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Resumo 

Este trabalho teve como objectivo a modificação da superfície de membranas 

de PDMS (polidimetilsiloxano) para aplicação em prótese da fala. Todos os materiais 

de base silicone para aplicação em prótese da fala sofrem da formação de um biofilme 

bacteriano, ao longo do tempo. No sentido de inibir ou minimizar a formação deste 

biofilme bacteriano foram utilizadas diversas técnicas comumente utilizadas na 

modificação de superfícies, tais como o enxerto de monómeros por radiação ultra-

violeta (UV) e o enxerto de grupos amínicos. Também foi utilizada a técnica de 

modificação por plasma, com posterior enxerto de monómeros.  

Numa fase inicial as superfícies modificadas foram analisadas através da 

determinação de ângulos de contacto com a água, pois estes permitem avaliar de uma 

forma expedita a modificação da superfície. Posteriormente as diferentes superfícies 

obtidas foram analisadas por Espectroscopia no infravermelho por transformada de 

Fourier e por microscopia electrónica de varrimento para investigação química da 

amostra e pelo método de Owens, Wendt, Rabel and Kaelble para determinação da 

energia livre de superfície. Por goniometria dos ângulos de contacto foi possível 

estimar a hidrofobicidade/hidrofilicidade da superfície ao longo do tempo e com a 

balança a diminuição/aumento  do peso do material. Finalmente o estudo da 

citotoxicidade e da adesão celular à superfície dos materiais foi avaliada in vitro. 

Ao longo deste trabalho foram utilizadas técnicas de modificação de superfícies 

como o enxerto de monómeros à superfície da membrana de silicone, recorrendo à 

radiação ultravioleta (UV) e ao plasma com Oxigénio e Argon. Os monómeros 

escolhidos para o efeito foram o metacrilato de hidroxietilo e o ácido metacrílico, pois 

reúnem características tais como biocompatibilidade, presença de grupos muito 

hidrofílicos e propriedades antibacterianas. Com estes métodos pretende-se que a 

introdução dos grupos hidrofílicos proveniente dos monómeros proporcionasse um 

aumento da componente polar e consequentemente uma diminuição no ângulo de 

contacto, o que permitiria uma maior resistência bacteriana. Na modificação por 

plasma, que consistiu na modificação da superfície utilizando como gases o oxigénio e 

o árgon, foram avaliados os diversos parâmetros (pressão e temperatura) para ambos 

os gases, de maneira a determinar as condições de processamento óptimas. No 

http://pt.wikipedia.org/wiki/Transformada_de_Fourier
http://pt.wikipedia.org/wiki/Transformada_de_Fourier
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entanto, esta técnica apresenta como debilidade o facto do PDMS não se manter 

estável ao longo do tempo, levando ao aumento da sua hidrofobicidade ao longo do 

tempo. Contudo, o enxerto de monómeros por plasma permitiu o aumento da 

estabilidade da hidrofilicidade da superfície ao longo do tempo. Esta técnica revelou-se 

eficiente pois permitiu a introdução grupos hidrofílicos na superfície, o que se traduziu 

no aumento da componente polar e na diminuição do ângulo de contacto. 

Foram ainda enxertados grupos aminicos (–NH2) na superfície da membrana de 

silicone recorrendo à 1,6 - hexanodiamina. Para tal foram averiguados 2 protocolos, 

contudo apenas um se mostrou eficiente na diminuição da hidrofobicidade. A 

caracterização por espectroscopia de infra-vermelhos evidenciou a presença de grupos 

amina. O sucesso na introdução de grupos amina traduziu-se num aumento da 

componente polar e consequentemente na diminuição do ângulo de contacto.  

Todas as modificações de superfície a que os filmes de PDMS foram sujeitos 

foram avaliados ao longo de um mês em diferentes meios e verificou-se que a ocorreu 

recuperação da hidrofobicidade na técnica de enxerto de monómeros por radiação 

ultra-violeta (UV), enxerto de grupos amínicos e na modificação por plasma, o que 

sugere reorientação das cadeias poliméricas. A percentagem de inchaço foi 

praticamente nula em todas as técnicas, excepto na modificação com a amina, que se 

pode dever à interacção dos grupos amina com o meio. 

 Por último, foi realizada a caracterização da citotoxicidade e da actividade 

antibacteriana das membranas de PDMS. Nos testes de caracterização da citoxicidade 

nenhuma das amostras afectou a integridade ou viabilidade celular, o que é 

fundamental para a sua utilização em aplicações biomédicas. Nos ensaios de 

caraterização da  actividade antibacteriana das amostras verificou-se que as amostras 

possuem uma baixa actividade antibacteriana. Os resultados obtidos revelaram uma 

redução do crescimento bacteriano nas amostras em que houve enxerto de MAA por 

plasma e enxerto de HEMA por UV. 
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Abstract 

The main purpose of this research work was the modification of PDMS 

(polydimethylsiloxane) films for application in voice prosthesis. All silicone based 

materials for voice prosthesis suffer from microbial biofilm formation, along time. In 

order to inhibit or minimize its microbial biofilm formation different surface 

modification techniques were used, such as: UV (ultra-violet) grafting, chemical 

grafting of amino groups and plasma activation for surface modification with 

subsequent grafting of monomers. 

In an initial phase, the characterization of the modified surfaces was 

accomplished by determining water contact angles, because this technique allows to 

evaluate the surface modification, in an expedite way. The water contact angle allows 

to estimate the hydrophobicity / hydrophilicity of the surface over time and to balance 

the decrease / increase of the weight of material before and after the modification. 

Afterwards, the different obtained surfaces were analyzed by Fourier transform 

Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM) for chemical 

evaluation and determination of the surface free energy by the Owens Wendt, Rabel 

and Kaelble method. Finally, the study of the cytotoxicity and cell adhesion to the 

surface of the materials was evaluated in vitro. 

Throughout this work the techniques used for surface modification by grafting 

monomers onto the surface of the PDMS films were ultraviolet (UV) irradiation and 

plasma surface activation with oxygen and argon. The chosen monomers for the 

grafting were hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAA), due to 

characteristics such as: biocompatibility, the presence of hydrophilic groups and 

antibacterial properties. By using these modification methods is intended to introduce 

hydrophilic groups from monomers in the surface, which would provide an increase of 

the polar component, and consequently a decrease in water contact angle. This water 

contact decrease allows an increase of the bacterial resistance. In the modification by 

plasma, which consisted of surface activation using oxygen and argon as working 

gases, several parameters were evaluated (pressure and temperature) for both gases, 

to determine optimal activation conditions. However, this technique showed as a 

weakness the fact that the PDMS does not remain stable along time, leading to an 
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increase of hydrophobicity along time. However, by grafting a monomer to the surface 

after the plasma activation the increase of the hydrophilicity stability of the surface 

along time could be achieved. This technique has proved to be efficient because it 

allowed the introduction of hydrophilic groups at the surface. 

Also, to the surface of PDMS films were grafted amine groups (-NH2) by using 

1.6 - hexanediamine. For such propose, two protocols were explored, but only one 

proved to be effective in the decrease of the hydrophobicity. The characterization by 

infrared spectroscopy showed the presence of amine groups and the successful 

introduction of these groups resulted in an increase in the polar component (measured 

by surface free energy, using the OWRK method)) and consequently in the decrease of 

the water contact angle. All surface modifications of PDMS films were evaluated over a 

month in different storage mediums and it was found that the hydrophobicity recovery 

occurred in the ultraviolet radiation (UV) grafting, grafting of amine groups and 

modification by plasma, which suggests reorientation of the polymer chains. The 

percentage of swelling was practically null in all techniques except in the modification 

with amine, which may be due to the interaction of the amine groups with the 

medium. 

Finally, the cytotoxicity of all the modified films was evaluated and the 

antibacterial activity of the PDMS films determined. The cytotoxicity tests showed that 

none of the films affected cell integrity or viability which is fundamental for the 

biomedical application proposed for this material. The antibacterial activity assays 

revealed that samples with MAA grafted by plasma activation and films grafted with 

HEMA by UV a reduction of the bacterial growth was induced. 
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Motivation 

The main motivation of this research work was the need of an answer to a 

current problem in implants: the formation of a biofilm on the surface of medical 

devices, in this particular case, voice prosthesis. The formation of this biofilm is the 

main cause of malfunction, or ultimately of the replacement of the currently used 

voice prosthesis. The surface modification of materials is one of the most used and 

studied approaches in recent years, in order to get an answer to this problem. 

Therefore, in order to reduce adhesion of microorganisms, the surface modification of 

silicone based materials would be sought for their application in voice prosthesis. 

Thus, several techniques have been developed and refined towards the surface 

modification of a silicone based materials – Sylgard 184®. In this research work, the 

surface modification techniques used were UV (ultra-violet) grafting, chemical grafting 

of amino groups and plasma activation for surface modification with subsequent 

grafting of vinyl monomers – hydroxyethyl methacrylate (HEMA) and methacrylic acid 

(MAA). Comparatively to other modification techniques (such as corona discharge, 

laser treatments, gamma-ray, electron beam, ion beam and the use of biosurfactants) 

these modifications techniques present some advantages such as:  low cost of 

treatment, fast reaction rate, simple equipment and industrialization and 

improvement of the surface properties of a material without affecting its bulk 

properties. 
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1. Introduction 

1.1 Voice prosthesis 

In the upper and front part of the neck is 

located the larynx. Its superior edge is located below 

the pharynx and the root of the tongue and its 

inferior margin has a membranous connection with 

the upper ring of the trachea. The larynx has two 

main and important functions: it changes our 

physical condition (the admission of air to the lungs, 

some degree of regulation in its quantity, and 

conferred resistance to the entry of foreign bodies) 

and is responsible for the generation of the voice. [1] In figure 1.1, can be observed the 

position of the larynx, in a human body (upper respiration system). 

One of the basic human attributes is the voice [2]. Through a simple mechanical 

setup the voice phenomena is produced. The larynx, which is placed on top of the 

trachea, helps to send air into the lungs during expiration. Thus, the air delivered 

creates vibrations in specific elastic and tense membranes, the boundaries of a chink 

(that is the orifice of entrance and of exit for the supply of air to the lungs). These 

vibrations generate voice. [3] 

Therefore, is not surprising that one of the most dangerous effects of a total 

laryngectomy (surgical treatment due to extensive cancer of larynx) is the loss of voice. 

[2], [4] Disfigurement and a large part of laryngeal functions (control of airways, 

phonation, swallowing effort closure during strenuous activity and cough) will be 

seriously affected after surgical removal of the larynx as malignancies 

laryngopharyngeal primary treatment or as rescue treatment after recurrent cancer. 

[2] 

There are two types of voice prosthesis, the indwelling devices, which keep in 

the stand for an extending period of time, such as the Groningen button, Traissac et 

Figure 1.1 - Upper respiratory system 

[130] 
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al., Nijdam, Provox and Staffieri and removable devices, which for cleaning reasons, 

must be frequently removed, such as the Blom, Singer and Panje.  

 

Presently, the most used devices in Europe are the self-retaining low resistance 

Provox voice prosthesis developed in the Netherlands Cancer Institute in 1988 along 

with the Groningen button voice prosthesis. [4] 

Many patients who had a laryngectomy show problems concern to the 

blockage of the valve, which can cause discomfort, coughing and pneumonia. The 

frequent replacement of the valve has adverse effects in the life quality of the 

patients. [5] 

The initial implant of a voice prosthesis (originally invented and implemented 

by Mozolewski in 1972) was performed by Blom and Singer. This device became an 

international instrument available in 1980.  [6] 

Because of the increased airflow resistance or retrograde leakage of fluid into 

the trachea due to biofilm formation, tracheoesophageal voice prostheses have to be 

substituted several years after being implanted. [7] 

There are two types of obstruction: through the valve or around the valve. The 

first type of obstruction is caused by dysfunction of the valve, particularly due to 

biofilm formation. The second obstruction is determined by the size of the valve wall 

and the fistula. [5] 

 

1.2 Silicone: General description and history 

For future biomedical applications, PDMS (polydimethylsiloxane) systems have 

been studied. [8] These materials offer great properties that will be discussed, in 

detail, in the next chapter.  
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Table 1.1 resumes the key milestones in the advances of silicone chemistry.  

