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ABSTRACT 

The growing problem of resistance to conventional antibiotics and the need to 

develop new compounds with original modes of action has stimulated interest in 

antimicrobial peptides (AMPs) as substitutable pharmaceuticals. AMPs are key 

components of the innate immune system of several organisms (from microorganisms to 

vertebrates), acting as the first line of host defense against pathogens. Amphibian skin 

secretions represent one of the richest natural sources of AMPs. Indeed, 50.6% of 

antibacterial peptides reported in the Antimicrobial Peptide Database 

(http://aps.unmc.edu/AP/main.php) come from amphibians. Thus, amphibian skin 

represents a good model for the identification of novel potent AMPs with therapeutic 

potential and for studying the mechanism of action of these peptides. 

The first aim of my Master 2 internship was to analyze the AMP content of frogs of 

the subfamily Hylinae which have been very poorly studied, and particularly those of the 

genus Trachycephalus which were not studied. Trachycephalus resinifictrix is a South 

American tree frog (family Hylidae, subfamily Hylinae) also referred to as Amazon Milk 

Frog because of its milky and poisonous secretions when threatened. Through bioguided 

fractionation of its skin secretions, antibacterial activity against Staphylococcus aureus 

was detected in HPLC fractions. We attempt to identify the active compounds by tandem 

mass spectrometry (MS/MS) on a fraction displaying high inhibitory bacterial growth 

activity. However, no sequence information was obtained due to insufficient material. 

The second aim was to characterize the structure and function of temporin-SHe, a 

small AMP (16 residues) from a North African ranid frog (Pelophylax saharica) that was 

recently identified by the host team by molecular cloning of the precursor. We have 

produced temporin-SHe by solid phase peptide synthesis and used circular dichroism to 

investigate its secondary structure. Our results indicated that temporin-SHe can adopt -

helical conformation when bound to negatively charged membranes, while no ordered 

structure (random coil) is observed for the peptide in solution. In contrast with many 

members of the Temporin family, temporin-SHe exhibited broad-spectrum antimicrobial 

activity with high potency against Gram-positive bacteria (including multiresistant 

Staphylococcus aureus) and yeasts (MIC = 1.5-12.5 µM), and to a lesser extent, toward 

Gram-negative bacteria and Candida (MIC = 25-60 µM). Interestingly, temporin-SHe was 

potent against the promastigote form of the human protozoan parasite Leishmania (IC50 

around 10 µM). A preliminary study using monocytes as mammalian cells revealed that 

temporin-SHe was more cytotoxic (LC50 = 21 µM) than temporin-SHd (LC50 = 66 µM). We 

have shown that bactericidal activity of temporin-SHe was correlated with membrane 

permeabilization of bacteria. Moreover, a strong disturbance of the membrane bilayer 

was induced upon interaction of the peptide with negatively charged phospholipid 

vesicles (differential scanning calorimetry studies). 

The short length, high potency, and broad-spectrum activity of temporins-SH, 

suggest them as good candidates for the development of therapeutic antimicrobial agents 

with new mode of action, although pharmacomodulation is needed to improve their 

therapeutic index (LC50/MIC ratio). To date, very few AMPs, including only four temporins 

(A, B, SHa and SHd), are active against parasites. Our results indicate that temporin-SHe 

represents a valuable additional tool for understanding the antiparasitic mechanism of 

action of AMPs, which still remains unknown.  

Keywords: Amphibians, antimicrobial peptides, bioguided fractionation, temporin-SHe, 

structure/activity/mechanism. 

http://aps.unmc.edu/AP/main.php


RESUMO 

 O problema da resistência aos antibibióticos convencionais e a necessidade de 

desenvolver novos compostos com diferentes modos de ação, têm estimulado o interesse 

em péptidos antimicrobianos (PAMs) como possíveis pharmacêuticos de substituição. Os 

PAMs são componentes-chave do sistema imunitário inato de vários organismos agindo 

como a primeira linha de defesa contra patogénios. As secreções de pele dos anfíbios 

representa uma fonte rica em PAMs. De facto, segundo a base de dados Antimicrobial 

Peptide Database (http://aps.unmc.edu/AP/main.php), 50,6% dos péptidos 

antibacterianos provêm de anfíbios.  Assim, a pele de anfíbio representa um ótimo 

modelo para a identificação de novos PAMs com potencial terapêutico e para estudar o 

mescanismo de ação destes. 

 O primeiro objetivo da minha tése de mestrado era analisar o conteúdo em PAMs 

a partir de Trachycephalus resinifictrix, uma rã arborícola da América do Sul (família 

Hylidae, subfamília Hylinae) pertencente ao género Trachycephalus, e que nunca foi 

estudada. Através do fracionamento bioguiado das suas secreções, uma actividade 

antibacteriana contra Staphylococcus aureus foi detectada em frações de HPLC. Por 

espectrometria de massa em tandem (MS/MS) numa fração de HPLC que mostrava uma 

potente actividade antibacteriana,  tentamos identificar os compostos ativos. No entanto, 

devido à fraca quantidade de material nenhuma informação de sequência foi obtida.  

 O segundo objetivo era a caracterização estrutural e funcional da temporin-SHe, 

um pequeno PAM (16 resíduos) proveniente da rã Norte Africana Pelophylax saharica  

(família Ranidae), identificado recentemente pela equipa por clonagem molecular do 

precursor. Este péptido foi sintetizado em fase sólida e a técnica de dicroísmo circular foi 

utilizada para investigar a sua estrutrura secundária. Os nossos resultados indicam que a 

temporin-SHe adota uma estrutura em hélice- quando associada a membranas 

carregadas negativamente, sendo não estrurada em solução. Em contraste com outros 

membros da família das Temporins, a temporin-SHe exibiu um largo espectro 

antimicrobiano com uma elevada atividade contra bactérias Gram-positivas (incluindo 

Staphylococcus aureus multiresistentes) e leveduras (CMI = 1,5-12,5 µM), e em menor 

extensão, contra bactérias Gram-negativas e Candida (CMI = 25-60 µM). De maneira 

interessante, a temporin-SHe mostrou-se também ativa contra a forma promastigote do 

parasita Leishmania (IC50 à volta de 10 µM). Um estudo preliminar usando monócitos 

como células mamíferas revelou que a temporin-SHe era mais citotóxica (LC50 = 21 µM) 

que a temporin-SHd (LC50 = 66 µM). Mostramos igualmente que a atividade bactericida 

da temporin-SHe estava correlacionada com a permeabilização da membrana bacteriana. 

Adicionalmente, uma forte perturbação da camada lipídica foi induzida após interação do 

péptido com vesículas phospholipídicas carregadas negativamente. 

 O pequeno tamanho, a elevada potência, e o largo espectro de atividade das 

temporins-SH, suggerem-nas como potentes candidatos para o desenvolvimento de 

agentes terapêuticos com novos modos de ação, embora seja necessário amelhorar o 

índice terapêutico (razão LC50/CMI). Presentemente, pouco PAMs, incluindo somente 4 

temporins (A, B, SHa e SHd) são ativos contra os parasitas. Os nossos resultados 

indicam que a temporin-SHe representa uma ferramenta adicional valiosa para a 

compreensão do mecanismo de ação anti-parasitário dos PAMs, que ainda permanece 

desconhecido. 

 

Palavras-Chave: Anfíbios, péptidos antimicrobianos, fracionamento bioguiado, 

temporin-SHe, estrutura/atividade/mecanismo. 

http://aps.unmc.edu/AP/main.php


 
1 

 

INDEX 

ABBREVIATIONS                                                                                                          3 

INTRODUCTION                                                                                                           5 

1. CLASSIFICATION OF AMPHIBIANS                                                                                                                                       6 

2. DERMAL GLANDS OF AMPHIBIANS                                                                                                                                    7 

3. ANTIMICROBIAL PEPTIDE BIOSYNTHESIS IN AMPHIBIAN SKIN                                                                                    8 

4. STRUCTURES OF AMPHIBIAN ANTIMICROBIAL PEPTIDES                                                                                           11 

5. MECHANISM OF ACTION OF ANTIMICROBIAL PEPTIDES                                                                                            12 

5.1. MEMBRANE COMPOSITION                                                                                                                       14 

5.2. BARREL-STAVE MODEL                                                                                                                             16 

5.3. CARPET MODEL                                                                                                                                            17 

5.4. TOROIDAL MODEL OR WORMHOLE MECHANISM                                                                               18 

6. ANTIMICROBIAL PEPTIDES FROM HYLID AND RANID FROGS                                                                                    19 

6.1. AMPS FROM FROGS BELONGING TO THE FAMILY HYLIDAE                                                         19 

6.2. AMPS FROM FROGS BELONGING TO THE FAMILY RANIDAE                                                         22 

7. PURPOSE OF THE STUDY                                                                                                                                                    25 

MATERIALS AND METHODS                                                                                  26 

8. ANALYSIS OF ANTIMICROBIAL PEPTIDES FROM SKIN SECRETIONS OF T. RESINIFICTRIX AND MOLECULAR 

CLONING OF AMP CDNA PRECURSORS                                                                                                                                 26 

COLLECTION OF SKIN SECRETIONS AND PRE-PURIFICATION OF PEPTIDES                                           26 

REVERSED-PHASE HPLC (RP-HPLC) FRACTIONATION OF SKIN SECRETIONS                                   26 

ANTIMICROBIAL ASSAYS                                                                                                                                       27 

MASS SPECTROMETRY ANALYSIS OF ANTIBACTERIAL HPLC FRACTIONS                                           28 

ISOLATION OF MRNA AND REVERSE TRANSCRIPTION                                                                                28 

PCR                                                                                                                                                                              29 

CLONING OF PCR PRODUCTS INTO PGEM-T EASY VECTOR                                                                     30 

PLASMID DNA PURIFICATION AND DETERMINATION OF THE INSERT SIZE                                          32 

9. STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF TEMPORIN-SHE                                                           33 

SOLID PHASE PEPTIDE SYNTHESIS                                                                                                                      33 

PREPARATION OF MULTILAMELLAR AND LARGE UNILAMELLAR VESICLES                                        35 



 
2 

 

CIRCULAR DICHROISM SPECTROSCOPY                                                                                                            35 

ANALYSIS OF PEPTIDE-LIPID INTERACTION BY DIFFERENTIAL SCANNING CALORIMETRY             36 

PERMEABILIZATION ASSAY                                                                                                                                  37 

TIME KILLING ASSAY                                                                                                                                              38 

RESULTS                                                                                                                       39 

ANALYSIS OF SKIN SECRETIONS OF T. RESINIFICTRIX                                                                                  39 

CDNA CLONING OF AMP PRECURSORS FROM SKIN SECRETIONS OF T. RESINIFICTRIX                    43 

STRUCTURAL AND FUNCTIONAL CHARACTERIZATION OF TEMPORIN-SHE                                         44 

SYNTHESIS AND PURIFICATION OF TEMPORIN-SHE                                                                                     45 

SECONDARY STRUCTURE OF TEMPORIN-SHE                                                                                                45 

INTERACTION OF TEMPORIN-SHE WITH ANIONIC MODEL MEMBRANES                                                48 

ANTIMICROBIAL AND CYTOTOXIC ACTIVITIES OF TEMPORIN-SHE                                                        49 

PERMEABILIZATION OF THE BACTERIAL CYTOPLASMIC MEMBRANE                                                     50 

TIME-DEPENDENT KILLING OF GRAM-NEGATIVE AND GRAM-POSITIVE BACTERIA                          52 

DISCUSSION                                                                                                                 54 

CONCLUSION                                                                                                              58 

REFERENCES                                                                                                              59 

  



 
3 

 

ABBREVIATIONS 

ACN: Acetonitrile 

AMPs: Antimicrobial peptides 

APD: Antimicrobial Peptide Database (http://aps.unmc.edu/AP/main.php) 

BHI: Brain heart infusion 

CD: Circular dichroism 

CFU: Colony-forming unit 

CL: Cardiolipin 

DEPC: Diethylpyrocarbonate 

DMPC: Dimyristoyl phosphatidyl choline 

DMPG: Dimyristoyl phosphatidyl glycerol 

dNTPs: Deoxynucleotide triphosphates 

DPC: Dodecylphophocholine 

DRP: Dermaseptin-related peptide 

DRS: Dermaseptin 

DSC: Differential scanning calorimetry 

HIV: Human immunodeficiency virus 

IPTG: Isopropyl β-D-1-thiogalactopyranoside 

LB: Luria-Bertani 

LPS: Lipopolysaccharides 

LUVs: Large unilamellar vesicles 

MALDI-TOF: Matrix-assisted laser desorption/ionization-time of flight 

MH: Mueller-Hinton 

MIC: Minimal inhibitory concentration 

MLVs: Multilamellar vesicles 

MMLV: Moloney-Murine Leukemia Virus 

MS/MS: Tandem mass spectrometry 

ONP: Ortho-nitrophenol 

ONPG: Orthonitrophenyl-β-D-galactopyranoside, 

PBS: Phosphate buffered saline 

PC: Phosphatidylcholine 

PCR: Polymerase chain reaction 

http://aps.unmc.edu/AP/main.php
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PE: Phosphatidylethanolamine 

PG: Phosphatidylglycerol 

PS: Phosphatidylserine 

RP-HPLC: Reversed-phase high performance liquid chromatography 

SDS: Sodium dodecyl sulphate 

SM: Sphingomyelin 

SOC: Super optimal broth (SOB) with catabolite repression (glucose) 

ST: Sterols 

TFA: Trifluoroacetic acid 

TIS: Triisopropylsilane 

UTR: Untranslated region 

X-Gal: 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

YPD: Yeast Peptone Dextrose 
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INTRODUCTION 

 Disease-causing microbes that have become resistant to antibiotic drug therapy 

are an increasing public health problem. Therefore, there is an urgent need to develop 

new antibiotic lead compounds with original modes of action. Antimicrobial peptides 

(AMPs) have raised much interest as a promising class of novel therapeutic agents and a 

possible alternative to conventional antibiotics. 

