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RESUMO 

 

As fases iniciais da doença de Alzheimer são caracterizadas por alterações na 

eficiência sináptica, que se pensa serem causadas por oligómeros solúveis dos peptídeos 

β-amilóide (Aβ). Estes peptídeos são formados a partir da clivagem proteolítica da 

proteína precursora β-amilóide (APP), através da ação de secretases (α- e β-). Apesar de 

se saber que a formação de Aβ a nível sináptico é provavelmente crucial para o dano 

inicialmente verificado na doença de Alzheimer, a distribuição da APP e das secretases 

(α- β- e γ-) envolvidas no seu processamento proteolítico, em diferentes terminais 

nervosos, permanece desconhecida. Não se sabe ainda por que razão apenas alguns 

tipos específicos de sinapses sofrem degeneração nas fases iniciais da doença. É ainda 

mais surpreendente o facto de não ser conhecida a distribuição a nível sináptico e sub-

sináptico da APP e das secretases, em diferentes tipos de terminais nervosos, em 

diversas regiões cerebrais, bem como o facto de se desconhecer se esta distribuição 

sofre alterações em modelos animais da patologia de Alzheimer. 

Os principais objetivos deste trabalho eram: i) investigar a distribuição sináptica e 

sub-sináptica (zonas pré-, pós- e extra-sinápticas) da APP e das secretases (α- β- e γ-), 

com particular foco no hipocampo, ii) definir a presença de APP e das secretases, bem 

como a sua co-localização em diferentes tipos de terminais nervosos, principalmente 

glutamatérgicos e GABAérgicos e iii) investigar se a idade e condições de doença de 

Alzheimer afectam a distribuição da APP e das secretases em terminais nervosos. A 

distribuição sináptica e a densidade da APP, da BACE1 (β-secretase), da ADAM-10 (α-

secretase) e da presenilina -1 (PS1, um componente da γ-secretase) foram avaliadas por 

Western blot e imunocitoquímica, em preparações sinápticas de hipocampo 

(sinaptossomas e terminais nervosos purificados), que foram obtidas a partir de 

murganhos machos adultos C57/Bl6, com 2-3 meses de idade, a partir de murganhos do 

mesmo tipo, com 9 meses de idade, e também a partir de murganhos triplos 

transgénicos modelos da doença de Alzheimer. Recorrendo a um protocolo de 

fracionamento sináptico, que permite a separação das fracções pré-, pós- e extra-

sinápticas, avaliámos ainda a distribuição sub-sináptica relativa da APP e das secretases. 
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Além disso, fizemos também um estudo preliminar para determinar os níveis de APP 

em amostras de cérebro humano de indivíduos com diferentes idades. 

No hipocampo de murganhos jovens adultos (2-3 meses), através da comparação das 

imunoreactividades da APP e das secretases em sinaptossomas (terminais nervosos) e 

membranas totais, verificámos que a APP, a α- e a β-secretases se encontram presentes 

em terminais nervosos, apesar de não estarem enriquecidas nos sinaptossomas. Também 

observámos que a APP está localizada preferencialmente a nível pré-sináptico, a α-

secretase (ADAM10) se encontra distribuída pré- e extra-sinapticamente, ao passo que a 

β-secretase (BACE1) se encontra principalmente na fração extra-sináptica. Através de 

análise imunocitoquímica, em terminais pré-sinápticos do hipocampo, purificados e 

plaqueados, verificamos que a APP é mais abundante do que as secretases (ADAM10, 

BACE1 e presenilina1, PS1), que a APP e a BACE1 estão parcialmente co-localizadas 

em cerca de 40% e ainda que esta secretase se encontra mais presente nos terminais 

glutamatérgicos do que nos GABAérgicos. Inesperadamente, não observamos 

diferenças significativas na densidade da APP e das α- e β-secretases, nos 

sinaptossomas de hipocampo de murganhos adultos (9 meses de idade), em comparação 

com murganhos jovens adultos (2-3 meses de idade). Por outro lado, em amostras de 

cérebro humano verificámos uma clara diminuição da densidade da APP com o 

aumento da idade (resultados preliminares). Em murganhos triplos transgénicos 

modelos da doença Alzheimer, observámos uma clara diminuição da imunoreactividade 

da ADAM10, bem como um aumento da PS1, por análise de imunocitoquímica. 

Os resultados apresentados neste estudo representam a primeira análise comparativa 

das distribuições sináptica e sub-sináptica da APP e das secretases, em regiões corticais 

(principalmente do hipocampo) do cérebro de murganhos, bem como da avaliação da 

abundância relativa da APP e das secretases e da sua co-localização, em diferentes 

terminais nervosos de hipocampo. Foi também avaliada a existência de alterações 

relacionadas com a idade e com a doença de Alzheimer no que diz respeito à densidade 

da APP e das secretases. Este projeto constitui o primeiro passo para a compreensão da 

particular susceptibilidade para a disfunção e degeneração de sinapses glutamatérgicas e 

GABAérgicas, em etapas iniciais da doença de Alzheimer, e pode vir a ser útil para o 

desenvolvimento de novas estratégias terapêuticas. 

 

Palavras-chave: Sinapses, Doença de Alzheimer, BACE1, ADAM10, Presenilina 1 
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ABSTRACT 

 

The early stages of Alzheimer´s disease (AD) are associated with alterations in 

synaptic efficiency, which are thought to be caused by oligomeric assemblies of soluble 

β-amyloid peptides (Aβ). Aβ are derived from the proteolytic cleavage of the amyloid 

precursor protein (APP) through the action of secretases Although it is widely accepted 

that synaptic Aβ formation is likely crucial for AD initial damage, the distribution of 

APP and secretases which mediate APP proteolytic processing (α- and β-) in different 

nerve terminals remains to be clarified.  It is still not known why only some particular 

synapses begin degenerating in early AD. In fact, it is surprising to note that the 

synaptic and subsynaptic distribution of APP and secretases across different types of 

nerve terminals in different brain regions is unknown, nor is it known if their 

distribution changes in animal models of AD. 

The main goals of this study were: to i) to investigate the synaptic and subsynaptic 

(pre-, post- and extra-synaptic zones) distribution of APP and secretases (α- β- and γ-) 

with a particular focus on the hippocampus, ii) to define the presence of APP and 

secretases and their co-localization in different types of nerve terminals, mainly 

glutamatergic and GABAergic terminals and iii) to investigate whether the age and AD 

condition affect the distribution of APP and secretases in nerve terminals. The synaptic 

distribution and density of APP, BACE1 (β-secretase), ADAM-10 (α-secretase) and 

presenilin -1 (PS1, a component of γ-secretase) were assessed through Western blot and 

immunocytochemical analyses in hippocampal synaptic preparations (synaptosomes and 

purified presynaptic terminals) obtained from adult male C57/Bl6 mice with 2-3 months 

old or 9 months old, and in a triple transgenic mice model of AD (3xTg-AD). Using a 

procedure of synaptic fractioning, which allows the separation of pre-, post- and non-

synaptic (extrasynaptic) fractions we have also evaluated the relative subsynaptic 

distribution of APP and secretases. Moreover, we also perform a preliminary study to 

determine the levels of APP in cortical human samples from individuals with different 

ages.  

In hippocampus of young adult mice (2-3 months), by comparing the 

immunoreactivities of APP and secretases in synaptosomes (nerve terminals) and total 

membranes, it was found that APP, α- and β-secretases are present in nerve terminals, 
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albeit they were not enriched in synaptosomes. It was also observed that APP was 

mainly located presynaptically, the α-secretase (ADAM10) was distributed pre- and 

extrasynaptically, whereas β-secretase (BACE1) was preferentially located in the 

extrasynaptic fraction. Through immunocytochemistry analysis, in platted purified 

hippocampal presynaptic nerve terminals, we observed that APP was more abundant 

than secretases (ADAM10, BACE1 and Presenilin1) in nerve terminals and also that 

APP and BACE 1 are partially co-localized by about 40%, and this secretase is present 

in higher levels in glutamatergic than in GABAergic terminals.  Unexpectedly, no 

significant differences were observed in the density of APP and α- and β-secretases in 

hippocampal synaptosomes of adult mice (9 months old as compared to young adult 

mice (2 months old), whereas in cortical human brain it seems to occur a reduction of 

APP density with the advance of age (preliminary data). In triple transgenic AD model 

mice, we observed a clear decrease in ADAM 10 immunoreactivity, as well as an 

increase of PS1 in immunocytochemical analysis. 

The results present in this study provide the first comparative analysis of synaptic 

and subsynaptic distribution of APP and secretases in cortical brain regions of mice 

mainly in hippocampus; and the assessment of the relative abundance of APP and 

secretases and their co-localization in different hippocampal nerve terminals. Age- and 

AD pathology-related changes in APP and secretases were also investigated. This 

provides a first step to understand the particular susceptibility to dysfunction and 

degeneration of glutamatergic and GABAergic synapses in early AD, and might be 

useful to the development of novel therapeutic strategies.  

 

 

Keywords: Synapses, Alzheimer’s Disease, BACE1, ADAM10, Presenilin  
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1.1. Alzheimer’s Disease: a loss of synaptic function 

 

Alzheimer’s disease (AD) is the most common of all dementia disorders in the 

elderly people and is characterized by a progressive decline in cognitive functions, 

involving mainly memory deterioration (Belousov et al., 2009). Nowadays, more than 

35 million people live with dementia and this number is estimated to double in the next 

20 years. Large amounts of resources and money are spent in caring for this type of 

patients and, therefore, new therapeutics and treatment are urgently needed (Wimo et 

al., 2013).   

AD may be categorized into two types. The inherited form (familial AD) is the rarest 

one and is due to autosomal genetic mutations that exist in the genes encoding the 

Amyloid-β Precursor Protein (APP) and presenilins 1 and 2 (PS1 and PS2) (Götz et al., 

2011). The causes of the sporadic AD form are not completely clear, but several risk 

factors have been identified, such as aging and specific cardiovascular diseases (Götz et 

al., 2011). However, histopathologically both AD familial and sporadic forms are 

identical, as they are characterized by brain atrophy and by the presence of amyloid 

plaques. Those plaques are extracellular deposits that are composed mainly by amyloid-

β (Aβ) peptides, which are formed by 38 to 43 amino acid residues. The Aβ peptides are 

formed via the sequential proteolytic cleavage of APP, and accumulate in particular 

brain regions, like the hippocampus, which is particularly important in the formation 

and/or retrieval of some forms of memory, and the cortex (Zhang et al., 2011). 

Although AD brains display cortical atrophy, the general loss of brain volume 

appears to be a consequence of shrinkage and damage of neuronal processes (synapses 

and dendrites), which are particularly vulnerable to Aβ peptides (Huang and Mucke, 

2012). Indeed, the hippocampal synaptic loss is an AD early event and the major 

structural correlates of cognitive dysfunction. Several studies suggest that lower levels 

of synaptic proteins are directly related to AD cognitive impairment and its severity 

(Arendt, 2009).  

For the last twenty years, the idea that AD development depends on Aβ peptide 

formation and its deposition has dominated and it is usually called the “Amyloid 

cascade hypothesis” (Hardy and Higgins, 1992). According to this theory, the main 

event in the pathogenesis of AD is the formation of Aβ40-42, through the processing of 

the Amyloid Precursor Protein (APP). This form of Aβ is highly neurotoxic and is 
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considered to be the primary causative agent of neuropathological changes occurring in 

AD brains including: i) the early disruption of synaptic function, ii) Aβ aggregation and 

the subsequent formation of amyloid plaques, iii) tau protein hyperphosphorylation and 

neurofibrillary tangles (NFT) formation, and iv) neuronal death. However, in the last 

years, this hypothesis has been reappraised. First of all, the principal toxic agent is now 

considered to be the oligomeric forms of Aβ. Furthermore, several therapeutic 

approaches, based solely on this hypothesis, have not reached clinical trials (Nalivaeva 

and Turner, 2013).  

Brain dysfunction in this pathology seems to occur in a staged biological sequence: 

neuronal injury, synaptic failure and neuronal death (Coleman et al., 2004). Therefore, 

prior to neuronal loss, the early phases of AD are associated to alterations in synaptic 

efficiency. Since defects in synaptic transmission occur before the formation of amyloid 

plaques, the neuroplasticity alterations are thought to be caused by oligomeric 

assemblies of soluble Aβ peptides (Cleary et al. 2005). The oligomers of Aβ peptides 

are thus considered to be the toxic agent, as they are directly involved in synaptic 

damage and subsequent neurodegeneration (Cleary et al. 2005, Arendt, 2009). Several 

evidence suggest that Aβ oligomers have a more potent effect in disrupting synaptic 

function than Aβ fibrils and amyloid deposits.  In fact, in vitro and in vivo studies have 

shown that elevated levels of Aβ oligomers affect the glutamatergic synaptic 

transmission and cause synaptic loss, which is one of the pathological hallmarks of AD 

that directly correlates with cognitive decline (Palop and Mucke, 2010).  

The accumulation of Aβ peptides in the brain is a consequence of an altered balance 

between its synthesis, clearance and aggregation rate. Although in normal conditions the 

human brain produces considerable amounts of Aβ peptides, those quantities are much 

higher in AD patients, and they are approximately equivalent to 7 years of total Aβ 

production in healthy individuals (Karran et al., 2011). It has been recently 

hypothesized that the pathogenic mutations that occur in genes encoding APP affect its 

dimerization at the membrane, changing its conformation and/or its stability. This may 

be a probable reason for an alternative proteolysis by γ-secretase and the enhancement 

of the production of Aβ1-42 rather than Aβ1-40 (Nadezhdin et al., 2011). 
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1.2. APP 

 

The APP, which gives rise to Aβ peptides, belongs to a protein family that includes 

also amyloid precursor-like proteins, such as APLP1 and APLP2 in mammals. All the 

elements of the family are type 1 transmembrane proteins, resemble cell-surface 

receptors, have large extracellular domains (that constitute ~88% of the total protein 

mass) and short cytoplasmic regions, and are processed in similar ways (O’Brien and 

Wong, 2011). In addition to that, they share some regions, conserved among the family 

members, but the Aβ domain is unique to the APP (Zhang et al., 2011). One of the most 

conserved regions among the family to which APP belongs is located at the N-terminal, 

immediately after the signal sequence (Gralle and Ferreira, 2007). 