 

1.2.1 Silicone structure 

 
In 1901, by similarity with ketones, Kipping gave the name “silicone”, to 

designate new compounds of the brut formula R2SiO. These were instantly identified 

as being a polymer and analogous to polydialkylsiloxanes, with the formulation shown 

in figure 1.2: [12] 

Table 1.1 - Key milestones in the advancement of silicone [9], [10], [11] 

1824  Berzelius discovers silicon by the reduction of potassium fluorosilicate with potassium 

4K+K2SiF6Si + 6KF. Reacting silicon with chlorine gives a volatile compound later identified as 

tetrachlorosilane, SiCl4Si+2Cl2   SiCl4. 

 

1863  Friedel and Craft synthesize the first silicon organic compound, tetraethylsilane 

 2Zn (C2H5)2+ SiCl4  Si (C2H5)4 + 2ZnCl2. 

 

1871  Ladenburg observes that diethyldiethoxysilane, (C2H3)2Si (OC2H5)2, in the presence of a diluted 

acid gives an oil that decomposes only at “a very high temperature”. 

 

1901-1930  kipping lays the foundation of organosilicon chemistry with the preparation of various 

silanes by means Grignard reactions and the hydrolysis of chlorosilanes to yield “large molecules”. The 

polymeric nature of the silicones is confirmed by the work of Stock. 

 

1940s  silicones become commercial materials after Hyde of Dow Corning demonstrates the thermal 

stability and high electrical resistance of silicone resins, and Rochow of General Electric finds a direct 

method to prepare silicones form silicon and methylchloride. 

 

1989  The use of silicones in pharmaceutical and biomedical applications was around 14,000 tons, and 

the amount of silicon implanted, in the long term, was approximated 90 tons 

 

1999  The annual consumption of silicone elastomers grew by 1.7 million tons. 
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            Figure 1.2 - Compounds with formula R2SiO [12] 

       

 The name of silicone was called and adopted by the industry and normally 

refers to linear polymers where R=Me, or polydimethylsiloxane (PDMS). In figure 1.3, 

can be observed the chemical structure of PDMS. 

 

                           

 

 

Normally, the side groups are methyl, however they can also be phenyl for 

severe low temperature performance or tri-fluoro propyl for upgraded oil and fuel 

resistance. Silicone elastomers have an inorganic oxygen and silicone backbone 

(extremely resistive to weathering).  

Silicones have a combination of distinctive properties due to the simultaneous 

presence of “organic” groups connected to an “inorganic” backbone, and enable their 

use in a lot of fields such as aerospace (low and high temperature capacity), electronics 

(electrical insulation), in the building industries (resistance to weathering) or health 

care (great biocompatibility). [13] 

PDMS materials have a large variety of applications and their structural 

alterations might be attributed to the next factors: 

- Chemical stability (except on rough alkaline conditions), which explains the innocuous 

behavior of PDMS materials concerning to living tissues; 

- Thermal stability of PDMS materials in comparison with similar carbon structures, 

which results of the relatively high Si-O-Si bond energies; for long periods of time, 

silicone elastomers stay flexible as low as -80ºC and constant at temperatures as high 

as 300ºC. Virtually, they don’t change after extended weathering and their 

Figure 1.3 - Chemical structure of polydimethylsiloxane [12] 
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tremendous electrical proprieties still stable with frequency and temperature. [14], 

[15] 

- Small rotational and bending energies confer flexibility to O-Si-O-Si bonds, as 

compared to similar carbon structures, because of the relatively large silicon bond 

radius; PDMS owns a distinctive flexibility (the shear modulus G could fluctuate 

between 100kPa and 3MPa). Siloxane chains might adopt a lot of configurations and 

their barriers to rotations are low. [16], [17] 

- The capacity of silicon to expand his outermost electron shells beyond the octet; 

- The exposition of methyl groups makes the surface very hydrophobic. Normally, the 

siloxane chain follows a configuration such, in which the chain exhibits a maximum 

number of methyl groups to the outside, while in hydrocarbon polymers the relative 

stiffness of the polymer backbone doesn´t allows a "selectively” exposure of the 

hydrophobic and methyl groups. [16] 

Polydimethylsiloxanes have a low surface tension (20,4 mN/m) and are able of 

wetting most surfaces. Its surface has good release proprieties, especially if the film is 

cured after application, by the fact that methyl groups are pointed outward. By the 

fact that silicones are able of wetting themselves, it favors good film formation and 

good surface coverage. Their critical surface tension of wetting (24mN/m) is greater 

than its own surface tension. The viscous movement activation energy is highly low for 

silicones. In comparison to hydrocarbon polymers, their viscosity is less dependent on 

temperature. [18] 

Besides of the proprieties referred above, PDMS has a low glass transition 

temperature (Tg ≈ -125ºC), high dielectric strength (~21kV/mm), high gas permeability, 

high compressibility, low chemical reactivity (except at extremes of pH), non-toxic 

nature, low cost and optical transparency. [17], [19], [20] 

 

1.2.2 Silicone as a biomaterial 

In 1982, was given the first possible definition of a biomaterial, by professors 

Dee, Puleo and Bizios: “Any substance (other than a drug) or combination of 

substances, synthetic or natural in origin, which can be used for any period of time, as 

a whole or part of a system, which treats, augments, or replaces any tissue, organ, or 

function of the body”. In 1987, was added an agreement definition of a biomaterial, 

often referenced in the literature, which could be assigned by the teacher David 

F.Williams:” A biomaterial is a nonviable material used in the production of a medical 
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device, intended to interact with biological systems”. However, these two definitions 

referred before were not totally perfect or complete, because development of 

materials containing living cells, like artificial organs, defies the word nonviable. [21] 

In 1992, the term nonviable was eliminated and a biomaterial agreement 

definition was setting: “A material intended to interface with biological systems to 

evaluate, treat, augment, or replace any tissue, organ, or function in the body”. [21], 

[22] 

Usually, biomaterials studies concentrate on problems such as biocompatibility, 

host-tissue reactions to implants, cytotoxicity and basic structure-propriety 

associations. These issues are essential, because they give a strong scientific basis to 

the understanding of medical devices such as voice prosthesis. But, as a primary worry, 

in biomaterials engineering, the manufacturing and processing aspects appear. There 

are, normally, four properties that biomaterials must have: biocompatibility, 

sterilizability, functionability and manufacturability. It´s very important to establish a 

production of a thousand units of identical devices that ensures good quality control, 

reliable proprieties and having to be packed in a sterile mode for simple transportation 

and storage. Durability, surface modification and corrosion are the major elements in 

engineering biomaterials for medical applications. [23] 

From a clinical point of view a material to be compatible cannot cause toxic 

reactions, allergic, inflammatory or thrombogenic effects in the body, cannot cause 

deterioration of adjacent tissues or lead to carcinogenic effects, among other. [24] 

During the past three decades, the PDMS elastomers has also been used as 

biomaterials in medical devices, emphasizing among others, artificial hearts, heart 

valves, breast implants, devices for ophthalmology (ocular lenses, implants for 

glaucoma), nose, artificial ears and skin, biosensors, catheters and prosthetic speech. 

Many biomedical applications take advantage of the properties offered by silicone 

elastomers. Among the silicone applications are included the systems of drug release, 

surgical specialties, tunnel for metal implants, orthopedic implants, and also particular 

materials such as pipes and valves. [25] 
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Numerous problems have been arisen when the implants are implanted for a 

long period of time, even though the silicone shows excellent properties of 

bioinerticity, stability and smoothness. Because of its hydrophobicity, the PDMS 

materials cannot be used in many applications. This occurs because the body 

recognizes silicone as invaders hydrophobic (foreign) materials by stimulating 

inflammation and fibrous capsules that isolate the biomaterial. This capsule affects the 

proper functioning of the implant, producing a physical barrier between the implant 

and the surrounding tissue causing contraction of the material. [26] 

 

1.3 Sylgard 184® 

 Sylgard 184®, a silicone elastomer Kit, will be used as the base material in this 

work.[27] The main features of this compound are:  

- High Transparency which allows simple Inspection of components. 
- Fast and versatile cure processing controlled by temperature. 
- Could be considered for uses requiring Underwriters Laboratories (UL) and Mil 

Spec (military specifications) requirements. 
- High Tensile Strength. 
- Flowable. 
- No solvents or cure byproducts. 

Sylgard 184 could be used for protection of electronic/electrical devices, as well as 

for some sealing applications (power supplies, high voltage resistor packs connectors, 

sensors, adhesive/encapsulant for solar cells, industrial controls, transformers and 

amplifiers). [27] 

Sylgard®184 consists of a base (part A) and a curing agent (part B). The base 

consists of dimethylsiloxane oligomers with terminal vinyl groups and a platinum 

catalyst. The curing agent consists of dimethyl hydrogen siloxane groups. As a result of 

the curing reaction is obtained the polydimethylsiloxane. The reaction is schematized 

in figure 1.4. [27] 
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Figure 1.4 - Representation of the formation of the PDMS [27] 

However, the data published about this product is limited. [28] 

 

1.4 Biofilm Formation 

Highly structured communities of microorganisms are defined as biofilms, 

which are surface-associated and/or closed to one another, enclosed inside a self-

produced protective extracellular matrix. These might be formed in the natural 

environment, but also inside the human host, cooperatively interacting in an altruistic 

manner as complex cities. When an organism forms a biofilm, it gets some advantages 

like resistance to physical and chemical removal of cells, metabolic support, protection 

from the environment and a community-based regulation of gene expression. [29] 

Bacteria are found mainly in biofilms, in most natural situations. The general 

recognition that biofilms have impact in many environments, from water pipes to 

indwelling devices in hospital patients, brought a rising interest in investigating the 

molecular systems underlying maintenance and formation of these communities. [30] 

In some environments, bacteria might adhere to the majority of surfaces, via 

cell surface structures like pili, fiambriae and extracellular polymers or just by 

physicochemical interaction forces. The adhesion phenomena by physicochemical 

basis is the equilibrium between electrostatic and Van der wall´s forces as hydrophobic 

surface interactions, which are created in either repulsion or attraction between 

particles. Hydrophobic surface interactions are very attractive and allow adhesion of 

microorganisms to epithelial cells and abiotic surfaces. [31] 
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The formation of biofilm occurs in distinct steps, as shown in figure 1.5: 

microbial attachment, microbial proliferation and the subsequent formation of a 

bacteria biofilm. [31] 

 

 

 

 

 

 

 

1.4.1 Silicone Biofilm 

Failure of a device is attributed to the formation of the biofilms on medical 

devices. In laryngectomized patients, after some use, the voice prosthesis suffers 

deterioration and degradation (inhibiting its correct functioning) and should be 

replaced after three/ four months. [32] 

Voice prostheses are very vulnerable to be colonized by microorganisms, 

mostly by Candida spp., growing in biofilms on the surface, which causes faulty of the 

valve (improper closure), an augment in air flow resistance and probably fluid leakage 

from the esophagus into the trachea. Therefore, it is necessary surgical replacement of 

the voice prosthesis. [33], [32] 

The microbial colonization on voice prosthesis cannot be prevented. The 

velocity of colonization and the composition of biofilm depend on the characteristics 

of the material with which prosthesis is produced, the formation of physiological flora 

of an individual, and on a series of exterior agents like temperature, nutritional, 

humidity and other agents that are mainly the results of patient’s routine. [34] 

Figure 1.5 - Sequential stages in the formation of a biofilm 



1. Introduction 

10 
 

1.4.2 Factors that influence microbial adhesion  

Before testing materials for bacterial adhesion, a complete knowledge of the 

chemical and physical properties of the materials is needed. The factors that could 

influence microbial adhesion are: roughness and topography, environment, surface 

chemistry and surface free energy. [35], [36], [37] 

1.4.2.1 Roughness and topography 

Atomic force microscopy (AFM) or profilometry are typically used to measure 

surface roughness. Some of the roughness parameters presented for assessing 

biomaterials are summarize on table 1.2. In bacterial adhesion, topography is an 

essential factor. For instance, the interaction of bacteria with two surfaces of equal 

chemistry, but contrary topography might result in considerably different densities of 

adherent bacteria in vitro. Roughening a surface creates turbulent fluid flow and 

augments the available surface for colonization. Consequently, increasing topography 

might lead to increased bacterial adhesion. [38] 

 

 

 

 

 

 

 

 

 

 

 

Roughness 

Parameter 

Abbreviation Description 

Roughness 

Average 

Ra Measures the average height 

of the surface 

Root mean 

Squared roughness 

Rq/RMS Measures the average 

deviation of the surface from 

the mean height 

Skew Rsq A measure of whether the 

surface is primarily composed 

of valleys of peaks 

Kurtosis Rk Describes whether the surface 

is spiky(Rk>3), bumpy  

(Rk<3), or random (Rk=3) 

Table 1.2 - Some of the roughness parameters available for characterizing a surface [38] 
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1.4.2.2 Environment 

Time of exposure, bacterial concentration, temperature, associated flow 

conditions and the presence of antibiotics are factors that influence bacterial 

adhesion. [39] 

1.4.2.3 Surface chemistry 

A meticulous cross reference of five different termination groups is showed in 

table 1.3, submitted by Van der Vegte and Hadziioannou. It was discovered that 

different pair of van der Waals interacting tips revealed the weakest adhesive forces. 

