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i. Master Thesis Layout 

  

The present master thesis is about the evaluation of the seed bank potential and 

the role of soil amendments to improve revegetation processes in mining areas. The 

study area was the Touro’s mine, an abandoned open mine of copper in Galicia, Spain, 

where a large scale project of revegetation is occurring with the aid of technosols,  an 

artificial mixture of several organic residues.  

The thesis is divided in three main parts. A first part entitled “Seed Bank 

Assessment”, a second part entitled “Soil amendments” and a third part of “General 

Conclusions”. In the first part, the seed bank potential and seedling establishment is 

compared between the mine soil, several types of technosols and a control soil outside 

the mining area. In the second part, two grasses (Lolium perenne and Dactylis 

glomerata) and two legumes (Trifolium subterraneum and Medicago sativa) were 

grown in mine soil and two types of soil amendments, addition of nutrients, by mixing 

the mine soil with garden soil (1:1), and by increasing the pH using CaCO3. The growth 

in height, number of leaves and biomass was recorded and compared among the 

different treatments. The third part integrates the results of part one and two, 

summarizing the main conclusions of the thesis. 
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ii. Resumo 

 

Terras contaminadas, quer com poluentes orgânicos ou inorgânicos, são um 

problema muito comum. As áreas mineiras são uma das principais causas de entrada de 

metais pesados no ambiente, além de terem um forte impacto visual. A revegetação é o 

método mais eficaz para prevenir a erosão e a consequente disseminação de 

contaminantes para áreas circundantes. No entanto, o crescimento das plantas é 

condicionado por factores limitantes dos solos de mina tais como o baixo pH, a baixa 

fertilidade, o baixo teor de nutrientes, as elevadas concentrações de metais pesados e um 

banco de sementes reduzido para iniciar o processo de estabelecimento de plantas. Em 

muitos casos, para este estabelecimento ser bem-sucedido é necessário melhorar as 

propriedades físicas e químicas dos parâmetros do solo.  

Na mina de cobre de Touro (Galiza, Espanha), a nossa área de estudo, decorre 

um projecto de larga escala de alterações de solo com o uso de technosols, uma mistura 

de vários resíduos orgânicos, para melhorar as condições dos solos mineiros. Duas 

experiências foram realizadas. A primeira para avaliar o potencial de banco de sementes 

e o desenvolvimento destas em vários tipos de technosols comparativamente a um 

controlo fora da mina e ao solo de mina original. O número de plantas foi contado e as 

espécies identificadas. A segunda experiência foi realizada com solo de mina para 

avaliar o papel das alterações no solo, especificamente o aumento do conteúdo de 

nutrientes e pH, na performance de duas gramíneas e duas leguminosas em um estudo 

individual e em uma mistura de espécies. A altura e o número de folhas foram 

registados ao longo da experiência e a biomassa final determinada. 

Os solos de mina revelaram um potencial muito baixo para a germinação e 

crescimento de plantas, enquanto os technosols, em geral, facilitam a germinação e 
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podem ter um bom impacto na revegetação. Lolium perenne parece ser a espécie com 

maior capacidade para suportar as condições adversas de solos de mina. O melhor 

melhoramento de solo para o crescimento das plantas nas quatro espécies testadas foi a 

mistura de solo de jardim com solo de mina original. Assim, não é suficiente aumentar o 

pH, é também necessário adicionar nutrientes para melhorar a germinação e o 

estabelecimento de plantas.  

Em conclusão, a principal razão pela qual as plantas não germinam nem se 

desenvolvem em solos de minas é o baixo pH e o baixo conteúdo em nutrientes e não 

tanto devido à não existência de um banco de sementes, tendo em conta que ao redor 

das áreas mineiras existe vegetação que pode constituir uma fonte de sementes para a 

área. O aumento do pH reduz a solubilidade dos metais pesados, mitigando um dos 

problemas associados aos solos de minas. Assim, para garantir e acelerar o 

estabelecimento de plantas nestes solos, as propriedades destes devem ser melhoradas. 

É também importante ter uma base de dados das espécies locais e mais comuns dos 

diferentes grupos funcionais para enriquecer a qualidade e quantidade do banco de 

sementes. As gramíneas, com o seu sistema de raízes altamente desenvolvido são 

importantes para estabilizar e reduzir a erosão do solo e as leguminosas, a longo prazo, 

enriquecem os solos com azoto, devido ao processo de fixação de azoto, preparando a 

entrada de espécies mais típicas de fases de sucessão ecológica tardia.  

 

 

 

Palavras-Chave: Solo de Mina; Technosol; Revegetação; Melhoramentos de solo. 
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iii. Abstract 

 

Contaminated land, either with organic or inorganic pollutants, is a very 

common problem. Mining is one of the main causes of entry of heavy metals in the 

environment, besides having a strong visual impact. Revegetation is the most effective 

method to prevent erosion and the consequent spread of contaminants to surrounding 

areas. However, plant growth and establishment is conditioned by limiting factors of the 

mine soils such as low pH, low fertility, low content of nutrients, high heavy metal 

concentrations and a reduced seed bank to initiate plant establishment. In many cases 

for the successful plant establishment it is necessary to improve the physical and 

chemical properties of the soil parameters. 

In Touro’s copper mine (Galicia, Spain), our study area, there is a large-scale 

project of soil amendment with the use of technosols, a mixture of several organic 

residuals, to improve the conditions of the mine soils. Two experiments were 

performed. The first one to evaluate the seed bank potential and seedling development 

on several types of technosols compared with a control outside the mine and with the 

original mine soil. The number of existing plants was counted and the species were 

identified. The second experiment was made with mine soil to evaluate the role of 

amendments, namely increasing the amount of nutrients and pH, in the performance of 

two grasses and two legumes in an individual and in a mixture of species study. The 

height and number of leaves were recorded throughout the experiment and the final 

biomass determined. 

Mine soils revealed a very low potential for plant germination and growth while 

technosols, in general, facilitate plant germination and can have a good impact on the 

revegetation. Lolium perenne seemed the species with the best capacity to support the 
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adverse conditions of mine soil. The best amendment for plant growth of the four 

species tested was the mixture of garden soil with the original mine soil. Thus it is not 

enough to increase the pH, but is also necessary to add nutrients to improve the 

germination and establishment of plants. 

In conclusion, the main reason why plants do not germinate and develop on 

mine soils is the low pH and nutrients, and not so much because there is no seed bank, 

taking into account that around the mining areas there is vegetation that can constitute a 

seed source for the area. Increasing the pH reduces the solubility of heavy metals, 

mitigating one of the problems associated with mine soils. Thus, to guarantee and 

accelerate the establishment of plants in mine soils, the properties of the soils must be 

improved. It is also important to have a database of local and common plant species of 

different functional groups to enrich the quality and quantity of the seed bank. Grasses, 

with their highly developed root system are important to stabilize and reduce soil 

erosion, and legumes, on a long term, enrich the soils with nitrogen, due to the process 

of nitrogen fixation, preparing the entrance of species more typical of late ecological 

succession stages. 

 

 

 

Keywords: Mine Soil; Technosol; Revegetation; Soil amendments. 
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1.1 Contaminated land and remediation 

 

Contaminated land is a worldwide spread problem and often result from the 

legacy of industrial activities, waste management practices and mining activity (Gay 

and Korre,  2006) with a potential threat to human health (Vidali, 2001).  

Human assisted pathways for contamination of the environment are many and 

include disposal of industrial effluents and wastes, sewage sludges, the use of chemicals 

on agriculture areas, land-fill operations and mining (Prasad and Hagemeyer, 1999; 

Jabeen et al., 2009). 

Conventional techniques to recover the soil, as displacement, excavation or soil 

washing (Wu et al., 2012), besides being economically expensive, can also have some 

side effects, like spreading even more the contamination. To prevent these associated 

problems, other processes to clean up contaminated sites through techniques that 

decrease or eliminate contamination in situ are preferred (Prasad and Hagemeyer, 

1999). To achieve those aims other remediation technologies have been developed.  

