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Abstract 

Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial 

gene, which allows the conversion of a non-toxic compound into a lethal drug. Although 

suicide gene therapy has been successfully used in a large number of in vitro and in vivo 

studies, its application to cancer patients has not reached the desirable clinical significance. 

However, recent reports on pre-clinical cancer models demonstrate the huge potential of this 

strategy when used in combination with new therapeutic approaches. In this review, we 

summarize the different suicide gene systems and gene delivery vectors addressed to cancer, 

with particular emphasis on recently developed systems and associated bystander effects. In 

addition, we review the different strategies that have been used in combination with suicide 

gene therapy and provide some insights into the future directions of this approach, particularly 

towards cancer stem cell eradication. 

 

1. Introduction 

Chemotherapy, radiotherapy and surgery constitute the conventional treatments for cancer, 

and among these, complete surgical resection is still the most effective approach to treat 

cancer patients. However, these patients often exhibit advanced stage tumors limiting the 

possibility of surgery or favouring relapses after resection. In addition, the recent discovery in 

a large number of cancers of a rare population of cells with stem cell-like properties called 

«cancer stem cells» (CSCs), which fuel tumor growth and exhibit different features compared 

to differentiated tumor cells, appears as a new challenge for cancer treatment. Therefore, as 

the majority of cancers remain resistant to the current therapeutic options, the development of 

more efficient strategies is still urgent [1; 2]. 
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Gene therapy appears as a good alternative and holds a great promise for the treatment of 

various diseases including cancer, as evidenced by the significant number of recently reported 

clinical trials [3; 4; 5; 6; 7; 8]. In cancer gene therapy, different approaches can be used such 

as mutation correction; enhancement of the immune response against tumor cells; RNA 

interference, targeted lysis of tumor cells using selective replicative viruses; anti-angiogenic 

and suicide gene therapies [9]. 

In this review, we will focus on suicide gene therapy, summarizing the different suicide gene 

systems and gene delivery vectors addressed to cancer, giving particular emphasis to recently 

developed systems and associated bystander effects. In addition, we will review the different 

strategies that have been used in combination with suicide gene therapy and provide some 

insights into the future directions of this approach. 

 

2. The concept of suicide gene therapy and the different suicide systems 

Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial 

gene, which allows the conversion of a non-toxic compound into a lethal drug (Figure 1). 

Among the large number of suicide systems that have been reported (Table I), the herpes 

simplex virus thymidine kinase gene (HSV-tk) with ganciclovir (GCV) as prodrug and the 

cytosine deaminase gene (CD) of E. coli, which converts the non-toxic antifungal agent 5-

fluorocytosine (5-FC) into 5-fluorouracil (5-FU), are the most extensively studied. These two 

systems will be described in more detail. 

 

2.1. The TK/GCV suicide system 

HSV-tk/GCV is one of the most promising “suicide” gene therapy systems. The expression of 

the HSV-tk gene leads to the production of viral thymidine kinase that metabolizes GCV to 

ganciclovir monophosphate. Cellular kinases then convert monophosphorylated GCV into 

ganciclovir triphosphate. As the latter compound is an analogue of deoxyguanosine 
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triphosphate, inhibiton of DNA polymerase and/or incorporation into DNA occurs causing 

chain termination and tumoral cell death [10; 11; 12]. 

It was demonstrated that erroneous GCV triphosphate incorporation into DNA results in S-

phase delay, as well as G2-phase arrest by the activation of 3’ exonuclease and postreplicative 

endonuclease repair mechanisms [13; 14; 15; 16]. As a result of GCV-induced cell cycle 

arrest, Wei et al. found that apoptosis rather than a direct chemical effect was involved in 

HSV-tk-transduced B16F10 melanoma cell death [17]. Beltinger et al., reported that 

TK/GCV-induced apoptosis in cultured human neuroblastoma cells involves accumulation of 

p53, translocation of CD95 to the cell surface mediated by p53 and CD95-L-independent 

formation of a death-inducing signaling complex containing Fas-associated death domain 

protein (FADD) and caspase-8 [18]. In contrast, Tomicic et al. and Fischer et al. showed that, 

upon application of HSV-tk suicide gene therapy in Chinese hamster ovary and glioma cell 

lines, GCV-induced apoptosis occurred mainly by activating the mitochondrial damage 

pathway, in which a decline in Bcl-2 levels was observed [19; 20]. Therefore, caspase 

activation may be a consequence of different initiation events depending on the cell type. In a 

recent study, the relevance of the cell cycle control towards the sensitivity of pancreatic 

tumour cells to the cytotoxicity induced by the HSV-tk/GCV system was demonstrated, since 

a Chk1 activation was associated with a greater HSV-tk/GCV extent of cell death [21]. 