But, their data demonstrated that by switching the termination groups on the tip and 

substrate they did not constantly see the identical adhesive force. [40] 

Table 1.3 - Single Chemical Bond Forces (in pN) for every Tip-Substrate combination [40] 

 

Bacterial adhesion and proliferation are influenced by surface chemistry. 

Depending on material charge and hydrophobicity, materials with various functional 

groups change bacterial adhesion. [39] 

In aqueous suspension, bacteria are practically always negatively charged. 

According to bacterial species, the surface charge of bacteria can change and is 

determined by the pH, the growth medium and the ionic strength of the suspending 

buffer, bacterial surface structure and bacterial age. Nevertheless, the contribution of 

bacterial surface charge to bacterial adhesion has not been totally understood. [39] 

Bacteria adhere in a different way to materials with different hydrophobicities. 

Hydrophobic materials are less resistant to bacterial adhesion than hydrophilic 

materials. [41]  

                                                                                        Substrate 

Tip CH3 OH NH2 COOH HCONH2 

CH3 

OH 

NH2 

COOH 

CoNH2 

81 

50 

54 

95 

62 

57 

101 

88 

109 

110 

59 

113 

98 

105 

102 

61 

112 

95 

114 

125 

601 

117 

100 

137 

120 
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1.4.2.4 Surface free energy 

In 1979, Baier and Dexter were among the first investigators to establish a 

correlation between adhesion of fouling organisms with the surface free energy of the 

substratum. The relative amount of bioadhesion and the surface energy is correlated 

in figure 1.6, which is known as the “Baier Curve”. The main feature of this curve is 

that the minimum in the relative adhesion, at 22-24 nM.m-1, (mJ/m2), doesn´t happen 

at the lowest surface energy. [35] 

  

 

                                           

 

 

 

 

 

                        

In 2004, Zhao et al. studied the effect of surface free energy on bacterial 

adhesion and announced the optimum surface free energy, where the bacterial 

adhesion force is minimal, to be approximately 20-30 nM.m-1. [35] 

In 2006, Meyer et al, established that silicone coatings with critical surface 

tension between 20 and 30 nM.m-1, release more easily different types of biofouling 

than materials of higher or lower critical surface tension. It was also demonstrated that 

some contact angle irregularities indicate that surface-active obtains from silicone 

coating inhibit the adhesive systems of fouling organisms. [35] 

 The control of the substratum surface free energy for capability of adhesion 

and binding strength has a general value like for (i) the colonization of vascular 

prosthesis for abdominal wall reconstruction, (ii) the adhesion of uropathogens to 

Figure 1.6 - The “Baier” curve [35] 
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polymer materials, (iii) the adhesion of catheter-associated bacteria, (iv) the binding 

strength of green alga to some surfaces, (v) the adhesion of Salmonella typhimurium to 

soil particles, (vi) the attachment of insect residues to aircraft wings and (vii) the 

attachment of freshwater bacteria to solid surfaces. [37] 

 

1.5 The monomers 

In this work, PDMS was grafted with three monomers: the HEMA (2-

hydroxyethyl methacrylate), the MAA (Methacrylic acid) and the 1.6-hexanediamine. 

For several years, the use of coating agents in combination with peroxides to 

cure rubbers has been a regular practice in the rubber industry. Usually, coagents are 

multifunctional monomers that are highly reactive in the presence of free radicals and 

readily graft to rubber chains to constitute a polymeric crosslink network. Methacrylic 

acids behave as coagents in the same mode as the methacrylate esters do (figure 1.7).  

[42] 

 

 

  

 

 

 

Because of the biocompatibility and the antibacterial properties, acrylics acids 

are commonly used as adhesives and superabsorbents materials due to its pendant 

carboxylic groups. Polymers grafted by acrylic acids develop highly hydrophilic 

materials and attractive matrixes for biomedical applications [43] 

HEMA (2-hydroxyethyl methacrylate) (figure 1.8) is a biocompatible water 

absorbing plastic used to create ophthalmic prostheses (contact or intraocular lenses), 

Figure 1.7 - Chemical structure of 

Methacrylic acid [90] 
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vascular prostheses, drug delivery devices and soft-tissue replacements. Is obtained by 

the reaction of methacrylic acid with ethylene oxide or propylene oxide: [44], [45] 

                                          

Figure 1.8 - Chemical structure of 2-hydroxyethyl methacrylate [46] 

                               

1.6 - Hexanediamine (figure 1.9) is an organic compound with the formula 

H2N(CH2)6NH2. This diamine molecule consists of a hexamethylene hydrocarbon chain 

terminated with amine functional groups. Because of the electronegativity of the 

nitrogen atom, C-N and N-H bonds have polarity, with the partial negative charge 

located on the nitrogen.  Therefore, most amine compounds have a dipole which 

promotes aqueous solubility via dipole-dipole interactions with water molecules. [46], 

[47] 

 

 

 

1.6 Surface modification – an introduction 

The main reason for the surface modification of biomaterials is simple: to keep 

the fundamental physical properties by changing only the outermost surface in order 

to control biointeraction. If the surface modification is properly made, the bulk 

mechanical properties and features of the medical device are not changed, while the 

biological performance is improved. [48] 

Surface modification gives flexible ways for improving surface properties such 

as: hydrophilicity, biocompatibility, anti-fouling, surface roughness, antistatic and 

Figure 1.9 - Chemical structure of 1.6-Hexanediamine [46] 
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antibacterial properties, and even conductivity, while conserving the bulk structure of 

the base material. [49] 

The main methods for surface modification can be grouped in two types: the 

chemical surface modification and the physical surface modification methods. The 

latter ones include flame, corona discharge, laser treatments, gamma-ray, electron 

beam, ion beam, plasma, and UV. [50] The principle operation of the last two 

techniques will be described, in more detail, in the next chapters.  

 

Corona discharge is a well-recognized, relatively easy and one of the most 

commonly used continuous process for the surface modification. It consists of a high 

voltage-high frequency generator, an electrode and a grounded metal roll covered 

with an insulating material. In this method, when a high voltage is applied across the 

electrodes it ionizes the air generating plasma, also known as corona discharge. As a 

result of corona discharge physical and chemical changes happen on the polymer 

surface for improved adhesion. [51] 

 The use of surface active molecules (Biosurfactants) has become a significant 

product for industrial and medical applications. Biosurfactants are surface-active 

compounds which are produced by microorganisms like glycolipids, lipopeptides, 

polysaccharide–protein complexes, phospholipids, fatty acids, and neutral lipids. 

Biosurfactants present various advantages such as low toxicity, biodegradability, 

chemical variety, efficiency under extreme environmental conditions, surface activity, 

emulsifying capacity, antimicrobial and antiadhesive properties. However, these 

compounds present some disadvantages. The amounts of produced Biosurfactants are 

very low and the mechanism of microbial adhesion inhibition is little known. [4], [19] 
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To modify the chemistry of a surface, there are hundreds of chemical reactions 

that could be used. Chemical reactions can be grouped as nonspecific and specific. 

Nonspecific reactions leave a division of several functional groups at the surface. An 

example of a nonspecific reaction is the chromic acid oxidation of polyethylene 

surfaces. Other examples are radio-frequency glow discharge (RFGD) processing of 

materials in argon, nitrogen, oxygen or water vapor plasmas; corona discharge 

modification of materials in air and the oxidation of metal surfaces to a mixture of 

suboxides. Specific reactions modify only one functional group into another with a high 

field and a small amount of side reactions. [52]. In figure 1.10, examples of specific 

chemical surface modifications for polymers are illustrated. 

Figure 1.10 - A diagram of a capacitively coupled RF plasma reactor. Important experimental 

variables are indicated in bold typeface [52] 
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Several methods to modify the surface of materials are listed in table 1.4. 

Table 1.4 - Physical and Chemical Surface methods [52] 

 Polymer Metal Ceramics Glass 

Noncovalent coatings     

     Solvent coating ✓ ✓ ✓ ✓ 

     Langmuir-active additives ✓ ✓ ✓ ✓ 

     Surface-active additives ✓ ✓ ✓ ✓ 

     Vapor deposition of carbons and metals ✓ ✓ ✓ ✓ 

     Vapor deposition of parylene ( -xylylene) ✓ ✓ ✓ ✓ 

 

Covalently attached coating 

    

     Radiation grafting(electron accelerator and gamma) ✓ - - - 

     Photografting (UV and visible sources) ✓ - - ✓ 

     Plasma (gas discharge)(RF, microwave, acoustic) ✓ ✓ ✓ ✓ 

     Gas-phase deposition     

Ion beam sputtering ✓ ✓ ✓ ✓ 

Chemical vapor deposition - ✓ ✓ ✓ 

Flame spray deposition - ✓ ✓ ✓ 

      Chemical grafting ✓ ✓ ✓ ✓ 

      Silanization ✓ ✓ ✓ ✓ 

      Biological modification(biomolecule immobilization) ✓ ✓ ✓ ✓ 

 

Modifications of the original surface 

    

      Ion beam etching (e.g., argon, xenon) ✓ ✓ ✓ ✓ 

      Ion beam implantation (e.g., nitrogen) - ✓ ✓ ✓ 

      Plasma etching (e.g., nitrogen, argon, oxygen, water vapor) ✓ ✓ ✓ ✓ 

      Corona discharge (air) ✓ ✓ ✓ ✓ 

      Ion exchange ✓ ✓ ✓ ✓ 

      UV radiation ✓ ✓ ✓ ✓ 

      Chemical reaction     

 Nonspecific oxidation (e.g., ozone) ✓ ✓ ✓ ✓ 

Functional group modifications (oxidation, reduction) ✓ - - - 

      Conversion coatings (photophating, anodization) ✓ ✓ - - 

      Mechanical roughening and polishing ✓ ✓ ✓ ✓ 
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1.7 Cytotoxicity tests  

The absence of a toxic effect on cellular functions (cytotoxicity) is a prerequisite 

necessary for the biocompatibility of a material. For the determination of risk of a 

compound to human health, its evaluation at the cellular level, in vitro, is fundamental.   

The in vitro studies are more adaptable, easily duplicated, inexpensive, simple, 

more reproducible and rapid. Currently, the testing of cytotoxicity effects of 

biomaterials in vitro is crucial for the development of new biomaterials. [53], [54] 

The selection of the cell line type to perform materials cytotoxic profile is 

essential. The choice of cell type (osteoblasts, fibroblasts, endothelial cells) depends on 

the future application intended for the tested materials.  [53] 

          The MTS assay, namely 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium, is a colorimetric method that allows the 

determination of the percentage of viable cells seeded in the presence of a test 

material. In viable cells, metabolism generates “reducing equivalents” like NADH and 

NADPH. These “reducing equivalents” transfer their electrons to an intermediate 

electron transfer reagent that could reduce the tetrazolium product (MTS), into an 

aqueous, soluble formazan product. Creation of the colored formazan product is 

proportional to the quantity of viable cells in culture. At death, therefore, cells quickly 

lose the ability to reduce tetrazolium products. [126], [56] 

  

1.8 Characterization techniques 

1.8.1 Contact Angle 

Systems which contain liquids and solids are everywhere.  Bringing a liquid to 

contact a solid surface is a method that is called as wetting. This is process has 

fascinated scientific attention over more than 2 centuries. [62] 

The hydrophilicity or hydrophobicity of a solid surface can be determined by 

measurements of the contact angle created between water, air and that surface. 

