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submetida à Universidade de Coimbra

Coimbra - 2006



 



Este trabalho foi parcialmente financiado pelos seguintes programas:

This work was partially supported by the following programmes:



ii
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Resumo

Este trabalho apresenta um estudo experimental dos semicondutores orgânicos Ftalocian-

ina (H2Pc), Ftalocianina de Zinco (ZnPc) e Ftalocianina de Cobre (CuPc) por técnicas de µSR,

tendo-se obtido informação detalhada sobre a estrutura electrónica dos estados de carga forma-

dos pelo muão positivo nos três compostos, e sobre as interacções dinâmicas a que esses estados

se encontram sujeitos.

Os resultados do estudo indicam que nas ftalocianias com carácter não magnéticas H2Pc

e ZnPc se dá a formação de três radicais muónicos paramagnéticos distintos. A estrutura hiper-

fina destes radicais, referidos como estados I, II e III, foi caracterizada através da medida dos

parâmetros de acoplamento hiperfino em conjunto com a parameterização da sua dependência

com a temperatura. Uma quarta componente paramagnética do sinal µSR foi também iden-

tificada, mas sobre a qual não foi posśıvel retirar conclusões definitivas quanto à sua origem.

Verificou-se que os parâmetros de acoplamento hiperfino isotrópicos dos três estados identifi-

cados se encontram numa região de valores entre os 100 e os 150 MHz para os estados I e II,

enquanto que para o estado III esta quantidade toma valores em torno de 10 MHz. A estrutura

electrónica de todos os estados possui simetria axial, caracterizada por parâmetros dipolares de

cerca de 15 MHz para os estados I and II, e 20 MHz para o estado III. A origem dos estados I e

II foi determinada como sendo devida à adição de muónio a uma das ligações duplas existentes

nos anéis benzénicos da periferia das moléculas de ftalocianina recorrendo a cálculos de estru-

tura electrónica, tendo-se verificado a existência de um acoplamento entre a interacção hiperfina

desses estados e modos vibracionais desses anéis. A problemática da localização do estado III

também foi abordada, tomando-se como hipótese mais provável uma posição intersticial entre

duas moléculas de ftalocianina.

O estudo das interacções dinâmicas de spin destes três estados revelou que o estado III

está sujeito a um fenómeno de spin exchange, originado pela colisão com portadores de carga

presentes no material. A taxa de spin-flip relativa a esta interacção foi deduzida a partir de

medidas µSR em geometria de campo longitudinal, tendo sida determinada a barreira energética

existente para a difusão de portadores de carga entre moléculas de ftalocianina localizadas dentro

da mesma estrutura colunar tanto na H2Pc, como na ZnPc.
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Por fim, o sinal µSR da ftalocianina com carácter magnético CuPc foi também carac-

terizado. Foram identificadas duas componentes de carácter aparentemente diamagnético com

taxas de relaxação separadas por cerca de duas ordens de grandeza, atribúıdas a duas con-

figurações distintas para o emparelhamento entre o electrão do radical muónico, e o electrão

com spin desemparelhado localizado no átomo de cobre. Os dois emparelhamentos diferentes

geram um ambiente puramente diamagnético para o muão, o que origina a componente de re-

laxação lenta, e uma configuração na qual existe uma densidade de spin flutuante na posição do

muão, responsável pela componente de relaxação elevada.



vii

Abstract

This work presents an experimental µSR study of the organic semiconductors Metal-free

Phthalocyanine (H2Pc), Zinc-phthalocyanine (ZnPc) and Copper-Phthalocyanine (CuPc). It

produced detailed information about the electronic structure of the muon states formed in the

three compounds, and about the dynamical spin interactions those states experience.

It was established that in the non-magnetic phthalocyanines H2Pc and ZnPc, three distinct

muoniated radical states bearing paramagnetic character are formed. The hyperfine structure of

these radicals, labelled I, II and III, was characterised by measuring the hyperfine couplings and

parameterising their temperature dependence. In addition, a fourth paramagnetic component of

the µSR signal was also identified, but no definite conclusions about its origin were drawn. The

isotropic hyperfine couplings of the three states were found to be of the order of 100-150MHz for

states I and II, and about 10MHz for state III. All states were seen to possess axial symmetry,

with dipolar hyperfine couplings of around 15 MHz for states I and II, and about 20 MHz for state

III. States I and II were found to arise from muonium addition at the double bonds populating

the outer benzene rings of the molecule using ancillary electronic structure calculations, and

their hyperfine interactions were seen to couple with vibrational modes of those rings. State III

was assigned to an intersticial site in-between two molecules.

The investigation of the spin dynamics of these three states revealed that state III experi-

ences spin exchange phenomena arising from scattering with diffusing charge carriers present in

the host material. The muon spin-flip rate regarding this interaction was extracted from mea-

surements in longitudinal field, and the energy barrier for carrier jumps between phthalocyanine

molecules belonging to the same columnar stack was determined in H2Pcand ZnPc.

The µSR signal of the magnetic phthalocyanine CuPc was also characterised. Two diamagnetic-

like components with relaxation rates differing in about two orders of magnitude were identified

in this compound, which were argued to arise from different pairing configurations of the muo-

nium’s electron to the unpaired electron sitting at the copper atom. The two pairings create

one purely diamagnetic environment for the muon, giving rise to the slow relaxing component,

and one configuration of quickly fluctuating unpaired spin density at the muon, responsible for

the fast relaxing component.
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Chapter 1

Introduction

1.1 The study of organic semiconductors

1.1.1 Scientific context

Research on organic semiconductors in Science Materials has experienced a steep increase in

recent years (Figure 1.1), producing large quantities of information regarding several aspects of

their structural and transport properties under a growing interest which was partially triggered

by the awarding of the 2000 Nobel prize in Chemistry to Alan J. Heeger, Alan G. MacDiarmid

and Hideki Shirakawa for ”the discovery and development of conductive polymers” [80].

Yet, much remains still to be learned about the relation between morphological, optical

and electrical properties in this class of compounds [49]. Their electronic behaviour at a fun-

damental degree, in particular, is poorly known, especially due to the difficulty of obtaining

experimental results at that level [28, 136]. For example, it becomes a fact that the picture

about charge conduction mechanisms has not still reached a mature level, considering that most

conduction parameters, such as the density of states in transport levels or activation energies for

the conductivity, are still unknown for many organic semiconductors [28]. In addition, most of

the information available has been obtained with macroscopic techniques like resistivity, Hall ef-

fect or Seebeck measurements [50, 92, 51], which are strongly influenced by grain-boundary and

surface effects in a type of compounds seldom obtained in single-crystal form, and are therefore

not truly sensitive to microscopic phenomena.

There is therefore a strong interest in performing experimental studies which may provide

a microscopic view about organic semiconductors. Such interest involves also their behaviour

1
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Figure 1.1: Number of published papers since 1990 matching the topic ‘organic semiconductor’, as

obtained from a query conducted on the Science Citation Index Expanded (SCI-EXPANDED) database

of the ISI Web of Science search tool (the ISI Web of Science is a tool belonging to The Thomson

Corporation).

towards doping, since the lack of fundamental information about how the electronic properties

of the material are affected is even more pronounced in that case [28, 40]. The intentional doping

of a semiconductor with a small quantity of known impurities is a widely used method to control

its electrical properties, which only works if the effect of the dopant on those properties is fully

understood. For instance, research activity on doping is accelerating [86, 40, 81, 17, 30, 26], but

with the notable exception of a very reduced number of cases in which a fair insight of how the

doping mechanism operates has been obtained so far (see e.g. [70, 107], or [25, 26]), no real

experimental understanding exists yet.

1.1.2 Technological context

Organic semiconductors are considered to be at present top candidates as alternative materials

to the traditional inorganic semiconductors [60, 39, 56, 43, 11, 100]. They offer answers where

silicon-based electronics cannot provide a solution, such as the possibility of assembling trans-

parent electronic components in flexible substrates [11], or simply constitute a cheaper and more

efficient option to that technology in specific situations, namely large-area applications [11].

One of the great promises of organic electronics is that once the physical requirements
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for a certain application are clearly understood, methods of organic synthesis may be employed

to produce inexpensive compounds with the desired properties [49]. Those methods have the

advantage of being easy to implement in low-temperature procedures, which conjugated with

the simplicity of processes such as thin-film deposition or spin-coating cast aside the large-

scale facilities necessary for the production and processing of inorganic semiconductors [37].

Organic semiconductors are highly competitive materials from the economical and operational

perspectives, since the virtually limitless flexibility of synthetic organic chemistry provides a

degree of control over any characteristics of the material which is unattainable with conventional

inorganic semiconductors [49, 26].

Several examples of their technological importance exist; for instance, significant advances

obtained in a time lapse of less than one decade levelled their electroluminescent capabilities

with those of inorganic compounds [14, 39], leading to the development of high efficiency organic

light-emitting diodes (OLED) [14, 104, 141]. Their application in another type of optoelectronic

device, the organic light-emitting field-effect transistor (OFET), is also envisaged in a near future

[78], making use of the fact that organic semiconductors often do not have a preferencial charge-

carrier sign and are thus capable of exhibiting ambipolar charge transport [72]. This property

is important for the fabrication of complementary logic circuits, allowing the conception of

all-organic integrated circuits. Such possibility is further stressed by the late reckoning that,

contrary to what was widely accepted, fast switching circuitry may be based in organic devices

[127]. Much effort has also been put in the use of organic semiconductors for solar cells; recent

accomplishments on organic photovoltaics, OPV, indicate that this type of technology will be

able to rival with the industry of amorphous hydrogen-doped silicon in terms of efficiency, while

retaining the clear advantage of being significantly cheaper and appropriate for the production

of large-scale devices [11, 44]. The success of all these applications obviously depends on the

knowledge of the Physics of their behaviour at a fundamental level.

Additionally, particular relevance has been given in the last two years to possible appli-

cations which embrace the magnetic properties of these compounds; that interest follows the

findings that electron-hole recombination is spin-dependent [94], and the existence of giant mag-

netoresistivity in certain conjugated polymers [137, 73, 125], both granting entrance of organic

semiconductors to the world of spintronics and quantum computing. Again, but now in a many-

fold technological perspective, there is an increased interest in having experimental studies which

render microscopic information about organic semiconductors.



4 CHAPTER 1. INTRODUCTION

1.2 A µSR study of organic semiconductors

Local probe techniques present often the best way to convey microscopic information about

condensed matter [103]. This work reports the results of a fundamental study of organic semi-

conductors performed with an experimental technique belonging to that class, Positive Muon

Spectroscopy (µSR) (an extensive literature on µSR exists; see e.g. [106, 20, 85]). As it will

be seen later (Chapter 3), it takes advantage of the technique’s unique features to probe at the

same time the charge transport properties of organic semiconductors and the effects of hydrogen

doping. In itself, the technique involves implanting spin-polarised positive muons in a host mate-

rial, which may play the role of local magnetic probes sensitive to the transport of spin-carrying

carriers in the medium, or act as exotic experimental analogues of protons, mimicking hydrogen

behaviour and its doping effects.

Organic semiconductors are traditionally divided in high molecular weight conjugated

polymers and low-weight molecular compounds [50]. For the general understanding of organic

semiconductors, the second ones are more informative because they can be obtained in higher

purity grades more easily, and form highly ordered solids [51]. They are therefore attracting a

lot of investigation on semiconducting behaviour, and in this field phthalocyanines are specially

favourable and were therefore chosen for this work. They have the advantages of possessing a

high thermal stability which allows to employ easy purification processes [50, 37, 51], of being

easily doped with other molecular compounds in thin-film form by co-evaporation techniques

[86], and of being modified with simple chemical procedures [30].

More specifically, three representative molecules of phthalocyanines were chosen for the ex-

perimental µSR study, namely H2Pc (the metal-free phthalocyanine), ZnPc (Zinc-phthalocyanine)

and CuPc (Copper-phthalocyanine), as indicated in Figure 1.2. The choice of these three com-

pounds was based in their structural simplicity, together with the ground-state magnetic prop-

erties of each molecule: both H2Pc and ZnPc are diamagnetic, featuring a closed-shell config-

uration, while CuPc has one unpaired electronic spin, being paramagnetic. The inclusion of

H2Pc and ZnPc serves the aim of studying the influence of the central atom, which is known

to influence the chemical properties of phthalocyanines [50], while the distinction between the

diamagnetic molecules H2Pc and ZnPc, and the paramagnetic one CuPc addresses the influence

of unpaired electrons in the material.

The present work aims at characterising the muon states formed in phthalocyanines and

the spin dynamics those states undergo. This comprises the definition of the electronic structure
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Figure 1.2: Molecular structure of the three model phthalocyanines addressed in this work: H2Pc,

ZnPc and CuPc.

of those states, as well as of their crystalline site, and the identification and characterisation

of the dynamical processes which may exist. In parallel, scientific insight regarding the charge

carrier properties of this type of compounds and how they behave towards hydrogen doping is

also expected to be drawn from the experimental µSR work.

1.3 Layout of this thesis

After having focused the interest of studying phthalocyanines with µSR techniques in this first

introductory chapter, a brief presentation of the most important properties of that family of

organic semiconductors which relate directly with the interpretation of µSR data is referred in

Chapter 2. The rather limited current understanding of how charge transport occurs in phthalo-

cyanines and how it is affected by doping is also referred in that chapter, laying ground for the

interpretation of µSR results obtained from measurements targeting spin-dynamics performed

later on (Chapter 7). Chapter 3 includes a quite complete account about the µSR technique;

it focuses both experimental as theoretical aspects, the latter centred in paramagnetic muon

states, and although it was firstly sketched to merely introduce the technique and state impor-

tant points necessary for the interpretation of the µSR signal in the context of this thesis, it

turned out assuming more the shape of a self-consistent textbook chapter on µSR. This outcome

was prompted by the fact that µSR is not a well-known technique among those used to inves-

tigate condensed matter, and that µSR literature usually tends to be either too short or too

detailed for a beginner to grasp a sufficient amount of µSR knowledge in a modest amount of

time which enables him to perform a µSR experiment and provide a simple interpretation of its
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results. It is hoped also that the capabilities of the technique, the kind of problems it may help

solving and its limitations become clear for the reader, assisting in the wide-spreading of µSR.

The following chapter, Chapter 4, describes the experimental work carried out in the prepara-

tion of samples for the µSR experiments, and lists all samples used together with the specific

conditions in which each one was prepared. Chapter 5 is devoted to the spectroscopy of muon

states in the three phthalocyanine compounds addressed in this thesis. It establishes simple

conclusions about the number of different existing states, and quantifies their relative popula-

tions and electronic structure parameters. This information is necessary for the investigation

of spin dynamics of those states, reported in Chapter 6, which relate directly with dynamical

phenomena involving the host material, namely charge carrier diffusion. The discussion of the

experimental results presented in chapters 5 and 6 is finally conducted in Chapter 7, where the

conclusions of this work are clearly stated, including those associated with charge transport in

phthalocyanines.



Chapter 2

The phthalocyanine organic

semiconductor

This chapter constitutes a brief presentation of the physical properties of phthalocyanines which

are specially relevant for the work developed in this thesis. It covers mostly the structural

and electronic characteristics of the three model molecules chosen for the µSR study performed

here, namely the metal-free phthalocyanine (H2Pc), Zinc-phthalocyanine (ZnPc) and Copper-

phthalocyanine (CuPc). They are amongst the simplest phthalocyanines, and also the most

widely used ones.

2.1 Molecular structure

Phthalocyanines consist of a planar π-conjugated macrocycle ligand (C32H16N8) often bonded to

a central metallic atom [77, 29, 32]. The structure of the ligand closely relates phthalocyanines

with porphyrins and other derived macrocycles (Figure 2.1); their common feature is the circular

arrangement of 4 pyrrole units linked by C methine or N azamethine bridges, in the centre of

which two hydrogen atoms or almost any type of metallic or semimetallic atom may be placed.

The size of the inner cavity depends mainly on the type of bridges, being fairly insensitive to the

size of the central atom [32]. Relative to the porphyrin ligand, phthalocyanines have benzene

rings added to the pyrrole units, and N azamethine bridges instead of C methine ones. The

macrocycle of phthalocyanines is an 18 π-electron system, which lends high stability to these

compounds; their more specific chemical properties, on the other hand, depend to a large extent

on the central atom bonded to the macrocycle [51].

7
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Figure 2.1: Structural relation between phthalocyanines (Pc), porphyrins (P), porphyrazines (Pz) and

tetrabenzoporphyrins (TBP). The differences between the four ligands consist in the addition or not of

benzene rings to the pyrrole units, and the type of bridge existing between those units.
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The metal-free phthalocyanine, H2Pc, is the simplest existing phthalocyanine; it possesses

no central metallic atom, which is in this compound substituted by two hydrogen atoms (Fig-

ure 2.2a). These hydrogen atoms establish alternate bonds with all four isoindole N atoms1,

remaining in the plane of the molecule so that mirror symmetry relative to such plane exists.

H2Pc resembles therefore a large disk-like molecule, capable of originating layered solid state

arrangements. The existence of mirror symmetry in the metallo-phthalocyanines, MPc, on the

other hand, depends on the coordination of their central atom; if the atom has binary coordi-

nation, as Zn or Cu, it will stay also in the plane of the molecule, and the molecule will still

be fully planar (Figure 2.2b). Other coordinations imply the presence of additional ligands at

the centre of the molecule with an axial position. The originated structures are no longer fully

planar; they may loose the mirror symmetry, as in the case of Titanyl-phthalocyanine, TiOPc

(Figure 2.2c), promote the formation of dimeric phthalocyanine complexes connected by the

axial ligands (Figure 2.2d), or even induce a bent macrocycle structure.

Figure 2.2: Examples of some phthalocyanine structures: (a) metal-free phthalocyanine (H2Pc), (b),

Zinc-phthalocyanine (ZnPc) (c), Titanyl-phthalocyanine (TiOPc) and (d) the (AlPc)2O dimer.

Phthalocyanines do not occur naturally, and have been known only since 1907 [77]; as a

general rule, they are synthesised using a single step cyclotetramerisation reaction of organic

precursors, namely benzoic acid or its derivatives (Figure 2.3) [77, 15]. They are also function-

alised at its outer benzene rings quite easily by making the right choice of precursors2; since

1The isoindole N atoms are the ones belonging to the pyrrole units, as opposed to those in the azamethine

bridges.
2By functionalisation one understands here the substitution of the hydrogen atoms at the outer benzene rings
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phthalocyanines are superbly stable from the chemical point of view, the functionalisation is very

difficult post-synthesis and needs to be necessarily considered in the synthesis process. Along

with the diversity of choice for the central atom, the simple chemical modification by function-

alisation is one of the major reasons why phthalocyanines present such a large potential for

applications, since two independent levels of adjustment regarding their chemical and electrical

properties are available.

Figure 2.3: General synthesis scheme of phthalocyanines. It is based in a single-step cyclotetramerisa-

tion reaction of organic precursors (usually benzoic acid or its derivatives).

2.2 Solid state arrangement

Phthalocyanines form Van-der-Waals solids, with a crystalline arrangement which depends nat-

urally on their specific molecular structure. Many different crystalline geometries exist for

phthalocyanines (see [32]), but we will reduce here to the generic description of the solid state

layout of those with in-plane central atoms only (which henceforth we will refer to as planar

phthalocyanines), since these produce the simplest geometries and also because the three com-

pounds focused in the present thesis fall in that class.

The molecular structure of planar phthalocyanines offers an increased range of possibilities

for intermolecular interactions, namely between the central atom (a more positively charged

region) and the nitrogen atoms (negatively charged regions) [32]. This has as result the fact

by organic chains or other end-groups.
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that stable overlap geometries between two molecules in contiguous layers correspond to slipped

configurations instead of perfectly aligned ones. Figure 2.4 shows the four existing overlap

geometries of planar phthalocyanines.

Figure 2.4: The four different overlap geometries of planar phthalocyanines. The most stable of

all configurations is the second from the left, which corresponds to the overlap found in the β phase

polymorph (see text); its stability stems from the large intermolecular interaction existing between the

central atom of one of the molecules and a bridging nitrogen of the other.

Any of the overlaps depicted in Figure 2.4 originates a columnar slipped-stacking of the Pc

molecules in solid state3. The layout of that stacking (intermolecular distances, stacking angle,

etc.), however, depends on the specific details of the overlap, giving rise to different metastable

phases. This means that phthalocyanines are polymorphic, often exhibiting monoclinic and

triclinic unit cells. The stable polymorph of planar phthalocyanines is the β-phase, which has a

monoclinic crystalline structure with two centro-symmetrical molecules per unit cell [?, ?, 105,

32]. The molecular overlap in this phase corresponds to the second geometry from the left in

Figure 2.4; its absolute stability stems from the large intermolecular interaction existing between

the central atom of one of the molecules and a bridging nitrogen of the other. Figure 2.5 further

elucidates how phthalocyanine molecules interlock in this phase; a cut-view of the slipped-stacked

columns (left) reveals a herring-bone stacking, where the molecular planes of adjacent columns

make an angle of near 90 o. On the right, a tridimensional view along a direction perpendicular to

the molecular planes in one of the columns is shown. It should be noted that since the columnar

distances are small in the herring-bone stacking, the existence of hydrogen bonding between the

benzene hydrogens and the nitrogens of molecules in neighbouring columns is highly favoured.

This distorts the benzene rings [74], and pulls the hydrogen atoms away from the molecule.

3In slipped-stacked arrangements the overlapping molecules in a stack are slightly displaced in a direction

along the stacking axis when observed at perperpendicularly.



12 CHAPTER 2. THE PHTHALOCYANINE ORGANIC SEMICONDUCTOR

Figure 2.5: Solid state arrangement of phthalocyanine molecules in the β phase: (a) cut-view of the

slipped-stacked columns, revealing a herring-bone layout; (b) projection view along a direction perpen-

dicular to the molecular planes of the first column shown in (a).

2.3 Electronic structure

The electronic absorption spectra of closed-shell4 phthalocyanines, such as H2Pc or ZnPc, is

characterised by the existence of an isolated and intense band between around 650 to 720 nm

(Figure 2.6) [15, 79, 97]. This band, known as Q-band, is usually attributed to π → π∗ transitions

from the highest doubly occupied molecular orbital (HOMO) to one of the lowest unoccupied

molecular orbitals (LUMO)5 of the molecule [15, 79]. A second less intense band is also observed

at around 300-400 nm (the B-band), which corresponds to the transition between a molecular

orbital deep below the HOMO to the LUMO. The Q-band is responsible by the intense blue to

green colours exhibited by phthalocyanines, to which their use as dye pigments is due [29, 77].

Although a large number of atomic valence states exists in a phthalocyanine molecule,

the level diagram near the HOMO and the LUMO orbitals is rather simple for planar phthalo-

cyanines, as seen in Figure 2.7 [79, 97, 64]. As a general rule, the LUMO is degenerate, lying

about 2 eV (≈ 620 nm, the location of the Q-band) above the HOMO; a different central atom

does not change the HOMO, although some influence is exerted in the LUMO’s energy. The

HOMO orbital is dispersed over the whole spatial extent of the phthalocyanine, possessing a

high bonding character (Figure 2.8); the LUMO orbital, on the other hand, his more localised

at the N atoms and two opposite benzene rings, and exhibits some π∗ anti-bonding character.

This basic structure holds for all planar phthalocyanines, including H2Pc, ZnPc and CuPc.

It may also be seen from Figure 2.7 that the main effect of bonding atoms with unpaired

electronic spins to the phthalocyanine ligand relative to the basic structure described above is

4i.e. having no unpaired spins.
5As it is referred below, the LUMO of phthalocyanines is degenerate.
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Figure 2.6: Electronic absorption spectrum of ZnPc in dichloromethane, showing the Q-band respon-

sible by the deep colour of phthalocyanines at around 650 nm.

Figure 2.7: Valence energy levels of several planar phthalocyanines. This diagram is the result of an

electronic structure calculation using DFT methods, as obtained by Liao and Scheiner [64]. The HOMO

orbital is signaled by the doubly occupied levels, and for some molecular orbitals their percentage of 3d

metal character is indicated by the values in parenthesis. Source: [64]
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Figure 2.8: Iso-value surface plots of HOMO and LUMO orbitals of ZnPc. The HOMO is dispersed

over the whole macrocycle, while the LUMO is more localised at the N atoms in the macrocycle. The

red and blue colours indicate the sign of the wave function. Source: [79]

the introduction of a singly occupied molecular orbital (SOMO) level between the HOMO and

the LUMO. The SOMO state is invariably localised at the centre of the phthalocyanine molecule,

with a character dominated by one of the 3d orbitals belonging to the central atom. This is the

case e.g. of CuPc.

2.4 Semiconducting behaviour

General characteristics of organic semiconductors

The main fundamental difference between organic semiconductors and inorganic semicon-

ductors such as Si, Ge, GaAs or ZnO, resides in the strength of bonding between their basic

units. Inorganic semiconductors are usually formed from atoms held together by strong covalent

bonds; this gives rise to a large overlap between atomic valence orbitals which, in conjunc-

tion with the high spatial regularity of the electrostatic potential also provided by the strong

bonding6, results in the formation of delocalised electronic band states through which electrical

conduction may develop [6]. Organic semiconductors, which comprise both conjugated polymers

and low molecular weight solids [50], are formed on the other hand from molecules, joined by

much weaker Van der Waals forces which produce a significantly smaller overlap between molec-

ular valence orbitals of neighbouring molecules. This sharpens the localisation of charge carriers

at the molecules [50, 49], so that charge transport in organic semiconductors occurs via hopping
6One means here that atomic motion is hampered by the strength of the bonding, which preserves the period-

icity of the potential.
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between localised states rather than band-like motion. This is certainly true in molecular solids

[49], but not so in many conjugated polymers, where band-like motion is also often observed as

deduced from their similar electrical properties relative to inorganic semiconductors [130].

Intermolecular interaction forces are nevertheless small, and, for molecular solids, hop-

ping turns out to be an efficient mechanism of charge transport since a high degree of disorder is

allowed to exist [50, 49, 130, 5]. Disorder, which may be morphologic (or, in the accepted nomen-

clature of organic semiconductors, off-diagonal), as occurring mainly in conjugated polymers,

or due to molecular motion driven by temperature (known as diagonal or energetic disorder),

dominant in molecular compounds, leads to an increased overlap between molecular orbitals of

adjacent molecules that in its turn enhances the probability of charge carrier hopping occurring

from one molecule to the other [7, 92]. Energetic disorder in molecular solids is therefore the

mechanism responsible by the rise of charge-carrier mobilities with increasing temperature ob-

served in these compounds [49], in clear contrast to the well-known mobility decrease seen in

inorganic semiconductors and many conjugated polymers due to phonon-scattering [92]. One

should note, nevertheless, that the possibilities of the hopping mechanism are still quite limited,

as deduced from the typically 100 times lower mobility values measured in organic semicon-

ductors in comparison to inorganic ones [28]. Furthermore, only those materials which possess

a conjugated (i.e. alternating) structure of double and single bonds capable of contributing in

some degree to the delocalisation of molecular orbitals with π-orbitals do exhibit semiconducting

behaviour [50, 92]; saturated compounds are invariably insulators, and as such conduct electrical

current only under dielectric rupture conditions [92].

Phthalocyanines

Like what happens with many other organic conjugated compounds, the existence of an

alternating structure of double and single bonds in the macrocycle of phthalocyanines grants

them a behaviour towards electrical conduction which is typically semiconducting. For the solid

state arrangement of phthalocyanines, the short intermolecular distances in a slipped column

promote the overlap between LUMO and HOMO orbitals of neighbouring molecules, creating

an intermolecular charge diffusion path along that column [136]. The overlap conduces to the

formation of continuous energy LUMO and HOMO bands analogous to the conduction and

valence bands of inorganic solids, although narrower due to the fact that the overlap is poorer

and a high degree of electronic localisation in each molecule is retained. The formation of bands
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from the LUMO and HOMO orbitals of phthalocyanines is seen e.g. in the absorption spectra of

phthalocyanine thin-films as a large broadening of the Q-band (Figure 2.9) [74, 30]; the Q-band

peak is also shifted in energy, suggesting that the distortion of the outer benzene rings due to

hydrogen-bonding plays an important role in the orbital overlap process [74].

Figure 2.9: Electronic absorption spectra of H2Pc in solution and thin-film (β phase) forms. The Q-

band seen in the solution spectrum is drastically broadened in the thin-film spectrum due to the splitting

of the LUMO and HOMO levels into bands, as a result of the overlap promoted by the solid-state stacking.

Source: [74]

Phthalocyanines behave in many ways as traditional semiconductors; they possess a HOMO-

LUMO transport gap of the order of 2 eV [40, 51], a typical band-gap value for a semiconductor,

and their conductivity increases with temperature [50, 86, 51]. Unlike inorganic semiconductors,

though, the increase is due to a mobility gain resulting from molecular motion [49]. Typical

conductivity values of undoped phthalocyanines at room temperature are usually in the range

of 10−10 to 10−13 S/cm [50, 86, 49].

More importantly, phthalocyanines are easily doped, and its characteristics follow in many

ways the standard models used to describe the doping of traditional semiconductors [86, 40, ?,

49]. In applications, phthalocyanines are usually p-doped by oxidising species, such as oxygen

or small molecules of high electron affinity as tetrafluoro-tetracyanoquinodimethane, F4-TCNQ

(Figure 2.10). The latter is found to be a very efficient dopant of phthalocyanines, since its

LUMO level lies below the HOMO of phthalocyanines [86, 40]. The presence of F4-TCNQ

molecules in the Pc media forms charge transfer complexes, where one of the electrons of the

phthalocyanine HOMO is transferred to the LUMO of the F4-TCNQ molecule; this induces the
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appearance of holes in the HOMO band of the phthalocyanine, turning it into a hole-conducting

medium7. Together with the choice for the central atom and the functionalisation of the outer

benzenes, doping constitutes the third and last independent mechanism available to control the

electrical properties of phthalocyanines.

Figure 2.10: (left) Molecular structure of the high electron affinity species F4TCNQ used as a p-

dopant for phthalocyanines; (right) illustration of the relative level scheme for the HOMO and LUMO of

phthalocyanines and F4TCNQ. Due to its high electron affinity, the LUMO of F4TCNQ lies below the

HOMO of phthalocyanines, turning it into a highly successful phthalocyanine dopant.

7It should be noted that the recombination of the electron-hole pair formed in the charge transfer complex is

hindered by the fact that the two charges remain in different molecules.
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Chapter 3

Positive Muon Spectroscopy (µSR)

Positive Muon Spectroscopy, commonly denoted as µSR, is a peculiar member of the nuclear

condensed matter techniques realm. Although less known than the traditional techniques, such

as Nuclear Magnetic Resonance (NMR), Electronic Spin Resonance (ESR) or Mössbauer Spec-

troscopy, it has unique features that abide its distinction inter pares. Probably the most stag-

gering one is the fact that it uses a probe usually associated with particle physics — the muon

—, but it is actually its remarkably high sensitivity to short-range magnetic phenomena what

makes it best-known among the condensed matter research community.

This chapter is devoted to the fundamentals of µSR. The technique’s basics, typical ex-

perimental arrangements for data acquisition and signal processing and short descriptions of the

main methods and selected instruments available to the µSR community will be addressed in a

first part of the chapter. The second part of the chapter will deal with µSR observables and the

way they relate with the charge states and dynamical processes underwent by the muon and its

surroundings. It is intended to provide the basic tools for the analysis of µSR data substantiated

in subsequent chapters.

The µSR acronym was coined to resemble the NMR and ESR acronyms, and indeed

many similarities with these magnetic resonance techniques will become apparent throughout

the whole chapter. Nevertheless, and contrarily to the use often given to these techniques in

sample characterisation routines, one should make clear that µSR can never play the role of

a characterisation technique. Instead, it is always primarily used to investigate fundamental

physics problems. Hopefully that will become evident in this chapter, not only because of the

type of information µSR yields, but also due to limiting characteristics of the technique, such

as the need for an accelerator source or the relatively short lifetime of the muon.

19
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3.1 The role of muons in Condensed Matter Physics research

In the general classification of particles provided by the Standard Model, the muon finds its place,

together with the muonic neutrino, in the second generation of the lepton family (Table 3.1).

Being a lepton, it is regarded as a fundamental particle, possessing 1/2-spin and no internal

structure1. Belonging to the second generation, it is an unstable particle, decaying to the lighter

(and stable) first generation leptons. Table 3.2 shows a selected list of the muon’s properties;

its 1/2-spin grants it a non-zero magnetic moment, from which stems the muon’s ability to

interact with local magnetic environments, and therefore to probe them. This table also displays

comparative values of the same set of properties for the electron and the proton; the muon has

an intermediate mass between these two particles, and thus intermediate magnetic moment2.

Table 3.1: The three generations of fundamental particles according to the Standard Model. The

electron (e), muon (µ), tau (τ), and respective neutrinos (νe, νµ and ντ ) make the lepton family, which

does not interact via the strong nuclear force; the up (u), down (d), strange (s), charm (c), top (t) and

bottom (b) quarks are the strong interacting particles.

1st 2nd 3rd

leptons e µ τ

νe νµ ντ

quarks u s t

d c b

It is usual to take the comparison established in Table 3.2, and infer that a low-energy

muon in matter might be regarded either as a heavy electron or a light proton. These two

different pictures are in fact what distinguishes the applications of negative muons from positive

muons in condensed matter physics: while negative muons will play the role of heavy (negative)

1The absence of internal structure, together with the fact that the muon may be found in a totally unbound

state in nature, make it a Dirac particle, which has as direct consequence its 1/2-spin.
2For fundamental particles, the magnetic moment is inversely proportional to the particle’s mass. This is

strictly true for the muon and the electron, but not for the proton. Nevertheless, even for composite particles a

loose inverse relation between mass and magnetic moment still holds.
4The gyromagnetic ratio is taken here as the proportionality constant between a particle’s magnetic moment

and its spin angular momentum.
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Table 3.2: Properties of the muon, electron and proton. The top sign in the values of the charge,

magnetic moment and gyromagnetic ratio4 refers to the particle state, while the bottom one refers to the

anti-particle state. µB is Bohr’s magneton, eh̄/2me. Compiled from [75, 31]
property Muon (µ) Electron (e) Proton (p)

charge (q) ± e ± e ± e

mass (m) 1.8835× 10−28 kg 9.1094× 10−31 kg 1.6726× 10−27 kg

206.77 me me 1836.2 me

0.11261 mp mp/1836.2 mp

spin (s) 1/2 1/2 1/2

magnetic moment (µ) ± 4.4904× 10−26 JT−1 ± 928.48× 10−26 JT−1 ± 1.4106× 10−26 JT−1

±µB/206.53 ± 1.0011 µB ±µB/657.45

± 3.1833 µp ± 658.21 µp ±µp

gyromagnetic ratio (γ) ± 851.62× 106 radHz T−1 ± 176086× 106 radHzT−1 ± 267.52× 106 radHzT−1

mean lifetime (τ) 2.19703× 10−6 s > 4.6× 1026 years > 2.1× 1029 years

electrons, positive muons are the ones to behave as light (positive) protons. The µ− is attracted

by atomic nuclei, promptly assuming a 1s state by dislodging a lighter (hence higher energy)

electron. This muonic 1s state has a much smaller Bohr radius than the electron (also due to the

mass difference) and will therefore be sensitive mainly to phenomena taking place in the nucleus

or the atomic core. The µ+, on the other hand, is repelled by the nuclei just as the proton

does, placing itself well away, in regions rich with delocalised electron density. The fact that the

µ+ probes the delocalised electronic cloud makes it a much better probe for condensed matter

physics than the µ−; positive muon spectroscopy, µ+SR, is the technique that uses the positive

muon in that role [138]. In strict terms, and although negative muons are best suited for atomic

and nuclear physics studies, negative muon spectroscopy, µ−SR, does exist. Nevertheless, it is

seldom used, since apart its lesser capabilities for condensed matter studies, it has other technical

downsides, namely that negative muons are harder to produce (cf. Section 3.2.3) and have their

lifetime shortened due to muonic capture (µ− + p → n + νµ), limiting the muon detection time

window in media of high atomic number. Henceforth, we will restrict our discussion mostly to

µ+SR and refer to it simply as µSR, as it is of use.
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The positive muon is a very effective probe for magnetism research, and indeed most part

of µSR studies are performed in this field [133]. This happens because the magnitude of the

muon’s gyromagnetic ratio allows the experimental detection of its spin interaction with inter-

nal magnetic fields (as described in Section 3.2 further on) over the full range of values found

in magnetic phenomena5 [9]. Examples of studies employing the muon in this ‘microscopic

magnetometer’ role for internal dipolar fields include the investigation of ordering in magnetic

media [27], the measuring of internal field distributions in dilute magnetic alloys [67], the de-

piction of spin dynamics in spin-glass materials [57] and the characterisation of magnetic phase

transitions [8]. Many applications of µSR to the broader context of critical phenomena also

exist, namely to the study of liquid crystal ordering phase transitions [68], glass transitions in

polymeric systems [90] and phase transitions to the superconducting state [2]. Superconductor

physics too has benefited deeply from the existence of µSR, especially in the understanding of

the superconducting state’s nature, where the microscopic character of the muon probe turns it

into a high-precision tool to study vortex phenomena [63] and map penetration depth patterns

in high-Tc superconductors. The relation between magnetism and superconductivity in several

families of superconducting materials is also extensively studied experimentally with µSR, since

it is one of the very few techniques to exhibit distinctively clear signals both in the magnetic

and the superconducting phase [132]. One should note that in all these applications the muon

is a passive probe, in the sense that it is external to the system being studied and plays no part

(or at most a very small one) in the phenomena addressed.

Other examples of µSR applications which use the positive muon as a passive magnetome-

ter probe arise from the high sensitivity of its magnetic moment to internal hyperfine fields.

These fields result from the unpaired spin of electronic distributions around and at the muon’s

site, and allow to probe both local electronic structure and electronic spin dynamics phenomena

in many materials. µSR finds use e.g. in the investigation of core polarisation and screen-

ing effects in metals (see e.g. [20]), in the measurement of Knight shifts in metals (see e.g.

[106]) and charge-carrier diffusion parameters in conducting and semiconducting polymers [87],

in structural studies of defects in metals and semiconductors and in the mapping of spontaneous

hyperfine fields in ferromagnetic and antiferromagnetic materials [106].

Besides being a natural probe for magnetism, the µ+ is also specially tailored for hydrogen

studies by way of its ‘light proton’ role. In these studies, the positive muon plays an active part,

5Zero to a few tesla.
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as it is considered to be a lightweight proton, with roughly one ninth of the proton’s mass (see

Table 3.2). This view is adopted e.g. in studies regarding the diffusion of light-interstitials

between potential wells; carrying the same electric charge as the proton, the positive muon also

assumes the same sites the proton does, independently of host material. So, µSR results often

complete proton, deuteron and triton diffusion data, contributing to the testing of theoretical

models and the fine-tuning of their parameters [129]. But the highest relevance of this other

face of the positive muon becomes evident when it effectively takes the place of the proton.

Just like protons, positive muons are highly reactive in matter, and often end up binding with

a single electron to form a neutral atomic system known as Muonium6, Mu. In vacuum, this

hydrogen-like system has properties very similar to the hydrogen atom, as seen in Table 3.3;

in concrete terms, it possesses an almost identical electronic structure, since the reduced mass

value dictates essentially the same 1s electronic wavefunction.

An equivalent similarity occurs for hydrogen and muonium in matter, and for most pur-

poses muonium may be used as an experimental substitute of hydrogen which has the ability to

provide information about its local electronic environment via the hyperfine field created by the

bound electron [99]. This parallel finds many applications in free radical chemistry, where the

muon extends the scope of isotopic substitution studies in molecular dynamics, assists in the

identification of molecular structures, helps determining reaction rate constants, and provides a

way to probe molecular spin dynamics directly, among others.

Yet, the most successful application of the positive muon in the active role of proton

substitute has probably been so far the investigation of hydrogen behaviour as an impurity

in semiconductors and insulators. In fact, the unique characteristics of µSR provide it with a

sensitivity which finds no match among the techniques that are directly sensitive to hydrogen, viz.

NMR and the EPR variant of ESR. This fact justifies Jess Brewer’s well-known statement ‘[...]

far more is known about isolated H atoms from µSR than from any other method that observes H

itself.’ [13] frequently quoted in µSR introductory literature. Furthermore, the limited lifetime

of the µ+ implies that µSR observes muonium in its early stages, hence in isolated form, still

far from any reactions with structural defects or other impurities in the host material. µSR is

therefore extensively applied to semiconductor and insulator physics in studies regarding the

6This is the nomenclature given to this system in a condensed matter physics context; it differs from what

would be found in particle physics nomenclature, where muonium is the µ+µ− bound state, and µ+e− is called

muium.
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Table 3.3: Physical properties of muonium (Mu) and hydrogen (H) in vacuum. All properties concerning

electronic structure are essentially the same. As will be discussed in Section ??, the hyperfine coupling

constant is a measure of the energy associated with the spin coupling due to Fermi’s contact interaction

between the muon/proton and the orbiting electron. This parameter is proportional to the electronic

density at the muon’s/proton’s position and the muon’s/proton’s gyromagnetic ratio. The difference of

hyperfine coupling constants between Mu and H corresponds to the difference in gyromagnetic ratios,

and is not related with dissimilarities in the electronic wavefunction. a0 is the Bohr radius for infinite

nuclear mass, 4πε0h̄
2/mee

2. Compiled from [75]

property Muonium (µ+e−) Hydrogen (p+e−)

mass (m) 1.8926× 10−28 kg 1.6735× 10−27 kg

0.11309 mH mH

reduced mass 9.0655× 10−31 kg 9.1044× 10−31 kg

0.99519 me 0.99946 me

ground state energy (E) −13.540 eV −13.598 eV

0.99573 EH EH

Bohr radius 0.53174 Å 0.52947 Å

1.0048 a0 1.0005 a0

hyperfine coupling constant (A) 4.4633 GHz 1.4204GHz

3.1423 AH AH
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electronic structure of interstitial hydrogen [85, 45, 18], to infer the localisation of the proton’s

site in the host lattice [46], to probe the conversion dynamics between the different charge

states the hydrogen possibly assumes [65], and, in selected cases, to address the interaction of

hydrogen with electrically active defects. It should be referred that µSR results have a high

impact in the semiconductor community, both scientific and industrial. On the industrial side,

hydrogen is considered to be an ubiquitous impurity in traditional semiconductors due to their

manufacture processes [13]; furthermore, it is often introduced deliberately in semiconducting

devices in order to passivate electrically active defects. Information about the ‘where’ and ‘how’

hydrogen interacts is thus of the utmost importance for the control of electronic properties

via hydrogen incorporation. In fundamental science, µSR contributes to the construction of a

systematic view of hydrogen’s behaviour in semiconductors and insulators, and allows to test

theoretical models that describe hydrogen embedded in those many-particle systems. Being a

point-defect, interstitial hydrogen creates an electronic level in the forbidden band-gap which,

depending on its position and the existence of other impurity-induced levels, may interfere

with the electronic properties of the material. Establishing an universal picture for hydrogen

which would describe the properties of that level in semiconductors is a long-desired goal of

the semiconductor community. This goal has recently seen considerable advances with several

predictions and experimental results consistent with the existence of a universal ‘pinning-level’,

as put forward by Van de Walle [135]. This theory was prompted by the theoretical forecast that,

contrary to what had always been observed, hydrogen could form an easily ionised shallow-donor

level in some semiconductors [134], and hence become an active dopant instead of a deep-level,

passivating impurity. Indeed, the first experimental confirmation of that prediction was obtained

in a µSR experiment performed in the II-VI compound zinc oxide by Cox et al. [21], but in

fact that was at the time already the second experiment confirming the existence of hydrogen

shallow-levels, since months earlier Gil and co-workers had found it in cadmium sulfide, cadmium

selenide and cadmium telluride [45, 47]. Since then, that theory has been put to severe testing

by the muon, namely in the non-magnetic binary oxides, where a systematic search for further

examples of these shallow states has been set-up by Cox and co-workers [23, 24]. The use of µSR

to model the electronic structure and electrical activity of the hydrogen impurity in electronic

materials, cleverly baptised as muonics in that work, is thus one fine example that emphasises

the importance and the amazing scope of applications muons have in condensed matter research

today.
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3.2 The µSR essential

µSR is a technique that allows probing the structure and dynamics of condensed matter at the

atomic scale. It is based on the implantation of a foreign probe, the positive muon, into the

sample being investigated, and observing the effects of local environment and externally applied

magnetic fields on the muon’s spin direction. Watching those effects is possible because the

muon is unstable, and decays to a positron which is preferentially emitted along the muon’s

spin, as it will be described in Section 3.2.2. The muon’s spin direction at the moment of decay

is revealed in this way and, many implanted muon decays later, one is usually presented with

the time-evolution of that quantity, as the decay events randomly sample all possible decay

instants according to Poisson statistics. But to monitor the muon’s spin in this manner, two

basic assumptions need to be met: that all muons stop in the sample in the same instant of

their short lives, which should be as nearest as possible to their birth moment; and that when

arriving at the sample, all muons are polarised with the same initial spin direction. Actually,

µSR does exist in part because this last requirement is quite easy to accomplish; this will be

discussed in Section 3.2.3.

The origin of µSR is not well defined, since it derived naturally from the large amount

of experiments using positive muons carried out from the mid-1950’s to the 1970’s [126, 106].

Those experiments aimed mainly at verifying the V-A weak nuclear interaction theory, for which

purpose the interactions experienced by the µ+ in the target were considered to be at the time an

undesired effect. In order to choose the best targets, it became necessary to study in detail those

interactions, and by the time this task had been completed, many scientists had already realised

the importance the µ+ could have as a way to investigate the properties of matter. In spite of

µSR’s clouded origin, its acronym, which stands for muon spin rotation, relaxation, resonance,

is easily traced back to the 1970’s [138], and indicates that the experimental observable is the

muon’s spin. It also reflects the fact that rather than being a single technique, µSR is instead a

collection of methods that use different aspects of the way the muon’s spin may interact with its

surroundings. This multitude is one part of the reason why µSR finds the amazing number of

different applications stated in the last section. The other arises from the universality of µSR.

Since µSR uses an implanted probe, it may be applied to virtually any material. It would not be

too much to say that µSR is probably the most universal of the condensed matter techniques; its

feasibility does not depend on any particular property of the sample, like electrical resistance or

the presence of a certain isotope, but only that the sample has a volume big enough for muons
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to stop inside it.

