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Abstract 

The vascular endothelium is a multifunctional organ and is critically involved in 

modulating vascular tone and structure. Endothelial cells produce a wide range of 

factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell 

proliferation, and vessel wall inflammation. Thus, endothelial function is important for 

the homeostasis of the body and its dysfunction is associated with several 

pathophysiological conditions, including atherosclerosis, hypertension and diabetes.  

Patients with diabetes invariably show an impairment of endothelium-dependent 

vasodilation. Therefore, understanding and treating endothelial dysfunction is a major 

focus in the prevention of vascular complications associated with all forms of diabetes 

mellitus. 

The mechanisms of endothelial dysfunction in diabetes may point to new management 

strategies for the prevention of cardiovascular disease in diabetes. This review will 

focus on the mechanisms and therapeutics that specifically target endothelial 

dysfunction in the context of a diabetic setting. Mechanisms including altered glucose 

metabolism, impaired insulin signaling, low-grade inflammatory state, and increased 

reactive oxygen species generation will be discussed. The importance of developing 

new pharmacological approaches that upregulate endothelium-derived nitric oxide 

synthesis and target key vascular ROS-producing enzymes will be highlighted and new 

strategies that might prove clinically relevant in preventing the development and/or 

retarding the progression of diabetes associated vascular complications. 
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1. Vascular function and endothelium 

 

1.1 Background 

The endothelium is a monolayer of cells covering the vascular lumen. For many years 

this cell layer was thought to be relatively inert, a mere physical barrier between 

circulating blood and the underlying tissues. It is now recognized, however, that 

endothelial cells are metabolically active with important paracrine, endocrine and 

autocrine functions, indispensable for the maintenance of vascular homeostasis under 

physiological conditions [1,2]. The multiple functions of vascular endothelium are 

summarized in figure 1 and include regulation of vessel integrity, vascular growth and 

remodeling, tissue growth and metabolism, immune responses, cell adhesion, 

angiogenesis, hemostasis and vascular permeability. The endothelium plays a pivotal 

role in the regulation of vascular tone, controlling tissue blood flow and inflammatory 

responses and maintaining blood fluidity [3-5].  

Endothelium-derived factors with vasodilatory and antiproliferative effects include, 

endothelium-derived hyperpolarisation factor (EDHF) [6,7], nitric oxide (NO) [8,9] and 

prostacyclin (PGI2) [10], while endothelin-1 (ET-1) [11], angiotensin II and reactive 

oxygen species (ROS) are among the mediators that exert vasoconstrictor effects 

[12,13]. Endothelial cells also produce antithrombotic (NO and PGI2 both inhibit 

platelet aggregation) and prothrombotic molecules [von Willebrand factor, which 

promotes platelet aggregation, and plasminogen activator inhibitor-1 (PAI-1), which 

inhibits fibrinolysis] [5]. 

As a major regulator of vascular homeostasis, the endothelium maintains the balance 

between vasodilation and vasoconstriction, inhibition and promotion of the migration 
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and proliferation of smooth muscle cells, fibrinolysis and thrombogenesis as well as 

prevention and stimulation of the adhesion and aggregation of platelets (Fig. 2) [5]. 

Disturbing this tightly regulated equilibrium leads to endothelial dysfunction. 

 

1.2 Nitric oxide 

NO is a crucial player in vascular homeostasis. NO is synthesized within endothelial 

cells during conversion of L-arginine to L-citrulline by endothelial nitric oxide synthase 

(eNOS) [15]. It is released from endothelial cells mainly in response to shear stress 

elicited by the circulating blood or receptor-operated substances such as acetylcholine, 

bradykinin, or serotonin [16]. NO diffuses to vascular smooth muscle cells (VSMC) and 

activates soluble guanylate cyclase (sGC), yielding increased levels of cyclic guanosine-

3,5-monophosphate (cGMP) and relaxation of VSMC [1,17]. Additionally, NO also 

prevents leukocyte adhesion and migration, smooth muscle cell proliferation, platelet 

adhesion and aggregation, and opposes apoptosis and inflammation having an overall 

antiatherogenic effect (Fig. 3) [18]. 

The half-life of NO is very short (less than 4 seconds). It is rapidly metabolized to 

nitrite and then to nitrate before being excreted in the urine [4]. Alternatively, NO can 

also be an endocrine vasoregulator, modulating blood flow in the microcirculation [19]. 

Importantly, reduced eNOS expression and/or NO bioavailability is associated with 

endothelial dysfunction [20,21]. 
 

1.2.1 Decreased formation of NO 

eNOS is a dimeric enzyme depending on multiple cofactors for its physiological activity 

and optimal function. eNOS resides in the caveolae and is bound to the caveolar protein, 
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caveolin-1 that inhibits its activity. Elevations in cytoplasmic Ca
2+

 promote binding of 

calmodulin to eNOS that subsequently displaces caveolin and activates eNOS [22,23].  

eNOS utilizes L-arginine as the substrate, and molecular oxygen and reduced 

nicotinamide adenine dinucleotide phosphate (NADPH) as co-substrates. Flavin adenine 

dinucleotide, flavin mononucleotide, tetrahydrobiopterin (BH4) and calmodulin are the 

cofactors [4]. A reduced expression and/or activity of eNOS could be responsible for a 

decrease in NO production. Oxidative stress leads to eNOS uncoupling, a process where 

eNOS is converted from an NO-producing enzyme to an enzyme that generates 

superoxide anion (O2
–

).. Mechanisms implicated in eNOS uncoupling include 

oxidation of BH4 (a critical eNOS cofactor; [24]), depletion of the enzyme substrate L-

arginine, and accumulation of endogenous methylarginines [25]. More recently, S-

glutathionylation of eNOS has also been proposed as a mechanism that leads to eNOS 

uncoupling and decreased NO bioavailability [26]. Additionally, increased expression 

of caveolin-1 in the endothelium (as described in diabetes and obesity [196]) leads to 

impaired activation of eNOS. 

eNOS activity within the endothelial cell is also modulated by circulating factors like 

insulin. Insulin is an essential hormone in metabolic homeostasis with a vasodilator 

action exerted through the phosphatidylinositol-3 kinase (PI-3K)/AKT pathway-

dependent eNOS activation [28]. Insulin can modulate eNOS activity by increasing BH4 

synthesis [29]. Insulin-stimulated endothelial dependent vasodilatation is impaired in 

insulin resistance [30,18]. Conversely, eNOS plays a major role in the regulation of 

insulin sensitivity due to the functions of NO in peripheral tissues [31]. Previous studies 

have shown that mice lacking eNOS are more likely to develop insulin resistance [233]. 

