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Resumo 

 

O tipo de sistema reprodutivo das plantas e as suas características reprodutivas 

desempenham um papel chave no processo de invasão por plantas exóticas. Uma reprodução bem-

sucedida é fundamental para o estabelecimento de populações viáveis e capazes de se expandirem. 

Foi teorizado que as plantas auto-compatíveis têm vantagem no estabelecimento de populações em 

novas áreas porque a reprodução é menos restrita, quer pelo tamanho da população quer pela 

disponibilidade de polinizadores. As acácias australianas estão entre as plantas invasoras mais 

difundidas, sendo conhecidos e bem estudados os seus impactos negativos que provocam uma 

alteração na estrutura e funcionamento dos ecossistemas. Estas espécies podem provocar a 

homogeneização ecológica e uma redução da biodiversidade. São por isso excelentes modelos para 

o estudo das invasões biológicas e podem ajudar a explorar os determinantes e as dinâmicas da 

invasão. As acácias australianas são geralmente consideradas como as plantas mais problemáticas 

e invasoras em Portugal. Tendo em conta a área ocupada e o impacto causado sobre os 

ecossistemas nativos as mais agressivas são: a Acacia dealbata, A. longifolia, A. melanoxylon e A. 

saligna. Sendo a reprodução um mecanismo essencial para o estabelecimento das espécies 

exóticas, existe um total desconhecimento sobre a biologia da reprodução destas espécies nas 

áreas invadidas. Na área de distribuição natural, estas espécies são auto-incompatíveis e têm uma 

preferência clara pela polinização cruzada. 

Neste estudo, as características florais, o sistema reprodutivo e a performance da 

descendência (sementes e plântulas) foram caracterizados em populações naturais na área invadida 

para as quatro espécies de acácia. Diferentes tratamentos de polinização envolvendo a exclusão 

dos polinizadores, a polinização suplementar, e autofecundação obrigatória, foram realizados para 

avaliar a auto-incompatibilidade e a limitação de pólen. A produção de frutos e sementes, o peso das 

sementes e a sua capacidade de germinação, e o crescimento das plântulas foram avaliados para 

os diferentes tratamentos. Os resultados deste trabalho mostram que as diferentes espécies de 

Acacia têm diferentes investimentos na produção de unidades reprodutivas (flores) e diferente 

sucesso reprodutivo natural. A A. dealbata apresentou um maior investimento na produção massiva 

de flores e um maior sucesso reprodutivo natural. Este resultado pode explicar, parcialmente, o facto 

de esta ser a mais agressiva de todas as espécies invasoras estudadas em Portugal. Uma estratégia 
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reprodutiva diferente, a andromonoicia, foi encontrada para a A. melanoxylon, contrastando com as 

outras espécies que são na sua maioria hermafroditas. Todas as espécies revelaram ser 

parcialmente auto-compatíveis, embora haja uma grande variabilidade entre os diferentes indivíduos. 

O sistema reprodutivo destas espécies é caracterizada por um baixo vingamento do fruto e, 

consequentemente, um grande desperdício dos recursos investidos na produção de flores. A 

produção de sementes pode ser limitada pela disponibilidade de recursos e factores ambientais. A. 

dealbata e A. longifolia mostraram sofrer de limitação de pólen. A origem do pólen pode afectar o 

sucesso da descendência, causando uma menor viabilidade para a descendência obtida por 

autofertlização em A. dealbata e A. melanoxylon. No entanto, para A. saligna, a espécie mais auto-

compatível, verificou-se que a descendência produzida por autofertilização tem o mesmo vigor que a 

obtida nos tratamento de polinização cruzada. Apesar do sucesso reprodutivo baixo, as diferentes 

espécies de acácias obtêm uma grande produção de sementes. Assim, as acácias australianas 

mostram uma baixa eficiência na utilização dos recursos, mas uma reprodução eficiente capaz de 

formar um prolífico banco de sementes. 

O conhecimento da biologia reprodutiva de acácias australianas invasoras pode contribuir 

para o seu controlo eficaz. Estudos, como os de previsão dos impactos da introdução de novas 

espécies e os de avaliação dos danos causados por espécies invasoras devem considerar o seu 

sistema reprodutivo. 

 

Palavras-chave: Biologia das invasões; Sistema reprodutivo; Acácias Australianas 

invasoras; Limitação de pólen; Sucesso reprodutivo. 
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Abstract  

 

Reproductive traits play a key role in the invasion by exotic plants because successful 

reproduction is fundamental for the establishment of self-replacing populations. It has been 

theorized that self-compatible plants have an advantage for a successful establishment in a new 

range because reproduction is less constrained by population size and pollinator availability. 

Australian Acacias are among the most widespread invasive plants and have negative 

impacts in ecosystems structure and functioning, triggering ecological homogenization and 

reducing biodiversity. Thus, they are excellent models to study the biological invasions and 

explore the determinants of invasiveness.  

In Portugal, Australian Acacias can be considered as the most problematic and 

widespread invasive plants, considering the area occupied, aggressiveness and impact on 

native ecosystems and among them are Acacia dealbata, Acacia longifolia, Acacia melanoxylon 

and Acacia saligna. Even thought reproductive success is an essential factor in the colonization 

of new areas and long-term establishment of viable populations, no information, on any aspects 

of their reproductive biology was available in Portugal. In the native range, these species are 

mostly self-incompatible and have a clear tendency for outcrossing. 

In this study, floral traits, breeding system and reproductive outcome were characterized 

in natural populations from the invaded range for the four Acacia species. Hand pollination 

experiments, involving pollinator exclusion, supplementary pollination, and obligate selfing were 

carried to assess self-incompatibility and pollen limitation. Fruit and seed set, seed mass and 

germinability, and seedling growth were evaluated for self- and cross-pollination treatments. 

The results of this work show that the different Acacia species have different 

investments in the production of reproductive units (flowers) and in natural reproductive success. 

The massive flower production and the highest natural reproductive success of A. dealbata can 

partially explain why it is the most aggressive invader of all the studied species in Portugal. A 

different reproductive strategy, andromonoecy, was found in A. melanoxylon, contrasting with 

the other species that are mostly hermaphroditic. All species revealed to be partially self-

compatible, although there is a high variability between individual trees. 



 

VII 

 

The reproductive system of these species is characterized by a low fruit set and, 

consequently, a great sacrifice of floral resources. Seed production is likely to be limited by 

resources availability and environmental factors. A. dealbata and A. longifolia suffered from 

pollen limitation. The origin of pollen may affect offspring success with self-progeny having lower 

viability in A. dealbata and A. melanoxylon. However, A. saligna, the most self-compatible 

species, has a self-progeny as fit as the outcross-progeny. 

Despite their low reproductive success, they achieved a great production of seeds due 

to their massive flower production. Hence, Australian Acacias showed a low efficiency in the use 

of resources but a successful reproduction capable of providing a prolific seed bank.   

The knowledge of the reproductive biology of invasive Australian Acacias is fundamental 

to help in their effective control and should be included in screening protocols for predicting 

invasiveness.  

 

 

Keywords: Biological invasions, Breeding system, Invasive Australian Acacias, Pollen limitation; 

Reproductive success 
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Biological Invasions 

 

Biological invasions can be defined as the processes by which species, with no historical 

record in an area, mostly through human-assisted introductions breach biogeographic barriers, 

establish new populations and extend their range (Richardson et al., 2000). The established self-

perpetuating populations become integrated into native communities and in many cases disrupt their 

functioning (Richardson et al., 2000). Invasion by exotic species occur in all taxonomic groups and 

can affect all types of ecosystems (Elton, 1958; Vitousek, 2001; Perrings et al., 2010). Although 

biological invasions can occur naturally through the arrival of propagules to a new region, the rate at 

which they are currently happening is clearly the result of human activities (Lodge, 1993; Rejmánek, 

1996; Ewel et al., 1991; Cronk and Fuller, 1995). The current rate of human trade and travel has 

accelerated the exchange of species among different regions, while human disturbances make 

ecosystems more susceptible to invasion by alien species (Richardson et al., 2004).  

Charles Elton was the first to recognize biological invasions as a problem that could lead to a 

worldwide biological homogenization (Elton, 1958). Since then, alien species have been recognised 

as one of the most important threat to biodiversity at the global level after habitat loss (Millenium 

Ecosystem Assessment 2005; Pysek and Richardson, 2010). Also, invasive species have negative 

effects on socioeconomic, cultural, and human health aspects by affecting all four categories of 

ecosystem services: supporting (i.e., alteration of succession patterns and soil and nutrient cycling), 

provisioning (i.e., threats to native species, alteration of genetic resources), regulating (i.e., changes 

in pollination services and fire regimes, vectors of diseases) and cultural services (i.e., effects on 

ecotourism, changes in perception of landscape) (Millennium Ecosystem Assessment, 2005; Pysek 

and Richardson, 2010; Vilá et al., 2010). In many parts of the world, integrated strategies to reduce 

current and future impacts of biological invasions are currently being implemented (Pysek and 

Richardson, 2010). In Europe, the research project DAISIE (Delivering Alien Invasive Species 

Inventories for Europe) funded by the European Union in 2005 was the first international attempt to 

create an inventory of alien species that threaten European terrestrial, freshwater, and marine 

environments (Hulme et al., 2009). The European Environment Agency has also been working 
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together with the European member countries towards the development of common regulations to 

prevent and mitigate biological invasions. 

From another perspective, biological invasions are large-scale natural experiments that 

provide challenging opportunities in ecological research. Thus, Invasion Ecology, or the study of the 

ecology of biological invasions, is a growing scientific discipline that aims at a) explaining how exotic 

species become invasive in new geographical areas and the impact they have in the invaded 

ecosystems and at b) developing early-detection and control tools for invasive species. 

Among invasive organisms, vascular plants are the most intensively studied taxonomic group 

in Invasion Ecology (Pysek et al., 2008). Several studies have shown that exotic plants that become 

invaders can cause profound changes in ecosystem structure and dynamics and lead to the 

displacement of native species (Yelenik et al., 2004; Callaway et al., 2005; Hierro et al., 2005). The 

management and prevention of problematic introduced plant species can be improved by a better 

understanding of the intrinsic plant traits and the extrinsic factors that are associated with 

invasiveness at various scales (Richardson and Pyšek, 2006). 

 

Richardson et al., (2000) defined three key steps in the invasion process: introduction, 

naturalization and invasion. Alien species (synonyms: exotic plants or non-native plants) are 

introduced, intentionally or accidentally, in a new area as a result of human activity. Some alien 

species may establish and reproduce occasionally in this new area; however, most of them need 

repeated introductions to persist because they cannot form self-replacing populations (at this stage 

they are called casual alien species). When alien species gain the ability to reproduce consistently 

and sustain populations over many life cycles without direct human action in natural or semi-natural 

ecosystems, they are considered naturalized. A naturalized species can remain stable during a 

variable time until some change or disturbance rapidly stimulates an increase in their distribution 

range. The alien species reaching this phase are considered invasive. This state is characterized by 

the ability to recruit reproductive offspring, often in large numbers and at considerable distances from 

the introduction site and by the potential to spread over a considerable area 

 The progress of invasion depends not only on a specific combination of characteristics of the 

introduced species and of the ecosystem invaded, but also on disturbances affecting the transition 

between the different phases (Cohlen, 2002; Devinand Beisel, 2007). Any disturbance, natural or 

anthropogenic, which creates empty niches or leads to the introduction of essential mutualists, might 
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help an exotic species to progress to the next phase. In summary, to become invasive, an organism 

needs to overcome a series of barriers, namely: geographical barriers, environmental barriers (abiotic 

and biotic) at the site of introduction, reproductive barriers, dispersal barriers, environmental 

barrier(s) in human-modified or alien-dominated vegetation, and finally environmental barriers in 

natural or semi-natural vegetation (Figure 1A). 

 Only a small percentage of introduced exotic species become invasive. Roughly, it is 

assumed that only 10 % of introduced species will become naturalized and only 10 % of those will 

become invasive (Pysek and Richardson, 2008). Despite of the clear classification of the invasion 

process defined by Richardson et al., (2000), the process is rather complex and several other authors 

have proposed different key phases (e.g., arrival, establishment, dispersion and stabilization, 

Ricklefs, 2005, Davis, 2009, Reise et al., 2006; introduction, naturalization, facilitation, increased 

distribution and stabilization, Marchante, 2001; introduction, establishment, naturalization, dispersal, 

population distribution and dispersal, Henderson et al., 2006). 

Figure 1. A: Schematic representation of the barriers that a species has to cross to become 

invasive after initial introduction. Reproductive barriers are highlighted because they are the 

subject of this study (adapted from Richardson et al., 2000). Figure B, C and D: Example of 

Invasive plants in Portugal (Oxalis pes-caprae, Carpobrotus edulis and Acacia dealbata 

respective. 
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Some trends in plant traits have been found for invasive plants. Plant traits related to seedling 

emergence, growth form, growth rate, breeding system, dispersal and environmental tolerance are 

important in predicting whether a species will become invasive (Thuiller et al., 2006; Pyšek and 

Richardson, 2007; van Kleunen and Johnson, 2007). Invasive species generally have a high sexual 

reproductive capacity, ability to reproduce asexually, rapid growth from seed to sexual maturity, a 

great dispersal and colonization efficiency, a high tolerance to environmental heterogeneity and 

disturbances, a high adaptation to environmental stress (phenotypic plasticity) and a greater 

competitive capacity than native species (Sakai et al, 2001; Vilá and Weiner, 2004, Werner et al., 

2009). Several studies have also shown that invasive species have a larger ability to explore the 

resources in the receiving community as compared to native species (Holway, 1999; Sakai et al., 

2001). On the other hand, ecosystem susceptibility to invasion is influenced by resource availability, 

climate similarity between source and target regions, availability of mutualistic symbionts (Crawley, 

1987; Davis et al., 2000; Thuiller et al., 2005), and absence of herbivores and pathogens that control 

the invasive species in its native range (Richardson et al., 2000b; Lockwood et al., 2005).  

Invasive plants: the reality in Portugal 

 

“Portugal has the reputation of being particularly “rich” in aggressive alien plants and that 

reputation is fully confirmed. From Eucalyptus to Carpobrotus, many naturalized exotics work 

together in putting the country’s rich native flora at risk” (Greuter, 2002). 

 

 Nowadays, alien species represent more than 15 % of the Portuguese vascular flora, which 

includes a total of ca. 3200 species and subspecies (Franco, 1971, 1984, 1994, 1998; Almeida, 

1999). They were intentionally introduced for food, gardening, forestry, sand stabilization or industrial 

purposes (Almeida and Freitas, 2001). The environmental problem posed by alien species was 

recognized in 1999 by Portuguese legislation (dec. - lei 565/99). With this legislation the government 

provided a list of the exotic species introduced, identified the invasive species, and forbidden the 

introduction of new exotic species unless proven not to be harmful. Among the 550 species of exotic 

plants introduced in Portugal and currently considered as invasive or sub-spontaneous, about 400 
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were listed in Portuguese legislation and 30 were considered invasive. In Figure 2 B, C and D three 

invasive plants from different families (Oxalidaceae, Azoiaceae and Leguminosae respectively) are 

represented  

Among all the introduced species and considering the area occupied, aggressiveness and 

impact on the native ecosystems, Australian Acacias are considered the most problematic and 

widespread invasive plant species in Portugal (Almeida and Freitas, 2006). 