APP has been widely studied, but its exact functions are still unclear. The protein 

members of the APP family seem to be involved in a diversity of cellular processes, 

related to the development of the nervous system. Quite a few roles have been proposed 

and, among others, it is thought that APP participates in synaptogenesis, spine 

formation, synaptic vesicle release, axonal transport, cell adhesion, transmembrane 

signal transduction. Like APP, also the other family members protein APLP1 and 

APLP2 play an important role in synaptogenesis, during some important periods of 

brain development (Octave et al., 2013). Besides the crucial role of APP in synaptic 

formation and intracellular signalling, it also regulates intracellular calcium 

homeostasis, which is crucial for synaptic transmission; thus APP is currently 

considered to have a key modulator of  synaptic plasticity and neuronal viability 

(Kedikian et al., 2010; Zhang et al., 2011; Octave et al., 2013).  For these reasons, it is 

thought that the loss of APP function might contribute to disturbed neuronal 

communication and consequently to memory impairment. 

Moreover, a lot of similarities between APP and the Notch receptor have been 

reported, suggesting that APP may function as a cell surface receptor (Zhang et al., 

2011). Some studies also revealed that Aβ can bind to APP and thus act as a potential 

ligand. Besides the Aβ peptide, other compounds have been found to interact with APP, 

such as F-spondin, a neuronal secreted glycoprotein, as well as Nogo-66 receptor, 

whose binding regulates Aβ production and downstream signaling (Zheng and Koo, 

2011). 
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1.3. APP production and proteolytic processing 

 

APP production is particularly elevated in neurons and, in humans, APP is encoded 

by a gene located on chromosome 21 that  was identified for the first time in 1987 (for 

review see Thinakaran and Koo, 2008).  

Several important steps in APP formation occur at the cell surface and in the trans-

Golgi Network (TGN). It is processed in the constitutive secretory pathway and, like 

other proteins; this peptide is produced in the endoplasmatic reticulum (ER) and then 

transported through the TGN to the plasmatic membrane. After reaching the cell 

membrane, APP seems to be re-internalized and trafficked by endocytic and recycling 

compartments or processed in lysosomes (O’Brien and Wong, 2011)  (Figure 1). 

 

 

 

Figure 1. Intracellular trafficking of APP. The APP nascent molecules are represented by 

black bars. They mature through the constitutive secretory pathway (step 1). Once APP reaches 

the cell surface, it is re-internalized (step 2) and trafficked through endocytic and recycling 

compartments back to the cell surface (step 3) or degraded in the lysosome (adapted from 

Thinakaran and Koo, 2008)  

 

APP has at least three isoforms that result from alternative splicing of its pre-mRNA, 

APP695, APP751 and APP770. The APP695 is the most abundant in the brain, in normal 

conditions, and is the most commonly expressed by neurons. However, in AD brains the 

amount of APP695 mRNA is reduced, while the mRNA of APP770 is augmented (Davis 

and Laroche, 2003). The two longer APP isoforms (APP751 and APP770) are mostly 

present in glial cells, such as astrocytes (Revett et al., 2013). 
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APP can suffer proteolysis via two major pathways. One of those pathways leads to 

Aβ formation, while the other originates different products. It can be proteolyzed 

directly by α-secretase and then by γ-secretase. Due to the fact that the α-secretase’s 

cleavage point is located within the Aβ sequence, the process does not lead to Aβ 

production and so it is called the non-amyloidogenic pathway. This processing occurs 

mainly at the cell surface ( Chow et al., 2010; O’Brien and Wong, 2011;).  

On the other hand, the amyloidogenic pathway leads to Aβ production. This peptide 

is generated from endoproteolysis of APP, performed by β- and γ-secretases 

(Mangialasche et al., 2010). β-secretase cleaves the APP in a specific site located in the 

extracellular domain (N-terminal), whereas γ-secretase’s cleavage point is in the 

transmembrane region (C-terminal) (Tabaton and Tamagno, 2007; Thinakaran and Koo, 

2008). The resulting peptides vary in length: Aβ40 is the most common form, but Aβ42 is 

more prone to aggregate and, thus, it is present in large quantities in amyloid plaques 

(Mangialasche et al., 2010). This processing occurs in endosomal compartments that 

contain the required proteases (secretases) and is a consequence of the re-internalization 

of APP (O’Brien and Wong, 2011). It is interesting to point out that Aβ peptides are 

formed only by the cleavage of APP and not by the cleavage of other APP protein 

family members (Priller et al., 2006). 

Both the non-amyloidogenic and the amyloidogenic pathways are crucial to 

guarantee normal brain function. If the homeostasis between them is disrupted, the non 

–amyloidogenic APP processing is affected and quite a few metabolic routes become 

compromised. Example of this is the switch to the amyloidogenic pathway in AD, 

leading to overproduction of Aβ (Epis et al., 2012). 

The understanding of the mechanisms involved in APP trafficking and proteolytic 

processing are, therefore, essential to delineate the pathogenesis of AD (Tan and Evin, 

2011). 
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1.4. Secretases involved in the proteolytic processing of APP  

 

1.4.1. α-secretase 

 

The cleavage of APP by the α-secretase occurs within the Aβ sequence, preventing 

the Aβ peptide formation. The enzyme’s action results in the production of a soluble 

ectodomain, called sAPPα, and of a membrane-bound 83-amino acid C-terminal 

fragment (C83), also known as α-Carboxyl-terminal fragments (α-CTF) (Tan and Evin, 

2011). The sAPPα acts as a proliferative factor, has a protective role against excitotoxic 

and ischemic injuries and is essential to neuroplasticity (Zhang et al., 2011).  

 

 

Figure 2. The α-secretase-mediated cleavage of APP, which leads to the release of sAPPα 

and of a C-terminal fragment (C83) (adapted from Lichtenthaler, 2011) 

 

 

It is known that quite a few elements of the ADAM (a disintegrin and 

metalloproteinase) family exhibit α-secretase-like activity. In fact, ADAM9, ADAM10 

and ADAM17, which are type I transmembrane proteins, have been suggested to act as 

α-secretases. Among these proteases, ADAM10 is considered a key protease in the 

processing of APP and it is also thought to be necessary for the secretion of enough 

sAPPα in vivo. On the other hand, several studies have confirmed that ADAM17, also 

named TACE (tumor necrosis factor-α-converting enzyme) likely affects regulated, but 

not constitutive, APP α-cleavage (Zhang et al., 2011).  

ADAM10 belongs to the zinc proteinase family and its typical structure consists of a 

prodomain, a catalytical domain with a zinc binding sequence, a disintegrin-like domain 
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rich in cysteines, a transmembrane domain and a short cytoplasmic domain (Figure 3) 

(Endres and Fahrenholz, 2010). 

 

 

 

Figure 3. Multidomain structure of ADAM10. This enzyme is composed of 5 different 

domains: 1-prodomain, 2-zinc-binding motif, 3-cystein-rich disintegrin domain, 4-

transmembrane region and 5-short cytoplasmic domain (adapted from Endres and Fahrenholz, 

2010) 

 

 

The ADAM family is formed by proteins, which have both features from cell 

adhesion molecules and proteases. Among different important roles, they are involved 

in fertilization, neurogenesis, angiogenesis and also in the proteolysis of some 

substrates, such as  the Notch receptor and APP (Reiss et al., 2005). 

ADAM10, which is considered to be the major α-secretase, is found mainly in the 

Golgi, where it is supposed to be inactive, as a pro-enzyme. After the cleavage of the 

signal peptide, ADAM10 enters the secretory pathway and suffers N-glycosilation, thus 

becoming an active protease. This activated form is mainly localized at the plasma 

membrane, therefore supporting the idea that the α-secretase mediated APP cleavage 

occurs at the cell surface. On the other hand, ADAM10 is also found in the TGN, so 

APP may also be proteolyzed there (Epis et al., 2012).  
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1.4.2. β-secretase 

The Aβ peptide formation is initiated by β-site APP-cleaving enzyme 1 (BACE1) 

also known as aspartyl protease 2 (Asp2), which was identified as the major β-secretase. 

This enzyme cleaves the APP to the formation of a large soluble APP N-terminal 

portion (sAPPβ) and of a 99-amino acid C-terminal fragment (C99, also known as β-

CTF), that contains the Aβ peptide and does not dissociate from the membrane. The 

C99 fragment is further processed by γ-secretase to release Aβ peptides (Figure 4). 

While Aβ is neurotoxic, sAPPβ is thought to be neuroprotective (Evin et al., 2010; 

Zhang et al., 2011).  

 

 

 

Figure 4. The amyloidogenic processing of APP by BACE1. The cleavage by BACE1 leads 

to the release of sAPPβ and of a C-terminal fragment (C99). C99 is then processed by γ-

secretase to release Aβ and the APP intracellular domain (AICD). Aβ peptides aggregate to 

form toxic oligomers that trigger neurodegeneration. Aβ further self-associates to form fibrils 

and amyloid deposits (adapted from Evin et al. 2010) 

 

 

BACE1 was identified more than 10 years ago as a membrane-anchored aspartyl 

protease and it is expressed mainly in the brain and pancreas (R. Vassar, 1999). The 

highest levels of BACE1 mRNA are found in the brain cortex region. Under normal 

conditions, the BACE1 expression is almost exclusive to neurons, but there also has 

been observed an increase of its distribution in astrocytes with age and following stress, 

trauma, hypoxia or ischemia in transgenic mice. Also, during inflammation, glial cells 

may produce significant amounts of this enzyme. On the other hand, in the brain of AD 

patients, the levels of BACE1 are quite elevated in 50% of the cases and could, 

therefore, provide an early biomarker of this disease (Tan and Evin, 2011; Epis et al., 

2012).  
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BACE1 is a type I membrane protease and has two active site motifs, both necessary 

to its correct function. The enzyme has a luminal active site, which provides a correct 

topological orientation for APP cleavage, while near the C-terminus there is a single 

transmembrane domain (Cole and Vassar, 2008). Several studies suggest that BACE1 

has maximal activity at acidic pH and, thus, it is more active in the acidic subcellular 

compartments of the secretory pathway, such as in the TGN and endosomes (Vassar, 

2004). The β-secretase activity is primarily neuronal, thus it is logical to postulate that 

BACE1 can be upregulated by synaptic activity (Kamenetz et al., 2003). In normal 

conditions, BACE1 has important physiological functions in synaptic transmission and 

plasticity and it is found in CA1 and CA3 regions of the hippocampus. It also seems to 

play an unspecific role in the regulation of presynaptic activity (Wang et al., 2012). 

BACE1, like any of the other secretases involved in APP processing, is not APP-

specific, as it also cleaves some substrates that include neuregulin and the β2 subunit of 

voltage-gated sodium channels, which are both essential elements for the normal brain 

development (Epis et al. 2012). Moreover, this protein, which  is transported throughout 

the axons, seems to have an essential role in axonal outgrowth and brain development, 

and it was reported that the elevated expression of this enzyme in axons, mainly at birth, 

may be related to the myelinization onset by Schwann cells (Epis et al., 2012) 

In addition to BACE1, there is a BACE2 homolog capable of cleaving the APP;  

however, it does not seem to be involved in Aβ production, as the enzyme cleaves near 

the same site as α-secretase (Zheng and Koo, 2011). Besides, the levels of BACE2 in 

the brain are approximately 10-fold lower when compared to BACE1 expression 

(Stockley and O’Neill, 2007). 

Since BACE1 expression is increased in the brain cortex of most patients with 

sporadic AD, the control of this enzyme’s activity, without affecting its interaction with 

other substrates, may constitute a potential therapeutic strategy (Evin et al., 2010). 
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1.4.3. γ-secretase 

 

After α- or β-cleavage, the APP carboxyl terminal fragments are cleaved by γ-

secretase, leading to the production of p3 (a 3 kDa product) or Aβ, respectively. The p3 

does not appear to play any important role and is degraded, while the cleavage of Aβ, 

mediated by β and γ-secretase, can lead to the production of two peptides that vary in 

length: Aβ40, which is the most abundant form, and Aβ42, which is largely present in 

amyloid deposits. 

Although it is usually considered that APP cleavage by α-secretase leads to the 

inhibition of Aβ protein formation, it is interesting to point out that it has been observed 

p3 deposition in the brain of AD patients, so it is possible to conclude that shorter Aβ 

peptides may contribute to some aspects of AD-associated pathology, as well (Gralle 

and Ferreira, 2007; Zheng and Koo, 2011).  

Figure 5 is a schematic representation of the two possible pathways for APP 

cleavage. 

 

 

Figure 5. APP processing through two different pathways. On the left image, the Non-

amyloidogenic processing of APP is shown, involving the cleavage by α-secretase, followed by 

γ-secretase. On the right image, is shown the Amyloidogenic processing of APP, involving β- 

and γ-secretase cleavages. In both pathways, besides their final products (p3 and Aβ), there are 

also formed soluble ectodomains (sAPPα and sAPPβ), C-terminal fragments (α-CTF and β-

CTF) and the APP intracellular domain (AICD) (adapted from O’Brien and Wong, 2011) 
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γ-secretase is a high molecular weight multisubunit protease complex, composed of 

at least four integral membrane proteins: presenilin (PS), nicastrin (NCT), presenilin-

enhancer 2 (PEN-2) and anterior pharynx defective 1 (APH-1) (Figure 6). Presenilin is 

the catalytic component, functioning as an aspartyl protease, while the other three 

elements are cofactors and/or scaffold proteins. NCT is thought to be involved in the 

recognition and binding of substrates and PEN-2 initiates the proteolysis of PS, during 

the activation of the complex (Fraering, 2007). 

 

 

 

 

 

Figure 6. Schematic representation of the four known components of the γ-secretase 

complex: Pen-2, PS1, NCT and APH-1 (adapted from Laudon et al., 2007) 

 

In most genomes studied, the PS family comprises two homologous proteins: PS1 

and PS2. They share more than a half of the amino acid sequence, but they are not 

redundant (Smolarkiewicz et al., 2013). Interestingly, autosomal mutations in PS1 and 

PS2 genes have been suggested as one of the possible causes for AD, as the proteins 

they codify for are involved in the γ-secretase catalytic sites (Karran et al., 2011) 

 

The γ-secretase also does not have unique specificity towards APP and it has been 

proved to cleave more than 50 other type I transmembrane proteins. However, the 

neuronal compartments in which γ-secretase processing occurs have not been identified 

yet (Lazarov et al.,2005). Furthermore, this enzyme is a mediator in multiple signaling 

pathways. In addition to its role in the formation of the Aβ peptide, this enzyme is also 

involved in proteolysis of the intracellular domains of Notch receptor, which is known 

to be responsible for the regulation of some genes crucial to the development (Zhang et 
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al., 2011). The presenilins might also play an important role in synaptic transmission 

and plasticity, the molecular basis for cognitive functions. One of the possible 

mechanisms through which neuronal activity and APP processing correlate is by the 

enhancement and/or depression of APP to γ-secretase cleavage. In fact, it has been 

demonstrated that PS1 is necessary to improve excitatory synaptic transmission, after a 

decrease in neuronal activity (Wang et al., 2012).  

