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Abstract 

 
The activation of adenosine A2A receptors (A2AR) is mediated by adenosine that 

can be originated from the extracellular catabolism of released ATP. Ecto-5’-

nucleotidase (e-5’N) plays a key role in the formation of ATP-derived adenosine and in 

the subsequent activation of A2AR to control synaptic plasticity. Upon brain injury, ATP 

is released as a stress signal and both e-5’N and A2AR are up-regulated in parallel. This 

prompts the hypothesis that e-5’N and A2AR could be co-localized and co-regulated.

 The present study aims to define: i) the synaptic and sub-synaptic (pre-, post- 

and extra-synaptic regions) localization of e-5’N focusing in the prefrontal cortex (PFC) 

of adult C57Bl/6 mice, ii) the co-localization of e-5’N with A2AR in slices from the PFC 

and in cortical nerve terminals, iii) if the genetic deletion of A2AR affects the density of 

synaptic e-5’N in cortical regions, iv) the function of e-5’N in synaptic plasticity in the 

PFC, and finally v) if aging affects the density of synaptic e-5’N in PFC regions. The 

comparison by Western blot analysis of the density of e-5’N in prefrontal cortex total 

membranes and synaptosomes revealed that e-5’N, was present in nerve terminals (52.1 

 2.3%, n=4), but was not as enriched as in the bulk of total membranes (72.5  3.1%, 

n=4). The fractionation of prefrontal cortex synaptosomes unveiled the presence of two 

different isoforms of e-5’N, one being more present at the pre-synaptic and extra-

synaptic fractions (~50 kDa) and the other (~70 kDa) at the post-synaptic fraction. By 

immunohistochemistry it was possible to observe an apparent co-localization of e-5’N 

with A2AR, mainly associated with neurons and microglia but not with astrocytes. The 

pull-down of A2AR revealed a physical association of A2AR with e-5’-N in nerve 

terminals from the prefrontal cortex. The genetic deletion of A2AR did not affect 

significantly the levels of e-5’-N, although it was found a slight increase in the levels of 
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this enzyme. Electrophysiological studies in prefrontal cortex slices incubated with a 

selective antagonist of A2AR (SCH 58261) demonstrated that the activation of A2AR was 

necessary to obtain long term potentiation (LTP); however when e-5’N was blocked 

(with AOPCP), and consequently the adenosine formation was prevented, the basal 

synaptic transmission suffered an inhibitory effect but there were no significant changes 

in the LTP phenomenon, triggered by 5 trains of 300 Hz stimuli. We also evaluated by 

HPLC measurements the basal levels of AMP and adenosine in synaptosomes from the 

PFC and as expected it was observed that in the presence of AOPCP, the levels of AMP 

were increased, since this nucleoside was not converted into adenosine, nevertheless the 

levels of adenosine did not change significantly; suggesting that the contribution of e-

5’N to adenosine formation in nerve terminals of PFC was not substantial. Finally we 

analysed whether the synaptic density of e-5’N was affected by the aging, thus we 

compared by immunoblot the density of this enzyme in young adult (8-12 weeks old) 

and in adult mice (36-40 weeks old); nevertheless, no significant differences were 

observed between these two groups of animals     

 Although this work have some question that need to be more deeply 

investigated, the results give new insights about the relation between e-5’N and A2AR in 

the PFC, and could be useful to tackle questions regarding frontal lobe brain 

dysfunctions. 

 

Keywords: Ecto-5’-nucleotidase, prefrontal cortex, synaptic transmission, 

adenosine receptors, nerve terminals. 
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A ativação dos recetores de adenosina A2A (A2AR) é feita através da adenosina 

que pode ser produzida através do catabolismo do ATP libertado no meio extracelular. 

A ecto-5’-nucleotidase (e-5’N) desempenha um papel importante na formação de 

adenosina proveniente do catabolismo do ATP, e subsequentemente na ativação dos 

A2AR controlando assim a plasticidade sináptica. Após uma lesão cerebral, o ATP é 

libertado como um sinal aversivo provocando o aumento em simultâneo da atividade da 

e-5’N e da densidade dos A2AR. Isto levanta a hipótese de que a e-5’N e os A2AR podem 

encontrar-se co-localizados e poderá haver uma interação funcional entre eles. 

 Este estudo tem como objetivos definir: i) a localização sináptica e sub-sináptica 

(regiões pré-, pós- e extra-sinápticas) da e-5’N focando principalmente no córtex pré-

frontal (PFC) de ratinhos C57Bl/6 adultos, ii) a co-localização da e-5’N com os A2AR 

em fatias do PFC e em terminais nervosos corticais, iii) se a deleção genética dos A2AR 

afeta a densidade sináptica da e-5’N em regiões corticais, iv) a função da e-5’N na 

plasticidade sináptica do PFC, e por fim, v) se o envelhecimento afeta a densidade 

sináptica da e-5’N em regiões do PFC. A comparação por análise de Western blot da 

densidade da e-5’N em membranas totais e sinaptossomas do córtex pré-frontal revelou 

que a e-5’N se encontrava nos terminais nervosos (52.1  2.3%, n=4), mas não se 

encontrava tão enriquecida como nas membranas totais (72.5  3.1%, n=4). O 

fracionamento dos sinaptossomas do córtex pré-frontal mostrou a presença de duas 

isoformas diferentes da e-5’N, estando uma mais presente nas frações pré-sináptica e 

extra-sináptica (~50 kDa) e outra presente (~70 kDa) na fração pós-sináptica. Através 

de imunohistoquímica foi possível verificar uma aparente co-localização entre a e-5’N e 

os A2AR, estando mais presentes em neurónios e microglia, mas não com astrócitos. O 
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“pull-down” dos A2AR em terminais nervosos do córtex pré-frontal revelou uma 

associação física entre os A2AR e a e-5’-N. A delecção genética dos A2AR não afetou 

significativamente os níveis de e-5’-N, no entanto verificou-se um ligeiro aumento nos 

níveis desta enzima. Estudos de eletrofisiologia em fatias de córtex pré-frontal 

incubadas com um antagonista seletivo dos A2AR (SCH 58261) demonstraram que a 

ativação dos A2AR era necessária para obter potenciação de longa duração (LTP); porém 

quando a e-5’N era inibida (com AOPCP), prevenindo a formação de adenosina, a 

transmissão sináptica basal sofria um efeito inibitório mas não se observaram diferenças 

significativas no fenómeno da LTP, desencadeado por 5 “trains” de estímulos de 300 

Hz. Também foram avaliados através de HPLC os níveis basais de AMP e adenosina 

em sinaptossomas de córtex pré-frontal, e como esperado observou-se níveis 

aumentados de AMP na presença de AOPCP, uma vez que este nucleósido não estava a 

ser convertido em adenosina, no entanto os níveis de adenosina não se encontravam 

alterados significativamente; o que sugere que a contribuição da e-5’N para a formação 

de adenosina nos terminais nervosos do PFC não é significativa. Finalmente, analisou-

se se a densidade sináptica da e-5’N era afetada pelo envelhecimento, para tal 

comparámos por imunoblot a densidade desta enzima em ratinhos jovens adultos (8-12 

semanas de idade) e em ratinhos adultos (36-40 semanas de idade); porém, não se 

observaram diferenças significativas entre estes dois grupos de animais. 

 Embora este trabalho tenha algumas questões que precisam de ser detalhadas 

com mais rigor, os resultados contribuem com novos dados sobre a relação entre a e-

5’N e os A2AR no PFC, e poderão ser úteis para resolver questões relacionadas com 

disfunções do lobo frontal do cérebro. 

Palavras-chave: Ecto-5’-nucleotidase, córtex pré-frontal, transmissão 

sináptica, receptores de adenosina, terminais nervosos.
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1.1. Purinergic system 

 

Purines, like ATP, ADP and adenosine, and pyrimidines, such as UTP and UDP, 

are extracellular messengers widely distributed throughout the organism, promoting 

their effects through activation of membrane receptors (Ralevic and Burnstock, 1998; 

Burnstock, 2013). It has been known that the purinergic compounds play several 

different roles, such as cardiac function, platelet aggregation and vascular tone (Collins 

and Hourani, 1993), and also can act as trophic factors and endogenous regulators of 

growth and cell differentiation, both during development and in adulthood (Abbracchio 

et al., 1994). The purinergic compounds can activate two types of purinergic receptors 

known as P1 and P2 receptors. The P1 receptors are all metabotropic while P2 can be 

metabotropic (P2Y receptors) or ionotropic receptors (P2X receptors).The P2 receptors 

are activated by ATP, UTP, ADP and UDP, whereas the P1 receptors are activated by 

adenosine thus these are also known as adenosine receptors (Fig.1). 

 

 

Fig.1 - Representative pathway of extracellular nucleotide metabolism and receptors for the different 

purinergic compounds. ATP released by cells can be metabolized into its different catabolites. ATP, ADP 

and AMP activate mainly P2 receptors, whereas adenosine activates P1 receptors. Adapted from 

Zimmermann, 2006. 
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1.2. ATP storage, release and breakdown 

 

ATP is a ubiquitous molecule that is present in cytosol and in intracellular 

organelles, mainly in the secretory vesicles of neurons. The neurons contain ATP in 

their cytoplasm in a concentration around 2-5 mM, however in their synaptic vesicles a 

much higher concentration of ATP (100 mM) is stored (Burnstock, 2007). These 

vesicles also contain other nucleotides, such as ADP or GTP. It was reported the 

existence of a vesicular nucleotide transporter (VNUT) capable of transporting ATP 

into vesicles (Sawada et al., 2008). Apart from being co-stored with other nucleotides, 

ATP was found to be stored with acetylcholine (ACh) (Reigada et al., 2003) or with 

noradrenaline (von Kugelgen et al., 1994). In the central nervous system (CNS) the first 

evidence of calcium-dependent ATP release was obtained from synaptosomes (isolated 

nerve terminals), and this release was found to be dependent on membrane 

depolarization and Na
+
 channels activation (North and Verkhratsky, 2006). Following 

these findings, it was then discovered that ATP could be released from specific brain 

regions, such as the cortex (North and Verkhratsky, 2006).    

 Synaptic vesicles contain a proton (H
+
) pump which has the purpose of creating 

a high concentration of protons inside the secretory vesicle, making its interior 

positively charged in comparison to the cytosol. This electrochemical gradient is 

responsible for the uptake of several neurotransmitters by specific transporters 

(Pankratov et al., 2006). ATP, which is negatively charged, can be more easily stored 

into vesicles containing amines and ACh (Pankratov et al., 2006). This co-storage of 

ATP with different other neurotransmitters is highly dependent on the type of neuron in 

which the vesicles are stored (Volonté et al., 2003). The transportation of ATP into the 

vesicles is carried out through an ADP/ATP translocase, and this process occurs in 
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every stage of the vesicle formation and recycling. Also, ATP can be taken up by from 

pools of vesicles: i) vesicles still reserving ATP and/or vesicles that are ready to release 

ATP (Südhof, 2004); and more interestingly ATP is continuously taken up by vesicles 

even after the vesicular ACh transporter is blocked by inhibitors (Pankratov et al., 

2006). There are evidences suggesting that the concentration of ATP within the 

secretory vesicles is directly related to vesicle lifetime (Pankratov et al., 2006). This 

could mean that only vesicles that spent more time in the reserve pool and/or vesicles 

that are formed in the cell body and transported along the axon contain large amounts of 

ATP.           

 Although controversial, there are already some evidences suggesting that ATP 

can be released separately from other neurotransmitters (reviewed in Pankratov et al., 

2006). In experiments done with synaptosomes it was possible to observe that ATP and 

noradrenaline were stored in separate pools of vesicles and that their release depends on 

different pre-synaptic modulation (White and MacDonald, 1990). Other neurochemical 

studies performed in medial habernula showed that ATP is co-released with glutamate 

(Sperlágh et al., 1998). However, physiological studies clearly demonstrated that ATP 

and glutamate-mediated signals are from different axons (Robertson and Edwards, 

1998). Thus, depending on the type of synaptic terminal we are studying, we may find 

different secretory vesicles with different contents; in some there may be co-storage of 

ATP with other neurotransmitters and in others only ATP.    

 ATP can be released from different types of cells, such as astrocytes, vascular 

cells and neurons; and this neurotransmitter can be release either by pre-synaptic or 

post-synaptic terminals (Burnstock, 2007). This release occurs not only by stimulation 

via neurotransmitters, but also from stressful stimulus such as hypoxia (Fields and 

Burnstock, 2006).The action of classical neurotransmitters are regulated by the release 
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and removal of the transmitter from the synaptic cleft, but ATP released in the synaptic 

cleft is hydrolyzed and each one of its catabolites can activate different types of 

receptors (see Fig.1). ATP and its final reaction product, adenosine, often display 

antagonistic actions, providing a well-balanced mechanism of homeostatic regulation 

(Cunha, 2001a; Fields and Burnstock, 2006).      

