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Abstract	

Statistical process control (SPC) is a critical activity in all industrial process and since the 

introduction of the Shewhart control chart many methodologies have been developed to 

promptly detect process upsets as soon as possible, while avoiding unnecessary corrective 

actions that only introduce more variation into the system. Furthermore, current industrial 

data present a set of distinctive and challenging features that raise important difficulties in 

the implementation of efficient SPC approaches. In particular, they present megavariate, 

multiscale and dynamical features that need proper treatment. These three data 

characteristics are the main focus of this thesis. 

The base approach to handle both megavariate and dynamic features is dynamic principal 

component analysis (DPCA), which was the ability to simultaneously handle the cross- 

and auto-correlative behavior of processes. The concurrent modeling of such 

dependencies, allows for a more rigorous description of the normal behavior of processes, 

setting the ground for the development of improved SPC methodologies that are able to 

robustly detect finer deviations from normal operation conditions. A key point in the 

application of DPCA is the definition of its structure, namely the selection of the number 

of time-shifted replicates for each variable to include and the number of components to 

retain in the final model. To address the former aspect, two new lag selection methods are 

proposed in this thesis. The first method estimates a single lagged structure for all 

variables, while the second one refines this procedure by selecting the number of lags to 

be used for each individual variable. The application of these methods lead to a more 

rigorous estimation of the process lagged structure, and thus when implemented with SPC 

schemes that rely on a DPCA framework, significant improvements are observed. Still, 

the traditional DPCA approach leads to monitoring statistics with considerable levels of 

autocorrelation, a feature that seriously hinders its dissemination in practice. To handle 

this issue, a new set of multivariate statistics based in DPCA and missing data imputation 

methods were developed. The obtained DPCA with decorrelated residuals (DPCA-DR) 

methodology presents low autocorrelation levels, and therefore is better positioned to 

implement SPC over complex systems, in a more consistent and stable way. The 

performance of the proposed DPCA-DR was compared with a variety of current 

monitoring schemes for large scale systems, under different dynamic scenarios and for 

different types of process upsets and fault magnitudes. The results obtained clearly 
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indicate that the statistics based on DPCA-DR consistently present superior performances 

regarding detection ability and decorrelation power. For instance, in the Tennessee 

Eastman process, the proposed DPCA-DR statistics had the highest detection rates on 19 

of the 21 faults, are statistically superior to their PCA and DPCA counterparts and present 

low levels of autocorrelation, which simplifies their implementation and improves their 

reliability. 

Another subject treated in this thesis is the monitoring of the process correlation structure. 

On this regard, the analysis of the literature shows that most of the multivariate SPC 

methods developed so far are essentially focused on detecting changes in the process 

mean. Yet, the monitoring of the process multivariate dispersion is also a relevant issue in 

SPC, since a process failure may not manifest itself so notoriously as a deviation from the 

nominal mean values, especially due to the action of control systems struggling to 

maintain key process variables close to their target values. 

The monitoring of multivariate process dispersion is usually carried out through 

monitoring statistics based on the generalized variance or likelihood ratio tests, which are 

strictly based on marginal correlations. This global measure of association is not sensitive 

to the inner association between variables and therefore is unable, by design, to efficiently 

discern changes in the local correlation structure. To access and use information on the 

local association structure, in this thesis several monitoring statistics and sensitivity 

enhancing transformations (SET) are proposed that are based on partial correlations. The 

SET was found to be a key aspect in the development of such monitoring schemes which, 

for maximum effectiveness, makes use of information regarding the causal network 

underlying the process in order to construct a set of uncorrelated transformed variables 

around which the detection of changes in correlation is maximized. The results obtained 

in the comparison study involving the current methodologies to monitor the correlation 

structure, in both off-line and on-line cases, show that the proposed methods based on 

partial correlations are able to efficiently detect changes in the process structure and 

presented higher sensitivity than their marginal counterparts. 

Keywords: lag selection; principal component analysis; multivariate statistical process 

control; mathematical modeling; multivariate dynamical processes; partial correlation; 

marginal correlation; variable transformation; causal network. 
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Resumo	

O controlo estatístico de processos (SPC) é uma atividade crítica em qualquer unidade 

industrial. Desde a introdução da primeira carta de controlo, muitas outras metodologias 

têm vindo a ser desenvolvidas com o intuito de detetar rapidamente diferentes tipos de 

falhas processuais ao mesmo tempo que evitam o recurso a intervenções desnecessárias 

que apenas introduzem mais variação nos processos. Além disso, os processos industriais 

atuais apresentam características específicas que dificultam a análise dos dados 

recolhidos, nomeadamente a sua escala elevada, natureza multiescala e presença de 

dinâmica em todas as variáveis. Estas características requerem a implementação de novas 

metodologias de SPC, as quais serão o principal foco desta tese. 

A abordagem base para lidar com estes fenómenos apoia-se no conceito da análise dos 

componentes principais, nomeadamente a sua versão dinâmica (DPCA), uma vez que esta 

é capaz de descrever a correlação cruzada e autocorrelação dos dados em simultâneo. 

Deste modo, DPCA permite uma descrição mais rigorosa dos processos e como tal, o 

desenvolvimento de metodologias SPC aptas para a deteção de desvios subtis às 

condições normais de operação. Um dos passos mais relevantes na aplicação de DPCA 

recai na correta definição da sua estrutura dinâmica, mais especificamente a seleção do 

número de variáveis desfasadas necessárias para descrever o processo corretamente. 

Neste sentido, dois métodos para a seleção do número de desfasamentos são propostos 

nesta tese. O primeiro método estima um número de desfasamentos igual para todas as 

variáveis, enquanto o segundo, refina este resultado ao estimar o número de 

desfasamentos mais apropriado para cada variável. A aplicação direta destes métodos em 

DPCA, permite por si só melhorar a capacidade de deteção das técnicas existentes devido 

a uma melhor descrição da variabilidade processual. No entanto, como DPCA tradicional 

não consegue lidar corretamente com a dinâmica dos dados, uma vez que as estatísticas 

de monitorização baseadas em DPCA tendem a apresentar autocorrelação, uma nova 

metodologia foi desenvolvida para mitigar este efeito. O novo método, designado por 

DPCA com resíduos descorrelacionados (DPCA-DR), baseia-se na combinação de DPCA 

com técnicas de estimação de dados em falta. DPCA-DR apresenta baixos níveis de 

autocorrelação nas suas estatísticas sem por em causa a sua capacidade de deteção de 

falhas. Como tal, DPCA-DR é uma mais-valia para a monitorização de sistemas 

complexos, apresentando um melhor desempenho quando comparado com as técnicas 
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atuais para lidar com sistemas multivariados. Por exemplo, no conhecido caso de estudo 

do processo Tennessee Eastman, as estatísticas baseadas em DPCA-DR apresentam as 

melhores taxas de deteção em 19 das 21 falhas consideradas, sendo que estas são também 

estatisticamente superiores às taxas de deteção obtidas com PCA e DPCA tradicionais. 

Além disso, as estatísticas baseadas em DPCA-DR apresentam baixos níveis de 

autocorrelação, o que simplifica a sua implementação e aumenta a sua fiabilidade. 

Outro tema abordados nesta tese consiste na monitorização da estrutura correlacionada 

dos processos. Neste aspeto, da análise da literatura verificou-se que a maioria dos 

métodos SPC desenvolvidos até então focam-se essencialmente na deteção de desvios na 

média processual. No entanto, a monitorização da dispersão multivariada é igualmente 

importante pois uma falha processual pode não se manifestar tão notoriamente em desvios 

no valor nominal das variáveis, já que estas estão normalmente sob o efeito de sistemas 

de controlo que as mantêm próximas do seu valor pretendido. 

Em processos multivariados, a monitorização da dispersão é usualmente feita por recurso 

a estatísticas baseadas na variância generalizada ou em testes de verosimilhança que 

apenas têm em conta a correlação marginal das variáveis. Esta medida global da 

associação entre as variáveis não é sensível à relação direta entre as mesmas e, como tal, a 

correlação marginal não é uma medida adequada para a deteção de desvios na associação 

local entre as variáveis. A fim de explorar este tipo de informação, abordagens baseadas 

na correlação parcial entre as variáveis foram consideradas nesta tese. Dos métodos 

desenvolvidos, destaca-se o pré-processamento das variáveis por via de uma 

transformação linear com vista a descorrelacionar as variáveis. Esta transformação 

baseia-se na rede causal inerente ao processo, incorporando a sua estrutura de modo a 

obter um novo conjunto de variáveis descorrelacionadas e em torno das quais a deteção 

de desvios na correlação é maximizada. Os resultados obtidos durante a comparação 

destes novos métodos com outros alternativos baseados na correlação marginal, 

demostram que o uso de correlações parciais, aliadas a uma melhor descrição do 

processo, levam a uma maior capacidade de deteção de desvios na estrutura dos 

processos, tendo também um elevado potencial para diagnosticar a origem da falha. 

Palavras-chave: seleção de desfasamentos; análise dos componentes principais; controlo 

estatístico multivariado; modelação matemática; processos dinâmicos multivariados; 

correlação parcial; correlação marginal; transformação de variáveis; redes causais. 
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Symbols	and	Abbreviations	

Symbols 

B Matrix of regression coefficient 

Jmax Decomposition depth in the wavelet decomposition 

l Number of lags 

m Number of variables 

n Number of observations 

P Matrix of loadings 

p Number of latent variables 

r Sample correlation 

r0 Vector of marginal correlation coefficients 

r1 Vector of 1st order partial correlation coefficients. 

S Sample covariance matrix 

s Sample standard deviation 

T Matrix of latent variables 

v Vector of variables’ variance 

x Vector of observation 

X Matrix of observations 

Λ Matrix of eigenvalues 

μ Population mean vector 

ν Degrees of freedom 

ρ Population correlation 

σ Population standard deviation 

Σ Population covariance matrix 

Extended data matrix 

 Hadamard product 

 Kronecker product

X
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Abbreviations 

AR Autoregressive

ARIMA Autoregressive integrated moving average 

ARL Average run length 

ARMA Autoregressive moving average 

CL Center line

CSTR Continuous stirred-tank reactor 

CUSUM Cumulative sum

CVA Canonical variate analysis 

DPCA Dynamic principal component analysis 

DPCA-DR Dynamic principal components analysis with decorrelated residuals 

DPLS Dynamic partial least squares 

EPC Engineering process control 

EWMA Exponentially weighted moving average 

i.i.d. Independent and identically distributed 

KSV Key singular value 

KSVR Key singular value ratio 

LCL Lower control limit 

LRT Likelihood ratio test 

MS-DPCA-DR Multiscale dynamic principal components analysis with decorrelated 

residuals 

MSE Mean squared error 

MSPC Multivariate statistical process control 

MS-PCA Multiscale principal component analysis 

NOC Normal operation conditions 

OLS Ordinary least squares 

PC Principal component

PCA Principal component analysis 

PLS Partial least squares

SET Sensitivity enhancing transformation

SI System identification

SNR Signal-to-noise ratio

SPC Statistical process control 
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SPE Squared prediction error 

UCL Upper control limit 

VAR Vector autoregressive

VARIMA Vector autoregressive integrated moving average 

VARMA Vector autoregressive moving average 

VMA Vector moving average 
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1 Introduction	

The main topics addressed in this thesis are introduced in this chapter. It is divided in four 

sections where the contextualization of the research conducted in the scope of this thesis 

is provided as well as the underlying motivation and basic concepts. In the first section, 

the general research setting is described. Then, in the next section, the main goals are 

defined and a brief description of the approaches followed in order to attain such goals is 

provided. Afterwards, the main contributions are summarized as well as the critical 

concepts employed in their development and associated advantages regarding current 

approaches. Finally, an overview of the thesis’ structure is provided.  

1.1 Scope	and	Motivation	

The analysis and operation of industrial and biological systems faces nowadays 

significant challenges due to the massive quantities of information they generate. 

Moreover, the data collected from these systems is usually composed by highly correlated 

variables with different time/length resolutions, as a result of the complexity of all the 

underlying phenomena going on. Thus, there is a need for integrated data processing and 

analysis methodologies capable to extract and use the information that is in fact relevant 

for the proper implementation of subsequent tasks, such as process monitoring, 

optimization and control. Various methodologies for dealing with particular aspects of 

industrial data were already developed and presented in the literature. For instance, the 

highly interactive and correlated nature of data can be explored with multivariate and 

multi-way methods, such as principal component analysis (PCA) [1], partial least squares 

(PLS) [2], independent component analysis (ICA) [3], Tucker3 and PARAFAC [4]. 

Certain multiresolution and multiscale dynamic features can also be properly described, 

namely using data-driven multiscale frameworks [5-9], as well as issues such as 

measurement noise/uncertainty can also be taken into account [10, 11]. However, there 

are some key elements that still remain to be properly integrated in data-driven systems 

analysis frameworks, even considering the state-of-the-art analysis methodologies, and 

especially in what concerns to industrial process systems: the explicit incorporation of 
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systems network topology along with information about the causal directionality between 

connected elements. With such descriptions available, approaches that are more 

consistent with the true nature of systems can be developed. 

In this context, the general scope of this thesis regards the development of new 

frameworks for handling the complex nature of systems and of the data they generate, in 

tasks such as process monitoring, diagnosis and analysis. These frameworks will combine 

recent developments on multiresolution theory, network analysis and multivariate 

statistics/data-mining, in order to flexibly handle the several intricate features of data 

generated in complex industrial processes and biosystems. 

1.2 Goals	

The present research aimed at developing new methodologies that exploit the information 

contained in the data collected from complex industrial systems and biosystems as well as 

from some a priori knowledge, in order to: 

(i) improve the quality of the analysis and the effectiveness of the extraction of 

useful knowledge regarding the underlying physical-chemical phenomena, 

speeding up the learning process and thus providing the basis for the efficient 

development of innovative solutions; 

(ii) improve the tasks of process monitoring, diagnosis and control, given the 

extended access to more information and more precise descriptions of the 

reality trough models inferred from data. 

In the context of these general goals, new integrated frameworks that enable the prompt 

detection of process upsets will be developed, as well as analysis and diagnosis tools able 

to suggest lines of action to plant personnel, towards their effective elimination or 

mitigation. To do so, the developed frameworks will combine dynamical modeling 

methods, multiresolution and multivariate methodologies along with several other 

approaches such as network analysis and inference methodologies based on partial 

correlation, in order to accommodate the main complexity features present in data from 

industrial systems and biosystems. 
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1.3 Contributions	

In accordance with the general goals described above, the following developments can be 

considered as the main contributions from this thesis: 

(i) Two new methodologies for defining the structure of dynamic PCA models 

(DPCA). They consist of lag selection methods that determinate the number of 

time-shifted replicates to be included in DPCA. The proposed methods are 

based on a succession of singular value decomposition problems and lead to 

better estimates of the true lagged structure of the underlying processes. 

Moreover, contrary to current approaches, one of the proposed methods selects 

a different number of lags for each variable, which ultimately leads to better 

descriptions of the process under analysis; 

(ii) A new methodology called dynamic principal component analysis with 

decorrelated residuals (DPCA-DR), that finally successfully addresses one of 

the main limitations of DPCA, namely its inability to remove the 

autocorrelation from the monitoring statistics. This methodology is based on 

the combined use of DPCA, to explain the process dynamics and correlation 

structure, and missing data techniques, to intrinsically perform one-step-ahead 

predictions without the need of fitting a multivariate time series model. When 

DPCA-DR is applied to process monitoring of complex dynamic systems a set 

of monitoring statistics with low autocorrelation levels and high fault detection 

performances are obtained; 

(iii) New sensitivity enhancing transformations (SET) for process monitoring are 

proposed and discussed. These transformations are based on the process causal 

structure and are capable of increasing the sensitivity to abnormal structural 

changes. These SET incorporate the inner relationship between the variables 

in order to construct a new set of uncorrelated variables around which the 

deviations in the correlation coefficients are maximized, so that even small 

changes can be easily detected; 

(iv) Off-line and on-line monitoring statistics based on local measures of 

association, namely partial correlations, are proposed for the first time. They 

can exploit the benefits from the use of the SET and lead to higher fault 

detection performances than current approaches (which are mostly invariant to 
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SET). The task of fault diagnosis also benefits from the use of partial 

correlations and SET’s, where the new methods show greater capability to 

identify the correct root causes of process upsets when compared with the 

current marginal-based counterparts; 

(v) An equivalence relationship is proposed for the off-line and on-line 

methodologies for monitoring the process multivariate dispersion using partial 

correlations. Its impact goes beyond the methods proposed in this thesis; 

(vi) New multiscale monitoring procedures for detecting changes in the process 

location and multivariate dispersion. In the case of location monitoring, the 

use of DPCA-DR in combination with the wavelet transform showed to be 

capable to isolate the scales related with the fault and consequently leading to 

higher detection rates than the current single-scale and multiscale PCA 

approaches. As for the monitoring of the multivariate dispersion, the major 

contribution is given by the SET, which proved to allow for a suitable 

monitoring of multiscale systems even when single-scale monitoring schemes 

are used. In some sense, the SET transformations already incorporate 

multiscale modelling features.  

Most of the subjects covered in the above topics were already published or are in the final 

stages of preparation at the time of submission of this thesis, as summarized in Table 1.1. 

Furthermore, the algorithms related with more relevant contributions are available in the 

form of Matlab functions in the digital supplementary material that complements this 

thesis. A summary of such functions, as well as their relation with the thesis 

contributions, is provided in Table 1.2. 
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Table 1.1 Summary of the published works related with the topics addressed in this thesis. 

Chapter Contribution Reference 

5 (i) 

Rato, T.J. and Reis, M.S., Defining the structure of DPCA 
models and its impact on process monitoring and prediction 
activities. Chemometrics and Intelligent Laboratory Systems, 
2013. 125(15): p. 74-86. 

6 (ii) 

Rato, T.J. and Reis, M.S., Statistical Process Control of 
Multivariate Systems with Autocorrelation, in Computer 
Aided Chemical Engineering, M.C.G. E.N. Pistikopoulos and 
A.C. Kokossis, Editors. 2011, Elsevier. p. 497-501. 

6 (ii) 

Rato, T.J. and Reis, M.S., Advantage of Using Decorrelated 
Residuals in Dynamic Principal Component Analysis for 
Monitoring Large-Scale Systems. Industrial & Engineering 
Chemistry Research, 2013. 52(38): p. 13685-13698. 

6 (ii) 

Rato, T.J. and Reis, M.S., Fault detection in the Tennessee 
Eastman benchmark process using dynamic principal 
components analysis based on decorrelated residuals (DPCA-
DR). Chemometrics and Intelligent Laboratory Systems, 2013. 
125(15): p. 101-108. 

9, 10 (iii), (iv) 
Rato, T.J. and Reis, M.S., Non-causal data-driven monitoring 
of the process correlation structure: a comparison study with 
new methods. Submitted. 

9, 10 (iii), (iv) 
Rato, T.J. and Reis, M.S., Sensitivity Enhancing 
Transformations for Monitoring the Process Structure. 
Submitted. 

Table 1.2 Summary of the Matlab functions developed in this thesis. 

Chapter Contribution Function Description

5 (i) detlag_method1 
Method 1 to define the lagged structure 
of processes: maximum number of lags 
in DPCA 

5 (i) detlag_method2 
Method 2 to define the lagged structure 
of processes: number of lags for each 
variable 

6 (ii) stDPCADR_model
Constructs a DPCA-DR model based
on a NOC data set 

6 (ii) stDPCADR 
Computes the proposed DPCA-DR 
monitoring statistics based on the 
model given by stDPCADR_model 

9 (iii) network_edge 
Network reconstruction: identification 
of the undirected edges between the 
variables 

9 (iii) network_direct1 
Network reconstruction: define the 
directionality of the causal network of 
stationary systems 

9 (iii) network_direct2 
Network reconstruction: define the 
directionality of the causal network of 
dynamic systems 

9 (iii) SET_Net 
Sensitivity enhancing transformation
based on the process causal network 
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1.4 Thesis	Overview	

The present thesis is organized in five parts representing different research scopes, as 

presented in Figure 1.1. 

The Part I comprises an introduction and overview of the main themes considered in this 

thesis as well as the description of the motivation, goals and contributions of the work 

carried out. 

In Part II a review of the State of the Art regarding multivariate and megavariate statistics 

process control (SPC) is provided for the cases of monitoring the process location 

(Chapter 3) and multivariate dispersion (Chapter 4). In this part, the fundamental 

modeling methodologies underlying both the current and proposed methodologies, are 

also briefly described (Chapter 2). 

Part III regards the monitoring of the process location by means of megavariate 

monitoring schemes based on latent variables models. The developed lag selection 

methodologies (Chapter 5) and DPCA-DR technique (Chapter 6) are described and 

assessed in this part. The DPCA-DR methodology was compared in a study 

encompassing twenty two monitoring schemes designed to deal with the megavariate and 

dynamic characteristics of the process. From this study it was found that the DPCA-DR 

based monitoring statistics were the most consistent and reliable with low levels of 

autocorrelation and higher fault detection performances. The multiscale version of 

DPCA-DR is also introduced in this part of the thesis (Chapter 7). 

In Part IV the problem of monitoring the process structure is addressed. This study is first 

conducted for the case of off-line monitoring, based on non-overlapping moving windows 

(Chapter 10), from where it was observed that a set of proposed monitoring statistics 

based on the maximum deviation, in absolute value, of the partial correlation coefficients 

(RMAX) and variance (VnMAX), were the ones leading to the best monitoring 

performances. Afterwards, their application was extended to on-line process monitoring, 

based on individual observations (Chapter 11). An important factor in these proposed 

monitoring schemes for the process correlation structure is the use of sensitivity 

enhancing transformations (Chapter 9). These variable transformations proved to be 

crucial for the fault detection capability of the proposed monitoring statistics. The SET’s 
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are able to provide good descriptions of the process structure, extracted with the aid of 

partial correlations. 

Finally, in Part V, the thesis main conclusions are summarized (Chapter 14) and a set of 

application fields to be explored in future work are described (Chapter 15). 

Figure 1.1 Organization of the five parts that compose this thesis. 

•Introduction.

Part I: Introduction and Goals

•Modeling:

•Latent variables;

•Time series.

•SPC for the process location;

•SPC for the process dispersion:

•Off‐line monitoring;

•On‐line monitoring.

Part II: State of the Art

•Lag selection methods;

•Dynamic principal component analysis with decorrelated residuals (DPCA‐DR);

•Multiscale DPCA‐DR.

Part III: MSPC – On‐line Monitoring of the Process Mean Tendency

•Sensitivity enhancing transformations (SET) for the correlation;

•Off‐line monitoring of the process structure;

•On‐line monitoring of the process sstructure;

•Relation between off‐line and on‐line monitoring;

•Performance of SET in multiscale systems.

Part IV: MSPC – Off‐line and On‐line Monitoring of the Process 
Correlation Structure

•Conclusions;

•Future work.

Part V: Conclusions and Future Work
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2 Modeling	

A fundamental task underlying every process systems engineering application, namely 

process monitoring, is the proper modeling of the process under analysis. In the scope of 

process monitoring, the complex relationship between process variables as well as the 

dynamic, non-linear and time-varying dependencies should be accommodated in the 

monitoring scheme, in an efficient and robust way. For instance, for handling process 

dynamics it is common to use time series to model the process autocorrelation and then 

apply control charts to the residuals [12]. Similarly, for time-varying processes a model 

can be employed to explain the data trend prior to the application of the traditional control 

charts [13, 14]. 

Another problem often found in industrial processes arises from the huge amounts of 

information collected from the process plant. This data is characterized by highly levels 

of cross- and auto-correlation, which cannot be monitored or modeled directly in an 

efficient way using more traditional approaches such as classical time series analysis. 

Instead, latent variables models are used to reduce the data dimension into a few latent 

variables that explain most of the process underlying phenomena. Principal component 

analysis (PCA) and partial least squares (PLS) are the main representatives from the class 

of models used to perform such task. The reduced set of uncorrelated latent variables can 

then be monitored through appropriated multivariate control charts [15-19]. Moreover, 

these methods are also useful to develop predictive approaches, variable selection tasks 

and outlier detection schemes [20]. PCA can also be used in combination with time series 

in order to handle the computation complexity associated with the modeling of 

multivariate time series. To do so, PCA is firstly applied to the original data and then its 

principal components are modeled with resource to time series [1]. 

In certain cases, data measurements may not be available, due to sensor failures, routine 

maintenance, gross measurement errors and the existence of different sampling 

acquisition rates [21, 22]. Such missing measurements need to be estimated in order to 

proceed with the monitoring schemes, since the suspension of their application until all 

measurements are available is usually unacceptable [21]. To address this issue, several 

methods to estimate missing measurements based on existing PCA or PLS models can be 
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employed as discussed by Nelson et al. (1996) [21], Walczak and Massart (2001) [23, 24] 

and Arteaga and Ferrer (2002) [22]. 

In the following sections, these three classes of methodologies (latent variable modeling, 

missing data estimation and multivariate time series modeling) are reviewed for the 

purpose of introducing such base concepts behind both current and the proposed 

monitoring schemes, and to set the nomenclature to be followed in the presentation of the 

proposed methods. 

2.1 Latent		Variables	Modeling	

Latent variables models are the backbone of many multivariate SPC techniques due to 

their ability to explain the main correlation features of data through a reduced set of latent 

variables. These latent variables usually correspond to a linear combination of the original 

set of variables, maximizing some optimization criteria, such as maximum variance or 

prediction power. Variables combinations can also involve dynamic and non-linear terms, 

in order to incorporate such features in the modeling formalism. Given their relevancy in 

the context of process monitoring tasks, the PCA, dynamic PCA and PLS models will be 

introduced in the following sections. 

2.1.1 Principal	Component	Analysis	

Principal component analysis (PCA) is a multivariate data analysis technique focused on 

finding a low dimensional subspace around which the majority of data variability is 

concentrated (the PCA subspace). The new variables of such a low dimensional subspace, 

are linear combinations of the original ones, and are called principal components (PCs), 

being uncorrelated quantities by design, with an implicit ordering: the first PC 

concentrates the greatest portion of data variability around him, followed by the second 

PC, which is orthogonal to the first one, and only explains the variability not accounted 

for by it, and so on, and so forth [1, 20]. 

PCA provides a decomposition of a data matrix, X, with n observations and m original 

variables as: 
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T X TP E (2.1) 

where n pT  is the matrix of PCA scores (the ith column contains the scores for the ith PC), 

m pP  is the matrix with the PCA loadings (the ith column contains the variable loadings 

for the ith PC), and n mE  is the residual matrix. p stands for the number of PCs retained 

(the data pseudo-rank), i.e., the dimension of the PCA subspace. As PCA is scale-

dependent, the data matrix, X , must be properly pre-processed in some meaningful way, 

in order to guarantee the quality of data analysis. The most common method of pre-

processing, is to center all variables to zero mean and scale them to unit variance, known 

as “autoscaling”, but many other pre-processing methods are available for more specific 

situations [2, 25]. 

The computation of principal components can be made with resource to the covariance 

matrix Σ  or, when this is unknown (as happens in practice), to its estimator, the sample 

covariance matrix, 1 T( 1) c cn  S X X , where cX  is the matrix of mean centered 

measurements [18]. As a result of the spectral decomposition, the Σ  matrix can be 

written as [26], 

TΣ ΓΛΓ (2.2)

where 

 1diag , , m Λ  (2.3)

is the diagonal matrix of eigenvalues and,  

 1 2 mΓ γ γ γ (2.4)

is an orthogonal matrix consisting of the corresponding eigenvectors of Σ . 

It is easily shown that the loading matrix, P , is equal to the eigenvectors matrix Γ . 

Furthermore, if iγ  is chosen to have unit length (i.e., T 1i i γ γ ), then  var i it   [18, 20]. 
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2.1.2 Dynamic	Principal	Component	Analysis	

PCA only describes the correlation among variables, but does not incorporate any feature 

to address the correlation along the observations’ mode, i.e., the variables autocorrelation. 

Ku et al. (1995) [27] presented an approach for incorporating a linear time series 

modeling framework into conventional PCA, through a “time lag shift” methodology. It 

consists in adding several time-shifted replicates of the variables under analysis, to the 

original set of variables, and then apply PCA to such an extended matrix, say X , in order 

to also model the variables’ dynamic structure, in addition to all the static relationships 

present. A possible notation for describing this computational scheme is provided in 

Equation (2.5): 

   
 

   
 

   
 0 1

1 1 10 0 1 1

l

m m ml l   

x xx

X x x x x x x
 

     (2.5)

where xi(j) represents the ith variable (in column format) shifted j times into the past (i.e., 

with j lags). In Equation (2.5), x(j) is the submatrix containing all the original variables 

shifted j times; and X  is the resulting extended matrix (with l lags), which, in this case, 

has the form of an Hankel matrix [28]. However, in general, different lags may be used 

for different variables, in which case the structure of the extended matrix is no longer that 

of an Hankel matrix. 

Therefore, in simple terms, DPCA is essentially the same method as the original PCA 

approach, except that the data matrix, X , is now composed by additional time-shifted 

replicates of the original variables. Thus, after parameter estimation, it corresponds to an 

implicit vector autoregressive model [29] (VAR or VARX, if process inputs are also 

included; in fact, in more precise terms, the actual model structure corresponds to a latent 

variable VAR or VARX). A key aspect when applying DPCA is the definition of its 

lagged structure, for which some guidelines were already proposed Ku et al. (1995) [27].  

After the construction of the extended set of process variables, X , a PCA analysis can be 

carried out as usual, leading to the final DPCA model. 
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2.1.3 Partial	Least	Squares	

Partial least squares (or projection to latent structures, PLS) is a multivariate method that 

relates two data matrices, X and Y, through a linear latent variables model [2, 30-32]. 

More specifically, given a ( )n m  data matrix of input variables, n mX , and a ( )n r  data 

matrix with the corresponding output variables, n rY , PLS successively finds those pairs 

of orthogonal linear combinations of the input and output variables, with maximal 

covariance. In case there is just one output variable, no linear combinations are 

considered in the Y block. By doing so, PLS describes the part of the X-variability with 

predictive potential for explaining the variability of the outputs. The PLS model structure 

defines a common latent variable space relating both data blocks, as follows [1, 2, 33]: 

T X TP E (2.6)

T Y TBQ F (2.7)

where n pT  is the matrix of the X-scores, defining the common latent variable space 

relating X  and Y ; m pP  is the X-loading matrix; r pQ  is the Y-loading matrix; p pB  is a 

regression coefficient matrix (for the inner latent variable relationships); n mE and n rF

are residual matrices; and p is the number of PLS components considered (i.e. latent 

variables). For the special case where p is equal to the number of input variables in X, 

Equations (2.6) and (2.7) reduce to, 

 Y Xβ F (2.8) 

which corresponds to a multivariate linear regression model. Moreover, in these 

circumstances the PLS solution becomes identical to the ordinary least squares (OLS) 

solution, which is given by [1, 12], 

  1T T
β X X X Y   (2.9) 

As in the PCA case, a dynamic PLS model can be obtained by including past values of 

input and/or output variables in the X block. 
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2.2 Missing	Data	Estimation	in	PCA	

Nelson et al. (1996) [21] studied several approaches for estimating the PCA or PLS 

scores and responses when some observations are missing, but an estimated model is 

already available. Among the approaches studied, conditional mean replacement was 

found to be, in general, the most recommendable option, which will be reviewed here for 

the case of PCA. 

Let us consider a data matrix X , which can be decomposed by PCA, as T X TP E , as 

referred above. When a new measurement vector is collected, say  T1 2 mx x xx  , 

it may contain some missing measurements. For notational convenience and without loss 

of generality, let us assume that such missing measurements are the first elements of this 

data vector, which then presents the following partitioned structure: 

T #T T   x x x (2.10)

where #x  denotes the missing measurements and x  the observed variables. 

Correspondingly, the loading matrix, P , can also be rearranged to conform to such a 

partition: T #T T   P P P . The methodology for estimating the scores in this case, is a

particular case of the application of the Expectation-Maximization (EM) algorithm [34]. 

This algorithm can, in general, be used to estimate a statistical model in the presence of 

missing data, #x . In this approach, the successive estimates of missing data, #x̂ , obtained 

with updated parameter estimates, during the Estimation stage, are employed to refine the 

model parameters, during the Maximization stage. The successive refinements obtained 

for #x̂ , correspond to the expected values of #x , given the knowledge of the observed 

variables, x , and the current estimates of the model parameters, :  

 # # *ˆ ,Ex x x θ (2.11)

In the present situation, it is assumed that a PCA model is already available (estimated 

from reference data), and therefore only the Expectation stage of the EM algorithm is 

necessary, in order to compute the expected values for missing measurements, 

conditionally to the knowledge of x  and the model parameters (the PCA loadings and 

pre-processing parameters). Let us also consider the following notation for the spectral 
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decomposition of the covariance matrix, TΣ PΛP , after introducing the above 

mentioned missing data/observed variables partition (where Λ  is the diagonal matrix, 

with the PCA eigenvalues along the main diagonal; all the other quantities have the same 

meanings introduced before):  

# #T # T
11 12

#T T
21 22



  

  
    
   

Σ Σ P ΛP P ΛP
Σ

Σ Σ P ΛP P ΛP
(2.12)

Using this expression for Σ , the conditional expectation of the missing measurements, is 

simply given by: 

  1# 1 # T T
12 22ˆ

      x Σ Σ x P ΛP P ΛP x (2.13)

The estimated missing measurements can then be used in the score calculation along with 

the observed data, as if no measurements were missing, leading to the following 

expression for the first p scores (p is the pseudo-rank): 

 
  

 

 
   

1# T T#
T T

1: 1: 1T T

#
1T T T

1:

1T T T
1:

1T T

ˆˆ
p p

p

p

   

     

   


   

   

            
 

  
 





P ΛP P ΛP xx
t P P

x P ΛP P ΛP x

P
P ΛP P ΛP x

P

P PΛP P ΛP x

I 0 ΛP P ΛP x

(2.14)

where 1:pP  is composed by the first p columns of the loading matrix, P, I is an ( p p ) 

identity matrix, and 0  is an ( ( )p m p  ) matrix of zeros. 

A possible limitation of the conditional mean replacement solution is that *T *X X  (i.e., 

T P ΛP ) may become ill-conditioned. In such case, traditional regression solutions, such 

as ridge regression, principal components regression and PLS can be employed. 

Alternatively, one may also use the projection to model plane approach [21] or trimmed 

scores regression (TSR) [22], to estimate the scores corresponding to missing 

observations. 
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In the case of the projection to model plane method all scores are estimated at once by 

regressing *x  onto the plane defined by *P , which results in [21], 

  1* T * * *
1: 1: 1:

ˆ
p p p


t P P P x (2.15) 

as the least squares estimator based on the measured variables. 

As for the trimmed scores regression proposed by Arteaga and Ferrer (2002) [22], the 

scores are estimated by application of a linear regression model based on the known 

scores ( * * T *
1:pt P x ). That is, 

T *ˆ t B t   (2.16) 

where, 

  1* T * *T * * T *
1: 1: 1: 1: 1:p p p p p


B P P ΛP P P P Λ (2.17) 

is the least squares estimator of the regression model. Thus, the scores are estimated as 

[22], 

  1* T * * T * *T * * T *
1: 1: 1: 1: 1: 1:

ˆ
p p p p p p


t Λ P P P P ΛP P P x (2.18) 

2.3 Multivariate	Time	Series	Analysis	

In the context of statistical process control, multivariate time series models are usually 

applied in order to explain the autocorrelation present on the data. This is done by either a 

direct application of the model to obtain serial uncorrelated residuals, or implicitly, 

through a DPCA model as proposed by Ku et al. (1995) [27]. Time series models are also 

applied for forecast and structural analysis. One of these applications is the Granger 

causality, which resort to vector autoregressive models to infer the causal relation 

between pairs of variables. A subset of these models will be described below, along with 

a brief description of their main characteristics. Further information about these models 

can be found elsewhere [29, 35-37]. 
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2.3.1 Vector	Autoregressive	Model	

The vector autoregressive (VAR) model of order p, VAR(p), represents a linear 

dependency between yt and its past realizations according to [36], 

1 1 0 1 2t t p t p t , t , , ,        y ν Α y Α y d    (2.19) 

where  T1 , ,t t ty yy k  is a  1k  vector of measurements at instant t, iΑ  is a  k k  

matrix of coefficients,  T1ν , ,νν k  is a  1k  vector of intercept terms and 

 T1 , ,t t td dd k  is a  1k  vector of white noise, i.e.,  tE d 0 ,  T
t t dE d d Σ  and

 T
t sE d d 0  for s t . 

This linear dependency can be easily exemplified for a 1st order bivariate process (i.e., k = 

2,  T1 2,t t ty yy  and  T1 2,t t td dd ). In this case, Equation (2.19) can be rewritten as, 

1 1 11 1, 1 12 2, 1 1,t t t ty ν y y d      (2.20) 

2 2 21 1, 1 22 2, 1 2,t t t ty ν y y d      (2.21) 

where ij  is the (i, j) element of 1Α  and iν  is the ith element of ν . 

In Equation (2.20), 12  represents the linear dependency of 1ty  on 2, 1ty   in the presence 

of 1, 1ty  . Therefore, if 12  is equal to zero, 1ty  does not depend on 2, 1ty  , and the model 

shows that 1ty  only depends on its own past history. Likewise, if 21  (Equation (2.21)) is 

zero, 2ty  does not depend on 1, 1ty   [35]. This situation corresponds to the particular case 

where no interaction exists between the two variables. 

2.3.1.1 Stationarity	Condition	and	Moments	

To better illustrate the properties of the VAR model, the characteristics of the VAR(1) 

model are first introduced and latter extended to the general model. The model under 

consideration has the form, 

1 1t t t  y ν Α y d (2.22)
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Assuming that the VAR(1) model in Equation (2.22) is stable, the model’s expected 

value, for  tE d 0 , becomes,

   1 1t tE E  y ν Α y (2.23)

Since  tE y  is time-invariant [35], 

    1

1tE
  μ y I Α νk (2.24)

Using  1 ν I Α μk , the VAR(1) model can be rewritten as, 

 1 1t t t   y μ Α y μ d (2.25)

By defining t t y y μ , a further simplification can be obtained, resulting in, 

1 1t t t y Α y d  (2.26)

The model represented by Equation (2.26) can then be used to derive the remaining 

properties of the VAR(1) model. 

By repeated substitutions, the VAR(1) model of Equation (2.26) assumes the form of a 

vector moving average (VMA) model of infinite order: 

2 3
1 1 1 2 1 3t t t t t      y d Α d Α d Α d  (2.27)

From this expression, several characteristics of the VAR(1) model can be observed. One 

of such characteristics is a result of the serial independency of td , from where 

 cov , 0t h t y d  for all h > 0 [35]. Other property can be obtained by post multiplying 

Equation (2.27) by T
td  and taking its expectation, from where it follows that 

 cov ,t t dy d Σ  [35]. This relation also shows the dependency between yt and the past 

values of the white noise sequence (dt-j) through the coefficients matrix, 1
jΑ . Fur such 

dependency to be meaningful, 1
jΑ  must converge to zero as j → ∞ [35]. Therefore, the 

eigenvalues of 1Α  must be less than 1 in modulus [35, 36]. This is the necessary and 

sufficient condition for defining a VAR(1) model as stable [35, 36]. Due to the relation 
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presented in Equation (2.28), the stability of a VAR(1) process can also be determined by 

Equation (2.29), with 1/   [35, 36]. 

 1 1

1
det det 


    
 

I Α I Αk
k k (2.28)

 1det 0 for 1   I Αk  (2.29)

Thus, a VAR(1) model is stable, if all the zeros ( ) in Equation (2.29) are greater than 1 

in modulus [35, 36]. 

Recalling Equation (2.27), it can be verified that the covariance of yt is given by [35], 

       T TT 2 2
1 1 1 1 1 1

0

cov 0 i i
t y d d d d

i





     y Γ Σ Α Σ Α Α Σ Α Α Σ Α  (2.30) 

where 0
1 kΑ I . 

Alternatively, the covariance of yt can also be determined by post multiplying T
t hy  to 

Equation (2.27) and taking its expectation, resulting in, 

       T T T
1 1y t t h t t h t t hh E E E     Γ y y Α y y d y     (2.31)

Considering that [35], 

0
cov( , )

0
d

t h t

h

h


  

Σ
y d

0
(2.32)

for h = 0 one obtains [36], 

     1 10 1 1y y d y d    Γ Α Γ Σ Α Γ Σ (2.33)

and for h > 0 [36], 

   1 1y yh h Γ Α Γ (2.34)
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If 1Α  and dΣ  are known,  0yΓ  can then be determined from Equation (2.34) with 

1,h   from where it results that    11 0y yΓ Α Γ . By substitution in Equation (2.33), 

one finally gets [36], 

    T
1 10 0y y d Γ Α Γ Α Σ (2.35)

or  

       T
1 1vec 0 vec 0 vecy y d Γ Α Γ Α Σ (2.36)

Hence [36], 

      2

1

1 1vec 0 vecy dk


  Γ I Α Α Σ (2.37)

where   is the Kronecker product. 

2.3.1.2 Properties	of	VAR(p)	Models	

The properties described previously for the VAR(1) model are easily extended for the 

VAR(p) models, since any VAR(p) process with p > 1 can be written in the form of a 

VAR(1) [36]. 

For a VAR(p) model described by Equation (2.19), the corresponding VAR(1) model is 

given by, 

* *
1t t t  x ν Α x b (2.38)

where 

 

1

1

1

t

t

t

t



 

 
 
 
 
 
  



y

y
x

y p

kp



 

*

1

 
 
 
 
 
 


ν

0
ν

0

kp





Modeling 

25 

 

1 2 1

*
k

k

k

 
 
 
 
 
 
 
 



Α Α Α Α

I 0 0 0

Α 0 I 0 0

0 0 I 0

p p

kp kp





   


 

 1

t

t

 
 
 
 
 
 



d

0
b

0

kp



From this representation, it results that tx  is stable if [35, 36], 
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1

det 0

det 0 for 1
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kp

p
k p

(2.39)

The mean value of this model is then given by Equation (2.40) and its covariance by 

Equation (2.41) [36], 

    1
* *

tE


  μ x I Α νkp (2.40)

      2

1
* *

( )
vec 0 vecx b



   Γ I Α Α
kp

(2.41)

where, 
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Finally, note that the conversion of a stable VAR(p) model (given by Equation (2.19)) 

into a VMA (given by Equation (2.42)), can be made through Equation (2.43), which 

provides the equivalent coefficient matrices iΦ , where 0 kΦ I  [36]. 

0
t i t i

i






 y μ Φ d (2.42)

1

1 2
i

i i j j
j

, i , ,


 Φ Φ Α  (2.43)
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2.3.2 Vector	Moving	Average	Model	

A vector moving average models of order q, VMA(q), relates yt with the past values of 

the white noise, dt-j, as [35, 36], 

1 1 0 1 2t t t t , t , , ,        y μ d Μ d Μ dq q  (2.44)

where  T1 , ,t t ty yy k  is a  1k  vector of measurements, iΜ  is a  k k  matrix of 

coefficients,  T1, , k μ   is a  1k  vector of the mean values of yt (i.e.,  tE y μ ) 

and  T1 , ,t t td dd k  is a  1k  vector of white noise with covariance dΣ . 

For determining the properties of the VMA model, the VMA(1) scenario is first analyzed. 

This VMA(1) model, with zero mean (for simplification purposes), is described as, 

1 1t t t y d Μ d (2.45)

This model, can be converted into the corresponding VAR model, by rewriting Equation 

(2.45) in its equivalent form through successive substitutions, as [36]: 
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(2.46)

Then, if 1
iΜ  → 0 as i → ∞, 

 1
1

i

t t i t
i






   y Μ y d (2.47)

which is the corresponding VAR model of infinite order. Because  1

iΜ  may be equal 

to zero for i greater than some finite number p, the VMA model can in fact be represented 

by a finite order VAR(p) [36]. 

For the representation in Equation (2.47) to be meaningful, 1
iΜ  must approach zero when 

i tends to infinity. This condition is obtained if the eigenvalues of 1Μ  are all less than 1 

in modulus, i.e., 
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 1det 0 for 1   I Μk (2.48)

This condition is analogous to the stability condition of the VAR(1) model. 

In a more general form, a VMA(q) model with zero mean (Equation (2.49)) can be 

represented by a VAR model (Equation (2.50)) if the condition in Equation (2.51) is 

verified [36]. 

1 1 , 0, 1, 2,t t t t t       y d Μ d Μ dq q  (2.49)

1
t i t i t

i






 y Π y d (2.50)

 1det 0 for 1k       I Μ Μ q
q  (2.51)

A VMA model with this property is defined as invertible. The coefficient matrices iΠ  of 

this model can be recursively computed by Equation (2.52), using 1 1Π Μ  and j Μ 0  

for j > q [36]. 
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  Π Μ Π Μ  (2.52)

To determine the covariance matrix of the VMA model, Equation (2.53) can be used with 

0 Μ Ik  [35, 36]. 
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(2.53)

2.3.3 Vector	Autoregressive	Moving	Average	Model	

A VAR model of finite order is generally represented by Equation (2.54). 

1 1t t t t     y ν Α y Α y εp p (2.54)
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In the case where the error term ( tε ) has autocorrelation, described by a VMA model of 

finite order given by, 

1 1t t t t    ε d Μ d Μ dq q (2.55)

where td  is white noise with zero mean and covariance dΣ , the broader class of vector 

autoregressive moving average (VARMA) models is obtained [36]. 

These models are composed by an autoregressive component of order p and another 

moving average component of order q and are defined as VARMA(p,q). Their 

mathematical representation is given as [36], 

1 1 1 1 0 1 2t t t t t t , t , , ,             y ν Α y Α y d Μ d Μ dp p q q    (2.56) 

As described in Section 2.3.1, the autoregressive component of the VARMA model can 

be converted into an equivalent moving average representation if the model is stable, that 

is, if 

 1det 0 for 1k       I Α Α p
p  (2.57)

In this case, the VARMA model assumes the equivalent form of Equation (2.58) [36]. 

0
t i t i

i






 y μ Φ ε (2.58)

By use of Equation (2.55) the pure VMA representation, Equation (2.59), is obtained 

[36]. 
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(2.59)

The coefficients matrices iΝ  are computed by use of Equation (2.60) with 0 kΝ I  [36]. 
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Likewise, if the moving average components is invertible, a pure VAR representation, 

Equation (2.61), can be obtained [36]. 

1
t i t i t

i






  y μ Θ y d (2.61)

The coefficient matrices iΘ  of this model are determined through Equation (2.62) [36]. 
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3 Statistical	Process	Control:	an	Overview	

Statistical process control (SPC) encompasses a collection of techniques that ultimately 

aim to improve the capability to meet consumers’ and others stakeholders’ requirements. 

Among these techniques, control charts are a powerful tool to verify if the process is only 

subjected to common causes of variation and detect any unusual source of variability [12]. 

These common causes of variation are inherent to the process and cannot be removed 

without changing the process itself. Therefore, they are unavoidable and cause the process 

to fluctuate around its desired specifications with a stable and recognizable variability 

pattern. As long as the process is only subjected to such natural and random fluctuations, 

it is considered to be under a state of statistical control. Otherwise, an assignable cause is 

declared, which should be promptly detected, diagnosed and corrected, in order to reduce 

the quality losses to a minimum. The detection of assignable causes is usually done 

through control charts. 

The base concept of control charts amounts to the successive application of hypothesis 

tests to check process (statistical) stability, in particular to verify whether the location 

and/or dispersion of key process variables have not changed [38]. In practice, this is 

performed by a graphical representation of the assessed variables quality characteristics 

against control limits, which delimitate the region of normal operation conditions (NOC). 

Thus, a point plotted within the control limits is consistent with the maintenance of the 

state of statistical control [39]. The first control chart was the univariate chart introduced 

by Shewhart (1931) [40], consisting of a center line (CL), an upper control limit (UCL) 

and a lower control limit (LCL) as follows, 

0 0

0

0 0

UCL k

CL

LCL k

 

 

 



 
(3.1) 

where 0  is the target value (usually the mean value of the assessed characteristic under 

NOC), 0  is the standard deviation of the assessed characteristic and k is the distance of 

the control limits from the center line in standard deviations units [39]. The value of k is 

usually set to 3, representing “3-sigma” limits, which contain 99.73% of the NOC process 
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variability, if the variable follows a normal distribution [38]. An example of the Shewhart 

control chart is given in Figure 3.1, for random draws of the standardized normal 

distribution with 3-sigma limits. 

Figure 3.1 Typical representation of a Shewhart control chart. 

The Shewhart control chart can be used in a variety of applications and is generally the 

base model for the more sophisticated approaches. In its construction it is assumed that 

the quality characteristic under assessment is approximately normally distributed and that 

the observations are independent [38]. Moreover, this control chart is relatively 

insensitive to small deviations (say, smaller than 01.5 ) since only the current value is 

used to monitor the process [39]. To overcame this issue, other approaches were 

developed that bring “memory” to the monitoring procedure, such as the cumulative sum 

(CUSUM) control chart [41] and exponentially weighted moving average (EWMA) 

control chart [42]. 