 

 

 

To sum up, since the Aβ peptide oligomers are now known to act and trigger 

synaptotoxicity and the subsequent development of AD and because of the pivotal role 

of APP in AD pathogenesis, it is important to assess whether APP and the secretases 

involved in its metabolism are located at synaptic fractions. The definition of the 

specific localization of these proteins would undoubtedly be of crucial importance for 

the development of novel therapeutical approaches.  
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This work will focus on three main objectives: 

 to define the synaptic and subsynaptic localization of APP and of the 

secretases responsible both for the amyloidogenic and non-amyloidogenic 

processing of APP; 

 

 to define the presence of APP and secretases and their co-localization in 

different types of nerve terminals, mainly glutamatergic and GABAergic;  

 

 to investigate whether the age and AD condition affect the distribution of 

APP and secretases in nerve terminals 
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3. 1. Material 

 

3.1.1. Reagents 

Table 1: Reagents used  

Reagent Supplier 

30% Acrylamide/Bis solution Bio Rad (Portugal) 

Ammonium persulfate (APS) Sigma-Aldrich (Portugal) 

BCA Kit Thermo scientific (USA) 

Bovine serum albumin (BSA) Sigma-Aldrich (Portugal) 

Bromophenol blue Sigma-Aldrich (Portugal) 

Calcium chloride (CaCl2) Sigma-Aldrich (Portugal) 

CAPS ([3-(cyclohexylamino)-1-

propane-sulfonic acid) 

Sigma-Aldrich (Portugal) 

 

CLAP (cocktail of proteases inhibitors) Sigma-Aldrich (Portugal) 

Dithiothreitol (DTT) Sigma-Aldrich (Portugal) 

ECF GE Healthcare (United Kingdom) 

Ethylenediaminetetraacetic acid 

(EDTA) 

Sigma-Aldrich (Portugal) 

 

Glucose Sigma-Aldrich (Portugal) 

Glycerol Sigma-Aldrich (Portugal) 

Halothane Sigma-Aldrich (Portugal) 

HEPES Sigma-Aldrich (Portugal) 

Hydrochloric acid (HCl) Sigma-Aldrich (Portugal) 

Magnesium Chloride (MgCl2) Sigma-Aldrich (Portugal) 

Methanol Sigma-Aldrich (Portugal) 

Normal Horse Serum (NHS) Invitrogen (United Kingdom) 

Paraformaldehyde Sigma-Aldrich (Portugal) 

Percoll GE Healthcare (United Kingdom) 

Penylmethanesulfonylfluoride (PMSF) Sigma-Aldrich (Portugal) 

Poli-D-Lysine Sigma-Aldrich (Portugal 

Potassium chloride (KCl) Sigma-Aldrich (Portugal) 

ProLong Gold Antifade Invitrogen (United Kingdom) 

Sodium dodecyl sulfate (SDS) Bio Rad (Portugal) 

Sodium azide Sigma-Aldrich (Portugal) 

Sodium Bicarbonate (NaHCO3) Sigma-Aldrich (Portugal) 

Sodium Chloride (NaCl) Sigma-Aldrich (Portugal) 

Sodium phosphate monobasic 

(NaH2PO4) 

Sigma-Aldrich (Portugal) 

Sucrose Sigma-Aldrich (Portugal) 

TEMED Sigma-Aldrich (Portugal)  

Triton -X-100   Sigma-Aldrich (Portugal) 

Trizma base Sigma-Aldrich (Portugal) 

Tween Sigma-Aldrich (Portugal 
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3.1.2. Antibodies 

Table 2: Primary and secondary antibodies for Western blot 

Antibodies Supplier Host Type Dilution 

ADAM10 

C-terminal 

Millipore Rabbit Polyclonal 1:1000 

APP  

C-terminal 

Sigma Rabbit Polyclonal 1:1000 

BACE Millipore Mouse Monoclonal 1:1000 

Presenilin-1 Abcam Mouse Monoclonal 1:500 

PSD-95 Sigma Mouse Monoclonal 1:20000 

SNAP-25 Sigma Mouse Monoclonal 1:40000 

Synaptophysin Millipore Rabbit Polyclonal 1:20000 

Syntaxin Sigma Mouse Monoclonal 1:40000 

β-actin Sigma Mouse Monoclonal 1:20000 

Rabbit- alkaline  

phosphatase 

conjugate  

(AP) 

 

GE 

Healthcare 

 

Goat 

 

IgG + IgM 

(H+L) 

 

 

1:20000 

Mouse-AP GE 

Healthcare 

Goat IgG (H+L) 1:20000 

 

Table 3: Primary and secondary antibodies for immunocytochemistry 

Antibodies Supplier Host Type Dilution 

APP C-terminal Sigma Rabbit Polyclonal 1:500 

APP N-terminal Millipore Mouse Monoclonal 1:500 

ADAM10 

 C-terminal 

Millipore Rabbit Polyclonal 1:100 

BACE 

 C-terminal 

Millipore Mouse Monoclonal 1:300 

PS1 Abcam Mouse Monoclonal 1:100 

PSD-95 Sigma Mouse Monoclonal 1:200 

vGLUT1 Synaptic Systems Guinea Pig Polyclonal 1:1000 

vGAT Synaptic Systems Guinea Pig   Polyclonal 1:1000 

Synaptophysin Millipore Rabbit Polyclonal 1:200 

Synaptophysin Sigma Mouse Monoclonal 1:200 

Anti–Mouse  

Alexa Fluor 488 

Invitrogen Donkey IgG (H+L) 1:1000 

Anti–Mouse 

Alexa Fluor 594 

Invitrogen Donkey IgG (H+L) 1:1000 

Anti-Rabbit  

Alexa Fluor 488 

Invitrogen Donkey IgG (H+L) 1:1000 

Anti-Rabbit  

Alexa Fluor 594 

Invitrogen Donkey IgG (H+L) 1:1000 

Anti–Guinea  

pig  Alexa Fluor  

488 

Invitrogen Donkey IgG (H+L) 1:1000 
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3.1.3. Animals 

In our study, three types of mice were used:  

1- male  C57/Bl6  mice with  2-3 months old 

2- male C57/Bl6 mice with 9 months old  

3- male triple transgenic AD mice (3xTg-AD), and the respective control mice 

(Wild –type) mice15 months old. 

Male C57 Black 6 mice were obtained from Charles River (Barcelona, Spain). 

The 3xTg-AD transgenic mice and the wild-type littermates were obtained from a 

colony of these animals that exist at the CNC animal facilities. These animals were 

obtained from Frank La Ferla group (University of California, Irvine, CA, USA). The 

animals were housed under controlled temperature (23 ± 2 ºC), subject to a fixed 12 h 

light/dark cycle, with free access to food and water. All efforts were made to reduce the 

number of animals used and to minimize their stress and discomfort. The animals were 

sacrificed by under anesthesia with halothane (no reaction to handling or tail pinch, 

while still breathing). 

 

3.1.4. Human samples 

Brain samples were obtained at autopsy from the Instituto de Medicina Legal 

(Coimbra), thanks to collaboration between Beatriz da Silva and our group, namely 

Rodrigo A. Cunha and Paula Canas. The samples used were prepared and kindly 

provided by Paula Canas.  
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3.2. Methods 

 

3.2.1. Synaptosomal Preparations 

Synaptosomes are re-sealed nerve terminals, which enclose all the typical neuronal 

contents, including cytoplasm, synaptic vesicles and mitochondria, and present several 

advantages that make them one of the best models to study the physiological properties 

of synapses. Their functions closely resemble nerve terminals in vivo: they can produce 

ATP, they have functional ion channels, carriers and receptors on their plasma 

membranes and also functional proteins, enzymes and synaptic vesicles, capable of 

taking up and releasing neurotransmitters (Dunkley et al., 2008). The synaptosomal 

preparations we used are pure enough to study physiological aspects of synaptic 

function. The isolation of synaptosomes can be done using two different procedures: 

 

3.2.1.1. Rapid isolation of synaptosomes and total membranes 

The animals were anesthetized under halothane atmosphere before being sacrificed 

by decapitation. Membranes from Percoll-purified synaptosomes were prepared as 

previously described by our group (Rebola et al., 2005). The two hippocampi from one 

mouse were homogenized at 4º C in sucrose solution (0.32 M), containing 1 mM 

EDTA, 10 mM HEPES, 1 mg/ml bovine serum albumin (BSA, pH 7.4).  The 

homogenate was centrifuged at 3000 xg for 10 min (Sigma 3-18K centrifuge, rotor 12-

158H), the supernatant was collected and centrifuged at 14000 xg for 20 min at 4º C 

(Sigma 3-18K centrifuge, rotor 12-158H). The supernatant was discarded and the pellet 

was either taken as total membrane fraction, resuspended in RIPA buffer (supplemented 

with 2 μM PMSF and 1% CLAP) for Western blot analysis and stored at -20ºC or it was 

resuspended in 1 ml of a 45% (v/v) Percoll solution made up in a Krebs solution 

(composition: 140 mM NaCl, 5 mM KCl, 25 mM HEPES, 1 mM EDTA, 10 mM 

glucose, pH 7.4). After centrifugation at 14,000 xg for 2 min at 4 °C, the top layer was 

collected (synaptosomal fraction), washed in 1 ml Krebs solution and resuspended in 

Krebs solution. This mixture was centrifuged at 14,000 xg for 20 min at 4 °C 

(eppendorf centrifuge). The resulting pellet corresponded to the nerve terminal 

membranes and was resuspended in RIPA buffer (50 mM Tris HCl pH 8; 150 mM 
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NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS )supplemented with 2 μM 

PMSF and 1% CLAP) for Western blot analysis and stored at -20ºC. 

 

3.2.1.2.Isolation of synaptosomes with a discontinuous Percoll gradient 

First of all, gradients with Percoll solutions were prepared and maintained on ice. 

The Percoll solutions were prepared in a 0.32 M sucrose solution with 1 mM EDTA and 

0.25 mM DTT, pH 7.4 at 4ºC. In each tube, the gradient was built as follows (from 

bottom to top): 3 ml of a 23% (v/v) Percoll solution, 4 ml of a 10% (v/v) Percoll 

solution and 3 ml of a 3% (v/v) Percoll solution (Figure 7).  

 

 

 

 

 

 

 

 

 

 

Figure 7. Representation of the discontinuous Percoll gradient (adapted from Dunkley et al., 

2008)  

 

Hippocampi were removed from the sacrificed mice and homogenized in a medium 

containing 0.32 M sucrose and 10mM HEPES (pH 7.4). The homogenates were 

centrifuged at 2000 xg for 5 min at 4º C (Sigma 3-18K centrifuge, rotor 12-158H), the 

supernatants collected and further centrifuged at 9500 xg for 13 min at 4ºC (Sigma 3-

18K centrifuge, rotor 12-158H). The supernatants were discarded and the pellets re-

suspended in 2 ml of 0.32 M sucrose and 10 mM HEPES (pH 7.4). This suspension was 

slowly and carefully placed over the top 3% layer in each tube containing the Percoll 

discontinuous gradients prepared before. These gradients were centrifuged at 25000 xg 

for 11 min at 4ºC, without deceleration (Avanti J-26X centrifuge, rotor JA-22-50). 

Synaptosomes were collected between the 10% (v/v) and 23% (v/v) Percoll bands and 

diluted in 15 ml of HEPES buffered medium (HBM, containing: 140 mM NaCl, 5 mM 
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KCl, 5 mM NaHCO3, 1.2 mM NaH2PO4, 1 mM MgCl2, 10 mM glucose and 10 mM 

HEPES, pH 7.4). Then, a centrifugation at 22000 xg for 11min at 4º C was performed, 

and the synaptosomal freely-moving pellets were carefully removed and resuspended in 

HBM. 

 

 

3.2.2. Subsynaptic fractionation 

The separation of the presynaptic active zone, postsynaptic density and extrasynaptic 

fractions from cortex nerve terminals was performed using a methodology previously 

described by our group (Rebola et al., 2005). For synaptosomes preparation, in order to 

obtain a good yield, it is advisable to use at least three mice cortex per procedure. The 

cortices were homogenized in Isolation Buffer (IB, containing: 0.32 M sucrose, 0.1 mM 

CaCl2, 1 mM MgCl2, 1% CLAP and 1 mM PMSF). The homogenate was resuspended in 

2 M sucrose and 0.1 mM CaCl2 and the obtained mixture (1.25 M sucrose) gently 

agitated. This solution was separated into tubes Ultraclear
TM

 and 1 M sucrose solution, 

containing 0.1 mM CaCl2, was carefully added in order to allow the formation of a 

gradient. The tubes were equilibrated with IB solution and centrifuged at 100000 xg at 

4º C, for 3 h (Beckman Coulter – Optima CL – 100XP DU ultracentrifuge, rotor 

SW41Ti). The IB and the myelin layer present at the interface IB/1M sucrose were 

aspirated and the synaptosomes were collected at the interface 1.25 M/1 M sucrose. 

They were diluted 10 times in IB and centrifuged at 15000xg, during 30 min (Avanti J-

26x centrifuge, rotor JA-22-50). Part of the obtained supernatant was centrifuged at 

12400 xg (eppendorf centrifuge) and the obtained pellet resuspended with 5% SDS and 

stored for control analysis, at -80ºC. The pellet was re-suspended in IB and diluted 1:10 

in pre-cooled 0.1 mM CaCl2. An equal volume of 2 x solubilisation buffer (2% Triton 

X-100, 40 mM Tris, pH 6.0) was added to the suspension. The mixture was incubated 

for 30min on ice with mild agitation and then centrifuged at 40000 xg for 30 min, at 4º 

C (Avanti J-26x centrifuge, rotor JA-22-50). The pellet corresponds to synaptic 

junctions and the supernatant to the extrasynaptic fraction. The extrasynaptic fraction 

was decanted and proteins precipitated with six volumes acetone at -20º C, overnight. 

The synaptic junctions pellet was washed in 1x solubilization buffer (20mM Tris, 1% 

Triton X-100, pH 6.0) and resuspended in 10 volumes of another 1x solubilization 

buffer (20mM Tris, 1% Triton X-100, pH 8.0). This mixture was incubated for 30 min 
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on ice, with mild agitation, and then centrifuged at 40000 xg for 30 min at 4º C (Avanti 

J-26x centrifuge, rotor JA-22-50). The obtained supernatant corresponds to the 

presynaptic fraction and was processed as described for the extrasynaptic fraction. The 

insoluble pellet corresponds to the postsynaptic density, which was resuspended in a 

minimal volume of 5% SDS with 0.1 mM PMSF and stored overnight at -20ºC. The 

extra and presynaptic fractions were pelleted by centrifugation at 18000 xg for 30 min 

at -15º C (Sorvall RC6, rotor SS34) and also solubilized in 5% SDS with 0.1 mM 

PMSF, before storing at -20º C.  