Figure 1.11 shows that when the surface is hydrophobic the water droplet produces 
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compact globs with large contact angles. When the surface is hydrophilic water droplet 

spread to produce flattened globs with small contact angles. [63] 

 

 

 

 

´ 

 

 

This method use a goniometer-microscope armed with an angle-measuring 

eyepiece, or more newly, a video camera armed with a suitable magnifying lens, 

connected with a computer with image analysis software to find out the tangent value 

exactly on the captured image. [64] 

The contact angle is measured according to the young equation given below 

(figure 1.12): 

 

 

 

 

 

 

 

An angle , which is called contact angle, is formed when a drop of a liquid is 

positioned on the +solid surface. Young has revealed that: [65] 

Figure 1.1 - Contact angles formed between water droplets 

and a) hydrophobic surface and b) hydrophilic surface [63] 

Figure 1.2 - Schematic representation of a water 

droplet in a surface and the forces present [127] 
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Equation 2.1                     S = SL+ LV     ,                      

  

Where  S,  SL and  LV are respectively the surface free energy of the interface 

between the solid and saturated vapor, between the solid and the liquid and the liquid 

and the vapor. Different methods have been suggested to obtain  S using the contact 

angles formed by drops of various liquid with known surface tensions.  

The contact angle does not measure directly the surface free energy. The 

wettability of solids is mostly influenced by the surface free energy. It means that the 

surface free energy can only be estimated in an indirect way, if the wettability is 

quantitatively measured. [66] 

The energy of adhesion could be separated into different contributions. Most 

valuable for a lot of applications is the division between disperse and polar 

interactions. [67] 

Equation 2.2                     W = Wdisperse + Wpolar, 

Where, Wdisperse is exclusively based on London forces which means on interactions 

occurring between instantaneous dipoles and Wpolar is relative to molecules with static 

dipole moment. [67] 

The surface free energy is expressed by: [67] 

Equation 2.3                               S= 
 
 
+  

 
, 

Where, 

 S is the surface energy of the solid 

  
 
 is the dispersive component of surface energy 

  
 
 is the polar component of surface energy 

On table 1.5, is shown the liquids usually used for contact angle measurements 

and their surface tensions. [65] 
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Table 1.5 - Surface free energies of liquids used for contact angle measurements (liquids are ordered 

as a function of its polarity degree x
p
) [65] 

Liquid  LV 

(mJ/m
2
) 

 LV
d
 

(mJ/m
2
) 

 LV
p 

(mj/m
2
) 

x
p
(%) 

Water 72.2 22.0 50.2 69.5 

Glycerol 64.0 34.0 30.0 46.9 

Formamide 58.3 32.3 26.0 44.6 

Ethan-1.2-diol 48.3 29.3 19.0 39.3 

Polyglycol E-200 43.5 28.2 15.3 35.2 

Polyglycol 15-200 36.6 26.0 10.6 29.0 

Dimethylsulphoxide 43.6 34.9 8.7 20.0 

 2-Ethoxyethanol 28.6  23.6 5.0 17.5 

 Dimethylformamide 37.3 32.4 4.9 13.1 

 Trieresylphosphate 40.7 36.2 4.5 11.1 

 Di-iodomethane 50.8 48.5 2.3 4.5 

 Pyridine 38.0 37.2 0.0 2.1 

 Hexadecane 27.6 27.6 0.0 0 

 Tetradecane 26.7 26.7 0.0 0 

 Dedecane 25.4 25.4 0.0 0 

 Decane 23.9 23.9 0.0 0 

 Octane 21.8 21.8 0.0 0 

 Hexane 18.4 18.4 0.0 0 

 

In the next section, the most common methods used for the determination of 

the surface free energy (SFE) will be discussed. 

Zisman method 

Zisman studied empirically that a plot of cos   versus   L,V is always linear. The 

extrapolation of which cos   to 1 is denominated as the critical surface tension. The 

equation came from this empirical experience: 

Equation 2.4 cos   = 1-K(  L,V-  c) , 

Where  L,V is the surface tension of the liquid and  c is the critical surface tension of 

the solid. However, this method is only valid to pure liquids. [68] 
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Zisman and coworkers settled an empirical connection between the cosine of 

the contact angle cos   and the liquid/air interfacial tension . They calculated the 

contact angle   for many different liquids, for a given low energy solid surface. [69] 

 

 

 

 

 

 

 

Fowkes 

 In 1964, Fowkes has demonstrated that the work of adhesion, Wc and the work 

of adhesion, Wa, can be divided into their dispersion, d, polar, p, induction, i, and 

hydrogen-bonding, h components: [64] 

Wc =W 
 
+ W 

 
+ W 

 
+ W 

 
+… 

Wa =W 
 

+ W 
 

+ W  
 

+ W 
 

+… 

 The work of the dispersion component between a solid and a liquid could be 

formulated as: [64] 

 

 

Equation 2.5 

 

Figure 1.13 - Zisman plot of the contact angle 

of different liquids on a PTFE surface [69] 
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The interaction between purely dispersive molecules was calculated by Fowkes, 

to be a geometric mean. The interfacial interactions could be illustrated (by using a 

purely dispersive liquid    
  

=0) as: [70] 

 

Equation 2.6 

Combining the Eq. 2.6 with Young´s equation is obtained the eq. 2.7: [70] 

Equation 2.7                               cos  =2√  
  

 . 
 

√  
  

 -1 

 

 The Owens, Wendt, Rabel and Kaelble method 

This method considers that the interfacial energy could be divided between 

molecules according to the interaction forces: polar interactions between permanent 

dipoles or permanent dipole-induced dipole and dispersive interactions between 

nonpolar molecules in which temporary fluctuations occur. [71] 

 The interfacial energy could be calculated through a geometric mean of the 

contributions of the liquid and solid, according to the equation 2.8: [71] 

Equation 2.8                   SL=  S+  l-2√  
 
   

 
 √  

 
   

 
 

Combining the Eq.2.8 with Young´s equation is obtained the Eq.2.9: [71] 

Equation 2.9                 LV(1+ cos   )=2√  
 
   

 
 √  

 
   

 
 

Wu´s method (harmonic-mean approach) 
  
This method utilizes a harmonic-mean equation for the sum of the dispersion 

and polar contributions. Wu declared that the Owens and Wendt equation was giving 

surface tensions for polymers with an error of 50-100% when compared with their 

melt values, mostly for polar polymers. However, the harmonic-mean approach has 
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the same faults as the Owens and Wendt approach, because the cohesive polar 

interactions properties cannot resolve the interfacial interaction among two distinctive 

materials. [64] 

In table 1.6, is shown the main characteristic of the method discussed 

previously. 

Table 1.6 - Calculation of Surface Free Energy [72] 

Method Information Min.no.of liquids Application Examples 

Zisman Critical Surface 

Tension 

2 Non-polar solids PE, PTFE, Waxes 

Fowkes Disperse parts of 

surface free 

energy 

2, non-polar 

liquids 

Non-polar system PE, PTFE, Waxes 

Wu Disperse and 

polar parts of 

surface free 

energy 

2, at least one 

polar liquid 

Low energetic 

systems 

Organic solutions, 

polymers, organic 

pigments 

WORK Disperse and 

polar parts of 

surface free 

energy 

2 Universal Polymers, aluminum, 

coating, vanishes 

 

1.8.2 SEM (scanning electronic microscopy) 

SEM (scanning electron microscope) was designed at the RCA Laboratories in 

New Jersey, under wartime conditions, fundamented on secondary emission of 

electrons. [76] 

A major advantage of the SEM for surface observations is that sample 

preparation is generally simple. In the simplest case, the material to be examined, 

chosen carefully from a larger sample, is placed on double sided sticky tape on a 

specimen stub. [77]  

The observation and characterization of heterogeneous organic and inorganic 

materials on a nanometer (nm) to micro micrometer ( m) scale is possible with the 
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scanning electron microscope (SEM). SEM can provide three-dimensional-like images 

of the surface of a very large range of materials. The main use of the SEM is to achieve 

topographic images in the magnification range 10-10,000x. [78] 

The main components of an SEM are presented in the figure 1.14.  

 

 

 

 

 

 

 

 

 

 

Vacuum, beam generation beam manipulation, signal processing and display, 

beam interaction, detection, and record are the seven primary operation systems. The 

results and qualities of a micrograph such as magnification, resolution, brightness, 

contrast and depth of field are calculated by these operation systems. [79] 

One of the tools commonly used in semiconductor materials and device 

research is SEM. The sample, to avoid burning and damaging, has to be coated 

(conductive material). When a fine beam of electrons is scanned through the surface 

of a specimen, a detector monitors the intensity of secondary electron emission from 

the specimen. On a screen a spot is shown, which (the point) is scanned in 

synchronism with the scanning electron beam on the specimen. The detected signal 

amplitude is responsible for the brightness of the spot. When the intensity of the 

Figure 1.14 - Diagram of SEM column and 

specimen chamber [79] 
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emitted secondary signal changes through the specimen, the same contrast pattern is 

displayed in the SEM image. [80] 

 

1.8.3 Swelling/Degradation 

1.8.3.1 Swelling 

In the absence of reactions, when implant materials touch a biological system, 

occurs tissue interface. If the primarily fluid - the substance, goes from the tissue into 

the biomaterial, there is an increase of the volume of the material due to the 

conservation of the volume. This phenomenon is called swelling, which could cause a 

large deformation in materials and affect material´s mechanical properties. Swelling 

creates continual deformation, which can lead to a mode of failure. [84] 

The swelling ratio of a sample establishes its capacity to swell following 

absorption of water and is a significant parameter for sample use. The next equation 

was estimated to know the swelling ratio: [85] 

 Equation 2.10                    % swelling =  
     

  
)*100, 

Where, Wd and Ws are respectively the weights of the samples in the dry and 

swollen states. 

The ability of swelling also depends on environmental conditions such as salt 

concentration, pH and temperature of the medium where they are. [86] 

1.8.3.2 Degradation 

The changes in the chemical structure and physical properties of the polymers 

caused by external chemical or physical stresses due to chemical reaction are 

denominated as degradation. Polymer degradation consists of oxidation, pyrolysis, 

biodegradation, photo-catalytic and mechanical degradation. Taking into account their 

chemical structure, polymers are susceptible to dangerous effects from the 

environment, which includes chemical deteriogens like humidity, dangerous 

anthropogenic emission, oxygen (its actives forms) and atmospheric pollutants and 
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physical stresses like mechanical forces, ablation, radiation and heat. [87]. This latter 

could affect the main chain linkages, the substituent atoms and side chain of the 

polymers. [88] 

 

1.8.4 Fourier Transform Infrared Spectroscopy (FTIR) 

To identify chemicals (organic and inorganic), FTIR is most helpful. It might be 

used to quantitate some elements of an unknown mixture, and to analysis gases, 

liquids and solids. The method in which data is gathered and converted from an 

interference pattern to a spectrum is designate by Fourier Transform Infrared 

Spectroscopy (FTIR) and it is a very recent development. [73], [74] In table 1.7, is 

showed the advantages and disadvantages of this technique. 