Bioremediation, also known as green technology, is an alternative to 

conventional techniques for pollutant clean-up (Singh et al., 2008) with the use of 

microorganisms to reduce or even destroy contaminants in a given polluted area 

(Boopathy, 2000). This technology has many advantages. The more prominent one is 

related to the low cost compared to conventional techniques, with in situ destruction of 

the contaminants without harming the surrounding environment (Vidali, 2001). The 

main disadvantages are a longer time to achieve a reduction in the contamination, the 

high specificity demanded at the site and the contaminant, the resistance of some 

compounds to degradation and the question if some products of biodegradation are 

more noxious than the initial compound (Vidali, 2001).  
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1.2 Phytoremediation and mining 

 

Phytoremediation, a sub-field of the bioremediation, uses plants to degrade, 

assimilate or metabolize organic and inorganic pollutants (Susarla et al., 2002) present 

on contaminated soil, sludges, sediments, and ground water (EPA, 1999). 

Phytoremediation can be applied to organic and inorganic pollutants but one of the 

major targets are heavy metals, like copper (Cu), lead (Pb), zinc (Zn), mercury (Hg) and 

cadmium (Cd) (Salt et al., 1998; Prasad and Hagemeyer, 1999). Within the area of 

phytoremediation, depending on the contaminated substrate and aim, it is possible to 

separate in other sub-areas: Phytoextraction, Phytodegradation, Rhizofiltration, 

Phytostabilization and Phytovolatilization (Salt et al., 1998; EPA, 1999; Lone et al., 

2008; Susarla et al., 2002; Jadia and Fulekar, 2009). 

One of the major sources of land contamination with metals is mining (McGrath 

et al., 1995). Mining affects landscapes and its effects are largely irreversible (Haasea 

and Larondellea, 2012). This activity is associated to an historical soil and groundwater 

pollution by heavy metals around the world (Chiang et al., 2012). Heavy metal 

pollution, as a consequence of mining activities, is one the most serious environmental 

issues (Colin et al, 2012) due to the fact that heavy metals cannot be degraded like other 

organic contaminants (Ghosh and Singh, 2005; Jadia and Fulekar, 2009) or be broken to 

non-toxic forms (Jabeen et al., 2009). 

Open mine areas have a strong impact on the environment (Álvarez et al., 2011) 

and to reduce that impact revegetation is the most effective method to restore and 

integrate these areas into the surrounding landscape (Remon et al., 2005). However, 

revegetation is not always easy due to the fact that mine soils usually have low fertility, 

low content of nutrients and contain high heavy metal concentrations which slows 



 
 

down, or prevents the revegetation process and consequent stabilization of the mine 

tailings (Vega et al., 2004). The use of vegetation to stabilize mine tailings is important 

to decrease the area exposed to erosion and to limit the spread of the metals to nearby 

communities (Vega et al., 2006; Conesa et al., 2006; Mendez and Maier, 2008).  

 

1.3 Case study: Touro’s copper mine, Galicia (Spain) 

 

Touro’s mine was an open-sky mine for extraction of cooper, with two opencast 

mines named Arinteiro and Bama. The area exploited by this mine is associated with the 

Precambrian basic massif near Santiago de Compostela (Álvarez et al., 2010) and the 

geological substrate is amphibolite with amounts of Fe and Cu sulphides as pyrite, 

pyrrhotite, limonite and chalcopyrite (Calvo de Anta and Otero, 1994; Vega et al., 

2006). The main problem associated with these mines is the acidic soil and the high 

solubility of metals such as Al or Fe (Álvarez et al., 2010). 

The copper extraction stopped in 1988 but the environmental impact of this area 

continued not only because of the exposed area per si but also because the contaminated 

mine spoils were used for the construction of rural roads, spreading the contamination 

potential of the mine (Arias et al., 1998). 

The recovery measures started in the beginning of 2003 with the addition of 

residuals and/or sludge and the planting of Eucalyptus globulus Labill (Vega et al., 

2005) and continued over the years with success (Fig.1). One of the amendments used 

were technosols, which according to the World reference base for soil resources (IUSS, 

2006) are defined by their “technical origin” “dominated or strongly influenced by 

human-made material” or “sealed by technique hard rock (material created by humans, 

having properties unlike natural rock)” and is used to cover soils “with a layer of 
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natural soil material in order to permit revegetation”. They can be found all over the 

world in mines, roads, and oil spills. According to the same source many technosols 

contain toxic substances resulting from industrial processes so it is advisable to take 

some precautions on handling. It is also possible to add some additional material to 

technosols, like mussel shells, to aid the soil recovery (Fig.2). 

Figure 1: Artificial lake in Touro’s copper mine (Galicia, Spain) 

with revegetation (2011). 

 

 

 

 

 

 

 

 

Figure 2: Touro’s mine. A: Elaborated residuals (technosol). B: Eucalyptus 

with mussel shells. 



 
 

The report “Una visita a la Mina de Touro: Procesos de Recuperación de Suelos 

y Aguas de Mina mediante la Valorización Biogeoquímica de Residuos” gives an 

overview about problematic residuals and the potential of technosols for mine soils 

recuperation and the possibility to create technosols with different properties (reductive 

properties, alkaline, adsorbents and fertilizers) to be applied has a function of the 

contaminant and the corrective aim. Soils on this mine are acidic, with high 

concentration of Al and deficiencies in mineral such as P, K, N and C delaying, or 

preventing, the establishment of the vegetation. Technosols improve the revegetation 

process, by correcting the pH and/or adding nutrients like P and N, mitigating the 

limiting conditions of mine soils (Calvo, 1991).  

The areas of Touro’s mine amended with technosols were almost totally covered 

by dense vegetation (ruderal plants and/or shrubs), while the mine waste heap with no 

technosols added showed no vegetation cover.  

The reports “Humedales de la mina de Touro” (2007) and “Evaluación de 

Impacto Ambiental del «Proyecto de Recuperación de los Ríos Brandelos, Pucheiras, 

Felisa, Portapego, Rego das Rozas y Lañas en el entorno de las Minas de Touro»” give 

detail information about the past and current recovery. The results of the effect of 

covering the mine area with technosols are very positive in terms of the improvement of 

soil conditions and consequent growth of vegetation. 

  

 1.4 Objectives 

 

In the context of the problematic issue of contaminated sites by mining areas and 

affected landscapes, this work aims to contribute for a better understanding on how to 
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improve the revegetation process of abandoned mines in order to reduce their 

environmental and visual impact.  

In view of this goal it was made an evaluation of the seed bank potential, seed 

germination and plant growth on different soils of the Touro’s mine: one control soil 

from outside the mining area, two mine soils (one from a slope and one from a top flat 

area) and six technosols with different locations inside the perimeter of the mine.  

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. MATERIALS AND METHODS 
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2.1 Sampling points 

 

Nine sampling points (Table I) were defined in Touro’s copper mine (Galicia, 

Spain) (Figure 3). All tecnosols were made of urban waste and sludge from water 

treatment plants. Eucalypts were planted on all tecnosols, except on Tec-0, which had 

been applied just one week before our visit. Control was defined as a eucalypt 

plantation outside the mine area. 

2573 tonnes of mixture of tecnosols (Tec-3 and Tec-4) were applied between 

27th March and 4th April 2008 on an area of 5156 m2, while 5.759 tonnes of Tec-1, Tec2 

and Tec-2E were applied between 15thand 26th September 2008 to an area of 11.518 m2. 
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Figure 3: Image from Google Earth of Touro’s mine and location of the 

sampling points. 

 

2.2 Soil  

  

All soils used in this experiment were collected in June 2011. About 4 kg of soil 

from the 20-cm upper layer were collected in each sampling point and stored 

individually in plastic bags.  

 

2.3 Seed bank emergence: Data collection 

 

Each soil sample was divided in four small trays that were placed in a protected 

area at the Botanical Garden of Coimbra for 115 days, from 24th June 2011 until 17th 

October 2011. During the time of the experiment trays were kept in the shadow and 

watered regularly.  
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Trays were monitored weekly since the beginning of the experiment. At each 

date the number of existing plants in each tray was counted and photographs were taken 

to estimate plant cover. The identification of the species present in each tray was made 

in three different dates: day 38, 73 and 115. Plant diversity was estimated for each 

treatment and date using the Shannon-Wiener Diversity Index (H = -  pi ln (pi)). 