3.2.1 The µ+ as a magnetic probe

The muon has a non-zero magnetic moment (see Table 3.2), and as such is able to interact with

magnetic fields. That interaction is of dipolar magnetic nature, and is responsible for lifting

the degeneracy of the two possible muon spin states. If one considers a positive muon in the

presence of a magnetic field ~B along the z axis of a coordinate system, this system’s hamiltonian

will be

Ĥ = −~̂µµ. ~B = −γµ
~̂Sµ. ~B = −γµŜµzB = −ωµŜµz , (3.1)

where ~̂µµ = γµ
~̂Sµ is the positive muon’s magnetic moment, ~̂Sµ is its spin operator and ωµ = γµB

is the so called Larmor frequency of the muon in the field ~B. Choosing the spin quantisation

axis to be in the z direction, which means taking for the muon spin basis the spin-up, spin-down

{|αµ〉, |βµ〉} eigenvectors of ~S2
µ and Ŝµz ,

~S2
µ |αµ〉 =

3h̄2

4
|αµ〉 ; Ŝµz |αµ〉 =

h̄

2
|αµ〉 (3.2)

~S2
µ |βµ〉 =

3h̄2

4
|βµ〉 ; Ŝµz |βµ〉 = − h̄

2
|βµ〉 , (3.3)

the eigenvalues En and eigenvectors |n〉 of the hamiltonian (3.1) are

E1 = +
h̄

2
ωµ ; |1〉 = |βµ〉 (3.4)

E2 = − h̄

2
ωµ ; |2〉 = |αµ〉 . (3.5)

The level splitting energy between these two spin eigenstates due to the presence of the magnetic

field is ∆E = h̄ ωµ, which, as it is shown in Figure 3.1a, increases linearly with the field’s

magnitude. This implies that knowing the energy splitting ∆E between the levels is the same

as knowing ωµ, which in turn is the same as knowing the field’s intensity. Indeed, this is the

principle of magnetic resonance methods based in the absorption of electromagnetic waves, as

Continuous-Wave NMR: the ensemble of nuclei probes is prepared in a state that has a higher

occupation of the lower energy eigenstates of their spin hamiltonian, and then is irradiated with

a band of RF-frequency waves [103]. The population imbalance causes resonant absorption of

those waves at a frequency γNB + ∆ω that matches the total magnetic field felt by the nuclei.

Since that magnetic field is the sum between the externally applied field ~B and all internal fields

existing locally at the nuclei sites, by measuring the number of different frequencies absorbed
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and their shifts ∆ω relative to γNB one is able to determine the number of different local

magnetic environments the nuclear probe ensemble experiences and their corresponding internal

fields ∆B = ∆ω/γN .

Figure 3.1: (a) Energy level scheme of the muon’s 1/2-spin as a function of the magnetic field experi-

enced by the muon. (b) Spin precession of the muon in a magnetic field.

µSR, nevertheless, uses a different method of determining the total magnetic field at the

muon’s site. It is based on an important aspect of the interaction of the muon’s spin with a

magnetic field known as spin precession. If the muon’s spin starts by having a component per-

pendicular to the magnetic field ~B, that component will rotate clockwise around the field’s axis

with the Larmor frequency ωµ (Figure 3.1b), often known also as Larmor precession frequency.

This effect arises from the fact that if the perpendicular component exists, then the spin wave-

function is not one of the eigenstates (3.4), (3.5), but a linear combination of them, and as such

will exhibit a time dependence. The direction of the muon spin as a function of time is given by

the expectation value of the Pauli spin operator ~̂σµ,

~̂σµ =
~̂Sµ

h̄/2
, (3.6)

whose cartesian components can easily be shown to evolve with time in the presence of a magnetic
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field according to (see Appendix A)

〈σ̂µx(t)〉 = cos(−ωµt + φ) sin θ (3.7)
〈
σ̂µy(t)

〉
= sin(−ωµt + φ) sin θ (3.8)

〈σ̂µz(t)〉 = cos θ , (3.9)

where (θ, φ) is the pair of polar and azimuthal angles which defines the initial direction of the

muon’s spin. It becomes clear from these expressions that
〈
~̂σµ(t)

〉
is a unitary vector whose

projection on the xy plane rotates clockwise with angular frequency ωµ, maintaining its z-

projection constant. This result coincides with the solution obtained from the classic equation

describing the precession of the muon’s spin angular moment in the magnetic field ~B,

d~Sµ

dt
= ~µµ × ~B = γµ

~Sµ × ~B , (3.10)

and quite often µSR data is conveniently interpreted in classical terms, as it had already implic-

itly been assumed in Figure 3.1b.

The most straightforward method of µSR, muon spin rotation, measures the precession

frequencies of the implanted muon ensemble by analysing the time-dependence of the ensem-

ble’s spin polarisation vector, ~Pµ(t). The muon spin polarisation is defined as the ensemble’s

expectation value of the Pauli spin operator,

~Pµ(t) =
〈
~̂σµ

〉
, (3.11)

meaning that it is essentially a vector whose direction follows the net spin direction of the

muons in the implanted ensemble. Taking the time dependence of this quantity along a fixed

direction in space not collinear to the magnetic field, one gets an oscillating behaviour with the

superposition of different frequencies whose values are proportional one by one to the different

total fields experienced by the ensemble. This method of assessing internal fields is the same

as the one used in Pulsed-NMR, the muon’s ensemble polarisation being equivalent to the free-

induction decay of the nuclear magnetisation (Figure 3.2).

Regarding equation (3.11), it is important to make a clear distinction between the ex-

pectation value of ~̂σµ for a single muon spin and the polarisation of an ensemble of muons

(expectation value of ~̂σµ for that ensemble). The quantum state7 of an ensemble is generally
7By ‘quantum state’ one means here the maximum-information description of the whole ensemble system; this

is not to be confused with the expression ‘wavefunction’, usually reserved for identifying a linear combination of

eigenstates.
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Figure 3.2: (a)Typical time dependence of the muon polarisation along a direction non-collinear to the

magnetic field in Muon Spin Rotation and (b) of the transverse magnetisation free-induction decay in

the π/2-pulse method of Pulsed-NMR (right). The reason why the amplitude of these signals decreases

with time is described in the text.

not a wavefunction, since single muons may be in distinct environments, where they experience

different hamiltonians with different eigenstates. The description of the ensemble’s quantum

state is done instead with a superposition of single-particle wavefunctions reflecting the sta-

tistical distribution of muons between those environments; because that statistics adds to the

already statistical nature of the individual quantum states, the whole ensemble system is usu-

ally said to be ‘doubly statistic’ [126]. An ensemble quantum state is usually referred to as a

mixed or incoherent state, in opposition to pure or coherent states, when there is not a definite,

time-independent phase relation between the wavefunctions in the superposition. In that case,

its description is usually done with a density matrix, as discussed later on in Section 3.4.3. In

practice, the double statistics of the muon ensemble means that the main quantisation axis,

which in the most basic picture lies in the direction of the total internal field, is not necessarily

the same for all the muons in the ensemble, as it is not the magnitude of that field and the

corresponding precession frequencies. As a result, the oscillating behaviour of the muon spin

polarisation may loose its coherence, i.e. individual muon spins precessing at different frequen-

cies may become out of phase and the magnitude of their ensemble normalised spin-sum lessens

with time. Hence, in a mixed state, the loss of coherence decreases the ensemble’s polarisation

with time, |~Pµ| ≤ 1 (cf. Figure 3.2), as the individual spins assume increasingly random di-
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rections due to the fact that they are precessing along different quantisation axis and/or with

different frequencies. A decrease of polarisation may also exist if there are dynamical processes

in the muon’s environment capable of changing either the direction or the magnitude of the total

internal field with time. Contrary to the loss of coherence, which only decreases the perpendicu-

lar, precessing components of the polarisation, dynamics also affects the parallel, non-precessing

component of the ensemble’s polarisation; that behaviour implies an actual energy transfer from

the muon system to the system responsible by the dynamical phenomena. Pure states, on the

other hand, correspond to a fully polarised ensemble bearing |~Pµ| = 1, which may be interpreted

classically as all the muon spins being aligned along the same direction in space at any instant.

Quite often, the decrease of polarisation in mixed states is proportional to the polarisation itself,

and the temporal dependence of the polarisation vector includes a dissipative term just like the

well-known Bloch equations of Pulsed NMR, becoming

d~Pµ

dt
= γµ

~Pµ × ~B − Λ~Pµ (3.12)

were Λ is generally a second-order tensor and its coefficients are usually termed depolarisation

or relaxation rates. The time dependence of equation (3.12) implies an exponential decrease of

all components of the ensemble’s polarisation, that being the macroscopic effect of the randomi-

sation of the quantisation axis and/or precession frequencies over the whole ensemble, or of any

time-dependent spin interactions.

The loss of coherence of the muon ensemble is the basis for another method of µSR, muon

spin relaxation. Instead of evaluating the time dependence of the muon spin in a direction

non-collinear to the magnetic field, this method measures the time dependence of the spin’s

component which is parallel to the magnetic field. According to equation (3.12), if the muon is

involved in dynamical phenomena, those will translate to the ensemble’s polarisation also as a

decrease of the parallel component with time, i.e. as its relaxation (Figure 3.3). The rate at

which the parallel polarisation is lost relates directly with the time structure of the fluctuations

associated with the source of dynamics; muon spin relaxation is therefore an appropriate tool

to probe dynamic effects, being able to assess phenomena occurring in the muon’s environment

in any time scale that lies within the limits imposed by the experimental time-resolution (which

may be as low as 100 ps) and the exceptionally long lifetime of the muon (up to 10τµ = 22µs)8.

8As it will be seen in Section 3.4.4, the lower limit may be further decreased if the muon experiences the

dynamical phenomena via an hyperfine interaction.
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Figure 3.3: (a) Typical time dependence of the muon polarisation along a direction parallel to the

magnetic field in Muon Spin Relaxation. This method also has an analogue method in Pulsed-NMR,

termed inversion recovery, as depicted in (b).

Finally, muon spin resonance constitutes the third version of the µSR technique, featuring

yet another way the muon may be used as a magnetic probe. It relies on one other effect, which is

the disappearing of parallel polarisation when the spin wavefunction of a muon transits between

two eigenstates of the spin hamiltonian. That transition must be assisted by a perturbation

which, to be put simply, may be either a fixed-frequency RF electromagnetic field irradiated

on the sample, or an additional term in the hamiltonian related with residual spin interactions

underwent by the muon. In the first case, one has the RF variation of muon spin resonance;

internal fields are measured by the absorption of the RF waves when the resonance condition

h̄ ωRF = ∆E between the RF frequency ωRF and the eigenstates splitting ∆E is met. This

variation is identical to the Continuous-Wave NMR and ESR methods, except that the resonant

frequency is signalled by the loss of polarisation, and not by an induced voltage in an RF pick-up

coil. The second case is the level-crossing variation of muon spin resonance; it is termed like that

because the transition occurs between levels that, for a certain externally applied field, would be

degenerate (i.e. would cross) if it were not for the presence of a residual spin interaction. The

exact external field at which the loss of polarisation takes place depends quite sensitively on the

coupling constant of the residual spin interaction; knowing that field’s value allows to measure

the corresponding coupling constant. Just like Continuous-Wave NMR and ESR, muon spin
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resonance produces high-precision measurements of internal fields, providing a sensitive tool to

distinguish from similar muon environments or obtain coupling constants of the muon’s spin

hamiltonian with high accuracy.

As it is more than clear by now, the use of the positive muon as a magnetic probe with the

µSR technique supposes the ability of following the time dependence of the muon polarisation.

The next section is devoted to the physical fundamentals that make it possible.

3.2.2 Muon decay

Although the muon was first artificially produced in 1948 at the Berkeley National Laboratory

following its discovery in cosmic rays by Carl Anderson and Seth Neddermeyer [4], it was only

after the discovery of parity violation in its decay by Garwin et al. [42, 38] that it became a

viable magnetic probe. The violation of parity in weak decays is the key for µSR’s existence,

since it has as a direct consequence the presence of anisotropy in the emitted electron/positron’s

direction relative to the negative/positive muon’s spin (see Figure 3.4). That anisotropy, in

turn, provides a way to determine the direction of the muon’s spin at the instant of its decay.

Figure 3.4: The three-body weak decay of a spin-possessing particle A under a parity transformation.

The momenta of the daughter particles B and C are polar vectors, changing their sign under the parity

operation P; on the contrary, the parent’s spin angular moment does not change sign because it is an

axial vector. If parity is not conserved in the decay, the two situations depicted are not equivalent, and

will take place in nature with different probabilities. This leads to a biasing in the emission of e.g. the

daughter particle B, which will occur in a preferential direction relative to the parent’s spin.

The muon decay,

µ− → e− + ν̄e + νµ

µ+ → e+ + νe + ν̄µ , (3.13)
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is a weak interaction process occurring with a mean lifetime of about 2.2µs. It is a three-body

reaction, and as such the electron or positron (in practice the only detectable particle from the

decay) will not emerge from it with a single energy. In the rest frame of the muon, it is emitted

with a distribution of energies ranging from zero (when the two neutrinos are emitted in opposite

directions and the electron/positron remains at rest) to

Te
max =

1
2

mµ c2

(
1− me

mµ

)2

= 52.32MeV (3.14)

(when the two neutrinos are emitted in the same direction, but antiparallel to the electron’s

or positron’s momentum). Since the muon is a point-like particle and the decay occurs at

low energies, the process (3.13) may be quantitatively described by Fermi’s theory for weak

interactions based on a V-A hamiltonian [106]. The probability per unit time dW that the

electron or the positron will be emitted with a certain energy in a solid angle dΩ can be evaluated

in that theoretical framework, giving [106]

dW (ε, θ) =
1
τµ

n(ε)
2π

(1 + a(ε) cos θ) dε dΩ , (3.15)

where τµ is the muon’s lifetime, θ is the angle between the direction of emission and the muon’s

spin, and ε is the normalised energy of the electron/positron, ε = Te/Te
max. The quantity

n(ε) = (3− 2ε)ε2 (3.16)

is a pre-factor governing the pure energy dependence of the emission probability distribution;

that dependence is obtained integrating equation (3.15) over the full 4π solid angle,

dW (ε) =
∫

4π

1
τµ

n(ε)
2π

(1 + a(ε) cos θ) dε dΩ =
2
τµ

n(ε) dε , (3.17)

leading to the energy distribution shown in the upper part of Figure 3.5, well-known from beta

decay. n(ε) is also obviously normalised so that the integration over all energies

W =
∫ 1

0

2
τµ

n(ε) dε =
1
τµ

gives the total decay probability per unit time.

The most interesting fact underlying equation (3.15) is the spatial dependence of the

probability distribution, which depends on the so called asymmetry factor,

a(ε) = ∓ 2ε− 1
3− 2ε

, (3.18)
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Figure 3.5: (upper part) Energy spectrum of the electrons/positrons emitted in muon decay; emission

with maximum energy has also maximum probability. (lower part) The asymmetry factor as a function

of the emitted particle’s energy. It increases with energy, also increasing the distortion of the angular

emission pattern.

where the ∓ signs refer to the negative and the positive muon decays respectively. For each elec-

tron/positron energy, the decay probability is axially symmetric with respect to the muon spin,

but asymmetric along that same direction (Figure 3.6). The asymmetry factor parameterises

the imbalance in the probabilities of emission parallel and antiparallel to the muon spin. Fig-

ure 3.6 shows the angular dependence of dW for the positive muon in the case that the positron

is emitted with maximum energy (ε = 1); as the asymmetry factor here is +1, no positrons

with that energy will be emitted antiparallel to the positive muon spin. For lower energies, the

asymmetry factor decreases (see Figure 3.5), and the emission pattern gets less asymmetric.

Averaging equation (3.15) over the electron/positron energy spectrum, one gets a net angular

dependence which, although less pronounced than the ε = 1 case, is still asymmetric along the

muon spin,

dW (θ) =
∫ 1

0

1
2π

n(ε)
τµ

(1 + a(ε) cos θ) dΩ dε =
1

2πτµ

1
2

(
1∓ 1

3
cos θ

)
dΩ , (3.19)

with an average asymmetry factor of ∓1/3 (Figure 3.6). The probability of electron/positron

emission antiparallel/parallel to the muon spin is therefore double of that in the opposite direc-

tion, allowing to statistically determine the direction of the muon’s spin at the time of its decay

by detecting the bearing of the emitted particle. Thus, for a precessing muon ensemble, the
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emitted electron/positron ‘beam’ works similarly to a lighthouse’s light beam. As a concluding

remark, one should note that for the positive muon (which is the case of most interest) its spin

direction is beaconed by the positron’s preferred emission direction, while for the negative muon

it is the contrary.

Figure 3.6: Angular dependence of the positron’s emission probability relative to the positive muon’s

spin. The blue curve represents the emission probability for maximum positron energy (ε = 1); averaging

it over the positron’s energy spectrum produces the curve shown in red.

3.2.3 Production of polarised muon beams

Nature produces positive and negative muons in the upper layers of our atmosphere by pair-

production reactions. They join other high-energy radiation to form the cosmic rays, and turn

out to be its main constituents at ground-level. In the laboratory, muons are born from the

decay of charged pions, the lightest exchange mesons responsible for the nuclear strong force

in Yukawa’s model. Pions are produced in accelerator facilities by the bombardment of low-Z

nuclei (usually beryllium or carbon) with high-energy protons; typical reactions yielding charged

pions are

p + p → p + n + π+

p + n → n + n + π+

→ p + p + π− (3.20)

which have an energy threshold of 280MeV in the laboratory (corresponding to a centre-of-

mass energy of roughly 140 MeV, the charged pion’s rest energy) and are called single-pion
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production reactions [106]. The cross section for these reactions increases with the incident

proton beam energy, reaching a plateau value somewhere between 500 and 1000 MeV; beyond

600MeV, double-pion production reactions also occur, but exhibit a much lower cross section

than the single-pion ones under 1000 MeV.

There are currently four large-scale facilities worldwide using high-intensity pion beams for

the production of muons intended for µSR experiments. Three of them, the Paul Scherrer Insti-

tut (PSI) in Villigen, Switzerland, the Tri-University Meson Facility (TRIUMF) in Vancouver,

Canada, and the Japanese National Laboratory for High Energy Physics (KEK) in Tsukuba,

Japan, are dedicated meson factories designed with a proton-beam energy suitable to provide

maximum pion and muon fluxes (580 MeV, 520 MeV and 500 MeV respectively). The fourth,

placed at the Rutherford-Appleton Laboratory (RAL) in Oxford, United Kingdom, is actually

a neutron spallation source oriented for neutron diffraction experiments. Pion production ca-

pability at this facility is provided by the fortunate fact that optimum conditions for producing

neutrons by spallation of heavy nuclei targets (like uranium, bismuth or tungsten) with a proton

beam occur at energies around 800 MeV. As this beam energy is suitable for producing pions

with the reactions above, neutron spallation sources are able to parasitically accommodate the

production of pion beams at a very small cost (typically less than 3%) of their main proton

beam.

Charged pions have a mean lifetime of approximately 26 ns, and decay into muons and

muonic neutrinos according to

π− → µ− + ν̄µ

π+ → µ+ + νµ . (3.21)

Like the muon decay, the disintegration of the pion is a purely weak interaction, although

simpler since it involves only two particles being emitted. In the pion’s rest frame, this has

two major consequences: the muon and the neutrino are emitted (i) with opposite momenta

due to momentum conservation, and (ii) with opposite spins, if one considers that the pion is a

spinless particle [31] and angular momentum also has to be conserved. Furthermore, neutrinos

and anti-neutrinos are known to have a definite helicity [48], i.e. there is always a fixed relation

between a neutrino’s spin and its momentum9. Helicity is in fact the only experimental property

distinguishing neutrinos from anti-neutrinos: all ν have their spin vectors opposite to their

9This happens to be itself a consequence of parity violation in weak interactions.
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momentum vectors, which corresponds to a negative helicity, while all ν̄ have spin anti-parallel

to momentum, corresponding to positive helicity. As a result, negative muons are forced to have

their spin vector parallel to their momentum vector upon pion decay, the contrary standing for

positive muons (Figure 3.7).

Figure 3.7: Decay of the positive pion in its rest reference frame. The emitted muonic neutrino

has a definite negative helicity, implying that the positive muon’s spin ~Sµis always anti-parallel to its

momentum ~pµ.

The fact that a constant relation between the muon’s spin and its momentum exists allows

to easily generate a beam of fully polarised muons from the decay of pions. There are actually two

different ways of doing that. The first, and most important, is to use pions that have thermalised

in the pion production target and subsequently decay there. By collecting all muons emitted

from the target along a certain single momentum direction, one gets a 100% polarised beam,

which may then be guided to the target sample through a beam-line consisting of bending and

quadrupole focusing magnets (Figure 3.8). Muons deriving from pions at rest have an energy of

Tµ =
1
2

mπ c2

(
1− mµ

mπ

)2

= 4.12MeV (3.22)

in the laboratory frame, corresponding to a momentum of about 29MeV/c; this is a rather low

kinetic energy, and because of that the only muons with sufficient range to escape the target are

those emitted near the surface of the target (Figure 3.8). Therefore, muon beams produced in

this way are called surface muon beams, or Arizona beams, as they were proposed and produced

for the first time by a group from the University of Arizona [106]. The low energy of surface

muons is actually an advantage, since their short range in matter (typically a few hundred

µm10) and consequent small range straggling allows using moderately thin sample targets. The

on-sample muon beam-spot size11 may also be small if the proton beam focus at the pion target

is small.

One disadvantage of surface muons is that they are only suitable to produce positive muon

beams. This happens because negative pions thermalising in the pion target experience strong

10To put it more precisely, the stopping range of 4.1MeV muons in matter is about 170 mg/cm2.
11The transverse width of the muon beam.
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Figure 3.8: Production of surface (or ‘Arizona’) positive muons. Positive pions thermalising near the

pion target surface emit positive muons with a negative helicity, as imposed by momentum and angular

momentum conservation laws. By collecting all muons emitted from the target along a single momentum

direction, a fully polarised beam of positive muons is produced.

electrostatic attraction forces from the target’s nuclei, which drive them into being immediately

captured by the nuclei. Pionic capture induces a nuclear disintegration process called a pionic

star, with the consequent loss of the negative pion. In contrast, high intensity surface beams of

positive muons (∼ 107µ+/ s) are easily accomplished due to the very high stopping density of

positive pions in the pion target. In order to produce beams of polarised negative muons, one

must use pions that have enough energy to escape the pion target. Those pions are momentum-

discriminated and then directed to a region named a decay channel, usually several metres in

length, where an intense longitudinal magnetic field forces them to go through very long, helical

trajectories. If the pion momentum is sufficiently small, most of the pions decay somewhere

inside the channel, so that at the channel’s exit a diffuse beam primarily composed of muons

will exist. The muon beam is then accepted in a momentum selector to choose only those muons

that have a momentum parallel to the pion propagation direction inside the decay channel. This

is necessary to avoid using muons that suffer an effect known as kinematic depolarisation: since

the collinearity between a muon’s momentum and its spin is only valid in the pion rest reference

frame, in the laboratory frame (where the pion is moving) the muon spin gains a component

transverse to the muon’s momentum whenever the muon is emitted in a direction non-parallel

to the pion’s velocity, as shown in Figure 3.9. The muons that preserve a collinearity relation

between their spin and momentum are only those emitted parallel or anti-parallel to the pion’s

velocity. In the first case, the muon is said to be emitted in the forward direction, and has

a velocity larger than the pion’s; in the second, it is emitted in the backward direction, and
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has a velocity smaller than the pion’s (see Figure 3.9). The muon momentum selector also

distinguishes the two different beams formed from forward and backward muons, selecting one

of them.

Figure 3.9: The kinematic depolarisation of positive muons emitted from positive pions decaying in

flight. On the left, two different pion decays are represented in the centre-of-mass reference frame, where

muon momentum and spin are collinear; on the right, the same is represented, but in the laboratory

reference frame. Muons emitted parallel to the pion momentum have a velocity larger than the pion’s —

forward muons — while those emitted anti-parallel have a lower velocity than their parent’s — backward

muons.

Decay channels are of course not restricted to producing negative muon beams; in fact, a

positive muon decay beam is in principle twice brighter than a negative muon decay beam, as

the positive pion yield from single-pion reactions (equations (3.20)) is double from the negative

pion one. Decay muon beams have some disadvantages towards surface beams: to start with, the

cost and maintenance of a decay channel is considerably higher than that of a surface muon set-

up, mainly due to the superconducting solenoid needed for the magnetic field along the channel.

Secondly, muon momentum, although tunable, is usually larger than the 29MeV/c momentum of

surface muons, implying the use of thicker, hence harder to get, samples. Finally, the polarisation

of the resulting muon beam does not go much beyond 80%, since the kinematic depolarisation

effect is not completely rejected due to the finite angular acceptance of the muon momentum

selector. Still, the polarisation of muon beams, either surface or decay beams, is high enough

to render µSR as a superbly sensitive technique when compared to other magnetic resonance

techniques. For those other techniques, the spin polarisation of the magnetic probes has always

to obey Boltzmann’s distribution, and because of that exhibits very low values, typically around

10−6. These are several orders of magnitude below the 0.8-1.0 initial polarisation values used

in µSR, which does not rely in the Boltzmann distribution to prepare the spin polarisation of

its magnetic probe. Hence, and as µSR is able to detect the decay signal of virtually all muons

implanted in the sample (like it will be seen in the next section), far less spins are needed in µSR



3.2. THE µSR ESSENTIAL 41

(∼ 107) than e.g. in NMR (∼ 1017) to produce a signal with statistically significant information.

3.2.4 Experimental principles of µSR

A µSR experiment12 consists in implanting polarised positive muons in a sample, and detect the

direction of the positrons emitted from the muon decay. Time-stamping those positrons relative

to the instant muons arrive at the sample, it’s possible to reconstruct the time evolution of the

implanted muon spins thanks to the anisotropic decay properties of the muon (see Section 3.2.2).

The simplest experimental arrangement of a µSR time spectrometer is pictured in Figure 3.10.

The positive muons are directed to the sample, where they eventually stop after passing through

the muon counter M, a thin (∼ 0.2mm) scintillation detector which has the ability to distinguish

muons from any decay positrons that might possibly be emitted in its direction. This happens

thanks to the far higher intensity signals which are generated by the heavier and slower muons

in the beam when compared with decay positrons. A signal in M always flags the entrance of a

muon in the sample, starting a clock which is stopped when the corresponding decay positron

is detected in the positron telescope D13. The clock is reset by a logic module whenever a non-

valid event occurs, e.g. if no outward positron is detected in the telescope before the next muon

signal (whenever the decay positron is emitted in a direction out of the solid angle subtended

by D). If a valid event does occur, the acquisition electronics translates the clock value to a

memory address, incrementing the corresponding channel in a number of positron counts vs.

time histogram.

The time histogram of positron counts possesses all the experimental information about

the time dependence of the muon polarisation’s projection along the direction defined by the

sample and the positron telescope. As it is shown in Appendix B, the number of positron counts

in each time bin in a generic µSR positron detector D is given by

∆ND(ti) = N0 ηD
e−ti/τµ

τµ

(
1 + AD

~Pµ(ti) . r̂D

)
∆t , (3.23)

where N0 is the total number of muons implanted in the sample, ηD is the positron telescope

detector’s efficiency, AD is the detector’s asymmetry factor, r̂D is a unitary vector along the
12We focus now only on positive µSR, although the contents of this section can be easily translated to negative

µSR.
13A telescope is a particle counter composed by two scintillators placed consecutively along the direction leading

outwards from the sample. This type of double layout is able to distinguish particles moving away from the

sample (decay positrons) from those moving towards the sample (surely not positrons from muon decays inside

the sample), depending on the relative timing of the inside and outside scintillators’ signals.
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Figure 3.10: Schematic diagram of a simple µSR spectrometer. M is a thin scintillation muon counter

that detects muons arriving at the sample; D is a positron telescope, which detects the emitted positrons.

The signals of the two detectors trigger the start and stop of an electronic clock, allowing to build a µSR

time histogram.

direction defined by the sample and the positron telescope, and ∆t is the width of the time bin.

The quantity

ND = N0 ηD (3.24)

is the total number of decay positrons detected in the telescope D, while the time-varying scalar

AD(t) = AD
~Pµ(t) . r̂D , (3.25)

normally referred to as the detector’s asymmetry function, is the experimental observable of ac-

tual interest extracted from the µSR time histogram, since its normalised version AD(t)/AD
max

represents the muon polarisation along the detector’s direction r̂D. The maximum value AD
max =

AD |~Pµ(t)|max
, which assumes typical values around 0.25, depends on the intrinsic asymmetry of

the muon’s weak decay (the 1/3 asymmetry factor in AD, see equation (B.12) in appendix B),

the detector’s efficiency and geometry (the αε and αg factors in AD, id.), and the magnitude of

the initial muon polarisation |~Pµ(0)| (which is the maximum value |~Pµ(t)| may have if relaxation

phenomena exist).

In order to reflect more generally the signal generated in the telescope detector, one should

also add a constant number of background counts BD to (3.23). These background counts

have several sources, such as muon beam contamination by positive undecayed pions, positrons
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emitted by muons decaying in the pion target and in flight, or positrons formed in the muon

beam-line by pair-production reactions from gamma photons emitted in the decay of neutral

pions produced in the pion target. Figure 3.11 shows an example of a µSR histogram (and

corresponding asymmetry) that would be recorded in the positron telescope if the polarisation

component parallel to r̂D would be precessing with a single frequency.

Figure 3.11: An example of a µSR histogram of positron counts versus time that would be recorded

with the system of Figure 3.10. Superimposed to the exponential decay, there is an oscillating behaviour if

the muon ensemble polarisation precesses around a direction non-collinear to r̂D. A constant background

fraction of counts is also represented.

The design of actual spectrometers existing at the facilities which provide muon beams for

µSR is not much different from the simple spectrometer shown in Figure 3.10. They have several

positron telescopes placed around the sample in order to cover the largest solid angle possible,

maximising the spectrometer’s sensitivity14. Those telescopes are invariably fast plastic scintil-

lators coupled to photomultiplier tubes by light-guides, providing a high timing resolution for

the experiment. The photomultipliers have to be at some distance from the sample, so that they

are not affected by the large external magnetic fields usually employed in µSR measurements.
14i.e. the fraction of detected vs. emitted positrons.
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Although this degrades slightly the timing resolution, because of the sometimes long light-guides

needed to do this, resolutions of the order of several hundreds of picoseconds remain achievable.

The photomultiplier signals are treated by a set of electronics, basically comprising a standard

pulse timing stage of constant fraction discriminators and a TDC (time-to-digital converter)

module, a logic stage of coincidence and anti-coincidence units to elect valid muon decay events,

and a final acquisition stage of multichannel scalers connected to a read-out computer.

The logic stage’s layout highly depends on the time structure of the muon beam, which

may either be continuous15 or pulsed. The sources at PSI and TRIUMF deliver a continuous

beam, meaning that muons arrive at the sample one at a time, in average intervals conditioned

by the beam intensity. As each muon enters the sample, it triggers the acquisition by producing

a signal in the muon counter (Figure 3.12a); if the decaying positron is not detected in any of

the positron telescopes around the sample before the next muon arrives, it becomes impossible

to distinguish which muon has decayed. Therefore, the muon implantation rate has to be limited

to about 5× 104 µ+/s at these sources in order to avoid multiple muon events in the sample16.

Even so, the probability that two muons will be present at the sample may not be negligible

enough, and since their positrons are uncorrelated this ends up adding to the background. With

the lowest beam intensities admitted for acceptable experimental count rates, that background

usually renders the µSR histogram unusable after 5 to 10µs.

Figure 3.12: Time structure of (a) continuous and (b) pulsed muon beams. τw is the time width of the

muon bunch.

In the pulsed sources existing at RAL and KEK, muons enter the sample in very intense

15Often denoted by DC (direct-current) or CW (continuous-wave).
16This restriction may be lifted in a type of µSR experiment not yet referred here, called a time-integral

measurement. In this type of experiment, one is not interested in the time dependence of the muon polarisation.

This method will be further clarified in the next section
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and short pulses named bunches. The muon detector no longer plays the role of a counter,

and is only used to signal the implantation instant of the muon bunch. As muons decay, each

detected positron is timed with respect to the arrival of the pulse (Figure 3.12b). The time

interval between pulses is much larger than the muon’s lifetime, so that with a pulsed beam

low backgrounds are compatible with high muon implantation rates. It is therefore possible to

measure time histograms during many muon lifetimes, typically in a time window going up to

30µs. Nevertheless, pulsed muon sources have a major drawback relative to continuous sources:

the implantation instant for each muon in the bunch suffers from an uncertainty raised by the

finite time width of the bunch. Since the width of the bunch (∼ tens of ns) is much larger

than the timing resolution of the positron detectors, it folds the time resolution of the positron

detection system and limits the maximum resolvable frequency in the time histogram to about

10MHz. In continuous sources, frequencies up to 400MHz are resolved, as the timing resolution

of the positron detectors is the only limiting factor. Phenomena that imply a rapidly chang-

ing polarisation (either precessional or relaxing) can therefore only be observed in laboratories

providing continuous muon beams.

The sample’s environment conditions are also an important aspect of a µSR experiment.

These mainly comprise the control of temperature and the externally applied magnetic field,

but sometimes the measurement also involves other variables, such as the usage of RF-fields, an

externally applied electric field, laser illumination and high pressures. The external magnetic

fields are generated by a fixed pair of Helmholtz coils, which deliver low-fringe fields in a volume

with a radius of a few centimetres, as typical µSR samples may be tens of millimetres wide.

The magnitude of those fields does not go much farther than 0.5T; to attain higher fields, a

superconducting magnet must be used, but only a very limited number of µSR spectrometers

currently in use has this capability. For temperature control one uses either a cryostat or a

furnace apparatus. Since these support instruments are normally the bulkiest structures using

up the immediate space around the sample, they have to meet some experimental conditions,

namely the need to be fitted with a window thin enough not to stop the in-going muons, of being

made of non-magnetic materials in order not to disturb the external magnetic field delivered

to the sample, and to be designed in a way that there are no muons stopping anywhere else

except in the sample. Often this last criterium is difficult to meet, specially when the sample has

dimensions smaller than the beam spot. In that case, the muons not hitting the sample must

be stopped in a contrasting material that originates a distinct signal from the sample’s, which
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may then be easily subtracted. A similar problem is faced when the sample is in the liquid or

gaseous state, in which case must be placed in a cell; the cell must be designed with the same

concerns as those taken for the temperature environment apparatus. It should be noted that

no major restrictions in the design of cells, cryostats and furnaces are raised by the out-going

positrons, as these have on average quite a high energy, and therefore are penetrating enough

to easily reach the positron detectors.

3.2.5 µSR geometries

The recorded µSR time histogram depends directly on the polarisation of the implanted muon

ensemble, and in fact it is ~Pµ(t) the experimental quantity of interest in µSR since it holds all

the information about the interactions underwent by the muon inside the sample. As it was

referred back in Section 3.2.1, in a simple picture its time evolution is governed by (3.12),

d~Pµ

dt
= γµ

~Pµ × ~B − Λ~Pµ ,

a differential equation whose explicit solution depends on the initial conditions of the experiment,

namely ~Pµ(0), which equals the muon beam polarisation17. This fact ends up distinguishing two

geometries which yield two distinct types of µSR signals, depending on the relative orientation

between the muon beam polarisation, the externally applied field and the direction in which

decay positrons are observed. Those are the Transverse-Field (TF) and the Longitudinal-Field

(LF) geometries which, along with different signals, normally convey different kinds of informa-

tion about the local interactions the muons are subjected to.

Transverse-Field (TF) geometry experiments

In transverse-field experiments, the externally applied magnetic field is set perpendicularly to

the implanted muon polarisation. Since the external field is normally the main component of

the total field felt by the muon, this leads to the precession of the muon’s polarisation in a

plane perpendicular to the magnetic field’s direction, in the way shown back in Figure 3.1b. The

components of the polarisation perpendicular to the field are therefore the relevant quantities

to follow, which are monitored by positron detectors laid in that plane. A scheme of this type

of set-up is shown in Figure 3.13.

17This assumption is justified in section Section 3.3, where the preservation of the muon polarisation during

implantation is discussed.
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Figure 3.13: (left) Layout for transverse-field geometry experiments. The system monitors the muon

polarisation components which are perpendicular to the applied field. (right) A typical µSR histogram

of the Forward detector in a transverse-field experiment, and corresponding asymmetry.

Each detector D records an histogram

∆ND(ti) = e−ti/τµ
∆t

τµ
ND (1 + AD(ti)) + BD (3.26)

having a particular asymmetry function AD(t) which is generally a sum of damped sinusoidal

components of different frequencies. Those components express the precessional (and relaxing)

behaviour of the muon polarisation, and are all present in all the detector asymmetries AD(t)

with exactly the same relative spectral amplitude and depolarisation rate. Their initial phases,

nevertheless, are different, as the muon polarisation starts precessing at time zero with a different

angle relative to each detector.

A typical complete TF-µSR dataset contains several million events, and is analysed by

simultaneously least-square fitting all time histograms assuming the same theoretical model for

~Pµ(t). The unknowns ND and BD are added to the model parameters in this fit. Alternatively,

those unknowns may be estimated in an independent way18, and the simultaneous fit is per-

formed directly on the sampling of the asymmetry functions AD(ti) obtained from the detector

histograms by the inversion of equation (3.26). Often, Fourier transform methods are used by

the experimenter to assist the fitting task, although the fit is always performed in the time do-
18It’s possible to extract the background counts BD either from the very first histogram channels, since histogram

recording usually starts some time before the muon’s arrival to the sample, or from the very last channels, when

the number of muon decays is very low, already under the background counts. The total decay positron counts

ND can then be yielded by a simple exponential decay fit to the background-corrected time histogram divided by

∆t
τµ

using 1/τµ as the exponential’s constant, for the oscillating behaviour of the asymmetry should average it to

zero over the full histogram time window (see equation (3.26)).
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main. Transverse-field experiments relate directly to muon spin rotation (see Section 3.2.1), and

therefore aim mainly at the spectroscopy of the muon states formed in the sample, characterising

local environment in terms of properties such as site location and electronic structure.

One important aspect when performing data analysis of a µSR measurement is knowing

the value for the maximum asymmetry AD
max of each detector. If the muon experiences very

strong interactions after being implanted, normally there are components in the asymmetry

AD(t) which oscillate or relax too fast for the timing resolution of the spectrometer to resolve

them. When this happens, the total measured asymmetry does not add up to the maximum

asymmetry of the detectors, and a missing fraction is said to exist. The presence of a missing

fraction is information in itself, since it may vary with temperature and the applied magnetic

field as the relative amplitudes of the unresolved components change in a behaviour which is

characteristic of the interactions giving rise to it. The maximum asymmetry must therefore

be measured independently, using a calibration sample in which no missing fraction is known

to exist; no internal fields must therefore exist in the calibration sample, which happens when

electronic and nuclear magnetism are negligible or non-existent. Since the maximum asymmetry

depends sensitively on the experimental conditions, the calibration measurement must reproduce

entirely the experiment’s set-up. The shape and position of the calibration sample must be the

same, as well as the conditions in which the beam is delivered to the sample (identic beam spot

size and impact point in the sample; the latter may be affected by the external magnetic field,

especially if it is strong). Usually, for solid samples one uses a silver mask cut with the sample’s

shape, while for liquid and gaseous samples the holding cell is used, but filled with liquid carbon

tetrachloride, a well-known non-magnetic electron scavenger [99].

Longitudinal-Field (LF) geometry experiments

The longitudinal-field geometry is characterised by having the externally applied field parallel

to the implanted muon polarisation. The parallel component of the polarisation relative to

the field is the observable recorded, for which two positron detectors, placed upstream and

downstream of the sample, are employed (Figure 3.14). They are the backward (B) and forward

(F) detectors, respectively. The usual time dependence of the asymmetry of these two detectors

is a non-oscillating relaxing signal. Longitudinal-field experiments are thus employed in muon

spin relaxation studies, especially aiming at the dynamical interactions established by muon

states with its environment.
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Figure 3.14: (left) Layout for longitudinal-field geometry experiments. The muon polarisation compo-

nent parallel to the applied field is monitored via the Forward-Backward asymmetry, which is obtained

from the histograms of the Forward and Backward detectors. (right) A typical µSR histogram of the

Forward and Backward detectors in a longitudinal-field experiment, and corresponding FB-asymmetry

function. The translation of forward and backward counts is only possible after an α calibration is carried

out (see text).

If surface muons are used, the muon beam is polarised backwards, so the backward detector

will initially detect more muons than the forward detector; as the muon polarisation relaxes,

the two count rates approach each other as a function of time (see Figure 3.14). This type of

signal becomes difficult to analyse by fitting the forward and backward detector histograms in a

similar way as what is done with TF signals. Because of that, one instead uses the normalised

difference between the background-corrected histogram counts in the backward and the forward

detectors, called the Forward-Backward (FB) asymmetry function:

AFB(ti) =
(∆NB(ti)−BB)− (∆NF(ti)−BF)
(∆NB(ti)−BB) + (∆NF(ti)−BF)

=
NB (1 + AB(ti))−NF (1 + AF(ti))
NB (1 + AB(ti)) + NF (1 + AF(ti))

. (3.27)

This combination enhances the asymmetry function’s signal, since AF(t) = −AB(t) as the two

detectors are in opposite directions (see (3.25)). The FB-asymmetry function equals AB(t),

whose normalised version represents the muon’s polarisation along its initial direction, provided

of course that both detectors have identical efficiencies and asymmetry factors. That, however, is

not an experimental reality, but there is a way for the efficiency and asymmetry factor differences

to be taken into consideration in the definition of the FB-asymmetry so that it can be made
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equal to AB(t). If one defines the quantities

α =
ηB

ηF
(3.28)

β =
AB

AF
=

AB
max

AF
max (3.29)

then

NF = NB/α

AF(t) = −AB(t)/β ;

generally, the forward and backward positron detectors of LF-geometry µSR spectrometers are

designed to have equal asymmetry factors19, being therefore assumed that β = 1, and it becomes

possible to re-define the FB-asymmetry as

AFB(ti) =
(∆NB(ti)−BB)− α (∆NF(ti)−BF)
(∆NB(ti)−BB) + α (∆NF(ti)−BF)

, (3.30)

a quantity equal to AB(t) as long as α has been independently determined. This is done in a so-

called alpha calibration run, where a small magnetic field (20 to 100 G) is applied transverse to

the beam polarisation. This field induces the precession of the polarisation in a plane containing

the forward and backward detectors, with which one can then estimate the value of α that makes

the FB-asymmetry (3.30) a zero mean function.

Due to its mainly non-oscillating behaviour, the LF-µSR signal is particularly sensitive to

interactions that originate a missing fraction of the polarisation. The dependence of the rem-

nant polarisation (called initial polarisation) as a function of the applied field turns out to be

quite informative about those interactions; e.g. the quenching of hyperfine interactions at high

external fields appears as a recovery of the initial polarisation, in what is known as a repolar-

isation behaviour, as discussed later in Section 3.4.3. Any resonant loss of polarisation is also

promptly observed, generating an avoided-level crossing dip which signals the mixing of spin

eigenstates by residual spin interactions in level-crossing muon spin resonance studies (id.), or

RF-radiation absorption in RF resonance µSR. Hence, LF-geometry measurements also produce

rich information for the spectroscopy of muon spin states. Often, initial polarisation studies are

done with time-integral measurements, as opposed to the time-differential measurements that

follow the polarisation’s time dependence. If the LF signal does not decay significantly with
19They are built with the same shape and dimensions, and optimised to have very similar detection efficiency

functions.
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time during the experimental time window, the number of positrons emitted in the forward and

backward directions is proportional to the initial polarisation independently of when they are

emitted. This allows one to simply count the total number of positrons detected by the forward

and backward detectors in order to obtain the initial polarisation. Time-integral µSR spectrom-

eters are mostly found in laboratories with continuous beams, since the muon implantation rate

limitations imposed in time-differential measurements at those sources are lifted, granting the

use of the full muon beam (∼ 106 µ+/s) and a consequent shortening of run acquisition times.

Similarly to what happens with TF-geometry measurements, the tracking of any missing

fraction depends on the knowledge of the maximum FB-asymmetry for all the magnetic fields

used in the experiment. In LF-geometry, doing this kind of calibration is vital for amplitude

vs. field studies, since strong longitudinal fields, besides influencing photomultiplier response,

highly distort the emitted positron trajectories, and apparent variations of the total sum of the

signal’s components may turn out not be true. As a rule, the net effect is a maximum asymmetry

decrease with increasing longitudinal field. The distortion of positron trajectories also becomes

quite apparent, since one also observes a steep increase in the experiment’s count rate. It

should be noted that the alpha calibration run never produces the maximum FB-asymmetry of

LF-geometry, for it uses a low TF-field geometry which does not take the positron trajectory

distortion due to the high longitudinal applied field into consideration.

Finally, a special case of LF-geometry use happens when the applied magnetic field is

zero, giving rise to a method called Zero Field µSR (ZF-µSR). In this type of experiment, the

muon solely experiences the internal magnetic fields generated by its immediate environment.

The time dependence of the muon’s polarisation will therefore be strongly influenced by any

fluctuations of those fields, e.g. if the muon is diffusing through the sample’s lattice; in fact,

ZF-µSR is specially tailored to address muon diffusion. The ZF-µSR time signal is very sensitive

to the presence of even small external fields, requiring the use of an active circuit to generate a

compensating field able to counteract earth’s magnetic field and any random fields induced by

the electric equipment existing around the spectrometer.

3.2.6 µSR instruments

The design of a µSR spectrometer, alongside with the kind of µSR studies it targets, is highly

guided by the time-structure of the muon beam it uses. As a rule, spectrometers for continuous

beams are built with four to six large positron detectors placed in a box-like geometry around the
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sample. Since decay positrons are detected one at a time, it is possible to build a spectrometer

that covers a large total solid angle with few detectors. On the contrary, in pulsed sources the

acquisition system has to detect a large number of positrons at the same time; in order to cope

with this, it is necessary to use segmented positron detectors. Normally, only two segmented

detectors in opposite sides relative to the sample are used; the total solid angle covered is also

quite restricted, as the segmentation increases the number of channels and complexity of the

acquisition electronics20. In the following, we restrict ourselves at making a brief description of

the three different µSR spectrometers located at PSI and RAL that were used in the context of

this thesis. A more thorough review of their layout and specifications may be found in the web

pages of those laboratories, as well as of other existing spectrometers.