In Portugal, there are 14 Acacia species currently recorded, 13 of which are Australian 

species (A. baileyana F. Muell.; A. cultriformis A. Cunn. ex G. Don; A. cyclops A. Cunn. ex G. Don fil.; 

A. dealbata Link; A. decurrens (J.C. Wendl.) Willd.; A. longifolia (Andrews) Willd. A. mearnsii De Wild. 

A. melanoxylon R. Br.; A. pycnantha Bentham; A. retinodes Schlecht.; A. saligna (Labill.) H.L. 

Wendl.; A. sophorae (Labill.) R. Br.; A. verticillata (L’ Hér.) Willd.) and one is African species (A. 

karoo Hayne) (Marchante, 2001; Almeida and Freitas, 2006). Six of these species are classified as 

invasive by the Portuguese law (Ministério do Ambiente, 1999). 

 

Australian Acacias  

 

The genus Acacia belongs to the family Leguminosae, sub-family Mimosoideae, and 

includes more than 1,350 bush and tree species (Maslin et al., 2003). Acacia is a cosmopolitan 

genus distributed in the Australia-Pacific region, throughout the south of Asia, Africa and in North and 

South America. The genus occupies vast areas of these regions and can be found in a wide range of 

different habitats, from coastal to subalpine regions, and from high rainfall to arid inland areas, 

growing in tropical, subtropical and warm temperate regions (Maslin and Macdonald, 2004). 

Australian Acacias include 1,012 species native to Australia, which were previously grouped in 

Acacia subgenus Phyllodineae.  

1.3.1. Invasion process by Australian Acacias 

In the last 250 years numerous species of Acacia have been introduced throughout the 

world, mostly for forestry or ornamental purposes, and several of them have become invasive in 

several countries like South Africa (Roux, 1961; Witkowski, 1991; Yelenik et al., 2004), Portugal 

(Marchante, 2001) or Spain (Díaz et al., 2007). As other nitrogen fixing legumes, Acacias are 

http://en.wikipedia.org/wiki/Oxalidaceae
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particularly successful and invasive plants in Mediterranean climate and nutrient-poor ecosystems 

(Stock et al., 1995). Their fast germination and seedling growth also contributes to their colonizing 

success (Ralp, 2003). Australian Acacias were shown to have severe impacts on the invaded 

ecosystems due to a high production of litter, fixation of nitrogen, high germinability of seeds following 

a fire, allelopathic potential, high water consumption and high biomass yield and density (Levine et 

al., 2003; Lorenzo et al., 2010). Several studies have already shown that the invasion of ecosystems 

by Acacias leads to significant changes in species richness, community structure, nutrient cycling, 

ecosystem productivity, food webs, mutualistic interactions, fire regimes and water availability (Levine 

et al., 2003; Marchante, 2001; Marchante et al., 2003; Marchante et al., 2008; Rodriguez-Echeverria, 

2010, Rodriguez-Echeverria et al., 2012). 

The worldwide exchange of Australian Acacias has created an opportunity to explore how 

evolutionary, ecological and historical factors interact to affect the distribution and invasiveness of 

this group of plants. Therefore, it is currently considered a model system in Invasion Ecology 

(Richardson et al., 2011). There are 23 Australian Acacia species that have become invasive in many 

parts of the world (Richardson and Rejmánek, 2011). Some invasive Acacia species are classified as 

“transformers” (Richardson et al., 2000b) because they can change the structure and functioning of 

ecosystems over large areas altering important ecosystem properties such as nutrient content and 

cycling or fire regimes (Richardson and van Wilgen, 2004). In addition, after Acacias are established 

and widespread, their eradication is considered to be virtually impossible due to the massive long-

lived seed banks that they produce (Richardson and Kluge, 2008; Wilson et al., 2011). 

In spite of their fast expansion and ecological impacts in the invaded areas, little is known 

about their invasive dynamics. Enemy release might partially explain its success, but Acacias are 

involved in many other biotic interactions that are essential for the colonization of new areas and 

long-term establishment of viable populations. For example, belowground mutualisms (with 

mycorrhizal fungi and symbiotic nitrogen-fixing bacteria) are crucial in the expansion of Australian 

Acacias in new areas (Rodriguez-Echeverria et al., 2009, 2012). Other factors such as, life-history 

traits, genetic variability, propagule pressure, repeated number of introductions and human usage 

have also been suggested to explain the invasive success of Australian Acacias (Castro-Díez et al., 

2011; Gallagher et al., 2011).  
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1.3.2. Reproduction and invasiveness 

All above mentioned factors refer to the establishment and growth of the exotic plant in a 

new area; however, in order to establish self-replacing populations, exotic species also need to 

reproduce successfully in the new areas. Therefore, reproductive characteristics and reproductive 

success are crucial steps in invasion (Thuiller et al., 2006; Pyšek and Richardson, 2007; Figure 1A). 

Still, despite of its importance, reproductive biology has been examined in detail in only a limited 

number of Acacia species belonging to subgenus Phyllodineae and mostly in their native geographic 

range (Kenrick, 2003; but see Gibson, 2012). The species studied so far show similar general floral 

characteristics although differences between species can also be found (Kenrick, 2003; Kenrick and 

Knox, 1989a; Sedgley, 1989) at flower head size, structure and grouping, polyad size, number of 

anthers, degree of self-compatibility and andromonoecy. 

A suit of characters expected in successful invasive species have been proposed (Gibson et 

al., 2011):  

1. high attractiveness to available flower visitors and floral morphologies allowing pollination 

by many different organisms;  

2. production of very large numbers of long-lived flowers allowing seed-set even when 

visitation rates are low; and/or ability to self-pollinate or reproduce vegetatively;  

3. floral induction cues match those triggering flowering in native species and emergence of 

native flower visitors. 

Among the above mentioned characters, there are several reproductive traits shared by 

Australian Acacias that may contribute to their invasiveness: massive and long-lasting floral displays, 

generalist pollination syndromes, precocious production of a large number of long-lived and highly 

viable seeds resulting in massive seed banks, seed dispersal adaptations and a positive response to 

disturbance (e.g., resprouting ability or mass germination) (Milton and Hall, 1981). Nevertheless, 

many of these morphological traits are shared by both invasive and not-invasive Acacia species 

(Stone et al., 2003) and, therefore, the contribution of these characteristics to Acacia invasiveness is 

still not clear. 
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1.3.3. Incompatibility and invasiveness 

Self-incompatible species depend entirely on pollinator services and availability of mating 

partners to reproduce sexually, while self-compatible species have the ability to self-pollinate 

(autonomously or not) and ensure seed production when there is scarce or inefficient pollinators 

and/or limited mate availability (Eckert et al., 2006). Consequently, species with the ability to self-

fertilize are theoretically expected to be more invasive than self-incompatible species. The capacity to 

produce seeds after self-fertilization, even at a low rate, is especially important in the early stages of 

naturalization and invasion, because it reduces the need for pollinators and compatible plants (Baker, 

1955; Davis et al., 2004). 

The availed information suggests that invasive taxa tend to have higher levels of self-

compatibility. Despite the lack of data about Acacia species, the ability to self-fertilize can be one of 

the factors involved with their invasiveness (Gibson et al., 2011). In spite of this, the extent of self-

incompatibility is not well studied for most Acacias and most studies have been done only in their 

native areas (Gibson et al., 2011), revealing the need to test these hypothesis in population from the 

invaded ranges. 

Sexual reproductive biology 

 

Seed production is essential for the establishment of self-sustaining populations and 

subsequent naturalization of introduced species. However, seed production depends on pollination 

ecology and breeding system of the plants introduced and on environmental conditions of the 

recipient area (Richardson et al., 2000). Thus, floral traits linked with the functioning of the flower and 

(in)dependence of pollinator, as well as  with pollinator attraction will determine the final reproductive 

success of the plant. 

1.4.1. Floral morphology and phenology of Acacia 

Individual flowers of Acacia have a similar and simple structural organization, being adapted 

for generalist pollination by animals (Bernhardt 1989). Arroyo (1981) considered that the basic unit of 

reproduction in Mimosoidadeae was the flower head because the individual flowers are minute, 

numerous and grouped in the compact structure represented by the flower head (Figure 2). Acacia 

species can have globose or spicate flower heads, sessile or pedunculate, arranged singly, paired, 
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several in a leaf axil, or in a racemes or panicles of heads. The number of flowers per flower head 

and the number of stamens per flower vary widely within and among species (Tyrbirk, 1989, 1993; 

Sedgley et al., 1992; Kenrick, 2003).  

Acacia have compound pollen grains called polyads. The number of pollen grains 

incorporated into each polyad varies depending on the species (4, 8, 16 or 32), but 16-grain polyads 

seem to be most common (Kenrick and Knox 1982; Kenrick 2003). It has been proposed that the 

number of pollen grains composing a polyad has evolved to achieve fertilization of all ovules from a 

single flower with a single pollination event (Kenrick and Knox 1982), minimizing the cost of pollen 

production (Cruden 1977; Kenrick and Knox 1989; Tybirck 1989 and Jørgensen 1994). The ovary 

contains 5-15 ovules in most Australian species (Kenrick, 2003). 

Australian Acacias have relatively long-lived individual flowers and flower heads. Individual 

flowers are open over a series of days and the flower head can last for up to 2 weeks (e.g., 8-15 days 

in A. dealbata, 4-8 days in A. mearnsii, 5-9 days in A. melanoxylon, 5-8 days in A. paradoxa and 6-10 

days in A. pycnantha; Stone et al., 2003). Thus, as referred above, Acacias are characterized by 

massive and long-lasting floral displays. Flowering is often asynchronous within a single flower head 

and within a single tree (Stone et al., 2003). Environmental conditions were shown to affect the 

number of flower heads in bloom (Sedgley, 1985; Gaol and Fox, 2000) and increased rainfall has 

been associated with higher inflorescence production (Broadhurst and Young, 2006).  

Most Australian Acacias flower in massive displays from late winter to mid spring and have 

long-lived inflorescences (Bernhardt, 1989; Costermans, 2007). In Mediterranean climate regions 

where they are invasive they flower earlier than most native species (Henderson, 2001; Godoy et al., 

2009). Data from invaded areas in Galicia (NW Spain) reveal that A. dealbata populations have 

longer flowering phases (10–22 days to flower heads). Field observations in Portugal show that 

flower duration of A. dealbata in Portugal is similar to the Galicia populations. A. melanoxylon 

populations also had a higher longevity of flower heads and flowers than the Australia populations 

(up to 25 days). 
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1.4.2. Floral biology and reproductive system of Acacia 

Several reproductive strategies have been described in Acacia species. Separation of male 

and female stages in time (dichogamy) is widespread in Australian Acacias and has been proposed 

as a mechanism to reduce self-pollination (Stone et al., 2003). Within Acacia genus, Australian 

Acacia species are consistent in having strictly protogynous flowers where the stigma is receptive 

before anther dehiscence (Kenrick, 2003; Sedgley and Harbard, 1993). Records from A. dealbata in 

Australia show that female and male phase have the same duration (1-8 days). The A. melanoxylon 

flowers have a female phase of 3 to 5 days and male phase of 2 to 4 days.  A. dealbata population in 

an invaded area (Galicia) has longer flowering female and male phases from 3 up to 15 days 

(Lorenzo et al., 2010). 

Another reproductive strategy reported in several species of Acacia is andromonoecy. In 

these species, flower heads can bear male and/or hermaphrodite flowers (Kenrick, 2003; George et 

al., 2009). Andromonoecy is believed to have evolved from hermaphroditism and to be a possible first 

step in the evolution of monoecy, androdioecy or dioecy (Primack et al., 1980; Bertin et al., 1980). 

This sexual system is often associated with resource allocation to a flexible reproductive function, 

male or female, depending on the available resources (Miller et al., 2007, and references therein). 

Andromonoecy has been described in several species such as A. caesia (Raju et al., 2006), A. 

macrantha (Zapata et al., 1978) and A. mangium (Sedgley et al., 1992).  

In addition to dicogamy and andromonoecy, different breeding systems have been observed 

in Acacia. The breeding system of Australian Acacias varies from highly self-incompatible up to 

complete self-compatible species (Moffet, 1956; Bernhard et al., 1984; Kenrick and Knox, 1989; 

Morgan et al., 2002). Self-incompatibility has been widely reported for many species of the subgenus 

Phyllodineae and there are some evidences suggesting that the self-incompatibility in Acacia could 

be the result of post-zygotic lethal genes (Kenrick, 2003). High outcrossing rates have been detected 

in several species (e.g., A. anfractuosa, Coates et al., 2006; A. auriculiformis, Moran et al., 1989a; A. 

crassicarpa, Moran et al., 1989a; and in some populations of A. mangium, Butcher et al., 1999), so 

pollinators play an important role in the reproduction of these species (Bernhardt, 1989; Moncur et 

al., 1985; Stone et al., 2003). However partial self-compatibility is also relatively common in 

Australian Acacia species (Philp and Sherry, 1946; Moffett and Nixon, 1974). Interestingly, from the 
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six species where self-compatibility was detected, five are invasive (A. dealbata, A. decurrens, A. 

mearnsii, A. paradoxa, A. saligna; Gibson et al., 2011, and references therein). 

 

Pollination of Acacia 

 

Pollination followed by successful seed production are crucial aspects for plant invasion, 

however, they remain unstudied for most Acacia species (Stone et al., 2003). Polyads are not suited 

to wind transport but are an efficient way of dispersal via pollinators (Kenrick, 2003; Kenrick and 

Knox, 1982). The open structure of the Acacia inflorescence with external anthers and pollen as 

reward makes flower exploitation accessible to a wide diversity of visitors.  

The stamens were shown to be a powerful visual and olfactory advertisement to attract 

pollinators (Tyrbirk, 1993; Kenrick, 2003). Floral scent, an insect attractant, is located in the anthers 

and associated structures (Tybirk, 1993). The primary reward offered by Australian Acacia flowers is 

pollen (Bernhardt, 1989) and, thus, they are visited by pollen-collector pollinator and very rarely by 

nectar-feeding insects (Gibson et al., 2012). In some Acacia species nectar is produced in small 

quantities at the base of the corolla tube, accessible only to specific insects. However, Australian 

Acacias do not produce floral nectar; they can produce extra-floral nectar only as a reward that can 

attract insect and bird pollinators (Knox et al., 1985; Vanstone and Panton, 1988: Kenrick, 2003). 

Stone et al., (2003) divided Acacia floral visitors into the following three trophic groups: specialist 

pollen and flower feeders (bees, beetles, many flies), specialist nectar feeders (birds, butterflies and 

Bombylidae flies), and opportunist foragers (flies, ants and wasps). Despite the varied array of floral 

visitors it is possible that only a subset of them is effective pollinators (Stone et al., 2003). 