At the end of the experiment all plants were removed, gently shaken in order to 

remove particles attached to the roots, dried at 60ºC for 4 days and weighted to estimate 

the production of aboveground biomass in each soil.  

 

2.4 Seed bank emergence: Statistical analysis 

 

Kruskal Wallis and Mann-Whitney tests were applied to check for differences in 

the number of plants germinated at days 31, 80 and 115 (significance level of 0.05). 

These analyses were done using STATISTICA 7. 

Correspondence analyses (CA) was applied to the log-transformed (y’=log(y+1)) 

abundance data at days 38, 73 and 115 to analyze the plant community obtained in each 

soil. These analyses were carried out using Canoco and CanoDraw for Windows 4.5. 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 
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3.1 Number of individuals  

 

Figure 4 shows the mean number of plants that germinated in the different soils 

during the experiment. The average number of plants that germinated ranged from 

values close to zero in Mine-1, Mine-2 and Tec-0 to around 100 individuals in Tec-2, 

with differences among the different types of soils tested.  

 

 

Figure 4: Average number of individuals ± SE in the studied tecnosols and 

the control throughout the experiment. Mine-1 and Mine-2 were not included 

in this graph because the average number of individuals was too small. The 

individual graphs of these two types of soil were included in the Appendix I. 

 

There was a general increase on germination from day 56 onwards. The number 

of plants in the control soil reached values around 70 plants/tray. In Mine-1 there were 

no plants until day 66, being the maximum average number of plants 6.25 on day 94. In 

Mine-2 there were plants just in day 73 and 80, with an average number of individuals 
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of 0.25. These results indicate that seedling emergence and survival in the mine waste is 

very difficult. The absence of germination in soil Tec-0 can be explained by the absence 

of seeds in this soil since it was placed in the field just before our sampling. In Tec-1, 

Tec-2, Tec-2E, Tec-3 and Tec-4 there were plants throughout all the experiment. Tec-2 

had the highest number of plants and Tec-2E had the lowest number.  There was a 

general decrease on the number of plants found in each soil at the end of the 

experiment, likely due to the absence of new germinated seedlings and the mortality of 

young seedlings.  

Significant differences (p<0.05) were found between the different treatments in 

the three sampling dates analyzed (Table II and Figure 5).  

  

Table II: Results of Kruskal Wallis’s test on days 31, 80 and 115 concerning 

the number of germinated plants in the different soils. 

Day H P 

31 33.59178 0.0000 

80 33.21133 <0.0001 

115 32.49321 <0.0001 
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Figure 5: Average number of individuals ± SE at day 31, 80 and 115. 

Different letters above the bars mean significant differences between each 

soil type after non-parametric tests. Note that the scale used on the graph of 

day 80 is different from the scale used in the other two days. 
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On day 31, there were no statistical differences between Control, Mine-1 and 

Mine-2 and between Tec-2 and Tec-2E. Tec-3 was the soil with the highest number of 

individuals followed by Tec-4. On day 80, the highest number of individuals was found 

in Tec-4 and Tec-2 and these values were significantly higher than the control. There 

were no significant differences between Mine-2 and Tec-0. On day 115, there were no 

statistical differences between the soils from Mine-1, Mine-2 and Tec-0 which had very 

few plants. Tec-2, Tec-4 and Control had the highest values reaching 50 plants in the 

Control soil.  

 

3.2 Plant cover 

 

The percentage of ground covered by plants, showed in figure 6, was almost 

zero in Mine-1, Mine-2 and Tec-0 due to a very low number of individuals. The three 

types of soil that showed a higher plant cover were Tec-3, Tec-4 and Tec-2. These three 

types of soil also contained the highest number of plants.  
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Figure 6: Percentage of plant cover for all types of soil throughout the 

experiment. Mine-1 and Mine-2 were not included in this graph because the 

% of coverage was too small. 

 

Plant cover on day 31, 80, 115 is illustrated, for all types of soil, in figure 7. A 

more detailed photographic record of the evolution of the germination and plant growth 

in the different soil types is presented in Appendix II. 
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Day 31    Day 80   Day 115 

 Mine-1 

 Mine-2 

 Control 

 Tec-0 

 Tec-1 

 Tec-2 

 Tec-2E 
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 Tec-3 

 Tec-4 

Figure 7: Photographs of the trays showing the evolution of the plant cover 

in all types of soils on day 31, 80 and 115. 

 

3.3 Richness and species diversity 

 

Figure 8 and 9 shows the species richness and the Shannon-Wiener diversity 

index, respectively, on days 38, 73 and 115. Tec-4 showed the highest number of 

identified species in all three days.  Mine-1 and Mine-2 had no identified species due to 

their small size. 

According to the Shannon-Wiener index and analyzing the three days, the 

diversity increases over time in soils Tec-2 and Tec-3 and decreases in Tec-1. In Tec-4 

increases from day 38 to day 73 but decreases in day 115. This index is directly related 

to the number of identified species (Figure 8) and the number of individuals of each 

species. However, these results have to be taken with some caution since not all plants 

were identified because of their small size. 
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Figure 8: Species richness in all types of soil on days 38, 73 and 115. 

 

 

Figure 9: Shannon Wiener Index in four types of soil on days 38, 73 and 

115. Mine-1, Mine-2, Tec-0, Tec-2E and Control were not included in this 

graph because the Index was zero in these three days. 

 

Plants belonging to 8 different families were found during the experiment (Table 

III). All identified species were classified as ruderal, although most of the plants could 

not be identified during the seedling stage. There were differences in their relative 

abundance in each soil and sampling date (Table IV, V and VI).  
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Table III: Families and species identified in all types of soils. 

 Family Species 

Amaranthaceae  Chenopodium album L. 

Asteraceae Carduus tenuiflorus L. 

Coleostephus myconis (L.) Reichenbach 

Conyza canadensis (L.) Cronquist 

Gnaphalium luteo-album L. 

Picris echioides L. 

Sonchus oleraceus L. 

Brassicaceae Cardamina hirsuta L. 

Geraniaceae Geranium purpureum L. 

Papaveraceae  Chelidonium majus L. 

Poaceae Avena sp. 

Poa annua L. 

Solanaceae  Solanum nigrum L. 

Urticaceae Parietaria judaica L. 

Urtica membranacea (Poir.) 

 

Table IV - Species abundance, richness and diversity on day 38 after the 

beginning of the experiment. 

  Mine-1 Mine-2 Tec-1 Tec-2 Tec-2E Tec-3 Tec-4 Tec-0 Control 

Chelidonium 
majus 

- - - - - 5 8 - - 

Geranium 
purpureum 

- - - - 3 - - - - 

Parietaria 
judaica 

- - 2 4 - 10 3 - 3 

Sonchus 
oleraceus 

- - 3 4 - 24 12 1 - 

Urtica 
membranacea 

- - - 3 - - 1 - - 

Unidentified 
plants  

0 0 3 21 11 167 80 2 1 
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Table V - Species abundance, richness and diversity on day 73 after the 

beginning of the experiment. 

 

  

  Mine-1 Mine-2 Tec-1 Tec-2 Tec-2E Tec-3 Tec-4 Tec-0 Control 

Cardamina 
hirsuta  

- - - - - - 13 - - 

Chelidonium 
majus 

- - - - - 36 11 - - 

Chenopodium 
album 

- - - 2 - - 1 - - 

Conyza 
canadensis  

- - - - - - 1 - - 

Geranium 
purpureum 

- - - - 4 5 - - - 

Parietaria 
judaica 

- - 1 6 - 15 3 - 4 

Picris 
echioides  

- - - 1 - - 3 - - 

Poa annua  - - - 1 - - 4 - - 

Solanum 
nigrum 

- - - - - 1 - - - 

Sonchus 
oleraceus 

- - 2 4 - 26 5 1 - 

Urtica 
membranacea 

- - - 4 - 1 1 - - 

Unidentified 
plants 

6 1 90 312 63 165 245 2 173 
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Table VI - Species abundance, richness and diversity on day 115 after the 

beginning of the experiment. 