Apparently, modulation of eNOS phosphorylation in mice is sufficient to affect 
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systemic insulin sensitivity indicating that eNOS phosphorylation may be a novel target 

for the treatment of insulin resistance [234]. 

eNOS may be inhibited by endogenous products of arginine metabolism such as 

asymmetric dimethyl-L-arginine (ADMA) [1]. Following oxidative stress or angiotensin 

II administration, the observed elevation in ADMA levels reduce NO formation and 

lead to endothelial dysfunction. Indeed, in several prospective studies, ADMA has been 

noted to be an independent predictor of cardiovascular events [34-36].  

Another factor that regulates eNOS activity in the setting of metabolic disease is 

adropin, which was recently recognized to be an important regulator of energy 

homeostasis and insulin sensitivity. Lovren and colleagues [37] demonstrated that 

adropin is expressed in endothelial cells and improves angiogenesis-related responses 

via activation of Akt, eNOS, and extracellular signal regulated kinase 1/2. Like 

adiponectin and leptin, adropin may be an endocrine factor that influences both insulin 

resistance and endothelial functions such as vasodilation and angiogenesis [37]. 

1.2.2 Accelerated breakdown of NO 

Accelerated degradation of NO by ROS is probably the major mechanism impairing NO 

bioavailability in states of cardiovascular disease [38,39]. In a diabetic milieu, an 

increment in O2
– 

levels is observed in the vasculature (Fig 4). O2
–

 readily reacts with 

NO to form peroxynitrite (ONOO
―

), reducing NO bioavailability and contributing to 

impaired vasorelaxation [40]. Figure 5 shows an increase in nitrotyrosine staining in the 

aorta of a type 2 diabetic animal model, indicative of peroxynitrite formation. 

Additionally, lipid peroxyl radicals react with NO at almost diffusion-limited rates and 

may be a source of NO inactivation [41]. Also, oxidized low-density lipoprotein (LDL) 

cholesterol may react with endothelial NO before it reaches the vascular smooth muscle 

cell and therefore reduce total NO-mediated vasodilation [42]. 
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1.3 Prostacyclin 

PGI2 is the major metabolite of arachidonic acid produced by cyclooxygenase in the 

endothelium. PGI2 activates adenylate cyclase, leading to increased production of cyclic 

AMP and VSMC vasodilation. Additionally, PGI2 is a potent antiproliferative agent in 

vascular smooth muscle cells, and it reduces oxidative stress and prevents cellular 

adhesion to the vascular wall [43]. PG12 also inhibits platelet aggregation. Clinical and 

experimental models of diabetes are associated with decreased secretion of PGI2 [3,28]. 

 

1.4 Endothelium derived hyperpolarising factor 

There are smaller arteries in which endothelium-mediated vasodilation is predominately 

affected by endothelium-dependent hyperpolarisation of vascular smooth muscle cells. 

The mechanism partially responsible for the endothelium-dependent vasodilation of 

these arteries, which persists in the presence of inhibitors of eNOS and prostacyclin, 

was first attributed to a non-characterized endothelial factor termed EDHF [44-46]. The 

relative importance of the EDHF mediated mechanisms to NO mediated mechanisms 

alters with vessel size [47]. NO is an important endothelium-dependent mediator of 

vascular tone in relatively large arteries and larger arterioles. At the level of the aorta, 

reduced NO bioavailability is proposed to be the main marker for endothelial 

dysfunction. In resistance arteries, NO, prostacyclins and EDHFs are thought to be 

involved in mediating endothelial function [48]. Alterations in EDHF-mediated 

responses have been reported in diabetes [49].Interestingly, EDHF synthase/cytochrome 

P450 epoxygenase is also a source of superoxide anion [53].  

 

2. Endothelial dysfunction 
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In the earliest stages, the principal endothelial alteration is merely functional. Functional 

impairment of the vascular endothelium is found in all forms of cardiovascular disease 

[3, 12] and also in people with insulin resistance, obesity and type 2 diabetes [18]. The 

hallmark of endothelial dysfunction is the impaired NO bioavailability. Additionally, 

endothelial dysfunction is characterized by one or more of the following features: 

reduced endothelium-mediated vasorelaxation, hemodynamic deregulation, impaired 

fibrinolytic ability, enhanced turnover, overproduction of growth factors, increased 

expression of adhesion molecules and inflammatory genes, excessive generation of 

ROS, increased oxidative stress, and enhanced permeability of the cell layer [54-58].  

Numerous risk factors directly contribute to endothelial dysfunction. Some of the more 

important are: elevated LDL cholesterol and oxidized LDL; low high-density 

lipoprotein (HDL) cholesterol; elevated triglycerides; hypertension; elevated C-reactive 

protein (CRP) and circulating lipoprotein-associated phospholipase A2 (Lp-PLA 2 – a 

specific marker of vascular inflammation); hyperglycemia; elevated omega-6:omega-3 

ration [59]; hyperinsulinemia; elevated homocysteine levels; increased fibrinogen and 

PAI-1; smoking; insufficient vitamin D; among others [60-62]. 

The presence of endothelial dysfunction has been implicated in the pathogenesis of 

atherosclerosis and thrombosis, both for the loss of its protective capability and for the 

induction of proatherothrombotic mechanisms. The major features associated with 

endothelial dysfunction are summarized in table 1. 

 

2.1 The impact of diabetes on the vasculature 

Diabetes is not only a metabolic disease but also considered as a vascular disease 

because of its effect on macro and microcirculation of many vascular beds. The link 

between diabetes and an increased incidence of cardiovascular disease is well 
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established [63,64]. Recent evidence shows that etiopathogenesis of endothelial 

dysfunction differs in types 1 and 2 diabetes [65]; it is present at the earliest stages of 

metabolic syndrome and insulin resistance, and may precede the clinical diagnosis of 

type 2 diabetes by several years [66]. 