A consequence of the simple morphology of the flowers of Australian Acacias is that flower 

access is unrestricted and, therefore, a wide variety of insects, native in the invaded area, could visit 

the flowers and become involved in pollination in the new areas where Acacias are introduced. 

Information on the Acacia floral visitors and their efficiency is currently being studied in the invaded 

range (Portugal). 
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Seed biology of Acacia 

 

Acacia species produce large quantities of hard-coated, heat-tolerant and long-lived seeds. 

The seeds have long dormancy (Milton, 1981; Marchante and Marchante, 2005; Richardson and 

Kluge, 2008) being able to form extensive and persistent soil seed banks (Richardson and Kluge, 

2008). Finally, their germination is stimulated by heat and/or smoke (Milton, 1981; Marchante and 

Marchante, 2005; Richardson and Kluge, 2008). All these characteristics have been described to be 

fundamental to the invasion success and persistence of Australian Acacias in the new ranges (Milton 

and Hall, 1981; Richardson and Kluge, 2008).  

Seed dispersal of Australian Acacias in the native range is mediated by animals: the 

elaiosomes attract ants and the red arils attract birds (O’Dowd and Gill, 1986; Orians and Milewski, 

2007). In Portugal, A. longifolia and A. dealbata, are dispersed by ants (Marchante et al., 2010) and 

seeds of A. melanoxylon and A. dealbata are occasionally seen in bird depositions (R. Heleno, 

personal communication). Long-distance dispersion can also be carried on by humans (cars and 

construction of roads) and by water courses (Richardson and Kluge, 2008).  

Disturbance seems to be important for the germination of invasive Australian Acacia seeds 

(Gibson et al., 2011). Fire and chemical scarification via ingestion by an appropriate dispersal agent 

are two critical stimuli for germination (Glyphis et al., 1981; Fraser, 1990; Richardson and Kluge, 

2008), breaking physical dormancy of the hard and water impermeable seed coat. High seed viability 

appears to be fundamental to their ability to invade (Richardson and Kluge, 2008; Marchante et al., 

2010). 

 A study in recently invaded soils by A. longifolia in Portugal shows low seed germinability (< 

12%) but high viability of the surviving seeds (> 85%) (Marchante et al.,2010). Interestingly, a 

considerable number of seeds is lost due to early germination, granivory or decay in new areas but 

soil seed banks in invaded areas can contain up to 1500 seeds of A. longifolia per square-meter, 

make it difficult to control the invader once it becomes established (Marchante et al., 2010). 
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Study species 

 

For this study, the four most widespread species of Australian Acacias growing in Portugal 

were used as study system. These species were, in decreasing order of aggressiveness: A. dealbata, 

A. longifolia, A. saligna and A. melanoxylon (Figure 2). These species were intentionally introduced in 

Portugal during the first half of the 20th century for forestry, soil stabilization and gardening purposes 

(Castroviejo et al., 1999), being currently invasive in Portugal. Acacia dealbata and A. melanoxylon 

grow in mountain ranges and roadsides, being the former the most aggressive invader of inland 

Portugal. Acacia longifolia and A. saligna grow mainly in coastal sand dunes, being the former more 

abundant in the central and northern coast and the latter occurring predominantly in south Lisbon. 

The breeding system for the selected species is presented in Table I and concerns mostly the native 

range, with no information available for invasive populations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The most aggressive invasive Australian Acacia species in Portugal. Details of 

flower heads, a globose or spicate (A. longifolia) group of flowers. Details of leaves (A. 

dealbata) and phylodes. 

A. dealbata Link A. longifolia (Andrews) 

Willd.  

A. melanoxylon R. Br. A. saligna (Labill.) H.L. Wendl. 
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Table I. The breeding system of the selected invasive Acacia species. Information mostly 

referent to the native range, with no data available for invasive populations. 

 

 

Species Range Incompatibility Breeding system Reference 

A. dealbata Australia 

Partially 
self-incompatible 

- 
Moffett and Nixon, 1974, 

cited in Kenrick, 2003 

Self-compatible - Gibson, 2012 

Self-incompatible - Broadhurst et al., 2008 

A. longifolia Australia no available information Gibson, 2012 

    A. melanoxylon Australia - 
Predominately  

out-crosser 
Muona et al., 1990; 

A. saligna 

Australia 

- 
Predominately 
 out-crosser 

Millar et al., 2008 

- 
Mixed mating, 

predominantly out-
crosser 

George et al., 2008 

   South Africa Partially 
self-compatible 

- Gibson, 2012 
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Objectives 

 

This thesis aims at obtaining information on the reproductive biology of the four most 

invasive Australian Acacia species in Portugal (A. dealbata, A. longifolia, A. saligna and A. 

melanoxylon) by characterizing floral traits and evaluating how the breeding system affects the 

sexual reproductive outcome of natural populations in the invasive range. 

In theory, self-fertilizing plants have an advantage for the successful establishment in a new 

range because reproduction is less constraint by population size and pollinator availability, and thus, 

are expected to be more invasive than outcrossing plants. In the native range, the selected Australian 

Acacia species are mostly self-incompatible and have a clear tendency for outcrossing.  

Thus, the main question is whether invasive populations maintain the same levels of self-

incompatibility or have evolved mechanisms to increase autogamy rates as a mechanism of 

reproductive assurance. It is hypothesized that the invasive Acacias are capable of some level of 

self-compatibility or autogamy and that they have a better reproductive performance in the invaded 

area in comparison with the native range. 

 In addition, since Australian Acacias are pollinated by generalist insects in the native range, 

it is hypothesised that they will readily establish new interactions in the invaded range and thus will 

not suffer from pollen limitation. The impacts of pollen source were assessed in seed production, 

seed mass and germinability and seedling growth in seeds obtained from self and outcross 

pollinations.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Materials and Methods  
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2.1. Plant species 

The four Acacia species (family Leguminosae, subfamily Mimosoideae, subgenus 

Phyllodineae following Maslin et al., 2003) selected for this study were Acacia dealbata Link, A. 

longifolia (Andr.) Willd, A. melanoxylon R.Br. and A. saligna (Labill.) H. Wendl. A general description 

of each species is provided below (Figure 3 to 6). 

 

2.1.1. Acacia dealbata Link    (Silver wattle, acácia-mimosa) 

Acacia dealbata is native to southeastern Australia and is especially widespread in Victoria 

and Eastern Tasmania, but it also occurs in New South Wales (Maslin, 2001; May and Attiwill, 2003). 

This species occurs in areas with rainfall over 500 mm, usually at altitudes between 350-1000 m 

(May and Attiwill, 2003). It also occurs naturally in New South Wales and eastern Tasmania (Maslin, 

2001). 

This species can be a tree reaching up to 30 m in height, or a shrub on drier sites. Leaves 

are greyish-green and segmented; leaf axis has glands only at the insertion of the pinnae. Flower 

heads are spherical with 5-6 mm in diameter and pale yellow. The flowering phenology in both native 

and invaded ranges is provided in Table II. Legume is compressed, barely constricted between the 

brown seeds (Walsh and Entwisle 1996). Acacia dealbata reaches sexual maturity within four to five 

years (Gowers 1990), and its seeds can persist in soil for around 50 years (Earl et al 2001).   

 

Figure 3. Acacia dealbata: A. Tree; B. A flower branch used in supplementary treatment 

in the hand pollination experiment (green mark) and details of the bipinnate leaves and 

globose flower heads in large racemose inflorescences; C. Pods (flattened) and black 

seeds 
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Acacia dealbata was introduced in Europe in the 19th century as an ornamental plant 

(Sheppard et al., 2006) and it became a problematic invasive species in Portugal (Almeida and 

Freitas, 2006), northwest Spain (Carballeira and Reigosa, 1999), France and Italy (Sheppard et al.,  

2006). In Portugal, A. dealbata is present throughout mainland (Paiva, 1999) growing mostly in 

riparian zones, water courses and sunny edges of pinewoods or on south and west-facing slopes, 

where the plants form dense stands that strangle the natural vegetation (Lorenzo et al., 2010). Acacia 

dealbata often invades areas under intensive agricultural use (Aguiar et al., 2001), and areas recently 

burned.  

2.1.2. Acacia longifolia (Andrews) Willd.    (Sydney golden wattle, acácia-de-espigas) 

Acacia longifolia is native to southeastern Australia (Orchard, A.E. and Wilson, A.J.G. 2001), 

and generally occurs in areas with more than 550 mm of annual rainfall (Muyt 2001). It is found in 

riparian zones, scrub areas, grassland and woodland (Muyt 2001; Weber 2003). 

Acacia longifolia is a bushy shrub or small tree (that can reach up to 8 m height; Costermans 

1983), which may form dense patches (Weber 2003). This species has linear to elliptic phyllodes, 

with 2–4 prominent primary veins. Flower heads are spikes 2–5 cm long of pale to golden yellow 

flowers, solitary or twinned in the axil of phyllodes. The flowering phenology in both native and 

invaded ranges is provided in Table II. Pods are generally straight to curved. The seeds are elliptic, 

sometimes irregularly shaped (Maslin, 2001). Acacia longifolia produces huge amounts of seeds 

annually and reaches sexual maturity within two to three years (Muyt 2001 

 

Figure 4. Acacia longifolia: A. Tree habit; it is visible a bag of nylon mesh used in hand pollination 

treatments to exclude insect interactions and to avoid open pollination; B. Phyllode; C. Spicate 

flower head with open flowers; D. Flower head  with several small flower buds; E. Pods (straight 

to curved) containing seeds with a folded funicle. 
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This species is described as a rapidly growing shrub that can survive for over 50 years in its 

natural range, but in other areas commonly die within 25 years (Muyt 2001; Marchante et al., 

2004).Acacia longifolia was introduced in several areas to stabilize dunes and control erosion, and 

currently has the status of invader in Portugal (Marchante et al., 2003), New Zealand (Parsons et al., 

1998) and South Africa (Cronk and Fuller 1995). In Portugal, Acacia longifolia is highly frequent in the 

north and central coastal sand dunes; however, it has been referenced across the entire Portuguese 

coast and also in some isolated inland locations, particularly in areas disturbed by fire (Marchante et 

al., 2005). Their ability to fix nitrogen has enabled them to invade nutrient-poor environments 

(Rodríguez-Echeverría et al., 2009). Several studies have demonstrated the negative impacts of A. 

longifolia in invaded ecosystems, namely, it leads to a decrease in native plant diversity (Marchante 

et al.,  2003) and significantly alters soil properties (Marchante et al.,  2008a,b, 2009) and water 

cycling (Rascher et al., 2010).  

 

2.1.3.  Acacia melanoxylon R.Br.     (Blackwood, acácia negra, acácia austrália) 

 

Acacia melanoxylon is native to eastern Australia, occurring from the Atherton Tableland in 

northern Queensland to central Tasmania (Flora of Australia). It grows in a diversity of habitats from 0 

up to 1000 m a.s.l., but prefers fertile soils in high rainfall areas (Farell and Ashton, 1978; Jennings, 

2002), being intolerant to shade (Hopkins et al.,1977). 

This species is either a tree 3-45 m high or a shrub 1.5-3m high. Phyllodes are narrowly 

elliptic and sometimes the bipinnate leaves persist on young plants. Phyllode morphology and 

development are strongly influenced by climatic conditions (Farrell and Ashton 1978). Flower heads 

are globular with 6 mm diameter and pale yellow flowers (Walsh and Entwisle 1996). Flowers are 

honey-scented (Gowers 1990). Not all trees within a population will flower every year, flowering 

phenology in both native and invaded ranges is provided in Table II. The plant lives for 15 up to 50 

years, regularly producing large numbers of seeds. Pods are reddish-brown, narrower than leaves 

and slightly constricted or twisted. The small black seeds are almost encircled by a pinkish-red seed 

stalk (aril) (Henderson, 1995. In PIER, 2002) which is attractive to birds, the main dispersal vector of 

this species, and primates that ingest seeds with pods (Ruben Heleno, personal communication). 

This species is cultivated as ornamental or for forestry mainly for fixing soils. It is a 
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widespread invasive plant in Portugal, particularly after forest fires (Paiva, 1999). It is also invasive in 

South Africa where it invades forest edges or gaps, wooded kloofs, grasslands and watercourses 

(Henderson, 1995, in PIER, 2002).  

 

 

Figure 5. Acacia melanoxylon: A. Tree habit; B. A flowering branch with several phyllodes 

and globose flower heads in different phases of flowering; C.; Pods (constricted or twisted) 

containing seeds with an aril.  

 

2.1.4. Acacia saligna (Labill.) H. Wendl.    (Blue-leafed Wattle, acácia) 

 

Acacia saligna is native to southwestern Australia, occurring at low altitudes (from sea-level 

up to 300 m) and in various soil types, although it is particularly abundant on poor and calcareous 

sands (Midgely and Turnbull, 2003). In southwestern Australia it grows under a Mediterranean 

climate with annual rainfall between 300 and 1200 mm. Acacia saligna is capable of thriving on many 

soil types, including high pH sands and soils in sub-humid, semi-arid and arid temperate areas 

(Midgely and Turnbull, 2003). 

Acacia saligna is a bushy shrub dividing near the base into several stems, resulting in a 

dense bush that may be wider than high, usually 2-5 m tall; however, sometimes it can form a small 

tree 5-9 m high (Midgely and Turnbull, 2003). Acacia saligna has phyllodes that can be 25 cm long. 

Flower heads are spherical with 10-15 mm in diameter bearing yellow flowers. The flowering 

phenology of the species in both native and invaded ranges is provided in Table II. Pods are narrow, 

usually 8-12 cm long and seeds are dark brown to black and shiny (Maslin 1974). This species 

reaches sexual maturity at two years old (Milton, 1980), and the plant has an average lifespan of 30 - 

40 years (Milton and Hall, 1981; in Wood and Morris, 2007). 
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Acacia saligna has a long history of utilization across Australia and worldwide, becoming an 

aggressive invader in many regions of the world (Henderson, 2001; Nel et al., 2004; Richardson and 

Rejmajnek, 2011). This species is planted in many temperate and semiarid countries for control of 

erosion and sand dune stabilization (Crompton 1992; Midgley and Turnbull 2003). It was introduced 

in Portugal for reforestation, for coastal dunes stabilization and for ornamental purposes (Marchante 

and Marchante, 2005, Gutierrez and Gil, 2010), and it is currently an invasive species, mainly in 

sandy soils in south Portugal (in Baixo Alentejo, Algarve, Beira Litoral and Estremadura provinces; 

Paiva, 1999).  

 

 

 

 

 

 

Figure 6. Acacia saligna : A. Tree habit; B. Flowering branch with several phyllodes 

and globose flower heads; C. Pods (narrow) containing black seeds. 

 

Table II. Flowering phenology of the studied Acacia species in Australia (in grey) and 

Portugal (in black). Based on data from Walsh and Entwisle, 1996, Castroviejo et al.,1999, and 

this thesis. 