  Mine-1 Mine-2 Tec-1 Tec-2 Tec-2E Tec-3 Tec-4 Tec-0 Control 

Avena sp. - - - 1 - - - - - 
Cardamina 
hirsuta  

- - - - - - 35 - - 

Carduus 
tenuiflorus 

- - - - - - 1 - - 

Chelidonium 
majus 

- - - - - 2 12 - - 

Chenopodium 
album 

- - - 1 - - 1 - - 

Coleostephus 
myconis 

- - - - - - 1 - - 

Conyza 
canadensis  

- - 1 1 - - 1 - - 

Geranium 
purpureum 

- - - - 4 5 - - - 

Gnaphalium 
luteo-album  

- - - 3 - - - - - 

Parietaria 
judaica 

- - - 9 - 9 4 - 4 

Picris 
echioides  

- - - 1 - - 2 - - 

Poa annua  - - - 3 - - 4 - - 
Solanum 
nigrum 

- - - 1 - - - - - 

Sonchus 
oleraceus 

- - - 2 - 5 3 - - 

Urtica 
membranacea 

- - - 2 - 1 1 - - 

Unidentified  
plants   

1 0 77 112 17 57 119 0 208 

 

In Tec-1 the most abundant species on day 38 and 73 was Sonchus oleraceus, 

while Conyza canadensis was the most abundant species on day 115. In Tec-2 the two 

most abundant species on day 38 were S. oleraceus and Parietaria judaica, with P. 

judaica being the most abundant identified species on day 73 and 115. In Tec-2E the 

most abundant species on these three days was Geranium purpureum. In Tec-3 the most 

abundant species were S. oleraceus on day 38, Chelidonium majus on day 73 and P. 

judaica on day 115. In Tec-4 the most abundant species on day 38 was S. oleraceus and 
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Cardamina hirsuta on day 73 and 115. In Tec-0, S. oleraceus was the most abundant 

species on day 38 and 73. On day 115 there were no plants in this soil. Finally, P. 

judaica was the most abundant species on the Control soil over the three days.   

 

3.4 Correspondence analyses 

 

The results of the CA separated Tec-2E from all other soil types along the axis 

X, for every date (Figure 10). This difference seems to be related to the abundance of G. 

purpureum in this soil type. The remaining soils were separated along the axis Y 

defined initially by the presence of Urtica membranaceae, P. judaica, C. majus and S. 

oleraceus. Other new plant species also contributed to the placement of the different 

soils along axis Y in days 73 and 115. 

For day 38 the first axis explained 70.1% of the total variance and the first and 

second axis explained 83.7%. The CA performed in day 38 showed that the plant 

community in Tec-2 was the most similar to that of the control soil. Tec-0, Tec-3 and 

Tec-4 were very similar probably due to the relative abundance of C. majus. For day 73 

the first axis explained 43.7% of the total variance and the first and second axis 

explained 67.5%. The CA performed in day 73 showed that the plant community in 

Tec-1 was the most similar to that of the control soil. For day 115 the first axis 

explained 38.5% of the total variance and the first and second axis explained 62.2%. 

The CA performed in day 115 showed that the plant community in Tec-2 was the most 

similar to that of the control soil. 
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3.5 Plant biomass  

 

No plants were found at the end of the experiment in either of the two analyzed 

Mine waste soils. For Tec-1 and Control, plants were only present in one of the four 

trays. The mean values of plant biomass per tray for the other treatments were 0.89 for 

Tec-2, 0.055 for Tec-2E, 2.63 for Tec-3 and 2.16 for Tec-4. 

 

Table VII – Total aboveground biomass in each soil type at the end of the 

experiment. 

Type of soil  Replicate Dry weight (g) 

Tec-1 2 0.030 

Tec-2 1 0.539 

2 0.510 

3 1.21 

4 1.30 

Average 0.89 

Tec-2E 1 0.024 

3 0.086 

Average 0.055 

Tec-3 1 0.167 

2 1.61 

3 0.330 

4 5.94 

Average 2.63 

Tec-4 1 2.31 

2 1.39 

3 3.72 

4 1.20 

Average 2.16 

Control 1 0.317 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 

  



 
 

 



45 
 

Open mine areas have a strong environmental and visual impact on the 

landscape. Thus efforts to improve the vegetation cover after the abandonment of the 

mine exploitation is important to reduce the impact of mining areas. However, there are 

several problems for the establishment of the vegetation, namely the lack of a proper 

soil, besides toxic levels of heavy metals associated with low pH which makes them 

even more bioavailable, and a reduced seed bank, more dependent on the vegetation 

from areas surrounding the mine area.  

Primary plant succession, that is, the establishment of plants in a barren soil, can 

occur in mining areas. However, this process can take many years due to adverse 

conditions of these areas. To accelerate the process of plant establishment, it is often 

necessary to add soil amendments enriched in nutrients and with a seed bank. 

In Touro’s mine (Galicia, Spain) there is a large-scale project of soil amendment 

to the mine bare soil to improve the conditions for the establishment of vegetation. 

These soils, named technosols, are the result of a mixture of several organic residuals, 

the leftovers of mussels, etc. Thus we have collected several types of technosols within 

the mine, besides mine soil and a control soil outside the area of exploitation of the 

mine area, to evaluate their seed bank potential and seedling development. 

Mine Soils (Mine-1 and Mine-2) revealed a very low potential for plant germination and 

growth. This is probably related to the occurrence of toxic levels of some heavy metals 

and a lower percentage of organic matter and total N, compared with the control soil. 

The pH (~4) and K were similar between the mine and control soils, with mine soils 

even showing a higher concentration of P. A low pH increases the availability of heavy 

metals and this can have a negative effect on the germination of seeds and becomes a 

growth limiting factor (Marschner, 1991). This is aggravated by the fact that mine soils 

probably have a low seed bank. Mineral nutrition is crucial on regulation of plant 
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growth and development (Gramash, 2005) and on acid soil conditions one of the most 

constrains to plant growth are the solubility of mineral elements and consequent 

deficiency (Marschner, 1991).  

Control soil proved to be significantly better on plant germination and growth 

than mine soils. Although the content of P and K was lower and the pH was similar, the 

control soil showed a higher percentage of organic matter and N. Nitrogen is essential 

for plant growth and in soil about 95% of nitrogen is related to organic matter (Meysner 

et al, 2006), being this last one strongly related to soil fertility (Johnston et al., 2009). 

As the soil nutrient availability increase, increase also the plant production 

(VanOorschot et al., 1997). Additionally the control soil had a well-established 

vegetation cover, meaning that the probability of having a seed bank is higher.  

In general, compared with the control soil, technosols showed a basic pH (~8), a 

high percentage of organic matter, specially Tec-3 and -4, extremely high levels of P, 

high levels of K, except Tec-0, and similar values of total N. Tec-0 practically showed 

no germination of plants. Tec-0 had been applied recently and in terms of the 

parameters measured in the soil, comparing with the other technosols was a lower 

concentration of K. The absence of germination in Tec-0 is thus probably related to an 

absence of a seed bank. Somehow this soil ‘must wait’ for seeds to disperse from 

surrounding areas.  

Tec-2 and Tec-2E showed very similar characteristics in terms of vegetation 

cover and soil parameters. However, Tec-2 showed the highest number of individuals, 

as well as one of the highest numbers of identified species and biodiversity index, while 

Tec-2E was one of the technosols with lower number of germinated plants, and the only 

identifiable species was Geranium purpureum. Thus, for some reason Tec-2 had a 

richer seed bank.  
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Tec-3, the soil with the presence of mussel shells, was the soil where 

germination occurred faster. It had the highest percentage of organic matter and total N 

and a great quantity of P. Mussel shell addition increased soil pH (Paz-Ferreiro et al, 

2012) and stabilize it over time (Álvarez et al., 2012). Increase also the soil fertility 

when combined with other soil amendments and lowered the amount of Al (Kwon et al, 

2009).  

At the end of the experiment the general decrease on the number of plants is 

related to the mortality of the seedlings caused maybe by the low soil depth of the trays 

or due to competition between the existing plants in each replicate. However, at the end 

of the experiment, new seeds germinated. Some of these later seeds could have been 

transferred by the wind from the garden surrounding the location of the trays, or can be 

seeds already present in the seed bank that required more time to germinate.  