AMPs are innate immune effectors produced by several organisms, including 

microorganisms, insects, plants and vertebrates. They kill rapidly a broad spectrum of 

microorganisms (Gram-negative and Gram-positive bacteria, fungi, protozoa, yeasts and 

enveloped viruses) by acting through a non-receptor-mediated membrane lytic 

mechanism that limits the induction of microbial resistance [1]. AMPs also operate as 

immunomodulators through direct interactions with host cells and modulation of the 

inflammatory/immune processes (cytokine release, angiogenesis, chemotaxis, wound 

healing, cell proliferation…) [2, 3]. 

Amphibian skin secretions are one of the richest sources of natural broad-

spectrum antimicrobial peptides. Approximately 40% of AMPs reported in The 

Antimicrobial Peptide Database (APD, http://aps.unmc.edu/AP/main.php) [4] belong to 

amphibians. Several other pharmacologically active compounds are also present in the 

amphibian skin such as biogenic amines, bufogenines, steroids, alkaloids, peptides and 

proteins [5, 6]. Many of the amphibian peptides have their counterparts in tissues with 

the same embryonic-ectodermal origin, such as mammalian gastrointestinal tract and 

brain, leading to the concept of the existence of a brain-gut-skin peptide triangle 

(reviewed in [7]). The basis of this hypothesis is that a peptide found in one of these 

compartments (amphibian skin, mammalian brain or gut) should also be present in the 

other two, with a similar or identical structure [8]. This observation has provided further 

stimulus to the study of frog-skin peptides [7], and particularly AMPs which has 

prompted an interest over the last few decades.  

http://aps.unmc.edu/AP/main.php
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1. Classification of amphibians 

 

Amphibia is a class of tetrapod vertebrates that contains about 6771 living species 

already described and distributed among three orders, including Anura (frogs and toads, 

5966 species), Caudata (salamanders, 619 species) and Gymnophiona (caecilians, 186 

species) [9, 10]. The first one is divided into 49 families, which are themselves divided 

into subfamilies (figure 1) [9].  

  

Figure 1: Brief classification of amphibians belonging to the order Anura. Only 

some subfamilies (Rana, Phyllomedusinae, Pelodryadinae and Hylinae) are 

represented. 

http://research.amnh.org/vz/herpetology/amphibia/?action=references&id=32214
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2. Dermal glands of amphibians 

 

Amphibians have established the transition between aquatic and terrestrial 

environments due to a gradual acquisition of a set of physiological and morphological 

adaptations, such as the presence of a highly specialized integument – the skin [10]. 

The anuran skin exhibits morphofunctional diversity adapted to a number of 

adverse factors present in the species habitat environment [11]. Generally, the frog skin 

contains three types of cutaneous glands (figure 2), which differ in size, distribution and 

secretory activity [12, 13]. The lipid glands (figure 2 A) promote the 

impermeabilization of the skin in order to decrease water loss and are localized mostly 

in the dorsal and dorsolateral regions [12]. The mucous glands (figure 2 A), which 

usually are smaller and more numerous, secrete mucins in order to maintain skin 

lubrification, moisture and thermoregulation and to prevent mechanical damage [5, 13, 

14]. For some amphibians, these glands are also involved in reproduction and defense 

(reviewed in [14]) and are fairly abundant in the ventral surface skin [12]. The third type 

of glands is the serous or granular glands (also called venom glands) (figure 2 A-C) 

formed by syncytial cells, with the nuclei located at the periphery of the syncytium [7]. 

These glands are widely distributed on the dorsal/dorsolateral cutaneous region and are 

responsible for the synthesis and storage of a wide range of noxious or toxic compounds 

which provide protection against bacterial and fungal infections, as well as predators 

[12, 14]. Their cytoplasm is rich of peptide-containing secretory granules, which fill the 

totality of the gland (figure 2 B). Upon external stimuli, a massive granule discharge is 

induced by a holocrine-like mechanism involving the contraction of myoepithelial cells 

surrounding the glands (figure 2 C) [7, 11]. Approximately 15 days are needed to refill 

the gland with secretory granules.  
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3. Antimicrobial peptide biosynthesis in amphibian skin 

 

AMPs are synthesized as prepropeptides (ribosomal pathway) in the multi-nucleated 

cells of the granular glands of the skin (figure 3) [17]. The canonical precursor architecture 

comprises a common N-terminal preprosequence that is remarkably well conserved both 

within and between species and a C-terminal region corresponding to the mature AMP 

progenitor sequence that varies markedly. The conserved region contains a signal peptide 

followed by an acidic intervening sequence that ends in a typical prohormone processing 

signal Lys-Arg (KR) [17, 18]. The signal sequence is necessary to correctly target the 

precursor to the rough endoplasmic reticulum. After its elimination by a signal 

peptidase in the endoplasmic reticulum lumen, post-translational modifications 

(proteolytic processing, C-terminal amidation, amino acid isomerization…) occur in the 

Figure 2: Representation of dermal glands of amphibians. A) Scheme of dermal 

glands from the skin of Phyllomedusa bicolor showing the three types of glands 

(mucous, lipid and serous) [15]. B-C) Light microscope observations of serous 

cutaneous gland from Trachycephalus venulosa. B) The entire syncytial cytoplasm is 

filled with dense secretory granules. C) Serous depletion of the secretory granules after 

external stimuli, indicating a massive granule discharge (adapted from [16]). 
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trans-Golgi and the secretory granules to release the AMP progenitor sequence from the 

precursor and to yield the biologically active AMP [18-21]. 

The pattern of conserved and variable regions in skin antimicrobial peptide 

precursors is the opposite of that of conventional secreted peptides, suggesting that the 

conserved preproregion is important for the biology of the expressing cell [22]. 

 

 

Moreover, this pattern makes the precursors of AMPs belonging to the 

dermaseptin superfamily one of the most extreme examples observed to date for 

homologous gene products within a single order of organisms. The conservation is not 

limited to the coding region of the corresponding mRNAs but also extends into the 5'- 

and 3'-untranslated regions [23]. This reinforces the existence for theses precursors of a 

high sequence conservation surrounded by a region of high sequence variability [24]. 

Most of the AMPs from ranid and hylid frogs are preprodermaseptin-derived 

products (figure 4), such as for example, the brevinin-1 and -2 families, esculentins-1 

and -2, ranatuerins-1 and -2, ranalexins and temporins (frogs of the family Ranidae), 

and dermaseptins B, dermaseptin-related peptides (DRP), phylloxins, dermatoxins and 

caerins (frogs of the family Hylidae) (reviewed in [22]). Interestingly, 

preprodermaseptins from hylid frogs also encode non-antimicrobial peptides, such as 

dermorphins, deltorphins and dermenkephalins, opioid heptapeptides containing a D-

amino acid residue, which are very potent and specific agonists of μ or δ-opioid 

receptors [25]. The high similarity of preproregions of precursors that result in 

structurally diverse end-products in distantly related amphibians suggests that the 

corresponding genes all came from a common ancestor [23]. 

Figure 3: Schematic representation of amphibian AMP precursor. This precursor contains a 

highly conserved N-terminal region (signal sequence and acidic sequence) and a variable C-

terminal region corresponding to the AMP progenitor sequence. The mature AMP is released 

after proteolytic processing at the dibasic amino acid site (KR) and can undergo post-

translational modifications, such as C-terminal amidation for example. 
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Targeted hypermutation of the C-terminal antimicrobial-coding region of 

preprodermaseptin genes might have evolved as a way of increasing genetic diversity and 

so accelerating the adaptation of frogs to noxious microbial fauna with a maximum 

protection against a large range of pathogens [17, 24]. 

Figure 4: Conserved preproregion and hypervariable antimicrobial domain of preprodermaseptins. 
Alignment of the predicted amino acid sequences (single-letter code) of preprodermaseptin cDNAs obtained from 

hylid and ranid frogs, including the signal sequence, the acidic propiece and the antimicrobial peptide progenitor 

sequence. Gaps (-) have been introduced to maximize sequence similarities. Identical (black background) and 

similar (shaded background) amino acid residues are highlighted. Among the hylid sequences, DRS, dermaseptin B 

from P. bicolor, DRP, dermaseptin-related peptide (appended with AA, AC or PD to indicate that the sequences 

were identified from A. annae, A. callidryas and P. danicolor, respectively). Among the ranid sequences, temporins 

B, H and G and brevinins 2Ta and 2Tb are from R. temporia, brevinins 1E and 2Ef and esculentin 1B from R. 

esculenta, ranalexin from R. catesbeiana, gaegurins 4 and 5 from R. rugosa, and ranatuerin-2P and 2Pa from R. 

pipiens. Raninae, Pelodryadinae and Phyllomedusinae are subfamilies belonging to the family Ranidae (the first 

one) and the family Hylidae (the other two).  (adapted from [24]). 
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4. Structures of amphibian antimicrobial peptides 

 

Natural amphibian skin antimicrobial peptides comprise between 8 and 100 amino 

acid residues and usually have a net positive charge at physiological pH (ranging from 

+1 to +30) due to the presence of multiple lysine and arginine residues [4, 26-28]. These 

molecules are hydrophobic and usually amphipathic, with a hydrophobic face 

containing non-polar amino acid side-chains and a hydrophilic face with polar and 

positively charged residues [27, 28]. 

 

Amphibian AMPs belong mainly to these two structure classes: 

 

 Linear α-helical peptides without cysteine residues - These AMPs are 

unstructured in aqueous solutions whereas they have the propensity to form an 

amphipatic α-helix in the presence of phospholipid vesicles or in a membrane-

mimetic solvent such as sodium dodecyl sulphate (SDS) micelles [29, 30]. For 

example, magainins (from Xenopus), caerins (from Litoria) and dermaseptins 

(from Phylomedusa) belong to this structural class (figure 5) [29, 31]. 

 

 

  

Figure 5: α-helical structure of magainin 2 (A) and caerin 1.1 (B) bound to dodecylphosphocholine 

(DPC) micelles.  Hydrophobic amino acids are colored in shades of green (Phe, Trp in green; Ile, Val, 

Leu in dark green; Ala in pale green), cationic residues are indicated in blue and anionic residues are 

shown in red [31]. 



 
12 

 

 Peptides with -hairpin-like structure and cysteine residues - These AMPs 

contain a C-terminal loop stabilized by an intramolecular disulfide bond. This 

region is also called “Rana box” because many such structured AMPs are 

present in ranid frogs, like esculentins, ranalexins, brevinins and gaegurins, for 

example (figure 6) [29, 31, 32]. Like α-helical peptides, these AMPs are 

unfolded in aqueous solutions but the N-terminal can adopt an amphipathic α-

helical conformation in hydrophobic environments, depending on the size of this 

segment and its hydrophobicity [32, 33]. 

 

5. Mechanism of action of antimicrobial peptides 

 

AMPs from amphibians exhibit a broad-spectrum activity and can kill aerobic and 

anaerobic Gram-positive and Gram-negative bacteria, yeast, filamentous fungi, 

protozoa, viruses and tumor cells (Table 1). These peptides may have synergistic 

effects, which increase their effectiveness, and also hemolytic activity [32]. Today, 

there are 1997 antimicrobial peptides reported in the database APD, of which 1601 are 

antibacterial (80.17%) (Table 1) with approximately 50% coming from amphibians 

(figure 7) [4].  

 

Figure 6: Solution structure of gaegurin-4 in 80 % deuterated 

methanol. Hydrophobic amino acids are colored in shades of green (Phe, 

Trp in green; Ile, Val, Leu in dark green; Ala in pale green), cationic 

residues are indicated in blue and anionic residues are shown in red. The 

C-terminal disulfide bond is colored in gold. Note that the N-terminal has 

a -helical conformation [31]. 
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Table 1: Biological activities of AMPs. There are 1997 AMPs reported in the Antimicrobial 

Peptide Database (APD) with 80.17% being antibacterial. Total percentage is above 100% due 

to the fact that an AMP may have several activities (i.e. antibacterial, antifungal and antiviral for 

example) [4]. 

 

AMPs reported in the Antimicrobial Peptide Database (APD) 

Activity Number Percentage 

Antibacterial peptide 1601 80.17% 

Antifungal peptide 698 34.95% 

Antiviral peptide 122 6.10% 

Anticancer peptide 140 7.01% 

 

50.6%

12.5%

17.1%

10.2%

9.6%

Sources of antibacterial peptides

Amphibian

Insect

Plant

Bacteria

Others

  

Figure 7: The different sources of antibacterial peptides.  A great 

part (50.6%) comes from amphibians [4]. 
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The exact mechanism by which AMPs exert their killing actions is not 

completely understood, but a common property is their interaction with the 

phospholipids of the cytoplasmic membrane, leading to permeabilization and 

subsequently lysis of the cell [33]. However, how AMPs can selectively distinguish 

between microbial and host cytoplasmic membranes? 