General Purpose System, GPS, and the DOLLY clone instrument (PSI)

The General Purpose System (Figure 3.15), GPS, permanently installed in one of PSI’s 4.1 MeV

surface-muon beam-lines, is a time-differential instrument designed for ZF, LF and TF µSR

experiments in wide ranges of temperature and external magnetic field. It has five positron

detectors placed around the sample’s space, two of which are parallel to the beam for use in

LF measurements (labelled forward and backward detectors, F and B), and the three others

perpendicular for TF measurements (the up, down and right detectors, U, D and R). The

backward detector has a 7 mm× 7mm hole to allow muon passage into the sample’s space; an

identical aperture exists in the forward detector which grants it exactly the same shape and

dimensions as the backward detector. The size of the beam-spot size at the sample’s position,

amounting to slightly more than 5 mm FWHM, is mainly determined by the backward detector

hole. Two additional scintillators, named backward-veto and forward-veto (B-veto and F-veto),

are also present (Figure 3.16). The B-veto detector, a hollow scintillator pyramid connected to

the hole in the backward detector, is used to actively collimate the beam by rejecting muons that

miss this aperture. The purpose of the F-veto detector, used to investigate very small samples,

is to reject muons that have not stopped in the sample; it has a double-cone shape connected

on one side to the aperture in the forward detector.

The main magnetic field, oriented longitudinally to the beam’s direction, is generated by

a pair of Helmholtz coils able to provide fields up to 0.6T. In LF-geometry operation mode, the

muon beam polarisation is kept in its original direction (anti-parallel to the muon momentum),

20And, of course, the overall cost of the spectrometer.
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Figure 3.15: The General Purpose System, installed at PSI. It has five positron detectors and a main

Helmmoltz pair of coils capable of providing fields up to 0.6 T. (Courtesy of the Swiss Muon Source

facility, PSI)

Figure 3.16: Layout of the Forward, Backward and Right detectors of the GPS instrument. Also shown

are the veto detectors, forward and backward (see text). (Courtesy of the Swiss Muon Source facility,

PSI)
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and an auxiliary pair of coils (0-10 mT) along the horizontal direction may be used to create a

field perpendicular to the beam for alpha calibration runs. For TF-geometry measurements, the

muon beam polarisation is rotated to the vertical direction before entering the spectrometer.

This is done in a so-called spin-rotator, where a short burst of a circularly polarised RF-field

induces the precession of the beam’s polarisation in the plane defined by the muon beam and

the vertical direction; the RF burst is timed so that the polarisation sweeps a 90 degree angle

during its length.

The overall time resolution of the spectrometer is less than 1 ns, allowing histogram counts

to be recorded in time-bins ranging from 0.625 ns to 2.5 ns; the standard total time window may

be chosen to go from 5 to 10µs after muon implantation, although a special set-up, baptised as

MORE (Muons On REquest), permits to decrease multiple-muon background and measure the

time histogram up to 20µs. This unique set-up, developed at PSI by its µSR group specifically

for the GPS instrument, uses an electrostatic deflector triggered by the signal in the muon

counter to prevent any incoming muon of reaching the sample until the currently implanted

muon has decayed.

A second µSR instrument with the exact same characteristics as GPS21 also exists at PSI.

This clone instrument, named DOLLY, uses a decay-channel muon beam moderated to the same

4.1 MeV energy as GPS’s surface beam. Both the GPS and DOLLY spectrometers are fitted

with a Quantum Technology continuous-flow 4He evaporation cryostat, which is interchangeable

with a common furnace apparatus originally built by a µSR group from Zürich. The combined

Quantum cryostat/Zürich furnace set delivers temperatures in the range 2-800K.

EMU instrument (RAL)

The EMU instrument (Figure 3.17a) is a time-differential µSR spectrometer optimised for ZF

and LF measurements installed at a surface muon beam-line in the Rutherford-Appleton Labo-

ratory. Its detector arrangement comprises two ring detectors, placed backwards and forwards

to the sample along the muon beam direction. Each ring detector is segmented in 16 indepen-

dent scintillators, summing a total of 32 individual positron detectors for the spectrometer. Two

Helmholtz coils create a field of up to 0.4 T parallel to the beam; alpha calibration is performed

with a 0-10mT field generated by a second pair of coils oriented perpendicularly to the beam.

The size of the muon beam-spot is considerably larger than at PSI; its shape is elliptical,

21Except for the MORE set-up.
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Figure 3.17: The EMU instrument, installed at the ISIS source in the Rutherford-Appleton Laboratory.

It is an instrument optimised for LF geometry experiments, with segmented detectors in order to cope

with the bunched time structure of the muon beam. (Courtesy of the ISIS Pulsed Muon facility, RAL)

with the major axis in the horizontal direction. Typical dimensions are 10 mm×15 mm (FWHM),

although horizontal collimation of the beam is possible using a set of remote slits in order to

better adjust the beam-spot to the sample size. In practice, a compromise between a satisfactory

count rate and the fraction of the beam hitting the sample must be reached. Small samples can

be measured using the so-called fly-past mode; it basically consists in the fitting of a long tube

in the flange forwards to the sample’s space, so that muons not hitting the sample stop away

enough from the detectors for their decay positrons not to be detected. Since muon beams at

RAL are pulsed, the frequency resolution of this spectrometer is limited to less than 10 MHz, but

it becomes possible to record standard time histograms 32µs wide. Pulsed beams also produce

large positron fluxes hitting the scintillators, which make it necessary to correct the positron

counts due to the dead-time of the detectors.

Several interchangeable sample environment apparatus are available for use with the EMU

spectrometer. For the range below room-temperature, this thesis work used EMU’s workhorse

cryostat, a closed-cycle refrigerator fitted to the spectrometer’s side capable of achieving tem-

peratures as low as 5 K. For high temperatures, a hot-plate furnace able to reach 1000 K was

employed; when in use, this furnace is suited in the spectrometer’s forward flange, not allow-
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ing the fitting of the fly-past tube. Both these apparatus have a fast response to temperature

changes between runs, but since the two rely on the thermal exchange between the sample and

the sample holder for the cooling/heating process, it is necessary to assure the best contact pos-

sible for temperature gradients not to arise, specially when working with powder-form samples.

Besides these two apparatus, three additional helium flow cryostats and one irradiation furnace

also exist; although thermal equilibrium conditions are much better for these instruments, they

have a much slower response, are more difficult to fit in the spectrometer and, in the case of the

cryostats, imply the consumption of liquid helium and nitrogen consumables.

3.3 Positive muon implantation and thermalisation in matter

From the muon’s point of view, any µSR experiment starts with its implantation in the sample

being studied. The few instants the positive muon takes to achieve an equilibrium state inside

the sample are divided in three distinct regimes: a stopping stage, where the muon is deceler-

ated from its initial energy to epithermal values, followed by a charge-exchange stage, where

it cyclicly captures and looses electrons, and a thermalisation process, where it reaches a final

state consistent with the electronic properties of the media it was implanted in. All these steps

are fast enough not to affect significantly the polarisation of the muon ensemble, nor need to be

considered in the experimental recording of the polarisation, as they span a total time interval

below the nanosecond range.

3.3.1 The µ+ stopping process

As it enters the sample, the positive muon promptly interacts with its surroundings, gradually

loosing energy until it comes to a halt. Like all charged particles heavier than the electron, the

main processes underwent by the muon as it passes through matter are electrostatic collisions

with the electrons and the nuclei of the material. The collisions with the nuclei, often referred

to as elastic scattering collisions, do not contribute relevantly to the energy loss of the muon,

since they are quite less probable than the collisions with the clouds of electrons, and the energy

transfer per collision is also much smaller due to the heavier mass of the nuclei when compared

with the electrons. Instead, these collisions are responsible by the deflection of the muon from its

incident direction, causing lateral straggling and the consequent spread of the muon beam as it

progresses inside the sample. The muon’s kinetic energy is thus almost solely lost to the electrons
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in inelastic collisions, causing electronic excitation and ionisation along the muon stopping path.

The amount of energy transferred in each electronic collision, although considerably larger than

that of an elastic scattering collision, is a very small fraction of the muon’s kinetic energy, but

in normally dense matter the number of inelastic collisions per unit path is so large that this

process is in fact extremely efficient in dissipating the muon’s kinetic energy. The energy loss is

therefore a quasi-continuous process, as summarised in Bethe-Bloch’s equation for the stopping

power dE/dx, whose cumulative effect renders moderate lengths of material enough to stop the

muon completely. In phthalocyanines, for instance, the range of 4.1 MeV surface muons amounts

to about 1mm (Figure 3.18).

Figure 3.18: Estimated implantation profile of surface positive muons (4.1 MeV) in H2Pc, ZnPc and

CuPc. The three curves were obtained from Monte-Carlo calculations performed with the TRIM program

(version SRIM-2003.26), a widely used software code developed by J.P. Biersack and J.F. Ziegler to

simulate the interaction of particles with matter [140].

The Bethe-Bloch regime occurs in roughly less than a nanosecond for the implantation

energies found in µSR [13]. That time interval is too short for the beam polarisation to suffer

any kind of change, which means that the muon is effectively shielded from magnetic interactions

during the slowing down. The muon samples a random set of successive non-equilibrium sites

in the host material, each possibly with a different total field, but that succession is so fast that

the time it persists under the influence of each individual field is too low for the polarisation

to precess or relax significantly. Since the typical residence time under each different field’s
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influence is under one millionth of a ns22, an interaction capable of changing the polarisation

would have to lie in the millions of GHz range23, a value too high for any type of magnetic

interaction to reach. In fact, the largest magnetic interactions the muon may experience are of

hyperfine nature, resting at most in the GHz region (cf. Table 3.3), but even those are out of

consideration here, as down to epithermal muon velocities the electrostatic binding to electrons

needed for hyperfine interactions to exist is inhibited by the high kinetic energy of the muon.

Hence, up to the point when binding to electrons becomes possible, the muon beam polarisation

is considered to be fully preserved.

3.3.2 Charge-exchange, thermalisation and final muon states

When the kinetic energy of the positive muon is of a few keV, the stopping process gets more

complex, since the muon velocity becomes comparable to the orbital velocity of the atomic

electrons. This causes the electron capture cross-section to be large enough so that muonium

formation events may take place. At that point, the muon enters the charge-exchange regime, a

stage where it cycles between the bound and the free state as it picks up and releases different

electrons along its path. Energy is of course lost in this process, taken away by the electron every

time the muon unbinds it. Inelastic collisions with electrons also continue to occur, but are less

effective than in the Bethe-Bloch regime due to the screening of the muon’s positive charge while

it is in the bound muonium species. The energy loss per unit path during the charge-exchange

stage is therefore considerably lower, but the overall duration of charge-exchange cycling ends

up not going further than the picosecond [106, 13]. Again, the time spent under the influence of

internal fields (namely the large hyperfine field caused by the electron coupling in the muonium

species for each cycle) is too short for any significant change of the muon polarisation to occur24.

This process continues until the muon energy reaches a charge-exchange threshold around some

eV. The last collision determines whether the muon leaves that regime in a positively charged

state or in a neutral state of high hyperfine interaction, but what finally controls the relative

22This residence time is comparable to the time the muon spends in each unit cell of the host lattice, which

may be crudely estimated to be 10−15 s in a 1 nm-parameter lattice if the muon travels for 1mm during 1 ns until

it stops.
23We quote here a frequency value for the energy scale; the proper energy scale is of course obtained from this

value by multiplying it by Planck’s constant h.
24Although this may be taken to be true in solids and liquids, where the high density ensures short residence

times in the muonium state, in gases some depolarisation may in fact occur due to the on-off cycling of the

hyperfine interaction. See e.g. [119] for a more complete account of that effect.
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epithermal yield of each charge state still remains unknown. Some theoretical evidence suggests

that elastic collisions with nuclei may play an unexpected role in the very last part of the

charge-exchange process, enhancing the formation of the positively charged state [108, 109].

Low-energy muon implantation studies performed with insulators in the slow-muon beam-line

recently built at PSI [91] indicate that such propensity for a positive charge state excess after

the charge-exchange regime does exist.

In addition to what happens in the very last phase of the charge-exchange regime, the final

muon states and relative yields observed in a µSR experiment depend further on subsequent

events that the resulting bare muons or neutral muonium atoms may experience during the

thermalisation stage25. Both the proton and the hydrogen are known to be quite reactive in

matter, the same holding for the positive muon and muonium. Therefore, both fractions resulting

from charge-exchange may react with the host environment upon thermalisation to form final

states whose charge depends on the properties of that same environment. In condensed matter,

both the charge state and site of the positive muon are dictated by the minimisation of the muon’s

electrostatic energy. With very few exceptions, the muon comes to rest at an interstitial site; it

does not trap in vacancies created by the implantation process, since its lighter mass as compared

with the lattice atoms forces it to cease atom displacement well before it stops. The diversity

and structure of final states it then forms obviously depends on the electronic properties of the

implantation media, namely the delocalisation degree, energy and occupation of its electronic

states. In metals, for instance, the muon always forms a positively charged Mu+26 state without

any kind of bonded electronic cloud, as it is energetically more favourable for electrons to occupy

the highly delocalised (hence low-energy) electronic states of the host metal [106]. It assumes

an interstitial site away from nuclear cores, and becomes surrounded by a screening charge

of conduction electrons as it polarises the electronic media due to coulombic attraction. In

semiconductors and insulators, on the other hand, the existence of a well-defined energy band-

gap intensifies the localisation of valence and conduction electrons, commonly leading to the

observation of neutral states whenever it is energetically appropriate27.

25It is worth emphasising that a thermalised muon is not necessarily in thermodynamic equilibrium; it merely

has a kinetic energy comparable to the thermal energy of its surroundings. This subtle distinction is in fact a weak

link in the parallel between muonium and hydrogen, since during the short duration of a µSR measurement one may

observe metastable muon states whose hydrogen counterparts do not exist as thermal equilibrium configurations.
26We reserve here the µ+ notation to refer the high-energetic muons being implanted in the sample. Thermalised

or near-thermalised states will be denoted by Mu and a superscript signal to indicate the charge state.
27i.e. if binding to the positive muon is a lower energy state for the media electrons. That involves comparing
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In their simplest form, neutral muonium Mu0 states have a pure atomic character, bearing

a compact and isotropic 1s-type wavefunction. The electronic cloud is trapped inside a wide

void, where confinement energy and elastic distortion of the lattice are minimal. The bound

electron’s spin is coupled to the muon’s spin via an hyperfine interaction whose magnitude scales

with the electronic density at the muon’s position (see Section 3.4.2); depending on the overlap

of the muonium’s wavefunction with the surrounding host atoms, that hyperfine interaction is

reduced relative to its vacuum value (4.4633 GHz, see Table 3.3), varying from one material to

another in a range typically going from 100% to 50% of that value. This is the picture for neutral

states found in ionic compounds, such as the alkali halides [20], although they are also formed

in covalently bonded materials, like oxides, diamond, quartz, the elemental semiconductors Si

and Ge, and the III-V and some of the II-VI semiconducting compounds (an extensive literature

on the subject exists; see e.g. [106, 85, 22]). In these covalent materials, which are often

tetrahedrally coordinated, the atomic Mu state is referred to as Mu0
T, reflecting its localisation

at a tetrahedral site28. That designation distinguishes it from a second type of neutral state also

found in many of those compounds, the bond-centre muonium, Mu0
BC [12]. This is a compact

molecular-radical state, in which the positive muon sits at the centre of a covalent bond between

two neighbouring atoms of the host lattice [35, 61]. The muonium’s wavefunction adopts the

anti-bonding character of the bond’s valence molecular orbital, and therefore is not centred in

the muon, being instead divided by the two atoms at both ends of the bond. This feature grants

the Mu0
BC state two distinctive characteristics: a low hyperfine interaction value (of the order

of 1% of the vacuum value), as the muon is placed at a node of the Mu wavefunction, and

the existence of a pronounced anisotropy in that same hyperfine interaction, as it has a large

contribution of dipolar origin due to the axially symmetric configuration of the wavefunction.

Muonium molecular-radical states are also found in organic media, as revealed from many free-

radical chemistry studies performed with µSR [99, 95]. They seem to invariably arise from

the addition of atomic muonium to organic molecules [95], which reduces multiple bonds and

transfers a substantial part of its electronic cloud to the rest of the molecule. A muoniated

radical is thus formed which, just as the Mu0
BC state, is characterised by having the most part of

its unpaired electronic density dispersed over the molecule and not at the muon site, leading to

an equally low (1-5% of the vacuum value) and anisotropic hyperfine interaction. Finally, a third

the energy of the bound state as imbedded in the target material with the media’s ionisation potential or Fermi

energy, whichever applicable.
28This is an interstitial site located at the centre of the cage formed by four neighbouring cations.
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and last type of neutral muonium state exists in matter, namely in some of the compound (III-

V and II-VI) semiconductors. It is a shallow-donor muonium state [45, 21], where the positive

muon is believed to be in a position anti-bonding to the anion (the V or VI atom), and whose

main characteristic is its extremely dilated electron wavefunction, typically several nanometres

in radius. This type of state has a very low hyperfine interaction (less than 0.01% of the vacuum

value), since the electronic probability density at the positive muon is vanishingly small even

when compared with molecular-radical muonium states. The hyperfine interaction is definitely

anisotropic in most cases, indicating that some non-isotropic distortion of the electronic cloud

exists; the wavefunction actually stems from conduction band states held together by the small

Coulomb attraction promoted by the positive muon, and retains many of the properties of

conduction electrons, viz. their g-factor value [66]. The formation of an extended wavefunction

in shallow muonium enhances the probability that the electron capture event conducing to that

state may occur far away from the muon site, and indeed there is evidence that the formation

of shallow muonium states directly depends on the capture of electrons 10 to 100 nm away,

originating in the radiolytic track29. As electron-donor impurities in a semiconductor, shallow

muonium centres are apparently well described by the effective mass theory [6]; they have a

correspondingly low ionisation energy, of the order of some meV [45, 47, 21], as opposed to the

deep centres of atomic and bond-centre muonium, which are ionised at energies of hundreds of

meV [85, 18].

Independently of their spatial configuration or exact formation mechanism, the final muon

states observed in µSR are usually classified according to the number of unpaired-spin electrons

the positive muon binds. If the state is a neutral muonium system, possessing one bound

unpaired electron, it is said to be paramagnetic; if it is a positively charged state, no bound elec-

tron exists, and the state is diamagnetic. Diamagnetic muon states also occur when the positive

muon binds two electrons, originating a negative muonium state Mu− similar to the hydride

ion H−. In this system, the two electron spins are paired, producing an electronic cloud with

zero total magnetic moment and no hyperfine interaction. Mu− is therefore spectroscopically

indistinguishable from Mu+. This type of negatively charged state is formed in heavily n-doped

semiconductors, where the abundance of electrons and the low Fermi energy may cause neutral

states to undergo a second electron capture [20, 18].

29The trail of ionised atoms and free electrons left behind by the muon as it stops.
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3.4 µSR of paramagnetic muon states

The existence of an unpaired electron bound to the positive muon in paramagnetic states pro-

duces an hyperfine interaction which couples the muon spin to the electron’s spin via their

magnetic moments. This lifts the degeneracy on the muon’s spin coordinates, and splits the en-

ergy levels of the (µ+e−) system even in the absence of an externally applied field. The electronic

structure of the (µ+e−) state is often the main factor dictating the properties of that hyperfine

interaction; these are quantum mechanically codified in the spin eigenstates of the system, and

rule in their turn the time evolution of the muon polarisation. This section is centred on the

description of the electronic structure and dynamics of the most common paramagnetic states,

and how the µSR observables are affected by it. It therefore constitutes a basic tool for the

analysis and interpretation of µSR data performed in subsequent chapters.

3.4.1 The spin hamiltonian

The hamiltonian of a paramagnetic (µ+e−) system is usually written as the sum of three com-

ponents [126],

Ĥ = ĤC + ĤSO + ĤS , (3.31)

where ĤC describes the kinetic energy and Coulomb interactions of the muon and the electron,

ĤSO the electron’s spin-orbit coupling, and ĤS the remaining spin interactions of the system.

The energies involving all spin interactions are several orders of magnitude smaller than the

kinetic and the Coulomb energy (a few µeV vs. some eV), and because of that ĤSO and ĤS are

normally treated as perturbations to ĤC . This turns out to be quite useful, as spin interactions

are concerned, since it becomes possible to perform the separation of spatial coordinates from

the spin coordinates, and take ĤS as the effective spin hamiltonian solely responsible for the

time-evolution of the spin states. That is of course true whenever the electron is in a state

possessing no spin-orbit coupling (l = 0), although for states with l 6= 0 one may still separate

the spatial and spin variables defining an effective spin hamiltonian which does not include the

spin-orbit operator. We will not consider those cases here, as they are of very little importance

to µSR.

In the absence of dynamical phenomena, the general spin hamiltonian for a paramagnetic

(µ+e−) system may be written as

ĤS = ĤMu + ĤN , (3.32)
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where ĤMu is the operator that describes spin interactions involving solely the positive muon

and/or the electron, and ĤN includes all remaining spin interactions resulting from the existence

of other spin-carrying species which may interact with the paramagnetic state. In the presence

of an externally applied magnetic field ~B, ĤMu is given by the dipolar interaction between

~B and the magnetic moment operators ~̂µe and ~̂µµ of the electron and the muon (often called

the electron and muon Zeeman interactions), together with the hyperfine interaction coupling

between the electron and muon spin operators, ~̂
eS and ~̂

µS:

ĤMu = −~̂µe. ~B − ~̂µµ. ~B +
2π

h̄
~̂

eS.A. ~̂ µS

= −γe
~̂

eS. ~B − γµ
~̂

µS. ~B +
2π

h̄
~̂

eS.A. ~̂ µS . (3.33)

Here, γe and γµ are the gyromagnetic ratios of the electron and muon, and the hyperfine inter-

action term is presented in the form of a tensorial product between the cartesian components

of the electron and the muon spin operators. The second-rank tensor mediating that product is

the hyperfine interaction tensor, which in the reference frame OX’Y’Z’ defined by its principal

directions reads30

A =




A′xx 0 0

0 A′yy 0

0 0 A′zz


 ; (3.34)

A′xx, A′yy and A′zz are its principal values, whose relative magnitudes reflect the spatial symmetry

of the electronic wavefunction, as shown in appendix C. Their absolutes value quantify the

coupling energy involved in the interaction, given by hA′xx, hA′xx and hA′xx; h is Planck’s

constant, and the hyperfine tensor is expressed in units of frequency. For electronic states

possessing s character, the principal values of the hyperfine tensor (3.34) are always offset by

the contact hyperfine coupling constant Aiso which parameterises the Fermi contact interaction

arising from the finite electron density existing at the muon position (see appendix C). In the

simplest case of all, which occurs when the electronic wavefunction is isotropic, that contact

interaction is the only contribution for the hyperfine interaction; the principal values of the

hyperfine tensor are all equal to Aiso, and the tensor has a diagonal representation independently

of the reference frame it is expressed in.

As a rule, the external magnetic field is considered to lie along the z -axis direction of the

laboratory reference frame OXYZ, i.e. ~B = Bẑ. That direction is also chosen to be the spin
30One should be aware that when considered in the hamiltonian (3.33), the hyperfine tensor is expressed in the

laboratory reference frame OXYZ, and in general will not have the diagonal form of (3.34).
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quantisation axis, so that the spin-up, spin-down states of the muon and the electron are the

usual eigenvectors of ~S2
µ, Ŝµz(see equations (3.2),(3.3)) and of ~S2

e , Ŝez(id., but mutatis mutandis

for the electron). We will follow these two conventions, and adopt a third one often encountered

in µSR literature, which is expressing all hamiltonians in angular frequency units. Hence, (3.33)

will read from hereon in the more compact notation

ĤMu/h̄ = −γeŜez/h̄B − γµŜµz/h̄B +
2π

h̄
~̂

eS/h̄.A. ~̂ µS/h̄

=
ωe

2
σ̂ez −

ωµ

2
σ̂µz + ~̂σe.

2πA
4

.~̂σµ , (3.35)

where the Pauli spin operators of the electron and the muon are used (see appendix A for the

definition and properties of the Pauli spin operator of a 1/2-spin particle), and the (absolute)

Larmor frequencies of the electron and muon are defined (refer to Table 3.2 for the values of γe

and γµ)31:

ωe = −γeB = |γe|B (3.36)

ωµ = γµB . (3.37)

Depending on the local environment the muon might be in, the component ĤN of the spin hamil-

tonian (3.32) may be simpler or more complex; if spin-carrying nuclei exist near enough, and

the electronic unpaired spin density at their positions is not negligible, an hyperfine interaction

will develop between those nuclei and the electron of the (µ+e−) system. That interaction is

known as the nuclear hyperfine interaction or superhyperfine interaction, and ĤN will be given

by

ĤN/h̄ =
∑

k

(
−ωk Ŝkz/h̄ + ~̂σe.

2πAk

2
. ~̂ kS/h̄ + . . .

)
, (3.38)

where ωk is the Larmor frequency of the k-th nucleus (its definition is analogous to (3.37)),

~̂
kS is its spin operator, and Ak

n the nuclear hyperfine tensor for the interaction between that

nucleus and the unpaired electron. Should it exist, and excepting probably the nuclear Zeeman

interaction at higher fields, the nuclear hyperfine interaction will be the largest term in ĤN ;

nevertheless, smaller contributions arising from coupling of the electron to nuclei having spin

larger than 1/2 through the nuclear quadrupole interaction, or the direct dipole-dipole interaction

31Strictly speaking, the electron’s g-factor may not be a scalar, meaning that γe should have a tensorial form.

In fact, if there is any sort of spin-orbit coupling of the unpaired electron to its environment, it will result in the

electron’s Zeeman energy possessing a value which depends on the direction of the external field. Nevertheless,

deviations from its free electron value (ge ≈ 2) do not usually produce significant effects in the µSR signal.
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between the magnetic moments of the muon and the nuclei (and between themselves) may

become important in certain situations (see e.g. [126] for a more complete account of these

effects).

3.4.2 Hyperfine structure of paramagnetic states

Just as in basic spectroscopy, the hyperfine characterisation of paramagnetic states in µSR is

performed using the level splitting induced by an externally applied magnetic field. Given all the

spin interactions a paramagnetic state may undergo (see above), its hyperfine structure may be

considerably rich; the external field assists at measuring the value of coupling constants (namely

the hyperfine interaction, which, as it is discussed in appendix C, conveys information about

the spatial distribution of the electron), either by lifting possibly existing degeneracies in some

cases, or by simplifying the layout of the energy levels in others. Since knowing the structure of

the hyperfine states is essential to characterise the time dependence of the muon’s polarisation,

as we shall see in Section 3.4.3, we consider it in the following for specific types of paramagnetic

states, that are also the commonest.

Isotropic Muonium

Following (3.35), the hamiltonian for an isotropic, atomic-like muonium system in the absence

of other nuclei is given by

Ĥ iso
S /h̄ =

ωe

2
σ̂ez −

ωµ

2
σ̂µz + ~̂σe.

2πA
4

.~̂σµ

=
ωe

2
σ̂ez −

ωµ

2
σ̂µz +

ω0

4
~̂σe.~̂σµ , (3.39)

where the hyperfine tensor reads

A =
1
2π




ω0 0 0

0 ω0 0

0 0 ω0


 (3.40)

as a function of the (angular) hyperfine frequency ω0 (see appendix C for the meaning of all

symbols)

ω0 = 2π Aiso = h̄
µ0

4π
|γe|γµ

8π

3
|ψ(0)|2 . (3.41)

Since one wants to know the hyperfine structure of this state, it is necessary to solve the

Schrödinger spin equation to obtain the eigenvalues and eigenvectors of (3.39). We start by
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constructing an ordered basis for the eigenvectors’ Hilbert space from the four possible combi-

nations of the single-particle spin functions |αµ〉, |βµ〉, |αe〉 and |βe〉 that are eigenstates of the

Ŝµzand Ŝez spin operators:

|αµ〉 ⊗ |αe〉 ≡ |αµαe〉 =




1

0

0

0




; |αµ〉 ⊗ |βe〉 ≡ |αµβe〉 =




0

1

0

0




|βµ〉 ⊗ |αe〉 ≡ |βµαe〉 =




0

0

1

0




; |βµ〉 ⊗ |βe〉 ≡ |βµβe〉 =




0

0

0

1




With this choice, and using the properties of the Pauli spin matrices, equations (A.4)-(A.11),

the matricial representation [H iso
αβ ] of the hamiltonian (3.39) becomes

[H iso
αβ ]/h̄ =




ω− + ω0
4 0 0 0

0 −ω+ − ω0
4

ω0
2 0

0 ω0
2 ω+ − ω0

4 0

0 0 0 −ω− + ω0
4




, (3.42)

where the positive quantities

ω+ =
ωe + ωµ

2
(3.43)

ω− =
ωe − ωµ

2
(3.44)

are used. The eigenvalues ωn = En/h̄ and eigenvectors |n〉 of (3.42) are obtained solving the

secular equation

|H iso
αβ /h̄− ω δαβ | = 0 , (3.45)

which, in this concrete case, is a degenerate quartic equation; it is therefore solved easily, yielding

ω1 =
1
4

ω0 + ω− ; |1〉 = |αµαe〉 (3.46)

ω2 =
1
4

ω0 + Ω ; |2〉 = s |αµβe〉+ c |βµαe〉 (3.47)

ω3 =
1
4

ω0 − ω− ; |3〉 = |βµβe〉 (3.48)

ω4 = −3
4

ω0 − Ω ; |4〉 = c |αµβe〉 − s |βµαe〉 . (3.49)
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Here,

x =
ωe + ωµ

ω0
=

2ω+

ω0
=

B

B0
(3.50)

with

B0 =
ω0

|γe|+ γµ
(3.51)

is an non-dimensional measure of the externally applied magnetic field,

Ω =
ω0

2

(√
x2 + 1− 1

)
(3.52)

is a non-linear field-dependent positive quantity, and

c2 =
1
2

(
1 +

x√
x2 + 1

)
(3.53)

s2 =
1
2

(
1− x√

x2 + 1

)
= 1− c2 (3.54)

define the coefficients of the eigenvectors. The eigenvalue equations (3.46)-(3.49) describe the

splitting of the energy levels of an hydrogen-like system in an external magnetic field, and are

known as Breit-Rabi equations; that field dependence is usually plotted in the way of a Breit-Rabi

diagram, as illustrated in Figure 3.19.

Figure 3.19: Breit-Rabi diagram for an isotropic muonium state. The insert shows in detail the ω1-ω2

level-crossing existing at xiso
12 cross ≈ 103.38. The energy levels are ordered according to the high-field

layout before the crossing.

In the absence of magnetic field, c = s = 1/
√

2 and the four states combine to a triplet

(|1〉-|3〉) and a singlet (|4〉) system separated by an energy of h̄ω0. The degeneracy of the
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triplet is lifted by the external magnetic field: levels ω1 and ω3 follow a linear dependence with

the field, since they correspond to eigenstates of the spin operators Ŝµzand Ŝez ; levels ω2 and

ω4, on the other hand, are a mixture of basis states, and their field dependence is non-linear.

Nevertheless, these levels are progressively bent as the field magnitude increases, until they reach

an asymptotic linear behaviour at x À 1. In that situation, called the high-field regime, the

hyperfine interaction between the muon and the electron is decoupled by the large magnetic

field; the spin hamiltonian is dominated by the Zeeman energies, states |1〉 and |3〉 become

eigenstates of the spin operators as c → 1 and s → 0, and the individual magnetic spin quantum

numbers mµ and me of the muon and the electron become good quantum numbers. In practice,

this regime is attained x ∼ 10. At higher fields, levels ω1 and ω2 eventually cross; this occurs

exactly at

xiso
12 cross =

2δ

1− δ2
≈ 103.38 , (3.55)

where

δ =
ω−
ω+

=
|γe| − γµ

|γe|+ γµ
= 0.990374 (3.56)

and

ω1 = ω2 =
δ2

1− δ2
ω0 ≈ 51.2ω0 . (3.57)

Furthermore, since the approximation

Ω =
ω0

2

(√
x2 − 1− 1

)
≈ ω0

2
(x− 1) = ω+ − ω0

2
(3.58)

holds at the crossing, and

ω+ − ω− = ωµ , (3.59)

one gets from ω1 = ω2 the relation

ωµ =
ω0

2
. (3.60)

As in high field 〈σ̂µz〉 =
〈
~̂σe.~̂σµ

〉
= 1, (3.60) means that at the ω1-ω2 level crossing, the absolute

value of the muon’s Zeeman interaction energy equals the hyperfine interaction energy. This

is an important remark, since when that happens the hamiltonian (3.39) is stripped from all

interactions figuring the muon spin; therefore, the least perturbation to (3.39) involving the

muon will be the dominant factor influencing its polarisation at the crossing, giving rise to

prominent features, as it will be seen later in the cases of axially symmetric and radical states.
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Axially symmetric Muonium

For an axially symmetric muonium state, the hamiltonian

Ĥax
S /h̄ =

ωe

2
σ̂ez −

ωµ

2
σ̂µz + ~̂σe.

2πA
4

.~̂σµ (3.61)

holds, but with an hyperfine tensor which, when expressed in the OX’Y’Z’ reference frame of its

principal axis, reads

A =




Aiso −D/2 0 0

0 Aiso −D/2 0

0 0 Aiso + D


 , (3.62)

D being the dipolar contribution brought to the hyperfine interaction by the axial symmetry of

the electron’s wavefunction (see appendix C). To compute the tensorial product with the Pauli

spin operators of the muon and the electron figuring in the hyperfine interaction, however, it is

necessary to express A and those operators in the same reference frame, which we will choose

here to be the OXYZ coordinate system of the laboratory. If the system OX’Y’Z’ defines the

Euler angles (φ, θ, ψ) in the ZYZ convention relative to OXYZ, the transformation is performed

according to

A = R




Aiso −D/2 0 0

0 Aiso −D/2 0

0 0 Aiso + D


R−1 , (3.63)

where R(φ, θ, ψ) is an orthogonal transformation matrix given by

R =




cosψ sinψ 0

− sinψ cosψ 0

0 0 1







cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ







cosφ sinφ 0

− sinφ cosφ 0

0 0 1


 . (3.64)

It is not difficult to prove that the axial symmetry of the hyperfine tensor renders the rotations

along ψ and φ irrelevant, leading to a final form which depends solely on the angle θ defined by

the symmetry axis and the z -axis direction; that form reads explicitly

A =




Aiso + 1−3 cos 2θ
4 D 0 −3 sin 2θ

4 D

0 Aiso −D/2 0

−3 sin 2θ
4 D 0 Aiso + 1+3 cos 2θ

4 D




=




ω0 + ωD
2 − ωc 0 −ωs

0 ω0 − ωD
2 0

−ωs 0 ω0 + ωc


×

1
2π

, (3.65)
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where the quantities

ωD = 2π D (3.66)

ωc = 2π D
1 + 3 cos 2θ

4
= ωD

3 cos2 θ − 1
2

(3.67)

ωs = 2π D
3 sin 2θ

4
= ωD

3 sin θ cos θ

2
(3.68)

are used. The hamiltonian matrix becomes

[Hax
αβ ]/h̄ =




ω− + ω0
4 + ωc

4 −ωs
4 −ωs

4
ωD
4 − ωc

4

−ωs
4 −ω+ − ω0

4 − ωc
4

ω0
2 − ωc

4
ωs
4

−ωs
4

ω0
2 − ωc

4 ω+ − ω0
4 − ωc

4
ωs
4

ωD
4 − ωc

4
ωs
4

ωs
4 −ω− + ω0

4 + ωc
4




, (3.69)

whose eigenvalues ωn = En/h̄ and eigenvectors |n〉 are again obtained by solving the secular

equation, now a full quartic equation. Although that equation may be solved analytically (see

[120]), the solution is hard to find, and in practice the numeric diagonalisation of (3.69) is

performed,

[Hax
αβ ] ≡ H = U D U† ; (3.70)

the eigenvalues are then the elements of its diagonal representation D, and the corresponding

eigenvectors the columns of the (unitary) diagonalising matrix U:

ωn = Dnn/h̄ (3.71)

|n〉 = U1n|αµαe〉+ U2n|αµβe〉+ U3n|βµαe〉+ U4n|βµβe〉 . (3.72)

Figure 3.20 shows three Breit-Rabi diagrams as a function of the dimensionless field pa-

rameter x for an axially symmetric muonium state with D = Aiso/2 for the two limiting cases

θ = 0 and θ = π/2, and an intermediate orientation θ = π/4. The relative layout of the energy

levels is strongly influenced by the value of θ, as the anisotropy in zero field lifts the degeneracy

of one of the three states involved in the triplet found for the isotropic case. Which state it is,

and how much it is shifted, depends on the specific value of θ. All levels follow non-linear de-

pendencies with the field as a general rule, although all end up reaching also a linear asymptotic

behaviour at high fields, corresponding to the high-field decoupling of the hyperfine interaction.

The level crossings are affected by the existence of anisotropy as well; in the case shown, an

additional low-field level crossing exists at θ = 0 between levels ω2 and ω3, while for θ = π/4 the

ω1-ω2 crossing no longer exists, but is avoided at the field for which the muon Zeeman energy
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Figure 3.20: Breit-Rabi diagrams for an axially symmetric muonium state with D = Aiso/2 at three

different orientations. The evolutions of the levels ω1 and ω2 at their (avoided) level-crossing is also

shown in detail, emphasising the mixing of these two near-degenerate levels.



72 CHAPTER 3. POSITIVE MUON SPECTROSCOPY (µSR)

matches the hyperfine interaction energy (or, put in another way, when the total muon energy

— the sum between its Zeeman energy and the hyperfine interaction energy — is zero). Taking

into account this happens in high field, the avoided crossing occurs when
〈ωµ

2
σ̂µz

〉
=

〈
~̂σe.

2πA
4

.~̂σµ

〉

⇓

ωµ =
ω0 + ωc

2
, (3.73)

which corresponds to the orientation-dependent field

xax
12 cross(θ) = xiso

12 cross

(
1 +

ωD

ω0

3 cos2 θ − 1
2

)
. (3.74)

Near this field, the anisotropy causes the two levels to exhibit a highly non-linear behaviour,

indicating the enhanced mixture of basis states in the corresponding hamiltonian eigenvectors.

This corresponds to the mixing of the two near-degenerate levels |1〉 and |2〉 in such a way that

the highest energy level gradually shifts from the |αµαe〉 state to the |βµαe〉 one, while the lowest

energy traverses the inverse path |βµαe〉 to |αµαe〉. That evolution is shown in Figure 3.20, where

the level numbering scheme is changed through the avoided crossing so that away from it state

|1〉 always corresponds to |αµαe〉 and state |2〉 to |βµαe〉.
The existence of a level crossing avoidance between states |1〉 and |2〉 may be understood

in terms of perturbation theory considering the anisotropy to be a disturbance of the isotropic

hamiltonian (3.39). In that framework, the |n〉 states of (3.61) are given in first-order by (see

e.g. [76])

|n〉 = |n(0)〉+
4∑

m=1
m6=n

〈m(0)|∆Ĥax|n(0)〉
E

(0)
n − E

(0)
m

|m(0)〉 , (3.75)

where |n(0)〉 are the eigenstates of the isotropic hamiltonian (3.39), equations (3.46)-(3.49), and

∆Ĥax is the traceless perturbation hamiltonian

[∆Ĥax
αβ]/h̄ =

1
4




ωc −ωs −ωs ωD − ωc

−ωs −ωc −ωc ωs

−ωs −ωc −ωc ωs

ωD − ωc ωs ωs ωc




. (3.76)

The perturbation treatment, nevertheless, breaks down for a given |n〉 state if the non-perturbed

|n(0)〉 state is degenerate with any of the other |m(0)〉 states,

E(0)
n = E(0)

m ,



3.4. µSR OF PARAMAGNETIC MUON STATES 73

and the condition

〈m(0)|∆Ĥax|n(0)〉 6= 0

is met. If that does happen, degenerate perturbation theory has to be used, giving rise to the

splitting of the two degenerate levels under the action of the perturbation, which we name here

as level-avoidance. The matrix elements 〈m(0)|∆Ĥax|n(0)〉 are therefore what determine if a

crossing occurs de facto or is avoided; in our concrete case, they read

〈1(0)|∆Ĥax/h̄|2(0)〉 = −ωs/4 (3.77)

〈1(0)|∆Ĥax/h̄|3(0)〉 = (ωD − ωc)/4 (3.78)

〈1(0)|∆Ĥax/h̄|4(0)〉 = −ωs/4 (3.79)

〈2(0)|∆Ĥax/h̄|3(0)〉 = ωs/4 (3.80)

〈2(0)|∆Ĥax/h̄|4(0)〉 = −ωs/4 (3.81)

〈3(0)|∆Ĥax/h̄|4(0)〉 = ωs/4 . (3.82)

Hence, for θ 6= 0, π/2, π all level-crossings are avoided. Particularly for the ω1-ω2 avoided level-

crossing, the use of degenerate perturbation theory leads to the (new) non-degenerate states

(see e.g. [76])

|1〉 = sχ |αµαe〉+ cχ|βµαe〉 (3.83)

|2〉 = cχ |αµαe〉 − sχ|βµαe〉 (3.84)

before the crossing (ωµ < ω0+ωc
2 ) and

|1〉 = cχ |αµαe〉 − sχ|βµαe〉 (3.85)

|2〉 = sχ |αµαe〉+ cχ|βµαe〉 (3.86)

after the crossing (ωµ > ω0+ωc
2 ), separated by an energy gap given by

|ω1 − ω2| =
1
h̄

√(
〈1(0)|Ĥax

S |1(0)〉 − 〈2(0)|Ĥax
S |2(0)〉

)2
+ 4 〈1(0)|∆Ĥax|2(0)〉2

≈
√(

ω− − ω+ +
ω0

2
+

ωc

2

)2
+

(ωs

2

)2

=
√

ω2
x + ω2

G

= ωG

√
χ2 + 1 (3.87)

where

ωx = ω− − ω+ +
ω0

2
+

ωc

2
= ωµ − ω0 + ωc

2
(3.88)
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is a quantity vanishing at the field where the crossing was supposed to exist,

ωG =
ωs

2
(3.89)

is the minimum gap value, and

c2
χ =

1
2

(
1 +

χ√
χ2 + 1

)
(3.90)

s2
χ =

1
2

(
1− χ√

χ2 + 1

)
= 1− c2

χ (3.91)

are the mixture coefficients in the wavefunctions, with

χ =
ωx

ωG
(3.92)

being a dimensionless field parameter centred at the crossing (note that at the crossing one has

χ = 0). As it will be seen later, the existence of a finite gap between levels ω1 and ω2 is an

important feature of the avoided level-crossing which originates a characteristic oscillation of

the muon polarisation in longitudinal geometry at high fields.

Muoniated radicals

Muoniated molecular-radical states formed in organic media are characterised by having a consid-

erable number of other spin-carrying nuclei in the molecule which couple to the state’s unpaired

electron via the nuclear hyperfine interaction. Indeed, it was realised quite soon in µSR’s his-

tory that this mechanism had to be included in the interpretation of data obtained with organic

molecules [98, 99, 126]. This is due to the large population of protons (1/2 spins) normally

found in those compounds, and to the fact that the main part of the radical’s electron density

does not reside at the muon, but is distributed over the whole molecule. According to (3.35)

and (3.38), the hamiltonian of a muoniated organic radical is given by

Ĥrad
S /h̄ =

ωe

2
σ̂ez −

ωµ

2
σ̂µz + ~̂σe.

2πA
4

.~̂σµ +

−
∑

k

ωk Ŝkz/h̄ +
∑

k

~̂σe.
2πAk

2
. ~̂ kS/h̄ , (3.93)
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where, for the sake of simplicity, we will consider all hyperfine interactions to be isotropic32,

and, for the time being, that all nuclei are equivalent. The nuclear terms in this hamiltonian

are normally of lesser importance33, and the eigenvalues and eigenvectors may be obtained by

treating them as perturbations to the isotropic muonium hamiltonian (3.39). If we collect the

equivalent nuclei in a group with spin and magnetic quantum numbers J and MJ , corresponding

to the eigenvectors |J,MJ〉 of the total spin operators ~J2 and Ĵz,

~J2 |J,MJ〉 = h̄2J(J + 1) |J,MJ〉 (3.94)

Ĵz |J,MJ〉 = h̄ MJ |J,MJ〉 , (3.95)

and consider the common Larmor frequency and isotropic hyperfine interaction to be ωN and

ω0N /2π respectively, the perturbation hamiltonian in (3.93) will read

Ĥrad
N /h̄ = −ωN Ĵz/h̄ +

ω0N

2
~̂σe. ~̂J/h̄ ; (3.96)

the zeroth-order eigenstates of the whole system will be simple products of the non-perturbed

solutions (3.46)-(3.49) with the nuclear state |J,MJ〉,

|1,MJ〉 = |1〉|J,MJ〉 = |αµαe〉|J,MJ〉 (3.97)

|2,MJ〉 = |2〉|J,MJ〉 = (s |αµβe〉+ c |βµαe〉)|J,MJ〉 (3.98)

|3,MJ〉 = |3〉|J,MJ〉 = |βµβe〉|J,MJ〉 (3.99)

|4,MJ〉 = |4〉|J,MJ〉 = (c |αµβe〉 − s |βµαe〉)|J,MJ〉 , (3.100)

and the corresponding first-order corrections to the energy values

〈1,MJ | Ĥrad
N /h̄ |1,MJ〉 = −ωNMJ +

ω0N

2
MJ (3.101)

〈2,MJ | Ĥrad
N /h̄ |2,MJ〉 = −ωNMJ +

ω0N

2
(c2 − s2)MJ (3.102)

〈3,MJ | Ĥrad
N /h̄ |3,MJ〉 = −ωNMJ − ω0N

2
MJ (3.103)

〈4,MJ | Ĥrad
N /h̄ |4,MJ〉 = −ωNMJ − ω0N

2
(c2 − s2)MJ , (3.104)

32This is usually a reasonable assumption since most µSR experiments with organic radicals are done in liquid

samples, where the anisotropic contributions to the hyperfine interaction are averaged to zero due to rapid tumbling

of the radicals. Nevertheless, the generalisation to anisotropic interactions may be easily performed in what

follows using the corresponding non-diagonal hyperfine tensor in the hamiltonian, and numerically diagonalising

it to obtain the eigenvalues ω1 through ω4 and eigenstates |1〉 through |4〉.
33All nuclei are composite, heavy particles, and therefore possess gyromagnetic ratios quite smaller than those

of elementary particles such as the muon or the electron. Hence, both the nuclear Zeeman energies as the nuclear

hyperfine interactions will be considerably lower than the Zeeman interactions of the electron and the muon and

the hyperfine interaction.
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where the relations

〈MJ | ~̂J/h̄ |MJ〉 = MJ ẑ (3.105)

〈1| σ̂ez |1〉 = 1 (3.106)

〈2| σ̂ez |2〉 = c2 − s2 (3.107)

〈3| σ̂ez |3〉 = −1 (3.108)

〈4| σ̂ez |4〉 = s2 − c2 (3.109)

were used. The final expressions for the energy levels are

ω1(MJ) =
1
4

ω0 + ω− − ωNMJ +
ω0N

2
MJ (3.110)

ω2(MJ) =
1
4

ω0 + Ω− ωNMJ +
ω0N

2
(c2 − s2)MJ (3.111)

ω3(MJ) =
1
4

ω0 − ω− − ωNMJ − ω0N

2
MJ (3.112)

ω4(MJ) = −3
4

ω0 − Ω− ωNMJ − ω0N

2
(c2 − s2)MJ , (3.113)

which in reality is a set of 4× (2J + 1) different values since one has to account for the possible

2J + 1 different values of MJ . These expressions can be easily generalised for situations having

more than one group of equivalent nuclei, in which case

ω1(M1
J ,M2

J , . . .) =
1
4

ω0 + ω− +
∑

p

(
−ωp

NMp
J +

ωp
0N

2
Mp

J

)
(3.114)

ω2(M1
J ,M2

J , . . .) =
1
4

ω0 + Ω +
∑

p

(
−ωp

NMp
J +

ωp
0N

2
(c2 − s2)Mp

J

)
(3.115)

ω3(M1
J ,M2

J , . . .) =
1
4

ω0 − ω− +
∑

p

(
−ωp

NMp
J −

ωp
0N

2
Mp

J

)
(3.116)

ω4(M1
J ,M2

J , . . .) = −3
4

ω0 − Ω +
∑

p

(
−ωp

NMp
J −

ωp
0N

2
(c2 − s2)Mp

J

)
, (3.117)

where the subscript p identifies each different group.