 

 

Figure 8. Schematic representation of the subsynaptic components that are expected to be 

enriched in each of the fractions isolated in this procedure (adapted from Phillips et al., 2001) 

 

 

 

3.2.3. Human brain total extracts preparation 

Human brain cortex, obtained from individuals with different years old that died 

from unknown causes, were homogenized in RIPA buffer, supplemented with 2 μM 

PMSF and 1% CLAP, and then sonicated for 20 min.  

The post mortem interval (PMI) average was 40.1 h. The quality of the samples used 

was taken into account: the average pH value was 6.4 and the average RNA integrity 

number (RIN) was 6.1. 
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3.2.4. Protein quantification by the BCA method  

Protein determination was performed using the BCA protein assay reagent kit. In this 

method, BSA is used as a protein standard. Therefore, a standard curve was drawn, by 

preparation of several dilutions of BSA in miliQ water, using: 2, 1, 0.5, 0.25, 0.125, 

0.0625 and 0 μg/μl of BSA. The samples and the solution in which the samples had 

been resuspended before storage were diluted 10 times. In a 96 well dish, the standard 

curve was prepared in triplicate, by adding lysis buffer and BCA reagent to each well 

containing different BSA concentrations. Also, the samples were added to several wells, 

in triplicates, as well as miliQ water and the BCA reagent. The multi-well dish was 

incubated at 37º C, during 30 min, and, after that, the absorbance was read at 570 nm in 

a spectrophotometer.  

The standard curve was then used to calculate the protein concentration in μg/μL. 

 

 

 

3.2.5. Western blot 

After determining the protein concentration using the BCA method , the protein were 

denatured in sample buffer (500 mM Tris, 600 mM DTT, 10.3% SDS, 30% glycerol 

and 0.012% bromophenol; usually it was used 1/6 of a 6x concentrated sample buffer) 

at 95ºC for min.  Protein samples (concentration normalized) were separated by SDS-

PAGE electrophoresis, using a 10% polyacrylamide resolving gel with 4% 

polyacrylamide stacking gel. Then, the proteins were then electrotransferred to 

previously activated polyvinylidene difluoride (PVDF) membranes for 2 h, at 4º C. 

After that, the membranes were incubated for 1 h, at room temperature, with 5% low-fat 

milk or with 3% bovine serum albumin, depending on the antibodies used, in Tris buffer 

with Tween (TBS-T, 150 mM NaCl, 25 mM Tris-HCl pH 7.6; 0.1% Tween 20) to block 

unspecific binding The membranes were then incubated with primary antibodies diluted 

in TBS-T with 5% milk or 3% BSA, overnight, at 4ºC. After washing with TBS-T, the 

membranes were incubated with secondary antibodies, also diluted in TBS-T with 5% 

milk or 3% BSA, for 2 hours, at RT. Then the membranes were washed in TBS-T, 

revealed by an enhanced chemifluorescence (ECF) kit and visualized in a VersaDoc 

system.  
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Table 4: Gel Formulation 

Gel Formulation (1 Gel) 10% - Resolving Gel 4% - Stacking Gel 

Tris-buffer, 1.5 M, pH 8.8 

(Resolving gel) 

2.5 ml - 

Tris-buffer, 0.5 M, pH 6.8 

(Stacking gel) 

- 2.5 ml 

Acrylamide 30 % 3.3 ml 1.3 ml 

Water 4.1 ml 6.1 ml 

TEMED 5 µl 10 µl 

APS 20% (freshly 

prepared, diluted in  

water) 

 

50 µl 

 

50 µl 

 

 

3.2.6. Immunocytochemistry in synaptosomes 

 

Hippocampal nerve terminals from mice were purified through a discontinuous 

Percoll gradient (Dunkley et al., 2008). The obtained synaptosomes were placed on 

coverslips coated with poly-D-lysine, fixed with 4% paraformaldehyde for 15 min and 

washed twice with PBS medium. The synaptosomes were permeabilized using a PBS 

0.2% Triton X-100 solution, for 10 min at RT, and then blocked with PBS 3% BSA and 

5% normal horse serum for 1 h. The synaptosomes were then washed twice with PBS in 

the presence of 3% BSA and incubated with primary antibodies for 1 h at RT. They 

were then washed three times with PBS with 3% BSA and incubated for 1h with 

secondary antibodies labelled with a fluorescent dye.  The synaptosomes were then 

washed three times in PBS medium, mounted on slides with Prolong Antifade and left 

to dry overnight. The preparations were then visualized by fluorescence microscopy 

(Zeiss Axiovert 200 microscope with a 63 x oil objective), under a total magnification 

of 630 times. For co-localization purposes, the fluorescence in each coverslip was 

analysed by counting five different fields using Image J software, classifying 

synaptosomes as particles between 4 and 25 pixel resolution. Only pixel intensities 

above background (measured in structures labelled only with secondary antibodies) 

were considered. 
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3.3. Data Presentation 

Results are presented as means ± S.E.M. values of the number of experiments (n) 

indicated in figure legends. To test the significance of the difference between two 

independent groups, an unpaired Student’s t test was used considering a statistical 

difference for a p<0.05. In experiments with more than two groups it was used one-way 

analysis of variance (ANOVA), followed by Tukey’s multiple comparison test. A value 

of p<0.05 was considered to represent a significant difference. 
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4. RESULTS AND DISCUSSION 
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Rationale 

The parameters that correlate better with cognitive impairment in the early phases of 

AD are the loss of synapses and the increased levels of soluble β-amyloid peptides (Aβ), 

namely Aβ1-42 (Walsh et al., 2002), which are formed from amyloid precursor protein 

(APP) through the action of particular secretases (α-and β- secretases). Since Aβ can 

disrupt synaptic function and cause synaptotoxicity, it is proposed that Aβ may be a 

causative factor in AD, which begins with an insidious loss of synaptic contacts before 

evolving into overt loss of particular neurons in limbic cortical regions such as the 

hippocampus (Coleman et al., 2004). Surprisingly, little is known about the synaptic 

and subsynaptic distribution of APP and secretases in different types of nerve terminals 

(i.e. glutamatergic and GABAergic terminals), nor it is known if the distribution of APP 

and secretases changes with aging and in AD conditions.  Therefore, in the present 

study we investigate the synaptic and subsynaptic localization of APP, BACE1, 

ADAM10 and Presenilin1 in young adult mice (2-3 months) and in mice with 9 months 

old, in triple transgenic mice model of AD (3xTg-AD) and also in human cortical brain 

tissue samples obtained from individuals of different ages. 

The present study was focused on cortical regions, mainly in the hippocampus, 

because it is one of the most affected brain regions in AD. This region typically suffers 

a dramatic decrease in the number and density of synapses, an event associated with 

early cognitive decline in AD. The synaptoxicity may be explained due to high 

energetic demand of synapses that become impaired as a result of mitochondrial 

dysfunction: (Yaxno and Preobrazhenskaya, 2006; Reddy et al, 2010; Wang et al., 

2012).  Synapses represent about 1-2% of total hippocampal volume and have high 

protein abundance because of their adhesion and cytoskeletal proteins responsible for 

maintaining their structure (Phillips et al., 2001). As the study of synapses in native 

brain preparations is limited, quantitative Western blot analysis was performed in 

synaptosomes and in total membranes from the hippocampus of healthy adult male 

mice. Synaptosomes correspond to purified synapses and are considered to be the best 

model to study biochemical and neurochemical properties of synapses (Cunha, 1998). 

Moreover, the subsynaptic localization of APP and secretases was also evaluated in 

order to test their relative abundance in the presynaptic active zone, extrasynaptic 

fractions and in postsynaptic density, using a fractionation method that our group has 

previously validated (Rodrigues et al., 2005) . 
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4.1 Synaptic and subsynaptic distribution of APP and secretases in 

mice hippocampus 

 

 

4.1.1. Amyloid precursor Protein (APP) 

4.1.1.1. Synaptic distribution of APP 

APP is widely expressed in the mammalian brain, but it seems to be quite abundant 

in both peripheral and central synapses (Wang et al., 2005). However, endogenous APP 

is expressed at very low levels in both rat and mouse neurons and, therefore, the 

quantifications of this protein is not easy (Groemer et al., 2011; Hoe et al., 2012;). The 

presence of APP at synapses was demonstrated by Sanbrink and colleagues in 1997, by 

co-localization with synaptophysin. Moreover, the importance of APP in synapse 

maturation was suggested by Kirazov and colleagues in a study in which an increase in 

the levels of APP was observed during the periods of most intense synapse formation 

(Sandbrink et al., 1997; Kirazov et al. 2001). Furthermore, it has been demonstrated in 

cultured neurons that the absence of APP inevitably affects synaptic formation, 

maintenance and transmission, thereby confirming the essential role of this protein in 

neuronal development (Priller et al., 2006). 

 

 

4.1.1.1.1. APP in synaptosomes and total membranes 

 

The interactions of APP and its proteolytic fragments with synaptic systems are 

complex and involve subtle changes in the levels of APP (Hunter and Brayne, 2012). In 

this part of our study, the relative abundance of APP was compared in synaptosomes 

and in total membranes of hippocampi of the same animal by quantitative Western blot 

analysis. It was used  an antibody against the APP carboxyl-terminal (APP C-Term), 

since previous data from our group showed that the antibody against APP amino-

terminal  (APP N-term) had a pattern of APP labeling similar to that of antibody against 

APP C-term (unpublished data). Furthermore, it has been shown that the extracellular 

domain (C-terminal) of APP is especially important for the promotion of synapse 

formation. The APP is trafficked trough anterograde transport to the presynaptic 
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terminal in transport vesicles, and further recruited to the plasma membrane by 

exocytosis (Groemer et al. 2011). Thus, it is viable to infer that the C-terminal should be 

more accessible to antibody labeling than the N-terminal, which would be oriented 

towards the lumen of the vesicle ( Groemer et al. 2011; Hoe et al., 2012; Claeysen et al., 

2012). 

The anti-APP antibody (APP C-term) used recognized a double well-defined band 

with an apparent molecular weight of approximately 120 kDa. In the same immunoblot 

we have loaded three amounts of protein (10, 20 and 40 g) of synaptosomes and total 

membranes, which were obtained from the same hippocampal samples (see material and 

methods), in order to detect the APP immunoreactivity for non-saturating amounts of 

protein (Figure 9.B). The relative amount of APP immunoreactivity was achieved for 20 

µg of loaded protein and it was observed that the density of APP in synaptosomes was 

lower (59.1% ± 11.7%, n=4) than in total membranes (86.3% ± 8.5%, n=4, Figure 9.A). 

The ratio between APP immunoreactivity in synaptosomes and in total membranes, was 

0.7 ± 1.4 (n=4), indicating that APP, albeit present, is not enriched in hippocampal 

nerve terminals as compared with the bulk of total membranes.  

Although there are evidences that APP is a synaptic protein (Kim et al., 1995), it is 

also known that APP is co-translationally inserted into the endoplasmic reticulum (ER), 

trafficked through the Golgi apparatus, and further transported in secretory vesicles to 

the plasma membrane, from where can be internalized and delivered to endosomes 

(Thinakaran and Koo, 2008; Groemer et al., 2011). This could explain why in our 

preparations it was not observed an enrichment of APP in synaptic membranes as 

compared with the bulk of whole membranes, since it is likely that a large amount of 

APP are in intracellular vesicles. 
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Figure 9. APP is not enriched in synaptic nerve terminals as compared with its density 

in total membranes.  (A) The graphic represents the percentage of immunoreactivity for 20 μg 

of loaded protein, which was calculated considering the maximal immunoreactivity value 

obtained as 100%. The results are presented as mean ± SEM of 4 independent experiments. n.s. 

–non-significant (p>0.05). (B) Representative Western blot of the APP levels in synaptosomes 

(Syn) and total membranes (TM) for different amounts of loaded protein. 

 



 

 

  

~ 120kDa 

10μg 

TM 

20μg 40μg 20μg 40μg 

Syn 

ns
 

10μg 



32 
 

4.1.1.2. Subsynaptic distribution of APP 

In this part of the study, it was analyzed if APP is differently distributed in the 

different subsynaptic fractions. Therefore, we used a fractionation procedure, previously 

validated by our group, which allows an effective separation (over 90% efficiency) of 

the presynaptic active zone, postsynaptic and extrasynaptic (non-synaptic) (fractions. 

With this technique, the accessibility of antibodies to epitopes located at synapses is 

enhanced by the solubilization of different subsynaptic components (Rebola et al., 2005; 

Phillips et al., 2001). 

The data presented in Figure 10 (A and B) show that APP is mainly located in the 

presynaptic fraction of nerve terminals, although it is also present in the postsynaptic 

density. By quantifying the relative abundance of APP immunoreactivity in the three 

fractions (in three different preparations from different groups of mice) it was 

determined that APP immunoreactivity is most abundant in the presynaptic fraction 

(53.1% ± 5.5%, n=3), but it is also present in the postsynaptic density (37.1% ± 2.6%, 

n=3), and the lowest density was observed extrasynaptically (9.8% ± 7.7%, n=3). In 

accordance to the higher presence of APP at presynaptic fractions it was hinted that 

APP undergoes transport along axons, rather than dendrites (Brunholz et al., 2012). 

Moreover, the previous reported presence of APP into synaptic vesicles (Groemer et al., 

2011) is also in consonance with our findings that APP is localized mainly in 

presynaptic fractions. The validation of the subsynaptic fractionation procedures used in 

this study was verified by Western blot analysis, using antibodies against presynaptic 

(synaptosomal-associated protein 25, SNAP-25), postsynaptic (postsynaptic density 

protein 95, PSD-95) and extrasynaptic (synaptophysin) protein markers. In these 

controls, it is expected an enrichment of the subsynaptic proteins in the corresponding 

subsynaptic fractions. Therefore, SNAP-25 should be preferentially located in the 

presynaptic fraction, PSD-95 should have a high density in the postsynaptic fraction and 

synaptophysin should be enriched in the extrasynaptic fraction. The immunoblots done 

to verify the purity of subsynaptic fractions used in this study showed that it was 

obtained an effective subsynaptic fractionation (Figure 10.C).    
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Figure 10. Cortical subsynaptic levels of APP.  (A) The percentage of APP 

immunoreactivity for each subsynaptic fraction was calculated considering the sum of the pre- 

(Pre), post- (Post) and extrasynaptic (Extra) immunoreactivities. The total synaptosomes (Total 

Syn) were analyzed as an internal control of the experiment. The results are presented as mean ± 

SEM of 3 independent experiments. * p < 0.05; ** p < 0.01. (B) Representative Western blot of 

the APP levels in subsynaptic fractions and total synaptosomes. 20 μg of protein were loaded in 

each lane of the gel. (C) Representative Western blot of the control purity of subsynaptic 

preparations, where it is expected an enrichment of subsynaptic proteins in the respective 

membrane fractions: in presynaptic (SNAP-25, with 25 kDa), in postsynaptic (PSD-95, with 95 

kDa) and extrasynapic (synaptophysin with 38kDa).  