 

5.1. Membrane composition 

 

The biological membrane is a fluid structure with various proteins embedded in or 

attached to a bilayer of phospholipids (fluid mosaic model). In some organisms like 

eukaryotes, sterols and glycerides also contribute to the topology surface and 

biochemical architecture of biomembranes [26]. Differences between microbial and host 

membranes exist. In fact, bacterial membranes are predominantly composed of 

negatively charged phospholipids, such as phosphatidylglycerol (PG), cardiolipin (CL) 

or phosphatidylserine (PS), which gives to whole membrane an electronegative net 

charge [26]. In addition, the outer surface of Gram-negative and Gram-positive bacteria 

contains lipopolysaccharides (LPS) and acidic polysaccharides (teichoic acids), 

respectively, that enhance the electronegative charge of biomembranes (rewieved in 

[34]). In contrast, mammalian cytoplasmic membranes have usually a neutral net charge 

because they are mainly composed of zwitterionic phospholipids, such as 

phosphatidylethanolamine (PE), phosphatidylcholine (PC) or sphingomyelin (SM), as 

well as sterols (cholesterol) [26]. In figure 8, we can see that phospholipid composition 

and asymmetry of the cytoplasmic membrane differ considerably between 

microorganisms and mammalian cells. Since AMPs are mostly cationic and bind 

preferentially to anionic lipids, these differences are believed to account for the 

molecular basis of the affinity/selectivity (microorganism versus host cells) of AMPs 

[26, 35]. 
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Another important factor for the selectivity of AMPs toward microbial cells is the 

transmembrane potential (Δψ), an electrochemical gradient determined by extents and 

rates of proton flux across the membrane [26]. Normal mammalian cells exhibit a Δψ 

ranging from -90 to -110 mV, whereas a Δψ of -130 mV to -150 mV is observed for 

bacteria in logarithmic phase growth [26]. 

As a result, antimicrobial activity and selective toxicity of a peptide against 

pathogens is determined by a complex interaction between parameters such as 

conformation, charge, hydrophobicity and amphipathicity [26]. 

Several studies on both live organisms and model membranes have indicated that 

most AMPs induce plasma membrane permeabilization by mechanisms involving the 

formation of transmembrane pores (barrel-stave and wormhole models) or micellization 

of the cytoplasmic membrane by a detergent-like action (carpet model). 

 

  

Figure 8: Comparative architecture of microbial and mammalian cytoplasmic 

membranes. The relative composition and distribution between inner and outer membrane 

leaflets are indicated for cytoplasmic microbial (E. coli, S. aureus, B. subtilis, C. albicans) and 

mammalian (human erythrocyte) membranes. CL: cardiolipin; PG: phosphatidylglycerol; PE: 

phosphatidylethanolamine; PC: phosphatidylcholine; SM: sphingomyelin and ST: sterols 

(cholesterol or ergosterol). (adapted from [26]). 
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5.2. Barrel-stave model 

 

The barrel-stave mechanism describes the formation of transmembrane 

channels/pores by bundles of amphipathic α-helices peptides, where their hydrophobic 

surfaces interact with the lipid core of the membrane and their hydrophilic surfaces 

point inward, producing an aqueous pore (figure 9) [36]. Initially, AMP binds to the 

membrane surface, promoting the transition of the peptide from the random coil to the 

α-helical conformation (figure 9 A). When bound peptide achieves a threshold 

concentration, peptides monomers insert into the hydrophobic core of the membrane 

bilayer, occurring a progressive recruitment of additional monomers to increase the pore 

size (figure 9 B) [26].  

 

Since these peptides can insert into the hydrophobic core of the membrane, it is 

logical to presume that such interaction is determined predominantly by hydrophobic 

interactions [36]. 

 

Figure 9: The barrel-stave model. AMPs (either as monomers or oligomers) interact with the 

membrane and assemble on the surface (A), then insert into the lipid bilayer to form 

transmembrane pores following recruitment of additional AMP molecules (B). The hydrophobic 

peptide faces align with the lipid core region and the hydrophilic peptide faces form the interior 

region of the pore. Hydrophilic and hydrophobic faces of the peptide are shown colored red and 

blue, respectively [34].  
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5.3. Carpet model 

 

Carpet mechanism or detergent-like mechanism, as the name suggests, is a 

mechanism by which cytoplasmic membrane micellization occurs after action of AMPs 

(figure 10). Initially, the cationic AMP targets the membrane via electrostatic 

interactions with the anionic phospholipid headgroups, covering the surface in a carpet-

like manner (figure 10 A) [29]. When a threshold concentration of peptide is reached, 

changes in membrane fluidity and/or reductions in membrane barrier properties are 

observed, leading to the loss of membrane integrity (figure 10 B), and consequently the 

formation of micelles (figure 10 C) [26]. In contrast to the barrel-stave model, this 

mechanism does not require a specific peptide structure [37]. Therefore, membrane lysis 

takes place in a dispersion-like manner that does not engage insertion of peptides into 

the hydrophobic core of the membrane, and consequently pore formation [26, 36]. 

 

 

  

Figure 10: The carpet model. AMPs reach the membrane either as monomers or oligomers, and 

then bind to the surface of the membrane with their hydrophobic regions facing the membrane and 

their hydrophilic regions facing the solvent (A). When a threshold concentration is reached, the 

membrane is permeabilized (B) and membrane lysis occurs with formation of micelles (C). 

Hydrophilic and hydrophobic faces of the peptide are shown colored red and blue, respectively  

[34]. 
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5.4. Toroidal model or wormhole mechanism  

  

This model involves both carpeting and pore formation [3], the main difference 

being the intercalation between lipids and peptides in the transmembrane channel 

(figure 11) [26]. The α-helical AMP adheres to the outer leaflet membrane, being firstly, 

oriented parallel to the membrane surface [26]. Once a threshold concentration is 

reached, peptides begin to self-associate and orient perpendicular to the membrane 

surface, inducing a positive curvature of the membrane and the formation of a mixed 

phospholipid-peptide toroidal pore where the hydrophilic face of the peptide remains 

associated with the polar headsgroups of the phospholipids [38]. Upon dissolution of the 

pore, in certain cases, peptides can be translocated into the cytoplasm of the target cell 

where they can interact with potential intracellular targets [3, 26]. This model differs 

from the barrel-stave model as the peptides are always associated with the lipid head 

groups even when they are perpendicularly inserted in the lipid bilayer [39]. 

 

 

 

 

  

Figure 11: The toroidal or 

wormhole model. The attached 

peptides aggregate and induce 

the lipid monolayers to bend 

continuously through the pore so 

that the water core is lined by 

both the inserted peptides and 

the lipid head groups. 

Hydrophilic and hydrophobic 

regions of the peptide are shown 

colored red and blue, 

respectively [29]. 
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In any case, the final result is the permeabilization of the cytoplasmic membrane, 

and several events can happen like membrane depolarization, outflow of essential 

metabolites, loss of compositional specificity, exchange with the inner leaflet of the 

outer membrane, translocation of the peptides to the cytoplasmic side of the membrane 

where they can interfere with cellular mechanisms, as well as components (reviewed in 

[40]). All this processes lead to lysis of pathogens [20]. 

Thus, since AMPs are cidal by targeting the membrane of microorganisms and 

inducing permeabilization/disruption, it is very difficult for pathogens to develop 

resistance toward these molecules. This would require a change of the composition 

and/or organization of the lipid membrane, a probably too expensive solution for the 

majority of microorganisms [3]. In relation to conventional antibiotics, pathogens 

become resistant because these drugs act on specific intracellular targets without 

altering deeply their morphology [26]. 

 

6. Antimicrobial peptides from hylid and ranid frogs 

 

6.1. AMPs from frogs belonging to the family Hylidae  

 

Numerous AMPs were identified from different amphibian families. In the present 

work, we will focus on frogs of the family Hylidae (subfamily Hylinae) and also 

Ranidae. 

 

The family Hylidae is composed of three subfamilies (Table 2 and 3) [9]: 

 

 Phyllomedusinae, containing 58 species identified today that are divided into 5 

genera: Agalychnis, Cruziohyla, Phasmahyla, Phrynomedusa and Phyllomedusa 

(Table 2) [9]; 

 Pelodryadinae, comprising 197 species and only one genus: Litoria (Table 2) 

[9]; 

 Hylinae, containing 646 species and divided into 40 genera. We will pay more 

attention to the following genera: Hyla, Pseudis, Hypsiboas and Trachycephalus 

(Table 3) [9].  
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Phyllomedusinae and Pelodryadinae are the most well-studied hylid subfamilies 

with more than 80 and 50 AMPs, respectively, identified and characterized (Table 2) 

[4]. Conversely, very few AMPs were isolated from Hylinae frogs. Indeed, only 8 

AMPs were identified from the genera Pseudis, Hyla and Hypsiboas (Table 3) and no 

information on the precursor sequences is available. This is very surprising considering 

the large number of species in this subfamily.  

 

Table 2: Phyllomedusinae and Pelodryadinae subfamilies (Hylidae family). The different 

genera and the different AMPs families are given. An example of a representative member of 

each AMP family is indicated with its amino acid sequence. As an example, the sequence of the 

dermaseptin B2 is represented for the Dermaseptin family. For the genus Litoria, a non-

exhaustive list of AMP families was provided. Amide: C-terminal amidation.  

 

Seven AMP families that are structurally and functionally distinct were 

characterized from hylid frogs belonging to the subfamily Phyllomedusinae. For 

example, AMPs from dermaseptin family share a conserved tryptophan (W) residue at 

position 3 and an AA(A/G)KAAL(G/N)A consensus motif in the midregion. 
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Sequence 
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a
e Agalychnis 

Cruziohyla 

Phasmahyla 

Phrynomedusa 

Phyllomedusa 

Dermaseptins B2 GLWSKIKEVGKEAAKAAAKAAGKAALGAVSEAV  [41]  

Phylloseptins L1 LLGMIPLAISAISALSKLamide  [42] 

Plasticins B1a GLVTSLIKGAGKLLGGLFGSVTGamide  [43] 

Dermatoxins B1 SLGSFLKGVGTTLASVGKVVSDQFGKLLQAGQ  [44] 

Phylloxins B1 GWMSKIASGIGTFLSGMQQamide  [45] 

Hyposins H1 LRPAVIRPKGKamide  [46] 

Orphan 

peptides 

Dermaseptin 

S9 
GLRSKIWLWVLLMIWQESNKFKKM  [47] 

P
el

o
d

ry
a
d

in
a
e 

Litoria 

Aureins 1.2 GLFDIIKKIAESFamide  [48] 

Caerins 1.1 GLLSVLGSVAKHVLPHVVPVIAEHLamide  [49] 

Citropins 1.1 GLFDVIKKVASVIGGLamide  [50] 

Dahleins 1.1 GLFDIIKNIVSTLamide  [51] 

Maculatins  1.1 GLFGVLAKVAAHVVPAIAEHFamide  [52] 

  (…)    
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Conversely, orphan peptides family does not resemble any members of the other 

peptides families [53]. 

 

 

Table 3: Hylinae subfamily (Hylidae family). Only 4 of the 40 genera are referenced in the 

present table with all the AMP families identified until today. Amide: C-terminal amidation. 
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Pseudis 

(9 sp.) 
Pseudins 

1 GLNTLKKVFQGLHEAIKLINNHVQ 

[54] 
2 GLNALKKVFQGIHEAIKLINNHVQ 

3 GINTLKKVIQGLHEVIKLVSNHE 

4 GINTLKKVIQGLHEVIKLVSNHA 

Hyla 

(35 sp.) 

Hylaseptins P1 GILDAIKAIAKAAGamide [55] 

Hylains 
1 

2 

GILDAIKAFANALGamide 

GILDPIKAFAKAAGamide 
[56] 

Hypsiboas 

(84 sp.) 
Hylins a1 IFGAILPLALGALKNLIKamide [57] 

Trachycephalus 

(12 sp.) 
                ?  

 

As stated earlier, AMPs have a broad-spectrum activity, which can be interesting 

for therapeutic use. In fact, besides having bactericidal, as well as fungicidal activities, 

many AMPs have antitumor activity against the major human cancer cell lines and also 

antidiabetic and antiviral properties [30, 58, 59]. For example, among AMPs listed in 

Table 2, dermaseptin B2 [58], phylloseptin L1 [42], aurein 1.2 [48], caerin 1.1, citropin 

1.1 and maculatin 1.1 [60] are potent antineoplasic peptides. The recognition of 

cancerous cells from healthy cells is not fully understood. However, many processes 

have been proposed, such as changes in membrane potential due to higher metabolism, 

higher exposure of acidic phospholipids in the outer leaflet of membrane, cytoskeleton 

alterations and possible changes in the extracellular matrix (reviewed in [20]). 