The previously mentioned control charts are classified as univariate, since they only 

monitor a single isolated variable. This type of approach was initially justifiable due to 

the low number of measured variables in industrial plants in the early times. However, the 

development of data acquisition techniques, allied with increasingly inexpensive sensors 
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for measuring process variables such as temperature, flow rates and pressure, and the 

availability of affordable computational power and memory, allowed the collection of 

large amounts of industrial data which could no longer be properly monitored by 

univariate approaches. Not only would be impossible to efficiently monitor all possible 

univariate control charts, but it would be even undesirable to do so. The reasons are the 

increased false alarm rates associated with driving so many parallel testing schemes, and 

the intrinsic limitation of univariate monitoring schemes, which fail to take into 

consideration the inner correlation between process variables [38]. As the relationships 

between variables are not considered in univariate schemes, they are much less sensitive 

to detect changes in the way variables are associated. A simple example illustrating the 

limitations of the univariate Shewhart control charts is presented in Figure 3.2 for the case 

of two process variables. From the analysis of the individual univariate control charts, one 

would conclude that the process is in-control over all the monitoring period. However, 

analyzing the scatter plot, it is possible to observe that while most observations do lie 

inside the 99.73% confidence ellipse, observation 40 (represented by a circle) has a clear 

deviation from the normal behavior which is not signaled by any of the univariate control 

charts. 

Figure 3.2 Limitations of monitoring a two variable process using two univariate Shewhart control charts. 
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To overcome the limitations mentioned earlier, multivariate control schemes, such as the 

Hotelling’s T2 [43], multivariate CUSUM [44] and multivariate EWMA [45], were 

developed. However, when the number of measured variables (m) becomes large (order 

of several dozens or even higher), even these schemes begin to experiment problems, 

mostly due to the issues raised by the variables collinearity and usually associated with 

the need to invert the covariance matrix of all the variables under simultaneous 

monitoring. A common solution for dealing with this issue consists of adopting a latent 

variable modeling framework, developed for these types of processes, whose parameters 

can be estimated with simple and stable methods. Examples of such latent variables 

models are principal component analysis (PCA) [15, 16] and partial least squares (PLS) 

[17-19], the former for problems involving a single block of process variables and the 

latter for those situations where two blocks of variables need to be explicitly and 

simultaneously handled. A more detailed revision of these procedures is provided in the 

following sections. 

3.1 Univariate	 Cumulative	 Sum	 and	 Exponentially	 Weighted	 Moving	

Average	Control	Charts	

In this section the univariate cumulative control chart and exponentially weighted moving 

average control chart are briefly introduced. These control charts aim to mitigate the 

relative insensitiveness of the Shewhart control chart to small deviations on the monitored 

variable by inclusion of past information in the monitoring procedure. They differ by the 

way through which they bring such additional information from the past to their 

respective control charts. 

3.1.1 Cumulative	Sum	Control	Chart	

The base cumulative sum (CUSUM) control chart incorporates all measurements since 

the beginning of the monitoring procedure by application of cumulative sums of 

deviations from the target value ( 0 ) by defining [12, 38], 
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 0
1

i

i j
j

C x 


  (3.2) 

and plotting it against the sample number i. To avoid storing all the data, Ci can also be 

recursively computed as, 

 0 1i i iC x C    (3.3) 

If the process remains in-control, Ci will present a random walk around zero. However, 

when a fault occurs, a trend is expected to appear in the plot. To detect this trend, a V-

mask procedure was employed in the earlier applications of this scheme. The base idea 

behind this approach consists in placing a V-shaped mask over each new observation. If 

all the previous cumulative sums lie within the mask, then the process is considered to be 

in-control. As an alternative to the graphical V-mask, the tabular CUSUM was developed. 

In this case, an one-sided upper CUSUM, iC , is used to accumulate positive deviations 

from the target value (Equation (3.4)), while an one-sided lower CUSUM, iC , 

accumulates negative deviations (Equation (3.5)) [12]: 

  0 1max 0,i i iC x k C 
    (3.4) 

  0 1max 0,i i iC k x C 
    (3.5) 

In Equations (3.4) and (3.5) 0 0 0C C    and k is a slack value usually selected as 

halfway between the target value 0  and the out-of-control value 1  that is of interest to 

be detected, i.e., 1 0 2k     [12]. Whenever iC  or iC  exceed a control limit 

(referred as a decision interval) the process is considered to be out-of-control. From 

Equations (3.4) and (3.5) one can observe that, for the tabular case, the CUSUM control 

charts only accumulate values from a window in the past where the cumulative sums have 

magnitudes exceeding the value of the slack constant, for the positive or negative sides. 

Therefore, this methodology avoids the accumulation of deviations considered not to be 

insignificant in the process. 
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3.1.2 Exponentially	Weighted	Moving	Average	Control	Chart	

The exponentially weighted moving average (EWMA) control chart was introduced by 

Roberts (1959) [42] and uses a weighted window that gradually gives lower weights to 

past observations according to [12], 

  11i i iz x z       (3.6) 

where 0 1   is a forgetting factor and 0 0z  . As a consequence of the definition of 

Equation (3.6), the weight given to each observation decreases exponentially, with a 

decay speed determined by the value of the forgetting factor λ. For λ = 1 the EWMA chart 

resumes to the Shewhart control chart and for λ → 0 it approaches the CUSUM control 

chart [38]. Typical values for λ are in the range of 0.05 to 0.25 [12]. Furthermore, as the 

monitored quantity zi is an weighted average, the EWMA control chart presents some 

robustness to deviation from the normality assumption [12, 38]. 

To determine the control limits for the EWMA control chart, one take into account that in 

the cases where observations xi are independent random variables with variance 2 , the 

variance of zi is given by [12], 

 22 2 1 1
2i

i

z

  


         
  (3.7) 

which asymptotically leads to,  

2 2

2z

 


    
  (3.8) 

since  2
1 1

i     converges to 1 as i increases [12]. The UCL and LCL for the EWMA

control chart can then be set as, 
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where L is the width of the control limits, chosen along with λ in order to obtain a desired 

ARL performance [12]. 

3.2 Multivariate	SPC	

As the application of multiple parallel univariate control charts is not a suitable solution 

for monitoring several related variables, since the joint relationships between them is not 

explicitly considered, it becomes necessary to use multivariate control schemes. This 

class of approaches is here presented for the multivariate extension of the univariate 

control charts, namely the Hotelling’s T2 as well as for the multivariate CUSUM and 

multivariate EWMA. These monitoring control charts work relatively well for fairly small 

process (with only a few dozen of variables). 

3.2.1 Hotelling’s	T2	

The natural extension of the univariate Shewhart control chart for monitoring multivariate 

processes is the Hotelling’s 2T  control chart [19]. This chart assumes the process to be 

i.i.d. multivariate normal distributed, and the monitoring statistic, for single observations 

samples, is just the squared Mahalanobis distance between each multivariate observation 

and the overall reference mean. Assuming the mean and covariance matrix to be known, 

the monitoring statistic has the form [19, 46, 47]: 

   T2 1
0 0 0 0   x μ Σ x μ (3.10)

where x  is a ( 1m ) measurement vector, 0μ  is the ( 1m ) population mean vector and 

0Σ  is the ( m m ) in-control population covariance matrix. Under multivariate normal 

conditions, this statistic follows a central 2  distribution with m degrees of freedom. 

Therefore, a multivariate 2
0  control chart can be constructed by plotting 2

0  versus time 

with an UCL given by 2
,m  where   is an appropriate level of significance (e.g. 

0.01  ) [19, 48]. 
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When the in-control mean vector 0μ  and the covariance matrix 0Σ  are unknown, they 

can be estimated from a sample of n past multivariate observations, using the usual well-

known unbiased estimators of these population parameters, namely the sample mean and 

the sample covariance matrix [48]: 

1

1 n

i
in 

 x x (3.11)

  T

1

1

1

n

i i
in 

  
 S x x x x (3.12)

In this case, when new multivariate observations are obtained, the Hotelling’s 2T  statistic 

is given by [19, 47, 48], 

   T2 1T   x x S x x (3.13)

whose control chart has the following UCL [16, 17, 47, 48]: 

  
, ,2

1 1
m n m

m n n
UCL F

n nm  

 



(3.14)

where , ,m n mF   is the upper   percentile of the F distribution with m and n m  degrees 

of freedom.  

3.2.2 Multivariate	CUSUM	

The simplest extension of the CUSUM procedure for the multivariate case was proposed 

by Woodall and Ncube (1985) [49] and relies on the simultaneous application of a tabular 

CUSUM for each variable. Therefore, this approach is subjected to the same constrains 

associated with univariate control charts when applied to multivariate processes. 

Moreover, its performance is shown to be dependent of the faults direction, especially 

when the monitored variables are correlated [50]. As the direction of the faults cannot 

always be anticipated, the use of directionally invariant charts is preferable. This class of 

control charts is discussed below. 
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The first multivariate CUSUM was proposed by Crosier (1988) [44]. In this monitoring 

scheme the cumulative sum is computed as, 

 1 0

if 

1 otherwise

i

i
i i

i

d k

k

d


      

 

0

C
C x μ

(3.15) 

   T 1
1 0 0 1 0i i i i id 
     C x μ Σ C x μ (3.16) 

where k > 0 is a reference value, Ci = 0, 0μ  is the ( 1m ) target vector and 0Σ  is the 

( )m m  in-control covariance matrix. The monitoring statistic is then defined as 

T 1
0i i iMCUCUM  C Σ C  and is compared against a suitable control limit. 

Later on, Pignatiello and Runger (1990) [50] proposed two alternative multivariate 

CUSUM control charts. The control chart showing the best ARL performance considers 

the multivariate sum given by [50], 

   0 0
1 1

1

i i

i i

i i i i
j i n j i ni

n
n     

 
    

 
 C x μ x μ   (3.17) 

where ni is given by Equation (3.19). This cumulative sum is a measure of the difference 

between the sample mean based on the last ni observations and its target value. The norm 

of these deviations can then be compared against a reference value k related with the 

allowed deviation, resulting in a monitoring statistic given by [50], 

 T 1
01 max 0,i i i iMC n k C Σ C (3.18) 

1 11 if 1 0

1 otherwise
i i

i

n MC
n   
 


(3.19) 

The second multivariate CUSUM control chart suggested by Pignatiello and Runger 

(1990) [50] basically applies the one-sided upper CUSUM to the square of the distance 

between each observation and the target value, i.e., 

   T2 1
0 0 0i i id   x μ Σ x μ (3.20) 
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 2
12 max 0, 2i i iMC MC d k   (3.21) 

where, k is a reference value and MC20 = 0. 

3.2.3 Multivariate	EWMA	

In order to improve the detection capability of the Hotelling’s T2 control chart, a 

multivariate EWMA procedure can be employed. The reasoning behind this approach is 

the same as for the univariate case and aims to increase the detection of small and 

moderate deviations in the process mean using information from the past in the 

monitoring scheme. This is done by application of a weighted average according to the 

procedure proposed by Lowry et al. (1992) [45]. In this case, the observations are 

weighted as, 

  11i i i    z x z   (3.22) 

where 0 1   is a forgetting factor and z0 = 0. Then, a Hotelling’s T2 like statistic can 

be computed as, 

2 T 1 T

ii i iT  zz Σ z (3.23) 

where the covariance matrix is given by [12], 

 2

01 1
2i

i 

    zΣ Σ (3.24) 

A natural extension of Equation (3.22) was presented by Hawkins et al. (2007) [51], who 

replaced λ by a smoothing matrix, R, with non-zero diagonal elements, resulting in, 

  1i i i  z Rx I R z (3.25) 

Other extensions have also been proposed. For instance, Kramer and Schmid (1997) [52] 

developed a generalization of the multivariate EWMA for time dependent observations 

and Yumin (1996) [53] suggested the use of latent variables. A review of these methods 

can be found in [54]. 
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3.3 Megavariate	SPC	

Current approaches for implementing large scale process monitoring, are essentially 

based on latent variable frameworks, given their intrinsic ability to deal with a high 

number of correlated variables. In fact, the classical full-rank MSPC approach, based on 

the Hotelling’s 2T  statistic, is only rarely applied to processes with more than a dozen of 

variables, leaving outside its scope the vast majority of current industrial applications. 

This class of approaches is called megavariate SPC and in this section two representatives 

will be presented, namely the monitoring schemes based on PCA and PLS models. 

3.3.1 Megavariate	SPC	Based	on	PCA	

A common procedure for handling highly collinear process data in megavariate SPC 

consists in using a PCA model to describe the NOC behavior of process variables. As the 

number of retained principal components (PC) is low, say p, and they are uncorrelated by 

design, the Hotelling’s 2T  procedure can be applied without any limitation [15, 16]. In 

this case, the following monitoring statistic is applied, after preliminarily centering all 

variables to zero mean, which might be also properly scaled: 

2
2 T 1 T

1

p
i

PCA p
i i

t
T






  x PΛ P x (3.26)

where pΛ  is a diagonal matrix with the first p eigenvalues in the main diagonal (the 

eigenvalue associated to a given PC, also provides the value for its variance in the data set 

used to estimate the model). If the process under normal operation conditions (NOC) 

follows a multivariate normal distribution, then the UCL for 2
PCAT  is given by [18, 47]: 

  
, ,2

1 1
p n p

p n n
UCL F

n np  

 



(3.27)

Where , ,p n pF   is the upper   percentile of the F distribution, with p and n p  degrees 

of freedom. 
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However, process monitoring strictly based on the PCA subspace, via 2
PCAT  applied to the 

first p PCs is not sufficient, as it lacks a very important piece of information arising from 

the variability around the PCA subspace. This variability is captured by a monitoring 

statistic based on the squared prediction error (SPE) of the observations residuals, 1me

[15]. This statistic is also known as the Q  statistic:  

     TT T Tˆ ˆQ      e e x x x x x I PP x (3.28)

where x̂  stands for the projection of x  onto the PCA subspace, i.e., it corresponds to the 

reconstruction in the original variables space, of the score “observed” in the latent 

variables subspace. The process is considered to be under statistic control, if this statistic 

is below its UCL [15, 55],  
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where p is the number of retained principal components and z  is the standard normal 

variable, corresponding to the upper 1   percentile. 

3.3.2 Megavariate	SPC	Based	on	PLS	

A similar megavariate SPC procedure can also be derived for PLS, using the two 

orthogonal components of variability, namely the variability in the PLS predictive 

subspace (PLS X-scores) and the residuals around such subspace or, alternatively, those 

regarding the prediction of the response variable(s) [17-19]. In this case, the Hotelling’s 

2T  statistic for a new score vector, 1pt , is given by [38]:  
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2 T 1
PLST  tt S t (3.32)

where tS  represents the estimated covariance matrix of the PLS X-scores. The UCL for 

2
PLST  is given by: 

  
, ,2

1 1
p n p

p n n
UCL F

n np  

 



(3.33)

where p is the number of latent variables retained in the PLS model and , ,p n pF   is the 

upper   percentile of the F distribution with p and n p  degrees of freedom. As to the 

SPE (or Q  statistic), it can be either computed for the X  or the Y  block, according to 

the following expressions [17, 56]:  

   T
ˆ ˆQ   X x x x x (3.34)

   T
ˆ ˆQ   Y y y y y (3.35)

where x̂  and ŷ  are the reconstructed variables in X  and Y  original domains, using the 

PLS model defined by the Equations (2.6) and (2.7). 

The control limits for the QX  and QY  statistics, can be determined assuming an 

approximation to a 2g   distribution: 2
,hUCL g    [38, 57]. This equation is also well 

approximated by [38]:  

31 2
2 2

1
9 9

UCL gh z
h h

      
   

(3.36)

where g  is a weighting factor and h  the effective number of degrees of freedom for the 

2  distribution, which can easily be obtained by matching the moments of these 

distribution with those from the empirical distribution, leading to / (2 )g v m  and 

22 /h v m , where ν is the variance and m the mean of the SPE values (QX  and QY ); z  

is the standard normal variable, corresponding to the upper 1   percentile.  
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3.4 Multiscale	Principal	Component	Analysis	

The main advantages of multiscale principal component analysis (MS-PCA) arise from 

the combination of the PCA power to diagonalize the variables correlation with the 

wavelet transformation ability to diagnozalize their autocorrelation. Moreover, it allows 

for a better description of the monitored process, since data collected from most industrial 

process typically present multiscale features [9]. 

The first step in the MS-PCA methodology proposed by Bakshi (1998) [9] is the 

decomposition of each variable into multiple scales by application of the wavelet 

transform as,  

T

1max maxJ J j
   WX H G G G X  (3.37) 

where W  is an  n n  orthogonal matrix representing the orthogonal wavelet 

transforms. 
1j j

 G G H  is the   2log2 n j n   matrix containing wavelet filters 

coefficients corresponding to scale 1, 2, , maxj J   and 
max max

J J
H H  is the matrix of

scaling-function filter coefficients at the coarsest scale. maxJ  is the wavelet decomposition 

depth. For the case of the Haar wavelet transform, the filters are given by [9, 58], 

1 2 1 2   H (3.38) 

1 2 1 2   G (3.39) 

Other wavelet filters can be found in the literature [59, 60]. 

From this decomposition, it is possible to define, for each variable, the approximation 

coefficients as, 

max maxJ Ja H x   (3.40) 

and the detail coefficients as, 

1, 2, ,j j maxj J d G x  (3.41) 
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These wavelet coefficients are then independently monitored by a MSPC-PCA procedure. 

In order to maintain an on-line approach, a moving window of length 2 maxJ  is used to 

compute the wavelet coefficients and only the ones related to the current observation are 

inspected. To do so, a PCA model is determined for each scale and during the monitoring 

stage each scale is monitored by the corresponding  2 j
PCAT  and  jQ  statistics for 

1, 2, 1maxj J  . Given the increase in the number of control charts (2 for each scale, in 

a total of 2( 1)maxJ   control charts), their detection limits need to be adjusted in order 

to maintain the desired overall false alarm rate ( ). These corrected limits can be 

obtained through the application of the Bonferroni inequality, which leads to a false alarm 

rate for each control chart ( A ) given by [9, 58], 

 2 1A
maxJ

 


(3.42) 

After selecting the relevant scales (i.e., the ones where the  2 j
PCAT  or  jQ  statistics are 

above their control limits), the data is reconstructed back to the original time domain 

using only such scales. Finally, the actual state of the process is assessed by analysis of 

the reconstructed signal, based only on the wavelet coefficients that violate their control 

limits. The general steps behind this monitoring scheme are represented in Figure 3.3. 

By application of MS-PCA, a filtering procedure is performed before checking if the 

process remains under normal operation conditions [9]. As a result, only the scales related 

with the fault are analyzed and therefore a fault oriented SPC filter with multiple 

resolutions is applied. 

Figure 3.3 Schematic representation of the MS-PCA procedure. X is the original signal and Xrec is the reconstructed 
signal based on the relevant wavelet coefficients. 
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4 Statistical	Process	Control	of	the	Correlation	

Structure	

The optimized and safe operation of current industrial processes requires the 

simultaneous monitoring of multiple related variables. To do so, a variety of multivariate 

statistical process control (MSPC) methods, namely control charts, have been developed 

and applied in order to determine whether the process is only subjected to common causes 

of variability or if a special or assignable cause, related with some abnormality inside or 

outside the process, has occurred. Among these procedures, one can refer the Hotelling’s 

T2 chart [43], the multivariate CUSUM [44] and multivariate EWMA control charts [45], 

presented in the previous chapter. 

Analyzing the literature, one can verify that most multivariate process monitoring 

methodologies developed so far, including the latent variables methodologies [15, 16, 27, 

61-63] and state-space or time series approaches [64, 65], are essentially non-causal and 

focused on detecting changes in the process mean [66-69]. Regarding the procedures 

developed for monitoring the process covariance, two main approaches are employed: (i) 

monitoring subgroups of observations or, equivalently, non-overlapping windows (off-

line case) and (ii) monitoring individual observations (on-line case). 

As for the off-line approaches, the most widely adopted ones are based on the generalized 

variance (determinant of the covariance matrix), for which several approaches were 

proposed, namely by Alt (1984) [70], Aparisi et al. (2001) [71] and Djauhari (2005) [72]. 

However, the generalized variance is a rather ambiguous measure of multivariate 

variability, as quite different covariance matrices can lead to similar values for the 

determinant. As an alternative to the generalized variance, Guerrero-Cusumano (1995) 

[73] proposed the conditional entropy and Djauhari et al. (2008) [74] the vector variance, 

which is the sum of the squares of all eigenvalues of the sample covariance matrix. Other 

approaches are based on the likelihood ratio test (LRT), as for example those found in the 

works of Alt and Smith (1988) [75] and Levinson et al. (2002) [76]. More recently, Yen 

and Shiau (2010) [77] presented a control chart, based on LRT, specifically designed to 

detect an increase in process dispersion, which was later extended to variations in both 
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directions (increase and decrease) [69]. A different procedure was also proposed by Tang 

and Barnett (1996) [78], based on the decomposition of the sample covariance matrix into 

various independent components. 

The task of monitoring individual multivariate observations is substantially more 

complex, since the sample covariance matrix is not defined in such cases. For that 

purpose Yeh et al. (2005) [79] developed a procedure based on the univariate EWMA 

that allows the recursive estimation of the sample covariance matrix. Then, they monitor 

the squared distances between the estimates obtained and the in-control covariance 

matrix. However, this EWMA recursion scheme assumes the process mean to be 

constant. To extend its application to cases where the process mean may change, Huwang 

et al. (2007) [80] employed a similar EWMA recursion that includes an estimation of the 

process mean and compared both procedures through the monitoring of the trace of the 

covariance matrix estimates. In a similar approach, Reynolds and Cho (2006) [81] 

proposed to monitor the Mahalanobis distance of the EWMA recursion applied to the 

squared deviations from target. Later on, Hawkins and Maboudou-Tchao (2008) [82] also 

applied the EWMA recursion of the covariance matrix to extend Alt’s likelihood ratio 

statistic to individual observations. 

These monitoring statistics will be described more thoroughly in the following sections 

for the off-line case (based on non-overlapping windows) as well as for on-line case 

(based on individual observations). From this revision, it can be verified that all the 

monitoring statistics mentioned above are based only on the marginal covariance matrix 

and do not take into consideration the inherent structure of the process. 

4.1 Off‐line	Monitoring	Statistics	for	the	Process	Dispersion	

In this section the current methodologies for monitoring the process dispersion based on 

subgroups of non-overlapping windows are reviewed. These approaches will constitute 

the benchmarks against which the performance of the methodologies proposed in this 

thesis will be assessed and compared in Chapter 10. 
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4.1.1 W	Statistic	

Alt and Smith (1988) [75] presented three procedures for monitoring process variability 

by following its marginal covariance. One of the schemes is a direct extension of the 

univariate S2 control chart [48] and is equivalent to successively performing statistical 

hypothesis tests of the form, H0: Σ = Σ0 vs. H1: Σ ≠ Σ0. The monitoring statistic is based 

on the likelihood ratio test, and is defined as, 

         1
0 01 1 ln 1 trW m n n n       S Σ Σ S (4.1)

where m is the number of variables, n is the number of observations, Σ0 is the in-control 

covariance matrix and S is the sample covariance matrix. Anderson (2003) [46] showed 

that W is asymptotically distributed as  
2

1 2m m  , and therefore the process dispersion is 

considered to be out-of-control if W exceeds the  
2

1 2,UCL m m    ( 2
,   is the 

(100 1– ) th percentile of a chi-squared distribution with ν degrees of freedom). 

4.1.2 |S|	Control	Charts	

The other two approaches presented by Alt and Smith (1988) [75] are based on the 

sample generalized variance (i.e., the determinant of the sample covariance matrix, |S|), 

which is a widely used measure of multivariate dispersion. One of these approaches 

makes use of the sample distribution of |S|. Under Gaussian conditions, the distribution of 

|S| is equal to the distribution of |Σ0|/(n – 1)m times the product of m independent factors, 

where the ith factor is distributed as 2
n i  , i.e., [46] 

  2
0

1

1
m

m

n i
i

n 




  S Σ (4.2)

For the case of two variables, it can be shown that |S| is distributed as 

   2 22
0 2 4 4 1n n 

  Σ . Consequently, the control limits for the |S|-chart with two

variables are [70, 75], 
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When more than two variables are available, one can use Equation (4.2) or its normal 

approximation presented by Anderson (2003) [46] to compute the control limits. 

Finally, the third |S|-chart presented by Alt and Smith (1988) [75] uses only the first two 

moments of |S| and the property that most of the distribution of |S| is confined in the 

interval    3 varE S S , where   1 0E bS Σ  and   2

2 0var bS Σ , with, 
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(4.4)

From this result, it follows that the control limits for this control chart are given by [70], 
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Σ

Σ
(4.5)

However, since |S| is positive definite, it is not meaningful to have a negative LCL, and 

therefore the LCL is usually set to zero. 

The only difference between these two |S|-charts procedures lies in the control limits 

adopted: in the former case they are probability limits, Equation (4.3), while in the latter 

case, they are 3-sigma limits, Equation (4.5). 

4.1.3 G	Statistic	

Kramer and Jensen (1969) [83] proposed an alternative method to test the equality of two 

population matrices, through the so called G statistic. This hypothesis test is based on the 

idea that, in a stable process, the covariance matrix estimated with the complete data set 

of collected data, should be approximately equal to the one obtained from the mean 

square of successive differences. This concept was later explored by Levinson et al. 
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(2002) [76] in order to verify if any change has occurred in the process covariance matrix 

over time. To obtain the monitoring statistics one has to calculate first the in-control 

sample covariance matrix, S0, from a reference data set with n0 observations. After that, 

the ith test sample covariance matrix, S1,i, determined from a subgroup with n1 

observations is combined with S0 in the pooled estimator of the covariance [76], 

   0 0 1 1,
,

0 1

1 1

2
i

pool i

n n

n n

  


 
S S

S (4.6)

The monitoring statistic is then computed as Gi = gMi, where, 

     0 1 , 0 0 1 1,2 ln 1 ln 1 lni pool i iM n n n n      S S S (4.7)
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(4.8) 

When the process is under statistical process control, the G statistic is distributed as 

 
2

1 2m m  . Therefore, its control limits can be established as [76],  
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(4.9)

4.1.4 E	Statistic	

The previous monitoring statistics (Sections 4.1.1 to 4.1.3) are mainly based on some 

form of the generalized variance, which is somewhat insensitive to the correlation 

structure of the variables and therefore some changes may be masked or pass undetected. 

To address this issue, Guerrero-Cusumano (1995) [73] proposed the use of a conditional 

entropy measure. The entropy of a vector is a measure of the dispersion of its values and, 

for a continuous m-multivariate random variable x, it is defined as [73],  

       ln lnH f f d E f     x x x x x (4.10) 

where f(x) is the probability density of x. 
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If x follows a normal distribution with mean μ and covariance Σ, then the entropy is 

given by [73],  
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where Ρ0 is the correlation matrix, Σd = diag(σi) is a diagonal matrix with σi in its main 

diagonal, σi is the standard deviation of the ith variable and T(x) is the mutual information. 

By estimation of σi through the sample standard deviation, and assuming that the mutual 

information is known, the sample entropy is given by, 

       2

1

1 1ˆ ln 2 ln
2 2

m

i
i

H m e s T


  x x (4.12) 

The difference between the sample and theoretical entropy, 

     2 2

1
ˆ 1 2 ln

m

i ii
H H s 


   x x , is then considered a conditional entropy, since it 

is conditioned on Ρ0. Based on this, the monitoring statistic, E, is defined as, 

2
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where k = [2(n – 1)/m]1/2 is a normalization constant. 

The control limits of E are calculated by [73],  
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where     and     are the first and second derivative of the natural logarithm of the 

gamma function. 
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Although the E statistic is much simpler than the statistics based on the generalized 

variance, it requires the constancy of Ρ0. Therefore one must verify if Ρ0 indeed remains 

under statistical control, before testing E. 

4.1.5 VMAX	statistic	

A simpler and more efficient control chart than the |S|-chart was proposed by Costa and 

Machado (2009) [84]. They proposed the use of the VMAX statistic, which is the 

maximum value of the sample variances of the data after normalization, i.e., 

 2 2 2
1 2max , , , mVMAX s s s  (4.15) 

where 2 T 1i i is n z z  and  i i i i z x μ . The normalization of the data is an important 

step on this monitoring statistic since it guarantees that all the sample variances have the 

same probability of exceeding a certain UCL. The upper control limit for a two 

dimensional process is obtained through, 
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 (4.16) 

where  2 2

2

, 1n t 



 is the non-central chi-square distribution with n degrees of freedom and 

non-centrality parameter given by  2 21t  , and ρ is the correlation between the

variables. 

When compared to the generalized variance, the VMAX statistic presents a faster 

detection performance and better diagnostic features. The reasoning underlying this 

statistic was later on applied to the simultaneous monitoring of the mean and covariance 

matrix [85], and to sample ranges [86]. 
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4.2 On‐line	Monitoring	Statistics	for	the	Process	Dispersion	

In this section a review of the methodologies for monitoring the process multivariate 

dispersion based on single observations is provided. The monitoring statistics will be 

grouped according to their base monitoring principle and proposing authors. In Chapter 

11, the performance of these monitoring schemes will be compared against the 

methodologies proposed in this thesis for on-line monitoring. 

4.2.1 Cumulative	Deviations	

In order to monitor the process multivariate dispersion through an on-line procedure, Yeh 

et al. (2005) [79] applied an EWMA recursive scheme to obtain updated estimates of the 

covariance matrix. They have considered data following a multivariate normal 

distribution, where µ0 and Σ0 are assumed to be known and, without loss of generality, 

equal to µ0 = 0 and Σ0 = Im. The covariance matrix estimation scheme proposed by these 

authors is given by, 

 T
11t t t t    S z z S   (4.17) 

where 0 < λ < 1 is a forgetting factor. St is a positive definite matrix when t ≥ m and 

therefore it is a reasonable estimator of the covariance matrix. After estimation, the 

covariance matrix is monitored by defining S1,t and S2,t as the stacked diagonal ( 1m ) 

and non-diagonal elements ( ( )–1 / 2 1m m  ) of St respectively, i.e., 

     

T

1, 1,1 , 2,2 , , ,, , ,t t t m m ts s s   S  (4.18) 

         
T

2, 1,2 , 1,3 , , , 1, ,, , , , , ,t t t i j t m m ts s s s i j
   S   (4.19) 

The vector S1,t is a vector with estimates of the m population variances, which is 1m1 , and 

S2,t is an estimator of the vector of ( ( )–1 / 2 1m m  ) population covariance’s, which is 

( ( 1)/2) 1m m 0 . The deviations from target values are squared and accumulated as follows, 

  2

1, , ,
1
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t i i t
i

D s


  (4.20) 
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  2
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D s
  

  (4.21) 

The monitoring statistic is then given by the maximum of the standardized cumulated 

shift in the variances and covariances, 
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The respective asymptotic moments are given by [79], 
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(4.23) 

This control chart signals a fault whenever MaxD exceeds a predetermined UCL. 

4.2.2 Trace	of	the	Covariance	Matrix	

Huwang et al. (2007) [80] investigated the performance of monitoring statistics based on 

the trace of the covariance matrix estimated by an EWMA recursion. One of such 

monitoring statistics is given by, 

  trS

trS

tr t
tMEWMS






S

(4.24) 

where, 
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and is compared to a LCL and UCL in order to verify if a change on the covariance 

matrix occurred. In this case, the covariance matrix St is estimated by Equation (4.17) 

where the variables are pre-transformed as  1 2
0 0
 z Σ x μ , so that the in-control z is 

distributed as N(0,Im). 

The MEWMSt statistic assumes that the process mean does not shift during the monitoring 

period. To mitigate this limitation, the same authors included an estimation stage of the 

process mean on Equation (4.17), resulting on a new updating scheme of the covariance 

matrix given by [80], 

    T

11t t t t t t      V z y z y V   (4.26) 

  11t t t    y z y   (4.27) 

where 0 < λ < 1,   T

0 1 1 1 1– –V z y z y , 0 < ω <1 and y0 = 0. For t ≥ m, Vt is a positive 

definite matrix and   2( )2 1– / ( – )2tE  V Σ  as t  . Therefore 

2( ) [ (2 )/ 2 1 ] t   V  can be used to estimate Σ and hence monitored by, 

  trV

trV

tr t
tMEWMV






V

(4.28) 

The first and second moments of tr(Vt) can be found on the original work of Huwang et 

al. (2007) [80]. 

4.2.3 L1‐norm	and	L2‐norm	of	Variance	Deviations	

Memar and Niaki (2009) [87], proposed the use of a sum of deviations of variances from 

their target value based on the L1-norm and L2-norm. When applied to the covariance 

matrix estimated by Equation (4.17), St, the monitoring statistics become [87], 
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The same applies for the covariance matrix estimated by Equation (4.26), Vt [87], 
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All four monitoring statistics signal an alarm when they fall outside their UCL. 

4.2.4 Likelihood	Ratio	Test	

The off-line generalized likelihood ratio statistic proposed by Alt (1984) [70], 

         1
0 01 1 ln 1 trW m n n n       S Σ Σ S (4.33) 

where S is the ( m m ) sample covariance matrix of a rational subgroup with n 

observations, was extended by Hawkins and Maboudou-Tchao (2008) [82] to individual 

observations. On their work, the data is previously transformed, as 0–( )z B x µ , where 

B is any matrix that satisfies 1
m

 BΣB I . Then, an on-line estimation of St is obtained 

through Equation (4.17), with 0 mS I . The covariance matrix is monitored by Alt’s 

likelihood ratio defined as (unneeded constants are omitted):  

   tr logt t tc m  S S   (4.34) 

and compared to an UCL. 

4.2.5 Mahalanobis	Distance	of	Squared	Deviations	

Reynolds and Cho (2006) [81] suggested a set of control charts based on the Mahalanobis 

distance of the EWMA recursion applied to the squared deviations from target. On their 

methodology, for each variable, the EWMA statistic of standardized deviations from 

target is defined as [81], 
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 2 2 2
, , , 11 , 1, ,i t i t i tEZ z EZ i m         (4.35) 

where 2
,0 1iEZ  , 0 < λ < 1 is a weighting or tuning parameter and zi,t is the standardized 

observation (i.e., , , )– /(i t i t i iz x µ  ). The in-control covariance of 
T2 2

1, ,t m tEZ EZ  

is given by [81], 

 2 0 02
2 Z ZEZ




    
Σ Σ Σ (4.36) 

where   is the Hadamard product (element by element product) and 0ZΣ  is the in-

control covariance matrix of the standardized variables. The Mahalanobis distance of 

2
,i tEZ  is given by: 

 2

1 T2 2 2 2 2
1 1, , 1, ,1 1 1 1t t m t t m tEZ

M Z EZ EZ EZ EZ


          Σ  (4.37) 

This statistic is used with a UCL and detects both increases and decreases in variance. 

However, the authors reported that, for large values of λ, the detection of decreases in 

variance may become difficult. To improve the ability to detect these decreases they 

suggested the use of, 

 2

1 T2 2 2 2 2
2 1, , 1, ,t t m t t m tEZ

M Z EZ EZ EZ EZ


       Σ  (4.38) 

with an LCL and UCL. 

The performance of the M1Z
2 and M2Z

2 statistics changes substantially when regressed-

adjusted variables are used instead of the original variables. The vector of regressed-

adjusted variables in this case is given by [81], 

   1 2
1 1
0 0diag Z Z


 a Σ Σ z (4.39) 

where  1
0diag Z

Σ  is a diagonal matrix with the same diagonal elements as 1
0Z

Σ . From this

transformation, the in-control covariance matrix of the transformed variables becomes 

     1 2 1 2
1 1 1

0 0 0 0diag diagA Z Z Z

 
    Σ Σ Σ . Thus, the monitoring statistics are given as, 

 2

1 T2 2 2 2 2
1 1, , 1, ,1 1 1 1t t m t t m tEA

M A EA EA EA EA


          Σ  (4.40) 
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 2

1 T2 2 2 2 2
2 1, , 1, ,t t m t t m tEA

M A EA EA EA EA


       Σ  (4.41) 

by replacing zi,t by ai,t and ΣZ0 by ΣA0 in Equations (4.35) to (4.38). 

4.2.6 Variable	Transformation	Based	on	the	Singular	Wishart	Distribution	

While the previous methods (Sections 4.2.1 to 4.2.4) resort to an EWMA recursion 

scheme to estimate the covariance matrix, a different approach based on a single 

observation and the properties of the singular Wishart distribution was proposed by 

Bodnar et al. (2009) [88]. In this methodology, the properties of the estimation T
t t tM x x

are used to transform Mt into a set of vectors following a multivariate Gaussian 

distribution and then, the conventional monitoring statistics for the mean are applied to 

monitor each of the obtained vectors. 

The transformation is carried by defining σ(i,i) as the (i,i) element of Σ0, Σ1,i as the ith 

column of Σ0 without σ(i,i) and Σ2,i as a ( ) ( )–1 –1m m  matrix obtained by deleting the ith 

row and the ith column of Σ0. The same decomposition is performed in Mt, resulting in 

m(i,i),t, M1,i,t and M2,i,t, respectively. The new set of variables is given by [88], 

        1 2 1 2
, 2, 1, , 1, 1 1 1, , , , , ,i t i i t i m m mi i t i i i i tm m N

   η Σ M Σ 0 I (4.42) 

resulting in a total of m vectors ηi,t that need to be monitored individually. To do so, the 

authors suggested monitoring each ηi,t vector by standard multivariate EWMA and 

CUSUM control charts as follows. 

On the CUSUM schemes, they considered the methodology of Crosier (1988) [44] 

defined by, 
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(4.43) 

where Qi,0 = 0 and k > 0 is a reference value. For each vector ηi,t the MCUSUMi,t is 

determined as the norm of the vector Qi,t, 



Part II – State of the Art 

60 

   1 2T
, , , ,max 0,i t i t i t i tMCUSUM c k  Q Q (4.44) 

The individual control chart signals an alarm if any of the MCUSUMi;t statistics exceeds 

some preselected critical value, and therefore a unique control chart is obtained by 

considering, 

 ,maxt i tMCUSUM MCUSUM (4.45) 

Another multivariate CUSUM scheme applied was the one proposed by Pignatiello and 

Runger (1990) [50] based on, 

 ,maxt i tMC MC (4.46) 

where  

 2
, , 1 ,max 0,i t i t i tMC MC D m k    (4.47) 

with 2 T
, , ,i t i t i tD  η η  and MCi,0 = 0. 

Regarding the EWMA approaches, Bodnar et al. (2009) [88] used the schemes proposed 

by Lowry et al. (1992) [45], by defining  , , , 11i t i t i t    z η z  with zi,0 = 0 and 

considering both exact and asymptotic variances of zi,t. Subsequently, the monitoring 

statistics for each of the ηi,t vector become, 
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for the exact variance and 

T
, , ,

2
i t i t i tQa





 z z (4.49) 

for the asymptotic variance. 

The join EWMA statistics are then defined as, 

 ,maxt i tMEWMA Q (4.50) 
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 ,maxt i tMEWMAa Qa (4.51) 

The same authors also proposed monitoring the Mahalanobis distance of ηi,t through an 

EWMA recursion scheme. For this monitoring scheme, the individual statistics are given 

by, 

 2
, , , 11i t i t i tQM D QM       (4.52) 

with 2 T
, , ,i t i t i tD  η η  and ,0 –1iQM m . Finally, the individual statistics are combined as, 

 ,maxt i tMEWMAM QM (4.53) 
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5 Defining	the	Structure	of	DPCA	models	

Statistical process control (SPC) methodologies have been routinely applied in many 

different industrial contexts, from laboratories to discrete manufacturing industries and 

chemical processing industries. With the increasing availability of data through faster and 

more informative sensors and measurement systems, the dynamic or autocorrelated nature 

of systems became an aspect that must be incorporated into SPC methodologies. The 

usual i.i.d. assumption for the definition of the normal operation conditions (NOC) region 

is no longer valid under these circumstances, and several alternative methodologies were 

proposed to the classic univariate [40, 41, 89], multivariate [43-45] and megavariate [15-

17, 19] approaches. These can be organized into three distinct classes of methods: (i) 

methods based on correcting/adjusting control limits for the existent SPC methods, using 

knowledge of the specific dynamic model underlying data generation [90]; (ii) methods 

based on time series modeling followed by the monitoring of one-step-ahead prediction 

residuals [91, 92]; (iii) methods based on time-domain variable transformations, that 

diagonalize, in an approximate way, the autocorrelation matrix of process data [5, 9]. 

The first class of approaches (i), is restricted to very particular situations (univariate 

processes with rather simple dynamic structures), for which correction formulas were 

derived and made available. As to the time series based approach (ii), an usually criticism 

concerns the difficulty of defining proper time series model structures (the specification 

problem), which requires a significant amount of expertise. Perhaps even more important 

than this, the fact that estimating classic multivariate time series models (e.g., VARMA, 

VARIMA) for small-medium sized systems (> 10 variables) is a complex or maybe 

unfeasible task, which limits their use in practice. Finally, the third class of approaches 

(iii) does provide effective solutions to the autocorrelation problem, but its 

implementation requires a high load of computational programming. The current lack of 

software packages through which such methods can be conveniently made available, has 

been hindering their diffusion into practical applications.  

However, an alternative approach has quickly gained popularity, given its conceptual 

simplicity and relationship with a well-known and accepted technique: SPC using 

dynamic principal component analysis (DPCA) [27]. DPCA is a methodology proposed 
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by Ku et al. (1995) [27], which essentially attempts to model the autocorrelation structure 

present in data, through a “time lag shift” method. This method consists in including 

time-shifted replicates of the variables under analysis, in order to simultaneously capture 

the static relationships and the dynamic structure, through the application of standard 

PCA. DPCA has been applied in different application scenarios, that include not only 

multivariate process control and fault diagnostic [27, 93-95] but also maintenance 

activities planning [96] and sensitivity analysis [97]. On a different context, DPCA was 

also applied in economical forecasts after the initial work of Brillinger (1964) [98]; other 

related applications include the construction and analysis of economic indicators [99] and 

volatility modeling [100]. 

A key point in the implementation of the DPCA method is the selection of the number of 

lags to be used, i.e. the number of time-shifted versions for each variable to include in the 

DPCA model. This problem is similar to selecting the lag structure in time series models 

(ARMA, ARIMA, ARMAX, etc.) [28, 29]. The solution proposed by Ku et al. (1995) 

[27] consists in implementing parallel analysis, a technique that combines the scree plot 

obtained from a PCA analysis applied to the collected data, with the scree plot resulting 

from the analysis of a random data set of the same size. The interception of these two 

curves represents the cut-off for the selection of the number of components to retain. This 

is followed by the analysis of the correlations exhibited by the scores, in order to 

determine the number of linear relationships present in data. The underlying reasoning is 

that the scores corresponding to low magnitude eigenvalues correspond to the existence 

of linear relationships (static and/or dynamic), involving the variables under analysis, 

including their time-shifted versions. Such scores should also be approximately 

uncorrelated, as the authors illustrated with resource to several examples. Time-shifted 

variables are added until no additional linear relationships are detected. The existence of a 

new linear relationship is verified through the difference between the number of low 

magnitude eigenvalues (associated with uncorrelated scores) obtained with the addition of 

a new time-shifted variable, and the expected number of such coefficients assuming that 

the previous lag structure was correct. 

Other approaches to the lag-selection problem were also proposed. Autoregressive (AR) 

models were employed to determine the number of lags to use in DPCA [101]. In this 

case, the authors suggested the application of an AR model only to the output variable, 

from which a single lag is proposed for all the input variables. This is a very simple 
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approach that does not explicitly incorporate the relationships between variables. Wachs 

and Lewin (1999) [102] proposed the delay-adjusted PCA, that determines the most 

appropriated time delays, between inputs and outputs variables, by shifting inputs until 

their correlation with the outputs is maximized (maximum of the cross-correlation 

function). This approach assumes a two block variable structure (X and Y), where the 

output variables are correlated among themselves with no delays present, and inputs are 

independent of each other. The authors point out that this may not always be true, 

especially when analyzing closed-loop data. Guerfel et al. (2009) [103] proposed an 

approach where the number of lags is selected as the minimum number needed for 

detecting a specific fault, therefore requiring a priori knowledge of possible systems 

faults. Other proposed methods result from identification techniques based on Akaike 

information criterion, such as those employed by Li and Qin (2001) [94] and by Russell et 

al. (2000) [95]. However, the first approach assumes a two block variable structure (X 

and Y) and both methodologies propose a unique delay structure for all variables, which 

may not be true in general.  

To addresses this current major weakness of the DPCA methodology, which constitutes a 

central problem in the implementation of the method in real world application scenarios, 

it is proposed in this thesis a new method to determine, in a more rigorous way, not only 

the maximum number of shifts to adopt in DPCA models, but also the specific lag 

structure for each variable. Therefore, contrary to the works published so far, the number 

of time-shifts used for describing the dynamic behavior of each variable can be different. 

Furthermore, no explicit segmentation in input/output variables is strictly required. The 

advantages of adopting the proposed method in different process system activities, such 

as process monitoring and system identification are also illustrated in this chapter. 

5.1 Defining	the	Lagged	Structure	in	DPCA	

In this section, the benchmark method for selecting the number of time-shifted replicates 

to include in the extended matrix is briefly reviewed, and the new alternative 

methodologies presented. The benchmark is the method most extensively used in the 

literature dealing directly with the lag structure definition problem, which is the one 

proposed by Ku et al. (1995) [27].  
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5.1.1 Defining	the	Lagged	Structure	in	DPCA:	Ku	et	al.	Method	

Ku et al. (1995) [27] pointed out that the eigenvectors corresponding to the last principal 

components with small eigenvalues, represent exact or near-exact linear relationships 

between the original variables [20]. This characteristic was explored by these authors who 

proposed an algorithm based on the identification of the number of linear relationships 

needed to describe the system, including those involving time-shifted variables with a 

given number of lags (l). The extended data matrix ( ) has, in this case, the simple form 

of a Hankel matrix. The presence of linear relationships, originated from static or 

dynamic relationships, manifests themselves through two types of effects: (i) small 

eigenvalues in the spectral decomposition of the covariance matrix of X , (ii) and by the 

fact that the corresponding scores should be, in these conditions, approximately 

independent (a feature that can be checked through, for instance, auto- and cross-

correlation plots). The pseudo-code for the algorithm proposed by the authors is presented 

in Table 5.1 [27]. 

The above procedure assumes the implementation of a methodology for selecting the 

number of principal components, for which the authors suggest the use of parallel 

analysis followed by the analysis of cross-correlation plots of the principal component 

scores. The number of linear relationships identified is given by the difference between 

the number of variables considered in the extended matrix and the number of principal 

components retained. 

Table 5.1 Pseudo-code for the lag-selection methodology proposed by Ku et al. (1995) [27]. 

1. Set l = 0;
2. Form the extended data matrix      0 1 l   X x x x  ;

3. Perform PCA and calculate all the principal scores;
4. Set  1j m l  

 
and   0r l  ;

5. Determine if the jth component represents a linear relation. If yes proceed, if no go to
step 7;

6. Set j = j – 1 and     1r l r l  , repeat step 5;

7. Calculate the number of new relationships:
1

0

( ) ( ) ( 1) ( )
l

new new
i

r l r l l i r i




   
8. If   0newr l  , go to step 10, otherwise proceed; 

9. Set l = l + 1, go to step 2;
10. Stop.

X
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According to the authors, the number of lags obtained by this procedure is usually 1 or 2, 

depending on the order of the dynamic system, and is the same for all variables. However, 

they refer that, in the case of non-linear systems, l could be set to higher values in order to 

get a better linear approximation of the non-linear relationships [27]. 

This methodology will be adopted as the benchmark method against which the proposed 

approaches will be tested and compared. In this decision, it is taken into account the fact 

that it is eventually the most well-known and widely used approach for addressing this 

problem, which furthermore is theoretical driven and thoroughly tested. Other less tested 

methods available in the literature either present similar limitations or require the 

consideration of two blocks of variables (please refer to the review presented in the 

beginning of Chapter 5). 

5.1.2 Defining	the	Coarse	Lagged	Structure	 in	DPCA:	Method	1	–	Selection	of	

the	Maximum	Number	of	Lags	

In this section, an alternative way to select a single number of time-shifts for all variables 

is proposed. In this case, the extended matrix to be used in DPCA has also the form of a 

Hankel matrix. This method can be used separately, or in a first stage preceding the 

implementation of Method 2, to be described in the next section, which will refine the 

number of shifts to consider for each individual variable.  

The proposed method has roots in the work of Ku et al. (1995) [27] and is focused on 

following the singular values obtained in each stage, where the extended matrix is 

augmented with the variables replicates for an additional time-shift. By analyzing the 

sequence of the singular values, one can estimate the point (i.e., the number of lags), after 

which the introduction of additional time-shifted variables become redundant, i.e., they 

are no longer necessary for explaining the existent stationary and dynamic relationships. 