  

Advantages                                                                                           Disadvantages 

Almost Universal                                                                  Can´t detect some molecules 

Spectra are information rich                                              Mixtures 

Relatively fast and easy                                                       Water 

Relatively inexpensive 

Sensitivity 

 

Molecular rotations and vibrations of chemical elements absorb specific 

frequencies of electromagnetic waves. The infrared, a particular part of the 

electromagnetic spectrum, is mainly appropriate for the detection of molecular 

vibrations. The infra-red spectrum relates to electromagnetic waves whose 

wavelengths range from 0.78  m to 1000   . [75] 

The molecular vibrations might be divided into two categories: stretching and 

bending. Stretching vibrations are classified asymmetric or asymmetric and bending 

vibrations categorized as rocking, scissoring, wagging or twisting (figure 1.15) [75] 

Table 1.7 - The advantages and disadvantages of FTIR [81] 
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Figure 1.15 - Types of molecular vibrations [75] 

       

 1.9 Hydrophobic recovery 

After surface modification, PDMS films regain its hydrophobic nature, in a 

process called “hydrophobic recovery”. [89] 

The possible mechanisms responsible for hydrophobic recovery of silicone 

rubbers were summarized by Owen et al and are listed below: [90], [91] 

 External contamination of the surface; 

 Changes in surface roughness; 

 Condensation of silanol groups at the surface; 

 Reorientation of polar groups from the surface into the bulk; 

 Diffusion of low molecular weight species (LMWS) from the bulk to the surface; 

The latter point is the main process responsible for hydrophobic recovery. LMWS 

are identified as a homologous series of cyclic oligomeric dimethylsiloxanes of the 

general formula Dn= [(CH32SiO)], where n is the number of repeating units.  The cause 

of low molecular weight species in the elastomer are incomplete curing, partial 

discharge induced reactions and the addition of silicone liquids as processing aids and 

ultra –violet. [90]. The formation of a hydrophilic silica-like surface layer after surface 

modification retards the migration of low molecular weight species to the surface. But, 

the hydrophobic recovery could increase by the diffusion of low molecular weight 

species into the surface caused by the cracking of the SiOx layer, as illustrated in figure 

1.16.  
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Figure 1.16 - Transport of low molar molecular mass siloxanes through a continuous (a) or cracked (B) 

silica-like surface layer [91] 
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2. Materials and methods 

2.1 Reagents 

The reagents used during the experimental activity, are shown below: 

 Acetone 

 Methacrylic acid 

 Hydroxyethylmethacrylate 

 Irgacure® 2959 

 Sylgard 184® 

 Formamide 

 Diiodomethane 

 Distilled water 

 Milli q water 

 Potassium hydroxide 

 Ethanol 

 1,6-hexanediamine 

 Propanol 

 Phosphate-buffered saline solution (PBS) 

 Fetal bovine serum (FBS) 

 Dulbecco’s modified Eagle’s medium (DMEM-F12) 

 Ethylenediaminetetraacetic acid (EDTA) 

 L-glutamine 

 Penicillin G 

 Human Fibroblast Cells 

 Streptomycin 

 Amphotericin B  

 Trypsin 

 Escherichia coli (E. coli) DH5α 

 Lysogeny broth (LB) agar 

 

2.2 Preparations of PDMS films 

Sylgard®184 (PDMS) kit was supplied by DOW-Corning, consisting of a base and 

a curing agent. These 2 components were thoroughly mixed, using a rate of 10:1, by 

mass, and after that, degassed under vacuum. Films (with 0.5mm of thickness) were 

vulcanized 4 hours, at 65ºC, and then washed narrowly with acetone. (Figure 2.1)  
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2.3 Cytotoxicity tests  

In this study, human fibroblasts as model cells in the evaluation of materials 

cytotoxicity. Fibroblasts produce the extracellular matrix to which cells adhere. This 

structural framework is fundamental for animal tissue formation. These types of cells 

are the most common cells of connective tissue and have a crucial role in wound 

healing. [55] These cells were chosen to perform the cytotoxicity studies, because they 

are easy to maintain in culture and the results obtained in vitro show a good 

correlation with those obtained in vivo. 

Dulbecco’s modified Eagle’s medium (DMEM-F12), ethylenediaminetetraacetic 

acid (EDTA), L-glutamine, 3-(4,5-dimethylthiazol-2-yl)-5-(3carboxymethoxyphenyl)-2-

(4-sulphofenyl)-2H-tetrazolium, inner salt  (MTS), penicillin G, phosphate-buffered 

saline solution (PBS), streptomycin, amphotericin B and trypsin were purchased from 

Sigma-Aldrich (Sintra, Portugal). Human Fibroblast Cells (Normal Human Dermal 

Fibroblasts adult, criopreserved cells) were purchased from PromoCell (Labclinics, S.A.; 

Barcelona, Spain). Fetal bovine serum (FBS) was purchased from Biochrom AG (Berlin, 

Germany).  

Human Fibroblasts cells were seeded in T-flasks of 25 cm2 with 6 mL of DMEM-

F12 supplemented with heat-inactivated FBS (10% v/v) and 1% antibiotic/antimycotic 

solution. After the cells become confluent, they were subcultivated by a 3-5 minutes 

incubation in 0.18% trypsin (1:250) and 5mM EDTA. Subsequently, cells were 

centrifuged, resuspended in culture medium and then seeded in T-flasks of 75 cm2. 

Hereafter, cells were kept in culture at 37 °C in a 5% CO2 humidified atmosphere, 

inside an incubator. To evaluate cell behaviour in the presence of the materials, 

Figure 2.1 - Film 

of PDMS. 
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fibroblasts cells were seeded with materials in 96-well plates at a density of 10x103 

cells per well, for 96 hours. The materials were sterilized by UV irradiation for 30 

minutes, before being placed in contact with cells. Cell growth was monitored using an 

Olympus CX41 inverted light microscope (Tokyo, Japan) equipped with an Olympus SP-

500 UZ digital camera. [57], [58] 

Human fibroblasts cells were seeded in the presence of materials, in 96-well 

plate, with 100 µl of DMEM-F12 and following incubated at 37°C, in a 5% CO2 

humidified atmosphere. After an incubation period (24, 48, 72 and 96 hours), cell 

viability was assessed through the reduction of the MTS into a water-soluble formazan 

product. Briefly, the medium of each well was removed and replaced with a mixture of 

100μL of fresh culture medium and 20μL of MTS/PMS reagent solution. Then, cells 

were incubated for 4 hours at 37°C, under a 5% CO2 humidified atmosphere. The 

absorbance was measured at 492 nm using a microplate reader (Sanofi, Diagnostics 

Pauster). Wells containing cells in the culture medium without materials were used as 

negative controls (K-). EtOH (96%) was added to wells that contained cells, as a positive 

control (K+). [59], [60], [61] 

The obtained results were expressed as the mean ± the standard error of the 

mean (n=4). Statistical significance was calculated using a one-way analysis of variance 

(one-way ANOVA) and differences between groups were tested by a one-way ANOVA 

with Dunnets post hoc test. 

 

2.4 Determination of PDMS materials antibacterial activity 

Bacterial strain Escherichia coli (E. coli) DH5α was purchased from ATCC and LB 

agar was purchased from Pronadise. 

  

2.5 Characterization techniques 

2.5.1 Contact Angle 

In this work, the surface free energy was determined by measuring the water 

contact angle with different solvents: water distilled, Formamide and Diiodomethane. 
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The determination of the surface free energy and respective polar and disperse 

components was made using the method OWRK. 

 

2.5.2 SEM (scanning electronic microscopy) 

SEM was used to determine the PDMS materials antibacterial activity.  Firstly 

the bacteria E.coli was allowed to grow in an agar plate in the presence of the 

materials for 24h. After the biofilms were examined using standard methods to treat 

the biofilm prior to imaging (SEM analysis). Briefly, the biofilm samples were immersed 

in 2.5% glutaraldehyde overnight in order to preserve the structure of living tissue with 

no alternation from the living state. After the primary fixation with glutaraldehyde, the 

biofilm samples were dehydrated with increasing concentrations of ethanol, 50%, 70%, 

90% and 100%. Subsequently, the materials were mounted on stubs using a double-

side adhesive -tape and sputter coated with gold using an Emitech K550 sputter coater 

(London, UK). The SEM images were acquired with a scanning electron microscope 

Hitachi S-2700 (Tokyo, Japan) with an acceleration voltage of 20 kV at different 

magnifications. [83] 

 

2.5.3 Swelling/Degradation 

In this work, were placed small pieces of PDMS corresponding to the various 

techniques in the oven, under vacuum, at 37 ° C for one day until constant weight. 

After one day, these small pieces were weighed and subsequently placed in different 

storage mediums – distilled water, phosphate-buffered saline solution (PBS) and 

growth medium. The percentage of swelling was calculated over 5 hours, 1 day, 1 

week and 1 month. 

 

2.6 Hydrophobic recovery 

To analyze the hydrophobic recovery time over time, were placed small pieces 

of PDMS corresponding to the various techniques in the oven, under vacuum, at 37 ° C 

for one day until constant weight. After one day, the water contact angle was 
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measured and subsequently these small pieces were placed in different storage 

mediums – distilled water, phosphate-buffered saline solution (PBS) and growth 

medium. Then, the water contact angle was calculated along time: 5 hours, 1 day, 1 

week and 1 month. 
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3. Surface Modification by UV 

For more than 50 years, radiation graft polymerization has been commonly 

used for polymer chemistry. Normally, this technique involves the production of 

radicals (reactive sites) on the polymer surface followed by the covalent linkage of a 

preconceived polymer, or, more typically, by the polymerization of a monomer from 

those reactive sites. [92] 

The addition of an acid in the monomer solution, in UV systems, increases 

grafting yield and enhances homopolymer formation in a similar way to the ionizing 

work. [93] 

A photo-initiator can induce graft polymerization in the proper UV radiation 

range. [94] Irradiation with UV lamps and/or pulsed laser might also increase the 

surface proprieties of polymers, providing advantages like large radiation area, high 

power density, low fabrication temperature and short reaction time. [95] 

Irgacure 2959® (4-(2-hydroxyethoxy)phenyl-(2-propyl) ketone, as illustrated in 

figure 3.1, is the most popular photoinitiator for UV curing systems and can be used in 

photopolymerization of polymers and copolymers. This photoinitiator is very used for 

tissue engineering applications due to its solubility and its minimal toxicity when 

compared to other Irgacure type photoinitiator. [96], [97] 

 

 

          Figure 3.1 - Structural formula of Irgacure 2959® [98] 

 

Upon absorption of UV light, Irgacure 2959® separates into free radicals [99], 

according to the figure 3.2: 
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These free radicals will enable the hydrogen abstraction from PDMS methyl 

group, generating a radical on PDMS surface capable of initiating the polymerization of 

acrylic monomers, as illustrated in figure 3.3.  [99] 

 

Figure 3.3 - Initiation of the polymerization reaction, where R is the monomer side group. [99] 

 

3.1 Modification technique 

PDMS films were previously activated by UV light (using an UV lamp UVGL 48), 

in the 254nm wavelength setting, in an aqueous solution of Irgacure® 2959 

(photoinitiator given by CIBA), for 30 minutes. After removing the silicone films from 

the solution of Irgacure, two procedures were adopted. In the first procedure, 

the silicone films were added to a 10% (v/v) MAA (Methacrylic acid) aqueous solution, 

or to a 10% (v/v) HEMA (Hydroxyethylmethacrylate) aqueous solution during 15, 30, 

60, 120, 180 and 240 minutes. In the second procedure, the silicone films were added 

to a 10% (v/v) MAA (Methacrylic acid) aqueous solution, or to a 10% (v/v) HEMA 

(Hydroxyethylmethacrylate) aqueous solution and then were irradiated with UV light, 

during 15, 30, 60, 120, 180 and 240 minutes.   

Figure 3.2 - Free radical formation from I-2959® due to UV light exposure [100] 
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3.2 Results 

Water contact angles were measured for unmodified PDMS films and modified 

films, either with HEMA or MAA, without using UV radiation after the previously 

activation with UV light in an aqueous solution of Irgacure® 2959, as illustrated in 

figure 3.4. (First procedure) 

 

 It was also measured the water contact angle when PDMS was modified by UV, 

either with HEMA or MAA for different irradiation times, as illustrated in figure 3.5. 