Furthermore, caerin 1.1, as an example, also has antiviral activity and can inhibits 

human immunodeficiency virus (HIV) infection of T cells [61]. Ultimately, some 
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studies realized in rat clonal BRIN-BD11 β-cells demonstrated that pseudin-2 (Table 3) 

[62], as well as phylloseptin-L2 [59], are able to induce insulin release at concentrations 

that are not toxic to the cells. Consequently, these peptides could be interesting for 

treatment of type 2 diabetes [59].   

In order to develop new peptide antibiotics with improved therapeutic potential, 

design strategies and structure-activity relationship studies were used to improve 

potency and selectivity of AMPs (reviewed in [13]). These modifications might offer 

significant advantages over natural AMPs as therapeutic agents [63]. 

Additionally, nanoscale biofunctionalization of biomolecules (i.e. 

nanobiotechnology) like AMPs is a very promising strategy for applications in the 

pharmaceutical industry and diagnosis. The interest in AMPs as active materials in 

bionanostructures is due to their properties, such as the presence of an α-helix structure 

and positive charges [64]. These structures consist of cationic nanoparticles formed by 

the conjugation of cholesterol and AMPs that are able to cross blood-brain barrier for 

treatment of infections, such as fatal Cryptococcal meningitis in patients with late-stage 

HIV infection [65]. These nanoparticules may also be used as sensor elements for 

detection of Leishmania cells [64]. 

Thus, AMPs appears to be promising candidates as therapeutic agents for the 

treatment of several diseases. 

 

6.2. AMPs from frogs belonging to the family Ranidae 

 

 The family Ranidae is composed of 347 species organized into 16 genera. The 

genus Rana constituted of 48 species of Eurasian and North American frogs [9] was 

particularly studied. As shown in Table 4, 12 peptide families have been identified from 

several ranid frog species. Except temporins, all these families contain a C-terminal 

domain with an intramolecular disulfide bridge called the “Rana box” (figure 6) [1, 66]. 

In this study, we focus on temporin family, in fact, despite that the others have a 

broad-spectrum activity against numerous pathogens, as well as insulinotropic 

properties [67], temporins have characteristics that make them interesting for in-depth 

investigation of their biological function and mechanism of action.  
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Table 4: AMP families of ranid frogs. A representative member of each AMP family is 

indicated with its amino acid sequence [4]. As an example, the sequence of brevinin-1 is given 

for the Brevinin-1 family. The C-terminal Rana box containing a disulfide bridge is represented 

in green color. Amide: C-terminal amidation. 

 

  

Initially identified in 1996 in the skin secretion of the frog Rana temporaria 

[66], temporins are among the shortest amphipatic α-helical AMPs found to date, with a 

single 8-21 amino acid chain. They have a low net positive charge at neutral pH ranging 

from 0 to +3 and are amidated at their carboxyl end [1]. Temporins are predominantly 

active toward Gram-positive bacteria, including methicillin- and vancomycin-resistant 

staphylococci and enterococci, as well as yeasts [66, 68, 69]. They are inactive or 

weakly active toward Gram-negative bacteria and are generally not toxic to human 

blood cells at their antimicrobial concentration [66], except for temporin L which has a 

broad spectrum of activity (Gram-positive and Gram-negative bacteria, yeasts, cancer 

cells and human erythrocytes) [70]. Furthermore, it has also been demonstrated that 

some members of the temporin family could have antiparasitic activity. This is the case 

for temporins A and B, isolated from Rana temporaria, and also temporin-SHa 

(Pelophylax saharica) that are active against both the insect (promastigote) and 

mammalian intracellular stage (amastigote) of the human protozoan parasite Leishmania 

F
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Brevinin-1 1 FLPVLAGIAAKVVPALFCKITKKC 

Brevinin-2 2 GLLDSLKGFAATAGKGVLQSLLSTASCKLAKTC 

Esculentin-1 1 
GIFSKLGRKKIKNLLISGLKNVGKEVGMDVVRTGIDIAG

CKIKGEC 

Esculentin-2 2a GILSLVKGVAKLAGKGLAKEGGKFGLELIACKIAKQC 

Ranatuerin-1 1 SMLSVLKNLGKVGLGFVACKINKQC 

Ranatuerin-2 PLa GIMDTVKNVAKNLAGQLLDKLKCKITAC 

Palustrin-2 2a GFLSTVKNLATNVAGTVLDTIRCKVTGGCRP 

Japonicin-1 1 FFPIGVFCKIFKTC 

Japonicin-2 2 FGLPMLSILPKALCILLKRKC 

Nigrocin-2 2 GLLSKVLGVGKKVLCGVSGLC 

Ranacyclin T GALRGCWTKSYPPKPCKamide 

Temporin A FLPLIGRVLSGILamide 
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[71, 72]. Besides their antimicrobial effects, temporins possess additional biological 

activities. For example, temporin A has chemotactic effects on human phagocytes [73]. 

Temporins B and L modulate the hydrolytic activity of secretory phospholipase A2 in 

human lacrymal fluid, thus improving the efficiency of the immune response to 

infections [74]. In contrast to many natural AMPs, it was demonstrated that temporins A 

and B maintain activity in physiological salt concentration, as well as in serum, making 

them attractive lead compounds for the development of anti-infective drugs [71]. 

The laboratory has identified several novel members of the temporin family 

(Table 5) from the North African ranid frog Pelophylax saharica (figure 12) using 

bioguided fractionation of a skin extract combined to mass spectrometry and molecular 

cloning of the cDNA AMP precursors. These temporins were named temporin-SH (SH 

for saharica) according to the nomenclature proposed for AMPs from the frogs of the 

family Ranidae [75]. Temporin-SHc (Table 5) is a classical member of the Temporin 

family with activity against Gram-positive bacteria and yeasts, whereas temporin-SHb 

is virtually inactive [72]. Interestingly, temporin-SHa (Table 5) displays a potent and 

broad-spectrum antimicrobial activity, including also Gram-negative bacteria and the 

parasite of the genus Leishmania [72]. Temporin-SHd, -SHe and -SHf were recently 

identified (Table 5) [76]. The 17-residue long peptide temporin-SHd is also active 

against Leishmania [77] and temporin-SHf, a Phe-rich peptide containing 8 residues, 

represents the smallest natural AMP characterized today [76]. 

The structure, activity, and mechanism of action of temporins-SH were well 

studied [72, 76-78], except for temporin-SHe that was just identified by molecular 

cloning of the cDNA precursor and remains to be characterized. 

 

Table 5: Sequence and net charge of temporins-SH. Basic residues are indicated (bold, red). 

Temporin Sequence Number of residue Net charge (pH 7.4) 

SHa FLSGIVGMLGKLFamide 13 +2 

SHb FLPIVTNLLSGLLamide 13 +1 

SHc FLSHIAGFLSNLFamide 13 +1 

SHd FLPAALAGIGGILGKLFamide 17 +2 

SHe FLPALAGIAGLLGKIFamide 16 +2 

SHf FFFLSRIFamide 8 +2 
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7. Purpose of the study 

 

Amphibian skin represents a good model for the identification of novel AMPs 

with potent activity and therapeutic potential, and for studying the mechanism of action 

of these peptides. 

A first part of my research project was to investigate the AMP content of frogs of 

the subfamily Hylinae, which have been very poorly studied, and particularly those of 

the genus Trachycephalus. Therefore, we have analyze for the first time by bioguided 

fractionation the skin secretions of Trachycephalus resinifictrix, a South American tree 

frog also referred to as Amazon Milk Frog because of its milky and poisonous 

secretions when threatened (figure 12) [79]. Fractionation was performed by semi-

preparative and analytical HPLC, and antibacterial activity against Staphylococcus 

aureus was monitored by a liquid growth inhibition assay. We also attempted to 

characterize the AMP precursors by performing mRNA extraction, RT-PCR and 

molecular cloning of the cDNAs.  

The second part of my Master 2 research project was to perform the structural and 

functional characterization of temporin-SHe that was previously identified by the host 

team from the ranid frog Pelophylax saharica [76]. We have produced this peptide by 

solid phase peptide synthesis and determined its structure, antimicrobial activity, and 

mechanism of action using biochemical and biophysical techniques. Moreover, 

temporin-SHe was compared to its paralog, temporin-SHd. 

  

Figure 12: Trachycephalus resinifictrix (left) and Pelophylax saharica (right). 
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MATERIALS AND METHODS 

8. Analysis of antimicrobial peptides from skin secretions of T. 

resinifictrix and molecular cloning of AMP cDNA precursors. 

 

Collection of skin secretions and pre-purification of peptides 

 

 Specimens of Trachycephalus resinifictrix (2 males and 2 females) were bred 

and fed crickets by François Lemoine (National Museum of Natural History, MNHN, 

Paris, France). The temperature was maintained at approximately 25°C and water bowls 

were provided for bath. Frogs were mildly stressed by electrical stimulation (9 V) and 

skin secretion was collected, diluted in Milli-Q H2O and lyophilized. 

Lyophilized secretions were dissolved in H2O containing 0.1% trifluoroacetic acid 

(TFA), then sonicated for 10 min at 25°C (Ultrasonic cleaner, VWR) and centrifuged 

(4500 rpm, 20 min, 4°C). The supernatant was lyophilized and dissolved in 0.1% 

TFA/H2O in order to obtain a concentration of 1 mg/ml. After sonication for 5 min and 

centrifugation (16000 x g, 15 min, 4°C), the solution was filtered (0.20 µm) and then 

loaded onto Sep-Pak C-18 cartridges. After a washing step (0.1% TFA/H2O), the 

material was eluted with 60% acetonitrile (ACN) and lyophilized. All these steps were 

intended to prevent clogging of the HPLC column because of the high viscosity of the 

sample. 

 

Reversed-phase HPLC (RP-HPLC) fractionation of skin secretions 

 

The lyophilized pre-purified extract (14.5 mg) was reconstituted in 0.1% 

TFA/H2O to obtain a concentration of 1 mg/ml, sonicated for 10 min and centrifuged 

(16000 x g, 10 min, 4°C). Subsequently, the supernatant was lyophilized and dissolved 

into 6 ml of 20% ACN, followed by sonication for 10 min and centrifugation (13000 x 

g, 10 min, 4°C). The final supernatant was fractionated by RP-HPLC on a semi-

preparative Nucleosil C18 column (5 µm, 250 x 10 mm, Interchim) using a two solvent 

system: (A) 0.1% TFA/H2O and (B) 0.07% TFA/ACN. 
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Elution was performed with a 20-60% linear gradient of solvent B (1%/min) at a flow 

rate of 4 ml/min. Collected fractions (4 ml) were lyophilized, reconstituted in 500 µl of 

sterile Milli-Q H2O and tested for antibacterial activity against the reference strain 

Staphylococcus aureus (see below). In order to improve peaks separation, the active 

fractions (25, 29 and 37) were rechromatographed on an Uptisphere C18 analytic 

column (modulo-cart QS, 5 µm, ODS2, 250 x 4.6 mm, Interchim) using a 20-60% linear 

gradient of solvent B (0.5%/min) at a flow rate of 0.75 ml/min. Major peaks were 

harvested manually, lyophilized, dissolved into 120 µL of sterile Milli-Q H2O and 

tested again against the bacterial strain Staphylococcus aureus. Absorbance was 

monitored at 220 and 280 nm.  

 

Antimicrobial assays 

 

Antibacterial activity of the lyophilized fractions was monitored by a liquid 

growth inhibition assay against the Gram-positive reference strain Staphylococcus 

aureus. Bacteria were cultured in LB medium for 2-3 h at 37°C with vigorous shaking 

(250 rpm). After determination of the absorbance at 600 nm (A600), the bacterial culture 

was centrifuged (1000 x g, 10 min, 4°C), resuspended in MH broth to A600 = 0.01 (10
6 

cfu/ml) and diluted 80 fold in MH broth (1.25 x 10
4
 cfu/ml). Diluted bacteria (50 µl) 

were mixed with 50 µl of either RP-HPLC fractions or sterile Milli-Q H2O (negative 

growth inhibition control) in 96-well microtitration plates. 0.7% formaldehyde was used 

as positive control. After 18 h of incubation at 37°C with shaking (150 rpm), the 

bacterial growth was monitored by measuring the change in A600 value using a 

microplate spectrophotometer (Asys Hitech UVM 340). Each assay was performed in 

duplicate to minimize fraction consume. 

The minimal inhibitory concentration (MIC) of synthetic temporin-SHe was 

determined against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, S. 

aureus ST1065, Enterococcus faecalis ATCC 29212, Bacillus megaterium, Listeria 

ivanovii), Gram-negative bacteria (Escherichia coli ATCC 25922, E. coli ATCC 35218, 

E. coli ML-35p, Pseudomonas aeruginosa ATCC 27853) and yeasts (Saccharomyces 

cerevisiae, Candida albicans ATCC 90028, C. parapsilosis ATCC 22019). Bacteria 

were cultured at 37°C in LB medium and then diluted in MH broth to A600 = 0.01 (10
6 

cfu/ml), except for E. faecalis and L. ivanovii which were diluted in LB medium and 
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BHI, respectively. Yeasts were cultured in YPD medium at 30ºC and diluted in the 

same medium to A600 = 0.01 (10
6 

cfu/ml). The MIC was determined by measuring the 

absorbance at 600 nm in 96-well microtitration plates by growing 50 µl of the 

microorganism suspension (10
6 

cfu/ml) with 50 µl of 2-fold serial dilutions of synthetic 

temporin-SHe (200-1 µM) 18 h at 37ºC (30ºC for yeasts). MIC was expressed as the 

lowest concentration of peptide that inhibited bacterial growth completely and as the 

average value from three independent experiments, each performed in triplicate with 

positive (0.7% formaldehyde) and negative (without peptide) inhibition control, and 

sterility control (H2O). 