 

 

Our results suggest that APP is restricted to a specific part of the nerve terminals and 

not randomly located in the axons and dendrites. It’s evident presence at the presynaptic 

zone, specifically, and at the synapses, in general, supports the well-known theory that 
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APP has several crucial roles in the development and maintenance of synapses (Kirazov 

et al. 2001). Furthermore, our data are in accordance to some studies describing APP as 

a protein that is preferentially localized to presynaptic ending in the cortical synapses 

(Kim et al., 1995). APP processing is also referred as a phenomenon that occurs mainly 

presynaptically and it is claimed that APP derivatives remain bound to the membrane 

and accumulate at the nerve terminals in the CNS (Lazarov et al., 2005). Recent data 

obtained using techniques that allow the direct access to presynaptic mechanisms, 

showed that small amounts of APP are present in synaptic vesicles at the presynaptic 

terminals (Groemer et al., 2011). Nevertheless, this protein has also been located in the 

postsynaptic density (Marcello et al., 2007).  
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4.1.2. β-secretase (BACE1) 

4.1.2.1. Synaptic distribution of BACE1 

BACE1 is known to be highly expressed in neurons and, in both rodents and humans, 

typically forms homodimers, which have higher enzymatic activity than the monomeric 

form. This beta-secretase has important physiological functions in synaptic transmission 

and plasticity and it is found in CA1 and CA3 regions of the hippocampus, where it 

seems to play  a role in the regulation of presynaptic activity (Wang et al., 2012), being 

postulated that BACE1can be upregulated by synaptic activity (Kamenetz et al., 2003). 

In our study, we focused on BACE1, as it seems to be the only enzyme with 

physiological APP β-secretase activity in the brain (Kamenetz et al., 2003). 

 

4.1.2.1.1.   BACE1 in synaptosomes and in total membranes 

 

Considering the presumably high neuronal levels of BACE1, even in healthy 

individuals, we decided to investigate the relative abundance of this protein in both 

synaptic membranes and in total membranes, in order to determine whether BACE1 is 

preferentially synaptic or not. The density of BACE1 was analyzed, by Western blot, 

using healthy mice hippocampi of the same animal, in the same gel. The antibody used 

was against the C-terminal of BACE1, and recognized a well-defined band with an 

apparent molecular weight of approximately 70 kDa. It is notable that, during its 

trafficking through the cell, BACE1 suffers several post-translational modifications. In 

fact, its immature form has approximately 65kDa, but then the protein is subjected to 

extensive glycosylation, giving rise to a protein with 75kDa (Epis et al., 2012). 

Depending on experimental conditions and individual cell lines’ glycosylation 

machinery, the molecular weight of BACE1 has been reported to be between 70 and 75 

kDa for the mature protein and between 60 and 70 kDa for its immature forms (Capell 

et al. 2000). 

Figure 11 shows that the immunoreactivity of the bands for BACE1 in synaptosomes 

was 37.1% ± 10.7% (n=3), while in the total membranes was 85.2% ± 10.7% (n=3). 

Besides, the ratio of BACE1 immunoreactivity in the synaptosomal fraction versus the 

whole membranes fraction was 0.4 ± 1.3 (n=3), suggesting that BACE1 is less localized 

in nerve terminals than in total membranes. Indeed, there are evidences that BACE1, 
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like APP, can be transported through the TGN to the nerve terminals into synaptic 

vesicles (Groemer et al., 2011). 
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Figure 11. BACE1 is not enriched in synaptic nerve terminals as compared with its 

density in total membranes.  (A) The graphic represents the percentage of immunoreactivity 

for 20 μg of loaded protein, which was calculated considering the maximal immunoreactivity 

value obtained as 100%. The results are presented as mean ± SEM of 3 independent 

experiments. **p<0.01 (B) Representative Western blot of the BACE1 levels in synaptosomes 

(Syn) and total membranes (TM) for different amounts of loaded protein.  
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4.1.2.2. Subsynaptic distribution of BACE1 

Although a number of studies outline the importance of BACE1 at the synaptic level, 

little is known about it subsynaptic distribution. Therefore, in this part of the study, it 

was analyzed if BACE1 was differently distributed across the different synapse zones. 

As it can be seen in Figure 12 (A and B), BACE1 immunoreactivity was located 

preferentially in the extrasynaptic fraction of nerve terminals, although it was also 

present in both the presynaptic and postsynaptic zones. When quantifying the relative 

abundance of BACE1 immunoreactivity in the three subsynaptic fractions (in t 3 

independent preparations) it was observed that BACE1 immunoreactivity is most 

abundant in the extrasynaptic density (72.5% ± 4.9%, n=3), but it is also present in the 

presynaptic fraction (15.8% ± 3.9%, n=3) and also in the postsynaptic compartment 

(11.7% ± 2.1%, n=3). The purity of the subsynaptic fractions was verified by Western 

Blot analysis, using antibodies against presynaptic (SNAP-25), postsynaptic (PSD-95) 

and extrasynaptic (synaptophysin) protein markers (Figure 12.C). 
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Figure 12. Cortical subsynaptic levels of BACE1.  (A) The percentage of 

immunoreactivity was calculated considering the sum of the pre- (Pre), post- (Post) and 

extrasynaptic (Extra) immunoreactivities. The total synaptosomes (Total Syn) were analyzed as 

an internal control of the experiment. The results are presented as mean ± SEM of 3 

independent experiments. * p < 0.05. (B) Representative Western blot of the BACE1 levels in 

subsynaptic fractions and total synaptosomes. 20 μg of protein were loaded in each lane of the 

gel (C) Representative Western blot of the controls of subsynaptic preparations, where it is 

expected an enrichment of subsynaptic proteins in the respective membrane fractions, as 

described in captions of Figure10. C.  

 

The importance of BACE1 is pointed out in some recent studies, that emphasize the 

idea that β-secretase mediated cleavage of APP might act positively on normal brain 

functions, enhancing some of them (Marcello et al., 2008). There are in vivo evidences 

that β-secretase mediated cleavage might be able to facilitate some cognitive processes, 

like learning and memory, thus BACE1 might be important in the regulation of 

presynaptic function (Wang et al., 2012). Moreover, BACE1 was found in the synaptic 

vesicle fraction, suggesting that this β-secretase is trafficked to the synaptic nerve 

terminals in transport vesicles (Groemer et al., 2011).  
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Giving the supposed role of BACE1 in the modulation of presynaptic function, 

higher levels of this enzyme would be expectable in the presynaptic compartment. Also, 

given the high levels observed in the extrasynaptic fraction, it might be speculated that 

BACE1 acts, in fact, through synaptic vesicles. 

 

 

 

4.1.3. α-secretase (ADAM10) 

4.1.3.1. Synaptic distribution of ADAM10 

Quite a few elements of the ADAM family of proteins exhibit α-secretase-like 

activity. Among these proteases, ADAM10 is considered a key protease in the 

processing of APP. The ADAM10’s expression in the human brain appears to 

coordinate with APP, which is less seen for ADAM17 (Reiss et al., 2005). It is known 

that ADAM10 is widely distributed in adult brain and is expressed mainly in neurons, 

but is also present in astrocytes and microglia (Reiss et al., 2005). This ubiquity may be 

explained by the variety of processes in which ADAM10 is involved, such as: 

embryonic development, cell adhesion, signal transduction and axon outgrowth 

(Vingtdeux and Marambaud, 2012).   

 

4.1.3.1.1. ADAM10 in Synaptosomes and Total Membranes 

 

In this part of the study, ADAM10 hippocampal synaptic distribution was evaluated 

and the levels of this enzyme were compared in total membranes and in synaptic 

membranes by Western blot analysis. The anti-ADAM 10 antibody recognized a band 

with an apparent molecular weight of approximately 80 kDa. The ADAM10 

immunoreactivity was lower in synaptosomes (41.2% ± 8.6%, n=4) than in total 

membranes (88.6% ± 5.2%, n=4), which suggests that ADAM10 is more abundant in 

the bulk of total membranes than in purified presynaptic terminals (Figure 13 A and B). 
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Figure 13. ADAM10 is not enriched in synaptic nerve terminals as compared with its 

density in total membranes.  (A) The graphic represents the percentage of immunoreactivity 

for 20 μg of loaded protein, which was calculated considering the maximal immunoreactivity 

value obtained as 100%. The results are presented as mean ± SEM of 4 independent 

experiments. **  p<0.01 (B) Representative Western blot of the APP levels in synaptosomes 

(Syn) and total membranes (TM) for different amounts of loaded protein  

 

 

4.1.3.2. Subsynaptic distribution of ADAM10 

 

In this part of the study, it was analyzed if ADAM10 distribution was different at a 

subsynaptic level. In mice cortex, ADAM10 immunoreactivity was located almost 

exclusively in the postsynaptic fraction of nerve terminals, although it was also present 

in the presynaptic zone (Figure 14). When quantifying the relative abundance of 

ADAM10 immunoreactivity in the three fractions, it was observed that ADAM10 
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immunoreactivity is most abundant in the postsynaptic density (61.3% ± 4.3%, n=3), 

but it is also present in the presynaptic compartment (38.7% ± 4.3%, n=3). The 

validation of subsynaptic fraction was verified by Western Blot analysis (Figure 14.C).  
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Figure 14. Cortical subsynaptic levels of ADAM10.  (A) The percentage of 

immunoreactivity was calculated considering the sum of the pre- (Pre), post- (Post) and 

extrasynaptic (Extra) immunoreactivities. The total synaptosomes (Total Syn) were analyzed as 

an internal control of the experiment. The results are presented as mean ± SEM of 3 

independent experiments. **p< 0.01. (B) Representative Western blot of the ADAM10 levels in 

subsynaptic fractions and total synaptosomes. 20 μg of protein were loaded in each lane of the 

gel (C) Representative Western blot of the controls of subsynaptic preparations, where it is 

expected an enrichment of subsynaptic proteins in the respective membrane fractions, , as 

described in captions of Figure10. C.  
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transport of ADAM10 to the postsynaptic membrane is blocked (Prox et al., 2012). In 

fact, some studies suggest that ADAM10 is mostly localized at the postsynaptic density 

of excitatory synapses and it is thought to act on several substrates with postsynaptic 

distribution (Marcello et al., 2013). This is particularly important from the functional 

point of view, since the postsynaptic location of ADAM10 correlates with APP 

metabolism at glutamatergic synapses. This process involves the synapse-associated 

protein-97 (SAP97), which binds to the cytosolic domain of ADAM10 and drives the 

enzyme to the postsynaptic membrane, thereby enhancing APP cleavage mediated by α-

secretase (Marcello et al., 2007).  Thus, ADAM10 activity seems to depend on NMDA 

receptors activation at the postsynaptic membrane, and APP metabolism can be 

potentiated towards a non-amyloidogenic pathway. Furthermore, the localization of 

ADAM10 to the postsynaptic density correlates with APP metabolism. In addition to 

that, this enzyme has been described to interact with several substrates characteristic of 

the postsynaptic density. This may constitute a potential regulatory mechanism, which 

can be altered during AD pathogenesis (Marcello et al., 2007; Lichtenthaler 2011; Reiss 

et al., 2005). 
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4.1.4. γ-secretase (Presenilin1) 

4.1.4.1. Synaptic distribution of Presenilin1 

Presenilin 1 (PS1) has been described as the probable catalytic subunit of the γ-

secretase complex, and requires the other members of the enzymatic complex to have a 

protease activity. Apart from its proteolytic activity in both the amyloidogenic and non-

amyloidogenic pathways of APP metabolism, this enzyme is involved in the regulation 

of neurotransmitter release and calcium homeostasis. There is also evidence that 

presenilins participate in the intracellular mechanisms underlying cognitive functions 

(Wang et al., 2012).  

 

4.1.4.1.1.   Presenilin1 in Total Membranes 

The density of Presenilin1 (PS1) was analyzed, by Western blot, using mice 

hippocampi of the same animal, in the same gel. The antibody used was against the N-

terminus cleavage product of the protein and should recognize a 28 kDa protein. 

However, we had several difficulties in obtaining observable bands, despite we tried a 

variety of conditions in the Western blot analysis and also using different samples. In 

fact, the only blot we were able to obtain was the one represented in Figure 15 and it 

should be referred that we did not get PS1 immunoreactivity in synaptosomes 

It was observed that the density of PS1in total membranes was 92.6% ± 7.5% (n=2).  
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Figure 15. PS1 is present in total membranes (A) The graphic represents the percentage of 

immunoreactivity for 80 μg of loaded protein, which was calculated considering the maximal 

immunoreactivity value obtained as 100%. The results are presented as mean ± SEM of 2 

independent experiments. (B) Representative Western blot of the PS1 levels hippocampal total 

membranes (TM).  

 

 

The represented bands have approximately 60 kDa, which corresponds to almost the 

twice of the molecular weight expected. 

Although surprising, this result can be explained by a study performed in 1996, in 

which Sahara and colleagues showed that this protein can have several isoforms, whose 

molecular weight varies, as a result of alternative splicing that the PS1-encoding gene 

suffers. One of the presenilin isoforms is commonly known as I-467 and is ubiquitously 
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expressed in the organism. The authors of the study obtained, by immunoprecipitation 

followed by Western blot analysis, bands with approximately 52 and 42 kDa and with 

74 and 65 kDa, when the same samples were heat-treated (Sahara et al., 1996). 

 

The absence of PS1 in synaptosomes is a little surprising, because PS1 has already 

been found to be concentrated at the synapses of both cerebellar and hippocampal 

neurons, where it was distributed mainly in the synaptic compartments, suggesting that 

this secretase may have important synaptic functions (Ribaut-Barassin et al. 2000). 