The proposed method assumes the existence of a total of m linear dynamic relationships 

to be identified (as many as the variables involved), whose order is not known a priori, 

but is at least 1 (the simplest dynamic model). This simple hypothesis allows for the 

derivation of an algorithm that consistently leads to better estimates of the dynamic lag-

structure involved, as illustrated in Section 5.2. The algorithm consists in sequentially 
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introducing an additional set of time-shifted replicates for all original variables (which 

corresponds to the consideration of one more lag in the extended matrix), after which the 

singular values are computed for the corresponding covariance matrix. This procedure is 

repeated until a pre-defined upper limit on the number of lags to use is achieved, , 

where it stops (this limit is usually a number high enough for allowing the description of 

all the dynamic features present in the data, but it can be adjusted if, during the analysis, it 

is concluded that it was underestimated initially). In each stage, l (which also coincides 

with the number of lags introduced in the extended matrix), the following quantities are 

computed from the singular values: 

 Key Singular Value. The key singular value in the lth stage (l ≥ 1), KSV(l), is defined

as the ( 1m l  )th singular value, after sorting the set of singular values according to

the decreasing order of their magnitude. As there are m linear dynamic relationships

to be identified, by hypothesis, only after introducing the number of lags necessary to

model the linear dependency with the highest delay (i.e., that goes further into the

past, or having the maximum number of lags in the DPCA model), one is expected to

get a small magnitude for the singular value in such a position. Therefore, the key

singular value should signal the point where the linear relationship that requires the

larger number of lags to be properly described was finally achieved. The other

relationships, requiring a lower number of lags, give rise to multiple low singular

values (one per additional lag, after the numbers of lags necessary to fully describe

their linear relations are achieved). All of them appear at the end of the ordered

vector of singular values. It can be shown that, only after the point where there is a

sufficient number of lags to describe all linear descriptions present, a small value

appears in the KSV, indicating that the addition of variable replicates with more lags

is no longer relevant for the DPCA model.

 Key Singular Value Ratio. Under the assumption of having m dynamic relationships

present, a small value for the KSV at stage l, indicates that one has attained the point

where no more lags are necessary to be added. However, due to the presence of noise

and small-moderate non-linear effects, the identification of this condition is not

always clear. Therefore, a second element in the algorithm is introduced, in order to

increase the robustness of the detection of the maximum number of lags required. In

fact, following the behavior of the successive values obtained for the KSV(l),

maxl
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1, ),( 2l   , it can be observed that there is a point where it decays more or less 

sharply (corresponding to the stage where KSV(l) starts getting low values) and then 

becomes approximately constant (see the left plot in Figure 5.1, for an example). 

Therefore, by defining the Ratio of successive Key Singular Values at stage l, 

KSVR(l), by , one can capture this behavior more 

efficiently. Moreover, from this definition, one can verify that the required number of 

lags should have a low value for KSVR, indicating that a significant decrease in the 

KSV has just occurred, i.e., the current singular value is significant lower than the 

previous one. After this point, the ratio tends to have values closer to 1 and to be 

approximately constant. 

In resume, the maximum number of lags to be considered in the extended matrix for 

implementing DPCA should obey the following two criteria: (i) have a small KSV and (ii) 

have a low value for KSVR. 

(a) (b)
Figure 5.1 KSV and KSVR obtained in the analysis of the Wood and Berry case study (a). The analysis of the parameter 
KSVR, leads, in this case, to an estimated maximum number of lags of 16. Also shown, is the objective function for the 
auxiliary optimization problem for selecting the number of lags (b). 

In order to find the number of lags that match both of these conditions, a procedure is 

implemented that seeks for the number of lags introduced, l, for which KSV and KSVR are 

closer to their minimums – the minimums attained individually in the analysis, i.e., 

min(KSV) and min(KSVR). This task is performed by minimizing the objective function, 

Distance To Optimum, , given by Equation (5.1), where KSVN and KSVRN are 
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normalized versions of KSV and KSVR, constructed in order to remove the effects of scale 

and provide equal weight to both criteria in the analysis (Equations(5.2) and (5.3)). 

   2 2

N NKSV l KSVR l   (5.1) 

  (5.2)

 (5.3)

Thus, with this additional criteria available, one can select the number of lags simply by 

finding out the minimum of the objective function , Equation (5.1). The pseudo-code for 

the proposed algorithm for estimating the maximum number of lags to use in DPCA, is 

presented in Table 5.2. The plot in the right hand side of Figure 5.1 illustrates this 

objective function for the Wood and Berry case study. 

Table 5.2 Pseudo-code for the Method 1: selection of the maximum number of lags to use in DPCA. 

1. Set l = 0;
2. Form the extended data matrix ; 

3. Perform the singular value decomposition of the covariance of the extended matrix:
; 

4. Set   1mlKSV l s  ;(1) 

5. If l > 0 set ; 

6. If l < lmax , set  and go to step 2, otherwise proceed; 
7. Normalize KSV and KSVR;

8. Determine: , s.t. l ≥ l* (where l* is the first l, 

such that KSVR(l) < KSVR(l – 1)); (2)

Notes: (1) 1mls   is the (ml+1)th singular value of
X

Σ  . (2) A justification for this condition will be provided

in Section 5.2.2.1. 

 
   

( ) min
( )

max minN

KSV l KSV
KSV l

KSV KSV






 
   

( ) min
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max minN

KSVR l KSVR
KSVR l

KSVR KSVR






     0 1 l   X x x x 
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     –1KSVR l KSV l KSV l
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1,arg min ( ) ( )N Nl lmax KSV l KSVR l 
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5.1.3 Defining	the	Fine	Lagged	Structure	in	DPCA:	Method	2	–	Selection	of	the	

Number	of	Lags	for	Each	Variable	

Method 1 provides an approach for selecting a single number of lags to be used for all 

variables (as in the benchmark method). Such lag is the one corresponding to the dynamic 

relationship requiring a longer tail into the past, in terms of the number of lags involved. 

However, analyzing different multivariate systems, one can verify that quite often the 

dynamic order is not the same for all variables. Therefore, the number of lags required to 

describe them will also be different. Under these circumstances, it is both opportune and 

important to devise a methodology for fine tuning the number of lags to be adopted for 

each variable, in order to increase de accuracy and stability of the DPCA approach. In 

order to obtain such a finer selection of the number of lags for each variable, a second 

algorithm (Method 2) is proposed. This algorithm presents some similarities with Method 

1, but includes, in each stage, a variable-wise analysis. 

In Method 2, at each stage k, m versions of the extended matrix are analyzed, 

. These matrices are obtained from that relative to the preceding 

stage, , modified by the inclusion of a single time-shifted variable, with one 

more lag than the number of lags used in the preceding stage for the same variable. Let us 

define , as the m-dimensional vector containing in its entries the number of lags 

considered for each variable in stage k:  ( 1, ,i m  ). In other words, the first entry of 

 contains the number of shifted versions for x1, , the second entry contains the 

number of shifted version for x2, , and so on and so forth until the mth entry: 

  (5.4)

Additionally, let us consider the m-dimensional indicator vector,  k , as a vector 

composed by zeros, except for the kth position, where it has a 1: 

  (5.5)

     1 2, , , mk k kX X X  
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In this circumstances, the lag structure corresponding to the ith version of the extended 

matrix at stage k, , summarized in the vector , is given by (see also Figure 5.2 

for more details about this process): 

  (5.6) 

 

 

Figure 5.2 Illustration of the implementation of Method 2. In this example, the stage 4 of a 3 variables system is 
presented. On the previous stages 1 lag was selected for x1 and 2 lags to x2. In the current stage, the several versions of 
the extended data matrices are defined (three in this case), and their singular values determined. Based on the analysis 
of quantities computed from them, variable x3 is selected to be incorporated into the extended matrix with an additional 
time-shift. 
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Now, for each version of the extended matrix, , the smallest singular value of the 

corresponding covariance matrix, , is determined and saved as ci. This set of 

values, ci (i = 1, …, m), are then analyzed in order to find the minimum at stage k, say 

 ( )ks . The lagged variable to be incorporated in the extended matrix is the one for which 

such minimum was found. This will result in the extended matrix for stage k, , and 

the procedure is repeated again for stage 1k  , where another lagged version of some 

variable is added again (which can be any of the m variables under consideration). This 

process continuous until the maximum number of lags to analyze is attained. The total 

number of stages will always be equal to the sum of the lags for all variables, as in each 

stage a single lag is introduced for some variable under analysis. The maximum number 

of lags to analyze, , is a parameter that can be either provided after the 

implementation of Method 1, or selected in a more conservative way (i.e., slightly above 

of what it is expected to be a reasonable value for this parameter).  

In order to remove potentially redundant lagged variables that might be included in this 

forward addition process, a final pruning stage is performed, where the results obtained at 

all stages are analyzed for their significance and improvement of the objective function, 

using a similar criteria to the one presented before in Equation (5.1) (the only difference 

lies in the redefinition of the normalization factors). The complete procedure for 

implementing Method 2 is summarized in the pseudo-code presented in Table 5.3. 

 i kX

  cov i kX

 kX

maxl
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Table 5.3 Pseudo-code for the algorithm that estimates the fine lag structure of the extended matrix, for implementing 
DPCA (Method 2). 

1. Set stage , and initialize the lag vector (whose ith entry, contains the number of 
lags for the corresponding ith variable), ;  

2. Form and determine the smallest singular value ( ); 

3. Set 1k k  ;
i. For i = 1 to m

 Form , whose lagged structure is given by the vector:

; 

 Compute the covariance matrix of ; 

 Determine the smallest singular value of the covariance matrix
obtained in the previous step: ;

ii. Find the variable corresponding to the smallest value of the set   1, ,i i m
c

  :

; (1)

iii. Obtain the final extended matrix for stage k: ; with  

where ; (1)

iv. Set ;

v. If , go to step 3, otherwise proceed; 

4. Determine the stage that provides the best description of the linear dynamics

involved:          
max

2 2
*

1,arg min k k

k kk k s r    (2), s.t. l ≥ l* (where l* is the first 

l, such that    1r l r l   
(3)).

Notes: (1) in ii), s(k) contains the minimum singular values, whereas in iii), imin corresponds to the index for 
the minimum value.  
(2)  represents the normalized score corresponding to y. 
(3) A justification for the condition used in stage 4 will be provided in Section 5.2.2.1. 

5.2 Comparative	Assessment	Study	

To demonstrate the increased lag estimation accuracy of the proposed methodologies, two 

testing scenarios were considered. In the first scenario, a large number of systems from 

the same class were randomly generated, and then the benchmark and Method 1 were 

employed to estimate the appropriate maximum number of lags necessary to describe the 

dynamic relationship for each realization of the model structure. In the second scenario, 

several multivariate systems found in the literature, with known dynamics, are employed, 

in order to test the estimation accuracy performance of Method 2 in selecting the specific 

number of lags for each variable. 
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5.2.1 Systems	with	Random	Lagged	Structure	

To assess the accuracy performance of the methods presented in Section 5.1, they were 

employed in the estimation of the number of lags for a large number of systems with 

randomly generated lagged structures. The systems under study were based on the 

following continuous first order dynamic transfer function with time delay, defined by 

  (5.7)

where K is the system gain, τ is the time constant and θ is the time delay. A large number 

of different realizations of this set of parameters were generated (following independent 

uniform distributions), which will imply different time lags in the corresponding discrete 

models.  

Following this procedure, 5000 SISO systems and another 5000 MIMO 2×2 systems were 

generated, all of them subjected to additive white noise (d) with different magnitudes of 

signal-to-noise ratio (SNR) and noise structures (with and without autocorrelation). The 

SNR is defined by: 

  (5.8)

The deviations obtained between the estimated and the true maximum delay of the system 

(equivalent to the maximum lag), are presented graphically in Figures 5.3 to 5.6. 
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Figure 5.3 Graphical representation of the deviation between the estimated and the true number of lags (E = Estimated 
- True) for SISO systems, corrupted with additive white noise (20 dB), without autocorrelation.  

Figure 5.4 Graphical representation of the deviation between the estimated and the true number of lags (E = Estimated 
- True) for SISO systems, corrupted with additive autocorrelated noise (20 dB). 
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Figure 5.5 Graphical representation of the deviation between the estimated and true number of lags (E = Estimated - 
True) for MIMO 2×2 systems, corrupted with additive white noise (20 dB), without autocorrelation. 

Figure 5.6 Graphical representation of the deviation between the estimated and true number of lags (E = Estimated - 
True) for MIMO 2×2 systems, corrupted with additive autocorrelated noise (20 dB). 
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less adequate DPCA models, which are not correctly modeling the dynamic behavior of 

the systems. 

On the other hand, the proposed method estimates 1 more lag than the correct one in all 

the generated SISO systems (Figures 5.3 and 5.4). In the case of the MIMO 2×2 systems 

(Figures 5.5 and 5.6), one can see that it also presents some estimation error, which 

nevertheless is much lower than that for the Ku et al. method. In fact, the absolute 

deviations obtained with the Ku et al. method ( 1e ) are greater than the ones obtained by 

the proposed method ( 2e ). This can be seen in Figure 5.7, where the difference 

1 2D e e   is represented. From this figure it can be concluded that the proposed 

approach indeed presents higher estimation accuracy of the true number of lags. The 

statistical significance of the difference between the methods, was also assessed with a 

permutation test [104] leading to highly significant p-values, much lower than 0.01, 

confirming the lower absolute deviations obtained with the proposed method. 

Figure 5.7 Graphical representation of the difference between the absolute deviation obtained on the number of lags 
estimated by the Ku et al. method and the proposed method. d1, d2 and d3 refer to 3 different dynamic transfer 
functions applied to the additive autocorrelated noise. 
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5.2.2 Multivariate	Dynamic	Systems	Collected	from	the	Literature	

In this section Method 2 is applied to three MIMO systems found in the literature, namely 

those proposed by (i) Wood and Berry, (ii) Wardle and Wood, and (iii) Ogunnaike and 

Ray. The corresponding transfer functions are presented in Table 5.4 [105]. The proposed 

method was applied in two parts: in the first part, Method 2 is employed for selecting the 

number of lags for the output variables only. In the second part, the same was done for 

the input variables, using the previously selected number of lags for the outputs. This 

procedure turned out to be the most effective one for handling complex higher-order 

input-output dynamic systems. Nevertheless, it should be noticed that an explicit 

segmentation of the data as input/output variables is not strictly required to the 

implementation of Method 2. 

Table 5.4 Transfer functions for the three MIMO systems used in the comparison study. 

Wood and Berry Wardle and Wood Ogunnaike and Ray
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The true number of lags for each system is a function of the sampling rate adopted, and 

was determined here through the Matlab function c2d (that converts a continuous model 

into a discrete one), and by the transformation equations described by Roffel and Betlem 

(2006) [106]. All systems were simulated using the Matlab function lsim, and subjected to 

a SNR of 10 dB. Each data set analyzed was composed by 3000 observations. 

5.2.2.1 Wood	and	Berry	system	

By application of the proposed method to the Wood and Berry system, on the first part of 

the procedure, the number of lags of the outputs was determined according to the 

algorithm presented in Table 5.3. This algorithm makes use of the singular values of a 

data matrix successively extended by additional lagged variables and the ratio between 

the singular values before and after the inclusion of each lagged variable. These values 

are introduced into an optimization function (), from which the lagged variable leading 

to the lower value is the one to be included in the extended matrix. This procedure is 

repeated until the maximum number of stages is achieved. 

In the case of the Wood and Berry systems, the results obtained in each stage are 

presented in Figure 5.8. 

(a) (b) 
Figure 5.8 Graphical representation of (a) the singular values, their ratio and (b) the output from the optimization 
algorithm, , during the first part of the proposed method, in the Wood and Berry system. 
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From Figure 5.8 (b) it can be verified that stage k = 2 led to the lowest value of . 

However, this value is greatly affected by the singular values ratio,  (see Table 5.3, 

step 4), which is expected to be low in the first stages, because of the rapid decrease in the 

singular values (s) after the first inclusions of lags. Furthermore, the use of the ratio in the 

optimization functions, , is mainly for the purpose of identifying significant changes in 

s, once its value is already low, and not in the initial stages. This is the reason way the 

ratio condition is present in the proposed methods (Method 1 see Table 5.2, step 8; 

Method 2 see Table 5.3, step 4). It should be also noted, that the decreasing profile of s is 

related to the amount of variability explained. Thus, after the point where all significant 

lagged variables have been included, the decrease on the singular values will be lower. 

Consequently, the desirable combination of lags should have a low value for the singular 

values, s, followed by an almost constant profile (which is equivalent to a ratio near 1). 

From Figure 5.8 (a) it is observed that stage 4 (that has the second lowest ) has a closer 

match to these specifications, and was therefore, chosen for providing the number of lags 

in the output variables. 

On the second part of the method, the number of lags for the input variables is also 

determined, given the information about the number of lags for the output variables. 

Following the same procedures and considerations, stage 14 is selected for the outputs 

(see Figure 5.9). In this part, the singular value profile is not as ambiguous as in the 

outputs case, and a clearer, almost constant, profile appears after stage 14 (see Figure 5.9 

(a)), which is also identified by the lowest value of . By selecting stage 14, a lag vector 

of  was obtained, which is equal to the theoretical one (see Table 5.4).

 kr

 2 2 9 5
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(a) (b) 
Figure 5.9 Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 
proposed method, in the Wood and Berry system. 

5.2.2.2 Wardle	and	Wood	system	

The second case study was the Wardle and Wood system. The two part procedure was 

also implemented, as for the previous example. From the first part of the method the 

profiles presented in Figure 5.10 was obtained. 

As can be seen in Figure 5.10 (b), the minimum of  is attained on stage 1. However, as 

in the case of the Wood and Berry system, the ratio in stage 1 has a big effect on the value 

of  and it also results from the high reduction in the singular value after the addition of 

the first lagged variable, and therefore should not be considered, in accordance with the 

ratio condition. Stage 4 respects this condition and has the 2nd lowest , along with an 

almost constant singular values profile after it. Given these considerations, stage 4 was 

selected for the first part of the method. 

In the second part of the method, the minimum value of  is obtained in stage 23 (see 

Figure 5.11(b)). Note that this stage is also related to the almost constant profile of the 

singular values (Figure 5.11(a)), even with the small decrease in stage 32, which is 

considered as less relevant due to its smaller ratio. Therefore, stage 23 is the one selected, 

giving a lag vector of  which is quite similar to the theoretical one, 

 
(see Table 5.4). 
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(a) (b) 
Figure 5.10 Graphical representation of (a) the singular values, their ratio and (b) , during the first part of the 
proposed method, in the Wardle and Wood system. 

(a) (b) 
Figure 5.11 Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 
proposed method, in the Wardle and Wood system.  
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can be considered a good choice since s is already low and, in the subsequent stages, no 

significant decrease of s occurred. 

In the second part, a characteristic profile that becomes almost constant after stage 30 is 

obtained. This stage also corresponds to the lowest ratio, i.e., the greatest decrease in s 

relatively to its previous value (see Figure 5.13 (a)). Therefore stage 30 presents all the 

desirable characteristics and is, in fact, the stage selected by the algorithm, which leads to 

a lag vector of . This lag vector is quite similar to the theoretical 

one,  3 3 4 14 14 5  (see Table 5.4).

(a) (b) 
Figure 5.12 Graphical representation of (a) the singular values, their ratio and (b) , during the first part of the 
proposed method, in the Ogunnaike and Ray system. 

(a) (b) 
Figure 5.13 Graphical representation of (a) the singular values, their ratio and (b) , during the second part of the 
proposed method, in the Ogunnaike and Ray system. 
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5.3 Application	 of	 the	 Proposed	Methodologies	 to	 Statistical	 Process	

Control	(SPC)	and	System	Identification	(SI)	Activities	

The proposed lag selection methods aim to better estimate the real dynamic relationships 

involving all the system variables, leading to more precise and reliable models. This will 

have a natural impact in the activities built over DPCA models, such as statistical process 

control (SPC) and system identification (SI), as analyzed in the following two sections. 

5.3.1 Application	to	Statistical	Process	Control	

In this section, the effect of using the proposed lag selection methods for DPCA models 

in the task of multivariate statistical process control, is assessed and compared. For such, 

several monitoring methodologies were implemented, namely the well-known MSPC-

PCA procedure [15-17, 19], and two other related procedures, based on DPCA models. 

One of the methods based on DPCA uses the current lag selection method proposed by 

Ku et al. (1995) [27], DPCA-LS1, and the other employs the proposed methodology 

(Method 2), DPCA-LS2. 

The system studied was the Tennessee Eastman benchmark process, developed by Downs 

and Vogel (1993) [107], which has been widely used for comparing process monitoring 

and control approaches. The simulation model has 41 measurements (XMEAS), 12 

manipulated (XMV) variables and allows for the analysis of 21 process upsets; more 

details are provided in Section 6.3. 

In this study, the data provided by Russell et al. (2000) [108] was used. Each data set 

contains 960 observations with a sampling interval of 3 min. The faults were introduced 8 

hours after the beginning of the simulation runs. All the manipulated and measurement 

variables, except the agitation speed of the reactor’s stirrer (which is always constant) 

were collected, giving a total of 52 variables. 

The data set without faults was used to estimate the PCA and DPCA models. The number 

of principal components was determined by parallel analysis and the number of lags for 

the DPCA model was first selected with the approach proposed by Ku et al. (1995) [27]. 

These methods led to a PCA model with 17 PCs and a DPCA model with 3 lags and 29 

PCs (DPCA-LS1). These estimates are in line with those obtained before by Russell et al. 
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(2000) [95]. Implementing DPCA-LS2, one would obtain the fine lag structure presented 

in Table 5.5, along with a total of 69 PCs. 

Table 5.5 Number of lags for each variable obtained with DPCA-LS2, in the Tennessee Eastman process. 

XMEAS(1) 17 XMEAS(14) 4 XMEAS(27) 17  XMEAS(40) 12 
XMEAS(2) 17  XMEAS(15) 17  XMEAS(28) 13  XMEAS(41) 17 
XMEAS(3) 8 XMEAS(16) 12  XMEAS(29) 3  XMV(1) 17 
XMEAS(4) 17 XMEAS(17) 17  XMEAS(30) 17  XMV(2) 17 
XMEAS(5) 17 XMEAS(18) 17  XMEAS(31) 17  XMV(3) 17 
XMEAS(6) 16 XMEAS(19) 17  XMEAS(32) 8  XMV(4) 17 
XMEAS(7) 17 XMEAS(20) 17  XMEAS(33) 8  XMV(5) 15 
XMEAS(8) 15 XMEAS(21) 17  XMEAS(34) 17  XMV(6) 16 
XMEAS(9) 17 XMEAS(22) 17  XMEAS(35) 17  XMV(7) 17 
XMEAS(10) 17 XMEAS(23) 17  XMEAS(36) 17  XMV(8) 17 
XMEAS(11) 16 XMEAS(24) 17  XMEAS(37) 17  XMV(9) 16 
XMEAS(12) 17 XMEAS(25) 17  XMEAS(38) 17  XMV(10) 17 
XMEAS(13) 17 XMEAS(26) 17  XMEAS(39) 4  XMV(11) 17 

The pair of monitoring statistics (T2 and Q) for each model (PCA, DPCA-LS1 and 

DPCA-LS2) were then applied to a second data set representing normal operation 

conditions in order to determine their respective control limits. The control limits were set 

by trial and error, so that all the statistics present the same (observed) false alarm rate of 

1%. The methods where then applied to the battery of 21 data sets with different types of 

faults. The results obtained, are presented in Table 5.6 in terms of detection rate (i.e., the 

number of detections in the faulty regions over the total number of observations in the 

faulty regions). 

From the analysis of Table 5.6, it is possible to verify that the DPCA-LS2 statistics have 

the higher fault detection rates for 17 out of 21 faults, and comparable detection rates on 

the remaining ones. The superiority of the proposed lag selection method is also formally 

confirmed upon application of a paired t-test (5% significance level). 
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Table 5.6 Detection rates for each fault. The best performance achieved for each type of fault is signaled in bold. 

Fault 
PCA DPCA-LS1 DPCA-LS2

 T2 Q T2 Q T2 Q 
1  0.991 0.995 0.990 0.994 0.989 0.993 
2  0.985 0.984 0.984 0.981 0.981 0.985 
3 0.036 0.006 0.035 0.010 0.059 0.032 
4  0.218 0.980 0.165 0.999 0.397 0.999 
5  0.257 0.217 0.293 0.228 0.326 0.486 
6  0.989 0.999 0.989 0.999 0.988 0.999 
7  0.999 0.999 0.986 0.999 0.888 0.999 
8  0.974 0.968 0.973 0.974 0.970 0.971 
9 0.034 0.010 0.030 0.002 0.070 0.017 
10  0.367 0.154 0.439 0.172 0.508 0.531 
11  0.414 0.638 0.340 0.829 0.542 0.991 
12  0.985 0.925 0.990 0.964 0.994 0.996 
13  0.943 0.950 0.943 0.950 0.938 0.948 
14  0.988 0.999 0.990 0.999 0.996 0.998 
15  0.035 0.007 0.059 0.009 0.072 0.040 
16  0.174 0.137 0.217 0.145 0.305 0.474 
17  0.787 0.905 0.790 0.953 0.954 0.969 
18  0.893 0.901 0.890 0.898 0.894 0.901 
19  0.115 0.059 0.046 0.298 0.072 0.956 
20  0.340 0.423 0.408 0.493 0.609 0.777 
21  0.362 0.414 0.429 0.409 0.444 0.456 

5.3.2 Application	to	System	Identification	

Even though it is not its natural application area, DPCA can also be used in the analysis 

of input/output systems, namely in SI contexts [27, 94, 102]. In this section, this 

application scenario will be addressed, mostly to consolidate the results presented above 

and to illustrate the added-value of properly estimating the dynamic structure of a DPCA 

model. This analysis will be based on the evaluation of the one-step-ahead prediction 

performance of the models derived from the application of the various lag selection 

methods under consideration. Input/output relationships are extracted from the singular 

vectors relative to the smallest singular values, as they represent the linear relations 

present in the extended data covariance matrix. 

The process under analysis is the Wood and Berry system described before (see Table 

5.4), from which 5000 observations were generated with a SNR of 10 dB. By application 

of the method proposed by Ku et al. (1995) [27] the number of lags estimated is 1. On the 
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other hand, with the proposed method, the estimated lag vector is  2 2 9 5 , as

referred in Section 5.2.2.1. With such lagged structures, the extended data matrices for 

DPCA using both approaches were constructed and their corresponding covariance 

matrices determined. Then, the singular value decomposition was applied to each 

covariance matrix, and the singular vectors relative to the two smallest singular values 

were used to estimate the intrinsic systems models. 

The models thus obtained from the application of the two lag selection approaches were 

then used to provide one-step-ahead predictions in independent data sets of 5000 

observations, repeated 1000 times. The prediction quality was assessed by the mean 

squared error (MSE). The results are presented in Table 5.7. For illustration proposes, the 

MSE for models with 2 and 9 lags are also presented.  

Table 5.7 Mean squared error of one-step-ahead predictions for the Wood and Berry system. 

Number of lags MSE 

1 67,8 ± 2,91 
2 311,22 ± 80,05 
9 1,89 ± 0,89 

1,06 ± 0,56 

From the results on Table 5.7, it can be easily concluded that the proposed method led to 

the lowest MSE, not only comparing with the results obtained with 1 lag (Ku et al. 

method) but also with the 9 lags model (maximum lag number). This indicates that an 

individual number of lags for each variable is indeed preferable to a lag number common 

to all variables, since a more accurate model can be obtained in this circumstances. 

5.4 Discussion	

In the previous sections, the increased accuracy of the proposed methodologies relatively 

to the benchmark method proposed by Ku et al. (1995) [27] has been demonstrated in 

several testing scenarios. The added value associated with these methods was also 

highlighted in practical situations where DPCA models are employed, namely in SPC and 

 2 2 9 5
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SI tasks. The proposed methodologies for defining the structure of DPCA models are 

theoretical-driven, but incorporate also results and improvements arising from an 

extensive analysis of possible alternatives to address the lag selection problem. This dose 

of empiricism is reflected in the adoption of solutions (such as the “ratio” restriction), 

which consistently led to better results.  

Other alternatives, even when grounded on a well-established theoretical background, 

failed to provide better results, or presented implementation problems. For instance, one 

approach was tested to select the maximum number of lags, that consisted in finding the 

point after which the number of new relationships are the expected ones assuming that all 

the relevant linear relations were extracted until the previous stage. In fact, if one is able 

to extract all the relationships with a certain number of lags, by adding one more lag than 

necessary for all variables, one should theoretically obtain all the previous extracted 

relationships, replicated one more time. This process will go on, as more lags are added. 

Therefore, by finding the onset of such regular behavior, one could establish the 

maximum number of lags necessary to describe the dynamic behavior of all the variables. 

However, such a methodology led to implementation problems that manifest in imprecise 

estimates of the onset of the replication process, which translate in even worse results 

than those provided by Method 1. As an example, consider the Wood and Berry system 

presented earlier. For this specific system, the correct number of lags is 9, and therefore it 

was expected that the number of linear relations (NLR) increased in a proportional way 

after this lag. Nevertheless, as can be seen in Figure 5.14, despite the near linear relation 

between the NLR and the number of lags, there is no significant difference in the regions 

before (I) and after (II) lag 9, making it impossible to identify it as the appropriate 

transition point. In this sense, the proposed methods proved to be empirically accurate 

and stable in most of the circumstances studied, providing a usable solution to this non-

trivial problem of model structure definition for DPCA. 
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Figure 5.14 Number of linear relations (NLR) obtained by parallel analysis in each lag for the Wood and Berry system. 

5.5 Conclusions	

In this chapter, two new methods for selecting the number of lags in DPCA models were 

proposed. These methods are based on the correspondence between the smallest singular 

values and near linear relationships present on collected data. 

The methods for selecting the maximum number of lags were compared with the 

procedure proposed by Ku et al. (1995) [27] and applied to a series of systems with 

randomly generated structures. From this analysis, it was concluded that the proposed 

method to select the number of lags led to a more accurate estimation of the true number 

of lags and was significantly better than the benchmark method, in a statistical sense (at a 

5% significance level). The same conclusion was drawn from the implementation of these 

methods to several models collected from the literature. It was also noted that, although 
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ratio, with no subsequent lower ratio values. This recommendation should be considered 

in particular for the first stages of the procedure, as discussed in the text. 

Finally, it was shown that the use of the proposed methods to select the number of lags, 

ultimately leads to superior performances in other activities based on DPCA models, such 

as statistical process control and system identification.  





95 

6 Multivariate	 Statistical	 Process	 Control	 for	

Large	Scale	Processes	

Since its introduction in the early 1930’s by W.A. Shewhart, statistical process control 

(SPC) was adopted by the industry as a useful and valuable tool for properly handling the 

natural or common cause variability in the daily operations and to quickly detect process 

anomalies requiring intervention [40]. With the continuous increasing demand for 

improved products and processes over the years, new SPC procedures were developed in 

order to meet the needs for higher detection sensitivities and to cope with the new data 

structures that become available (spectra, images, hyphenated instruments measurements, 

etc.) as well as with the more complex nature of industrial processes and systems. 

However, these SPC methodologies rely upon the conventional i.i.d. assumption for 

process measurements, and therefore are of limited application scope in most current 

industrial processes, where the intrinsic process dynamics (driven by mass, energy and 

momentum conservation, as well as by the action of control systems under external 

perturbations), associated with high sampling rates (very easy to achieve with the current 

state of instrumentation technology), lead, very frequently, to strong violations of such 

hypothesis. 

To deal with this limitation, a common solution involves the development of a dynamic 

model derived for the process under analysis, using normal operation data. This model is 

then employed to predict the current value of the process (say, at time k), using data 

acquired until the previous sampling time (time –1k ). The difference between the 

estimate and measured values is finally computed at time k, which, if the estimated model 

is appropriate, should be approximately normal (under Gaussian assumptions) and 

independently distributed, with zero mean and constant variance. Several explicit model 

structures can be used for such propose, with the aim of removing the autocorrelation 

trend, such as: time series models, namely ARIMA [91, 92]; state-space models [65, 109, 

110]; and dynamic latent variable models, such as PCA [27] or PLS [111]. In spite of 

requiring an additional stage of modeling, for which the necessary skills must be present 

in practice in the development team, this approach tends to be preferentially used. 
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Another possible approach is based on transforming the time series of the original 

variables into other(s) sequence(s), presenting much less autocorrelation than the original 

one, and therefore easily to be monitored by the methodologies based on the i.i.d. 

assumption. A family of transforms with the ability to approximately diagonalize the 

autocorrelation function for a large class of signals, is the wavelet transform family. The 

monitoring procedures thus obtained, fall under the heading of multiscale statistical 

process control [5, 8, 9], and avoid extensive time series modeling, leading to good results 

for a large class of process upsets and perturbation magnitudes, given their adaptive 

nature. However, this approach usually requires a considerable programming overhead 

and a significant developing time. 

When addressing the problem of monitoring large scale processes with autocorrelation, 

the usual adoption of a preliminary stage of classical time series modeling to generate 

monitoring residuals soon is discarded, as it is very hard, if possible at all, to estimate a 

VARIMA model even for low/moderate number of variables (such as 10). The solution 

usually proposed relies on adopting latent variable frameworks, which are well known for 

their ability to cope with a large number of correlated variables. These frameworks are 

then modified in order to incorporate the ability to also describe the autocorrelation 

structure of collected data. This is the basic reasoning underlying the dynamic principal 

component analysis methodology (DPCA), proposed by Ku et al. (1995) [27] in the scope 

of process monitoring, which has been adopted as the standard technique for handling 

large scale processes with autocorrelation. 

However, even though DPCA constitutes an improved approach for conducting MSPC in 

large scale dynamic systems when compared to the PCA-based methodology [15-17], one 

can easily verify that the usual monitoring statistics, T2 and Q (or SPE – squared 

prediction error), as well as the individual scores, still present significant amounts of 

autocorrelation. Thus, such statistics still cannot be properly monitored with control 

charts based on i.i.d. assumptions, in particular when the amount of residual 

autocorrelation is relatively high.  

The failure to generate decorrelated statistics in the original DPCA approach has a direct 

impact in the detection ability of the technique, as will be demonstrated in this chapter. 

This originated the development of other approaches, more complex and involved, for 

handling the same monitoring problem. Examples of such methodologies, include the use 
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of state-space models [65, 95, 109] and the combination of state-space or multivariate 

time series modeling frameworks with latent variable models [110, 112, 113]. The 

relationship of these methodologies with the present work is addressed in the Discussion 

section. 

In this chapter, several approaches related to DPCA are proposed and analyzed, some of 

them being new and with the ability to generate statistics with very low levels of 

autocorrelation. Their monitoring performances were compared with those from a variety 

of current statistics, under different testing scenarios. Among the approaches proposed, it 

has been found out that the statistics derived from DPCA based on Decorrelated 

Residuals (DPCA-DR) consistently lead to superior detection performances, having also 

the advantages of being robust, easy to compute, structurally simpler and more consistent, 

as the prediction task, necessary to remove the dynamic effects from data, instead of 

being carried out with resource to parallel modeling techniques, such as time series or 

state-space models, is entirely accomplished within the same estimated DPCA model. 

6.1 Methods	

In this section, the monitoring procedures and the corresponding statistics for handling 

situations where the dynamic behavior of the process variables can no longer be 

overlooked, are presented. These statistics are introduced, by the first time, according to a 

general presentation framework that incorporates new monitoring approaches for large 

scale systems with autocorrelation, together with the current ones. By using such a 

presentation scheme, the overall picture of the spectrum of approaches for dealing with 

this class of problems can be transmitted more efficiently. The monitoring statistics are 

based on a combination of approaches able to cope with the high dimensionality and 

collinearity of process data (correlation), with others that take into account their dynamic 

features (autocorrelation). In particular, they encompass a subset of the following 

methodologies: PCA, DPCA, PLS, ARMA models and missing data imputation 

methodologies. 

Despite the variability of methodologies referred in this section, they inherit some 

common features from the static approach already in use. In particular, they share the 

same latent variable backbone to cope with the correlation structure of data, leading to a 
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decomposition of the whole data variability into two orthogonal parts, namely the part 

captured and described by the model (followed by the Hotelling’s 2T  of the scores) and 

the one not captured by it (residual variability, monitored with the SPE or Q statistic). As 

the several methodologies under consideration encompass multiple combinations of latent 

variables models, lag selection methods, prediction approaches and monitoring subspaces, 

it becomes necessary to designate each monitoring statistics in an unambiguous, concise 

and systematic way. To do so, a compound code was developed for defining which 

alternative for these different dimensions is actually being considered in a given 

monitoring statistic. More specifically, the dimensions to specify are: (i) latent variable 

model adopted (PCA, DPCA, DPLS) and, when required, the method used to select time-

shifted variables (Table 6.1); (ii) the prediction method used to cope with the 

autocorrelation structure of data; and the (iii) subspace the statistic will monitor (Table 

6.2). The complete structure of this coding system will be presented in the end of this 

section. The several alternatives considered in each dimension are as follows. 

Code dimension: latent variable model. The latent variable model structures considered in 

this study are PCA and DPCA as well as dynamic PLS (DPLS). Regarding the DPCA 

approach, two different lag selection (LS) methodologies were adopted for defining its 

lagged structure, i.e., the number of time-shifted replicates for each variable (Table 6.1). 

The LS1 method, is the one proposed by Ku et al. (1995) [27] and is based on the number 

of linear relationships required to properly describe the system (see Section 5.1.1 for 

more details). The LS2 method, estimates the number of lags for each variable based on a 

succession of singular value decomposition problems and subsequent analyses of the 

results following a set of rules, and is fully described in Section 5.1.3. 

Table 6.1 Definitions of the codes used to identify the lag selection method adopted in DPCA. 

Designation Lag selection method 
LS1 Proposed by Ku et al. (1995) [27] 
LS2 New method proposed in Section 5.1.3 

Code dimension: prediction method. In this chapter, “observed scores” are referred as the 

scores obtained directly from observed data (using a completely defined latent variable 

model) through a direct projection operation, and not estimated by some other mean, such 
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as with resource to a time series model (in the latent variable space) or using a missing 

data imputation technique. In case the scores are estimated by one of such approaches, 

they are called “estimated scores”, and the estimation methodology is specified by this 

code dimension. The estimated scores ( t̂ ) can either be obtained through the use of a time 

series model (autoregressive), or by application of the conditional estimation method 

presented in Section 2.2. For the cases where an autoregressive model (AR) of order p is 

employed, the predicted score for the ith PC at current time j, ( ,î jt ), is given by (see 

Section 2.3.1), 

, ,1 , 1 ,2 , 2 , ,î j i i i j i i j i p i j pt a t a t a t        (6.1)

The appropriate AR model was fitted with resource to the Matlab algorithm ARfit 

developed by Schneider and Neumaier (2001) [114]. The AR model order was optimally 

selected using the Schwarz’s Bayesian Criterion as the default method. In case this is the 

prediction method adopted for estimating scores, the code “TS” (Time Series), will 

appear in the designation of the statistic. For the situations where the conditional 

estimation is used, the respective code is “MD” (from its origin, Missing Data Imputation 

theory). The corresponding statistics will also be called DPCA-DR, as the residuals 

involved, ˆ( )t - t  and ˆ( )x Pt , will lead to statistics with very low levels of serial 

correlation (DR stands for Decorrelated Residuals). A code “0” indicates that no 

predicted scores are used in the statistic. 

Code dimension: monitored subspace. Table 6.2, refers the codes used to refer to the 

different situations considered, regarding the complementary partition of data variability. 

In this table, “reconstructed data”, means the reconstruction to the original variables 

domain, of the variable values corresponding to the scores in the latent variables space.  
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Table 6.2 Codes used to identify the part of data variability under monitoring with a given statistic (S-latent variable/R-
residual), as well as the specific type of statistic used (1,2,…). 

Latent variables statistics (S) 
(PCA subspace) 

Residual statistics (R) 
(Original variables’ subspace) 

Code Statistic type Code Statistic type 

S1 T2 for observed scores. R1 
Q (or SPE) obtained from 

reconstructed data using observed 
scores. 

S2 
T2 for observed and estimated 

scores. 
R2 

T2 for the residuals of 
reconstructed data obtained with 

the estimated scores. 

S3 
T2 for the difference between the 
observed and the estimated scores 

(residual scores). 

A more complete description of the statistics used in this study is now provided. The S1 

and R1 statistics result from the direct application of the Hotelling’s 2T  and Q  statistics 

formulas from PCA, respectively. They are defined by: 

T 1
1S  tt S t (6.2)

   T

1 ˆ ˆR   x x x x (6.3)

where, following the usual definition of these statistics, 1pt  is the vector of scores, tS  is 

the sample covariance matrix of the scores and x̂  is the reconstructed data using the 

observed scores. When the MSPC monitoring methodologies make use of a prediction 

framework, such as the one based on a time series model (TS) or an estimation 

methodology for current data (MD), one can also obtain the one-step-ahead estimates for 

the current scores, 1
ˆ

pt  (i.e., the values of the scores at the current time, using information 

from the past, until the last sampling time). Once available, these estimates can be treated 

in different ways. One approach is to incorporate such predicted scores and the observed 

ones, in a Hotelling’s 2T  statistic, as follows (S2): 

T

1
ˆ2 ,ˆ ˆ

S    
    
   

t t

t t
S

t t
(6.4)
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where ˆ,t t
S  is the sample covariance matrix of the combined vector of scores. This 

augmented vector of observed ( t ) and estimated ( t̂ ) scores, allows for accommodating 

some structured variability that the autoregressive models were not able to capture.  

The R2 and S3 statistics are similar to S1 and R1 for the observed scores, but now 

involving their one-step-ahead prediction counterparts ( t̂ ), and are given by: 

   T
1
ˆ3

ˆ ˆS 
t-t

t - t S t - t (6.5)

   T
1

2
ˆ ˆR   rx Pt S x Pt (6.6)

where ˆt-t
S  is the sample covariance matrix for the difference between the observed and 

estimated scores ( ˆt t ) and rS  is the sample covariance matrix of the residuals, in the 

original variables space, obtained from the reconstructed data using the estimated scores 

ˆˆ( )x Pt  and the actual measurements ( x ). 

Each one of these statistics, is completely specified by the following compound code: 

[Latent variable method]-[Prediction Method]-[Type of Statistic], where the field: 

“Latent variable method” may contain PCA, DPCA-LS1, DPCA-LS2 or PLS, in it (i.e., 

for the case of DPCA, one also specifies the lag selection methodology used, LS1 or 

LS2); “Prediction Method” including TS, MD or 0; and “Type of Statistic”, referring to 

the specific type of statistics used (see Table 6.2; in the case of PLS, the statistic R1 can 

be applied over the original domain of the X-variables or Y-variables, being designated 

by R1x and R1y, respectively). For instance, the statistic with designation DPCA-LS2-

MD-S3, is computed according to the formula for S3 (it makes use of the scores estimated 

by missing data, MD) and is based on a DPCA model, where the number of lags was 

estimated by the LS2 method. Thus, the DPCA-DR statistics are all those sharing the 

following code backbone: DPCA-xx-MD-xx. 

A resume of all the studied statistics is presented in Table 6.3. In this table it is also 

indicated the original reference for the current statistics, while the new contributions from 

this thesis’ research, are marked with: “New”. For the statistics that are not entirely new, 

as they are based on concepts already cited in literature, the respective reference field was 

left in blank. 
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Table 6.3 Compound coding scheme used to designate all the monitoring statistics studied in this work. 

Class of 
Latent 

Variable 
Model 

With / 
Without time-

shifted 
variables 

Lag 
selection 
method 

Prediction 
model 

Designation of the 
Statistic 

Equation Reference 

PCA 

Without -

- 
PCA-0-S1 (6.2) [16] 

PCA-0-R1 (6.3) [15] 

Time 
series 

PCA-TS-S2 (6.4)* New 

PCA-TS-S3 (6.5)* - 

PCA-TS-R2 (6.6)* New 

With 

Ku et al. 
(LS1) 

- 
DPCA-LS1-0-S1 (6.2) [27] 

DPCA-LS1-0-R1 (6.3) [27] 

Time 
series 

DPCA-LS1-TS-S2 (6.4)* New 

DPCA-LS1-TS-S3 (6.5)* - 

DPCA-LS1-TS-R2 (6.6)* New 

Missing 
data 

DPCA-LS1-MD-S3 (6.5)† New 

DPCA-LS1-MD-R2 (6.6)† New 

Proposed 
method 
(LS2) 

- 
DPCA-LS2-0-S1 (6.2) - 

DPCA-LS2-0-R1 (6.3) - 

Time 
series 

DPCA-LS2-TS-S2 (6.4)* New 

DPCA-LS2-TS-S3 (6.5)* - 

DPCA-LS2-TS-R2 (6.6)* New 

Missing 
data 

DPCA-LS2-MD-S3 (6.5)† New 

DPCA-LS2-MD-R2 (6.6)† New 

PLS With 
Genetic 

Algorithms 
(GA)‡ 

- 

DPLS-GA-S1 (6.2) - 

DPLS-GA-R1x (6.3) - 

DPLS-GA-R1y (6.3) - 

* The estimated scores ( t̂ ) are obtained through a time series model, Equation (6.1).
† The estimated scores ( t̂ ) are obtained by conditional estimation, Equation (2.14). 
‡ The time-sifted variables to be included on the X-block were determined by application of a genetic algorithm on an 
extended data matrix. 

6.2 Performance	Assessment	of	the	Monitoring	Statistics	

In this section, the results of applying the monitoring statistics summarized in Table 6.3 

are presented for several simulated scenarios, where faults of different types and 

magnitudes were introduced in order to accurately measure and compare their detection 

performance. The systems studied include the Wood and Berry column, the multivariate 

AR(l) process presented by Ku et al. (1995) [27], a large scale process with 100 variables 

and a continuous stirred-tank reactor (CSTR) system with a heating jacket, under 

feedback control. 
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The adoption of simulated examples with different levels of complexity is justified by the 

need to have, at this stage, precise measures for comparing all the approaches considered, 

for which is required complete control over the exact moments of occurrence of the 

faults, their duration, location and main characteristics (namely magnitude). Only under 

such conditions can they be comparatively assessed in a rigorous way. 

6.2.1 Scenario	1:	Wood	and	Berry	Column		

In this scenario, a model for the approximated dynamical behavior of a binary distillation 

column separating methanol from water, is adopted [115]. In this dynamic model, the 

methanol weight fraction in the distillate ( Dx ) and in the reboiler ( Bx ) (output variables), 

are expressed as a function of the reflux ( RF ) and reboiler’s steam flow rate ( SF ) (input 

variables). It consists of a linear dynamic model, whose transfer function in the Laplace 

domain is given by Equation (6.7):  

3

7 3

12.8 18.9
( )( ) 16.7 1 21 1
( )( ) 6.6 19.4

10.9 1 14.4 1

s s

RD

s s
SB

e e
F sx s s s
F sx s e e

s s

 

 

 
               
   

(6.7)

During the simulations, RF  and SF  are assumedly normally distributed with zero mean 

and unit variance. Dx  and Bx  are computed according to Equation (6.7), with a random 

disturbance superimposed, given by the following transfer function, related to the feed 

flow rate and feed composition [113]:  

8.1 7.7

, 1

3.4 9.2
, 2

3.8 0.22
( ) ( )14.9 1 21 1
( ) ( )4.9 0.14

13.2 1 12.1 1

s s

D d

s s
B d

e e
x s d ss s
x s d se e

s s

 

 

 
             
   

(6.8)

where 1d  and 2d  follow a normal distribution with zero mean and their variance is set so 

that the variability added corresponds to a signal-to-noise ratio of approximately 10 dB 

(see Equation (5.8)). 
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The observation measurement vector, is defined as  T

D B R Sx x F Fx . In order to

construct the latent variables models, 3000 observations were collected under normal 

operation conditions ( refX ). The data matrix refX  was then used to estimate the number 

of lags required for the construction of the DPCA model. From this analysis the number 

of lags obtained through the use of the Ku et al. (1995) [27] approach (LS1) was 2 for all 

variables. On the other hand, the LS2 method led to a lag structure of  2 2 9 4l  ,

that is, 2 additional time-shifted replicates for Dx  and Bx , 9 for RF  and 4 lags for SF . It 

should be noted that the continuous-time model presented in Equation (6.7), when 

sampled every minute, gives rise to the following discrete-time difference equations 

[102]:  

, , 1 , 2 , 2 1 , 3

, 4 , 5

, , 1 , 2 , 8 , 9

, 4 , 5

1.985 0.898 0.744 0.709

0.879 0.828

184 0.851 0.579 0.54

1.302 1.187

D i D i D i R i R i

S i S i

B i B i B i R i R i

S i S i

x x x F u F

F F

x x x F F

F F

   

 

   

 

   
  
    
  

(6.9)

From these equations, one can verify that the actual lag structure is indeed, 

 2 2 9 5l  . These number of lags, being regarded as the “true” ones, are an

evidence of the superior lag estimation accuracy of the LS2 method. 

The system was then subjected to a set of step perturbations in the sensor measurements, 

and the corresponding average run length (ARL) was determined for each perturbation. In 

this process, the upper control limits (UCL) for all statistics were previously adjusted, by 

trial and error, in order to enforce an equal in-control average run length ( 0ARL ) of 370 

for all of them. This is a necessary procedure for enabling a sound comparison of all 

statistics, as it assures that they all present the same in-control behavior, and therefore, the 

differences in fault detection performance only arise from their intrinsic characteristics 

and not from an arbitrary specification of the detection thresholds. 