 

Mass spectrometry analysis of antibacterial HPLC fractions 

 

HPLC fractions with antibacterial activity were subjected to MALDI-TOF-MS 

(Voyager DE-Pro, Applied Biosystems – Proteomics and Mass Spectrometry Platform 

of IFR83, UPMC) in order to determine the mass of the material present in these 

fractions. Briefly, 1 µl of HPLC fractions were mixed with 1 µl of saturated matrix 

solution (α-cyano-4-hydroxycinnamic acid) and spotted on a sample plate. The MS 

positive ion spectra were carried out in the reflector mode with external calibration, 

using the 4700 Standard Kit (Applied Biosystems). 

 

Isolation of mRNA and reverse transcription 

 

Four adult specimens of T. resinifictrix were mildly stressed by electrical 

stimulation (9 V) and skin secretions were collected with a sterile spatula, diluted in 

DEPC-treated H2O and lyophilized. Poly(A)
+
 RNA was isolated from the lyophilized 

powder (16.7 mg) using the Micro-FastTrack
TM

 2.0 mRNA Isolation kit (Invitrogen) 

according to the manufacturer’s protocol. Briefly, 1 ml of lysis buffer
a
 supplemented 

with proteinase K (20 mg/ml) was added to the powder and the solution was incubated 

at 45ºC for 30 min. The lysate was homogenized by several passages through a sterile 

syringe and the final NaCl concentration was adjusted to 0.5 M. mRNA was purified by 

oligo(dT) cellulose binding (90 min at room temperature with gentle rotation). After 

several washing steps with binding
b
 and low salt wash buffer

c
 (to removes SDS and 

nonpolyadenylated RNAs), mRNA was eluted
d 

and precipitated by adding 10 µl of 2 
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mg/ml glycogen carrier, 30 µl of 2 M sodium acetate and 600 µl of 100% ethanol 

(incubation overnight at -80°C). Finally, the sample was centrifuged at high speed 

(16000 x g, 15 min, 4°C) and the pellet containing mRNA was dried under heat lamp 

for 30 min to remove traces of ethanol. Reverse transcription of mRNA was performed 

using Advantage RT-for-PCR kit (Clontech). The pellet of mRNA was reconstituted in 

12.5 µl of DEPC-treated H2O and 1 µl of 20 µM oligo(dT) primer was added. First, the 

mix was heated at 70°C for 2 min and rapidly transferred on ice to remove RNA 

secondary structure. Then, the reverse transcription was initiated by adding to the 

sample 4 µl of 5X reaction buffer
e
, 1 µl of dNTP mix (10 mM each), 0.5 µl of 

Recombinant RNase inhibitor (40 units/µl) and 1 µl of MMLV reverse transcriptase 

(200 units/µl), followed by incubation at 42°C (Mastercycler, Eppendorf). After 1 h, the 

reaction was stopped by incubation 5 min at 94ºC. Finally, the sample was diluted with 

DEPC-treated H2O to obtain 100 µl of cDNA and stored at -20°C until PCR. 

a
Lysis buffer: 200 mM NaCl; 200 mM Tris-HCl, pH 7.5 ; 1.5 mM MgCl2 ; 2 % SDS 

b
Binding buffer: 500 mM NaCl; 10 mM Tris-HCl, pH 7.5 in DEPC-treated H2O 

c
Low salt wash buffer: 250 mM NaCl; 10 mM Tris-HCl, pH 7.5 in DEPC-treated H2O 

d
Elution buffer: 10 mM Tris-HCl, pH 7.5 in DEPC-treated H2O 

e
5X reaction buffer: 250 mM Tris-HCl, pH 7.5; 375 mM KCl; 15 mM MgCl2 

 

PCR 

 

PCR was performed using specific primers designed in the conserved 5’- and 3’-

UTR of cDNAs encoding AMP precursors of the dermaseptin superfamily (figure 13). 

 

Forward primer 1: 5’-TGACCTTCAGTACCCAGCACTTTC-3’ (24 bp, Tm: 56.3°C) 

Reverse primer 1: 5’- GCATTTAGCTAAATGATATTCCACATCA-3’ (28 bp, Tm: 

56.2°C) 

 

  

Figure 13: Position of the specific primers used for amplification of AMP cDNA precursors.  
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The following components were added in a tube: 

 25 µl of GoTaq Green Master Mix
*
, 2X (Promega) 

 18 µl of H2O 

 1 µl of forward primer 

 1 µl of reverse primer 

 5 µl of cDNA 

*
GoTaq Green Master Mix, 2X: DNA polymerase; reaction buffer, pH 8.5; 400 µM dATP; 400 µM 

dGTP; 400 µM dCTP; 400 µM dTTP; 3 mM MgCl2 

PCR was done under the following conditions: 

94 °C, 2 min – Initial denaturation 

94 °C, 45 s – Denaturation 

55 °C, 1 min – Annealing 

72 °C, 3 min – Extension 

72 °C, 10 min – Final extension 

 

After amplification, PCR products were analyzed by 1% agarose gel electrophoresis in 

the presence of GelRed (1:10000) (FluoProbes, Interchim). PCR fragments of interest 

corresponding to approximately 150-450 bp were then extracted and purified 

(Nucleospin Extract II kit, Macherey-Nagel) according to the manufacturer’s protocol. 

 

Cloning of PCR products into pGEM-T Easy vector 

 

PCR products were cloned into pGEM-T Easy vector (pGEM-T Easy Vector 

Systems II, Promega), a plasmid that contain an ampicillin resistance gene as well as a 

β-galactosidase gene (lacZ) where fragment is cloned (figure 14). Ligation of the PCR 

product was performed by incubating all the components indicated in Table 6 at room 

temperature. A control insert DNA provided in the kit was used as positive control. The 

samples were incubated at 4°C during the weekend in order to increase the number of 

transformants. 
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Table 6: Ligation reaction of a PCR product into pGEM-T Easy vector. A control insert 

DNA was used as positive control. 

 Standard Reaction Positive Control 

2X Rapid ligation buffer, T4 DNA ligase
* 5 µl 5 µl 

pGEM-T Easy vector (50 ng/µl) 1 µl 1 µl 

PCR product 3 µl - 

Control insert DNA (4 ng/µl) - 2 µl 

T4 DNA ligase (3 Weiss units/µl) 1 µl 1 µl 

Deionized water - 1 µl 

*
2X Rapid ligation buffer, T4 DNA ligase : 60 mM Tris-HCl, pH 7.8 ; 20 mM MgCl2 ; 20 mM DTT ; 2 

mM ATP ; 10 % polyehylene glycol 

 

 After ligation, E. coli bacteria (JM109 strain) were used for plasmid 

amplification. 2 µl of each ligation mixture were added to 50 µl of JM109 High 

Efficiency Competent Cells previously thawed on ice. The tubes were gently flicked 

and incubated on ice for 20 minutes. Then, the cells were heat-shocked for 45-50 

seconds in a water bath at 42°C and immediately returned to ice for 2 minutes. After 

dilution with SOC medium, bacteria were allowed to grow (90 min at 37ºC with 

Figure 14: pGEM-T Easy Vector circle map. 
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shaking at 250 rpm) and were then spread on LB agar/ampicillin (100 mg/ml) Petri 

dishes containing IPTG (0.1 M) and X-gal (50 mg/ml) for blue/white screening. Plates 

were incubated overnight at 37ºC and bacteria containing recombinant plasmids (white 

colonies) were cultured in 5 ml of LB/ampicillin (100 mg/ml) overnight at 37 °C with 

shacking (250 rpm). 

 

Plasmid DNA purification and determination of the insert size 

 

 Plasmid DNA purification was performed by Nucleospin Plasmid kit 

(Macherey-Nagel). Briefly, bacterial cultures were centrifuged (3000 rpm, 15 min, 

4°C). The pellet was resuspended in an appropriate buffer
*
 and plasmid DNA was 

liberated from E. coli host cells by SDS/alkaline lysis. After neutralization of lysate, 

precipitated protein, genomic DNA and cells debris were pelleted by centrifugation 

(11000 x g, 10 min), and supernatant was loaded onto a silica column that retains 

specifically plasmid DNA. Contaminants (salts, metabolites and soluble 

macromolecular cellular components) were removed by a washing step with an 

ethanolic buffer
*
 and centrifugation (11000 x g, 1 min). After drying the silica 

membrane, pure plasmid DNA was eluted by centrifugation (11000 x g, 2 min) under 

low ionic strength conditions with 50 µl of 5 mM Tris-HCl, pH 8.5. 

*
The buffer composition was not provided by the supplier. 

 

As it can be seen in figure 14, pGEM-T Easy vector is flanked by two recognition 

sites for the restriction enzyme EcoR I. So, digestion of pure plasmid DNA by this 

restriction enzyme was performed to release the insert and determine its size. The 

following components were added in a tube and incubated for 90 min at 37°C: 

 5 µl of plasmid DNA 

 1 µl of 10X EcoR I buffer (900 mM Tris-HCl, pH 7.5; 100 mM MgCl2; 500 

mM NaCl, Promega) 

 0.5 µl of EcoR I enzyme (12 units/µl, Promega) 

 3.5 µl of Milli-Q H2O 

After digestion, 5 µl of this mix was analyzed by 1% agarose gel electrophoresis in the 

presence of GelRed (1:10000) and insert size were estimated using 100 bp DNA ladder 

(Promega). Plasmids containing inserts of the appropriate size (between 150 and 450 

bp) were sequenced using T7 primer (Cogenics, Beckman Coulter Genomics, France). 
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9. Structural and functional characterization of temporin-SHe 

 

Solid phase peptide synthesis 

 

Temporin-SHe was synthesized by solid phase method using standard FastMoc 

chemistry (Applied Biosystems 433A automated peptide synthesizer - Peptide synthesis 

platform of IFR83, UPMC). Briefly, amino acids with α-NH2 and side-chain protecting 

groups were added sequentially on a Rink amide PEG MBHA
a
 resin from the C-

terminus to the N-terminus (see figure 15 for the principle of peptide synthesis). Fmoc
b
 

protecting group were removed from α-NH2 by addition of 20% piperidine/NMP
c
 

(deprotection step) and the activation of the carboxyl group was obtained with 0.5 M 

HBTU
d
/0.5 M HOBt

e
/DMF

f
 and 2 M DIEA

g
/NMP (figure 15). At the end of synthesis, 

the N-terminus of the peptide was deprotected with piperidine and a scavenger mixture 

(95% TFA/2.5% TIS
h
/2.5% H2O) was used to release peptide from the resin and remove 

protecting groups. Finally, after precipitation of the peptide with ether and several 

washing steps, the peptide was resuspended in 10% acetic acid and lyophilized. The 

crude synthetic temporin-SHe was purified by RP-HPLC on a semi-preparative column 

(Phenomenex Luna C18, 10 µm, 250 × 10 mm) with a 40-80% linear gradient of solvent 

B (1%/min) at a flow rate of 5 ml/min. The homogeneity and identity of temporin-SHe 

was confirmed by MALDI-TOF mass spectrometer (Voyager DE-Pro, Applied 

Byosystems) and analytical RP-HPLC on an Uptisphere C18 column (modulo-cart QS, 

5 μm, ODS2, 250 x 4.6 mm, Interchim) using the conditions above with a flow rate of 

0.75 ml. 

a
PEG MBHA: Polyethylene glycol 4-methylbenzhydrylamine 

b
Fmoc: 9-fluorenylmethoxycarbonyl 

c
NMP:  N-methylpyrrolidone 

d
HBTU: O-Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate 

e
HOBt: N-Hydroxybenzotriazole 

f
DMF: Dimethylformamide 

g
DIEA: N,N-Diisopropylethylamine 

h
TIS: (triisopropylsilane) 
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Figure 15: Schematic representation of solid phase peptide synthesis using FastMoc 

chemistry. The first step corresponds to the deprotection of the α-NH2 group of the first amino 

acid attached to the resin (i.e. AAn, corresponding to the C-terminal residue of the peptide). 

Then, the α-COOH group of the next amino acid (AAn-1) is activated in order to form a peptide 

bond with the deprotected amino acid (AAn) after coupling. Deprotection/activation/coupling 

steps are repeated until the peptide chain is complete. Finally, after depotection of the N-

terminus, the side-chain protecting groups are removed and the peptide is cleaved from the 

resin. Fmoc: 9-fluorenylmethoxycarbonyl; NMP: N-methylpyrrolidone; HBTU: O-

Benzotriazole-N,N,N’,N’-tetramethyl-uronium-hexafluoro-phosphate; HOBt: N-

Hydroxybenzotriazole; DIEA: N,N-Diisopropylethylamine.  
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Preparation of multilamellar and large unilamellar vesicles 

 

 DMPC (dimyristoyl phosphatidyl choline) and DMPG (dimyristoyl phosphatidyl 

glycerol) were purchased from Avanti Polar lipids. DMPC (1.5 mg) was dissolved in 

150 μl of chloroform and a mix of DMPC/DMPG 3:1 (mol/mol) (i.e. 1.12 mg of DMPC 

and 0.38 mg of DMPG) was also prepared and dissolved in chloroform/methanol (1:1). 