Nevertheless, it is undoubtedly present in total membranes and this is quite logical, as γ-

secretase activity has been localized in different cell body compartments, like 

endosomes, and also in synaptic vesicles and membranes in rat brain (Frykman et al., 

2010).  

 

 

 

 

 

 

Overall, it is noteworthy that albeit exist some studies that reported the presence of 

APP and of secretases (α-, β- and ɣ-) in synapses or in subsynaptic components, none 

study of our knowledge had compared the relative abundance of these proteins in nerve 

terminals (synaptosomes) relatively to total membranes nor their relative abundance in 

the pre-, post and extrasynaptic fractions. 
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4.1.5. Distribution of APP and Secretases in Glutamatergic and 

GABAergic nerve terminals in young adult mice 

 

Due to the crucial role in synaptotoxicity suggested for Aβ peptides, it is surprising 

to verify that the distribution of APP and of secretases (α-, β-, γ-secretases) involved in 

APP processing, across different types of nerve terminals, is unknown, nor is it known 

if their distribution changes in animal models of AD. Therefore, in this part of the study 

we aimed to investigate the distribution of APP and secretases in glutamatergic and 

GABAergic nerve terminals and whether this precursor protein is co-localized with 

different secretases. This was achieved by double immunocytochemistry studies in 

platted purified nerve terminals, mainly presynaptic terminals, that consist on the 

simultaneous labeling of specific markers of different types of nerve terminals and of 

one of the proteins involved in APP metabolism, in order to define in which type of 

terminals (glutamatergic or GABAergic) APP and secretases exist. 

 

In order to differentiate the glutamatergic terminals from the GABAergic ones, there 

were used antibodies against: i) the vesicular glutamate transporter 1 (vGLUT1), which 

is a specific protein marker of neurons that use glutamate as a neurotransmitter, and ii) 

the vesicular GABA transporter (vGAT) that is present only in neurons that release 

GABA. These vesicular transporters are responsible for the packing of glutamate and 

GABA into synaptic vesicles of glutamatergic and GABAergic neurons, respectively 

(McIntire et al., 1997 ; Takamori et al., 2000). It is crucial to notice that glutamate is the 

major excitatory neurotransmitter in the CNS and has important roles in processes like 

synaptic transmission and plasticity, learning and memory. Impairment in the 

glutamatergic neurotransmission seems to occur in AD, leading to an increase in the 

levels of glutamate at the synapse (Revett et al., 2013).  
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Prior to the main experiments, the purity of platted nerve terminals preparations was 

assessed. For this purpose, the nerve terminals were double-labeled with synaptophysin 

(a presynaptic marker) and with PSD-95 (a postsynaptic marker) and the percentage of 

their co-localization was determined. The co-localization value obtained was about 

10%, indicating that our preparations were enriched in presynaptic nerve terminals (data 

not shown). 

 

 

The overall abundance of glutamatergic and GABAergic nerve terminals in our 

preparations was also investigated, by assessing the percentage of synaptophysin- 

immunopositive terminals that co-localized with vGLUT1 and vGAT. As illustrated in 

Figure 16, 69.1% ± 1.7% (n=3) of the synaptophysin-immunopositive elements were 

endowed with vGLUT1 immunoreactivity, while GABAergic terminals represented 

30.9% ± 0.4% (n=3) of hippocampal nerve terminals. 
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Figure 16. Relative Glutamatergic and GABAergic nerve terminals abundance in 

presynaptic nerve terminals. (A) The graphic represents the percentage of co-localization 

between markers of glutamatergic (vGLUT) and GABAergic (vGAT) nerve terminals and 

synaptophysin-immunopositive elements (Syn). The total population was considered to be the 

overall number of synaptophysin-immunopositive elements. The results are presented as mean ± 

SEM of 3 independent experiments. ***p<0.001. (B.1.) Representative merge image obtained 

for synaptophysin-immunopositive elements (red) and vGAT-immunopositve elements (green). 

The yellow labeling corresponds to the co-localizaton of synaptophysin and vGAT co-

localization. (B.2.) Representation of the images taken for synaptophysin (Alexa Fluor 594, red) 

and vGLUT (Alexa Fluor 488 green) immunolabbeling, and of the merge images that represent 

the co-localization of synaptophysin and vGLUT labelling (yellow). The magnification used to 

obtain the images was 630x. 
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After the characterization of our preparations of purified nerve terminals, it was 

investigated the relative abundance of APP and secretases in the overall population of 

nerve terminals. As illustrated in Figure 17, the synaptophysin-immunopositive 

elements were endowed with: 24.5% ± 7.9% (n=3) of APP, 10.1% ± 2.2% (n=3) of 

BACE1, 11.9% ± 6.2% of ADAM10 and 0.4% ± 0.3% (n=2) of PS1 

immunoreactivities. 
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Figure 17. Relative abundance of APP, α- (ADAM10), β- (BACE) and γ- (PS1) 

secretases in presynaptic nerve terminals. (A) The graphic represents the percentage of co-

localization between each protein and synaptophysin-immunopositive elements. The total 

population was considered to be the overall number of synaptophysin-immunopositive 

elements. The results are presented as mean ± SEM of 3 and 2 (for PS1) independent 

experiments. n.s.–non-significant (p>0.05) (B) Representative merge images of the co-

localization between synaptophysin-immunopositive elements (Syn) and APP-, ADAM-10-, 

BACE1- and PS1- immunopositive elements. The yellow labeling corresponds to co-localized 

or red and green elements (see color in images). The magnification used to obtain the images 

was 630x. 
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The oligomeric Aβ is known to affect the glutamatergic system, mainly glutamate 

receptors (Crimins et al., 2013), thus it  pertinent to speculate if the APP is present in 

large quantities in glutamatergic neurons. Likewise, APP seems to have a functional 

role in GABAergic transmission, as it has already been described that lack of APP 

disrupts GABAergic synapses, but they may be rescued by the re-introduction of the 

protein (Zheng et al., 2010). Also, since β-secretase is the main enzyme involved in the 

amyloidogenic pathway and glutamatergic neurons are known to suffer a disruption in 

AD pathology, it is logical to wonder whether BACE1 is equally distributed in different 

types of nerve terminals. Therefore, we investigated the co-localization of APP and 

BACE1 with different markers for nerve terminals (vGLUT1 and vGAT). As illustrated 

in Figure 18, 31.0% ± 6.5% of glutamatergic terminals and 23.9% ± 1.3% (n=3) of 

GABAergic terminals were labeled for APP. Likewise, it was observed that 60.6% ± 

5.1% (n=3) of glutamatergic terminals and 29.1% ± 10.5% (n=3) of GABAergic 

terminals were endowed with BACE1.  
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Figure 18. APP and BACE are present in both glutamatergic and GABAergic 

presynaptic nerve terminals. Double immunocytochemistry analysis of APP and BACE1 with 

markers of glutamatergic (vGLUT) and GABAergic (vGAT) nerve terminals. (A.1.) The 

graphic represents the percentage of co-localization between APP- or BACE1-immunopositive 

elements and vGLUT-immunopositive elements. The total population was considered to be the 

overall number of vGLUT-immunopositive elements. (A.2.) The graphic represents the 

percentage of co-localization between APP- or BACE1-immunopositive elements and vGAT-

immunopositive elements. The total population was considered to be the overall number of 

vGAT-immunopositive elements. The results are presented as mean ± SEM of 3 independent 

experiments. n.s. p>0.05; *p<0.05). (B) Representative merge images obtained for APP-

immunopositive elements (APP, red) or BACE1-immunopositive elements (BACE1, red) and 

markers of glutamatergic (vGLUT, green) and GABAergic (vGAT, green) nerve terminals. The 

yellow labeling corresponds to the co-localization of green and red elements. The magnification 

used to obtain the images was 630x. 
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4.1.6. Co-localization of APP with β-secretase in hippocampal nerve 

terminals of young adult mice 

 

In order to investigate whether APP co-localized with β-secretase in hippocampal 

nerve terminals, we further performed immunocytochemistry studies co-labeling the 

APP and BACE1 in platted purified presynaptic terminals. The data obtained showed 

that 41.6% ± 3.9% (n=3) of APP-immunopositive nerve terminals were also labeled 

with BACE1 (Figure 19).  
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Figure 19. APP and BACE1 co-localized in presynaptic nerve terminals. Double 

immunocytochemistry analysis of APP and BACE1 (A) The graphic represents the percentage 

of co-localization between BACE1-immunopositive elements and APP-immunopositive 

elements. The total population was considered to be the overall number of APP-immunopositive 

elements. The results are presented as mean ± SEM of 3 independent experiments (B) 

Representative merge image obtained for APP-immunopositive elements (APP, green) and 

BACE1-immunopositive elements (BACE1, red). The yellow labeling corresponds to the co-

localization of green and red elements. The magnification used to obtain the images was 630x. 
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Our data show that APP and BACE1 were to some degree co-localized in 

presynaptic nerve terminals; however only of 41.6% of APP immunopositive elements 

co-labeled with BACE1. This means that in some hippocampal terminals both APP and 

BACE1 are present, whereas in other terminals these two proteins are not together. The 

observed co-localization between APP and BACE1 is somewhat expectable, since there 

are evidences demonstrating a physical association between sAPP-β (a large secreted N-

terminal soluble fragment, resulting from the β-secretase-mediated cleavage of APP) 

and BACE1 (Obregon et al., 2012). However, it was also stated that, in healthy animals 

and humans, the encounter of APP and BACE1 is expected to be limited, as there is 

evidence supporting the theory that these two proteins suffer different cellular 

trafficking (Tan and Evin, 2011). 
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4.2. The impact of age on the distribution of APP and secretases 

hippocampal nerve terminals 

 

In order to investigate if there are age-related modifications in the distribution and 

density of APP and secretases, we next compared the levels of these proteins in two 

groups of mice with different ages. For this purpose, synaptosomes and total 

membranes were prepared from the hippocampus of 9 months old mice, in order to 

evaluate the relative abundance of APP and of the secretases involved in its metabolism 

by Western blot analysis, in comparison to the same type of preparations from 2-3 

months old mice.  

 

 

4.2.1. APP in synaptosomes and in total membranes 

The relative abundance of APP in both synaptosomes and total membranes from a 

group of different animals, in comparison to samples form a group of control younger 

mice, was assessed by quantitative Western blot analysis. The immunoreactivity of each 

band was normalized with β-actin. 

In hippocampal synaptosomes, the APP immunoreactivity in the control group (2 

months old) was slightly lower (87.2% ± 1.0%, n=3) than in the 9 months old group 

(91.7% ± 4.8%, n=3). In hippocampal total membranes, the difference in APP 

abundance was a little more evident than in synaptosomal fractions. In the control 

group, the APP immunoreactivity was 83.9% ± 7.6 % (n=2), while, in the group of 9 

months old mice, it was 57.1% ± 23.2% (n=3).  
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Figure 20. Hippocampal levels of APP in synaptosomes and in total membranes of 2 

months old mice, in comparison to 9 months old mice. (A) The graphic represents the 

percentage of immunoreactivity for 20 μg of loaded protein, which was calculated considering 

the maximal immunoreactivity value obtained as 100% for 40ug (an amount of loaded protein 

that was previously defined as close to saturating levels). The results are presented as mean ± 

SEM of 3 and 2 independent experiments. ns – non significant (B) Representative Western blot 

of the APP levels in the 2 months old group (2 m) and in the 9 months old group (9 m) of mice. 

(C) Representative Western blot of the β-actin density (control for protein loading). 

 

Studies concerning the levels of APP and Aβ in aging brains are controversial. In 

1995, Carroll and colleagues studied the levels of these proteins in a group of people 

with an ample range of ages and did not find any alterations in the cerebrospinal fluid 

(Carroll et al., 1995). However, studies performed in transgenic mice models of AD 

(Tg2576) showed an age-dependent increase in total membrane-bound APP (Mustafiz 

et al., 2011).   
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4.2.2. BACE1 in synaptosomes and in total membranes 

The relative abundance of BACE1 in both synaptosomes and total membranes from 

the two groups of mice was evaluated by quantitative Western blot analysis. The 

immunoreactivity of each band was normalized with β-actin. 

 In hippocampal synaptosomes, the BACE1 immunoreactivity in the control group 

was 44.9% ± 22.8% (n=3), while in the 9 months old group tends to be higher, although 

not statistically significant: 78.8% ± 13.1% (n=3). These results suggest a tendency 

towards an increase in the levels of BACE1 with the progression of age, in synaptic 

fractions. On the contrary, in hippocampal total membranes, the BACE1 

immunoreactivity in the control group was lower (53.7% ± 9.4%, n=3) than in the 9 

months old group: 82.6% ± 15.6% (n=3). These results suggest a tendency to an 

increase in the intracellular levels of BACE1 in ageing brains. 
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Figure 21. Hippocampal levels of BACE1 in synaptosomes and in total membranes of 2 

months old mice, in comparison to 9 months old mice. (A) The graphic represents the 

percentage of immunoreactivity for 20 μg of loaded protein, which was calculated considering 

the maximal immunoreactivity value obtained as 100% for 40ug (an amount of loaded protein 

that was previously defined as close to saturating levels). The results are presented as mean ± 

SEM of 3 independent experiments. ns – non significant. (B) Representative Western blot of the 

BACE1 levels in the 2 months old group (2 m) and in the 9 months old group (9 m) of mice. 

(CRepresentative Western blot of the β-actin density (control for protein loading). 

 

 

 

 

 

Whether BACE1 levels suffer or not an increase with the progression of age remains 

controversial. In the study performed by Kögel and colleagues using a human cell line, 

the authors obserevd and increase in the levels of this β-secretase with the progression 

of age (IMR-90, see Kögel et al., 2012), which is some way in accordance with our 

results. However, Fukumoto and colleagues did not observe significant changes in 

BACE1 levels with aging, but demonstrated an increase in the enzyme activity, 

suggesting that this secretase can suffer some post-translational modifications, 

involving  allosteric modulation or even co-factor association (Fukumoto et al., 2004). 
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4.2.3. ADAM10 in synaptosomes and in total membranes 

There are evidences suggesting a decrease in neuronal ADAM10 levels in both 

ageing and disease-affected brains. In addition to that, when comparing healthy and 

aged brains, the co-localization between ADAM10 and nardilysin (an enzyme’s 

regulator) was also decreased, too (Endres and Fahrenholz, 2010).  