(Second procedure) 
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Figure 3.4 – Variation of water contact angles, along time, without using UV radiation after the 

previously activation with UV light in an aqueous solution of Irgacure® 2959 (First procedure) 
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Figure 3.5 - Variation of water contact angles, along time, after modification with HEMA and MAA 

in UV. (Second procedure) 

The lowest water contact angle value was obtained after 30 min and 1 hour for 

HEMA and MAA, respectively (the smaller the water contact angle is, more hydrophilic 

the PDMS surface becomes). Figure 3.5 shows better results than figure 3.4, regarding 

the decrease of the water contact angle, which leads to the conclusion that the 

modification of PDMS films using UV radiation after the previously activation with UV 

light in an aqueous solution of Irgacure® 2959, provides a more hydrophilic character 

to the PDMS surface. Considering these times as ideal for grafting (30min for HEMA 

and 1h for MAA), the remaining characterization techniques (surface free energy, 

swelling / degradation and of hydrophobicity recovery) will only be made for these 

selected conditions. Finally, for the same selected conditions, the antibacterial activity 

and cytotoxicity of the PDMS films were evaluated. 
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3.2.1 Surface free energy 

 

 

Figure 3.6 - Surface free energy of PDMS unmodified and pdms modified with HEMA and MAA 

Figure 3.6 shows that the incorporation of the HEMA or MAA in the surface of 

the films brought an increase of the surface free energy. The increase of the polar 

component can be explained to the grafted polar groups (C=O in ester groups, in 

hydroxyl groups as C-OH, and ether carbon bonds as C-O) on PDMS surface. The polar 

component of the PDMS surface grafted by HEMA is lower than expected, because 

sometimes HEMA behave as a hydrophobic polymer (the OH groups are wrapped in 

methyl groups). 
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3.2.2 Swelling/Degradation 

 

Figure 3.7 - Percentage of swelling after the modification of PDMS by HEMA, under different storage 

mediums, along time 

 

 

Figure 3.8 - Percentage of swelling after the modification of PDMS by MAA, under different storage 

mediums, along time 

As expected, figure 3.7 and 3.8 show that, there wasn’t degradation, neither 

swelling on PDMS unmodified and on PDMS modified with HEMA and MAA. After 

surface modification by UV, silicon films remained highly reticulated and therefore the 

percentage of swelling/degradation is very low. 
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3.2.3 Hydrophobicity recovery  

In this analysis (hydrophobicity recovery) is presented the effects of storage 

conditions on maintaining hydrophilic behavior. This method was evaluated by 

determination of the water contact angle of surface modified PDMS by UV, using 

HEMA and MAA (figures 3.9 and 3.10, respectively)  

  

Figure 3.9 - Contact angle after UV modification of PDMS with HEMA, under different storage 

mediums, along time 

 

After the surface modification, the behavior of the storaged samples showed to 

be different. During the first week there was an accentuated decrease of the contact 

angle and then the hydrophobicity recovery was observed after the 5 hours, using the 

growth medium as a storage medium. Growth medium contains salt and proteins. The 
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protein molecules have sufficiently high molecular weight so do not affect the 

hydrophobic recovery. Growth medium contains a number of nutrients that are used 

to provide an appropriate biochemical environment in cell and tissue culture 

applications. The decrease of the contact angle on PDMS surface when storaged in 

growth medium could be explained by the deposition of amino and carboxyl groups on 

the surface, from the amino acids present in the growth medium. Using PBS as storage 

medium, the behavior was similar to the one observed in the growth medium but the 

increase of the water contact angle was less accentuated. Distilled water proved to be 

the most effective way to reduce / maintain the hydrophilicity of the films (after 

modification) since after one month the contact angle showed to be the lowest. The 

use of distilled water could lead to the hydrolysis of siloxane bonds (creating 

hydrophilic silanol groups), or surface erosion and reduction of fillers in the surface 

region. Water penetrations into the surface and/or reorientation of polar groups are 

also, the causes of the decreased hydrophobicity. [91] However, after one month, the 

lowest water contact angle is verified on PDMS unmodified, when stored in growth 

medium. 
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Figure 3.10 - Contact angle after UV modification of PDMS with MAA, under different storage 

mediums, along time 

                When was used MAA to modify the PDMS surface, the behavior of the 

samples when storage in different mediums, was similar to the HEMA grafted PDMS. 

Again, the lowest water contact angle is verified on PDMS unmodified, when stored in 

growth medium. Under distilled water and PBS, the surface modification was 

successful because in both cases, the modification by HEMA and MAA brought a 

decrease of the water contact angle, which is lower than the PDMS unmodified.  
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3.2.4 Cytotoxicity tests 

The human fibroblasts cells were seeded at the same initial density in the 96-

well plates, with or without materials to assess its cytotoxicity. Cell adhesion and 

proliferation in the presence of the materials was characterized through an inverted 

light microscope (Figure 3.11).  

 

 

        

 

 

 

 

 

 

 

 

Figure 3.11 shows that cells adhered and proliferated in contact with all the 

materials and in the negative control. However, in the positive control no cell adhesion 

or proliferation was observed.  

Furthermore, a MTS was also performed in order to further characterize 

materials cytotoxic profile. The MTS assay results (Figure 3.12) showed that cells in 

presence of tested samples had higher viability than in the positive control. After 4 

days the cells remained viable, despite the end of this period the cells in contact with 

PDMS suffered a decrease on its viability. Moreover, along time, the cell viability was 

always greater for the modified materials than for the unmodified PDMS. 

Figure 3.11 - Microscopic photographs of human fibroblasts cells seeded in the 

presence of the different PDMS materials (*) after 24, 48, 72 and 96h of 

incubation; K-, negative control; K+, positive control.  Original magnification 

x100. 
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3.2.5 Antibacterial activity tests 

In order to verify the affinity/non affinity of the materials tested for bacteria, 

were taken representative SEM micrographs across the material (Figure 3.13).  

Figure 3.12 - Evaluation of the cellular activity of human fibroblasts cells 

seeded in the presence of the different PDMS materials after 24, 48, 72 and 

96 h. MAA ; HEMA ; Positive control (K+); negative control (K-).Each result is 

the mean ± standard error of the mean of three independent experiments. 

Statistical analysis was performed using one-way ANOVA with Dunnet’s post 

hoc test (*p < 0.001) 
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Figure 3.13 - SEM photographs of E. Coli seeded in the presence of the different PDMS materials at 

different magnifications 500 x, 2000 x and 7000 x. 

Through this assay it is possible to observe the bacterial growth in all wells, 

which shows that these materials did not have an antibacterial effect. Nevertheless, 

through this SEM analysis it is possible to observe a reduction of the bacteria growth in 

the surface modification with HEMA when compared to MAA.   

 

3.3 Discussion/ Conclusion 

Surface modification by UV was not very effective in reducing the hydrophobic 

character of the surface (water contact angles remain high). However, there was a 

slight decrease of the water contact angle (approximately 10° for MAA and HEMA) 

from PDMS unmodified. Moreover, there was an increase of surface energy, which 

means that this technique was successful on grafting monomers with polar groups on 

PDMS surface.  

The efficiency of storage of the films before and after the surface modification 

was distinct according to the medium used. This efficiency was evaluated by the 

hydrophobicity recovery of the PDMS films. When using the growth medium and PBS 

(on HEMA) there was a decrease of the hydrophilic behavior after 1 month, with PDMS 

films unmodified showing greater contact angles. In the same period, when distilled 

water and PBS were used (on MAA), as storage medium, the contact angle decreases 

compared with the unmodified PDMS.   
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  The percentage of swelling was very low (less than 0.3%) which means that the 

PDMS films have no tendency to swell in the presence of fluids, which can be explained 

by the cross-linked structure and the highly hydrophobicity that this material exhibits.  

The samples of PDMS, after modification with HEMA and MAA, were found to 

be non-toxic, a condition necessary for biomedical applications. However, when it was 

performed the characterization for determination of PDMS materials antibacterial 

activity, none of the samples showed antibacterial effect, which means that none of 

the samples inhibited bacteria growth. Moreover, the films grafted with HEMA showed 

a reduction of the bacteria growth in the surface. 
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4. Aminolysis on PDMS membrane  

Recently, Aminolysis has been studied and developed to modify the surface of 

polymers like PCL (Polycaprolactone), PLLA (poly-L-lactide), PLGA (poly(lactic-co-

glycolic acid)) and PDMS (Polydimethylsiloxane) In order to increase their 

biocompatibility and hydrophilicity. In this technique, the surface properties are 

modified without affecting the bulk of polymers. [128] 

 In this work, PDMS was aminolyzed to introduce amino groups on its surface.  
 

4.1 Modification technique 

In this technique, two different strategies were adopted. 

First strategy 

Films of PDMS were immersed in deionized water and dried under reduced 

pressure for 24h, at pressure 30ºC, until constant weight. Then, the PDMS films were 

immersed in a 1.6-hexanediamine/propanol solution with a concentration of 0.1 g/ml, 

at 37ºC for 24 and 48 hours. Then, the films were washed with deionized water at 

room temperature to remove the free 1.6-hexanediamine, and dried as previously. 

Second strategy 

Potassium hydroxide (0.48g) was dissolved in ethanol (5g). Afterwards, this 

solution was added to 9.8 g of 1.6 - hexanediamine to obtain a homogeneous solution. 

The amine solution and the PDMS film (2g) were placed in a glass vial, and 

continuously stirred at room temperature. Then, the films were washed with deionized 

water at room temperature, several times.  
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4.2 Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   

 

  

Figure 4.1 and 4.2 show the contact angle when the amine groups were 

introduced in the PDMS surface, with the first and second strategy respectively. 

Although there is a clear reduction in the water contact angle in the figure 4.1 

(≈2° for 24h and ≈11° for 48h from PDMS unmodified), using the first strategy, the 

second one proves to be better on reducing the contact angle (≈52°). Therefore, the 
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first strategy was abandoned. The next methods presented will only consider the 

second strategy.  

In this method, KOH was used as the catalyst and ethanol ensures the 

completely dissolution of hydroxide potassium and increases the cleavage reaction 

rate.  The reaction between 1.6-hexanediamine and PDMS results on the grafting of 

the -NH2 groups onto PDMS surface as schematically represented in figure 4.3. 

The structure of PDMS films after modification were identified and analyzed by 

FTIR. For a better understanding of which groups were introduced on the PDMS 

surface, a superposition of the FTIR spectra of PDMS surface after modification with 

FTIR spectra of PDMS unmodified and 1.6-hexanediamine is illustrated in figure 4.4. As 

expected unmodified PDMS films do not show amine groups (1640-1500 cm-1 for N-H 

bend and 3500-3300 cm-1 for N-H stretch) on its structure contrarily to PDMS after 

modification with 1.6-hexanediamine. The introduction of –NH2 groups into the 

surface of PDMS, brought an increase of the polar component, which can be seen in 

the figure 4.5. 

 

 

 

 

 

 

 

 

Figure 4.3 - Grafting procedure of –NH2 groups on the PDMS surface, after modification with 1.6 -

hexanediamine 
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Figure 4.5 - Surface free energy of PDMS unmodified and pdms modified with 1.6 - 

hexanediamine. 
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4.2.1 Swelling/Degradation 

Figure 4.6 shows the behavior of aminolysis of PDMS films over time. There was 

a slight decrease of weight of pdms films probably due to the interaction of amine 

groups with the storing samples.  

 

Figure 4.6 - Percentage of swelling after the modification of PDMS by 1.6 - hexanediamine, under 

different storage mediums, along time 

             The decrease of the amine groups on PDMS surface due to the interaction with 

the storage medium can be seen in the figure 4.7, which shows the hydrophobic 

recovery over time. After 1 week, there was a significant increase of the contact angles 

in the three samples, corresponding to the reduction of the percentage of swelling 

observed in figure 4.6 to one week.  
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Figure 4.7 - Contact angle after modification of PDMS by 1.6 - hexanediamine, under different storage 

mediums, along time 

4.2.2 Cytotoxicity tests 

The human fibroblasts cells were seeded at the same initial density in the 96-

well plates, with or without materials to assess its cytotoxicity. Cell adhesion and 

proliferation in the presence of the materials was characterized through an inverted 

light microscope (Figure 4.8).  
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Figure 4.8 - Microscopic photographs of human fibroblasts cells seeded in the presence of the 

different PDMS materials (*) after 24, 48, 72 and 96h of incubation; K-, negative control; K+, positive 

control.  Original magnification x100. 

Figure 4.8 shows that cells adhered and proliferated in contact with all the 

materials and in the negative control. However, in the positive control no cell adhesion 

or proliferation was observed.  

Furthermore, a MTS assay was also performed in order to further characterize 

materials cytotoxic profile. The MTS assay results (Figure 4.9) showed that cells in 

presence of tested samples had higher viability than in the positive control. After 4 

days the cells remained viable, despite the end of this period the cells in contact with 

PDMS, suffered a decrease on its viability. Moreover, along time, the cell viability was 

always greater for the modified materials than for the unmodified PDMS. 
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4.2.3 Antibacterial activity tests 

In order to verify the affinity/non affinity of the materials tested for bacteria, 

were taken representative SEM micrographs across the material (Figure 4.10).  

