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ABSTRACT 

 

 

Heme peroxidases couple the oxidation of a variety of organic substrates with reduction 

of H2O2 to water. They represent an attractive platform for both detection and monitoring 

of H2O2 and biocatalysis of organic compounds. DyP-type peroxidases constitute a novel 

family of heme peroxidases. They are capable of efficient decolourisation of several dyes, 

including anthraquinone-based and azo dyes that are of industrial and environmental 

relevance. DyPs are unrelated to other known peroxidases with respect to primary 

sequence, catalytic properties and tertiary structure. In this work we establish the first step 

towards exploring the potential of DyP-type peroxidases for biotechnological applications. 

We present a purification and combined biochemical, spectroscopic and spectro-

electrochemical study of a recombinant DyP-type peroxidase from Pseudomonas putida 

MET94 (PpDyP) immobilized on bio-compatibly coated Ag electrodes. The aim of this work 

is to provide structural and mechanistic insights into an immobilized DyP-type peroxidase, as 

a basis for a rational design of bio-electronic device(s) employing PpDyP. 

 

 

 

 

Keywords: DyP-type peroxidase, biosensors, resonance Raman spectroscopy, 

biotechnological application, heme proteins, SERR. 
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RESUMO 

 

 

Peroxidases hémicas oxidam uma vasta variedade de substratos orgânicos mediante a 

redução de H2O2 a água. Estas enzimas representam uma plataforma atraente para a 

detecção e monitorização de H2O2 bem como para a biocatálise de compostos orgânicos. 

DyP peroxidases constituem uma nova família de peroxidases hémicas, capazes de 

descolorarem eficientemente vários corantes, incluindo corantes derivados da antraquinona 

quer corantes azo e que são de elevado interesse industrial e ambiental. Estas peroxidases 

não estão relacionadas com outras peroxidases já conhecidas, quer no que diz respeito à sua 

sequência primária, quer propriedades catalíticas e até estrutura terciária. Neste trabalho, 

pretende-se estabelecer o primeiro passo para explorar o potencial de DyPs para aplicações 

biotecnológicas. É apresentada a purificação combinada com um estudo SERR espectro-

eletroquímico de uma DyP recombinante, obtida a partir de Pseudomonas putida MET94 

(PpDyP), imobilizada num eléctrodo biocompatìvel de prata (Ag). O objectivo deste trabalho 

é fornecer informações estruturais e mecanicistas sobre uma DyP imobilizada, como base 

para um desenho racional de um dispositivo bioelectrónico (biosensor) baseado nessa 

mesma proteína (PpDyP). 

 

 

Palavras-chave: DyP, biosensores, espectroscopia de resonância de Raman, aplicações 

biotecnológicas, proteínas hémicas, SERR. 
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1. INTRODUCTION 

___________________________________________________________________________ 

 

 

1.1. Objective 

 

 

The objective of this work is the characterization of a novel enzyme, Dye decolorizing 

peroxidase (DyP) from Pseudomonas putida (PpDyP). We aim to learn about biochemical, 

structural and catalytic properties of the enzyme in solution, in order to contribute to better 

understanding of DyPs, a novel family of heme peroxidases, in general. Moreover, we aim to 

address the properties of immobilized PpDyP, in order to explore its potential for 

biotechnological applications. Being a heme peroxidase, DyP catalyses the reduction of 

hydrogen peroxide to water, utilizing a variety of electron donors. In this manner, DyPs 

represent a promising platform for design of enzyme electrodes that can be used in 

construction of biosensor and/or biocatalysts for detection or processing of either of the 

substrates (Fig. 1) [1]. An important strategy in the design of such biosensors and 

biocatalysts is the immobilization of enzymes onto conductive support materials. The 

performance of the biodevice is then determined by the structural integrity, functionality and 

stability of the immobilized enzyme and efficiency of electronic communication, between the 

enzyme and the conductive support material [2]. One of the most prominent examples of 

biosensors is the Glucose oxidase based glucose detecting device. This enzyme has been 

widely used as a sensor for biorecognition of glucose, due to the need for determination / 

monitoring of glucose in patients with diabetes. 

This work is divided in two stages: i) the purification and the biochemical characterization 

of enzyme and ii) structural characterization of the protein in solution and in immobilized 

state. First, it was necessary to purify a sufficient amount of the enzyme. We optimized the 

procedure for transformation of the expression vector containing the recombinant gene into 

an Escherichia coli strain (heterologous expression). Then we purified protein and 

characterized its biochemical and catalytic properties and stability. 
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In the next step we employed vibartional spectroscopy that helped us to characterize 

physiologically relevant configurational state(s) of PpDyP heme group. We took advantage of 

high selectivity and sensitivity of surface enhanced Resonance Raman (SERR) spectroscopy 

and spectroelectrochemistry to describe structural and thermodynamic properties of the 

enzyme immobilized onto biocompatible metal electrodes.  

The outcome of this work is expected to have an impact on development of alternative 

ways for: i) dye processing and treatment of toxic industrial chemicals and wastes, including 

pollutants such as phenols and pesticides, which are not amenable to biological wastewater 

treatments, and ii) H2O2 detection, relevant in environmental, pharmaceutical, clinical and 

industrial analysis. Moreover, this work could shed some light onto physiological features of 

a new member of a novel heme peroxidise family which was not investigated before.  

 

 

 

 

 

 

Figure 1 – Schematic representation of the design of an electrochemical biosensor. 
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2. THEORETICAL BACKGROUND 

___________________________________________________________________________ 

 

 

2.1. Peroxidase superfamily 

 

 

Heme peroxidases oxidize organic substrates using hydrogen peroxide as electron 

acceptor. Degradation of hydrogen peroxide into O2 and H2O arises in cells as a result of 

oxygen metabolism, imposing a special role in cellular detoxification mechanism to 

peroxidases [3]. Nowadays peroxidases can be used for various applications, mainly for 

decontamination of soil and water. There are numerous ongoing investigations on 

application of peroxidases in industrial processes, such as food control, as well as medicine-

related areas [4]. For instance, in immunohistochemistry, horseradish peroxidase (HRP) is 

used to detect antibodies that may be an evidence of metabolic disfnctions such as thyroid 

disease. It is also used as a diagnostic tool in pathology as it has the ability to target and bind 

to certain biomarkers found in cancers [5]. Therefore, a better understanding of HRP and 

peroxidases in general could lead to a new targeted cancer therapy [6]. 

 

 

2.1.1. Classification of peroxidases 

 

 

Peroxidases can be classified as non-heme and heme (Fig.2). Heme peroxidases catalyze 

the peroxidation of substrates employing an iron ion present in heme active center. In the 

resting state, the heme group of the heme peroxidases is in ferric oxidation state (Fe III).  

The members of non-heme peroxidases in the active site have one redox cysteine or 

selenocysteine [7]. 
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Figure 2 – Classification of peroxidases 

 

 

Heme peroxidase family was originally divided into two super families: the animal 

peroxidases and the plant peroxidases. The latter is divided into three classes, class I, II and 

III [7] but nowadays there are more families such as Catalases, Haloperoxidases for instance 

(Fig. 2).  

 

 

 Class I (Procaryotic) – These enzymes are involved in plant detoxification 

(elimination of hydrogen peroxide). These include the yeast cytochrome c peroxidase 

(CcP), ascorbate peroxidases (APX) and bacterial catalase-peroxidases (BCPX). 

These peroxidases do not have disulfide bonds, Ca2+ ions or signal peptides for 

secretion and they are not glycosylated. The triptofan (Trp117 in CcP) is conserved 

in all members of the class I [7].  

 

 

 Class II (Fungal) – These enzymes include lignin and manganese peroxidase (LiP and 

MnP respectively), involved in lignin degradation.  They have 5% of carbohydrates, 

four highly conserved disulfide bridges and two structurally important Ca2+ ions. The 

conserved Trp (Trp117 in CcP) residue present in the class I is replaced by 

phenylalanine (Phe190 in MnP) or leucine [7].  

 

Peroxidase

Non heme 
Peroxidases

Heme Peroxidases

• Haloperoxidases
•Manganese catalases
•NADH Peroxidases
•Alkylhydro Peroxidases
• Thiol Peroxidases

•Haloperoxidases
• Catalases
•Di – heme cytochrome c perox
•Animal Peroxidases
•Non – animal Peroxidases

• Classe I, II, III
•DyP – type Peroxidases
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 Class III (Plant) – In addition the most widely studied HRP, this group also includes 

barley (BP), peanut (PNP) and soybean (SBP) peroxidases. Structurally, these 

enzymes have a signal peptide at the N-terminal, two Ca2+ ions and four conserved 

disulfide bridges at different places than class II enzymes, a set of helices that plays an 

important role in the binding of substrate, and some degree of glycosylation [7]. 

 

 

Recently, novel peroxidases have been described. These peroxidases are capable of 

decolorizing dyes. They lack homology in their primary and tertiary structure with the 

known peroxidases, leading to establishment of a new family, called DyP-type Peroxidases.  

 

 

 DyP type Peroxidases (dye-decolourising type peroxidases) - These enzymes 

exhibit only low homology sequence to fungal peroxidases, such as LiP and MnP, and 

do not contain the conserved distal His (His46 in MnP) and the essential Arg (Arg 42 

in MnP) found in all other plant peroxidases [7].  

 

 

2.1.2. Structural properties of Heme Peroxidases 

 

 

The best known and most widely studied peroxidase is the HRP. HRP is a metalloenzyme 

that exists in the root of the horseradish plant. It uses hydrogen peroxide to oxidize both 

organic and inorganic compounds [8]. This enzyme along with other heme peroxidases is 

brightly colored due to the presence of heme cofactor.  
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 Active center 

 

The active center of resting heme peroxidases has a heme b cofactor (i.e. 

ferriprotoporphyrin IX) (Fig. 3), constituted by four pyrrole rings and a metal ion in ferric 

oxidation state, Fe3+ [9]. In peroxidases, the iron ion is typically pentacoordinated, with the 

fifth proximal coordination position occupied by a His (His170 in HRP).  

The sixth axial position of iron is vacant in the resting state [8]. This site is open for 

hydrogen peroxide to bind during the catalytic reaction. The binding of heme group to the 

protein does not occur only through the proximal coordination but also through other 

interactions such as hydrogen bonding between side chains and propionate substituents and 

hydrophobic interactions between hydrophobic amino acids and the porphyrin ring [9]. 

The catalytic reaction occurs at the distal side of the heme and during the reaction the 

iron adopts different spin and oxidation states (see below). 

 

 

 

 

 

 

 

 

Figure 3 – Structure of heme b group. 