Figure 3.21 depicts the Breit-Rabi diagram for the isotropic muonium state shown in

Figure 3.19, but now coupled to a single 1/2-spin proton. The levels are seen to be doubly

split by the nuclear hyperfine interaction with the extra spin; at high fields, the splitting attains

a constant value of ω0N and the levels become linearly dependent on the field. This simple

situation is once again provided by the electron Zeeman interaction dominating the hamiltonian,

and decoupling both the hyperfine and the nuclear hyperfine interactions.
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Figure 3.21: Breit-Rabi diagram for a muoniated radical state with isotropic hyperfine interaction

coupled to a 1/2-spin proton via an isotropic nuclear hyperfine interaction ω0N
= ω0/10. The plot on

the right shows in detail the ω1-ω2 (avoided) level crossing. All the curves presented were extracted from

calculations using the full hamiltonian.

Similarly to what happens with the case of an axially symmetric (µ+ − e−) state, the

ω1-ω2 level crossing is also highly affected by the presence in the hamiltonian of terms in ad-

dition to the isotropic hyperfine interaction. In this case, the analysis of the matrix elements

〈m,MJ | Ĥrad
N |n,M ′

J〉 figuring in the expansion of the first-order eigenstates yields crossing

avoidance between states that satisfy [85, 99]

∆M = 0 , (3.118)

where M is the total spin magnetic quantum number of the system, as given by the sum of

the individual magnetic quantum numbers mµ, me and MJ . Hence, and since levels ω1 and ω2

in high fields exhibit both me = +1
2 , level-crossings will be avoided only between split levels

corresponding to the simultaneous flip of the muon’s and the nuclei total spin, i.e. |1,MJ − 1〉
and |2,MJ〉. In the case of Figure 3.21, where the possible values of MJ are ±1

2 , the crossing is

avoided between levels ω−1 (MJ = −1
2) and ω+

2 (MJ = +1
2). The ω1-ω2 crossing is avoided at

a field xrad
12 cross meeting the condition ω1(MJ − 1) = ω2(MJ), which from equations (3.110) and

(3.111) in the high field regime leads to (compare with (3.60) and (3.73))

−ωµ +
ω0

2
= −ωN +

ω0N

2
, (3.119)
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i.e. it occurs when the total muon energy matches the total nuclear energy; the explicit value

of xrad
12 cross is

xrad
12 cross = xiso

12 cross

(
1− ω0N

ω0

)
1

1− γN/γµ
. (3.120)

It is also easy to show that the degenerate perturbation theory states are (compare with equations

(3.83)-(3.86))

|1,MJ − 1〉 = sχ |αµαe〉|J,MJ − 1〉+ cχ|βµαe〉|J,MJ − 1〉 (3.121)

|2,MJ〉 = cχ |αµαe〉|J,MJ〉 − sχ|βµαe〉|J,MJ〉 (3.122)

and

|1,MJ − 1〉 = cχ |αµαe〉|J,MJ − 1〉 − sχ|βµαe〉|J,MJ − 1〉 (3.123)

|2,MJ〉 = sχ |αµαe〉|J,MJ〉 + cχ|βµαe〉|J,MJ〉 (3.124)

before (ωµ − ωN < ω0
2 − ω0N

2 ) and after (ωµ − ωN > ω0
2 − ω0N

2 ) the avoided crossing, and that

the energy gap is (compare with (3.87))

|ω1(MJ − 1)− ω2(MJ)| =
√

ω2
x + ω2

G . (3.125)

The quantities cχ and sχ are defined in terms of χ = ωx/ωG according to equations (3.90) and

(3.91), but now with ωx and ωG being given for −J + 1 ≤ MJ ≤ J by

ωx = 〈1| Ĥrad
S /h̄ |1〉 − 〈2| Ĥrad

S /h̄ |2〉

= (ωµ − ωN )−
(ω0

2
− ω0N

2

)
(3.126)

and

ωG = 2 〈1,MJ − 1| Ĥrad
N /h̄ |2,MJ〉

= 2 s ω0N

√
J(J + 1)−MJ(MJ − 1)

≈ ω0N

x

√
J(J + 1)−MJ(MJ − 1) , (3.127)

where the angular momentum relations

~̂σe. ~̂J =
1
2

(
σ̂+ Ĵ− + σ̂− Ĵ+

)
+ σ̂ez Ĵz (3.128)

Ĵ± = Ĵx ± i Ĵy (3.129)

Ĵ±|n,MJ〉 = h̄
√

J(J + 1)−MJ(MJ ± 1) |n,MJ ± 1〉 (3.130)
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and the high-field approximation

s ≈ 1
2x

(3.131)

were used. The similarities with the electronic structure of an axially symmetric paramagnetic

state are evident, and indeed the finite gap between levels ω1 and ω2 will likewise originate a

characteristic LF oscillation of the muon polarisation in high fields.

3.4.3 Time dependence of the muon’s polarisation

The analysis of the time dependence of the muon polarisation is essential for the interpretation

of µSR data. In fact, the electronic structure and dynamical interactions underwent by a para-

magnetic state are reflected in the µSR signal as characteristic precession frequencies and/or

relaxations. The fact that one is able to explicitly compute that time dependence for specific

physical models allows to establish comparisons between the experimental data and the signal

expected from a given model. It thus becomes possible to assess the adequacy of that model

in describing the targeted phenomena, and measure its unknown parameters. In practice, this

is done by chi-square fitting the experimental data to the theoretical function derived from the

model for the polarisation observable. The fitting is invariably performed in the time domain,

although whenever a signal with precession frequencies is involved, auxiliary Fourier transform

methods are also employed.

In the following, we present two methods of computing the time evolution of the muon

polarisation. The first employs a formalism derived from quantum statistics, using a dynamical

equation for the density matrix of the (µ+ − e−) paramagnetic system; it involves the a priori

knowledge of the system’s energy levels and eigenstates. The second is based on the simultaneous

solution of a set of coupled motion equations for all the polarisations of the system. The two

methods are equivalent, and obviously yield the same results; the reason why both are presented

is related with the fact that they correlate to physical descriptions of the (µ+ − e−) system

which are based on different, but complementary, concepts. While the density matrix formalism

links the system’s electronic structure more clearly to the muon polarisation, interpreting it in

terms of energy transitions, the formalism using the equations of motion deals with individual

polarisations which may easily be interpreted classically.

After getting acquainted with the methods that allow to compute the time evolution of

the muon polarisation, several practical examples of its use are shown and discussed. In these

examples, we focus mainly on states with electronic structures relevant to this thesis.
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Density matrix formalism

The muon polarisation, defined as the expectation value of the muon’s Pauli spin operator,

equation (3.11),

~Pµ(t) =
〈
~̂σµ

〉
,

will evolve in time according to the time-evolution operator of the whole muonium system. If

a statistic distribution of different ensemble states exists, a density matrix needs to be used in

order to reflect the double statistics on the time-evolution operator; this is especially necessary

if one wants to compute an observable which does not depend on all of the system’s coordinates,

like, for instance, the muon spin polarisation in a muon-electron bound system. In the quantum

formalism of density matrices, the expectation value of any operator in a doubly statistical

system is given by the trace of the product between that operator and the system’s density

operator ρ̂; in the specific case of the muon’s Pauli spin operator one therefore has

~Pµ(t) =
〈
~̂σµ

〉
= Tr

{
ρ̂Mu(t) ~̂σµ

}
(3.132)

in each time instant t. The explicit time dependence of the density operator indicates the

assumption that all dynamical features of the system are included in that operator. We are

therefore expressing ρ̂ in Heisenberg’s notation, which means that it must obey the dynamical

equation

−i h̄
∂

∂t
ρ̂Mu(t) =

[
ĤMu , ρ̂Mu(t)

]
, (3.133)

often known as Liouville’s equation; its formal integration yields

ρ̂Mu(t) = e
i
h̄

ĤMut ρ̂Mu(0) e−
i
h̄

ĤMut , (3.134)

implying the necessary knowledge of ρ̂Mu(0) and the eigenvalue spectrum of the hamiltonian

ĤMu. For a 1/2-spin particle, it so happens that it is possible to write the density operator at

time zero as a function of its initial polarisation:

ρ̂(0) =
1
2

(
1̂ + ~P (0).~̂σ

)
; (3.135)

for a system consisting of two 1/2-spin particles, namely the muon and the electron, the density

operator at t = 0 will be given by the direct product between individual density operators with
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the form of (3.135),

ρ̂Mu(0) =
1
2

(
1̂ + ~Pµ(0).~̂σµ

)
⊗ 1

2

(
1̂ + ~Pe(0).~̂σe

)

=
1
4

(
1̂ + ~Pµ(0).~̂σµ + ~Pµ(0).~̂σe + ~Pµ(0).~̂σµ

~Pµ(0).~̂σe

)

=
1
4


1̂ + ~Pµ(0).~̂σµ + ~Pµ(0).~̂σe +

∑

α,β=x,y,z

Pαβ(0)σµασµβ


 (3.136)

where

Pαβ(0) = Pµα(0)Peβ
(0) (α, β = x, y, z) (3.137)

are called the initial mixed polarisations of the spin system. As it is generally assumed that upon

the last electronic capture in the charge-exchange stopping regime the muon binds electrons of

each spin direction with equal probabilities, the electron’s initial polarisation may be considered

zero, and ρ̂(0) is simplified to

ρ̂(0) =
1
4

(
1̂ + ~Pµ(0).~̂σµ

)
. (3.138)

Having written the density operator as a function of time, the hamiltonian eigenvalue spectrum

and the muon’s initial polarisation, one may finally evaluate the trace in (3.132) to calculate the

explicit time dependence of the muon’s polarisation, using ĤMu’s eigenstates { |n〉, n = 1, .., 4}
as a basis for Hilbert’s spin-space:

Tr
{

ρ̂Mu(t) ~̂σµ

}
=

1
4

4∑

n=1

〈n| e
i
h̄

ĤMut
(
1̂ + ~Pµ(0).~̂σµ

)
e−

i
h̄

ĤMut ~̂σµ |n〉 . (3.139)

Making use of the identity operator 1̂ =
∑4

m=1 |m〉〈m| one has therefore

~Pµ(t) =
1
4

4∑

n=1

〈n| e
i
h̄

ĤMut ~̂σµ e−
i
h̄

ĤMut |n〉 +

+
1
4

4∑

n,m=1

〈n| e
i
h̄

ĤMut (~Pµ(0).~̂σµ) e−
i
h̄

ĤMut |m〉 〈m|~̂σµ|n〉

=
1
4

4∑

n=1

eiωnnt〈n|~̂σµ|n〉 +

+
1
4

4∑

n,m=1

eiωnmt〈n|(~Pµ(0).~̂σµ)|m〉 〈m|~̂σµ|n〉 , (3.140)

where

ωnm = ωn − ωm (3.141)

is the transition frequency between states |m〉 and |n〉. Since by definition the spin operators are

traceless, the first summation in (3.140) is zero, and one has finally ~Pµ(t) as the sum of precessing



82 CHAPTER 3. POSITIVE MUON SPECTROSCOPY (µSR)

components with frequencies matching the transition frequencies between the system’s energy

levels,

~Pµ(t) =
1
4

4∑

n,m=1

〈n|(~Pµ(0).~̂σµ)|m〉 〈m|~̂σµ|n〉 eiωnmt

=
4∑

n,m=1

~anm eiωnmt , (3.142)

in which

~anm =
1
4
〈n|(~Pµ(0).~̂σµ)|m〉 〈m|~̂σµ|n〉 (3.143)

is the complex amplitude of the precession with frequency ωnm. The complex amplitudes depend

on the geometry of the system34 through the hamiltonian eigenvectors, the initial direction of

the muon polarisation (the first factor in (3.143), which essentially defines the system’s initial

state), and the direction along which the polarisation is monitored (the second factor, since

~Pµ(t) borrows its direction from it). Thus, they may give rise to selection rules (i.e. unobserved

frequencies, ~anm = 0) depending on the geometry, the initial polarisation and the observation

direction.

For an isolated muonium state, there are four different energy levels, which produces a

maximum of six different precession frequencies. A non-precessing component may also exist

if any of the complex amplitudes having n = m are non-zero. This is easily seen when one

considers that the precession frequencies ωnm and ωmn correspond actually to a single precession

component. In fact,

ωmn = −ωnm ,

meaning that

eiωmnt =
(
eiωnmt

)∗ ;

furthermore, the spin operators are hermitian, so

~amn = ~a ∗nm ,

34Basically the relation between concurring quantisation axis existing in the system, such as the external applied

field or the principal axis of the hyperfine tensor.
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and it becomes possible to transform (3.142) into

~Pµ(t) =
4∑

n,m=1

~anm eiωnmt

=
4∑

n=1
m=n

~anm eiωnmt +
4∑

n,m=1
m6=n

(~anm eiωnmt + ~amn eiωmnt)

=
4∑

n=1

~ann eiωnnt +
3∑

n=1

4∑

m=n+1

(
~anm eiωnmt +

(
~anm eiωnmt

)∗)

=
4∑

n=1

~ann +
3∑

n=1

4∑

m=n+1

2Re
{
~anm eiωnmt

}
. (3.144)

If we monitor the polarisation along a given direction r̂, the time-evolution of that projection

will be

~Pµ(t).r̂ =
4∑

n=1

~ann.r̂ +
3∑

n=1

4∑

m=n+1

2Re
{
~anm.r̂ eiωnmt

}

= a
(r̂)
0 +

3∑

n=1

4∑

m=n+1

a(r̂)
nm cos(ωnmt + φ(r̂)

nm) , (3.145)

i.e. it will be the sum of one non-oscillating component

a
(r̂)
0 =

4∑

n=1

~ann.r̂ (3.146)

with a maximum of six cosines of frequency, amplitude and initial phase given by

ωnm = ωn − ωm (3.147)

a(r̂)
nm = 2 |~anm.r̂| (3.148)

φ(r̂)
nm = arg{~anm.r̂} , (3.149)

where n = 1, .., 3, m = n, .., 4 and

~anm.r̂ =
1
4
〈n|(~Pµ(0).~̂σµ)|m〉 〈m|~̂σµ.r̂|n〉 . (3.150)

Equations of motion formalism

This method directly considers the dynamical equations for all the polarisations of the

muonium system, namely the muon’s, equation (3.132), but also the electron’s and that for the
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mixed polarisations:

~Pe(t) = Tr
{

ρ̂Mu(t) ~̂σe

}
(3.151)

Pαβ(t) = Tr
{
ρ̂Mu(t) σµασeβ

}
(α, β = x, y, z) . (3.152)

It starts by considering the Liouville equation for the density operator of the system, (3.133),

−i h̄
∂

∂t
ρ̂Mu(t) =

[
ĤMu , ρ̂Mu(t)

]
,

and the time-dependent density operator as a function of those polarisations for any instant t,

obtained in analogy with (3.136) by

ρ̂Mu(t) =
1
4


1̂ + ~Pµ(t).~̂σµ + ~Pµ(t).~̂σe +

∑

α,β=x,y,z

Pαβ(t)σµασµβ


 . (3.153)

Since we know the general form of the hamiltonian for an isolated paramagnetic (µ+e−) system,

equation (3.35),

ĤMu/h̄ =
ωe

2
σ̂ez −

ωµ

2
σ̂µz + ~̂σe.

2πA
4

.~̂σµ ,

the commutator [
ĤMu , ρ̂Mu(t)

]
= ĤMuρ̂Mu(t)− ρ̂Mu(t)ĤMu

in Liouville’s equation may be explicitly evaluated as a function of the hyperfine tensor’s com-

ponents Axx, . . . , Azz in the laboratory frame of reference,

A =




Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz


 ; (3.154)

using the result in Liouville’s equation, one obtains an expression that relates the time derivatives

of the polarisations on the left hand side of the equation to the values of those polarisations

at each instant on the right hand side. The algebra is lengthy, and therefore not reproduced

here, but by considering the linear independence of the x, y, z components of the muon’s and

the electron’s spin operators, and of their mixed products, the result may be cast as a set of 15

coupled differential equations for (i) the three cartesian components of the muon’s polarisation,

Pµx , Pµy , Pµy , (ii) the three cartesian components of the electron’s polarisation, Pex , Pey , Pey ,

and (iii) the nine distinct mixed polarisations Pxx, Pxy, . . . , Pzz. All the equations have the form

dPj(t)
dt

= fj

(
~Pµ(t), ~Pe(t), Pαβ(t)

)
(j = 1, .., 15) , (3.155)
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where Pj denotes any of the 15 components of the polarisations referred above, and each function

fj does not depend explicitly on the component Pj(t). To solve these 15 coupled equations,

one may define a 15-component vector P where the first three components correspond to the

cartesian components of ~Pµ, the following three to the cartesian components of ~Pe, and the last

nine to the mixed polarisations Pαβ:

P =




Pµx

...

Pµx

...

Pxx

...




; (3.156)

the coupled equations (3.155) are then written as

Ṗ(t) = Q P(t) , (3.157)

where Q is a time independent 15 × 15 matrix depending solely on the parameters figuring in

the hamiltonian and the direction we took for the quantisation of spin. The explicit expression

for Q is shown in the last appendix of this work. The solution of the vectorial equation (3.157)

implies transforming it to the coordinate system in Q’s space where this matrix is diagonal; if

Q = U D U−1 , (3.158)

where D is the diagonal representation of Q, whose components are the eigenvalues of Q, and U

is the diagonalising matrix35, whose columns are the eigenvectors of Q, then it is easy to show

that the formal solution of (3.157) is given by

P(t) = U eDt U−1 P(0) , (3.159)

which in terms of the individual components Pj reads

Pj(t) =
15∑

k=1

15∑

l=1

Ujk eDkkt U−1
kl Pl(0) . (3.160)

35Although we use here the symbol U to denote the diagonalising matrix of Q, that does not mean it is a

unitary matrix; quite the contrary, Q is in general a non-normal matrix, i.e. Q†Q 6= QQ†, meaning that the

adjoint of U does not equal U’s inverse.



86 CHAPTER 3. POSITIVE MUON SPECTROSCOPY (µSR)

This equation describes the time evolution of all the system’s polarisations in the absence of

external perturbations; its solution is equivalent to the one obtained by the density matrix

formalism. It should be made clear that Q is a real, anti-symmetric matrix, and so its eigenvalues

are necessarily either pure imaginary numbers or zero; this means that each polarisation will

be the sum of purely (i.e. non-damped) oscillating components with (also non-damped) non-

oscillating ones. Furthermore, (3.157) is formally equivalent to the equations of motion of a

classical system of two coupled oscillators; for such a system, six normal modes of oscillation are

expected, together with three translational ones. Therefore, each polarisation will be the sum

of up to six different oscillations with up to three constant values which sum to give a single

non-oscillating component. Just as we did in the case of the density matrix formalism, we may

group the products having Dkk = i ωk,

UjkU
−1
kl eDkkt = UjkU

−1
kl ei ωkt

with their conjugates (Dk′k′ = i ωk′ = −i ωk)

Ujk′U
−1
k′l e

Dk′k′ t = Ujk′U
−1
k′l e

−i ωkt =
(
UjkU

−1
kl ei ωkt

)∗
,

since it follows from Q being a real matrix that

Ujk′U
−1
k′l =

(
UjkU

−1
kl

)∗

whenever Dk′k′ = −Dkk. Hence, (3.160) may be written as

Pj(t) =
∑

k
Dkk=0

(
15∑

l=0

UjkU
−1
kl Pl(0)

)
+

+
∑

k
Dkk=+i ωk

{(
15∑

l=0

UjkU
−1
kl Pl(0)

)
ei ωkt +

(
15∑

l=0

UjkU
−1
kl Pl(0)

)∗
e−i ωkt

}

=
∑

k
Dkk=0

(
15∑

l=0

UjkU
−1
kl Pl(0)

)
+

∑

k
Dkk=+i ωk

2Re

{(
15∑

l=0

UjkU
−1
kl Pl(0)

)
ei ωkt

}

= a
(j)
0 +

6∑

i=1

a
(j)
i cos(ωit + φ

(j)
i ) , (3.161)

where the non-oscillating component is

a
(j)
0 =

∑

k
Dkk=0

(
15∑

l=0

UjkU
−1
kl Pl(0)

)
(3.162)
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with k running the three indexes that satisfy Dkk = 0, and the frequencies, amplitudes and

initial phases of the oscillating components are

ωi = ωk = Im{Dkk} (3.163)

a
(j)
i =

15∑

l=0

2 |UjkU
−1
kl |Pl(0) (3.164)

φ
(j)
i = arg

{
15∑

l=0

UjkU
−1
kl Pl(0)

}
(3.165)

with k restricted to the six indexes conforming to Im{Dkk} > 0.

In µSR we are only able to monitor the muon’s polarisation, and so P’s components of

interest will be

Pµx(t) ≡ P1(t) = a
(1)
0 +

6∑

i=1

a
(1)
i cos(ωit + φ

(1)
i )

Pµy(t) ≡ P2(t) = a
(2)
0 +

6∑

i=1

a
(2)
i cos(ωit + φ

(2)
i )

Pµz(t) ≡ P3(t) = a
(3)
0 +

6∑

i=1

a
(3)
i cos(ωit + φ

(3)
i )

Again, selection rules may exist depending on the geometry (through the shape of Q), the initial

polarisation of the whole system (the Pl(0) factors) and the direction along which the polarisation

is monitored. We should also note that the expressions (3.162)-(3.165) for the amplitudes and

phases are considerably simplified in a typical µSR experiment, since the initial values for the

polarisation of the electron and the mixed polarisations is normally zero. Only one or two of

the elements of P(0) will be non-zero, depending if the experiment is performed in longitudinal

field geometry (P3(0) = 1, all others zero) or transverse-field geometry (P 2
1 (0) + P 2

2 (0) = 1, all

others zero).

~Pµ(t) of isotropic muonium states

Transverse-field geometry

Using equations (3.145)-(3.150), one can derive the explicit time dependence of the µSR

signal both in TF and LF geometries for the case of an isotropic muonium state. We start by

considering the first geometry, for which the operators figuring in the precession amplitudes,
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equation (3.150), read

~Pµ(0).~̂σµ = x̂.~̂σµ = σ̂µx (3.166)

~̂σµ.r̂ = ~̂σµ.x̂ = σ̂µx (3.167)

if the implanted muon beam is polarised along the x -axis, which we take also to be the ob-

servation direction r̂. Evaluating the matrix elements of ~̂σµ and the corresponding precession

frequencies (3.141) with the analytical expressions for the eigenstates (3.46)-(3.49) of isotropic

Mu, one chiefly obtains

ax
0 = 0 (3.168)

ax
12 =

c2

2
−→ ω12 = ω− − Ω (3.169)

ax
13 = 0 (3.170)

ax
14 =

s2

2
−→ ω14 = ω− + Ω + ω0 (3.171)

ax
23 =

s2

2
−→ ω23 = ω− + Ω (3.172)

ax
24 = 0 (3.173)

ax
34 =

c2

2
−→ ω34 = −ω− + Ω + ω0 ; (3.174)

the non-oscillating component is zero because the eigenstates of (3.39) are orthogonal to the

eigenstates of σ̂µx , and out of the possible six transition frequencies only four turn out to be

actually observed. The transverse-field muon polarisation of an isotropic muonium state is

therefore written as

Pµx(t) =
s2

2
(cosω23t + cos ω14t) +

c2

2
(cosω12t + cosω34t) , (3.175)

where it should be noted that the quantities ω14, ω23 and ω34 are positive at all the values of the

external field, while ω12 changes to negative values at the level crossing field xiso
12 cross, equation

(3.55), and the four observed frequencies satisfy the two sum rules

ω14 − ω23 = ω0 (3.176)

ω12 + ω34 = ω0 . (3.177)

Figure 3.22 shows the amplitudes and absolute frequency values (in units of ω0) of Pµx(t)

as a function of the dimensionless field parameter x. In zero field, the polarisation is equally

divided by the four components, two of them having zero frequency (ω12 and ω23), while the other
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Figure 3.22: Expected amplitudes and absolute frequency values (in units of ω0) of Pµx(t) as a function

of the dimensionless field parameter x for an isotropic muonium state in transverse-field geometry. The

dotting indicates a region where that component is no longer visible. The dashed gray line follows the

muon’s Larmor frequency.

(ω34 and ω14) match the hyperfine frequency. At finite fields, the signal shows quite different

features depending on the magnitude of x. For x < 0.1, in the so-called low field regime, the

four frequencies keep approximately the same amplitude as in zero field, but their values shift

as the hyperfine interaction is perturbed by the external field; for ω12 and ω23 the relative shift

is considerable, since Ω ∼ 0 and

ω12 ≈ ω23 ≈ ω− =
ω0

2
δ x ; (3.178)

ω12 and ω23 grow linearly with the field at a rate proportional to the hyperfine interaction, giving

rise to a single component of amplitude 1/2 known as the triplet muonium precession signal. In

this region, (3.175) may therefore be written in the form

Pµx(t) =
1
2

cosω−t +
1
4

(cosω14t + cosω34t) (x < 0.1) , (3.179)

where ω14 and ω34, which have values of the order of ω0, slowly increase and decrease respectively

with the field. For states of high hyperfine interaction, these frequencies are not observed since

they are not resolved experimentally. At intermediate fields, between x ∼ 0.1 and x ∼ 1, the

weight of the low-frequency ω23 and the high frequency ω14 is successively transferred to the



90 CHAPTER 3. POSITIVE MUON SPECTROSCOPY (µSR)

low-frequency ω12 and high frequency ω34 components. Above x ∼ 1, they cease to be observed

as the high-field regime sets in; the signal becomes

Pµx(t) =
1
2

(cosω12t + cosω34t) (x > 1) , (3.180)

with both frequencies presenting now a much slower dependence on the field. At x < 10, a

region where the two observed frequencies do not vary with the field exists; beyond x ∼ 10, ω12

and ω34 start to respectively decrease and increase linearly with the field according to

ω12 = ω− − ω+ +
ω0

2
= −ωµ +

ω0

2
(3.181)

ω34 = ω0 − ω− + ω+ − ω0

2
= ωµ +

ω0

2
, (3.182)

where (3.58) and (3.59) were used. The value of ω12 eventually reaches zero when ωµ = ω0
2 ,

which corresponds to the crossing of the ω1 and ω2 energy levels at the value of xiso
12 cross given in

(3.55). Above it, it flips sign and assumes a negative value. Its absolute value, however, will be

|ω12| = ωµ − ω0

2
; (3.183)

hence, in the high field regime, the sum rule (3.177) may be used to determine the hyperfine in-

teraction of a paramagnetic state by the sum of the absolute values of the ω34 and ω12 frequencies

below xiso
12 cross, or its difference above xiso

12 cross:

ω0 = |ω34|+ |ω12| (x > 10, ωµ < ω0/2) (3.184)

ω0 = |ω34| − |ω12| (x > 10, ωµ > ω0/2) . (3.185)

Comparing the absolute values of ω34 and ω12, equations (3.182) and (3.183), and taking into

account the sum rule (3.185) after the crossing, one sees that the two absolute frequencies will

be evenly spaced around the diamagnetic muon Larmor frequency with a splitting equal to the

hyperfine interaction value at fields beyond xiso
12 cross. This feature is most striking whenever

diamagnetic states are formed in addition to muonium states, since in a power Fourier spectrum

the three corresponding lines (the Larmor diamagnetic precession, see appendix A or Section ??

ahead, and the two paramagnetic frequencies) will move solidary as the field is increased. When

the paramagnetic state is in this situation, the Paschen-Back regime is said to have been at-

tained. That characteristic splitting is shown in Figure 3.23, where the field dependence of the

four frequencies in a power Fourier spectrum throughout the successive regions of x is depicted.

As a last remark, it must be referred that care should be taken when analysing plots as

a function of the reduced field x such as those in Figure 3.22. In particular, the actual fields
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Figure 3.23: Fourier field dependence of the four precession components observed for an isotropic

muonium state. The relative position and amplitude of each line is represented in the three different field

regions (low field, high-field and Paschen-Back regime) usually defined in magnetic resonance.
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at which the transition from the low field (x ¿ 1) to the high field (x À 1) regime operates

depends strongly on the hyperfine constant of the state under consideration. In fact, for atomic

muonium states, whose hyperfine constant lies in the GHz range, B0 is of the order of 0.1T; the

decoupling of the hyperfine interaction is only attained in fields of a few tesla, which are hard

to obtain experimentally. The investigation of this type of states is thus normally performed in

the low field regime, using the triplet precession signal to determine the hyperfine constant from

(3.178). In the case of molecular radicals, B0 is only several tens of gauss, and the high-field

regime is fully reached at fields of some perfectly attainable kG; for these states, the hyperfine

interaction may be accurately measured in the high-field regime through the sum-rules (3.184)

and/or (3.185). Finally, shallow states are almost always in the high-field regime, since for them

B0 is less than a gauss. Transverse-field measurements are mostly performed in the Paschen-

Back regime, where (3.185) holds and the time spectrum shows a slow beating pattern due to

the superposition of the close ω12 and ω34 components.

Longitudinal-field geometry

In longitudinal-field geometry, the spin operators involved in the computation of the pre-

cession amplitudes correspond to σ̂µz , since the initial polarisation and the observation direction

lie in the direction of the externally applied field:

~Pµ(0).~̂σµ = ẑ.~̂σµ = σ̂µz (3.186)

~̂σµ.r̂ = ~̂σµ.ẑ = σ̂µz . (3.187)

The hamiltonian eigenvalues and eigenstates are of course the same as those used in the case

of transverse fields; only two of the polarisation components have non-zero amplitudes, namely

the non-oscillating component and the ω24 frequency:

az
0 = 1− 2 s2 c2 =

1 + 2x2

2(x2 + 1)
(3.188)

az
24 = 2 s2 c2 =

1
2(x2 + 1)

−→ ω24 = 2Ω + ω0 = ω0

√
x2 + 1 (3.189)

The time dependence of the muon polarisation of an isotropic paramagnetic state in longitudinal

fields is then rather simpler than in transverse fields, assuming the expression

Pµz(t) =
1 + 2x2

2(x2 + 1)
+

1
2(x2 + 1)

cosω24t . (3.190)
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For states having a large hyperfine constant, though, the oscillating component is often not

resolved, being averaged to zero, and the µSR signal is reduced to a residual static polarisation

given by az
0.

Figure 3.24: Expected amplitudes and absolute frequency values (in units of ω0) of Pµz (t) as a function

of the dimensionless field parameter x for an isotropic muonium state in longitudinal-field geometry.

The field dependence of the LF signal is shown in Figure 3.24, again as a function of x. At

zero field, the total amplitude is divided by both components, with the oscillating one having a

frequency ω0. This is consistent with the description of the zero-field signal in transverse-field

geometry, where half the total amplitude was ascribed to a zero-frequency component (the ω12

and ω23 frequencies) and the other half to a frequency with the hyperfine interaction (the ω14

and ω34 frequencies). As the field increases from x > 0.1, the amplitude of the non-oscillating

term is incremented at the expense of the oscillating one, reaching the full polarisation value

at the onset of the high-field regime, x > 1. This behaviour, termed repolarisation, expresses

the gradual decoupling of the hyperfine interaction by the applied field towards a situation in

which the muon retains its fully polarised initial state. In fact, assuming that the muon binds

to unpolarised electrons upon Mu formation, the initial spin state of the (µ+−e−) system in LF

geometry, expressed in the same quantisation axis as the hamiltonian, will be an equal mixture of

the |αµαe〉 and |αµβe〉 individual spin states. Since the second one is not an eigenvector of the Mu

hamiltonian at the lower fields, the (µ+ − e−) spin state will evolve with time, departing from
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its initial value36. As the field increases, however, the same |αµβe〉 state eventually becomes

an eigenstate of the Mu hamiltonian, and the (µ+ − e−) spin state quits its time-dependent

behaviour. The repolarisation of the non-oscillating component of the muon polarisation with

the applied field may be used to estimate the hyperfine interaction of the paramagnetic (µ+−e−)

state just by measuring the field at which that component has completed half-way of its total

rise, since that occurs precisely at x = 1. Although this is a feasible way of determining the

hyperfine interaction, it is seldomly used, since any perturbation to the hamiltonian (even a

dynamical one) will drastically reduce the zero-field value of the non-oscillating polarisation, as

it is referred in the next paragraphs.

~Pµ(t) of axially symmetric muonium states

Transverse-field geometry

For axially symmetric muonium states described by the hamiltonian (3.69), the evaluation

of the precession amplitudes for a generic orientation of the symmetry axis in the same way as

what was done for isotropic states yields now non-zero values for all the possible transitions.

Even the non-oscillating amplitude is in general different from zero, since the enhanced mixture

of basis states in the hamiltonian’s eigenvectors, equation (3.72), produces eigenvectors which

may no longer orthogonal be to the initial spin state of the (µ+ − e−) system. The transverse-

field muon polarisation of an axially symmetric muonium state is therefore written in the quite

generic form

Pµx(t) = ax
0 + ax

12 cosω12t + ax
13 cosω13t + ax

14 cosω14t

+ ax
23 cosω23t + ax

24 cosω24t + ax
34 cosω34t . (3.191)

Figure 3.25 shows the absolute values of the precession frequencies and amplitudes of

(3.191) as a function of the dimensionless field x for the situation considered in Figure 3.20.

Depending on the orientation of the hyperfine symmetry axis, one may have several frequencies

at zero field, corresponding to transitions between the non-degenerate hyperfine levels which

are made possible by the perturbative effect of the anisotropy on the hamiltonian. Just as

36We should make clear that the situation in transverse field is quite different; the initial spin-state of the

muon-electron system is never an eigenstate of the hamiltonian due to the fact that the muon is polarised in a

direction perpendicular to the quantisation axis of the hamiltonian. Because of that, no static components exist

in the TF signal of an isotropic state.
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Figure 3.25: Expected amplitudes and absolute frequency values (in units of ω0) of Pµx(t) as a

function of the dimensionless field parameter x for the axially symmetric muonium state of Figure 3.20

in transverse-field geometry.
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in the isotropic muonium case, it is possible to consider the existence of a low-field region at

x < 0.1, where a maximum number of frequencies is observed for each orientation. Likewise,

the amplitudes of the frequencies ω12 and ω34 grow at the cost of the other components over

an intermediate field region up to x ∼ 1, were now low-field level crossings may exist (as for

θ = 0), and a non-oscillating component appears for intermediate orientations. The high-field

regime onsets at x ∼ 1; again, a region at x < 10 exists where ω12 and ω34 are field independent

for all orientations, but after that, near the ω1-ω2 level crossing region, drastic changes relative

to the isotropic case for 0 < θ < π/2 occur. This happens as a result of the avoided level

crossing between the two near-degenerate states |1〉 and |2〉, implying the finiteness of ω12 and

the decrease of ω12’s transverse-field amplitude to zero due to the mixture of those states, from

which a transverse-field non-oscillating amplitude develops also. Using the non-degenerate states

(3.83)-(3.86) and the energy gap (3.87) in the region of the avoided crossing, it’s easy to show

that the ω12 and non-oscillating polarisation components will be given by37

ax
0 = 2 s2

χ c2
χ =

1
2(χ2 + 1)

(3.192)

ax
12 =

1
2

(
c2
χ − s2

χ

)2 =
χ2

2(χ2 + 1)
−→ ω12 = ± ωG

√
χ2 + 1 (3.193)

for x ∼ xax
12 cross. Above the avoided level crossing, x > 100, the system enters the Paschen-Back

regime, and the absolute values of the two observed paramagnetic lines ω12 and ω34 follow the

muon’s Larmor frequency splitted by the hyperfine interaction value just as in the isotropic

muonium case.

The high-field splitting of the ω12 and ω34 frequencies depends on the orientation of the

hyperfine symmetry axis relative to the field, and may be used to experimentally distinguish

isotropic muonium states from states possessing axial symmetry. In high fields, and away from

the avoided level crossing, the off-diagonal terms of the hamiltonian’s matrix representation for

an axially symmetric state, equation (3.69), may be neglected relative to the diagonal ones,

37We remember that according to the level numbering scheme shown in Figure 3.20, ω12 is positive before the

avoided crossing and negative after.
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leading directly to the high-field energy levels and eigenstates

ω1 = ω− +
ω0

4
+

ωc

4
; |1〉 = |αµαe〉 (3.194)

ω2 = ω+ − ω0

4
− ωc

4
; |2〉 = |βµαe〉 (3.195)

ω3 = −ω− +
ω0

4
+

ωc

4
; |3〉 = |βµβe〉 (3.196)

ω4 = −ω+ − ω0

4
− ωc

4
; |4〉 = |αµβe〉 . (3.197)

The high-field non-zero amplitudes and frequencies are immediately given by (note that ω+ −
ω− = ωµ)

ax
12 =

1
2
−→ ω12 = −ωµ +

ω0 + ωc

2
(3.198)

ax
34 =

1
2
−→ ω34 = ωµ +

ω0 + ωc

2
, (3.199)

and again a sum rule identical to (3.184) and (3.185) exists:

ω0 + ωc = |ω34|+ |ω12| (ωµ < ω0+ωc
2 ) (3.200)

ω0 + ωc = |ω34| − |ω12| (ωµ > ω0+ωc
2 ) . (3.201)

With this rule, and knowing that

ω0 + ωc = 2π

(
Aiso +

D

2
(3 cos2 θ − 1)

)
, (3.202)

it is possible to determine the hyperfine constants Aiso and D and the crystalline direction of

the hyperfine interaction’s symmetry axis by measuring the high-field angular dependence of the

ω12 and ω34 frequencies.

Longitudinal-field geometry

Like what happens in the case of transverse field geometry, all possible transitions plus a

non-oscillating component will in general be visible in the longitudinal field muon polarisation.

Figure 3.26 depicts what is expected again for the situation of Figure 3.20, but now in longi-

tudinal field geometry. In zero field, the non-oscillating component of the polarisation depends

strongly on the orientation, departing from 50% of the full polarisation at θ = 0 to zero at

θ = π/2. The decoupling of the hyperfine interaction in high fields is clearly observed as that

component repolarises to unity at x > 1 for all orientations, but deep into the high-field regime,

at the ω1-ω2 avoided crossing for the intermediate orientations 0 < θ < π/2, the non-oscillating
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Figure 3.26: Expected amplitudes and absolute frequency values (in units of ω0) of Pµz (t) as a

function of the dimensionless field parameter x for the axially symmetric muonium state of Figure 3.20

in longitudinal-field geometry.
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component presents a dip from nearly 100% to 50% as states |1〉 and |2〉 mix. The dip occurs

in an orientation-dependent field given by (3.74), and is accompanied by the appearance of the

ω12 frequency which, at the avoided crossing, matches the ω1-ω2 minimum gap ωG, equation

(3.89). At that field, the full amplitude is evenly divided between the non-oscillating component

and the ω12 component. This is easily seen using again the non-degenerate states (3.83)-(3.86),

from which one obtains in the region of the avoided crossing

az
0 = 1− 2 s2

χ c2
χ =

2χ2 + 1
2(χ2 + 1)

(3.203)

az
12 = 2 s2

χ c2
χ =

1
2(χ2 + 1)

−→ ω12 = ± ωG

√
χ2 + 1 ; (3.204)

the first expression also allows to compute the full-width at half minimum of the non-oscillating

dip, leading to

∆χ = 2

⇓

∆x =
ωD

ω0

3 sin θ cos θ

2

(
1 +

|γe|
γµ

)
(3.205)

This dip at high-fields in LF geometry is characteristic of the ω1-ω2 avoided-level crossing;

its position and width give direct information about the state’s anisotropy in axially symmetric

muonium systems, providing an experimental way to measure it if the anisotropy is not decoupled

by dynamical phenomena38.

~Pµ(t) of muoniated radicals

Transverse-field geometry

The transverse-field muon polarisation of a muoniated radical is considerably more com-

plex than that of isolated muonium states, since the nuclear hyperfine interaction increases the

total number of possible precession frequencies as a result of the level splitting it produces in

the system’s Breit-Rabi diagram. This is especially true in low fields (x < 0.1), as both the

Mu and the nuclear hyperfine interactions promote the mixing of basis states in the system’s

eigenstates, giving rise to many non-zero oscillating components. At high-fields (x > 1), the

38Dynamical interactions with effective coupling constants larger than the anisotropic parameter D destroy the

mixing effect of the anisotropy on states |1〉 and |2〉, leading in general to the disappearance or distortion of the

non-oscillating dip.
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field decouples those interactions, and one falls in a case similar to isotropic Mu, where the

only observed frequencies correspond to ω1-ω2 and ω3-ω4 transitions. The magnetically allowed

transitions in this regime imply the conservation of the nuclear magnetic spin quantum numbers

Mp
J , leading to the non-zero components

ax
12(M

1
J , . . .) =

1/2∏
p 2Jp + 1

−→ ω12(M1
J , . . .) = ω− − Ω + s2

∑
p

ωp
0N

Mp
J (3.206)

ax
34(M

1
J , . . .) =

1/2∏
p 2Jp + 1

−→ ω34(M1
J , . . .) = −ω− + Ω + ω0 − s2

∑
p

ωp
0N

Mp
J ,(3.207)

where the perturbation-theory energy levels (3.114)-(3.115) for different groups of equivalent

nuclei and the corresponding high-field eigenstates (c ≈ 1, s ≈ 0) were used. Hence, the two ω12

and ω34 lines are broadened in a number of components which depends on the nuclear spins and

their hyperfine interactions; the component splitting, however, decreases with the applied field

due to the s2 factor, and around x ∼ 10 all components collapse to produce two clean ω12 and

ω34 components of amplitude 1/2 and frequency equal to the isotropic frequencies

ω12 = −ωµ +
ω0

2
ω34 = ωµ +

ω0

2
.

Similarly to the case of axially symmetric muonium, this high-field picture also fails at the ω1-ω2

avoided level-crossing, and an amplitude dip occurs due to the mixing of eigenstates.

Figure 3.27 depicts the field dependence of the amplitudes and frequencies expected for

the muoniated radical state of Figure 3.21 in the high-field region. The evolution of the ω12

and ω34 frequencies, split in only two components by the 1/2 proton spin, shows a gradual

merging of those components as the field approaches x = 10, beyond which the splitting is no

longer visible with a finite frequency resolution. This is also clearly seen in Figure 3.28, where

the field dependence is represented in terms of a Fourier diagram. The region near the ω1-ω2

avoided level-crossing is shown in detail in the two lower plots of Figure 3.21; one may see that

the transitions involving the proton spin only become visible at the crossing, an effect that in

principle could be used to measure nuclear hyperfine constants. The width of this resonance,

however, is too small to be usually observed, and ends up being very difficult to make use of it

in regular µSR studies.

Longitudinal-field geometry
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Figure 3.27: Expected amplitudes and absolute frequency values (in units of ω0) of Pµx(t) as a function

of the dimensionless field parameter x for the muoniated radical state of Figure 3.21 in transverse-field

geometry. The two lower plots depict in detail the region of the ω1-ω2 avoided level-crossing.
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Figure 3.28: Fourier field dependence of the high-field precession components observed for the muoni-

ated radical state of Figure 3.21. The relative position and amplitude of each line is represented in the

three different field regions (low field, high-field and Paschen-Back regime) usually defined in magnetic

resonance.
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The muon polarisation in longitudinal-field geometry for a muoniated radical state having

an isotropic hyperfine interaction is again complex at the lower fields, becoming considerably

simpler in high fields as soon as the nuclear hyperfine interaction is decoupled, where it presents

a repolarisation behaviour typical of an isotropic muonium state, as what may be observed in

Figure 3.29. Near the avoided-level crossing, however, this behaviour breaks down due to the

presence of the additional term in the hamiltonian brought by the nuclear hyperfine coupling;

one finds a situation similar to what is known for an axially symmetric state, with the appear-

ance of a dip in the non-oscillating component of the muon polarisation. The computation of

amplitudes and precession frequencies at the level crossing produces a result similar to equations

(3.203)-(3.205). The lower part of Figure 3.29 shows in detail the dip at the avoided crossing;

here, the resonance is large enough to be observed, and its regular use for the investigation of

muoniated radicals constitutes a sub-technique of µSR known as Avoided Level Crossing Reso-

nance (ALCR).

Axially symmetric states in polycrystalline samples

More often than one would like, appropriate single-crystal samples are not available for µSR

experiments, and polycrystalline samples in the form of pressed powder pellets have to be used

alternatively. This sample casting corresponds to a random sampling of all crystalline directions

relative to the fixed geometry defined by the externally applied magnetic field and the initial

beam polarisation. If the paramagnetic muon states formed in the sample are isotropic, this

does not constitute a problem, but if they have any anisotropy at all, the principal axis of

the hyperfine tensor will assume a random orientation. Since the precession frequencies of a

non-isotropic paramagnetic state depend on the orientation of the principal axis relative to the

magnetic field, this implies that the polarisation signal will in general exhibit up to six distinct

frequency distributions instead of the six sinusoidal frequencies detected for single-crystalline

samples.