 There are several studies about the ectonucleotidases that breakdown ATP 

released from neurons and from non-neuronal cells. The enzymes capable of 

hydrolysing ATP are subdivided into four families: ectonucleoside triphosphate 

diphosphohydrolases (E-NTPDases), of which E-NTPDase 1, 2, 3 and 8 are 

extracellular; ectonucleotide pyrophosphatase (E-NPP), which has 3 subtypes (E- NPP 

1, 2, 3); alkaline phosphatases and ecto-5′-nucleotidase (see Table 1). NTPDase 1 

hydrolyses ATP directly to AMP, and UTP to UDP, whereas NTPDase 2 converts ATP 

to ADP, and ecto-5′-nucleotidase catabolizes AMP into adenosine (Shirley et al., 2009). 

These enzymes have a wide distribution throughout the brain and can be present in the 

same cells (Zimmermann, 2001). In the nervous system, enzymes responsible for the 

hydrolysis of 5’-mononucleotides (like 5’-AMP or 5’-UMP) are mostly present in the 

glia cells, including astrocytes, microglia and oligodendrocytes (Zimmermann, 1992). 

Therefore, ectonucleotidases are involved in the modulation of synaptic transmission, 

microglial function and in glial ATP-derived calcium wave propagation (Fields and 

Burnstock, 2006).         

 Thus, nucleotides and nucleosides formed during the ATP breakdown mediate 

several trophic effects on neurons and glial cells, like cell proliferation, axonal growth 

and cell differentiation (Zimmermann, 2006). This suggests that cellular communication 

via nucleotides can implicate a variety of molecular interactions and cellular signaling 

pathways. 
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Table 1 - ATP hydrolysis derived from several ectonucleotidases (adapted de Shirley et al., 2009). 

Enzyme Hydrolysis pathways 

E-NTPDases 
 

E-NTPDase 1 
ATP ADP + Pi  AMP + 2Pi 

ADP  AMP + Pi 

E-NTPDase 2 
ATP  ADP + Pi 

ADP  AMP + Pi 

E-NTPDase 2 and E-NTPDase 8 
ATP  ADP + Pi 

ADP  AMP + Pi 

E-NPPs 
 

E-NPP 1 and E-NPP 3 

ATP  AMP + PPi 

ADP  AMP + Pi 

3’,5’-cAMP  AMP 

E-NPP 2 

ATP  AMP + PPi 

ADP  AMP + Pi 

3’,5’-cAMP  AMP 

Ecto-5’-Nucleotidase AMP  adenosine + Pi 

Alkaline phosphatases 

ATP  ADP + Pi 

ADP  AMP + Pi 

AMP  adenosine + Pi 

 

1.3. Adenosine as a neuromodulator and P1 receptors 

 

 While ATP may act as a neurotransmitter in most brain regions (Burnstock, 

2007), adenosine is neither stored in vesicles nor released like a classical 

neurotransmitter. Adenosine does not accumulate in synaptic vesicles and it is released 

into the extracellular medium through nucleoside transporters. Depending on the 

concentration of adenosine in intracellular and extracellular space, these transporters are 

also capable of doing adenosine re-uptake (Gu et al., 1995; Sebastião and Ribeiro, 

2009). In fact, since adenosine is not released by exocytosis, it behaves as an 
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extracellular signaling molecule that exerts its influence in synaptic transmission; thus 

adenosine is not considered to be a neurotransmitter but rather a neuromodulator 

(Cunha, 2001a). Making use of G-protein-coupled mechanisms, adenosine not only 

leads to changes in secondary-messenger levels, like cyclic AMP (cAMP), but also 

modulates ion channels activity. Adenosine is also capable of modulating neuronal 

activity by facilitating or inhibiting neurotransmitters release in pre-synaptic and post-

synaptic regions (Sebastião and Ribeiro, 2009). The contradictory pattern by which 

adenosine exerts its functions is due to the fact that it activates different G-protein-

coupled receptors, known as P1 or adenosine receptors. The P1 receptors are subdivided 

into four subtypes which are commonly known as A1, A2A, A2B and A3 receptors 

(Fredholm et al., 1996). Receptors A1 (A1R) and A3 (A3R) possess an inhibitory function 

over adenylyl cyclase (enzyme responsible for the conversion of ATP into cAMP), and 

on the other hand, A2A (A2AR) and A2B (A2BR) have a facilitatory effect on adenylyl 

cyclase. There is much information regarding the activity and localization (Fig.2) of 

A1R and A2AR since these receptors are the ones which have a higher affinity towards 

adenosine and are more abundant throughout the CNS (Dunwiddie and Masino, 2001; 

Fredholdm et al., 2001; Porkka-Heiskanen and Kalinchuk, 2011). A1R and A2AR play 

opposite roles in neurotransmission because they are coupled to different G-proteins. 

A1R is coupled to a Gi protein and mediates an inhibitory neuromodulation and this 

inhibitory effect inhibits adenylyl cyclase, activates inwardingly rectifying K
+
 channels, 

blocks Ca
2+

 channels and activates phospholipase C, leading to the inhibition of 

excitatory neurotransmitters release, such as dopamine and serotonin (Benarroch, 2008). 

However, activation of A1R lead them to rapid desensitization, thus leading to the 

internalization of the A1R; therefore, activation of A1R is not a useful tool to obtain 

neuroprotective effects (Cunha, 2001a), although it was proposed that activation of A1R 
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is relevant against epilepsy (Boison, 2011). Contrasting the inhibitory action of A1R, the 

A2AR are coupled to a Gs or a Golf protein and stimulate adenylyl cyclase-cAMP-protein 

kinase signalling pathway facilitating the release of neurotransmitters (Wei et al., 2011). 

However, there is limited information about the mechanism by which A2AR exerts its 

function. It is known that A2AR receptor is highly abundant in striatal neurons; having a 

crucial function related with the control of dopaminergic neurotransmission (Cunha, 

2005; Garção et al., 2013). Adenosine has different interactions with other 

neurotransmitter systems and because of its action with opposite effects through A1R 

and A2AR, it plays an essential role fine-tuning and modulating excitatory and inhibitory 

functions within the CNS. 

 

 

Fig.2 - Distribution of the higher affinity receptors for adenosine in the principal regions of the CNS. 

Adenosine has been proposed to play a major role in physiological and pathological functions in these 

regions. Adapted from Ribeiro et al., 2003. 

 

There is evidence that points out that under certain conditions adenosine 

facilitates, rather than inhibits, the release of neurotransmitters such as ACh and 

dopamine (Cunha, 2005; Garção et al., 2013). This indicates that the release of 

neurotransmitters is not only regulated by the inhibitory A1R, but also by the facilitatory 

A2AR. This evidence also brought to light that both these receptors can be, and more 
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often are, localized in the same synapse (Fig.3) (Ribeiro et al., 2003; Rebola et al., 

2005a). The presence of both receptors in the same nerve terminal suggests that each 

one operates under different physiological conditions (Cunha, 2001a).  

 It has been observed that at low-frequency stimulation of nerve terminals, the 

only receptor which had a role is the A1R imposing its inhibitory action in the 

neurotransmission. This fact was further corroborated by studies in which A1R were 

pharmacologically blocked or simply genetically deleted and the administration of 

adenosine was added to brain preparations did not affect the synaptic transmission, 

suggesting that low concentration levels of adenosine (basal levels) activate A1R. These 

experiments proved that A1R played a predominantly role in physiological brain 

processes (Cunha, 2008). Whereas A2AR obtain more “attention” when the nerve 

terminal receive high-frequency stimuli, favoring the release of ATP that is hydrolyzed 

into adenosine to activate the A2AR. The A2AR activation served two purposes: the 

facilitation of neurotransmission and the down-regulation of A1R which were active at 

the synapse (Cunha, 2008).        

 The inhibitory effects mediated by A1R confer neuroprotection which has been 

shown in several experimental models (in vivo and in vitro), mainly in cases of 

hypoxia/ischemia and seizures (Von Lubitz, 1999; Latini and Pedata, 2001). The 

neuroprotective effects mediated by A1R are due to the fact that the influx of Ca
2+

 in the 

pre-synaptic terminal is blocked and also because the release of neurotransmitters 

become inhibited. By acting on A1R, adenosine hyperpolarizes neurons causing a 

reduced neuronal excitation and thus lowering the number of synapses being fired 

(Dunwiddie and Masino, 2001), provoking a reduction in cell metabolism and in energy 

consumption (Kawamura et al., 2010). 

Little is known about the role of A2AR in neuroprotection, however several data 
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have shown that some compounds, such as caffeine (Cunha and Agostinho, 2010), had 

an antagonistic effect in these receptors conferring  neuroprotection (Wardas, 2002; 

Gomes et al., 2011; Duarte et al., 2012). Also, studies performed using mice that had a 

genetic deletion of A2A receptor (A2AR knockout), showed that the absence of these 

receptors afford neuroprotective effects against Alzheimer’s disease, Machado-Joseph 

disease, epilepsy and in conditions of ischemia/reperfusion (Wardas, 2002; Gui et al., 

2009; Cunha and Agostinho, 2010; Gomes et al., 2011; Gonçalves et al., 2013), which 

strengthens the idea that the blockage or the genetic deletion of A2AR confer 

neuroprotection in several models of disease (Stone et al,. 2001; Yaar et al., 2005; 

Cunha and Agostinho, 2010; Gomes et al., 2011).  It has also been shown that the 

activation of A2AR leads to an increase in the adenosine uptake (Pinto-Duarte et al., 

2005). This regulation of extracellular adenosine levels by A2AR is possibly very 

important in some brain areas, such as the hippocampus, that are under high-frequency 

neuronal firing, favoring the activation of A2AR instead of A1R (Cunha et al., 1996). It 

has also been shown that the activation of astrocytic A2AR are responsible for the 

decrease of glutamate up-take into astrocytes by glutamate transporters (Matos et al., 

2012). This finding provides evidence for the important role that astrocytic A2AR play in 

adjusting the extracellular levels of glutamate, by modulating the glutamate transporter 

activity, consequently playing a key role in the control of neurotransmission (Matos et 

al., 2012). Nevertheless, the extracellular tonic adenosine levels are not the same in all 

brain regions, being maintained by both intracellular and extracellular mechanisms and 

also by astrocytes (Dunwiddie et al., 1997; Cunha et al., 1998a; Latini and Pedata, 

2001; Martín et al., 2007). 
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Fig.3 - Main pathways from which adenosine plays its role of signaling in the CNS represented in an 

excitatory synapse. Extracellular adenosine can be provided by two sources:  i) transported through 

equilibrative nucleoside transporters (ENT) and ii) from ATP catabolism into adenosine through the 

action of ectonucleotidases (EctoN). A1R and A2AR present at the same synapse mediate most of the 

physiological effects of adenosine. A1R inhibit adenylyl cyclase (AC) whereas A2AR stimulate AC, thus 

mediating different physiological functions. Adapted from Benarroch, 2008. 

  

1.4. Sources of adenosine 

 

 In the last few years there has been an increase in the studies supporting that 

astrocytes play an important role in neurotransmission, instead of just being relevant for 

metabolic and supportive functions (Pascual et al., 2005; Perea et al., 2009). The levels 

of extracellular adenosine are controlled by an astrocyte-based adenosine cycle (Boison 

et al., 2012). The major sources of extracellular adenosine present at the synaptic cleft 

are due to ATP released by astrocytes, which can occur by secretion via hemichannels 

(Kawamura et al., 2010) or by secretory vesicles (Pascual et al., 2005). The ATP 

released is subsequently degraded into adenosine by ectonucleotidases (Zimmermann, 

2006). Apart from the release of ATP, astrocytes are also capable of releasing adenosine 

through nucleoside transporters; and the re-uptake of adenosine by these cells does not 

depend on energy-driven transporters, in contrast to classical neurotransmitters (Boison 

et al., 2010). Astrocytes have two types of equilibrative nucleoside transporters (ENT1 



23 
 

and ENT2), which allow the rapid exchange of adenosine between the extra- and 

intracellular spaces (Boison et al., 2012). The re-uptake of adenosine into astrocytes is 

done through the action of the equilibrative nucleoside transporters (ENT). Then 

adenosine is converted by adenosine kinase (ADK), an enzyme which converts 

adenosine into AMP, thus allowing it to became ATP once more and be ready to be 

released into the synaptic cleft (Fig.3) (Boison et al., 2012). There are data supporting 

that ADK present in astrocytes is the main regulator of extracellular adenosine levels, 

because it drives the astrocyte adenosine influx through bi-directional nucleoside 

transporters (Boison et al., 2010).        

 Neurons are also capable of releasing adenosine to the synaptic cleft, like 

astrocytes. In fact, neurons can release adenosine through bi-directional ENT and 

through uni-directional concentrative nucleoside transporters (Sweeney, 1996; Grey et 

al., 2004). The re-uptake of adenosine is carried out through ENT that are responsible 

for the intracellular de novo synthesis of nucleotides (Gu et al., 1995; Cunha et al., 

1996; Latini and Pedata, 2001). Klyuch and colleagues (2012) showed that neurons can 

also release adenosine by exocytosis by blocking the refilling of synaptic vesicles with 

bafilomycin A1 (Klyuch et al., 2012). It was also shown that adenosine can be released 

through uni-directional concentrative nucleoside transporters driven by Na
+
 (and 

proton) electrochemical gradients, which widely are distributed in the brain (Grey et al., 

2004).           