The metabolic milieu in diabetes (i.e. hyperglycaemia, excess free fatty acid release and 

insulin resistance) induces a vicious circle of events in the vascular wall, involving 

increased endothelial dysfunction, oxidative stress, low-grade inflammation and platelet 

hyperactivity, in the early stages of diabetic disease. Thereby, activation of these 

systems impairs endothelial function, augments vasoconstriction, increases 

inflammation, and promotes thrombosis [63,64]. In figure 6 multiple mechanisms that 

promote atherogenesis are summarized.  

2.1.1 Hyperglycemia 

Prolonged hyperglycemia and also transient, acute hyperglycemia has been proven to 

impair endothelial function in both macro- and microvascular beds in animal studies 

and in human subjects [68-70]. Although the effect of intensive glycemic control on the 

prevention of macrovascular disease is less profound than on the reduction of 

microvascular complications [71]. 

Hyperglycemia causes vascular damage in different cells of the vascular wall (table 2). 

The mechanisms are diverse and include: 1) increased flux of glucose and other sugars 

through the polyol pathway; 2) augmented intracellular formation of advanced glycation 

end products (AGEs); 3) increment in the expression of the receptor for AGEs (RAGE) 

and its activating ligands; 4) activation of protein kinase protein kinase C (PKC) 

isoforms; and 5) overactivation of the hexosamine pathway [75]. The common pathway 

is oxidative stress. ROS decreases the metabolism of glucose through glycolysis, and 

the flux through the alternative polyol and hexosamine pathways is increased. 
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Hyperglycemia induced oxidative stress [72] leads to DNA damage and activation of 

nuclear poly(ADP-ribose) polymerase (PARP) that in turn increases production of 

polymers of ADP-ribose reducing glyceraldehyde 3-phosphate dehydrogenase activity. 

Ultimately the levels of all upstream glycolytic intermediates increase. The 

accumulation of glycolytic intermediates activates damaging mechanisms: PKC 

pathway, hexosamine and polyol pathways and AGEs formation. The overall effects of 

these mechanisms are increased oxidative stress, apoptosis and vascular permeability 

[75].  

Additionally, glucotoxicity induces a low-grade proinflammatory condition, due to the 

activation of transcription factors such as nuclear factor-B (NF-B) [75-77]. NF-B is 

a key mediator that regulates multiple proinflammatory and proatherosclerotic target 

genes in endothelial cells, VSMC, and macrophages. Activation of NF-kB leads to an 

increased production of adhesion molecules, leukocyte-attracting chemokines and 

cytokines activating inflammatory cells in the vascular wall. A prothrombotic state is 

generated by the increased production of lesion-based coagulants, such as tissue factor, 

and the inhibitors of fibrinolysis, such as PAI-1 (table 1).  

Vascular tone and remodelling are enhanced through reduced NO and an increased 

activity and production of vasoconstrictors (ET-1, angiotensin II, and prostanoids [75-

77]) due to postprandial increases in glucose, LDL cholesterol, and hyperinsulinemia 

(Fig. 7). Glucose may also activate matrix-degrading metalloproteinases, enzymes 

implicated in plaque rupture and arterial remodeling, inducing similar responses in 

VSMC. Glucose may also stimulate VSMC proliferation, migration, and altered 

reactivity, for example, through renin-angiotensin activation. 

Elevated glucose can foster glycation of proteins, promoting formation of AGEs (Fig. 

8), protein cross-linking, and ROS formation. Accumulation of AGEs alters the 
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functional property of matrix components and mediates sustained cellular changes. 

Glycation modifies the structure of the molecules and disturbs their function and 

receptor recognition properties. In turn, binding of AGEs to their RAGE receptor 

increases intracellular enzymatic superoxide production [80,81] and promotes 

macrophages-mediated inflammation in the vessel wall [82]. AGEs also decrease NO 

bioavailability and eNOS expression [83,84] and increase expression of ET-1 in 

endothelial cells [85]; therefore altering the balance between NO and ET-1 to favour 

vasoconstriction and endothelial dysfunction. 

Thus, accelerated formation of multiple biochemical species under hyperglycemic 

conditions such as nonenzymatic reactive Amadori products, 3-deoxyglucosone, 

diacylglycerol, methylglyoxal [86], AGEs, ROS, and nitrosylated species, greatly 

contributes to endothelial dysfunction in diabetes. The increased oxidative stress seems 

to be the common alteration, triggered by a type 2 diabetes milieu, in which 

hyperglycemia is adjoined by insulin resistance, hyperinsulinemia, and dyslipidemia 

[87]. 

2.1.2 Insulin resistance 

Insulin resistance refers to a decreased ability of insulin to promote glucose uptake in 

skeletal muscle and adipose tissue and to suppress hepatic glucose output [88]. Insulin 

signaling is transduced via two major pathways: metabolic and hemodynamic effects 

are mediated by PI-3K and the Ras–mitogen-activated protein kinase (MAPK) pathway 

is mainly involved in gene expression regulation, cell growth and differentiation [89]. 

Normally, insulin stimulates NO production in endothelial cells by activating NO 

synthase via the PI-3K pathway. In insulin resistance (IR) this pathway is impaired, and 

the production of NO is diminished [90]. Instead, insulin resistance activates MAPK 

leading to endothelial dysfunction. Insulin stimulates production of the vasoconstrictor 
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ET-1, and increases PAI-1 and cellular adhesion molecule expression [91]. In addition 

to the direct effects of IR on the endothelium, it also stimulates VSMC proliferation and 

migration and in adipose tissue is associated with excessive release of free fatty acids 

(FFAs), which evokes pathogenic gene expression through PKC activation and 

increased oxidative stress [94]. IR- induced excess of FFAs is essential also in the 

development of dyslipidemia, which further promotes the development of a 

proatherogenic lipid profile.  

Ultimately, insulin resistance and type 2 diabetes are associated with low-grade 

inflammation being reflected in increased serum levels of tumor necrosis factor- 

(TNF-), interleukin-6, PAI-1, ET-1 and high-sensitive C-reactive protein (hsCRP), 

also related to endothelial dysfunction [99]. 

2.1.3 FFAs  

Excessive release from adipose tissue and diminished uptake by skeletal muscles, 

increase circulating levels of FFAs in diabetes [100,101]. Acute infusion of FFAs 

reduces endothelium-dependent vasodilation in animal models and in humans in vivo 

[76, 102].  