In high transverse field, the situation is nevertheless simpler, since only the ω12 and ω34

frequencies are observed. If, in addition, the hyperfine tensor has axial symmetry, they give

rise to two symmetrical frequency distributions governed by the sum rules (3.200)-(3.201) and

equation (3.202), where

ωc =
ωD

2
(3 cos2 θ − 1)

goes over the full [0, π[ range of possible values for the angle θ. Hence, one may derive the shape
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Figure 3.29: Expected amplitudes and absolute frequency values (in units of ω0) of Pµz (t) as a function

of the dimensionless field parameter x for the muoniated radical state of Figure 3.21 in longitudinal-field

geometry.
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of the precession frequency distribution from the splitting

ω(θ) = ω0 + ωD
3 cos2 θ − 1

2
(3.208)

taking into account the purely geometrical weight that each possible value of θ has in the overall

distribution. The precession frequency distribution will thus be given by

dp

dω
=

dp

dθ

1∣∣dω
dθ

∣∣ , (3.209)

where dp
dθ = sin θ, and dω

dθ is easily computed from (3.208) as being

dω

dθ
= −3 ωD sin θ cos θ . (3.210)

With a straightforward algebra manipulation using the fact that (see (3.208))

cos θ =
1√
3

√
2

ω − ω0

ωD
+ 1 , (3.211)

one gets
dp

dω
=

1√
3

√
2ωD (ω − ω0) + ω2

D ; (3.212)

this distribution is depicted in Figure 3.30. In this figure, it becomes apparent that for the

splitting corresponding to θ = π/2 (ω = ω0 − ωD/2), which is the most probable orientation of

all, two cusps where dp/dω → ∞ exist, while for θ = 0 (ω = ω0 + ωD) the distribution’s value

remains finite at 1/(3ωD); also, the width of each individual line distribution scales directly

with ωD by

∆ω =
3
4

ωD . (3.213)

By way of the sum-rules (3.200)-(3.201) and the probability distribution (3.212), it is not

difficult to show that the probability density function of both ω12 and ω34 distributions expressed

explicitly as a function of frequency is given by

dp

df
(f) =

1√
3D (2(|f − fµ| −Aiso) + D)

, (3.214)

where the fµ = ωµ/2π is the muon Larmor frequency in non-angular units, and f is restricted

to the interval ]Aiso−D/2, Aiso +D] 39. It is a matter of algebra to integrate (3.214) in order to

obtain the explicit time dependence of the high transverse field muon polarisation of an axially

39Depending on the relative signs of Aiso and D, this interval may have to be reversely written, i.e. as

[Aiso + D, Aiso −D/2[.
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Figure 3.30: Probability distribution pattern for the precession frequencies of an axially symmetric

muonium state with ωD = +ω0/2 in a polycrystalline environment at high fields. The frequency axis is

shown in units of ω0, and relative to the Larmor precession frequency of the muon ωµ.

symmetric paramagnetic state; the result, which has never been published in µSR literature

before, reads

Pµx(t) = cos(−ωµt)

(
FC(

√
3|D|t)√

3|D|t cos
(

2π

(
Aiso

2
− D

4

)
t

)
+ (3.215)

−sgn(D)
FS(

√
3|D|t)√

3|D|t sin
(

2π

(
Aiso

2
− D

4

)
t

))
,

where sgn means the sign function, and

FC(z) =
∫ z

0
cos(πt2/2)dt (3.216)

FS(z) =
∫ z

0
sin(πt2/2)dt (3.217)

are the Fresnel cosine and sine integral functions. The extension of the frequency distribution

(3.214) to the case of a fully anisotropy hyperfine tensor is much more complex, and no analytic

expressions exist for it neither for the time dependence of the muon polarisation. Hence, the

values of these two expressions need to be obtained by a numeric integration considering all the

possible orientations of the three principal axis of the hyperfine tensor.

The random orientation of the symmetry axis for an axially symmetric muonium state

also affects the longitudinal field signal, and in particular the non-oscillating amplitude, since
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each polarisation is located at a different field (which we recall to be located at the ω1-ω2

level-crossing) (left side of Figure 3.31). The resulting repolarisation curve is therefore given by

az
0(powder) =

∫ π/2

0
az

0(θ) sin θ dθ , (3.218)

as shown in the right-hand side plot of Figure 3.31. it should be noted that the convolution

of all the dips at different orientations assumes a characteristic asymmetric shape, also with a

cusp, situated at

xcusp =
1
2π

∫ π/2

0
xax

12 cross(θ) sin θ dθ

= xiso
12 cross ;

hence, the cusp relates directly the isotropic hyperfine parameter of the state at hand, and may

be used to infer its value.

Figure 3.31: (left) Repolarisation curves at different orientations of the symmetry axis of an axially

axially symmetric muonium state with ωD = +ω0/2 in a polycrystalline environment. (right) The

weighted integral of all repolarisation curves for that same muonium state; the weight is given by the

solid angle factor sin θ. The convolution of dips forms a characteristic asymmetric dip shape.

3.4.4 Spin exchange dynamics of paramagnetic states

In matter, muon states may undergo dynamical interactions with the surrounding media. As

it was mentioned in Section 3.2.4, this results generally in a depolarising effect of the muon
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polarisation whose time structure relates with that of the dynamical phenomena giving rise

to it. In the specific case of paramagnetic states, further changes occur, namely shifts in the

amplitudes, phases and frequencies of the polarisation components which depend also on the

time structure of the dynamical interactions experienced by the bound muon-electron system.

That time structure may either correspond to a persistent interaction, in the sense that it is

a randomly repeated phenomenon, or to an irreversible interaction, if it is an unique event

during each muon’s lifetime. Persistent interactions may be further classified in spin exchange

and cycle exchange processes, depending if they arise from the relative motion between the

state and a paramagnetic species (such as free electrons or holes diffusing in the material, or

static spin-carrying nuclei as muonium diffuses in the host material), or from the modulation of

the hyperfine interaction driven by a cyclic change between two different states40. Here, we will

concern ourselves only with spin exchange dynamics, and relegate the subjects of cycle exchange

and irreversible interactions to the literature [85, 106].

In the simplest approach, a spin exchange process may be roughly interpreted as a magnetic

field whose direction and/or magnitude randomly fluctuates according to a correlation time τ .

The effect of that fluctuating magnetic field on the muon spin is primarily conveyed not by the

muon Zeeman interaction, but via the hyperfine interaction, since the muonium electron is much

more sensitive to the field in view of its significantly larger gyromagnetic ratio (cf. Table 3.2).

The fluctuating character of the field directly depolarises the muonium electron, which in turn

depolarises the muon because their spins are coupled by the hyperfine interaction. The actual

relaxation rate imparted on the muon polarisation depends on the relation between τ , which

commands the electron depolarisation, the hyperfine interaction ω0 coupling both spins, and the

electron Larmor frequency ωe, which determines the magnitude of the electron’s static Zeeman

interaction due to the externally applied magnetic field B. Some general trends may nevertheless

be guessed in asymptotic situations, namely the slow and fast spin exchange regimes. In the slow

spin exchange regime, i.e. 1/τ ¿ ω0, the muon spin follows the electron spin, reacting promptly

to any changes through the hyperfine coupling; the muon depolarisation rate increases with the

electron depolarisation rate, and hence with 1/τ . The ability to react, though, lessens with the

external static field, as the electron spin gets successively more coupled to that field and less

40In reality, the nomenclature of ‘cycle exchange’ does not exist in µSR literature and is introduced here for the

first time. It refers to processes in which the muon cycles between states with different configurations, such as

charge exchange processes (Mu+⇀↽ Mu0 cycling) or the diffusion among inequivalent sites in a crystalline lattice.
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coupled to the muon spin. In high fields, i.e. ωe À ω0, the muon depolarisation rate decreases

with the field and the dynamical interaction is said to be quenched. For the fast spin exchange

case, 1/τ À ω0, the electron spin changes too fast for the muon spin to keep up with; as 1/τ and

the electron depolarisation rate increase, the muon depolarisation rate decreases. In the limit

of very short correlation times, the hyperfine interaction is said to be dynamically decoupled,

and the muon behaves as if it was in a diamagnetic environment; therefore, no variation of the

muon depolarisation rate exists with the field. Fast spin exchange is the mechanism responsible

for µSR’s sensitivity to dynamical phenomena occurring with correlation times much shorter

than the experimental time resolution; it is analogous to the motional narrowing effect found

in NMR, since the line widths in the Fourier spectrum of TF data are seen to decrease with

increasing temperature.

A more realistic description of spin exchange is based on the direct quantum spin flip

interaction between the muonium electron and the paramagnetic species. Considering it to be

e.g. free electrons, a 1/2-spin species, with concentration n and average velocity v relative to the

muonium state, one has for the encounter rate per unit area between muonium and electrons

1
τ

= n v . (3.219)

While each single encounter lasts, the electronic wavefunctions of the passing free electron and of

the muonium state overlap, and a finite probability that the two electrons are exchanged exists. If

they are exchanged or not depends on the spatial configuration and spin of both wavefunctions,

but whenever it does happen and the electrons have opposite spins, the relative populations

between the hyperfine eigenvectors of the muonium system are changed. This enhances the

mixing of eigenvectors of the Mu hamiltonian in the spin wavefunction of the muonium state,

and as encounters repeatedly occur at random, the muon polarisation gets depolarised.

The probability that a spin flip event occurs is the spin flip cross section, σSF , given by

[112]

σSF = sin2

(
∆
2

)
, (3.220)

where ∆ is a phase factor related with the partial-wave collision phase shifts δ
s/t
l of the singlet

(s) and the triplet (t) configurations of the 2-electron subsystem, which may be written in terms

of the interaction energies Vs and Vt by the time integral [112, 122]

∆ = −1
h̄

∫
(Vs − Vt) dt . (3.221)
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A spin non-flip cross section, σNF , may also be defined using this parameter,

σNF = 1− σSF = cos2
(

∆
2

)
, (3.222)

but its existence has been shown not to affect the muon polarisation whenever the distribution of

collision instants is Poissonian41 [112, 113, 115]. In this situation, spin exchange may be treated

as if all encounters are of spin flip type and occurring at a reduced rate [112]

λSF =
1
τ

sin2

(
∆
2

)
= n v σSF ; (3.223)

this is the effective rate which will rule the spin exchange process and the muon polarisation.

Its determination may yield important information about dynamical properties of the scattering

species; for instance, λSF is proportional to the electrical conductivity in semiconductors due

to the movement of charge carriers (electrons or holes), or to the muonium slowing down time

after the charge exchange regime in paramagnetic gases [112, 117].

The first theoretical treatment of the effects of spin exchange in the µSR signal was

performed by Nosov and Yakovleva [82, 83] and Ivanter and Smilga [52, 53]. These authors

modelled the dynamics with a phenomenological parameter ν related with the relaxation rate

of the muonium electron’s polarisation. They start by describing the muonium polarisation in

terms of the equations of motion mentioned in the last section, equation (3.157),

Ṗ(t) = Q P(t) ,

and postulate an exponential decrease of the electronic components with rate ν:

~Pe(t) ∼ e−νt . (3.224)

This behaviour is forced on ~Pe(t) quite easily if the time derivatives of all polarisation components

involving the electron (~Pe and the mixed polarisations Pαβ) are in each instant proportional to

a negative constant times their own values,

Ṗj(t) = [Q P(t)]j − 2 ν Pj(t) , j = 4, . . . , 15 , (3.225)

41It should nonetheless be made clear that if the distribution of collision instants is not random, or if the

scattering species is polarised, the spin non-flip cross section may influence the µSR signal. See [118] and [117, ?]

respectively for the effects of non-randomness and the polarisation of the scattering species in the µSR signal.
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where the appropriate constant is straightly found to be 2 ν42. Given an electronic depolari-

sation rate ν, one just needs therefore to solve (3.157) using an accordingly modified matrix

QNY . Although it remains real, QNY is no longer antisymmetric, and because of that its eigen-

values will in general be three negative reals rather than zeros (non-oscillating components)

plus six conjugated pairs of negative real part rather than pure imaginary numbers (oscillating

components):

Dkk = −λk (3 components) (3.226)

Dkk = −λk ± i ωk (6 components) (3.227)

Non-zero relaxations and non-zero initial phases may therefore appear as a general rule in all

the components of P(t), equation (3.160),

Pj(t) =
15∑

k=1

15∑

l=1

Ujk eDkkt U−1
kl Pl(0)

=
3∑

i=1

a
(j)
0i e−λit +

6∑

i=1

a
(j)
i e−λit cos(ωit + φ

(j)
i ) , (3.228)

with the now separated non-oscillating amplitudes

a
(j)
0i =

15∑

l=0

UjkU
−1
kl Pl(0) , (3.229)

where k satisfies Im{Dkk} = 0, and

λi = −Re{Dkk} (3.230)

for all k. Figure 3.32 shows demonstrative results computed with Nosov and Yakovleva’s theory

relative to the polarisation an isotropic muonium centre undergoing spin exchange dynamics in

longitudinal field geometry.

More sophisticated and fundamental approaches of spin exchange were introduced by

Turner and Snider [131], Celio and Meier [16], and Senba (see [121] and references therein) to
42The factor 2 here may seem confusing, but it is in fact necessary in order to have the electron polarisation

proportional to e−νt. Just as (3.157) is analogous to the equations of two coupled harmonic oscillators, also (3.225)

corresponds to the equations of two coupled damped oscillators. In the description of the damped oscillator,

a dissipative component γẋ is added to the equation ẍ + ω2
0 x = 0 of the harmonic oscillator; the resulting

expression may be cast as ẋ = −ω2
0

R
xdt − γx (compare with equation (3.225)), whose oscillating solution is

x(t) = A e−γ/2 t cos(
p

ω2
0 − γ2/4 t + φ). The exponential constant is thus proportional to half the damping

constant γ.
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Figure 3.32: LF polarisation components of an isotropic muonium state undergoing spin exchange

dynamics, as obtained using the Nosov-Yakovleva’s theory. Three distinct situations are shown, depending

on the ratio ν/ω0 (indicated as simple numbers): absence of dynamics (0), slow spin-flip regime (0.5) and

fast spin-flip regime (5).
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describe the muon polarisation in terms of the quantum-mechanical spin-flip cross section σSF .

Turner and Snider used a method based on the Boltzmann equation for the spin degrees of

freedom of a spin-colliding system, while Celio and Meier solved a master equation for muo-

nium subjected to a fluctuating magnetic field, and Senba developed the so-called time-ordered

stochastic method. Senba’s procedure, which is based in a step-by-step description of random,

Poisson-distributed spin flipping encounters averaged over time and the total number of colli-

sions, has been applied by that author to investigate the connection between the muon spin

relaxation rates, initial amplitudes, transverse-field frequencies and transverse-field phases ob-

served in µSR with the spin-flip rate λSF in a multitude of situations differing in the spin flip

rate range, the µSR geometry configuration and the magnitude (and symmetry) of the hyperfine

interaction tensor. We do not go into many details here, since his bibliography is extensive and

the actual deduction of some of the final results is situation-dependent, but we nevertheless

summarise the general expressions he obtains for the most important cases and produce very

brief comments. We also leave out of this discussion the transition regime between fast spin

exchange and slow spin exchange, since its analysis is considerably more complex, and has only

recently been addressed in the literature.

Fast spin exchange

Transverse field geometry

When a muonium state is undergoing spin exchange with a paramagnetic species at a rate

much larger than any of its hyperfine periods, the hyperfine interaction is dynamically decoupled.

The muonium state behaves therefore as a diamagnetic positive muon, which in transverse field

leads to a muon polarisation signal composed by a single precession with frequency ωT and

relaxation λT given by (λSF À ωnm)

ωT = −λ2
SF

4∑

n,m=1

ωnm

λ2
SF + ω2

nm

a+
nm (3.231)

λT = λSF

4∑

n,m=1

ω2
nm

λ2
SF + ω2

nm

a+
nm , (3.232)

where ωnm are the transition frequencies of the muonium state, and a+
nm is the TF amplitude

a+
nm =

1
4
〈n|(~Pµ(0).~̂σµ)|m〉 〈m|σ̂µ+ |n〉 , (3.233)



114 CHAPTER 3. POSITIVE MUON SPECTROSCOPY (µSR)

σ̂µ+ being the raising ladder operator for the muon’s spin. The dependence of ωT and λT on the

field and spin-flip rate is depicted in Figure 3.33 for an isotropic muonium state and an axially

symmetric state. It should be noted that the absolute value of ωT rapidly approaches the muon

Larmor precession frequency with increasing spin-flip rate, while the relaxation λT tends to zero

via an asymptotic behaviour given by

λT → ω2
0

2λSF
(3.234)

i.e., the relaxation becomes field independent and scales with the inverse of λSF ; also, at high

fields it can be shown that λT assumes the limiting value λSF , corresponding to the absolute

decoupling of the hyperfine interaction.

Longitudinal field geometry

In longitudinal field geometry, the muon polarisation will consist in a full polarisation

signal, in accordance with the signal produced by a diamagnetic positive muon, but damped

with a relaxation rate

λL = λSF

4∑

n,m=1

ω2
nm

λ2
SF + ω2

nm

az
nm , (3.235)

where az
nm = ~anm.ẑ is the LF amplitude corresponding to the transition nm. Figure 3.34 shows

the field and spin-flip rate dependence of (3.235) for an isotropic muonium state and an axially

symmetric one. One feature clearly visible in that figure is the field dependence at high fields,

which can be shown to exhibit a 1/B2 character; this fact is often used to identify the fast regime

of spin exchange dynamics, together with the expected lowering of the LF relaxation rate as the

spin-flip rate λSF increases.

Slow spin exchange

Transverse field geometry

In the slow spin exchange regime, the µSR TF signal is considerably more complex than

in the fast regime, since depending on the external field, all the allowed spin precessions ωnm

might be resolved. In general, for an isotropic or axially symmetric muonium state, the four

precession frequencies ω12, ω23, ω34 and ω14 will exhibit field-dependent relaxations given by

λ12 = λ34 =
λSF

4

(
3− x√

1 + x2

)
(3.236)

λ23 = λ14 =
λSF

4

(
3 +

x√
1 + x2

)
, (3.237)
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Figure 3.33: Apparent TF diamagnetic frequency and corresponding relaxation rate in the fast spin

exchange regime for an isotropic muonium state, and an axially symmetric muonium state with D =

Aiso/2.
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Figure 3.34: LF relaxation for the non-oscillating polarisation in the fast spin exchange regime for an

isotropic muonium state, and an axially symmetric muonium state with D = Aiso/2.

where x is the reduced field parameter defined in (3.50). The corresponding amplitudes and

precession frequencies are still given by the expressions obtained in Section 3.4.3 for the case of

the absence of dynamics. As it becomes quite apparent, as the field increases, the relaxations of

the high-field precessions ω12 and ω34 decrease from 3λSF /4 to λSF /2, while the relaxations of

the low field precessions increase from 3λSF /4 to λSF .

Slow spin exchange

In longitudinal field, the situation is again simple, and the non-oscillating polarisation will

be damped with a relaxation given by an expression identical to the one shown for the fast spin

exchange regime, i.e.

λL = λSF

4∑

n,m=1

ω2
nm

λ2
SF + ω2

nm

az
nm ;

however, and in spite the computation being performed using the same expression, the behaviour

of the LF relaxation is quite different from that in the fast exchange regime, since it increases

with the spin-flip rate λSF in slow spin exchange, whereas it decreases with λSF in the fast

regime. This type of variation may be observed in Figure 3.35, where an important feature for

axially symmetric states is also revealed: at the ω1−ω2 level crossing, there is a relaxation peak

whenever the external field is not aligned with any of the hyperfine tensor’s axis (0 < θ < π/2).
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This peak does not exist in the fast spin exchange regime, as in that case the hyperfine interaction

is decoupled. Thus, the LF relaxation peak at the level-crossing is a clear signature for the

existence of spin exchange dynamics in the low spin-flip regime, offering an easy way to identify

this type of dynamics.

Figure 3.35: LF relaxation for the non-oscillating polarisation in the slow spin exchange regime for

an isotropic muonium state, and an axially symmetric muonium state with D = Aiso/2. For axially

symmetric states undergoing slow spin exchange phenomena, an important feature is the existence of a

relaxation peak at the ω1 − ω2 (avoided) level crossing.
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Chapter 4

Preparation of samples for µSR

experiments

One of the major drawbacks of µSR is that one needs large samples when compared to most of

the other condensed matter techniques. The implantation depth of surface muons in phthalo-

cyanines is about 1 mm (see Figure 3.18), which, given the typical FWHM beam-spot sizes of

the muon beams at PSI (5 mm) and ISIS (> 10mm), implies using samples with dimensions of

approximately 2mm thickness by 10 mm (PSI) or 20mm (ISIS) diameter. This is not a strict

requirement, as the three instruments chosen to perform the µSR experiments have the capa-

bility to measure samples smaller than the beam-spot size (see Section 3.2.6), but since that is

done at the cost of having smaller count rates, in ideal conditions the samples should comply

to those dimensions. Taking into account that the densities of H2Pc, ZnPc and CuPc are all

around 1.5 g cm−1 [77], this traduces to using samples with masses of at least 0.25 g (PSI) and

1 g (ISIS).

Further optimum conditions for a µSR experiment with solid samples are the use of single-

crystals as opposed to polycrystalline material. The reason is two-fold: firstly, muon interactions

often depend on the relative orientation between the crystalline axis of the material and the

externally applied field. That is the case for axially-symmetric molecular-radical states (see

Section 3.4.2), which are expected to be formed a priori in phthalocyanines; using polycrystalline

material implies the necessary consideration of powder pattern distributions in the analysis of

the µSR signal. Secondly, the fraction of muons which are stopped in the surface of the sample

and form non-bulk states is negligible in a single-crystal, whereas in a polycrystalline sample

119
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it may be quite noticeable, depending on the grain size. That fraction obviously produces a

highly undesired component of unknown character1 in the µSR signal; to limit its existence, the

surface/volume ratio of the polycrystalline sample has to be minimal.

Both the spectroscopic and the dynamical studies of muon states in phthalocyanines

would therefore benefit from using single-crystal samples, but it so happens that no phthalocya-

nine single-crystals with the required dimensions for µSR are currently commercially available2.

Hence, all phthalocyanine samples used in this work took the form of pressed pellets of poly-

crystalline material. This means that some concern should be devoted to preparing samples

with the largest possible crystalline grains, as well as considering the directional averaging of

possible anisotropies in muon interactions at the time of data analysis. Powder pattern distri-

butions are taken to be a nuisance in the analysis of the µSR signal3, since they are a source of

line-broadening which may seclude the dynamics of paramagnetic muon states. In µSR studies

of organic compounds which are impossible to get as single-crystals, this is usually discarded

by performing measurements with the compound in a liquid solution, where the rapid thermal

tumbling motion of the molecules averages out the anisotropy of the hyperfine interaction; af-

ter subtracting the solvent’s µSR signal, the muon interactions are considered to be effectively

isotropic. For our study, nevertheless, this option is cast aside, since phthalocyanines are highly

insoluble4 in the solvents whose µSR signal is well-known. Moreover, the study of charge-carrier

diffusion dynamics in phthalocyanines cannot be performed in any other form than in its solid-

state arrangement.

4.1 Undoped samples

Since the model phthalocyanine molecules chosen for this work (H2Pc, ZnPc and CuPc) are

readily available from most major chemical manufacturers, all samples were prepared from

commercially acquired material in polycrystalline form. The original material was all bought

from AlfaAesar in a nominally pure grade (100% for H2Pc and CuPc, and > 98% for ZnPc).

1It may be anything from a diamagnetic state to a paramagnetic one, but most probably it will be a mixture

whose characteristics may change with temperature and the externally applied field.
2And neither are they non-commercially existent, as far as what is known.
3In some cases, nevertheless, they actually prove to be extremely useful in the spectroscopic characterisation

of muon states.
4The solubility of phthalocyanines is further discussed in Section 4.2.3.
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4.1.1 Phthalocyanine purification

All the material received was purified in a first stage inside a long quartz tube by vacuum

temperature gradient sublimation (Figure 4.1). In certain cases, up to three cycles of the sub-

limation procedure were performed, as indicated in the sample lists shown later on in Tables

4.1 to 4.3 (see Section 4.3). In mild sublimation conditions, i.e. when the temperature of the

hot end of the gradient is not high above the sublimation temperature of the substance being

purified and the gradient is not too steep, the material gets slowly recondensed along the di-

rection of the temperature gradient. For a given molecular compound, the exact spot where

recondensation takes place corresponds to the point in the tube where the temperature matches

the compound’s (vacuum) sublimation temperature. The separation of the different molecular

components existing in an initial mixture is thus performed by physical deposition in different

locations, allowing to recover the compound of interest by collecting all material deposited in

its specific condensation location. In our case, the identification of the place where the purified

phthalocyanine is deposited was quite easy to do, since it necessarily corresponds to the location

where most of the recondensed material is. Furthermore, mild conditions also assure a slow

sublimation rate at the hot end of the gradient, meaning that the material will slowly recon-

densate in a stable crystalline phase. Optimum conditions for the growth of large needle-like

phthalocyanine crystallites in the ovens used at Coimbra (Figure 4.2) and Berlin were found

to be reached when the hot end of the temperature gradient (chosen to be in the centre of the

oven) was kept at 490, 480 and 490 ◦C for H2Pc, ZnPc and CuPc respectively. The mass yield

of the purified phthalocyanines was also seen to be maximised in these conditions, taking values

of 60-70% for sublimation times of 1-2 hours and initial masses on the order of 1 g. Most of the

purification cycles was performed with the plain original powder being placed at the hot end

of the temperature gradient; in some cases, it was pressed into pellets with a small-size pellet

dye before being sublimated. The earliest sublimations were done at the HMI laboratory in

Berlin during one visit planned for the acquisition of experimental know-how in the handling

of phthalocyanines, but the largest part of the purification tasks was actually performed at the

laboratories of the FNMC group in Coimbra.

4.1.2 Crystalline phase of the purified material

As planar phthalocyanines are polymorphic [32], possessing two distinct phases (the α, or brick-

stone arrangement, and the β, or herringbone configuration, see Chapter 2), the crystalline
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Figure 4.1: Schematic representation of the vacuum gradient sublimation principle. The material to be

purified is placed at the hot end of the temperature gradient, where it is sublimated. It then condenses

at the position along the gradient that matches its vacuum sublimation temperature. This is a standard

technique used in the purification of solid molecular materials which do not decompose upon sublimation.

Figure 4.2: (left) The vacuum gradient sublimation apparatus used for phthalocyanine purifications

in Coimbra. It consists in a long and wide quartz tube and a cylindrical induction oven where the tube

is inserted until its tip matches the centre of the oven. On the other end, the quartz tube is connected

to a high vacuum system (p < 10−3 Pa) driven by a turbo-molecular pump. The temperature gradient

inside the oven is naturally established by the cold spot created at the tube’s entrance. (right) Detail of

the deposited material after a sublimation run. The phthalocyanine crystallisation takes actually place

in short quartz cylinders fitted successively inside the tube; these cylinders ease the collection of the

deposited material.
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structure of the material obtained by the purification procedure under optimum growth condi-

tions was ascertained in a quick X-ray powder diffraction measurement using the Debye-Scherrer

method5. Figure 4.3 shows the diffraction spectrum of H2Pc along with simulated spectra for

both the α and the β phases. As expected, the purification produces the β configuration,

which is known to be the stable phase of planar phthalocyanines formed under mild sublimation

conditions.

4.1.3 Sample shaping and thermal annealing treatments

All samples were shaped into a circular pellet pressed from the purified material with an hydraulic

press and a pellet-dye of the required size (Figure 4.4). Diameters between 12 and 19 mm were

chosen for samples which would be measured at PSI, while for those measured exclusively at

ISIS the preferred diameter size was 27 mm.

The undoped pellet samples used in µSR measurements which involved direct comparisons

with doped or non-annealed ones were also subjected to a thermal annealing treatment in vacuum

before being taken to PSI and ISIS. That treatment served the purpose of freeing the sample from

possibly absorbed or adsorbed gases which could in principle form states with some ability to

influence the number of free charge carriers in the material; although phthalocyanine compounds

are superbly stable from the chemical point of view, the incorporation of molecular oxygen in

thin-film phthalocyanines, for instance, is known to substantially enhance their conductivity (see

the next section for references and a more detailed discussion of this effect). The sublimation

set-up was used for the vacuum thermal annealing, with the oven set to a temperature lower

than the sublimation temperature of phthalocyanines. The annealing temperature was chosen

to be 300 ◦C, and the treatment duration of 2 hours, after which the sample was rapidly cooled

to room temperature by irrigating the quartz tube with water while using a small pressure of

helium inside the tube as a heat exchanger gas. The choice of the annealing conditions was

based on the results relative to the oxygen doping procedures discussed in the next section. As

soon as the cooling process was complete, the sample was transferred to a sealed container and

5We choose not to make any attempt at describing the theoretical and experimental aspects of X-ray diffraction

methods due to the onetime character of this measurement, and the fact that X-ray diffraction is probably the best-

known technique used in the investigation of condensed matter. A full description of X-ray diffraction techniques

and methods may be found e.g. in [6]. The same attitude is adopted for several other ancillary techniques used

throughout this thesis which are of common knowledge, like resistivity measurements or electronic absorption

spectroscopy (both referred to in Section 4.2.3).
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Figure 4.3: Simulated X-ray powder diffraction spectra for H2Pc in the α (top) and β (centre) phases.

The bottom spectrum is the experimentally obtained data for H2Pc sublimated under the optimum

growth conditions referred in the text, showing the formation of β phase phthalocyanine.
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Figure 4.4: Phthalocyanine pellets with different sizes for µSR experiments. These pellets were

produced in an hydraulic press using a pellet-dye of the required size.

transported under vaccum to the µSR laboratories.

4.2 Doped samples

One of the purposes of this work involves employing µSR as a tool to investigate the microscopic

properties of charge carrier diffusion in phthalocyanines through the dynamics rendered by spin-

scattering events between charge carriers and the muon states. Performing spin-dynamics mea-

surements with doped samples in addition to undoped ones is therefore a valuable asset, as µSR

results may be directly related with the concentration of free charge carriers depending on the

larger or smaller dopant-to-phthalocyanine ratio of each sample. Thus, the preparation of doped

samples for µSR was considered. Since phthalocyanines are normally used as p-conducting chan-

nels in the manufacture of devices, the choice of dopants was aimed at producing polycrystalline

material also p-doped by hole donor6 species. This implies using high electron affinity species,

such as the full fluorinated of tetracyanoquinodimethane, F4-TCNQ (see Chapter 2), or simple

oxidising gases.

The local character of the positive muon probe conjugated with the polycrystalline form

of the material requires the dopant-phthalocyanine mixture to be the most homogeneous possi-

ble. No domains with substantially different charge-carrier concentrations should exist, as the

distribution of stopped muons through different environments would contribute to the incoher-

ence of the muon polarisation in a way which is uncorrelated with the intrinsic characteristics

of spin-scattering interactions. Having a perfect mixture is also an issue for the optimisation of
6i.e. electron acceptor.
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thin-film devices based in phthalocyanines, since inhomogeneities degrade ordering and decrease

the conductivity [26]. But while for doped thin-films of phthalocyanine it is easy to attain sat-

isfactory dopant-phthalocyanine mixtures at the microscopic level, in bulk material the same is

very difficult due to the fact that the long-range solid-state packing of phthalocyanines tends to

highly segregate the dopant species [51]. Doping of thin-films with small organic molecules is

usually performed by co-evaporation [50, 37]; the two compounds are slowly and independently

sublimated from different sources in a high-vacuum chamber, physically mixing with a ratio con-

trolled by the sublimation rates as they simultaneously reach the deposition substrate. Doped

polycrystalline material could probably be obtained by traditional co-evaporation methods, but

the mass yield rate would be too small to deliver a gram-sized amount of material in a reasonable

time scale; also, the grain-size might not be large enough to ensure a small surface/volume ratio.

An equivalent method to co-evaporation where a large-mass mixing phase exists prior to the

crystallisation of the material would in principle be the most adequate to prepare polycrystalline

material in suitable amounts for µSR samples of controlled doping7. One other alternative to the

doping of polycrystalline phthalocyanine is the exposure to oxydising gases, which may diffuse

inside the crystallites and create doping states in already grown material. This method has been

successfully employed as a p-doping method following the deposition of thin-films [51], although

diffusion phenomena end up creating non-stable doping profiles in many situations.

In the following, the three attempts at creating doped samples for µSR measurements

performed in this thesis work are described.

4.2.1 Molecular doping by mechanical ball milling

The first method considered for obtaining phthalocyanine doped samples with a high mixture

degree at the molecular level was the mechanical incorporation of dopant molecules via ball

milling. This is a method often used in materials science to make alloys and induce mixtures at

the sub-micrometric scale, with which some members of the FNMC group are well acquainted.

It consists in the mixing of two (or more) powder substances by the mechanical action of hard

steel spheres inside a closed container. The spheres are continuously propelled against each

other and the container’s walls, acting as pounders to grind and mix the substances by impact

7We should make clear that such phase cannot be an equilibrium gas phase of the two compounds from which

the final material would be obtained by crystallisation upon cooling. The compounds are bound to have different

sublimation temperatures, and thus would not condensate simultaneously.
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and friction (Figure 4.5).

Figure 4.5: Schematic representation of the ball milling principle. The powder substances to be alloyed

are inclosed in a sealed container together with hard steel spheres. The spheres are driven by the periodic

motion of the container, which may be rotational, vibrational, or a combination of both. This forces the

spheres to repeatedly hit each other and the container’s walls, grinding and mixing the powders until a

mixture at sub-micrometric scale exists.

The eventual use of mechanical ball milling with phthalocyanines in polycrystalline form

raised nevertheless some concerns which had to be evaluated beforehand. Firstly, the milling

procedure potentially grinds the crystalline grains to sizes in the nanometre scale, highly in-

creasing the total surface/volume ratio of the sample. This may enhance the formation of muon

surface states, affecting the µSR signal of doped samples. Secondly, it may induce modifications

of the crystalline structure, deforming the initial phase by shear stresses or forming totally differ-

ent phases. This will surely affect the local muon environment, changing the structure of muon

states, and denying the comparison between doped and undoped data. To assess the existence of

any of these effects, two undoped samples of H2Pc (samples H2Pc 03 and H2Pc 03m15) were pre-

pared from the same batch of purified material. The first sample (H2Pc 03) was pressed directly

as all other undoped samples, while the material used for the second one (H2Pc 03m15) was

subjected to soft milling conditions before the pellet pressing procedure. The milling was car-

ried out in an inert atmosphere of Ar at room temperature for 15 hours, using the single-sphere

vibratory mill existing in the laboratory of the FNMC group (a FRITSCH Vibratory Micro Mill

pulverisette 0) set to a low amplitude. As it is discussed in Chapter 5, high transverse-field µSR

measurements done on both samples came to indicate substantial changes in the µSR signal

which disabled the viability of this method for doping purposes. No further work on this subject

was therefore engaged.
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4.2.2 Oxygen doping

The exposure of phthalocyanine thin-films to molecular oxygen is known to induce a dramatic

increase of hole conductivity in those structures [59]. The oxygen oxidises the phthalocyanine

molecules, removing electrons from the film and acting as a p-dopant species. The production of

oxygen-doped phthalocyanine samples for µSR measurements by pressure-charging procedures

of previously purified material was thus considered as a viable alternative in addition to doping

by incorporation of small dopant molecules.

In order to perform the controlled oxygen doping of the rather large quantity (∼ 1 g)

of polycrystalline phthalocyanine needed for µSR samples, it was first necessary to establish

an experimental relation between oxygen charging conditions (essentially oxygen pressure and

charging temperature) and the number of free charge-carriers induced by the doping. Assuming

that bulk polycrystalline material behaves in a similar manner to thin-films, such relation may be

extracted from conductivity measurements of phthalocyanine thin-films under different oxygen

charging conditions. Since phthalocyanine in thin-film form crystallises in randomly oriented

β-phase grains [26], matching the crystalline structure of the bulk crystallites obtained from

the purification procedure, conductivity results may qualitatively carry over to polycrystalline

material provided that oxygen is able to diffuse deep enough inside the bulk crystallites so that

its average concentration is similar to the one in a thin-film for the same charging conditions.

Thin-film doping

Conductivity measurements were performed in a single 400 nm thin-film sample of ZnPc

as a function of oxygen pressure and temperature. The sample was prepared in a high-vacuum

(p < 10−3 Pa) Veeco evaporation chamber which was adapted for the deposition of organic thin-

films at the HMI institute and brought to the laboratory of the FNMC group in Coimbra for

the experiment (Figure 4.6). For the oxygen charging, a gas admission system consisting of a

needle valve, an absolute low pressure gauge (0-2 bar piezoresistive absolute pressure sensor from

Kistler, model 4043A2) readout by a micro-voltmeter and a high-purity (> 99.995%) oxygen gas

source was fitted to one of the available ports on the chamber.

The film was grown on a 100 ◦C-heated fused silica substrate possessing two microstruc-

tured aluminium electrodes (Figure 4.7) that allowed the in situ measurement of its electrical

resistance in coplanar contact geometry using an electrometer with leak current cancelling fea-

tures (Keithley 6517A). The substrate was cleaned prior to the deposition with a 15-minute
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Figure 4.6: The evaporation chamber for organic thin-film deposition at the laboratory of the FNMC

group in Coimbra, based in a bell-glass high-vacuum Veeco chamber driven by a diffusion pump. It

possesses two resistively heated crucibles for the sublimation of organic materials, of which only one is

currently connected to a power supply plus temperature controller set capable of reaching a maximum

temperature of around 700 ◦C. The sample substrate holder may be heated up to 150 ◦C with a wrapped

up resistive thermocoax filament connected to a low power supply source. Deposition control is performed

with shutters for the ovens and sample, and the deposition rate is monitored with a quartz oscillator.

The fact that a single oven power supply and a single quartz oscillator exist allows so-far the sublimation

of one type of material at a time only.
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acetone bath followed by another 15-minute ethanol bath and an in-place 15-minute heating to

100 ◦C under vacuum conditions. The growth rate was adjusted to a slow value of 2 Å/s by

heating the crucible containing previously purified ZnPc to a temperature of 450 ◦C. Following

deposition, the circuit resistance measured in the electrometer was 25 GΩ8, a value which re-

mained unaltered after a single vacuum annealing of the film at 100 ◦C for an half-hour period.

The conductivity of the sample in undoped conditions was therefore (see Figure 4.7b for details

on the calculation)

σ =
1

35×Rm

33 µm
3mm× 400 nm

= 3.1× 10−10 S/cm ,

lying well within the order of magnitude known for conductivities of undoped phthalocyanines

(cf. Chapter 2).

The first oxygen uptake experiment was performed with the sample being kept at room

temperature (21 ◦C) under a constant oxygen pressure of pO2 = 100mbar. The film electrical

resistance was seen to react promptly to oxygen presence, rapidly lowering on a minute timescale,

after which it kept falling at a much slower rate (Figure 4.8); at the end of one day, it had dropped

to 1.6 GΩ (σ = 4.9×10−9 S/cm). The evaporation chamber was then evacuated with the sample

at 21 ◦C, and again the resistance reacted with a similar time pattern (Figure 4.8), rising fast to

6.8 GΩ after 1 minute and slower to 22 GΩ after 1 day. At 21 ◦C, the original 25 GΩ resistance

was only attained with the sample under vacuum conditions during about 1 week.

These results are consistent with the oxygen-doping of thin-film ZnPc being performed

by two different fractions of oxygen, as proposed by Kerp and Faassen [58]. In their work,

they find that one oxygen fraction is rapidly desorbed in vacuum (which they call the ‘mobile’

fraction), while the other (the ‘fixed’ fraction) only diffuses out when the temperature is taken

above 90 ◦C. After sample exposure to air at room temperature, they estimate the mobile

and fixed oxygen contents to be of respectively 2 and 1 molecules per 30 ZnPc molecules. In

our results, the mobile fraction is responsible by the fast time evolution of the conductivity

upon oxygen charging and de-charging of the sample, while the fixed one produces the slow

behaviour. The fraction of interest for oxygen doping of phthalocyanine samples to be used in

µSR is of course the second one, as µSR experiments are usually performed with the sample in

vacuum. The incorporation and stability characteristics of that fraction were therefore targeted

in measurements of the film’s electrical resistance after charging periods of 2 hours at different
8No experimental errors will be quoted in the text for the resistance measurements; they were nevertheless

estimated to be of about 10% of the measured value, and are indicated as error bars in the plots shown below.
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Figure 4.7: (a) Scheme of the structured microelectrodes used for in situ resistance measurements in

coplanar contact geometry. Each electrode is composed by 18 filaments of Al 3 mm long. The spacing

between filaments is 33 µm. (b) Illustration of the electrical resistance r between 2 adjacent filaments

as a function of filament length w, filament spacing l and film thickness h, and the equivalent resistance

of the whole microelectrode structure, Rm (N is the total number of filaments in the two electrodes).

(c) Detail of a ZnPc thin-film evaporated onto a microstructured substrate at the evaporation chamber

shown in Figure 4.6.
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Figure 4.8: Time dependence of the electrical resistance in the ZnPc thin film sample prepared for

oxygen pressure-charging experiments during oxygen uptake (blue data points) and oxygen effusion (red

data points). The lines are mere guides to the eye.

pressures and temperatures. Between each measurement, the sample was subjected to a vaccum

annealing treatment at 100 ◦C for 1 hour, since those conditions were found to clearly reset the

film’s resistance to its post-deposition value of 25GΩ. A short dependence of the resistance at

21 ◦C with the oxygen charging pressure is depicted in Figure 4.9; no variation is seen, seeming

to indicate that oxygen pressure is irrelevant for the doping process in the considered range.

Temperature, on the other hand, does influence the electrical resistance at a constant

charging pressure of pO2 = 100mbar, decreasing with increasing charging temperature, as seen

in Figure 4.10. Although at first sight this may suggest that higher temperatures induce an

easier oxygen uptake and consequent larger hole concentration, the fact is that studies with

other dopants of phthalocyanines attribute the temperature behaviour of the conductivity in

lightly-doped thin-films mainly to a rise in the hole mobility and not of its concentration [86].

We are therefore inclined to conclude that the number of holes induced by oxygen does not

change significatively with temperature in the range measured. Figure 4.10 also shows the film’s

resistance after 2 hours in vacuum, taken before the resetting 100 ◦C, 1 hour vacuum annealing

at each of the temperatures measured under pO2 = 100 mbar. For that time lapse, oxygen

effusion increases with temperature, as already hinted by the conditions of the resetting vacuum

annealing. At room temperature, a substantial part of the fixed oxygen fraction is still inducing
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Figure 4.9: Pressure dependence of the electrical resistance at 21 ◦C for the ZnPc thin film sample

prepared for oxygen pressure-charging experiments.

free charge-carriers in the sample; taking into account Figure 4.8, we estimate it to be about

half of its initial value.

Figure 4.10: Temperature dependence of the electrical resistance for the ZnPc thin film sample prepared

for oxygen pressure-charging experiments. Blue and red data points correspond to measurements taken

in an oxygen pressure of 100 mbar and in vacuum after the 100 mbar period, respectively.
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In view of obtaining a pragmatic set of oxygen doping conditions for polycrystalline sam-

ples, the results presented above for the fixed oxygen fraction are in agreement with the sample

being oxygen-saturated already at low charging pressures, and the slow effusion in vacuum

(performed in a timescale of many hours) at room temperature. The oxygen saturation, unfor-

tunately, disables any quantitative control of doping9, so one is limited to producing a single

oxygen-doped µSR sample with a mild concentration of free charge-carriers. Furthermore, the

doping will only be stable in vacuum at temperatures around room temperature (and presumably

also at lower temperatures) during a limited period of time.

Doping of polycrystalline material

The oxygen doping of the polycrystalline material for µSR samples was performed in the

gradient sublimation apparatus on a single already pressed pellet of ZnPc (sample ZnPc oxy) by

coupling the gas admission system to the apparatus vacuum system. The charging was done in

a pure oxygen atmosphere at a pressure of 1 bar and a temperature of 200 ◦C for 1 hour, followed

by slow cooling in oxygen-rich conditions. Although the thin-film results indicate that the doping

efficiency depends very weakly on the temperature and oxygen pressure, it was thought to be

preferable using a high temperature and pressure to ensure the successful doping of the larger

crystallites found in the polycrystalline material. Efforts to observe the charging and outgasing

process directly in polycrystalline samples were also made at the time this oxygen-doped sample

was prepared, but the pressure variations induced as a result of oxygen uptake and release by

the sample were too small to yield quantitative values conclusive within errors for the amount

of oxygen absorbed or desorbed.

4.2.3 F4-TCNQ doping

Since the results of oxygen-doping showed the impossibility to control the number of charge-

carriers induced in phthalocyanines by gas charging procedures, the doping with small molecules

bearing acceptor character was again considered, namely with F4-TCNQ. With this type of

compound, dopant-to-phthalocyanine ratios on the order of 1:50 to 1:500 are known to induce

weak p-doping of thin-film samples [86]. The controlled incorporation of F4-TCNQ in purified

9One could try to use small charging pressures for which oxygen saturation would not be reached, but the

effect of the fixed oxygen in saturation conditions is already low (after 2 hours in vaccum the resistance is just

10% below its final value, see Figure 4.10), which means that no changes would probably be seen in the µSR data.
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polycrystalline phthalocyanine material with similar ratios would therefore produce suitably

p-doped samples for µSR measurements.

A method to surpass the problem of attaining a random microscopic mixture at the molecu-

lar level between phthalocyanine and F4-TCNQ molecules was devised, consisting in the vacuum

evaporation of the desired phthalocyanine–F4-TCNQ mixture in liquid solution by an atomising

noozle (a vacuum-spraying method, Figure 4.11). If the solvent is volatile enough, the phthalo-

cyanine and F4-TCNQ molecules present in the minute quantities of solution passing through

the noozle into a small vacuum chamber should preserve the random solution mixing as the

solvent vaporises. When a target is placed in front of the noozle, the phthalocyanine–F4-TCNQ

mixture will be deposited there with a rate in principle much higher than that obtained in a

coevaporation chamber, surmounting the time limitation problems presented by the coevapo-

ration for the production of the massive quantity of doped phthalocyanine necessary for the

preparation of a µSR sample. The question of which phthalocyanine solid-state phase would

be formed in such situation is of course an important issue here, but that may be solved in an

X-ray diffraction measurement of post-deposited doped material.

The experimental set-up for the vacuum-spraying was assembled in the laboratory at

Coimbra using a small stainless steel chamber built on purpose by the workshop of the High

Energy Physics and associated Instrumentation group (LIP). The chamber was connected on

one side to a needle valve which acted as the atomising noozle, and on the other to a vacuum

system ended by a rotary pump (p ∼ 10−1 Pa) (Figure 4.11b). The needle valve was fed by

a large container, while the vacuum line possessed a trapping device for the collection of the

evaporated solvent before it reached the pump, preventing any damage of occurring to it. A

third port in the chamber was fitted with an electrical feed-through for the connection of a

substrate with microstructured electrodes identical to the ones used for the in situ measurement

of the electrical resistance of evaporated films (see the last section); that substrate was used as

a simple way to monitor the deposition in the chamber. Finally, a glass beaker was fitted to the

inside of the chamber with its opening facing the needle valve in order to collect the sprayed

material.