In vivo anti-tumor activity of the TK/GCV system has been demonstrated in several 

carcinoma animal models, including leukemia [22], glioma [23; 24], bladder cancer [25], 

intrahepatic metastasis of liver cancer [26], colon adenocarcinoma [27], and oral cancer, [28; 

29].  

The promising results achieved in the pre-clinical studies with the HSV-tk/GCV system led to 

its application in a number of clinical trials towards different types of cancer [30; 31; 32; 33; 

34; 35]. In a prospective phase I/II clinical study, Voges et al. treated patients suffering from 

recurrent glioblastoma multiforme with HSV-1-tk gene-bearing cationic liposomal vector and 
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systemic ganciclovir and observed a therapeutic benefit in some of the patients. The results of 

this phase I/II study demonstrated the feasibility and safety of this therapeutic strategy [31]. In 

a more recent study, Nasu et al. conducted a phase I clinical trial addressed to hormone-

refractory prostate cancer in 8 patients, which involved the administration of HSV-tk 

mediated by adenovirus followed by ganciclovir. In 5 patients, a clear decrease of prostate-

specific antigen (PSA) values was observed, confirming the safety profile and possibility of 

clinical response at the surrogate marker level [32].  

Given the successful results obtained with the HSV-tk/GCV system in humans, some studies 

have pursued to phase III clinical trials [30]. 
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Table I-Suicide gene systems 

Enzyme Prodrug Drug References

Herpes simplex virus thymidine 

kinase (HSV-Tk) 

Ganciclovir (GCV) Ganciclovir triphosphate (GCV-3P) [36; 37] 

Varicella-Zoster virus thymidine 

kinase (VZV-tk) 

6-methoxypurine arabinoside (ara-M) Adenine arabinoside triphosphate (ara-ATP) [38] 

Cytosine deaminase (CD) 5-Fluorocytosine (5-FC) 5- Fluorouracil (5-FU) [39; 40] 

Purine nucleoside phosphorylase 

(PNP) 

6-methylpurine-2-deoxyriboside 6-methylpurine [41; 42] 

Nitroreductase 5-aziridinyl-2,4-dinitrobenzamide (CB1954) 5-(Aziridinyl)-4-hidroxylamine-2-nitrobenzamide [43; 44] 

beta-Galatosidase N-[4"-(beta- D-galactopyranosyl)-3"-

nitrobenzyloxycarbonyl]daunomycin (Daun02) 

Daunomycin [45] 

Hepatic cytochrome P450-2B1 Cyclophosphamide (CPA) and Ifosfamide (IFO) Phosphoramide mustard and acrolein [46; 47] 

Linamarase Linamarin Cyanide [48; 49] 

Horseradish peroxidase Horseradish Indole-3-acetic acid (IAA) and derivatives, 

paracetamol 

Free radicals [50; 51] 

Carboxypeptidase A Methotrexate (MTX)-α-peptides MTX [52] 

Carboxypeptidase G2 N,N-[(2-chloroethyl) (2-mesyloxy-ethyl) amino] benzoyl-L-

glutamic acid (CMDA) 

N,N-[(2-chloroethyl) (2-mesyloxyethyl) amino] 

benzoic acid (CMBA) 

[53; 54] 
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2.2. The CD/5-FC suicide system 

The CD enzyme, found in several bacteria and fungi but not in mammalian cells, catalyses the 

hydrolytic deamination of cytosine into uracil. It can therefore convert the non-toxic prodrug 

5-FC to 5-FU, which is then transformed by cellular enzymes into potent pyrimidine 

antimetabolites (5-FdUMP, 5-FdUTP, 5-FUTP). Three pathways are involved in the induced 

cell death: thymidylate synthase inhibition, formation of (5-FU) RNA and of (5-FU) DNA 

complexes [55].  

Similarly to HSV-tk/GCV system, apoptosis is also involved in the mechanism of cytotoxicity 

induced by the CD/5-FC suicide system [20]. It was reported that in glioma cells, the 

mitochondrial pathway is involved in the process of cell death induced by both suicide gene 

systems, while p53 and death receptors are not implicated in such process. Although it was 

shown that the cytotoxicity induced by the HSV-tk/GCV and CD/5-FC suicide systems follow 

a mitochondrial pathway, the mechanisms of modulation of Bcl-2 proteins were found to be 

different [20]). Finally, a study of Negroni et al. suggested that the activation of heat shock 

protein 90-beta by phosphorylation in CD-expressing colon carcinoma cells upon 5-FC 

treatment, might contribute to tumor regression and tumor immunogenicity [56]. 