For each perturbation studied, 3000 data sets were generated, leading to the computation 

of 3000 run lengths, from which the ARLs were computed for all statistics. The ARL 

values (along with their associated 95% confidence intervals, obtain through bootstrap), 

for a step perturbation in the mean of the first sensor, with magnitude k times the 

variable’s standard deviation, are presented in Figure 6.1. From analysis of Figure 6.1 it 
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can be seen that, in this case, there is no significant difference between the static and the 

dynamic versions of PCA (Figure 6.1 (a)), even with the use of the LS2 method to 

estimate the number of lags. In fact, the DPCA-LS1-0-R1 (that uses the Ku et al. (1995) 

[27] approach) gives better results than DPCA-LS2-0-R1. However, even with DPCA, the 

resulting statistics still present some autocorrelation (see Figure 6.2). Figure 6.1 (b) 

displays the results obtained with methodologies that incorporate an implicit prediction 

methodology, namely through the conditional estimation approach (MD) (for comparison 

purposes, the results for the best monitoring statistic found in Figure 6.1 (a) are also 

presented). The results obtained clearly show that the application of such an approach, not 

only reduces the statistics autocorrelation (Figure 6.3), but also improves the control chart 

performance (Figure 6.1 (b)). 

In Figure 6.4, a performance comparison index (N) based on the computation of the area 

under the ARL curves (such as those shown in Figure 6.1), is presented. This index is 

normalized so that it falls in the range  0,1 , where 1 represents the best performance

(smallest area under the ARL curve). In this analysis, the missing data based statistics, 

especially DPCA-LS2-MD-R2, presents the best performance, and lead to the weakest 

final autocorrelation. 
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(a) 

(b) 
Figure 6.1 ARL for the tested methodologies used to monitor the Wood and Berry distillation column subject to 
deviations in the first sensor measurement. In (a) no predictive methodologies are employed, whereas in (b) it is 
presented the results for the case where the approaches based on MD are adopted. 
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(a) (b)
Figure 6.2 Sample autocorrelation function for the (a) DPCA-LS1-0-S1 and (b) DPCA-LS1-0-R1 statistics. 

(a) (b)
Figure 6.3 Sample autocorrelation function for the (a) DPCA-LS2-MD-S3 and (b) DPCA-LS2-MD-R2 statistics. 

Figure 6.4 Comparison of the methods performance in the Wood and Berry column: values of the performance index 
(N) obtained when the system was subject to deviations in the first sensor measurement. Bars’ heights correspond to the 
associated mean values. 
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6.2.2 Scenario	2:	Multivariate	AR(1)	Process	

The following multivariate AR(1) process was presented by Ku et al. (1995) [27] to 

demonstrate the application of DPCA on multivariate statistical process control. 

     

     

0.118 0.191 1 2
1 1 ,

0.847 0.264 3 4
k k k

k k k

   
         
 

z z u

y z v

(6.10)

where u is the correlated input: 

     
0.811 0.226 0.193 0.689

1 1
0.477 0.415 0.320 0.749

k k k
   

          
u u w  (6.11) 

The input w is a random noise sequence with zero mean and variance 1. The output y is 

equal to z plus another random noise component, v(k), with zero mean and variance 0.1. 

The observation measurement vector is defined as 
TT T   x y u .

As in the previous example, the reference data was composed by 3000 observations and 

was used to estimate the reference models and to estimate the number of lags according to 

the two considered methodologies. In this case, both lag selection methods gave an 

estimation of 1 lag for all variables, and therefore there are no differences between 

monitoring statistics that only differ on LS1 and LS2. 

To assess the monitoring statistics performance, the system was subjected to changes on 

the mean of w, from which 3000 observations were collected for different magnitudes of 

the change. Each one of these changes was repeated 3000 times. The corresponding ARL 

values for the more relevant monitoring statistics and their 95% confidence limits are 

presented in Figure 6.5. 

From Figure 6.5 it is noticeable that the proposed missing data based monitoring statistics 

present a superior performance, namely DPCA-LS2-MD-R2, which also presents no 

residual autocorrelation, contrary to what happens with the other monitoring approaches. 
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Figure 6.5 ARL for the tested methodologies used to monitor the multivariate AR(1) process subject to step 
perturbations in the mean of w, with magnitude k times the standard deviation of w. 

6.2.3 Scenario	3:	Large	Scale	Process	

To assess the ability of the proposed methodologies to cope with a large number of 

variables, a megavariate process with the following latent variable model structure was 

simulated: 

T X TP E (6.12)

where X is an ( n m ) matrix of measured variables, T is a ( n p ) matrix of latent 

variables, P is an ( m p ) matrix of orthogonal loadings and E is an ( n m ) matrix of 

errors. In this study, the number of measured variables (m) was set to 100, with 5 latent 

variables (p) following independent AR(1) processes with autoregression coefficients of 

0.90. The P matrix was randomly generated, but forced to have orthogonal columns. 

As a result of the application of the LS1 lag selection methods, 0 lags were attributed to 

all variables, which is clearly an underestimation of the system’s dynamics. Furthermore, 

this situation corresponds to the standard PCA procedure and therefore, in this case, it 
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was decided to use 1 lag for all variables in order to have a more diversified set of 

monitoring methodologies to compare. In contrast, when the LS2 lag selection method 

was applied, it selected 0 lags for 30 variables, 1 lag for 32 variables and 2 lags for the 

remaining 38 variables. After estimating the reference models from NOC data, the control 

limits for the monitoring statistics were adjusted to the same in-control ARL0 of 370. The 

system was then subjected to step deviations of different magnitudes on one of the 

variables of the X matrix, emulating for instance a sensor failure. The corresponding ARL 

for each perturbation was computed based on 3000 replications (leading to 3000 run 

lengths) which are represented along with the associated 95% confidence limits obtained 

by bootstrapping in Figure 6.6 for a selected set of the most relevant monitoring statistics 

in this case study. 

Figure 6.6 ARL for the tested methodologies used to monitor the large scale process subject to a step perturbation in 
one of the X variables, with magnitude k times the standard deviation of the corresponding variable.  

From Figure 6.6, it is clear that, in general, the monitoring methodologies are capable to 
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these procedures present a considerably high autocorrelation as can be seen in Figures 6.7 

to 6.9. The effects of autocorrelation are more evident on the monitoring statistics for the 

scores subspace, and in a less extent on the DPCA-LS1-0-R1 statistic, applied on the 

residuals subspace, which implies that its underlying monitoring latent variable models do 

not fully describe the system structure. It is also noticeable that the residual monitoring 

statistic of the static PCA model (Figure 6.7) has no autocorrelation, which explains its 

good detection capabilities in this case. Yet, the PCA monitoring statistic for the scores 

subspace is highly autocorrelated. On the other hand, when the decorrelated residuals 

approach is considered (DPCA-LS2-MD-S3 and DPCA-LS2-MD-R3) the monitoring 

statistics’ autocorrelation remains low at all times (Figure 6.9) without compromising the 

detection ability. 

(a) (b)
Figure 6.7 Sample autocorrelation function for the (a) PCA-0-S1 and (b) PCA-0-R1 statistics. 
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(a) (b)
Figure 6.8 Sample autocorrelation function for the (a) DPCA-LS1-0-S1 and (b) DPCA-LS1-0-R1 statistics. 

(a) (b)
Figure 6.9 Sample autocorrelation function for the (a) DPCA-LS2-MD-S3 and (b) DPCA-LS2-MD-R2 statistics. 
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preferable, since it does not require the use of a different model structure besides DPCA, 

namely a different time series model for each score. Finally, even though DPCA-LS2-

MD-R3 is, in this particular case study, the third best monitoring statistic, its performance 

is very close to the best one, as can be seen in Figure 6.6, and has the advantage of using 

a more consistent procedure with low autocorrelation for both monitoring statistics (see 

Figure 6.9), which provides more robustness and simplicity in practice. 

Figure 6.10 Comparison of the methods’ performance in the large scale system: values of the performance index (N) 
obtained when the system was subjected to a step perturbations in one of the X variables. Bars’ heights correspond to 
the associated mean values. 
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system are the feed stream concentration and temperature, and the heating fluid inlet 

temperature. The system outputs are the CSTR level, concentrations and temperature, and 

the heating fluid outlet temperature. These 3 input and 4 output variables were considered 

to form the set of measured variables. 

The method’s parameters were determined from a reference data set composed of 3000 

observations, leading to 2 lags for all the mentioned variables through the LS1 method. 
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On the other hand, the LS2 method only selected 3 lags for the reactor temperature and 4 

lags for the heating fluid outlet temperature. 

The system was then subjected to perturbations on the discharge coefficient and heat 

transfer coefficient, which inherently change the systems dynamics and therefore affect 

several variables simultaneously. Each perturbation was repeated 3000 times and in each 

run 3000 observations were recorded. 

In this case study most of the monitoring statistics presented a similar performance, as 

can be seen in Figures 6.11 and 6.12 where the results regarding the performance 

comparison index (N) are presented. Nevertheless, the inclusion of MD techniques 

eliminated the autocorrelation when applied with LS1, which is still outperformed by 

DPCA-LS2-MD-R2. 

Figure 6.11 Comparison of the methods’ performance in the CSTR system: values of the performance index (N) 
obtained when the system was subjected to changes on the discharge coefficient. Bars’ heights correspond to the 
associated mean values. 
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Figure 6.12 Comparison of the methods’ performance in the CSTR system: values of the performance index (N) 
obtained when the system was subjected to changes on the heat transfer coefficient. Bars’ heights correspond to the 
associated mean values. 

6.2.5 Discussion	

Analyzing the results presented in the previous section, one can verify that the DPCA-

LS2-MD-R2 statistic tends to present a consistently superior performance over the 

remaining methodologies, as can be observed in Figure 6.13, where the global results are 

summarized. 

Figure 6.13 Comparison of the methods’ performance in all systems considered in this study: box-plots of the 
performance index (N) obtained in all simulations performed. Bars’ heights correspond to the associated mean values. 
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The DPCA-LS2-MD-R2 statistic was one of the new statistics introduced in this chapter 

and is a representative of a new class of monitoring schemes that make use of data 

imputation methods to predict the current scores of a DPCA model, called DPCA-DR. 

These results indicate that DPCA-DR provide a competitive alternative to the current 

MSPC methodologies, as its monitoring statistics usually present better detection 

performances and lower autocorrelation levels. However, they also depend on a suitable 

method to estimate the number of lags for the DPCA-DR model. This issue was also 

addressed in this thesis, where two methods were adopted to estimate the number of lags 

and it was found that the new LS2 method was clearly superior to LS1.  

Given these results, it was found pertinent to highlight the two most promising 

monitoring statistics based on DPCA with decorrelated residuals obtained by missing data 

imputation (DPCA-LS2-MD-S3 and DPCA-LS2-MD-R2). 

For monitoring the latent variables subspace, DPCA-LS2-MD-S3, is renamed as 2
PREVT

and is computed as, 

   T
2 1

ˆ
ˆ ˆ

PREVT 
t-t

t - t S t - t (6.13)

where ˆt-t
S  is the sample covariance matrix of the difference between the observed and 

estimated scores, ( ˆt - t ). Likewise, the complementary monitoring statistic for the 

residuals subspace, DPCA-LS2-MD-R2, becomes 2
REST  and is given by, 

   T
2 T 1 1ˆ ˆ

REST     r rr S r x Pt S x Pt (6.14)

where rS  is the sample covariance matrix of the residuals in the reconstructed data, 

obtained with the estimated scores ( ˆ r x Pt ). These two statistics are then considered 

as the core of the DPCA-DR procedure and their performance will be further assessed in 

the following section for the Tennessee Eastman case study. 

Looking to its construction, the DPCA-DR approach implicitly conducts a multivariate 

time series modeling and prediction step in order to compute the residuals in the scores 

and variables spaces, but in a fully integrated way on a conventional DPCA framework, 

avoiding the usual two-stage modeling/projection sequence. Up until now, the 

applications of the DPCA model have not considered the computation of serial 
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decorrelated residuals [27, 95, 110, 116], which has been limiting its performance, and 

therefore the application of this approach in practice. For instance, in the work of Russell 

et al. (2000) [95] DPCA was implemented as suggested by Ku et al. (1995) [27] and 

therefore no decorrelated residuals were computed [95]. This justifies the similar 

detection performances obtained with the PCA and DPCA statistics in this work, as well 

as the inferior sensitivity of DPCA when compared with CVA, which is also a linear 

modeling approach for estimating a state-space model.  

A possible limitation of the DPCA-DR approach is that it is based on the conditional 

mean replacement solution to the missing data imputation problem, which faces problems 

when the dispersion matrix of the past observations becomes ill-conditioned. In such case, 

other missing data techniques, such as projection to model plane [21] or trimmed scores 

regression (TSR) [22] can be employed. For more detail in this subject, please refer to 

Section 2.2. 

6.3 Case	Study:	Tennessee	Eastman	Benchmark	Process	

To further test and compare the monitoring features and performance of the proposed 

DPCA-DR methodology, an application scenario which has been widely used in process 

monitoring and fault detection studies was selected: the Tennessee Eastman benchmark 

process. This case study not only provides an additional challenging testing environment 

for the specific comparison study carried out in this chapter, but also enables and 

simplifies the extension of the comparison scope to other methods tested in the same 

system, such as [27, 95, 117-119]. 

As referred before in Section 5.3.1, a model of this process was developed by Downs and 

Vogel (1993) [107], consisting of five major transformation units, which are a reactor, a 

condenser, a compressor, a separator, and a stripper, as shown in Figure 6.14. From this 

model, 41 measurements (XMEAS) are generated along with 12 manipulated (XMV) 

variables. A total of 21 different process upsets are simulated for testing the detection 

ability of the monitoring methods, as presented in Table 6.4 [95, 120]. In the current 

study the analysis was conducted with the data set used by Russell et al. (2000) [108], 

where the Tennessee Eastman process is controlled with the approach suggested by 

Lyman and Georgakis (1995) [120]. Each data set contains 960 observations collected at 
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a sample interval of 3 min and the faults were introduced 8 hours after the simulations 

start. All the manipulated and measurement variables, except the agitation speed of the 

reactor’s stirrer (which is always constant), were collected, giving a total of 52 variables. 

A data set with no faults, representing normal operation conditions was used to estimate 

the reference PCA, DPCA and DPCA-DR models. The number of principal components 

for PCA and DPCA was determined by parallel analysis and the number of lags was 

selected by the approach proposed by Ku et al. (1995) [27]. Using these methods, a PCA 

model with 17 PCs and a DPCA model with 3 lags and 29 PCs were constructed. These 

results are in good accordance with those obtained by Russell et al. (2000) [95]. For 

selecting the number of lags for the DPCA model, the algorithm proposed in Section 

5.1.3 was used to obtain the number of lags for each variable lag structure as presented in 

Table 5.5, which led to a model with 69 PCs. 

Figure 6.14 The Tennessee Eastman process flow sheet. 
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Table 6.4 Process faults for the Tennessee Eastman process simulator. 

Variable Description Type 
IDV(1) A/C feed ratio, B composition constant(Stream 4) Step 
IDV(2) B composition, A/C ratio constant (Stream 4) Step 
IDV(3) D feed temperature (Stream 2) Step 
IDV(4) Reactor cooling water inlet temperature Step 
IDV(5) Condenser cooling water inlet temperature Step 
IDV(6) A feed loss (Stream 1) Step 
IDV(7) C header pressure loss - reduced availability (Stream 4) Step 
IDV(8) A, B, C feed composition (Stream 4) Random 

variation 
IDV(9) D feed temperature (Stream 2) Random 

variation 

IDV(10) C feed temperature (Stream 4) Random 
variation 

IDV(11) Reactor cooling water inlet temperature Random 
variation 

IDV(12) Condenser cooling water inlet temperature Random 
variation 

IDV(13) Reaction kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking 
IDV(15) Condenser cooling water valve Sticking 
IDV(16) Unknown 
IDV(17) Unknown 
IDV(18) Unknown 
IDV(19) Unknown 
IDV(20) Unknown 
IDV(21) The valve for Stream 4 was fixed at the steady state position Constant 

position 

An important point to consider before proceeding with the comparison study is that the 

direct use of the theoretical significance levels for establishing the statistical control limits 

for the various methods may lead to widely different observed false alarm rates, which 

distorts any comparison on the methods detection performances. This undesirable effect 

can be removed by manipulating the theoretical significance level of the control limits in 

such a way that the effectively observed performance for all methods under normal 

operations conditions (i.e., their false alarm rate), becomes equal. Therefore, the UCL for 

the various methods were set to a false alarm rate of 1% under normal operation 

conditions, by trial and error, on a second data set with no faults. With this preliminary 

but important procedure concluded, the fault detection rates for all the methods regarding 

each fault were finally determined. A summary of the results obtained is presented in 

Table 6.5. 
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Table 6.5 Fault detection rates for the various methods under study, regarding each faulty scenario (a description of 
each fault can be found in Table 6.4). The top scores are signaled in bold. 

Fault 
PCA DPCA DPCA-DR

T2 Q T2 Q 2
PREVT 2

REST

1 0.991 0.995 0.990 0.994 0.996 0.998 
2 0.985 0.984 0.984 0.981 0.985 0.983 
3 0.036 0.006 0.035 0.010 0.021 0.016 
4 0.218 0.980 0.165 0.999 0.998 0.999 
5 0.257 0.217 0.293 0.228 0.999 0.999 
6 0.989 0.999 0.989 0.999 0.999 0.999 
7 0.999 0.999 0.986 0.999 0.999 0.999 
8 0.974 0.968 0.973 0.974 0.985 0.981 
9 0.034 0.010 0.030 0.002 0.020 0.010 
10 0.367 0.154 0.439 0.172 0.956 0.933 
11 0.414 0.638 0.340 0.829 0.965 0.865 
12 0.985 0.925 0.990 0.964 0.998 0.998 
13 0.943 0.950 0.943 0.950 0.958 0.956 
14 0.988 0.999 0.990 0.999 0.998 0.999 
15 0.035 0.007 0.059 0.009 0.385 0.047 
16 0.174 0.137 0.217 0.145 0.976 0.945 
17 0.787 0.905 0.790 0.953 0.976 0.975 
18 0.893 0.901 0.890 0.898 0.905 0.900 
19 0.115 0.059 0.046 0.298 0.971 0.843 
20 0.340 0.423 0.408 0.493 0.908 0.916 
21 0.362 0.414 0.429 0.409 0.539 0.577 

From the analysis of Table 6.5, it is possible to verify that the DPCA-DR monitoring 

statistics tend to present highest fault detection rates. In fact, 2
PREVT  was the best statistic 

in 14 out of 21 faults, and 2
REST  in 9 of them. Globally, they were capable to detect 19 of 

21 faults, failing only in the detection of faults number 3 and 9, where all methods present 

problems. Fault number 15 is another example of a fault difficult to detect, but where the 

statistic 2
PREVT  achieved the best score. The lower capability for detecting these three 

specific faults was expected, as other methods reported in the literature (e.g. PCA, DPCA 

and CVA) also fail to detect them [95]. 

In order to better illustrate the monitoring behavior of the methods under analysis, the 

control charts for some of the process faults are presented in Figures 6.15 and 6.16. From 

these representations it is possible to clearly observe that only the DPCA-DR statistics 

present a consistent out-of-control state in both statistics, simultaneously ( 2
PREVT  and 2

REST , 

see Figure 6.15). This is a relevant issue, since the PCA and DPCA statistics may lead to 
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the erroneous conclusion that the process has returned to their normal operation 

conditions and that it is no longer under the effect of a fault. In the case of Fault 10 

(Figure 6.16) only the DPCA-DR statistics signals an out-of-control state during the total 

duration of the fault, while the PCA and DPCA statistics only became out-of-control 

when the data also exceeds their normal values. 

Figure 6.15 The multivariate statistics under test for Fault 5: PCA statistics (first or top row), DPCA statistics (second 
or middle row) and DPCA-DR statistics (third or bottom row). 
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Figure 6.16 The multivariate statistics under test for Fault 10: PCA statistics (first or top row), DPCA statistics (second 
or middle row) and DPCA-DR statistics (third or bottom row). 

To confirm the overall superiority of the DPCA-DR statistics in this case study, a paired 

t-test between all the statistics was conducted as presented in Table 6.6. Note that as the 

monitoring statistics were implemented over the same data sets, they are paired by design 

in this comparison study. The test statistic is given by  0 Dt D s n , where D  is the

sample average of the differences between two methods under analysis in the n different 

testing conditions, D1, D2, … , Dn, and Ds  is the sample standard deviation of these 

differences [39]. From this analysis it can be concluded that, with a 5% significance level, 

the DPCA-DR statistics are indeed significantly better than all the PCA and DPCA 

monitoring statistics. 
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Another advantage of the DPCA-DR method is the lower autocorrelation levels of its 

monitoring statistics, where much of its success may lie, as this characteristic makes the 

DPCA-DR statistics more reliable and consistent with the type of control charts used to 

monitor them (Figure 6.17). 

Table 6.6 p-values for the paired t-test involving the detection rates obtained with method A (see first column) and 
method B (see first line), on all simulated faults, along with the signal of the test statistic, i.e. sign(t0). For instance, a 
plus (+) signal, indicates that method A leads to higher detections rates, on average, when compared to method B. 
Values in bold indicate p-values lower than 0.05 (i.e., statistically significant differences at this level). 

              B 
    A 

PCA DPCA DPCA-DR 

T2 Q T2 Q 2
PREVT 2

REST

PCA 

 T2 
 0.388 0.414 0.152 0.002 0.003 
 (-) (-) (-) (-) (-) 

 Q 
0.388 0.540 0.046 0.004 0.008 

(+) (+) (-) (-) (-) 
DPCA

 T2 
0.414 0.540  0.257 0.002 0.004 

(+) (-)  (-) (-) (-) 

 Q 
0.152 0.046 0.257 0.007 0.013 

(+) (+) (+) (-) (-) 
DPCA-DR

2
PREVT

0.002 0.004 0.002 0.007  0.115 
(+) (+) (+) (+)  (+) 

2
REST

0.003 0.008 0.004 0.013 0.115
(+) (+) (+) (+) (-)
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Figure 6.17 Autocorrelation plots for the monitoring statistics when the process is under normal operation conditions 
(data set with no faults). The proposed DPCA-DR statistics present the lowest levels of correlation among all the 
studied ones. PCA statistics - first or top row -, DPCA statistics - second or middle row -, DPCA-DR statistics - third or 
bottom row -. 

6.4 Conclusions	

In this chapter the problem of monitoring large processes with autocorrelated or dynamic 

data was addressed. Twenty two monitoring statistics were presented in a systematic way 

and studied, including ten statistics introduced for the first time. They encompass a 

variety of methods, including PCA, DPCA, PLS, time series and conditional estimation 

frameworks, and it was concluded that those derived from the class of DPCA-DR 

statistics tend to show, in general, better detection performances. Such monitoring 

statistics require a proper method to estimate the number of lags necessary to construct 

the DPCA model, for which two alternatives were considered, being observed that the 

LS2 methods led to the best results.  
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The DPCA-DR based monitoring statistics also presented better results when applied to 

the Tennessee Eastman benchmark process. From the analysis of these results, it was 

verified that DPCA-DR was capable to efficiently detect 19 out of the 21 faults. 

Moreover, the DPCA-DR statistics also presented the lowest autocorrelation levels and 

were able to sustain the out-of-control signals throughout the whole faults duration, while 

PCA and DPCA statistics often return to their in-control regions leading to a false sense 

of normality. 

Consequently, given the consistency of the results obtained, the DPCA-DR statistics seem 

to be more effective, reliable and consistent regarding their counterparts tested in this 

study. 
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7 Multiscale	 Dynamic	 Principal	 Component	

Analysis	

Current industrial processes contemplate a combination of phenomena occurring at 

different time-frequency scales. Thus, they are multiscale by nature, and the same applies 

to the data they generate, which require the development and application of suitable 

monitoring methodologies capable to cope with such distinctive features. However, most 

of the current monitoring schemes operate in single-scale frameworks and their detection 

abilities are dependent on the specific scale where the fault manifests itself. For instance, 

Shewhart control charts are suitable to detect large shifts at the finest scales, while 

CUSUM and EWMA control charts, depending on their tuning parameters, are better to 

detect small changes at coarser scales [5, 9, 58]. The same applies to most of the current 

multi- and megavariate monitoring statistics based on latent variables models, such as 

PCA, which also model data at a single-scale. Therefore, this characteristic also affects 

DPCA-DR, which inherits the single-scale nature from PCA and DPCA. 

The performance of monitoring schemes based on PCA frameworks can be improved by 

proper integration with methods that allow for a multiscale representation of process data. 

One example is multiscale PCA (MS-PCA), proposed by Bakshi (1998) [9], which 

combines the ability of PCA for decorrelating the variables covariance, with that from 

wavelets transforms to decorrelate the serial dependencies of signals. The basic procedure 

underlying MS-PCA consists in first decomposing each variable into multiple scales 

through the use of a wavelet transform; then PCA models are developed at each scale, 

based on which process monitoring can be conducted in a simultaneous and independent 

way; when abnormal, the relevant scales that actually contribute to the fault are selected 

and used to reconstruct the fault signature at the original time scale; finally, the 

reconstructed signal is submitted to a confirmatory test, in order to verify if the process is 

indeed out-of-control, or not. As a result of these decomposition and reconstruction steps, 

the monitoring procedure becomes sensitive to a wide range of faulty patterns with 

different magnitudes and localizations in the time-frequency plane [5]. Several 

improvements and modifications to the base MS-PCA scheme, as well as alternative 

multiscale monitoring strategies, have been proposed over the last years, as reviewed by 
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Reis (2005) [121]. As a result of these contributions, the application scope of multiscale 

methodologies was extended to cases where the data also presents dynamic [122], non-

stationary [123] and multiresolution [8] features. 

Even though the wavelet transforms have the ability to reduce the signal autocorrelation, 

the coarser scales coefficients may still present some autocorrelation. This happens 

because of the moving window approach used to implement the wavelet transform on-

line, or even due to the particular dynamic nature of the signals, which leads to serial 

correlations in the wavelet coefficients. This characteristic cannot be handled with PCA 

and therefore a DPCA-DR approach has the potential to increase the fault detection 

capability of the monitoring scheme based on MS-PCA. In this context, and given the 

superiority of the DPCA-DR scheme relatively to its PCA-based counterparts, as 

illustrated in Chapter 6, it becomes natural to develop a multiscale monitoring scheme 

based on DPCA-DR. The base procedure follows the main steps proposed by Bakshi 

(1998) [9] for MS-PCA, which will be described and compared in the following sections. 

7.1 Multiscale	DPCA‐DR	(MS‐DPCA‐DR)	

In this section, a multiscale version of DPCA-DR is proposed in order to improve its 

ability to detect faults with a variety of time-frequency features. The proposed 

methodology is based on the work of Bakshi (1998) [9] where monitoring schemes based 

on PCA model are simultaneously applied to different scales in order to determine if the 

process is under a state of statistical control. The original procedure was described in 

more detail in Section 3.4, and will be here adapted as follows. 

As for MS-PCA, the first step of the proposed multiscale DPCA-DR (MS-DPCA-DR) 

involves the decomposition of the data using a wavelet decomposition with depth maxJ . 

Then, an MSPC procedure based on DPCA-DR is employed independently at each scale, 

in order to select the wavelet coefficients to be included in the reconstructed data and the 

corresponding  2 j
PREVT  and  2 j

REST  statistics are determined for 1, , 1maxj J  , where j

is the scale index, representing the maxJ  decomposition levels for detail coefficients ( jd ) 

and the coarsest approximation level (
maxJa ). For each scale, the monitoring statistics are 
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compared against their control limits and if either  2 j
PREVT  or  2 j

REST  exceed such limits, 

the corresponding scale is used to reconstruct the data. The reconstructed data is finally 

subjected to a confirmatory monitoring stage, also using a DPCA-DR control scheme. 

To implement this procedure it is required to construct a DPCA-DR model for each 

wavelet scale as well as for each of the possible reconstruction combinations. The 

modeling stage of the wavelet scales is straightforward, with only a minor remark on the 

determination of the UCL limits, as explain later. As for the reconstructed data, in order 

to avoid the combinatorial computation of all possible reconstructions, a database 

composed by two independent NOC data sets are used to determine the DPCA-DR 

parameters (if they were not previously determined) by request. The first data set is used 

to reconstruct train data, with the same scales as the monitoring data, and employed to 

construct the DPCA-DR model. After that, the second data set is applied to determine the 

UCLs by trial and error adjustment in order to ensure that a pre-established significance 

level ( ) is obtain. The choice of this approach is justified by the fact that the monitoring 

statistics often violate their construction assumptions (such as Gaussian distribution of the 

data or i.i.d. assumptions) and therefore the theoretical limits do not reflect with the actual 

observed false alarm rate. 

Regarding the UCL for each of the monitoring statistics, it is important to note that, 

overall,  2 1maxJ   control charts are under use (i.e., two control charts for each 

wavelet scale). Therefore, in order to maintain the desired overall significance level ( ), 

the significance level for each control chart ( A ) is corrected by application of the 

Bonferroni inequality as  2 1A maxJ   . Nevertheless, this issue does not have a 

direct impact on the method’s false alarm rate, since this is ultimately defined by the final 

confirmatory monitoring stage based on the DPCA-DR model applied to the 

reconstructed data. 

The described MS-DPCA-DR procedure is summarized in Table 7.1 in the form of a 

pseudo-code and schematically represented in Figure 7.1.  
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Table 7.1 Pseudo-code for the proposed MS-DPCA-DR methodology. 

1. Get window of data with dyadic length containing the current observation (length

equal to 2 maxJ );

2. Obtain the current wavelet coefficients at all scales, 1, , 1maxj J  ; 

3. Implement DPCA-DR-based MSPC at each scale, using  2 j
PREVT and  2 j

REST

statistics, and select the relevant scales, i.e. the scales where     2 2j j
PREV PREVT ULC T

or     2 2j j
RES REST ULC T ; 

4. Reconstruct data using the relevant scales;

5. Obtain the corresponding DPCA-DR model from the database. If a DPCA-DR

model is not available,

a. Reconstruct train and validation data with the same relevant scales;

b. Determine the DPCA-DR parameters from the reconstructed train data;

c. Determine the UCL from the reconstructed validation data;

d. Save DPCA-DR model and UCL on database.

6. Implement DPCA-DR-based MSPC on the reconstructed data, using  2 rec
PREVT  and 

 2 rec
REST  statistics; 

7. Compare  2 rec
PREVT  and  2 rec

REST  against their UCL. 

Figure 7.1 Schematic representation of the proposed MS-DPCA-DR methodology. 
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7.2 Comparative	Study	

In order to assess the characteristics of the proposed multiscale methodology, a 

comparison study was conducted including the monitoring approaches based on the 

following base models: PCA, DPCA-DR, MS-PCA and MS-DPCA-DR. This comparison 

is made in terms of their detection rates (i.e. the ratio between the number of alarms and 

simulation observations) when a continuous stirred-tank reactor (CSTR) is subjected to 

step perturbations on the heat transfer coefficient and discharge coefficient. The false 

detection rate of all methods was set to 1% and the detection rates were computed based 

on 2000 observations, repeated 100 times in order to determine their reliability. 

In the studied CSTR model, an endothermic reaction of the type A → B takes place in a 

reactor with an heating jacket. The system inputs are the feed stream concentration (CA0) 

and temperature (T0) and the heating fluid inlet temperature (Tj0). The system outputs are 

the CSTR level (h), concentration of compound A (CA), temperature (T) and the heating 

fluid outlet temperature (Tj). Moreover, the CSTR level (h) and temperature (T) are under 

a PI feedback control loop. 

From the distribution of the variance and cumulative variance at different scales, depicted 

in Figures 7.2 and 7.3, it is observed that the data has multiscale characteristics. The input 

variables (CA0, T0 and Tj0) are generated from random draws of the normal distribution 

and, therefore, they are essentially white noise. Consequently, most of their variability is 

captured by the detail coefficients d1 to d3. As for the outputs, the CSTR level’s energy 

(h) is mainly localized in d4 to d6, the concentration (CA) dynamics in d5 to a8, the 

temperature (T) in d3 to d6 and the heating fluid outlet temperature (Tj) in d3 to d5. Even 

though most of their variability overlaps on several scales, there is a clear difference in 

their distribution. Therefore, it is expected that multiscale techniques present better 

detection capabilities as a result of their higher flexibility to describe more accurately 

such NOC multiscale dynamic features. This analysis also shows that most of the 

variability can be properly described by a decomposition level (Jmax) equal to 8. 
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Figure 7.2 Distribution of the variance of the CSTR process variables for Jmax = 8. 

Figure 7.3 Distribution of the cumulative variance (CV) of the CSTR process variables for Jmax = 8. 
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When the system is subjected to a perturbation on the heat transfer coefficient, it is 

observed a change on the heating fluid outlet temperature (Tj). Under normal operation 

conditions, this variable is mostly described by the detail coefficients d3 to d5, which are 

related to high frequency signals. However, when a fault occurs, a low frequency change 

is observed in Tj (see Figure 7.4 (h)). Consequently, the single-scale procedures (PCA and 

DPCA-DR) are not able to promptly detect this fault, since the signal is masked by the 

high frequency components and the fault contributions passes mostly unnoticed (see 

Figure 7.4 (a)). On the other hand, both MS-PCA and MS-DPCA-DR are capable to 

isolate the low frequency (that in this case, appear in a8, Figure 7.4 (h)) and remove the 

in-control scales from the reconstructed signal. However, as the fault is located at a 

coarser scale, the signal presents high levels of autocorrelation, which causes the 

monitoring statistics to present some detection delay. A delay is also observed when the 

process returns to normal operation conditions. These situations are a result of the 

application of a moving window during the wavelet transformation. 

Another interesting observation is the relatively low ability of MS-DPCA-DR to cope 

with wavelet coefficients dynamics. This result was not expected since the single-scale 

DPCA-DR is characterized by monitoring statistics with low levels of autocorrelation. 

Nevertheless, the increase in performance is significant, as can be verified in Figure 7.5, 

where the fault detection rates are represented for simulated faults of magnitude δ times 

the reference heat transfer coefficient. 

Similar results were obtained when the system was subjected to perturbations on the 

discharge coefficient (see Figure 7.6). These results show that the MS-DPCA-DR is 

consistently better than its counterparts and capable to detected even finer faults than MS-

PCA. 
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

Figure 7.4 Graphical representation of Tj over time when the CSTR model is subjected to a step deviation in the heat 
transfer coefficient of magnitude δ = 1.005 after observation 1000: (a) original data; (b) wavelet coefficient at scale d3; 
(c) wavelet coefficient at scale d4; (d) wavelet coefficient at scale d5; (e) wavelet coefficient at scale d6; (f) wavelet 
coefficient at scale d7; (g) wavelet coefficient at scale d8; (h) wavelet coefficient at scale a8;
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Figure 7.5 Curve of the detection rates for a step perturbation in the heat transfer coefficient of the CSTR system. δ is a 
multiplicative factor that introduces a deviation in the heat transfer coefficient (under NOC δ = 1). 

Figure 7.6 Curve of the detection rates for a step perturbation in the discharge coefficient of the CSTR system. δ is a 
multiplicative factor that introduces a deviation in the discharge coefficient (under NOC δ = 1). 

7.3 Conclusions	

The combined used of latent variables models and wavelet transforms is a powerful tool 

to monitor systems with multiscale characteristics. These characteristics are common to 

most of the industrial process and therefore methodologies that take advantage of such 

features have the ability to better explain the system under monitoring. 
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DPCA-DR adds detection capabilities to the static PCA by both inclusion of time-shifted 

variables (which allows for the capture of dynamic features) and reduction of the 

monitoring statistics’ autocorrelation. This is an important factor when it is combined 

with the wavelet transform, since even for stationary system, some autocorrelation can be 

found in the wavelet coefficients computed on-line by a moving window procedure. 

Interestingly, DPCA-DR is not capable to remove all the autocorrelation introduced by 

the wavelets computation scheme, especially for wavelet coefficients corresponding to 

lower frequencies. Nevertheless, the final performance is greatly increased and therefore 

this situation is taken as an acceptable side effect. 

The results obtained in this study also showed that the proposed methodology is capable 

to focus on the time-frequency scales related with the fault. In the case study, the faults 

occurred at low frequency scales, which were masked by the higher frequency 

components when a single-scale approach was used. Therefore, the single-scale 

methodologies had low sensitivity to these faults. However, when the data is “filtered-

out” by the multiscale monitoring methodology and only the relevant scales are used to 

monitor the process, a better isolation of the faulty signature is obtained and consequently 

the detection performance is improved. 



Part	IV	–	MSPC	–	Off‐line	and	On‐
line	Monitoring	of	the	Process	

Correlation	Structure	
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8 Introduction:	 the	 Networked	 Structure	 of	

Processes	

Analyzing the contributions for monitoring the correlation structure that have been 

proposed in the literature (see Chapter 4), it is possible to verify that all of them are 

strictly based on the marginal covariance matrix of process data. Even multivariate 

statistical process control based on principal component analysis (MSPC-PCA) [15-17], 

which implicitly has the ability to detect changes in the correlation structure of data 

through the Q or SPE statistics, is based on the marginal covariance matrix. However, as 

process variables may present a significant marginal covariance even though they do not 

directly interact in a causal way (as long as they are affected by some common causes of 

variation), monitoring procedures based on this quantity are unable, by design, to 

efficiently detect and discern changes in the local causal correlation structure. 

In order to access and use local information of the correlation structure of variables, 

alternative measures of association must be adopted in process monitoring procedures. 

Partial correlation is one such quantity [124]. It evaluates the correlation between pairs of 

variables, after controlling for the effect of others, i.e., after removing their indirect effect 

in inducing any association between the variables under analysis. As partial correlation 

coefficients are able to retain, to a larger extent, local information between the direct 

association of variables (even though in a non-causal sense, i.e., without the associated 

causal directionality), they can provide a finer map of the direct association structure 

connecting process variables. Thus, statistical process control (SPC) based on partial 

correlation should be able to detect changes in the local structure of variables (fault 

detection) and to identify the root causes of specific process upsets (fault diagnosis) in a 

more effective and efficient way. Therefore, the total time invested in fault detection and 

diagnosis activities may be improved using such an alternative measure of local 

association, as both the primary detection and especially the subsequent diagnosis process 

will be improved. Moreover, it is worth noticing that, even though partial correlations 

have been proposed a short time after PCA, their potential to improve process monitoring 

and fault detection activities have not yet been explored. This fact is quite surprising, as 

detection and, in particular, diagnosis tasks, can potentially benefit significantly from the 
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use of local measurements of association. This is in major contrast with the widely 

explored use of marginal correlation approaches such has PCA based MSPC and most of 

the current monitoring methodologies. 

Some causal methodologies have also been proposed, such as those developed by Bauer 

et al. (2007) [125], that uses transfer entropy in order to identify the directionality of the 

fault’s propagation path, and by Yuan and Qin (2012) [126], where a combination of 

Granger causality and PCA are employed to perform features selection for locating the 

origin of faults with oscillatory characteristics. However, these methodologies are 

strongly oriented to fault diagnosis rather than fault detection, which is an obvious pre-

requirement before their application. Chiang and Braatz (2003) [117] also suggested the 

combined use of the Kullback–Leibler information distance and the process causal map to 

detect and diagnose faults. Yet, this approach requires the knowledge of the causal map in 

the form of a digraph. Therefore, as partial correlations convey information about the 

inner relationship between the variables, without the need of a priori information about 

the system structure, they will be the main focus of the proposed approaches for 

monitoring the process correlation structure. 

In this context, the concepts behind partial correlations are introduced in the next section. 

Based on their properties, several methods to monitor changes on the partial correlation 

coefficients with the potential to detect finer local changes in the process structure, and to 

identify their source in a more effective way, are presented and studied in the following 

chapters. Another key contribution of this work to the process monitoring is the use of 

sensitivity enhancing transformations (SET), which will be addressed in Chapter 9. The 

SET’s exploit the process networked structure in order to decorrelate the measured 

variables in a meaningful way. Interestingly, most of the current approaches to monitor 

the process correlation resort to some sort of decorrelation transform [51, 79, 80, 88], but 

none of them actually benefit from such variable transformations. In fact, they are mostly 

used only for simplification purposes. Reynolds and Cho (2006) [81] briefly studies the 

effects of employing regressed-adjusted variables, as proposed by Hawkins (1993) [127], 

instead of the original variables. Yet, as will be shown latter on Chapter 11, this particular 

transformation does not always lead to the best results.  

The proposed procedures will be presented and compared with marginal-based 

approaches available in the literature in Chapters 10 for the off-line case (i.e. based on 
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subgroups of non-overlapping moving windows) and in Chapter 11 for the on-line case 

(i.e. based on individual observations). Furthermore, a conceptual relation between these 

two monitoring approaches (off-line and on-line) will be presented in Chapter 12, which 

allows for the analysis of their properties in a unified way. 

8.1 Local	Association	Measures	

The current approaches to monitor process correlation structure and multivariate 

dispersion are based on the application of a sequence of statistical hypothesis tests in 

order to determine if some significant change has occurred in the covariance matrix. 

However, the covariance matrix does not convey a detailed information about the local 

association structure of the system [128]. Therefore methodologies based on the marginal 

covariance present intrinsic limitations regarding the detection capability to changes in 

the local structure of the process variables’ relationships, as well as to the subsequent 

diagnosis of the fault’s origin once it is signaled. For instance, two variables, x and y, can 

be related in several different ways such as (i) direct relation x → y, (ii) co-regulated by a 

third variable z (z → x and z → y) or (iii) indirect relation x → z → y [128]. In all these 

examples, the correlation between x and y may be similar, and a change on their 

underlying relationship may pass undetected by just monitoring the marginal correlation. 

An example of such situation is represented in Table 8.1 for two of the cases mentioned. 

In both cases, all marginal correlations are close to 0.99, which indicates that all variables 

may have a similar behavior. However, when 1st order partial correlation are employed, 

only the variables with a direct association have a significant correlation value (in these 

cases, close to 0.71), while the variables with an indirect relation (x and y) have a 1st order 

partial correlation close to zero (i.e., there is no direct relationship between them). 

From this simple example it is obvious the limitation of using marginal-based measures 

of association and the pertinence of adopting local measures in order to capture the inner 

associations between variables. The basic idea of partial correlations is to remove the 

effect of third-party variables before checking for an association between the two 

designated variables. Therefore the correlation between two variables is quantified, after 

conditioning upon (i.e., controlling for, or holding constant) one or several other variables 

[129, 130]. In the above example, the partial correlation between x and y conditioned to z 
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would remove the common effect of z on x and y, providing a clearer picture of the local 

correlation structure between these variables. More specifically, this can be achieved by 

first regressing x on z, and y on z, after which both regression residuals are saved. These 

residuals are the parts of x and y that are uncorrelated with z. The correlation between the 

two residual vectors corresponds to the partial correlation between x and y conditioned on 

z (rxy.z). A pseudo-code for this regression based approach is presented in Table 8.2. 

Table 8.1 Marginal and partial correlations of two causal networks with different connective structures. Solid arrows 
represent causal relationships and dashed arcs represent indirect relationships. The values displayed are the sample 
correlations computed from 3000 observations.  

Network 
(a) co-regulation by a third variable (b) indirect relation 

Table 8.2 Pseudo-code for the computation of partial correlation. 

1. For the par of variables (x,y), fit a regression model with 1 2, , , q   Z z z z  as the 

matrix of controlled variables:

a.  xx ZB , where   1T 
xB Z Z Zx ; 

b.  yy ZB , where   1T 
yB Z Z Zy . 

2. Compute the regression residuals:
a.   xe x ZB ; 

b.   yf y ZB . 

3. Compute the qth order partial correlation as:
 

   
cov ,

var var
r  xy Z

e f

e f
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The order of the partial correlation coefficient is determined by the number of variables it 

is conditioned on (which is q in Table 8.2). For instance, rxy.z is a 1st order partial 

correlation coefficient because it is conditioned solely on one variable (z). Partial 

correlations can be obtained either using the above referred regression based approach, or 

through analytical formulas, in a recursive way. Equations (8.1) to (8.3) illustrate the 

computation of the partial correlation coefficients for orders 0, 1 and 2. Similar equations 

exist for higher order representatives. 

0th order partial correlation: 

 
   

cov ,

var var
xy

x y
r

x y
 (8.1)

1st order partial correlation: 

  .
2 21 1

xy xz yz
xy z

xz yz

r r r
r

r r




 
(8.2)

2nd order partial correlation: 

  
. . .
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2 2

. .1 1

xy z xq z yq z
xy zq

xq z yq z

r r r
r

r r




 
(8.3)

As partial correlation coefficients bring out differences between the direct and indirect 

relationships between variables, it is possible to apply a thresholding procedure in order 

to identify connected variables and variables that are not directly associated. The cut-off 

values depend on the statistical significance to observe in this process [130, 131]. This 

scheme has also been applied in variables selection and classification methods [128, 129, 

132]. Partial correlations have also a great potential to improve the activities related with 

statistic process monitoring, namely fault detection and diagnosis. This will be the topic 

of the next chapters of this thesis. 
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9 Sensitivity	 Enhancing	 Transformations	 for	

the	 Monitoring	 of	 the	 Process	 Correlation	

Structure	

Analyzing closely the sensitivity of correlation measures to changes in the population 

features, it is possible to observe that the detection potential to changes in the correlation 

coefficients is highly dependent on their nominal values (i.e., under normal operation 

conditions). More specifically, it is related to the strength of the relationship between the 

two variables under analysis: the higher the strength of the association, the more difficult 

it becomes to detect a change in its value. On the contrary, if two variables are initially 

uncorrelated, any change on their association status is detected in a more sensitive way. 

In order to exemplify this finding, consider that x kz w  , where both z and ε follow 

i.i.d. N(0,1) distributions. In this case, the correlation of interest, say that between x and z 

(rxz), can be represented as a function of the ratio k/w according to Figure 9.1 (a). It is 

apparent that there can be rather different sensitivities of rxz to changes on the population 

constants (k and w), depending on the particular position in the curve. The 1st derivative 

of rxz (Figure 9.1 (b)) is a proper measure of such sensitivity for detecting changes on rxz, 

and one can verify that changes are more difficult to detect as |rxz| gets closer to 1 and 

easier when |rxz| is close to 0. The maximum sensitivity is reached at rxz = 0, which 

corresponds to the case where variables are uncorrelated (either k = 0 or w → ∞, i.e.

w k ). Therefore, changes in the correlation coefficients will be easier to detect when a 

previously non-existent relationship gives rise to some association between the variables. 

Furthermore, it was also found out that the same behavior occurs with partial correlations. 

Thus, in order to exploit this feature in process monitoring and fault detection activities, 

the original variables should be preliminarily rotated to a regression subspace of 

uncorrelated variables, by application of what will be called here, a “sensitivity enhancing 

transformation”.
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(a) (b)
Figure 9.1 Graphical representation of (a) the effect of k/w on the correlation (rxz) and (b) first derivative of rxz. 

One of the transformations usually applied in the treatment of multivariate Gaussian data 

relies on the Cholesky decomposition [60], which factorizes the covariance matrix, Σ, 

into a lower triangular matrix L, such that, 

TΣ LL   (9.1) 

This matrix, can then be used to obtain uncorrelated variables with unit variance through 

the transformation [60]:  

 1 u L x μ   (9.2) 

This transformation was adopted by Hawkins and Maboudou-Tchao (2008) [82] on their 

extension of the W statistic to on-line monitoring and corresponds to a succession of 

regression operations, where ui is the residual of the regression of xi on x1,…, xi–1, 

rescaled to unit variance. Yet, the W statistic is invariant to any linear transformation and 

therefore does not benefit from such transformation. On the rest of this work the use of 

the original, untransformed data will be referred by TX, whereas the use of this particular 

data transformation will be denoted as TCh. 

The transformation based on the Cholesky decomposition described on Equation (9.2) is 

only suitable for stationary linear systems. In order to extend its application to dynamic 

and non-linear systems, it is proposed the addition of time-shifted variables or polynomial 

terms (depending of the situation) to the data matrix. This type of approach is in 
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accordance with other methodologies, such as DPCA which incorporates time-shifted 

variables to implicitly model an AR process [27]. Likewise, the approximation of non-

linear functions by polynomial terms is justifiable by the Taylor series expansion theorem 

since, under normal operation conditions, the processes tend to experiment only mild 

fluctuations around the nominal operation state. These additional variables should be 

placed at the beginning of the extended data matrix, X , which for the case of the 

inclusion of time-shifted variables becomes: 

     1 0l   X X X X  (9.3) 

where X(j) is an ( n m ) matrix of variables shifted j times into the past (i.e., with j lags). 

When the inclusion of polynomial terms is required, X(j) is replaced by powers of the 

type x(j + 1). 

After this step, the regular Cholesky decomposition can be performed, Equation (9.4), 

from which a new set of uncorrelated variables are obtained by Equation (9.5). 