The samples were then dried under a nitrogen stream, and lipid films were kept under 

vacuum for 3h at 45°C to remove all traces of organic solvents. Multilamellar vesicles 

(MLVs)  were obtained by hydrating the dry lipid films with 1.5 ml of PBS buffer (10 

mM Na2HPO4, 100 mM NaCl, pH 7.3) at 37°C (10°C above the lipid phase transition) 

and vortexing until a homogeneous suspension was formed (1 mg of MLVs/ml). MLVs 

were used for differential scanning calorimetry experiments. For circular dichroism 

experiments, large unilamellar vesicles (LUVs) were obtained from dry lipid films by 

hydration with 1.5 ml of phosphate buffer (10 mM Na2HPO4, pH 7.3), followed by 

seven rounds of freeze-thawing (liquid nitrogen/water bath at 37°C) and extrusion 

through different polycarbonate membranes (400, 200 and 100 nm pore size). 

 

Circular dichroism spectroscopy 

 

The secondary structure of temporin-SHe was determined by circular dichroism 

(CD) spectroscopy using zwitterionic DMPC LUVs (eukaryote membrane model) or 

negatively charged DMPC/DMPG (3:1) LUVs (bacterial membrane model). CD spectra 

were recorded at 25°C with a Jobin Yvon CD6 spectropolarimeter in a 0.1-cm quartz 

cell over a wavelength range from 185 to 260 nm. Spectra were acquired with a spectral 

bandwidth of 2-nm, a step size of 0.5 nm and a time constant of 3.0 s. Experiments were 

done with different temporin-SHe/lipid molar ratios (1:200, 1:100 and 1:50) and also 

with peptide (30 µM) in phosphate buffer (10 mM Na2HPO4, pH 7.3) or 80 mM SDS. 

The baselines (DMPC, DMPC/DMPG 3:1, phosphate buffer and 80 mM SDS) were 

acquired independently under the same conditions and then subtracted from the 

corresponding peptide spectra. CD measurements were reported as Δε (M
-1

. cm
-1

) per 

residue. Δε: dichroic increment. 
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Analysis of peptide-lipid interaction by differential scanning calorimetry 

 

The interaction of synthetic temporin-SHe with membrane vesicles (MLVs) was 

analyzed by differential scanning calorimetry (DSC). DMPC/DMPG 3:1 was used as a 

model system for bacterial membranes. Different peptide/lipid molar ratios (1:200, 

1:100 and 1:50) were used. Calorimetry experiments were performed with a Nano III 

calorimeter (Calorimetry Sciences Corp., USA) using a temperature range of 0-35°C 

with heating and cooling rates of 0.5°C/min and 1.5°C/min, respectively. Several scans 

(>20) were run for each sample with a 10 min equilibration time between each scan. 

The raw data were analyzed with the CpCalc software. Thermograms corresponding to 

the heating scans were converted to molar heat capacity (ΔCp) using average lipid 

molecular weight, partial specific volume (0.73 ml/g), peptide concentration and cell 

volume (299 µl), and the value of the transition temperature was estimated. 

Biological membranes can adopt different physical states, i.e., from a gel phase 

(Lβ’) to a liquid crystalline phase (Lα) with an intermediate rippled gel phase (Pβ’) 

(figure 16) (reviewed in [80]). The transition from one phase to another requires a 

specific temperature that can be measured by DSC to analyze the interaction of the 

peptide with the membrane and also its degree of insertion into the lipid bilayer. 

 

 

 

 

 

  

Figure 16: Scheme illustrating the different physical states adopted by a lipid 

bilayer. The pretransition corresponds to the conversion of the ordered lamellar gel 

phase (Lβ’), with tilted hydrocarbon chains, to the rippled gel phase (Pβ’). The main 

transition corresponds to the conversion of the rippled gel phase (Pβ’) to the fluid 

lamellar liquid crystalline phase (Lα). 

Gel phase 
(Lβ’)

Pretransition Transition

Liquid crystalline
phase (Lα)

Rippled gel phase 
(Pβ’)
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Permeabilization assay 

 

 The ability of temporin-SHe to permeabilize the cytoplasmic membrane of 

Gram-positive (S. aureus ST1065) and Gram-negative (E. coli ML-35p) bacteria was 

determined. E. coli ML-35p and S. aureus ST1065 were kindly provided by Prof. Sylvie 

Rebuffat (National Museum of Natural History, MNHN, Paris, France) and Dr. Tarek 

Msadek (Institut Pasteur, Paris, France), respectively. These bacterial strains express 

constitutively cytoplasmic β-galactosidase. E. coli ML-35p is ampicillin resistant and 

lactose permease deficient, whereas S. aureus ST1065 is only chloramphenicol 

resistant. If the peptide permeates the bacterial inner membrane, the chromogenic 

substrate ONPG (ortho-nitrophenyl-β-D-galactopyranoside, Sigma) can enter the 

cytoplasm and be hydrolyzed into ONP (ortho-nitrophenol) by cytoplasmic β-

galactosidase. So, the permeabilization of the bacterial membrane can be measured by 

monitoring ONP production at 405 nm. Briefly, strains were cultured in LB medium for 

2-3 h at 37°C with shaking (250 rpm), centrifuged (1000 x g, 10 min, 4°C) washed three 

times with sterile PBS buffer (10 mM Na2HPO4, 100 mM NaCl, pH 7.3) and 

resuspended in the same buffer to obtain A600 = 0.05. The assay was performed in 

sterilized 96-well plates in a final volume of 150 µl: 15 µl of the bacterial suspension 

were added to 135 µl of PBS buffer supplemented with 2.5 mM ONPG and containing 

the peptide at different concentrations (at MIC, below and above the MIC). Hydrolysis 

of ONPG was monitored by measuring absorbance at 405 nm every 5 min during 120 

min at 37°C (Fluostar Galaxy, BMG Labtech). PBS buffer with 2.5 mM ONPG but 

without peptide was used as negative control, and temporin-SHx (10 µM), a potent 

synthetic temporin analogue, was used as positive control. Three independent 

experiments were performed in quadruplicate. Results were expressed as the mean ± 

S.E.M. of a representative experiment. 
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Time killing assay 

 

 To study the bactericidal effect and the rate of killing of temporin-SHe, the 

peptide was added to a bacterial suspension of E. coli ATCC 25922 or S. aureus 

ST1065 and the number of viable bacteria was determined at 37°C according to the 

time. Bacteria were cultured in LB medium for 2-3 h at 37°C with shaking (250 rpm), 

centrifuged (1000 x g, 10 min, 4°C), washed three times with sterile PBS buffer (10 

mM Na2HPO4, 100 mM NaCl, pH 7.3) and resuspended in the same buffer to obtain 

approximately 10
6
 cfu/ml. 100 µl of temporin-SHe at a final concentration two-fold 

above the MIC (50 µM for E. coli ATCC 25922 and 6.25 µM for S. aureus ST1065) 

were mixed with 100 µl of the bacterial suspension (10
6
 cfu/ml). At each time (0, 5, 15, 

30, 45, 60, 90 and 120 min), 10 µl of the mixture was withdrawn and diluted 40000-fold 

in LB medium and spread on LB agar plates for cell counting after overnight incubation 

at 37ºC. Control was run without peptide (100 µl of PBS buffer). Three independent 

experiments were performed in triplicate. Results were expressed as the mean ± S.E.M. 

of a representative experiment.  
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RESULTS 

Analysis of skin secretions of T. resinifictrix 

 

126 mg of lyophilized skin secretions were obtained from four adult specimens of 

T. resinifictrix by electrical stimulation. The lyophilisate was pre-purified on a Sep-Pak 

C18 cartridge and then chromatographed on a semi-preparative RP-HPLC C18 column 

(figure 17). The eluted material was fractionated into tubes at 1 min per tube (i.e. 

fractions of 4 ml). Tubes of four series injection (1.5 ml per injection) corresponding to 

the same time were pooled and lyophilized in order to concentrate the peptidic material. 

Fractions were reconstituted in sterile H2O and tested for their ability to inhibit growth 

of the Gram-positive reference strain S. aureus. As shown in figure 18, several fractions 

inhibited strongly the growth of S. aureus. A complete inhibition was observed for 

fraction 37, and about 90% inhibition for fractions 25 and 29. Other fractions (5, 30 and 

31) were also able to inhibit bacterial growth, although to a lesser extent (around 50%). 

By contrast, stimulation was observed for several fractions, particularly for fractions 15-

22 displaying potent stimulation (≥ 200%). 

Fractions with high inhibitory activity (i.e. 25, 29 and 37) were 

rechromatographed on an analytical RP-HPLC C18 column using a slower gradient of 

ACN (0.5%/min) to improve peaks separation (figure 19). Regions corresponding to 

peaks in the different fractions were collected manually (figure 19) and then tested 

against S. aureus. Only peak 6 of fraction 25 (figure 19 A) showed a potent bacterial 

growth inhibition (figure 20). The material present in this peak was subjected to 

MALDI-TOF mass spectrometry. As shown in figure 21, several ionic species with 

monoisotopic masses ([M+H]
+
) ranging from approximately 1000 to 1900 Da (1051.46, 

1165.36, 1334.32, 1448.22, 1822.81 Da) were observed and could thus correspond to 

AMPs of 10-17 residues long. We attempted to determine their primary structure by 

tandem mass spectrometry (MS/MS) in collaboration with Prof. Edwin De Pauw (Mass 

Spectrometry Laboratory, University of Liège, Belgium). Unfortunately, due to 

insufficient material in the sample, we were unable to obtain sequence information. 
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Figure 18: Antibacterial activity (S. aureus) of semi-preparative HPLC fractions. Measures 

were realized in duplicate and represent the mean ± S.E.M. Results are expressed as percent of 

bacterial growth using H2O (100% growth, C-) and 0.7% formaldehyde (0% growth, C+) as controls.  

Figure 17: RP-HPLC chromatogram of skin secretions of T. resinifictrix. After pre-purification on 

a Sep-Pak C18 cartridge, skin secretions were fractionated on a semi-preparative Nucleosil C18 

column (5 µm, 250 x 10 mm, Interchim) using a 20-60% linear gradient of ACN (1%/min) (blue line) 

at a flow rate of 4 ml/min. Fractions were collected each minute and absorbance was monitored at 220 

(dark) and 280 nm (blue). 
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Figure 19: Analytical chromatograms of antibacterial fractions (25, 29 and 37).  The material of 

the active semi-preparative fractions was rechromatographed on an Uptisphere C18 analytical column 

using a 20-60% linear gradient of ACN at a slower rate (0.5%/min) (blue line) and with a flow rate of 

0.75 ml/min. A) Fraction 25 (a zoom of the region 24-46 min is shown), B) Fraction 29, C) Fraction 37. 

The manually collected regions of each fraction are indicated by a number. Absorbance was monitored 

at 220 (dark) and 280 nm (blue).  
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Figure 20: Antibacterial activity of the different peaks of fractions 25, 

29 and 37. Each number corresponds to peaks harvested manually (see 

figure 19). Measures were realized in duplicate and represent the mean ± 

S.E.M. Results are expressed as percent of bacterial growth using H2O 

(100% growth, C-) and 0.7% formaldehyde (0% growth, C+) as controls. 

Figure 21: MALDI-TOF mass spectrum of peak 6 (fraction 25)  
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L      1      2

1500 bp

500 bp

300 bp

100 bp

L: 100 bp DNA ladder

1: Negative control

2: cDNA

1    2   3   4   L   5    6   7    8 

1: Clone 1                 5: Clone 5

2: Clone 2                 6: Clone 6

3: Clone 3                 7: Clone 7

4: Clone 4                 8: Clone 8

A B

cDNA cloning of AMP precursors from skin secretions of T. resinifictrix 

 

 Poly(A)
+
 RNA was extracted from about 17 mg of skin secretions of T. 

resinifictrix and converted into cDNA by RT-PCR using an oligo(dT) primer. A PCR 

was then realized using specific oligonucleotides (forward primer 1/reverse primer 1) 

designed to the conserved 5’- and 3’-UTR of cDNAs encoding AMP precursors of the 

dermaseptin superfamily. Since no band was observed after 1% agarose gel 

electrophoresis, we have performed a reamplification with the same primers (figure 22 

A). After this second PCR, we observed the presence of different bands, and particularly 

of low intensity (≥ 200 bp) that could correspond to the size of AMP precursors (figure 

22 A). So, PCR products were purified from the amplified solution and concentrated. 

After cloning into pGEM-T Easy vector and amplification in JM109 competent cells, 

plasmid purification was done from positive (white) colonies. Enzymatic digestion by 

EcoR I revealed clones with an insert size between 150 and 500 bp (figure 22 B). These 

clones (clones 1, 2, 3, 5, 6 and 8) were sequenced by Cogenics (Beckman Coulter 

Genomics, France) using the T7 primer, but unfortunately no insert corresponding to an 

AMP precursor was obtained after sequence analysis with DNA translator 1.1 and 

BLAST search. 