In terms of % of coverage, biomass and diversity of species, Tec-2, -3 and -4 

showed the highest values, compared to the control and mine soils. Probably the main 

reason is the extreme high levels of P, a limiting nutrient in many soils. This is 

reinforced by the fact that all the plants that germinated were ruderals. Although the 

availability of P is generally lower in alkaline soils, if the soils have more than 1% of 

organic matter, in the pH range of 6 to 8, the phosphorus concentration in the soil 

solution can increase, instead of declining (Marschner, 1990).  

The seeds present in the technosols can be originated from the area itself, when 

there is already vegetation, and/or from the surrounding environment through wind or 

animal dispersion. Although most of the species could not be identified, in general, all 

soils showed a similar community of plants. Somehow this is expectable because they 

come from the same area, with similar seed sources. However, in some soils there was 

the predominance of some species, like Geranium purpureum in Tec-2E and Parietaria 
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judaica in the control soil. Nonetheless the percentage of unidentified species was very 

high. 

Our results showed that the technosols, in general, facilitate plant germination 

and can have a good impact on the revegetation of bare mine soils. The application of a 

layer of these soils on top of the mine soil can thus stimulate the initial germination, 

growth and establishment of plants, accelerating the process of plant succession. The 

initial growth of the plants in the technosol is also important because when the roots of 

plants reach the layer of the mine soil, with a lower pH and high toxic levels of heavy 

metals, the impact can be mitigated by the nutrient rich layer of the technosol. 
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1.1 Soils properties 

 

Human activities can interfere and change some soil properties through, for 

example, the disposal of chemicals from industries (Entry et al., 2002). Drought, 

salinity, pH, low content of nutrients, among others, are environmental factors which 

can disturb plant growth (Flexas et al., 2006). The soil structure and texture also 

influences plant growth (Passioura, 1991). 

A soil is considered fertile when it can provide the proper quantity of nutrients 

(Janssen and Willigen, 2006) but the actual values of soil quality are not consensual 

(Reynolds et al., 2002) due to differences between soils and their function (Karlen et 

al., 1997). Thus the characteristics of a specific area affect the plant growth in a specific 

way as the soil properties influence all the reactions, transformations and mobility 

(Ross, 1994).  

Mine soils are usually acidic, with low fertility, low content of nutrients (as P, 

Ca, K deficiencies), high concentrations of heavy metal, high solubility of toxic metals 

(as Al, Fe, Mn), constituting harsh environments that impair plant growth (Tang et al., 

2003; Kochian et al., 2004; Goransson et al., 2008). Nonetheless there are plants  able 

to grow under these conditions, namely low pH and high Al toxicity (Osaki et al., 

1997), but most of them do not have mechanisms which allow them to survive with 

these soil conditions.  

The low availability of some nutrients and the toxicity of heavy metals (Adams, 

1981; Yan et al., 1992; Marschner 1990) usually do not allow the establishment of new 

plants. The absence of vegetation makes these soils more vulnerable to erosion that can 

cause the spread of the contaminants to other nearby communities. Revegetation on 

abandoned mining areas, without modifications or amendments is thus a difficult task. 
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1.2 Amendments 

 

Surface stabilization by the establishment of a vegetation cover on adverse soils 

minimize the soil erosion and prevent the spread of contaminants to environment 

around the area (Wong, 2003; Mendez and Maier, 2008; Carrasco et al., 2009).  

To improve the vegetation and allow a successfully revegetation it is necessary 

to improve the physical and chemical properties of the soil (Caravaca et al., 2003). The 

amendments have the capacity to transform metals into less soluble or insoluble forms 

making them less available and can enhance ion exchange, sorption and redox reactions 

(Mench et al., 2003). To accomplish a revegetation project, regardless of the 

characteristics of the disturbed land, it is imperative to plan the actions for revegetation, 

namely the selection of the species to introduce, the type of soil amendments, and the 

economical costs of all the processes associated. After the implementation, it is 

necessary to monitor the project with regular inspections to determine the success of the 

revegetation process and if it there is any need to modify the previous conditions 

(Anderson and Ostler, 2002).    

Various amendments can be used to ameliorate the general conditions of soils to 

ameliorate seed germination, survival and plant growth, important for the primary plant 

succession. The appropriate vegetation associated to the amendments is important to 

maximize the revegetation process (Wong, 2003). In general, the application of lime 

agents and organic matter improves the revegetation potential in acid contaminated by 

with heavy metals (Córdova et al., 2011). 
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1.2.1 Organic amendments 

 

The addition of organic matter improves some soil characteristics (Khaliq et al., 

2006) as water retention and infiltration, aeration, and have a beneficial effect on the 

surface stability (Tisdall and Oades, 1982; Caravaca et al., 2003) although the soil 

stability not only depends on soil organic matter but also on Fe and Al oxides and 

CaCO3 soil contents (Caravaca et al., 2004). Caravaca et al. (2003) showed that the 

addition of organic matter had a good effect on revegetation of semiarid areas 

increasing the quantity of nutrients and the soil stability.   

When nutrients are added to the soil, besides an improvement of plant growth 

(Roldán et al., 2006) the physical soil conditions are also ameliorated (Clemente et al., 

2012). For example, an organic amendment very used is sewage sludge, a bio-organic 

product of wastewater treatment, which is a source of plant macro and micronutrients 

and improves the soil quality in physical, chemical, and biological properties (Sajwan et 

al., 2007; Sivapatham et al., 2012) and increases the pH (Little et al., 1991).  

 

1.2.2 Liming 

 

Soils with low or high pH, are adverse for plant growth (Kobayashi et al., 2010) 

due to its effect on nutrient availability. Lime is an old and common amendment used to 

improve soil properties (Haynes and Naidu, 1998). Liming agents, such as calcite or 

calcium carbonate, are compounds capable of increasing the pH of acidic soils 

(Levonmäki and Hartikainen, 2007). Liming besides increasing the soil pH, reduces the 

bioavailability of heavy metals of mine soils (Little et al., 1991; Lee et al., 2004), and 

compensates calcium and magnesium losses (Persson et al., 1990).  
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The amount of lime required to neutralize the soil acidity is not equal for all soils 

(Shoemaker et al., 1961). Soils with low cation exchange capacity (CEC) suffer a 

higher pH increase after liming (Matula and Pechová, 2002). Mine soils usually present 

a low CEC (Vega et al., 2005), thus liming will be effective in correcting the pH of 

those soils.  

The effects of lime agents on the topsoil are relatively fast, occurring in a short 

time, however in the subsoil it is more difficult and takes longer (Tang et al., 2003). 

 

1.3 Objectives 

 

The aim of the present work is to test if the change of some soil properties of 

mine soils, like the amount of nutrients and pH, can improve germination of seeds and 

growth of plants.  

To achieve this goal we have tested the effect of two amendments on mine soil, 

addition of nutrients and increase of the pH, on the seed germination and plant growth 

of two grasses and two legumes, and compared with the original mine soil and a 

positive control, a garden soil. The height, number of leaves and biomass were the 

parameters analyzed to check the performance of the four plant species used.  

The results will increase the knowledge about the role of soil amendments in 

view of their application to improve the conditions for plant growth in mining areas. 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. MATERIALS AND METHODS 
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2.1 Experimental set up and data collection 

 

Four treatments were used to test the effect of pH and nutrient amendments on 

plant growth in the mine soil. Garden soil was used as a positive control with the best 

plant growth conditions. The other three treatments included the mine soil, mine soil 

amended with calcium carbonate (CaCO3) to increase soil pH, and a mixture 1:1 

(vol:vol) of mine soil and garden soil to improve texture and nutrient content. The mine 

soil used in this experiment was collected in February 2012 in Touro’s mine (Galicia, 

Spain). About 20 kg of soil from the 20-cm upper layer were collected in the top of the 

Mine waste and stored in plastic bags in a cool place until use. 

To determine soil pH, a fraction of the soil used in the four treatments was air 

dried and sieved through a 2-mm mesh. Subsequently, 5 g of soil were mixed with 50 

mL of ultrapure water, stirred for 30 minutes and allowed to settle for 10 minutes and 

the pH was measured using an OAKTON pHmeter (Page et al., 1982). Three replicates 

were used to estimate soil pH.  