5-FU has been widely used in cancer chemotherapy but high doses are generally required for 

tumor response. This suicide system results in tumor targeted chemotherapy and allows 

bypassing the toxic side effects generally associated to systemic 5-FU chemotherapy. The CD 

gene has been cloned from Escherichia coli [57] and has been shown in a number of in vitro 

studies to confer mammalian cell sensitivity to 5-FC.  

The CD/5-FC system has been further improved in several studies by the inclusion of the 

uracil phosphoribosyltransferase (UPRT) gene allowing the conversion of 5-FU to 5-

fluorouridine monophosphate, the first step of its pathway to activation [58]. Importantly, this 

CD-UPRT/5-FC suicide system was shown to be effective against 5-FU-resistant human 

primary cancer cells [59]. 
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Finally, a bifunctional chimeric protein designated FCU1, combining the yeast enzymatic 

activities of CD and uracil phosphoribosyltransferase was shown to highly increase CD 

activity [60].  

In vivo anti-tumor activity of the CD/5-FC combination has been demonstrated in several 

animal models, including fibrosarcomas [61], carcinomas [62; 63; 64; 65; 66], gliomas [67] 

and metastatic formations of different origin [68; 69]. 

A number of clinical trials have been reported using the CD/5-FC system, although its 

application in the clinic has been limited [35; 70; 71; 72]. The first clinical trial using the 

CD/5-FC system was performed in breast cancer patients and involved specific targeting to 

the erbB-2 oncogene overexpressed in this type of cancer. The authors showed that their 

approach was safe and selective to erbB-2–positive tumor cells [70].  

In another study, Nemunaitis et al. performed a pilot trial in refractory cancer patients, which 

involved intratumoral injection of TAPET-CD, an attenuated Salmonella bacterium 

expressing the E. coli CD gene in 3 patients. The authors reported the absence of adverse 

effects induced by TAPET-CD and the results demonstrated that Salmonella bacterium can be 

utilized as a delivery vehicle of the CD gene to malignant tissue, and the delivered gene was 

found to be functional [71]. 

A different delivery system, which consisted in the use of an oncolytic adenovirus containing 

a CD/HSV-1 TK fusion gene, was applied in a phase I clinical trial in 75 patients with newly 

diagnosed, intermediate- to high-risk prostate cancer [72]. It was found that the transgene 

expression persisted in the prostate for up to 3 weeks after the adenovirus injection. A 

combination of this therapeutic system with conventional-dose three-dimensional conformal 

radiation therapy resulted in significant declines in PSA in all patients, and this combined 

approach was shown to be safe [72]. 

3. Delivery systems 
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3.1. Viral vectors 

Because viruses have evolved natural mechanisms to deliver their genomes into cells, they are 

excellent vectors to deliver foreign DNA. These vectors are designed by replacing non-

essential genes involved in viral replication or pathogenic protein production with foreign 

therapeutic genes. Production of recombinant viral vectors is achieved by providing in trans 

the non-essential genes, either integrated into the genome of a packaging cell line or in a 

plasmid. The choice of viral vector depends on several parameters such the characteristics of 

the cancer type and the therapeutic strategy. The commonly used viral vectors for gene 

therapy derive from adenoviruses, retroviruses, vaccinia virus, poxviruses, adeno-associated 

viruses, herpes simplex virus and lentiviruses [73]. In the context of cancer stem cells which 

can remain quiescent for long periods [74], the latter represents a promising newcomer as a 

gene transfer vector due to its abilities to efficiently and stably transduce non-dividing cells.  

Along with these replication-defective viral vectors, replicative-competent viruses, able to 

replicate selectively in tumor cells with specified oncogenic phenotypes have been used [75]. 

These oncolytic viruses can be either naturally occurring or modified to obtain tumor 

specificity and can be adapted as vectors for cancer gene therapy. The "armed" viruses can 

then directly kill cancer cells as a consequence of the lytic viral cycle, in combination with the 

effect of the therapeutic gene incorporated in the viral genome. 

Despite their high potential for gene delivery, immune recognition for most of them, 

mutagenic integration (retroviral & lentiviral vectors), and inflammatory toxicity (adenoviral 

vectors) still appear as limitations for the use of viral vectors. These considerations led to a 

renewed interest in non-viral methods. 

 

3.2. Non-viral vectors 

At present, approximately 70% of the 1714 protocols approved for gene therapy clinical trials 

involve the use of viral vectors, which is justified by the high gene delivery/expression 



  

 
 

10 
 

efficiency of these systems (http://www.wiley.com/legacy/wileychi/genmed/clinical/, Wiley 

website). However, the drawbacks associated with the application of viral vectors, especially 

safety concerns, prompted investigators to develop non-viral gene delivery systems. Non-viral 

approaches can be divided into three groups: naked DNA, physical approaches, such as the 

hydrodynamics methods, gene gun and electroporation, and chemical methods, which mainly 

involve vectors that have cationic components in their composition, such as cationic 

liposomes and cationic polymers [76; 77].  