 

 

  

 

 

 

 

 

 

 

 

Figure 22: Analytical agarose gel electrophoresis after PCR (A) and enzymatic digestion 

(B). A) 5 µl of the first PCR was reamplified with the same primers (forward primer 1/reverse 

primer 1). Negative control was performed without DNA. B) Enzymatic digestion of plasmidic 

clones by EcoR I. L: 100 bp DNA ladder 
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During my training, several attempts were made to amplify AMP precursors. I 

have realized PCRs with different annealing temperatures and different sets of primers 

designed to other conserved regions (i.e. signal sequence and acidic proregion) of AMP 

precursors of the dermaseptin superfamily. However, after cloning of the PCR products, 

plasmid purification and sequence analysis, negative results were obtained. 

 

Structural and functional characterization of temporin-SHe 

 

The second aim of my Master 2 internship was to characterize the structure and 

function of temporin-SHe and also to compare this peptide to its paralog, temporin-

SHd, an AMP already studied by Abbassi/Raja and co-workers [77]. Indeed, among all 

the identified temporins from Pelophylax saharica [72, 76], temporin-SHd shares the 

highest identity (76.5%) with temporin-SHe (figure 23). Moreover, the amino acid 

composition of these both peptides is quasi-identical with only an additional glycine 

residue for temporin-SHd.  

 

Temporin_SHd      FLPAALAGIGGILGKLF 

Temporin_SHe      FLP-ALAGIAGLLGKIF 

Temporin_SHa      FL----SGIVGMLGKLF 

Temporin_SHb      FLP----IVTNLLSGLL 

Temporin_SHc      FLS----HIAGFLSNLF 

Temporin_SHf      FF---------FLSRIF 

 

  

 

 

 

  

 % Identity with temporin-SHe 

Temporin-SHa            56.2 

Temporin-SHb            35.3 

Temporin-SHc            43.7 

Temporin-SHd            76.5 

Temporin-SHf            25.0 

Figure 23: Alignment of the amino acid sequences of temporins-SH and percent 

identity. Alignment was realized with ClustalW multiple alignment. Percent identities 

were obtained from ClustalW pairwise alignment of temporins-SH with temporin-SHe. 

Identical and similar (strongly and weakly) residues are highlighted in blue and yellow, 

respectively.  
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Synthesis and purification of temporin-SHe 

 

After solid phase synthesis and purification of the crude peptide by RP-HPLC, 

about 28 mg of lyophilized powder of temporin-SHe was obtained. In order to confirm 

the purity and integrity of the purified peptide, 10 µg was injected onto an analytical 

RP-HPLC C18 column with a 40-80% linear gradient of ACN (1%/min), and 10 pmol 

was also analyzed by MALDI-TOF mass spectrometry. For comparison, synthetic 

temporin-SHd was analyzed in the same conditions. As shown in figure 24, temporin-

SHe is eluted at 31 min (i.e. 68% ACN), whereas temporin-SHd is eluted at 

approximately 24 min (61% ACN), indicating that the first one is more hydrophobic. A 

quasi-single homogeneous peak is observed for both peptides, revealing also high purity 

(> 95%). The little peak eluting at ~ 15 min, which is present in the two HPLC 

chromatograms, corresponds to the background noise of the column and was observed 

after injection of H2O-0.1% TFA without peptide (data not shown). MALDI-TOF mass 

spectrum of temporin-SHe revealed the presence of cationic adducts ([M+Na]
+
 = 1622.0 

Da, [M+K]
+
 = 1637.9 Da) with no [M+H]

+
 ion (1599.99 Da) (figure 24). No additional 

compound was detected, thus confirming the purity and integrity of the synthetic 

temporin-SHe.  

 

Secondary structure of temporin-SHe  

 

 To explore the secondary structure of temporin-SHe, we performed an extensive 

circular dichroism (CD) study of the peptide in different media: PBS buffer, DMPC or 

DMPC/DMPG 3:1 LUVs, SDS 80 mM (figure 25). As shown in figure 25 D, temporin-

SHe exhibited a typical random coil signal in PBS buffer (minimum around 200 nm), 

indicating no ordered structure for this peptide in solution. By contrast, in membrane-

mimetic environments such as SDS or LUVs (DMPC and DMPC/DMPG), temporin-

SHe was structured in α-helix with characteristic minima at 208 and 222 nm (figure 25). 

However, in the presence of zwitterionic DMPC LUVs (1:200 and 1:100) or SDS, a 

difference in the intensity of these two minima was observed with a more pronounced 

minimum at 208 nm (figure 25 A, B and D). This suggests the presence of a mix 

structure, i.e. random coil and α-helix conformations.  
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 Figure 24: Analytical RP-HPLC chromatograms and mass spectrum of synthetic temporin-

SHe. Peptides were analyzed on a C18 column (Uptisphere) using a 40-80% linear gradient of ACN 

(1%/min) (blue line) at a flow rate of 0.75 ml/min. Absorbance was monitored at 220 nm. For the MS 

spectrum, the cluster of peaks corresponding to isotopic variants of [M + Na]
+
 and [M + K]
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With DMPC/DMPG LUVs (figure 25 A, B and C) or when the peptide concentration 

was increased for DMPC (DMPC 1:50, figure 25 C), we noticed a well-defined α-

helical conformation with two minima (208 and 222 nm) of approximately the same 

intensity. This clearly indicates that negatively charged membranes compared to 

zwitterionic membranes promote a better α-helical structuration of temporin-SHe. This 

phenomenon was also observed for temporin-SHd [77]. No amphipathic character, with 

two well-separated polar and apolar faces, is observed when the sequence of temporin-

SHe and -SHd is plotted on a Schiffer-Edmundson helical wheel (figure 26). 

 

 

   

  

Figure 25: α-helix structure of temporin-SHe in membrane mimicking environment (DMPC 

and DMPC/DMPG 3:1 LUVs).  Different peptide/lipid molar ratios were tested: 1:200 (A), 1:100 

(B) and 1:50 (C). CD spectra of 30 µM temporin-SHe were also obtained in 10 mM PBS 

(unordered structure) and 80 mM SDS (D). 
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Interaction of temporin-SHe with anionic model membranes 

 

Differential scanning calorimetry (DSC) technique was used to study the 

thermotropic behavior of DMPC/DMPG multilamellar vesicles (MLVs) upon addition 

of temporin-SHe. Negatively charged DMPC/DMPG (3:1) MLVs were chosen as a 

model for bacterial membranes. These MLVs exhibit two endothermic events on 

heating, a weakly energetic pretransition near 13°C (conversion of the ordered gel 

phase, Lβ’, to the rippled gel phase, Pβ’) and a strongly energetic main transition near 

24°C (conversion of the rippled gel phase to the liquid-crystalline phase, Lα) (Figure 

27). The pretransition is due to interactions between the phospholipid headgroups, and 

increasing the distance between them causes the pretransition peak to disappear 

(reviewed in [76]). We observed that the pretransition peak was reduced (peptide-lipid 

ratio 1:200) or abolished (ratios 1:100 and 1:50) in the presence of temporin-SHe 

(figure 27), indicating electrostatic interactions between the cationic peptide and the 

anionic lipid headgroups. The main phase transition is mainly due to trans-gauche 

interconversion of the acyl chains, which decreases the acyl chain packing and increases 

fluidity of the membrane (reviewed in [76, 81]). As shown in figure 27, increasing 

concentrations of temporin-SHe induced a two-component main phase transition 

(peptide-lipid ratio 1:50) consisting of a broad higher temperature and less cooperative 

component superimposed over a sharper lower temperature component. This indicates 

Figure 26: Schiffer-Edmundson helical wheel diagram of temporin-SHe and -SHd.  
Residues are represented proportional to amino acid volume. Apolar residues are represented in 

green and polar residues in blue. No amphipathic character, with two well-separated polar and 

apolar faces, is observed. 
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that the peptide affects hydrocarbon chain packing, disturbing strongly the membrane 

bilayer, with the occurrence of peptide-poor (sharp component) and peptide-rich (broad 

component) phospholipid domains [78, 81]. 

 

 

 

 

 

 

 

 

 

 

 

 

Antimicrobial and cytotoxic activities of temporin-SHe 

 

The antimicrobial activity of synthetic temporin-SHe was assayed against various 

microorganisms, including bacteria, yeasts and protozoa. As shown in Table 7, 

temporin-SHe has a broad-spectrum activity. This peptide displays high potency against 

Gram-positive bacteria and S. cerevisiae with two-fold higher activity (MIC = 1.5-12.5 

µM) compared to temporin-SHd. For both temporins, the activities against antibiotic-

multiresistant S. aureus strains (ATCC 43300 and ATCC BAA-44) were as potent as 

those against non-resistant strains (S. aureus ATCC 25923 and ST1065). Good activity 

was also observed toward the Gram-negative reference strain E. coli ATCC 25922 

(MIC = 25 and 5 µM for temporin-SHe and -SHd, respectively). Other Gram-negative 

bacteria were sensitive to temporin-SHe, such as the naturally more resistant strain 

Figure 27: DSC heating thermograms illustrating the effect of temporin-SHe on the 

thermotropic phase behavior of DMPC/DMPG (3:1) MLVs. Scans were acquired without 

peptide (blank) and at different peptide/lipid molar ratios (1:200, 1:100 and 1:50). 
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Pseudomonas aeruginosa (MIC = 60 µM) or the fungus Candida parapsilosis (MIC = 

50 µM), whereas they were resistant to temporin-SHd (MIC ≥ 200 µM). 

Antiparasitic activity of temporin-SHe was also analyzed by Z. Raja, a PhD 

student of the team, in collaboration with Dr. B. Oury and Dr. D. Sereno (Research 

Institute for Development, Montpellier, France). As indicated in table 7, temporin-SHe 

kills efficiently Leishmania promastigotes (insect stage) with an activity (IC50 ~ 10 µM) 

in the same range as temporin-SHd. A preliminary study, also realized in Montpellier, 

was done to evaluate the cytotoxicity of temporins on mammalian cells (THP-1 

monocytes). It was observed that temporin-SHe was three-fold more cytotoxic than 

temporin-SHd (Table 7). 

 

Permeabilization of the bacterial cytoplasmic membrane 

 

 The ability of temporin-SHe to permeate the cytoplasmic membrane of the 

Gram-negative E. coli ML-35p and the Gram-positive S. aureus ST1065 was studied by 

monitoring the hydrolysis of the chromogenic extracellular substrate ONPG into ONP 

by bacterial cytoplasmic β-galactosidase. As shown in figure 28, temporin-SHe 

permeabilized the cytoplasmic membranes of both bacteria in a time- and concentration-

dependent manner. However, S. aureus bacteria were permeabilized faster and to a 

higher extent than E. coli. Indeed, at concentrations above the MIC (> 3.1 µM), the 

efficiency of temporin-SHe was similar to temporin-SHx (10 µM), a potent temporin-

SHa analog used as positive control (figure 28 B). Membrane permeability was 

observed even at concentration below the MIC. Our results are similar to those obtained 

for temporin-SHd by Abbassi/Raja and co-workers [77]. 
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Table 7: Antimicrobial and cytotoxic activities of temporin-SHe. Minimal inhibitory 

concentration (MIC) is expressed as average values from three independent experiments 

performed in triplicate. Inhibitory concentration 50 (IC50) values are also indicated. For 

comparison, activities of temporin-SHd were included in the table and were taken from 

reference [77]. 

 Temporin-SHe Temporin-SHd 

Gram-negative bacteria MIC (µM) 

   Escherichia coli ATCC 25922 25 5 

   E. coli ATCC 35218 50 50 

   E. coli ML-35p 50 25 

   Pseudomonas aeruginosa ATCC 27853 60 > 200 

Gram-positive bacteria   

   Staphylococcus aureus ATCC 25923 3.1 6.2 

   S. aureus ATCC 43300
a 3.1 6.2 

   S. aureus ATCC BAA-44
b 

3.1 6.2 

   S. aureus ST1065 3.1 6.2 

   Enterococcus faecalis ATCC 29212 12.5 2 

   Bacillus megaterium 1.5 1.5 

   Listeria ivanovii 5 10 

Yeasts   

   Candida albicans ATCC 90028 > 100 100 

   C. parapsilosis ATCC 22019 50 > 200 

   Saccharomyces cerevisiae 12.5 25 

Protozoa
c 

IC50 (µM) 

   Leishmania infantum 14.0 19.0 

   L. major 10.5 14.5 

   L. braziliensis 10.5 18.0 

THP-1 monocytes
d
 

LC50 (µM) 

21 µM  66 µM 
a
 Resistant to methicillin and oxacillin. 

b
 Resistant to amoxicillin/clavulanic acid, cephalothin, ciprofloxacin, erythromycin, gentamicin, 

imipenem, oxacillin, penicillin, tetracycline, ampicillin, doxycycline, methicillin, azithromycin, 

ceftriaxone, clindamycin, lincomycin, perfloxacin, rifampin and tobramycin. 
c
 Promastigote stage of the human parasite Leishmania 

d
Human acute monocytic leukemia cell line. 
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Time-dependent killing of Gram-negative and Gram-positive bacteria 

 

We also studied the rate of killing of temporin-SHe and -SHd against E. coli 

ATCC 25922 and S. aureus ST1065, in order to observe if membrane permeabilization 

and bacterial death were correlated. In this assay, a final peptide concentration of two-

Figure 28: Temporin-SHe-induced permeabilization of bacterial cytoplasmic membranes (E. 

coli and S. aureus). Different concentrations of temporin-SHe were incubated with E. coli ML-35p 

(A) or S. aureus ST1065 (B), and hydrolysis of extracellular ONPG by cytoplasmic β-galactosidase 

was monitored during 120 min by measuring the absorbance of ONP at 405 nm. Temporin-SHx 

(black curve), a potent temporin-SHa analog, was used as positive control. Absorbance values are the 

mean ± S.E.M. of quadruplicates from a representative experiment. 
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fold above the MIC was used for each strain. The figure 29 revealed that temporin-SHe 

kills more efficiently Gram-positive, as well as Gram-negative bacteria, compared to 

temporin-SHd. Indeed, temporin-SHe rapidly kills (5 min) S. aureus bacteria, whereas 

only a slight reduction in the number of viable bacteria (26%) was obtained with 

temporin-SHd after 120 min of incubation (figure 29 D). We observed a much lower 

killing effect of temporin-SHe with Gram-negative bacteria (figure 29 A). However, 

although this peptide was less active (MIC = 25 µM) than temporin-SHd (MIC = 5 µM) 

against E. coli ATCC 25922, complete killing was achieved after 90 min, while only 

12% reduction was obtained for temporin-SHd after 120 min (figure 29 A-B). These 

results indicate that there is a direct correlation between the kinetics of bacterial killing 

and membrane permeabilization. 