TΣ LL     (9.4) 

 1 u L x μ     (9.5) 

In the case where X  is obtained by the addition of time-shifted variables, only the 

regression variables related to the present state are of interest (i.e., the last m variables in 

u ), since they correspond to the residuals of the linear regressions of the variables in the 

present, onto those from the past. Using this procedure, both cross- and auto-correlations 

are handled simultaneously for whitening the process data at the current time. The same 

procedure can also be applied to non-linear systems through the use of polynomial terms 

instead of time-shifted variables. This type of transformation will be referred as TChExt. 

As stated earlier, the Cholesky decomposition, is essentially a triangularization method 

that regresses the ith variable onto the other (i – 1) variables that preceded it. Therefore, 

the sequence by which variables are included in the model is defined by their particular 

order of appearance in the original data matrix. As this ordering is completely arbitrary, 

hardly it will provide the best description of the system structure from a cause-effect 

sense. In fact, the more meaningful variable ordering corresponds to placing the more 

important variables (i.e., variables that affect most of the others or that appear on the root 
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nodes of the true underlying variable interaction network) at the beginning of the matrix 

(first columns), for which some a priori knowledge of the process may be necessary. As 

the base Cholesky decomposition procedure regresses each variable onto all its 

predecessors, it may end up relating variables that are not originally associated in any 

causal way, leading to rather poor monitoring performances.  

In order to deal with this problem, an alternative transformation is proposed. The goal of 

the new transformation is to break the relevant variables relationships upon application of 

a similar linear regression scheme but only on the variables that are indeed related with 

each other, as exemplified on Figure 9.2 (“breaking” means here the removal of an 

association after it is properly explained by a model). For such, the relevant edges 

between variables must be first identified, either with resort to a priori knowledge of the 

process or through the use of some data-driven network reconstruction technique, as the 

one described in the next paragraph (see also Figure 9.2 (a) and (b)). 

A new procedure to identify the edges linking directly associated variables through the 

use of partial correlations up to the 2nd order is suggested here, which is has some 

communalities with others proposed in the literature [129, 130, 132]. The main difference 

factor relies on the inclusion of time-sifted variables or polynomial terms in the 

regression models, for addressing dynamic and non-linear process features, respectively. 

By conditioning on these additional variables, this algorithm becomes capable to detect 

both dynamic and non-linear relationships, resulting in a more accurate identification of 

the networks structure. Once the connections are established, one has available an 

undirected network. The causal directions of these undirected edges are determined by 

applying another algorithm based on the variables’ cross-correlation or, alternatively, in 

the concepts of transfer entropy and Granger causality. A more detailed description of 

these algorithms will be provided in Section 9.2. 

The second step of the transformation involves the regression of each variable onto its 

parents or causal predecessors (see Figure 9.2 (c)), resulting in a final regression model 

where only the directly connected variables are considered in order to obtain the new set 

of residual variables. On dynamic systems, time-shifted variables should also be included 

on the regression model and for non-linear systems, polynomial terms must also be 

added. As a possible additional step, a Cholesky decomposition can be applied to the 

residuals in order to ensure that uncorrelated variables are indeed obtained and also to 
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accommodate for the possibility that some relationships may not be accurately described 

by the linear regression models. On the rest of this work, these NETwork-oriented 

transformations will be referred as TNet (without a Cholesky decomposition of the 

residuals) and TNetCh (with a final Cholesky decomposition of the residuals). 

These new proposed transformations are able to integrate information about the local 

correlation structure, leading to improvements in the monitoring statistics performance. 

Furthermore, in the absence of a priori knowledge about variables connectivity, the edges 

linking connected variables can also be estimated through the proposed network 

reconstruction method, and the nature of the transformations remain, in this case, fully 

data-driven. The complete set of sensitivity enhancing transformations covered in this 

study, and the associated nomenclature, is summarized in Table 9.1. 
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Figure 9.2 Implementation of the proposed transformation procedure: (a) original network, (b) identification of the 
relevant edges, (c) implementation of successive linear regressions involving the directly connected variables, (d) final 
model. 

Table 9.1 Nomenclature associated with the sensitivity enhancing transformations covered in this study. 

Transformation Description
TX Original variables. 

TCh 
Variables transformed using the Cholesky decomposition, Equation 
(9.2). 

TChExt 
Variables transformed using the Cholesky decomposition after 
incorporation of time-shifted variables and/or polynomial terms, 
Equation (9.5). 

TNet 
Variables transformed using a set of linear regression models 
constructed only from related variables (see Figure 9.2). 

TNetCh 
Variables transformed using a set of linear regression models 
constructed only from related variables with an additional Cholesky 
decomposition of the resulting residuals. 
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9.1 Example	of	the	Effect	of	SET	in	SPC	

In order to better illustrate the advantage of employing the sensitivity enhancing 

transformations, let us consider Table 9.2, where four systems are presented. In each 

system the variables are connected in different ways, according to the networks 

represented (for instance, in system (a) variable 1 has a direct influence on variable 2, 

which in turn affects variable 3). Under normal operation conditions the connected 

variables are related by linear stochastic equations and, during a fault, the slop of one of 

these equations was increased by 5%, which consequently changes the systems 

correlation. 

Table 9.2 Effect of the sensitivity enhancing transformation on the partial correlation coefficients. The results presented 
are the average value of 200 samples (standard deviations are all close to 1). 

Network

TX TCh TX TCh 
NOC Fault  NOC Fault  NOC Fault  NOC Fault 

1,2.3r 0.11 0.01  -0.03 24.11  -0.03 1.74  0.08 24.39 

1,3.2r -0.20 0.08  0.002 -0.03  0.11 -2.06  -0.03 -0.09 

2,3.1r 0.17 -0.09  0.20 -0.07  -0.06 0.17  -0.05 0.17 

Network

TX TCh TX TCh 
NOC Fault  NOC Fault  NOC Fault  NOC Fault 

1,2.3r -0.06 -1.35  -0.04 -0.23  -0.07 2.60  0.06 24.32 

1,3.2r 0.09 2.55  -0.01 24.79  0.03 0.02  0.02 0.13 

2,3.1r 0.01 -0.003  0.001 0.02  -0.02 -0.02  -0.02 -0.02 

(a) (b) 

(c) (d) 
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In this study, 200 sample covariance matrices were collected for NOC and faulty 

conditions, each one of them computed from 3000 observations. Note that the partial 

correlation coefficients computed from 3000 observations are approximately normally 

distributed [46]. Therefore, the partial correlation coefficients, normalized according to, 

 n rr r r s  , where r  is the sample mean and rs  is the sample standard variance 

under NOC, are approximately distributed as N(0,1). These values are depicted in Table 

9.2 for both original (TX) and transformed (TCh) variables. 

The results presented in Table 9.2 clearly show the importance of using a transformation, 

since when a change occurs, a deviation of more than 24 standard deviations is observed 

when the transformation TCh is used, while for raw data, without any transformation (TX), 

only a maximum change of 2.60 standard deviations is registered. This general result has 

a great impact on the monitoring statistics performance. 

9.2 Data‐driven	Reconstruction	of	the	Causal	Network		

The reconstruction of the causal network consists of two main stages: (i) the identification 

of the edges associated with the directly associated variables (or nodes) and (ii) the 

establishment of the causal directionality of each edge (i.e., the directionality of the 

dependency). In order to address these two problems, several algorithms were developed, 

which will be presented in this section. Note however that the goal of the proposed 

algorithms is not to retrieve the exact causal network, but to explain the local correlation 

structure of the process with enough accuracy in order to potentiate the effective 

application of the SET’s. 

As for the first stage, one way to identify the variables that are directly related is based on 

the information retrieved by partial correlation. This approach, has been explored in 

several works, such as the ones by Fuente et al. (2004) [130] and Pellet and Elisseeff 

(2007) [133], where partial correlations, usually up to the 2nd order, are employed in order 

to recover the significant edges between variables. However, these procedures are limited 

to detect stationary linear relationships. Therefore, in order to allow for the identification 

of more complex relationships, time-sifted variables and polynomial terms need to be 

included in the regression models. By doing so, the final algorithm for identifying the 
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undirected edges of the network, presented in Table 9.3, is obtained. Note that this 

procedure is the same as the one applied elsewhere [129, 130, 132], differing only in the 

inclusion of additional time-shifted and polynomial terms in order to capture the existing 

dynamic and non-linear relationships. 

Table 9.3 Pseudo-code for the identification of the network undirected edges. 

1. Set an edge for all possible pair of variables;
2. For all possible pairs of variables determinate the 0th order partial correlation between

each pair (x,y):
a. Construct an extended matrix X composed of x and its time-shifted replicates;
b. Fit a model of the type y = Xb;
c. Determine the association between variables through the analysis of the

statistical significance of a = corr(y,Xb) (If a is lower than a threshold,
eliminate the edge for the pair (x,y)).

3. For all remaining edges determine the 1th order partial correlation between the pair
(x,y) controlled by z:

a. Construct an extended matrix Z, composed by z and its time-shifted replicates;
b. Fit a model of the type x = Zb and take the residuals e = x – Zb;
c. Fit a model of the type y = Zb and take the residuals f = y – Zb;
d. Repeat Step 2 for the pair of variables (e,f).

4. For all remaining edges compute the 2th order partial correlations between the pair
(x,y) controlled by z and q:

a. Construct an extended matrix Z composed by z and its time-shifted replicates;
b. Construct an extended matrix Q composed by q and its time-shifted replicates;
c. Fit a model of the type x = [Z Q]b and take the residuals e = x – [Z Q]b;
d. Fit a model of the type y = [Z Q]b and take the residuals f = y – [Z Q]b;
e. Repeat Step 2 for the pair of variables (e,f).

The directions of the undirected edges identified in this way are determined in the second 

stage of the causal network reconstruction procedure. Two algorithms are proposed for 

addressing this task. The first algorithm was derived for stationary systems, where it was 

observed that, when one variable (a child node) has more than one predecessor (parent 

node), setting the wrong direction causes the appearance of previously non-identified 

edges involving other parents, as a result of the transfer of information between variables 

that are not directly associated, during the computation of the regression residuals (an 

example will be provided further ahead in the text, in Table 9.5). Thus, by testing both 

possible directions (“tentative parent” → “tentative child”) it is possible to extract the 

underlying causal directionality, by simple employment of network reconstruction 
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techniques based on partial correlations. To do so, for each “tentative direction” a linear 

model is fitted between the “tentative parent” (regressor) and the “tentative child” 

(response). The “tentative child” is then replaced by its regression residuals and a new 

undirected network is estimated by the algorithm in Table 9.3. As a result of this variable 

replacement, if the “real child” has more than one parent, some of the information related 

with these other parents is transferred to the regression residuals when the direction is 

wrongly attributed (i.e. when the “tentative child” is in fact the “real parent”). 

Consequently, a larger number of new edges between the wrong “tentative child” and the 

other variables (namely the other parents of the “tentative parent”, which is in fact the 

“real child”) will arise. As a result of this observation, the following decision rule is 

derived: 

Rule 1: in the cases where the child (y) has more than one parent (x), when x is 

considered as the “tentative child”, the replacement of x by its regression residuals (e = 

x – f(y)) cause the appearance of edges between the residuals (e) and the other parents of 

y when a new network is estimated. Otherwise, if y is considered as the “tentative child”, 

no new edges are expected to appear. Therefore, the direction that leads to the lowest 

number of new edges is related with the correct (or at least, predominant) direction. 

After application of this decision rule, a second decision rule can be drawn: 

Rule 2: in the cases where the child (y) has more than one parent (x), all its parents are 

expected to be determined by Rule 1. Therefore, if y has parents identified by Rule 1, the 

remaining edges involving y are related with the child of y. 

Based on these decision rules, the algorithm presented in Table 9.4 can be used to 

establish the edges directions in stationary systems. This algorithm can also be applied to 

dynamic and non-linear systems, if time-shifted variables or polynomial terms are 

employed during the regression stages. 
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Table 9.4 Pseudo-code for determining the direction of the edges identified by the algorithm of Table 9.3 for stationary 
systems. 

1. Determine the significant edges between the variables, though the algorithm in Table
9.3. Save the resulting network structure as E0;

2. For all the significant edges, analyze the (x,y) pairs of unidentified directions:
a. Consider the hypotheses that x causes y (x → y):

i. Construct an extended matrix X composed by x and its time-shifted
replicates;

ii. Remove the effect of x on y by fitting a model of the type y = Xb and
take the residuals e = y – Xb;

iii. On the original data set, replace y by e and determine the new network.
Save the new network structure as Enew.

iv. Determine the number of new edges (i.e., edges present on Enew that
were not identified on E0). Save this value as Nx→y;

v. Determine the number of new edges that involve variable y. Save this
value as Lx→y.

b. Repeat Step 2.a by considering the hypotheses that y causes x (y → x),
obtaining Ny→x and Ly→x.

c. Set the direction based on Rule 1:
i. If Lx→y < Ly→x, then x → y;

ii. Else, if Ly→x < Lx→y, then y → x.
3. For the remaining (x,y) pairs of unidentified directions, set the direction based on Rule

2;
4. For the remaining (x,y) pairs of unidentified directions, set the direction that leads to

the number of new edges:
i. If Nx→y < Ny→x, then x → y;

ii. Else, if Ny→x < Nx→y, then y → x.
5. For the remaining (x,y) pairs of unidentified directions:

a. Verify if the edge is still relevant by conditioning on their previously
identified parents (the algorithm in Table 9.3 only considers partial
correlations up to 2nd order and at this point there may be identified more than
2 parents for any of the variables).

i. If the edge is no longer relevant, eliminate it;
ii. Otherwise, set the direction as the one that leads to the best regression

model.

The reasoning behind the decision rules used in the algorithm presented in Table 9.4 is 

illustrated for a four variable network, represented in Table 9.5. In this case, one is testing 

whether A causes C or C causes A. If it is assumed that A causes C, the residual of the 

regression model eliminates the component of x1 in C, and consequently, when the new 

network is reconstructed, there are no new edges between the residual of C and the 

remaining nodes (note that the new edge between A and D is not related with the 

“tentative child” C). On the other hand, when it is considered that C causes A, the 

component of x2 is added in the residual of A and a new edge between the “tentative 

child” A and B appears. This new edge is a result of the wrong attribution of the edge 
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direction and therefore the direction that leads to the lowest number of new edges with 

the “tentative child” is regarded as the correct one. However, the decision rule 1 requires 

that the “real child” has at least two parents, so that the information of one parent is 

transferred to the other when it is considered as a “tentative child”. Therefore, this rule 

cannot be applied to determine the direction between nodes C and D, since D has only 

one parent and therefore no new edges with the “tentative child” appear in both situations. 

To select the directionally in this situation, the rule 2 has to be considered instead. This 

rule is a direct extension of the previous one and assumes that rule 1 is able to identify all 

the node’s parents (which is in fact verified, as long as the node has more than one 

parent). Therefore, the remaining undirected edges are considered to be related with the 

node’s children and their direction established accordingly. 

Table 9.5 Example of the determination of the direction in one of the network edges, by application of the proposed 
decision rules. 

Real causal 
network 

Identified 
edges 

Determine direction 

Obtained 
direction Replace tentative 

child (C) by its 
residual (e = x2) 

Replace 
tentative child 

(A) by its 
residual (e = x2) 

The second algorithm proposed for the second stage of network reconstruction is 

presented in Table 9.6, and makes uses of the variables’ cross-correlation (Step 2) in 

order to identify the time dependency between them, based on the simple principle that 

the present can only be affected by the past and not the other way around. As an 

alternative, Granger causality [126] or transfer entropy [125] can also be applied in Step 
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2. The remaining steps are similar with the ones used in the previous algorithm of Table

9.4 (note that only rule 1 is employed in this case). 

The main difference between the algorithms in Tables 9.4 and 9.6 is their application 

scope. The first algorithm (Table 9.4) is more general, encompassing non-linear and 

dynamic dependencies. On the other hand, the second algorithm (Table 9.6) includes 

measures of causality that are specifically related with time dependency and therefore can 

only be applied to dynamic system. These algorithms for network reconstruction will be 

applied in the analysis of the case studies presented in Chapter 10. 

Table 9.6 Pseudo-code for determining the direction of the edges identified by the algorithm of Table 9.3, valid for 
dynamic systems. 

1. Determine the significant edges between the variables, though the algorithm in Table
9.3. Save the resulting network structure as E0;

2. For all the significant edges, analyze the cross-correlation between the connected
variables (x,y). The variable with significant greatest cross-correlation (y) is set as the
child (x → y);

3. For the remaining (x,y) pairs of unidentified directions:
a. Consider the hypotheses that x causes y (x → y):

i. Construct an extended matrix X composed by x and its time-shifted
replicates;

ii. Remove the effect of x on y by fitting a model of the type y = Xb
and take the residuals e = y – Xb;

iii. On the original data set, replace y by e and determine the new
network. Save the new network structure as Enew.

iv. Determine the number of new edges (i.e., edges present on Enew

that were not identified on E0). Save this value as Nx→y;
v. Determine the number of new edges that involve variable y. Save

this value as Lx→y.
b. Repeat Step 3.a by considering the hypotheses that y causes x (y → x),

obtaining Ny→x and Ly→x.
c. Set the direction based on Rule 1:

i. If Lx→y < Ly→x, then x → y;
ii. Else, if Ly→x < Lx→y, then y → x;

iii. Else, if Nx→y < Ny→x, then x → y;
iv. Else, if Ny→x < Nx→y, then y → x.

4. For the remaining (x,y) pairs of unidentified directions:
a. Verify if the edge is still relevant by conditioning on their previously

identified parents (the algorithm in Table 9.3 only considers partial
correlations up to 2nd order and at this point there may be identified more
than 2 parents for any of the variables).

i. If the edge is no longer relevant, eliminate it;
ii. Otherwise, set the direction as the one that leads to the best

regression model.
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In order to illustrate the application of the two-stage procedure for reconstructing the 

causal network, let us consider a dynamic version of the network proposed by Tamada et 

al. (2003) [134]. This system is composed by 16 nodes (variables), related as shown in 

Figure 9.3, with the dynamic equations given by Equations (9.6), where εi is a white noise 

sequence with a signal-to-noise ratio of 10 dB (see Equation (5.8)). From the edge 

identification algorithm (Table 9.3), the correct undirected network is retrieved, as can be 

verified in Table 9.7. This structure is then the input for the second stage of the 

reconstruction algorithm (Table 9.6), where most of the directions are correctly attributed 

in Step 2 (see Table 9.7). The only exception is the relationship between g1 and g4 which 

is reversed. The two remaining edges are addressed in Step 3 of the proposed algorithm. 

These results show that the proposed algorithms are able to produce a reasonable estimate 

of the underlying causal network, using only data collected from the process. However, in 

this case study, one edge is wrongly directed by the criteria based on the cross-correlation 

(the use of the Granger causality in Step 2 led to the same result). Nevertheless, for the 

purposes of the sensitivity enhancing transformation, if an additional Cholesky 

decomposition of the residuals is performed, the effects of the wrong direction become 

negligible. 

Figure 9.3 Graphical representation of the original causal structure for the causal network under analysis. 
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Table 9.7 The successive results obtained in the several phases of the proposed network reconstruction procedure. 

Stage 1 Stage 2 – Step 2 Stage 2 – Step 3 



Sensitivity Enhancing Transformations for the Monitoring of the Process Correlation 
Structure 

159 

9.3 Final	Remarks	on	the	Use	of	SET	

The proposed sensitivity enhancing transformations essentially rotate the original 

variables into a new set of uncorrelated variables, where changes in the correlation and 

partial correlation coefficients are easier to detect due to the increased sensitivity around 

the zero correlation state.  

The concept of using uncorrelated variables to monitor the marginal covariance was 

already proposed in the literature, mainly for simplification purposes and not to increase 

the methods performances (e.g. [80, 82]). Moreover, they are often based on the inverse 

of the covariance matrix, which may be ill-conditioned for multivariate systems, or on 

triangularization method (like the Cholesky decomposition [60]), which may not 

decorrelate the data in a meaningful way. Still, the latter approach remains quite useful, 

depending on the variables ordering, and capable to break the autocorrelation by 

including lagged variables in the data matrix. 

Although the Cholesky decomposition produces uncorrelated variables, the resulting 

statistics performance is dependent on the variables ordering. To circumvent this 

problem, it is suggested a transformation that makes use of the process network structure 

in order to construct linear/polynomial regression models involving only the variables 

that are actually causally related (i.e. only the parents nodes/variables are used as 

regressors). These new transformations amount to fitting separate regression models for 

each variable which, for multivariate processes, can be seen as a disadvantage. However, 

it is worth noticing that other similar approaches have already been proposed, such as 

Hawking’s regressed-adjusted variables [127] or Ottestad’s regression components [135]. 

Other examples can also be found in [1, 20]. Principal component analysis, which is 

extensively used to explain the process variability, was also tested to decorrelate the 

variables. However, as it also ends up with a linear combination of variables that may not 

be directly related, it was found to be unsuitable for explaining the underlying process 

structure. In fact, none of the methods mentioned above are driven by the inner process 

structures. 

In this study, ordinary lest squares regression (OLS) is applied to develop the modeling 

tasks, but principal component regression (PCR) or partial least squares regression 

(PLSR) can also be adopted, in case collinearity becomes a problem. 
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The new transformations may also require the estimation of the causal network, which 

can be a quite complex task. Still, when the regression step is complemented by an 

additional Cholseky decomposition over the regression residuals, the final model has 

some robustness to miss specifications of the true network, namely the identification of 

wrong edges and the incorrect attribution of causal directions. Regarding this point, it is 

important to underline that the goal of the proposed algorithms is to identify an 

approximate causal network that lead to a more effective use of the SET’s, and not to 

retrieve the exact network. 
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10 Off‐line	 Monitoring	 of	 the	 Process	

Correlation	Structure	

Statistical process control is a pervasive industrial task with the aim to monitor the 

evolution of the overall process operation state. It is implemented mostly by means of 

control charts designed to assess whether the process is only subjected to normal causes 

of variation, inherent to its operation, or if a special cause of variation has occurred, that 

urges to be detected, diagnosed and fixed or accommodated. Special causes can result 

from equipment failure, abnormal changes in raw materials properties or any internal or 

external events that affect process evolution and increase its variability, putting in risk not 

only product quality and process efficiency, but also the safety of people and the 

environment. Therefore, the rapid detection of faults and associated diagnosis of their 

origins is of outmost importance, and have attracted the interest of many researches and 

practitioners since the proposal of the first tool, the univariate control chart, by Shewhart 

(1931) [40]. In this context proposals were rapidly put forward for extending the 

methodology to the multivariate case through the Hotelling’s T2 statistic [43], CUSUM 

charts [44] and multivariate EWMA charts [45], and then to the megavariate case, by the 

PCA and PLS-based multivariate statistical process control scheme (MSPC-PCA, MSPC-

PLS, respectively) [15, 16] and all the associated methodologies derived from the same 

latent variable formalism. Even without entering in a more exhaustive enumeration of the 

methodologies proposed through the decades, one can easily acknowledge that the 

proposed control charts were essentially designed to monitor the process mean [66-69], 

having some limited ability to address process variability, in particular concerning 

changes in the process correlation structure. In fact, only a comparatively low number of 

methodologies were proposed for explicitly addressing the problem of detecting changes 

in correlation. 

However, monitoring process dispersion and correlation is also a relevant issue in process 

monitoring, since a process failure may not manifest itself so notoriously as a deviation 

from the nominal mean values, especially due to the action of control systems fighting to 

maintain key process variables close to their target values. In multivariate processes the 

monitoring of process dispersion is usually achieved by monitoring statistics based on the 
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generalized variance [70-72] or through the implementation of supervision schemes based 

on successive likelihood ratio tests [69, 75-77]. Yet, these procedures tend to consider 

only the marginal covariance and ignore the variables inner associations. Even the SPC 

methodologies based on state-space models (such as CVA and subspace system 

identification), are based on the marginal cross-covariance between the variables [65, 95, 

110]. On the other hand, partial correlations have the potential to describe such local 

associations, even though in a non-causal way, being already applied to retrieve the 

structural information underlying collected data [130, 133, 136]. In this chapter it will be 

showed that monitoring statistics based on partial correlations have indeed the potential to 

enhance the detection of structural changes. Furthermore, it will be demonstrated that 

structural changes are easier to detect on variables that are initially uncorrelated. To 

obtain such uncorrelated variables, procedures based on the Cholesky decomposition 

were initially explored in the present work, following a similar approach as Hawkins and 

Maboudou-Tchao (2008) [82]. However, this transformation presents limitations, 

especially regarding its inability to properly model the data structure and its dependency 

of a suitable variable ordering in the data matrix, which is usually arbitrary. To mitigate 

these issues, a new class of variable transformation based on the network reflecting the 

inner associations between variables, which is obtained through the analysis of partial 

correlations, was proposed in Chapter 9. Additionally, a monitoring statistic specifically 

designed to detect changes in the variance will be proposed, since the sole monitoring of 

partial correlations is not enough to capture all the process dispersion features. Departures 

from the system’s normal operation conditions (NOC) model are also detected by this 

new monitoring statistic. Therefore, used in combination with the partial correlation 

monitoring statistics, it becomes possible to detect a wide spectrum of faults specifically 

related with changes in the process correlation structure. 

Some related approaches have already been proposed mostly for fault diagnosis, based on 

the analysis of fault propagation pathways over an existent causal network [125, 126]. 

However, these applications are dedicated to the diagnostic stage, assuming the existence 

of a previous detection phase, and also assuming the availability of a priori knowledge 

regarding the variables’ connectivity. The same applies to model-based approaches to 

fault detection, where a process dynamic model is always assumed to be available [137-

139]. 
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The effects of the proposed sensitivity enhancing transformations and the performance of 

the monitoring statistics based on partial correlations are here tested and compared 

against the monitoring statistics based on marginal covariance in a set of multivariate 

systems, for the case of off-line monitoring. 

10.1 Statistical	Process	Control	Based	on	Partial	Correlations	

The current monitoring statistics typically resort to measures of multivariate dispersion 

based on marginal information. It is well-known that such information leads to 

correlations between variables that are not directly associated, as long as they share some 

common inducing variation sources or are part of the same causality chain. Therefore, 

these methodologies are in principle unable to detect subtle and localized changes on the 

process structure. One way to improve the detection capability to faults specifically 

related with the local process structure relies on the use of partial correlations. Partial 

correlations, have the ability to identify variables that are directly associated or 

connected, a feature that was already extensively explored to reconstruct interaction 

networks [130, 131, 133, 136] as well as in classification problems [128, 129, 132]. In 

this context, it is expected that monitoring partial correlations can bring the benefits of 

increasing sensitivity to more subtle changes in the process structure (due to the finer 

description of the NOC structure) and to speed up the diagnosis stages (due to the 

localized nature of the information they provide), which potentially leads to a significant 

reduction in the total time to detect, diagnose and accommodate or fix, a given process 

upset. With these aims in mind, in the following sections, statistics for monitoring the fine 

process structure based on the information provided by partial correlations will be 

presented, along with their complementary statistics dedicated to monitor changes in 

variance. 

10.1.1 R0MAX	and	R1MAX	

One way to detect changes in the process structure is by using sequential hypothesis tests 

in order to verify if the partial correlations for new samples remain close to their 

respective NOC values. This is a problem showing some similarities with network 
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reconstruction. In network reconstruction, the partial correlation coefficients are tested for 

the hypothesis H0: ρ = 0 vs H1: ρ ≠ 0 in order to identify significant relationships between 

variables. In the present situation, the goal is rather to detect changes on their nominal 

values since they are associated with changes on the variables dependencies. To formalize 

the hypotheses tests to be applied in this situation, one should first discuss the probability 

distribution of the correlation coefficients and their extension to partial correlations. 

When the number of observations (n) is large, the distribution of the correlation 

coefficients (0th order partial correlation), transformed according to Equation (10.1), tend 

to be normally distributed with zero mean and unit variance [46]. 
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This tendency to normality can be strengthen by the use of the Fisher’s z transformation, 

defined as, 

1 1
ln

2 1

r
z

r

    
  (10.2) 

resulting in, 

2

1 1 1
ln ln

2 1 1

n r
w

r




               
(10.3) 

In both cases, the underlying distribution for hypothesis testing of 0   against the 

alternative of 0  , corresponds to the standardized normal distribution.  

Since the distribution of the qth order partial correlation coefficients based on n 

observations is the same as the correlation coefficients based on ( –n q ) observations, its 

hypothesis test is exactly the same, except that n is replaced by ( –n q ) [46].  

If the transformation w1 or w2 is applied to all the partial correlations, then they will 

present the same distribution and the same probability of exceeding a certain limit. As 

only one partial correlation coefficient needs to exceed the control limits to consider that 

a change in the process structure has occurred, it is proposed to monitor the maximum 
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norm (i.e., the maximum, in absolute value) of the normalized partial correlations, 

defined as, 

    0 00 maxR MAX w w


 r r (10.4) 

for the correlation coefficients (0th order partial correlations, i.e., the marginal 

correlations) and as, 

    1 11 maxR MAX w w


 r r (10.5) 

for the 1st order partial correlations. In these Equations, r0 is the ( –1) 1( )/ 2m m   column 

vector containing all distinct correlation coefficients (0th order partial correlations) and r1 

is the ( –1)( – 2 1( 2)) /m m m   column vector of 1st order partial correlation coefficients. 

Moreover, w(·) stands for either one of the transformations presented in Equations (10.1) 

and (10.3), or any other that guarantees that the transformed partial correlations follow 

approximately a standard normal distribution. For instance, in cases where it cannot be 

assume that partial correlation follow a normal distribution, an estimation of the density 

function can be applied to normalize them, for instance based on Kernel density 

estimation, which can then be used to normalize the partial correlations by matching the 

empirical distribution quantiles with those of the standard normal distribution. 

10.1.2 VnMAX	

As stated earlier, the sole monitoring of the partial correlation coefficients is not enough 

to detect all faults, as some events may pass undetected, such as those affecting process 

variance. This is particularly relevant when transformed variables are used, since a model 

mismatch can be translated into changes on the transformed variables’ variance. In this 

context, the VMAX statistic proposed by Costa and Machado (2009) [84] (see Section 

4.1.5) is the one offering more potential for dealing with this problem but, as it is defined, 

it is only able to detect a significant increase in the variance. Of course, in some situations 

this may be all that is necessary, but in the present context it is of interest to detect any 

departure from normal operation conditions. Therefore, a modification of this statistic, 
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based on the inference properties of the variance in a normal distribution will be proposed 

here. 

The test statistics for the hypothesis test that a sample variance obtained from n 

observations of a random normally distributed variable is equal to 2
0 , is given by [48], 

  2
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 (10.6) 

where 2
0  follows a chi-squared distribution with ( 1n ) degrees of freedom. The one 

sided-test is already performed with the VMAX statistic, for detecting an increase in the 

variance (Section 4.1.5). In order to set the conditions for maintaining the use of a single 

control limit, the probability of exceeding a symmetric UCL and the LCL must be the 

same, which can easily be achieved by taken the absolute value of a symmetric random 

variable. In this particular case, one can apply the Wilson-Hilferty transformation to the 

chi-squared distribution [140]. The use of this particular transformation also facilitates 

future constructions of a combined statistic to monitor both variance and correlation 

coefficients. 

The Wilson-Hilferty transformation states that a chi-squared distribution with ν degrees 

of freedom is well approximated by: 
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where zα is the 100×α% upper quantile from the standard normal distribution. 

Given this relation, it is proposed to use the following transformation: 
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which is approximately distributed as N(0,1). Consequently, the modified (normalized) 

VMAX statistic becomes: 
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    maxs sVnMAX w w


 v v (10.9) 

where v is a ( 1m ) column vector containing the variables’ variance. 

This modified version is able to detect both increases and decreases in the process 

variance. It is also capable to detect changes in the process structure, when any of the 

sensitivity enhancing transformations described in Chapter 9 is applied as a result of 

model mismatches. 

10.1.3 Control	Charts	for	Partial	Correlations	Based	on	MSPC‐PCA	

MSPC-PCA is a non-causal approach with the capability to monitor, in an implicit way, 

the variables correlation structure, namely through the residual statistic [15-17]. This 

approach uses two monitoring statistics. One of them follows the variability in the PCA 

subspace estimated with NOC data, corresponding to a Hotelling’s T2 statistic applied to 

the retained principal components (PCs). The other monitoring statistic monitors the 

complementary variability, around the PCA subspace, through a lack of fit or residual 

statistic usually called Q  or SPE (squared prediction error). In this way, both orthogonal 

data variability complements (in the PCA subspace and around it) are efficiently 

followed. More specifically, the MSPC-PCA monitoring statistics are defined as follows, 
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where P is a matrix containing the first p eigenvectors,  1diag , ,p p Λ   is a

diagonal matrix with the respective first p eigenvalues in the main diagonal, x̂  is the 

projection of x onto the PCA model, p is the number of retained PCs (the pseudorank) 

and I is an identity matrix of proper size. For more details on this monitoring procedure 

please refer to Section 3.3. As this is an approach extensively used to monitor the 

processes state, a preliminary analysis of its performance when applied to the problem of 

monitoring the process multivariate dispersion is presented in Section 10.2.1, where one 

can verify that the direct implementation of this well-known scheme to the observed 
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variables (x) is unsuitable for detecting small structural changes. For this reason, MSPC-

PCA was excluded from the main study. 

The results presented in Section 10.2.1 show that MSPC-PCA based on process data (x) is 

not efficient in the detection of local structural changes. However, using the r0 and r1 

vectors of correlation coefficients instead of x in the MSPC-PCA procedure, can lead to 

significant improvements in the detection sensitivity. This result is very useful for 

improving the process monitoring performance through a MSPC-PCA procedure, using 

the associated 2
PCAT  and Q statistics. For such, the respective rq (q = 0,1) covariance 

matrix must be first estimated, in order to construct the NOC, PCA model. The 

covariance matrix of rq can be obtained from k subgroups with n observations each, 

leading to k observations of rq (see Table 10.1). The number of subsets (k) required to 

construct the PCA model is one of the disadvantages of this method, since it may translate 

into an overall large number of observations, especially when the number of process 

variables is substantial (the estimation of a full rank covariance matrices require 

( –1) / 2k m m  for r0 and ( )( 2)–1 – / 2k m m m  for r1). In the current study it is always 

assumed that a sufficient amount of data is available for estimating the PCA model. 

Table 10.1 Algorithm to determine the PCA model for the qth order partial correlation. 

1. Obtain reference data:
a. For i = 1 to k,

i. Collect n observations (X);
ii. Determine the sample covariance matrix:

  T
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iii. Compute rq,i from Si, using Equations (8.1) to (8.3);

b. Determine the sample mean ( qr ) and sample covariance (
qrS ) of rq: 

,
1

1 k

q q i
ik 

 r r

  T

, ,
1

1

1q

k

q i q q i q
ik 

  
 rS r r r r

2. Construct PCA model for the partial correlations (rq,i):

a. Perform the spectral decomposition: T

q
rS ΓΛΓ ; 

b. Determine the number of principal components to retain (p);
c. Define the loading matrix, P, as the first p columns of Γ .
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In practice, the pair of 2
PCAT  and Q statistics can be merged into a single combined index 

[141] or combined through a logical gate “or”. In the current study, the later approach 

was used to construct a combined statistic, C, that signals an alarm when either 2
PCAT  or Q, 

or both, fall beyond their control limits. In the comparison study, the control limits of 

2
PCAT  and Q were adjusted to the same false alarm rate and also in such a way that C 

presents the desired global false alarm rate. 

10.2 An	Extensive	Comparative	Assessment	of	Methodologies	for	Off‐line	

Monitoring	of	the	Process	Correlation	Structure	

By applying the monitoring statistics proposed in Section 10.1 to both original and the 

transformed variables obtained by the sensitivity enhancing transformations introduced in 

Chapter 9, the complete set of new statistics under analysis in this section is obtained, 

which is summarized in Table 10.2. The general workflow of the proposed procedure for 

defining these monitoring statistics is also represented in Figure 10.1. The main stages 

include data Pre-Processing, where original variables are transformed according to one of 

the sensitivity enhancing transformations described in Chapter 9, and Process Monitoring, 

performed by either MSPC-PCA or RMAX on the vectors of marginal or partial 

correlation coefficients. As an example, R1MAXChExt results from applying R1MAX to 

data transformed according to the transformation, TChExt. The performance of all these 

monitoring statistics will be assessed and compared in the next sections, together with the 

monitoring statistics already proposed in the literature, namely the ones described in 

Section 4.1. 

The analysis of the process monitoring statistics and sensitivity enhancing 

transformations is here divided in three parts. In the first part (Section 10.2.1) a 

preliminary analysis of the MSPC-PCA performance is conducted in order to justify and 

explain its absence on the remaining of the study. In the second part (Section 10.2.2), 

focus is given to the performance assessment of the monitoring statistics on the same 

causal network model, considering different degrees of complexity in the underlying 

process dynamics: (i) linear stationary (without dynamics); (ii) linear dynamic system; 

(iii) non-linear stationary system. As the purpose of this study is to assess the capability 
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of methods to detect changes in variables correlation structure, the use of a network 

system of reasonable size provides a suitable testing scenario, offering the flexibility to 

perform and analyze various types of local and global perturbations of different kinds and 

magnitudes. Finally, in the third part (Section 10.2.3), the study is orientated towards the 

analysis of the effects of the different types of sensitivity enhancing transformations when 

applied to the more complex cases of dynamic non-linear systems. In this case, the 

purpose is to move the test scenario to typical industrial systems, once the methods were 

characterized in detail under well controlled and easily interpretable conditions. 

Table 10.2 Definition of the monitoring statistics proposed in this work. 
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Figure 10.1 Schematic representation of the main blocks that compose the proposed monitoring procedures. The 
modules involved in the construction of the R1MAXChExt statistic are highlighted as an example. 

Throughout this study, the performance of the monitoring statistics is summarized by a 

performance index (N) based on the area under the fault detection rate curve (i.e., the 

integral of the curve detection rate versus fault’s magnitude). This index condenses the 

results obtained by a given method for different fault magnitudes, which enables the 

comparison of a large number of monitoring statistics. Under normal operation 

conditions, the fault detection rate is close to the pre-established false detection rate. As 

the magnitude of the fault increases, the detection rates tend to 1. Therefore, a monitoring 



Part IV – MSPC – Off-line and On-line Monitoring of the Process Correlation Structure 

172 

statistic with a greater area under the detection rate curve tends to 1 more rapidly and will 

present higher detections rates. This index was computed for each fault and normalized so 

that its values fall in the range  0,1 , where 1 represents the best performance observed

(corresponding to the greatest area under the fault detection rate curve). More details on 

the computation of this performance index will be provided in Section 10.2.1. 

The detections rates of each monitoring statistics were also compared using a permutation 

test in order to verify if the differences obtained were statistically significant. The 

permutation test assesses the null hypothesis that n observations of two variables came 

from the same distribution. Under such assumption, the variables involved become 

interchangeable and the difference (d) between the two would not depend on the variables 

order if the null hypothesis is correct. In this case, one way to test this hypotheses is by 

considering the test statistic 
1

n

ii
T d


 , whose distribution is obtained by performing b

permutations of the sign (+) or (–) to each difference [104]. In this study, the detection 

rates of each pair of monitoring statistics were compared, for all the combinations of 

faults and magnitudes considered, using 10000 permutations, after which the 

corresponding p-value was computed. 

10.2.1 Preliminary	Assessment	of	MSPC‐PCA	for	the	Monitoring	of	the	Process	

Correlation	Structure	

MSPC-PCA is a well-established and extensively used procedure to monitor the process 

operation status, not only due to its ability to explain most of the process variability with 

a reduced number of variables but also for its performance on the detection of deviations 

from the mean levels and even structural changes. However, this procedure presents some 

limitations in detecting changes in the local correlation structure when compared to 

monitoring statistics specifically designed for that purpose. This situation will be 

exemplified in this section, where the performance of MSPC-PCA is compared against 

the current W statistic for the stationary linear system described in Section 10.2.2.1. 

The faults simulated in this system are localized and are exclusively related with changes 

in the correlation between variables. The sample covariance matrices to be monitored by 

the W statistics were computed from 3000 observations. Likewise, the average of these 
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observations was also used to determine the 2
PCAT  and Q statistic, which were here 

combined through a logical gate “or” (MSPC-PCA). The same procedure was conducted 

with transformation TCh, resulting in the MSPC-PCACh monitoring scheme. The control 

limits were set to a false detection rate of 1% for all the monitoring procedures and the 

detection rates were determined for the same set of faults used in Section 10.2.2.1, with 

magnitudes in the range of ±50%. The simulations were repeated 100 times in order to 

assess the consistency of the results. 

For faults A, B and C (see Table 10.3), the detection rates of both MSPC-PCA procedures 

are always lower than 0.10 under the range of simulated faults, while the W statistic 

presents detection rates of 1 for deviations even smaller than ±10%. For fault D, the 

obtained results are represented in Figure 10.2. Analyzing the detection curves (Figure 

10.2 (a)), it is observed that both MSPC-PCA procedures are able to detect the simulated 

faults, but a more rapid detection is obtained when the proposed transformation TCh is 

applied. Still, the W statistics performs better, correctly detecting all the samples as faulty 

even for small magnitude perturbations. Furthermore, the smallest fault’s magnitude 

needed to obtain a full detection rate with MSPC-PCA (±40%) is considerable greater 

than the one used on the main study, which is ±20%. Therefore, most of the other studied 

monitoring statistics dedicated to detect correlation changes will be able to attain a 

detection rate of 1 long before MSPC-PCA attain such level. 

(a)  (b)
Figure 10.2 Performance comparison of MSPC-PCA and the W statistic in fault D. (a) Fault detection curve, where δ is 
a multiplicative factor that changes the model parameters (under NOC, δ = 1); (b) box-plots of the performance index N 
based on the area under the fault detection curve. Bar heights correspond to the associated mean values. 
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These results are corroborated by the analysis of the performance index. This index aims 

to facilitate the analysis of results by condensing the outcomes for the different 

magnitudes of faults into a single value of the index, thus providing a suitable way for 

comparing a large number of monitoring statistics. This index is computed from the area 

under the detection rate curve (i.e., the integral of the curve detection rate versus fault’s 

magnitude) of each monitoring statistic as described earlier. For this case, the areas under 

the curve, for one of the replications, were 0.9017 for W, 0.5492 for MSPC-PCA and 

0.6448 for MSPC-PCACh. By normalizing these values, the performance index, in this 

replication, becomes 1 for W, 0 for MSPC-PCA and 0.2712 for MSPC-PCACh. The 

distribution of the obtained indices is depicted of Figure 10.2 (b) for 100 replicates. This 

representation clearly shows that the W statistics is consistently ranked as the best 

monitoring statistics and tends toward a full detection rate of 1 more rapidly (note, that 

the fault detection curve increases monotonically with the increase of the fault’s 

magnitude). It also underlines the extent to which the monitoring procedures differ. For 

instance, the performance of MSPC-PCACh (with transformed variables) is closer to 

MSPC-PCA (with original variables) than to W. This relative positioning is easily 

observable by a simple inspection of the detection rate curve in Figure 10.2 (a). However, 

when the number of monitoring statistics becomes large, it is necessary to summarize the 

results in a meaningful way, since the plot of the detection rate curve for all monitoring 

statistics lead to very dense graphs and confusing representations. 

From these results it can be concluded that even though the current MSPC-PCA is able to 

detect changes in the correlation structure of process data, the magnitude after which it 

becomes significant is relatively larger when compared with most of the current 

monitoring statistics (in most simulations, MSPC-PCA presented a detection rate lower 

than 0.10, regardless of the transformation used) and therefore presents a lower 

performance under the range of fault’s magnitude studied. The only situation where 

MSPC-PCA leads to better results happened in the case studies referred in Section 10.2.3. 

Yet, the faults simulated in such systems were not completely confined to structural 

changes, and often led to deviations in the mean value of the measured variables, which 

explains the better performance obtained by MSPC-PCA. Therefore, in order to reduce 

the amount of monitoring statistics to be compared, MSPC-PCA will not be included in 

the comparison studies of the following sections. Finally, it is worth noticing that when 
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MSPC-PCA is applied to single observations, which is the most frequent situation, the 

observed detection rates become even lower. 

10.2.2 Performance	Assessment	of	the	Proposed	Monitoring	Statistics	

To assess the performance of the various methodologies under study, they were applied to 

a modified version of the artificial network originally presented by Tamada et al. (2003) 

[134]. This network is composed by 16 nodes (or variables) causally related according to 

the representation provided in Figure 10.3. In each scenario considered in the following 

examples, 1000 sample covariance matrices were computed based on 3000 observations 

each, taken at regular intervals of time. The sample covariance matrices were then used to 

determine the monitoring statistics and to compute the corresponding fault detection rates 

(true detection and false alarm rates). The same procedure was repeated 10 times in order 

to estimate the confidence levels of the performance indicators (detection rates). The 

control limits for all the monitoring statistics were preliminarily adjusted, by trial and 

error, so that all monitoring statistics present the same false detection rate of 1% under 

normal operation conditions (NOC). This approach to determine the control limits was 

taken since the direct use of their theoretical expressions often fails to produce 

comparable control limits. This situation happens because the underlying assumptions 

behind the monitoring statistics, such as i.i.d. conditions or normal distribution of the 

data, are not met in all data sets. Therefore, by taking such an approach, it is guaranteed 

that a fair and sound comparative assessment of the detection performances of the various 

methods under analysis is conducted. 
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Figure 10.3 Graphical representation of the network structure used in this work. 

10.2.2.1 Stationary	Linear	System	

In this case study, the original variables relationships were linearized according to 

Equations (10.12), where εi is a white noise sequence with a signal-to-noise ratio of 10 dB 

(see Equation (5.8)). This system was then subjected to a set of perturbations, as 

described in Table 10.3, where δ represents a multiplicative factor that causes a change on 

the model’s parameter on the range of ±20%. For the purposes of comparing the 

monitoring statistics, the original variables order was kept for transformation TCh. 

Likewise, the real causal network was also considered in the construction of the sensitive 

enhancing transformation TNet, since it can be easily reconstructed from the data. In 

addition to these SET, the original variables were also used in combination with the 

proposed monitoring statistics.  
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Table 10.3 Definition of the faults and respective variables involved in the network system without dynamics or non-
linearities. δ is a multiplicative factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  ( 1 8 9 11.2 0.80g g g    ) 

B 1 3g g  ( 3 1 30.05 0.22g g    ) 

C 8 10g g  ( 10 8 101 0.40g g    ) 

D 3 14g g  ( 14 3 141 0.40g g    ) 

The distribution of the comparison index (N) over each type of fault is represented in 

Figure 10.4 and the permutation tests for each pair of monitoring statistics are presented 

in Table S1 of the supplementary material (available in the CD attached to this thesis). 

Among the monitoring statistics already proposed in the literature, the W and G statistics 

are the ones presenting the best performances, while the determinant of the sample 

covariance matrix, |S|, is unable to detect any change. The E statistic only performs well 

on fault A, where the perturbation occurs close to the root node of the network and is 

propagated to almost all variables. As the number of variables affected by a fault 

decreases, the performance of the E statistic also degrades. This was an expected result, 

since the E statistic is focused in detecting changes in variance for a fixed correlation 

structure. From these results, the W statistic is chosen as a benchmark against which the 

new proposed statistics will be compared. However, it is important to point out that the W 
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statistic requires the inversion of the covariance matrix (see Equation (4.1)), which in 

some situations may be ill-conditioned or even singular. In such case, a pseudo-inverse or 

a linear transformation of the variables can be performed without changing the statistic 

value, since it is invariant to non-singular linear transformations [82]. The only 

observable change of this modification was on the asymptotic distributional behavior of 

the statistic, which seems to follow now a non-central chi-square distribution. This 

situation reinforces the choice of setting the control limits by trial and error adjustment, 

instead of using the theoretical control limits. 

Regarding the results for the proposed monitoring statistics, one can notice that the 

sensitivity enhancing transformation proved to be a relevant factor in the monitoring task, 

as it significantly increases the statistics performance. In fact, without such 

transformation, the statistics performance is worse than for the W statistic. It is also 

noticeable that without the transformation the use of the partial correlations tends to 

decrease the detection capability of the proposed statistics, especially the ones based on 

MSPC-PCA. 

After applying the sensitivity enhancing transformations most of the proposed statistics 

outperform the current W statistic, with the exception of Cr0,Ch (MSPC-PCA applied to the 

marginal correlation of the transformed variables TCh) which has a similar performance 

(p-value of 0.048). This shows that the use of partial correlations has a relevant effect on 

the MSPC-PCA based statistics, especially for changes of small magnitude and when few 

variables are involved in the fault (faults C and D), i.e., when the fault is rather localized 

in the process. However, these statistics require a significant amount of data in order to 

construct the PCA model for normal operation conditions. 