 There are at least two different pathways from which adenosine can be formed 

intracellularly, one being ATP-derived adenosine by intracellular ectonucleotidases and 

the other via the hydrolysis of S-adenosyl homocysteine (SAH) by SAH hydrolase. The 

SAH hydrolase pathway only provides with one-third of the adenosine produced under 

physiological conditions. Nevertheless, SAH hydrolase is spread through the main brain 
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regions (hippocampus, neocortex and cerebellum) and may have some relevance in 

disease (Latini and Pedata, 2001). Adenosine can also be produced through another 

pathway that involves intracellular ectonucleotidases. The catabolism of intracellular 

ATP is carried out through a cytosolic 5’-nucleotidase (one isoform of 5’-nucleotidase 

family), however it is still difficult to know what is the contribution of this enzyme for 

adenosine production. Under hypoxic/ischemic conditions, it was described that 

extracellular adenosine origin is mainly dependent on adenosine release, which is 

derived from cytosolic ATP catabolism (Fig.4) (Latini and Pedata, 2001). 

 

 

Fig.4 - Pathways of intracellular adenosine production, degradation and transport. Adapted from Latini 

and Pedata, 2001. 

 

 One other form to obtain extracellular adenosine is by the action of 

ectonucleotidases, a series of enzymes that among other functions are specialized in 

converting ATP into adenosine. This process is done by four major families of 
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ectonucleotidases (Fig.5). The first step of this cascade is the inactivation of ATP, 

which is mediated by the family of ectonucleoside triphosphate diphosphohydrolases 

(E-NTPDases, also known as ectoATPase or by apyrase) that are responsible by the 

hydrolysis of ATP into ADP and AMP (Shirley et al., 2009; Cognato and Bonan, 2010). 

These enzymes display a wide distribution throughout the whole brain (Langer et al., 

2008). Apart from E-NTPDases, ATP can also be degraded by ecto-nucleotide 

pyrophosphatases (E-NPPs) and by alkaline phosphatases (AP), although both these 

families have broader substrate specificity, meaning that they can metabolize other 

purinergic compounds. However, like E-NTPDases, both these families are widely 

distributed in the brain (Langer et al., 2008). The extracellular conversion of AMP into 

adenosine is carried out through the action of ecto-5’-nucleotidase (e-5’N, also known 

as CD73) (Shirley et al., 2009; Sperlágh and Vizi, 2011). E-5’N is responsible for the 

limiting step of this cascade and is also distributed in most brain regions (Langer et al., 

2008). 

 

 

Fig.5 - Extracellular nucleotide-degrading enzymes. Ectonucleotidases present the catalytic site on the 

extracellular space. E-NTPDases and E-NPPs are integral membrane proteins, going through the whole 

cytoplasmic membrane, whereas alkaline phosphatases (AP) and ecto-5’-nucleotidase (e-5’N) are 

glycosyl-phosphatidyl-inositol-anchored proteins. Adapted from Cognato and Bonan, 2010. 
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1.5. Ecto-5’-nucleotidase – general properties and roles in 

disease 

 

 Until now at least 7 isoforms of the 5’-nucleotidase exists: i) ecto-5’-

nucleotidase, ii) cytosolic 5'-nucleotidase IA, iii) cytosolic 5'-nucleotidase IB, iv) 

cytosolic 5'-nucleotidase II, v) cytosolic 5'(3') deoxyrribonucleotidase, vi) cytosolic 5'-

nucleotidase III and vii) mitochondrial 5'(3') deoxyrribonucleotidase (Borowiec et al., 

2006). The 5’-nucleotidase isoforms varies in their localization, five of them being 

cytosolic, one attached to the membrane, and the other being present at the 

mitochondrial matrix (Bianchi and Spychala, 2003; Hunsucker et al., 2005). However, 

the enzyme more involved in the extracellular formation of adenosine is considered to 

be the ecto-5’-nucleotidase.         

 E-5’N is codified by a single gene in mammalians although it has been reported 

the appearance of glycosylated forms (Cunha et al., 2000; Zimmermann, 2001). It is 

linked to the outer part of the plasmatic membrane through a glycosyl-phosphatidyl-

inositol (GPI) anchor in its carboxylic terminal; however a soluble form can also exist if 

the GPI anchor is cleaved (Braun et al., 1997). Although it has a broad spectrum of 

substrates it seems to hydrolise preferentially AMP into adenosine (Zimmermann, 1992; 

Bianchi and Spychala, 2003). This ectoenzyme can be found in several cell types both 

in pathological and physiological conditions (Zimmermann, 1992; Resta et al., 1998; 

Bianchi and Spychala, 2003). The presence of e-5’N seems to be involved in events of 

synaptic plasticity in neurons (Rebola et al., 2008), which is in accordance with the fact 

that adenosine is a neuromodulator (Cunha, 2001a). One of the more obvious roles of 

the e-5’N is the purinergic recycling, in which by converting AMP into adenosine and 

inorganic phosphate (Pi) it allows the nucleosides produced extracellularly to be 
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transported into cells and then converted again by ADK into AMP, which can later be 

converted into ATP that can be again released into the synaptic cleft (Goding, 2000).

 It was demonstrated that the bacterial e-5’N has a quite unique catalytic 

structure, and the same is thought to happen with the human e-5’N. The crystal structure 

of bacterial e-5’N has been given many insights about the catalytic mechanism of 

mammalian e-5’N (Knofel and Strater, 2001). It was seen that e-5’N was composed by 

two domains, the aminic terminal (N-terminal) and the carboxylic terminal (C-terminal), 

with its catalytic site holding a bi-metalic center (which binds Zn
2+

) between the two 

terminals (Knofel and Strater, 1999). Although e-5’N has a very broad tissue 

distribution (Langer et al., 2008) its catalytic activity varies from tissue to tissue 

(Zimmermann et al., 2012). The e-5’N is mostly located in the hippocampus, namely in 

CA3 region, and in the hilus of the dentate gyrus, although it can also be present, in less 

amount in the pyramidal cells of CA1 and CA2 regions of rat hippocamus (Bjelobaba et 

al., 2007). It was also demonstrated that it e-5’N could be found in the olfactory bulb, 

caudoputamen and olfactory tubercle (Langer et al., 2008).     

 In studies regarding e-5’N molecular properties, it was difficult to detail an 

apparent molecular mass for the glycosylated form, varying from 60-80 kDa for the 

monomers and 160 kDa for the dimers, most likely because there are numerous 

isoforms which can be misleading in some analysis (Cunha et al., 2000). In fact, it was 

shown by two-dimensional electrophoresis that there are at least 13 different isoforms of 

e-5’N in the brain (Zimmermann, 1992). Moreover, there are evidences suggesting that 

e-5’N can interact with other components of the extracellular matrix, particularly to 

laminin and fibronectin. These matrix proteins are involved in several biological 

processes, such as, cell adhesion, growth, spreading and also migration, which might 

give us an insight about the other likely functions of e-5’N (Langer et al., 2008). 
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 Although there are neurobiochemical studies reporting that e-5’N is active in 

neurons and in glial cells (Latini and Pedata, 2001), immunocytochemical analysis 

revealed that e-5’N is mostly associated with the plasmatic membrane of astrocytes, 

oligodendrocytes and microglial cells (Maienschein and Zimmermann, 1996; 

Zimmermann, 2006). However there is a lack of co-relation between the reported 

localization of this ectoenzyme in glial cells and the biochemical evidence regarding its 

activity in neurons. This is likely due the several e-5’N isoforms present at the CNS 

(Cunha et al., 2000). 

 There are some studies that show that e-5’N is involved in several pathological 

conditions, such as epilepsy and hypoxia. Indeed, it was observed in patients with 

temporal lobe epilepsy, an increase of e-5’N in the dentate gyrus and in the mossy fiber 

endings of CA4 and CA3 areas (Bonan et al., 2001). Similarly it was observed an 

increase in the activity of e-5’N in synaptosomes from hippocampus and cerebral cortex 

after the induction of seizure episodes with kainic acid (Bonan et al., 2001). In other 

study regarding the pathological condition of hypoxia, it was shown that the levels of e-

5’N were incremented and the administration of α,β-methylene-adenosine diphosphate 

(AOPCP), an inhibitor of e-5’N, suppressed the augment of extracellular adenosine 

levels; the low extracellular levels of adenosine may favor the activation of A1R, thus 

promoting a decrease of the stroke volume (Cui et al., 2013). 
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1.6. Ecto-5’-nucleotidase possible interaction with A2A 

receptor in brain disorders - frontal lobe dysfunction 

 

It has already been established the impact of adenosine on synaptic plasticity, 

mainly acting on A1R and A2AR (Ribeiro et al., 2003), and also the involvement of both 

receptors in pathological and physiological conditions (see Burnstock et al., 2011). The 

e-5’N plays also a relevant role in synaptic plasticity, converting AMP into adenosine 

which in turn is directly used to activate A2AR (Rebola et al., 2008). However it is still 

under debate what is the relation of e-5’N with A2AR under pathological conditions. 

It is known that ATP is stored in vesicles and released when nerve terminals are 

stimulated. This release is greater when the nerve terminal suffers high-frequency 

stimulation, or a noxious stimulus, thus leading to an increase in the concentration of 

ATP in the synaptic cleft that is further metabolized into adenosine (Burnstock, 2007). 

However there is another mechanism by which is possible to get adenosine in the 

synaptic cleft, the nucleoside transporters which are only predominantly active in cases 

of low-frequency stimulation of the nerve terminal (Boison et al., 2010). In the nerve 

terminal, depending on the levels of adenosine we may have two mechanisms that are 

responsible for the activation of adenosine receptors: the low-frequency stimulation of 

the nerve terminal leads to low levels of extracellular adenosine favoring the activation 

of A1R, whereas the high-frequency stimulation, leads to high levels of adenosine in the 

synaptic cleft and activates predominantly A2AR, as it can be seen in Figure 6 (Cunha, 

2005). It was reported that both stressful (Cunha et al., 1996; Cunha et al., 2001) and 

pathological (Agostinho et al., 2000; Rebola et al., 2003) conditions provoked an 

increase in e-5’N activity and A2AR density (Napieralski et al., 2003), but did not affect 

A1R.  
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Fig.6 - Schematic representation of the ability of the extracellular metabolism of adenosine (and ATP) to 

determine which adenosine receptor will play a role in the mouse nerve terminal. At lower frequency 

stimulations less ATP is released, and thus lower amounts of  adenosine is formed, which will allow 

nucleoside transporters to contribute for the accumulation of extracellular adenosine, favoring A1R 

activation. At higher frequency stimulations there is abundant release of ATP, leading to more adenosine 

formed extracellularly that activate preferentially A2AR. Adapted from Cunha, 2005. 

 

 The prefrontal cortex (PFC) is central to higher cognitive functions such as, 

working memory, decision-making and impulse suppression (Arnsten and Pliszka, 

2011). Frontal lobe dysfunction is thought to be involved in schizophrenia and age-

associated cognitive decline (Convit et al., 2001). In fact, because adenosine plays a 

neuromodulatory role and is important in learning and memory, it was suggested that 

antagonists of A2AR may prevent cognitive dysfunction (Cunha and Agostinho, 2010; 

Burnstock et al., 2011). This hypothesis is largely supported by the fact that adenosine, 

as a homeostatic bioenergetic network regulator, may act as neuromodulator of 

neurotransmitters release into the synaptic cleft; and a dysfunction in the purinergic 

system, or perhaps even in the purinergic metabolism, would result in a dysregulation of 

the neurotransmission leading to cognitive impairment (Boison et al., 2012). 

 In an experiment where Cunha and collaborators used aged rats, they observed a 

decrease of ACh release and impaired synaptic transmission in the hippocampus, 

probably due to the decrease of glutamate release with aging (Cunha et al., 1998b). The 
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decrease in neurotransmitters release such as glutamate could imply a decrease in ATP 

release, which subsequent cause a reduction in E-NTPDase activity. However, the 

formation of adenosine derived from ATP due to the action of e-5’N was incremented in 

aged rats (Cunha et al., 2001); probably because in aged rats there is an increased e-5’N 

activity (Fuchs, 1991). These evidences strengthen the idea that both e-5’N and A2AR 

share some association; and also suggests that there is an increase in the levels of A2AR 

with aging (Fig.7) (Cunha, 2001a).  

 

 

Fig.7 - Modification of the extracellular adenosine metabolism and neuromodulation in nerve terminals of 

the aged rat. The release of ATP and the activity of E-NTPDases are decreased; however, the A2AR in the 

nerve terminal are abundant and the activity of e-5’N is increased in aged rats. Adapted from Cunha, 

2001a. 

 

Considering the evidences that point out to the association between e-5’N and 

A2AR in physiological and pathological conditions, and knowing that A2AR play a 

neuromodulatory role and is also capable of conferring neuroprotection; it is of crucial 

importance to know if there is a co-regulation between A2AR and e-5’N and if the two 

proteins are co-localized in physiological conditions and in a context of cognitive 

impairment related to aging. If this scenario proves itself correct it seems obvious that e-

5’N could be a novel target to for purinergic neuromodulation and to achieve 

neuroprotection. 
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2. Objectives 
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The activation of adenosine A2A receptors (A2AR) is mediated by adenosine 

mainly originated from the extracellular catabolism of released ATP. Ecto-5’-

nucleotidase (e-5’N) plays a key role in the formation of ATP-derived adenosine and in 

the subsequent activation of A2AR to control synaptic plasticity (Rebola et al., 2008). 