Naked or plasmid DNA exhibit low cellular uptake and rapid clearance. As a consequence, 

naked DNA injection is used when the low gene transfer efficiency can be relayed by immune 

system activation and/or local bystander effects. Naked DNA is now used in clinical trials 

almost as frequently (19%) as adenoviral (24.2%) or retroviral (20.7%) vectors [Wiley 

website].  

Regarding the physical methods, their potential to be used in clinical applications of gene 

therapy has already been demonstrated as shown by the approval of 5 clinical trials involving 

gene gun protocols (Wiley website). Nevertheless, further optimization of these gene delivery 

protocols will be needed in order to increase their efficiency without inducing a severe 

toxicity [76; 77]. 

On the other hand, cationic liposomes and cationic polymers represent the most extensively 

investigated and commonly used non-viral gene delivery methods [76; 77]. These non-viral 

vectors, because of their positive charge, can interact with the negatively charged DNA 

through electrostatic interactions leading to the formation of lipoplexes, in the case of cationic 

liposomes, or polyplexes, when using cationic polymers. The widespread application of 

lipoplexes for gene delivery is due to a number of important advantages, including their 

capacity to transport large amounts of genetic material; their physico-chemical versatility, 

allowing innumerous modifications; their easy and inexpensive large scale production; and 

their low immunogenic response [78; 79]. Since cationic liposomes were first described by 
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Felgner et al. [80] for gene delivery, an increasing number of new cationic lipids have been 

produced and used in transfection protocols of different cell lines, animal models and patients 

submitted to gene therapy clinical trials [77]. At present, 6.4% (n=109) of the protocols 

approved for gene therapy trials involve lipoplexes, these being mainly applied in the 

treatment of cancer and cystic fibrosis 

(http://www.wiley.com/legacy/wileychi/genmed/clinical/). Both lipoplexes and polyplexes 

have proven to be promising systems to efficiently transfect a broad range of cell types in 

tissue culture. However, despite the extensive work in the last years, which resulted in 

remarkable progress culminating in the use of lipoplexes in clinical trials, the in vivo 

efficiency of these vectors is still unsatisfactory [76; 77]. Such low in vivo efficiency is due to 

some limitations that are associated to these systems like their poor levels of transfection, 

particularly when compared to viral vectors, and the considerable reduction of their biological 

activity by serum components [78]. Moreover, systemic administration of lipoplexes can 

result in some toxicity, most probably due to their positive charge and propensity to 

aggregate, which also limits their clinical application [81]. However, the potential advantages 

of these systems over viral vectors encouraged investigators to further improve their 

performance by developing novel formulations. In this regard, much effort has been devoted 

to the synthesis of numerous novel cationic lipids and polymers, which could improve the 

stability and efficiency of their complexes with nucleic acids; incorporation of hydrophilic 

components, such as polyethylene glycol (PEG), which could mask the positive charge of the 

complexes, thus increasing their circulation time in blood stream and reducing toxicity; and 

association of proteins, antibodies, peptides or other agents that could enhance the biological 

activity and specificity to target cells [81; 82; 83; 84]. Therefore, it is expected that in a near 

future the improvements performed in non-viral gene delivery systems will result in the 

generation of vectors that fulfill the standard requirements for clinical use in terms of 

efficiency and specificity, namely for systemic administration. 
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3.3. Cellular vehicles 

Various mammalian cells exhibiting tumor-tropism have been recently considered as vehicles 

for cancer gene therapy. Mesenchymal stem cells or bone marrow stromal cells (MSCs) are 

adult stem cells with unique immunologic tolerance allowing their engraftment into a 

xenogeneic environment, while preserving their ability of homing to the tumor sites where 

they participate in tumor stroma formation (reviewed in, [85]. These features have led to the 

use of MSCs as cellular vehicles for gene delivery to multiple tumor sites. 

Neural stem cells (NSCs) also possess an inherent tumor tropism that supports their use as a 

reliable delivery vehicle to target therapeutic gene products to primary brain tumors and 

metastatic cancers throughout the brain. The NSCs have been successfully used to deliver 

therapeutic gene products to primary and secondary invasive glioma, medulloblastoma, 

melanoma brain metastases and neuroblastoma throughout the brain and extracerebral loci 

(reviewed in, [86]). Tumor growth is dependent on angiogenesis and tumor vasculature 

represents a common target for cancer treatment. Recent evidence suggests that endothelial 

progenitor, precursor, and blood outgrowth endothelial cells are attracted to the tumor 

vasculature and could then be used as delivery vector for cancer gene therapy (reviewed in, 

[87]). 