Regarding the RMAX statistics, it can be concluded that the variables’ transformation also 

improves their performance. The performance of the RMAX statistics with transformed 

variables was always found to be better than the W statistic and also presented a better 

detection capability than the MSPC-PCA statistics. Curiously, the use of partial 

correlations seems to have no effect on the performance of these statistics after variables 

transformation, as both R0MAXNet and R1MAXNet (RMAX applied to marginal and partial 

correlations of the transformed variables TNet, respectively), present a performance index 

(N) consistently close to one, i.e. meaning that higher detection rates are being achieved 

(see Figure 10.4). Moreover, both linear transformations (TCh and TNet) conducted to 
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similar performances, with detection rates slightly higher on the R0MAXNet and R1MAXNet 

statistics. The performance of R0MAXChExt and R1MAXChExt (RMAX applied to marginal 

and partial correlations of the transformed variables TChExt, respectively) was not 

assessed, since in this case study they are essentially equal to their stationary counterparts 

(R0MAXCh and R1MAXCh). 

Figure 10.4 Comparison of the leading statistics performances for the network system with no dynamics and no non-
linearities, with a sample covariance matrix computed from 3000 observations: box-plots of the performance index N 
based on the area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated 
mean values. 

A similar analysis was performed with sample covariance matrices obtained from 100 

observations. The results from this case study are presented in Figure 10.5 and clearly 

show that the number of observations used to estimate de covariance matrix has a great 

impact on the monitoring statistics capability to detect changes on the process structure. 

All the studied statistics presented significant reductions in their performance. This 

decrease is more noticeable on the MSPC-PCA-based statistics, which remains close the 

W statistic but are no longer comparable to any of the RMAX statistics with transformed 

variables. In fact, it is visible that the RMAX statistics continue to be ranked as the best 

monitoring statistics in all faults. Moreover, by cross comparison of Figure 10.4 and 

Figure 10.5 it is observed that the relative performance of the RMAX statistics is also 

much larger than that for the other monitoring schemes. Thus, the RMAX statistics remain 

capable to efficiently detect changes in the correlation structure when the number of 

observation is small and is also less sensitive to variations in this design parameter. 
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Figure 10.5 Comparison of the leading statistics performance for the network system with no dynamics and no non-
linearities with a sample covariance matrix computed from 100 observations: box-plots of the performance index N 
based on the area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated 
mean values. 

10.2.2.2 Dynamic	Linear	System	

A similar analysis was performed with a dynamic version of the same network system 

with the addition of a multivariate time series dependency between variables according to 

Equation (10.13), where εi is a white noise sequence with a signal-to-noise ratio of 10 dB. 

The recovery of the causal network of this system was already addressed in Section 9.2, 

from where only the relationship between variables g1 and g4 was wrongly directed. 

However, as this situation can be mitigated by the use of an addition Cholesky 

decomposition of the residuals in transformation TNetCh, in this study the correct causal 

network is used to construct transformation TNet. Thus, only transformations TCh, TChExt 

and TNet are considered in this study. For the dynamic transformations 3 lags were used. 

All transformations were determined based on a data set of NOC observations. This 

process was subjected to the perturbations presented in Table 10.4, where δ was changed 

to cause perturbations in the range of ±20%. 

The results involving the original variables and transformation TCh are consistent with the 

ones obtained for the stationary case, i.e., the use of uncorrelated variables improves the 

detection capability of the monitoring methods. The main difference is the better 

performance of R1MAXCh relatively to R0MAXCh, even though they show a similar 

performance for the W statistic (see Figure 10.6 and Table S2 of the supplementary 

material). In general, transformation TCh does not contribute to a significant increase on 

the performance of the monitoring statistics, as it does not handles the variables’ time 

dependency, failing to detect changes on the variables dynamics. 
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Table 10.4 Definition of the faults and respective variables involved in the network system with linear dynamics. δ is a 
multiplicative factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  (  1, 8, 8, 1 8, 2 9, 1,1.2 0.60 0.30 0.80t t t t t tg g g g g       ) 

B 1 3g g  (  3, 1, 1, 1 1, 2 3,0.05 0.22 0.40 0.20t t t t tg g g g       ) 

C 8 10g g  (  10, 8, 8, 1 8, 2 10,1 0.40 0.60 0.30t t t t tg g g g       ) 

D 3 14g g  (  14, 3, 3, 1 3, 2 14,1 0.40 0.40 0.60t t t t tg g g g       ) 

On other hand, the use of a transformation with dynamic components (TChExt and TNet) 

overcomes the deficiencies of transformation TCh, by the simultaneous consideration of 

both cross- and auto-correlation. This feature, leads to an increase of the monitoring 

statistics detection capabilities, especially on the case of the RMAX statistics. Again, 

R0MAXNet and R1MAXNet presented a consistently better performance than the other 

monitoring statistics (see Figure 10.6), showing the importance of applying a 

transformation that efficiently breaks the variables’ correlation by taking into account the 

underlying system’s structure. 
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Figure 10.6 Comparison of the leading statistics performance for the network system with linear dynamics with a 
sample covariance matrix computed from 3000 observations: box-plots of the performance index N based on the area 
under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated mean values. 

The impact of the number of observations on the statistics monitoring performance was 

also studied by estimating the sample covariance matrices with 100 observations. The rest 

of the procedure was the same. As in the stationary linear system, the monitoring statistics 

performance decreased as can be seen in Figure 10.7. Again, the R0MAXNet and 

R1MAXNet statistics presented the best overall performance with no significant difference 

between each other. However, the relative performance of the other monitoring statistics 

is greatly diminished. Note that with estimates based on 3000 observations most of the 

monitoring statistics have a similar performance (see Figure 10.6), while with 100 

observations only the RMAX-base statistics remain on top (see Figure 10.7). This 

indicates that the number of observations has a smaller impact on the RMAX statistics, 

making them more suitable for monitoring procedure based on a reduced number of 

observations per sample. 

Figure 10.7 Comparison of the leading statistics performance for the network system with linear dynamics with a 
sample covariance matrix computed from 100 observations: box-plots of the performance index N based on the area 
under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated mean values. 
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10.2.2.3 Stationary	Non‐linear	System	

In this case study, the original non-linear structure of the network system was 

approximated by polynomial relationships according to Equations (10.14), where εi is a 

white noise sequence with a signal-to-noise ratio of 10 dB. By application of the 

identification and causal directionality inference algorithms referred in Chapter 9 to a data 

set with NOC data, the original causal network was obtained (full reconstruction). The 

subsequent variables transformation TNet was then carried out, taken this inferred structure 

into account, and a 3rd order polynomial model was fitted for each variable using the 

identified variables’ parents as regressors. Transformation TChExt was also obtained from 

the same reference data set by adding polynomial terms to the data matrix. These 

transformed variables, along with the original ones, were then used to monitor the process 

structure. The system was perturbed with the faults presented in Table 10.5, where the 

magnitude of change, δ, was set to cause deviations on the model’s parameter on the 

range of ±10%. For each fault the performance index N was obtained, resulting in the 

global distribution shown in Figure 10.8. Similarly, the results of the permutations tests 

are summarized in Table S3 of the supplementary material. 
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Table 10.5 Definition of the faults and respective variables involved in the network system with a non-linear model 
structure. δ is a multiplicative factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  ( 1 8 9 11.20 0.80g g g    ) 

B 1 3g g  (    3 1 1 34 4g g g     ) 

C 8 10g g  ( 2
10 8 8 100.02 0.44 0.82g g g     ) 

D 3 14g g  ( 2
14 3 3 140.020 0.44 0.82g g g     ) 

E 8 11g g  ( 3 2
11 8 8 8 110.053 0.00068 0.52 0.50g g g g       ) 

F 3 15g g  ( 15 3 151.40g g   )

Among the current monitoring statistics, only the E statistics present a good performance 

in detecting fault A, while for the remaining faults, all current statistics (including E) 

present detection rates of less than 0.05. These poor detection capabilities may be 

partially associated with the kind of perturbations simulated, which were made on non-

linear terms or in network boundary nodes. This also explains why the E statistic was 

capable to detect fault A, which occurs close to the root node of the network and is 

propagated to the rest of the network nodes. Given these results, the E statistics was 

chosen as the benchmark for this case study. 

On the other hand, the proposed statistics were generally able to detect the simulated 

faults. Again, the sensitivity enhancing transformations and the use of partial correlations 

increase the detection capability of both MSPC-PCA and RMAX based monitoring 

statistics. Note that even the linear transformation, TCh, leads to great improvements in the 

monitoring statistic based on it (namely, R0MAXCh, R1MAXCh, Cr0,Ch and Cr1,Ch), while 

the W statistic would remain unchanged since it is invariant to any non-singular linear 

transformation [82]. However, due to the system’s non-linear nature, transformations TCh 

and TChExt are not suitable for the RMAX statistics, as the partial correlations do not follow 

their assumed NOC probability distribution. For this case, a more complex transformation 

is required or, alternatively, an estimation of the partial correlations distribution for 

describing their variability. Yet, the use of transformation TNet is preferable because the 

actual variables’ relationships are explicitly considered in its construction. Moreover, 

R0MAXNet and R1MAXNet can detect efficiently most of the simulated faults, with the 

exception of fault D which is detected by VnMAXNet. Hence, transformation TNet is 

adequate for modeling and monitoring this non-linear system, since either RMAXNet or 
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VnMAXNet rapidly detect any structural change, while the current monitoring statistics 

remain mostly under their control limits. 

The MSPC-PCA based statistics are less sensitive to the partial correlations distribution, 

as most of the scores would still approximately follow a normal distribution due to the 

central limit theorem effect induced in the computation of the scores. Nevertheless, the 

RMAX statistics proved to have potential to be applied on non-linear systems and, when 

properly scaled, outperform all the studied statistics.  

As in the previous case studies, the same monitoring procedures were conducted with 

samples covariance matrices estimated from 100 observations. For this case, the 

performance index N remains in line with the ones obtained with 3000 observations. Yet, 

it is still visible that while the RMAX statistics (namely R0MAXNet and R1MAXNet) are 

ranked as the best, the performance of the MSPC-PCA-based statistics is reduced (for 

instance, Cr1,Net is ranked in the 3rd position in Figure 10.8 and in 7th position in Figure 

10.9). 

Figure 10.8 Comparison of the leading statistics performance for the network system with a non-linear model structure 
with a sample covariance matrix computed from 3000 observations: box-plots of the performance index N based on the 
area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated mean values. 
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Figure 10.9 Comparison of the leading statistics performance for the network system with a non-linear model structure 
with a sample covariance matrix computed from 100 observations: box-plots of the performance index N based on the 
area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated mean values. 

10.2.3 Analysis	of	the	SET	in	Non‐linear	Dynamic	Systems	

In this section, the comparative assessment of the monitoring statistics performance is 

conducted with resource to systems presenting dynamic non-linear model structures. This 

class of model structures can be found in real processes and present additional complexity 

features regarding the ones studied before, such as close-loops and bidirectional 

dependencies. In the case studies considered in this section, 500 sample covariance 

matrices were computed and collected for each fault. Each sample covariance matrices 

was calculated from 3000 observations. The fault detection rates were subsequently 

adjusted to a fault detection rate of 1% under normal operation conditions. This procedure 

was repeated 5 times in order to obtain approximate confidence intervals for the fault 

detection rates. 

10.2.3.1 Gene	Network	Model	

The test system considered in this case study was proposed by Fuente et al. (2004) [130]. 

It regards the dynamic modeling of transcription levels (Ti) in a gene network, and 

consists of the following set of differential equations: 
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(10.15) 

where Vi are maximal transcription rates, ki degradation rate constants, Ki inhibition or 

activation constants and θi error terms designed to simulate biological variability. 

Parameters Vi, ki and Ki were set to unity and the error terms (θi) were sampled from a 

normal distribution with zero mean and standard deviation of 0.01. The underlying 

network is represented in Figure 10.10. The recovery of the undirected network from data 

was already addressed by Fuente et al. (2004) [130] through the use of partial 

correlations. As the directions of the edges can also be obtained by analysis of the cross-

correlation between the variables, the complete network was considered in the 

construction of transformations TNet and TNetCh. 

Figure 10.10 Directed network representation of the gene network model. 
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The system was subjected to perturbations on V1, V5, k1 and k5 in a magnitude range of 

±20% and the results obtained appear summarized by the performance index N in Figure 

10.11. The permutation tests are available in Table S4 of the supplementary material. 

Analyzing these results, it is possible to verify that, for this particular system, the current 

monitoring statistics presented higher detection rates than MSPC-PCA and RMAX based 

statistics, regardless of the transformation used. Special emphasis is given to W and G, 

which had the best performances, and to the E statistic, which also indicates that fault 

detection is primarily done at the variables’ variance level. These results are corroborated 

by the raw data where only small changes in the correlation matrix are observed. The 

most significant changes occurred in the process mean, since the faults drive the process 

to a new steady state, and in a lesser extent in the process’ variance. Therefore, as none of 

the partial correlation based statistics account for changes in variance, all of them show 

poor detection performances under these simulated scenarios. These results stress the 

need for the adoption of a complementary monitoring statistic dedicated to supervising 

process variance. 

For detecting a change on the variance, the VMAX statistic was extended to detect both an 

increase and a decrease in process variance. Its direct extension without transformation, 

VnMAXX, showed to be slightly worse than VMAX in detecting increases in variance, due 

to the increase in the control limit. However, when the variance decreases, VnMAXX was 

capable to signal such change while VMAX is unable to detect them at all. Consequently 

VnMAXX is globally better than VMAX when the detection of both an increase and 

decrease is of interest, as can be seen in Figure 10.11. The performance of VnMAX can be 

further improved by use of an appropriated transformation, namely transformations 

TChExt, TNet and TNetCh, which incorporate dynamic dependencies. 

It is important to note that perturbations detected by VnMAX are not only related to 

changes in the variance, but also to changes in the process’ structure when transformed 

variables are used. In this case, if a change in the process’ structure occurs, the 

transformation no longer describes the variables’ relationships correctly. Therefore, non-

accounted contributions will lead to deviations on the transformed variables’ variance, 

which will ultimately be captured by VnMAX. This behavior shows the importance of 

monitoring the variance in order to also detect structural changes, when using SET. 
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Figure 10.11 Comparison of the statistics performance on the gene network model: box-plots of the performance index 
N based on the area under the fault detection curve obtained for all perturbations. Bar heights correspond to the 
associated mean values. 

10.2.3.2 Biologic	Production	of	Ethanol	

This dynamic non-linear system is based in the ethanol production from glucose 

fermentation by Zymomonas mobilis bacteria. One of the models proposed to describe the 

dynamics of this process is the Jöbses’ model [142], given by the following equations: 
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(10.16)

where CS is the substract (glucose) concentration, CX is the biomass (Zymomonas 

mobilis), CP is the product (ethanol) concentration, and CE is an auxiliary variable used to 

account for the lagged effect of ethanol concentration in the kinetic model. The variables 

CS0, CX0, CE0 and CP0 complete the mass balance representing the input concentrations in 

the reactor, where normally only CS0 (substract inlet) is non-zero. The dilution rate (D) is 

the inverse of the resident time. The reactor volume was kept constant and all the 

remaining parameters are listed in Table 10.6. Only CS, CX and CP were considered to be 

measured variables. 
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Table 10.6 Jöbses’ model parameters. 

Parameters Values Unit 

EK 0.00383 m6 kg-2 h-1

1c 59.2085 kg m-3 

2c 70.5565 kg m-3 

SK 0.500 kg m-3 

Sm 2.160 kg kg-1 h-1 

Pm 1.10 kg kg-1 h-1 

SXY 0.02445 kg kg-1 

PXY 0.05263 kg kg-1 

max 1.0 h-1 

The system model represented by Equation (10.16), can be translated into the causal 

network presented in Figure 10.12 (a). This representation clearly shows a complex 

relationship between variables, as they are all directly or indirectly linked by close-loops. 

The reconstruction of the correct dependency between the variables connective structure 

has an impact in the monitoring statistics, since the derivation of the sensitivity enhancing 

transformations depends on this map.  

(a) (b)
Figure 10.12 Jöbses’ model network: (a) the original causal network, (b) the estimated causal network. Circles 
represent measured variables and rectangles unmeasured variables. 



Off-line Monitoring of the Process Correlation Structure 

191 

All the variable transformations described in Chapter 9 were determined based on a data 

set collected under normal operation conditions. In what concerns to transformation 

TChExt, no particular order was considered for the variables. As for transformations TNet 

and TNetCh, the algorithm developed for identifying the variables edges and dependencies 

(see Chapter 9) led to the graph shown in Figure 10.12 (b). The differences between the 

reconstructed network and the real one (presented in Figure 10.12 (a)), lie essentially in 

the fact that only one direction is considered together with the absence of the unmeasured 

variable, CE. However, even with these structural mismatches, the transformations are 

able to break the major cross- and auto-correlations present in the original data. 

In order to compare the monitoring statistics performance, the system was subjected to 

changes on c1, KS and YSX. The range of the perturbations was of ±25% for c1 and YSX and 

±50% for KS. As in the previous case studies, the performance index N (Figure 10.13) and 

permutations tests (Table S5 in supplementary material) were computed and saved for 

analysis. 

Looking to the current monitoring statistics, the W and G statistics were the ones that 

presented the best performance. However none of the current monitoring statistics 

successfully detect faults on KS and YSX, leading to fault detections rates below 0.05. On 

the other hand, most of the proposed monitoring statistics are able to signal all the 

simulated faults. Only the statistics based on the original variables (TX) presented poor 

detection capabilities. This result is expected as the TX variables are highly correlated, 

and therefore changes in their values are difficult to detect. The effect of cross- and auto-

correlation is eliminated through the use of the transformation TChExt, which includes 

time-shifted variables on the Cholesky decomposition. This is the simplest among the 

three proposed sensitivity enhancing transformations for dynamic systems and 

consequently both TNet and TNetCh transformations present even better performances, since 

they make use of more information about the variables’ relationships. Regardless of the 

type of transformation adopted, the MSPC-PCA based monitoring statistics have in 

general better performances than RMAX. However, different monitoring statistics tend to 

have similar performances when computed over the same transformation, indicating that 

in this case study, the type of transformation is more relevant than the monitoring 

statistics used. 
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Figure 10.13 Comparison of the statistics performance on the Jöbses’ model: box-plots of the performance index N 
based on the area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated 
mean values. 

The main difference between transformations TNet and TNetCh is the additional Cholesky 

decomposition performed over the final residuals in TNetCh. This extra step ensures that 

the obtained variables are indeed uncorrelated and accounts for any relationship that is 

not being considered by TNet. This characteristic gives some robustness to the proposed 

methodology, since it accommodates certain limitations in the estimation of the true 

underlying causal network. As stated before, the retrieved causal network for this case 

study is substantially different from the real one. Yet, with transformation TNetCh, the 

effects of the missed interactions are mitigated and an increase in the monitoring statistics 

performance is observed (see Figure 10.13). This shows that the proposed monitoring 

statistics based on this type of SET presents a reasonable degree of robustness, a useful 

feature in real world practical applications. 

10.2.3.3 Continuous	Stirred‐Tank	Reactor	model	

A dynamic model of a continuous stirred-tank reactor (CSTR) with a heating jacket and 

under feedback control was used to further assess the monitoring statistics performance. 

In this system, an endothermic reaction of the type A B  takes place in the CSTR with 

free discharge flow. The system is schematically represented by Figure 10.14. In this 

representation, CA0 (feed stream concentration) T0 (feed stream temperature) and Tj0 

(heating fluid inlet temperature) are the system inputs. Likewise, h (CSTR level), CA 

(concentration of compound A), T (CSTR temperature) and Tj (heating fluid outlet 

temperature) are the system outputs. 
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Figure 10.14 Process flow diagram for the CSTR system. 

The transformations were determined based on a reference data set where the process was 

operating under normal conditions. Transformation TChExt with 2 lags for all variables was 

employed in order to model the dynamic features of the data. For transformations TNet and 

TNetCh, the identification of the linked variables and their directionality was determined by 

the data-driven algorithms referred in Chapter 9, even though the real variables 

connections were known in this case from the process flowsheet (Figure 10.15 (a)). The 

connections identified are presented in Figure 10.15 (b). These connections lead to a 

transformation TNet that breaks most of the cross- and auto-correlation. Yet some residual 

correlations are observed which justifies the implementation of the Cholesky 

decomposition over the residuals (transformation TNetCh). 

In order to compare the performance of the monitoring statistics, the system was 

subjected to several perturbations, namely on the heat transfer coefficient, discharge 

coefficient, pre-exponential factor and valve’s time constant (for which a 1st order 

dynamic model was assumed). The results are presented in Figure 10.16 by the 

performance index N. The permutation test results are given in Table S6 of the 

supplementary material. 
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F0
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CA0

TT0

Tj Tj0FjvFj

h

(a) 

(b) 
Figure 10.15 Causal network for the CSTR system: (a) the original causal network, (b) the estimated causal network. 
Circles represent measured variables and rectangles unmeasured variables. 
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In this case study, the current monitoring statistics were only capable to detect faults on 

the discharge coefficient and decreases on the heat transfer coefficient while the proposed 

monitoring statistics based on transformations TChExt, TNet and TNetCh detected most of the 

faults, even for changes of small magnitude. Transformation TNet led to the lowest 

performance statistics due to its difficulty to detect changes on the heat transfer 

coefficient and valve’s time constant. On the first case (heat transfer coefficient), the 

MSPC-PCA and RMAX showed rather inconsistent results, as the fault detection curve 

was not monotonically increasing. However, the complementary VnMAXNet statistic leads 

to good results, indicating that this particular fault affects primarily the variance of the 

transformed variables. Recall that when transformed variables are used, the VnMAX 

statistic is also capable to detect changes in the process’ structure as a result of model 

mismatch. This situation also reveals the necessity of this complementary statistic: a 

combination of RMAX and VnMAX with the transformation TNet, leads to performances 

that are similar to other transformations. 

Transformation TChExt is the second best transformation, yet it fails to detect faults on the 

valve’s time constant. These perturbations were not detected by most of the studied 

monitoring statistics. Since this fault is related to the time that the control valve takes to 

respond to a control action, changes on the valve’s time constant are translated into hard 

to detect time delays. Therefore, the detection of this fault relies in the transformation 

capability to model the system dynamics. Transformation TNetCh (which differs from 

transformation TNet only by an additional Cholesky decomposition) was the only one 

leading to monitoring statistics with good detection capabilities to changes on the valve’s 

time constant, improving substantially their performance on the other faults. The 

monitoring statistics based on Transformation TNetCh were also consistently better, namely 

R0MAXNetCh and R1MAXNetCh (see Figure 10.16), which confirms the potential of partial 

correlations to detect structural changes, especially when coupled with suitable variables 

transformation. 
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Figure 10.16 Comparison of the statistics performance on the CSTR system: box-plots of the performance index N 
based on the area under the fault detection curve obtained for all perturbations. Bar heights correspond to the associated 
mean values. 

10.3 Discussion	

The statistical process control of process multivariate dispersion is mostly done by 

analysis of either the generalized variance, likelihood test ratio or other dispersion 

measures that only considers the marginal distributions of process data. Therefore, the 

resulting monitoring statistics have a small resolution of the process inner structure and 

are unable to detect localized changes. This feature becomes more evident when the 

system cannot be assumed to be fairly linear around its operation state, a situation where 

such methods can perform quite poorly (e.g., for dynamic non-linear systems). To 

improve the ability to detect such structural faults in complex systems, the use of partial 

correlations as a measure of the variables local association was explored. This study 

showed that monitoring schemes based on partial correlation information obtained from 

process data can in fact improve the ability to detect changes in the process’ structure.  

However, the performance of the resulting monitoring statistics is dependent upon several 

factors. The most important one is the type of data transformation implemented. 

Therefore, the use of a sensitivity enhancing transformations for monitoring the variables’ 

correlation structure is one of the most relevant contributions of this work. The 

application of these sensitivity enhancing transformations lead to a new set of 

uncorrelated variables that account from the process structure and, due to their 

uncorrelated nature, make the fault detection easier. Moreover, as the system is subjected 

to a fix model, any drift from the reference model can also be perceived as a structural 
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change. These types of faults are essentially translated into changes in variance and can 

be detected by an extended version of the current monitoring statistic VMAX. The 

proposed extension, VnMAX, is capable to detect both increases and decreases in 

variance, complementing the RMAX statistics in such a way that any structural change is 

detected by at least one of them. A particular example of this situation is illustrated in the 

case study of Section 10.2.2.3, where R0MAXNet and R1MAXNet do not detect fault D, 

while VnMAXNet was able to detect it. The way VnMAX is constructed also facilitates its 

combination with RMAX into a single monitoring statistic of the form 

 max ,SMAX RMAX VnMAX , since the variance and partial correlations are 

transformed into the same reference distribution, i.e., a normal distribution with zero 

mean and variance one. The combined use of these statistics will enable to monitor the 

full spectrum of structural changes conveyed by both VnMAX and RMAX. Yet, on this 

study, they were treated separately to clarify and understand their complementariness. 

Both approaches for monitoring the process structure (MSPC-PCA-based and RMAX) had 

their performance improved when a sensitivity enhancing transformation based on partial 

correlations was used. The effect of the partial correlations was more noticeable on the 

MSPC-PCA-based statistics. Regarding the RMAX approach, the monitoring of the 

marginal correlation by R0MAX or of the 1st order partial correlations by R1MAX, seems 

to be statistically similar after application of a sensitivity enhancing transformation. This 

situation arises from the close relationship between these two measures but most 

importantly, because of the fact that the transformed variables are inherently uncorrelated, 

which means that there is no effect in controlling any pair of variables by a third one. 

Still, the inner process structure is explored, since the transformed variables result from 

the application of a model based on partial correlation, which are well-known by their 

capability to uncover the variables relationships. Furthermore, the whole concept of 

partial correlations is based on the regression residuals obtained by controlling two 

variables by a set of other. Consequently, the marginal correlation of the transformed 

variables can, to some extent, be considered as partial correlations of the original 

variables. 

The major disadvantage of the proposed monitoring statistics is the amount of data 

required to construct the NOC PCA model (MSPC-PCA-based approach) and the 

requirement that all partial correlations follow the same distribution (RMAX). The latter 



Part IV – MSPC – Off-line and On-line Monitoring of the Process Correlation Structure 

198 

issue can be solved through the use of a proper data sensitivity enhancing transformation 

or by adopting an estimation procedure for defining the empirical distribution of the 

coefficients. 

The number of observations used to estimate the sample covariance matrix is another 

relevant factor. For all the monitoring statistics, the performance decreases as the number 

of observations decrease, but their relative performance is maintained in general. The 

only exception regards the MSPC-PCA-based statistics which no longer outperform the 

W statistic when a small number of observations is used. The RMAX statistics showed to 

be less sensitive to this factor. This feature makes the RMAX family of statistics suitable 

candidates to on-line monitoring when coupled with an adequate sensitivity enhancing 

transformation. 

Regarding fault diagnosis based on marginal and partial correlations, a simple analysis of 

the marginal correlations falling outside some pre-established threshold can give an 

indication of the variables involved and fault location. However, since the marginal 

correlation does not distinguish between directly from indirectly related variables, the 

variables involved may not be correctly identified in this way. This situation is 

exemplified in Figure 10.17 (a) for the stationary linear system of Section 10.2.2.1, 

regarding fault A (change in the relationship between variables 1 and 8) with a 

multiplicative factor δ of 1.20. To improve the diagnostic properties, 1st order partial 

correlations can be used. To do so, the number of partial correlations with values above 

the threshold is counted, with the ith variable controlled. The controlled variable that gives 

the lowest count can then be considered as being related with the fault, based on the 

reasoning that if the faulty variable is controlled, then the corresponding partial 

correlations will remain under control, as a result of removing the faults origin. For the 

same fault described earlier the distribution of the number of partial correlations obtained 

by this procedure unequivocally selects the correct cause in about 90% of the cases, as 

can be seen in Figure 10.17 (b). Similar results are obtained in other faults, such as fault B 

represented in Figure 10.18. This fault is a result of a relationship change between 

variables 1 and 3, yet, by analysis of the marginal correlation, the correlations involving 

variables 13, 14 and 15 are above the threshold more frequently (see Figure 10.18 (a)). 

Even though these variables are directly dependent on variable 3, they do not identify the 

correct root case. On the other hand, variable 1 is identified as the root cause when partial 

correlations are employed (see Figure 10.18 (b)). These results, clearly suggest that 
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partial correlations can help in the isolation of the root cause more efficiently, as a result 

of conveying more localized information. Furthermore, in order to apply such procedure, 

it is recommended to use R1MAX to monitor the process, since it guarantees that at least 

one partial correlation coefficient is out-of-control, if a threshold equal to the monitoring 

statistic UCL is used. 

(a) (b)
Figure 10.17 Percentage of instances that each variable was identified as the faults’ root case on fault A (i.e., on the 
change of the relationship between variables 1 and 8), with δ = 1.20, for the stationary linear system, in a total of 1000 
cases. The thresholds used by both methods were set for the same statistical significance of 0.01. The plot on the left (a) 
presents the identification results for the diagnosis based on marginal correlation, whereas the plot on the right (b) 
regards the use of the proposed procedure based on partial correlations. 

(a) (b)
Figure 10.18 Percentage of instances that each variable was identified as the faults’ root case on fault B (i.e., on the 
change of the relationship between variables 1 and 3), with δ = 1.10, for the stationary linear system, in a total of 1000 
cases. The thresholds used by both methods were set for the same statistical significance of 0.01. The plot on the left (a) 
presents the identification results for the diagnosis based on marginal correlation, whereas the plot on the right (b) 
regards the use of the proposed procedure based on partial correlations. 
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10.4 Conclusions	

In the present study several monitoring statistics based on the use of partial correlations 

were proposed in order to detect changes in the process’ structure. These monitoring 

statistics were applied to systems with different degrees of complexity, including linear, 

dynamic and non-linear systems and compared with the current statistics for monitoring 

process multivariate dispersion. Furthermore, several sensitivity enhancing 

transformations were considered with the goal of improving the methods performance 

regarding their ability to detect several types of process changes. 

In general, the proposed statistics present higher detection sensitivities for the same false 

alarm rate, especially when only few variables are affected by the faults, making more 

difficult their detection. It was also showed that the use of sensitivity enhancing 

transformations that break the variables’ correlation based on their causal structure is a 

key element for improving the fault detection capability. 

The characteristics of the RMAX family of statistics make them suitable to detect changes 

in the process’ structure even when few observations are collected. However, they do not 

account for changes in the variance and therefore should be complemented with a 

monitoring statistic that follows this particular feature. This can be done by application of 

the proposed VnMAX statistic. This monitoring statistic is a generalization of the current 

VMAX statistic, and it is able to detect both changes in variance and in the process 

structure, since model deviations lead to changes in the transformed variables variance. 

This result is another indication that the sensitivity enhancing transformations increase 

the sensitivity to detect changes in correlation, through RMAX, and simultaneously assess 

the model validity, through VnMAX. These two monitoring statistics (RMAX and VnMAX) 

can be easily combined into a single monitoring scheme, able to detect both types of 

deviations and therefore consolidate the detection of structural changes through a unified 

monitoring scheme. 

The proposed monitoring statistics also proved to be statistically superior when compared 

to the current monitoring statistics tested, which makes this approach a feasible solution 

worthwhile considering in practical applications. The development of similar monitoring 

schemes for on-line monitoring will be considered in Chapter 11. 
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11 On‐line	 Monitoring	 of	 the	 Process	

Correlation	Structure	

As mentioned in the previous chapter, the few approaches for monitoring multivariate 

process’ variability currently available are based on subgroups and usually employ either 

the generalized variance (the determinant of the covariance matrix) (e.g. [70-72]) or 

likelihood ratio tests (e.g. [69, 75, 76]). Other related approaches based on the conditional 

entropy [73], vector variance (which is the sum of the squares of all eigenvalues of the 

sample covariance matrix) [74] and independent components obtained from the 

decomposition of the sample covariance matrix [78] have also been proposed. As these 

methodologies are strictly based on the marginal covariance, they have little resolution to 

detect small localized deviations in the intrinsic relationships between process variables. 

Their on-line versions (i.e., based on individual observations) are also subjected to the 

same constrains, since they are also based on estimates of the marginal covariance. 

In the case of on-line monitoring, the sample covariance matrix can be estimated by either 

employing a moving windows approach or an EWMA recursion scheme as proposed by 

Yeh et al. (2005) [79] and Huwang et al. (2007) [80]. The latter approach is more 

commonly used and is the foundation of several multivariate monitoring schemes that 

simple analyze the trace of the covariance matrix [80], squared deviations from target [79, 

87] or their likelihood ratio statistic [82].

More sophisticated monitoring schemes were proposed by Reynolds and Cho (2006) [81], 

who monitors the Mahalanobis distance of the EWMA recursion applied to the squared 

deviations from target and by Bodnar et al. (2009) [88], where the estimate of the 

covariance matrix is decomposed into a set of vectors that can then be monitored by 

typical multivariate control charts for process location. 

Nevertheless, all the monitoring statistics mentioned above only use the information 

conveyed by the marginal covariance matrix and do not take into consideration the inner 

connectivity structure of the process. For the case of off-line monitoring, addressed in 

Chapter 10, it has been demonstrated the usefulness of partial correlations in the detection 

of structural changes, namely through a control chart that takes the maximum partial 
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correlation, in absolute value, as a monitoring statistic (RMAX statistic), properly 

complemented with the monitoring statistics for the variance (VnMAX statistic). In this 

chapter, the application scope of the RMAX and VnMAX statistics is extended to on-line 

monitoring through the use of an EWMA recursion scheme to update the estimate of the 

covariance matrix using each new multivariate observation collected from the process. 

11.1 The	RMAX	and	VnMAX	Statistics	for	On‐line	Monitoring	

The RMAX and VnMAX statistics were first introduced in Chapter 10 in the context of off-

line monitoring of the process correlation structure. It was demonstrated that both RMAX 

and VnMAX presented good monitoring characteristics, which makes them natural 

candidates to consider in the development of improved monitoring methodologies for on-

line use. Among these characteristics, the higher detection performance and lower 

dependency on the number of observations used in the estimation of the sample 

covariance matrix, should be highlighted. The latter one is perhaps the most important 

when an on-line monitoring scheme is considered, since the requirement of a large 

amount of observations to compute the sample covariance also means higher delays in 

fault detection. The number of observations also plays a major role in the normalization 

functions that transform the observed partial correlations and variances into approximate 

i.i.d. N(0,1) distributions.  

Although a moving windows approach would be the natural extension of the proposed 

methodology, an on-line estimation of the covariance matrix through an EWMA recursive 

updating scheme is preferable, since it does not require the storage of a set of n past 

observations and its implementation is also considerably faster. Moreover, the EWMA 

recursion scheme is extensively applied to estimate the marginal covariance, as can be 

seen from the literature review presented in Section 4.2. Therefore, in the proposed on-

line procedures, the sample covariance will be estimated by an EWMA recursion 

procedure. One of such recursion was proposed by Yeh et al. (2005) [79] and is given by, 

 T
11t t t t    S x x S   (11.1) 

where 0 < λ < 1 is a forgetting factor and it is assumed that the mean is constant and equal 

to zero. From this definition, it can be shown that St is a positive definite matrix when 
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t m  [79]. Alternatively, the approach of Huwang et al. (2007) [80] can be employed. In 

this case, the process mean is assumed to vary over time and therefore an estimation of its 

level should also be considered, resulting in an estimation of the covariance matrix given 

by, 

    T

11t t t t t t      V x y x y V   (11.2) 

  11t t t    y x y   (11.3) 

where 0 < λ < 1,   T

0 1 1 1 1– –V z y z y , 0 < ω <1 and y0 = 0. For t ≥ m, Vt is a positive 

definite matrix and   2( )2 1– / ( – )2tE  V Σ  as t  . Therefore 

2( ) [ (2 – / 2 1– ) ] t  V  can be used to estimate the covariance matrix [80]. 

Even though an EWMA recursion scheme is adopted in this study, it is worth noticing 

that an equivalence relationship was found and developed for the RMAX and VnMAX 

statistics between a moving window of length n (either non-overlapping windows or 

moving windows) and an EWMA recursion scheme with a forgetting factor λ. This 

equivalence relationship will be described in detail in Chapter 12. From this relation, it 

becomes possible to establish a conceptual scheme that allows the transfer of most of the 

monitoring statistics properties between the off-line and on-line monitoring scenarios. 

Moreover, a new normalization function can be derived for the partial correlations and 

variances as follows, 

2
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(11.5)

where r is the sample partial correlation coefficient, s2 represent the samples variance, 2
0

is the in-control variance and λ is the forgetting factor of the EWMA recursion used to 

estimate the correlation matrix. By application of Equations (11.4) and (11.5) the partial 
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correlations and variances become approximately distributed as N(0,1) and can then be 

monitored by, 

    0 00 maxr rR MAX w w


 r r (11.6) 

    1 11 maxr rR MAX w w


 r r (11.7) 

    maxs sVnMAX w w


 v v (11.8) 

where r0 is the ( ( )–1 / 2) 1m m   column vector of correlation coefficients, r1 is the 

( –1)( – 2 1( 2)) /m m m   column vector of 1st order partial correlation coefficients and v is 

a ( 1m ) column vector containing the variables’ variance. 

As two different EWMA recursions can be used (St, from Equation (11.1) and Vt from 

Equation (11.2)), as well as four different sets of variables, depending on the SET 

presented in Chapter 9 (original variables, TZ; transformed variables based on the process 

causal network using a stationary model, TNetLin; transformed variables based on the 

process network using a dynamic model, TNetDyn; and transformed variables based on the 

process network using a dynamic model with an additional Cholesky decomposition of 

the residuals, TNetDynCh), twenty four monitoring statistics are obtained. Moreover, the 

effects of the SET is also assessed when applied in combination with the M1Z
2 monitoring 

procedure proposed by Reynolds and Cho (2006) [81]. Thus, a total of twenty seven new 

monitoring schemes were studied in this work. A summary of these monitoring statistics 

is given in Table 11.1. 

Table 11.1 On-line monitoring statistics considered in this study. 

Base 
statistic 

EWMA 
recursion 

Sensitivity enhancing transformation 
TZ TNetLin TNetDyn TNetDynCh 

M1Z
2 – – 2

1 NetLinM Y 2
1 NetDynM Y 2

1 NetDynChM Y

VnMAX 
St ,S ZVnMAX ,S NetLinVnMAX ,S NetDynVnMAX ,S NetDynChVnMAX

Vt ,V ZVnMAX ,V NetLinVnMAX ,V NetDynVnMAX ,V NetDynChVnMAX

R0MAX 
St ,0 S ZR MAX ,0 S NetLinR MAX ,0 S NetDynR MAX ,0 S NetDynChR MAX

Vt ,0 V ZR MAX ,0 V NetLinR MAX ,0 V NetDynR MAX ,0 V NetDynChR MAX

R1MAX 
St ,1 S ZR MAX ,1 S NetLinR MAX ,1 S NetDynR MAX ,1 S NetDynChR MAX

Vt ,1 V ZR MAX ,1 V NetLinR MAX ,1 V NetDynR MAX ,1 V NetDynChR MAX
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11.2 An	 Extensive	 Comparative	 Assessment	 of	 On‐line	 Monitoring	

Methodologies	for	the	Process	Correlation	Structure	

In this section, the proposed monitoring statistics are compared against their current on-

line counterparts described in Section 4.2, based on the evaluation of their average run 

length (ARL), i.e., the average number of samples between the fault’s start and is 

detection. Several case studies were considered, representing different degrees of 

complexity. Since it is expected that the ARL decreases monotonically with the increase 

of the faults magnitude, a performance index based on the area under the ARL curve (i.e., 

the integral of the curve ARL versus fault’s magnitude) is considered as a suitable 

measurement to summarize the relative performance of the studied monitoring statistics. 

This index in normalized so that it falls in the range of [0 1] where 1 represents the best 

performance observed. 

In each perturbation studied in the following examples, the ARL were determined based 

on 3000 simulations, leading to 3000 run lengths. For the MCUSUM based statistics, the 

reference parameter k was set as [0.34 0.68 1.02 1.36 1.70] and for the MEWMA based 

statistics the forgetting factor λ was [0.01 0.02 0.03 0.04 0.05] (for the EWMA recursion 

with correction of the mean value, ω was set to 0.20, as this value was the original value 

recommended by the authors and also used in other published studies). This range of 

values allows the determination of which of them is more suitable to detect faults with a 

given monitoring statistic. The final performance comparison is conducted with the 

parameter that led to the best results in each monitoring statistic. 

The control limits for all the monitoring statistics were set by trial and error adjustment 

based on a NOC data set, to an in-control ARL0 of 370. This approach to determine the 

control limits was taken because the monitoring statistics often violate their underlying 

assumptions, and therefore the theoretical limits usually do not correspond to the 

observed ones. 

11.2.1 Artificial	Network	

To assess the performance of the proposed statistics, they were applied to adaptations of 

the artificial network presented by Tamada et al. (2003) [134]. From Chapter 10, recall 
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that this network is composed by 16 variables related according to the representation 

shown in Figure 10.3. The mathematical expressions describing the systems’ variability 

were set in order to obtain three distinct scenarios with different degrees of complexity 

(stationary linear, dynamic linear and stationary non-linear). These systems, along with 

the main results, are fully described in the following sections. 

11.2.1.1 Stationary	Linear	System	

In this section, a stationary linear version of the base system is considered, as previously 

described in Section 10.2.2.1. For this case study, only the sensitivity enhancing 

transformation TNetDyn was used, since the system is already linear and the obtained 

transformed variables are completely uncorrelated without the need of an additional 

Cholesky decomposition. This SET was determined based on NOC data and the real 

causal network, since it was found that it can be easily recovered from the data by 

application of the algorithms presented in Chapter 9. The system was then subjected to 

the set of perturbation described on Table 11.2, where δ represents a multiplicative factor 

that introduces a change on the original relationship. This factor was varied in the range 

of 0.80 to 1.20 for all faults. The results obtained are summarized in the performance 

comparison index N represented in Figure 11.1. The permutation tests between each pair 

of monitoring statistics studied in this case study are displayed in Table S7 of the 

supplementary material. 

Table 11.2 Definition of the faults and respective variables involved in the stationary linear system. δ is a multiplicative 
factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  ( 1 8 9 11.2 0.80g g g    ) 

B 1 3g g  ( 3 1 30.05 0.22g g    ) 

C 8 10g g  ( 10 8 101 0.40g g    ) 

D 3 14g g  ( 14 3 141 0.40g g    ) 

Among the current monitoring statistics, the MEWMAt and M1Z
2 were the ones that 

presented the best performance, having in general a similar behavior as can be seen in 

Figure 12.2. For most faults, M1Z
2 outperforms all the other monitoring statistics. 
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However, in fault A, M1Z
2 was unable to detect the decreases in correlation in an efficient 

way. This particular fault occurs close to the root node, and most of the variables are 

affected by it, presenting both changes in correlation and variance. Furthermore, the 

perturbations induced similar deviations in the variance, in both increase and decrease of 

magnitude. Therefore, as M1Z
2 is primarily looking for changes in variance, through their 

Mahalanobis distance, it should react in a symmetric way in both directions. Yet, this was 

not the observed behavior, indicating that the performance of M1Z
2 is dependent on the 

fault’s location and direction (namely decreases in variance, as reported by Reynolds and 

Cho (2006) [81]), and therefore unsuitable for some types of faults. A more evident case 

were the M1Z
2 statistic also fails in the detection task, is when a structural change occurs 

without any change in the overall variables’ variance, as will be exemplified later. 

On the other hand, MEWMAt presented a consistent performance, regardless of the fault 

location or direction. The performance of the MEWMAt statistics is rapidly followed by 

the RMAX proposed monitoring statistics, namely the ones that use transformed variables 

(for instance, R0MAXS,NetDyn). Special notice is given for fault A, where R0MAXS,NetDyn 

presented a better performance than the other monitoring statistics. Again, in this case, 

there are multiple variables affected by the fault, and therefore multiple correlation 

coefficients experience a substantial change, which increases the probability of 

R0MAXS,NetDyn to signal a fault. Regarding the proposed monitoring statistics, it is also 

worth pointing out the poor performance of VnMAXS,NetDyn and M1Y
2

NetDyn. Since these 

monitoring statistics are directly related to the transformed variables’ variance, their low 

capability to detect faults indicate that the transformed variables have small changes at 

the variance level, which supports the idea that the fault is occurring on the process’ 

structure and that a simple replacement of variables used on the current schemes 

(explicitly M1Z
2) is not enough. The performance of the proposed monitoring statistics 

was also similar when either the 0th order correlation or 1st order partial correlations were 

used. This feature results from the application of the sensitivity enhancing transformation, 

which in this case, uses the process structure to obtain uncorrelated variables. Therefore, 

as the process structure is considered to construct linear regressions, the 0th order 

correlation of the transformed variables can, in some extent, be considered as partial 

correlations of the original variables, which justifies the similar behavior found for 0th 

order correlation or 1st order partial correlations. 
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Figure 11.1 Comparison of the statistics performance on the stationary linear system: box-plots of the performance 
index N based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

Another important observation is the lower performance of monitoring statistics that 

actually consider the full marginal covariance matrix (MaxD and ct) and uncorrelated 

variables (MEWMS, M1A
2 and M2A

2) to detect faults. These results highlight the need for 

a proper variable transformation and the benefits of considering partial correlations to 

measure process structural changes. 

To better exemplify the robustness of the proposed monitoring statistics, an additional 

fault was studied, by creating a perturbation on the relationship between variables g1, g8 

and g9 in such a way, that any change on the relation g8 → g1 is compensated by g9 → g1 

in order to maintain the variance of g1 close to its target value (by defining 

 2
1 8 9 11.2 0.80 1 2.25 1g g g       ). The results for these perturbations are 

presented in Figure 11.2. From the analysis of Figure 11.2 it becomes clear that M1Z
2 is 

unable to detect this type of fault. In fact, the monitoring statistics that presents the best 

performance is M1A
2, which uses regressed-adjusted variables to obtain uncorrelated 

variables. Yet, this transformation cannot efficiently detect the other faults studied 

previously. The same happens with the proposed transformation in the M1Y
2

NetDyn statistic. 

Consequently, none of the M1Z
2 based procedures can detect the overall variety of faults 

related with structural changes. The only monitoring statistics that maintained their 

capability to detect this type of fault were MEWMAt and the proposed R0MAXS,NetDyn 

statistics, the latter one presenting a clearly more rapid response. 
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Figure 11.2 ARL of the most relevant monitoring statistics for a change on the relationship between g1, g8 and g9 while 
maintaining the variance of g1 close to its target value. δ represents the magnitude of the change caused on the variables 
relationships. 

These results indicate that, although the RMAX based statistics have a slightly lower 

performance, their detection capability remain consistent and symmetric to both increases 

and decreases throughout multiple faults with different characteristics. Furthermore, 

RMAX is not subjected to mathematical and numerical instabilities that may arise on the 

other monitoring statistics, due to, for instance, the inversion of the covariance matrix, as 

happens on the M1Z
2 and MEWMAt statistics. 

11.2.1.2 Dynamic	Linear	System	

As most systems present dynamic features, the second modification of the base network 

relationships includes time dependency by addition of moving average (MA) terms 

between the variables. These modifications gave rise to the mathematical expressions 

already presented in Section 10.2.2.2. Uncorrelated variables were obtained after 

application of the sensitivity enhancing transformations TNetLin, TNetDyn and TNetDynCh. 

These SET were determined based on the full causal network and a data set of NOC 

observations, with up to three lags for the case of dynamic transformations. This system 

was subjected to the faults indicated on Table 11.3 for changes in the multiplicative factor 

δ on the range of 0.80 to 1.20. The subsequent results are summarized in Figure 11.3, 

where the distribution of the performance index N is depicted, while the permutation test 

results are presented in Table S8 of the supplementary material. 

1 1.05 1.1 1.15 1.2
0

100

200

300

400

500

A
R

L



 

MEWMA
t
 ( = 0.01)

M
1
Z2 ( = 0.02)

M
1
A2 ( = 0.01)

M
1
Y2

NetDyn
 ( = 0.04)

R0MAX
S,NetDyn

 ( = 0.02)

VnMAX
S,NetDyn

 ( = 0.01)



Part IV – MSPC – Off-line and On-line Monitoring of the Process Correlation Structure 

210 

Table 11.3 Definition of the faults and respective variables involved in the network system with linear dynamics. δ is a 
multiplicative factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  (  1, 8, 8, 1 8, 2 9, 1,1.2 0.60 0.30 0.80t t t t t tg g g g g       ) 

B 1 3g g  (  3, 1, 1, 1 1, 2 3,0.05 0.22 0.40 0.20t t t t tg g g g       ) 

C 8 10g g  (  10, 8, 8, 1 8, 2 10,1 0.40 0.60 0.30t t t t tg g g g       ) 

D 3 14g g  (  14, 3, 3, 1 3, 2 14,1 0.40 0.40 0.60t t t t tg g g g       ) 

Regarding the current monitoring statistics, M1Z
2, MEWMAt and D2,S are the ones 

presenting the best performance through all the simulated faults in this case study. The 

proposed RMAXNetDyn and RMAXNetDynCh statistics only outperform the current ones on 

fault B, showing a slightly worse performance on the remaining faults. The performance 

of these monitoring statistics is generally followed by the use of RMAX with the 

stationary linear transformation (RMAXNetLin) and only afterwards by the remains schemes 

(both current and proposed). These performances ranking suggests that the variables 

transformation can indeed enhance fault detection. However, they require a new 

procedure to monitor the correlation, since the combination of transformed variables and 

M1Z
2 (applied on the monitoring statistic M1Y

2
NetDynCh) was not particularly suitable for 

such task, since it even lowers the detection power of the M1Z
2 scheme (see Figure 11.3). 