 

 

 

 

 

 

Species J F M A M J J A S O N D 

A. dealbata             

A. longifolia             

A. melanoxylon             

A. saligna             

A B C 
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2.2.  Study sites 

This study was performed in two sites: Coimbra (40.20983ºN 8.40053ºW) for A. dealbata, A. 

longifolia and A. melanoxylon, and Tocha (40.31612ºN 8.81202ºW) for A. saligna (Figure 7). Both 

sites are located in central Portugal and are characterized by a meso-mediterranean climate. 

  The study site in Coimbra is an urban woodland of approximately 45,000 m2, dominated by 

native species like Quercus suber, Arbutus unedo, Ulex europaeus and Pinus pinaster. Based on a 

30-year database (1971-2000), mean annual temperature in this area is 15.3 ºC and mean annual 

precipitation is 979 mm (Armas et al., 2011). 

  The study site in Tocha is a stabilized dune ecosystem where the vegetation is dominated by 

Pinus pinaster, Corema album, Cistus salvifolius and Halimium halimifolium and has approximately 

55,000 m2. Mean annual temperature in this area is 16 ºC and mean annual precipitation is 983 mm 

(period 1960-2008, F. Capelo, unpublished data). 

 

 

Figure 7. Location of the populations studied: Coimbra for A. dealbata, A. longifolia and A. 

melanoxylon, and Tocha  for A. saligna. 
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  In each site, at least 12 plants of each species were selected and marked (20 plants to A. 

dealbata, 12 to A. longifolia, 16 to A. melanoxylon and 12 to A. saligna) in 2011 and 2012. The 

selection was made just before the beginning of the flowering period: January for A. dealbata and A. 

longifolia, and February for A. melanoxylon and A. saligna. In both years, flowering was too prolific to 

allow accurate assessment of the number of inflorescences per plant. These plants were used to 

characterize the reproductive structures (section 1. Floral characterization) and the reproductive 

system (section 2. Reproductive system). Seeds produced by these trees were used in section 3. 

Offspring performance. Trees were selected at least 3-m apart to avoid sampling closely related 

individuals. 

Data collection and analysis: 

2.3. Floral characterization 

  To characterize the reproductive structures of these Acacias, anther, pollen and ovule 

production per flower; proportion of male, hermaphrodite and female flowers per flower head; and 

floral display were assessed for each of the species studied. The following terminology for floral 

structures was used in this study: flower head refers to the globose or elongate (spicate) clusters of 

individual flowers (Figure 8, A and B respectively) that usually appear in groups in the phyllod/leaf 

axile (Figure 8, C and D); flowering branch was used to designate the apex of the branch with all the 

flower heads (Figure 8 E) (following Orchards and Wilson 2001). 

Figure 8. Flower heads (A, B), phyllodes (C), and leaves (D) and flowering branches (E) in 

the studied species, from left to right: A. saligna/A. melanoxylon, A. longifolia and A. 

dealbata.  
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2.3.2. Flower description 

Open flower heads were collected from each inflorescence (20 flower heads per plant) and 

stored in 70% ethanol. Flower head development was also observed in the field to assess flower 

opening progression. 

 The number of anthers produced per flower was assessed in 10 flowers from distinct flower 

heads per plant using a dissecting microscope. The number of polyads produced per anther was also 

assessed for each species studied. One open flower head from five plants of each species was 

collected, left to dry at room temperature and stored in envelopes to assess the number of pollen 

grains per polyad.  

In A. dealbata, A. longifolia and A. saligna the number of ovules per ovary was assessed in 

10 mature pistils randomly selected per flower head and per plant. Flowers were dissected under a 

binocular microscope, pistils were removed and placed in 8 N sodium hydroxide for 48 h for tissues 

softening, washed in distilled water and subsequently transferred to 0.05 % aniline blue 0.1 N 

potassium phosphate for 48 h (Dafni 2005). Then, the pistils were placed in a drop of 50 % glycerin 

over a microscope slide and squashed with a coverslip. The number of ovules per ovary was counted 

using a Leika epifluorescent microscope equipped with a UV-2A filter cube (330–380 nm excitation). 

For A. melanoxylon, due to the variable morphology of the pistil, a more detailed screening of the 

ovules was made to correctly classify the flower as hermaphrodite or male (see below). 

To assess the correlation between the number of pollen grains in a polyad and the number of 

ovules produced per flower, the ratio between them was calculated for each species. Total number of 

flowers per flower head and number of hermaphrodite and male flowers were assessed in five flower 

heads per plant using a dissecting microscope. In A. dealbata, A. longifolia and A. saligna 

hermaphrodite and male flowers were easily identified by the presence or absence of a well-

developed pistil. 

In A. melanoxylon a third type of inter-medium flowers having rudimentary pistils were 

present and examined in more detailed to determine if they were hermaphrodite or male (Figure 21, 

Appendix E) For this, up to 19 flowers per flower head from three floral heads per tree were softened 

in NaOH, stained in aniline blue and observed in the fluorescent microscope as described above. The 

number of ovules was counted and the flowers were classified as hermaphrodite when they had 

ovules or as male when the ovary was empty. The percentage of hermaphrodite flowers with small 
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pistils and male flowers with rudimentary pistils was calculated for each tree. Because the number of 

ovules differed between hermaphrodite flowers with normal pistils and hermaphrodite flowers with 

small pistils, the percentage of each category was used to correct the number of ovules per flower 

head. 

 

2.3.3. Floral display 

To characterize the species floral display the number of flower heads per plant and species 

was assessed. The number of flower heads per flowering branch was counted in five flowering 

branches randomly chosen in each tree. The number of flowering branches was estimated for each 

tree by counting all flowering branches in one fourth of the canopy. The number of flower heads in 

each tree was then estimated by multiplying the total number of flowering branches by the mean 

number of flower heads per branch. The overall reproductive success was calculated for each tree 

and species by multiplying the mean number of hermaphrodite flowers per head, the estimated 

number of flowers heads produced per tree and the fruit set after open pollination (see details below 

in section 2. Reproductive system). 

 

2.3.4. Statistical analysis 

Descriptive statistics were calculated for flower characteristics (number of flowers per flower 

head, percentage of hermaphrodite flowers per flower head, number of anthers per flower and 

number of ovules per flower ovary) and are presented as the mean and standard error of the mean. 

Differences between species in floral characters were evaluated using a Generalized Linear Model 

(GLZ) with a gamma distribution and logit link function (including “tree” as a random factor). LSmeans 

were used to analyze differences between means. All the analyses were carried using the Glimmix 

procedure of SAS version 9.2 (SAS Institute Inc, Cary, North Carolina). A similar approach was used 

to check differences in the number of ovules in A. melanoxylon between hermaphrodite flowers with 

normal pistils and hermaphrodite flowers with rudimentary pistils. 

Descriptive statistics were also calculated for flower display and natural reproductive success 

(Number of flower heads per flowering branch, estimated number of branches per plant and 

estimated overall reproductive success) and are presented as the mean and standard error of the 
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mean for each species. Data were transformed (logarithmic, square root and logarithmic 

transformations respectively) to meet the assumptions of normality and homogeneity of variances. 

Univariate General Linear Models (GLM) were used to evaluate differences between species in the 

number of flower heads per flowering branch (species was used as fixed factor and tree was a 

random factor), followed by Tukey’s test. Differences between Acacia species for estimated number 

of branches per plant and estimated overall reproductive success were analysed using a one-way 

ANOVA followed by Tukey´s test using one value per tree for each species). These analyses were 

carried out using SPSS version 19® (SPSS Inc, IBM). 

 

2.4. Reproductive system 

2.4.1. Hand-pollinations 

To determine the reproductive system of the studied species, the effect of insect exclusion 

and pollen source on fruit production, seed set, and seed germination were investigated. Due to the 

small size of the flowers and to the tight flower heads, the emasculation procedure was not possible 

and thus, pollination treatments were undertaken without emasculation. Controlled hand pollination 

experiments were conducted in the field during the flowering seasons of 2011 and 2012.  

The following treatments were applied to the selected trees per species: 

(1) open pollination: 40 to 130 flower heads per plant were marked as control without 

manipulation. 

 (2) supplementary pollination: 40 to 140 flower heads per plant were left for open 

pollination and pollinated with xenogamous pollen; pollinations involved pollen from at least five 

unrelated trees that were at least 10 m apart from the treated tree; 

(3) spontaneous autogamy: 20 to 110 flower heads per plant were bagged; 

(4) Self-pollination: 20 to 85 flower heads per plant were bagged and pollinated with pollen 

collected from flower heads of the same plant; the flowers used as pollen donors were also bagged to 

avoid the presence of foreign pollen; 

In those treatments that including bagging, the flower heads were covered with bags of fine 
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nylon mesh prior to anthesis to exclude insect interactions and to avoid open pollination; the bags 

were maintained until fruit initiation. Flowers heads were followed daily and pollinations were initiated 

when the first flowers opened. Pollinations were conducted by gently rubbing the flower heads 

together every two days until all flowers were senescent to ensure that all flowers were pollinated, 

resulting in approximately six to twelve pollination events over approximately 15 days. At the end of 

the season (May for A. dealbata and A. longifolia and June/July for A. melanoxylon and A. saligna; 

Table II), all dry mature pods were collected for processing. In the laboratory, the number of pods per 

flower head, and plants and seeds per pod were counted for each species studied.   

2.4.2. Reproductive outputs 

For each treatment, fruit set, seed to ovule ratio and mean number of seeds per pod were 

calculated. Fruit set was calculated for each treatment and tree by dividing the total number of pods 

produced after a given pollination treatment by the total number of hermaphrodite flowers treated 

(obtained using the number of treated flower heads and the mean number of hermaphrodite flowers 

assessed in section 1.1 for each species). Mean fruit set was calculated for each species and 

pollination treatment. Seed to ovule (S:O) ratio was calculated for each treatment and tree by 

dividing the total number of seeds produced after a given pollination treatment by the total number of 

ovules available in the hermaphroditic flowers treated (estimated using the number of treated flower 

heads, the mean number of hermaphrodite flowers and the mean number of ovules produced per 

flower assessed in section 1.1 for each species). Mean S:O ratio was calculated for each species and 

pollination treatment. The mean number of morphologically viable seeds produced per pod was 

calculated for each treatment and tree by dividing the total number of seeds produced by the total 

number of pods obtained after a given pollination treatment. 

 The index of self-incompatibility (ISI), following Zapata and Arroyo (1978), and percentage of 

pollen limitation (PPL), following Jules and Ranthcke (1999), were calculated for each species as 

follows: 

(1) ISI = Fruit set after self-pollination / Fruit set after cross-pollination; due to the difficulties 

in the emasculation procedure, the fruit set of supplementary pollination was used as a measure of 

cross-pollination; self-compatible species score > 1, partially self-incompatible species score < 1, 

complete self-incompatible species score < 0.2  (sensu Kenrick and Knox, 1989). 
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 (2) PPL = [100 * (S:O ratio after supplementary pollination - S:O ratio after open pollination)] 

/ S:O ratio after supplementary pollination. 

 

2.4.3. Statistical analysis 

Descriptive statistics were calculated for reproductive system (fruit set) and reproductive 

outputs (S:0 and mean number of seeds per pod) for each pollination treatment in each species, and 

are presented as the mean and standard error of the mean. Differences among pollination treatments 

in fruit set (FS), seed to ovule ratio (S:O) and seed production (mean number of seeds per pod and 

mean number of aborted seeds per pod) were carried out for each species using a GLZ with a 

gamma distribution and logit link function or a gaussian error and identity function (tree was used a 

random factor). LSmeans were used to analyze differences between means. All the analyses were 

carried using the Glimmix procedure of SAS version 9.2 (SAS Institute Inc, Cary, North Carolina). 

 

2.5.  Offspring performance 

To assess the quality of the seeds and offspring performance for the different pollination 

regimes, seed weight, seed germination and seedling survival were assessed from seeds obtained in 

the hand pollination experiments. 

 

5.5.1. Seed weight 

Seeds collected from the four hand-pollination treatments were counted and seeds that 

appeared viable (no holes in testa, no discoloration) were weighted using a laboratory scale to obtain 

the mean seed weight of seeds produced by self or cross-pollination events.  

5.5.2. Seed germination and seedling growth 

A germination assay was executed to determine if there were differences in the germination 

rate and seedling early growth between seeds from self-pollinated flowers and seeds obtained by 

cross-pollination. All the pollination treatments were included. Seeds per treatment and per tree were 

separated to allow checking for interspecific variability. Up to 15 morphologically viable seeds for 
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each treatment and species were placed to germinate. Seeds were accommodated on small 

containers with wet sand in a growth chamber (temperature 25ºC and a photoperiod of 12 hours). 

Seed germination was checked every 2 days during 45 days. A seed was considered germinated 

after radicle emergence, when radicle was 1-2 mm long). Germination percentages were calculated 

for each treatment and species. Afterwards, germinated seeds were planted into containers and 

seedlings were left to grow during one month (watered 1–3 times a week). 

Final biomass was calculated for each species and treatment. Unfortunately, the seeds of A. 

melanoxylon from open pollination were lost during experimental manipulation and the experiment is 

currently being repeated, thus data on seed germination and seedling growth is missing for this 

treatment in the present thesis. 

5.5.3. Statistical analysis 

For offspring performance variables (seed weight, seed germination and seedling survival) 

descriptive statistics were calculated for each pollination treatment for each species, and are 

presented as the mean and standard error of the mean. Univariate Generalized Liner Model (GLM) 

analysis was used to test for the effect of each hand pollination treatment on seed weight for the four 

Acacia species studied (species was used as fixed factor and tree as a random factor), followed by 

Tukey’s test. A square root transformation was applied to the original data for A. dealbata, A. 

longifolia and A. melanoxylon to meet the assumptions of normality and homogeneity of variances. 

These analyses were performed using SPSS version 19® (SPSS Inc, IBM).  

A GLZ with a binomial distribution and logit link function was used to check for differences in 

seed germination between different treatments within each species. Tree was used as random factor. 

LSmeans were used to analyze differences between means. All the analyses were carried using the 

Glimmix procedure of SAS version 9.2 (SAS Institute Inc, Cary, North Carolina).  

 Univariate GLM analysis was used to test for the effect of each hand pollinations treatment 

on seedling weight for the four Acacia species studied (species was used as fixed factor and tree as 

a random factor), followed by Tukey’s test. A logarithmic transformation was applied to the original 

data to meet the assumptions of normality and homogeneity of variance, except for A. melanoxylon 

data. Both spontaneous autogamy and self-pollination treatments had been removed from the 

statistically analysis due to a small sample size (n <5).  The GLM analyses were performed using 

SPSS version 19 ® (SPSS Inc, IBM). 
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3.1 Floral characterization 

The characterization of flowers and flower heads of the four Acacia species studied is presented in 

Table III, Figure 9 and Appendix F (Table XVIII). 

 

Table III Characterization of flowers and flower heads of the four Acacia species studied. 