The relative abundance of ADAM10 in both synaptosomes and total membranes 

from three different animals, in comparison to samples from three control younger 

mice, was assessed by quantitative Western Blot analysis. The immunoreactivity of 

each band was normalized with β-actin. In hippocampal synaptosomes, the ADAM10 

immunoreactivity in the control group was 36.8% ± 13.7%, (n=3), while in the 9 

months old group was 47.1% ± 26.5% (n=3). These results suggest a tendency to an 

increase in the levels of ADAM10 with the progression of age, in synaptic fractions. In 

hippocampal total membranes, the difference in ADAM10 abundance was a little more 

evident, although not statistically significant, than in synaptosomal fractions. In the 

control group, the ADAM10 immunoreactivity was 49.7% ± 23.8% (n=3), while, in the 

group of 9 months old mice, it was 73.3% ± 15.6% (n=3). 
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Figure 22. Hippocampal levels of ADAM10 in synaptosomes and in total membranes of 

2 months old mice, in comparison to 9 months old mice. The graphic represents the 

percentage of immunoreactivity for 20 μg of loaded protein, which was calculated considering 

the maximal immunoreactivity value obtained as 100% for 40ug (an amount of loaded protein 

that was previously defined as close to saturating levels). The results are presented as mean ± 

SEM of 3 independent experiments. ns – non significant (B) Representative Western blot of the 

ADAM10 levels in the 2 months old group (2 m) and in the 9 months old group (9 m) of mice. 

(C) Representative Western blot of the β-actin density (control for protein loading). 

 

  

These data are in accordance with a recent study, in which Kögel and colleagues 

showedthat this α-secretease did not exhibit an age-associated regulation in a human 

cell line  (IMR-90, see Kögel et al., 2012). 
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4.3. Synaptic levels and distribution of APP and secretases in a 

transgenic AD mice model (3xTg-AD) 

 

Transgenic mice models of AD provide the chance to better understand how the 

deposition of several pathology biomarkers is related to the progression of dementia in 

AD. Several animal models have been developed, characterized by at least one 

neuropathological change related to AD. The most common feature of these rodent 

models is the overexpression of mutated APP that inevitably leads to the 

overaccumulation of Aβ peptides and its subsequent deposition, forming amyloid 

plaques. Often a mutant PS1 allele is also included, in order to accelerate the deposition 

rate of Aβ, as well as to enhance the severity of the pathology (Oddo et al., 2003, 

Manaye et al., 2013; 3).  

In our study, we used triple-transgenic models of AD (3xTg-AD) 15 months old, 

which have the advantage to express 3 dementia-related transgenes: APPSWE, PS1M146V 

and tauP301L, and are described to demonstrate an age-dependent onset of the pathology. 

This model offers also the possibility to study, in the same animal, both Aβ and tau-

associated pathologies, which are hallmarks in the clinical expression of the disease 

(Oddo et al. 2003; Sterniczuk et al. 2010; Bories et al. 2012). The 3xTg-AD mice have 

been demonstrated to suffer an age-related increase in the levels of Aβ peptides (both 

soluble Aβ40 and insoluble Aβ42 forms), amyloid plaques and also of 

hyperphosphorilated tau protein, in regions such as the hippocampus and the frontal 

cortex ( Oddo et al. 2003, Manaye et al. 2013). 

. 

 

In this part of our work, we used synaptosomes from the hippocampus of 3xTg-AD 

mice and from age-matched wild-type littermates, which were used as a control group. 

The samples obtained from the cortex were used for immunocytochemistry studies, 

while those obtained from the hippocampus were used for quantification of APP and 

secretases densities by Western blot. 
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4.3.1. APP and Secretases in synaptosomes  

4.3.1.1. APP in synaptosomes 

The relative abundance of APP in synaptosomes was compared in synaptosomes 

obtained from 3xTg-AD mice and control mice by Western blot analysis.  The 

immunoreactivity of each band was normalized with β-actin. 

 

The data obtained show that APP tends to be more abundant in the synaptic terminals 

of 3xTg-AD mice models (70.9% ± 15.2%, n=3) than in the control group (39.6% ± 

4.9%, n=3), although the difference is not statistically significant. This is not surprising, 

since the gene encoding APP in the genome of the transgenic mice has a mutation (APP 

Swedish Mutation, APPSWE, also known as the Familial Alzheimer's Disease Genetic 

Mutation), that leads to an overexpression of APP in these animals (Stargardt et al., 

2013). 
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Figure 23. Hippocampal levels of APP in synaptosomes of 3xTg-AD mice in comparison 

to the control group. The graphic represents the percentage of immunoreactivity for 20 μg of 

loaded protein, which was calculated considering the maximal immunoreactivity value obtained 

as 100%. The results are presented as mean ± SEM of 3 independent experiments. (B) 

Representative Western blot of the APP levels in the control group (Ctr) and in the 3xTg-AD 

group (Tg) of mice. (C) Representative Western blot of the β-actin density (control for protein 

loading). 

  

ns 

Ctr Tg 

~ 120kDa 

  

~ 40kDa 

  
β-actin 

  

Ctr Tg 



64 
 

4.3.1.2. BACE1 in synaptosomes 

The density of BACE1 was analyzed, by Western Blot, using hippocampi from both 

the control and the 3xTg-AD in the same gel. The antibody used recognized a well-

defined band with an apparent molecular weight of approximately 70 kDa. 

The data obtained show that there is no significant difference in the abundance of 

BACE1 in the synaptic terminals of 3xTg-AD mice (72.8% ± 13.8%, n=3) in 

comparison to the control mice group (68.0% ± 11.1%, n=3) 
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Figure 24. Hippocampal levels of BACE1 in synaptosomes of 3xTg-AD mice in 

comparison to a control group. The graphic represents the percentage of immunoreactivity for 

20 μg of loaded protein, which was calculated considering the maximal immunoreactivity value 

obtained as 100%. The results are presented as mean ± SEM of 3 independent experiments. The 

statistical analysis was done using the unpaired t test (ns-non significant) (B) Representative 

Western blot of the BACE1 levels in the control group (Ctr) and in the 3xTg-AD group (Tg) of 

mice. (C) Representative Western blot of the β-actin density 
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In a recent study, it was shown that the levels of BACE1 increase in 3xTg-AD mice 

in an age-dependent manner, suggesting a functional role of BACE1 in Aβ 

overproduction in these AD animal models (Zhang et al., 2012). Others have also 

demonstrated that oxidative stress, which typically leads to metabolic dysfunction and 

apoptosis of neurons, is one of the main reasons for the elevated levels of BACE1 in 

cortical regions of AD mice models (Mouton-Liger et al., 2012).Our data did not reveal 

difference between BACE 1 densities in 3xTg-AD mice as compared  with  control 

animals (wild-type), however we did not check for the possible effects of age in 

BACE1levels.  

The increase in BACE1 levels and activity was also reported in the brains of AD 

patients, particularly in the temporal cortex, which may be either a reaction to pathology 

or one of the causes in the sporadic form of AD  (Holsinger et al., 2002; Marks and 

Berg, 2010). It has also been stated that the APP Swedish mutation, present in the AD 

models used for the study, makes BACE1-mediated cleavage more efficient, because 

enhances the expression of BACE1 (Wang et al., 2013). 
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4.3.1.3. ADAM10 in synaptosomes 

The levels of ADAM10 in hippocampus of 3xTg-AD mice versus control mice were 

compared by Western blot analysis. The data obtained showed a significant (p<0.01) 

reduction on the levels of ADAM10 in the 3xTg-AD mice (22.83% ± 6.64%, n=3), in 

comparison to the control group (81.84% ± 9.15%, n=3).  

 

A 

 

 

 

B      C 

 

 

 

 

 

Figure 25. Hippocampal levels of ADAM10 in synaptosomes of 3xTg-AD mice in 

comparison to a control group. The graphic represents the percentage of immunoreactivity for 

20 μg of loaded protein, which was calculated considering the maximal immunoreactivity value 

obtained as 100%. The results are presented as mean ± SEM of 3 independent experiments. The 

statistical analysis was done using the unpaired t test (** - p<0.01) (B) Representative Western 

blot of the ADAM10 levels in the control group (Ctr) and in the 3xTg-AD group (Tg) of mice. 

(C) Representative Western blot of the β-actin density (protein loading control) 
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Data from literature concerning ADAM10 expression in pathology-affected brains 

are controversial. Our data show a significant decrease in ADAM 10 density in the 

3xTg-AD mice, as compared with control mice group. A recent study reported 

ADAM10 mRNA levels are increased in hippocampus of AD patients (Epis, et al, 

2012), however this does not necessary implicates an increase in ADAM 10 protein 

levels. 

 

 

 

4.3.2. Presence of APP and secretases in Glutamatergic and 

GABAergic nerve terminals of 3xTg-AD mice 

In this part of the study we aimed to investigate if there was an AD pathology-

dependent modification of the distribution of APP and secretases in different types of 

cortical nerve terminals. This was investigated the 3xTg-AD mice and age-matched (15 

months old) wild-type mice (control animals). 

 

First, the density of markers of different types of nerve terminals, namely vGLUT1 

and vGAT, was evaluated in control and 3xTg-AD.  

As illustrated in Figure 26, in the control group, in the general population of cortex 

nerve terminals (identified as synaptophysin-immunoreactive elements) we found that 

85.5% ± 5.8% (n=3) were glutamatergic. A similar pattern can be observed in the group 

of transgenic mice, in which glutamatergic terminals represented 85.8% ± 1.8% (n=3) 

of the synaptophysin-immunopositive elements. Therefore, in 3xTg-AD mice there 

were not observed significant alterations in the density of glutamatergic terminals 

(vGLUT1-immunopositive), as compared with age-matched control mice.  
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Figure 26. Relative glutamatergic nerve terminals abundance in the plated purified 

presynaptic nerve terminals of the control group in comparison to the 3xTg-AD group of 

mice. (A) The graphic represents the percentage of co-localization between markers of 

glutamatergic (vGLUT) nerve terminals and synaptophysin (Syn)-immunopositive elements. 

The total population was considered to be the overall number of synaptophysin-immunopositive 

elements. The results are presented as mean ± SEM of 3 independent experiments. ns – non 

significant. (B) Representative  merge images of  Synaptophysin-immunopositive elements 

(Syn, red) and the marker of glutamatergic (vGLUT, green) nerve terminals, in the control 

group and in the 3xTg-AD group of mice, The yellow labeling correspond to the co-localization 

between Syn and VGLUT positive elements. The magnification used to obtain the images was 

630x. 
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This result was not expectable, as it has been described by many group, that the 

glutamatergic system is affected in AD. A decrease in the number of vGLUT1 has 

already been reported in AD models, as well as in post-mortem studies in AD patients 

(Masliah et al., 2000; Kirvell et al., 2006). However, others suggest that, similar to what 

happens with the cholinergic system, some studies suggest that there is an increase of 

glutamatergic synapses in patients with mild cognitive deficits, indicating a possible 

compensatory mechanism that becomes less notable with the progression of the disease  

(Revett et al., 2013). Results from our group also showed that in AD models, resulting 

from Aβ intracerebroventricular injection, there is loss of glutamatergic terminals, in 

parallel with memory dysfunction (Cunha et al., 2008). In fact, glutamatergic neurons 

seem to suffer significant damage in regions such as the hippocampus, the frontal, 

temporal and parietal cortex, which are severely affected during AD development 

However, in animal transgenic models of AD, during the early stages of the pathology, 

it was shown that the cortical glutamatergic and GABAergic terminals become 

upregulated, mainly the presynaptic bouton populations. This increase has also been 

reported in AD patients, where an elevation in the number of glutamatergic terminals 

was observed (for review see Bell et al., 2008). 

 

It was next evaluated if the overall abundance of GABAergic terminals changed in 

association with AD pathology. In the control group, it was found that 16.8% ± 2.8% 

(n=3) of the general population of cortex nerve terminals were GABAergic. On the 

other hand, in the group of 3xTg-AD mice, the abundance of GABAergic terminals 

suffered a slight increase: 29.2% ± 6.6% (n=3) of synaptophysin immunopositive 

terminals were enriched in vGAT (Figure 27). 

These data are somewhat in contrast with the findings  showing that the GABAergic 

system suffers a significant decrease during normal aging in rat hippocampus (Vela et 

al., 2003), as well as in AD transgenic mice model (Bell and Cuello, 2006).  

The discrepancies between our data , showing no significant alterations in the density 

of glutamatergic and GABAergic terminals in 3xTgAD mice model (as compared with 

control mice), and the literature data that in general reported a loss of nerve terminals, 

could be due to the methodology used to assess the density of nerve terminals. 

However, we are aware of the necessity of increase the number of animals tested and 

perform other type of assays to confirm these observations.  
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Figure 27. Relative GABAergic nerve terminals abundance in the plated purified 

presynaptic nerve terminals of the control group in comparison to the 3xTg-AD group of 

mice. (A) The graphic represents the percentage of co-localization between markers of 

glutamatergic (vGAT) nerve terminals and synaptophysin-immunopositive (Syn) elements. The 

total population was considered to be the overall number of synaptophysin-immunopositive 

elements. The results are presented as mean ± SEM of 3 independent experiments. ns – non 

significant. (B) Representative marge images of Synaptophysin (Syn, red)-immunopositive 

elements and the marker of GABAergic (vGAT, green) nerve terminals, in the control group 

and in the 3xTg-AD group of mice. Yellow labeling corresponds to a co-localization of 

synaptophysin- and vGAT-immunopositive elements. The magnification used to obtain the 

images was 630x. 
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The presence of APP in purified synaptosomes of both groups of animals was also 

assessed. In the whole population of nerve terminals of the control group, identified as 

synaptophysin-immunopositive elements, 18.3% ± 0.4% (n=3) were endowed with 

APP. In 3xTg-AD mice, APP-immunopositive terminals represented 37.1% ± 1.1% 

(n=3) of the general population of cortical nerve terminals. The data presented in Figure 

28 show that, although there is an increase in the levels of APP in the 3xTg-AD mice, it 

is not as elevated as it would be expected.  
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Figure 28. APP is more abundant in the presynaptic nerve terminals of the 3xTg-AD 

group of mice. (A) The graphic represents the percentage of co-localization between APP-

immunopositive elements and synaptophysin-immunopositive elements. The total population 

was considered to be the overall number of synaptophysin-immunopositive elements. The 

results are presented as mean ± SEM of 3 independent experiments. *** - p<0.001. (B) 

Representative merge images obtained for Synaptophysin-immunopositive elements (Syn, red) 

and APP-immunopositive elements (APP, green), in the control group and in the 3xTg-AD 

group of mice. Yellow labeling corresponds to a co-localization of synaptophysin- and APP-

immunopositive elements. The magnification used to obtain the images was 630x. 