This is however an expected result, since the simulated faults are related with the process 

correlation, which is not captured by this monitoring statistic. Likewise the VnMAX base 

monitoring statistics also presented a low detection capability, indicating that on the 

transformed variables, the faults are more visible as structural deviations rather than in 

deviations from their target value. This type of behavior allows for a better isolation of 

the root case, since RMAX is only affected by changes in the process structure, while 

M1Z
2 depends on correlation, variance and mean deviations. Note that VnMAXS,Z also 

shows a relatively high performance, which sustains the idea that significant changes on 

the variance of the original variables is also occurring. 

The sensitivity enhancing transformations were found to be the most relevant factor 

contributing to the monitoring statistics performance, with the higher performances 

obtained with TNetDyn and TNetDynCh. These two transformations include time-shifted 

variables that allow for a better description of the systems and therefore a better detection 

of structural changes than the monitoring statistics based on the stationary transformation 
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TNetLin. The use of the variables transformations also lead to similar results when either 0th 

order or 1st order partial correlations are used, since this transformations produce 

uncorrelated variables, making the use of 1st order partial correlations redundant for 

detection purposes. 

Figure 11.3 Comparison of the statistics performance on the dynamic linear system: box-plots of the performance index 
N based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

11.2.1.3 Stationary	Non‐linear	System	

To better represent the original non-linear structure of the studied system, the variables 

relationships were approximated by polynomials according to the description provided in 

Section 10.2.2.3. The system was then subjected to the faults presented in Table 11.4, 

where δ was changed between 0.85 and 1.15 in order to enable a good assessment of the 

detection capabilities of each monitoring statistic. A resume of the obtained results are 

presented on Figure 11.4 through the performance index N based on the area under the 

ARL curve. For this case study, the sensitivity enhancing transformations TNetLin and 

TNetDyn were used to analyze the SET impact in the monitoring schemes. TNetLin is 

composed only by linear terms, while TNetDyn uses polynomial terms up to the 3rd order. 

Table 11.4 Definition of the faults and respective variables involved for the network system with a non-linear model 
structure. δ is a multiplicative factor that changes the model parameters (under NOC, δ = 1). 

Fault Variables relation changed 

A 8 1g g  ( 1 8 9 11.20 0.80g g g    ) 

B 1 3g g  (    3 1 1 34 4g g g     ) 

C 8 10g g  ( 2
10 8 8 100.02 0.44 0.82g g g     ) 

D 3 15g g  ( 15 3 151.40g g   )
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Figure 11.4 Comparison of the statistics performance on the stationary non-linear system: box-plots of the performance 
index N based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

From the analysis of the results it can be observed that MEWMAt, D1,S, D2,S, D1,V and D2,V 

were the current monitoring statistics that gave the best results with generally similar 

detection capabilities. Yet, MEWMAt remains statistically superior than these monitoring 

statistics as can be seen from Table S9 of the supplementary material, having the lowest 

ARL for most of the faults. On the other hand, M1Z
2, which showed one of the best 

performances on the previous case studies, was not able to detect some of the faults, 

namely the ones related with decreases in the faults magnitude. This behavior is mitigated 

by replacing the original variables by the ones based on variable transformations, namely 

TNetDyn (M1Y
2

NetDyn). The resulting M1Y
2

NetDyn statistic leads to an increase in performance 

of the M1Z
2 procedure and showed to be capable to detect changes related with the 

transformed variables’ variance. Nevertheless, M1Y
2

NetDyn is strictly related to the process 

variance, and when a structural change that does not affect the variance occurs, its 

performance is diminished. Furthermore, it is rapidly followed by VnMAXNetDyn, which 

has a closer relationship with the RMAX scheme, making it a more favorable choice since 

it allows for their easy combination into a single combined monitoring statistic. 

The current monitoring statistics also presented better results when the faults happen 

closer to the root node. These types of faults propagate to most of the process variables 

and are therefore easier to detect, since a larger number of variables are affected and leave 

their normal operation values. An example of such case is fault B on Figure 11.5, which 

leads to lower ARL for MEWMAt and for most of the others. However, when a fault 

related with a leaf node (e.g. fault C) occurs, the current monitoring statistics tend to 
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perform poorly, while R0MAXNetDyn maintains the capability to perform rapid detections 

(see Figure 11.6). The good performance of R0MAXNetDyn is not restricted to this 

particular case, being also observed on Faults A and B. On fault D, the detection is mostly 

done by VnMAXNetDyn, which highlight the complementariness between these two 

monitoring statistics. The performance of RMAX and VnMAX based on a linear 

transformation (TNetLin) also showed to be capable to detect most of the faults and 

presented a similar, yet generally worst, performance than the non-linear transformation 

TNetDyn. This result, along with the M1Y
2

NetDyn behavior mentioned earlier, proves that the 

obtained performances are not simple a result of using a more complex non-linear 

transformation but are indeed related with the proposed monitoring procedure. This 

remark can be further confirmed by the results of the permutation test presented in Table 

S9 of the supplementary material, where it can be verified that the RMAX and VnMAX 

procedures are statistically superior to the others, regardless of the variables 

transformation used. 

Figure 11.5 ARL of the most relevant monitoring statistics on the stationary non-linear system for fault B. δ represents 
the magnitude of the change caused on the variables relationships. 
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Figure 11.6 ARL of the most relevant monitoring statistics on the stationary non-linear system for fault C. δ represents 
the magnitude of the change caused on the variables relationships. 

11.2.2 Dynamic	Non‐linear	Systems	

In this section the performance of the monitoring statistics are assessed on dynamic non-

linear systems. These systems represent more realistic processes with added complexity 

on their inner causal network. For these case studies, the underlying process structure is 

assumed to be unknown and therefore it has to be estimated through the network 

reconstruction algorithms presented in Chapter 9. The problem of reconstruct the 

networks of these systems was already addressed in Section 10.2.3, when they were used 

to compare the off-line monitoring statistics. Thus, only brief descriptions will be given 

here. In all of the following case studies, the sensitivity enhancing transformations TNetLin, 

TNetDyn and TNetDynCh were based on such estimated causal networks and determined by 

application of regression models using a data set of NOC observations. 

11.2.2.1 Gene	Network	Model	

The first of the dynamic systems treated in this section is the one proposed by Fuente et 

al. (2004) [130]. A full description of the systems dynamics and causal network is 

provided in Section 10.2.3.1. Based on this previous study, the system was subjected to 

faults on V1, K1 and K2 on a range between [0.985 0.995]. From these faults, the ARL 
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were determined from where the performance index N was computed, given raise to the 

results summarized in Figure 11.7. The results of the permutations tests are given in Table 

S10 of the supplementary material. 

The studied faults produce mostly deviations on the variables mean values, as a result of a 

new steady state produced by changes on the process parameters. To a lesser extent, some 

changes were also observed in the variance with generally small changes on the 

correlation coefficients. Consequently, most of the detections are due to changes in the 

mean values of the variables. An evidence of this situation is clearly shown by the low 

detection performance of the monitoring statistics based on the EWMA recursion with 

correction of the mean (e.g. R1MAXV,NetDynCh). For changes in the mean this may be an 

interesting feature, since it allows for the rapid differentiation between structural and 

mean changes. Moreover, in this particular system, the structural changes are detected by 

VnMAX, which captures model’s mismatches between the sensitivity enhancing 

transformation and the observed values. One of these statistics is VnMAXV,NetDynCh. Even 

though it presents a relatively lower performance when compared to the other monitoring 

statistics, its detections are less affected by the mean change and are more related with 

changes in the process structure or variables’ variance. 

For the cases were the mean’s effect is not corrected (i.e., the monitoring statistics based 

on estimation St), the statistics based on transformations TNetDyn and TNetDynCh also present 

low detection capabilities. This happens because these transformations describe more 

accurately the system dynamics, leading to better predictions of the new values, and 

therefore produces variables with smaller deviations on the mean. On the other hand, 

transformation TNetLin, which does not accounts for the dynamic behavior of the data, 

maintained mean deviations similar to the ones of the original variables and presented the 

greatest performances through the monitoring statistic M1Y
2

NetLin, followed by 

VnMAXS,NetLin. The monitoring statistics VnMAXS,Z (based on the original variables) also 

presented one of the best performances. Note, that the VnMAX based statistics are directly 

linked to the variance and, if not corrected in the EWMA recursion scheme, also with the 

process’ mean. Therefore, if a fault occurs in one of these parameters, they are easily 

detected by the VnMAX statistics. Regarding the current monitoring statistics, M1Z
2 is the 

one presenting the best performance. However, as it measures the squared deviations 

from the target value, its detection capability is also affected by deviations in the mean 

values. 
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Figure 11.7 Comparison of the statistics performance on the gene network model: box-plots of the performance index 
N based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

These results suggest that even without the mean correction, the proposed procedures are 

less sensitive to these deviations, focusing their detection on structural changes, which in 

this case are much smaller than the mean deviations. Furthermore, the detection of faults 

due to changes on the mean value arises from a violation of the assumption that the mean 

is constant during the estimation of the covariance matrix by the EWMA recursion. The 

effect of the mean is also the reason why the on-line monitoring statistics are detecting 

faults with smaller magnitude than the ones on the off-line scenario. 

11.2.2.2 Biologic	Production	of	Ethanol	

The second dynamic system is based on the ethanol production from glucose fermentation 

by Zymomonas mobilis bacteria. The model used in this case study, was proposed by 

Jöbses et al. (1987) [142] as described in Section 10.2.3.2. As in the previous off-line 

study, only CS, CX and CP were considered as measured variables and faults were 

introduced on c1, KS and YSX. The faults magnitude were set in the range of [0.994 1.006] 

for c1, [0.94 1.06] for KS and [0.985 1.015] for YSX. The main results are presented in 

Figure 11.8 in the form of the performance index N. As in the previous case studies, the 

permutation tests are represented in Table S11 of the supplementary material. 
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Figure 11.8 Comparison of the statistics performance on the Jöbses’ model: box-plots of the performance index N 
based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

From Figure 11.8 it can be seen that most of the monitoring statistics have a fairly wide 

performance distribution. Yet, it also shows that the monitoring statistics based in 

TNetDynCh and TNetDyn, namely VnMAXS,NetDynCh and R1MAXS,NetDyn, are more consistent. In 

fact, they were among the few monitoring statistics capable to detect faults on KS as can 

be seen in Figure 11.9 and immediately detect small faults on c1 as represented in Figure 

11.10. Nevertheless, these rapid detections are mostly an effect of change in the mean 

value, which is an undesired side effect. The VnMAX statistics are more subjected to this 

effect, since they are based on the variables dispersion that increases with the square of 

the mean deviation. On the other hand, RMAX is insensitive to mean changes as long as 

only one variable is affected. This phenomena is better explain for the case of moving 

windows, where the sample covariance would be estimated by, 
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(11.9) 

where   and   are deviations from the mean, which is assumed to be known and equal 

to zero. Assuming that the deviations are independent, for step deviations the expected 

value of c is given by, 

       cov ,E c x y E E     (11.10) 

0

0.2

0.4

0.6

0.8

1

M
1Y

2 N
et

D
yn

C
h

V
nM

A
X S

,N
et

D
yn

C
h

M
1Y

2 N
et

D
yn

V
nM

A
X S

,N
et

D
yn

R
1M

A
X S

,N
et

D
yn

M
2Y

2 N
et

D
yn

C
h

M
2Z2

M
2Y

2 N
et

D
yn

M
1Z2

V
nM

A
X S

,Z
R

0M
A

X S
,N

et
D

yn
V

nM
A

X S
,N

et
Li

n
D

2,
S

M
E

W
M

A
M

t
M

E
W

M
A

a
t

M
E

W
M

A
t

M
C

U
S

U
M

t

M
1Y

2 N
et

Li
n

R
1M

A
X S

,N
et

D
yn

C
h

D
1,

S
c t M

1A
2

R
0M

A
X S

,N
et

D
yn

C
h

R
0M

A
X S

,Z
M

2Y
2 N

et
Li

n
M

C
t

M
E

W
M

S
R

0M
A

X S
,N

et
Li

n
R

1M
A

X S
,N

et
Li

n

M
ax

D
M

2A
2

V
nM

A
X V

,N
et

D
yn

V
nM

A
X V

,N
et

D
yn

C
h

R
1M

A
X V

,N
et

D
yn

C
h

R
1M

A
X S

,Z
R

0M
A

X V
,N

et
D

yn
C

h
R

0M
A

X V
,N

et
D

yn
R

1M
A

X V
,N

et
D

yn
R

0M
A

X V
,Z

D
2,

V
D

1,
V

V
nM

A
X V

,N
et

Li
n

R
1M

A
X V

,Z
R

0M
A

X V
,N

et
Li

n
R

1M
A

X V
,N

et
Li

n
V

nM
A

X V
,Z

N



Part IV – MSPC – Off-line and On-line Monitoring of the Process Correlation Structure 

218 

Figure 11.9 ARL of the most relevant monitoring statistics for step deviations of magnitude δ time the KS parameter of 
the Jöbses’ model. 

Figure 11.10 ARL of the most relevant monitoring statistics for step deviations of magnitude δ time the c1 parameter of 
the Jöbses’ model. 

Thus, if only one deviation on the mean is observed, the expected value of the covariance 

does not change. However, the variation in each variable does increase, implying an 

effective decrease in the correlation coefficients obtained from the data. A similar 

behavior can also be observed for other types of faults. 

By analyzing the raw data, even for faults of larger magnitudes than the ones studied 

here, the major observable deviation occurs in the mean value of only one variable. In 

these cases, the RMAX statistics are, by design, robust to such deviations, causing them to 
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react only to changes in the correlation. However, as the remaining monitoring statistics 

also detect changes on the mean, they tend to signal such fault earlier and therefore they 

present smaller ARL.  

Regarding the monitoring statistics with mean correction, it is clear that the RMAX and 

VnMAX with dynamic transformations (either TNetDyn or TNetDynCh) performed better than 

D1,V and D2,V. When a stationary linear transformation is used (TNetLin), they tend to be 

statistically identical. Moreover, it was observed that for low magnitude faults D1,V and 

D2,V return to their in-control values after the mean effect is corrected, while the VnMAX 

statistics remain out-of-control as exemplified in Figure 11.11. 

(a) (b)

(c) (d)
Figure 11.11 Behavior of the monitoring statistics with correction of the mean value (λ = 0.01 and ω = 0.20): (a) 
current D1,V monitoring statistic; (b) current D2,V monitoring statistic; (c) proposed VnMAXV,NetLin; (d) proposed 
VnMAXV,NetDyn. Data obtained from an increase of 20% in c1 at observation 2000. The fault persists until the end of the 
simulation. 
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Although the monitoring statistics with correction of the mean presented the lowest 

performance, they are the ones that are less sensitive to it. In fact, it is this low 

dependency to the mean value that originates lower detection capabilities on the 

simulated faults. Comparing the monitoring statistics with mean correction it is possible 

to observe than they only signal a fault when the system is subjected to larger 

perturbations. These results are in line with the ones detected on the off-line study 

performed in Chapter 10. In general, all the studied methods detect the fault very rapidly 

due to the mean change which is not immediately corrected. However, after some 

observations, the mean effect starts to be eliminated and the monitoring statistics return to 

their normal values. The only exceptions are the R0MAXV,NetDyn, R1MAXV,NetDyn and 

VnMAXV,NetDyn statistics, which consistently signal an out-of-control state. 

11.2.2.3 Continuous	Stirred‐Tank	Reactor	

The third dynamic non-linear system studied is based on the model of a continuous 

stirred-tank reactor (CSTR) with a heating jacket and under feedback control. This system 

represents a more realistic process with added complexity due to close-loops, 

bidirectional dependencies, unmeasured variables and with faults that can affect multiple 

variables at once. The main unit of the system is a CSTR with free discharge flow, where 

an endothermic reaction of the type A B  takes place. The system is under PI control in 

order to maintain the temperature and fluid level close to their set-points. The process 

structure behind this system was already presented in Section 10.2.3.3 for both the real 

(Figure 10.15 (a)) and estimated (Figure 10.15 (b)) causal network. Therefore, it will not 

be further discussed here. In order to construct the sensitivity enhancing transformations 

(TNetLin, TNetDyn and TNetDynCh), only the estimated causal network was used with up to two 

lags.  

To compare the performance of the monitoring statistics, the system was subjected to 

faults on the heat transfer coefficient, discharge coefficient, pre-exponential factor and 

activation energy. The results are presented in Figure 11.12 by the performance index N, 

while the permutation tests between each monitoring statistics are given in Table S12 of 

the supplementary material. 
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Figure 11.12 Comparison of the statistics performance on the CSTR system: box-plots of the performance index N 
based on the area under the ARL curve obtained on all perturbation, superimposed to the bars with heights 
corresponding to the associated mean values. 

From the analysis of the current monitoring statistics, it is observed that MaxD is the one 

presenting the best performance. Still, the current monitoring statistics have generally 

similar performances, with the exception of D1,V and D2,V. These two statistics are the 

only ones that account for changes on the mean, reducing their detection capabilities 

when compared to others, such as D1,S and D2,S, which do not correct for the mean effect. 

This feature is an indication that the current monitoring statistics are detecting both 

changes in structure and in the mean, which can be easily corroborated through simple 

inspection of the raw data, where a significant deviation in the mean value can be 

observed. 

A similar behavior is observed with the proposed monitoring statistics, namely those 

based on Vt, which have worse performances than those based on St. However, they 

depart from the current monitoring schemes by presenting better and more consistent 

performances in all the studied faults, with abrupt decreases on the ARL1 to near 1, even 

when the mean correction is used (VnMAXV,NetDynCh). This result is mainly a consequence 

of the applied transformation TNetDynCh that encompasses the dynamic behavior of the 

system and the variables connection structure leading to considerable deviations on the 

mean, variance and correlation when a fault occurs. Even though VnMAXV,NetDynCh is also 

affected by the mean during the first faulty observations, it is capable to maintain an out-

of-control signal after the effect of the mean has been correct. This situation is not 

observed in other monitoring statistics as illustrated in Figure 11.13. Finally, it is worth 
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noticing that a SET without dynamic components, i.e., transformation TNetLin, leads to 

monitoring statistics with a performance in line with the current ones. 

(a) (b)

(c) (d)
Figure 11.13 Behavior of the monitoring statistics with correction of the mean value (λ = 0.01 and ω = 0.20): (a) 
current D1,V monitoring statistic; (b) current D2,V monitoring statistic; (c) proposed VnMAXV,NetLin; (d) proposed 
VnMAXV,NetDyn. Data obtained from a decrease of 40% in the heat transfer coefficient at observation 2000. The fault 
persists until the end of the simulation. 

11.3 Discussion	

The monitoring of structural changes based on individual observations is a task that raises 

many challenges. First of all, the correlation matrix is not defined in such cases, and 

therefore a moving window or EWMA recursive estimation of the correlation matrix is 

required in order to proceed with the monitoring task. Such estimation has the immediate 

disadvantage of introducing autocorrelation and time delays on the detection procedures. 

Furthermore, depending on their underlying assumptions, the estimated covariance matrix 

can also be affected by mean deviations, which may not be related to changes on the 

process structure. 

From the current studied monitoring statistics, only D1,V and D2,V correct the mean effect 

on the estimation on the covariance matrix. Consequently, these monitoring statistics tend 
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to have a lower performance, even though they present an initial response to the mean 

(since it takes some observations until it is properly corrected). Furthermore, for small 

deviations they usually return to an in-control state after the mean effect is corrected, 

which may lead to a false sense of normality. These monitoring statistics are also only 

related with the process variance, and therefore some structural changes may pass 

undetected which significantly decreases their utility in general.  

The M1Z
2 and MEWMAt procedures were the ones that presented better results in the case 

studies analyzed. Regarding the M1Z
2 procedure, it did not present a consistent behavior 

in all faults, and is even prone to miss some of them, especially faults that do not cause 

deviations in the variance or mean. Moreover, the simple replacement of the original 

variables by transformed ones is not enough to improve its performance (see for instance 

M1Z
2 and M1Y

2
NetDyn in Figure 11.1). M1Z

2 and MEWMAt also require at some point of 

their procedure an inversion of a correlation matrix, which can cause computational 

problems if it is ill-conditioned, as it is often the case with current processes and data 

acquisition systems. This is particularly more relevant for MEWMAt which decompose 

the data into m sets of variables, each of them dependent of the inversion of a reduced 

form of the covariance matrix. On the other hand, the proposed variables transformations 

can require heavy computation during the modeling stage. Yet, the pre-selection of the 

related variables, through network reconstruction techniques, reduces the amount of 

regressors to a meaningful set of variables that indeed contribute to the model. After this 

stage, the correlation matrix is used directly without any mathematic manipulation. 

Therefore, the proposed monitoring schemes are considerable simpler and more stable 

than the current ones. 

The proposed procedure is also consistently ranked as one of the best monitoring 

statistics, by either RMAX or VnMAX, regardless of the fault location. This consistency is 

one of its major advantages, since it performs well on different faults, both in correlation 

and variance, while the current monitoring schemes fail in some of these situations. 

Depending on the covariance estimation procedure (with or without mean correction), 

RMAX and VnMAX are also sensitive to mean deviations. This feature is clearer on the 

VnMAX statistic since it is directly related with the variables dispersion. 

Another major contribution to the increase in the detection abilities is the sensitivity 

enhancing transformation. The transformations based on the inference of the process’ 
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network allow for the modeling of the variables dependency in a meaningful way and 

creates a new set of uncorrelated variables where detections of correlation changes are 

maximized. This type of faults is monitored by RMAX and is generally well detected by 

it. Deviation from the model can also be interpreted as structural changes and are 

efficiently detected by VnMAX. Therefore, the combined used of RMAX and VnMAX can 

detect a wide range of faults related with structural changes. The effects of the sensitivity 

enhancing transformations become even more relevant on dynamic and non-linear 

systems since the correlation only accounts for the linear relationship between the 

variables. This situation is visible on the CSTR case study, where a large difference 

between the performance of VnMAXS,NetDyn (with dynamics) and VnMAXS,NetLin (without 

dynamics) can be clearly observed. 

After application of the sensitivity enhancing transformations, the use of either marginal 

or 1st order partial correlations seems to have no significant effect on the global 

performance of the RMAX statistics. This is because the marginal correlations of the 

transformed variables can be interpreted as partial correlations of the original variables, 

since they are being conditioned on another set of variables (in this particular case, its 

causal parents), which is the core of the partial correlations concept. However, in cases 

where the transformed variables are not truly uncorrelated, the use of 1st order partial 

correlation may be justifiable. 

The forgetting factor λ is also an importance aspect on the final performance of the 

monitoring statistics. Its selection is a compromise between detection speed and certainty, 

since higher values give more weight to recent observations but also increase the 

uncertainty on the correlations estimations, since less information is being used. A 

forgetting factor of 0.01 seems to lead to good results, representing about 200 

observations in a moving window procedure. A lower forgetting factor can be used to 

enhance the sensitivity, with the adverse effect of increasing the detection delay for faults 

with larger magnitudes. 

11.4 Conclusions	

In this chapter, the previous proposed monitoring procedures based on partial correlations 

were extended to the case of process monitoring with individual multivariate observations 
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(on-line scenario). To do so, EWMA recursive updating schemes for the correlation 

matrix were employed. This type of approach is also widely employed in other 

methodologies already proposed in the literature against which the proposed procedures 

were compared. 

The proposed monitoring statistics generally presented a performance similar to the ones 

obtained with the current approaches when a linear transformation was used. However, 

when more complex transformations were applied, it was observed an increase in 

performance. This situation is both due to the sensitivity enhancing transformation and 

also to the monitoring statistics employed, since the simple integration of the transformed 

variables on the current procedures does not lead to better results by itself. Furthermore, 

the current procedures with the best performance, M1Z
2 and MEWMAt, are dependent of 

the inversion of the covariance matrix, which may be ill-conditioned. On the other hand, 

the sensitivity enhancing transformation requires the construction of a system model by 

performing a linear regression on each variable. Yet, as it pre-selects the variables to be 

used in the model (with resort to a prior knowledge of the process structure or by a 

network reconstruction methodology) no major problems are expected on the model 

fitting stage. 

The final performance of the proposed RMAX and VnMAX procedures is also dependent 

of the forgetting factor used to estimate the covariance matrix. To increase their 

sensitivity to smaller deviations, a lower forgetting factor is required. However, this 

implies that more weight is given to past observations, and therefore the ARL also 

increases. On this regard, a forgetting factor of 0.01 seems to be a good compromise 

between these two factors. Finally, it is worth noticing that this parameter is related with 

an equivalent number of observations that would lead to a similar performance, as it will 

be demonstrated in Chapter 12.  
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12 Relationship	between	Off‐line	 and	On‐line	

Methodologies	 for	 Monitoring	 the	 Process	

Correlation	Structure	

The first scenario addressed in this thesis regarding the monitoring of the process 

correlation structure was relative to the off-line case, where non-overlapping moving 

windows of length n were employed. The natural extension of the schemes proposed for 

this scenario is based on applying the same principle of moving windows, but now with 

overlap, i.e., in the form of sliding window of constant length that always contains the last 

observations. The relation between these two approaches is easy to establish, since they 

both share the same mechanistic concepts and an observation’s window clearly defined. 

However, in the cases of on-line monitoring, an EWMA recursion is usually applied to 

estimate the covariance matrix, instead of overlapping moving windows. Examples of the 

application of EWMA recursion schemes can be found in [79, 80, 82]. Even though the 

covariance matrix can be efficiently computed from moving windows, namely through 

the use of updating schemes as the one presented by Wang et al. (2005) [143], they still 

require the storage of all the past n observations, which can be avoided by resorting to an 

EWMA recursion scheme. 

The EWMA updating approach is parameterized by a forgetting factor λ that balances the 

relative importance of recent observations and those from the past. Analyzing the 

weighting profile applied by the EWMA scheme to all observations, it is not clear how 

many observations are indeed significantly contributing to the current estimate of the 

covariance matrix. However, a relationship between the number of observations and the 

forgetting factor would be very useful, not only as a way to select it in a more informed 

way, but also because it would allow to establish a bridge between both approaches to 

process monitoring: one based on a moving windows and the other on a recursive scheme 

parameterized by a forgetting factor. 

These two parameters (n for the moving window approach and λ for the EWMA recursion 

scheme) have a major effect not only in the correlation coefficients and variance 
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distributions, but also on the monitoring statistics performance. In both cases, these 

effects are a direct consequence of the variability (uncertainty) in the sampling estimators 

for the correlations and variances. Therefore, an equivalent relationship between the 

number of observations n and the forgetting factor λ is here derived based on matching 

the standard deviation of the estimators for the correlation coefficients, r , and sample 

variance, 1 3v
  (note that the variance is preliminarily transformed as 1 3v , in order to have 

a result consistent with the VnMAX statistic presented in Section 10.1.2, which also uses 

the same transformation), obtained by both procedures. 

In order to perform such comparison, numerical simulations were conducted to determine 

the nature of the empiric relationship. A theoretical approach was also considered, from 

where an analytic relationship was obtained. Both expressions point to the same 

equivalent relationship between the number of observation and the forgetting factor, 

which consolidate its validity. The application example given at the end of this chapter 

illustrates the interest and relevancy of this expression in the selection of the control 

charts parameters. 

12.1 Numerical	Simulation	

To obtain the desired relationship, the sample standard deviations obtained from moving 

windows of length n and EWMA recursions with a forgetting factor λ were matched 

under normal operation conditions for multiple process with m uncorrelated variables. 

The use of uncorrelated variables corresponds to the general case obtained after 

application of a suitable sensitivity enhancing transformation as this is the case where the 

higher sensitivities to changes on the correlations coefficients are obtained. In this study, 

m was set in the range of 2 to 300, λ was varied between 0.001 and 1 (with increment of 

0.001) and the sample standard deviations ( ˆ r  and 1 3ˆ
v

 ) were determined from 3000 

observations.  

The sample standard deviations obtained for different number of variables are presented 

in Figure 12.1. The first result is the apparent invariance to the number of variables as 

they all lead to the same pattern. In fact, the number of variables only seems to limits the 

maximum λ from which an equivalent number of observations can be obtained (given the 
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limitation in estimating a covariance matrix when the number of observations is less than 

the number of variables). The difference between the sample standard deviations obtained 

with the correlation coefficients and transformed variance is consistent with their 

theoretical expressions (Equations (10.1) and (10.8)), differing only by a factor of 9 2 . 

This evidence was then used to construct a relationship between the standard deviation 

and the forgetting factor. These two variables appears to be related by a power model, 

defined as, 

by ax (12.1)

Taken x as the forgetting factor, and y as the standard deviation, the least squares 

regression of this model led to the parameters presented in Table 12.1. 

Figure 12.1 Sample standard deviation of the correlation coefficients (r) and transformed variance (v1/3) as a function of 
the EWMA recursion forgetting factor (λ). 
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Table 12.1 Model parameters estimates for the power model relating the standard deviation as a function of the 
forgetting factor, using data obtained from the numerical simulations carried out. The coefficient of determination (R2) 
is 0.9987. 

Parameter Estimated values 95% Confidence bounds 
a 0.7356 [0.7351, 0.7361]
b 0.5212 [0.5207, 0.5216]

Recalling that the standard deviation of the correlation coefficients of two uncorrelated 

variables is asymptotically given by [46], 

1

1
r

n
 


(12.2)

an equivalent number of observation (neq) can be obtain from, 

2
1

1eq b
n

a
   
 

(12.3)

It is worth noticing that the model parameters can be approximated, without a significant 

loss of information by, 

2
eqn


 (12.4)

Given the simulation data used in this study, Equation (12.4) is valid for n m  with 

300m  . 

12.2 Analytical	Derivation	

In order to obtain the analytical relationship for the equivalence between λ and the 

number of observations, n, the theoretical variances of the sample correlation and 

variance based on a window of length n and the their analogous expression obtained from 

the EWMA recursion, were compared. 

For the case of moving windows of length n, the asymptotical sample variance of the 

correlation coefficients for uncorrelated variables is given as [46], 

  1
var

1
r

n



(12.5) 
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For deriving the corresponding variance based on EWMA recursions the following 

considerations were taken. 

The univariate EWMA recursion is generically given by, 

  11t t te x e       (12.6) 

where its mean and asymptotic variance are given by [48], 
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   var var
2t te x



    
  (12.8) 

For the case of the marginal correlation coefficient (rt), due to the action of the sensitivity 

enhancing transformation, xt is the product of two uncorrelated variables (yt and ut) 

distributed as N(0,1), therefore, assuming that these variables are also independent [144], 

               2 2
var var var var var var

1

t t t t t t t t tx y u E y u E u y y u   


(12.9) 

and consequently, 

 var
2tr






(12.10) 

Comparing Equations (12.5) and (12.10) it is straightforward to obtain that the equivalent 

number of observation (neq) of an EWMA recursion scheme with forgetting factor λ, in 

what concerns the estimate of the sample covariance is given by, 

2
eqn


 (12.11) 

The same procedure can be conducted with the variables variance. In this case, xt in 

Equation (12.6) is given by the square of a random variable (yt) normally distributed as 

N(0,1). Therefore, and considering that [144], 

     22var z E z E z  (12.12) 
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the variance of xt is given by, 

       22 4 2var vart tx y E y E y   (12.13) 

Since the second and forth central moments of the normal distribution are [145], 
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(12.14) 

and that yt has variance equal to 1, the variance of xt becomes, 

 var 2tx    (12.15) 

Combining this result with Equation (12.8), the variance of the sample variance (vt) 

recursively estimated by the EWMA recursion is approximately given by, 

 var 2
2tv



    
(12.16) 

Additionally, from Equations (12.7) and (12.14), the mean of vt is obtained by, 

       2 var 1t t t tE v E x E y y    (12.17) 

However, we are really interested in monitoring 1 3
tv  in order to maintain a consistent 

approach with the off-line scenario (see Equation (10.8)) and detect both increases and 

decreases in variance based on a variable that is normally distributed. Therefore it is 

required to obtain the mean and variance of this transformation. 

For a generic function ( )g z , with ( )g z  and ( )g z as first and second derivative, its mean 

and variance are approximately given by [144], 

          

        2

1
var

2

var var

E g z g E z z g E z

g z z g E z

 

   

(12.18) 

as long as ( )g z  and 2( )g z  are well approximated by a linear function on the operation 

interval of the transformation. For this case, 1 3( )g z z , from where it results that, 
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When compared against Equation (10.8), from where it is recall that, 
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(12.20) 

where s2 is the sample variance based on n observation of a random variable distributed 

as N(0,1), both expressions point to an equivalent number of observation given by 

Equation (12.11). 

12.3 Consequences	of	the	Equivalence	Relationship	between	Off‐line	and	

On‐line	Monitoring	

As the equivalence relationship derived in the previous sections relates the standard 

deviation of the correlation coefficients obtained by both moving windows and EWMA 

recursion schemes, both procedures will have the same uncertainty on the estimates of the 

sample correlation coefficients when the respective parameters satisfy this expression. 

Moreover, as the monitoring statistics’ detection power is related with such uncertainty, 

both approaches will also present similar properties (such as, control limits and detection 

rates). The same behavior is observed for the sample variance. 

An immediate application of this equivalence is in the normalization function used to 

obtain correlation coefficients and variances distributed as N(0,1). These new 

normalization functions are applied in combination with the EWMA recursion scheme 

and can be written as, 

2
r

r
w


 (12.21)
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Another useful application of this equivalence is in the selection of the forgetting factor λ. 

In the case of non-overlapping windows, the number of observations can be selected 

using power analysis, i.e., defining the fault magnitude Δρ to be detected, with a (1–  ) 

power at a given significance level α. It can be shown, that under the same false detection 

rate (α), the EWMA recursive version of RMAX will have a similar performance as a non-

overlapping window of length n, where n is given by the equivalence Equation (12.4). 

Therefore, the selection of the forgetting factor can be made based on the choice of a 

simpler and intuitive parameter (n). As an example of this relation, the detection rates 

obtained in a system with 5 uncorrelated variables are presented in Figure 12.2 along with 

the calibration curves for non-overlapping moving windows (off-line scenario) in the 

same system with a false detection rate of 1%. The values depicted are the average of 

1000 detection rates associated with deviations on one of the correlation coefficient and 

are plotted against the forgetting factors’ equivalent number of observations. For most of 

the simulated faults, the EWMA recursion scheme presents detection rates that fall very 

close to the corresponding values for the moving window approach. This confirms that, 

on average, both methodologies are related through the false detection rate and the 

equivalent number of observations, thus providing a good starting point to select the 

forgetting factor λ. Moreover, the in-control ARL of the on-line EWMA recursive scheme 

can be obtained as a function of the false detection as shown in Table 12.2. Therefore, as 

for the off-line scenario, a control chart with the desired characteristics (i.e. false alarm 

and detection power) can be easily constructed by analysis of calibration curves similar to 

the one presented in Figure 12.2. 

To illustrate this parameter selection procedure, let us consider that one is interested in 

constructing an on-line control chart for 5 variables with a false detection rate of 1%, 

capable to detect a deviation in correlation of 0.15 with a detection power of 30%. From 

inspection of the off-line calibration curve in Figure 12.2, these specifications lead to a 

non-overlapping window of about 320 observations. From the equivalence relationship, a 

EWMA recursion with 2 / 2 / 320 0.0063n      should then be used in order to obtain 

the desired performance. The detection rates of this monitoring scheme are presented in 
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Table 12.3. These results show that not only the desired detection power is indeed 

obtained (i.e., a detection rate of 0.30 for deviations of ±0.15) but also that the remaining 

deviations are in line with the off-line calibration curve. 

Figure 12.2 R0MAX calibration curves for non-overlapping windows of length n for a 5 variables system with a false 
detection rate of 1%. The detection rates of R0MAX based on an EWMA recursion procedure are superimposed in bold 
for their corresponding equivalent number of observations. 

Table 12.2 False detection rates (α) for systems with m uncorrelated variables and ARL0 = 370. 

m 

λ 5 10 15 20 

0.002 0.157 0.126 0.117 0.108 

0.004 0.090 0.071 0.064 0.058 

0.006 0.062 0.050 0.044 0.041 

0.008 0.048 0.038 0.034 0.032 

0.010 0.039 0.030 0.028 0.026 

0.012 0.033 0.026 0.024 0.024 

0.014 0.029 0.022 0.021 0.020 

0.016 0.026 0.020 0.019 0.018 

0.018 0.023 0.018 0.017 0.016 

0.020 0.021 0.017 0.016 0.015 
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Table 12.3 Detection rates of an on-line control chart design based on the off-line calibration curves. The results are 
averages of 10 simulations of 5000 observation. The associated standard deviations are also presented. 

Δρ Detection Rate Δρ Detection Rate 
0 0.0087 ± 0.0098 

-0.05 0.0210 ± 0.0124 0.05 0.0268 ± 0.0168 
-0.10 0.0664 ± 0.0318 0.10 0.0866 ± 0.0463 
-0.15 0.3200 ± 0.0582 0.15 0.2685 ± 0.0547 
-0.20 0.5805 ± 0.0585 0.20 0.6502 ± 0.1120 
-0.25 0.8876 ± 0.0291 0.25 0.8542 ± 0.0499 

The similarity in behavior in not only restricted to off-line and on-line monitoring. The 

same relation can be used to compare the on-line monitoring based on moving windows 

and the EWMA recursion scheme. On this regard, it is observed that control charts related 

by the equivalence equation present a similar pattern as exemplified in Figure 12.3. In 

Figure 12.3, RMAX statistics are plotted for both EWMA recursion estimation 

(RMAXEWMA) and moving windows approach (RMAXMW). Even though these monitoring 

statistics do not actually overlap, since the observations have different weights depending 

on the monitoring scheme, they present similar trends and detect the fault roughly at the 

same time. Moreover, the upper control limit is the same for these two monitoring 

statistics.

Figure 12.3 RMAX statistics for a two variables system with a step deviation on the correlation matrix of magnitude Δρ 
introduced at t = 1001. RMAXEWMA is based on the EWMA recursion with λ = 0.01 and RMAXMW is based on a moving 
window of 200 observations. The UCL is set to a false alarm rate of 0.01. 
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12.4 Summary	

The parameters of the off-line monitoring (number of observations, n) and on-line 

monitoring (forgetting factor, λ) are related through an equivalence equation that allows 

the construction of a transversal interpretation of the monitoring performance of both 

approaches. This situation was demonstrated for several application scenarios, showing 

the usefulness of the equivalence relation. 

The obtained equivalence relationship relies on the principle of matching the uncertainties 

of the estimated monitored characteristics (i.e., the sample correlation and sample 

variance). Therefore, as both procedures will give estimates with similar uncertainties, 

their performances will be also similar. In this respect, it was found that the off-line and 

on-line schemes related by the equivalence relation and with the same false alarm rate, do 

have the same detection power. Note however, that their ARL is not the same, since in the 

off-line case the monitoring statistics are serial independent, while in the on-line scenario 

they become autocorrelated due to the overlapping of information inherent to the EWMA 

recursion. Still, the proposed equivalence allows for a better interpretation of the on-line 

procedure and links its performance with the more simple case of non-overlapping 

windows, where calibration curves are easier to obtain. Thus, the selection of the EWMA 

forgetting factor can be based on the results of the more simple case of non-overlapping 

windows. 
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13 Multiscale	 and	Megavariate	Monitoring	 of	

the	Process	Correlation	Structure:	M2NET	

Most current industrial processes encompass several underlying phenomena that take 

place simultaneously and span over different regions of the time-frequency plane. This is 

a consequence of the system’s multiscale nature, which is also reflected in the patterns 

exhibited by data they generate. Consequently, classical monitoring methods are not 

effective for this type of processes, as they were design to detect changes occurring at a 

single and rather specific scale [5, 58]. Moreover, they are also mostly dedicated to detect 

deviations from the process mean levels [66-69]. Therefore, it is both opportune and 

important to extend the monitoring procedures for the correlation structure proposed 

previously in this thesis, to multiscale dynamical scenarios. This will be addressed in this 

chapter. 

Perhaps the first successful implementation of a multiscale approach for process 

monitoring, was the one proposed by Bakshi (1998) [9]. This approach is based on 

decomposing the original observations into a set of wavelet coefficients at different 

scales, which are then simultaneously monitored through parallel MSPC-PCA schemes. 

From the monitoring of the wavelet coefficients, the relevant (abnormal) events at each 

scale can be detected and selected to be used in the reconstruction of the signal, in what 

effectively corresponds to performing a feature extraction of the fault signature. Then, the 

reconstructed signal is again subjected to a confirmatory assessment of the actual state of 

the process. Other approaches based on this procedure have also been proposed [146-

148], all of them sharing the same methodological backbone. 

As to the monitoring of the process multivariate dispersion, the current approaches relay 

on the information conveyed by the marginal covariance through the application of 

successive likelihood ratio tests [70, 75, 76, 82] or with resort to the generalized variance 

[71, 72]. Other approaches can be found in the literature for both subgroup (off-line) and 

individual (on-line) observations monitoring as described in Chapter 4. Amount the 

current procedures, the M1Z
2 monitoring statistic proposed by Reynolds and Cho (2006) 

[81], based on the Mahalanobis distance of an EWMA recursion applied to the squared 
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deviations from target, and the Bodnar et al. (2009) [88] transformation of the estimated 

covariance matrix into a set of Gaussian vectors, were the ones that presented the most 

promising results (see Chapter 11). However, the proposed on-line RMAX and VnMAX 

statistics (Section 11.1) showed to have similar performances being also less sensitive to 

the recurrent problems faced in megavariate process monitoring, namely the inversion of 

the ill-conditioned covariance matrices, which is not required in the proposed RMAX and 

VnMAX statistics. Moreover, the current monitoring schemes also present severe 

implementation issues that hinder their extension to multiscale contexts. For instance, the 

M1Z
2 statistic is based on an EWMA recursion scheme, which cannot be 

straightforwardly applied at the data reconstruction level, since the scales included in the 

reconstructions are not always the same. This situation also implies that an EWMA 

update is not a feasible solution to estimate the covariance matrix of the reconstructed 

data in a multiscale procedure analogous to the one proposed by Bakshi (1998) [9]. 

However, from the equivalency relationship, the RMAX and VnMAX procedures, can also 

be applied to moving windows of length n, with the same detection properties than an 

EWMA recursion with λ = 2/n (see Chapter 12). For these reasons, the RMAX and 

VnMAX statistics based on moving windows were selected for the development of a 

multiscale monitoring scheme of the process correlation structure. 

Given these considerations, in this chapter, a combined multiscale procedure involving 

the RMAX/VnMAX statistics and wavelet decomposition is proposed which will be tested, 

validated and compared with its single-scale counterpart. The effects of the sensitivity 

enhancing transformations (SET) presented in Chapter 9 in the final detection 

performance of the monitoring schemes are also considered. The entire methodology will 

be called the M2NET (Megavariate and Multiscale monitoring of the process NETworked 

structure). 

13.1 Multiscale	RMAX	and	VnMAX	

For the purpose of monitoring the structure of megavariate processes with multiscale 

features, the general multiscale procedure proposed by Bakshi (1998) [9] was adapted and 

combined with monitoring statistics for the process correlation structure. With this goal in 

mind, the RMAX and VnMAX monitoring statistics for on-line monitoring, as well as the 
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sensitivity enhancing transformations (SET) were used to develop a multiscale 

monitoring scheme, as follows. 

The first step of the proposed multiscale methodology involves the decomposition of the 

current observation into a set of wavelet coefficients. As the procedure should be 

implemented on-line, a dyadic window composed by the last 2 maxJ  observations (where 

Jmax is the wavelet decomposition depth) is used to compute the current values of the 

wavelet coefficients at each observation. This new set of wavelet coefficients at each 

scale constitute the data that will be subjected to monitoring using RMAX/VnMAX 

statistics. Therefore, at each scale, a SET is applied in order to decorrelate the data and 

maximize the detection of structural changes. Then, the sample correlation matrix and 

variance are computed based on the last n transformed wavelet coefficients. Afterwards, 

the sample correlations at each scale are monitored by RMAX and the sample variances by 

VnMAX. Contrary to the procedure proposed by Bakshi (1998) [9], where the 2
PCAT  and Q 

statistics are used through a logical gate “or” in order to determine the scales where 

special events are detected, in the current monitoring scheme, RMAX and VnMAX are 

treated separately in order to better isolate the nature of the features arising from each 

scale. Therefore, the rest of the procedure is here described solely for RMAX, since the 

same sequence of stages would entirely apply for the VnMAX statistic. 

Given the current value of the RMAX statistic at each scale (RMAX(j), 

1,  2, , 1),maxj J    the ones that have a RMAX greater than a pre-specified UCL 

(UCL(j), 1, 2, , 1maxj J   ) are considered as relevant and used to reconstruct the data at 

the original scale. To determine the UCLs, the false alarm rate of the control chart at each 

scale ( A ) is corrected by the Bonferroni inequality,  1A maxJ   , where   is the 

desired overall false alarm rate of the monitoring procedure. Thus, the effects of using 

multiple parallel control charts at the wavelets levels are mitigated in this way. 

In the reconstruction stage, the last n observations are reconstructed using the transformed 

wavelet coefficients (i.e., the SET wavelet coefficients) of the relevant scales determined 

earlier. The need for reconstructing the last n observations comes from the requirements 

associated with the estimation of the covariance matrix. These n reconstructed 

observations are then used to estimate the correlation coefficients and finally the RMAX 

statistic of the reconstructed data (RMAX(rec)). Note that no SET is applied to the 
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reconstructed data, since the reconstruction of uncorrelated wavelet coefficients also leads 

to uncorrelated reconstructions. 

A resume of the multiscale RMAX (MS-RMAX) methodology is given in Table 13.1 in the 

form of a pseudo-code. The graphic representation of the procedure is also provided in 

Figure 13.1. The same monitoring scheme is applied for VnMAX to monitor the sample 

variances. 

Table 13.1 Pseudo-code for the proposed M2NET methodology (for the case of the RMAX statistic). 

1. Get dyadic window containing the current observation (length equal to 2 maxJ );

2. Obtain the current wavelet coefficients up to scale Jmax + 1;

3. Apply a sensitivity enhancing transformation to each scale;

4. For each scale:

a. Compute the correlation of the last n transformed wavelet coefficients;

b. Implement RMAX-based MSPC, using  jRMAX  statistics, and verify if the

scale is relevant (i.e. if     j jRMAX ULC RMAX ).

5. If at least one scale was found to be relevant, reconstruct the last n observations

using the transformed variables from the relevant scales (by doing so, the

reconstructed data is also uncorrelated);

6. Compute the correlation of the data reconstructed in Step 5;

7. Implement RMAX-based MSPC to the correlation at the original scale;

8. Obtain the reconstruction UCL from the database. If such an UCL is not available:

a. Reconstruct validation data with the same relevant scales;

b. Compute RMAX statistics for the validation data;

c. Determine the UCL based on the RMAX for validation data;

d. Save UCL on database.

9. Compare  recRMAX  against its UCL.
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Figure 13.1 Schematic representation of the proposed M2NET methodology (for the case of RMAX). 

13.2 Comparative	Study	

The performance of the proposed M2NET methodology through the statistics MS-RMAX 

and MS-VnMAX, is compared against their single-scale versions. Two SET were 

considered, namely: (i) a stationary linear transformation with a Cholesky decomposition 

of the residuals TNetChLin (R0MAXNetChLin and VnMAXNetChLin) and (ii) a dynamic linear 

transformation with a Cholesky decomposition of the residuals TNetChDyn (R0MAXNetChDyn 

and VnMAXNetChDyn). For the multiscale approach the same type of transformations were 

considered for all scales and reconstructions. Thus, for transformation TNetChLin the 

monitoring statistics MS-R0MAXNetChLin and MS-VnMAXNetChLin are defined. Likewise, for 

transformation TNetChDyn the monitoring statistics MS-R0MAXNetChDyn and MS-

VnMAXNetChDyn were employed. Other sensitivity enhancing transformation schemes could 

be considered, such as different transformations at different scales, depending on the data 

features. However, in order to obtain a sound comparison of the monitoring 

methodologies, sensitivity enhancing transformations of the same category were used. 

Therefore, the effects of the wavelet decomposition in the monitoring procedure are the 

main source of variability in the results and the effects of SET are minimized. All the 

SET used were determined based on a 5000 observations NOC data set. For the case of 

the multiscale transformations, the same NOC data set was used to obtain the wavelet 

coefficients and an estimation of the causal network at each scale. 

The case study selected to conduct the performance comparison study is the continuous 

stirred-tank reactor (CSTR) with a heating jacket, under feedback control. The study of 

the multiscale features of this particular system was already addressed in Section 7.2, 
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from where it is recalled that the variability of the input variables (feed stream 

concentration, CA0, feed stream temperature, T0, and heating fluid inlet temperature, Tj0) is 

mostly located at the low frequency scales (detail coefficients d1 to d3). On the other 

hand, the system outputs (CSTR level, h, concentration, CA, temperature, T, and heating 

fluid outlet temperature, Tj) present different distributions across the scales, especially in 

regarding the sets of detail coefficients d3 to d8. Given these characteristics, a 

decomposition depth (Jmax) equal to 8 was selected for implementing the multiscale 

approach.  