Floral characters A. dealbata A. longifolia A. melanoxylon A. saligna 

Pollen grains per polyad 16 (50) 16 (50) 16 (50) 16 (50) 

Polyads per anther 8 (10) 8 (10)                 8 (10)                 8 (10) 

Stamens per flower 32.7 ± 0.58 (119)a 92.3 ± 2.30 (109)d 45.1 ± 0.71 (78)b 70.3 ± 0.77 (95)c 

Stamens per flower head 872.6 ± 15.62 (119) 4632.7 ±115.21 (109) 1884.2 ±29.63 (78) 3443.0 ± 37.89 (95) 

Polyads per flower head 6,984 37,048         15,088           27,560 

Ovules per flower 13.0 ± 0.13 (97) 

9 – 15a 

13.0 ± 0.15 (130) 

           10 - 17a 

13.1 ± 0.26 (168) 

           3 - 18a 

10.1 ± 0.13 (108) 

          7 - 14b 

Ovules per flower head 329 634          165 485 

Flower heads maturation           Basipetal           Acropetal         Random Basipetal 

Flowers per flower head 26.7 ± 0.73 (33)a 50.2 ± 1.79 (33)c 41.8 ± 1.11 (33)b 49.0 ± 0.97 (60)c 

Hermaphrodite flowers per 

flower head (%) 
94.9 ± 0.01 (33)a 97.1 ± 0.01 (33)a 31.2 ± 0.04 (33)b 98.0 ± 0.01 (60)a 

Male flowers per flower 

head (%) 
5.1 ± 0.01 (33)a 2.92 ± 0.01(33)a 68.8 ± 0.14 (33)b 2.0 ± 0.01 (60)a 

Notes: values are given as means and standard error of the mean followed by sample size in 

parenthesis. Stamens per flower head are the product between the mean number of stamens per flower and mean 

number of flowers per flower head; polyads per flower head are the product between the number of polyads per 

anther and the number of anthers per flower head; ovules per flower head are the product between mean number 

of ovules per flower and mean number of hermaphrodite flowers per head. Flower head maturation refers to the 

flower opening direction within flower heads. Hermaphrodite and male flowers are given in percentage from the 

total number of flowers per flower head. Different letters reveal statistically significant differences at P < 0.05 

among the species. 
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The number of pollen grains per polyad is constant to all species (16), as well as the number 

of polyads per anther (8) (Table III). The number of stamens per flower was significantly different 

among species (P < 0.001) with A. longifolia presenting the greatest number of stamens per flower 

(92.3 ± 2.30, n = 109) and A. dealbata the lowest (32.7 ± 0.58, n = 119) (Figure 9, Table III). Acacia 

longifolia had the biggest number of polyads per flower head followed by A. saligna, A. melanoxylon 

and A. dealbata, although no significant differences were found between species (Table III). The 

number of ovules per flower for each species was significantly different among species (P < 0.001) 

(Figure 9, Table III). Acacia saligna had the lowest number of ovules per flower (10.1 ± 0.13, n = 108) 

being different from the other three Acacia species, which had 13 ovules per flower (Figure 9, Table 

III). 

In A. melanoxylon a third type of inter-medium flowers having rudimentary pistils was also 

found and examined in more detail to determine if they were hermaphrodite or male (Table IV; Figure 

21 in Appendix E). Differences in the mean number of ovules in A. melanoxylon (F1,156=23.71, 

P<0.001) were found between hermaphrodite flowers with normal pistils (14 ovules per flower) and 

hermaphrodite flowers with rudimentary pistils (nearly 11 ovules per flower) (Table IV).  

 

Table IV. Characterization of flowers of Acacia melanoxylon: number of ovules per ovary in 

each flower type 

Flower 
 

 Hermaphrodite flowers  Male flowers 

Pistil  

 
 
 
 
 

normal 

 

 
 
 
 
 

rudimentary 

 

 
 
 
 
 

without pistil 

No. per flower 
head 

 
12.1 ± 4.78 

(13.3%) 
 

7.5 ± 0.46 
(17.9%) 

 
27.1 ± 1.62 

(64.4%) 
 

1.9 ± 0.34 
(4.4%) 

No. ovules 
per flower 

 14.0 ± 0.85 (118)b  10.6±0.68(43)a  0.0 ± 0.0 (155)            0.0 

 

Notes: values are given as means and standard error of the mean followed by the percentage of each flower 

type per flower head (n=33) or sample size for the number (No.) of ovules in parenthesis 
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The number of flowers per flower head varied significantly (P < 0.001) between the four Acacia 

species (Table III). Acacia saligna and A. longifolia had more flowers per flower head (50 and 49, 

respectively) followed by A. melanoxylon (nearly 42 flowers per flower head) and by A. dealbata 

(nearly 27 flowers per flower head). Significant differences (P < 0.001) were found between species 

for the percentage of hermaphrodite flowers per flower head (Figure 9A). Acacia saligna and A. 

longifolia had more hermaphrodite flowers per flower head (approximately 98% of the total number of 

flowers per flower head) followed by A. dealbata (nearly 95%) and by A. melanoxylon that presented 

only 31% of hermaphroditic flowers per flower head.  

In A. melanoxylon, hermaphroditic flowers with normal pistil accounted for 13% of the total 

number of flowers in the flower head, while flowers with rudimentary pistils represented almost 18% 

of the total number of flowers. About 65% of flowers with rudimentary pistils were male, and around 4% 

of the flowers were male without pistils (Table IV). There was a high intraspecific variability in flower 

characters within the four Acacia species, as it can be seen in Figure 9B (mean number of stamens 

per flower head) and Figure 9C (mean number of ovules per flower head). 

For the four species studied, the number of pollen grains per polyad (16) was always bigger 

than the number of ovules per pistil (Figure 10). The majority of studied pistils had between 11 and 14 

ovules. This number was even lower for A. saligna, with most pistils containing 9 to 11 ovules. Pistils 

with 16 ovules were only found in A. longifolia and A. melanoxylon but with a frequency lower than 

5%.  Despite this, the number of seeds per pod was rarely higher than 10 (Figure 10). The highest 

number of seeds per pod was obtained in A. melanoxylon, although with a frequency lower than 2%. 

All species, except A. longifolia, had a skewed distribution of the number of seeds per pod, with most 

pods containing 1-2 viable seeds.   

 



 

 

 

 

 

 

 

Figure 9. Characterization of the flower heads of the four Acacia species studied. A. Percentage of hermaphrodite (grey bars) and 

male flowers (black bars) within the flower head; B. Mean number of stamens per flower head per species (black circles) and per tree 

within species (open circles); C. Mean number of pistils per species (black circles) and ovules per flower head (open circles). Number 

of stamens per species and pistils per flower head are given as mean and standard error of the mean; number of ovules and stamens 

per flower head are raw data. Acacia species: AD, A. dealbata; AL, A. longifolia; AM, A. melanoxylon; AS, A. saligna. Different letters 

reveal statistically significant differences at P < 0.05 among treatments within species. 
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Figure 10. Histogram with the frequencies of the number of ovules per pistil (grey bars) and 

number of seeds per pod (black bars) obtained after open pollination for the four Acacia species 

studied; number of pollen grains per polyad (open circle) and mean number of ovules per pistil 

(black diamond) are also plotted. (A) A. dealbata (B) A. longifolia (C) A. melanoxylon; (D) A. 

saligna. Note different scales for different species. 

 

3.2 Floral display 

The results for the characterization of the four Acacia species studied for floral display and 

natural reproductive success are presented in Table V and Figure 11.The number of flower heads per 

flowering branch varied significantly between Acacia species (P < 0.001). Acacia dealbata presented 

the highest number of flower heads per flowering branch (272.3 ± 19.65) followed by A. saligna (33.2 

± 1.62) with a much lower value for this character (Table V). Acacia longifolia and A. melanoxylon 

had similar number of flower heads per flowering branch. There were also significant differences (P = 
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0.01) between Acacia species in the estimated number of branches per plant. Acacia saligna had 

significantly less branches per plant than A. dealbata and A. longifolia, despite of the variation 

observed among individual trees (Table V). 

 

Table V - Characterization of the four Acacia species studied for floral display and natural 

reproductive success. 

Floral display A. dealbata A. longifolia A. melanoxylon A. saligna 

No. flower heads per 

flowering branch 
272.3 ± 19.65 (58)c 23.8 ± 1.06 (57)a 24.9 ± 2.24 (76)a 33.2 ± 1.62 (59)b 

Estimated no. of 

branches per plant 

1135.3 ± 350.78 

(12)cb 

1803.0 ± 452.09 

(12)b 

656.4 

±121.2(14)ab 

449.2 ± 

127.12(12)a 

Estimated overall 

reproductive success 

67039.4 ± 11965.82 

(18)c 

10443.1 ± 3005.09  

(9)b 

5895.9 ± 

1548.18 (16)bc 

4607.1 ± 1261.46 

(12)a 

Notes: values are given as means and standard error of the mean followed by sample size in parenthesis. 

Different letters reveal statistically significant differences at P < 0.05 among species. 

 

Significant differences between species were also found for the estimated overall 

reproductive success (P < 0.001; Table V, Figure 11). This parameter results from the multiplication 

of the mean number of hermaphrodite flowers per head, the estimated number of flowers heads 

produced per tree and the natural fruit set (produced after open pollination). The results showed that 

A. dealbata was the most successful species with significantly higher reproductive success than the 

other species (P < 0.001; Table V, Figure 11). There was a high intraspecific variability in the overall 

reproductive success for the four species with individual trees behaving very differently (Figure 11), a 

result that agrees with the observations made in the field. 
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Figure 11. Overall reproductive success for the four Acacia species studied. Individual trees are 

represented by open circles and the mean for each species is given in closed circles. Values are 

given as mean and standard errors of the mean. Different letters reveal statistically significant 

differences at P < 0.05 between treatments within species. 

 

3.3 Reproductive systems 

The results of hand pollination experiments are presented as fruit set, seed to ovule ratio (S:O) 

and mean number of seeds per pod. These parameters are presented in Figures 12 to 14 

respectively, and in Appendix A (Tables VII, VIII and IX, respectively). We found significant differences 

in fruit set between treatments for all the species (Table VII, Figure 12). The supplementary 

pollination treatment had a significantly higher value of fruit set in A. dealbata, A. longifolia and A. 

saligna (Figure 12 A-B, 4D and Table VII). Only in A. melanoxylon the supplementary pollination 

treatment was not significantly different from the open-pollination (Figure 12C). In all species the 

open-pollination and supplementary pollination treatments had higher level of fruit set than 

spontaneous selfing and self-pollination (Figure 12, Table VII). Only in A. dealbata the fruit set of the 

self-pollination treatment did not differ from the open pollination treatment.  

 



 

38 

 

Figure 12. Fruit set from the hand pollination experiments for the four Acacia species studied. 

(A) A. dealbata (B) A. longifolia (C) A. melanoxylon (D) A. saligna. Fruit set is given as the 

percentage of flowers developing into fruit from the total number of flowers treated. Pollination 

treatments: OP, open pollination; SP, supplementary pollination; SA, spontaneous autogamy; A, 

Self-pollination. Values are given as mean and standard errors of the mean. Different letters 

reveal statistically significant differences at P < 0.05 among treatments within species. 

Different scale for A. melanoxylon. 

 

Statistically significant differences were also observed in the seed to ovule ratio between 

treatments for all the species (P = 0.016 for A. dealbata; P < 0.001 for the remaining species). As 

observed in fruit set, the supplementary and open pollination treatments had significantly higher S:O 

value than spontaneous autogamy and self-pollination in all species except A. dealbata (Figure 13, 

Table VIII), despite no significant differences were observed between them (Figure 13, Table VIII)



 

 

 

Figure 13. Seed to ovule ratio from the hand pollination experiments for the four 

Acacia species studied. (A) A. dealbata (B) A. longifolia (C) A. melanoxylon (D) A. 

saligna. Seed to ovule ration is given as the percentage of ovules that developed 

into morphologically viable seeds from the total number of ovules available in the 

hermaphrodite flowers treated. Pollination treatments: OP, open pollination; SP, 

supplementary pollination; SA, spontaneous autogamy; A, Self-pollination. Values 

are given as mean and standard errors of the mean. Different letters reveal statistically 

significant differences at P < 0.05 among treatments within species. Note different scales 

for different species. 

Figure 14. Seed production from the hand pollination experiments for the four 

Acacia species studied. (A) A. dealbata (B) A. longifolia (C) A. melanoxylon (D) A. 

saligna. Seed production is given as the mean number of morphologically viable 

seeds produced per pod. Pollination treatments: OP, open pollination; SP, 

supplementary pollination; SA, spontaneous autogamy; A, Self-pollination. Values 

are given as mean and standard errors of the mean. Different letters reveal statistically 

significant differences at  P < 0.05 among treatments within specie 
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Finally, the production of viable seeds from the hand pollination experiments was 

significantly different between treatments for the four species (P < 0.001; Table IX), showing 

similar trends as the ones observed in fruit set and S:O (Figure 13). The mean number of seeds 

per pod was higher in A. longifolia and A. melanoxylon than in the other two species (Figure 14). 

The Overall, A. dealbata and A. saligna had a mean number of aborted seeds per pod higher 

than A. longifolia and A. melanoxylon (Appendix A, Figure 19). 

The index of self-incompatibility (ISI) and percentage of pollen limitation (PPL) were calculated 

with the values of fruit set and S:O, respectively, obtained for each species (Table VI, Figure 14). 

 

 

Table VI  Indices of self-incompatibility (ISI) and percentage of pollen limitation (PPL). 

Indices A. dealbata A. longifolia A. melanoxylon A. saligna 

ISI 0.32 0.19 0.28 0.46 

PPL 43.27 39.32 4.07 4.41 

Notes: ISI followed Zapata and Arroyo (1978) and PPL followed Jules and Ranthcke (1999) (for details see 

Materials and Methods). 

 

The mean values of ISI ranged between 0.19 in A. longifolia to 0.46 in A. saligna, with A. 

melanoxylon and A. dealbata having intermediate values of 0.28 and 0.32, respectively (Figure 14). 

This index takes into account the fruit set of supplementary and self-pollination treatments (see 

Materials and Methods section), and has a specific scale that allows a classification of the 

incompatibility levels of the species as follows: self-compatible species score > 1, partially self-

incompatible species score < 1 and > 0.2, complete self-incompatible species score < 0.2 (sensu 

Kenrick and Knox, 1989).  Thus, all the Acacia species studied are partially self-incompatible species, 

with A. longifolia having an ISI value in the limit between self-incompatible and partially self-

incompatible species (Figure 14). Again, beyond the differences among species, a great variability in 

ISI values among individual trees of each species was observed (Figure 14), with individual trees of A. 

dealbata, A. melanoxylon and A. saligna ranging from self-incompatible to completely compatible 

(Figure 14). 