 

 

Figure 4 shows the three-dimensional structure of HRP. In this enzyme both, heme group 

and calcium atoms are crucial for the proper working of the enzyme. The loss of one 

calcium atom results in instability of HRP [6]. According to Veitch, “Each calcium site is 

seven-coordinate with oxygen-donor ligands provided by a combination of amino acid side-

chain carboxylates (Asp), hydroxyl groups (Ser, Thr), backbone carbonyls and a structural 

water molecule (distal site only)” [6]. 
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Figure 4 – Three dimensional structure of horseradish peroxidase, where the heme group is located in the middle with 

the iron atom represented in red. The calcium ions are shown in black and the α-helical and β-sheets are surrounding 

the heme [10]. 

 

 

 Catalytic reaction 

 

 

Peroxidases catalyze the oxidation of several substrates, mainly phenolic compounds , 

using H2O2 as electron acceptor (Fig.5). Typically H2O2 oxidizes the native enzyme [Fe3+] by 

a two electron steps to generate a radical cation (oxoferryl heme), called Compound I (Co 

I): one electron is removed from iron and another electron is removed from porphyrin. The 

Co I accepts an electron and a proton from a substrate (RH) to generate the corresponding 

free radical (R●) and an oxo-ferryl intermediate called Compound II (Co II). In the next step 

of monoelectronic reduction of Co II, a second molecule of RH regenerates the enzyme into 

its resting ferric form [11,12]. Compound III (Co III) (Fe3+- O2H
.) has been identified as a 

product formed in the presence of excess of H2O2 [13]. 
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Figure 5 – Generic catalytic cycle of a peroxidase [10]. 

 

 

The reaction mechanism is conserved in all class III peroxidases. 

In the distal area the most important residues are arginine (Arg 38 in HRP), histidine (His 

4 in HRP) and asparagine (Asn 70 in HRP), this latter binds to histidine (His 4 in HRP) via 

hydrogen bonding [6]. In HRP the proximal histidine (His 170) occupying the fifth 

coordination position of heme iron is hydrogen bonded to the aspartic acid (Asp 247) 

located in the proximal area. This link is fully preserved in peroxidases. Axial ligands 

contribute to the low reduction potential of the heme iron. In formation of Co I the 

temporal electron donor may be an aminoacid instead of the porphyrin ring, generating a 

free radical based on a residue. Apparently, the localization of the free radical also influences 

the redox potential of peroxidases [11]. 

The distal cavity in peroxidases is the site of interaction with H2O2. It is characterized by 

two completely invariant residues in class III peroxidases, which are the distal histidine and 

arginine, that generate a hydrophilic hollow. When iron is pentacoordinated the fifth ligand 

pushes it out of the heme plane. In some peroxidases the iron is coordinated by water as the 

sixth axial ligand, but it is not always the case since a network of water molecules, which 

forms a multiple hydrogen bonds, preventing the coordination of water as sixth ligand. Distal 

histidne and arginine have a large involvement in the formation and stabilization of Co I [14]. 

H2O2 transfers a proton to the distal histidine, deprotonated when the enzyme is active.  
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This conformation is stable for the formation of hydrogen bond between distal histidine 

and oxygen of the side chain of asparagine. The nitrogen atom of the histidine side chain acts 

as an acceptor of protons, keeping hydrogen peroxide at the position of the sixth ligand of 

heme iron.  The distal histidine therefore serves as a catalyst of the acid-base reaction with 

hydrogen peroxide and the side chain of arginine residue stabilizes the charge during the 

formation of the Co I [8]. The reaction cycle is irreversible, since the reaction rate of 

formation is higher than the rate of dissociation [12]. Formed catalytic intermediates have a 

very short half life and are very difficult to detect [11]. Nevertheless, they possess distinct 

UV-Vis and RR spectroscopic fingerprints. 

 

 

2.1.3. Redox potential 

 

 

Redox potential (Eo) is a catalytically relevant thermodynamic property of heme enzymes 

[11]. Peroxidases display a more negative Fe(III)/Fe(II) redox potential than other heme 

proteins. Therefore, ferric state of the heme is stabilized in peroxidases, suggesting that 

inside the protein matrix, higher iron oxidation states such as Fe (IV) or Fe (V) would also 

be sufficiently stabilized to be transiently present during the catalytic reaction. Additionally, 

aqueous Fe (III) is able to react with H2O2 in order to generate hydroxyl radicals (Fenton 

reaction) [11].  

For peroxidases, the relevant catalytic intermediates are Co I and Co II. However, 

Fe(III)/Fe(II) redox potential could still be a useful indicator of the oxidizing character of 

peroxidases. More positive Fe(III)/Fe(II) redox potential indicates a higher electron deficiency 

within the active site, and the existence of enzymatic intermediates with higher oxidative 

capacity.  The redox potentials Fe (III)/Co I, Co I/Co II and Co II/Fe (III) can be estimated by 

different methods based on spectral determination of equilibrium between redox species, or 

use of catalytic measurements [8]. For example, in HRP Eº (Fe (III)/Fe (II)) is -278 mV (vs 

Ag/AgCl), Eº (Co I/Co II) is  880 mV (vs Ag/AgCl) and Eº (Co II/Fe(III)) is 890 mV (vs 

Ag/AgCl)[11]. 
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2.1.4. Biotechnological applications 

 

 

Peroxidases can be employed as i) biocatalysts for formation/degradation of a large 

number of diverse compounds and ii) as biosensors for detection of hydrogen peroxide or 

other substrates in the environment (Fig. 6).    

  

          

 

 

 

 

 

 

 

 

 

Figure 6 – Schematic representation of biotechnological applications of peroxidases. 

 

 

i) Biocatalysts 

 

 

Peroxidases are nowadays used as biocatalysts for decoloration of synthetic dyes and in 

the treatment of soil and water [15]. Dyes are used in paper, textile and others industries. 

Their processing generates a large number of phenolic compounds, which are highly toxic 

and sometimes carcinogenic, so they must be removed before the waste is discharged into 

the environment [16]. For their removal nowadays exist a high number of processes but 

even if they are effective, they often have high costs, limited applicability, high energy 

expenditure and/or may lead to generation of a series of products that are also harmful to 

the environment. The use of peroxidases may have a significant potential, due to their high 

versatility in oxidizing even inert compounds amenable to chemical waste treatments [17]. 
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ii) Biosensors 

 

 

Peroxidases can be used in the construction of enzyme-based biosensors for detection of 

different compounds. These biosensors are highly valuable in biomedicine. For example, HRP 

based devices are employed as diagnostic kits for measuring uric acid, glucose, cholesterol, 

triglycerides and ascorbic acid in biological fluids [18]. For example, the kit for cholesterol 

determination relies on an enzymatic colorimetric method, which is precise, quick and 

selective. This method uses: cholesterol oxidase, cholesterol esterase and HRP immobilized 

on matrix. If the peroxidase is immobilized on a conductive support material such as carbon, 

graphite or gold, a direct electron transfer (ET) between the electrode surface and the 

active site of the enzyme can take place. Thus, the immobilized enzyme on the electrode can 

be oxidized by hydrogen peroxide and then reduced by electrons from the electrode. If the 

employed peroxidase is glycosilated direct ET becomes unfavorable, because of decreased 

affinity between the support material and the protein and typically long ET distances [19]. 

Peroxidase biosensors based on direct ET are nowadays used to detect H2O2 and small 

amounts of organic hydroperoxides [19].  

Recently, it was reported that the concentration of substrates such as glucose, alcohols, 

and others molecules can be determined via direct ET between immobilized peroxidase and 

electrode [19]. ET between the enzyme and the electrode can also be mediated. Mediated 

ET is typically more effective than direct ET. In this manner various unfavorable factors such 

as: long distance of ET between the electrode surface and the enzyme active center, the 

heterogeneous orientation of the enzyme on the electrode or low adsorption of the enzyme 

due to the large percentage of glycosylation are avoided [19]. Nervertheless, some 

disadvantages, most often related to interference of employed mediators can be associated 

with this approach. 
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2.1.5.  Dye decolorizing Peroxidases 

 

 

DyPs were discovered about 10 years ago when DyP was isolated from the fungus 

Thanatephorus cucumeris Dec 1[5]. They are capable of degrading anthraquinones (AQs), a 

class of dyes that are widely used in industry [15]. In addition, DyPs can efficiently degrade 

numerous organic and inorganic coumponds, such as: typical peroxidases substrates, azo 

dyes and phenol derivatives [20]. This process is very important for the environmental 

decontamination. DyPs take the hydrogen from hydroxyl groups of dyes and generate radical 

compounds, then the radical reaction continues and the dyes are degraded or polymerized 

into other less harmful molecules. In animals, the connection between DyPs and several 

diseases have been intensively studied, mainly, the role of peroxisomes in aging and several 

neurodegenerative diseases, such as Alzheimer and Parkinson [5]. In plants they might 

promote the removal of H2O2, thus protecting against xenobiotics. Due to their relatively 

recent discovery, physiological and mechanistic features of DyPs from different organisms 

still require further studies. However, it appears that their physiological role strongly 

depends on their origin. 

 

 

 Specific features 

 

 

As mentioned before, DyPs are heme peroxidases, however, they have several 

characteristics that distinguish them from all other peroxidases, including high substrates 

specificity, a lack of homology to most of other peroxidases, and the ability to function very 

well under lower pH conditions compared to all other plant peroxidases [21]. Some 

peroxidases have the sixth axial site occupied by a weak ligand (i.e. H2O) but in DyPs studied 

so far, the heme iron is pentacoordinated. In its fifth (proximal) axial position, a conserved 

His is present while the typically distal His is absent. This feature is very important to the 

catalytic activity because this position remains free for the H2O2 ligation [21]. The conserved 

Asp most likely acts as a proton donor/acceptor and takes the place of the catalytic His 

present in plant peroxidases. This substitution possibly accounts for high activity of DyPs at 

low pH values [7]. 
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Crystal structure of DyP from Bjerkandera adusta presented by Yoshida 

(DOI:10.2210/pdb2d3q/pdb ) shows two domains, each one adopting a ferredoxin-like fold 

[RSCB PDB]. The structure reveals one single motif, with two sets of anti-parallel β-sheets 

between α-helices above the distal area of the heme. The analysis of RCSB PDB shows that 

there are only few structures of DyP’s reported until today, for example,  DyP from T. 

cucumeris Dec 1, DyP from Rhodococus jostii RHA 1,  TyrA from Shewanella Oneidensis, DyP 

from Bjerkandera adusta and DyP from Bacteroides thetaiotaomicron VPI- 5482 [RSCB PDB]. 

The comparison of these structures reveals that the residue next to the Asp in the distal 

area and next to the proximal His (Fig. 7) can be different in DyP´s from different organisms. 

 

 

 

 

 

 

 

 

 

Figure 7 – Schematic representation of the active site of DyP from Tanatephorus cucumeris Dec 1 [22]. 