The pH of the garden soil was 7.74, the mixture of mine soil and garden soil was 

7.07, and the mine soil was 3.7. A pre-test was performed to calculate the necessary 

amount of calcium carbonate (CaCO3) to increase the pH of the mine soil up to 6.14-

6.77. Between 2.5 to 5g of calcium carbonate (CaCO3) were added to 140g of mine soil 

and the pH was determined afterwards. This pre-test was used to calculate the 

proportion of CaCO3 necessary to add to the volume of soil used in the pots in order to 

increase the pH of the soil mine. Two types of pots were used, with an approximate 

volume of 1790g the larger and 140g the smaller, the small ones to study the species 

response to the four treatments, and the larger ones to study the response of the mixture 



68 
 

of species to the same treatments (see below). Thus, 2g of CaCO3 were added to the 

small pots and 25g were added to the larger pots.  

Two legumes (Medicago sativa L. and Trifolium subterrraneum L.) and two 

grasses (Lolium perenne L. and Dactylis glomerata L.) commonly used in mine 

revegetation projects were selected for this study. Both grasses are perennial plants 

native to Europe, some regions of Asia and North Africa (FAO, 2012a; FAO, 2012b). 

Medicago sativa is an erect and perennial plant, widely distributed in temperate zones of 

the world (FAO, 2012c) and T. subterraneum is an annual plant native to southern 

Europe, North Africa and Southern England (FAO, 2012d). 

Two different experiments were prepared using this soil and plant species. The 

first experiment investigated the growth of each individual plant species in each type of 

soil. The second experiment tested the growth of the mixture of these four species in the 

same soils. All treatments had 10 replicates and two individuals per plant species on the 

individual experiment and four individuals on the mixture experiment. In February, all 

pots were placed in a greenhouse at the Botanical Garden of Coimbra and were watered 

regularly during 12 weeks. Pots were seeded and 5 weeks after germination and 

seedling development, data on height and number of leaves were collected weekly 

during 7 weeks. At the end of the experiment plants growing individually (first 

experiment) were removed from the pots and gently washed and shaken in order to 

remove particles attached to the roots. Only aboveground biomass was harvested in the 

mixture of species due to the impossibility of separating the roots of each species. All 

plants were dried at 60ºC for 3 days and weighted.  
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2.2. Statistical analyses 

 

Repeated Measures ANOVA and Tukey test were applied to check for 

differences on height and number of leaves for each plant species between the four 

types of soil along the 7 weeks (significance level of 0.05). One-way ANOVA and 

Tukey test were applied to check for differences on plant biomass for each plant species 

between the four types of soil (significance level of 0.05). All data were normal, except 

for the biomass data of M. sativa on the experiment of the mixture of species that had to 

be transformed using log (n+1). These analyses were done using STATISTICA 7. 





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 
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3.1 Individual plant species performance 

 

For all four studied species, plant height was higher in the Garden Soil, followed 

by Mine Soil + Garden Soil, Mine Soil + CaCO3 and finally Mine Soil (Figure 11). The 

same result was observed for the number of leaves produced by each species in each 

treatment during the experiment (Figure 12).  

Significant differences (p<0.05) were found between the different treatments in 

the four plants analyzed in terms of height (Table VIII) and number of leaves (Table 

IX). None of the four species survived until the end of the experiment in the mine soil, 

where growth was severely impaired. 

Lolium perenne was the highest species in all treatments and Trifolium 

subterraneum was the plant with the lowest height registered. The highest value for 

number of leaves was obtained for T. subterraneum.  

Statistical differences in height and number of leaves for each species were 

consistent over time. There were significant differences in height for L. perenne 

between all soils on the seven weeks except between Garden Soil and Mine Soil + 

Garden Soil on week 1. The number of leaves showed no statistical differences between 

Mine Soil + Garden Soil and Mine Soil + CaCO3 on week 1, Mine Soil + CaCO3 and 

Mine Soil on week 3 and 4 and between Garden Soil and Mine Soil + Garden Soil on 

week 4. In the remaining weeks there were significant differences among all soils. 

The height of D. glomerata showed no differences between soils on week 1. On 

week 2 – 7 Mine Soil + CaCO3 had significant differences compared to the Garden Soil 

and Mine Soil + Garden Soil. The number of leaves showed no statistical differences 

between Garden Soil and Mine Soil + Garden Soil and between Mine Soil + Garden 
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Soil and Mine Soil + CaCO3 on week 1. For the other weeks statistical differences were 

found between Mine Soil + CaCO3 and the two other soils tested. 

The height of M. sativa on week 1 and 2 showed no significant differences 

between Garden Soil and Mine Soil + Garden Soil and between Mine Soil + CaCO3 and 

Mine Soil. On weeks 3 to 7 there were statistical differences between all soils tested. 

For the number of leaves there were no differences between Garden Soil and Garden 

Soil + Mine Soil and between Mine Soil + CaCO3 and Mine Soil on week 1 and 2. On 

week 3 no significant differences were found between the treatments. On week 4 and 7 

there were significant differences between all soils and on week 5 and 6 Garden Soil 

and Garden Soil + Mine Soil were statistically different from the Mine Soil + CaCO3. 

No significant differences were found in height of T. subterraneum between 

Garden Soil and Mine Soil + Garden Soil on week 1, and Mine Soil + CaCO3 and Mine 

Soil on week 2. On the other weeks there were differences between all soils. The 

number of leaves for this species showed no statistical differences between Garden Soil 

and Mine Soil + Garden Soil on week 1, 2 and 3. On week 4 – 7 statistical differences 

between all soils were found.  

Grasses and legumes had a different curve shape of growth. While the grasses 

tended to reach a plateau in height and number of leaves, both legumes showed an 

initial delay in growth and an exponential increase from week 2 in height and number of 

leaves. 

 



7
5
   

 

 

F
ig

ur
e 

11
: A

ve
ra

ge
 h

ei
gh

t ±
 S

E
 o

f 
th

e 
fo

ur
 s

pe
ci

es
 in

 th
e 

fo
ur

 tr
ea

tm
en

ts
 th

ro
ug

ho
ut

 th
e 

ex
pe

ri
m

en
t. 

L
ol

iu
m

 p
er

en
ne

 (
A

),
 D

ac
ty

li
s 

gl
om

er
at

a 
(B

),
 M

ed
ic

ag
o 

sa
ti

va
 (

C
) 

an
d 

T
ri

fo
li

um
 s

ub
te

rr
an

eu
m

 (
D

).
 

 

05

1
0

1
5

2
0

2
5

1
2

3
4

5
6

7

Average height (cm)

W
ee

k

A

05

1
0

1
5

2
0

2
5

1
2

3
4

5
6

7

Average height (cm)

W
ee

k

B

05

1
0

1
5

2
0

2
5

1
2

3
4

5
6

7

Average height (cm)

W
ee

k

C

05

1
0

1
5

2
0

2
5

1
2

3
4

5
6

7
Average height (cm)

W
ee

k

D



7
6
 

 

  

F
ig

ur
e 

12
: A

ve
ra

ge
 n

um
be

r 
of

 le
av

es
 ±

 S
E

 o
f 

th
e 

fo
ur

 s
pe

ci
es

 in
 th

e 
fo

ur
 tr

ea
tm

en
ts

 th
ro

ug
ho

ut
 th

e 
ex

pe
ri

m
en

t. 
L

ol
iu

m
 p

er
en

ne
 (

A
),

 

D
ac

ty
li

s 
gl

om
er

at
a 

(B
),

 M
ed

ic
ag

o 
sa

ti
va

 (
C

) 
an

d 
T

ri
fo

li
um

 s
ub

te
rr

an
eu

m
 (

D
).

 N
ot

e 
th

at
 th

e 
sc

al
e 

us
ed

 o
n 

th
e 

gr
ap

hs
 is

 d
if

fe
re

nt
.  