Lipotoxicity by FFAs may impair endothelial function by a number of related 

mechanisms, including increased production of ROS, increase AGEs formation and 

activate PKC, the hexosamine pathway, and proinflammatory signaling to the same 

extent as diabetic levels of hyperglycemia. FFAs have been shown to induce ROS 

production in the vasculature via mitochondrial uncoupling and by increasing the 

expression and protein content of NADPH oxidases [75,94]. FFA-induced 

overproduction of superoxide inactivates two important antiatherogenic enzymes: 

prostacyclin synthase and eNOS. ROS also decreases the concentration of intracellular 

glutathione and makes vasculature more prone to oxidative damage. 
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FFA-induced ROS also activate NF-B, which further stimulates production of other 

proinflammatory cytokines [104-106]. By activating IKK, FFAs treatment impairs 

insulin stimulated activation of eNOS and NO production in endothelial cells [107]. 

Activation of PKC by FFAs also results in increased serine phosphorylation of IRS-1 

that leads to reduced insulin-stimulated activation of PI-3 kinase, PDK1, Akt, and 

eNOS, and culminates with impaired NO production in endothelium [103,108]. 

Ultimately, FFAs stimulate endothelial apoptosis, augment vascular oxidative stress, 

reduce NO bioavailability, enhance endothelial and monocyte activation and increase 

inflammation [33]. 

The activation of metabolite sensitive pathways of vascular damage by increased FFA 

flux from insulin resistant visceral adipocytes to arterial endothelial cells may be the 

metabolic link between insulin resistance and macrovascular disease [75,95]. Increased 

oxidation of fatty acids, derived in part from insulin resistance leads to oxidative stress 

in diabetic macrovasculature, while in diabetic microvascular disease, ROS are derived 

mainly from intracellular hyperglycemia [92, 93]. In both cases, under diabetic 

conditions oxidative stress seems to be the common mechanism that triggers vascular 

dysfunction. 

 

2.2 Oxidative stress 

Oxidative stress describes the condition wherein an excessive production of ROS 

overwhelms endogenous antioxidant defence mechanisms. The resultant elevation in 

ROS levels has a detrimental effect on cellular function, a consequence of ROS-induced 

damage to lipid membranes, enzymes and nucleic acids [109].  

Risk factors for cardiovascular disease (CVD), including type 2 diabetes, are 

characterized by excess vascular production of ROS [109,110]. One of the earliest 
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consequences of oxidative stress in human subjects is impaired endothelium-dependent 

vasodilation [109]. Thus, accessing oxidative stress in the vasculature could evaluate the 

risk for development of vascular disease (table 3).  

2.2.1 Reactive oxygen species: major sources in the vasculature 

All layers of the vascular wall have enzymatic systems capable of producing ROS. ROS 

include the superoxide anion, the hydroxyl radical, NO, lipid radicals, hydrogen 

peroxide (H2O2), hypochlorous acid and peroxynitrite [109]. 

The most important sources of ROS generation in the vasculature include the 

mitochondrial electron transport chain [115-117], NADPH oxidases [118-120] and 

xanthine oxidase [109,121]. In addition, uncoupled eNOS and enzymes, such as 

lipoxygenase and cyclooxygenase, cytochrome P450s, peroxidases and other 

haemoproteins [109] are sources of ROS. 

2.2.1.1 NADPH Oxidases 

NADPH oxidases are multicomponent enzymes functional in membranes of various cell 

types including endothelial cells and smooth muscle cells. NADPH family is the 

predominant source of O2
–

 in the human vasculature [118,120]. Of the seven Nox 

isoforms discovered, only Nox1, Nox2, Nox4 and Nox5 are expressed in blood vessels, 

with different cell-specific expression, mode of activation and function (for a review see 

[111, 113]). 

Activation of NADPH oxidases in the vasculature occurs in response to angiotensin II, 

other vasoactive hormones (eg, ET-1), growth factors (eg, transforming growth factor-

β), cytokines, mechanical stimuli (shear stress and stretch), among others [122,111]. 

Evidences from the literature clearly point to a role of Nox isoforms in vascular disease 

although their relative contribution remains unclear [111]. Nox1 and Nox2 have distinct 

roles in atherogenesis promoting vascular damage [113]. Recent data suggest an 
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important role for Nox1 in diabetes-associated atherosclerosis [112]. Sukumar and co-

workers showed that endothelial cell-specific insulin resistance increases Nox2 

expression and leads to O2
–

 generation in endothelial cells sufficient to foster arterial 

dysfunction [123,231]. Contrary to Nox1 and Nox2, expression of Nox4 was recently 

suggested to be vasculoprotective [113,114]. Apparently, under ischemia, hypertension 

or inflammatory stress Nox4-derived H2O2 was suggested to have a protective role 

[113,114]. Finally, Nox5 (an isoform expressed in humans but not in rodents) is also 

able to generate ROS in blood vessels and seems to have a role in endothelial and 

VSMC growth [113]. 

2.2.1. 2 Endothelial Nitric Oxide Synthase 

Nitric oxide generation is dependent on eNOS homodimerisation in the presence of 

BH4. However, BH4 is highly susceptible to oxidative degradation by ONOO
–
 and in the 

absence of its cofactor, eNOS fails to dimerise fully, resulting in uncoupling of the 

enzyme and amplification of oxidative stress and generation of O2
–

 rather than NO 

[74]. Uncoupled eNOS has been shown to contribute to increased superoxide 

production and endothelial dysfunction in a number of CVD, including coronary artery 

disease [130] and type 2 diabetes [131]. 

2.2.1. 3 Mitochondria 

Enzymes of the inner mitochondrial membrane transfer electrons along the electron 

transport chain which generates a proton gradient, enabling ATP synthase to generate 

ATP. Under physiological conditions, this process produces ROS as byproducts 

[117,132,133]. Several mitochondrial antioxidant systems are in place to protect against 

ROS-induced damage to mitochondrial proteins, lipids and nucleic acids. However, 

under conditions of oxidative stress, these antioxidant systems are overwhelmed, 
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allowing ROS to exert their deleterious effects and ultimately change mitochondrial 

function [117,132,136].  