Upon brain injury, ATP is released as a stressful signal and both e-5’N and A2AR are 

up-regulated in parallel (Cunha, 2005). This prompts the hypothesis that e-5’N and 

A2AR could be co-localized and co-regulated. Therefore this study aims to answer the 

following points: 

 

 To determine the synaptic and subsynaptic localization of e-5’N in 

cortical regions of adult C57Bl/6 mice 

 

 To define the co-localization of e-5’N with A2AR in different 

cortical cell types and in nerve terminals of PFC 

 

 To assess if the genetic deletion of A2AR affects the density of e-5’N 

in cortical regions 

 

 To investigate if e-5’N plays an important role in the pre-frontal 

cortex synaptic plasticity 

 

 To determine the impact of aging on e-5‘N density in PFC nerve 

terminals 
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3. Material & Methods 
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3.1. Material  

3.1.1. Reagents  

 

Table 2: Reagents used and respective suppliers. 

Reagent Supplier 

30% Acrilamide/Bis Solutions Bio Rad 

Acetonitrile Merck 

Adenosine Sigma-Aldrich 

Adenosine 5’-monophosphate sodium salt Sigma-Aldrich 

Ammonuim persulfate (APS) Sigma-Aldrich  

BCA kit Thermo scientific  

Bicine Sigma-Aldrich 

Bovine serum albumin (BSA) Sigma-Aldrich 

Bromophenol blue Sigma-Aldrich 

Calcium chloride (CaCl2) Sigma-Aldrich 

CAPS (3-[cyclohexylamino]-1-propane-sulfonic acid)  Sigma-Aldrich 

CLAP (cocktail of proteases inhibitors)  Sigma-Aldrich 

DAKO Fluorescence mounting medium DAKO 

Dithiothreitol (DTT)  Sigma-Aldrich 

ECF GE Healthcare 

Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich 

Ethyleneglycol Sigma-Aldrich 

Protein G PLUS-agarose gel beads Santa Cruz Biotechnology 

Glucose Sigma-Aldrich 

Glycerol Sigma-Aldrich 

Halothane Sigma-Aldrich 

HEPES Sigma-Aldrich 

Magnesium chloride (MgCl2) Sigma-Aldrich 

Methanol Sigma-Aldrich 

Normal Horse serum (NHS) Invitrogen 

Hydrochloric acid (HCl) Sigma-Aldrich 

Paraformaldehyde (PFA) Sigma-Aldrich 

Percoll GE Healthcare 

Penylmethanesulfonylfluoride (PMSF)  Sigma-Aldrich 

Potassium chloride (KCl) Sigma-Aldrich 

Sodium dodecyl sulfate (SDS) Bio Rad 

Sodium azide Sigma-Aldrich 

Sodium bicarbonate (NaHCO3) Sigma-Aldrich 

Sodium chloride (NaCl) Sigma-Aldrich 

Sodium hydroxide (NaOH) Sigma-Aldrich 

Sodium phosphate monobasic (NaH2PO4) Sigma-Aldrich 

Sodium thiopental B.Braun Medical 

Sucrose Sigma-Aldrich 

Tissue-tek Sakura-Americas 
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Table 2 cont: Reagents used and respective suppliers. 

 

3.1.2. Antibodies 

Table 3: Primary and secondary antibodies for Western blotting. 

Antibody Supplier Host Dilution 

A2AR Millipore Mouse 1:500 

E-5’N 
Santa Cruz 

Biotechnology 
Rabbit 1:500 

β-actin Sigma Mouse 1:10000 

PSD-95 Chemicon Mouse 1:20000 

Synaptophysin Sigma Mouse 1:20000 

Snap-25 Sigma Mouse 1:20000 

Anti-Mouse alkaline 

phosphatase conjugated 
GE Healthcare  Goat 1:20000 

Anti-Rabbit alkaline 

phosphatase conjugated 
GE Healthcare Goat 1:20000 

 

Table 4: Primary and secondary antibodies for immunohistochemistry. 

Antibody Supplier Host Dilution 

A2AR 
Santa Cruz 

Biotechnology 
Goat 1:200 

E-5’N 
Santa Cruz 

Biotechnology 
Rabbit 1:50 

GFAP Cell Signalling Mouse 1:200 

β-tubulin III Abcam Mouse 1:2000 

CD11b ABD Serotec Rat 1:100 

Anti-Rabbit Alexa Fluor 

594 
Invitrogen Donkey 1:1000 

Anti-Goat Alexa Fluor 

647 
Invitrogen Donkey 1:1000 

Anti-Mouse Alexa Fluor 

488 
Invitrogen Donkey 1:1000 

Anti-Mouse Alexa Fluor 

488 
Invitrogen Rat 1:1000 

Reagent Supplier 

TEMED Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Trizma base Sigma-Aldrich 

Tween Sigma-Aldrich 
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3.2. Animals 

Male C57Bl/6 mice with 8-12 or 36-40 weeks old were obtained from Charles 

River (Barcelona, Spain). It was also used male C57Bl/6 mice 8-12 weeks old with a 

genetic deletion for the A2A receptor (A2AR-KO) from our group’s animal colony. The 

animals were housed under controlled temperature (23 ± 2ºC), subject to a fixed 12 h 

light/dark cycle with free access to food and water. All efforts were made to reduce the 

number of animals used and to minimize their stress and discomfort in accordance with 

the principles and procedures outlined as “Replacement, Refinement and Reduction of 

Animals in Research” (3Rs) in the guidelines of EU (86/609/EEC), FELASA. 

 For tissue preparation the animals were anesthetized with halothane before being 

killed by decapitation; pre-frontal cortices and the remaining cortex were quickly 

isolated from the mouse brain. In order to make synaptic preparations the brain 

structures were homogenized immediately after dissection.  

 

3.3. Synaptic preparation 

 Synaptosomes are re-sealed nerve terminals (Fig.8), which enclose all the typical 

neuronal contents, including cytoplasm, synaptic vesicles and mitochondria, and present 

several advantages that make them one of the best models to study the molecular and 

functional properties of synapses. Their functions closely resemble nerve terminals in 

vivo: they can produce ATP and are capable of take up and release neurotransmitters, 

have enzymes and synaptic vesicles as well as functional ion channels, carriers and 

receptors on their plasma membranes, (Dunkley et al., 2008). The synaptosomal 

preparations we used are pure enough to study physiological and molecular aspects of 

synaptic function. 



38 
 

 

 

Fig.8 - Illustration of the formation process for synaptosomes (adapted from Wu et al., 2012). 

 

Synapses represent about 1-2% of the total volume of the hippocampus and have 

high levels of proteins, which are mostly adhesion and cytoskeletal proteins responsible 

for sustaining the neuronal structure and its connections. In brain tissue preparations the 

neurochemical studies of synapses have a weak signal-to-noise ratio; and the antibodies 

have poor accessibility to their matching epitopes. The synaptosomes overcome these 

disadvantages and thus they are considered to be a good tool to study synaptic proteins 

or function (Cunha, 1998a). 

 

3.3.1. Synaptosomes and total membranes 

 In order to compare the density of interest proteins in the synaptosomes and total 

membranes fractions of the same animal, half of the volume of the supernatant that 

resulted from the first centrifugation, which is common to both procedures (see detailed 

description below), was separated to prepare total membranes, and the other half was 

used to prepare synaptosomes. 
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3.3.1.1. Rapid isolation of synaptosomes 

 Synaptosomes from pre-frontal cortex were prepared using Percoll solution, as 

previously described (Canas et al., 2009). The two pre-frontal cortices from one animal 

were homogenized at 4ºC in a sucrose solution (0.32 M) containing 1 mM EDTA, 10 

mM HEPES, 1 mg/ml bovine albumin serum (BSA), and 0.25 mM dithiothreitol (DTT), 

pH 7.4 centrifuged at 3000 xg for 10 minutes at 4ºC (Sigma 3-18K centrifuge, rotor 12-

158H). The supernatants were collected and centrifuged at 14000 xg for 12 minutes at 

4°C (Sigma 3-18K centrifuge, rotor 12-158H) pellets were resuspended in 1 ml of a 

45% (v/v) Percoll solution in Kreb’s buffer (140 mM NaCl, 5 mM KCl, 10 mM 

HEPES, 1 mM EDTA, 5 mM glucose, pH 7.4). After a centrifugation at 14000 xg for 2 

minutes at 4°C (in an eppendorf centrifuge), the top layer was removed (synaptosomal 

fraction) and washed in 1 ml of Kreb’s buffer. Another centrifugation was made at 

11000 xg for 11 minutes at 4°C the supernatants were discarded and the remaining 

pellet was resuspended in RIPA buffer (radioimmunoprecipitation assay buffer) 

composed by 50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% Triton X-100, supplemented 

with 2 μM PMSF (penylmethanesulfonylfluoride), 1% CLAP (cocktail of proteases 

inhibitors) and 0.25 mM DTT (dithiothreitol), and then stored at -20ºC. 

 

3.3.1.2. Total membranes preparation 

 Isolated pre-frontal cortices were homogenized at 4ºC in a sucrose solution (0.32 

M) containing 1 mM EDTA, 10 mM HEPES, 1 mg/ml bovine albumin serum (BSA), 

and 0.25 mM DTT, pH 7.4. The homogenized tissue was centrifuged at 3000 xg for 10 

minutes, 4°C (Sigma 3-18K centrifuge, rotor 12-158H) then the supernatants were 

further centrifuged at 25000 xg for 60 minutes at 4°C (Avanti J-26X centrifuge, rotor 

JA-22-50). The supernatant were discarded and the pellet, mainly composed of the total 
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cytoplasmic membranes, was resuspended in RIPA buffer. 

 

3.3.2. Fractionation of synaptic membranes (Pre-, Post-, Extra)  

To isolate the synaptosomes into its subcellular components, like the pre-

synaptic (active zone), post-synaptic and extra-synaptic fractions (non- active zone), 

mice cortical synaptosomes, were used using a methodology previously described by 

Rebola et al., 2005a. This sub-synaptic fractionation preparation allows a 90% effective 

separation of the pre-synaptic active zone, which is enriched in SNAP-25, post-synaptic 

density, enriched in PSD-95, and extra-synaptic fraction which has high levels of 

synaptophysin (Fig.9) (Pinheiro et al., 2003; Rebola et al., 2005a). We have also 

validated the sub-synaptic fractionation of our preparation by immunoblot using 

antibodies against SNAP-25, PSD-95 and synaptophysin.  

 

 

Fig.9 - Schematic representation of the different synaptic fractions expected to be obtained in the sub-synaptic 

fractionation procedure. Adapted from Phillips et al., 2001. 

 

 For synaptosomes preparation, the cortical cortices were homogenized in 2.5 ml 

of isolation buffer (IB) (constituted by 0.32 M sucrose, 0.1 mM CaCl2, 1 mM MgCl2, 

1% CLAP and 1 mM PMSF). The homogenate was transferred to 50 ml centrifuge 

tubes and resuspended in 2 M sucrose and 0.1 mM CaCl2. The solution was carefully 
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agitated at 4ºC giving a 1.25 M sucrose solution. This solution was divided into 2 tubes 

UltraclearTM and 2.5 ml (per tube) of a 1 M sucrose solution (containing 0.1 mM 

CaCl2) was carefully added to allow the formation of a gradient. The tubes were filled 

and equilibrated with IB and then centrifuged at 100,000 xg, 4ºC, for 3 hours (Beckman 

Coulter - Optima CL-100XP DU ultracentrifuge, rotor SW41Ti). The IB and the myelin 

layer present at the interface separating IB from 1 M sucrose was removed. The 

synaptosomes were collected at the interface between 1.25 and 1 M sucrose and then 

diluted 10 times in IB and centrifuged at 15,000 xg for 30 minutes (Avanti J-26X 

centrifuge, rotor JA-22-50). The resulting pellet was resuspended in 1.1 ml of IB (100 

μl of the supernatant, corresponding to synaptosomes fraction, was kept at -20ºC for 

control analysis), and diluted 10 times in cooled 0.1 mM CaCl2. A similar volume of 2x 

solubilization buffer pH 6.0 (40 mM Tris, 2% (v/v) Triton X-100, pH 6.0 adjusted at 

4ºC) was added. The mixture was softly stirred for 30 minutes on ice and divided into 2 

UltraclearTM tubes for a centrifugation at 40,000 xg for 30 minutes, 4ºC (Avanti J-26X 

centrifuge, rotor JA-22-50). The pellet corresponds to synaptic junctions and the 

supernatant to extra-synaptic fraction. The supernatants were kept on ice while the 

pellet was washed in 1x solubilization buffer pH 6.0 (20 mM Tris, 1% (v/v) Triton X-

100, pH 6.0 adjusted at 4ºC) and resuspended in 5 ml of solubilization buffer pH 8.0 (20 

mM Tris, 1% (v/v) Triton X-100, pH 8.0 adjusted at 4ºC). This mixture was stirred 

softly for 30 minutes on ice and centrifuged at 40,000 xg for 30 minutes at 4ºC (Avanti 

J-26X centrifuge, rotor JA-22-50). The pellet corresponds to the post-synaptic density 

and the supernatant to pre-synaptic density. The supernatant was transferred to 

centrifuge tubes and the pellet resuspended in a minimal volume of RIPA buffer and 

kept at -20ºC. To concentrate even further the extra-synaptic and pre-synaptic fractions, 

a maximum volume of cold acetone (-20ºC) was added to the supernatants and kept 
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overnight at -20ºC. Both fractions were centrifuged at 18,000 xg for 30 minutes at -15ºC 

(Sorvall RC6, rotor SS34). Pellets were resuspended in a minimal volume of RIPA 

buffer. 