 

 

The distal area of DyP from Tanatephorus cucumeris Dec 1 contains the amino acid Arg, 

while the DyP from other organism can possess an Asn, but both play the same role, acting 

as a charge stabilizer during the catalytic reaction. In the proximal area Glu stabilizes high 

oxidation states, such as Co I, by forming a hydrogen bond with the proximal His (His308 in 

T. c. Dec I). The catalytic mechanism is not clearly understood, however, it likely follows the 

same mechanism of plants peroxidases, as proposed by Sugano [22]. When Asp171 acts as 

proton acceptor and Arg329 as charge stabilizer, in the next step Asp acts as acid-base 

catalyst and H2O2 is heterolytically cleaved, resulting in Co I.  

 

 

Charge stabilizer

Stabilize high oxidation
states

Proton acceptor

Asp171 Arg329

His308

heme

Glu391

http://dx.doi.org/10.2210/pdb2d3q/pdb
http://www.rcsb.org/pdb/search/smartSubquery.do?smartSearchSubtype=TreeEntityQuery&t=1&n=5331
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The DyP-type peroxidase family is clearly a unique heme peroxidase family. DyPs show 

several configurations, for example TyrA is a dimer, where BtDyP assembles into a hexamer. 

Structural and sequence comparisons of DyPs with other heme peroxidases demonstrate a 

conservation of heme-binding residues, including an absolutely conserved His (His170 in 

HRP, His173 in MnP or His226 in DyP from Rhodococus jostii RHA1). Several x-ray structures 

reveal the presence of calcium ions or glycans. The primary and tertiary structures of DyP 

family are different from those of other heme peroxidases and it is a big challenge to 

understand which mechanistic and physiological implications these differences have. 
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2.2. Characterization of stability of proteins 

 

 

Proteins are natural macromolecules having, in general, a fixed composition and an 

ordered structure, which rely on their native structure for executing their respective 

functions. This conformation is called the native state and it is present when the 

macromolecule is in thermodynamic conditions similar to the physiological environment. 

Immobilized enzymes, with a promising biotechnological role are very attractive objects of 

study. An aspect to be taken into account during the immobilization of proteins is that 

immobilization under certain conditions can induce denaturation [12]. In general, changes in 

environment can cause a loss of 3D structure of protein, and this denaturation may be due 

to several factors, such as a variation of pH, temperature or denaturing agents such as urea 

or GndHCl. This denaturation can be: i) reversible, when the protein regains its native state 

after eliminating the cause of the denaturation or ii) irreversible, if the protein loses its 3D 

structure, compromising its biological function [23]. The detection and characterization of 

intermediate states during denaturation is a fundamental aspect in the study of protein 

folding, since it is well recognized that proteins adopt a number of intermediate forms 

before reaching their functional native structure. The best known intermediate is "molten 

globule". It is characterized by a fairly ordered secondary structure in a compact form 

comparable to that of the native protein and well-defined tertiary structure. Dominant 

forces in protein folding are hydrophobic effect and hydrogen bonding, and the most 

destabilizing force is the conformational entropy. The folded state is stabilized by the fine 

packaging of peptide bonds and side chains of non polar residues. The native state (N) is 

slightly more stable than the unfolded state (U) under physiological conditions (2-10 kcal 

mol-1) [23]. 
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2.2.1. Denaturation induced by pH 

 

 

Most proteins are denatured at extreme pH values. The protein denaturation occurs 

because they have many acidic or basic groups and pH changes lead to a state in which the 

folded protein is no longer stable [24]. The pH increase can result in the loss of protons in 

the side chains of amino acids such as Lys, Tyr, His, Arg and Cys. Conversely, a decrease in 

pH causes protonation of carboxyl groups of the side chains of amino acids like Asp and Glu. 

These alterations of the degree of protonation of the amino acids change the electrostatic 

interactions (salt bridges) and the hydrogen bonds that exist at physiological pH values. The 

pH also effects on enzyme activity by changing the ionic form of amino acids of the catalytic 

center (affecting the catalytic constant, kcat). Measuring enzyme activity at different pH, yields 

the enzyme stability curve as a function of pH [24]. 

 

2.2.2. Reversible thermal denaturation 
 

 

When denaturation process takes place in equilibrium, it is necessary to assume a model, 

which can be used to determine relevant thermodynamic parameters [23]. In the thermal 

denaturation of many small globular proteins, it was observed that there are only two 

significantly populated states: the native state (N) and the denatured state (D). The unfolding 

of these proteins is described quantitatively by the equilibrium model of two states: 

 

 N → D                                                    (1) 

The thermodynamic parameters, enthalpy (ΔHD
N), entropy (ΔSD

N) and Gibbs free energy 

(ΔGD
N) are calculated as follows: 

 

   ΔHD
N = H (D) - H (N)                                                          (2) 

 

ΔSD
N = S (D) - S (N)                                                             (3) 

 

ΔGD
N = G (D) - G(N)                                                           (4) 
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The denaturation temperature (T1/2) is defined as the temperature at which exists the 

same amount of protein in native and denature state, XD = 1/2. In a process of two-state 

denaturation of a monomeric protein, predicted transitions are almost symmetrical and the 

value of calculated T1/2 is close to the temperature corresponding to maximum heat capacity 

(Tm) [23]. 

 

 

2.2.3. Denaturation induced by chemical agents 

 

 

Conformational stability of a protein can be probed through the study of reversible 

chemical denaturation, using denaturing agents such as guanidine hydrochloride (GndHCl) or 

urea [23]. For that propose one typically measures changes of some spectroscopic 

properties such as fluorescence at different concentrations of denaturing agent [23]. The 

intrinsic fluorescent probes of protein are the aromatic amino acids (Trp, Tyr and Phe). 

Equilibrium constant (KD), and free Gibbs energy (ΔG °) can be expressed by: 

 

  KD = (yN – y)/(y – yD) = exp (-ΔG°/RT)                                  (5) 

 

where yN and yD are the values of fluorescence of native and denatured protein respectively, 

and R the gas constant. 

Representing ΔG ° as a function of the concentration of denaturing agent, allows for 

determination of the Gibbs free energy in the absence of denaturing agent:  

 

   ΔG° = ΔG° (H2O) – m [GndHCl]                                          (6) 

 

where ΔG ° is the Gibbs free energy in equilibrium and ΔG ° (H2O) in the absence of 

denaturing agent (parameter indicating protein stability); [GndHCl] is the concentration of 

denaturing agent and m is a proportionality constant that is related to the change of 

nonpolar area exposed to the solvent, associated with denaturation [23]. Concentration of 

denaturing agent at which there is the same number of molecules in the native and 

denatured state (D1/2) can be expressed by: 

 

   [D1/2] = ΔG° (H2O)/m                                                          (7) 
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Depending on the excitation wavelength, the aromatic amino acids contribute to the 

fluorescence emission spectrum to different extent. Thus, if excited at 280 nm, both Trp and 

Tyr will contribute, however, when excited at wavelengths above 295 nm, only fluorescence 

emitted from Trp will be detected [23]. The denaturation of proteins generates a 

fluorescence emission spectrum that can have more or less intensity than the protein in 

native state, but the wavelength of maximum emission always evolves in a predictable 

increase in value. Thus, the spectrum provides information on changes in the environment of 

the fluorophore. The peroxidases are enzymes in which the heme prosthetic group acts as a 

"quencher" of fluorescence in the native protein. However, when the protein is denatured, 

the fluorescence intensity undergoes a significant increase, caused by the reorientation of 

Trp relatively to the heme [24]. 
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2.3. Spectroscopic analysis of heme proteins 

 

2.3.1. Electronic configuration and UV-Visible spectra of heme proteins 

 

 

Absorption spectra of metalloporphyrins contain an intense band  at 400 - 450 nm (ε ≈ 

105 M-1cm-1) called Soret band and weaker bands at 550 - 600 nm (ε ≈ 104 M-1cm -1), which 

are called the Q bands [25]. The position of these bands is influenced by the metal oxidation 

state, metal coordination, spin state, and the protoporphirine substituents (i.e. type of the 

heme). All absorption bands are associated with π-π* transitions of the heme cofactor. The 

Soret transition is strictly allowed, while the Q bands are only partially allowed, as well as 

the charge transfer bands at 630 – 650 nm (present in Fe3+ 5cHs species) [25]. Molar 

absorption coefficients of the Soret band and its position depend on the oxidation state of 

iron. When iron is pentacoodinated (Fe3+) is 105±6 when is hexacoordinated (Fe II) is 177±9 

mM-1cm-1, Soret band of the ferric protein is downshifted in respect to that of the ferrous 

protein [26]. 

In Co I, heme is oxoferryl with a Soret band with an intensity that is half the one of the 

resting state, centered at 403 nm. Usually the Co I is unstable and spontaneously reacts back 

after few minutes. The Soret band of Co II is shifted to 420 nm, with intensity comparable to 

that of the resting enzyme, in addition a double peak, with maxima at 527 and 554 nm is 

present in the spectra [27].   

Some earlier studies have demonstrated a presence of compound 0 (Co 0), before the 

formation of the Co I, at lower temperatures, in which Fe (III) binds to a hydroperoxide 

[22]. UV-Visible spectroscopic fingerprints of different intermediates including Co III (hybrid 

of resonance of Fe (III)-superoxyde and Fe (II)-dioxygen)  are summarized in Table 1. 
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Table 1 – Visible of HRP and several other representative peroxidases, adopted from literature [28]. 

 

 HRP Cytochrome P450 Catalase 

Soret 
Other UV-Vis 

features 
Soret 

Other UV-Vis 

features 
Soret 

Other UV-Vis 

features 

Resting state 404 610, 642 424 539, 574 405 504, 538, 640 

Co 0 410 330 --- --- --- --- 

Co I 400 577, 622, 651 367 694 405 660 

Co II 420 527, 554 420 ---- 429 536, 568 

Co III 417 544, 580 --- --- --- --- 

 

 

 

2.3.2. Raman Spectroscopy 

 

 

Raman spectroscopy is vibrational spectroscopy. It probes vibrational energy levels within 

a molecule. The molecular structure, types of atoms and bonds, molecular geometry and 

hydrogen bonding affect the vibrational spectra. Therefore Raman spectra provide a 

characteristic “fingerprint” of the molecule structure. Raman spectra are usually presented 

with the y-axis values representing of the relative intensities of Raman bands and the abscissa 

the values of the Raman shifts in terms of wave numbers [29]. 

The atoms present in a molecule are constantly oscillating even at very low temperatures. 