 

051015

1
2

3
4

5
6

7

Average number of leaves

W
ee

k

A

05

1
0

1
5

1
2

3
4

5
6

7

Average number of leaves

W
ee

k

B

0

2
0

4
0

6
0

8
0

1
2

3
4

5
6

7

Average number of leaves

W
ee

k

C

0

2
0

4
0

6
0

8
0

1
2

3
4

5
6

7

Average number of leaves
W

ee
k

D



77 
 

Table VIII: Results of Repeated Measures ANOVA for the height of the four 

species.  

Species F p 

Lolium perenne 27.205 <0.0001 

Dactylis glomerata 8.5715 0.0000 

Medicago sativa 5.18397 0.0000 

Trifolium subterraneum 7.5651 0.0000 

 

Table IX: Results of Repeated Measures ANOVA for the number of leaves 

of the four species. 

Species F p 

Lolium perenne 14.2358 0.0000 

Dactylis glomerata 3.42129 <0.05 

Medicago sativa 7.80174 0.0000 

Trifolium subterraneum 8.1175 0.0000 

 

Differences in final plant biomass between treatments were found for the four 

species. Final plant biomass was higher in the Garden Soil, followed by Mine Soil + 

Garden Soil and Mine Soil + CaCO3 (Table X). No plants were found at the end of the 

experiment in Mine Soil.  

Significant differences were found among the three treatments for the L. perenne 

and T. subterraneum (Figure 13). Plant growth was significantly lower in the Mine Soil 

+ CaCO3 for D. glomerata and M. sativa, but there were no differences on the biomass 

of these species grown on Garden Soil and Mine Soil + Garden Soil. 
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Table X: Results of One-way ANOVA for biomass of the four species.  

Species F p 

Lolium perenne 48.2763 0.0000 

Dactylis glomerata 27.3733 0.0000 

Medicago sativa 14.06937 <0.05 

Trifolium subterraneum 20.7649 <0.0001 
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3.2 Plant species performance in a mixture of species 

 

For all four studied soils, L. perenne was the highest species and T. 

subterraneum was the plant with the lowest height registered (Figure 14 and 15). For 

the number of leaves produced the highest value was obtained for M. sativa on Garden 

Soil. On Mine Soil + Garden Soil T. subterraneum had more leaves until week 5, but 

afterwards, M. sativa showed more leaves. On Mine Soil + CaCO3 there were some 

oscillations in the number of leaves of the two legumes, and all species showed the 

lowest height and number of leaves, compared to the Garden Soil and Mine Soil + 

Garden Soil (Figure 16 and 17). On the Mine soil L. perenne was the only species 

which survived until the end of the experiment.  

Significant differences (p<0.05) were found between the different treatments in 

the four plants analyzed in terms of height (Table XI) and number of leaves (Table XII). 

Statistical differences were consistent over time. There were statistical differences in 

height for L. perenne between Mine Soil and Mine Soil + CaCO3 and the other two soils 

in all weeks, and between Garden Soil and Mine Soil + Garden Soil only on week 6 

there were significant differences. For the number of leaves there were statistical 

differences between all soils in the first two weeks. On week 3 – 7 there were no 

differences between Garden Soil and Mine Soil + Garden Soil. 

The height of D. glomerata showed significant differences between all types of 

soils until week 3. On the following weeks there were only significant differences 

between the Mine Soil + CaCO3 and the other two types of soil (Garden Soil and Mine 

Soil + Garden Soil). The number of leaves on Mine Soil + CaCO3 was statistically 

different from the other two treatments in all weeks. 
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The height and number of leaves of M. sativa showed significant differences 

between all treatments, and for all the 7 weeks. In T. subterraneum statistical 

differences were found in height between all treatments until week 4. For the other three 

weeks statistical differences were only found between Mine Soil + CaCO3 and the other 

two soils (Garden Soil and Mine Soil + Garden Soil). For the number of leaves there 

were statistical differences between all soils on week 2 and between Mine Soil + CaCO3 

and the other two soils on the other weeks.  
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Table XI: Results of Repeated Measures ANOVA for height of the four 

species.  

Species F p 

Lolium perenne 24.3612 0.0000 

Dactylis glomerata 8.67738 0.0000 

Medicago sativa 12.6099 0.0000 

Trifolium subterraneum 19.6725 0.0000 

 

Table XII: Results of Repeated Measures ANOVA for the number of leaves 

of the four species.  

Species F p 

Lolium perenne 16.6867 0.0000 

Dactylis glomerata 5.0933 <0.0001 

Medicago sativa 9.93071 0.0000 

Trifolium subterraneum 12.1968 0.0000 

 

Differences in the final plant biomass between treatments were found for the 

four species (Table XIII). Final plant biomass was higher in the Mine Soil + Garden 

Soil and Garden Soil, followed by Mine Soil + CaCO3 for all the species, although M. 

sativa showed significantly higher biomass in the Garden Soil, compared to the Mine 

Soil + Garden Soil (Figure 18).  
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Table XIII: Results of One-way ANOVA for biomass of the four species. 

Species F p 

Lolium perenne 94.1991 0.0000 

Dactylis glomerata 19.7236 <0.0001 

Medicago sativa 73.7213 0.0000 

Trifolium subterraneum 16.71829 <0.0001 
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Statistical differences in total plant biomass were found for the four types of soil 

(Table XIV).  Total plant biomass was higher in the Garden Soil, followed by Mine Soil 

+ Garden Soil, Mine Soil + CaCO3 and Mine Soil (Figure 19).  

 

Table XIV: Results of One-way ANOVA for biomass of the four species.  

 F p 

Type of soil 177.5528 <0.0001 

 

 

Figure 19: Average total aboveground biomass ± SE for each type of soil at 

the end of the experiment. Different letters above the bars mean significant 

differences between each soil type after ANOVA analysis.  





 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. DISCUSSION 
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The abandoned mining areas have a strong environmental and visual impact on 

the landscape and efforts to attenuate those impacts are very important. The 

establishment of plants in mine soils is very difficult due to the harsh conditions of the 

soil, namely low pH, low nutrients and high levels of toxic heavy metals. Thus a good 

vegetation cover could take years to achieve. This process can be accelerated through 

the addition of nutrients and/or increase of pH, which reduces the solubility of heavy 

metals. These amendments, by ameliorating plant growth conditions, also make plants 

less susceptible to diseases (Akthar and Malik, 2000).  

To evaluate the effect of soil amendments in the establishment of new plants we 

have collected mine soil and mix it with garden soil, to add nutrients, or mix it with 

CaCO3, as liming agent, to increase the pH.  

Soil pH is related to plant survival, biomass production and affect metal 

bioavailability. Clemente et al., 2003 concluded the effective role of liming agents in 

the control of soil pH and the reduced mobility of heavy metals by organic matter.  

The effect of available heavy metals on plants depends on factors as quantity and 

availability, soil properties, environmental factors as pH and the plant species capacity 

to support the toxicity (Ross, 1994) while in soil the bioavailability is most influenced 

by pH, CEC, organic matter and clay content (Prasad and Hagemeyer, 1999). Acid pH 

increases the availability due to the “higher affinity of hydrogen ions for negative 

charges on colloids, thus competing with the metals ions of these sites, thus releasing 

metals” (Prasad and Hagemeyer, 1999). 

The species tested in this experiment were two grasses, Lolium perenne and 

Dactylis glomerata, and two legumes, Trifolium subterraneum and Medicago sativa. 

Grasses are pioneers and usually adapted to adverse conditions, with an important role 

in protecting soil from erosion (Hubbard, 1954). Legumes, through the process of 
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nitrogen fixation, are important in the enrichment of soil with nitrogen, a very important 

nutrient for plants (Wilson et al., 1982; Marschner, 1990; Snapp et al., 2005). 

 

4.1 Individual plant species performance  

 

Mine soil results confirmed what was discussed in “Part I: Seed bank 

assessment”, that is, the main reason for the lack of plant cover in mine soils is probably 

not the absence of seeds, but the difficulty of seeds to germinate and develop in these 

soils. None of the four species survived until the end of the experiment, probably due to 

the low pH, low contents of nutrients and high levels of toxic metals. However, there 

were differences among the species tested. Considering only the start of the data 

collection, without considering the 5 weeks when seeds were sown and seedlings were 

allowed to develop, L. perenne remained until week 5, being the species with more 

capacity to support those conditions, and showing a good potential in revegetation plans 

of mining areas. All the other three species germinated but the seedlings only survived 

two weeks, in the case of the two legumes, and one week in the case of D. glomerata, 

the other grass tested. 

