parameters in Table 4.1. Concerning the numerical simulations that illustrate
the behaviour of the model we obtained sound physical results. The influence
of the crosslinking density of the polymer is shown to delay the drug release.
In fact a large Young modulus induces a longer opposition to the solvent
penetration. As the solvent enters slowly, the degradation process are also
delayed.



5. CONCLUSIONS AND FUTURE WORK

In this thesis we study mathematical models that describe transport in vitro
and in vivo, of solvents and solutes, through a viscoelastic biodegradable
material.

From a theoretical point of view we analyze the qualitative behaviour of
the solutions and we establish a number of results on stability, under initial
perturbations. These theoretical results, proved for the continuous models,
are extended to semi-discrete models and fully discrete models. In the proofs,
we present, some conditions on the parameters, involved in the models, are
imposed. We observe that these conditions which at a first sight appear as
technical tools, in the sense they represent mathematical constraints needed
to establish the results, have a sound physical meaning because they essen-
tially say that the models are stable if the Fickian diffusion dominates the
non Fickian one. To illustrate the behaviour of the solutions and to give
some insight into the dependence of the solutions on the parameters of the
models several numerical simulations are exhibited.

One of the main areas where transport through a viscoelastic biodegrad-
able polymer is used is controlled drug delivery. Mathematical models assume
a central role in controlled drug delivery because they can be used to pre-
dict the behaviour of materials avoiding time consuming and very expensive
laboratorial experiments. Under the viewpoint of a personalized medicine
mathematical models can be used to match the characteristics of the implant
to the special needs of the patient. We address the problem of intravitreal
drug delivery through a viscoelastic biodegradable implant. In this case the
release of drug in vivo is described by two coupled systems of partial dif-
ferential equations linked by interface conditions: one of the systems takes
into account the kinetics of drug in the implant while the other considers the
transport in the living system. We exhibit several numerical simulations that
illustrate the effect of viscoelastic and degradation properties of the implant.
Nowadays implants that deliver drug to target sites in the human body are
used in several areas of medicine. Our model can be adapted to study differ-
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ent types of release by changing the geometry of the implant and the specific
characteristics of the target site. We mention for example implants used to
deliver opioids, antibiotics or highly potent drugs in oncology.

The release of drug in vitro or in vivo takes place when the matrix con-
tacts with a solvent. In Chapter 2 and 3 we considered that the uptake of
solvent was instantaneous. The models presented there describe the pro-
cesses immediately after this initial uptake. In some situations this approach
is accurate. However depending on the characteristics of the material and
the solvent in many situations uptake is not an instantaneous phenomenon.
Those parameters should not be prescribed as they depend on the evolution
of solvent and solute concentrations. In Chapter 4 we address a release prob-
lem in this more general framework: the entrance of solvent in the polymeric
matrix, the hydrolysis process, the decreasing of molecular weight, the evo-
lution of stress and strain, the dissolution of dispersed drug, and its diffusion
enhanced by bulk erosion. Surface erosion which implies that a vanishing
polymeric matrix is considered is not addressed in this thesis.

Several issues were raised in the course of our work which we plan to
address in the near future.

From the modelling point of view the swelling of the polymer, due to the
uptake of solvent, and its shrinking, due to surface erosion, are very challeng-
ing problems. Both are related with moving boundary domains. These two
phenomena should be considered in realistic three dimensional geometries.
As far as the implants are considered the problem does not seem very dif-
ficult because cylindrical coordinates or spherical coordinates, coupled with
symmetry arguments, can reduce the dimension of the equations. The three
dimensional geometry of the target site in the living system is more complex.
In our future work we are planning to complete the models in Chapter 3 and
4 by considering swelling, surface erosion and three dimensionality.

From an analytical point of view the convergence analysis of the IMEX

methods used in the simulations will deserve our attention in the near future.
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Symbol Definition (unities)

C1 Drug concentration in the implant (mol/mm3)
C2 Drug concentration in the vitreous (mol/mm3)
σ Stress (Pa)
M Polymer molecular weight (Da)
D0 Diffusion coefficient of the drug in the non hydrolysed

polymer (mm2/s)
D1 Diffusion function depending on M (mm2/s)
D2 Diffusion coefficient of drug in the vitreous (mm2/s)
Dv Stress-driven diffusion coefficient (mol/(mm.s.Pa))
E Young modulus (Pa)
ǫ Strain
µ Viscosity (Pa · s)
K
µ1

Hydraulic conductivity (mm2/(Pa · s))

p Pressure (Pa)
v Velocity of the aqueous humor (mm/s)
Ac Permeability constant (mm/s)
Ar Permeability of the retina (mm/s)
k1 Degradation rate of the drug (1/s)
β1, β2 Degradation rate of the polymer (1/s, Da.mm3/(mol.s))
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Symbol Definition (unities)

CA Concentration of dissolved drug in the polymeric matrix
(mol/mm3)

CS Concentration of solid drug (mol/mm3)
CW Concentration of water in the polymeric matrix (mol/mm3)
CAmx Maximum concentration of dissolved drug in the polymeric

matrix (solubility limit) (mol/mm3)
CA0 Initial concentration of dissolved drug (mol/mm3)
CS0 Initial concentration of solid drug in the polymeric matrix

(mol/mm3)
CW0 Initial concentration of water in the polymeric matrix

(mol/mm3)
CWout Concentration of water outside of the polymeric

matrix (mol/mm3)
M0 Initial polymer molecular weight (Da)
DA Diffusivity of drug through the non hydrolysed polymeric

matrix (mm2/s)
DW Diffusivity of water through the polymeric matrix (mm2/s)
k Polymer degradation rate (mm3/mol)
kdis Drug dissolution rate (mol/(mm3.s))
L Thickness of the polymeric matrix (mm)
t Time(s)
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