 

Figure 4.10 - SEM photographs of E. Coli seeded in the presence of the different PDMS materials at 

different magnifications 500 x, 2000 x and 7000 x. 

Figure 4.9 - Evaluation of the cellular activity of human fibroblasts cells 

seeded in the presence of the different PDMS materials after 24, 48, 72 

and 96 h Amine; Positive control (K+); negative control (K-).Each result is 

the mean ± standard error of the mean of three independent experiments. 

Statistical analysis was performed using one-way ANOVA with Dunnet’s 

post hoc test (*p < 0.001) 
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Through this SEM analysis is possible to observe the bacteria growth in the 

surface, which shows that this material does not have an antibacterial effect, i.e. do 

not avoid biofilm formation. 

4.3 Discussion/ Conclusion 

The second strategy (when PDMS is modified in time of 6.5 hours) proved to be 

more effective than the first strategy on reducing the water contact angle. 

Surface modification of PDMS by amine was very successful in reducing the 

hydrophobic character of the surface, which can be explained by the introduction of 

amine groups on surface, leading to an increase of the polar component of surface free 

energy. 

The main problem of this technique was the maintenance of the hydrophilic 

character of the surface over time. After 1 week, there was a considerably increase of 

the water contact angle for the three storage mediums. After this, the contact angle 

slightly decreased, although to values still remained high, and they were higher than 

the unmodified PDMS. 

The sample of PDMS, after modification with 1.6 - hexanediamine, was found 

to be non-toxic, a property that is fundamental for biomedical applications. Moreover, 

the microbiological studies revealed that the PDMS materials did not have 

antibacterial effect, allowing bacterial growth. 
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5. Plasma surface Treatment 

When energy is continuously applied to matter, this suffers a process from a 

solid to liquid and gas, caused by the increasing temperature. Carrying on applying 

energy causes the breaking up of the atom. This mixture of radicals, negatively charged 

electrons and positively charged ions, is called plasma. [101] It is naturally referred to 

as the fourth state of matte, because 99% of the universe known to man is in the state 

of plasma. [102] 

Plasma can be found, in nature, in lightning, flames and in the sun. Among 

other things, artificially created plasma is found in plasma televisions, neon lights and 

flashback lights. [103] 

As opposed to an ordinary gas, free electrical charges in plasma lead to high 

electrical conductivity that could even exceed those of metals. [104] 

 

 

 

 

 

 

 

 

 

The gaseous system is highly reactive and can activate inert surfaces, enabling 

the application of metallic coatings, ceramic and polymer in a variety of materials. The 

plasma might serve to crosslink, cleaning, oxidize or to introduce functional groups on 

the material surface. [105], [106] 

There are some advantages of the plasma-based techniques [107]: 

Figure 5.1 - Schematic figure of the surface modification of 

plastic in a gas-plasma reactor [104] 
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1- Sterile surfaces might be provided by plasma processing. It can be scaled up to 

industrial production reasonably easily. 

2- Typically, plasma engineering is reproducible, reliable, fairly inexpensive, non-

line-of-sight, applicable to different materials like composites, metals, ceramics 

and polymers and applicable to diverse sample geometries.  

3-  Advantages of plasma treatment came from a good perception of plasma 

chemistry and physics, such as plasma homogeneity and effects of non-uniform 

plasma on the substrate surface. 

4- Masking techniques are compatible with plasma treatment to allow surface 

patterning, which is regularly applied in the microelectronics industry. 

5- Plasma processing could result in alteration of a diversity of surface 

characteristics. 

The plasma processing of materials is increasing significantly, covering many 

activities like deposition, coating technologies and the manufacture of electronic 

materials. [108] 

Plasma process could be grouped in two different classes: nonthermal plasmas and 

thermal plasmas. The non-thermal plasma, also referred to as “nonequilibrium 

plasma”, “low-temperature plasma”, “cold plasma” or “non-isothermal plasma” is 

featured as different energy states between particles in the plasma. The temperature, 

in the non-thermal plasma, is not in thermal equilibrium and differs considerably 

between the electrons and the other particles (ions, atoms and molecules). Electrons 

have a small mass, and because of that, they can be easily accelerated under the 

control of an electric field. The temperature of electrons normally ranges from 10000K 

to 250000K. The production of free radicals is made by these highly energetic electrons 

from parent molecules by several steps of chemical and physical processes. Typically, 

nonthermal plasma is operated at room temperature and atmospheric pressure. 

Thermal plasma, also named as “thermal equilibrium plasma” or “hot plasma”, might 

be used for the treatment of liquid waste, solid waste and waste gas of high 

concentration. Temperature in the thermal plasma, reaches around 10273 K, which all 

its components are at thermal equilibrium. [109]    

Depending on the desired functionalisation, different gases are used: for 

Hydrophilic proprieties is used O2, N2, NH3, H2/N2, Ar and for adhesion, the gases used, 

are O2, N2,NH3, Ar/N2, Ar, CO2, Ar/O2/NH3,H2. [110] 



5. Plasma surface Treatment 

59 
 

       Following plasma treatment, the wettability of polymers changes potentially due 

to unsaturation effects, electrostatic charging, oxidation and surface morphology 

changes. In biomaterials surface, one of the main interests, is the improvement of 

surface wettability by the fact that most common polymeric biologics are hydrophobic 

in nature, such as PTFE, PE, PP, PMMA, PS, PET, PVC, polyurethane and silicone rubber. 

Hydrophilic surfaces can be achieved by treating polymers with nitrogen, oxygen or 

water plasma. [111] Plasmas of NH3 and N2 are used to generate amine groups on the 

surface of PTFE and PS, respectively, while the inert gases may be used to create 

radicals in the polymer surface and then performing a vinyl polymerization. [112] 

       The commonly-desired reactive centers which can be generated by plasma 

treatment are primary amine groups, hydroxyl and carboxylic, as shown in table 5.1 

[111] 

 

  

The controlled removal of a desired material from a substrate through 

physicochemical methods is called etching. It could be executed using chemicals in 

gaseous or plasma phase in liquid state - dry etching (includes ion milling, gas phase 

chemical etching, chemically assisted ion beam etching, reactive ion etching and 

Effect Surface Change Plasma Gas 

Wettability 

 

 

Molecular weight 

 

 

Functionalization 

(reactive sites) 

 

Oxidation, electrostatic 

unsaturation 

 

Crosslinking 

Degradation 

Etching 

-OH 

 

-C(O)OH 

-C-O-O- 

-NH2 

C=C 

O2, N2, H2O, air(inert gases), 

NH3, CO2 

 

Inert gases (He, Ar), H2, N2 

O2, N2 

Ar, CF4 

O2,H2O, H2O/H2O2 

 

CO2 

Ar (quenching in O2 or air) 

N2 + H2, NH3 

Inert gases 

Table 5.1 - Effects of plasma treatment on polymer surface modification [111] 
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plasma etching) or could be executed using chemicals in liquid state - wet etching. 

[114]  

In some cases, a phase of the material could be more susceptible to treatment 

by plasma, which results in a marked surface with the chemistry of the resistant 

material to plasma. [25] 

Plasma on silicone materials 

In 1970, Hollahan and Carlson discovered CH2OH groups in the modified-

surface of PDMS, which was treated with oxygen plasma and corona discharge using 

Fourier Transform Infrared Spectroscopy (FTIR) characterization. In 1986, Bodo and 

Sundgren show the effectiveness of the PDMS modified surface. [115] 

On exposure to oxygen plasma, PDMS materials could acquire silanol groups at 

the expense of methyl groups (elimination of -CH3 groups) or methylol groups (no 

elimination of –CH3 groups), as illustrated in figure 5.2. In the first case, also free 

radicals (O•) can be formed and then converted to peroxides (ROOH). The oxidation of 

the surface layer augments the concentration of hydroxyl groups, which leads to the 

formation of strong intermolecular bonds. Because of the polar nature of silanol 

groups, the exposition of these makes the surface of PDMS highly hydrophilic. [116] 

,[117] 

 

    Figure 5.2 - Two possible reactions for PDMS surface activation with oxygen plasma. 



5. Plasma surface Treatment 

61 
 

By contrast, when PDMS materials are exposed to inert gases such argon, 

plasma processing cannot by itself bring in functional groups on the polymer surface. It 

has been expected that Noble gases like Argon might be used to produce free radicals 

at the polymer surface, by breaking, in the polymer substrate, C-H or C-C, as illustrated 

in figure 5.3 [118] 

However, the plasma technique has a disadvantage oh having a short lifetime 

due to the hydrophobic recovery. By chemical or physical-chemical methods, the 

hydrophilicity on PDMS surface can be prolonged. This prolongation requires complex 

protocols and it’s very expensive.[119] 

The hydrophobic recovery of oxygen plasma treated PDMS must not only be 

assigned to the diffusion of low molecular weight (LMW) chains from the bulk to 

surface but also to the elastomeric proprieties of PDMS materials, which mechanically 

recovers back after ion bombardment. The morphology of nanostructuring of the film 

surface is, as well, a strong cause behind the low hydrophilicity and also hydrophobic 

recovery of PDMS. [105] Frequently, plasma treatment could result in a number of 

different features with a low stability. It is wanted, therefore, to reduce or, if possible, 

to avoid this effects. Two kinds of strategies are applied. . The first is minimizing the 

kind and density of harmful particles over treatment in the plasma and minimizing the 

used energy. The second is separating substrate functionalisation from plasma in time 

(grafting) or in space. These methods contribute to a more homogeneous distribution 

of functionalities and a better preservation of the precursor structure. [120] 

 

Figure 5.3 - One possible reaction for PDMS surface activation with argon plasma. [91] 
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5.1 Modification technique 

The modification with plasma was performed with a small-scale plasma system 

(Figure 5.4). For this procedure were used 2 gases, oxygen and argon. The influence of 

time and pressure with both gases was evaluated.  

           

Figure 5.4 - Plasma equipment used in the surface modification of Silicone based Materials. 

 

5.2 Results 

  Figures 5.5 and 5.6 show the results of the contact angle of the PDMS surface 

when exposed to a different time and pressure, for argon and oxygen respectively. 

 

Figure 5.5 – Water Contact angles, by varying the pressure and the time of processing, using oxygen as 

working gas 
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Figure 5.6 – Water Contact angles, by varying the pressure and the time of processing, using argon as 

working gas 

The results obtained revealed a significant decrease in contact angles using 

argon and oxygen as working gases. The result that leads to the lowest water contact 

angle were obtained when argon was used as working gas, at a pressure of 0.6 

mbar, for 2 minutes (decrease of ≈102° from PDMS unmodified). 

5.3 Discussion/ Conclusion 

Argon and oxygen have different mechanisms (regarding to the surface 

modification), when are in contact with the PDMS surface. In this work, it was obtained 

better hydrophilicity when argon was used as working gas. 

When oxygen is used, as working gas, there is a substitution of the methyl 

groups by silanol groups (caused by the linkage between gas radicals and radical 

polymer chains), argon favors the formation of polymer radicals (no formation of gas 

radicals because argon is a noble gas). The formed radicals will then react with the 

atmospheric air leading to Si-OH and Si-CH2OH groups on the surface of PDMS. 

The main problem of plasma-treated surface is its instability along the time, 

called “hydrophobic recovery”, as previously mentioned. This process could be 

attenuated or even eliminated by the grafting of the surface with a vinyl monomer, 
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which maintains the hydrophilicity and improves the free functional groups available at 

its surface. 