In fact, even in solids at temperatures near absolute zero, the atoms are continuously 

oscillating around the equilibrium position.  A molecule with N atoms that are free to move 

in three dimensions has 3N degrees of freedom, of which three degrees correspond to the 

translational movements of the molecule. For a nonlinear molecule there are three degrees 

of freedom for rotation. The other (3N-6) degrees of freedom are for the vibrational 

movement of the molecule [30]. For linear molecules there is no rotation around the 

internuclear axis and, consequently, there are (3N-5) degrees of freedom for the vibration. 

These degrees of freedom (i.e. 3N-6 in non-linear and 3N-5 in linear molecules) are referred 

to as normal modes [30].  
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When, a monochromatic radiation of frequency, ν0, is focused on a cell containing a 

transparent substance most of the radiation passes through it without changes. However a 

small fraction of the radiation (~ 0.1%) is scattered by molecules in the sample in all 

directions. Inelastic scattering (ν0 + ν1) and (ν0 - ν1) is known as Raman scattering [31]. The 

lines of lower frequency than the incident (ν0 - ν1) are known as Stokes lines and lines of 

higher frequency (ν0 + ν1), are called anti-Stokes lines. The intensity of Stokes lines is always 

higher than anti-Stokes lines, because the population of the vibrational ground level is always 

higher. 

The frequency change is also called "Raman shift": 

 

ν0 - νRaman = Raman shift = Δν 

 

The fraction of Raman scattering (inelastic) is about 10-7 of the incident intensity. In fact, 

the Raman effect is very weak, which requires the use of monochromators in order to keep 

the "stray light" at very low level, because otherwise, the Raman scattered light is masked. It 

is also necessary to use sensitive detectors and efficient optical systems to guide the laser 

light to the sample and scattered light to the detector. 

 

 

 Small molecules versus proteins 

 

 

The size of the biological systems that are probed by vibrational spectroscopy in the life 

sciences can vary substantially. They range from small molecules, building blocks of 

biopolymers or cofactors of proteins up to protein assemblies, membranes, or DNA-protein 

complexes. Concomitant with the increasing size of the system, the number of vibrational 

modes, and therefore signals in the spectrum increases. For instance, small molecules with 

less than 50 atoms, will give origin to ca.150 normal modes. It is usually impossible to 

resolve all the individual vibrational bands [11]. For biopolymers such as proteins, the 

number of vibrational modes is relatively large, resulting in complex spectra with many 

overlapping bands of slightly different frequencies. So, it is not obvious, how detailed 

information, for example, on the interaction of a substrate in the catalytic centre of an 

enzyme, or on the minute structural changes occurring in the protein during the enzymatic 

process, can be derived from vibrational spectra of large biological systems [11].  
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This problem can be overcome in metalloproteins, if the wavelength of the 

monochromatic light, which is used to excite the sample, is selected to coincide with an 

electronic transition of a chromophoric group of the protein. Under these resonance 

conditions, the probability of the scattering-induced transitions, and thus the intensity of the 

Raman scattered light originating from vibrational modes of the chromophore, is selectively 

enhanced by several orders of magnitude [31]. Under these conditions the resonance Raman 

(RR) spectrum displays the vibrational bands of the chromophore exclusively, whereas the 

Raman bands of the protein matrix remain invisible. This selectivity is associated with an 

enhanced sensitivity, thus the protein concentration required for high quality spectra is 

drastically reduced. Raman spectroscopy has advantages and disadvantages for the study of 

biological molecules. Amongst the advantages is the ability to study in situ aqueous systems. 

One of the disadvantages is that using highly focused beams, sensitive biological molecules 

and tissues can in some cases be damaged [31]. Nowadays Raman spectroscopy and imaging 

are becoming useful techniques in medicine, capable of distinguishing between healthy and 

cancerous tissues, as well as benign and malignant tumors [31]. 

 

2.3.3. Resonance Raman of heme proteins 

 

 

Resonance Raman spectroscopy is a technique with much higher sensitivity than 

conventional Raman spectroscopy. It is especially useful in the studies of metallo-enzymes, 

including heme, copper and non-hemic iron proteins. RR allows for increased selectivity, 

providing information on chromophore only [32]. For instance, information on the 

coordination geometry of the metal and the ligand environment and structural features of 

catalytic intermediates of heme enzymes in particular, can be specifically addressed.  

RR spectra of heme proteins/enzymes are most informative upon excitation into Soret 

band of electronic absorption spectra of the porphyrin using the 413 nm line of a Kr+ laser. 

Among others, the spectra show the core-size marker bands in the 1300 - 1700 cm-1 region, 

sensitive to the redox, spin state and coordination of the heme iron [31].  

Heme iron is in a d5-electronic configuration in an octahedral ligand field, for which the 

five d-orbitals can split into three degenerate eg- and two degenerate t2g-orbitals [31]. This 

splitting results in two different possibilities for distributing the five d-electrons of ferric 

heme, on one hand all electrons are paced into the three eg-orbitals, such that only one 
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electron remains unpaired (low spin, LS, S = 1/2) on the other hand, each electron can be 

placed into an individual orbital corresponding to the high spin (HS, S = 5/2) configuration 

(Fig. 8). Some proteins were shown to be able to form an unusual heme spin state, a 

quantum mechanically mixed-spin state (QS). The QS heme state results from the admixture 

of HS and intermediate spin (IS, S = 3/2). 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Schematic representation of LS, HS, and QS heme electronic configuration [33]. 

 

 

If two strong axial ligands are coordinated to the heme iron, the energy gap between the 

orbitals become larger, making doubly occupied orbitals an energetically favored 

configuration (i.e. six-coordinated LS, 6cLS). Weak ligands originate a six-coordinated HS 

(6cHS) configuration, which is also obtained when the heme iron is coordinated by only one 

axial ligand (five-coordinated HS, 5cHS) [31].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – Correlation between the porphyrin core size and the frequencies of selected heme modes for iron 

porphyrin complexes [31]. 
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For heme proteins the study of the marker bands between 1300 and 1700 cm-1 allows a 

determination of the oxidation, spin, and coordination state of the heme iron [31]. These 

marker bands are correlated with different state of heme iron, for example the v4 mode 

responds specifically to changes in the oxidation state of the heme iron. In ferric hemes it is 

typically found between 1370 and 1375 cm-1 but it is lowered to 1358–1363 cm-1 in the 

ferrous state. The v2 and v3 modes are mainly sensitive to changes in the coordination 

pattern and spin state [31]. 

 

 

2.3.4. Surface Enhanced Resonance Raman Spectroscopy of Immobilized 

Heme Proteins 

 

 

Surface enhanced resonance Raman (SERR) spectra are obtained from samples that are 

adsorbed on certain rough metal surfaces (usually silver, copper or gold) [2]. For SERR effect 

to occur, three conditions have to be simultaneous fulfilled: electronic transition of the 

sample has to coincide with energy of the exciting laser line (resulting in RR effect) and in 

addition, this energy has to match the energy of surface plasmons of the metal support [2].  

When these three conditions are met, enhancements of 108 can be achieved for 

molecules adsorbed onto nanoscopically rough surface. For example, Soret band excitation 

with 413 nm laser of heme proteins adsorbed on nanostructured silver (surface plasmon 

energy ~ 400 nm) provide superior selectivity and sensitivity. The metal that gives origin to 

SER effect can furthermore serve as a working electrode in spectroelectrochemical studies, 

providing important insights into redox properties of heme proteins immobilized on 

biocompatible metal electrodes. The metal can be chemically functionalized with SAMs (self 

assembled monolayers) to facilitate absorption of biomolecules under preservation of their 

native structure [34]. Coupled with electrochemical methods SERR spectroscopy can 

provide unique information on electron transfer processes in immobilized proteins.  

Moreover, SERR is the only available approach that can provide simultaneous insights into 

structural and mechanistic features of immobilized heme enzymes that are employed in 

construction of bioelectronic devices.  
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 Techniques for immobilizing enzymes 

 

Immobilization of proteins for biotechnological applications requires essentially the 

unchanged native structure. The enzyme must be immobilized on the surface maintaining its 

catalytic activity. Besides, the diffusion of substrates and products to and from biocatalytic 

interface should be possible. The ideal support for the immobilization of enzymes should be 

insoluble in water, chemically inert and connectable easily to the enzyme. The most common 

methods for immobilization of enzymes are via encapsulation (microspheres or polymer 

matrix) or by ligation of the enzyme to the support (Fig. 10). The choice of the 

immobilization method depends primarily on the enzyme and the support to be used in 

making the biosensor and/or biocatalyst [35]. 

 

 

         

 

Figure 10 – Principal methods for the immobilization of enzymes. 

 

 

Encapsulation is suitable for almost all kinds of enzymes but among its major 

disadvantages, which makes it less popular, are: steric restrictions, modifications of protein 

structure and uncontrollable diffusion of the protein through the matrix. 
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 Self Assembled Monolayers (SAMs) 

 

 

The interaction between proteins and surfaces of noble metals can occur through non-

covalent bonds (Fig. 11) (electrostatic, hydrogen bonding) or covalent bonds. This ligation 

occurs typically by cross-linking between functional groups of the protein and the surface 

[36]. Enzymes are linked to the solid support through functional groups present in their 

amino acids, the main amino acids used for covalent binding are Lys and Cys. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 – Schematic representation of electrostatic interaction between SAM and a protein with positively charged 
patch on a surface. 

 

 

Common approach for protein immobilization relies on use of SAMs, which provide a 

well-defined organic platform with controllable chemical functionalities and specific binding 

of biomolecules [36]. The applications of SAMs are widespread in fundamental and applied 

science.  

SAMs (Fig. 12) of ω-functionalized alkanethiols form organized layer of molecules. They 

are commercially available with typically 2 to 16 CH2 groups acting as spacers. The thiol 

headgroup has specific affinity to nobel metals and forms stable covalent bonds with it. 

On the other end, SAMs have a functional group, such as: cationic, anionic or neutral (or 

specifically designed, for instance, carrying DNA, for immobilization of DNA binding 

proteins), to which protein can bind [2].  
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Depending on surface charge distribution of the particular protein (Fig. 11), appropriate 

SAM functional group(s) are chosen to provide biocompatible surface for protein 

immobilization. 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 – Schematic representation of protein immobilization on SAM coated to the surface. 

 

 

SAM acts as "barrier", preventing a direct contact between protein and metal (bare solid 

support), which could lead to conformational changes or denaturation of proteins [2]. The 

distance between the metal and the protein can be varied using SAMs at different chain 

lengths (Fig. 12). The success of wide utilization of the SAMs is due to several factors, such 

as easy preparation, their stability, reproducibility and reliability of the formed surfaces, as 

well as the possibility of applying a variety of techniques for their characterization. 