 

3.4. “Unconventional” vectors 

In this section we summarize newly developed vectors including both non-viral biological 

agents exhibiting natural properties that can be exploited for specific tumor gene delivery 

andnanovectors that appear as promising tools due to their size and supramolecular structure. 

Non-viral biological gene delivery vehicles include bacteria, bacteriophages, virus-like 

particles, erythrocyte ghosts, and exosomes (reviewed in, [88]). Among them, bacterial 

vectors have been the most extensively studied for cancer gene therapy. Obligate or 
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facultative anaerobic bacteria such as strains of Clostridia, Bifidobacteria and Salmonellae are 

able to selectively colonize the hypoxic areas of tumors and destroy the tumor cells, resulting 

in a bacterial oncolytic therapy [89]. Bacterial vectors can also be modified to deliver 

bacterially expressed therapeutic proteins and/or plasmid DNA encoding a therapeutic gene or 

interfering RNA [90]. The most frequently applied anti-cancer approach using bacterial 

vectors involves systemic administration of bacteria carrying a suicide gene [91; 92; 93] and 

seven clinical trials using bacterial vectors to treat cancers have been recently reported (Wiley 

website). 

Due to the unique properties of nano-scale matter, nanoparticle-based delivery systems have 

also emerged as potential gene carriers [94]. These vectors can enhance tumor accumulation 

of the carried biologically active agent due to the so-called enhanced permeability and 

retention effect (EPR effect). This effect results from the combination of an increased 

permeability of tumor blood vessels and a decreased rate of clearance within the tumor [95]. 

As a consequence, nanocarriers passively accumulate in solid tumors after their intravenous 

administration. This type of vectors is presently used more often for siRNA than for plasmid 

DNA delivery. 

 

 

3.5. Tracing vector biodistribution and transgene expression by non-invasive molecular 

imaging 

Whatever the vector used, monitoring vector biodistribution and transgene expression remains 

a critical issue in gene therapy protocols. One of the advantages of suicide gene therapy is that 

the therapeutic gene can also be used as reporter gene for non-invasive imaging to determine 

the distribution, magnitude and kinetics of vector-mediated gene expression. The most 

commonly used reporter gene for small-animal molecular imaging studies using radiolabelled 

probes and positron-emission tomography is HSV-TK [96; 97]. Indeed, like GCV, 
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radiolabelled 9-[4-fluoro-3-(hydroxymethyl)butyl]guanine (FHBG) or 2’-fluoro-nucleoside 

analogues of thymidine such as 1-(2-deoxy-2-fluoro-D-arabinofuranosyl)-5-iodouracil 

(FIAU) can be used as HSV-TK substrates [98; 99]. Using these approaches, it was 

demonstrated that radiotracer accumulation, which corresponds to the extent of TK 

expression, can predict response to therapy [99; 100]. 

The CD-mediated conversion of 5-FC to 5-FU can also be quantified in vivo using magnetic 

resonance spectroscopy [101]. The same method was used to demonstrate that the therapeutic 

efficiency is enhanced by combining CD and UPRT, which improves the conversion of 5-FC 

to toxic metabolites [102]. Altogether, research in this field should lead to a better 

understanding of suicide gene therapy at the molecular level, allowing improving the efficacy 

and safety of current clinical protocols. 

 

4. Bystander effects and mechanisms 

Suicide gene therapy is associated with two distinct bystander effects. The so-called local 

bystander effect is known to induce tumor regression although only a fraction of tumor cells 

express the suicide gene [62; 103]. The second effect, named distant bystander effect, is 

observed in vivo and consists in the regression of WT tumors distant from those expressing 

the suicide gene [104; 105]. Several hypotheses have been proposed to explain killing of 

neighbouring untransfected tumor cells (Figure 2): (i) passive diffusion of the drug; (ii) 

passage of the drug through gap junctions; (iii) endocytosis of apoptotic vesicles; (iv) release 

of soluble factors; (v) stimulation of the immune sytem in vivo. The two bystander effects are 

described below together with some typical results illustrating their relevance in promoting an 

antitumoral effect. 

 

4.1. Local bystander effect 

One of the main advantages of the CD/5-FC system is the strong local bystander effect that 
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does not require cell-to-cell contact, since 5-FU can diffuse in and out of cells by non-

facilitated diffusion [106]. Experiments conducted in vitro by exposing mixed wild-type (WT) 

and CD-expressing cells to 5-FC showed that 1-30% of suicide cells could generate sufficient 

5-FU to inhibit the growth of the untransfected neighbouring cells [62; 66; 67].  