Choice of the solvent

In parallel with the design and assembly of the spraying system, the choice of an adequate

solvent was also conducted. Phthalocyanines have extremely low solubilities in the most common
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Figure 4.11: (a) Working principle of the vacuum-spraying method devised in this thesis to obtain a

solid molecular mixture between phthalocyanine and F4-TCNQ from solution. The solution is sprayed

into a vacuum chamber by an atomising noozle; as the solvent vaporises, the phthalocyanine–F4-TCNQ

mixture is deposited onto a target placed in front of it. (b) The vacuum-spraying system assembled in

Coimbra according to the principle of (a).

volatile organic solvents, as ethanol or acetone, and are only well solubilised by polar aprotic

solvents. From that class of solvents, N,N-dimethylformamide (DMF, HCON(CH3)2) has the

lowest boiling point (153 ◦C), and was therefore considered to be the best one to perform the

vacuum-spraying experiments. A short series of solubilisation experiments allowed to estimate

a value of about 0.5 g/L for the solubility of ZnPc in DMF. The chemical stability of the ZnPc

and F4-TCNQ molecules in DMF solution was also looked into; Figure 4.12 shows electronic

absorption spectra in quartz cells for DMF solutions of pure ZnPc and pure F4-TCNQ, as

compared with spectra obtained in dichloromethane (CH2Cl2). The two ZnPc spectra exhibit

essentially a Q-band with the same shape (see Chapter 2), which does not present itself as a

surprise in view of the well-known high chemical stability of phthalocyanines, but the two F4-

TCNQ spectra turn out to be quite different. The simple band spectrum in CH2Cl2 at 400 nm

changes to a more complex one in DMF, with several additional intense bands between 680

and 870 nm. Since no electronic absorption data was found for F4-TCNQ in the literature, these

results were compared with data obtained by Jonkman and Kommandeur [55] on non-fluorinated

TCNQ and its mono- and di-valent anions in a mixture of dimethoxy ethane and acetonitrile

(Figure 4.13). The CH2Cl2 spectrum of F4-TCNQ is almost the same as the one they measure

for TCNQ, while the DMF one compares superbly to their data on the TCNQ− anion. This

means that negative charge is transferred from the DMF molecules to F4-TCNQ in solution. The

formation of charge-transfer complexes between the oxidised DMF molecules and the reduced
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F4-TCNQ ones constitutes a factor of reduction in the p-doping efficiency of F4-TCNQ, since

upon vacuum-spraying some of the DMF+/F4-TCNQ− complexes might not get dissociated and

would certainly end up being incorporated in the deposited mixture. Although charge transfer

does exist, the hypothesis that DMF+/F4-TCNQ− complexes are formed in DMF solution is

nevertheless unlikely, taking into account the high similarity between the spectra of TCNQ− and

F4-TCNQ+DMF. If a charge-transfer complex would be formed, the electrical dipole induced

by the transferred negative charge would substantially change the shape and energy of the

bands observed in the absorption spectra, distinguishing the F4-TCNQ+DMF spectrum from

the TCNQ− one. Therefore, in the DMF solution of a ZnPc and F4-TCNQ mixture, we take the

ZnPc to be in a neutral-charge state, while the F4-TCNQ is in the form of its mono-anion. After

deposition, charge neutrality will of course set in, forcing the excess negative charge to leave the

material and promoting the formation of ZnPc+/F4-TCNQ− charge-transfer complexes.

Vacuum-spraying experiments

In spite of all the work strived to assemble the apparatus and optimise the spraying

conditions10, the first experiments with plain DMF revealed that the spraying rate had to be

kept vanishingly small in order for its efficient vaporisation to occur. DMF is a solvent with a

viscosity and surface tension significantly larger than water, and that turns it into a substance

hard to evaporate. The unforeseen effect of viscosity was tentatively mended by heating the

container-valve-chamber system to near the (atmospheric-pressure) boiling point of DMF using

a ribbon heater, but still the rate was experimentally estimated to be too slow for this method

to give positive results within a reasonable time period. It was decided not to pursue this course

any further within the time scope of this thesis, although the possibility of finding success using a

more volatile solvent remains open. The same procedures for finding the solubility and assessing

the stability of solubilised phthalocyanine and F4-TCNQ as the ones performed for DMF will of

course have to be followed once that other solvent is chosen.

4.3 Samples list

As a concluding paragraph regarding samples, Tables 4.1, 4.2 and 4.3 shown below present a

systematic account of all H2Pc, ZnPc and CuPc samples prepared for the µSR experiments.
10Including the temperature of the pre-pump trap, which was cooled to about -78 ◦C (a temperature close to

the atmospheric-pressure melting point of DMF) with a bath of solid ice.
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Figure 4.12: Visible-UV absorption spectra of ZnPc (left) and F4-TCNQ (right) in DMF (upper

figures) and CH2Cl2 (lower figures). The two ZnPc spectra are essentially the same, while large changes

are observed between the two F4-TCNQ datasets.



4.3. SAMPLES LIST 139

Figure 4.13: Visible-UV absorption spectra of the TCNQ molecule (lower), the TCNQ− anion (middle)

and the TCNQ2− anion (upper) measured by Jonkman et al. in a mixture of dimethoxy ethane and

acetonitrile. Source: [55]
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Relevant characteristics, namely if they were subjected to any type of treatment or doping

procedure, are indicated.

Table 4.1: List of H2Pc pellet samples for µSR measurements, indicating each sample’s dimensions

(diameter), number of sublimation cycles underwent by the material before pellet pressing (sublimation),

if they were subjected to any type of doping or annealing before the measurements (treatment) and the

manufacturer of the original material (origin).

name diameter sublimation treatment origin

H2Pc S 16 mm 3 cycles — AlfaAesar

H2Pc 03 19mm 1 cycle — AlfaAesar

H2Pc 03m15 12 mm 1 cycle ball milled AlfaAesar

H2Pc 06 27mm 2 cycles vacuum annealed AlfaAesar

Table 4.2: List of ZnPc pellet samples for µSR measurements. See the legend of Table 4.1 for the

meaning of each entry.

name diameter sublimation treatment origin

ZnPc 16 mm 1 cycle — AlfaAesar

ZnPc S 16 mm 3 cycles — AlfaAesar

ZnPc vac 19 mm 2 cycles vaccum annealed AlfaAesar

ZnPc oxy 19 mm 2 cycles oxygen doped AlfaAesar

ZnPc p3 19 mm 2 cycles vaccum annealed AlfaAesar

ZnPc 06 27 mm 2 cycles vacuum annealed AlfaAesar
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Table 4.3: List of CuPc pellet samples for µSR measurements. See the legend of Table 4.1 for the

meaning of each entry.

name diameter sublimation treatment origin

CuPc S 16 mm 3 cycles — AlfaAesar

CuPc 03 27 mm 1 cycle — AlfaAesar

CuPc p1 19 mm 2 cycles vacuum annealed AlfaAesar
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Chapter 5

Spectroscopy of muon states in the

model phthalocyanines ZnPc, H2Pc

and CuPc

This chapter reports experimental µSR results regarding the spectroscopic characterisation of

muon states in ZnPc, H2Pc and CuPc. Some immediate conclusions drawn from the experi-

mental data are also referred here, although the main discussion is left for Chapter ??. The

measurements were performed over a broad temperature range (2-600 K1) using the GPS and

DOLLY spectrometers in transverse-field geometry. Fields above0.1T were employed in order

to have any signals corresponding to typical paramagnetic muoniated radicals in the high field

regime, allowing the easy identification of different states. As it will be seen, at least three

distinct states of paramagnetic origin are formed in ZnPc and H2Pc, with hyperfine interactions

on the order of 125-140MHz for two of them, and of about 25 MHz for the third. All three states

exhibit anisotropic hyperfine tensors, as expected for muoniated radicals, and do not ionise be-

low the sublimation temperature of phthalocyanines. In CuPc, only Larmor precession signals

are found.

Due to the intrinsic richness of paramagnetic states, the results presented focus on mea-

surements performed in ZnPc and H2Pc. These comprise the determination of hyperfine pa-

1Although planar phthalocyanines exhibit typical sublimation temperatures on the order of 500 ◦C = 773K

[29], an upper temperature limit of 600K was used for the µSR experiments. This choice was based on the

purification procedures referred in Section 4.1.1, where some sublimation was seen to occur already at around

420 ◦C = 693 K.
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rameters for each state, of its relative population and stability characteristics, and finally of

its molecular addition site. The lack of frequency structure in the signal obtained with CuPc,

on the other hand, shortens the allowed insight one may have about the states formed in this

compound. Therefore, a simple presentation in terms of distinguishable components is adopted

here, leaving a more complete discussion about this subject for Chapter 7.

5.1 ZnPc

5.1.1 Number and nature of muon states

The number, nature and stability of the muon states formed in undoped ZnPc where investigated

with temperature dependent measurements in high-transverse fields using samples ZnPc and

ZnPc S (see sample descriptions in Chapter 4). At all temperatures, the implantation of positive

muons produces a µSR signal whose main feature is the existence of three distinct pairs of

precession frequencies, signaling the formation of three muoniated paramagnetic radicals. This

is seen in the left-hand side of Figure 5.1, where the FFT amplitude transform of a typical time

spectrum, obtained for sample ZnPc S in a high-statistics measurement (640 million µ+ decay

events) at 500K, 0.4 T, is displayed. Besides the sharp Larmor precession signal at 54.2 MHz,

representing the fraction of muons which form diamagnetic states, three pairs of frequencies

labelled I, II and III, corresponding to the ω12 and ω34 transition frequencies expected in high

fields for paramagnetic states (cf. Section 3.4.3), are observed. A broad frequency distribution

denoted by IV and centred with the diamagnetic line is also present; this component of the

signal might be related either to the formation of states possessing a low hyperfine constant, or

the existence of a paramagnetic state undergoing fast spin exchange.

The hyperfine interactions of states I-III are seen to be 140, 125 and 25MHz from the

frequency pair correlation transform shown in the right-hand side of Figure 5.1 (exact values at

500 K, considering isotropic hyperfine interactions)2. As a first approach, we choose to ignore

the existence of anisotropy in the states observed, although its presence is apparent (a thorough

2The frequency pair correlation transform is a visual aid created by Ivan Reid to quickly identify pairs of

frequencies in a µSR signal. It is based on the fact that in the high transverse-field regime the splitting between

the ω12 and ω34 precession frequencies of an isotropic muonium state relates directly with the hyperfine coupling

constant via the sum-rules (3.184) and (3.185). Hence, knowing the applied magnetic, it is possible to calculate

the autocorrelation of the FFT transform in search of periodicities in the FFT transform itself. See e.g. [10] for

a more thorough discussion about frequency pair correlation transforms.
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Figure 5.1: Fourier (left) and frequency pair correlation (right) transforms of ZnPc obtained at 500 K

under an applied transverse field of 0.4T. The three pairs of lines I, II and III observed in addition to the

Larmor precession of diamagnetic muons at 54.2MHz show the formation of three different paramagnetic

muon states in ZnPc. A fourth paramagnetic signal consisting in a broad frequency distribution below

the diamagnetic line also exists; this component has been denoted by IV. The hyperfine interaction values

of states I-III are of about 140, 125 and 25MHz, as seen in the frequency pair correlation spectrum.

analysis taking into account the anisotropy of muon states will be discussed later). The ω1-ω2

level crossings3 of these states (as given by equation (3.55)) should therefore roughly take place

at 0.51, 0.46 and 0.09 T. This qualitatively agrees with the field dependence of the line pair

positions presented in Figure 5.2; state III is clearly in the Paschen-Back regime above 0.3 T

(the lowest field used for measurements with ZnPc samples), while the level crossings of states

I and II occur respectively above 0.5 T and between 0.45 and 0.5T.

The three paramagnetic states I-III are stable (i.e. do not ionise) in the investigated

temperature range, as seen in the temperature dependence of the frequency pair correlation

transform, Figure 5.3. This figure also shows that the hyperfine interaction of states I and II

red-shifts4 with temperature, the decrease being considerably larger for the highest coupling

state, while no evolution with temperature exists for state III.

3At which the frequency ω12 decreases to zero and rises again with increasing field; see Section 3.4.3.
4With red-shift, one means a shift to lower frequency values; conversely, a shift to higher frequency values is a

blue-shift.
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Figure 5.2: Fourier power spectra of ZnPc at different fields. The field dependence of the three pairs of

paramagnetic lines shows that all states are in the high-field regime. The ω1-ω2 level crossings of states

I and II occur respectively between 0.45T and 0.5 T, and slightly above 0.5 T.
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Figure 5.3: Frequency pair correlation spectra of ZnPc at different temperatures. The dotted lines

indicate the T = 0K values obtained from the temperature activated fits to the hyperfine interaction

shown below in Figure 5.6.



148CHAPTER 5. SPECTROSCOPY OF MUON STATES IN THE MODEL PHTHALOCYANINES ZNPC, H2PC AND CUPC

5.1.2 Relative populations and hyperfine parameters

First analysis - isotropic hyperfine tensors

In order to quantitatively extract the relative populations of the five components found in high-

transverse field, and measure the hyperfine parameters of the three paramagnetic states I-III,

time domain fits to the temperature-dependent data referred in the last section were performed.

Although the asymmetric shapes of the three pairs of paramagnetic lines indicate the existence

of anisotropy (see Section 3.4.3), in a first analysis their hyperfine interactions were considered

to be isotropic. The effects of the powder pattern were included using a simple line broadening

Lorentzian relaxation of the form e−λt, allowing to qualitatively follow the temperature evolution

of the dipolar parameter D for each state, since the relaxation λ scales with the width of the

precession lines . A relaxation function e−σ2t2/2 of Gaussian shape was also tried, but its results

showed no relevant differences relative to the Lorentzian ones, and are not reproduced here.

This course of action was chosen taking into account the foreseen difficulties in performing a

full analysis from scratch which included anisotropy in the hyperfine tensors of the three states

observed. Hence, this first analysis served as the most sensible starting point for the full analysis

discussed in the following section. Furthermore, it proves to be useful as a means of comparison

with the results obtained for states I and II in H2Pc (Section 5.2.2), where it was only possible

to analyse the signal of those states with a pair of high-field precession lines instead of a powder

frequency pattern. The paramagnetic component IV was fitted with a diamagnetic precession

broadened also by a Lorentzian relaxation; for this component, however, a Gaussian relaxation

function was found to produce unreasonable goodness-of-fit χ2 values.

Figures 5.4 and 5.5 show the fitted amplitudes and relaxations as a function of temperature

obtained for the five asymmetry components. Only half the full experimental asymmetry is

accounted for5; states I and II possess similar average populations, amounting to about 10% of

the full asymmetry each, a very small fraction of diamagnetic muons exists (less than 2.5% of

the full asymmetry), and the asymmetries of states III and IV sum to give a roughly constant

value corresponding to a population of about 30% of the full asymmetry. The relaxation of state

IV is substantially decreased with temperature, apparently accompanied by the increase of state

III’s relaxation. As for states I and II, a decrease with temperature of their fitted relaxations is

observed, hinting the averaging of the dipolar part of the hyperfine interaction presumably due

5The maximum asymmetry of the GPS and DOLLY detectors in high transverse-field is of about 0.20 = 20%.
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Figure 5.4: Temperature dependence of the asymmetries and relaxations of the diamagnetic fraction

and states I and II considering isotropic hyperfine interactions in ZnPc. The dashed lines are mere visual

guides indicating the qualitative variation of the quantities shown.

to a motional narrowing effect.

The average hyperfine interaction of these two states, Figure 5.6, also lessens with tem-

perature, in agreement with the frequency pair correlation spectra shown in Figure 5.3. The

variation is consistent with a temperature-activated behaviour given by

A(T ) = A(0) + (A(∞)−A(0)) e
− Ea

kB T , (5.1)

where T is the absolute temperature, kB is Boltzmann’s constant, A(0) and A(∞) are the

T = 0K and T →∞ limiting values of the hyperfine interaction, and Ea is the activation energy

of the process responsible for the temperature dependence. The values of the parameters fitted

with (5.1) to the hyperfine interaction of states I and II are shown in Table 5.1; both states have

their interactions red-shifted following the same activation energy within errors. In contrast,

the hyperfine interaction of state III does not fit well with a temperature-activated function,

and indeed does not seem even to exhibit any significant temperature dependence6. Its average

value is also indicated in Table 5.1.

6The lack of information at 200K is of course conditioning the certainty with which one is allowed to make

this statement.
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Figure 5.5: Temperature dependence of the asymmetries and relaxations of state III considering an

isotropic hyperfine interaction and of the signal component IV in ZnPc. The dashed lines are mere visual

guides indicating the qualitative variation of the quantities shown. The data labelled as ‘total’ refers to

the sum of all the asymmetries composing the TF polarisation signal, including those relative to states I

and II. The fit results obtained for the temperature of 200 K are not shown in these two plots, since at

this temperature the two components III and IV are highly correlated, producing unreasonable values for

their asymmetries and relaxations. In spite of this, the signals of states I and II at this same temperature

are discernible from states III and IV, and were therefore shown in Figure 5.4.

Table 5.1: Summary of the temperature activated fits to the hyperfine interaction of states I and II

with equation (5.1). The average value of the hyperfine interaction of state III is quoted in the last row.

state A(0) (MHz) A(∞) (MHz) Ea (meV)

I 150(1) 115(2) 44(4)

II 127(1) 117(2) 42(8)

III 21(1) —
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Figure 5.6: Temperature dependence of the hyperfine interaction of states I, II and III in ZnPc. The

solid lines are fits obtained with a temperature activation function, equation (5.1). State III does not fit

well with that type of temperature dependence.

Full analysis - axially symmetric hyperfine tensors

The hyperfine tensor of muoniated radicals often has dipolar character due to the highly di-

rectional nature of the chemical bond established by the muonium adduct with the rest of the

molecule [99, 126, 10]. This is true also for the paramagnetic states I-III formed in ZnPc, since

their pairs of precession lines in the Fourier transform spectra exhibit the characteristic powder

pattern expected from the integration over all possible directions between the hyperfine tensor’s

symmetry axis and the applied magnetic field (see Section 3.4.3). The generic shape of those

powder patterns is enlightened with Figure 5.7, in which simulated distributions with appro-

priately chosen isotropic and dipolar parameters for all three states were superimposed to the

spectra of Figure 5.1. States I and II have distributions with dipolar parameters of respectively

positive and negative signs, while state III reveals a rather uncommon overlapped pattern orig-

inated by a dipolar parameter in absolute value larger than the isotropic one and opposite in

sign.

Simulations as the one presented in Figure 5.7 were taken as the starting point for an-

other set of fits to the same ZnPc data previously analysed, but now using the powder muon

polarisation function (3.216) instead of a pair of ω12 and ω34 precession frequencies to describe

the signal of states I-III. State IV and the diamagnetic fraction were fitted in the same way as
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Figure 5.7: Simulated frequency distributions considering axially symmetric hyperfine interactions in

ZnPc. The Fourier and frequency pair correlation transforms already shown in Figure 5.1 are consistent

with all states exhibiting anisotropy. The hyperfine parameters used for the simulations were extracted

from the fit performed at 500 K, and shown later in Figure 5.10.

before, i.e. with Lorentzian relaxed Larmor precessions. The motivation for considering this

second course of analysis was raised by the necessity in characterising as best as possible the

hyperfine structure of these three states, in order to correctly interpret the µSR data relative to

the study of spin dynamics performed in Chapter 6.

The fit results are shown in figures 5.8-5.10. More than half of the initial muon polarisation

is still unaccounted for; the populations of states I and II were decreased to about 5% of the

full asymmetry each, exhibiting again a weak temperature dependence. The average asymmetry

of state III is slightly lower than before, but is now approximately constant, being decoupled

from the variation of the fourth component’s asymmetry. The relaxation of this component still

follows the same trend in the highest temperatures, but below room temperature the fitted values

exhibit a fast decrease in close similarity to what is observed for its asymmetry. From a close

inspection of the Fourier transform spectra of the low temperature data, it seems reasonable

to assume that this double behaviour might traduce the loss of sensitivity to this component

conveyed by a fast increase of its relaxation under the limited time resolution of the spectrometer.

Most importantly, all hyperfine parameters of states I and II, Figure 5.10, exhibit again a

variation consistent with a temperature-activated behaviour following equation (5.1). The results

of the fits with this expression are shown in tables 5.2 and 5.3; for the dipolar parameters, the
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Figure 5.8: Temperature dependence of the fitted asymmetries for all the signal components considered

in ZnPc using axially symmetric hyperfine interactions. The dashed lines are mere visual guides indicating

the qualitative variation of the quantities shown. In this and the next figures, the data at 200K relative to

state III and component IV are indicated, as with the full analysis no unreasonable values were obtained

for their asymmetries and relaxations.

Figure 5.9: Relaxation of the component IV for the temperature dependent time fits of ZnPc considering

axially symmetric hyperfine interactions for states I, II and III. The dashed line is a mere visual guide

indicating the qualitative variation of component’s IV relaxation.
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value of D(∞) was fixed to zero. The activation energies of all four parameters agree superbly

to an average value of 42(6) meV. Both hyperfine parameters of state III are also seen not to

depend on temperature; their average values are quoted in those two tables.

Figure 5.10: Temperature dependence of the hyperfine parameters of states I, II and III in ZnPc

considering axially symmetric interactions. The solid lines are fits obtained with the temperature acti-

vated function of (5.1). The hyperfine parameters of state III do not exhibit a significative temperature

dependence, and again do not fit well with that equation.

Table 5.2: Summary of the temperature activated fits to the hyperfine isotropic parameter of states I

and II with equation (5.1). The average value of the isotropic parameter of state III is quoted in the last

row.

state A(0) (MHz) A(∞) (MHz) Ea (meV)

I 151(1) 110(4) 48(5)

II 125(1) 114(2) 44(11)

III 10.8(1) —



5.1. ZNPC 155

Table 5.3: Summary of the temperature activated fits to the hyperfine dipolar parameter of states I

and II with equation (5.1), setting D(∞) = 0. The average value of the dipolar parameter of state III is

quoted in the last row.

state D(0) (MHz) Ea (meV)

I +18(1) 39(5)

II -10(1) 41(4)

III -27.1(1) —

5.1.3 Site assignment

In order to deduce the crystalline site of the positive muon for each of the muoniated radicals

identified in ZnPc, density-functional theory electronic structure calculations envisaging the

hyperfine properties of hydrogen adducts to the isolated ZnPc molecule were performed. The

trial sites used in the computation, see Figure 5.11, included all possible additions to unsaturated

bonds (sites a-f ) together with a position favourable for bonding with the central Zn atom (site

g). The full procedure, implemented using the well-known GAUSSIAN 98 code [41], consisted in

a first step of geometry optimisation using the B3LYP electron exchange-correlation functional

[36], followed by a single-point calculation of the adduct’s hyperfine interaction with the B3PW91

functional. This particular combination, often seen in µSR literature [69], brings together the

efficiency of the B3LYP functional in geometry optimisations of large molecules with the known

superior performance of B3PW91 for the determination of hyperfine parameters [33, 34, 69].

Carbon and nitrogen atoms were described using the combination of pseudopotentials from

Pacios and Christiansen [84] and the valence basis set from Stevens et al [128] commonly applied

for cyclic compounds having C and N atoms. The compact effective potential CEP-31G with

double-zeta splitting on the valence was used for the zinc atom, while for hydrogen atoms and

the extra H adduct the 3-21G and the 6-31++G basis sets were taken for the geometry and the

hyperfine computations respectively. The initial geometry of the ZnPc molecule was obtained

from x-ray diffraction values found in references [32], while downstream the calculation standard



156CHAPTER 5. SPECTROSCOPY OF MUON STATES IN THE MODEL PHTHALOCYANINES ZNPC, H2PC AND CUPC

convergence criteria on the energy and forces were used.

Figure 5.11: Trial ZnPc addition sites for hyperfine interaction calculations. All possible additions to

unsaturated bonds (sites a-f ) together with a position favourable for bonding with the central Zn atom

(site g) are included.

From all the addition positions considered, only sites a, b and g were found to yield elec-

trostatically stable configurations. The solution for site g corresponds to a dissociated ZnPc +

H state7, while sites a and b possess calculated hyperfine interactions with an order of mag-

nitude typical of radical states. The results of the calculation are given in Table 5.4 for sites

a and b only, where the relative formation energy of each configuration is indicated and the

calculated (hydrogen) hyperfine values were scaled to muonium values by the proton and muon

gyromagnetic ratios,

Aµ =
γp

γµ
Ap .

These two sites have very similar hyperfine interactions, in close resemblance to what happens

with the muoniated states I and II. Based on this fact, we assign a and b as being the sites of

states I and II respectively, where we also take into account that state I has the largest hyperfine

interaction of the two, the same happening to site a when compared to b. The assignment is

made clear in Table 5.4 by quoting additionally the experimentally determined T = 0 K values

for states I and II. It should be noted that this result is not surprising, since the similarity of
7The resulting hyperfine interaction of this hydrogen adduct was identical to the vacuum value shown in

Table 3.3.
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values for states I and II was already a strong hint that they were bound to unpaired electrons

with alike spatial distributions.

Table 5.4: Calculated hyperfine interactions (Acalc) and relative formation energies (∆Ecalc) of muon

addition sites a and b to the ZnPc molecule. The last two columns display the experimentally determined

T = 0 K values for states I and II (A(0)) and the ratio between the experimental and the calculated

hyperfine couplings.

site Acalc (MHz) ∆Ecalc (meV) state A(0) (MHz) A(0)/Acalc

a 279 0 I 151(1) 0.54

b 274 +186 II 125(1) 0.46

The computed hyperfine interactions are about a factor of 2 larger than the experimentally

measured ones, in complete contradiction with the hyperfine isotope effect expected between

proton and muon couplings. The difference could arise from the nature of the mechanism with

which an hyperfine interaction exists at the positive muon upon muonium addition to a double

bond in an organic molecule, and consequent sharing of electronic density. This mechanism,

called σ-π hyperconjugation [20, 99, 95, 10], explains the small hyperfine interactions observed

in muoniated radicals when compared to the isolated muonium state; the positive muon assumes

a position near a carbon atom, known as the α-carbon, establishing a covalent C—Mu σ bond

with it by suppressing one of the electrons the α-carbon shared in a C—C π bond with its

neighbouring carbon atoms, known as β-carbons. An unpaired electron occupying a pz orbital

is therefore left localised at a β-carbon, which may overlap with the doubly occupied C—

Mu σ orbital, giving rise to a small unpaired density at the muon’s site. Nevertheless, σ-π

hyperconjugation is also the mechanism occurring when an hydrogen atom adds to an organic

molecule, and in fact the smaller zero-point energy of the muon is a factor that enhances σ-π

hyperconjugation in organic muoniated radicals8, giving rise to muon hyperfine couplings about

1.4 times larger than scaled proton constants. The discrepancy observed in Table 5.4 is thus not

due to an isotope effect, but has rather to do with geometric constraints related with the solid-

8This happens because the overlap between the Cα—Mu σ and the Cβ pz orbitals decreases when the relative

motion between the two orbitals becomes faster.
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state packing of β-phase phthalocyanines. In fact, in the β phase the phthalocyanine molecules

are stacked in tilted columns of layers separated by a small distance of about 3.2Å (Figure 5.12).

This develops intercolumnar hydrogen bonding interactions which pull the hydrogen atoms at

the outer benzene rings radially away from the molecule [32]. Muoniated radicals located at

those sites will therefore take part in the hydrogen bonding, producing an increase in the angle

defined by the C–Mu σ bond and the pz orbital at the β carbons (Figure 5.12). As a result, a

decrease of hyperconjugation and thus of unpaired spin density at the muon occurs. The same

bending effect may also arise due to the presence of the molecule stacked on top of the radical,

which will force it to adopt a more planar configuration in view of the short inter-layer distance.

Figure 5.12: Decrease of hyperconjugation effects for muoniated radicals formed in solid-state pthalo-

cyanines. On the left, the herring-bone stacking of β phase Pcs is shown; this configuration enhances

hydrogen-bonding between adjacent columns, pulling the outer hydrogens away from the molecule. On

the right, the effect of hydrogen bonding in a muoniated radical formed at sites a and b is illustrated;

the overlap between the C-Mu σ bond and the pz orbitals of the β carbons is decreased relative to what

would happen in an isolated Pc molecule.

The nonexistence of any other stable addition sites leading to bonded states leaves the

assignment of state III open. One may only infer that the muon is either located at an addition

site which becomes stabilised with the solid state arrangement of ZnPc, or assumes an interstitial

position between molecules. This subject will be discussed in more detail in Chapter 7.

5.1.4 States in doped samples

The muon states in the tentatively oxygen-doped sample ZnPc oxy (Section 4.2) were also

briefly investigated in a single high-transverse field measurement at low temperature (100 K).

Figure 5.13 compares the correlation frequency spectrum of that run with data collected at the

same temperature using sample ZnPc S. The four paramagnetic components are still observed

with no apparent significant changes; the same is revealed by the time fit, where the parameters

extracted (Table 5.5) are essentially equal to the ones obtained for the undoped ZnPc S sample.
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Figure 5.13: Correlation frequency spectrum of the oxygen-doped sample ZnPc oxy in high transverse

field, compared with an equivalent spectra taken with ZnPc S at the same temperature. No significant

changes exist between both spectra. The dashed lines are guides to the eye.
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Table 5.5: Summary of the fitted parameters to the polarisation of ZnPc oxy. The values for data

taken with the undoped sample ZnPc S at the same field and temperature are also shown.

ZnPc oxy ZnPc S

State I asymmetry (%) 0.8(2) 0.7(2)

Aiso (MHz) 150.7(2) 150.8(1)

D (MHz) 17.2(3) 17.4(2)

State II asymmetry (%) 0.6(1) 1.2(1)

Aiso (MHz) 124.6(1) 125.0(2)

D (MHz) -10.0(2) -9.8(3)

State III asymmetry (%) 1.3(2) 1.4(2)

Aiso (MHz) 10.6(1) 10.7(2)

D (MHz) -28.1(3) -27.8(3)

State IV asymmetry (%) 1.7(1) 1.6(2)

λ (µs−1) 8(1) 8(2)

Diamagnetic asymmetry (%) 0.28(2) 0.27(2)
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5.2 H2Pc

5.2.1 Number and nature of muon states

A shorter version of the high-transverse field measurements performed in ZnPc was employed

to investigate the nature and number of muon states formed in H2Pc. The experiments, carried

out with sample H2Pc S, included only temperatures at and above room temperature. The four

signal components (along with a diamagnetic precession) observed in ZnPc also exist in H2Pc S

at all measured temperatures, as depicted in Figure 5.14. The relative populations and hyperfine

interactions have slightly different values; the population of state III seems to dominate over

states I and II more clearly than in ZnPc, exhibiting now lower and harder to resolve hyperfine

interactions. Their values amount to ca. 112 and 106 MHz for the run presented (550 K), while

state III appears to have a coupling constant roughly around 16 MHz. The ω1-ω2 level-crossing

of states I-II occurs therefore nearby 0.4T. In addition, the anisotropy of states I and II seems

to be quite low when compared with what was determined in ZnPc.

Figure 5.14: Fourier (left) and frequency pair correlation (right) transforms of H2Pc obtained at 550K

under an applied transverse field of 0.3 T. Similarly to ZnPc, the three pairs of lines I, II and III observed

in addition to the Larmor precession of diamagnetic muons at 40.6 MHz show the formation of three

different paramagnetic muon states in H2Pc. The fourth broad paramagnetic signal is also present here.

Again, all states are visible throughout the investigated temperature range (Figure 5.15),

suggesting that they do not ionise below sublimation temperatures for H2Pc. The temperature

dependence of the frequency pair correlation spectra also reveals a red-shift of the hyperfine
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Figure 5.15: Frequency pair correlation spectra of H2Pc at different temperatures. For states I and II,

the dotted lines indicate the T = 0 K values obtained from the temperature activated fits to the hyperfine

interaction shown in Figure 5.18; for state III, it indicates the value of Aiso−D/2 at room temperature.
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couplings of states I and II. A decrease with temperature of state III’s hyperfine interaction is

now clearly observed too.

5.2.2 Relative populations and hyperfine parameters

The quantitative analysis of the temperature dependent data shown in Figure 5.15 was done

using a variation of the overall polarisation function employed for the time spectra of ZnPc.

The change, which consisted in fitting the polarisation of states I and II with a pair of high-

field frequencies instead of the frequency distribution function characteristic of axially symmetric

states in policrystalline samples, was prompted by practical difficulties in independently resolving

the two components. The small anisotropy apparent from the Fourier transform spectra for these

two states was described using a lorentzian relaxation of fixed width (λ = 1 MHz, a value chosen

taking into account the small population of those components and the line width observed in

the Fourier transform spectra). State III was still fitted with a powder polarisation function;

the results of the time fits are shown in figures 5.16-5.18.

Figure 5.16: Temperature dependence of the fitted asymmetries for all the signal components observed

in H2Pc. The dashed lines are mere visual guides indicating the qualitative variation of the quantities

shown.

Also in H2Pc a large fraction of the initial muon polarisation is missing (more than 50%).

States I and II have fairly constant populations in the addressed temperature range, but which

are less than half their values observed in ZnPc. The diamagnetic fraction, on the contrary,
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Figure 5.17: Relaxation of the component IV in H2Pc. The dashed line is a mere visual guide indicating

its qualitative variation.

is more than the double measured in ZnPc. The population of components III and IV is

approximately constant, with the relaxation of the paramagnetic state IV decreasing at high

temperatures.

Figure 5.18: Temperature dependence of the hyperfine parameters of states I, II and III in H2Pc. The

solid lines are temperature activated fits to states I and II fixing the activation energy to 42 meV. No

equivalent fit was performed to the hyperfine parameters of state III (see text for details).
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The temperature variation of the hyperfine parameters drawn from the fits is shown in

Figure 5.18. The number of different temperature points is not enough to quote reliable activa-

tion energies from unambiguous fits with equation (5.1), but the temperature variation of states

I and II seems at least to be consistent with an activation energy similar to the energies found

in ZnPc. The hyperfine interactions of states I and II were therefore fitted using the average

value of 42 meV determined for ZnPc; the corresponding values of A(0) and A(∞) are quoted in

Table 5.6. As for state III, the lack of data did not allow to clarify if the hyperfine parameters

followed or not a temperature activated dependence. Nevertheless, the clear change observed

indicates that if an activated behaviour is to exist, an energy larger than 42 meV is necessary to

describe it.

Table 5.6: Summary of the temperature activated fits to the hyperfine parameter of states I and II in

H2Pc. The fit was done fixing the activation energy to 42 meV.

state A(0) (MHz) A(∞) (MHz) Ea (meV)

I 123(1) 94(2) 42 (fixed)

II 113(2) 95(3) 42 (fixed)

III — — —

5.2.3 Site assignment

In close parallel to what was done with ZnPc, electronic structure calculations of hydrogen

adducts to H2Pc were performed in order to assign the observed paramagnetic states I-III to

addition sites in the molecule. The trial sites were the same as the ones indicated in Figure 5.11,

although in the case of H2Pc two different calculations per site need to be performed in order to

account for the two isomeric forms the molecule may have for the same adduct, depending if it is

in the benzene ring corresponding to the pyrrole unit bonding one of the two central hydrogens

(‖ isomer), or if it is in a perpendicular one (⊥ isomer). The exact same calculation strategy,

exchange and correlation potentials, and pseudo-potentials for the C and N atoms where used.

Once more, the only stable configurations found correspond to sites a, b and g, the latter
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Table 5.7: Calculated hyperfine interactions (Acalc) and relative formation energies (∆Ecalc) of muon

addition sites a and b to the H2Pc molecule. The last two columns display the experimentally determined

values at (T = 0 K) for states I and II, and the ratio between the experimental and the calculated hyperfine

couplings.

site Acalc (MHz) ∆Ecalc (meV) state A(0) (MHz) A(0)/Acalc

a 273 0 I 122(2) 0.45

b 262 +77 II 93(3) 0.36

being again a dissociated state. The results for the bound states are given in Table 5.7 following

the same conventions used for the case of ZnPc; the values quoted are already the average of the

two isomeric forms for each adduct. The hyperfine parameter of site a is again the highest one,

and also the most stable. It therefore corresponds to state I, as indicated in Table 5.7, while

state II is formed at site b. An anomalous hyperfine isotope ratio is present in the H2Pc results

as well due to the reduction of σ-π hyperconjugation by one (or both) the mechanisms referred

for ZnPc. The site of state III in H2Pc did not stem from these calculations either, but will be

further discussed later.

5.2.4 States in doped samples

No genuinely doped samples of H2Pc where prepared in this work, but a pair of milled and non-

milled samples (see Chapter 4) were prospectively measured in high-transverse field to assess the

effect of mechanical ball milling in the µSR signal. Two runs of high statistics were taken with

samples H2Pc 03 and H2Pc 03m15 at 400 K with an applied field of 0.4 T. Their FFT amplitude

transforms are shown in Figure 5.19; as it is easy to see, the population of all paramagnetic states

is severely decreased by the milling process. This result ruled out the viability of mechanical

ball milling for the doping of phthalocyanines.
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Figure 5.19: Effect of ball-milling in the Fourier transform of H2Pc. The population of all paramagnetic

states is severely decreased by the milling process.
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5.3 CuPc

Similarly to what was done with ZnPc and H2Pc the formation of muon states in CuPc was

addressed with temperature dependent measurements in high-transverse fields using sample

CuPc S. Since CuPc has originally an unpaired electron from the Cu atom, the addition of

muonium is expected to generate a diamagnetic environment for the muon, as the total number

of electrons in the muoniated molecule becomes even. The typical µSR time spectrum of CuPc

(Figure 5.20) shows indeed a precession signal with the muon Larmor frequency, but clearly

two distinct components bearing different relaxation rates are present. This type of signal is

found throughout the whole investigated temperature range (2-600K), with both components

getting slightly less relaxed as temperature rises. The time-dependent muon polarisation is well

described by two lorentzian-shaped Larmor precession components, one fast and another slowly

relaxing; fit results for data collected with an applied field of 0.45T are shown in Figure 5.21.

Figure 5.20: µSR time spectrum of CuPc in a transverse field of 0.45 T at 320 K. The solid line is a fit

performed with two precession components at the muon Larmor frequency, but with different lorentzian

relaxations.

At low temperatures, a missing fraction of about 50% of the full muon polarisation exists;

this missing fraction is gradually recovered as temperature increases, reaching almost zero at

600 K. The amplitudes of the two fitted components also evolve with temperature; a shift of

weight from the fast to the slow relaxing component is seen above 200 K, while below this
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Figure 5.21: Temperature dependence of the asymmetries and relaxations for the two components

observed in CuPc. Both relaxations exhibit a very weak dependence.

temperature an additional asymmetry transfer is apparently played between the fast component

and the missing fraction. The relaxation rates, on the other hand, show a very weak, but

congruent, temperature dependence. Their ratio is constant within errors for all temperatures,

with a value of about 1:100. The temperature dependence of both relaxations is well fitted with

a temperature-activated behaviour given by

λ(T ) = λ(0) e
+ Ea

kB T , (5.2)

as shown in the Arrhenius plot of Figure 5.22. The pre-exponential factors λ(0) are related

by the 1:100 ratio already mentioned, and the activation energies are identical. Their value is

rather small, amounting to an average between both of 10(2) meV.
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Figure 5.22: Arrhenius plot of the two relaxations observed for CuPc. The solid lines are fits with the

temperature-activated function (5.2). The activation energies have a value around 10 meV.



Chapter 6

Spin dynamics of muon states in

ZnPc and H2Pc

Experimental results concerning the spin dynamics of the muon states identified in the three ph-

thalocyanines addressed with this work are presented in this chapter. This study was performed

with µSR measurements in longitudinal-field (LF) geometry using the GPS, DOLLY and EMU

spectrometers. The field dependence of the µSR LF signal at selected temperatures was used

to infer about the nature of the dynamics, while its temperature dependence over a wide range

(5-650K) was analysed to extract the relevant dynamical parameters of the physical processes

involved in the muon spin dynamics.

In ZnPc and H2Pc, the signal is seen to be dominated by spin-exchange features which

relate directly to the muon state labelled as state III in the last chapter. For these two com-

pounds, the time-domain data was firstly described in terms of a restricted number of simple

relaxing components, as reported in the first two sections of the chapter. Those components

were then interpreted in terms of a model that takes into account the directional averaging of

the spin-relaxation rate for a paramagnetic state undergoing spin-exchange dynamics in a poly-

crystalline sample. The third section of the chapter describes this analysis model, and presents

quantitative results regarding the temperature dependence of the spin-flip rate underwent by

state III in the investigated samples.

171
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6.1 ZnPc

The spin dynamics of the muon states identified in the last chapter for ZnPc was investigated

with time-dependent longitudinal-field measurements using the undoped samples ZnPc S and

ZnPc p3 (refer to Chapter 4 for sample descriptions). The spectra obtained allowed no individ-

ual distinction of the four components observed in transverse-field, although in general terms

a relaxed behaviour bearing a time scale around 1µs exists. This indicates the presence of

dynamical features which give rise to relaxation rates of the order of 1µs−1, a magnitude that

confirms a paramagnetic origin for the dynamics. Indeed, nearly all muon states formed in

ZnPc are paramagnetic, being therefore particularly sensitive to dynamical phenomena via their

unpaired electronic spin. As it is argued later in Section 7.2.1 (Chapter 7), the spin dynamics

of the LF muon polarisation in ZnPc is attributed to spin-exchange scattering between one of

the paramagnetic muon states formed in this compound (state III) and diffusing charge carriers

(see Section 3.4.4).

Since it was not possible to easily relate the LF signal to the paramagnetic states ob-

served in transverse-field, the description of the data was performed using a phenomenological

fit model consisting in two exponentially decaying components and a third constant component.

This combination was found to be the one that produced the best fits to the time dependence

of the muon polarisation throughout the whole investigated range of fields and temperatures,

not only regarding goodness-of-fit chi-squared values, but also the smoothness of variation of

the parameters involved both with the applied field and the temperature1. It also presents the

advantage of making a clear distinction between rapidly varying signals, described by the com-

ponent having the highest relaxation rate, henceforth referred to as the fast component, from

slowly relaxing ones, described by the slow component, and from very slowly relaxing ones, ac-

counted with the constant component2. As an example, Figure 6.1 shows the time fit obtained

with this model to the FB-asymmetry spectrum of ZnPc p3 collected with the GPS instrument

at 600 K using an applied field of 0.1 T.

1This criterium was judged from the visual inspection of the relaxation and amplitude versus field and temper-

ature graphics obtained with the fit model. A similar consistency, with comparable chi-squared values, was also

found with a model composed by a single stretched exponential of the form a e−(λt)β

, but the total polarisation

values were not matched as satisfactorily as with the two-relaxation, one-constant model eventually adopted.
2The distinction between slowly and very slowly relaxing signals is made in a sense that the µSR histogram,

while being long enough to attribute a finite relaxation to slow signals within experimental errors, is too short to

distinguish very slowly relaxing signals from absolutely non-relaxing ones.
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Figure 6.1: µSR time spectrum of ZnPc in a longitudinal field of 0.1 T at 600 K. The solid line is a chi-

squared fit performed with two exponentially relaxed components plus a constant component; the insert

shows it in detail for the earliest instants. The fitted values are Afast = 3.6(6), λfast = 9(3)µs−1; Aslow =

12.7(5), λslow = 1.14(6) µs−1; Aconstant = 9.8(1). Translation of asymmetries A to initial fractions a using

the maximum FB-asymmetry value AFB
max = 27.7(1)% determined for this measurement using a silver

mask yield the values afast = 0.13(2); aslow = 0.46(2); aconstant = 0.35(1).
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6.1.1 Field-dependent signal

Figures 6.2 and 6.3 present the field dependence of the LF signal obtained for ZnPc at 150 K

and 600 K respectively. The first set of data does not exhibit information relative to the fast

component, since it was measured with a pulsed-beam instrument (EMU) and therefore lacks

the necessary time resolution to observe fast-decaying signals3.

Figure 6.2: Field-dependence of the LF signal for ZnPc at 150 K. The slow component’s relaxation

appears to be constant, with a value of about 1 µs−1 . No information about the fast component exists

at this temperature since this set of data was obtained with the EMU instrument (see text).

At 150 K, the slow component exhibits a very small fraction, which decreases with field.

The slow relaxation is poorly defined due to this fact, but seems to be constant to about 1µs.

The signal is fully repolarised beyond 0.1T, although none of the two observed components (slow

and constant) matches any of the expected repolarisation curve shapes for the non-oscillating

polarisation of the three states identified in ZnPc, as depicted by the simulated curves in the

left plot of Figure 6.4. At 600K, the slow component’s fraction is considerably larger, and its

relaxation becomes well defined. A relaxation peak is clearly observed around 0.08T, a value

in agreement with the ω1-ω2 level-crossing field of state III obtained from the analysis using

isotropic hyperfine interactions performed in the first part of Section 5.1.2 (refer to Table 5.1 for

the fitted value of the hyperfine interaction, and to equations (3.55) and (3.51) for the definitions

3The typical time resolution attained with the muon beams at RAL is of the order of 0.1 µs (cf. Section 3.2.6).
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Figure 6.3: Field-dependence of the LF signal for ZnPc at 600K. The slow component’s relaxation

exhibits a peak at around 0.08T, a value which matches the level-crossing field of state III.

of xiso
12 cross and B0 respectively),

Bcross = xiso
12 cross ×B0(III) = 0.077(4)T .

This is a distinct indication that for the high temperature range, state III plays the main role

in the LF signal of ZnPc, dominating the slow component and exhibiting a feature typical of

spin-exchange processes for anisotropic paramagnetic states (Section 3.4.4, Chapter 3).

The slow component, however, does not provide a full description of the LF signal gener-

ated by state III, as its field dependence is not readily consistent with the repolarisation curve

that state III should exhibit (right side of Figure 6.4), even though similar trends are clearly

recognised in the region around and above 0.1T. The shape of the fast component, on the

other hand, is complementary to the shape expected for the repolarisation curve of that state.

Since the complementary of the repolarisation curve is the expected oscillating amplitude in

longitudinal-field geometry (Section 3.4.3, Chapter 3), it becomes clear that the fast component

is parameterising the rapidly oscillating polarisation of state III. The reason why this fraction of

polarisation appears as an exponentially damped constant signal instead of a relaxed oscillating

function is due to the distribution of oscillating frequencies generated by the highly anisotropic

character of state III, as the powder pattern imprinted by the sample’s polycrystalline environ-

ment produces a width larger than the distribution’s average value (Figure 6.5). The width of
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Figure 6.4: Initial polarisation values of LF components vs. expected repolarisation curves of states I,

II and III in ZnPc at 150 K (left) and 600 K (right). The simulated repolarisation curves shown here were

obtained using hyperfine parameters given by Equation (5.1) with the fitted values of Tables 5.2 and 5.3

for states I and II, and by the average values quoted in those same tables for state III. The simulation also

took into account the geometric averaging of the non-oscillating polarisation for all possible directions of

the hyperfine tensor’s symmetry axis in a polycrystalline environment.
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that distribution, estimated to be of the order of 15µs−1, is also in accordance with the measured

relaxation rate of the fast component (refer to the caption of Figure 6.5).