The ISI values available for other populations and species of Acacia growing in native and 

invaded areas are similar to those found in this study (Figure 14, Appendix B: Table XI). No data is 
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available for native populations of A. longifolia and A. melanoxylon. The value for A. dealbata in the 

native range was higher than the value found in this study (0.73 vs. 0.32) although both scores 

classify this species as partially self-compatible (Figure 14, Table VI). The values found in the 

literature for A. saligna in native and invaded areas in South Africa were very similar (0.77 v. 0.82) 

and classify this species also as partially self-compatible. These values were a bit higher than the 

value found in this study (0.49) (Figure 14, Table VI). The values for the index of percentage of pollen 

limitation (PPL) ranged between values close to 4% for A. saligna and A. melanoxylon to values 

around 40% for A. dealbata and A. longifolia (Table VI). 

 

Figure 15. Index of self-incompatibility (ISI), followed Zapata and Arroyo (1978) and their score : SI– self-

incompatibility (ISI<0.2); PSC–partially self-compatible (ISI between 0.2 and 1) and SC– self-compatible(ISI>1) 

A. ISI value obtained from the Acacia species studied in invaded areas in Portugal (mean in colour, values per 

individual trees as open circles) AS – A. saligna; AM- A. melanoxylon; AL- A. longifolia and AD- A. dealbata; 

B. ISI values found in literature for other Acacia species in native and invaded areas (for species identity see 

Table , in Appendix). The colour circles correspond to the data from this study (green AL; red AM; blue AD and 

yellow AS). A. saligna is the only species that has already been studied in another invaded area (South Africa, 

this ISI value is represented by another yellow circle). Data for A. saligna and A. dealbata in Australia are 

presented as circles filled in yellow and blue respectively. 
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The overall reproductive success calculated with fruit set obtained in spontaneous autogamy 

treatment (Figure 20, in Appendix D) mimicking the complete absence of pollen vectors revealed that 

all species are able to produce seeds, with. A. dealbata being again the species with higher 

reproductive successful. Except for A. saligna, the success of open pollination was higher than 

spontaneous selfing, but statistical differences exist only for A. dealbata and A. melanoxylon (Table 

XVIII, Appendix XVII). 

 

3.4 Offspring performance 

 

The results from offspring performance resulted from the hand pollination experiments for the four 

Acacia species studied are presented in Figures 15 to 17, and in Appendix C (Tables XII to XVI, 

respectively).  

The viable-looking seeds obtained in the different pollination treatments for the trees of each 

species were weighted and the results are presented in Figure 15 and Tables XII and XIII. Seeds 

produced in the open and supplementary pollination treatments were significantly bigger (P < 0.001) 

than those produced in the spontaneous autogamy and self-pollination treatments for A. dealbata and 

A. melanoxylon (Figure 15, Tables XII). No seeds were available for the self-pollination treatment for 

A. longifolia and seeds produced by spontaneous autogamy were significantly heavier than those 

produced by open and supplementary pollination (Figure 15, Tables XII). A more complex pattern 

was observed to A. saligna, with significant differences for seed weight after open and supplementary 

pollination treatments. However, these two treatments did not differ significantly from spontaneous 

autogamy. Self-pollination treatment yielded significantly lighter seeds that the other pollination 

treatments (Figure 15, Table XII).  

The results of the germination assay for the four Acacia species studied are presented in 

Figure 16 and Table VII. Significant differences were found in seed germination between the two 

treatments of open and supplementary pollination and the treatment of spontaneous autogamy in A. 

dealbata (P < 0.01) and A. melanoxylon (P < 0.05). In A. longifolia seed germination of spontaneous 

autogamy treatment is significantly lower than supplementary and self-pollination treatments (Table 
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VII, P = 0.0196) but not from open pollination treatment (Figure 16). No differences were found in 

seed germination among treatments for A. saligna (Figure 16D, Table XIV). 

Overall, seed germination was higher in the seeds produced by open and supplementary pollination 

than self-fertilization treatments (with rates around 50% against 10-20%, respectively).  

              Finally, the weight of one-month seedlings is presented in Figure 17 and Tables XV and XVI. 

For A. dealbata due to a small sample size only open and supplementary pollination treatments were 

used in the statistical analysis although there few seedlings in the other two treatments. Significant 

differences between treatments were only found for A. longifolia (Figure 17, Tables XV and XVI), with 

seedlings from the open and supplementary pollination treatments being bigger than those from self-

fertilizing treatments.  

 



 

 

 

Figure 16. Seed weight from the hand pollination experiments for the 

four Acacia species studied. (A) A. dealbata; (B) A. longifolia; (C) A. 

melanoxylon; (D) A. saligna. Seed weight is given as the mean and 

standard error of the mean. Pollination treatments: OP, open pollination; 

SP, supplementary pollination; SA, spontaneous autogamy; A, Self-

pollination. Different letters reveal statistically significant differences at P 

< 0.05 among treatments within species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Seed germination (%) from the hand pollination experiments for 

the four Acacia species studied. Values are given as mean and standard 

errors of the mean. (A) A. dealbata; (B) A. longifolia; (C) A. melanoxylon; (D) 

A. saligna. Pollination treatments: OP, open pollination; SP, supplementary 

pollination; SA, spontaneous autogamy; A, Self-pollination. Different letters 

reveal statistically significant differences at P < 0.05 among treatments within 

species. n.a. means no available information. 
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For A. dealbata, only the interaction between treatment and tree was significant revealing the 

high variability found in seedling weight in the open-pollination treatment (Figure 10, TableVIII). No 

significant differences between treatments were found for A. melanoxylon and A. saligna. In A. 

melanoxylon the results were also unbalanced due to the reduced sample size of seedlings provided 

by the spontaneous autogamy (n=5). Overall, Acacia saligna seedlings were bigger than the 

seedlings of the other three species. 

 

Figure 18. Seedling weight from the hand pollination experiments for the four Acacia species 

studied. (A) A. dealbata; (B) A. longifolia; (C) A. melanoxylon; (D) A. saligna. Seedling weight 

is given as mean and standard errors of the mean. Pollination treatments: OP, open 

pollination; SP, supplementary pollination; SA, spontaneous autogamy; A, Self-pollination. 

Different letters reveal statistically significant differences at P < 0.05 among treatments within 

species. n.a. means no available information. * Use to treatments that had been removed 

from the statistically analysis due to a small sample size (n <5). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Discussion 

 



 

47 

 

Discussion 

 

Australian Acacia species have been widely introduced for forestry and gardening and, 

consequently, landscapes of many parts of the world are currently dominated by planted or invasive 

stands of Acacias. Considering the area occupied, aggressiveness and impact on the native 

ecosystems, Australian Acacias can be considered as the most problematic and widespread invasive 

plants in Portugal (Almeida et al., 2006), among which are the four species studied in this work (A. 

dealbata, A. longifolia, A. melanoxylon and A. saligna).  

Despite reproductive success is an essential factor in the colonization of new areas and in 

long-term establishment of viable populations, no information on any aspect of reproductive biology 

was available for invasive Acacia in Portugal. 

The major achievements of this thesis are: a) the Acacia species studied have different 

investments in the production of reproductive units (flowers) and in natural reproductive success; b) 

A. dealbata has a massive production of flowers and a huge natural reproductive success, higher 

than any of the other three species; c) A. melanoxylon has a different reproductive strategy 

(andromonoecy); d) all species revealed to be partially self-compatible, although there is a high 

variability between individual trees; e) A. dealbata and A. longifolia suffered from pollen limitation; 

and f) pollen origin may affect offspring success with self-progeny having lower viability in A. dealbata 

and A. melanoxylon, while no patterns were observed for A. longifolia and A. saligna. 

 

4.1 Floral morphology and display 

Acacia species have small individual flowers remarkably similar and relatively simple in 

morphology and structural organization (Kenrick 2003). Such generalized morphology may facilitate 

invasion as it reduces the risk of pollinator limitation for introduced plants (Richardson et al., 2000a). 

The tiny flowers are aggregated in dense flower heads attractive to pollinators that are considered the 

unit of pollination. The flower head (sometimes referred in literature as inflorescence) is a multi-

stigmatic unit, relatively flexible in size and with its "surface" covered by many exposed anthers (Tybirk 

1989). 
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In spite of having similar functional units of pollination (flower head), differences among the 

species were observed in several floral characteristics. Both the number of flowers per flower head 

and the number of stamens per flower vary substantially within and among species (Tybirk 1989, 

1993; Sedgley et al., 1992; Kenrick 2003), and this was also observed in the species studied. Acacia 

longifolia has more flowers per flower head and more stamens than the other three species, 

surprisingly with A. dealbata registering the lower numbers. The mean number of flowers per flower 

head in Acacia species can range from 2 or 3 (e.g., A. myrtifolia; Kenrick 2003) to 27 in A. dealbata, 

50 in A. longifolia (this thesis) and up to 209 in A. hindsii (Stone et al., 2003); while the mean number 

of stamens per flower varied from 33 in A. dealbata (this thesis) to 537 in A. myrtifolia (Kenrick 2003). 

The production of more robust flower heads or more floral rewards as pollen (through a bigger 

number of anthers) could be related with the pollinator assemblages that visit these species. 

Observations made in honeybees on a range of Acacia species suggest that flower heads with a 

small number of flowers are unable to support the weight of large insects and tend to collapse. In 

contrast, very small bees are able to gather a full pollen load from even sparse flower heads and are 

represented in the flower-visitor assemblages of all Acacias so far studied (Stone et al., 2003). 

Data on pollinator’s assemblage of A. dealbata and A. longifolia in Portuguese invaded areas 

has been collected this year in the scope of the project MUTUALNET and are currently being 

analyzed. In addition, the number of flower heads can fluctuate greatly depending on environmental 

conditions and resource availability (Sedgley, 1985; Gaol and Fox, 2002; Yates and Broadhurst, 

2002). 

Other distinctive features shared by Australian Acacia were observed in the studied species 

and confirm the pattern proposed for this group. They have asynchronized opening of flowers both, 

within flower heads and within single trees (Stone et al., 2003), and individual flowers and flower 

heads are long-lived (Prescott, 2005). The opening of flowers on a single flower head over a series of 

days was observed in all the species and the flower head can last for up to 20 days (M. Correia, field 

observations; Stone et al., 2003; George et al., 2009). 

4.1.1 Different strategies: hermaphroditism  or andromonoecy? 

Acacia species can have male and/or hermaphrodite flowers (Kenrick, 2003; George et al., 

2009). Hermaphroditism is the most common condition, while andromonoecy (i.e., individual plants 

bearing both male and hermaphrodite flowers) appears to be rarer (Zapata and Arroyo, 1978; Bullock 
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1985; Bernhardt et al., 1984). Several Acacias produce flowers (and often entire heads of flowers) 

containing only stamens (Tybirk 1989; Sedgley et al., 1992; Baranelli et al., 1995; Kenrick 2003) 

while others are complete hermaphroditic (e.g. A. sinuata; Raju et al., 2006). In African species the 

positioning of the flowers seems to follow a pattern, with the hermaphrodite flowers being located 

distally in each flower head (Tybirk 1993). Further studies should be developed to assess the patterns 

of flower positioning within flower heads of Australian Acacias. 

 Different strategies were also observed among the studied species. Acacia dealbata, A. 

longifolia and A. saligna were mostly hermaphrodite (>95% of the flowers of a flower head were 

hermaphrodite) while A. melanoxylon was clearly andromonoecious. In the studied year, only 30% of 

the flowers per flower head of A. melanoxylon were hermaphrodite. In addition, within flower head 

different types of flowers were found, from complete hermaphrodite flowers to male flowers without 

pistil, with transition flowers, some having smaller pistils and lower number of ovules per ovary and 

others with rudimental pistils without ovules. Transitions between perfect flowers and male flowers as 

the ones observed in A. melanoxylon were also observed in other species (Sedgley et al.,1992). 

Andromonoecy has been described in other Acacia species, such as A. caesia (Asia) and A. 

macrantha (Central America) (Raju et al., 2006), A. caven (South America) in which about 50% of 

flowers are male (Peralta et al., 1992). The Australian A. mangium was also reported as having 

andromonoecy, but with a tremendous variation in the percentage of staminate flowers per flower 

head (3 to 88%; Butcher et al., 2004; and references there in). 

The evolution of proximal male flowers seems to be a specialization in the subgenus Acacia 

(Tybirk 1989) and this tendency is further developed in other related genera having flowers 

specialized for nectar production and visual attraction (Arroyo 1981). Andromonoecy probably 

evolved due to resource limitation for the development of all fruits in a single flower head if all the 

pistils were successfully pollinated. Being cheaper to produce male flowers than hermaphrodite 

flowers, the resource investment in functionally male flowers improve male fitness by improving 

pollen donation and allows saving resources that can be reallocated to increase female fitness 

(Marín, M:V. and Rausher, M. D. 2006, references there in). 

The mean number of aborted seeds per pod in A. melanoxylon was lower than in the other 

species, supporting this hypothesis and suggesting that this species may be reallocating resources to 

other traits, like cue-attracting pollinators. Other hypothesis, by contrast, suggests that staminate 

flowers are more effective at donating pollen than perfect flowers, they may produce more or larger 
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pollen, have reduced pollen–pistil interference within flowers or among flowers on the same plant and 

may be more attractive to pollinators (Marín, M:V. and Rausher, M. D., 2006, references there in). 

Nevertheless, this breeding system is functional only when all plants flower simultaneously and when 

appropriate vectors transfer viable pollen to receptive stigmas on different individuals. In addition, the 

number of male flowers seems to be a highly variable and plastic character that allows individual 

plants to respond to environmental conditions and resource availability during floral development. For 

example, flower proportions may vary in response to changes in water availability (Aronson 1992). 

Different proportions of male flowers were also observed between seasons and positively correlated 

with intensity of flowering for A. mearnsii (Moncur et al., 1991). Thus, future studies should address 

how the new conditions in the invasive area are driving this trait in comparison with the native range. 

Many authors have described dichogamy (separation of male and female functions in time) 

as being widespread in Acacia species. Overall, Australian Acacia species have been described as 

having strictly protogynous flowers where the stigma is receptive before the anthers released the 

pollen (Stone et al., 2003; George et al., 2009). Future studies should confirm if the different 

development of anthers and pistil also coincide with different functional stages. Dichogamy has been 

proposed as a mechanism to prevent self-pollination in flowering plants (Lloyd and Weeb 1992) and 

also in Acacia (Stone et al., 2003). However the opportunity for self-pollination in Acacia is high due 

to mass flowering (Bernhardt, 1989; Costermans, 2007), movement of pollinators within flower heads, 

and the tight organization of flower heads in the flowering branches  (M. Correia, field observations). 

 

4.1.2. Reproductive success 

 

The massive flower display is a fundamental feature in most Australian Acacias (Bernhardt, 

1989; Costermans, 2007), and is a characteristic of the four studied species. In spite of this, only a 

small fraction of flowers develops successfully into fruit and seeds, so the natural overall reproductive 

success is low per tree in comparison with the number of flowers produced. Reproductive success is 

also highly variable within each of the studied species, with individual trees behaving in very different 

ways.  