Significant tumor cell killing through the bystander effect has also been observed in vivo in 

pre-clinical studies. Treatment with 5-FC of nude mice bearing tumor xenografts generated by 

CD-positive and negative human WiDr colorectal carcinoma cells caused tumour regression 

even when only 4% of the tumor cells expressed the enzyme-encoding gene [62; 107].  

Local bystander effect has also been observed by using cellular vehicles expressing a suicide 

gene. Mouse embryonic endothelial progenitor cells, which home preferentially to hypoxic 

lung metastases when administered intravenously, were shown to exert a local bystander 

effect on lung tumor cells in vitro and in vivo upon CD gene expression followed by 5-FC 

treatment [108]. Human adipose tissue–derived mesenchymal stem cells (ATMSC) were also 

used as a vehicle for the CD gene and were able of tumor targeting and growth inhibition after 

systemic administration and 5-FC treatment [39; 40]. Similarly, multiple transplantations of 

CD-expressing MSCs in established C6 brain tumors, followed by 5-FC treatment, were able 

to successfully repress tumor growth [109]. Neural stem cells, which exhibit an extensive 

tumor tropism, were also shown to be an efficient vehicle for the CD gene in a glioma animal 

model [110]. Finally, mutant forms of bacterial CD were recently described to significantly 

improve 5-FC cell sensitization and bystander effect compared with wild-type CD [111].  

A significant anti-tumor effect was also induced by GCV in tumors containing 50% HSV TK-

negative and positive cells [107]. However, in contrast with FU, GCV triphosphate cannot 

passively diffuse to neighboring cells and local bystander effect was shown to be mediated by 

different mechanisms. It was first demonstrated that the bystander effect requires cell-to-cell 

contact, suggesting the passage of toxic GCV metabolites from TK-expressing cells to 

unmodified tumor cell [112]. The requirement of gap junctions was then evidenced by 
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comparing the bystander effect in tumor cell lines transfected or not with connexin genes 

[113], which was also revealed in human primary malignant glioma cell cultures [114]. In 

parallel, using flow cytometric and electron microscopic analysis, Freeman et al. 

demonstrated that the bystander effect can also be mediated via apoptotic bodies generated 

from dying TK-expressing cells and phagocytosed by unmodified neighboring cells [103]. 

Finally, some studies reported a gap junction-independent local bystander effect mediated by 

soluble factors, likely corresponding to phosphorylated GCV metabolites [115; 116]. More 

recently, the expression of E-cadherin, which is involved in the formation and function of gap 

junctions, was shown to correlate strongly with the TK/GCV bystander effect. The co-

expression of TK and E-cadherin genes mediated by an adenoviral vector improved TK/GCV 

cytotoxicity and triggered a potent anti-tumor effect, superior to the one generated by an 

adenoviral vector expressing only TK. Moreover, the increased expression of E-cadherin was 

found to be associated to a decrease in the bcl-2 content, which suggests that a high E-

cadherin content improved TK/GCV therapy by both enhancing the bystander effect and 

facilitating apoptosis induction [117]. 

Several types of TK-expressing cellular vehicles have also been used to target tumor cells in 

vivo. Human adipose tissue mesenchymal stromal cells (AMSCs) expressing renilla luciferase 

and TK were used as cellular autologous delivery vehicles for GCV-mediated bystander 

killing of firefly luciferase-expressing tumors [118]. By using a non-invasive bioluminescence 

imaging to continuously monitor both tumor cells and AMSCs, the authors showed a 

significant bystander killing in mice bearing prostate tumors after treatment with therapeutic 

AMSCs and GCV [118]. 

As AMSCs, neural stem cells (NSCs) were also used as a cellular therapeutic delivery system 

to assess the anti-tumor effect of TK gene in medulloblastoma. In vivo co-implantation of 

TK-transduced neural stem cells and human medulloblastoma cells (1:8, transduced cells: 
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non-transduced cells) resulted in tumor growth inhibition and significant prolonged survival 

of mice, indicating the occurrence of the bystander phenomenon [119]. 

Co-expression of TK and connexin 43 (Cx43) in bone marrow-derived stem cells (BMSCs), 

which exhibit tumor tropic properties, enhanced the TK bystander effect and resulted in tumor 

growth inhibition and increased survival in the rat C6 glioma model [120]. 