 

3.3.3. Co-immunoprecipitation 

Synaptosomal fraction of prefrontal cortex of mice was used to do co-

immunoprecipitation assays. The samples (150 µg protein/150 µl RIPA)  were divided 

into three eppendorfs: 1- for incubation with e-5’N, 2- for A2AR incubation and 3- for  

incubation with irrelevant IgG (Immunoglobulin G) (negative control) and then an equal 

volume of 50 µl of protein G PLUS-agarose beads were added to each one and 

incubated for 30 minutes at 4 ºC. After incubation, the solution was centrifuged at 1000 

xg for 5 minutes at 4 ºC. From the supernatant we took 20 µl that would later 

correspond to our input sample (positive control). Still from the supernatant 20 µl were 

taken and incubated with the primary antibody or IgG for 1 hour at 4 ºC. Afterwards, 20 

µl of protein G PLUS-agarose beads was added to the mixture and left overnight for 

incubation at 4 ºC in a rotational shaker.      

 After a series of centrifugations (1000 xg for 5 minutes) and washes with 

isotonic solution to remove the major portion of the G PLUS-agarose beads, the pellet 

was re-suspended in RIPA buffer and the samples were prepared for Western blot 

analysis. 
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3.4. Protein quantification and Western Blot analysis 

3.4.1. Protein quantification by the BCA method and sample 

preparation 

Protein quantification was done using the Bicinchoninic acid (BCA) protein 

assay reagent kit. This assay uses a colorimetric method which is compatible with high 

concentrations of most components of the lysis solution used. A standard curve was 

made in miliQ water, using the following concentrations of BSA: 2; 1; 0.5; 0.25; 0.125; 

0.0625 and 0 µg/µl. The samples and the lysis solution were diluted 10 times. In a 96 

multiwell, the standard curve was prepared by pipetting 15 µl of each different 

concentration of BSA, in triplicate. In each of those wells containing the BSA, 15 µl of 

the lysis solution was also added, as well as 200 µl of BCA reagent. The diluted 

samples were prepared in the same manner, but instead of adding the lysis solution, 15 

µl of miliQ water was added. The multiwell was wrapped in tinfoil to protect from the 

light and it was placed in an incubator at 35 ºC for 30 minutes. Protein was read at 570 

nm in a spectrophotometer (SpectraMax plus 384).     

 For Western blot assays the samples were normalized to 2 µg of protein/µl by 

adding sample buffer (500 mM Tris, 600 mM DTT, 10.3% SDS, 30% glycerol and 

0.012% (w/v) of bromophenol blue, usually it is used 1/6 of a 6x concentrated sample 

buffer) and rectifying with milliQ water. The samples were then denaturated by boiling 

at 95 ºC for 5 minutes. 

 

 

 



44 
 

3.4.2. Western Blot 

 Western blot assays were done using the Bio-Rad system. Protein were 

separated  by SDS-PAGE electrophoresis, using a 10 % polyacrylamide resolving gel 

with 4% polyacrylamide  stacking gel  (see Table 5), after loading different protein 

amounts of each sample. Then, the proteins were electrotransferred to PVDF 

(polyvinylidene difluoride) membranes (GE Healthcare), which were further blocked 

for one hour at room temperature with 5% low-fat milk (w/v) in Tris-buffered saline (20 

mM Tris, 140 mM NaCl, pH 7.6) or 3% bovine serum albumin (depending on the 

antibodies specifications), pH 7.6, containing 0.1% (v/v) Tween 20 (TBS-T). 

Afterwards membranes were incubated overnight at 4°C with primary antibodies (see 

table 3). After this incubation membranes were rinsed three times with TBS-T, and 

incubated with phosphatase-linked secondary antibodies for 2 hours at room 

temperature. Finally, membranes were rinsed in TBS-T and then incubated with 

enhanced chemi-fluorescence substrate (ECF) and the proteins were visualized in a 

VersaDoc 3000 system  (Bio Rad, USA) and quantified using the and Quantity One 

software (Bio Rad, USA). 

Table 5 - Gel formula for the Western Blot analysis. 

Gel formulation (1 Gel) 10% (Resolving gel) 4% (Stacking gel) 

Water 4.1 ml 6.1 ml 

Tris-HCl 1.5M; pH 8.8 

(Resolving gel) 
2.5 ml -------- 

Tris-HCl 0.5M; pH 6.8 

(Stacking gel) 
-------- 2.5 ml 

Acrilamide 30% 3.3 ml 1.3 ml 

APS 10% 50 µl 50 µl 

TEMED 5 µl 10 µl 
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3.5. Immunohistochemistry of brain slices 

3.5.1. Preparation of fixed brain slices 

 Perfusion of mice with PFA was done as previously described by our group 

(Canas et al., 2009). Male C57Bl/6 mice with 8-12 weeks of age were anesthetized with 

thiopental (50 mg/kg) via intraperitoneal, the heart was exposed, and then a catheter was 

inserted into the left ventricle. The right ventricle was slightly cut open to allow the 

outflow of the perfusate and prevent the swelling of the tissue. The animal was perfused 

with 72 ml of PBS (8.01% NaCl, 0.20% KCl, 1.78% Na2HPO4, 0.27% KH2PO4 [w/v], 

pH 7.4) followed by 90 ml of 4% PFA solution (prepared in saline solution). After 

perfusion the mouse brain was extracted and maintained in 4% PFA solution overnight 

at 4°C. The brains were transferred to PBS containing 30% of sucrose and were kept in 

this solution until the slicing. After this procedure the brains were embedded in Tissue-

Tek, frozen at -20°C and cut into 50 µm coronal sections using a cryostat (Leica 

CM3050 S). Slices were store at 4ºC in Walter´s antifreeze solution (30% glycerol 

(v/v), 30% ethyleneglycol (v/v) in 0.5 M phosphate buffer). 

 

3.5.2. Immunohistochemistry 

 The perfused brain sectioned coronally (50 µm) were rinsed three times for 10 

minutes period with PBS at room temperature. Afterwards, slices were blocked with 

PBS containing 5% normal horse serum for 45 minutes and then incubated with PBS 

containing 0.25% Triton X-100 and 5% normal horse serum in the presence of the 

primary antibodies for 48 hours (see table 4 for antibodies and respective dilutions).

 The slices were rinsed three times with PBS containing 0.25% Triton X-100 for 
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periods of 10 minutes and then were incubated with the respective AlexaFluor 

secondary antibodies diluted in PBS with 0.25% Triton X-100 and 5% normal horse 

serum for 2 hours at room temperature (see table 4). After washing three times with 

PBS, slices had their nuclei stained with DAPI (diluted in PBS 1:5000) for a period of 

10 minutes. After rinsing slices with PBS, they were mounted in a glass slide with 

DAKO fluorescent mounting medium. Images were acquired in a Zeiss Imager Z2 

fluorescence microscope equipped with 63x (Plan Neofluar 33 objective, 0.75 numerical 

aperture) objectives and Axiovision SE64 4.8.2 software. It was confirmed that none of 

the secondary antibodies produced any signal in slices by using slices that were not 

incubated with primary antibodies. 

 

3.6. Electrophysiological recordings in prefrontal cortex slices 

3.6.1. Diverse components present in evoked extracellular potentials 

Neuronal activity in the brain gives rise to trans-membrane currents that can be 

measured in the extracellular medium (Buszáki et al., 2012). Electric current 

contributions from all active cellular processes within a volume of brain tissue 

superimpose at a given location in the extracellular medium and generate a potential 

(measured in Volts), with respect to a reference potential, which can be measured by an 

extracellular electrode (Buszáki et al., 2012). This recorded potential (evoked by 

external stimuli in brain slices) is also known as field excitatory post-synaptic potential 

(fEPSP).          

 In this work, we recorded the population spike which is the shift in electrical 

potential as a consequence of the movement of ions involved in the generation and 

propagation of action potentials. It represents the sum of action potentials generated in a 



47 
 

synchronous manner by the population of cell bodies in the neighborhood of the 

recording electrode. As the population spike often reflects synaptically induced firing, 

they can be classified as a type of field excitatory post-synaptic potentials.   

 The role of A2ARs and e-5’N was evaluated on basal synaptic transmission as 

well as on synaptic plasticity, particularly on long-term potentiation (LTP). LTP is a 

long-lasting enhancement in signal transmission between neurons that results from 

stimulating them in synchrony. It is one of several long-term plasticity phenomena 

allowing chemical synapses to change the strength of their connection. LTP is widely 

considered one of the major cellular mechanisms underlying learning and memory 

(Mendonça and Ribeiro, 2001). LTP of the PFC can be obtained by stimulating a 

population of presynaptic fibers with a short-duration train of high-frequency 

stimulation (Huang et al., 2004). In this work the trains consisted of 300 Hz stimuli 

repeated 5 times every 3 minutes for a total period of 15 minutes. 

 

3.6.2. Preparation of prefrontal cortex brain slices 

 Male C57BL/6 mice were anesthetized under halothane atmosphere, decapitated 

and, the brain rapidly removed from the skull and submerged in ice-cold artificial 

cerebrospinal fluid aCSF solution (NaCl 125 mM, KCl 3 mM, MgSO4 1 mM, CaCl2 2 

mM, Na2HPO4 1.25 mM NaHCO3 25 mM and glucose 11 mM, pH 7.4) and bubbled 

with a 95% O2 + 5% CO2 mixture. Coronal slices (250 µm - thick) containing the 

prelimbic medial prefrontal cortex were cut with a Vibratome 1500 sectioning system 

(Vibratome, Germany). The slices were then transferred to a pre-chamber containing 

aCSF under continuous oxygenation to recover at 32ºC for at least 1 h. 
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3.6.3. Recordings in the prefrontal cortex 

Slices were then transferred to a submerged recording chamber where they were 

continuously perfused at a rate of 2-3 mL/min with oxygenated aCSF.  

 A bipolar concentric stimulation electrode SNE-100 (Kopf, Germany) was 

placed on the layer II/III of the prelimbic PFC (Fig.10 A) delivering rectangular pulses 

(60 – 150 µA) of 0.1 ms duration applied with a Digitimer DS3 stimulator (Digitimer 

LTD, United Kingdom) once every 20 s. Population spike was recorded through an 

extracellular microelectrode (4 M NaCl, 1–2 M resistance) placed in the layer V of the 

prelimbic PFC (Fig.10 A). Recordings were obtained with an amplifier ISO-80 (World 

precision instruments, U.S.A.) coupled to an ADC-42 analogue/digital acquisition board 

(Pico Technology’s, United Kingdom). Responses were digitalized at 10 KHz and 

continuously monitored on a personal computer with the WinLTP 1.1 program 

(Anderson and Collingridge, 1997). Responses were quantified as the amplitude of the 

population spike recordings.         

 After stabilizing the signal, the input/output curve was obtained (Fig.10 D). 

Then the intensity of the stimulus was regulated to obtain 40 – 50% of the maximum 

response. When drugs were applied, the input/output curves were obtained for both 

before drug treatment and 30 minutes after drug treatment (Fig.10 C).  

 LTP was induced after recording a baseline for 10 min. The protocol consisted 

of a 5 trains of 300 Hz tetanus every 3 minutes as described in Huang et al., 2004 

(Fig.10 B and C). 
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Fig.10 - Experimental design for the recording of population spike at the prelimbic medial prefrontal cortex (mPFC) 

(A) Coronal slices containing the prelimbic mPFC. In the schematic representation in the upper panel the prelimbic 

mPFC is delimited by the red lines. The lower panel shows a coronal slice containing the prelimbic mPFC in the 

recording chamber. The stimulation electrode was placed on layers II/III, and the recording electrode was placed on 

layer V. (B) Experimental design for control slices. (C) Experimental design for the slices subjected to 30 minutes 

pretreatment with the e-5’N inhibitor AOPCP (100 µM) or the A2AR antagonist SCH 58261 (50 nM). LTP was 

induced by five trains of tetanus (300 Hz; one train every 3 minutes). (D) Input/output (I/O) synaptic relation from 

prelimbic (mPFC). The I/O curve was traced before and after drug treatment and no changes were observed. The 

basal synaptic transmission was set to 40% of the maximum response before inducing LTP. (E) A sample population 

spike from the prelimbic mPFC of a mouse slice. Figure kindly supplied by Joana Real and Samira Ferreira. 