Acacia dealbata has the highest number of flower heads per flowering branch and per tree 

representing a huge investment in overall flower production, despite having small flower heads. This 
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trait makes A. dealbata the species with higher natural reproductive success, which may contribute to 

its status as the most invasive Acacia. In support of this relationship between reproductive success 

and invasiveness, the two less widespread species in Portugal, A. melanoxylon and A. saligna, had a 

significantly lower investment in flower production, having a natural overall reproductive success less 

than 10% than that of A. dealbata. 

Fruit set of Acacia species is low compared with other legumes. This low fruit set rate is in 

agreement with data from Baker (1983), who reported that usually only four or five flowers produce 

fruits from each inflorescence in the Mimosaceae. Such low values of fruit set may be considered as an 

adjustment of maternal resources to regulate flower and pod numbers (Baker et al., 1983). In Acacias, 

typically less than 1% of flowers result in fruit but fruits have a high seed to ovule ratios (Tybirk 1989). 

This has been proposed as a consequence of the polyad being capable of fertilizing all the ovules in the 

ovary just in one successful pollination event.  

The correspondence between pollen grain number in the polyad and maximum seed number 

per pod in various species of Acacia led to investigation of ovule number in several Acacia species 

(Kenrick and Knox 1982). All studied species have 16 pollen grains per polyad and ovule number varies 

among species, generally being less than or even slightly greater than the pollen grain number (Kenrick 

2003). The mean number of ovules per flower for the species studied in this thesis is 13 (10 for A. 

saligna), lower than the number of pollen grains in the polyad for all species.  

Polyads are advantageous to maximize seed set if natural pod set rate is low. Pollen cohesion 

in polyads eliminates the chances of losing pollen and can be transported by any pollen vector (Knox 

and Kenrick 1983; Bernhardt 1989). Since polyads have enough pollen grains to fertilize all ovules in a 

flower, the seed to ovule ratio is expected to approach one. However, full seed set is rare in Acacias, 

and in many species pods abort during the first weeks of development (Tybirk 1993), which is probably 

caused by reduced pollen viability and later seed abortion in the developing pod. All seeds in a pod may 

be full sibs as it was shown for A. melanoxylon using isozyme markers (Muona et al., 1991). This will 

have an effect on competition during development within the pod and on competition and incompatibility 

relationships in a population, particularly in species where seeds tend to be retained in the pod. Acacia 

saligna and A. dealbata had the lower number of seeds per pod (one seed per pod is the most 

frequent value). This result show that total fecundation of ovules in a flower by the 16 pollen grains is 

very rare in all studied species. The mean number of seeds aborted per pod was higher in A. 

dealbata and A. saligna in all pollination treatments.  
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This could be related with high selfing rates (in agreement with the high levels of self-

incompatibility observed in the study) and/or due to resource limitation (pollen or nutrients) that hinder 

the development of ovules to seeds. Even though, and as stated above, the massive production of 

flowers by the studied Acacia species counterbalance the low fruit set resulting in a huge seed crop 

in the invaded range that could be one of the factors involved in its invasions success. 

 

4.2 Reproductive system 

 

Reproductive success is essential to colonization of new areas and long-term establishment 

of viable populations. According to this, self-compatible plants have an advantage for the successful 

establishment in a new range because reproduction is less constrained by population size and 

pollinator availability; thus, self-compatible plants are expected to be more invasive than obligate 

outcrossing plants (Baker 1955; Gibson et al., 2011). While outcrossing, when possible, might be 

beneficial for the evolution of invasive plants (Baker 1974), the capacity for autonomous seed 

production, which does not necessarily preclude outcrossing, is likely to be essential during several 

stages of the invasion process (Van kleunen and Johnson, 2007). 

 

4.2.1. Self-incompatibility 

Fruit set of studied Acacias express significant differences between pollination treatments for 

all the species. The studied Acacia species are partially self-incompatible (ISI > 2; index of self-

incompatibility), with A. longifolia having an ISI (index of self-incompatibility) value in the limit 

between self-incompatible and partially self-incompatible species (0.19). Acacia saligna has the 

higher value (0.46) followed by A. dealbata (0.32), and A. melanoxylon (0.28). For all studied species, 

fruit set, seed to ovule ratio and mean number of seeds per pot were significantly lower in the self-

pollination treatments than in those involving cross-pollination. This result suggest that cross-

fertilization is important for the reproductive outcome of invasive Acacias, although in the absence of 

compatible partners or pollen vectors, self-fertilization can also contribute significantly to the spread 

in the new area. 
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Beyond the variability among species, a huge variation was found within species with 

complete incompatible trees, partially compatible trees and compatible trees growing within the 

population, which might result in complex patterns of the relative contribution of individual trees to the 

invasive populations. This intraspecific variation in self-compatibility rates appears quite common in 

Australian Acacia species (Philp and Sherry, 1946; Moffett and Nixon, 1974). 

 

Australian Acacia species range from highly self-incompatible to completely self-compatible 

and autogamous (Moffett, 1956; Bernhardt et al., 1984; Kenrick and Knox, 1989; Morgan et al., 2002). 

Still, the selected Australian Acacia species have a clear preference for outcrossing (Broadhurst et al., 

2006; Gibson et al., 2011). Generalist insects, mainly bees, are common pollinators of Australian 

Acacias, so it is unlikely that they suffer from a lack of pollinators in the areas where they are 

introduced.  

Hence, the main question is whether invasive populations maintain the same levels of self-

incompatibility or have evolved mechanisms to increase autogamy rates as a mechanism of 

reproductive assurance.  

The capacity to self-reproduction is known for six Australian Acacia species, five of which are 

invasive (A. dealbata, A. decurrens, A. mearnsii, A. paradoxa and A. saligna) (Gibson et al., 2011, 

references in). Studies with species from other ranges of distribution, A. retinodes (Bernhardt et al., 

1984; kenrick and knox, 1985; Kenrick and Knox, 1989b), A. myrtifolia , A. pycnantha, A. mearnsii 

(Kenrick and Knox, 1989b), A. decurrens and A. baileyana (Morgan et al., 2002) have shown seed 

set from self-pollination to be only 3 to 27% of that arising from cross-pollination. In contrast, seed set 

following self-pollination in A. paradoxa and A. ulicifolia was 82 to 95% of that arising from cross-

pollination (Kenrick and Knox, 1989b) A. sciophanes also showed high levels of selfing with a 

comparatively low outcrossing rate of 0.61 (Coates et al., 2006). Evidence suggests that self-

incompatibility in Acacia could be the result of post-zygotic lethal genes (Kenrick, 2003).  

When comparing the levels of incompatibility between native and invaded ranges for the 

studied species, there is no information for A. longifolia, for A. dealbata the results obtained in the 

invaded area confirm the information available to native area, where they are partial self-compatibility 

and self-incompatible when the populations are fragmented (Broadhurst et al., 2006). However the 

preference for outcrossing is visible, with a higher production of pods and seeds in the open and 

supplementary pollination treatments. The same pattern was observed in A. saligna and A. longifolia. 
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A. saligna in native area has a mixed mating system, being partially self-compatible but 

predominantly out-crosser (George et al., 2008) and in the invaded area of South Africa is partially 

self-compatible (ISI = 0.82; Gibson 2012). The results obtained in A. saligna population of Tocha are 

in agreement with these results. High outcrossing rates have been detected in A. melanoxylon R.Br. 

(Muona et al., 1991) in native area and the same was found in the populations studied from Portugal. 

However A. melanoxylon also revealed a partially self-compatibility capacity, producing viable pods 

and seed in self-fertilizing treatments 

Some of the levels of spontaneous selfing that were observed are most probably due to the 

proximity of sexual structures within flower head and between flower heads due to massive flowering. 

The prior or simultaneous deposition of self, incompatible, or related pollen by pollinators may 

interfere with the ability of plants to use available cross pollen, resulting in reduced seed set. Self-

pollen grains may cause clogging or blocking of stigma surfaces preventing cross pollen from 

germinating or reducing cross-pollen tube development (Ramsey and Vaughton, 2000; and 

references there in). This was observed in Burchardia umbelata (Colchicacea) an Australian self-

incompatible plant (Ramsey and Vaughton, 2000).  

Plants could possibly reduce self-pollen nosiness by increasing the time between anther 

dehiscence and stigma receptivity to reduce autogamy, and by reducing the number of flowers open 

concurrently to reduce geitonogamy. Pollinators frequently move short distances and when genetic 

proximity exists, pollen transfer can occur between related individuals (Waser and Price, 1983, 

1991a). The observations of Acacia floral visitor’s behavior reveal that some of this self-pollen 

interferences can happen in Acacia populations and might be responsible for the low fruit and seed 

set and the high seed abortion in some species. Some contingents imposed by the bagging 

procedure could also contribute for this output. A. dealbata which was the huge massive flowering 

had less seed viable per pod, more seeds aborted per pod and a low fruit set in natural conditions 

(near 1%), so geitonogamy is an unavoidable cost of requiring a large floral display to attract 

pollinators and could be a consequence of restricted pollinator foraging (Ramsey and Vaughton, 2000; 

references in). Indeed, in the complete absence of pollinators, all the studied species were still able 

to produce huge amounts of seeds per tree, despite in lower number than in open pollinated 

treatment. 

 This results support the hypothesis that invasive species like the studied Australian Acacia 

tend to have some level of self-compatibility, despite not higher than expected in comparison with 
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native populations; suggesting that the ability to self-fertilize may predispose Acacia species to 

invasiveness and to spread at larger rates. However comparisons between the native and invaded 

area of the studied Australian Acacia species are hindered by insufficient data. Although this capacity 

may make species more likely to become invasive, it is not essential for invasiveness (Gibson et al., 

2011) A. auriculiformis and A. pycnantha are noticeable examples of invasive self-incompatible 

species.  

Even being poor selfers, self-fertilization could ameliorate pollinator and mate limitation, two 

reproductive barriers that may occur in the initial steps of naturalization and invasion due to small 

size or low density of populations (Baker, 1955; Davis et al., 2004). 

 

Pollen limitation 

Considering the generalised structure of the flower heads, generalist insects, mainly bees, 

are common pollinators of Australian Acacias, so it was unlikely that Acacias suffer from a lack of 

pollinators in the areas where they are introduced. Contrary to this expectation, A. dealbata and A. 

longifolia suffer pollen limitation in this invaded area. In natural conditions, fruit set and seed to ovule 

ratio were higher in the supplementary pollination treatment than in open pollination, indicating the 

occurrence of pollen limitation in these two species.  

Pollen limitation occurs when pollen quantity is low, if pollinators are rare, or when plants 

compete for the services of pollinators and pollen quality is limited since pollinators deposit on 

stigmas self or incompatible pollen (Ramsey and Vaughton, 2000; and references in). The early 

flowering of A. dealbata and A. longifolia might limit the number and diversity of insects available for 

pollination, thus, explaining the results obtained. Since very few native species flower as early as 

these two Acacia, it might be hypothesized that they do not have a great impact on native pollination 

networks as it has been shown for other invasive species.  

Acacia is an animal-pollinated invasive plant so has great potential to disrupt interactions 

between native plants and pollinators (Traveset and Richardson, 2006). Their integration into 

pollination webs is facilitated due to being pollinator generalist (Richardson et al., 2000). Invasive 

plant (e.g. Carpobrotus spp., Lantana camara, Mimosa pigra) with rich floral resources, through huge 

or prolonged floral displays, could have a strong negative impact on the reproductive success of a 

native plant if it was chosen by pollinators (Traveset and Richardson, 2006).  
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The impact of flowering A. saligna on insect visitation to co-flowering native species has been 

recently assessed in in South Africa where A. saligna is an aggressive invasive plant (Gibson 2012). 

The results show that one of the native species most-visited by native honeybees (Roepera fulva) 

suffered significantly lower visitation when A. saligna was present (Gibson 2012). From a different 

point of view, pollen and nectar offered by A. dealbata and A. longifolia might be an important winter 

resource for insects but this remains unstudied. 

 

4.3 Offspring performance 

 

In spite of the differences observed in fruit set and mean number of seeds per pod with 

selfing pollination having lower success than cross-fertilization treatments, this pattern was not 

observed for all species in the studied seed and seedling traits. While, in A. melanoxylon and A. 

dealbata seed from open and supplementary pollination were significantly heavier than self-fertilizing 

seeds, A. longifolia had an opposite trend (seeds resulting from the self-pollination treatment were 

significantly heavier than seeds from the outcross pollen or open treatments). A. saligna has a 

different pattern, with differences after open and supplementary pollination treatments, which were 

not differ from spontaneous autogamy and could reflect high levels of self-pollination mediated by 

floral visitors. Self-pollination treatment yielded lighter seeds that the other pollination treatments. 

Regardless of the production of pods in sell fertilizing treatments a decrease in fertility and vigor of 

the self-produced seeds was expected (Moffet and Nixon, 1974). Thus, pollen origin may affect 

offspring success with self-progeny having lower viability in A. dealbata and A. melanoxylon, while no 

patterns were observed for A. longifolia and A. saligna. 

Variation in germinability is a consequence of genetic, phenotypic, and environmental 

conditions under which the seeds mature and can be found among species, populations, and even 

among individuals within a population (Gutterman, 2000). The germination assay for the four Acacia 

species studied reveal significant differences in seed germination between cross-pollination and 

spontaneous autogamy treatments to all Acacia species with the exception of A. saligna. Overall, 

seed germination was higher in the seeds produced by open and supplementary pollination 

treatments than the seeds from self-fertilization treatments (with rates around 50% against 10-20%, 
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respectively). The higher germinability of Acacia species is also a key factor in their invasion 

potential.  

Finally, the weight of one-month seedlings did not differ between treatments in A. 

melanoxylon and A. saligna. In A. melanoxylon and A. dealbata the results were also unbalanced due 

to the reduced sample size. A. longifolia seedlings from the open and supplementary pollination 

treatments were larger than those from self-fertilizing treatments. A. dealbata seedling presented a 

high variability in the open-pollination treatment. A. saligna seedlings were bigger than the seedlings 

of the other three species. This result may suggest that A. saligna self progeny could have survival 

rates similar to outcross progeny. In seed germination and seedling growth experiments with A. 

mearnsii, A. decurrens (Moffett and Nixon, 1974) and A. dealbata (Gibson 2012, references in), their 

self-progeny had a reduced growth and survival than outcrossing progeny. 

Despite that these differences could erode the reproductive assurance benefits of selfing 

(Herlihy and Eckert, 2002), self-progeny still had some viability, and thus can be an option for the 

establishment of Acacia species, although not so successful as outcrossing progeny.  However, 

seedling growth was measured in very young seedlings to account for initial differences in the quality 

of seed resources, and further experiments should be performed to measure possible effects of 

inbreeding depression on reproductive maturity and seed set. 

Several studies with Acacia species concluded that reproductive attributes, including 

flowering, pollination, seed set and dispersal, and seed viability, are improbable to constrain their 

natural recruitment. Germination and seedling establishment are fundamental aspects to the 

maintenance of long term and viable populations of Acacias (Yates et al., 2002; Coates et. al., 2006).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusion 
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General conclusions  

 

1. The studied Australian Acacia species have different investments in the production of 

reproductive units (flowers and flower heads) and in natural reproductive success. But, a high 

intraspecific variability was also found in all studied reproductive features (flower characters, 

reproductive success, and incompatibility system and offspring performance).  