 

2.3 Mechanisms of Defence against Oxidative Stress 

The vasculature is endowed with protective antioxidant defence mechanisms, both 

enzymatic and nonenzymatic, to conteract the detrimental effects of ROS. Non-

enzymatic antioxidant molecules include ascorbic acid (vitamin C), α-tocopherol 

(vitamin E) and glutathione, while superoxide dismutases (SODs), catalase, glutathione 

peroxidases (GPxs) and thioredoxins represent important antioxidant enzymes which act 

to directly scavenge ROS, converting them to less reactive species [140-142]. 

2.3.1 Superoxide Dismutases 

The SODs represent the first and most important line of enzymatic antioxidant defence 

against ROS. A ubiquitous family of enzymes, SODs catalyse the conversion of O2
–

 to 

H2O2 and O2 [140,141,143]. Three distinct isoforms of SOD have been identified in 

vascular tissue: Cu/Zn SOD (encoded by SOD1 gene) is located in the cytoplasm, 

MnSOD (encoded by SOD2 gene) in the mitochondria and extracellular SOD (encoded 

by SOD3 gene).  

The importance of SODs as an antioxidant defence mechanism has been highlighted by 

gene transfer studies wherein SOD overexpression improved endothelial function 

[144,145]. Overexpression of SOD2 has also been shown to prevent hyperglycaemia-

associated production of O2
–

, activation of PKC and AGEs formation [147], supporting 

a role for mitochondrial ROS production in diabetic macrovascular disease. 

2.3.2 Catalase 

Catalase is a highly catalytically efficient enzyme, primarily located in peroxisomes but 

also functions in the cytosol and catalyses the conversion of H2O2 to water following 
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dismutation of O2
–

 by SOD [140,141,148]. Inherited catalase deficiency has been 

linked to elevated cardiovascular risk and increased incidence of diabetes mellitus 

[141]. However, experimental investigation has provided evidence that catalase 

provides only moderate protection against oxidative stress [149].  

2.3.3 Glutathione Peroxidases 

GPxs are a family of enzymes with an important role in antioxidant defence. Like 

catalase, GPxs reduces H2O2 to water and lipid hydroperoxides to their corresponding 

alcohols. Detoxification of secondary oxidation products is vital and GPxs play an 

important role, reducing lipid peroxides [140,141,151]. 

There are several isozymes, GPx1 is the most abundant form in mammalian tissues. 

Mice with a disrupted GPx1 gene exhibit increased susceptibility to oxidative stress-

inducing agents [152], while induction of this isozyme has been shown to provide 

protection against oxidative damage in endothelial cells [153]. In apoE-deficient mice, 

the deficiency of GPx1 accelerates and modifies atherosclerotic lesion progression 

[32,154]. Furthermore, transgenic GPx1 expression was observed to impair endothelial 

dysfunction [155]. Similarly, deficiency of GPx3 has been associated with decreased 

NO bioavailability and increased platelet-dependent thrombosis [141]. GPx4 knockout 

mice are not viable; they die during early embryonic development. 

Glutathione is the principal low molecular weight, non-protein thiol in the cell [140]. 

Mainly found in the reduced state, glutathione has numerous functions in metabolism, 

signal transduction and gene expression [156]. GSH acts as an electron donor and can 

directly scavenge ROS but also acts as a cofactor in the conversion of H2O2 to H2O by 

GPxs [140,141]. 

Additional selenoproteins with similar antioxidant activities to GPxs include the 

thioredoxins [141], while the glutathione-s-transferases (GSTs) are examples of 
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nonselenocysteine containing enzymes of significant importance in secondary oxidative 

stress defence, acting to detoxify reactive electrophiles [141,151]. 

2.3.4 Thioredoxin 

Thioredoxin (Trx) seems to exert most of its ROS-scavenging properties through Trx 

peroxidase (peroxiredoxin), which uses endogenous SH groups as reducing equivalents. 

Thioredoxin is present in endothelial- and vascular smooth muscle cells. Trx scavenges 

ROS and ONOO
-
 and also reduce disulfides in proteins, peptides, and oxidized 

glutathione (GSSG) [142,157].  

2.3.5 Heme oxygenase  

Heme oxygenase (HO) has indirect antioxidant effects through breakdown of free heme 

and the production of CO, as well as biliverdin and bilirubin, which themselves have 

antioxidant properties [158]. There are two isoforms of this enzyme, a constitutive heme 

oxygenase, HO2, which is ubiquitously expressed in endothelial cells, and HO1, which 

is induced in response to oxidative stress, probably as an adaptive response. There is 

extensive evidence that HO1 can protect against vascular damage and atherogenesis 

[14,125,159]. The carbon monoxide has antiproliferative and anti-inflammatory as well 

as vasodilatory properties [160]. Genetic models of HO1 deficiency or overexpression 

of HO1 suggest that the actions of HO1 are important in modulating the severity of 

atherosclerosis [161]. 

2.3.6 Paraoxonase 

The paraoxonase (PON) family of enzymes acts as vascular antioxidant defense and 

protects against vascular disease [162]. The PON1 and PON3 enzymes are synthesized 

in the liver and circulate in plasma associated with HDL. The capacity of HDL in 

decreasing HDL and LDL lipid peroxidation largely depends on its PON1 content 

[162]. 
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PON1 knockout mice are more prone to atherosclerosis [163] and low PON1 activity 

predicts acute cardiovascular events in human prospective studies [164]. Deletion of 

PON1 gene increases oxidative stress in mouse macrophages [165]. PON2 is expressed 

in many cell types. The enzyme has been shown to reduce ROS in human endothelial 

cells and vascular smooth muscle cells [166]. PON2-deficient mice with an apoE−/− 

background developed more atherosclerotic lesions, whereas PON2-overexpressing 

mice were protected against those lesions [167].  

Diabetes is characterized by increased oxidative stress and by decreased PON1 activity 

[168]. The ability of PON1 to protect against oxidative stress involved in major diseases 

such atherosclerosis and diabetes, underlines the notion that strategies aimed at 

increasing PON1 activity and/or expression would have several benefits.  

 

3. Potential therapeutic targets 

In type 2 diabetes, glucotoxicity, lipotoxicity, insulin resistance and a mutual interaction 

between these factors occur to foster the development and progression of endothelial 

dysfunction. Conventional therapies to reduce hyperglycemia, dyslipidemia and insulin 

resistance represent important clinical options to improve endothelial function and delay 

the progression of vascular complications [169]. These conventional therapies and their 

effect on vascular function have been evaluated and reviewed elsewhere [170-173]. 