Using bone marrow–derived tumor-infltrating cells (BM-TIcs) expressing TK, Miletic et al. 

demonstrated the induction of a high bystander cell killing mediated by gap junction 

formation between BM-TIcs and brain tumor cells, which resulted in a strong anti-tumor 

effect in a rat malignant glioma [121]. In another study, the same authors demonstrated that 

TK suicide gene transfer using pseudotyped lentiviral vectors was very effective in the 

treatment of rat glioma. An interesting finding was that the normal brain cells surrounding the 

tumor, transduced with these vectors survived GCV treatment, due to lower division rate and 

contributed significantly to the bystander killing of tumor cells. These authors highlighted the 

fact that high selectivity of gene transfer to tumor cells may not always be required and 

normal cells, such as brain cells, might contribute to the therapy by long-term expression of 

therapeutic genes [122]. 

In a clinical trial, 27 patients undergoing malignant glioma resection were injected with 

murine retroviral vector producer cells (VPCs) for HSV-TK suicide gene therapy. Local 

inflammation and devascularisation were the mechanisms responsible for the observed 

bystander effect in this type of tumor [123]. 

Finally, it is of interest to note that Wilson et al. developed a physiologically relevant tissue 

culture model for quantifying local bystander effect in vitro by using three-dimensional (3D) 

multilayer co-cultures of transduced and non-transduced cells. They used nitroreductase 

(NTR) gene-dependent enzyme-prodrug therapy to show that the local bystander effect was 

underestimated in 2D-culture and the 3D-culture system appears as a valuable tool to quantify 

and optimize bystander effects [43]. 
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4.2. Distant bystander effect 

The other effect associated to suicide gene therapy, named distant bystander effect, consists in 

the regression of WT tumors distant from those expressing the suicide gene. Regression of 

untransduced tumors growing at a distance from transduced tumors is well documented in the 

TK/GCV system [104; 124; 125; 126; 127]. Several hypotheses have been proposed to 

explain the TK-related distant anti-tumor effect. The involvement of the immune system was 

proposed in most studies, based on the presence of T lymphocyte infiltrates within the tumors 

[104; 125; 126; 127]. However, a distant bystander effect was also detected in 

immunodeficient SCID mice, which suggests that alternative mechanisms may be operating, 

such as the release of a soluble factor that might contribute to the observed distant anti-tumor 

effect [124]. 

Regarding the CD/5-FC suicide system, we and others provided evidence for the existence of 

a distant bystander effect, which was observed after injection of CD-expressing tumor cells 

[68; 105; 128; 129]; or after CD gene delivery via naked DNA injection [130]. Such an 

immune effect acting on pre-established wild-type tumors was dependent on both CD4+ and 

CD8+ lymphocytes as well as on natural killer cells [68; 105; 131]. 

 

5. Suicide gene therapy in combination with other therapeutic strategies 

The combination of CD/5-FC and HSV-TK/GCV suicide systems has resulted in enhanced 

anti-tumor activity in vitro [132; 133] and in vivo [133]. In this regard, it was shown that 

sequential prodrug treatment was more efficient than their simultaneous addition as CD/5-FC-

mediated reduction of dTTP results in a concurrent decrease of dGTP, which is the 

endogenous competitor of GCV triphosphate [133].  

Suicide gene therapy was also shown to synergistically act with classical anti-cancer 

treatments such as radiotherapy [134; 135; 136]. This effect was further enhanced by the use 
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of replication-competent vectors [137; 138; 139] and several clinical trials have demonstrated 

the potential therapeutic benefit and the safety of this approach [35; 72; 140].  

Oncolytic viral vectors armed with a suicide gene were also successfully used in several pre-

clinical models [141; 142; 143; 144; 145].  

The combination of suicide gene therapy with conventional chemotherapy was also shown to 

result in a great antitumoral activity, both in vitro [146; 147; 148; 149] and in vivo [146; 147; 

148]. The additional combination with RNAi-based gene therapy was found to be more 

efficient when compared to each therapy application alone [150]. These authors developed a 

novel delivery system combining HSV-tk gene with MDR1 shRNA cassette and were able to 

show enhanced cell sensitivity to anti-cancer drugs [150]. 