 

3.7. HPLC measurement of adenosine release from mouse 

prefrontal cortex synaptosomes 

Adenosine release was assayed in batch-like conditions. Half of the prefrontal 

cortex synaptosomes (~2.3 mg protein × mL
-1

) were incubated at 25 ºC for 5 minutes in 

the presence of the e-5’N inhibitor (AOPCP) while the other half was incubated at 25 ºC 

for 5 minutes in the absence of AOPCP (basal control).    

 The separation and quantification of adenosine and its metabolites was carried 

out by High Pressure Liquid Chromatography (HPLC), as previously described (Cunha 
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and Sebastião, 1993) with slight modifications, employing a LiChroCart-RT 125-4 C-18 

reverse-phase column (particle size, 5 μm), combined with an UV detector set to 254 

nm. The mobile phase consisted of KH2PO4 (100 mM) and acetonitrile (92/8 v/v%) at 

pH 6.50, with the flow rate of 1 mL × min
-1

, and a loop volume of 50 μL. The 

identification and quantification of adenosine and its metabolites was achieved by 

calculating the peak areas then converted to concentration values (expressed as μmol × 

mg protein
-1

) by calibration with known standards ranging from 3 to 20 μM. 

 

3.8. Data presentation 

Whenever possible, the data is presented as mean ± standard error of the mean 

(SEM) of the number (n) of experiments indicated in figure legends. In experiments 

with one variable it was used one-sample t-test comparing with the control (100%). To 

test the significance of the difference between two groups, a Student’s t test was used 

considering a statistical difference for a p<0.05. In experiments with more than two 

groups it was used one-way analysis of variance (ANOVA), followed by Mann-

Whitney’s/Tukey’s multiple comparison test. A value of p<0.05 was considered to 

represent a significant difference. 
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4. Results and Discussion 
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4.1. Synaptic and subsynaptic distribution of e-5’N in mice 

prefrontal cortex 

4.1.1. Synaptic distribution of e-5’N 

To analyse whether the e-5´N is enriched in nerve terminals in relation to the 

bulk of total membranes, two different types of brain tissue preparation were used: re-

sealed nerve terminals (synaptosomes) and total membranes. The advantages of 

synaptosomes were already discussed in the material and methods section; however, 

total membranes were not. Total membranes from the PFC comprehend all the 

membranes that exist in a particular tissue, meaning, that there are present cell 

membranes and organelle membranes, whereas synaptosomes are re-sealed nerve 

terminals. Before assessing the localization of e-5’N both preparations in synaptosomes 

and total membranes, we validated the purity of our preparations by Western blot, by 

using antibodies that label the pre- (SNAP-25) and post-synaptic (PSD-95) components 

that make part of the synaptosomes. As observable in Figure 11 the synaptosomal 

preparations had higher levels of PSD-95 and SNAP-25 than the total membranes, 

which ensure that these preparations were enriched in components of nerve terminals.  

 

 

Fig.11 – Validation of the purity for synaptosomes and total membranes obtained from mice prefrontal cortex. 20 µg 

of protein were loaded and incubated with specific antibodies which are known to be present at the synapse, therefore 

being more enriched in the synaptosomes preparation. The synaptosomes presented enrichment of SNAP-25 (upper 

blot) and of PSD-95 (bottom blot) when compared to the total membranes. 
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 The anti-e-5’N antibody used recognize a portion of the C-terminal of this 

enzyme and display an immunoreactive band with an apparent molecular mass of 

approximately 71 kDa. In the same immunoblot three amounts of protein of 

synaptosomes and total membranes were loaded (10, 20 and 40 µg), which were 

obtained from the same PFC samples (see material and methods section). This first 

approach was done in order to detect the e-5’N immunoreactivity for non-saturating 

amounts of protein (Fig.12 A). The relative amount of e-5’N immunoreactivity was 

achieved for 20 μg of loaded protein and it was observed that the density of e-5’N in 

synaptosomes was lower (52.1% ± 2.3%, n=4) than in total membranes (72.5% ± 3.1%, 

n=4) (Fig.12 B). The ratio between e-5’N immunoreactivity in synaptosomes and in 

total membranes was 0.72 ± 0.03 (n=4), indicating that e-5’N albeit present in prefrontal 

cortex nerve terminals was not as enriched when compared with the bulk of total 

membranes. 

 

 

 
Fig.12 – Levels of e-5’N in nerve terminals (synaptosomes) and in total membranes of mice prefrontal cortex.        

(A) Representative Western blot of the e-5’N levels in synaptosomes and total membranes for different amounts of 

protein. Two immunoreactive bands were achieved, one at 70 kDa and other at 50 kDa, which might represent two 

different isoforms of e-5’N  (B) Graphic represents the percentage of immunoreactivity for the band detect at 70 kDa 

for 20 µg of loaded protein, which was calculated considering the maximal immunoreactivity value obtained as 

100%. The results are presented as mean ± SEM of 4 independent experiments. **P<0.05; paired t-test. 
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From the immunoblot it is possible to observe two different bands, one with an 

apparent molecular mass of approximately 50 kDa and another around 70 kDa (Fig.12 

A). The band with 70 kDa corresponds to the e-5’N that was described earlier in the 

section 1.5. The band with an apparent molecular mass of 50 kDa is most likely a form 

of e-5’N that suffered post-translational modifications. It is know that e-5’N has several 

isoforms present in the CNS (Zimmermann, 1992; Cunha et al., 2000); also e-5’N has at 

least 4 different sites capable of being glycosylated (Zimmermann et al., 2012) so it is 

possible that the anti-e-5’N antibody used in this study recognized one form of e-5’N 

that went through post-translational modifications. 

 The presence of e-5’N at the pre-synaptic region of the synapse reinforces the 

hypothesis that e-5’N is essential for the activation of A2AR present at the pre-synaptic 

nerve terminal in cortical areas (Rebola et al., 2005b). However, the higher relative 

abundance of e-5’N in total membranes in comparison with synaptosomes indicates that 

e-5’N might have other roles in the CNS. In fact, e-5’N interacts with proteins, such as 

laminin and fibronectin, which are present in the extracellular matrix and are also 

present in microglia (Chamak and Mallat, 1991) and astrocytes (Xu et al., 2008). 

Fibronectin and laminin are involved in several biological processes, such as cell 

growth and adhesion and also in cell spreading and migration (Langer et al., 2008); thus 

e-5’N may also play important roles in microglia and astrocytes and that could possibly 

be why it is not enriched in the synaptosomal fraction. 

 To further analyse these hypothesis and to be more thorough about the synaptic 

localization of e-5’N, another type of tissue preparation should have been used in these 

experiments, the gliossomes, which are a preparation enriched in glial plasmalemmal 

vesicles (Matos et al., 2012). 
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4.1.2. Subsynaptic distribution of e-5’N 

 Since it was observable the presence of e-5’N in synaptosomes, the next 

objective was to detail the exact location of e-5’N in the synapse. For that purpose, we 

used a fractionation procedure that allows an effective separation of the synaptosome in 

its pre-synaptic, post-synaptic and extra-synaptic zones, which was previously validated 

by our group (Rebola et al., 2005a). This procedure has the advantage of giving better 

accessibility of antibodies to the epitopes located in the synapses though the 

solubilization of different sub-synaptic components (Phillips et al., 2001; Rebola et al., 

2005a). Before assessing the localization of e-5’N in the sub-synaptic preparation, we 

validated the purity of the sub-synaptic fractions by Western blot, by using antibodies 

that label the pre-synaptic active zone (anti-SNAP-25), of post-synaptic (anti-PSD-95) 

zone and of extra-synaptic regions (anti-synaptophysin) (see Fig.13). In these controls, 

it is expected an enrichment of the sub-synaptic proteins in the corresponding sub-

synaptic fractions. Hence, SNAP-25 (synaptosomal-associated protein 25) should be 

located in the pre-synaptic fraction, PSD-95 (post-synaptic density 95) should have a 

high density in the post-synaptic fraction and synaptophysin (synaptic vesicle marker) 

should be enriched in the extra-synaptic fraction.  

 

 

Fig.13 – Purity validation of sub-synaptic samples. Representative Western blot of the control purity of sub-synaptic 

preparations, where it is expected an enrichment of subsynaptic proteins in the respective membrane fractions: in pre-

synaptic (SNAP-25, with 25 kDa), in post-synaptic (PSD-95, with 95 kDa) and extra-synaptic (synaptophysin with 

38kDa).We observed that SNAP-25 has its highest expression in the pre-synaptic fraction, PSD-95 is only present in 

the post-synaptic fraction and synaptophysin is enriched in the extra-synaptic fraction. The first lane, corresponding 

to the total synaptosome, is an internal (positive) control, which comprehends all fractions. 
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Regarding the determination of e-5’N density in the different sub-synaptic 

fractions, the data obtained showed the presence of two bands, one with an apparent 

molecular mass of approximately 50 kDa in the pre-synaptic and extra-synaptic 

fractions and the other with 70 kDa in the post-synaptic fraction (Fig.14 A). Though e-

5’N was present in all subfractions, it presented an enrichment in the extra-synaptic and 

post-synaptic fractions. 

 

 

Fig.14 – Sub-synaptic levels of e-5’N in mice brain cortex. (A) Representative immunoblot of the e-5’N levels in 

sub-synaptic fractions and total synaptosomes. 20 μg of protein were loaded in each lane of the gel. The percentage of 

e-5’N (50 kDa in panel B; 70 kDa in panel C) immunoreactivity for each sub-synaptic fraction was calculated 

considering the sum of the pre- (Pre), post- (Post) and extra-synaptic (Extra) immunoreactivities. The total 

synaptosomes (Total syn) were analysed as an internal positive control of the experiment. The results are presented as 

mean ± SEM of 3 independent experiments. **p<0.01; ***p<0.001 One-way ANOVA, followed by Tukey post hoc 

test. 

 

The analysis of this result was carried out comparing the immunoreactivity for 

the two isoforms with different apparent molecular mass in separate; thus, when we 

compared the enrichment of the isoform with 70 kDa we got a higher density of e-5’N 

in the post-synaptic region (96.1% ± 3.9%, n=3), than in the pre-synaptic (1.8% ± 1.8%, 

n=3) and extra-synaptic fractions (2% ± 2%, n=3) (Fig.14 C). However, when we 
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compared the 50 kDa isoform of e-5’N the results showed an increase in the protein 

density at the extra-synaptic fraction (65.8% ± 4.9%, n=3) and in the pre-synaptic 

fraction (28.7% ± 2.5%, n=3), while the post-synaptic region had almost no (5.4% ± 

2.5%, n=3) immunoreactivity (Fig.14 B). 

 The result suggests that e-5’N had a wide distribution within the nerve terminal. 

E-5’N, as other GPI-anchored proteins, is synthesized at the endoplasmic reticulum and 

passes through the Golgi complex to reach the cell surface (Heilbronn et al., 1995); thus 

the presence of e-5’N in the extra-synaptic sub-fraction possibly indicates that e-5’N 

can move from the non-synaptic region to the synapse. Our results showed that e-5’N is 

also present at the pre- and post-synaptic fractions, which supports the hypothesis that e-

5’N is the enzyme responsible for the hydrolysis of extracellular AMP into adenosine in 

the synaptic cleft, which is then directed to the activation of A2AR (Cunha et al., 1996); 

that were already described as being present both at the pre-synaptic and post-synaptic 

regions (Rebola et al., 2005b). Furthermore, the presence of e-5’N in the synapse (pre- 

and post-synaptic fractions) is consistent with studies that indicate that e-5’N may be 

involved with the formation of new synapses (synaptogenesis) (Heilbronn et al., 1995; 

Zimmermann, 1996; Bailly et al., 1998). Additionally, there is enrichment of e-5’N in 

the extra-synaptic fraction. This implicates that e-5’N is required for other functions 

other than providing adenosine for the activation of A2AR present at the active site of 

the synapse. Indeed, some of the other functions of e-5’N are the interactions with other 

proteins present at extracellular matrix (discussed in section 4.1.1.). 

However, the appearance of two bands with different molecular mass (similar to 

the immunoblot demonstrating the synaptic levels of e-5’N, (Fig.12 A) further 

suggested that the two bands (50 and 70 kDa) corresponded to different isoforms of e-

5’N. In accordance with our results the presence of two isoforms with different 
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molecular mass was already described, by Zimmermanm (1992), using 2-dimensional 

SDS-PAGE analysis. The isoform with 50 kDa presents a molecular mass different 

from the theoretical molecular mass attributed to e-5’N, but it is possible that the 

isoform with 50 kDa had suffered post-translational modifications. Vogel and 

colleagues (1992) had already demonstrated that the GPI anchor present in e-5’N can be 

cleaved (Braun et al., 1997). Also it has been reported that e-5’N can exist as truncated 

forms (Fini et al., 2003). The truncated form is most likely the soluble form of e-5’N, 

ecto-5’-nuclelotidase without the GPI anchor (Fini et al., 2003).  

