XXXVIII IAH Congress

Groundwater Quality Sustainability Krakow, 12–17 September 2010

Extended Abstracts

Editors: Andrzej Zuber Jarosław Kania Ewa Kmiecik

University of Silesia Press 2010

abstract id: 521

topic: 4

Mineral and thermal water

4.3

Hydrogeochemical characteristics of mineral and thermal waters

title: Stable isotopes of dissolved inorganic carbon and sulphur-bearing species in mineral and thermal waters from central Portugal

author(s): Manuel J. F. Morais Centre for Geophysics of the University of Coimbra, Portugal, manuelmorais@engenheiros.pt

keywords: thermomineral waters, stable isotopes, carbon, sulphur

1. INTRODUCTION

There are many springs of mineral and thermal waters associated with the Hercynian Beiras Batholith granites of Central Portugal, which intruded meta-sedimentary rocks of Palaeozoic age. These low enthalpy thermomineral systems reflect the deep circulation of meteoric waters in fractured granites. All waters studied have similar chemical characteristics: pH varies between 8 and 9.3; Na⁺ is the dominant cation (representing over 90% of the total cations); HCO₃⁻ is the most representative anion, followed by Cl⁻ and/or F⁻ (always > 10 mg/L); and all of them are strongly reduced (as revealed by reduced sulphur (HS⁻) and reduced nitrogen (NH₄⁺)) and have very low Mg²⁺ contents (usually < 0.15 mg/L). Temperature ranges between 18 and 66°C, and total dissolved solids between ~200 and ~500 mg/L. Both natural springs and boreholes as deep as 500 meters were studied.

2. EXPERIMENTAL PROCEDURES

Samples for ${}^{13}C/{}^{12}C$ measurements were obtained by precipitation of the total dissolved inorganic carbon (DIC) as SrCO₃ by means of SrCl₂. The precipitate was filtered and dried without any contact with atmospheric air. Gas extraction was done by acidification with 103% H₃PO₄ and purification by criogenic distillation. Dissolved sulphide was collected as ZnS precipitated by addition of zinc acetate to the water, and later converted to Ag₂S by means of AgNO₃. Following filtration of the ZnS, the remaining water was acidified and treated with BaCl₂ to precipitate dissolved sulphate as BaSO₄. All isotopic analyses were done at the Stable Isotope Laboratory, University of Salamanca. The isotopic values are reported in the usual delta notation (δ [%]₀₀) relative to V-PDB (δ ¹³C) and CDT (δ ³⁴S).

3. RESULTS AND DISCUSSION

3.1. $\delta^{13}C$ of the dissolved inorganic carbon

The $\delta^{13}C_{VPDB}$ values of the total dissolved inorganic carbon (TDIC) in groundwaters range from -16.9 to $-10.5\%_0$. This range of $\delta^{13}C_{DIC}$ values is acompanied by a large variation of TDIC contents. The observed linear relation between TDIC and $\delta^{13}C$ (Fig. 1) suggest that inorganic carbon in the studied waters derives from more than one source: measured $\delta^{13}C$ values can not be attributed to isotope fraccionation between soil-CO₂ and DIC only.

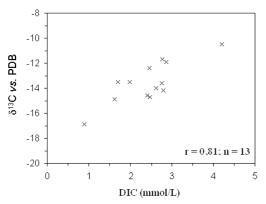


Figure 1. Relation between Total Dissolved Inorganic Carbon and δ^{13} C.

A gaseous source, isotopically havier than the organic C of soil- CO_2 (such as regional deep mantle-derived or metamorphic flux of CO_2), must be invoked.

3.2. δ³⁴S of sulphur-bearing species (SO₄²⁻; HS⁻)

The δ^{34} S of sulphur-bearing species shows a remarkable variability: δ^{34} S_{CDT} (SO₄²⁻) ranges from +6 to +44 ‰; δ^{34} S_{CDT} (HS⁻) ranges from -25 to +2‰. Sulphate is always enriched in ³⁴S relative to reduced sulphur (HS⁻). This isotopic difference (Δ^{34} S= δ^{34} S (SO₄²⁻)- δ^{34} S (HS⁻); mean value = 28.5‰) is interpreted as the result of biogenic reduction of sulphate occuring in these waters. An apparent reduction trend is seen on Figure 2.

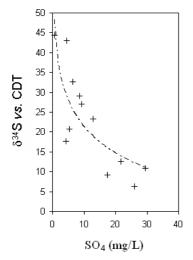


Figure 2. Comparison of sulphate concentrations and δ^{34} S values.

International Association of Hydrogeologists

AGH University of Science and Technology

2-vol. set + CD ISSN 0208-6336 ISBN 978-83-226-1979-0