Lolium perenne, M. sativa and T. subterraneum grew significantly better on 

Garden Soil than in the other three soils. Dactylis glomerata had no significant 

differences in growth between Garden Soil and Mine Soil + Garden Soil. Concerning 

the number of leaves, L. perenne developed a significantly higher number on Garden 

Soil while D. glomerata had no significant differences between Garden Soil and Mine 

Soil + Garden Soil. Medicago sativa and T. subterraneum, depending on the week, had 

more leaves on Garden soil and Mine Soil + Garden soil. In general, the final plant 

biomass was higher in the Garden Soil followed by Mine Soil + Garden Soil and Mine 
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Soil + CaCO3. Dactylis glomerata and M. sativa had no significant differences in 

biomass in Garden Soil and Mine Soil + Garden Soil. 

Along the seven weeks of data collection, grasses tended to reach a plateau in 

terms of height and number of leaves, while the two legumes showed a slow increase in 

the beginning and after two weeks, showed an exponential increase of height and 

leaves. This can be related to a characteristic growth form of grasses and legumes. It is 

noteworthy that the difference between the growth curves of T. subterraneum in all 

treatments was smaller, when compared with the other three species. Somehow the 

Garden Soil and Garden Soil + Mine Soil did not improve the growth of T. 

subterraneum as much as it has improved the growth of the other species, particularly 

the grasses L. perenne and D. glomerata. This indicates that T. subterraneum is not so 

demanding in terms of nutrients, a property useful in poor nutrient soils.  

Summarizing, in the Garden Soil the four species grew better, with higher 

height, number of leaves, and biomass, as expected. Garden soils are rich in organic 

matter and are prepared to have a good balance of nutrients to stimulate plant growth 

(Roldán et al., 2006). The best amendment was the “Mine Soil + Garden Soil” for all 

the four species. This is probably related with two causes, the increase in the amount of 

nutrients and the increase of pH, from 3.7 of the mine soil to 7.07 of the mixture 1:1 of 

mine soil and garden soil. Thus, on one side we are giving more nutrients for plant 

growth, but also, by increasing the pH, the solubility and bioavailability of toxic heavy 

metals is reduced.  
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4.2 Plant species performance in a mixture of species 

 

On Mine soil L. perenne was the only species which survived until the end of the 

experiment, while in the individual experiment, although it was the species which 

survived longer, after 5 weeks all individuals died. This can be related with the fact that 

the pots used for the mixture of species had a higher volume of soil, allowing a better 

growth of the roots of L. perenne. In fact, comparing the height of L. perenne after 7 

weeks of growth, in the individual and mixture experiment, it showed, on average, 25 

and 40 cm height, respectively. This was also observed for D. glomerata in the Garden 

Soil, although this species did not survive in the mine soil. Grasses develop a very 

intricate root system and probably need more volume of soil to increase their 

aboveground growth. The height of the two legumes was similar in the small and large 

pots, when grown in the Garden Soil, and both did not survive in the mine soil. 

In general, M. sativa grew better on Garden Soil, L. perenne on Garden Soil and 

Mine Soil + Garden Soil and D. glomerata and T. subterraneum on Garden soil during 

the first weeks, ending the experiment with no differences between Garden Soil and 

Mine Soil + Garden Soil. Concerning the number of leaves, M. sativa had more leaves 

on the Garden Soil, D. glomerata, T. subterraneum and L. perenne on Garden Soil and 

Mine Soil + Garden Soil. 

Summarizing, as in the former experiment, Garden Soil is the best soil and Mine 

Soil + Garden Soil the best amendment for plant growth. As in the previous experiment, 

L. perenne was the only species that could develop in the Mine Soil, although growing 

very little, confirming its potential to be used in revegetation programs of mining areas. 

However, all species tested increased their performance in terms of growth in the 

mixture of Garden soil with Mine Soil, being similar to the Garden Soil. Thus it is not 
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enough to increase the pH, as shown by the treatment of Mine Soil + CaCO3, where all 

the species had a poor growth.  

When compared with the individual pot experiment, in the mixture of species, 

the two grasses had a better growth in terms of height, while the legumes showed no 

differences between the two experiments. This somehow indicates that the competition 

among the species was not very strong - the legumes did not reduce or increase their 

growth parameters. The grasses could have beneficiated from the presence of legumes 

or could simply be related to the higher volume of the pots used for the mixture of 

species, with grasses having more soil to develop their roots. Nonetheless, the mixture 

of grasses and legumes in revegetation programs of mining soils is important because 

they represent two functional types of plants with different roles in the stability of soils. 

Grasses, with their highly developed root system can stabilize the soils and reduce 

erosion, while legumes can add up nitrogen to the soil, preparing the entrance of other 

plant species typical of later stages of succession (Tilman et al., 1996; Sanchez et al., 

2001). 
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PART III: GENERAL CONCLUSIONS 
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 Mine soils have poor conditions for plant growth, namely low pH, low nutrients 

and high levels of toxic metals. The seed germination was very low in the mine soils of 

Touro’s mine, while in the technosols, a mixture of different types of organic residuals 

placed on the surface of contaminated soils, germination and development of plants was 

much higher, being effective in stimulating vegetation cover of mine soils. The high 

content of nutrients present in these technosols has a fundamental role in the plant 

establishment and growth. 

The seed bank present in the technosols probably comes from the surrounding 

areas of the Touro’s mine. However, it is also important to screen different plant 

species, of different functional groups, for their ability to establish in contaminated 

soils. This database of local and common species is important to enrich the seed bank, 

in terms of quality and quantity, of mining areas, and not just being dependent on what 

is available around the mine area. Seed dispersion can be quite low, if the source of 

seeds is at some distance of the mining area, for example. In these cases, to improve 

vegetation growth, a mixture of seeds should be added to the area. 

In the greenhouse experiment, the grass L. perenne was the only species that 

could grow, although little, in the mine soil. The other species that were tested, D. 

glomerata, T. subterraneum and M. sativa, could not survive and develop in those soils. 

However, the mixture of garden and mine soil was fundamental for a better performance 

of all species. Thus, besides screening plant species resistant to harsh soil conditions, 

for a better long term development of the plants, some properties of the soil must be 

improved, namely nutrients and a higher pH. 

The physical mixture of garden soil (or technosols) with mine soils, involves 

heavy machinery, increasing the costs of this process. On the other hand, by just putting 

a layer of soil, with a seed bank, on top of mine soil, is probably less costly. Thus 
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initially, the seed germination and seedling establishment occurs in a ‘safe soil’. 

However, as plants grow, roots can reach the layer of soil mine, with all the adverse 

characteristics. One interesting research would to evaluate if the initial layer is enough 

to sustain plant development, or if is necessary to regularly add new soil to mitigate the 

effects of the belowground layer of mine soil. 
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Appendix I 

 

 

Figure 20: Average number of individuals ± SE in Mine-1 and Mine-2 

throughout the experiment. The scale used on the graphs is different. 
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Figure 21: Photographs of the trays showing the evolution of the plant cover 

in “Control” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].   
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Figure 22: Photographs of the trays showing the evolution of the plant cover 

in “Mine-1” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].   
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Figure 23: Photographs of the trays showing the evolution of the plant cover 

in “Mine-2” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].    
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Figure 24: Photographs of the trays showing the evolution of the plant cover 

in “Tec-0” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].   
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Figure 25: Photographs of the trays showing the evolution of the plant cover 

in “Tec-1” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].    
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Figure 26: Photographs of the trays showing the evolution of the plant cover 

in “Tec-2” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].    
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Figure 27: Photographs of the trays showing the evolution of the plant cover 

in “Tec-2E” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].    
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Figure 28: Photographs of the trays showing the evolution of the plant cover 

in “Tec-3” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].    
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Figure 29: Photographs of the trays showing the evolution of the plant cover 

in “Tec-4” on day 3 [A], 24 [B], 31 [C], 38 [D], 56 [E], 66 [F], 73 [G], 80 

[H], 87 [I], 94 [J], 101 [K], 108 [L] e 115 [M].   
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