   

4.2. Co-localization of e-5’N and A2A receptor in prefrontal 

cortex slices and nerve terminals 

4.2.1. Co-localization of e-5’N and A2A receptors in different cell 

populations from PFC slices 

Since the data so far have shown that e-5’N was localized in synapses, but also 

elsewhere, we decided to perform triple immunohistochemistry in the prelimbic region 

of the prefrontal cortex. This technique allowed us to further analyse the localization of 

e-5’N within different brain cell populations, like astrocytes (labeled with GFAP), 

neurons (labeled with β-tubulin III) and microglia (labeled with CD11b) and if there is a 

co-localization of e-5´N with the A2AR, which were labeled with anti-e-5’N and anti-

A2AR antibodies. To label microglia it was used an antibody against CD11b, which is a 

subunit of integrin beta 2 protein involved in the recruitment of microglial cells. 

Astrocytes can be distinguished from other glial cells because they possess glial 

fibrillary acidic protein (GFAP), an astrocytic cytoskeleton protein. Beta-III Tubulin, 

also known as tubulin beta-4, is regarded as a neuron-specific marker. Antibodies 
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against all these proteins (CD11b, GFAP and β-tubulin III) used to label microglia, 

astrocytes and neurons, respectively, were validated by our group (see, Sweeney et al., 

1990; Canas et al., 2009; Matos et al., 2012) 
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Fig.15 - Triple immunohistochemistry analysis of e-5’N (labeled in red) and A2AR (labeled in blue – far-

red) with different markers for different cell populations (labeled in green), β-tubulin III for neurons, 

GFAP for astrocytes and CD11b for microglia, in mouse prefrontal cortex brain slices. Yellow circles 

highlight protein/cell of interest. White arrow indicate a negative co-localization of e-5’N and A2AR with 

a type of cell (astrocytes). The yellow arrows indicate a positive co-localization between e-5’N, A2AR and 

the cell type marked (neurons and macroglia). (A) Cells labeled with β-tubulin III (neurons marker) with 

yellow arrows indicate positive immunoreactivity for e-5’N and A2AR. (B) Cells labeled with GFAP 

(astrocytes marker) with white arrow indicate negative immunoreactivity for e-5’N and A2AR. However, 

there was still co-localization between e-5’N and A2AR. (C) Cells labeled with CD11b (microglial 

marker) with yellow arrows indicate positive immunoreactivity for e-5’N and A2AR. Magnification: 630x 

(epifluorescence microscope). Images are representative of 4 independent experiments. 
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The results obtained suggest that e-5’N and A2AR present an apparent co-

localization as it can be seen in Figure 15 pointed out by the yellow arrows. 

Furthermore our results showed that apart from the apparent co-localization of e-5’N 

and A2AR, they were both associated with neurons and microglia (Fig.15 A, C) 

However, the results suggest that e-5’N and A2AR albeit apparently co-localized were 

not observed in astrocytes as it is pointed out by the white arrow (Fig.15 B). However 

this lack of association of e-5’N and A2AR with astrocytes may be due to the fact that 

astrocytes and e-5’N seemed to be located in different planes (results not shown).  

Our results are somewhat contradictory to what is present in the literature. In 

some studies with cultured cortical neurons it was reported the presence of e-5’N in 

astrocytes (Zamzow et al., 2008) and it was also demonstrated by immunohistochemical 

and Western blot analyses the presence of e-5’N in astrocytes (Zimmermann, 1996; 

Langer et al., 2008; Augusto et al., 2013). However, the work of Bjelobaba and 

colleagues showed almost no presence of e-5’N in astrocytes (Bjelobaba et al., 2011); 

while in other studies it was demonstrated that e-5’N was more present in neurons and 

microglia (Braun and Zimmermann, 2001; Bjelobaba et al., 2011; Stanojevi´c et al., 

2011). Nonetheless it was reported that after a noxious stimulus in the cortex, e-5’N 

protein levels were decreased in neurons and increased in astrocytes near the injured 

area (Bjelobaba et al., 2011). However, to be thorough and to obtain detailed results 

from these preparations there is the need to further analyse these samples using confocal 

microscopy.         

 Nonetheless, our results demonstrated an apparent co-localization of e-5’N with 

A2AR, and observing that they are mainly present in neurons and microglia, the next 

task was to investigate if e-5’N and A2AR presented a close association in nerve 

terminals of mice prefrontal cortex. 
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4.2.2. Co-localization of e-5’N and A2A receptors in synaptosomes from 

PFC 

The data obtained with the fractionation procedure have shown the presence of 

e-5’N in different regions of nerve terminals, more precisely in the pre-synaptic and 

post-synaptic regions. It is known that A2AR is also present in the active zone of the 

synapse (Rebola et al., 2005b). To further prove the apparent co-localization of e-5’N 

with A2AR, obtained with the immunohistochemistry, we performed a co-

immunoprecipitation assay. From the same sample of synaptosomes obtained from mice 

prefrontal cortex, we did a “pull-down” of e-5’N, and a “pull-down” of A2AR in 

separate experiments (for a detailed explanation see material and methods). The results 

we got are displayed in the Figure 16. 

 

Fig.16 – Immunoprecipitation (IP) of e-5’N and A2A receptor in synaptosomes samples of PFC.            

(A) Proteins were immunoprecipitated with anti-A2AR antibody and labeled with antibody against e-5’N. 

(B) Proteins were immunoprecipitated with anti-e-5’N antibody and labeled with antibody against A2AR. 

The input corresponds to the internal positive control, and the IgG corresponds to an irrelevant protein 

(negative control) Immunoblots are representative of 2 independent experiments. 
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From the results obtained with the immunoblot it is possible to say that there is a 

physical interaction between e-5’N and A2AR in nerve terminals from the prefrontal 

cortex. These data corroborate the idea that e-5’N might indeed provide the adenosine 

necessary for the activation of A2AR (Cunha et al., 1996; Cunha, 2005); and are in 

accordance with a recent work, that showed a co-localization of e-5’N and A2AR in the 

striatum thus supporting the hypothesis that e-5’N and A2AR have a physical interaction 

(Augusto et al., 2013). In this work they further proved this physical association using 

an e-5’N knockout mice model in which they obtained no interaction between e-5’N 

and A2AR (Augusto et al., 2013). 

There is also evidence obtained using co-immunoprecipitation assays for A2AR 

and tyrosine kinase B, indicating that A2AR may be located in lipid rafts (Mojsilovic-

Petrovic et al., 2006). Lipid rafts are membrane microdomains highly enriched with 

GPI-anchored proteins (Lasley, 2011), such as e-5’N, therefore, this further supports a 

close association that we observed between A2AR and e-5’N and furthermore this result 

may imply some co-regulation between e-5’N and A2AR. 

 

4.3. Synaptic distribution of e-5’N in PFC from A2AR-KO 

mice  

From the results obtained with the co-immunoprecipitation assay we showed 

that there was a physical interaction between e-5’N and A2AR. This result led us to 

investigate if mice with a global genetic deletion for A2AR, A2AR knockout mice (A2AR-

KO) displayed different levels of e-5’N in nerve terminals. The A2AR-KO mice model 

used in this assay was well-characterized and validated by our group prior to its 

utilization (Lopes et al., 2004). 
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Fig.17 – Levels of e-5’N in synaptosomes of prefrontal cortex from wild-type and A2AR-KO mice.                           

(A) Representative immunoblot of the e-5’N levels in synaptosomes from wild-type and A2AR-KO mice. (B) Graphic 

represents the percentage of immunoreactivity for the band detect at 70 kDa for 20 µg of loaded protein, which was 

calculated considering the maximal immunoreactivity value obtained as 100%. The results are presented as mean ± 

SEM of 3 independent experiments. ns: non-significant; unpaired t-test. 

 

For this analysis we only used PFC synaptosomes from wild-type and from 

A2AR-KO mice (Fig.17 A). The relative amount of e-5’N immunoreactivity was 

achieved for 20 μg of loaded protein and it was observed that the density of e-5’N in 

synaptosomes from wild-type mice was lower (58.9% ± 2.0%, n=3) than in 

synaptosomes from A2AR-KO mice (76.1% ± 6.5%, n=3), however the differences were 

statistically non-significant (Fig.17 B). The ratio between e-5’N immunoreactivity in 

synaptosomes from wild-type and from A2AR-KO mice was 0.79 ± 0.1 (n=3), indicating 

that e-5’N density levels did not alter in the absence of the A2AR.   

 Although the results obtained with A2AR-KO and wild-type mice showed no 

statistical differences in the synaptic density levels of e-5’N in these two animal groups, 

it seems to exist a slight increase of e-5’N levels in nerve terminals of A2AR-KO, which 

might be due to a compensatory mechanism. In a recent study where it was used e-5’N 

knockout mice, the authors observed no changes in the binding density of A2AR as 

compared with the wild-type mice (Augusto et al., 2013). Although they used e-5’N 

knockout mice, instead of A2AR-KO mice, these data corroborate our findings.

 Taken together these evidences may suggest that A2AR and e-5’N do not 

regulate one another. 
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4.4. Role of e-5’N in mice prefrontal cortex synaptic 

transmission  

4.4.1. Impact of A2A receptors in PFC synaptic transmission 

 The data so far has shown a clear physical association between e-5’N and A2AR 

in PFC synaptosomes; however, in A2AR-KO mice the density levels of e-5’N was 

similar to that found in wild-type mice. The data also showed that e-5’N was present 

throughout the active region of the synapse (pre-synaptic fraction) and in the non-active 

region of the synapse (post- and extra-synaptic fractions), thus suggesting that e-5’N 

might have some role in synaptic plasticity (Rebola et al., 2008). 

It is already known that A2AR play an important role in synaptic transmission 

and in plasticity phenomenona in several brain regions (for a review see Dias et al., 

2013). It is also known that the activation of A2AR in the cortico-striatal region leads to 

the release of neurotransmitters, like dopamine that may regulate the excitatory 

neurotransmission (Cunha, 2005; Wang et al., 2012). However, in the prefrontal cortex 

the particular role played by A2AR in synaptic transmission is still unclear. 

 First we tried to define the role of A2AR in the synaptic transmission in the PFC, 

and for that we used an electrophysiological approach (see material and methods section 

3.6). To define whether the synaptic transmission was dependent from the activation of 

A2AR we used a selective antagonist of this receptor, SCH 58621 (50 nM) and we 

explored its action in LTP phenomenon (Fig.18 A). 
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Fig.18 – Blockade of A2AR impairs long-term potentiation (LTP) at the prelimbic mPFC from C57Bl/6 mice. (A and 

C) In the control slices (only artificial cerebrospinal fluid – aCSF), 5 trains of 300 Hz stimuli induced a long-term 

increase in the population spike amplitude (PSamp) that was 191.90 ± 16.87 % of the amplitude of the basal synaptic 

transmission (black dots / black bar graph; p<0.01 – one-sample t-test, n = 5). Under 30 minutes pre-treatment with 

the A2AR antagonist SCH 58261 (50 nM), the LTP induced by 5 trains of 300 Hz stimuli was no longer significant 

(blue diamonds / blue bar graph; 128.30 ± 11.47 % of the basal synaptic transmission, p>0.05 – one-sample t-test, n = 

3). (B) Representative population spike recordings obtained before and 30 minutes after LTP induction in control 

slices (aCSF) and in slices pretreated with the A2AR antagonist SCH 58261. Data are presented as mean ± SEM of n 

≥3 independent experiments. Bar graphs are mean ± SEM of the last 10 minutes of the recordings. **p<0.01; ns: non-

significant. Graph kindly supplied by Joana Real and Samira Ferreira. 

 

The results comparing the effect of the selective antagonist of the A2AR, SCH 

58261 (50 nM) in PFC slices clearly show that the A2AR need to be activated to obtain 

LTP. The presence of this A2AR antagonist abolished almost completely the LTP effect 

(128.30 ± 11.47 %) when compared to the LTP (191.90 ± 16.87 %) in control slices 

(Fig.18 A, C). This is in accordance with a previous study using cortico-striatal slices 

and pharmacological tools where it was shown that when the slices were subjected to an 

agonist of the A2AR there was an increase in the synaptic transmission, whereas when 

the slices were incubated with an antagonist of A2AR occurs a decrease in the synaptic 
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transmission (Quiroz et al., 2009). There are also other studies showing that the 

activation of A2AR is required to achieve a long-term potentiation effect in striatal slices 

(Higley and Sabatini, 2010; Wang et al., 2012). It was also reported that A2AR are 

required to achieve LTP phenomenon in hippocampus by using the selective antagonist 

(SCH 58621) of these receptors (Rebola et al., 2008). However, to prove that the 

adenosine that activated A2AR was originated from the extracellular catabolism of ATP, 

the authors used an inhibitor of e-5’N (AOPCP) and observed reduced amplitude of 

hippocampal LTP (Rebola et al., 2008). This led us to hypothesize that the LTP 

phenomenon in PFC slices might also depend on the activation of A2AR through the 

activity of e-5’N. Thus, we further investigated if we could mimic the effect of SCH 

58621 in synaptic plasticity of PFC with the inhibitor of e-5’N (AOPCP). 