Figure 6.5: Frequency distribution of the expected LF oscillating components in ZnPc for state III

in a field of 0.1 T as a function of the angle θ defined by the hyperfine tensor’s symmetry axis and the

external field. The overall distribution, properly weighted by the geometric averaging in a polycrystalline

environment, is given by a(f) =
∑

n,m

∫ 2π

0
anm sin θ dθ. a(f) is a left-lobbed function with a width

of the order of 15 µs−1 and average value around 10 MHz; its time-domain representation is therefore

consistent with a non-oscillating exponentially damped signal bearing a relaxation rate roughly given by5

3×15 = 45 µs−1, a value which is in accordance with the measured relaxation rate of the fast component

(see Figure 6.3). The two curves shown assume the absence of spin dynamics.

6.1.2 Temperature-dependent signal

The temperature behaviour of the LF signal in ZnPc was followed near the slow component’s

relaxation peak field, with measurements at a field of 0.1 T for samples ZnPc S and ZnPc p3.

Figures 6.6 and 6.7 show the results of those measurements in terms of the three phenomeno-

logical components used to describe the data (the set of data regarding sample ZnPc S was

again measured with the EMU instrument, allowing no access to the fast component). The slow

component’s relaxation increases with temperature in both samples, as would be expected for

5It is straightforward to show that the time-domain relaxation of a lorentzian frequency distribution is λ =

π×∆f , ∆f being the FWHM of the distribution; for a generic single-lobed distribution, the same relation should

also approximately stand.
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the LF relaxation produced by a spin-exchange process in the slow spin-flip regime of dynamics

(Section 3.4.4, Chapter 3). The specific growth, however, is distinct for the two samples: while

in sample ZnPc S the slow relaxation onsets at around 200 K from zero, attaining a value of

0.5 µs−1 at 500 K, in ZnPc p3 it departs from a value of about 0.65µs−1 sitting in a temperature

plateau spanning from room temperature to c. 500K, and increases significantly only above

this temperature to around 1.2µs−1 at 600K. This difference in behaviour might be correlated

with the different preparation procedures employed for each sample, as described in Chapter 4:

ZnPc S did not undergo any type of treatment, while sample ZnPc p3 was annealed in vacuum

immediately prior to the µSR experiments. Hence, the vacuum annealing treatment apparently

leads to larger µSR relaxation values, and a relaxation plateau below 500K.

Figure 6.6: Temperature-dependence of the LF signal for sample ZnPc S at 0.1 T. The slow relaxation

is seen to increase with temperature. No information about the fast component exists since this set of

data was obtained with the EMU instrument; also, the absolute values of the initial polarisations are

affected by an undetermined systematic error (see text).

The initial polarisation values of the constant, slow and fast components, on the other

hand, exhibit a very similar temperature variation between the two samples, with the slow com-

ponent’s fraction increasing with temperature at the expense of the decrease of the constant

component. The crossing point between these two fractions occurs in the region 500-550 K for

both samples, with the total summed polarisation remaining constant throughout the inves-

tigated temperature range. In ZnPc p3, the fast component’s fraction is fairly temperature
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Figure 6.7: Temperature-dependence of the LF signal for sample ZnPc p3 at 0.1 T. Again, the slow

relaxation increases with temperature, but with values considerably larger than the ones observed in

sample ZnPc S.

independent; for sample ZnPc S, this component should present itself as a missing fraction in

the total summed polarisation, but seems to be almost non-existing. The latter finding, however,

should not be taken as a reliable proof that the fast component is not present in ZnPc S, since

the experimental conditions in which this particular data set was taken lead to the existence of

a systematic error in the measurement of the maximum FB-asymmetry used to calibrate the

initial polarisation fractions. The fact that the positive muon beam produced at RAL has a

beam-spot (10 mm× 15mm FWHM, cf. Section 3.2.6) comparable to the sample’s size (16mm,

Section 4.3) results in a considerable fraction of the muons hitting the sample-holder. Hence,

the initial polarisations shown in Figure 6.6 are affected by a significative systematic error which

voids any attempt at quoting conclusions based on their absolute values.

6.1.3 LF signal of doped samples

A comparative study between the LF signal of a nominally undoped sample, ZnPc vac, and

the tentatively oxygen-doped sample ZnPc oxy (see Chapter 4) was also performed regarding

spin-dynamics in ZnPc, in order to draw an experimental relation between the observed µSR

signal and the free charge-carrier content of phthalocyanines. The measurements consisted in a

short temperature dependence of the LF signal for both samples at an externally applied field of
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0.1 T; its results are shown in Figure 6.8, where no significant differences between the two signals

exist. The rather small number of experimental points composing the two data sets is due to the

limited time period available for the experiments with the oxygenated sample; this constraint was

imposed by the conclusions drawn from the oxygen charging-decharging procedures described in

Section 4.2.2, which indicated that the doping stability of the fixed oxygen fraction in charged

thin-films is only kept during a limited period of time of a few hours at temperatures equal or

lower than room temperature. Furthermore, to prevent oxygen out-take from the doped sample,

the temperature dependence focused solely on the range below room temperature, where ZnPc’s

signal is dominated by a component (the constant component) which is not clearly assigned, as

noted in Section 6.1.1 above. The possible reasons why no differences are observed between the

signal of the doped sample produced for µSR experiments and that of undoped samples may

have to do with the fact that the surface-beam positive muon is still a bulk probe, and doping

may have occurred only at the surface.

Figure 6.8: Temperature-dependence of the LF signal for the oxygen-doped sample ZnPc oxy and

the undoped sample ZnPc vac at 0.1 T in the range below room temperature. No significant differences

between the two data sets are observed in the investigated temperature range.
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6.2 H2Pc

The study of spin dynamics in H2Pc was performed with the undoped samples H2Pc 03 and

H2Pc 06 (Chapter 4) using the EMU instrument, following in close parallel what was done for

ZnPc. Given that muon states have the same electronic structure in both compounds, the

longitudinal-field signal of H2Pc is very similar to that of ZnPc, and as such was analysed using

the same phenomenological strategy. The time-domain data was thus described by a fit model

consisting of one slow relaxing component and one constant component. The fast component

has not been explicitly measured in any of the experiments involving the H2Pc molecule due to

the limited time resolution of the EMU instrument, but by analogy with what was found for

the signal of sample ZnPc p3 (measured at the GPS instrument), its fraction should also relate

directly to the missing fraction6.

6.2.1 Field-dependent signal

The field dependence of the LF signal obtained for H2Pc with sample H2Pc 03 at 300 K and

600K is shown in Figures 6.9 and 6.10. For both temperatures, a well defined relaxation peak

is observed in the region around 0.03 T; this value matches well the ω1-ω2 level-crossing fields

expected for state III at 0.030(1) T (300K) and 0.019(1)T (600 K) if one considers the isotropic

hyperfine interaction values obtained from the time-domain fits performed in transverse field at

those temperatures (see Section 5.2.2). Once again, but now in H2Pc, state III is experiencing

spin-exchange dynamics, and may be directly related to the slow component.

Also similarly to what was observed with ZnPc, the slow component does not fully de-

scribe the LF signal expected from state III, since its polarisation fraction does not follow the

repolarisation curve of that state. At 300 K, the slow component exhibits a fraction of less than

25% of the total signal, while at 600K it exhibits a strong field variation, more akin to a repo-

larisation behaviour, but which peaks at around 0.1T with a value over 50%. Nevertheless, the

slow component still bears important information about the spin-exchange dynamics of state

III, conveyed mostly by its relaxation, from which quantitative results may be extracted with

6The remarks discussed for this type of indirect relation in sample ZnPc S (investigated with the EMU instru-

ment) do not apply to the case of H2Pc, since the total FB-asymmetry was properly calibrated using a contrasting

mask of ErAl2 with the exact shape and size of the two H2Pc samples on top of a large silver mask covering the

full dimensions of the positive muon beam-spot. ErAl2 is a metallic alloy in which all muons form states with a

well known relaxed µSR signal, easily distinguishable from the non-relaxed signal of silver.
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Figure 6.9: Field-dependence of the LF signal for H2Pc at 300 K. The slow component’s relaxation

exhibits a peak at around 0.03T, a value which matches the level-crossing field of state III obtained from

the hyperfine parameters at this temperature.

Figure 6.10: Field-dependence of the LF signal for H2Pc at 600 K. Again, the slow component’s

relaxation exhibits a peak at around 0.03T, matching the level-crossing field of state III.
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the analysis model described in Section 6.3.

6.2.2 Temperature-dependent signal

The LF signal of H2Pc was investigated regarding its temperature dependence using samples

H2Pc 03 and H2Pc 06 under an applied field of 0.1 T. Although this field does not correspond

exactly to the relaxation peak field of state III in H2Pc, it was decided to use the same field chosen

for ZnPc in order to allow a more direct comparison between the results of both compounds;

the dependence obtained is shown in Figures 6.11 and 6.12.

Figure 6.11: Temperature-dependence of the LF signal for sample H2Pc 03 at 0.1 T. The slow relaxation

is seen to increase with temperature above 300 K, exhibiting a behaviour parallel to that of ZnPc S.

Below this temperature, the relaxation rises as temperature decreases; this variation is not related to a

real change in the characteristics of the dynamical phenomena responsible by the existence of the slow

relaxing component, but to the temperature dependence of the hyperfine parameters of state III in H2Pc

(see text).

Above 300 K, the relaxation rate of the slow component in sample H2Pc 03 exhibits a

behaviour similar to that observed for ZnPc S, rising monotonously with temperature; below

room temperature, the slow component is still visible, but with a relaxation rate that decreases

with increasing temperature, which leads to the formation of a relaxation dip at around 320 K.

As commented later (Section 6.3.2), the variation at sub-room temperatures may be due to the

effect that a shift of hyperfine parameters for state III would have in the relaxation rate, and not
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Figure 6.12: Temperature-dependence of the LF signal for sample H2Pc 06 at 0.1T. The slow relaxation

increases with temperature in a manner similar to the signal observed in ZnPc p3, i.e. exhibiting a plateau

to about 500 K and rising steeply beyond this temperature.

properly to a change in the characteristics of the phenomena underlying the dynamics of that

state. Sample H2Pc 06, on its hand, shows a relaxation signal very similar to that of sample

ZnPc p3, bearing higher values than H2Pc 03 and a relaxation plateau to 500 K which rises

from then on to a value of about 0.6µs−1 at 650 K. This difference of behaviours is analogue to

that described for the ZnPc S and ZnPc p3 samples in Section 6.1.2, and correlates again with

the absence of any type of treatment in the case of sample H2Pc 03 and the vacuum annealing

performed with sample H2Pc 06 before the µSR measurements.

Also in close parallel to what was observed in the case of ZnPc, the temperature depen-

dence of the initial polarisations is the same for the two measured H2Pc samples. The slow

component’s fraction increases with temperature as the constant component decreases, with the

crossing point between the two fractions occurring at around 450K and the sum of both fractions

remaining approximately constant. Finally, the missing fraction in both samples is the same,

indicating that the polarisation fraction of the fast component, and therefore the population of

state III, is equal as well.
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6.3 Analysis considering a spin-exchange model for ZnPc and

H2Pc

As referred in the preceding sections, both the existence of a relaxation peak for the slow

component at the ω1-ω2 level-crossing of state III in ZnPc and H2Pc, and the fact that the fast

component (observed directly in sample ZnPc S only) may be attributed to the LF oscillating

polarisation expected from that state, offer strong evidence supporting that the µSR LF signal of

these two compounds in the high-temperature range is primarily due to state III. Furthermore,

the LF relaxation peak of the slow component is a distinctive label of spin exchange dynamics

in the slow spin exchange regime; state III is thus experiencing a spin scattering interaction

with paramagnetic entities which, as discussed later on in Chapter 7, are the material’s free

charge carriers. Hence, the theory of spin exchange for paramagnetic muon states described in

Section 3.4.4, Chapter 3, may be used to extract the spin-flip rate underlying the spin scattering

of state III with the free charge carriers in ZnPc and H2Pc from the experimental data presented

above, and ultimately draw conclusions about the charge diffusion properties of those materials.

The former subject is addressed in the next sections, while the latter is left for the discussion

carried out in Section 7.2.2, Chapter 7.

6.3.1 A model for spin-exchange of axially symmetric paramagnetic states in

polycrystalline samples

The LF relaxation rate of the non-oscillating polarisation of an axially symmetric paramagnetic

muon state undergoing slow spin exchange dynamics relates with the spin-flip rate λSF according

to equation (3.235) (see Section 3.4.4),

λL = λSF

4∑

n,m=1

ω2
nm

λ2
SF + ω2

nm

az
nm , (6.1)

where the transition frequencies ωnm and amplitudes az
nm depend on the hyperfine parameters

of the muon state and the angle θ between the symmetry axis of the hyperfine tensor and the

externally applied field. The latter dependence is in fact quite strong, as shown in Figure 6.13;

for the same spin-flip rate, the non-oscillating relaxation λL expected for a muoniated radical

state with the hyperfine parameters of state III in ZnPc covers several orders of magnitude

depending on the orientation of the hyperfine symmetry axis.

In a polycrystalline sample, this traduces in an LF non-oscillating signal which is not
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Figure 6.13: Angular dependence of the LF relaxation rate for an axially symmetric muonium state

possessing the same hyperfine parameters as those of state III in ZnPc, as it undergoes spin exchange

dynamics with spin-flip rates of 3.0 µs−1 and 0.3 µs−1. The LF relaxation rate depends sensitively on the

orientation of the hyperfine symmetry axis, and may even assume values which are experimentally indis-

tinguishable from a non-relaxing signal, as suggested by the dotted horizontal line, a rough experimental

limit for the minimum relaxation rate capable of being measured with the EMU instrument.
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characterised by a single relaxation rate, but by an integral of exponential functions over a

broad range of relaxation rates weighted by the solid angle factor sin θ and the non-oscillating

amplitude az
0 (itself a function of θ), conducing to a muon polarisation given by7

Pµz(t) =
∫ π/2

0
az

0(θ) e−λL(θ) t sin θ dθ . (6.2)

This integral may be used to extract the spin-flip rate from the LF experimental data of ZnPc

and H2Pc by fitting the time-domain FB-asymmetry histograms with a numerical calculation

of (6.2), having as a basis the angular dependence of the LF relaxation rate (6.1). For each

angle θ, it is necessary to compute the transition frequencies ωnm, the amplitudes az
nm and the

non-oscillating amplitude az
0 given the hyperfine parameters Aiso and D of state III (already

known from the TF measurements presented in Chapter 5), and provide the fitting parameter

λSF in order to build the integrand function, which may then be integrated for all the acquisition

instants ti using e.g. Simpson’s rule. This direct fit procedure, however, becomes considerably

slow if one desires the integration algorithm to produce a muon polarisation trial function precise

enough to exhibit numerical errors below the typical experimental errors recorded for the FB-

asymmetry in the data under consideration. Besides that drawback, this type of approach turns

out to be very sensitive to the presence of other components in the LF-signal, leading to difficult

analysis paths which often produce quite unrealistic fit parameters.

A different route of analysis that allows measuring the spin-flip rate from the µSR LF

data of ZnPc and H2Pc without the problems of the direct approach, but based instead on the

results obtained from the phenomenological description performed in Sections 6.1 and 6.2, was

therefore developed specifically for this task. It starts by noting that the result of (6.2) is a

time dependence which, due to the specific angular variations of λL and the product az
0 × sin θ,

will possess two main contributions: the first, corresponding to the middle range of θ angles (in

Figure 6.13, it spans from about 15◦ to 85◦), consists in an approximately exponential function

with a relaxation rate with the same order of magnitude as the spin-flip rate λSF ; the second,

originated by the upper range of θ angles (> 85◦), has a very small relaxing character, which

in an experimental time-limited µSR histogram will not be distinguished from a purely non-

relaxing function. Thus, the LF non-oscillating polarisation expected from an axially symmetric

muonium state undergoing spin exchange dynamics at a given spin-flip rate appears naturally

as the sum of an exponentially relaxed function with a non-relaxing one. This fact justifies the
7We note that all angle-dependent parameters figuring in this expression, namely az

0, λL and sin θ, assume the

same value for θ and π − θ, allowing the integral to be evaluated only in the first quadrant.



188 CHAPTER 6. SPIN DYNAMICS OF MUON STATES IN ZNPC AND H2PC

phenomenological shape found for the LF signal of ZnPc and H2Pc, leaving quite clear that

the relaxing and non-relaxing contributions may be identified respectively with the slow and

constant components of the signal8.

It becomes therefore possible to obtain the spin-flip rate λSF of a given dataset from

the slow component’s relaxation by setting up a fast algorithm that computes the expected

relaxation value for the relaxing contribution of a signal of the type of Equation (6.2) given

solely the hyperfine parameters Aiso and D of state III and a spin-flip rate value λSF , and

reversing it. This may be done comparing the integral Pµz(t), Equation (6.2), with a functional

dependence P̃µz(t) consisting of a relaxing component with amplitude ã and relaxation λ̃ summed

with a non-relaxing component with amplitude b̃,

P̃µz(t) = ã e−λ̃ t + b̃ , (6.3)

and establishing a method to seek the value of λ̃ that makes P̃µz(t) the nearest possible to

Pµz(t). The inversion of this relation yields promptly the spin-flip rate λSF which best matches

the observed slow component’s relaxation λ̃. One could also equate the inclusion of information

about the relative amplitudes ã and b̃ of the slow and constant components to obtain the value of

λSF best agreeing with the overall observed LF signal, but the existence of other contributions

due to states I and II, especially in the constant component, end up degrading the ability for the

method to find an univocal result for λSF . Indeed, a method fully based in the slow component’s

relaxation λ̃ presents the advantage of being quite robust, since from the physics point of view,

this parameter depends uniquely on the dynamical phenomena, and not on other parameters

such as e.g. the relative populations between states I, II and III.

Quantitative aspects of the analysis model

In order to determine mathematically the best value of λ̃ that makes the trial function P̃µz(t) the

nearest possible to the exact spin exchange polarisation Pµz(t), a figure of merit q was defined

in the sense of minimum squared deviations between P̃µz(t) and Pµz(t) over the experimental

time window [0, tmax] of a µSR histogram. This figure, which was chosen to read explicitly

q(ã, λ̃, b̃) =
1

tmax

∫ tmax

0

[
Pµz(t)− P̃µz(t)

]2
dt , (6.4)

8In fact, the attribution of the non-relaxing contribution arising from the integral (6.2) to the constant com-

ponent can only be performed partially, as it will be noted a few paragraphs down.
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was found to be easily minimised as a function of ã, λ̃ and b̃ using a simple numerical opti-

misation program based on the UMINF routine provided by the IMSL Fortran 90 MP Library

package. Following several algebraic simplifications aiming the reduction of time needed for the

computation of each q value for a set of parameters, the explicit expression eventually used with

the optimisation procedure was

q(ã, λ̃, b̃) =
1

tmax
(q1 + q2 + q3) , (6.5)

with

q1 =
∫ π/2

0
az

0(θ) sin θ

∫ π/2

0
az

0(θ
′) sin θ′

1− e−(λL(θ)+λL(θ′))tmax

λL(θ) + λL(θ′)
dθ′dθ (6.6)

q2 = −2
∫ π/2

0
az

0(θ) sin θ

{
ã

1− e−(λ(θ)+λ̃)tmax

λ(θ) + λ̃
+ b̃

1− e−λ(θ) tmax

λ(θ)

}
dθ (6.7)

q3 = ã2 1− e−2λ̃ tmax

2λ̃
+ b̃2 tmax + 2ãb̃

1− e−λ̃ tmax

λ̃
. (6.8)

The translation procedure of Aiso, D and λSF values in the secondary parameters ã, λ̃ and

b̃ by the minimisation of q(ã, λ̃, b̃) is analogous to the estimation of parameters in a chi-squared

fit, and such as the minimum chi-squared obtained in a fit has statistical significance regarding

the goodness-of-fit, also the minimum value of q attained for a given minimisation possesses

some meaning in what concerns the adequacy of the values found for the secondary parameters

ã, λ̃ and b̃. We choose not to dwell amid the statistics of q, since it is out of the scope of this

work, but we nevertheless briefly derive a rule-of-thumb which may be used as a guide to the

confidence one should ascribe to the values of ã, λ̃ and b̃ obtained from a given minimisation, in

view of the experimental data they are modelling. In fact, the squared discrepancy per unit time

between the optimised trial function P̃µz(t) and the exact Pµz(t) muon polarisation function,

which is precisely the minimum value of q, must lie within the squared experimental error per

unit time of the FB-asymmetry. From the definition of the FB-asymmetry, equation (3.27), it

is straightforward to show that the variance of the FB-asymmetry value recorded in a time bin

ti in an ideal situation (α = 1, β = 1, no background counts) is given by (cf. Section 3.2.4)

σ2
FB(ti) = 4

σ2
B(ti) ∆N2

F(ti) + σ2
F(ti)∆N2

B(ti)
(∆NB(ti) + ∆NF(ti))

4 , (6.9)

where ∆NB(ti) and ∆NF(ti) are the positron counts in the backward and forward histograms

during the time bin at ti respectively, and σ2
B(ti) and σ2

F(ti) are its variances. Since the quantity

σ2
FB(ti) takes its lowest value at the histogram’s first valid time bin, a set of ã, λ̃ and b̃ values
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only describes the exact muon polarisation function reliably within errors if its corresponding q

value satisfies

q(ã, λ̃, b̃) < σ2
FB(0)/∆t , (6.10)

∆t being the time bin width, and σ2
FB(0) reading

σ2
FB(0) = 4

∆NB(0)∆N2
F(0) + ∆NF(0) ∆N2

B(0)
(∆NB(0) + ∆NF(0))4

≈ 1
4

τµ

∆t

1
N0

, (6.11)

as positron counts follow Poisson statistics (σ2 = ∆N), and the number of positron counts in

the first time bin of the backward and the forward detectors is of the order of

∆NB(0) ≈ ∆NF(0) ≈ 1
2

N0 ∆t/τµ (6.12)

if there is a total of N0 counts in the two detectors. Hence, q should always comply to

q <
1
4

τµ

∆t2
1

N0
, (6.13)

which, for a typical µSR data set collected at RAL in LF geometry (N0 = 10 million events,

∆t = 16 ns), evaluates to about 0.0018.

Adequacy of the model for the description of the existing experimental data

ZnPc

The adequacy of the analysis model developed for the description of the existing experimental

data was briefly ascertained with a series of simulations addressing the field dependence of the

expected ã, λ̃ and b̃ parameters for state III in the regime of slow spin exchange. The simulation

results, a part of which is compared to the actual data for the case of ZnPc p3 in Figures 6.14

and 6.15, match well what is experimentally observed for this sample at 600 K when the spin-flip

rate is about 3.0µs−1. The q values for these simulations are also displayed in Figure 6.16, where

it may be seen that it remains typically one order of magnitude below the critical value of 0.0018

derived above.

The simulated relaxation rate for state III exhibits a behaviour clearly parallel to that of

the experimental data, with a relaxation peak at 0.08 T, an approximately flat plateau for fields

below the peak field, and a rapid decrease beyond it. Also with λSF = 3.0µs−1, the ã and b̃

parameters, and the complementary of their sum, 1− (ã + b̃), tally more or less well the slow,
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Figure 6.14: Field dependence of the simulated LF relaxation rates expected for states I, II and III in

polycrystalline ZnPc as they undergo spin exchange dynamics at spin-flip rates of 1.0µs−1, 1.0 µs−1 and

3.0µs−1 respectively. The simulated data regarding state III is the one matching the experimental data,

with a relaxation peak at 0.08T.

constant and fast components’ initial polarisations at 600 K when multiplied by a factor of 0.6.

The fact that a closer correspondence is obtained only if this factor is included is an indication

that the population of the muon state III must be of that order, a value rather higher than the

one obtained in TF measurements. Still, and even with the inclusion of this factor, the matching

of b̃ with the constant component is rather poor when compared to ã and 1− (ã + b̃) and their

experimental counterparts; nevertheless, the same trends are clearly shared between b̃ and the

constant component’s polarisation — namely a minimum near the relaxation peak field. In fact,

the two quantities seem to differ from an approximately field-independent amount; we envisage

this difference as a contribution to the LF signal of ZnPc not due to state III, but which might

possibly have its origin in states I and II.

Although initially considered as well for simulation studies, no temperature dependent

data was simulated in this work. Still, the qualitative behaviour with temperature expected for

ã and b̃ is easily inferred from Figure 6.13, where it becomes clear that the relative weight between

the two contributions, relaxing and non-relaxing, depends sensitively on the spin-flip rate λSF .

This is due to the cross-over from the angular range giving rise to the relaxing contribution

to the (apparently) non-relaxing one occurring in a region where the product a0 × sin θ has a
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Figure 6.15: Field dependence of the simulated relaxing (ã), non-relaxing (b̃) and missing (1− (ã + b̃))

asymmetry fractions generated in the LF signal of state III as it undergoes spin exchange dynamics with

λSF = 3.0 µs−1 in a polycrystalline sample of ZnPc. The three curves were multiplied by a factor of 0.6

to better match the experimental data.
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Figure 6.16: Field dependence of the figure-of-merit q, defined in Equation (6.4), used to mathematically

determine the values of ã, λ̃ and b̃. The curve shown corresponds to the situation of the two previous

figures; it remains typically one order of magnitude below the critical value of 0.0018 referred in the

previous section.

high derivative, which leads to a weight transfer from the non-oscillating contribution to the

oscillating one with increasing spin-flip rate. Hence, a temperature rise should produce an

increase in the slow component’s fraction at the expense of the constant component; indeed,

this is the qualitative behaviour observed in the temperature dependent data of ZnPc shown in

Section 6.1.2, and is taken here as sufficient proof that the temperature dependence of the data

is properly described by the analysis model.

H2Pc

A set of simulations as a function of applied longitudinal field was also performed with H2Pc,

in similarity with what was done for ZnPc. Figures 6.17 and 6.18 show simulations produced

with the hyperfine parameters of state III in H2Pc at 600 K with a spin-flip rate λSF = 2.0µs−1,

equated with the data collected for sample H2Pc 03 at the same temperature.

The simulated relaxation rate has again a dependence which exhibits a clear peak, now

at about 0.05T, in rather satisfactory agreement with the experimental data. Though the close

similarity of shapes is somewhat debatable, it is assumed that the analysis model is still valid for

the description of the H2Pc data, especially if one takes into account the good correspondence
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Figure 6.17: Field dependence of the simulated LF relaxation rates expected for state III in polycrys-

talline H2Pc at a temperature of 600 K and under spin exchange dynamics with λSF = 2.0 µs−1.

existing between the initial polarisation of the slow and constant components, and the simulated

values of ã and b̃. Contrary to what happened with ZnPc, the curves for these two parameters

are already a good match to the experimental data when no multiplying factor is used, indicating

that the population of state III in H2Pc must be close to unity. This result is parallel to what

was observed in the high transverse-field measurements of Chapter 5, where a larger population

of state III in H2Pc relative to ZnPc had been established.

6.3.2 Analysis results

ZnPc

The analysis model considered in Section 6.3.1 was employed to extract the temperature depen-

dence of the spin-flip rate λSF from the temperature-dependent LF measurements laid out in

Sections 6.1.2 (ZnPc) and 6.2.2 (H2Pc). In ZnPc, this was done using the functional relation be-

tween the values λ̃ expected for the slow component’s relaxation and λSF shown in Figure 6.19,

established from the minimisation of the figure-of-merit q taking into account the hyperfine pa-

rameters Aiso = 10.8MHz and D = −27.1MHz determined for state III in this compound (see

tables 5.2 and 5.3) and the externally applied field of 0.1 T.

The results regarding the two samples ZnPc S and ZnPc p3 are depicted in Figures 6.20
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Figure 6.18: Field dependence of the simulated ã and b̃ quantities expected for state III in polycrystalline

H2Pc at a temperature of 600 K and under spin exchange dynamics with λSF = 2.0 µs−1. Contrary to

what was necessary regarding the ZnPc simulations, no multiplying factor had to be included in order to

have the best match to the experimental data.
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Figure 6.19: Functional relation between the values λ̃ expected for the slow component’s relaxation and

the spin-flip rate λSF in ZnPc at 0.1 T. Since the experimental time window used for the phenomenological

fits of the LF data was only 9µs, tmax was set to this same value for the computation of the figure-of-

merit q with which this functional relation was deduced. The lower plot shows the derivative dλSF /dλ̃,

a quantity necessary to compute the errors of the deduced λSF values from the experimental errors

estimated for λ̃.
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and 6.21, where the spin-flip rate has also been displayed in an Arrhenius plot. The temperature

dependence of λSF is seen to be consistent with an activated behaviour above room temperatures

bearing activation energies of 71(8)meV and 84(9)meV in ZnPc S and ZnPc p3 respectively,

and pre-exponential factors of 6(1)µs−1 and 17(4)µs−1. The energy scale of the dynamical

phenomena underlying the temperature dependence of the spin-flip rate in ZnPc is thus the

same within errors for the two investigated samples, whereas the absolute spin-flip rate values

are higher in the sample which has suffered the vacuum annealing treatment (ZnPc p3).

Figure 6.20: Temperature dependence of the spin-flip rate λSF in sample ZnPc S at 0.1T. The spin-flip

rate has a temperature activated behaviour above 300 K.

H2Pc

The extraction of spin-flip rates from the H2Pc temperature dependent LF data was more

complex than in ZnPc, since, as discussed in Chapter 5, the hyperfine parameters of state III

vary with temperature. A functional relation between λ̃ and λSF had therefore to be derived

for each temperature point, taking into account the hyperfine parameters of state III at that

same temperature, linearly interpolated from the fitted Aiso and D values obtained from the

high transverse field measurements. Figures 6.22 and 6.23 display the resulting temperature

dependence of λSF for the two samples H2Pc 03 and H2Pc 06.

Above room temperature, the non-annealed sample H2Pc 03 exhibits a simple temperature

activated behaviour with activation energy 130(9) meV and pre-exponential factor 34(7)µs−1,
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Figure 6.21: Temperature dependence of the spin-flip rate λSF in sample ZnPc p3 at 0.1 T. The spin-

flip rate also exhibits a temperature activated behaviour, now above 450K, but with the same activation

energy as the one found for sample ZnPc S.

whereas the vacuum annealed sample H2Pc 06 apparently shows three distinct regions of ac-

tivated growth with temperature. These three regions correspond to three distinct activation

energies of 26(2) meV, 141(6) meV and 376(12) meV, and pre-exponential factors 2.1(2)µs−1,

33(4)µs−1 and 3900(900)µs−1 respectively. Again, there is a common energy scale between

the two samples (the 130(9) meV and 141(6) meV components in H2Pc 03 and H2Pc 06). A

finalising remark should be done regarding the odd variation of λSF at the lower temperatures

both for sample H2Pc 03 as for H2Pc 06, and how it may be related to the incomplete variation

one has for the hyperfine parameters of state III in H2Pc. In the case of H2Pc 03, the conver-

sion from λ̃ to λSF below room temperature used the same values of Aiso and D measured at

300 K, which lead to a clear over-estimation of λSF ; in fact, the temperature variation of λSF

at temperatures below 300K should follow that observed above 300 K, i.e. it should increase

with increasing temperature. For H2Pc 06, the effect is more troublesome: the over-estimation

of λSF ends up creating a distinct region with a falsely different slope. Hence, the activation

energy 26(2) meV should not be considered as a valid component of the temperature variation

of λSF in this sample, and as so will be ignored for the rest of this work.
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Figure 6.22: Temperature dependence of the spin-flip rate λSF in sample H2Pc 03 at 0.1 T. Also shown

are the original slow component’s relaxation, equated to λ̃, and the hyperfine parameters used to deduce

the functional relation between λSF and λ̃. The spin-flip rate has a temperature activated behaviour

above 350K.
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Figure 6.23: Temperature dependence of the spin-flip rate λSF in sample H2Pc 06 at 0.1 T. The

spin-flip rate has a temperature activated behaviour above 300K, divided in three distinct regions. The

intermediate region exhibits an activation energy identical to that obtained with sample H2Pc 03.



Chapter 7

Discussion and conclusions

This final chapter is dedicated to the discussion of the experimental results and corresponding

analysis presented in the two previous chapters. Those results are interpreted here in the light

of what is currently known about organic muoniated radicals and phthalocyanines to construct

what will hopefully be a consistent picture for the spectroscopic and spin-dynamical properties

of the muon states formed in this type of compounds.

7.1 Spectroscopy of paramagnetic muon states in H2Pc and

ZnPc

7.1.1 States I and II

Hyperfine parameters and relative populations

If one compares the contact hyperfine interaction values determined for states I and II in ZnPc

and H2Pc (tables 5.2, 5.3 and 5.6) with the hyperfine parameter of isolated Mu (Table 3.3), one

immediately sees that a strong electron transfer from the muoniated radical to the phthalocya-

nine molecule occurs upon the reaction of muonium addition. Less than 4% of unpaired spin

density is left at both muon sites, relating well with what is typically known for muoniated

radicals [99, 69, 95]. Figure 7.1 illustrates the transfer of charge from the paramagnetic state I

in H2Pc to the rest of the molecule; it is an iso-value surface plot of the SOMO orbital generated

by the adduct, obtained from the site assignment electronic structure calculations.

Since the two states I and II correspond to muon adducts at the outer benzene rings of

the phthalocyanine molecule, a natural comparison with the cyclohexadienyl radical (C6H6Mu),

201
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Figure 7.1: Iso-value surface plot of the SOMO orbital generated by the muonium adduct in H2Pc that

gives rise to state I. The electron is highly distributed over the whole molecule via conjugated orbitals,

residing mainly in the inner ring and the added benzene ring. Only a small fraction of electronic density

exists at the adduct (red arrow). The green and red colours indicate the relative signs of the wavefunction

in each point of space.

formed by muonium addition to benzene (Figure 7.2), emerges. The isotropic hyperfine inter-

action of C6H6Mu, nevertheless, is of 514.6 MHz, a value considerably higher than those of the

order of 100-150MHz observed in states I and II. The source of the decrease is the well known

substituent effect [99, 95], often observed in free-radical EPR and µSR-chemistry research. The

addition of substituent groups to the cyclohexadienyl radical reduces the spin density at the

muon by de-confinement of the unpaired radical electron; the effect is the more pronounced

as the number and complexity of the benzene ring substituents increases. This effect has been

extensively studied by Roduner [99], who, in addition to devising a phenomenological expression

capable of describing its systematics, suggested a pair of phenomenological rules for monosub-

stituted benzenes: first, the meta1 isomer shows the smallest substituent effect, and second the

para isomer shows the weakest signal. The benzene ring where muon addition takes place for

states I and II in ZnPc and H2Pc may therefore be considered as a disubstituted cyclohexadi-

enyl radical, with substituents at the meta and para positions for state I, and ortho and meta

positions for state II (Figure 7.3). If one translates the second empirical rule of Roduner for the

phthalocyanine system, one concludes that the population of state I must be lower than that of

state II, as indeed is observed both in ZnPc and H2Pc. Although the same type of reasoning

1The designations ortho-, meta- and para- refer to substitution positions in the benzene ring which are respec-

tively next-to, second-next-to and opposite to the muon addition site.
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cannot be used with the first rule (both states have meta substituents), the general trend in

cyclohexadienyl radicals is that the para position possesses a smaller substituent effect than the

ortho position [99]. ZnPc and H2Pc comply to this trend, since the hyperfine interaction of state

I is larger (i.e. less affected) than the one of state II.

Figure 7.2: Formation of the cyclohexadienyl radical by muonium addition to a benzene ring.

Figure 7.3: Muon states I (left) and II (right) in phthalocyanines as a highly substituted cyclohexadienyl

radical. State I may be related with a radical highly substituted at the meta and para positions, while

state II corresponds to the same substituents at the ortho and meta positions.

Finally, it should be noted that the relative populations between the two states do not obey

the Boltzmann ratio expected from the formation energies calculated in Section 5.1.3, pointing to

the fact that the initial formation of these states must be guided by the geometric muon capture

radius instead of the electrostatic potential well depth. They exhibit a very weak temperature

dependence either in ZnPc as in H2Pc (figures 5.8 and 5.16), maintaining the population of state

II above that of state I.

Temperature dependence of the hyperfine interaction

All four hyperfine parameters regarding states I and II in ZnPc were shown in Section 5.1.2

to have a temperature activated behaviour with the same activation energy. The temperature

dependence of the hyperfine interaction in muoniated organic radicals is again a well-known

effect; it arises due to thermal excitation of molecular vibrations, which in our case must involve
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the Cα–Mu and the Cα–Cβ bonds of the radical2. Relative motion between these two bonds

interferes with the hyperconjugation of the Cα–Mu σ and the Cβ pz orbitals, producing a time-

averaged overlap smaller than the one for the static situation. As temperature rises and the

relevant vibrational modes become more populated, the effective overlap is decreased, accounting

for the observed reduction of the isotropic parameter of the radical. The dipolar component of

the hyperfine interaction is also gradually shifted to zero by that type of motion, although not

due to the lessening of the hyperconjugative effect, but because it continuously reorients the

hyperfine symmetry axis, averaging it out as a preferred direction in space.

In a simple approach, the temperature dependence of the hyperfine interaction may be

quantitatively parameterised taking a situation in which only one vibrational mode v capable of

coupling to it exists3. In first order, the shift of the hyperfine parameters at a given temperature

T will be proportional to the population nv(T ) of that vibrational state,

A(T )−A(0) ∝ nv(T ) ,

which in thermal equilibrium is proportional to a Boltzmann factor,

nv(T ) ∝ e−Ev/kB T ,

Ev being the energy of the mode. Thus, A(T ) will be given by

A(T )−A(0) = k e−Ev/kB T , (7.1)

where the constant k is determined by taking the limit T →∞ of (7.1),

A(∞)−A(0) = k × 1 . (7.2)

A(T ) therefore explicitly reads

A(T ) = A(0) + (A(∞)−A(0)) e
− Ev

kB T , (7.3)

an equivalent expression to the fit equation (5.1) of Chapter 5, and where the activation energy

Ea is now identified with the vibrational energy of the mode coupling to the hyperfine interaction.

In order to better understand the temperature dependence of the hyperfine parameters

in ZnPc and H2Pc, and confirm its origin as being due to molecular motion, a normal mode
2In general, the thermal excitation of rotational modes is also a source of temperature dependence for the

hyperfine interaction. We will ignore this effect here, however, since the structure of the adduct and its surrounding

C–H groups generates a barrier of large energy against the rotation of the Mu–Cα–H group.
3i.e. involving any bonds relevant for the hyperconjugative effect.
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analysis calculation was performed for the two molecules in their bare forms. No Mu adduct

was considered in the analysis, since the loss of symmetry rendered the computation unwieldy

for a molecule with the size of phthalocyanine. This limitation implies that the normal modes

obtained from the computation will not include the effect of the Cα–Mu bond in the vibrational

properties of the molecule. Nevertheless, it is still reasonable to consider that the low energy

modes of the bare molecule are a good approximation for the low energy modes of the adducted

molecule. Since the mass difference between the carbon atoms and the hydrogen atoms is

large, the low frequency modes of the bare molecule are determined mainly by the motion of

its carbons; in particular, at the benzene rings the C–H groups behave as a whole, oscillating

around the equilibrium position of the carbons. For the adducted molecule, the same is true; in

a low energy mode, the Mu–Cα–H group oscillates as a whole, with a frequency which relative

to the original C–H group will be shifted by an amount typically given by the square root of the

Mu–Cα–H and C–H mass ratio, i.e. of a few percent.

The computation was done with GAUSSIAN 98, using an optimised geometry obtained

under the same functionals, pseudo-potentials and wavefunction basis as those used for the

geometry optimisation employed in the hyperfine parameter calculations. The normal modes

obtained were then closely inspected, looking for all modes which implied relative motion be-

tween the six carbon atoms at the outer benzene rings. At low energies (Ev < 600 cm−1), most

of those modes were found to be of librational character4, as opposed to stretching ones, which

as expected were seen to dominate in the region of higher energy. Our attention was therefore

focused on the librational modes, which we divided in ortho-flapping modes and para-wiggling

modes, according to what is shown in Figure 7.4. The frequencies and corresponding energies

of the modes involving carbon libration below 600 cm−1 = 74.4 meV are indicated in Table 7.1

for ZnPc and Table 7.2 for H2Pc. The last column shows the expected population ratio at room

temperature between the components indicated.

As it becomes evident, the measured 42(6) meV activation energy of the hyperfine param-

eters in ZnPc is consistent with a coupling to the first four libration modes of the outer ring

carbons, providing evidence that states I and II are located at the outer benzene rings within

the approximation of a rigid Mu–Cα–H group. In H2Pc, and although no real fit to the acti-

vation energy exists, the same may be inferred, since the data was seen to be consistent with

the activation energy extracted from the ZnPc data, which also relates well to the first modes

4The librational modes correspond to atomic oscillations transverse to the plane of the molecule.
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Figure 7.4: Low-energy librational carbon modes able to couple with the hyperfine interaction of states

I and II in ZnPc and H2Pc. These modes may be subdivided in ortho-flapping modes, shown on the left,

and para-wiggling modes, shown on the right, depending on the relative sign of the oscillation amplitudes

of each C atom in the outer benzene ring.

Table 7.1: Energies and expected populations at 300K for the calculated librational modes of the outer

ring carbons in ZnPc below 600 cm−1.

frequency (cm−1) energy (meV) population type

361.6 44.8 1.00 o-flap

362.1 44.9 1.00 o-flap

364.9 45.2 0.98 p-wiggle

372.1 46.1 0.95 o-flap

420.8 52.2 0.75 p-wiggle

445.2 55.2 0.67 p-wiggle

533.2 66.1 0.44 p-wiggle

541.5 67.1 0.42 p-wiggle

566.3 70.2 0.37 p-wiggle

582.9 72.3 0.35 p-wiggle
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Table 7.2: Energies and expected populations at 300 K for the calculated librational modes of the outer

ring carbons in H2Pc below 600 cm−1.

frequency (cm−1) energy (meV) population type

357.8 44.4 1.00 o-flap

359.2 44.5 0.99 o-flap

362.2 44.9 0.98 p-wiggle

372.6 46.2 0.93 o-flap

414.6 51.4 0.76 p-wiggle

415.7 51.5 0.76 p-wiggle

442.0 54.8 0.67 p-wiggle

525.6 65.2 0.45 p-wiggle

528.1 65.5 0.44 p-wiggle

551.9 68.4 0.39 p-wiggle

557.9 69.2 0.38 p-wiggle
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of Table 7.2.

As a final remark regarding the temperature dependence of the hyperfine interaction, the

possible influence of the Mu adduct may still be briefly commented citing known µSR results

for the muoniated cyclohexadienyl radical, C6H6Mu. In this radical, it has been shown that a

coupling to the so called wagging modes of the H–Cα–Mu group (see Figure 7.5) needs to be

considered in order to correctly describe the temperature dependence of its hyperfine constant

[139]. The normal modes introduced by the wagging degree of freedom were seen to have

characteristic frequencies around 450 cm−1 in C6H6Mu [62], a value which is still in range to

bear some influence on the temperature dependence of the hyperfine interaction of the I and II

Mu adducts in ZnPc and H2Pc. One may therefore not rule out the possibility that this wagging

mode will also be an important mode for the description of that dependence in addition to the

libration modes presented above.

Figure 7.5: Wagging motion of the H–C–Mu group in the outer benzene ring of phthalocyanines. It

consists in the asymmetric out-of-plane distortion of the H–C–Mu angle, with the alpha carbon remaining

at rest on its equilibrium position.

Influence of the central atom

Very few changes were observed between the signals of the paramagnetic states I and II formed in

ZnPc and those in H2Pc, as let seen by the fit results presented in Chapter 5. The most important

one is probably the shift to lower values of both hyperfine frequencies in H2Pc5, which may be

understood in terms of the amount of charge transferred from the two radicals to the rest of

the phthalocyanine molecule being smaller in ZnPc. As compared to H2Pc, the presence of the

zinc atom in the central region of ZnPc carries with it a large distribution of negative charge

(28 more electrons than the 2 present in H2Pc) which increases the total Coulomb repulsion in

the molecule, and force a higher delocalisation of negative charge to its outer regions. The effect

5Here we compare values standing on the same foot, i.e. tables 5.1 and 5.6.



7.1. SPECTROSCOPY OF PARAMAGNETIC MUON STATES IN H2PC AND ZNPC 209

of Coulomb repulsion is nevertheless minute, producing structural changes in ZnPc (mostly the

dilation of distances in the central region) on the order of just 1-2%.

Although no quantitative estimates were obtained for the dipolar parameters of H2Pc, the

careful comparison of FFT transforms between this compound and ZnPc suggests quite clearly

that the states in H2Pc are also less anisotropic than in ZnPc. This again may have to do with

the unpaired spin distribution close to the muon site being larger in ZnPc than H2Pc; if it is

larger, so is its polar gradient (see appendix C), and thus the anisotropic parameter.

Finally, the absolute populations of the two states are quite smaller in H2Pc when com-

pared to ZnPc. This is probably another by-product of the structural changes induced by the

extra negative charge brought to the molecule by the Zn atom. The intermolecular contacts

between hydrogen atoms of adjacent molecules in the molecular plane are certainly smaller in

H2Pc [32], which may lead to a lower formation probability of states at those sites due to a

confinement effect (i.e. by lack of space).

7.1.2 State III

Possible sites and electronic structure

When compared to typical radicals, the hyperfine contact interaction of state III is quite low,

suggesting it must reside in a site of naturally low spin density. Furthermore, its hyperfine

tensor is dominated by the dipolar term, indicating that the radical’s unpaired spin distribution

is highly asymmetric relative to the muon position. Thus, not only does the order of magnitude

of the hyperfine interaction distinguishes state III from states I and II, but also fundamental

differences exist in the spatial configuration of the unpaired spin.

Since no stable addition sites at double bonds were found with the electronic structure

calculations referred in Chapter 5 that could be directly related to state III, the formation of

state III does not apparently imply the breaking of a double bond. This means that the muon

site is either interstitial (i.e. in-between molecules), or corresponds to a location where a chem-

ical bond with the molecule may be established without double-bond breaking processes. In

phthalocyanines, one site that conforms to the latter hypothesis does exist; it is site e of Fig-

ure 5.11, located next to a bridging azamethine nitrogen. The nitrogen atom has a pair of lone,

non-bonding electrons in the plane of the molecule which are available for bonding to the muon;

a radical state formed there necessarily has a low hyperfine interaction by hyperconjugation

hinderance, since the overlap between the in-plane N–Mu σ bond and the plane-perpendicular
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pz orbitals of the two β carbons bonding the α nitrogen is poor (Figure 7.6). The occurrence

of this type of Mu anchoring to lone electron pairs is often observed in compounds possessing

C=O carbonyl groups, as e.g. acetone [19].