 

 

2.3.5. Biomedical applications 

 

Conventional Raman spectroscopy is useful for studying secondary structure of 

proteins and nucleic acids. The development of near-infrared Raman spectroscopy (FT 

Raman) has widen interest in the use of Raman spectroscopy in medical diagnostics. Typically 

such applications rely on the differences in lipid/protein ratios in normal and cancerous 

tissue. Composition changes are reflected in the fingerprint region and in the C-H stretching 
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region. Raman spectroscopy is non destructive and therefore attractive for biomedical 

applications both in-vivo and in-vitro.  

Raman spectroscopy is nowadays routinely used in hospitals as a powerful diagnostic 

tool, especially for surface (skin) cancers. With a help of optical fiber probes, application of 

Raman spectroscopy is extended to internal organs and tissues. It is also nowadays a valuable 

complementary tool to histological analysis, for characterization of biopsy samples [5]. 
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3. METHODS 

________________________________________________________________ 

 

 

3.1. Enzyme purification 

 

DyP-type peroxidase from Pseudomonas putida was heterologously overexpressed in E.coli 

and purified according to the following steps: 

 

- Enzyme production 

- Transformation of the expression vector containing the recombinant gene into an 

Escherichia coli strain (Appendix I). 

- Growth at 37°C, in Luria Bertani (LB) broth supplemented with ampicillin and 

hemin, induction for the gene expression with isopropyl-β-D thiogalactopyranoside 

(IPTG). 

- Cell harvesting by centrifugation after 24h of growth. 

- Cell disruption in the French pressure unit. 

 

- Purification by liquid chromatography 

- Anionic exchange 

- Size exclusion 

- Electrophoresis (SDS-PAGE) to monitor the sample purity (Appendix II) 

 

- Protein quantification 

 

- Biochemical characterization 
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Figure 13 – Schematic representation of purification steps of DyP-type peroxidase from Pseudomonas putida. 

 

 

3.1.1.  Cloning and expression of DNA fragments of PpDyP 

 

 

After PCR amplification, the recombinant gene was digested with NdeI and BamHI and 

inserted between the respective restriction sites of plasmid pET-21a(+) to yield pRC-1. Then 

was introduced into the host expression strain E. coli BL21* in which the PpDyP protein was 

produced under the control of the T7lac promoter. The recombinant strain was grown in LB 

medium (Appendix III) supplemented with amplicillin (100 g mL-1) at 37°C. 

 

Growth was followed up to an OD600 of 0.6, at that point 100 M isopropyl-β-D-

thiogalactopyranoside (IPTG) and 15 µM hemin were added to the culture medium. Then 

the temperature was lowered to 25°C, and incubation was continued overnight. Cells were 

harvested by centrifugation (8,000 rpm, 10 min, 4°C). 
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3.1.2. Purification by liquid chromatography  

 

 

After cell harvesting, cell sediment was suspended in 20 mM Tris-HCl buffer (pH 7.6), 

containing DNase I (10 μg mL-1 extract), MgCl2 (5 mM) and a mixture of protease inhibitors, 

antipain and leupeptin (2 μg mL-1 extract). Cells were disrupted in a French press and cell 

debris was removed by centrifugation (18,000 rpm, 2 h, 4ºC). Supernatant was used for 

protein purification.  

 

All buffers used for chromatography were made with MilliQ water, filtered with 0.22 μm 

filters and degassed under vacuum by extraction. 

 

 

 Anionic exchange chromatography 

 

 

FPLC (Fast protein liquid chromatography) was carried out at room temperature. A Q 

Sepharose column (commercially packed), glass column (1 cm x 30 cm) with 12 cm3 of 

DEAE-Toyopearl 650M (average particle size of 40-90 μm and pore diameter of 1000 A) was 

used. Positively charged resin with remains of diethylaminoethyl (-O-CH2-CH2-HN +-

(C2H5)2) binds proteins that are charged negatively. An equilibration buffer 20.0 mM Tris-

HCl pH 7.6 was used and a flow rate of 3 mL min-1 was employed. Elution was performed 

with 20 mM Tris-HCl at pH 7.6 and 1 M NaCl, with a linear gradient of NaCl and a flow rate 

of 1 mL min-1. 3 mL fractions were collected and concentrated with an Amicon cell 

(membrane of 30 kDa) before passing to the next column in a centrifuge at 3000 rpm and 4 

°C for 30 min. 
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 Size exclusion chromatography 

 

 

Size exclusion chromatography was carried out at room temperature. A stationary phase 

Superdex 200 HR 10/30 column (commercially packaged). Agarose and dextran matrix with 

a pore size of 13 μm, working pH range between 3 and 12, and optimal separation range 

between 10 and 600 kDa) was used. It was equilibrated with buffer 20 mM Tris-HCl pH 7.6 

over night. The flow rate was 1 mL min-1. The sample obtained after this chromatographic 

step was concentrated in an Amicon cell (membrane of 30 kDa). Centrifuged at 3000 rpm at 

4 °C for 20 min. 

 

 Purity analysis by polyacrylamide gel electrophoresis 

 

The procedure used for electrophoresis is the folowing: 

 

- Mix the samples with protein Loading buffer and boil for 5 minutes at 96⁰C. 

- Mount plates - Mini protean III - Bio Rad. 

- Prepare the gel solution and apply it to the desired level (at least 0.5 cm below the 

comb). Apply Butanol to remove the air bubbles. 

- After polymerization, remove all Butanol with Milli-Q water and dry with filter 

paper. 

- Apply the gel to the top packaging and insert the comb. 

- Assemble the apparatus containing the electrophoresis running buffer. 

- Perform electrophoresis (100 V to 200 V). 

- Subject the gel to Western blot assay or stain it with Coomassie blue for 30 

minutes at room temperature followed by treatment with bleach. 

 

Composition of each solution used in this step is described in Appendix III. 

 

 

 

 



42 
 

 Determination of protein concentration 

 

 

To determine the concentration of protein in solution we employed the Bradford 

method. We followed the absorbance of a colored compound which is formed from the 

protein and Bradford reagent. First we constructed a calibration curve from a solution of 1 

mg ml-1 BSA (M = 66 kDa, ε280 = 43824 M-1 cm-1), with amounts of BSA ranging between 0 

and 60 μg (0-60 μL). Once constructed the calibration curve is used for reading the 

unknown concentration of protein of interest. 20 μL of each protein sample was added and 

was brought to a final volume of 1020 μL by adding 1000μL of Bradford reagent, than shaken 

and incubated for 10 min at RT. After that time, we proceeded to read the absorbance at 

595 nm.   
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3.2. Biochemical Characterization 

 

 

3.2.1. Molecular mass determination by molecular exclusion chromatography 

 

 

The molecular mass of PpDyP was determined by a gel filtration Superose 12 10/300 GL 

(GE Healthcare Bio-Sciences, Sweden) column equilibrated with 20m MTris–HCl buffer, pH 

7.6, containing 0.2 M NaCl at a flow rate of 1 ml min-1 in AKTAFPLC. Thyroglobulin (670 kDa), 

γ- globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa), and vitamin B12 (1.35 kDa) 

were used as standards (Bio-Rad Laboratories). The procedure is described in Appendix IV. 

 

 

3.2.2. Denaturation induced by pH 

 

 

Dependence of purified PpDyP activity on pH in the range between 3 and 10 was 

recorded by monitoring the oxidation of ABTS as substrate at 420 nm using a Nicolet 

Evolution 300 spectrophotometer from Thermo Industries (Waltham, MA, USA). 

 

3.2.3. Reversible thermal denaturation 

 

 

Temperature profile in the range between 10 and 40C was measured by monitoring the 

ABTS oxidation at 420 nm ( = 36000 M-1cm-1) in the presence of 0.2 mM H2O2. The effect 

of temperature on the PpDyp stability was determined by incubating the enzyme in 20 mM 

Tris-HCl with 0.2 M NaCl, pH 7.6 or in 20 mM sodium acetate buffer, pH 5.0, during 1 h at 

different temperatures. The enzyme was submitted to a temperature increase at a rate of 

1°C/min until 100°C. 
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3.2.4. Denaturation induced by chemical agents 

 

 

To carry out these experiments, we measured unfolding of PpDyP reflecting exposure of 

the Trp residues using a Carry Eclipse spectrofluorimeter at excitation wavelengths of 280 

nm and 296 nm and emission wavelength of 330 nm. To induce protein unfolding we used 

guanidinium hydrochloride (GndHCl). We mixed different volumes of standard solution 

(GndHCl 7.5M) in a phosphate buffer at pH 7.6, to obtain final concentration in a range 

between 0 and 4,5 M, while keeping protein concentration constant. The changes were 

recorded at 296 nm, 25 ° C. 
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3.3. Spectroscopy 

 

3.3.1. UV-Visible spectroscopy 

 

 

Resting state (“as purified”) PpDyP spectra were recorded from Nicolet Evolution 300 

spectrophotometer from Thermo Industries (Waltham, MA, USA) using 50 μM of protein in 

the 300 – 700 nm range, at RT. Reduction of the protein was achieved by addiction of a 

small amount of solid sodium dithionite (2-5 mg) and measured under the same conditions. 

 

3.3.2. Raman Spectroscopy 

 

 

 Instrumentation 

 

Figure 14 – Schematic representation of a basic system for Raman spectroscopy. 

 

 

The basic system for Raman spectroscopy can be divided into three main parts: the 

excitation source, capture and signal filtering, and handling/storage of the signal. The first 

part of the system refers to the source to excite the sample, which comprises a light source 

(laser), and are some optical elements (lenses, mirrors), responsible, for focusing and 

directing the laser beam to the sample [31].  

The second part of the system corresponds to the optical components (microscope), 

responsible for capturing and filtering the signal scattered by the sample. The major part of 
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the incident light is elastically scattered by the sample. A small portion of the scattered light 

that carries the information about the sample is filtered and guided into the spectrometer. 

Then it is focused onto the entrance the spectrophotometer, and further onto a system of 

internal diffraction gratings that separates the signal spread in its main components, and 

finally to the detector (charge coupled device - CCD). The data are then processed by the 

computer [31]. They can be subjected to component analysis performed by specific software 

and/or stored for future analysis. In this work we used Jobin Yvan U1000 Raman 

spectrometer equipped with a doubled monochromator 1200 m/l grating and ligand N2 

cooled CCD. In all studies 413 nm laser light was provided by Kr+ (Coherent Innova 302) 

laser. 

 

 

3.3.3. Resonance Raman  

  

 

For RR experiments we used a cylindrical quartz cell (Helma) (Fig. 15), placed onto a 

rotating holder. Due to the rotation, the liquid sample is pressed against the wall of the cell 

forming a film, onto which the laser beam is focused by Nikon 20x objective. We used 

typically 60 - 120 μL of 128 μM of sample. The Raman spectra were measured with a Kr+ 

laser (Coeherent Innova 320) line of 413 nm and power of 2-4 mW in the sample.  LabSpec 

software was used for data acquisition and simple manipulation. Prior to measurements, 

laser beam power was adjusted by power meter, the spectrum was calibrated by the strong 

mercury line at 435.833 nm and the light was carefully focused onto the sample to ensure 

maximum signal intensity. 