Noteworthy, most of these therapies are not completely effective in slowing vascular 

disease and would benefit from adjuvant cardiovascular protective therapies.  

 

3.1 Cardiovascular therapies targeting the endothelium 

The endothelium is a highly important target for therapy in cardiovascular disease  

[174]. It is rapidly and preferentially exposed to systemically administered agents and 
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establishes a link with the underlying tissue, providing the researcher with a useful 

therapeutic target. 

3.1.1 Potential therapeutic options for treating endothelial dysfunction by 

modulating eNOS 

The vascular tone of arteries is primarily controlled by the bioavailability of NO, a key 

factor in vascular protection by preserving vessel reactivity. Thus, multiple potential 

therapeutic targets have been identified along the L-arginine-NOS pathway that could 

increase NO bioavailability. In figure 9 these sites are identified and include: at the level 

of the substrate, L-arginine; at the level of the NO-generating enzyme, eNOS; at the 

level of the soluble guanylyl cyclase, its main target; and at the level of the main 

effector of NO action, cGMP. 

Administration of NO donors such as pentaerythritol tetranitrate (PETN) reduce 

oxidative stress (probably by inducing HO1) and improve endothelial dysfunction 

[137]. Thus, diabetic patients would benefit greatly from organic nitrate treatment 

devoid of classical adverse effects, such as nitrate-induced vascular oxidative stress, 

nitrate tolerance, and endothelial dysfunction (cross-tolerance) [126]. 

NO availability can be increased augmenting NO production by eNOS. The simplest 

way to modulate eNOS is administration of its substrate L-arginine [127] or its essential 

cofactor BH4 or BH4 analogs (Fig. 9, 10). Folic acid and its active form 5-

methyltetrahydrofolate can modulate eNOS by improving BH4 bioavailability in the 

vasculature by preventing its oxidation [224]. Midostaurin, betulinic acid and ursolic 

acid upregulate eNOS and simultaneously decrease NADPH oxidase expression. Novel 

small molecules AVE9488 and AVE3085 are two eNOS transcription enhancers that 

reverse eNOS uncoupling and preserve eNOS functionality and consequently increase 

NO bioavailability [138,175]. There is evidence that a cell-permeable peptide 
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antagonizes the inhibitory actions of caveolin-1 on eNOS leading to increase in NO 

production [223]. Statins, angiotensin II type 1 receptor blockers, estrogens and 

erythropoietin enhance BH4 synthesis by stimulating GTP cyclohydrolase I (GCH1) 

expression or activity. In vivo activation of AMP-activated protein kinase (AMPK) 

normalizes endothelial function due to an inhibition of GCH1 degradation associated 

with diabetes [139]. Statins, angiotensin II receptor blockers, ACE inhibitors, the 

aldosterone antagonist eplerenone and the renin inhibitor aliskiren prevent BH4 

oxidation by decreasing the expression and/or activity of NADPH oxidase (Fig. 9, 10). 

Statins can also directly activate eNOS via post-translational mechanisms involving 

activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway [176]. 

In addition, cGMP levels may also be increased by inhibiting its metabolism by the 

phosphodiesterase-5 (PDE5) enzyme. The strategy of increasing the downstream 

mediator cGMP without affecting NO levels may be preferred due to the mixed 

outcomes in stroke reported in animal models following alterations in NO levels [177]. 

sGC stimulators and activators can treat the 2 forms of sGC insufficiency (i.e., 

diminished NO bioavailability and reduction of the catalytic capacity of sGC). 

Preliminary studies with both PDE5 inhibitors and sGC-targeted drugs have shown 

promising results [178-180]. 

3.1.2 Therapeutic approaches to reduce oxidative stress and /or increase 

antioxidant defence systems  

Given the crucial role of ROS in endothelial function, considerable efforts have been 

made to discover therapies to reduce ROS in the vasculature. Despite promising initial 

observations, clinical trials with antioxidant vitamins C and E failed to show an 

improved cardiovascular outcome. Eventually new antioxidant molecules, targeted to 
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the precise locations where ROS concentrations are elevated may, at an early stage, 

inhibit the mechanisms leading to diabetic complications [181]. 

The ability of PON1 to protect against oxidative stress and hydrolyse homocysteine 

thiolactone, a metabolite of homocysteine that can impair protein function promoting 

endothelial dysfunction, underlines the notion that strategies aimed at increasing PON1 

activity and/or expression can be beneficial. Certain drugs (e.g. hypolipemic and 

antidiabetic compounds), dietary and life-style factors (eg. antioxidants, polyphenols, 

moderate wine consumption) appear to increase PON1 activity [184,201]. Promoting an 

increment in PON1 activity may prove beneficial to prevent diabetes development [235] 

and slow down its cardiovascular complications [184,185, 236]. 

Substances able to inhibit NADPH oxidases and prevent superoxide production may be 

useful for treatment of endothelial dysfunction [230]. Several inhibitors of the NADPH 

oxidase have been developed to specifically target NADPH oxidases with potential 

benefits [188-190, reviewed in 111 and 113]. Many cardiovascular drugs interfere with 

NADPH oxidases although most likely by indirect mechanisms. Additionally, 

flavonoids exhibit an inhibitory effect on NADPH oxidase combined with O2
– 

scavenging [190].  Nox-signaling pathways in the vasculature are likely to offer novel 

therapies. Discovering gene therapy targets towards enzymes involved in the 

homeostasis of vascular redox state is essential. Recently, the design and application of 

nanocarriers for delivery of antioxidants to the endothelium was performed with 

favorable outcomes [182]. Additionally, it has been described that delivery of genes 

encoding antioxidant defense enzymes (e.g. superoxide dismutase, catalase, glutathione 

peroxidase, PON1 or HO1) or eNOS, suppress atherogenesis in animal models [50-

52,67,98,124]. Similarly, delivery of genes encoding regulators of redox sensitive 

transcriptional factors (e.g. NF-kappa B, AP-1, NF-E2-related factor-2, and others) or 
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reactive oxygen species scavengers have been successfully used in experimental studies 

[73,183].  

Induction of endogenous antioxidant enzymes by activators of the NF-E2-related factor-

2/antioxidant response element pathway may be an interest approach to obtain sufficient 

levels of antioxidants and reduce oxidative stress [73,78]. Additionally, SIRT1-

mediated inhibition of p66Shc (a key effector driving vascular memory in diabetes) may 

also contribute to the prevention of oxidative stress-induced endothelial dysfunction in 

vascular diseases [79]. Despite the promising results from basic science, the clinical 

applicability of these strategies has proven to be difficult and challenging.  