2. Three of the four species are mostly hermaphrodite, while A. melanoxylon has a different 

reproductive strategy, andromonoecy.  

3. Low pod production and, consequently, great floral resources loss, characterize the reproductive 

system of these species. Seed production is likely to be limited by resource availability. The 

environmental effects, such as rainfall, on reproduction and pollen viability of studied species 

need to be investigated. 

4. Despite of the low reproductive success, there is a large production of seeds due to massive 

flowering: Australian Acacias showed a low efficiency in the use of resources but a successful 

reproduction.  

5. Regardless of the lower number of flowers per flower head in comparison with the other species 

studied, Acacia dealbata has a higher production of flower heads and higher natural 

reproductive success and can thus be considered the most aggressive invader of the studied 

species. 

6. All species revealed to be partially self-compatible, although there is also a high variability 

between individual trees. Cross fertilization resulted in higher fruit set and seed to ovule ratios 

than self-fertilization.  

7. Acacia dealbata and A. longifolia are early flowering species and suffered from pollen limitation 

despite the massive flowering.  

8. Pollen origin may affect offspring success with self-progeny having lower viability in A. dealbata 

and A. melanoxylon. However, A. saligna has a self-progeny as viable as outcross-progeny. 

9.   The difficulty in comparing breeding systems of the studied Australian Acacias from native and    

invaded areas is due to lack or scarce information available for both areas.   
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Future perspectives 

 

 

Due to the high intraspecific variability obtained in all four species for all studied 

parameters, more populations should be studied in both native and invaded ranges. Future 

studies should address differences in pre-dispersal seed predation between native and invaded 

areas. Pre-dispersal seed predation by weevils occur in the native range of some Australian 

Acacias and in Iberian woody legumes in Portugal but host switch between native and exotic 

legumes remains unstudied. 

The control of invasive organisms is expensive, labor intensive, and often meets with little 

success. Therefore, it is important to prevent new introductions of potentially invasive species.  

Since there is a strong role of the breeding system in plant invasions, this factor should be 

studied before introduction and included in screening protocols for predicting invasiveness
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Appendix A 

 
Results from the hand pollination experiments for the four Acacia species studied. 

 

Table VII Fruit set from the hand pollination experiments for the four Acacia species studied. 

Treatment A. dealbata A. longifolia A. melanoxylon A. saligna 

Open pollination 0.98 ± 0.172 (19)b 0.90± 0.247 (12)a 3.13 ± 0.531 (16)a 0.85 ± 0.247 (12)a 

Supplementary pollination 1.61 ± 0.263 (19)c 1.67 ± 0.171 (12)c 3.29 ± 0.577 (16)a 1.59 ± 0.282 (12)c 

Spontaneous autogamy 0.42 ± 0.102 (20)a 0.26 ± 0.100 (12)b 0.46 ± 0.132 (16)b 0.79 ± 0.208 (12)b 

Self-pollination 0.52 ± 0.138 (20)ab 0.38 ± 0.073 (11)b 0.93 ± 0.266 (15)b 0.73 ± 0.162 (12)b 

Statistical test 
F 3,62=9.27, 

P<0.001 
F 3,33=16.89, 

P<0.001 
F 3,44 =17.05, 

P<0.001 
F 3,33=11.03, 

P<0.001 

Notes: Fruit set is given as the percentage of flowers developing into fruit from the total number of flowers treated. Values 
are given as mean and standard errors of the mean followed by sample size in parenthesis.  

 

Table VIII Seed to ovule ratio from the hand pollination experiments for the four Acacia species 

studied 

Treatment A. dealbata A. longifolia A. melanoxylon A. saligna 

Open pollination 
0.0043±0.00016 

(16)b 
0.44±0.126 (10) 

b 
1.37±0.0246 

(15)b 
0.34±0.093 

(9)b 

Supplementary 
pollination 

0.0076±0.00036 
(18)b 

0.73±0.090 (12)b 
1.43±0.334 

(14)b  
0.35±0.064 

(12)b 

Spontaneous 
autogamy 

0.0017±0.00017 
(14)a 

0.12±0.034 (8)a 0.15±0.040 (8)a 
0.10±0.030(10

)a 

Self-pollination 
0.0011±0.00010 

(12)a 
0.12±0.021 (11)a 

 0.29±0.088 
(10)a 

0.13±0.043 
(10)a 

Statistical test 
F 3,26=6.12,  
P=0.0016 

F 3,18 =32.30, 
P<0.001 

F 3,28 =11.15, 
P<0.001 

  F 3,25=5.87, 
P<0.001 

Notes: Seed to ovule ration is given as the percentage of ovules that developed into morphologically viable seeds from 
the total number of ovules available in the hermaphrodite flowers treated. Values are given as mean and standard errors 
of the mean followed by sample size in parenthesis.  
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Table IX Seed production from the hand pollination experiments for the four Acacia species studied. 

Treatment A. dealbata A. long folia A. melanoxylon A. saligna 

Open pollination 
3.09 ± 0.171 

(250)b 
5.66 ± 0.020 

(198)b 
4.55 ± 0.155 

(472)b 
2.82 ± 0.156 (209)b 

Supplementary 
pollination 

3.27 ± 0.012 
(437)b 

5.95 ± 0.137 
(372)b 

5.19 ± 0.194 
(252)c 

2.61 ± 0.102(315)b 

Spontaneous 
autogamy 

1.58 ± 0.199(78)a 4.34 ± 0.492 (29)a 
2.82 ± 0.436 

(33)a 
1.14 ± 0.119 (83)a 

Self-pollination 1.63 ± 0.264 (78) 3.69 ± 0.321 (49)a 
2.77 ± 0.314 

(93)a 
1.53 ± 0.140 (83)a 

Statistical test 
F 3,687=5.13 
P=0.0016 

F 3, 631=11.96 
P<0.001 

F 3,751=19.62 
P<0.001 

 F 3,592=17.46 
P<0.001 

Notes: Seed production is given as the mean number of morphologically viable seeds produced per pod. Values are 
given as mean and standard errors of the mean followed by sample size in parenthesis.  
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Figure 19. Mean number of aborted seeds from the hand pollination experiments for the 

four Acacia species studied. (A) A. dealbata; (B) A. longifolia; (C) A. melanoxylon; (D) A. 

saligna. Seed abortion is given as the mean number of aborted seeds produced per pod. 

Pollination treatments: OP, open pollination; SP, supplementary pollination; SA, 

spontaneous autogamy; A, Self-pollination. Different letters reveal statistically significant 

differences at P < 0.05 among treatments within species.  

 

 

Table X Results of statically analysis of the number of aborted seeds per pod from 

the hand pollination experiments for the four Acacia species studied (GLZ with an 

error Gaussian and an identity function, plant was a random factor). 
 

Treatment A. dealbata A. longifolia A. melanoxylon A. saligna 

Statistical test 
F 3,633=4.35 
P=0.0048 

F 3,633 =4.35  
P=0.0048 

F 3,831=5.85  
P=0.0009 

F3,674 =0.75 
P=0.524 
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Appendix B 

 

 

Table XI Index of self-incompatibility (ISI) values of some Acacia species founded in literature (with respective 

references) mainly from native populations of Australia. This ISI values are presented in Figure as a dot (in 

Results). 

 

 

 

  

Species   ISI Area 

 

           Status 

 

References 

A. baileyana 0.02 

Australia 

Native 

Gibson et. al., 2012 A. dealbata  0.727 

A. mearnsii 0.0405 

A. mearnsii 0.00 

Kenrick and Knox 1989 

 

A. myrtifolia 0.17 

A. paradoxa 0.79 

A. pycnantha 0.008 

A. retinodes var. uncifolia 0.02 

A. terminalis 0.07 

A. saligna 0.77 Millar et al., 2008 

A. sciophanes 0.61 

Gibson et. al., 2012 A. caven  0.001 Argentina 

A. tortilis 0.2 Senegal 

A. saligna 0.82 South Africa       Invaded  Gibson 2012 
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Appendix C 

Results from the offspring performance after different hand pollination experiments for the 

four Acacia species studied. 

 

 
 

Table XII Seed weight from the hand pollination experiments for the four Acacia 
species studied. 

 

Treatment A. dealbata A. longifolia A. melanoxylon        A. saligna 

Open pollination 

 
15.5 ± 0.20 

(193)b 
 

19.8 ± 0.21 
(356)a 

22.0 ± 0.31 
(191)b 

17.8 ± 0.20 
(142)b 

Supplementary 
pollination 

15.2 ± 0.28 
(103)b 

19.3 ± 0.23 
(190)a 

23.1 ± 0.35 
(151)b 

18.7 ±0.21 

(229)b 

Spontaneous 
autogamy 

14.3 ± 0.39 (64)a 
21.3 ± 0.27 

(140 )b 
19.5 ± 0.66 (70)a 

17.9 ± 0.33 

(79)b 

Self-pollination 13.9 ± 0.31 (55)a - 
20.4 ± 0.44 

(134)a 
16.7 ± 0.28 (79)a 

Notes: Seed weight (mg) is given as mean and standard errors of the mean followed by sample size in parenthesis. 
Different letters mean significant differences between treatments within each species. 
 

 

  

Table XIII Results of the General Liner Model (GLM) analysis for the comparisons of the seed weight 

from the hand pollination treatments for the four Acacia species studied. 

 A. dealbata A. longifolia A. melanoxylon A. saligna 

 d.f.    F     P d.f.     F      P d.f.     F       P d.f      F       P 

Treatment 3    1.174   0.344 2     0.050    0.952 3    6.058    0.004 3    3.018    0.47 

Tree 8    3.236   0.019 19    2.735    0.046         11   3.117    0.014 10    3.539    0.004 

Treatment*tre
e 

16    3.389   <0.001 11    10.408   <0.0001 19   11.077   <0.001 23    1.939    0.006 
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Table XIV Seed germination from the hand pollination experiments for the four Acacia species 

studied. 

Treatment A. dealbata A. longifolia A. melanoxylon A. saligna 

Open pollination 
51.3 ± 20.27 

(2)c 
40.2 ± 11.01 

(10)ac 
- 

47.6 ± 10.06 
(9)a 

Supplementary 
pollination 

55.4 ± 16.73 
(2)c 

49.4 ± 9.90 
(12)bc 

48.6 ± 17.26 
(7)a 

48.3 ± 13.86 
(10)a 

Spontaneous 
autogamy 

17.1 ± 2.87 
(6)ab 

28.4 ± 13.16 (7)a 9.4 ± 2.00 (3)b 
53.7 ± 11.08 

(10)a 

Self-pollination 
20.8 ± 4.17 

(5)bc 
49.8 ± 7.56 

(11)bc 
- 

37.4 ± 8.64 
(11)a 

Statistical test 
F 3,170=5.48       
 P= 0.0013 

F 3,528=3.32 
P=0.0196 

F 3,129=5.85 
P=0.0170 

F3,420=1.04 
P=0.3758 

Notes: Seed germination is given in percentage as mean and standard error of the mean followed by 
sample size in parenthesis. 
 

 
Table XV Seedling dry weight from the hand pollination experiments for the four Acacia 

species studied. 

Treatment A. dealbata A. longifolia 
A. 

melanoxylon 
A. saligna 

Open pollination 7.6 ± 6.52 (24)a 13.5 ± 0.71 (41)b - 
16.1 ± 1.24 

(51)a 

Supplementary 
pollination 

7.2 ± 0.30 (40)a 13.5 ± 0.59 (64)b 
8.8 ± 0.51 

(39)a 
19.3 ± 

1.31(49)a 

Spontaneous 
autogamy 

4.4 ± 0.64 (3)* 10.2 ± 0.56 (25)a 
12.1 ± 4.11 

(5)a 
17.0 ± 2.12 

(15)a 

Self-pollination 7.3 (1)* 10.2 ± 0.69 (45)a - 
14.9 ± 2.55 

(12)a 

Notes: Seedling dry weight (g) is given as mean and standard error of the mean followed bay sample size in 
parenthesis.  

 
Table XVI Results of the Generalized Liner Model analysis for the comparisons of the seedling weight 

from the hand pollination treatments for the four Acacia species studied. 

 A. dealbata A. longifolia A. melanoxylon A. saligna 

 d.f.   F    P d.f.   F   P d.f.   F    P d.f    F   P 

Treatment 1    0.893  0.436 3    3.913   0.021 1    0.003   0.967 3   1.081.  0.372 

Tree 5    0.508  0.770 11   2.056  0.068 5    1.982   0.569 10   0.035   0.918 

Treatment*tree 2    3.764  0.030 16   1.878   0.027 1    3.603   0.066 15   0.086   0.114 
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Appendix D 

 

Figure 20.  Estimated overall reproductive success for the four Acacia species 

studied. AD - A. dealbata; AL - A. longifolia; AM - A. melanoxylon; AS - A. saligna. 

Overall reproductive success of  open pollination (dark grey bars) and spontaneous 

autogamy (light grey bars) treatments as a mean value of the tree success. Different 

letters reveal statistically significant differences at P < 0.05 among treatments within 

species. 

Table XVII Results of the Generalized estimating equations (GEE) analysis for the 

estimated overall reproductive success after open and spontaneous autogamy 

pollination treatments for the four Acacia species studied AD - A. dealbata; AL - A. 

longifolia; AM - A. melanoxylon; AS - A. saligna (tree as a subject variable; success as a 

dependent variable). The reproductive success was modelled as a multinominal distribution, with 

cumulative logit used as the link function. 

Species       Test of model effects 

               Wald x
2
              df        P 

AS ,056 1 ,812 

AL 1,494 1 ,222 

AD 6,609 1 ,010 

AM 19,835 1 ,000 
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Appendix E 

 

 

Figure 21. Different types of pistils found in A. melanoxylon. This species 

has transitional flowers between male to hermaphroditic.  A: Dissecting 

microscope photos of pistils, with different sizes, from the smallest and 

rudimentary, up to the higher normal pistils (see the left to the right). B to E: 

fluorescent microscope photos (aniline blue) corresponding with types of 

pistils in the photo A. B-C: Rudimentary pistil without ovules, these flowers 

were classified as being males. D-E: hermaphrodite flowers; D: Small 

pistils with a high number of ovules per ovary; E: Well-developed ovules in 

a single pistil.   
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Appendix F 

  

 

 

Table XVIII – Statistically analysis (GLZ) results for the differences in the characters used to flower 

head characterization among species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Floral characters 

 
Statistical test 

 
No. anthers 

 
F 3,386 = 740.20 

P < 0.001 
 

Ovules F 3,459 = 11.10 
P <0.001 

 
No. flowers per flower head 

 
F 3,151 = 63.54 

P < 0.001 
 

% hermaphrodite flowers per 
flower head 

F 3,151= 34.54  

P < 0.001 
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