 

 

 

 

 

 

 

 

 

Figure 15  – Cylindricall quartz cell (Helma) [37]. 
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3.3.4. Surface Enhanced Resonance Raman  

 

 

For SERR experiments we used a home-made spectroellectrochemical cell (Fig.16) 

equipped with a rotating silver ring as working electrode, Ag/AgCl 3 M KCl (+210mV vs. 

SHE) as a reference electrode and platinum as a counter electrode. The lateral surface of the 

working electrode, which is exposed to the electrolyte solution, is nanoscopically rough, 

chemically modified and used for protein immobilization. The laser light is focused onto 

surface of the working electrode carrying biocompatibly immobilized protein with a long 

working distance objective. To ensure that the same  sample spot on the electrode is not 

exposed to long laser irradiation, in all experiments the electrode was set to rotate. The 

electrochemical cell of a volume of about 10 mL was extensively purged by continued flow of 

argon. The applied electrode potential is controlled by a potenstiostat/galvanostat (Princeton 

applied research Model 263A).  

 

 

 

 

 

 

 

 

 

 

Figure 16 – Spectro-electrochemical cell [37]. 

 

Typically 60 μL of 128 μM protein was added to the spectroelectrochemical cell 

containing SERR buffer, in order to yield a concentration around 0.4 μM. At this 

concentration only the signal originating from the adsorbed protein can be detected, due to 

SER effect. Alternatively, the coated working electrode was incubated in 60 μL of 128 μM 

protein prior to positioning into the cell. The argon flow was maintained during the 

experiments, to ensure absence of oxygen in the cell. All acquired spectra were analyzed in 

the high-frequency region from 1300 to 1700 cm-1. Each experiment wes repeated several 

times to ensure reproducibility of results. 
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 Electrode preparation 

 

 

The role of working is twofold: i) to provide surface enhancement (i.e. SER effect) and ii) 

to allow control of applied potential in electrochemical studies. For that propose Ag 

electrodes were prepared according to the well established procedures. Ag was a metal 

choice since it provides SER effect in the studies employing Soret band excitement of PpDyP. 

Prior to protein immobilizations, the electrodes were subjected to several redox cycles. 

Known to result give origin to nanoscopically rough Ag surface. 

Silver ring electrodes were polished with sand paper and rinsed with water then with 

ethanol and finally gently dried with N2. After this the electrode is inserted into 

spectroellectrochemical cell and subjected to a potential of E = -2 V (vs. Ag/AgCl, 3M KCl) 

in 0.1 M KCl electrolyte solution for 20 s under stirring to reduce all possible impurities 

present on a surface. Subsequently, three oxidation-reduction cycles at +0.30 V and -0.30 V 

were applied to provide nanoscopically rough surface. Then the silver ring electrodes were 

rinsed with water to remove the salt and immersed for 12-24 hours in 1-2 mM ethanol 

solutions (purity 99.8%, Riedel-de-Haën) of ω-functionalised alkanethiol of choice to form 

self assembled monolayer (SAM) on the silver surface. Prior to measurement the SAM-

coated electrodes were washed gently with ethanol and dried with argon and then placed 

into the electrochemical cell containing a SERR buffer solution (PBS 12.5 mM and K2SO4 12.5 

mM) and protein.  

 

 Fit Analysis 

 

 

Contributions of each species that differ in oxidation, spin or coordination state were 

determined by MATLAB based software (QPipsi). A fit file was generated by fitting a set of 

Lorenzian bandshapes for each species, with each Lorenzian bandshape corresponding to a 

vibrational mode. In the analysis the spectral parameters of each species are treated as a 

group with fixed band position, width and relative intensity. Determination of redox 

potential was based on relative SERR intensities (Ii) of different heme species (the 

concentration of which is : ci = fi Ii). Due to the absence of values for the respective cross-

sections, fi, the Nernst equation was fitted directly to relative SERR intensities of each 

species.  
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4. RESULTS/DISCUSSION 

________________________________________________________________ 

 

4.1. Enzyme purification 

 

 

4.1.1. Cloning and expression of DNA fragments 

 

 

The ppDyp gene was cloned into the expression vector pET-21a(+) to make pRC-1, and 

the final construct was transformed into E. coli BL21*, in which expression of ppDyp gene 

could be driven upon IPTG induction of the T7lac promoter.  

 

 

 

 

 

 

 

 

 

Figure 17 – Culture plate - Colonies of the recombinant E.coli in LB medium supplemented with ampicillin. 

 

 

First, a single colony was picked from the plate and used for pre inoculum, which was 

grown overnight. On the next day, the pre inoculum with an initial OD600 of 0,05 was 

transferred into 1L of LB media supplemented with ampicillin and hemin  and grown at 37°C. 

After 24h the growth was stopped avoiding the decline phase. The cells were disrupted by 

French press. 
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4.1.2. Purification by liquid chromatography 

 

 

The recombinant protein was purified using two chromatographic steps. 

 

 Anionic exchange chromatography 

 

 

Figure 18 – Elution profile of ion exchange chromatography using the Q Sepharose column. 

 

 

After cell disruption and centrifugation, collected supernatant was further purified. The 

first column was loaded with volume of approximately 5mL. Proteins began to be eluted at 

45% gradient of salt. Enzyme activity assays were measured in all collected fractions to 

identify those which contained the PpDyP. In the activity assay, ABTS oxidation was 

followed: when ABTS reacts with H2O2 and PpDyP, a colored cation radical (oxidation form) 

is generated. More concentrated protein originated plates with more intense color. The 

colored fractions (Fig. 19) were collected and subjected to the next purification step. 

 

 

 

 

 

 

 

 

DyP Peroxidase

___ UV 280nm

___ Salt Gradiente
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Figure 19 – Enzyme activity of ion exchange chromatography fractions. Followed via ABTS oxidation: colored 

fractions indicate presence of PpDyP. 

 

 

 Size exclusion chromatography 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 – Elution profile of size exclusion chromatography using the Superdex 200. 

 

A fraction containing PpDyP (Fig. 21 well 2), of a volume of approximately 4 mL was 

loaded onto size exclusion column. Proteins began to be eluted at 50 mL of elution (Fig. 20).  

As described before, enzymatic activity assays (following ABTS oxidation) were employed to 

identify all fractions containing PpDyP. They were collected and concentrated to a final 

volume of 20 mL. 

 

 

DyP Peroxidase

___ UV 280nm
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 Purity analysis by polyacrylamide gel electrophoresis 

 

 

 

 

 

 

 

 

 

Figure 21 – SDS-PAGE. Well 1: crude extract, well 2: sample after ion exchange chromatography, well 3: sample 
resulting from size exclusion chromatography and LMW: low molecular weight marker. 

 

 

Purity of PpDyP was verified by SDS-PAGE analysis based on Low Molecular Weight 

markers (LMW). We can conclude that PpDyP shows a high purity and an apparent 

molecular mass of 31.3 kDa (Fig. 21). 

 

 

 Protein quantification 

 

 

Table 2 – Protein quantification for all purification steps. 

 

 

 

  

Volume 

mL 

Protein 

mg 

Total Activity 

µmol/min.mL 

Specific 

Activity 

µmol/min.mg 

Yield 

% 

Purification 

factor 

(1) 
Crude 

extract 
5 256 440.6 1.7 100 1 

(2) 
Q 

sepharose 
4 36 179.7 4.9 40.8 2.9 

(3) 
Superdex 

200 
20 14 141.7 10.2 32.2 5.8 

LMW    1       2      3

1- Crude extract

2- Q-Sepharose

3- Super Dex
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As the table shows, the total activity measured is decreasing along the purification steps, 

while the specific activity of the PpDyP is increasing confirming that all protein fractions 

other than PpDyP are being removed from the sample. At the end of the purification 14 mg 

of enzyme with 10.2 µmol/min.mg of specific activity were obtained from 1L of starting 

medium. The yield of purification was about 32 %. 
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4.2. Biochemical Characterization 

 

 

4.2.1. Molecular mass determination by molecular exclusion chromatography 

 

 

 

 

 

 

 

 

 

 

 

Figure 22 – Calibration curve for determination of apparent molecular weight, where Kav is the gel-phase distribution 

coefficient. 

 

 

 

Due to denaturing conditions of MW determination, SDS-PAGE revealed that the protein 

was constituted by a single monomer. For a determination of real conformation of the 

protein, it is necessary to use the size exclusion chromatography to construct a calibration 

curve from the MW of standards and then extrapolate for the protein under study. Size 

exclusion chromatography yielded for the native PpDyP a molecular mass of 120.14 kDa, 

demonstrating that the recombinant enzyme forms a homotetramer in solution. 

 

 

 

 

 

 

 

 

y = -0,2423x + 0,7265 
R² = 0,9979 

0,000 

0,200 

0,400 

0,600 

0,800 

0,000 1,000 2,000 3,000 

K
a
v
 

Log MW 

PpDyP 



55 
 

4.2.2. Protein stability 

 

 pH induced denaturation 

 

 

 

 

 

 

 

 

 

 

Figure 23 – pH profile of PpDyP using ABTS as a substrate. 

 

By analysis of PpDyP activity as a function of pH, using ABTS as substrate we can 

conclude that the optimal activity pH range of PpDyP is between 4 and 6. 

 

 

 Reversible thermal denaturation 

 

 

 

 

 

 

 

 

 

Figure 24 – Thermal stability profile of PpDyP, where the fraction of unfolded (f Unf) protein is represented as a function 

of temperature. 
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By analysis of the fraction of unfolded protein as a function of temperature we observe 

that PpDyp presents a broad range of optimal temperatures, ranging from 320 to 345K. 

Melting temperature is Tm½ = 331 K (58 ⁰C). At this temperature there is the same amount 

of protein in native and denaturated state, allowing us to determine ∆S = 68 Kcal/mol (Eq. 

3). This value is positive due to the denaturation process, since during the process there is 

an increase of microstates and this increases the disorder of the system and therefore an 

increase in entropy of the system [23]. 

 

 

 Denaturation induced by chemical agents 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 – Chemical stability profile of PpDyP at pH 7,6, where the fraction of unfolded (f Unf) protein is represented 

as a function of concentration of chemical denaturing agent. 