 

3.2 Other therapeutic approaches  

Novel therapeutic approaches designed to inhibit AGEs formation and signalling (Fig. 

11) [191,192], specifically directed to reduce inflammation [193,232] and restore the 

ox/redox balance in the endothelium may represent promising strategies to ameliorate 

vascular function in diabetic state. Potential therapies also include: AMPK activators, 

PKC inhibitors, PARP inhibitors and rho-associated coiled-coil protein kinase (ROCK) 

inhibitors, among others.  

AMPK is recognized as a key regulator of cellular energy status that has favorable 

effects on eNOS activity, insulin sensitivity, and mitochondrial function in a variety of 

cell types, including vascular cells. Therefore, pharmacological therapeutics that 

activate AMPK can be an important target in treating vascular complications in diabetes 

[139,225]. 

Inhibition of protein kinase C is another therapeutic approach. LY333531 

(ruboxistaurine mesylate) has been shown to reduce oxidative stress and inflammation 
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by blocking PKC-β isoform activation [194]. This inhibitory approach may also 

decrease vascular insulin resistance [134]. 

Furthermore, chronic treatment with the PARP inhibitors in rodent models has been 

demonstrated to improve endothelial dysfunction associated with aging [195,197]. In 

addition, pharmacological inhibition of PARP with PJ-34 restored endothelium-

dependent vasodilation and reduced the levels of cytokines and inflammatory response 

[198,199]. Additionally, PARP-1 knockout protects against dyslipidemia-induced 

autonomic and vascular dysfunction in ApoE
−/−

 mice [200]. PARP inhibitors are 

potential therapies for diabetic vasculopathy. Pharmacological catalytic decomposition 

of peroxynitrite with FP15 has been demonstrated to effectively eliminate peroxynitrite 

and prevent PARP activation both in vitro and in vivo [226,227], thereby improving 

cardiovascular function in various disease models. 

Rho-associated coiled-coil protein kinases are potential targets for treatment in vascular 

disease as suggested by the use of specific inhibitors as fasudil. Treatment with fasudil 

was protective against vascular-injury-induced leukocyte recruitment in wild type but 

not eNOS KO mice [228]. In diabetic animal models, studies have demonstrated a 

significant correlation between increased RhoA activity and impaired vascular function 

[229]. Thus, testing of fasudil and newer more specific second generation ROCK 

inhibitors in a diabetic setting would be of great interest in an effort to limit vascular 

complications [96]. 

Overall it is important to identify new targets for therapy and develop new agents for 

clinical use. 

 

3.3 Targeting vascular disease risk factors with nutritional therapeutics 
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Several nutritional agents such as lipoic acid, polyphenols, resveratrol, pomegranate, 

omega-3 fatty acids and bioavailable SOD have been shown to effectively improve 

and/or protect against endothelial dysfunction. Indeed, a comprehensive nutritional 

regimen can be adjoined with pharmacological approaches in order to target all of the 

risk factors that contribute to atherosclerosis. 

Lipoic acid (LA) is a naturally occurring antioxidant that serves as a coenzyme in 

energy metabolism of fats, carbohydrates, and proteins. It can regenerate thioredoxin, 

vitamin C, and glutathione, which in turn can recycle vitamin E. LA reduces serum 

glucose levels in diabetic patients [201] and improves endothelial function in subjects 

with metabolic syndrome [202]. In type 2 diabetic animal models, we have previously 

shown a reduction of endothelial dysfunction after treatment with LA [21].  

Different natural polyphenols have been shown to preserve endothelial function and 

prevent cardiovascular disease. Epidemiological evidence suggests a negative 

correlation between the consumption of polyphenol-rich foods (fruits, vegetables, and 

cocoa contained in chocolate) or beverages (wine, especially red wine, grape juice, 

green tea, among others.) and the incidence of cardiovascular disease [203-205]. Most 

polyphenols are mild antioxidants, some can reduce the activity of prooxidative 

NADPH oxidases, and others can stimulate antioxidative enzymes and eNOS [206-

209]. The beneficial effects of silibinin on ADMA levels and endothelial dysfunction in 

db/db mice were recently described. The endothelium-dependent vasodilatation to ACh 

was impaired in db/db mice and was restored in the silibinin group, accompanied with a 

reduction of plasma and vascular levels of ADMA [129]. 

Several molecules with antioxidant properties (such as resveratrol, piceatannol, 

probucol, taurin) enhance dimethyl arginine dimethyl amino hydrolase activity, 

increasing ADMA catabolism [128]. 
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The benefits of resveratrol include improvements in endothelial function [210-212]. 

Resveratrol seems to increase the number and activity of endothelial progenitor cells 

[211]. Resveratrol benefits the circulatory system by eliciting a decrease in the 

oxidation of LDL; by fostering decreases in platelet aggregation; and by promoting 

relaxation of arterioles [213]. Thus, resveratrol improves cardiovascular system by 

decreasing factors that contribute to the development of atherosclerosis and 

atherothrombosis [97,214]. 

Previous studies indicate that pomegranate and its extracts reduce oxidation and 

inflammation mainly through their effect on PON-1 activity, intervening at each step in 

the development of atherosclerosis [215-217].  

Intake of omega-3 fatty acids might reduce Lp-PLA 2 levels and reduce the risk of 

vascular disease [218,219]. Omega-3 fatty acids serve as substrates for the conversion to 

a novel series of lipid mediators designated resolvins and protectins, with potent anti-

inflammatory properties [193]. Studies have found that when omega-3 fatty acids were 

combined with rosuvastatin or other conventional therapies, the combination improved 

endothelial function [220,221]. 

Diminished levels of the antioxidant enzyme SOD have been linked with cardiovascular 

disease. Supplementation with GliSODin, a vegetal SOD associated with gliadin, was 

effective in controlling the thickness of the carotid artery intima and media layers as 

measured by ultrasonography-B [222]. Previous studies have demonstrated the 

preventive efficacy of GliSODin at a preclinical stage in subjects with risk factors of 

cardiovascular disease. 