 

4.4.2. Impact of the e-5’N inhibitor (AOPCP) in PFC synaptic 

transmission 

 It is known that e-5’N is the enzyme responsible for the hydrolysis of 

extracellular AMP into adenosine, which is further directed to the activation of A2AR 

(Cunha et al., 1996; Rebola et al., 2008). Thus, we hypothesize that if the adenosine 

formation was blocked indirectly, the activation of A2AR would not occur and thus the 

LTP would be blunted. To explore this hypothesis we performed electrophysiological 

recordings in two groups of PFC slices, one that was subjected to aCSF and the other 

was perfused with the e-5’N inhibitor, AOPCP (100 µM) (Fig.20). 
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Fig.19 – Inhibition of e-5’N induces a transient decrease of the basal synaptic transmission but fails to affect long-

term potentiation at the prelimbic mPFC from C57Bl/6 mice. (A) 30 minutes pretreatment with the e-5’N inhibitor 

AOPCP (100 µM) induced a transient decrease in the population spike amplitude (PSamp; *p<0.05 – one-sample t-

test). (B) Representative population spike recordings obtained before and after 15 minutes of AOPCP perfusion. (C – 

E) 30 minutes pretreatment with the e-5’N inhibitor AOPCP (100 µM) did not affect the LTP induced by 5 trains of 

300 Hz stimuli. In the control slices (only artificial cerebrospinal fluid – aCSF), the population spike amplitude was 

134.10 ± 9.24 % of the basal synaptic transmission (black dots / black bar graph; p<0.05 – one-sample t-test, n = 4). 

Under 30 minutes pretreatment with AOPCP, the population spike amplitude was 145.30 ± 10.53 % of the baseline 

(pink dots / pink bar graph; p<0.05, n = 4), which was not significantly different from the control (aCSF) slices 

(p>0.05 - Mann-Whitney test). (D) Representative population spike recordings obtained before and 30 minutes after 

LTP induction in control slices (aCSF) and in slices pretreated with the e-5’N inhibitor AOPCP (100 µM). Data are 

presented as mean ± SEM of n = 4 independent experiments. Bar graphs are mean ± SEM of the last 10 minutes of 

the recordings. *p<0.05; ns: non-significant. Graph kindly supplied by Joana Real and Samira Ferreira. 

 

The data obtained with the administration of AOPCP in PFC slices in basal 

transmission showed an inhibitory effect after the administration of AOPCP that is later 

recovered (Fig.19 A). This recovery suggests that the adenosine derived from the 

extracellular catabolism of ATP did not affect the basal transmission at a long term, thus 

this result might led us to speculate that in the presence of AOPCP the adenosine 

receptor that is activated seems to be A1R. This idea was strengthened by a study where 

the authors used rat hippocampal slices incubated with AOPCP, and it was observed 



69 
 

that the inhibition of e-5’N reduces the adenosine levels in the synaptic cleft; therefore 

the concentration of adenosine was not enough to activate A2AR thus favoring the 

activation of A1R (Cunha et al., 1996; Cunha, 2001b).    

 The administration of AOPCP did not affect significantly the LTP when 

compared to control slices (administrated with aCSF, Fig.19 C, D). This suggests that 

even upon high-frequency stimulation, adenosine derived from the extracellular 

catabolism of ATP, through ectonucleotidases, did not present an impact on plasticity 

phenomena in PFC regions; thus the effect of A2AR may not be observable here. This 

led us to prompt the hypothesis that in PFC regions subjected to the administration of 

AOPCP, the adenosine receptor that is mainly activated seems to be A1R, because 

AOPCP inhibits the formation of ATP-derived adenosine, thus maintaining the 

adenosine concentration low enough to activate only A1R (Cunha et al., 1996; Cunha, 

2001b; Rebola et al., 2008). This was further corroborated by several studies performed 

in hippocampal slices where the authors observed that the endogenous adenosine 

stimulates the A1R, modifying the excitatory synaptic transmission and attenuating LTP 

plasticity (Mendonça and Ribeiro, 2000; Mendonça and Ribeiro, 2001; Wei et al., 

2011). An effect of ATP receptors (P2) on synaptic transmission did not seem to be 

present in our experimental conditions, since it was shown that P2 receptors only exerted 

their action in synaptic plasticity if the A1R were blocked (Almeida et al., 2003). 

However, in a study done in hippocampal slices showed that even if the A1R was not 

blocked the P2 would still have an impact on synaptic plasticity (Fujii, 2004). The 

administration of ATP (10 µM) slowly induced LTP in hippocampal slices (Fujii, 

2004); although, the observed LTP could be due to the activation of A2AR, because the 

ATP catabolism was still taking place in the synaptic cleft. In fact, they explored this 

possibility by removing all ADP present in the synaptic cleft, by washout with aCSF 
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solution, and observed no potentiation; thus indicating that LTP was not induced by P1 

receptors but by P2 receptors (Fujii, 2004). 

 

4.5. Adenosine release from mouse PFC synaptosomes 

 Upon observing that AOPCP did not affect the synaptic plasticity significantly 

we wanted to investigate if the inhibitor of e-5’N, AOPCP (50 µM), changes the amount 

of adenosine formed in nerve terminals. For that we measured by HPLC the levels of 

AMP and adenosine in synaptosomal preparations exposed or not (control) to AOPCP. 

Through this measurement we were able to assess the contribution of e-5’N in 

adenosine formation in PFC nerve terminals. 

 

 

Fig.20 – HPLC measurements of AMP and adenosine in synaptosomes from prefrontal cortex. (A) Chromatogram 

showing the measurement of AMP and adenosine in basal conditions (grey line) and in the presence of AOPCP (50 

µM) (black like). In the presence of AOPCP the adenosine formed is less and AMP concentration increases.            

(B) Quantification of AMP (2.03 ± 0.25 μmol × mg protein-1) and adenosine (3.83 ± 0.65 μmol × mg protein-1) in 

basal conditions and in the presence of AOPCP (50 µM) AMP (23.08 ± 0.56 μmol × mg protein-1) and adenosine 

(1.87 ± 0.38 μmol × mg protein-1). The results are representative of 2 independent experiments. 

 

 From the data obtained with the HPLC measurements we observed low levels of 

AMP and adenosine in basal conditions, which is in accordance with the literature 
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(Cunha, 2001b; Latini and Pedata, 2001; Volonté et al., 2003). However, when the last 

enzyme of the ectonucleotidase cascade (e-5’N) is inhibited by AOPCP, we observed 

increased levels of AMP (23.08 ± 0.56 μmol × mg protein
-1

) when compared to the 

control (2.03 ± 0.25 μmol × mg protein
-1

) and a slight decrease of the adenosine levels 

(1.87 ± 0.38 μmol × mg protein
-1

) when compared to the control (3.83 ± 0.65 μmol × 

mg protein
-1

) in the synaptic cleft (Fig.20). Indeed it was previously shown that the 

blockade of e-5’N causes a slight increase in AMP levels (Sakowicz-Burkiewicz et al., 

2010). These data showing that in presence of AOPCP the levels of adenosine in nerve 

terminals are reduced, are in accordance with our electrophysiological data (Fig.19), and 

supports our hypothesis that in the presence of AOPCP the low levels of adenosine 

preferentially favors A1R activation.  Moreover, this result may lead us to prompt the 

hypothesis that in basal conditions the primary source of adenosine may not be through 

ectonucleotidases pathway but rather through the action of ENT or through exocytosis 

(Cunha et al., 1996; Boison et al., 2012; Klyuch et al., 2012).   

 Since no statistical analysis was performed due to the number of experiments 

(n=2), no definite conclusions can be obtained. 

 

4.6. Synaptic density of e-5’N in PFC from aged mice 

 Frontal lobe dysfunction is thought to be involved in schizophrenia and age-

associated cognitive decline (Convit et al., 2001). It is known that the formation of 

adenosine from the catabolism of ATP by e-5’N is incremented in aged rats (Cunha et 

al., 2001). Also, there are evidences that e-5’N has increased activity in aged rats 

(Fuchs, 1991; Mackiewicz et al., 2006). Thus, the last goal of this work was to 

investigate what was the impact of aging on synaptic density of e-5’N.   
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 To explore if the synaptic density of e-5’N increased with aged, we used mice 

36-40 weeks old and assessed the levels of e-5’N in synaptosomes from the PFC by 

Western blot analysis (Fig.21 A).  

 

 

Fig.21 – Levels of e-5’N in synaptosomes of prefrontal cortex from young (8-12 weeks old) and old mice (36-40 

weeks old). (A) Representative immunoblot of the e-5’N levels in synaptosomes from young and adult mice.          

(B) Representative immunoblot of β-actin density (control for protein loading). (C) Graphic represents the ratio, in 

percentage, of e-5’N immunoreactivity (70 kDa), and β-actin immunoreactivity for 20 µg of loaded protein. The 

results are presented as mean ± SEM of 3 independent experiments. ns: non-significant comparing young and adult 

mice; unpaired t-test. 

 

 The relative amount of e-5’N immunoreactivity was achieved for 20 μg of 

loaded protein and it was observed that the density of e-5’N in synaptosomes from adult 

mice was lower (78.9% ± 8.1%, n=3) than in young mice (83.2% ± 3.3%, n=3) (Fig.21 

C). No significant differences between the two groups of mice were observed, probably 

because the difference in the age of the two animal groups is not enough to detect 

alterations in e-5’N. Indeed, we are aware that we should have used animals with bigger 

age differences. In a study regarding the activity of e-5’N it was shown that only from 

the 50 weeks of age mice would start to display changes (Mackiewicz et al., 2006). 

Furthermore, Cunha and colleagues showed that the catabolism of ATP into adenosine, 

through the action of e-5’N, increases with aging (Cunha et al., 2001); however, this 

study did not explored alterations in density of e-5’N, they only probed for its activity, 
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so it is not certain whether e-5’N density is affected during aging. It should be referred 

that in these old animals (36-40 weeks old) it was also observed two immunoreactive 

bands, one with 70 kDa and the other with 50 kDa, which we think to correspond to two 

e-5’N isoforms (as previously discussed), and from the sub-synaptic fraction data (see 

section 4.1.2), we can conclude that the 70 kDa and 50 kDa immunoreactive bands 

might correspond to e-5’N in the post-synaptic fraction and in the extra- and pre-

synaptic fractions, respectively. 
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5. Conclusions and Final 

remarks 

 

 

 

 

 

 
 



75 
 

The present work has brought to light several conclusions about the role of e-

5’N in the prefrontal cortex of mice and has showed that e-5’N shared an association 

with the A2AR. It was observed that e-5’N is present in synaptosomes (purified nerve 

terminals) from the prefrontal cortex, albeit it was not enriched in nerve terminals when 

compared with total membranes. By performing sub-synaptic fractionation we detailed 

in which fractions (pre- post- and extra-synaptic regions) the e-5’N was more enriched. 

We discovered the clear presence of at least two different isoforms of e-5’N in 

synaptosomes from the PFC; one isoform with 70 kDa that was present mainly in the 

post-synaptic fraction, whereas the isoform with 50 kDa was enriched in pre- and extra-

synaptic components. Through immunohistochemistry analysis in PFC of mice, we 

observed that e-5’N and A2AR exhibit an apparent co-localization. Apart from the 

apparent co-localization between e-5’N and A2AR, they seemed to be located 

preferentially in neurons and microglia. To further analyse the apparent co-localization 

of A2AR and e-5’N we did a co-immunoprecipitation assay where we found a clear 

physical association between A2AR and e-5’N in nerve terminals. However, when we 

used A2AR-KO mice (mice model where the A2AR is genetically deleted) to investigate 

if the density levels of e-5’N were altered, no difference was observed. Moreover, it was 

shown through electrophysiological recordings that A2AR played an important role in 

the LTP phenomenon in the PFC. In fact the antagonist of A2AR decrease the LTP in 

PFC slices, in contrast to what was observed with the inhibitor of e-5’N. Therefore, 

these results suggest that the formation of adenosine through e-5’N action may not be 

important to A2AR activation and subsequent modulation of the synaptic plasticity in the 

PFC. Although it is known that aging affects the activity of e-5’N, when we compared 

the density levels of e-5’N in synaptosomes of young (8-12 weeks old) and adult (36-40 

weeks old) mice no significant changes were observed. 
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The work so far has brought several evidences about the interplay between e-

5’N and A2AR in the PFC, however there are still questions that remain unanswered. It 

is necessary to observe if there are changes in the density levels of e-5’N in the sub-

synaptic fractions in A2AR-KO mice model. It would also be of great advantage to use 

forebrain-A2AR-knockout mice to tackle the same questions. In forebrain-A2AR-

knockout mice model, only the forebrain neurons do not present A2AR, so it would be a 

useful tool to observe changes in synaptic density of e-5’N and also in the synaptic 

transmission of  PFC region. The same should be done in e-5’N-knockout mice models 

to observe if there are changes in the density levels of adenosine receptors and if the 

synaptic transmission presents alterations. Both mice models (forebrain-A2AR-knockout 

and e-5’N-knockout) should be used to investigate the interplay between e-5’N and 

A2AR with more detail. The use of these mice models will allow to detail with more 

precision what is the role of e-5’N in pathological conditions that are related to the PFC 

degeneration, namely epilepsy; thus providing a more clear interaction between e-5’N 

and A2AR in conditions of pathology. 

Nevertheless, this thesis paved the way to a better understanding of the relation 

between e-5’N and A2AR in the PFC, and therefore, may lead to some novel tactics to 

tackle questions regarding frontal lobe dysfunctions. 
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