 

 

Analysis of the dependence of PpDyP on concentration of GndHCl reveals a ∆G0 = 4.12 

Kcal/mol and [GndHCl]½ = 2.4 M (Eq. 6). Therefore 2.4 M of GndHCl are required in order 

to obtain 50% of PpDyP molecules in unfolded state at pH 7,6. 
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4.3. Spectroscopy 

 

4.3.1. UV-Visible Spectroscopy 

 

 

The solution of purified enzyme was orange, indicating a presence of the heme 

chromophore. The UV-Visible spectrum of resting state of enzyme showed the Soret band 

at 406nm and the charge transfer (CT) bands at 506 and 636 nm (Fig. 26). The pyridine 

ferrohemochrome spectrum of PpDyp had absorption peaks corresponding to the Soret 

band (419nm), and to the β and α bands (527 and 556nm, respectively) that are 

characteristic of iron protoporphyrin. The heme content was estimated using the difference 

between the published [29,31] molar absorption coefficient at 556nm of the reduced and 

oxidized protein (ε556red-ε556ox) being 1.16 mol of heme b per mole of protein (heme:protein 

ratio of approximately 1:1). This result indicates that the protein is fully loaded with heme 

cofactor.  

The reduction of PpDyP with sodium dithionite caused a decrease of the Soret band and 

its shift it to 432 nm, and appearance of a new peak at 556nm (Fig. 26). In the presence of 

equimolar amount of H2O2, PpDyp was oxidized to compound I, characterized by a shift in 

the Soret band to 410 nm, and the appearance of additional peaks at the absorbance of β and 

α bands with lower intensities. Protein was able to return spontaneously to the resting state 

(upon exposure to O2) in both cases.  

 

 

 

 

 

 

 

 

 

 

 

Figure 26 – Electronic absorption spectra of 128 μM of PpDyP: as isolated (oxidized state) (black line) and dithionite 

reduced state (blue line). 
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4.3.2. Resonance Raman spectroscopy 

 

 

The resonance Raman spectra of PpDyP in solution at RT, were measured for the protein 

in the fully oxidized or reduced state. These spectra allowed us to determine coordination 

and spin states of the enzyme, and also to define spectral parameters of individual spin 

species, which will be later used for the analysis of the SERR spectra. The figure 27 shows 

the high frequency region (1200-1700 cm-1) RR spectra of PpDyP in solution in fully oxidized 

and dithionite reduced state. The spectral range includes the marker bands ν4, ν3 and ν2. 

Frequencies of these bands are indicative of oxidation state of iron (ν4) and the spin, 

coordination and oxidation state (ν3 and ν2) of iron in the heme group. The RR spectra of 

PpDyP show that the major spin population is in both redox states, a pentacoordinated high 

spin (5cHS). 
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Figure 27 – Resonance Raman spectra (1200 – 1700 cm-1) of 128 μM PpDyP in the resting (bottom spectrum) and 

dithionite reduced (upper spectrum) states. 
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Moreover, a closer look at the spectrum of the ferric protein reveals a RR fingerprint 

indicative of two co-existing ferric heme species that are well distinguished, in particular by 

the two ν3 bands at 1492 cm-1 and 1502 cm-1 (Fig. 27).  

Deconvolution of the ν4 region employing component analysis of the spectra shows that 

the signal at 1375 cm-1 is also composed of two major Lorentzian bands at 1372 cm-1 (band 

width, ∆ν1372 = 10,2 cm-1) and 1376 cm-1 (∆ν1376 = 10,5cm-1). In the ferrous state, a single major 

species, characterized by ν3 at 1472 cm-1 (∆ν1472 = 10,9 cm-1) and ν4 at 1355 cm-1 (∆ν1355 = 12,9 

cm-1), is present in chemically reduced protein in solution. The ν3 band at 1492 cm-1 together 

with ν4 at 1372 cm-1 and ν2 at 1570 cm-1 is characteristic of 5cHS population, typically found 

in the resting state of heme peroxidases. However, the ν3 band at 1502 cm-1 is indicative of 

both six coordinated low spin (6cLS) and five coordinated quantum mechanically mixed-spin 

(5cQS) ferric heme. The electronic absorption spectrum of resting PpDyP (Fig. 26 A) bears 

no features of the LS heme group, allowing for putative assignment of the ν3 1502 cm-1 

species to a 5cQS population. This unusual heme species is characteristic for class III plant 

peroxidases and its unambiguous identification is commonly assessed by combination of 

electronic absorption and RR spectroscopies [38]. However, so far no indication for 5cQS 

species in DyP-type peroxidases has been reported. Interestingly, our RR and electronic 

absorption data show that resting PpDyP reveals pronounced similarity to HRP and other 

class III plant peroxidases. In the ferrous state, the frequency of ν3 mode (1472 cm-1), 

indicates the 5cHS species as the major spin population present in PpDyP. This finding 

further supports putative assignment of ferric spin population represented by ν3 1502 cm-1 to 

QS, which unlike ferrous HS and LS species, shows no distinct RR features in the reduced 

form [38].  
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Figure 28 – Resonance Raman spectra (1200 – 1700 cm-1) of PpDyP in native state at pH 7.6, at pH 10, and with a 

CN complex. 

 

 

To confirm the assignment of the ν3 1502 cm- to QS, LS heme adduct were generated 

upon addition of excess of KCN or increase of pH. The former adduct resulted in pure 6cLS 

ferric complex of PpDyP (Fig. 28) with RR fingerprint distinct from that of the QS species, 

confirming our assignment. The Fe-OH adduct was not 6cLS indicating that the OH is not 

sufficiently strong ligand to induce a low spin state in PpDyP [38]. 

 

 

4.3.3. Immobilization of PpDyP on biocompatible Ag electrodes 

 

 

Due to the absence of the x-ray structure of PpDyP and therefore knowledge of surface 

charge distribution of this protein, the immobilization followed trial and error strategy. 

Several, SAMs were tested (Table 3) in pure and mixed form, different buffer solutions (pH 

values and ionic strength) and various poised potentials were tried in order to provide the 

best conditions for protein immobilization. 
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Table 3 – Trials for PpDyP immobilization at different conditions (pH, buffer and SAM composition). 

 

  

In majority of the cases either no adsorption, or very low intensity SERR signals were 

obtained. After numerous trials the best conditions were identified. PpDyP was successfully 

immobilized on nano-structured Ag electrodes coated with mixed aminooctanethiol (AOT) 

and mercaptohexanol (MOH) SAMs in 1:3 (M/M) ratio (Fig. 29). Strong SERR signals of 

PpDyP are observed upon spontaneous adsorption (within 5 min) of the enzyme onto 

electrodes kept at open circuit (no applied poised potential). 

 

 

 

SAM Buffer 
Nº 

electrodes 

Poised 

Potential 
Adsorption 

C11 (COOH) SERR 2 -120, -70, +100 No 

C10 (CH3) SERR 2 -500, -200, +100 No 

C2 (OH) SERR 1 
o c, -500, -100, 

+120 
Yes – low 

C2 (NH2) SERR 1 o c, -100 No 

Mixed C2 

(OH/CH3) 1:1 
SERR 2 

o c, -500, -100, 

+100 

Yes – very low 

intensity 

Mixed C6 

(OH/CH3) 3:1 
SERR 2 

o c , -400, -250 

+150 
Yes – low intensity 

Mixed C11 

(OH/CH3) 3:1 
SERR 2 o c , -400, +150 Yes – low intensity 

Mixed C11 

(OH/CH3) 1:1 

Britton Robinson 50 mM 

pH 9 
2 

o c , -400, -100,  

+120 
Yes – low intensity 

C6 (NH2) 

Tris acetate 100 mM 

pH 8 

bubbling with argon 

1 

o c , -500, +50,  

0, -50 

+100, -500 , +100 

Yes – very high 

Bare 

Tris acetate 100 mM 

pH 8 

bubbling with argon 

2 o c , -500, +100 Yes – very high 

Mixed C6 

(OH/NH2) 3:1 

Tris HCl 20 mM 

pH 8 

bubbling with argon 

3 o c , -500, -400 Yes - promising 



62 
 

Other tested coatings, including pure and mixed methyl-, carboxyl-, and pure hydroxyl- 

or amino-terminated SAMs, do not provide a suitable platform for immobilization, as 

conclude from absence of, or very weak SERR spectra. According to the values for the pKa 

of amino-terminated SAMs, a considerable amount of the AOT in the mixed monolayer is 

protonated at pH 7, giving rise to a positive charge density on the SAM surface. Since the 

hydroxyl-terminated MOH is also essential, we conclude that the enzyme requires a surface 

with “diluted” positive charge for adsorption [38]. 

 

 

4.3.4. Surface Enhanced Resonance Raman  

 

 

The immobilized PpDyP retains its structural integrity on the level of the heme group 

upon adsorption, as revealed by comparison of SERR with RR spectra (Fig. 29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 – RR spectra of PpDyP in solution, in oxidized and reduced states and  SERR spectra of immobilized PpDyP on 
a mixed C8 amino – C6 mercapto-1-hexanol (1:3)  recorded at +0.120V (oxidized) and -0.650V (reduced) (vs. 

Ag/AgCl). 
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Moreover, the immobilized enzyme sensitively responded to changes of the electrode 

potential in a reversible manner, as judged by the oxidation state marker bands in the high 

frequency region of the SERR spectra. Hence, PpDyP is electronically coupled to the 

electrode. At positive electrode potentials, SERR spectra of the immobilized enzyme display 

no major differences with respect to the RR spectra of resting PpDyP in solution. Similarly, 

electrochemically reduced adsorbed protein and chemically reduced PpDyP in solution 

reveal almost identical spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30 – Component analysis of RR spectra (1300 – 1550 cm-1) of ferric (A) and ferrous (B) PpDyP in solution; and 

SERR spectra at +0.23 V (a), -0.29 V (b), and -0.44 V (c) electrode potential. The black and red lines are the baseline 

corrected experimental spectra and the sum of contributions from different species (resulted from component analysis), 

respectively. Magenta represents the ferric 5cHS, green the ferric 5cQS, blue the ferrous 5cHS species. The contribution 

of the electro-inactive species is represented in orange. 
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The SERR measurements were also carried out for PpDyP directly adsorbed onto the 

surface of the silver electrode in the absence of SAM (bare electrode). The spectrum differ 

significantly from RR spectra, indicating that denaturation of the protein occurred.  

 

 

Table 4 – (SE)RR spectral parameters of after fitting of PpDyP of different heme species. 