Figure 7.6: Possible location of state III at an azamethine bridge. The muon bonds to the lone electron

pair of the nitrogen atom (left); the resulting N–Mu σ orbital is perpendicular to the pz orbitals of the

β carbons, leading to a small hyperconjugative effect (right).

Nevertheless, two arguments may be put against this site assignment. First, the failure

in finding an electrostatically stable hydrogen state at site e. It clearly shows that the ph-

thalocyanine molecule will have a tendency to segregate hydrogen atoms trying to stick at that

position. Although the site is located at a quite open space, implying in principle a very small

relaxation of the neighbouring atoms, the fact is that the extra electron brought by Mu to

the molecule will be placed at the β carbons, being immediately dispersed in the central C–N

skeleton. The bonding effect the molecule gains by having this extra electron is therefore too

small to counteract the energy rise accompanying the necessary atom relaxation. This is also in

agreement with the well-known high chemical stability of phthalocyanines. Secondly, not much

credibility may be given to the existence of a stabilising effect due to the solid-state structure

of β phase phthalocyanine. The slipped stacking of this arrangement does not seem to interfere

with the in-plane surroundings of that site, which remains open enough for the segregation to

act (Figure 7.7).

The only possible sites consistent with our findings seem therefore to be interstitial posi-

tions. In view of what was just referred about the segregating effect of phthalocyanine, those po-

sitions will be located as far as possible from neighbouring molecules, typically half-way between

two of them. There are therefore two possible positions meeting this criteria, one contained in
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Figure 7.7: Stabilising effect of the solid state structure of phthalocyanine in the muon addition to the

azamethine bridge. The molecule staking does not seem to interfere much with the in-plane surroundings

of that site.

the molecular plane, and another out of that plane. From these, the out-of-plane site is actually

the most plausible, since it is the only one where the radical may have a low contact hyperfine

interaction. This is dictated by the overlap that a 1s wavefunction centred at the positive muon

would have with the electronic distribution of the neighbouring molecules; although this over-

lap is rather small a priori for the out-of-plane case, it is even smaller for the in-plane site as

most of the spin density of phthalocyanines resides at their centre. So, for a paramagnetic state

formed in an in-plane position there is no real mechanism capable of explaining a high decrease

of spin density at the muon. On the contrary, an out-of-plane state may have a low contact

interaction if its electron is shared with the LUMO orbitals of the two phthalocyanine molecules

bridged by the muon, which have π character [97, 64] and are therefore directed outwards from

the molecular plane. Should a Mu atom be placed half-way between those molecules, its higher

energy unpaired electron would immediately fall to a wavefunction dominated by the two LUMO

orbitals; this wavefunction has of course a minimum at the muon site, giving thus rise to a low

contact interaction. It should be noted that the two LUMO orbitals have a mensurable overlap

(the origin of electrical conduction in phthalocyanines is actually credited to this fact [51]), so

it is quite credible that the actual transfer of the Mu electron to an overlaped LUMO-LUMO

wavefunction will take place. Figure 7.8 qualitatively depicts where the muon state would be

located in this situation, and how the LUMO-Mu-LUMO overlap would look like. One should

note that the configuration of state III we propose here is remarkably similar to the structure
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of the Mu0
BC centre found in the elemental and III-V semiconductors. In Mu0

BC, the muon,

although being located at the bond centre between two atoms, actually resides in the node of

the unpaired spin wavefunction, which has anti-bonding character (see Section 3.3.2 in Chap-

ter 3). That state also has a large dipolar parameter due to the directional structure of the

wavefunction.

Figure 7.8: Possible location of state III at an out-of-plane interstitial site, seen (a) in perspective, and

(b) in cut-view. In this situation, the the muon sits at the node of the LUMO-LUMO overlap.

Finally, one further fact is consistent with the suggested assignment of state III, which is

the existence of evidence leading to believe that the hyperfine tensor of state III exhibits full

anisotropy. From the close observation of the Fourier transform spectra taken in high transverse

field measurements, it becomes apparent that the frequency distribution regarding state III is

not well described by the pattern characteristic of axial symmetry; a distribution relative to a

fully anisotropic state, with a quite high full anisotropy parameter η6 seems more appropriate,

as shown in Figure 7.9. A state formed at the location proposed for state III will have a spatial

distribution close to the sum of the two LUMO orbitals involved; relative to the muon, that

distribution is not at all axially symmetric, but will still have some oblate character, justifying

the negative sign of the dipolar parameter. Fits to the time-domain signals of ZnPc and H2Pc

in high transverse field using a fully anisotropic powder function for the description of state III

were tried in order to confirm its full anisotropy, but the data was found not to possess enough

sensitivity to yield conclusive values for η.

6This quantity is defined in appendix C as η =
A′yy−A′xx

D
, where A′xx and A′yy are the x and y principal values

of the hyperfine tensor.
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Figure 7.9: Simulated frequency distribution considering a fully anisotropic symmetric hyperfine inter-

action for state III in ZnPc. The Fourier and frequency pair correlation power transforms are consistent

with state III exhibiting full anisotropy.

Influence of the central atom

Contrarily to what was observed for states I and II, the configuration of the central region in the

ZnPc and H2Pc molecules was seen not to exert any significant influence in the population of

state III. Indeed, this parameter was found to be fairly identical for both ZnPc and H2Pc at all

temperatures, revealing that the exact structure of the molecule is less important in determining

the formation probability of this state. Although not being a proof that state III is located at

an interstitial position, this is in better agreement with that type of location than with the

anchoring at a bridging nitrogen, since the latter would put the positive muon nearer to the

molecule. Smaller structural differences would have a larger influence in the configuration of the

local electrostatic potential minimum for that situation, which would in turn reveal as different

formation probabilities of the state.

The temperature dependence of the hyperfine interaction of state III, on the other hand,

is clearly dependent on the existence or not of the central atom. While in ZnPc no dependence

seems to exist, in H2Pc the hyperfine parameters suffer a strong red-shift with increasing tem-

perature. Assuming the shift is due to molecular vibrations, this means that the modes which

couple to state III in H2Pc do not exist in ZnPc. This clearly reveals that central H modes in

H2Pc have a major influence in the hyperfine interaction of state III; its site needs therefore to
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be within the range of the central H atoms for it to be affected, a fact being consistent with

the out-of-plane interstitial site assignment of Figure 7.8. Table 7.3 shows the normal modes of

H2Pc where libration of the central H atoms has the largest amplitude, as obtained from the

normal mode analysis described in the last section. The energies of those modes are higher than

the ones involved in the shift of the hyperfine interaction of states I and II, originating a more

steep temperature dependence for state III7.

Table 7.3: Normal modes of H2Pc where libration of the central H atoms has the largest amplitude.

Stretching modes have considerably higher energies, and are note shown here.

frequency (cm−1) energy (meV) type

481.8 59.7 H libration

584.2 72.4 H libration

647.8 80.3 H libration

In ZnPc, the same out-of-plane site would couple to vibrations of the central part of the

molecule also; these vibrations, however, have a much lower energy than the central H modes

of H2Pc because the Zn atom makes the central region of ZnPc much heavier. The expected

temperature shift in ZnPc is therefore significantly smaller than in H2Pc for an interstitial site

position of state III, again in agreement with what was observed. The relation between the

frequencies of the relevant modes concerning motion of the central region in H2Pc and ZnPc,

together with the observed temperature dependence of the hyperfine interaction of state III in

H2Pc but not in ZnPc, substantiate further the site assignment of this state at an out-of-plane

location.

7.2 Spin dynamics in H2Pc and ZnPc

7.2.1 Origin of the observed spin dynamics

The origin of µSR spin dynamics in solid organic compounds may be broadly attributed to either

irreversible interactions (e.g. a chemical reaction), cycle exchange interactions (e.g. molecular

7The higher energy of the central H modes produces a change in their populations with a higher derivative,

and hence a steeper temperature dependence of the hyperfine interaction.
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Table 7.4: Normal modes of ZnPc where the oscillation of the central Zn atom has the largest ampli-

tude.

frequency (cm−1) energy (meV) type

143.0 17.7 Zn libration

215.0 26.7 Zn stretching

215.1 26.7 Zn stretching

motion) or spin exchange processes (e.g. scattering with charge carriers) [99, 10]. In the case

of ZnPc and H2Pc, all existing evidences point to spin exchange as being the responsible by the

spin dynamics observed in longitudinal field geometry, as on the one hand irreversible and cycle

exchange interactions are ruled out for these compounds, while on the other distinct signatures

typical of spin exchange dynamics are clearly recognised in the LF data collected and presented

in Chapter 6. Indeed, no strong field dependence of amplitudes for the paramagnetic precessions

in high transverse fields exist, as would be expected for irreversible interactions [85, 106, 71], as

much as there is no molecular motion, since the energy scale of the phenomena giving rise to the

LF relaxation rate, which is of the order of the activation energies found in Chapter 6 for the

spin-flip rate (∼ 100 meV), is quite different from the activation energy found for the hyperfine

interaction shift in the high transverse field measurements described in Chapter 5 (∼ 40 meV).

This means that the vibrational modes responsible for local molecular motion, which couple to

the hyperfine frequency and shift it to lower values, are not the same as those that couple to the

process responsible for the LF spin dynamics. Long-range motion (muon diffusion), another type

of cycle exchange interaction, is also rejected as an acceptable hypothesis, since it would lead to

a narrowing of the dipolar hyperfine parameter with increasing temperature as the anisotropy

would be progressively averaged out, and that is definitely not observed in the specific case of

ZnPc.

Positive support to an assignment of the observed dynamics to spin exchange processes

comes from LF relaxation peak exhibited by both materials at the ω1 − ω2 level crossing field

of state III. In fact, any axially symmetric paramagnetic muon state undergoing spin exchange

dynamics in the slow spin exchange regime will generate an LF µSR signal which shows maximum

relaxation rate at the state’s level crossing (cf. Section 3.4.4). The spin exchange regime is
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definitely slow, not only due to the existence of the relaxation peak8, but also because the

high transverse-field precession lines of state III are not collapsed to an apparent diamagnetic

precession.

Spin exchange dynamics usually arises from the physical process of spin scattering of the

paramagnetic muonium centre with a paramagnetic species; in the case of ZnPc and H2Pc, the

paramagnetic species are charge carriers diffusing through the material. The reasons one may

put forward to support this conclusion are threefold. Firstly, phthalocyanines are semiconduc-

tors, and as such must have a considerable number of mobile charge carriers at any instant.

Secondly, because state III, which is the paramagnetic state directly involved in the observed

spin dynamics, is believed to be located at a site in-between molecules, where the valence molec-

ular orbitals of adjacent molecules overlap; since charge carrier diffusion occurs via that overlap,

state III resides precisely in a diffusion path, becoming therefore particularly exposed to the

effect of passing-by carriers. And thirdly, due to the temperature dependence of the LF relax-

ation above room temperature in all ZnPc and H2Pc samples, which increases as temperature

rises. The relaxation increase is a clear indication that the spin-flip rate also increases with

temperature, which may be connected to the existence of more charge carriers moving at higher

velocities. Hence, the spin dynamics observed in ZnPc and H2Pc is due to spin scattering events

of state III with the material’s charge carriers.

7.2.2 State III as a microscopic probe of charge carrier diffusion

Since there is strong evidence that state III is undergoing spin scattering processes with charge

carriers, this state may be seen as a microscopic probe sensitive to the diffusion characteristics

of the charge carriers in the material, and the (slow component’s) LF relaxation rate may be

taken as an observable capable of being related with the mobility of those carriers. The mobility

of the charge carriers in phthalocyanines is therefore accessible via a µSR observable, turning

the µSR technique in a powerful tool to probe the microscopic mobility of charge carriers in

phthalocyanines.

As it was seen in Chapter 6, it is possible to extract the spin-flip rate λSF from the slow

component’s relaxation. λSF , on its hand, relates at a given temperature T with the carriers

density n(T ) and their relative speed to the muon v(T ) by Equation (3.223),

λSF = n(T ) v(T ) σSF ; (7.4)
8In the fast spin exchange regime, the field dependence of the LF relaxation does not possess a peak.
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if one assumes that the spin-flip cross section σSF does not vary with temperature, the tempera-

ture dependence of the spin-flip rate λSF is therefore only due to the combined effect of n(T ) and

v(T ). Since the density of charge carriers is exponential in a non-degenerate semiconductor9,

n(T ) is given by

n(T ) = n(T = ∞) e
− En

kBT , (7.5)

where En is related with the energy of the level which produces the charge carriers, while for

non-band-like diffusion of charge carriers10 v(T ) is

v(T ) =
l

τ(T )
, (7.6)

τ(T ) being an average residence time for the charge carrier at localised sites, and l the average

distance between those sites (each molecule will typically be a charge localisation site). Since

the quantity 1/τ(T ) is the probability per unit time that a jump of a charge carrier from one

localised site to the next site occurs, it is reasonable to relate it directly to the carrier mobility

µ(T ) by
l

τ(T )
= k × µ(T ) , (7.7)

and since the mobility in organic semiconductors is usually taken as exponentially increasing

[86, 50], i.e.

µ(T ) = µ(T = ∞) e
− Eµ

kBT , (7.8)

where Eµ is roughly the polaron binding energy (for tunnelling processes) or the energy barrier

height (for hopping processes), the spin-flip rate will read

λSF = n(T = ∞) l k µ(T = ∞) σSF e
−En+Eµ

kBT , (7.9)

meaning that the activation energy measured with the µSR spin-flip rate is En + Eµ. This is

actually the same activation energy measured for conductivity data, since

σ = e n(T ) µ(T ) . (7.10)

Hence, the activation energies measured with the temperature dependence of the LF signal,

summarised in Table 7.5, can be compared to literature values for the activation energy of

conductivity data in phthalocyanines.
9Which is our case, as all phthalocyanine samples investigated above room temperature are nominally undoped,

and the temperatures used are not high enough for Fermi-Dirac statistics to stand
10The low charge carrier mobilities known for phthalocyanines (∼ 10−5 cm2/Vs) rule out the possibility that

band-like motion is the mechanism responsible for charge diffusion in Pcs.
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Table 7.5: Summary of activation energies and pre-exponential factors extracted from the spin-flip

temperature variations obtained in Chapter 6.

sample Ea (meV) λ(∞) (µs−1)

ZnPc S 71(8) 6(1)

ZnPc p3 84(9) 17(4)

H2Pc 03 130(9) 34(7)

H2Pc 06 141(6) 33(4)

376(12) 3900(900)

Most authors use the concept of activation energy to characterise the conductivity of

their samples, finding values close to 0.3 eV in thin-film samples of both in ZnPc and H2Pc

[3, 123, 101, 102, 124, 1, 96, 93]. As a general trend, the activation energies are larger in

disordered films, reaching 0.35 eV, and smaller in polycrystalline material, where they may be

as low as 0.25 eV. In any case, these values are considerably larger than the activation energies

one obtains using µSR results, except for the case of H2Pc 06, where one of the two activation

energies falls in the range found in conductivity literature.

However, the fact that the values obtained with µSR are not compatible with those of

conductivity studies does not mean that state III is not probing charge carrier diffusion in

the material. In reality, one needs to consider the fact that the measurement of a sample’s

conductivity is not a local technique as µSR always is. At the microscopic level, phthalocyanines

are stacked columns of molecular discs in many polycrystals, and conductivity data should be

dominated by the slower components of conduction in an experiment where there is an ordered

movement of charge carriers, namely jumps between different columns. The 0.3 eV energy should

therefore be related with that type of jumps, and that is what is observed in sample H2Pc 06 at

the higher temperatures, giving the 0.376 eV activation energy. At lower temperatures, however,

these jumps are less important, particularly if one considers that in a µSR experiment there is

nothing forcing the charge carriers to jump, as the electric field does in conductivity data. Carrier
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jumps inside columns should then be visible in the low temperature range, with an energy barrier

smaller than the column-to-column jump barrier. It is reasonable to assume that the energy

barrier for a column-to-column jump is larger than the barrier for a molecule-to-molecule jump

inside a column, especially since the activation energies found in the literature for amorphous

films are systematically larger than the those for polycrystalline ones. This fact indicates that

ordering and orbital overlap decreases the jump barrier in phthalocyanines, and charge carrier

jumps inside columns are the ones corresponding to a path of higher ordering and overlap.

Furthermore, state III is placed along that same path, and will naturally be more sensitive to

carriers diffusing along columns. We therefore interpret the activation energies obtained from

the µSR LF experiments as the energy barriers for charge carrier jumps within a column.

7.3 Copper phthalocyanine

CuPc has a peculiar electronic structure which may explain why two diamagnetic-like muon

signals with such different relaxation rates are observed in this compound. The molecule has

a lone electron on a half-occupied level positioned in the middle of the HOMO-LUMO gap,

corresponding mainly to a 3dx2−y2 character orbital originated from the Cu atom [64]. When

an extra electron is added to the molecule, forming the CuPc− ion, it is energetically more

favourable to deposit it directly into the LUMO than pairing it with the lone Cu electron in the

3d orbital. Theoretical calculations predict that the configuration having both electrons in the

Cu 3d orbital is in fact the first excited state of the CuPc− ion, the ground state being formed

with one electron in the Cu 3d orbital and one in the LUMO of the Pc molecule [64].

We attribute the two observed muon signal components in muoniated CuPc molecules

to the formation of these two configurations, the (3d)1(LUMO)1 ground state and the (3d)2

first excited state, by the lone Cu electron and the muonium’s electron. In spin terms, the two

electrons always pair, forming an S = 0 spin state independently of the spatial configuration.

The molecular site at which muonium addition occurs is not straightforwardly known, but it

is assumed that similar localisations to those found in ZnPc and H2Pc will be assumed by the

positive muon.

For the (3d)2 configuration (excited state), the spatial wavefunctions of the two electrons

are identical, centred on the Cu atom and away from the muon sites (which we assume to be

similar to those in ZnPc and H2Pc). No unpaired spin will persist at the muon’s site, leaving
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it in a purely diamagnetic environment. The slow relaxing component originates thus, in this

interpretation, from the full pairing of the two electrons in the (3d)2 configuration, the non-zero

relaxation probably arising from dipolar broadening due to nearby protons.

On the other hand, for the (3d)1(LUMO)1 configuration (ground state), a residual hyper-

fine field at the muon exists as a result of the up-down spin imbalance caused by the different

layout of the two spatial wavefunctions. This produces the strongly relaxing component of the

muon precession signal if exchange or spin-flip dynamics between the two electrons operates fast

enough to collapse the expected frequency line pair into a diamagnetic-like signal.

Finally, the parallel spin-coupling of the lone Cu electron and the radical’s electron, giving

rise to a S = 1 triplet state, should also be considered. It’s unlikely that such a state would live

long enough to be identified with one of the two µSR components considered here, in particular

since both signals are seen at all temperatures up to 600 K. Nevertheless, it is well possible that

the missing fraction observed at low temperature might be the consequence of an unresolved

state of that type existing prior to the formation of the two finally observed spin configurations.
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µ+ spin precession

The precession of the muon’s spin in the presence of a magnetic field is the main basis of many of

µSR’s applications. It consists in the clockwise rotation of the spin component perpendicular to

the field around that field’s axis. If one considers the muon’s spin to be initially directed along

the polar and azimuthal angles (θ, φ), with the spin quantisation axis lying in the z direction,

it is easy to check that

|ψ(0)〉 = e−ı φ/2 cos(θ/2)|αµ〉+ eı φ/2 sin(θ/2)|βµ〉 (A.1)

represents the corresponding spin wavefunction at time t = 01. It should be noted that if

the muon’s spin initially has a component perpendicular to z, then cos(θ/2) and sin(θ/2) are

different from zero, and the two terms in the equation above exist. This means that the initial

wavefunction is a linear combination of the eigenstates (3.4) and (3.5) in that situation, and as

such will exhibit a time dependence. Time evolution is governed by the time-evolution operator

Û(t) = e−
ı
h̄

Ĥt ; (A.2)

at subsequent times t the spin wavefunction therefore becomes

|ψ(t)〉 = Û(t){e−ıφ/2 cos(θ/2)|αµ〉+ eıφ/2 sin(θ/2)|βµ〉}

= eı(ωµt−φ)/2 cos(θ/2)|αµ〉+ e−ı(ωµt−φ)/2 sin(θ/2)|βµ〉 , (A.3)

where the relations (3.4) and (3.5) have been used. As it is noted in Section 3.2.1, the direction

of the muon spin as a function of time is given by the expectation value of the Pauli spin operator
1This expression actually underlies a choice of gauge to represent the phase of the wavefunction. The spin

wavefunction is assumed here to have real positive coefficients whenever φ is zero and θ lies in the first quadrant.
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~̂σµ,

~̂σµ =
~̂Sµ

h̄/2
;

its x and y components are usually written as a function of the Pauli ladder operators

σ̂µ+ = σ̂µx + ı σ̂µy (A.4)

σ̂µ− = σ̂µx − ı σ̂µy , (A.5)

which act on the basis set {|αµ〉, |βµ〉} according to

σ̂µ+ |αµ〉 = 0 ; σ̂µ− |αµ〉 = 2|βµ〉 (A.6)

σ̂µ+ |βµ〉 = 2|αµ〉 ; σ̂µ− |βµ〉 = 0 . (A.7)

The x, y components of the Pauli operator are therefore

σ̂µx =
1
2
(σ̂µ+ + σ̂µ−) (A.8)

σ̂µy =
1
2ı

(σ̂µ+ − σ̂µ−) , (A.9)

and one gets

σ̂µx |αµ〉 = +|βµ〉 σ̂µy |αµ〉 = +ı |βµ〉 σ̂µz |αµ〉 = +|αµ〉 (A.10)

σ̂µx |βµ〉 = +|αµ〉 σ̂µy |βµ〉 = −ı |αµ〉 σ̂µz |βµ〉 = −|βµ〉 . (A.11)

Finally, the expectation values of the x, y, z components of the Pauli spin operator for the muon

may be computed using the time-dependent wavefunction (A.3):

〈σ̂µx(t)〉 = 〈ψ(t)|σ̂µx |ψ(t)〉

= 〈ψ(t)| (eı(ωµt−φ)/2 cos(θ/2)|βµ〉+ e−ı(ωµt−φ)/2 sin(θ/2)|αµ〉
)

=
(
eı(ωµt−φ) + e−ı(ωµt−φ)

)
cos(θ/2) sin(θ/2)

= cos(−ωµt + φ) sin θ , (A.12)

〈
σ̂µy(t)

〉
= 〈ψ(t)|σ̂µy |ψ(t)〉

= 〈ψ(t)| (ı eı(ωµt−φ)/2 cos(θ/2)|βµ〉 − ı e−ı(ωµt−φ)/2 sin(θ/2)|αµ〉
)

=
(
ı eı(ωµt−φ) − ı e−ı(ωµt−φ)

)
cos(θ/2) sin(θ/2)

= sin(−ωµt + φ) sin θ , (A.13)
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〈σ̂µz(t)〉 = 〈ψ(t)|σ̂µz |ψ(t)〉

= 〈ψ(t)| (eı(ωµt−φ)/2 cos(θ/2)|αµ〉 − e−ı(ωµt−φ)/2 sin(θ/2)|βµ〉
)

= cos2(θ/2) + sin2(θ/2)

= cos θ . (A.14)

〈
~̂σµ(t)

〉
is therefore a unitary vector whose projection on the xy plane rotates clockwise with

angular frequency ωµ, maintaining its z-projection constant.



224 APPENDIX A. µ+ SPIN PRECESSION



Appendix B

The µSR time histogram

In µSR experiments, the muon polarisation is followed via the counting of positrons emitted

along fixed directions in space as a function of time. The counts are recorded in time histograms,

one for each positron detector; the shape of those histograms depends not only on the time

evolution of the muon polarisation, but also on specific details of the detectors, such as their

efficiencies in detecting positrons of different energies, or their geometries. In order to obtain

the explicit expression of the time histogram for a positron detector like the one shown in

Figure 3.10, we will consider first the decay of a single positive muon in the sample at an instant

t after implantation, when its spin ~Sµ makes an angle ϕ with the direction along the telescope’s

centre, as depicted in Figure B.1.

In principle, the probability that a decay positron with a certain energy will be detected

should match the probability of it being emitted, as given by dW in equation (3.15). In practice,

however, it will be lower, since there is the chance that the positron is not detected, either due

to it being absorbed somewhere along the way before reaching the telescope (which is quite

probable to happen if the positron is emitted with a low energy), or just to a natural miss of

the detection system derived from the quantum nature of the positron-scintillator interaction

and the statistics of signal production and processing (id.). The detection efficiency depends

strongly on the energy of the emitted positron, and to express this fact it is usual to define a

detection efficiency function D(ε), so that the probability per unit time dWD that a positron

with energy ε is detected along a solid angle dΩ becomes

dWD(ε, θ) = dW (ε, θ) D(ε)

=
1
τµ

n(ε)
2π

(1 + a(ε) cos θ) D(ε) dε dΩ , (B.1)
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Figure B.1: Geometry of the positron detector D used for the calculations in this appendix. The left

presents the top side view, while the right shows it in perspective. The angular positron emission pattern

for ε = 1 was superimposed to both drawings.

where one obviously has D(ε) ≤ 1 for all positron energies ε. Defining the quantities ηε and αε

as

ηε =

∫ 1
0 n(ε) D(ε) dε∫ 1

0 n(ε) dε
(B.2)

αε =

∫ 1
0 n(ε) a(ε) D(ε) dε∫ 1

0 n(ε) a(ε) dε
, (B.3)

the pure angular dependence of dWD may be written as

dWD(θ) =
∫ 1

0

1
2π

n(ε)
τµ

(1 + a(ε) cos θ) D(ε) dΩ dε

=
1

2πτµ

1
2

ηε

(
1 +

1
3

αε cos θ

)
dΩ . (B.4)

Noting that (B.2) implies ηε being always lower than 1, and comparing (B.4) with the probability

that the positron is emitted along dΩ, equation (3.19),

dW (θ) =
1

2πτµ

1
2

(
1 +

1
3

cos θ

)
dΩ ,

it becomes clear that ηε is a net detection efficiency over the full positron energy range. It rep-

resents the fraction of detected vs. emitted positrons due to D(ε), as better seen by integrating

equation (B.4) over the full 4π solid angle,
∫

4π
dWD(θ) =

∫

4π

1
2πτµ

1
2

ηε

(
1 +

1
3

αε cos θ

)
dΩ =

ηε

τµ
.
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The quantity αε is the asymmetry factor change relative to the 1/3 average found in equation

(3.19). Depending on the shape of D(ε), it may correspond to an enhancement or a decrease

relative to the 1/3 value; it normally produces the former, since D(ε) is usually larger at higher

energies, where the product n(ε)a(ε) is positive.

The total probability per unit time that the positron emitted from the decaying muon is

detected in the telescope will then be

WD =
∫

ΩD

1
2πτµ

1
2

ηε

(
1 +

1
3

αε cos θ

)
dΩ , (B.5)

where ΩD is the solid angle subtended by D. In the simple case shown in Figure B.1, ΩD is easily

expressed in terms of the telescope’s angular apertures (or acceptances) (δ, β) defined in that

figure, so that (B.5) becomes

WD =
∫ π/2+β/2

π/2−β/2

(∫ ϕ+δ/2

ϕ−δ/2

1
2πτµ

1
2

ηε

(
1 +

1
3

αε cos θ

)
dθ

)
sinφdφ

=
1
τµ

δ

2π
sin(β/2) ηε

(
1 +

1
3

sin(δ/2)
δ/2

αε cosϕ

)
, (B.6)

where we have used φ and θ for the integration’s polar and azimuthal angles, respectively1.

Rearranging this expression by further defining

ηg = sin(β/2)
δ

2π
(B.7)

αg =
sin(δ/2)

δ/2
, (B.8)

one gets

WD =
1
τµ

ηg ηε

(
1 +

1
3

αg αε cosϕ

)
. (B.9)

ηg and αg are respectively the geometric efficiency of the telescope and the geometric asymmetry

factor change; their dependence on δ and β is shown in Figure B.2. It should be noted that both

quantities are lower than 1, but while the geometric efficiency approaches 1 as the telescope

gets nearer to covering the whole 4π solid angle, the asymmetry factor change approaches zero.

That is to say that the larger the detector, the more positrons will be detected, but the less

pronounced will become the imbalance between the number of detected positrons when the muon

spin is pointing to and away from the telescope.

1This is an unorthodox choice of notation, chosen to allow the angle ϕ between the detector’s normal and the

muon spin to have any value between zero and 2π.
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Figure B.2: Geometric efficiency ηg (left) and geometric asymmetry factor change αg (right) of the

positron telescope D

Finally, (B.9) may still be reduced to

WD =
1
τµ

ηD

(
1 + AD

〈
~̂σµ(t)

〉
. r̂D

)
, (B.10)

if one notes that cosϕ =
〈
~̂σµ(t)

〉
. r̂D, where

〈
~̂σµ(t)

〉
is the muon spin direction at time t and

r̂D is a unitary vector along the direction defined by the sample and the positron telescope, and

introduces the telescope detector’s efficiency ηD and the detector’s asymmetry factor AD

ηD = ηε ηg (B.11)

AD =
1
3

αg αε , (B.12)

both depending on the detection efficiency function and the geometry of the telescope detector.

It should be referred that, in spite of having performed the calculation of WD for the specific

case of Figure B.1, equations (B.9) and (B.10) still hold for a generic detector placed anywhere

around the sample. The explicit forms of ηε, αε, ηg and αg will of course be different, but their

general trends are the same as the ones referred above.

Knowing the probability WD that a positron is detected in the telescope detector, one

may now derive the shape of the time histogram of positron counts registered in D. The number

of positrons emitted in a time interval [t, t + dt] after implantation equals the number of muons
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decaying in that same interval,

dNµ+(t) = Nµ+(t) dt , (B.13)

where Nµ+(t), given by the radioactive decay law

Nµ+(t) = N0 e−t/τµ (B.14)

with N0 being the total number of muons implanted in the sample, is the number of muons

surviving in the sample until t. According to the meaning of WD, the number of positrons

detected in D is therefore

dND(t) = 〈WD〉ensemble Nµ+(t) dt , (B.15)

noting that the probability WD has to be averaged over the implanted muon ensemble. Taking

equation (B.10) and the definition of the ensemble’s polarisation (3.11), this average is

〈WD〉ensemble =
〈

1
τµ

ηD

(
1 + AD

〈
~̂σµ(t)

〉
. r̂D

)〉ensemble

=
1
τµ

ηD

(
1 + AD 〈

〈
~̂σµ(t)

〉
〉ensemble . r̂D

)

=
1
τµ

ηD

(
1 + AD

~Pµ(t) . r̂D

)
. (B.16)

Hence, the positron counts dND(t) in D will be

dND(t) = N0 ηD
e−t/τµ

τµ

(
1 + AD

~Pµ(t) . r̂D

)
dt , (B.17)

which for a finite time bin of width ∆t centred in ti finally reads

∆ND(ti) = N0 ηD
e−ti/τµ

τµ

(
1 + AD

~Pµ(ti) . r̂D

)
∆t . (B.18)

It should be noted that this expression is of course valid only if ∆t is sufficiently small so that

~Pµ(t) and e−t/τµ may be equaled to their central value in the interval [ti−∆t/2, ti+∆t/2]. This

may not be true if, for instance, ~Pµ(t) is rapidly changing because of a fast precessional or

exponential behaviour, in which case the function’s mean value over that interval would have to

be used.
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Appendix C

The hyperfine interaction tensor

The hyperfine interaction between the electron’s spin ~Se and the positive muon’s spin ~Sµ appears

naturally by the application of the laws of electromagnetism to the interaction between the

magnetic moments of both spins. We start by considering that the muon spin magnetic moment

~µµ generates a dipolar vector potential at a given position ~r relative to the muon given by (see

e.g. [54])

~Aµ(~r) =
µ0

4π r3
~µµ × ~r , (C.1)

from which a magnetic field

~Bµ(~r) = ~∇×
( µ0

4π r3
~µµ × ~r

)
(C.2)

derives. If one places the electron at ~r, the electron-muon system will acquire a magnetic

interaction energy of

Eµ,e = −~µe. ~Bµ = −µ0

4π
γeγµ

~Se . ~∇×
(

~Sµ × ~r

r3

)
, (C.3)

where the gyromagnetic ratios (see the footnote of table’s 3.2 caption) γe and γµ of the electron

and the muon were used in order to express the magnetic moments in terms of the spin angular

moments. Using the circular commuting properties of the mix product, and recognising that in

general the electron will not be at a fixed position, but distributed according to a probability

density given by the square of the electronic wavefunction ψ(~r), equation (C.3) changes to

Eµ,e =
µ0

4π
γeγµ

∫
~∇.

(
~Se ×

(
~Sµ × ~r

r3

))
|ψ(~r)|2 d3~r

=
µ0

4π
γeγµ

{∫
~∇.

(
|ψ(~r)|2 ~Se ×

(
~Sµ × ~r

r3

))
d3~r −

−
∫

~Se ×
(

~Sµ × ~r

r3

)
. ~∇|ψ(~r)|2 d3~r

}
, (C.4)
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where the relation ~∇.(f ~A) = (~∇(f). ~A + f(~∇. ~A) from vector algebra was also used. The first

integral in (C.4) is zero, since from Gauss’s theorem it is ia flux over a closed surface,
∫

~∇.

(
|ψ(~r)|2 ~Se ×

(
~Sµ × ~r

r3

))
d3~r =

∫

S
|ψ(~r)|2 ~Se ×

(
~Sµ × ~r

r3

)
dS, (C.5)

which evaluated at r →∞ vanishes due to the fact that ψ(~r) must be an exponentially decreasing

function with distance to represent a valid state in Hilbert space. Hence, the magnetic interaction

energy of the muon-electron system is

Eµ,e = −µ0

4π
γeγµ

∫
~Se ×

(
~Sµ × ~r

r3

)
. ~∇|ψ(~r)|2 d3~r , (C.6)

which, using the relation ~A × ( ~B × ~C) = ~B( ~A. ~C) − ~C( ~A. ~B) and the fact that γeis negative, is

finally written as

Eµ,e =
µ0

4π
|γe|γµ

∫
1
r2

{
~Sµ(~Se.r̂)− r̂(~Se.~Sµ)

}
.~∇|ψ(~r)|2 d3~r . (C.7)

The integral in equation (C.7) can be split in two contributions,

I1 = −~Se.~Sµ

∫
1
r2

r̂.~∇|ψ(~r)|2 d3~r (C.8)

I2 =
∫

1
r2

(~Se.r̂)(~Sµ.~∇|ψ(~r)|2) d3~r (C.9)

from which I1 can be straightly evaluated if one considers the gradient in spherical coordinates,

~∇f = ∂f
∂r r̂ + 1

r
∂f
∂θ θ̂ + 1

r sin θ
∂f
∂φ φ̂ :

I1 = −~Se.~Sµ

∫
1
r2

r̂.r̂
∂(|ψ(~r)|2)

∂r
d3~r

= −~Se.~Sµ

∫ 2π

0

∫ π

0

∫ ∞

0

1
r2

∂(|ψ(~r)|2)
∂r

r2 sin θ dr dθ dφ

= −~Se.~Sµ

∫ 2π

0

∫ π

0
[|ψ(∞)|2 − |ψ(0)|2] sin θ dθ dφ

= 4π |ψ(0)|2 ~Se.~Sµ ; (C.10)

the integral is proportional to the electronic density at the muon’s position, independently of

any specific spatial dependence of the wavefunction. To compute the integral I2, on the other

hand, one needs some information about the spatial symmetry of the wavefunction ψ(~r). In the

following, we consider the three possible cases: (i) when the electronic cloud is isotropic, i.e.

ψ(~r) = ψ(r); (ii) when the electronic cloud is axially symmetric, meaning that ψ(~r) = ψ(r, θ)

whenever the symmetry axis coincides with the z -axis of the coordinate system; and finally (iii)

when ψ(~r) does not exhibit any type of symmetry.
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Isotropic wavefunction

If the electron wavefunction is isotropic, it only depends on the radial coordinate, and the

gradient of |ψ(~r)|2 is once again

~∇|ψ(~r)|2 =
∂(|ψ(r)|2)

∂r
r̂ ; (C.11)

since the radial unit vector r̂ is given in terms of the cartesian unit vectors x̂, ŷ and ẑ and the

spherical angles θ and φ by

r̂ = sin θ cosφ x̂ + sin θ sinφ ŷ + cos θ ẑ , (C.12)

the dot products inside the integral (C.9) can be evaluated to give (see the integration over the

r coordinate done in (C.10))

Iiso
2 =

∫
1
r2

(~Se.r̂)(~Sµ.r̂)
∂(|ψ(r)|2)

∂r
d3~r

= − |ψ(0)|2
∫ 2π

0

∫ π

0
(Sex sin θ cosφ + Sey sin θ sinφ + Sez cos θ)×

× (Sµx sin θ cosφ + Sµy sin θ sinφ + Sµz cos θ) sin θ dθ dφ ; (C.13)

when the product inside the integral is performed, the crossed factors SexSµy , SexSµz , etc will

multiply odd functions of φ and disappear upon the φ integration. One is left with

Iiso
2 = − |ψ(0)|2π

∫ π

0
(SexSµx sin3 θ + SeySµy sin3 θ + 2 SezSµz cos2 θ sin θ) dθ

= − |ψ(0)|2
(

SexSµx

4
3

+ SeySµy

4
3

+ 2 SezSµz

2
3

)

= −4π

3
|ψ(0)|2 ~Se.~Sµ ; (C.14)

the interaction energy is therefore

Eiso
µ,e =

µ0

4π
|γe|γµ (I1 + Iiso

2 )

=
µ0

4π
|γe|γµ

(
4π − 4π

3

)
|ψ(0)|2 ~Se.~Sµ

=
µ0

4π
|γe|γµ

8π

3
|ψ(0)|2 ~Se.~Sµ

=
2π

h̄
Aiso

~Se.~Sµ , (C.15)

where Aiso is known as the contact hyperfine coupling constant,

Aiso =
h̄

2π

µ0

4π
|γe|γµ

8π

3
|ψ(0)|2 , (C.16)
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due to the fact that a finite unpaired spin density is necessary at the muon’s position for the

interaction to exist. The interaction is accordingly called contact hyperfine interaction, or Fermi

contact interaction since Fermi was the first to infer its existence and derive the energy associated

to it. (C.15) may be cast in tensorial form as

Eiso
µ,e =

2π

h̄
~Se.




Aiso 0 0

0 Aiso 0

0 0 Aiso


 .~Sµ , (C.17)

showing that the hyperfine interaction tensor’s principal values A′xx, A′yy and A′zz all have the

same value, and are equal to Aiso.

Axially symmetric wavefunction

When the electronic distribution has an axially symmetric character, the wavefunction

will depend both on the radial distance r to the muon and the polar angle θ defined with its

symmetry axis. The probability density gradient in (C.9) is therefore

~∇|ψ(~r)|2 =
∂(|ψ(r, θ)|2)

∂r
r̂ +

1
r

∂(|ψ(r, θ)|2)
∂θ

θ̂, (C.18)

with the polar unitary vector θ̂ being given by

θ̂ = cos θ cosφ x̂ + cos θ sinφ ŷ − sin θ ẑ . (C.19)

Again, one evaluates the dot products in (C.10) to obtain

Iax
2 =

∫
1
r2

(~Se.r̂)(~Sµ.r̂)
∂(|ψ(r, θ)|2)

∂r
d3~r +

∫
1
r2

(~Se.r̂)(~Sµ.θ̂)
1
r

∂(|ψ(r, θ)|2)
∂θ

d3~r

= Iiso
2 +

∫ 2π

0

∫ π

0

∫ ∞

0
(Sex sin θ cosφ + Sey sin θ sinφ + Sez cos θ)×

× (Sµx cos θ cosφ + Sµy cos θ sinφ− Sµz sin θ)
1
r

∂(|ψ(r, θ)|2)
∂θ

sin θ dr dθ dφ ,

(C.20)

where the second integral, which we denote as Iax
3 , represents the dipolar contribution to the

hyperfine interaction arising from the non-isotropic shape of the wavefunction. Just as what

happened in the calculation of (C.14), the integration over φ eliminates all crossed terms in Iax
3 ,
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which becomes

Iax
3 = (SexSµx + SeySµy − 2SezSµz) π

∫ π

0

∫ ∞

0
sin2 θ cos θ

1
r

∂(|ψ(r, θ)|2)
∂θ

dr dθ

=
{
−1

2
(SexSµx + SeySµy) + SezSµz

}
×

× (−2π)
∫ π

0

∫ ∞

0
sin2 θ cos θ

1
r

∂(|ψ(r, θ)|2)
∂θ

dθ dr . (C.21)

It is customary to define a dipolar parameter D as (cp. (C.16))

D =
h̄

2π

µ0

4π
|γe|γµ (−2π)

∫ π

0

∫ ∞

0
sin2 θ cos θ

1
r

∂(|ψ(r, θ)|2)
∂θ

dθ dr , (C.22)

to write the interaction energy in the form

Eax
µ,e =

µ0

4π
|γe|γµ (I1 + Iax

2 ) =
µ0

4π
|γe|γµ (I1 + Iiso

2 + Iax
3 )

=
2π

h̄

(
Aiso

~Se.~Sµ + D

{
−1

2
(SexSµx + SeySµy) + SezSµz

})
; (C.23)

in a tensorial notation,

Eax
µ,e =

2π

h̄




~Se.




Aiso 0 0

0 Aiso 0

0 0 Aiso


 .~Sµ + ~Se.




−D
2 0 0

0 −D
2 0

0 0 +D


 .~Sµ




=
2π

h̄
~Se.




Aiso − D
2 0 0

0 Aiso − D
2 0

0 0 Aiso + D


 .~Sµ (C.24)

in which the quantity

D =




−D
2 0 0

0 −D
2 0

0 0 +D


 (C.25)

is the traceless dipolar tensor, and the total hyperfine interaction tensor is

A =




A′xx 0 0

0 A′yy 0

0 0 A′zz


 =




Aiso − D
2 0 0

0 Aiso − D
2 0

0 0 Aiso + D


 . (C.26)

Often, the perpendicular A⊥ and parallel A‖ hyperfine parameters

A⊥ = Aiso − D

2
(C.27)

A‖ = Aiso + D (C.28)
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are used to express the hyperfine interaction tensor; conversely,

Aiso =
A‖ + 2A⊥

3
(C.29)

D =
2
3
(A‖ −A⊥) . (C.30)

It is not difficult to show that the absolute sign of the dipolar parameter D distinguishes prolate-

shaped electronic distributions from oblate-shaped ones. If we consider (C.22), and suppose that

|ψ(r, θ)|2 is prolate, the partial derivative ∂(|ψ(r,θ)|2)
∂θ will be negative in the first θ quadrant and

positive in the second; the opposite happens with the product sin2 θ cos θ, which makes the

integrand of (C.22) to be negative over the full θ range of 0 to π. Since the integral is multiplied

by −2π, that will result in D having a positive value. For the case of an oblate distribution, the

only factor that changes in the integrand of (C.22) is ∂(|ψ(r,θ)|2)
∂θ , which will exhibit a symmetric

variation along θ; it starts with positive values in the first quadrant and moves to negative ones

in the second. The integrand will therefore be positive throughout all values of θ, resulting in a

negative value for D.

Fully anisotropic wavefunction

While isotropy leads to the three principal values of the hyperfine interaction tensor being

all equal, and axial symmetry to two of them still sharing the same value, in the case of a fully

anisotropic wavefunction the values of A′xx, A′yy and A′zz will all be different. The process used

to derive the expressions for A in the cases of isotropy and axial symmetry may be followed,

now using the full expression for the gradient of |ψ(r, θ, φ)|2,
~∇|ψ(~r)|2 =

∂(|ψ(r, θ, φ)|2)
∂r

r̂ +
1
r

∂(|ψ(r, θ, φ)|2)
∂θ

θ̂ +
1

r sin θ

∂(|ψ(r, θ, φ)|2)
∂φ

φ̂ (C.31)

and the relation between the azimuthal unitary vector φ̂ and x̂, ŷ and ẑ,

φ̂ = − sinφ x̂ + cosφ ŷ (C.32)

in (C.9). The algebra is somewhat irksome, and in the end a result resembling (C.23), but

bearing different weights in the products of the spin components, is obtained. Independently of

that, the total hyperfine tensor may always be written in a form similar to (C.26) by using the

parameters

Aiso =
A′xx + A′yy + A′zz

3
(C.33)

D =
2A′zz − (A′xx + A′yy)

3
(C.34)

η =
A′yy −A′xx

D
, (C.35)
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which relate to the principal values of the tensor by

A′xx = Aiso − D

2
(1 + η) (C.36)

A′yy = Aiso − D

2
(1− η) (C.37)

A′zz = Aiso + D . (C.38)
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Appendix D

Explicit expression of the Q matrix

Q =




0 ωµ −azx −azy −azz axy ayy ayz

0 azx azy azz −axx −axy −axz

0 −ayx −ayy −ayz axx axy axz

0 ωe −axz axy −ayz ayy −azz azy

0 axz −axx ayz −ayx azz −azx

0 −axy −axx −ayy ayz −azy azx

0 ωe ωµ

0 ωµ

0 ωµ

0 ωe

0

0

0 ωe

0

0




Notes about this expression:

i Only the upper triangle of Q is represented, since it is an antisymmetric matrix;

ii The geometry conventions of Chapter 3 are followed, namely that the external magnetic field is

applied along the z-axis;

iii ωµ and ωe are the Larmor frequencies of the positive muon and the electron in the applied field B:

ωµ = γµ B, ωe = −γe B;

iv The hyperfine tensor is represented in this expression by

A =
1
π




axx axy axz

ayx ayy ayz

azx azy azz


 .

239



240 APPENDIX D. EXPLICIT EXPRESSION OF THE Q MATRIX



Bibliography

[1] A.O. Abu-Hilal, A.M. Saleh and R.D. Gould, Materials Chemistry and Physics 94, 165-171 (2005)

[2] C.M. Aegerter and S.L. Lee, Appl. Mag. Res. 13, 75 (1997)

[3] N. Amar, R.D. Gould and A.M. Saleh, Vacuum 50, 53-56 (1998)

[4] C.D. Anderson and S.H. Neddermeyer, Phys. Rev. 50, 263 (1936)

[5] V.I. Arkhipov, E.V. Emelianova, P. Heremans and H. Bässler, Phys. Rev. B 72, 235202 (2005)
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