The monitoring statistics were evaluated after introducing step perturbations in the heat 

transfer coefficient, discharge coefficient, activation energy and heat capacity of the 

heating fluid. These changes were made by application of a multiplicative factor δ to the 

nominal values of these quantities. For each simulation, 5000 NOC observations, 

followed by 5000 faulty observations were simulated and saved. These observations were 

then used to determine the sample covariance matrix based on moving windows 

containing the last 300 observations. The monitoring procedures are then implemented 

and their detection rates (both false detection rates and true detection rates) registered for 

control limits set to an overall false alarm rate (α) of 1% for all the monitoring schemes 

(i.e. the control limit of each control chart was determined for a significance level of 

/ hA c artN  , where chartN  is the number of control charts involved in the procedure). 

Each fault was simulated 5 times in order to analyze the consistency of the results. 

For the case of deviations in the heat transfer coefficient, the multiplicative factor δ was 

set to 0.90, 0.85, 0.80 and 0.75 in order to simulate decreases in this process parameter, 

for instance due to fouling. The detection rates obtained by the various methods tested are 

given in Table 13.2. For illustration purposes, the monitoring statistics obtained for a fault 

of magnitude 0.80 are presented in Figure 13.2. 
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Table 13.2 Detection rates for step perturbations in the heat transfer coefficient for the single-scale and multiscale 
monitoring statistics. 

Statistic 
Fault magnitude 

0.90 0.85 0.80 0.75
R0MAXNetChLin 0.021 ± 0.014 0.036 ± 0.014 0.053 ± 0.003 0.060 ± 0.004 
VnMAXNetChLin 0.088 ± 0.026 0.070 ± 0.007 0.098 ± 0.034 0.111 ± 0.032 
R0MAXNetChDyn 0.065 ± 0.003 0.090 ± 0.028 0.112 ± 0.024 0.091 ± 0.027 
VnMAXNetChDyn 0.109 ± 0.035 0.314 ± 0.092 0.894 ± 0.059 1.000 ± 0.000 

MS-R0MAXNetChLin 0.172 ± 0.06 0.161 ± 0.039 0.221 ± 0.024 0.353 ± 0.081 
MS-VnMAXNetChLin 0.151 ± 0.023 0.240 ± 0.05 0.416 ± 0.128 0.517 ± 0.063 
MS-R0MAXNetChDyn 0.197 ± 0.025 0.296 ± 0.022 0.387 ± 0.104 0.491 ± 0.084 
MS-VnMAXNetChDyn 0.169 ± 0.030 0.327 ± 0.048 0.677 ± 0.058 0.954 ± 0.026 

Figure 13.2 RMAX and VnMAX monitoring statistics for a step deviation in the heat transfer coefficient of magnitude 
0.80: (a) single-scale R0MAXNetLin and VnMAXNetLin; (b) single-scale R0MAXNetDyn and VnMAXNetDyn; (c) multiscale MS-
R0MAXNetLin and MS-VnMAXNetLin; (d) multiscale MS-R0MAXNetDyn and MS-VnMAXNetDyn. The monitoring statistics 
presented are normalized by their UCL in order to account for the difference in UCL for each reconstruction. 
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From the analysis of Figure 13.2 it is visible that all methods remain mostly under control 

on the first 5000 NOC observations. For the cases of the multiscale approaches, the 

reconstruction is only performed in few instances, and most of the times the confirmatory 

test discard them as false alarms. Then, when the fault is introduced, a sudden increase in 

the VnMAX statistics occurs, due to changes in the process mean value, which are not 

properly accommodated by the monitoring statistics during the first faulty observations. 

This effect of the mean disappear around observation 5300, which is consistent with the 

moving window length (i.e., 300 observations). However, for the multiscale approaches, 

this effect takes more observations to vanish as a result of the delay introduced by the 

wavelet transform, as can be observed in Figures 13.2 (c) and.13.2 (d). After this initial 

response to the mean, the monitoring statistics became only sensitive to changes in 

correlation (detected by RMAX) and variance (detected by VnMAX). From Figure 13.2 

and Table 13.2 it is clear that neither R0MAXNetChLin nor VnMAXNetChLin can efficiently 

detect the structural changes. This result is mostly a consequence of the SET TNetChLin 

which does not consider the variables time dependency. Therefore, the system’s full 

structure is not being properly modeled. In fact, the transformed variables still present 

high autocorrelation, which undermines the detection of structural changes. On the other 

hand, the SET TNetChDyn, removes most of the cross- and auto-correlation present on the 

data. Consequently, the variables are transformed to a new subspace of uncorrelated 

variables were detection of structural changes is maximized. This is indeed observed, 

since the VnMAXNetChDyn statistic has generally higher detections rates for most faults. 

As for the multiscale monitoring statistics, from Table 13.2 it can be observed that MS-

R0MAXNetChLin and MS-VnMAXNetChLin are far behind the single-scale TNetChDyn based 

statistics (R0MAXNetChDyn and VnMAXNetChDyn). For instance, for a fault of δ = 0.75, the 

average detection rate of MS-VnMAXNetChDyn is 0.517 while VnMAXNetChDyn considers all 

observations as faulty. This result arises from the fact that TNetChDyn may present some 

multiscale features: the regression model for the different variables may span different 

scales of time, depending on the variables involved. Therefore, multiscale features may 

be accounted for in this way. Moreover, the transformed variables are essentially white 

noise and any deviation of this behavior, regardless of the scale, will lead to changes in 

the process model, which are well captured by the VnMAX statistics. Nevertheless, a 

multiscale decomposition of the data can provide useful information regarding the scale 

of the fault, as well as simplify the development of the models since a stationary 
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transformation requires less computation burden than a complex time series 

identification. 

When a dynamic SET, TNetChDyn, is used to decorrelate the wavelet coefficients, the 

performance is greatly increased, as can be seen from Table 13.2 for the monitoring 

statistics MS-R0MAXNetChDyn and MS-VnMAXNetChDyn. However, the detection rates obtain 

by this monitoring scheme are still very similar to the ones obtain with the single-scale 

scheme, namely VnMAXNetChDyn. Moreover, it is worth pointing that a different dynamic 

model and a causal network may be required for each scale, which adds significant 

amounts of complexity to this approach. Nevertheless, depending on the nature of the 

data, a transformation based on the Cholesky decomposition (see Chapter 9) can be 

employed in some scales, which simplifies the multiscale procedure. This situation was 

not explored here, since the goal was to compare the monitoring procedures at their best 

attainable performance. 

The results also show that the detection rates of the multiscale RMAX statistics (MS-

R0MAXNetChLin and MS-R0MAXNetChDyn) also increase with the faults magnitude. As 

reported earlier, this effect can be traced back to some specific scales. As this situation 

encompasses additional information about the perturbation, the fault diagnosis stage can 

be improved. Nevertheless, it is important to note that structural changes are detected by 

both RMAX and VnMAX statistics. Moreover, it was verified that different variable 

transformations lead to different types of deviations that can be detected by RMAX on 

some transformations and by VnMAX on others. Therefore, a fair comparison can only be 

implemented if both monitoring statistics are considered in simultaneous, since they have 

a complementary behavior. Even in such case, higher detection abilities are observed in 

the single-scale approach when a dynamic SET is used. 

When the same simulation procedure is applied to a perturbation in the discharge 

coefficient and heat capacity of the heating fluid the fault detection rates presented in 

Tables 13.3 and 13.4 are obtained. These results are consistent with the previous analysis, 

i.e., the fault detection rates of the single-scale and multiscale methodologies with 

dynamic SET (TNetDyn) are very similar. As for the faults in the activation energy, Table 

13.5, VnMAXNetDyn clearly has the best performance. These results suggest that an 

adequate single-scale sensitivity enhancing transformation is able to deal with the 

multiscale nature of the process. 
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Table 13.3 Detection rates for step perturbations in the discharge coefficient for the single-scale and multiscale 
monitoring statistics. 

Statistic 
Fault magnitude 

1.05 1.10 1.15 1.20
R0MAXNetChLin 0.089 ± 0.011 0.117 ± 0.015 0.127 ± 0.010 0.136 ± 0.011 
VnMAXNetChLin 0.131 ± 0.025 0.134 ± 0.015 0.165 ± 0.027 0.192 ± 0.030 
R0MAXNetChDyn 0.113 ± 0.022 0.126 ± 0.023 0.148 ± 0.035 0.132 ± 0.024 
VnMAXNetChDyn 0.129 ± 0.024 0.365 ± 0.055 0.976 ± 0.023 1.000 ± 0.000 

MS-R0MAXNetChLin 0.185 ± 0.040 0.227 ± 0.019 0.342 ± 0.050 0.654 ± 0.067 
MS-VnMAXNetChLin 0.174 ± 0.019 0.237 ± 0.057 0.478 ± 0.053 0.822 ± 0.049 
MS-R0MAXNetChDyn 0.194 ± 0.044 0.276 ± 0.074 0.279 ± 0.062 0.411 ± 0.043 
MS-VnMAXNetChDyn 0.186 ± 0.033 0.437 ± 0.041 0.942 ± 0.036 1.000 ± 0.000 

Table 13.4 Detection rates for step perturbations in the heat capacity of the heating fluid for the single-scale and 
multiscale monitoring statistics. 

Statistic 
Fault magnitude 

0.9 0.85 0.8 0.75
R0MAXNetChLin 0.003 ± 0.007 0.006 ± 0.005 0.010 ± 0.019 0.021 ± 0.014 
VnMAXNetChLin 0.078 ± 0.013 0.081 ± 0.010 0.073 ± 0.009 0.110 ± 0.018 
R0MAXNetChDyn 0.014 ± 0.010 0.096 ± 0.039 0.094 ± 0.035 0.088 ± 0.012 
VnMAXNetChDyn 0.092 ± 0.035 0.322 ± 0.120 0.882 ± 0.065 0.998 ± 0.003 

MS-R0MAXNetChLin 0.144 ± 0.029 0.159 ± 0.017 0.192 ± 0.049 0.326 ± 0.066 
MS-VnMAXNetChLin 0.123 ± 0.033 0.133 ± 0.029 0.258 ± 0.028 0.399 ± 0.076 
MS-R0MAXNetChDyn 0.111 ± 0.021 0.145 ± 0.034 0.154 ± 0.026 0.201 ± 0.080 
MS-VnMAXNetChDyn 0.157 ± 0.029 0.306 ± 0.061 0.759 ± 0.030 0.990 ± 0.013 

Table 13.5 Detection rates for step perturbations in the activation energy for the single-scale and multiscale monitoring 
statistics. 

Statistic 
Fault magnitude 

1.15 1.20 1.25 1.30
R0MAXNetChLin 0.028 ± 0.013 0.045 ± 0.024 0.058 ± 0.007 0.06 ± 0.015 
VnMAXNetChLin 0.107 ± 0.029 0.133 ± 0.053 0.145 ± 0.039 0.174 ± 0.044 
R0MAXNetChDyn 0.086 ± 0.022 0.079 ± 0.016 0.084 ± 0.014 0.116 ± 0.044 
VnMAXNetChDyn 0.572 ± 0.102 0.907 ± 0.046 0.998 ± 0.005 1.000 ± 0.000 

MS-R0MAXNetChLin 0.169 ± 0.020 0.181 ± 0.034 0.254 ± 0.043 0.346 ± 0.082 
MS-VnMAXNetChLin 0.147 ± 0.030 0.188 ± 0.050 0.241 ± 0.047 0.311 ± 0.136 
MS-R0MAXNetChDyn 0.166 ± 0.030 0.127 ± 0.036 0.154 ± 0.034 0.22 ± 0.027 
MS-VnMAXNetChDyn 0.193 ± 0.010 0.243 ± 0.066 0.273 ± 0.089 0.442 ± 0.107 

To further assess the relative performance of the single-scale and multiscale monitoring 

statistics a permutation test [104] was performed to each pair of monitoring statistics. The 

goal of this permutation test is to verify if the obtained detection rates are significantly 

different. The results of this test are presented in Table 13.6 where the p-value and the 
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statistics signal is display. From this results it is verified that as the monitoring statistic 

complexity increases (i.e., from single-scale to multiscale and stationary to dynamic 

transformations) better results are obtained. Still, the performance of VnMAXNetChDyn 

showed to give the best results, being statistically equal to MS-VnMAXNetChDyn, with a p-

value of 0.061. Thus, a single-scale monitoring scheme with a proper SET is capable to 

model a multiscale system and present detection rates similar to more complex multiscale 

monitoring schemes. 
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13.3 Conclusions	

The sensitivity enhancing transformation is confirmed as a major factor in the detection 

performance of structural changes. Its impact is very visible on this case study and shows 

that if a proper transformation is chosen, the resulting monitoring statistics can achieve 

the same level of detection capability as their multiscale counterparts. For most of the 

simulated faults (head transfer coefficient, discharge coefficient and heat capacity of the 

heating fluid) no significant difference in the fault detection rates is observed. Moreover, 

when the system was subjected to a perturbation in the activation energy, the detection 

rates of the single-scale VnMAXNetChDyn are undoubtedly higher. In fact, during this study, 

only under a limited number of situations the multiscale methodology lead to better 

results than the dynamic singe-scale approach.  

Even though the wavelet transform present an intrinsic ability to decorrelate 

autocorrelated measurements, it may also induce autocorrelation in the wavelet 

coefficients due to the moving window approach used in the decomposition stage. This 

added autocorrelation can in some cases be more complex than the original signal, which 

will then cause problems on the model fitting, especially if a dynamic model is 

considered. However, even in the cases where only a stationary model was used, a 

significant improvement is observed when compared with the same single-scale 

transformation. Therefore, the application of the wavelet decomposition is advantageous 

for systems that are difficult to model and thus may provide a good solution when a 

balance must be established between the modeling complexity and performance. 
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14 Conclusions	

In this thesis, the problem of monitoring the location and correlation structure of complex 

systems was addressed through the development of new monitoring schemes with added 

value to the field of statistical process control (SPC). For monitoring the process location, 

the dynamic principal component analysis with decorrelated residuals (DPCA-DR) was 

proposed in Part III, while for monitoring the process multivariate dispersion a 

RMAX/VnMAX procedure was proposed in Part IV. Moreover, during the development of 

these two main contributions, other important aspects were also explored and solutions 

put forward, such as lag selection methods for DPCA (Chapter 5), sensitivity enhancing 

transformations for improving the monitoring of correlation (Chapter 9), network 

reconstruction algorithms (Chapter 9) and an equivalence relationship between off-line 

and on-line monitoring (Chapter 12). Even though these parallel developments were 

mostly a consequence of the main study, some of them are by themselves very useful for 

implementing current SPC approaches in practice. 

The Part III of this thesis is focused in the problem of monitoring the process mean of 

megavariate dynamic processes. The proper monitoring of these type of processes was 

not yet completely solved, as the methodology of DPCA proposed by Ku et al. (1995) 

[27] still leads to monitoring statistics with autocorrelation. Moreover, their algorithm to 

select the lagged structure clearly underestimates the true time dependency of the data. In 

this regard, new lag selection procedures were proposed. These new methods present 

better lag estimation properties and one of them is even able to select a different number 

of lags for each variable. By doing so, a more precise description of the process can be 

obtained, which greatly affects the final performance of the monitoring schemes based of 

this lag selection method. This can be easily observed by implementing a combination of 

the current DPCA method with the new lag selection technique (Section 5.3.1). The 

results in this situation clearly reveal an improvement on the faults detection abilities, 

even though the autocorrelation in the monitoring statistics is still present. 

To mitigate the autocorrelation effect referred earlier, a total of twenty two monitoring 

statistics (most of them new) were investigated, as described in Chapter 6. From this 

study, a class of monitoring statistics defined as dynamic principal component analysis 
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with decorrelated residuals (DPCA-DR) proved to be consistently superior to the 

remaining studied monitoring schemes. Moreover, the monitoring statistics based on 

DPCA-DR have low autocorrelation levels even for complex systems, such as the 

Tennessee Eastman process, without compromising their detection ability. In fact, greater 

detection performances are observed in all the case studies analyzed. 

The implementation of DPCA-DR with wavelet transforms was also considered to 

improve the detection of deviations in systems with multiscale features. The procedure 

proposed in Chapter 7, MS-DPCA-DR, has is foundations in the work of Bakshi (1998) 

[9] and exploits the combined properties of wavelet transforms (that separate the time-

frequency scales that compose the data) and DPCA-DR (that explain the dynamic 

structure of the processes) in order to construct a scale dependent monitoring scheme. The 

results obtained in this context proved that MS-DPCA-DR is capable to isolate the time-

frequencies components related with the fault and to filter out their contribution from the 

signal. Thus, the unnecessary information is removed from the signal and a clearer fault 

pattern can be extracted. However, DPCA-DR was not capable to cope with the 

autocorrelation induced by the wavelet transform (due to the use of a moving window 

approach), especially for the lower time-frequency scales. 

In Part IV the focus was centered on the monitoring of the process correlation structure. 

Comparatively to the problem of monitoring the process location, the detection of 

changes in the correlation structure of multivariate systems has received much less 

attention. In fact, even the most recent proposals are still related with the base concepts of 

the likelihood ratio test and generalized variance and use solely the information of the 

marginal covariance matrix. Thus, in order to improve their detection performance for 

localized perturbations, the causal structure of the processes was considered in this work. 

Partial correlation coefficients are a useful measurement of the local association between 

process variables, even though they do not convey information regarding the variables 

causality. Nevertheless, the proposed monitoring procedures based on partial correlations 

and network reconstruction techniques showed to be superior to the current marginal 

based approaches. 

To improve the detection of changes in correlation it was observed that the use of 

uncorrelated variables greatly enhances the methods sensitivity. This observation is a 

direct result of the nature of the correlation curve,   2 2corr ,x z k k w   (with 
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x kz w  , where both z and ε follows a N(0,1)), which is maximized at k/w = 0, 

corresponding to corr(x,z) = 0. Therefore, even small deviations from the zero correlation 

are translated into large faults. However, as the typical data recovered from industrial 

processes have high levels of correlation, a variable sensitivity enhancing transformation 

(SET) is required. Still, not all transformations with decorrelation properties, such as the 

Cholesky decomposition or PCA, are appropriate to be used for this end. Instead, the SET 

that make use of the process causal structure showed to be the most adequate, as 

described in Chapter 9. Moreover, a new set of monitoring statistics was developed to 

take full advantage of the SET properties. The current monitoring schemes showed to be 

invariant or little affected by such variable transformations. 

To monitor uncorrelated variables, the RMAX and VnMAX monitoring statistics were 

found to be the most suitable ones. This conclusion was first drawn for the off-line 

monitoring of the process correlation structure (Chapter 10), where it was observed that 

they were capable to detect small deviations even when a small number of observations 

was used to compute the sample covariance matrix. Moreover, it was verified that these 

two monitoring statistics have complementary features, since RMAX detects faults at the 

correlation level and VnMAX at the variance level. VnMAX is also related with the model 

validity, and therefore it is also capable to detect structural changes as a result of model 

mismatch. 

Due to their good performance on the off-line scenario, the RMAX and VnMAX 

monitoring schemes were extended to the on-line scenario in Chapter 11. To do so, an 

EWMA recursion scheme was employed in order to estimate the covariance matrix. 

Compared to the current on-line approaches, RMAX and VnMAX were found to have 

similar performance when stationary linear SET are used and higher performances when a 

dynamic non-linear SET is employed. The observed improvements in performance are a 

result of both monitoring statistics (RMAX and VnMAX) and the SET. 

In both off-line and on-line monitoring, the SET proved to be the major factor responsible 

for the increase in performance. The impact of this transformation is so relevant, that even 

a single-scale transformation can cope with the multiscale characteristics of the processes 

and outperform multiscale oriented approaches, as observed in Chapter 13. 
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15 Future	Work	

The main focus of the current thesis is the monitoring of multi- and megavariate dynamic 

continuous systems, which culminated in the development of the approaches summarized 

in Chapter 14 for monitor their location and multivariate dispersion. These methodologies 

can also be applied to other research areas, such as the monitoring of batch processes and 

time-varying processes. Further improvements in the network reconstruction algorithms 

can also be achieved, since the ones proposed here are mostly oriented to the 

decorrelation of the process variables in a meaningful way, rather than to extract the real 

process causal network. The effects of using the sensitivity enhancing transformations in 

the monitoring of the process location was also not fully explored, even thought it was 

visible that the VnMAX statistics are able to detect such faults. Moreover, a combined 

monitoring scheme to detect both location and dispersion is also of interest, since it was 

observed that PCA (and its derivative forms) have a relatively low sensitivity to changes 

in correlation and the monitoring statistics for the process correlation structure are not 

appropriate to detect changes in the mean value. 

Fault diagnosis is another area of interest for future developments. While for DPCA-DR 

contributions plots or reconstruction-based contributions can be used [149], for the 

monitoring schemes based on partial correlations a different approach is required. 

Some of these questions will be discussed in the following sections, where more 

information is given regarding future areas of research in the line of the developments 

proposed in this thesis. 

15.1 Application	of	DPCA‐DR	to	Batch	Processes	

Even though the main focus of this thesis was toward the monitoring of continuous 

processes, the monitoring of batch processes is also a relevant field of research, since they 

are very common in the chemical and biochemical industry, namely in the production of 

high added-value materials and products, such as polymers, pharmaceuticals, 

biochemicals and semiconductors [150, 151]. Furthermore, the on-line monitoring of 
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batch processes not only allows for the promptly detection and correction of abnormal 

situations, but also save production time in the cases where it is found that the product 

specifications will not be attained in the end of the batch. 

To conduct such monitoring tasks in batch processes, several approaches based on multi-

way principal component analysis (PCA) and partial lest squares (PLS) have been 

proposed [19, 150, 152]. A characteristic feature of these procedures is the way data is 

organized, since in batch processes data present three fundamental dimensions (I batches 

× J variables × K time periods) while the classic latent variables methods are only able to 

handle two dimensional data tables. To address this issue, the data is usually unfolded in 

either a batch-wise or variable-wise fashion.  

In the case of batch-wise unfolding, a matrix of size ( I JK ) is obtained by placing 

different time periods side by side, as depicted in Figure 15.1 (a). Thus, each row of the 

unfolded matrix contains the data of a single batch and the columns correspond to the 

measurements at different times. By doing so and after proper pre-processing, the full 

linear dynamic behavior around the average trajectory can be taken into account. 

However, due to its construction, it requires the estimation of the future observations 

during the monitoring stage. To handle this issue several approaches were proposed for 

future data imputation, such as by assuming a zero deviation regarding the mean 

trajectory for future observations, or that the current deviation will be maintained 

throughout the rest of the batch. Alternatively, these “missing” values may also be 

estimated by application of missing data techniques [150, 152]. 

As for the variable-wise unfolding, the data is organized as present in Figure 15.1 (b) into 

a ( IK J ) matrix by stacking the data at each time period. Therefore, each row of the 

unfolded matrix corresponds to a single time observation. Consequently, this approach 

only considers the instantaneous cross-correlation between the measurements, ignoring 

their time dependency. 

After unfolding the data in a meaningful way, the typical PCA-based approaches to 

monitor the process state through the Hotelling’s T2 and Q statistics can be employed. 

Some examples of these monitoring schemes are described below. 
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Figure 15.1 Unfolding of a three-way array of I batches × J variables × K time periods: (a) batch-wise unfolding to a 
I×JK matrix; (b) variable-wise unfolding to a IK×J matrix. 

The batch-wise multi-way PCA (MPCAB) proposed by Nomikos and MacGregor (1994) 

[57] uses the batch-wise unfolded data matrix and normalize the data by subtracting the 

mean trajectory of each variable over time. Given the data organization, this 

normalization step is equivalent to mean centering each column to its normal operation 

conditions value. After that, the data is scaled to unit variance and the scores and 

residuals of the PCA model are computed and monitored as usual. However, as 

mentioned earlier, due to the unfolding technique, the variables corresponding to future 

observations are not available and need to be properly estimated. 

Wold et al. (1998) [153] proposed a different approach by considering a variable-wise 

multi-way PCA (MPCAV). In this case, data is unfolded in a variable-wise fashion and 

normalized by taking the variables grand mean. This procedure has the advantage of 

avoiding the estimation of future observations (as happens in MPCAB), but, as it 

monitors the variables deviations from the mean value over the batch process, it fails to 

take the batch dynamics into account. Thus, an usual alternative is to normalize the data 

around the average trajectory prior to unfolding the data in a variable-wise way [151]. 

Chen and Liu (2002) [154] proposed a batch dynamic PCA (BDPCA) methodology that 

extends the DPCA method of Ku et al. (1995) [27] to batch processes. The base idea of 

this method is the construction of an extended data matrix of time-shifted replicates for 

each batch. That is, for batch i, the extended data matrix, ( )iX , with l lags is given as, 

     ( ) 0 1i l   X X X X  (15.1) 

(a) (b) 
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where X(j) is an ( ( )–K l J ) matrix of variables shifted j times into the past Thus, the 

sample covariance matrix of batch i is computed as, 

( )T ( )
( )

1

i i
i

K L


 
X X

S
 

(15.2) 

Afterwards, the sample covariance matrices of each batch can be merged into a pooled 

sample covariance matrix by considering their average, i.e., 

 

 

( )

( ) 1

1
I

i

pool i

K L

I K L


 




S
S (15.3) 

Given ( )poolS , the standard PCA model can be obtained, as well as its monitoring 

statistics. However, as this procedure uses time-shifted replicates of the variables, it can 

only be employed after the first 1l   observations are available. Moreover, this method 

also requires the selection of the number of lags to construct the PCA model, for which 

the method of Ku et al. (1995) [27] has been employed. Even though Chen and Liu 

(2002) [154] do not mentioned any particular normalization of the data, the use of a 

batch-wise normalization is recommended [151]. 

Instead of monitoring the measured observations, Choi et al. (2008) [155] proposed the 

monitoring of their residuals with resort to an autoregressive PCA (ARPCA) method. 

Basically, this method fits a multivariate autoregressive model to the data and then uses it 

to compute one-step-ahead predictions of the current measurements. Afterwards, the 

residuals are determined and organized variable-wise prior to a PCA analysis. 

Among these methodologies, the BDPCA scheme is highlighted, since this procedure is a 

direct extension of the continuous DPCA scheme of Ku et al. (1995) [27]. Therefore, it 

can be easily adapted to a new batch monitoring procedure based on DPCA-DR. In this 

case, the DPCA model can be constructed based on ( )poolS  and by assumption that the 

current observations are missing, one-step-ahead predictions of the scores ( t̂ ) and 

observations can be obtained (see Section 6.2.5). Then, the process state can be monitored 

by, 

   T
2 1

ˆ
ˆ ˆ

PREVT 
t-t

t - t S t - t (15.4)
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   T
2 T 1 1ˆ ˆ

REST     r rr S r x Pt S x Pt (15.5)

where ˆt-t
S  is the sample covariance matrix of the difference between the observed and 

estimated scores, ( ˆt t ), and rS  is the sample covariance matrix of the residuals in the 

reconstructed data. 

As in the continuous case, these monitoring statistics are expected to present low 

autocorrelation levels and good detection abilities. Moreover, note that the batch DPCA-

DR approach also shares some similarities with ARPCA, namely the fact that both 

procedures monitor the residuals of one-step-ahead predictions. However, while ARPCA 

requires a construction of a multivariate time series model, DPCA-DR does it implicitly 

within the DPCA model. Furthermore, it is also recommended the use of the proposed lag 

selection methods (Chapter 5), since they give better estimates of the lagged structure of 

processes than the lag selection method proposed by Ku et al. (1995) [27]. 

Recently, Van den Kerkhof et al. (2012) [151], compared the performances of MPCAB, 

MPCAV, BDPCA and ARPCA based on simulated data from an industrial-scale 

biochemical process for penicillin fermentation. From this study they observed that 

ARPCA outperformed the other methods in the fault detection task. However, for 

diagnosis proposes MPCAB gave the best results. Thus, they conclude that a combined 

approach for fault detection by ARPCA and fault diagnosis by MPCAB could result in a 

methodology with fast detection and more accurate diagnosis properties. As the presented 

batch version of DPCA-DR is, in some extent, comparable to both methodologies, it is 

considered pertinent to perform a similar comparison study in order to verify the true 

potential of DPCA-DR in the monitoring of batch processes. 

15.2 Application	of	DPCA‐DR	to	Time‐varying	Processes	

Although the monitoring procedures studied in this work are able to cope with the 

dynamic and megavariate nature of industrial data, they still assume processes to be 

stationary. This assumption is often not met in practice. Non-stationarity can be caused by 

multiple factors such as equipment ageing, sensor drifting, catalyst deactivation, periodic 

cleaning, among others [63]. As these factors can affect any process, causing changes in 
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the mean, variance and correlation structure, there is a need to develop methods capable 

to efficiently handle time-varying features. 

One way to deal with this situation is by the use of adaptive methods. These methods are 

extensions of the commonly used MSPC procedures, namely PCA and PLS models, 

which now can successively adapt to incoming data over time in order to cope with the 

time-varying nature of the underlying processes. This updated model can be either 

obtained by application of a recursive estimation of the model with the aid of a forgetting 

factor (RPCA), or by a moving window procedure (MWPCA), where the newest samples 

are included in the model, while the oldest ones are removed. The first approach was 

proposed by Li et al. (2000) [63], who employed a recursive estimation of the correlation 

matrix to update the PCA model. The eigenvalues and eigenvectors of this correlation 

matrix are then computed by Lanczos tridiagonalization and used to construct the updated 

PCA model. The use of moving windows to update the latent model is perhaps the most 

straightforward approach. However, it requires the storage of a sliding data window from 

which the model is successively computed. To improve its computational efficiency, and 

avoid the compromise between computational speed and modeling representativeness, 

Wang et al. (2005) [143] proposed a fast moving window PCA, which recursively 

updates the correlation matrix through a three step procedure. After updating, the 

MWPCA model is obtained in the same way as RPCA [63]. Even though RPCA and 

MWPCA are able to deal with megavariate processes and incorporate time-varying 

features, the dynamic behavior of the data is not captured in the model. Therefore, these 

approaches do not fully convey all the data features, which may seriously undermine their 

reliability and efficiency. 

Another way to deal with non- stationarity is by explicitly modeling these characteristics 

by means of time series, for instance ARIMA (autoregressive integrated moving average) 

models [156]. The main idea behind these techniques is that the residuals obtained after 

pretreatment of the data with the estimated model, are time-invariant. Therefore, the 

traditional control charts can be applied to the residuals. However, the residuals obtained 

this way, can mask some types of faults due to the differencing procedure inherent to this 

approach [13]. To overcome this situation, a parametric model of the time dependency 

can be applied, e.g. [14]. Although this is an appealing solution, which proved to be 

successful in some applications, the time series modeling of large scale systems is a quite 

difficult task if possible at all, even for systems of low to moderate size (10-15 variables). 
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DPCA-DR intrinsically models a VAR process through the inclusion of time-shifted 

variables and uses it to obtain one-step-ahead predictions by application of missing data 

techniques. Thus, DPCA-DR is effectively monitoring the model residuals, which gives it 

the capacity to deal with time-varying processes, as it was documented in the preliminary 

results presented in [157]. One of the advantages of applying DPCA-DR for such task is 

the low autocorrelation of the monitoring statistics. This feature is not observed with 

RPCA or MWPCA and, for this reason, their control limits are difficult to compute, since 

the analytic expressions are usually invalid for the conditions found in real world 

scenarios. Moreover, they require an on-line updating of the control limits due to the 

changes in the model parameters. On the other hand, DPCA-DR uses a fixed model and 

control limits, which remain valid throughout the monitoring phase even if the in-control 

mean and variance are no longer equal to the ones used during the modeling stage. 

To exemplify the previous reasoning, consider the case of a megavariate process given by 

the following latent variable model structure: 

  (15.6)

where X is an ( n m ) matrix of measured variables, T is a ( n p ) matrix of latent 

variables, P is an ( m p ) matrix of orthogonal loadings and E is an ( n m ) matrix of 

errors. Furthermore, assume that each latent variable follows an autoregressive integrated 

(ARI) process of order 1 given as [29], 

 1 1 2i i i i it t t t         (15.7) 

where ti is the latent variable at instant i, φ is the ARI coefficient and εi is white noise. 

For this example, the number of measured variables (m) was set to 100, with 5 latent 

variables (p) following independent ARI(1) processes with φ = 0.90. The P matrix was 

randomly generated, but forced to have orthogonal columns.  

The sample autocorrelation of the DPCA-DR monitoring statistics in NOC, presented in 

Figure 15.2, shows that they are serial independent. Thus, an UCL can be easily 

determined based on the distribution of the NOC data. Afterwards, the monitoring scheme 

can be employed to new observations without the need to recursively update any of the 

models parameters. This situation is represented in Figure 15.3 for an independent data 

set composed by 500 NOC observations followed by another 500 observations with a step 

T X TP E
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deviation in one of the measurement readings (i.e., a step perturbation in one of the 

columns of matrix X, emulating a sensor failure). 

Figure 15.2 Sample autocorrelation of the DPCA-DR monitoring statistics for a megavariate ARI process with φ = 0.90 
under NOC. 

Figure 15.3 DPCA-DR monitoring statistics for a megavariate ARI process with φ = 0.90. The first 500 observations 
are collected under NOC and in the last 500 observations the system is subjected to a step deviation on a sensor reading 
with magnitude 5. 
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A similar result can be obtained when the underlying latent variables follow a first order 

integrated moving average (IMA) process [29], 

1 1i i i it t      (15.8) 

where ti is the latent variable at instant i, ψ is the IMA coefficient and εi is white noise. 

Using the same simulation settings as for the ARI process, with the latent variables 

determined by Equation (15.8) with ψ = 0.90, one obtains the autocorrelation plots for the 

DPCA-DR monitoring statistics presented in Figure 15.4. Again, they show low 

autocorrelation levels. On the other hand, from Figure 15.5 one can verify that they 

present also good detection capabilities for a step perturbation in one of the measured 

variables. 

Figure 15.4 Sample autocorrelation of the DPCA-DR monitoring statistics for a megavariate IMA process with ψ = 
0.90 under NOC. 
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Figure 15.5 DPCA-DR monitoring statistics for a megavariate IMA process with ψ = 0.90. The first 500 observations 
are collected under NOC and for the last 500 observations the system is subjected to a step deviation on a sensor 
reading (measured variable) with magnitude 0.17. 

In both ARI and IMA processes, the traditional PCA and DPCA gave erratic patterns, 

especially in the Hotelling’s T2 statistics, which clearly show their dependency with the 

process mean value. RPCA and MWPCA are less subjected to this feature. However they 

present problems in the selection of the adequate control limits, since the underlying 

assumptions of the analytic expressions are often violated. Furthermore, even when these 

methods are used with appropriate control limits they remain unable to detect some 

particular faults, such as measurement deviations (i.e., deviation in X). Amongst the 

monitoring schemes just discussed, DPCA-DR is the only one capable of detecting such 

faults, making it particularly suitable for monitoring megavariate processes with non-

stationary features. Still, some improvements are required, since the DPCA-DR approach 

displays insensitivity to some deviations at the latent variables level, mostly due to its 

ability to estimate them well even if they depart from their nominal value (as it is a 

residual statistic, the effective departure from nominal conditions is not explicitly taken 

into account). 
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15.3 Fault	Diagnosis	Based	on	Partial	Correlations	

After a fault is signaled during the monitoring stage, the next stage is to identify its origin 

in order to proceed with the necessary corrective actions. Such diagnosis task can be 

performed by analysis of the partial correlation coefficients, due to their ability to 

eliminate the effect of the controlled variable upon the others. Therefore, if a change on 

the variables relationships occurs, it is expected that the partial correlations coefficients 

controlled by the variables associated with the root cause of the fault remain close to their 

normal values, since the source of variability is being removed in these circumstances. 

Given this property, the following procedure is suggested to diagnose the fault origin 

based on the analysis of 1st order partial correlation coefficients. To better introduce the 

concepts behind this procedure, recall that a 1st partial correlation coefficient ( , .i j kr ) is a 

measure of association between the pair of variables (i,j) when variable k is controlled 

for. Consequently, let us define the pair as any of the two variables to which the 

correlation is being measured and control as the corresponding controlled variable. 

The first step of the proposed procedure involves the mapping of a ( m m ) matrix D 

(rows correspond to control variables and columns to pair variables) where the dk,i 

element corresponds to the number of times that the ith variable is in a pair (i,j) of 1st 

order partial correlations controlled by k that is found to be above a threshold established 

from the analysis of their NOC distribution, for all j different from i and k, i.e., 

   , , .

1 if  threshold
, where 

0 otherwisek i i j k
j i k

x
d f r f x

 


  


 (15.9) 

By doing so, it can be assessed which control variable leads to the lowest number of 

partial correlations above the threshold by considering each row of D. Likewise, one can 

also assess which pair variable is more frequently related with abnormal partial 

correlations, through the analysis of the columns of D. One way to do this is by 

computing the norm of each row and column of D. These quantities are defined as control 

and pair distance. Therefore, a variable with a small control distance is more related with 

the root cause, since when this variable is controlled for, the partial correlations tend to be 

closer to their normal operation values. Similarly, a variable with a large pair distance has 

suffered many changes in correlation with the other variables, and therefore it is expected 

to be more related to the root cause. As a result of this behavior, variable that comply to 
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both criteria simultaneously (i.e., lowest control distance and higher pair distance) are 

regarded as priority to further analysis. Then, the variables that only present a low control 

distance should be checked and afterwards the variables with high pair distance. This is 

translated in the following variables classification: 

1. Variables with lowest control distance and highest pair distance are marked with

code red – these are the best candidates for the faults origin, since they satisfy

both criteria;

2. Variables with lowest control distance but with a pair distance lower than the

maximum value are marked with code orange – when these variables are

controlled a small number of partial correlations above the threshold is obtained

but their correlation with the other variables does not changes significantly;

3. Variables with highest pair distance but with a control distance higher than the

minimum value are marked with code yellow – these variables are related with

partial correlations above the threshold, but when controlled, they do not eliminate

the fault contribution.

These three decision rules give information about the fault origin with decreasing 

strength. Therefore, it is expected that most of the times, rule 1 (i.e., red variables) 

identifies the correct variable. The pseudo-code for this procedure is summarized in Table 

15.1. In order to implement this algorithm, the maximum possible threshold is the UCL of 

the R1MAX statistic, otherwise, it is not guaranteed that at least one partial correlation 

coefficient is above the threshold at the moment of the fault detection. This requirement 

also implies that the detection stage should be carried out with R1MAX. 

To compare the diagnostic capabilities of this procedure, a similar scheme was developed 

for the marginal correlation. In this case, it is only analyzed the number of times that each 

variable is involved in a correlation coefficient that exceeds a given threshold based on 

their NOC distribution. Again, as this procedure is related with the correlation, the 

suitable monitoring statistic would be R0MAX, since this is the one that monitors changes 

in the marginal correlation coefficients. 
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Table 15.1 Pseudo-code for the fault diagnosis algorithm. 

1. Construct a (m×m) counting matrix D of variables involved in 1st order partial
correlation coefficients exceeding the threshold:

a. For k = 1 to m,
i. Determine the pair or variables (i,j) that have a 1st partial

correlation controlled by k (rij.k) above the threshold. Save this
set of pair as P;

ii. For i = 1 to m, count the number of times that the ith variable is
present in P and save this value in D(k,i).

2. Determine the vector of control distances (c) as the squared norm of each row

of D, i.e.     2
,:i ic D ;

3. Determine the vector of pair distances (p) as the squared norm of each column

of D, i.e.     2
:,i ip D ;

4. Determine the lowest control distance:  minminc  c ; 

5. Determine the highest pair distance:  maxmaxp  p ; 

6. Classify each variable according to their priority:
a. For i = 1 to m,

i. If   mini cc  and   maxi pp , mark variable as red; 

ii. I f   mini cc  and   maxi pp , mark variable as orange; 

iii. If   mini cc  and   maxi pp , mark variable as yellow. 

For the sake of illustrating the potential of applying partial correlations in the diagnostic 

of the faults origin, the stationary linear system described on Section 10.2.2.1 was 

considered for the case of on-line monitoring. The diagnostics procedures based on the 

marginal correlation and partial correlations were compared by monitoring the system 

with the respective RMAX statistics and whenever these statistics signal an alarm, the 

respective diagnostic algorithm is run. This is done for three monitoring schemes: (i) 

marginal correlations of the original variables (monitored by R0MAXZ), (ii) marginal 

correlations of the transformed TNet variables (monitored by R0MAXNet) and (iii) 1st order 

partial correlation of the transformed TNet variables (monitored by R1MAXNet). 

As part of the computation of RMAX and of the diagnostic procedure, it is required that 

all correlation coefficients have the same probability to exceed a certain threshold. 

Therefore, it is necessary to determine the distribution of each correlation coefficient in 

order to normalize them to the same distribution. For the case of uncorrelated variables, 

this normalization step can be achieved by application of the equations described in 

Sections 10.1 and 11.1. For the original variables (which present correlation among each 

other) similar equations can be used [46]. However, for this comparison, the correlation 
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coefficients were normalized based on the empirical distribution obtained with 10000 

NOC data sets with 200 observations each. The thresholds were then computed so that the 

corresponding RMAX statistics present a false alarm rate of 1%. By doing so, it is 

guaranteed that all monitoring schemes are comparable and that in the diagnose phase all 

correlation coefficients have the same probability to exceed the thresholds under NOC. 

Finally, as the thresholds were determined based on a window of 200 observations, a 

moving window approach of the same length is considered in the monitoring stage. 

However, it is worth noticing that an EWMA recursion with λ = 0.01 could also be used 

since these two approaches are equivalent (see Chapter 12). 

For a change in the relationship between g1 and g8 with a fault of magnitude δ = 1.10 the 

percentage of times that each variable was identified as a possible root cause is 

represented in Figure 15.6 for the marginal correlations approaches and in Figure 15.7 for 

the partial correlations procedure. When marginal correlations of transformed variables 

are used (Figure 15.6 (b)), variable g1 and g8 are identified as the root cause in more than 

80% of the times, while the other variables are only considered in about 3% of the times. 

The procedure based on partial correlations (Figure 15.7) identifies the same root causes 

in about 75% of the times in the red criteria. These results clearly show that both 

procedures are valid approaches to identify the fault’s root case. Furthermore, it indicates 

that both marginal and partial correlations of the transformed variables have similar 

potential for such task. However, if the original variables are used, the marginal 

correlation would signal most of the variables as a potential cause (se Figure 15.6 (a)). 

Similar results were obtained for the other faults and also for faults with different 

magnitudes. Therefore, the procedure based on marginal correlations of the transformed 

variables is regarded as the best method to diagnose the fault’s root case. Note however, 

that since these variables are initially uncorrelated based on the process structure trough 

linear regressions, they are closely related with the concept of partial correlations. In 

other words, the marginal correlation of the new transformed variables can be interpreted 

as partial correlations of the original ones. 

The base construction of this diagnosis procedure (hypotheses testing to each marginal or 

1st order partial correlation coefficient) requires that, at the moment of detection, at least 

one correlation coefficient be above the selected thresholds. To ensure that this 

requirement is attained, it is recommended the use of the corresponding RMAX statistic, 
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since it implicitly performs this hypotheses test during the detection stage. The current 

monitoring statistics, such as M1Z
2 and MEWMAt (see Section 4.2), do not guarantee this 

prerequisite. Therefore, besides leading to faster detection speeds (see Chapter 11), the 

RMAX procedure can also improve the diagnosis phase. 

These preliminary results show that even though the diagnosis based on partial correlation 

has great potential, there are still some areas that need improvement. For instance, the 

above procedure often identifies two variables as a possible root cases. This can be 

reduced to a single root cause by consideration of the process causal network, by analysis 

of the variables values (namely mean and variance) at the detection moment or by re-

estimation of the regression coefficients used in the SET. 

(a) (b)
Figure 15.6 Percentage of times that each variable was considered as the faults’ root cause by the marginal correlation 
procedure on fault A (i.e., on the relationship between variable 1 and 8), with δ = 1.10, for the stationary linear system 
in a total of 1000 cases. The threshold used by both methods was set for the same statistical significance of 0.01: (a) 
marginal correlation of the original variables; (b) marginal correlation of the transformed variables. 
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Figure 15.7 Percentage of times that each variable was considered as the faults’ root cause by the partial correlations 
procedure on fault A (i.e., on the relationship between variable 1 and 8), with δ = 1.10, for the stationary linear system 
in a total of 1000 cases. The threshold was set for the same statistical significance of 0.01. 
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Apendix	A. Mathematical	 Model	 of	 an	

Endothermic	CSTR	under	Feedback	Control	

The set of differential equations used to describe a continuous stirred-tank reactor (CSTR) 

are here derived based on first principles. In this model, the thermo-physical properties of 

the materials are constant (compounds A and B and thermic fluid), namely their densities 

and heat capacities. The description of the symbols and their respective values are 

presented in Table A.1. 

Table A.1 Parameters of the CSTR model. 

Symbol Description Values Unit
h  Reactor level 0.45 m 

AC Outlet concentration of compound A 4.47 kmol m-3 
T Reactor temperature 318.48 K 

jT Outlet temperature of thermal fluid 330.42 K 

jvF Valve outlet volumetric flow rate of the thermal 
fluid 

0.008 m3 min-1 

0F Inlet volumetric flow of the reactor feed stream 0.008 m3 min-1 

0AC Concentration of compound A in the reactor feed 
stream 

6 kmol m-3 

0T Temperature of the reactor feed stream 
299.15 

K 

0jT Inlet temperature of the thermal fluid 
348.15 

K 

jF Valve inlet volumetric flow rate of the thermal 
fluid 

0.008 m3 min-1 

c Discharge coefficient 0.012 m5/2 min-1 
D Reactor diameter 0.50 m 
Vb Volume at the reactor’s base 0.005 m3 
k0 Pre-exponential factor 2×1010 min-1 
Ea Activation energy 8677.0 J 
ρ Density 1000 kg m-3 

Cp Heat capacity 4184 J kg-1 K-1 
ΔHr

 
Enthalpy of reaction -30.0 J kmol-1 

U Heat transfer coefficient 48000 J min-1 m-2 K-1 
ρj Density of the heating fluid 950 kg m-3 

Cpj Heat capacity of the heating fluid 4800 J kg-1 K-1 
Vj Heating jacket volume 0.025 m3 
τv Valve’s time constant 0.0833 min 
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A.1 Global	Mass	Balance	to	the	CSTR	

The global mass balance to the reactor is given by: 

0

dm
F F

dt
   (A.1)

 
0

0

d V
F F

dt
dV

F F
dt


 

  

   

   

0

dV
F F

dt
   (A.2)

As the reactor volume is given by: 

b bV V A h   

it is obtained that bdV A dh  (assuming that Vb is constant). Thus, 

0b

dh
A F F

dt
  

0

b

F Fdh

dt A


  (A.3)

where 

F c h . (A.4)

A.2 Partial	Mass	Balance	to	Compound	A	

The mass balance of compound A is given by, 

0 0
A

A A A A A

dm
M C F M C F rVM

dt
   (A.5)
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In this case, the reaction kinetics is considered to be described according to the Arrhenius 

law, defined as, 

0

aE

RT
Ar k e C


 (A.6)

Expanding Equation (A.5), 
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By replacement of Equation (A.2) into Equation (A.7), 
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   (A.8)

A.3 Global	Energy	Balance	to	the	Reactor	

The total energy of a thermodynamic system is the result of three components: (i) kinetic 

energy, (ii) potential energy and (iii) internal energy. As the contributions of the kinetic 

energy and potential energy are relatively small in comparison to the internal energy in 

the system, only the contributions of the latter are considered in this model [158]. 

Moreover, for pure liquids, at moderate and constant pressures, the internal energy is 

approximately equal to the enthalpy, from where it can be shown that [158]: 

ˆ
pdE dH C dT  (A.9)
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where Ê  is the energy per unit mass, H is the enthalpy per unit mass, Cp is the heat 

capacity at constant pressure and T is the temperature. 

From the integration of Equation (A.9), it is obtained that: 

 ref p refH H C T T   (A.10)

Without loss of generality, it can be assumed that at the reference temperature, the 

reference enthalpy is zero [158]. Taking in account this considerations, the energy 

balance becomes: 

 0 0 r

dE
F H FH rV H Q

dt
      (A.11)

where  t jQ UA T T  . 

The heat transfer area (At) is given as the area of the reactor’s base plus the lateral area in 

contact with the heating fluid. Therefore, At is given as, 
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(A.12)

Expanding Equation (A.11), 
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d mH
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 0 0 r

dm dH
H m F H FH rV H Q

dt dt
        (A.13)

By replacement of Equation (A.1) into Equation (A.13), 
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A.4 Global	Energy	Balance	to	the	Heating	Jacket	

Taking into consideration the assumptions described in Appendix A.3, the following 

energy balance is obtained for the heating jacket: 
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