 

 ν4  (cm-1) ν3 (cm-1) 

5cHS (Fe3+) 1372 1492 

5cQS 1376 1502 

5cHS (Fe2+) 1355 1472 

Non native 1364 - 

 

 

Component analysis of SERR spectra recorded at different potential applied to the coated 

(C8-NH2:C6-OH) working electrode revealed a small amount of non-native protein (ν4 at 

1364 cm-1) (Fig. 30), which is not sensitive to the change of electrode potential. Contribution 

of this species was subtracted from the ν4 contributions of redox-active species in the 

further analysis. 
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4.3.5. SERR spectroelectrochemistry  

 

 

Redox properties of the immobilized PpDyP were studied by SERR spectro-

electrochemistry by recording SERR spectra at different potentials imposed to the working 

electrode. The contributions of the ferric and ferrous species at each poised potential were 

determined from component analysis of potential dependent SERR spectra in the 1300 cm-1 

to 1520 cm-1 range. This interval includes the ν3 and ν4 modes, which are sensitive indicators 

of the heme oxidation and spin state, respectively, and, in addition, largely free of 

uncertainties related to spectral parameters of several overlapping bands in the ν2/ν10 region 

of the ferric proteins. In the ferrous state poorly resolved spectral features in the ν2/ν10 

region further impede reliable analysis of this region. Potential dependence of relative 

spectral contributions of the two ferric (ν4/ν3: 1372 cm-1/1492 cm-1 and 1376 cm-1/1502 cm-1) 

and one ferrous (1355 cm-1/1472 cm-1) species reveals a sigmoid shape (Fig. 31). In the 

analysis, the spectral parameters of each species are treated as a group with fixed band 

positions, widths and relative intensities. As revealed by the plots, the protein is 

predominantly (~95%) oxidized at the most positive potential and 90-95% reduced at the 

most negative applied potential, indicating that the three major spin populations are fully 

electroactive in the immobilized state and exhibit reversible heterogenous ET within the 

studied potential range. In the contrast, the ET-inactive species (ν4 1364 cm-1) irreversibly 

gains intensity with time. It accounts for about 10% of the overall ν4 intensity in the beginning 

of SERR experiments. After ca. one hour under typical experimental conditions (exposure to 

several electrode potentials and laser irradiation) this percentage is doubled. Due to 

accelerated accumulation of the ET-inactive species upon prolonged and/or intense laser 

irradiation, laser power and accumulation times were kept to a minimum to reach a 

compromise between the spectral quality and stability of the adsorbed enzyme [38].  

The fit of the Nernst equation to the relative spectral contributions of two ferric species 

as a function of electrode potential reveals similar Em values around -0.3V, and low values for 

napp (≤ 0.5). As expected, the redox transition of the ferrous species coincides with this Em 

value. The midpoint potential of PpDyP in solution, Em,sol, obtained by potentiometric 

titration followed by electronic absorption spectroscopy, is equal to -0,26V, with  napp,sol equal 

to one [38].  
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The sharp redox transition of two ferric to the same ferrous species take place without 

deviation from the ideal Nernst behavior, providing additional evidence for close midpoint 

potential of the ferric species. It must be noted, however, that the redox transition of 

immobilized PpDyP is broad, yielding napp< 1. This can be rationalized in terms of a broad 

distribution of midpoint potentials originating from different orientations of individual 

enzyme molecules with respect to the electrode surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31 – Potential dependent relative SERR contributions (I(ν4)i,rel) of heme species as obtained from component 
analysis. Hollow squares: ferrous 5cHS, hollow circles: ferric 5cQS, hollow triangles: 5cHS species, solid triangles: ET-

inactive species. The solid lines are fits of sigmoid functions to data [38]. 
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5. CONCLUSIONS/ FUTURE PERSPECTIVES 

____________________________________________________________ 

 

 

The development and use of biosensors has been an important breakthrough in several 

areas. New techniques and materials are tested and this increased the possibilities for 

applications. The use of biosensors for early detection and treatment of disease became an 

important tool in general medicine and for the development of new drugs. Highlights also 

include the use of biosensors in the detection of chemical substances in environments such 

as soils, water and food. As the detection of these agents is generally delayed, the risk of 

contamination becomes larger. In this case, biosensors allow a real-time analysis and “in 

locus”, which favors a rapid action against pollution. 

In the development of biosensors the enzyme must be purified and then immobilized by 

physical or chemical methods. The choice of best method for immobilization is directly 

related to preservation of the active site structure of the enzyme, its catalytic activity and 

the performance of the biosensor. Higher enzyme activity and stability after immobilization 

provides the best sensitivity of the biosensor.  

This work is based on PpDyP, a new member of a novel class of peroxidases. It has a high 

potential for development of biosensors, due to its capacity to decolorize structurally 

diverse inert dyes. We show that it can be immobilized on biocompatible support under 

preservation of its structural and thermodynamic features, which is a prerequisite for 

development of DyP-based biosensor or biocatalyst. First, we developed a procedure for 

overexpression and purification of this promising enzyme in large quantities. Then, we 

employed a sensitive experimental tool that allowed us to characterize this novel enzyme in 

solution and immobilized state. Taken together, our results show that the DyP represents a 

good candidate for design of enzyme electrodes that can function as biosensors or 

biocatalysts. In the next step we aim to construct a functional device, and identify, design and 

produce PpDyP mutants with improved catalytic performance in bioelectronic devices. 
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7. APPENDIX 

________________________________________________________________ 

 

APPENDIX I - Cloning and expression of DNA fragments 

 

Molecular cloning of DyP was performed by inserting a DNA fragment of interest in a 

molecule called vector, which is capable of replicating independently in a host cell. The result 

of this process is a recombinant molecule, composed of the inserted DNA and the vector 

sequences. To obtain large amounts of the DNA insert is replicated in a recombinant 

molecule suitable host. The following explains in detail the characteristics of the plasmids, 

since it is the vector used to clone DNA fragments of the DyP, obtained by PCR. 

 

Plasmid - pRC1: plasmid contains an origin of replication (ORI), an antibiotic resistance 

gene for ampicillin (Ampr) and multiple restriction sites (EcoRI, BamHI, HindIII,...) (Fig. 32). 

 

 

 

 

 

 

 

Figure 32 – Schematic restriction map of pRC-1. 

 

To clone a DNA fragment into a vector, we treated the vector and the DNA with the 

same restriction enzymes to generate cohesive ends, then joined these fragments with DNA 

ligase and their union is produced by inserting the DNA into the vector. To verify that the 

cloning was successful, the vector was introduced into suitable host cells (E.coli) by thermal 

shock. As the vector has an antibiotic resistance gene, cells are grown in plates with medium 

containing the same antibiotic, (so that the cells that grow in this environment have the 

vector with the insert DNA) to remove all cells that do not passes properly inserted 

plasmid.  
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 APPENDIX II - Purity analysis by polyacrylamide gel 

electrophoresis 

 

 

Along the protein purification, it is necessary to estimate the effectiveness of the process. 

The purity of biological samples can be determined by polyacrylamide gel electrophoresis 

under denaturing conditions (SDS-PAGE). Peroxidase monomer has a molecular mass 

between 30 and 50 kDa, indicating that intermediate pore gels (10-12%) should be employed 

for separating proteins between 10 and 90 kDa. Working under denaturing conditions, 

proteins are negatively charged. The amount of SDS bound to the protein is directly 

proportional to its size, therefore, proteins are separated according to their molecular mass. 

Employing electrophoresis we can estimate the molecular weight (MW) of the protein in 

monomeric form with an error of ~ 10%. The higher electrophoretic mobility corresponds 

to the lower molecular size. With a kit of known molecular mass proteins and measured the 

distance of migration in the gel, can construct a calibration curve, representing the relative 

mobility (Rf = distance traveled by the protein band (mm)/distance traveled by bromophenol 

blue dye (mm)) of each protein versus log (M). Thus, by measuring the relative mobility of 

the protein and interpolating, can determine its molecular mass. SDS-PAGE technique has a 

high resolving power, because it uses a discontinuous electrophoretic system consisting of 

two gels of different porosity and pH. The superior, called concentrator, compact the 

samples and the lower, called separator, separates them. A final protein concentration ~ 0.5 

mg ml-1 was used. 
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APPENDIX III - Solutions 

 

 

LB medium:  

- Tryptone 10 g / L 

- Yeast extract 5 g / L 

- Sodium chloride 10 g / L 

 

 

Separation Gel (10%):  

The acrylamide was mixed with upper Tris-HCl, Temed (Sigma), distilled water, SDS 10% 

(Sigma) and APS 10% (Sigma). After gentle agitation, the mixture was spread on 15 x 16 cm 

glass plates. 

 

 

Gel concentration (4%):  

After polymerization of separation gel, the gel was prepared in concentration, containing 

acrylamide, lower Tris-HCl, SDS 10% (Sigma), Temed (Sigma) and APS 10% (Sigma). This 

mixture was placed on the gel separation, into which a comb was inserted in order to allow 

formation of channels until the polymerization of the gel. 

 

 

Loading buffer under reducing conditions:  

20 mM TRIS pH 8.0, 10% glycerol (v:v), 2 mM EDTA, 0.001% bromophenol blue (m:v), 

0.2% SDS (m:v ) and 4% β - mercaptoethanol (v:v). 

 

 

Electrophoresis buffer:  

25 mM Tris-HCl , pH 8.3, 250 mM glycine and 0.1% SDS (m:v). 
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Staining solution:  

Place about 30 mL of this solution, this quantity should be sufficient to submerge all gel 

and leave under constant agitation until protein bands appear (1 h). Constitution of the gel: 

10% glacial acetic acid (v:v), 45% ethanol (v:v), 45% water (v:v) and 0,25% Coomassie blue 

(m:v). 

 

 

Distaining solution: 

Leave the gel in distilled water over night or leave 40 min in a solution of glacial acetic 

acid:ethanol:water (1:3:6 v:v:v). 
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APPENDIX IV - Molecular mass determination by molecular exclusion  

chromatography 

 

This type of chromatography is widely used in biochemical purification, separating 

substances according to their molecular mass. Therefore, using this method, proteins are 

easily separable from ions or smaller molecules [39].  To perform this technique it is 

necessary use columns containing different types of stationary phase: cross-linked dextran 

(Sephadex), agarose (Sepharose) or polyacrylamide (Bio-gel B). All these matrices are 

composed of a spongy hydrated material that contains pores with certain size. In function of 

the molecules were used to separate one or the other [39]. In this case, we determine the 

molecular mass of the protein in native state and therefore the technique is also used to 

determine the degree of protein aggregation. The particles are separated in order of 

increasing size. Bigger proteins cannot penetrate into the pores of the gel, will move through 

the dead volume of the column and leave early. In contrast, smaller, can penetrate into the 

pores and will come out later. Small molecules will be retained in the pores of the gel and 

the elution volume or time will be much higher. We can relate the elution volume with 

molecular mass using a calibration kit containing proteins with known molecular masses, for 

that we passed in duplicate, each protein of the kit through the column, measuring the 

corresponding volume of elution, then with these data can construct a calibration curve. 

Finally, pass under the same conditions the protein of interest, and interpolating can obtain 

the molecular mass. 
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