This process was very important, because despite not being a definitive method 

for modifying the surface of PDMS, provided the optimal information of processing, 

using oxygen and argon as working gases.  
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6. Plasma-induced graft polymerization of Methacrylic acid (MAA) 

and 2-hydroxyethylmethacrylate (HEMA) on 

Poly(dimethylsiloxane) Surfaces 

Normally, for surface modification, plasma-graft polymerization has been used 

to introduce hydrophilic groups. The monomers chosen for graft copolymerization 

should be vinyl compounds with a high rate of propagation. In this procedure, firstly a 

polymer specimen is exposed to a suitable plasma like argon or oxygen, and then 

comes into contact in the aqueous or organic solution of a monomer, at a high 

temperature, for a long period. (Polymerization reaction due to radicals obtained in 

the plasma media). [121] 

The durability of the modified surface is the main advantage of plasma graft 

polymerization over the plasma surface treatment. The properties originated by 

plasma surface treatments repeatedly suffer from the recession with aging, while the 

surface characteristics enhanced by the graft plasma polymerization do not modify 

easily. [122] 

At a high temperature, the graft polymerization of hydrophilic monomers like 

the 2-hydroxy-ethylmethacrylate (HEMA) and Methacrylic acid (MAA) could be 

initiated by the decomposition of peroxides, according to figure 6.1. 

After the best conditions found previously, as regards to time and pressure for 

argon and oxygen (pressure of 0.6 mbar, for 2 minutes using argon as working gas), it 

was studied the most accurate time for graft polymerization on pdms surface by HEMA 

and MAA.  

Figure 6.1 - Schematic illustration of plasma-induced graft copolymerization of polymer surfaces 
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6.1 Modification technique 

 At a chamber pressure of 0.6 mbar, for 2 min, PDMS films were plasma treated. 

Then, the films were dipped into a 10% (v/v) aqueous solution of HEMA or MMA and 

were placed in an oven at 60°C, for different times (30min, 1h, 2h, 4h, 6h 8h and 24h). 

Then, PDMS films were narrowly washed with water and dried until constant weight. 

 

6.2 Results 

  Figure 6.2 shows the water contact angle results of plasma-induced graft 

polymerization HEMA and MAA on PDMS surfaces, at different times. 

 

 

Figure 6.2 - Contact angle values of Plasma-induced graft polymerization of HEMA and MAA, along 

time 

The lowest water contact angles results were obtained at 8 hours, for both 

HEMA and MAA. However, the behavior of the two monomers after grafting was 

different. While with HEMA, the variation of water contact angles were low (±10°), the 

variation of water contact angles were higher when MAA was used (from 98.5° at 30 

minutes to 55.7° at 8 hours), which means that, in this monomer its necessary 6-8 
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hours of thermal aging for crosslinking or removal of low molecular weight species 

present in the bulk. (which prevents the migration of LMW PDMS chains to the surface 

to cover up the thermodynamically unstable hydrophilic surface). 

After the 8 hours, there is an increase of the contact angle, for both monomers, 

which means that thermal aging is no longer able to delay the hydrophobic recovery of 

argon plasma activated surfaces. 

With the best conditions for graft polymerization of HEMA and MAA on PDMS 

surfaces determined, the next step was to evaluate the surface free energy, the 

analysis of swelling / degradation of the films in different ways and the hydrophobicity 

recovery. Finally the antibacterial activities of the PDMS films and cytotoxic profile of 

the materials was also characterized.  

6.2.1 Surface free energy 

The presence of polar groups such as SiO2, Si–OH and Si–CH2OH at the surface 

brought an increase of the polar component on PDMS surface, as illustrated in figure 

6.3. 

As shown by the contact angle HEMA reacts better to thermal aging after 

plasma treatment than MAA. Contrary to the UV technique the polar component of 

HEMA is much higher, which can be explained by the fact that the OH groups are not 

wrapped in methyl groups, but pointed outward.  
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Figure 6.3 - Surface free energy of the unmodified and modified PDMS (PDMS argon plasma activated 

coated with HEMA and MAA) 

 

6.2.2 Swelling/Degradation 

 

Figure 6.4 - Percentage of swelling of Plasma-induced graft copolymerization of HEMA onto PDMS 

surface, under different storage mediums, along time 
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Figure 6.5 - Percentage of swelling of Plasma-induced graft copolymerization of MAA onto PDMS 

surface, under different storage mediums, along time 

As observed in figures 6.4 and 6.5, the percentage of swelling/degradation was 

almost zero, which means that after modification PDMS silicon films remains highly 

reticulated and therefore the percentage of swelling/degradation is very low. 

Nonetheless, after one day, under the three storage mediums, modified PDMS films 

started to lose some weight (0,1%-0,2%), especially under growth medium, contrary to 

unmodified PDMS. This loss of weight could be confirmed in hydrophobic analysis, as 

illustrated in figures 6.6 and 6.7, where there was a slight increase after the first 5 

hours.  

6.2.3 Hydrophobic recovery 

After one month, the three storage mediums (distilled water, PBS and growth 

medium) used proved to be able to keep the hydrophilic behavior of the PDMS 

surface, for both monomers (HEMA and MAA). This modification technique brought a 

decrease of the water contact angle when compared to PDMS unmodified under 

distilled water, PBS and growth medium. However, when using PBS and distilled water, 

as storage medium, the fluctuation of the contact angles was almost constant, with 

slight ups and downs. When using growth medium the fluctuations of the water 

contact angle were more accentuated, registering a marked loss in the first five hours 
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for both monomers, which can be explained by the introduction of amino and carboxyl 

groups on the surface of PDMS, from proteins present in growth medium.  

 

 

 

Figure 6.6 - Contact angle of Plasma-induced graft copolymerization of HEMA onto PDMS surface, 

under different storage mediums, along time. 
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Figure 6.7 - Contact angle Plasma-induced graft copolymerization of MAA onto PDMS surface, under 

different storage mediums, along time. 

 

6.2.4 Cytotoxicity tests 

The human fibroblasts cells were seeded at the same initial density in the 96-

well plates, with or without materials to assess its cytotoxicity. Cell adhesion and 

proliferation in the presence of the materials was characterized through an inverted 

light microscope (Figure 6.8). 
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Figure 6.8 shows that cells adhered and proliferated in contact with all the 

materials and in the negative control. However, in the positive control no cell adhesion 

or proliferation was observed.  

Furthermore, a MTS was also performed in order to further characterize 

materials cytotoxic profile. The MTS assay results (Figure 6.9) showed that cells in 

presence of tested samples had higher viability than in the positive control. After 4 

days the cells remained viable, despite the end of this period the cells in contact with 

PDMS, suffered a decrease on its viability. Moreover, along time, the cell viability was 

always greater for the modified materials than for the unmodified PDMS. 

 

Figure 6.8 - Microscopic photographs of human fibroblasts cells seeded in the presence of the 

different PDMS materials (*) after 24, 48, 72 and 96h of incubation; K-, negative control; K+, positive 

control.  Original magnification x100. 
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6.2.5 Antibacterial activity tests 

In order to observe bacteria presence on materials surface, SEM analysis was 

performed (Figure 6.10).  

 

 

 

 

 

 

Figure 6.9 - Evaluation of the cellular activity of human fibroblasts cells seeded 

in the presence of the different PDMS materials after 24, 48, 72 and 96 h. MAA 

; HEMA ; Positive control (K+); negative control (K-).Each result is the mean ± 

standard error of the mean of three independent experiments. Statistical 

analysis 

Figure 6.10 - SEM photographs of E. Coli seeded in the presence of the different PDMS 

materials at different magnifications 500 x, 2000 x and 7000 x. 
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Through this assay it is possible to observe the bacterial growth in all wells, which 

shows that these materials did not have an antibacterial effect. Nevertheless, The SEM 

analysis showed a reduction of the bacteria growth in PDMS+MAA material compared 

with PDMS+HEMA. 

 

6.3 Discussion/ Conclusion 

Plasma-induced graft polymerization of HEMA and MAA was found to be an 

effective technique in reducing the hydrophobic character of the surface, for both 

monomers. It happens because there was an increase of the polar component of the 

free surface energy, which means that this technique was successful on grafting polar 

groups on materials surface. 

After 1 month, of materials being in contact with growth medium, PBS and 

distilled water, they presented a hydrophilic behavior similar to their original value. 

Nevertheless, the PDMS surface after modification, under the three storage 

conditions, proved to be more hydrophilic than before modification (PDMS 

unmodified).  

  Analogously to the UV modification, the percentage of swelling of PDMS 

grafted by MAA and HEMA was very low (less than 0,3%), shows means that the PDMS  

films have no tendency to swell in the presence of fluid, which can be  explained by the 

cross-linked structure and the highly hydrophobicity that this material exhibits. 

The samples of PDMS, after modification with HEMA and MAA, were found to 

be non-toxic, a condition necessary for biomedical applications. However, PDMS 

materials did not presented antibacterial activity which is fundamental to avoid biofilm 

formation at PDMS surface. 
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7. General conclusions 

During this work, different techniques, such as UV grafting, aminolysis and 

plasma grafting were used for the modification of silicone based materials to be used 

as voice prosthesis.  

 PDMS (polydimethylsiloxane) surface was modified by UV (ultra-violet) grafting 

with hydrophilic monomers (Methacrylic acid and Hydroxyethylmethacrylate). The 

results obtained showed that there were no significant differences in the hydrophilic 

character of the surface (decreasing of the water contact angle approximately equal to 

10°), especially when HEMA was used, as monomer.  

The modification of PDMS surface with an amine (1.6-hexanediamine) reduced 

the water contact angle (decreasing of the contact angle approximately 50°), showing 

that the introduction of –NH2 groups was successful. In FTIR spectra, the bands around 

1600 cm-1 (for N-H bend) and 3350 cm-1 (for N-H stretch) were assigned to the 

introduction of –NH2 groups to the PDMS surface after the modification with 1.6-

hexanediamine. However, along time, under different storage mediums (distilled 

water, PBS and growth medium), PDMS surface recovered its hydrophobicity. A slight 

loss of weight was also observed on PDMS films. This could probably be assigned to a 

non efficient washing procedure of the films in this surface modification procedure, 

therefore, certain amine groups present on PDMS surface, that were not covalently 

attached could be present and were removed when the films were immersed in the 

storage mediums. 

The best surface modification procedure studied was plasma grafting. With a 

previously study of the best conditions to activate the PDMS surface by plasma 

(regarding to working gas, processing time and pressure), HEMA and MAA were 

grafted on the surface. Regarding the hydrophobicity recovery, after one month, the 

hydrophilic character of the modified PDMS surfaces (stored under distilled water, PBS 

and growth medium) was maintained. Among all the evaluated storage mediums, 

growth medium showed to be the best option for the storage and stabilization of these 

modifications.  
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Moreover, all of the modified surfaces were found to be non-toxic, which is 

fundamental for biomedical applications. The results obtained for antibacterial activity 

characterization showed that none of the samples have antibacterial effects, was also 

possible to observe a reduction of the bacterial growth for both MAA grafted by 

plasma treatment and HEMA by grafted by UV. Unfortunately, the antibacterial activity 

tests are not complete yet. No results for unmodified PDMS films were available and 

therefore they were not taken into consideration to evaluate the effect of each surface 

modification technique in the bacterial adhesion. With this result, will be possible to 

see the difference of the bacterial growth on the PDMS surface, before and after each 

modification and a further analysis and conclusion can be made. 
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8. Future Work  

 Regarding the evaluation of the antibacterial activity of PDMS materials, 

samples grafted with MAA by plasma activation and films grafted with HEMA by UV, 

proved to be the most accurate on decreasing the bacterial growth. For the evaluation 

of the antibacterial activity, samples of the surface modified material were sent for 

analysis on normal petri dishes, in direct contact with air. However, in this research 

work, was showed that different storage mediums were able to maintain the 

hydrophilic character of the PDMS surfaces. For this reason, in the future, it would be 

advised to send the modified materials, under the best storage medium observed for 

each modification, in order to maintain all the surface properties of the material.   

As future work, it would be interesting to study the grafting of other 

monomers, such as Ethylene glycol, acrylamide, vinylpyrrolidone. These monomers 

also have important properties such as biocompatibility and low toxicity. At the same 

time they are well known for preventing nonspecific adsorption of proteins. [99] 

In order to further understand the information about the modified surfaces and 

their efficiency several other characterization techniques would be essential, such as: 

atomic force microscopy (AFM) to study the morphology of the surface and X-ray 

photoelectron spectroscopy (XPS) to evaluate the elemental composition of the 

surface.  

 The evaluation of the mechanical properties of the material before and after 

the modification would also essential in order to confirm if the bulk of the material was 

not affected by the surface modification procedure.  
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