As suicide gene therapy is able to trigger an immune response, various combined strategies 

have involved the cotransfer of a suicide gene and an immune-stimulatory gene such as 

cytokine/chemokine genes [28; 151; 152; 153; 154; 155; 156]. As shown in Ambade et al., 

addition of IL-2 gene delivery in combination with HSV-TK resulted in an improvement of 

tumor cell apoptosis compared to each strategy per se [28]. Another recently developed 

combined strategy consisted of the association of suicide gene therapy with the targeting of 

tumor angiogenesis [157; 158; 159; 160; 161]. Chen et al. recently showed that delivery of a 

fusion gene between endostatin and CD followed by 5-FC treatment was more efficient and 

less toxic than the combination of an antibody against VEGF-A (Bevacizumab) and 5-FU in 

human breast and colorectal orthotopic animal models [160]. Suicide gene therapy is also 

frequently used in adoptive transfer strategies. This approach, which consists in the transfer of 

gene-modified T cells, is able to mediate tumor regression in patients with metastatic cancer 

[162]. However, the adoptive cell therapy may lead to severe autoimmune reaction or to the 

occurrence of graft-versus-host disease (GvHD), limiting the clinical application of this 

strategy. In the case of severe GvHD, transfer of a suicide gene into infused T cells appears as 

a safety switch preserving the antitumoral effect and enabling the destruction of donor T cells. 
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In this regard, several suicide systems have been used such as HSV-TK/GCV, either alone 

[163] or associated with other transgenes stimulating alloreactivity [22], CD20/anti-CD20 

antibody rituximab [164], and an inducible caspase 9 that is activated using a specific 

chemical inducer of dimerization [165; 166]. 

Finally, it is important to mention that nanocarriers have emerged as ideal platforms for 

achieving multi-functionalization and appear as optimal vectors for application of combined 

strategies [94]. This is examplified in a study of Li et al. describing the use of a nanoplex 

carrying magnetic resonance imaging reporters for in vivo detection and optical reporters for 

microscopy, to image the delivery of siRNA and a functional prodrug enzyme into breast 

tumors towards an image-guided molecular targeted cancer therapy [167]. 

6. Future directions 

Recent literature about suicide gene therapy for cancer treatment clearly shows that this field 

is still under intense investigation. The use of new delivery vectors together with the 

therapeutic strategies described above have significantly improved the efficiency of suicide 

gene therapy.  

The majority of cancers remain resistant to the current therapeutic options and it recently 

appeared that CSCs could be one of the key determinants of treatment failure [2; 74]. 

Therefore, CSCs are now considered as a new promising target for therapeutic 

approaches aiming at improving the clinical cancer therapy field. CSCs express various 

molecules protecting them from cytotoxic agents such as ATP-binding cassette (ABC) 

transporters which actively efflux drugs from cells [168]. In addition, these cells can exhibit a 

relative quiescence, possess an active DNA-repair capacity and resistance to apoptosis which 

make them resistant to classical drug-based therapies [169]. However, we can hypothesize 

that an in situ continuous lethal drug production by CSCs themselves should be more 

effective than the systemic exposure to the drug. Indeed, in a quiescent state, CSCs should 

behave as drug-producing cells which, within a tumor, should eliminate their differentiated 
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progeny. Therefore, it is expected that upon division, suicide gene-expressing CSCs will die. 

Indeed, in a glioma nude rat model generated by CSC spheroids derived from patient biopsies, 

Huszthy et al. recently showed that the TK suicide gene delivered by lentiviral pseudotyped 

vectors mediated a complete tumor remission [170]. However, Hu et al. demonstrated in this 

same type of cancer that TK suicide gene therapy was less efficient in cancer stem-like cells 

than in differentiated tumor cells due to the elimination of GCV by ABCG2-mediated efflux 

[171]. Combined approaches associating suicide gene therapy and the inhibition of CSC-

specific properties thus appear as a new challenge for the efficient treatment of cancer. 
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Legends to figures 

 

Figure 1. Suicide gene therapy. The introduction into tumor cells of a viral or a bacterial 

gene leads to the expression of an enzyme able to convert a non-toxic prodrug into a lethal 

drug. 

 

Figure 2. Different mechanisms of local bystander effect. Several hypotheses have been 

proposed to explain killing of neighbouring untransfected tumor cells, including passive 

diffusion or passage of the drug through gap junctions, endocytosis of apoptotic vesicles, 

release of soluble factors and stimulation of the immune system in vivo. 
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Abstract 

 

Suicide gene therapy is based on the introduction into tumor cells of a viral or a bacterial 

gene, which allows the conversion of a non-toxic compound into a lethal drug. Although 

suicide gene therapy has been successfully used in a large number of in vitro and in vivo 

studies, its application to cancer patients has not reached the desirable clinical significance. 

However, recent reports on pre-clinical cancer models demonstrate the huge potential of this 

strategy when used in combination with new therapeutic approaches. In this review, we 

summarize the different suicide gene systems and gene delivery vectors addressed to cancer, 

with particular emphasis on recently developed systems and associated bystander effects. In 

addition, we review the different strategies that have been used in combination with suicide 

gene therapy and provide some insights into the future directions of this approach, particularly 

towards cancer stem cell eradication. 

 
 