 

The results obtained in the quantification of APP, in synaptosomes, by Western Blot 

analysis, in the hippocampus of mice of both groups, did not show such evident increase 

in the levels of APP in 3xTg-AD mice as those obtained by immunocytochemistry 

analysis. This might be explained by the fact that the hippocampus seems to be the most 

affected brain region in AD (Wang et al., 2012). It is possible that, in this model, the 

cortex region was not as affected as the hippocampus by the progression of the 

pathology. Besides, in another model of AD overexpressing APP (Tg2576), it has been 

described that, the highest levels of total APP are detected at age of 90 days (Unger et 

al., 2005).   

 

 

In order to determine whether the distribution of APP changed with the pathology in 

glutamatergic terminals, the co-localization of APP with vGLUT1 was also evaluated. 

As illustrated in Figure 29, in the control group, 23.1% ± 2.4% (n=3) of glutamatergic 

terminals were enriched with APP, while in the 3xTg-AD mice, 16.6% ± 2.1% (n=3) of 

the glutamatergic terminals co-localized with APP.  
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Figure 29. APP distribution in Glutamatergic presynaptic nerve terminals of the 

control group and of the 3xTg-AD mice. (A) The graphic represents the percentage of co-

localization between the marker of Glutamatergic nerve terminals (vGLUT) and APP-

immunopositive elements . The total population was considered to be the overall number of 

vGLUT-immunopositive elements. The results are presented as mean ± SEM of 3 independent 

experiments. ns – non-significant. (B) Representative merge images obtained for APP-

immunopositive elements (APP, red) and the marker of glutamatergic (vGLUT, green) nerve 

terminals, in the control group and in the 3xTg-AD group of mice. Yellow labeling corresponds 

to a co-localization of APP- and vGLUT-immunopositive elements. The magnification used to 

obtain the images was 630x. 
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Then, the presence of BACE1 in nerve terminals in both 3xTg-AD and control mice 

groups was studied. As illustrated in Figure 30, in the control group, 71.2% ± 4.5% 

(n=3) of the synaptophysin immunopositive elements were endowed with BACE1 

immunoreactivity, while, in the 3xTg-AD mice, 47.5% ± 7.6% (n=3) of the general 

population of nerve terminals co-localized with BACE1. This results is surprising, as it 

has already been described that, in AD brains, the levels of BACE1 are elevated 

approximately twofold in comparison to healthy ones, suggesting its involvement in the 

development of AD pathogenesis. In addition to that, it has also been reported that the 

APP Swedish mutation leads to an enhanced APP cleavage by BACE1 (Vassar et al., 

2009). 
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Figure 30. Distribution of BACE1 in presynaptic nerve terminals of the control group 

and of the 3xTg-AD group of mice. (A) The graphic represents the percentage of co-

localization between BACE1-immunopositive elements and synaptophysin-immunopositive 

elements. The total population was considered to be the overall number of synaptophysin-

immunopositive elements. The results are presented as mean ± SEM of 3 independent 

experiments. ns – non significant . (B) Representative merge images obtained for 

Synaptophysin-immunopositive elements (Syn, green) and BACE1-immunopositive elements 

(BACE, red), in the control group and in the 3xTg-AD group of mice. Yellow labeling 

corresponds to a co-localization of Syn- and BACE1-immunopositive elements. The 

magnification used to obtain the images was 630x. 

 

 

 

 

 

 

 

 

 

 

 

 

It was also evaluated the relative abundance of ADAM10 in the nerve terminals of 

3xTg-AD and control (wild-type) mice groups. As illustrated in Figure 31, in the control 

group, although it was not abundant, ADAM10 was more present than in the 3xTg-AD 

mice: in the overall population of nerve terminals, 6.9% ± 0.3% (n=3) were enriched in 

ADAM10. On the other hand, in the 3xTg-AD mice the presence of ADAM10 was 

almost inexistent: 0.3% ± 0.2% (n=3). 
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Figure 31. Distribution of ADAM10 in presynaptic nerve terminals of the control group 

and of the 3xTg-AD group of mice. (A) The graphic represents the percentage of co-

localization between ADAM10-immunopositive elements and synaptophysin-immunopositive 

elements. The total population was considered to be the overall number of synaptophysin-

immunopositive elements. The results are presented as mean ± SEM of 3 independent 

experiments. *** - p<0.001 (B) Representative merge images obtained for Synaptophysin-

immunopositive elements (Syn) and ADAM10-immunopositive elements (ADAM10), in the 

control group and in the 3xTg-AD group of mice. Yellow labeling corresponds to a co-

localization of Syn- and ADAM10-immunopositive elements. The magnification used to obtain 

the images was 630x. 

3xTg-AD Ctr 

Merge Syn/ADAM10 Merge Syn/ADAM10 

*** 



77 
 

These contrasting levels of BACE1 and ADAM10 in our preparations might be 

explained by the fact that these enzymes’ activity is highly competitive. Hence, when 

APP cleavage by one of the secretases is augmented, the other is expected to be 

diminished (Bekris et al., 2011). 

 

 

 

 

 

 

 

 

 

An alternative interpretation of data related to APP protelysis and its involvement in 

AD pathogenesis is the Presenilin hypothesis, according to which loss or altered PS1 

function is suggested to be the causative factor to the onset of the disease (Shen and 

Kelleher, 2007).  Guided by this idea, we decided to investigate the relative abundance 

of PS1. As it can be observed in Figure 32, the PS1 presence seems to suffer an increase 

in the 3xTg-AD mice. In the general population of synaptophysin immunopositive 

elements, in the control group, 0.9% ± 0.6% (n=3) were endowed with PS1, while in the 

3xTg-AD mice the number of PS1 immunopositive terminals was higher:  1.7% ± 0.3% 

(n=3). 
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Figure 32. Distribution of PS1 in presynaptic nerve terminals of the control group and 

of the 3xTg-AD group of mice. (A) The graphic represents the percentage of co-localization 

between PS1-immunopositive elements and synaptophysin-immunopositive elements. The total 

population was considered to be the overall number of synaptophysin-immunopositive 

elements. The results are presented as mean ± SEM of 3 independent experiments. ns – non 

significant. (B) Representative merge images obtained for Synaptophysin-immunopositive 

elements (Syn) and PS1-immunopositive elements (PS1), in the control group and in the 3xTg-

AD group of mice. Yellow labeling corresponds to a co-localization of Syn- and PS1-

immunopositive elements. The magnification used to obtain the images was 630x. 
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4.3.3. Co-localization of APP with α- and β-secretases in nerve 

terminals of 3xTg-AD mice 

 

It was further investigated if APP was co-localized with α-, β- and γ-secretases, in 

both the control (wild-type) and the 3xTg-AD mice groups. 

 

In our preparations, as it can be observed in Figure 33, the preliminary results 

suggest a tendency towards a decrease in the co-localization of these proteins. In the 

control group, 49.5% (n=1) of APP-immunopositive elements were labeled with 

ADAM10, while in the 3xTg-AD mice group this value suffered a slight decrease: 

33.8% (n=1).   
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Figure 33. APP and ADAM10 co-localization in the control group and in the 3xTg-AD 

mice group of mice. Double immunocytochemistry analysis of APP and ADAM10 (A.1.) The 

graphic represents the percentage of co-localization between ADAM10-immunopositive 

elements and APP-immunopositive elements. The total population was considered to be the 

overall number of APP-immunopositive elements. (B) Representative merge images obtained 

for APP-immunopositive elements (APP) and ADAM10-immunopositive elements (ADAM10), 

in the control group and in the 3xTg-AD group of mice. Yellow labeling corresponds to a co-

localization of APP- and ADAM10-immunopositive elements. The magnification used to obtain 

the images was 630x. 

 

 

Some studies have demonstrated that ADAM10 and APP are co-expressed in human 

cortical neurons preparations, thereby suggesting that these two proteins are probably 

co-associated or co-localized (for review see Endres and Fahrenholz, 2010). 

 

 

 

 

 

 

The co-immunolabeling of APP and BACE1 platted presynaptic nerve terminals of 

both control and 3xTg-AD mice was also evaluated. It was found that in the control 

group 24.9% ± 1.8% (n=3) of APP-immunopositive nerve terminals were also labeled 

with BACE1, while in the 3xTg-AD mice group this value was lower: 14.4% ± 0.2% 

(n=3).  
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Figure 34. APP and BACE1 co-localization in the control group and in the 3xTg-AD 

mice group of mice. Double immunocytochemistry analysis of APP and BACE1. (A) The 

graphic represents the percentage of co-localization between BACE1-immunopositive elements 

and APP-immunopositive elements. The total population was considered to be the overall 

number of APP-immunopositive elements. The results are presented as mean ± SEM of 3 

independent experiments. ** p<0.01. (B) Representative merge images obtained for APP-

immunopositive elements (APP) and BACE1-immunopositive elements (BACE1) in the control 

group and in the 3xTg-AD group of mice. Yellow labeling corresponds to a co-localization of 

APP- and BACE1-immunopositive elements. The magnification used to obtain the images was 

630x. 

** 

Ctr 3xTg-AD 

Merge APP/BACE Merge APP/BACE 



82 
 

This result is somehow surprising, as an increase in BACE1 abundance in the AD 

model mice was expected, resulting from the increased Aβ deposits found in 3xTg-AD 

mice model (Oddo et al., 2003; Lefort et al., 2012).  
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4.4. Age-related changes in APP levels in human cortical brain 

(preliminary result) 

 

Since the aging brain is generally associated with increased neuronal vulnerability 

and is, by far, the major risk factor for the development of AD (Schliebs and Arendt, 

2011), in this part of the study we performed a comparative analysis of the APP levels  

present in human brain cortex of  individuals with different ages. For this purpose, we 

used samples from different individuals who suffered a sporadic death (unknown 

causes) with 21, 41, 60 and 81 years old, in order to compare whether there is an age-

related difference in the density of APP  (preliminary study). 

 

 

4.4.1. APP in Cortical Total Extracts 

 

It is known that the Aβ sequence is different among the human and mouse APP 

sequence. In comparison to human APP, the mouse protein is poorly processed by 

BACE1, leading to the production of approximately three times lower amounts of Aβ 

peptides. This phenomenon may be explained by the fact that Aβ peptides seem to be 

less critical in mice than in humans, although it seems to have a physiological role in 

rodents (Priller et al., 2006).  

 

As illustrated in Figure 35, in the Western blot performed, the anti-APP antibody 

used recognized a triple well-defined band with an apparent molecular weight of 

approximately 120-130 kDa. The immunoreactivity of each band was normalized with 

β-actin. The presence of more bands than those observable in mice can be explained by 

the fact that, in humans, APP maturation involves extensive post-translational 

modifications, like glycosylation, sulfation and phosphorylation (Claeysen et al., 2012).  
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Figure 35. APP levels in total extracts of human cortical samples. The graphic bars (A) 

represent the percentage of APP immunoreactivity, considering the APP density observed in the 

21 years old group as maximal.  The immunoreactive APP bands (B1) were quantified and the 

data were normalized in relation to β-actin density (B2).  

 

 

The observed results show a clear reduction of the levels of APP in human aged 

brains. Thus, it might be hypothesized that, in elderly individuals, the proteolysis rate of 

APP suffers an increase and the amyloidogenic pathway may be potentiated. In fact, it 

has been reported that during brain aging, the APP processing through the non-

amyloidogenic pathway suffers a decrease, thereby enhancing the susceptibility of 

neurons to cellular stress and contributing to AD neurodegeneration (Kögel et al., 

2012). Furthermore, it has also been suggested that there is a loss of physiological APP 

function , which may be one of the reasons for the reduction of neuronal plasticity and 

synaptic signaling, as well as enhanced susceptibility of neurons to cellular stress, 

common in elderly individuals. A downregulation in APP processing related with the 

ageing was also reported in a human cell line of aging (IMR-90, see Kögel et al., 2012). 
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5. CONCLUSIONS AND FINAL REMARKS 
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5.1. Conclusions 

 

 By comparing the levels of APP and secretases in hippocampal synaptosomes 

(nerve terminals) and total membranes, it was found that  APP, β- (BACE1), α- 

(ADAM10) and γ- (PS1) secretases are present in hippocampal nerve terminals , 

although they are not enriched in these fractions 

 

 Using subsynaptic fractions of it was observed that APP is mainly located 

presynaptically. The α-secretase (ADAM10) is distributed pre- and extrasynaptically, 

whereas β-secretase (BACE1) is mainly present in the extrasynaptic fraction. 

 

 APP is more abundant than secretases, ADAM10, BACE1 and PS1, in purified 

presynaptic nerve terminals. Both APP and BACE 1 are present in glutamatergic and 

GABAergic nerve terminals, BACE 1 are present in higher amounts in glutamatergic 

terminals than in GABAergic  terminals 

 

 APP and β-secretase are equally present in both glutamatergic and GABAergic 

nerve terminals 

 

 APP and β-secretase (BACE1), which are responsible for the formation of Aβ, 

are co-located in 40% of the nerve terminals 

 

 No significant differences were observed in the relative abundance of APP, α-

secretase (ADAM10) and β-secretase (BACE1) in hippocampal nerve terminals of 

young adult mice (2-3 months old) as compare with adult mice (9 months old). 

 

 In triple transgenic model of AD mice it was observed significant decrease in the 

ADAM 10 density in synaptosomes as compared with control (wild type) mice animals, 

but no significant changes were found in the levels of BACE1.  

 

 In human cortical brain regions it seems that APP density decrease with the 

advance of age (preliminary data). 
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5.2. Final Remarks 

 

The results presented in our work provide the first comparative analysis of the 

synaptic and subsynaptic distribution of APP and secretases in cortical brain regions of 

mice, mainly in hippocampus, as well as of the relative abundance of APP and 

secretases and their co-localization in glutamatergic and GABAergic presynaptic nerve 

terminals. Besides, we investigated if there are any age- or AD pathology -related 

changes in the distribution of these proteins.  

However, there are some questions that remain unanswered. One of them is to know 

whether the distribution of APP and secretases is affected in cholinergic nerve 

terminals, since the cholinergic system is one of the most affected in AD.  It should also 

be studied if APP and each of the secretases are co-localized in different types of nerve 

terminals. It would also be of great interest to investigate changes in the distribution and 

density of these proteins related with age and AD pathology in both humans and mice 

brain samples. 

 

Nevertheless, our work might contribute to better understanding the reason why only 

particular synapses suffer intense degeneration at early stages of AD. This is of 

particular importance, since the information obtained by the experimental strategies 

proposed would allow a better definition of the molecular targets and neurochemical 

events that are responsible for synaptic dysfunction in early stages of AD. This will 

probably be a setting up point for future projects, involving the development of more 

effective and neuroprotective therapeutical approaches, able to stop the progression of 

the AD at early phases. 
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