 

 

  

Figure 29: Time-dependent killing of Gram-negative (E. coli ATCC 25922) and Gram-positive 

(S. aureus ST1065) strains induced by temporin-SHe (A and C) and temporin-SHd (B and D). 

Bacteria (10
6
 cfu/ml) were resuspended in PBS and incubated with peptide at concentrations two-fold 

above the MIC for E. coli (SHe: 50 µM, SHd: 10 µM) and S. aureus (SHe: 6.2 µM, SHd: 12.5 µM). 

Control was obtained with bacteria incubated in PBS without peptide (blue curve). The values are the 

mean ± S.E.M. of triplicates from a representative experiment. 
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DISCUSSION 

 During a first part of my training, I was interested in the identification of novel 

AMPs from skin secretions of the hylid frog Trachycephalus resinifictrix, which 

belongs to the subfamily Hylinae containing 646 species. Nowadays, only eight AMPs 

were identified from frogs of this subfamily, including 4 pseudins (23-24 amino acid 

residues), 1 hylaseptin/2 hylains (14 residues) and 1 hylin (18 residues). Moreover, 

surprisingly, no cDNA encoding AMP precursors were characterized. So, we attempt 

also to clone the precursors of AMPs present in the skin secretions of T. resinifictrix.  

This frog has the particularity to secrete a milky and viscous resin from its skin, 

thus rendering difficult the extraction of AMPs, but we have successfully overcome this 

inconvenience. Indeed, by fractionation of skin secretions and monitoring of 

antibacterial activity against Staphylococcus aureus, we were able to identified three 

semi-preparative HPLC fractions (25, 29 and 37) with potent bacterial growth 

inhibition. After analytical HPLC, only one collected peak of the fraction 25 (peak 6) 

revealed potent growth-inhibitory activity. Despite the fact that interesting molecular 

species ([M+H]
+
 = 1000-1900 Da) were revealed in this peak by MALDI-TOF mass 

spectrometry analysis, we didn’t get any primary sequence after tandem mass 

spectrometry (MS/MS) due to small amounts of peptides in the sample. Therefore, it 

will be necessary to concentrate the peptide material in the fraction 25, as well as 

fractions 29 and 37, using the same protocol of extraction and purification but with a 

much higher amount of skin secretions. During my internship, I didn’t have enough 

time for that. Moreover, it will be also interesting to extract AMPs from the entire skin. 

We attempted to amplify AMP precursor cDNAs by PCR using different sets of 

specific primers designed to conserved regions of AMP precursors of the dermaseptin 

superfamily. Unfortunately, after cloning and sequence analysis of numerous clones of 

plasmid DNA, no AMP precursor was identified. The team has previously cloned AMP 

precursors from the skin exudate of Phyllomedusa sauvagii (hylid frog) but it is possible 

for the skin exudate of T. resinifictrix that there is too low amount or no mRNA. So, it 

will be necessary to sacrify a frog specimen to extract mRNA from the skin. We also 

cannot exclude the possibility that AMP precursors from frogs of the subfamily are not 

so well conserved. Therefore, it will be essential to design degenerated primers from 

alignment of several AMP precursors of hylid frogs. If no results are obtained, we will 

study another frog species of the Hylinae subfamily. 
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During the second part of my training, I studied AMPs of ranid frogs, and 

particularly small hydrophobic and cationic peptides of a family called Temporin [1]. 

Although these AMPs were mainly characterized from Eurasian and North American 

frog species, six novel temporins were also identified by the team from a North African 

frog (Pelophylax saharica), for the first time [72, 76]. Among these six temporins-SH 

(SHa to SHf, SH for saharica), only temporin-SHe remained unstudied. Therefore, in 

this project, my objective was to characterize the structure and function of temporin-

SHe. I have also compared the properties of temporin-SHe and temporin-SHd because 

these peptides share high identity (76.5%) and temporin-SHd is a well-characterized 

paralog [77].   

Circular dichroism spectroscopy studies revealed that temporin-SHe adopts a 

well-defined α-helical structure, preferentially when bound to anionic model 

membranes. This was also observed with temporin-SHd [77]. In contrast to many linear 

α-helical AMPs, the Schiffer-Edmundson helical-wheel projections of these two 

peptides showed a non-amphipathic structure with no well-separated polar and apolar 

faces. When the peptide-lipid molar ratio was increased up to 1:50, we observed from 

calorimetric data (DSC) that temporin-SHe perturbs strongly the membrane of anionic 

model vesicles with disappearance of the pretransition peak and alteration of the main 

transition peak (existence of two components). The loss of the pretransition is a 

consequence of the peptide interaction with phospholipid headgroups which increase 

the spacing between them, thus eliminating the driving force for the formation of a 

rippled gel phase. The shift of the temperature (Tm) of the main phase transition toward 

higher values indicates a rigidification of the membrane, whereas the apparition of a 

second peak at the right wing of the main transition peak (ratio 1:50) indicates regions 

of two coexisting phases, one peptide-rich (higher temperature) and the other peptide-

poor (lower temperature) [78, 81]. This gradual phase segregation between these two 

domains may eventually lead to membrane disruption [78]. 

Like temporin-SHd, we have shown that temporin-SHe has potent broad-

spectrum activity, acting against both Gram-positive (MIC = 1.5-12.5 µM) and Gram-

negative bacteria, yeasts (S. cerevisiae, MIC = 12.5 µM), as well as against the 

extracellular promastigote form of the human parasite Leishmania (IC50 ~ 10 µM). The 

bacterial activity against Gram-negative strains was lower (MIC = 25-60 µM). Although 

the spectrum of activity of both temporins were quite similar, Pseudomonas aeruginosa 
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(MIC = 60 µM) and Candida parapsilosis (MIC = 50 µM) were more susceptible to 

temporin-SHe, while these strains were resistant to temporin-SHd. P. aeruginosa is an 

opportunistic human bacteria responsible of biofilm formation in medical tools [82]. 

Interestingly, temporin-SHe, as well as temporin-SHd, are active against antibiotic-

multiresistant S. aureus (ATCC 43300 and ATCC BAA-44) with the same order of 

magnitude as non-resistant S. aureus strains (ST1065 and ATCC 25923). This 

emphasizes the original mode of action (membranolytic mechanism) of these AMPs 

compared to conventional antibiotics and also indicates that temporins are promising 

candidates in the fight against antibiotic-resistant pathogens. Another interesting result 

is that temporin-SHe is an additional temporin with antiparasitic activity against 

Leishmania. Only four temporins (A, B, SHa and SHd) were previously shown to have 

such activity [71, 72, 77] and very few AMPs of other families are active [38, 83]. Like 

temporin-SHd, temporin-SHe is active against different Leishmania species responsible 

of visceral (L. infantum), cutaneous (L. major) and muco-cutaneous (L. braziliensis) 

leishmaniasis. 

We have shown that temporin-SHe is three-fold more cytotoxic than temporin-

SHd toward human monocytes. This can be explained by the higher intrinsic 

hydrophobicity of temporin-SHe since it is known that increasing the hydrophobic 

character leads to more cytotoxic AMPs [84] and that hydrophobic interaction play a 

major role in the activity of peptides with PC-rich membranes [85]. This preliminary 

study of cytotoxicity needs to be extended on other cells, such as erythrocytes or 

macrophages (the host cells of Leishmania), for example. 

In order to investigate the mode of action of temporin-SHe, we have analyzed 

the effect of this peptide on the cytoplasmic membrane of bacteria (permeabilization 

assay) and its ability to kill bacteria. With two-fold concentration above the MIC, we 

observed a complete killing which was very rapid (within 5 min) for the Gram-positive 

S. aureus and much lower (90 min) for the Gram-negative E. coli. Temporin-SHe was 

more efficient than temporin-SHd because for the latter, no complete killing occurred 

(S. aureus and E. coli) after 120 min of incubation with a concentration two-fold above 

the MIC. However, Abbassi/Raja and co-workers have shown for temporin-SHd that a 

three-fold concentration above the MIC (20 µM) was effective to induce rapid (15 min) 

and complete killing of S. aureus, with also rapid permeabilization of the cytoplasmic 
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membrane [77]. Thus, a peptide concentration threshold is needed for rapid killing of 

bacteria by AMP. 

In addition, temporin-SHe was able to permeabilize the bacterial cytoplasmic 

membrane (S. aureus and E. coli) in a time- and concentration-dependent manner. The 

kinetics of membrane permeabilization was correlated to the bacterial killing. We 

observed that even at concentrations below the MIC membrane permeability occurred 

but does not cause bacterial lysis. This could be explained by the two-state model [86]. 

In this model, peptide has two physical states of binding to the lipid bilayer, one at low 

peptide/lipid ratios (P/L) and another at a high P/L. When a threshold ratio is reached, 

the peptide tends to form a stable multi-pore state, whereas the few pores formed below 

the threshold concentration are usually unstable [86]. However, according to several 

studies (reviewed in [87]), including those of the laboratory [76, 78], only the first 

physical state (lower concentrations) fits into the mechanism of action commonly 

accepted for temporins. These results indicate that temporins rather act by a carpet-like 

mechanism. In fact, at low temporin/lipid ratio, peptide induces the formation of 

transient, toroidal lipid-peptide pores, with possibility of peptide translocation into the 

cell. At a higher temporin/lipid ratio, peptide induces membrane disruption by a 

detergent-like effect, as it has been demonstrated for temporin-SHf [76] (figure 30). 

  

Figure 30: Hypothetical mechanism of action of temporins. The first step involves reversible 

electrostatic interactions of the cationic peptide with the negatively charged membrane (carpet-

like mechanism). In the second step, the hydrophobicity of the peptide allows its insertion into 

the hydrophobic core of the bilayer and then i) at low concentrations, peptide induces the 

formation of transient toroidal lipid-peptide pores with possibility of peptide translocation into 

the cell; ii) at higher concentrations, peptide provokes membrane micellization by a detergent-

like effect. The black area of the AMP corresponds to the hydrophobic region and the white area 

to the cationic region of the peptide. Gray circles of the membrane correspond to polar 

headgroups and squiggly lines to the acyl chains of the phospholipids (adapted from [87]). 
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CONCLUSION 

Skin secretions of the frog T. resinifictrix contain probably AMPs because after 

fractionation we were able to detect HPLC peaks at 220 nm displaying antibacterial 

activity against S. aureus. We need now to characterize these AMPs. 

 The structural characterization of temporin-SHe revealed that this peptide 

adopts a well-defined α-helical conformation when bound to negatively charged model 

membranes. Temporin-SHe interacts with the phospholipid headgroups of these model 

membranes and induces membrane perturbations probably by insertion into the 

hydrophobic core of the phospholipid bilayer. The membranolytic activity of temporin-

SHe was revealed by killing of bacteria, as well as Gram-positive and Gram-negative, 

and concomitant permeabilization of the bacterial cytoplasmic membrane. This activity, 

which is concentration-dependent, involves probably the formation of either transient 

toroidal lipid-peptide pores (at low peptide concentration) or membrane micellization 

(detergent-like effect at a higher peptide concentration). Temporin-SHe, as well as 

temporin-SHd and -SHa, are particularly interesting AMPs with potent and broad-

spectrum activity against a wide range of microorganisms, including both Gram-

positive and Gram-negative bacteria, yeasts, fungi and human protozoa. Moreover, 

these peptides display high potency toward antibiotic-multiresistant strains. 

Therefore, temporins-SH represent good templates for the development of 

therapeutic antimicrobial agents with new mode of action. Today, the antiparasitic 

mechanism of action of AMPs is unknown and very few AMPs are active against 

protozoa. So, our results indicate that temporin-SHe represents a good additional tool to 

analyze this mechanism.   
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