 

4. Conclusions 
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Endothelial function is important for the homeostasis of the body and its dysfunction is 

associated with several pathophysiological conditions, including atherosclerosis, 

hypertension and diabetes. Understanding and treating endothelial dysfunction is a 

major issue in the prevention of vascular complications associated with all forms of 

diabetes mellitus. 

Controlling a variety of risk factors causing inflammation and oxidative stress with 

combination therapy targeting intracellular mechanisms underlying metabolic 

alterations (such as inhibiting AGEs formation and signaling, suppressing PKC 

activation, among others) may simultaneously address multiple mechanisms underlying 

the pathogenesis of atherosclerosis. Since therapy addressing a single metabolic 

abnormality has not been effective, to reduce cardiovascular complications in type 2 

diabetes may require simultaneous interventions within multiple metabolic and 

signaling pathways. Concurrent reduction of hyperglycemia, oxidative stress, 

inflammation and insulin resistance may be necessary to ameliorate the adverse effects 

that progress to diabetic vasculopathy in patients with cardiovascular risk factors.  
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Figure legends 

Figure 1 Multiple functions of endothelium.  

Figure 2 Endothelial cells are responsible for a number of physiological functions, 

including: 1) regulation of vascular tone through balanced production of vasodilators 

and vasoconstrictors; 2) control of blood fluidity and coagulation through production of 

factors that regulate platelet activity, the clotting cascade, and the fibrinolytic system; 

and 3) regulation of inflammatory processes through expression of cytokines and 

adhesion molecules. ACh, acetylcholine; ATR, angiotensin-II receptor; BK, bradykinin; 

EDHF, endothelium-derived hyperpolarisation factor; NO - nitric oxide; PAI-1, 

plasminogen activator inhibitor-1; PGH2, prostaglandin H2; PGI2, prostacyclin; O2
– 

- 

superoxide; t-PA, tissue plasminogen activator; TM, thrombomodulin, TxA2, 

thromboxane A2; vWF, von Willebrand factor. 

Figure 3 Atheroprotective properties of nitric oxide generated by endothelial nitric 

oxide synthase. 

Figure 4. In situ detection of superoxide in arterial vessels of normal Wistar (left 

panels), and diabetic Goto-Kakizaki rats (GK, right panels). Superoxide production was 

detected as red fluorescence after incubation with dihydroethidium. Representative 

fluorescent staining of superoxide with dihydroethidium in the abdominal aorta (upper 

panels) and kidney arterial vessels (lower panels). O2
 

 formation significantly 

increased in diabetic animals when compared to age-matched controls.  

Figure 5. Nitrotyrosine (3-NT) immunoreactivity increases in arterial vessels from 

diabetic Goto-Kakizaki (GK) rats. Immunofluorescence staining for 3-NT (green) in 

aortic (upper panels) and kidney arterial sections (lower panels) isolated from Wistar 

(left panels) and diabetic GK (right panels) rats. Nuclei were counter-stained with DAPI 
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(blue). The extent and intensity of immunofluorescence for nitrotyrosine was much 

greater in arterial rings from diabetic rat animals when compared to age-matched 

controls. Measuring NT levels is thought to be a reliable index to analyze peroxynitrite 

formation.  

Figure 6 Several mechanisms that foster endothelial dysfunction and vascular damage 

in type 2 diabetes. Various risk factors converge on the artery (center) to promote 

atherogenesis under diabetic conditions. These factors include: hypertension, genetic 

predisposition, hyperglycemia, hyperinsulinemia, oxidative stress, advanced glycation 

end products (AGEs), insulin resistance and increased free fatty acids (FFAs) in 

circulation, lipemia, increased obesity as related to some factors which characterize life-

style (sedentary, drinking, smoking and eating habits), enhanced proinflammatory and 

prothrombotic cytokines. Peripheral tissues are resistant to insulin action, which 

promotes hyperglycemia and increased levels of FFAs. In insulin resistance states, the 

pancreas initially tries to compensate by producing more insulin, resulting in 

hyperinsulinemia, itself a risk factor for angiopathy. High levels of abdominal fat 

present the liver with elevated levels of FFAs through the portal circulation. This excess 

of FFAs will lead to excess production of triglyceride (TG)-rich lipoprotein particles. 

Hypertriglyceridemia is accompanied by a concomitant decrease in HDL. The adipocyte 

can also release proinflammatory cytokines such as TNF-, which not only have direct 

effects on vascular wall promoting atherogenesis, but also can elicit the production of 

acute phase reactants by the liver, including CRP, increased fibrinogen and PAI-1. 

Finally, the formation of advanced glycation end products (AGEs) from glycated 

macromolecules, can damage vasculature through different mechanisms. VLDL, very 

low-density lipoprotein; TNF-, tumor necrosis factor-; CRP, C-reactive protein; and 

PAI-1, plasminogen activator inhibitor-1. 
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Figure 7 Endothelial dysfunction in diabetes. Prolonged exposure to hyperglycemia is 

the major culprit in the pathogenesis of diabetic complications, involving increased 

ROS and RNS production. Oxidative stress leads to an imbalance in the vascular 

homeostasis due to increased vasoconstriction and impaired vasorelaxation that 

ultimately fosters diabetic endothelial dysfunction. AGEs, advanced glycation end 

products; EDCF, endothelium-derived contracting factors; eNOS, endothelial nitric 

oxide synthase; FFAs, free fatty acids; PKC, protein kinase C; PGIS, prostacyclin 

synthase; NF-B-Nuclear factor-kappa B; NO, nitric oxide; RNS: reactive nitrogen 

species; ROS, reactive oxygen species. Adapted from [171].  

Figure 8 The formation of advanced glycation end products (AGEs) can involve early 

glucose metabolites such as glyoxal and methylglyoxal, highly reactive dicarbonyls and 

key precursors of AGEs. 

Figure 9 Potential sites of therapeutic intervention in the L-arginine–NO-synthase–

soluble guanylyl cyclase pathway. They are indicated by the numbers (from 1 to 14). (1) 

L-arginine supplementation. (2) Inhibition of protein arginine N-methyltransferase type 

I (PRMT-I) to prevent the formation of asymmetric dimethyl-L-arginine (ADMA). (3) 

Increasing the expression and/or the activity of dimethylarginine 

dimethylaminohydrolase (DDAH) to increase ADMA degradation. (4) Inhibition of 

arginase-2 to prevent L-arginine metabolism. (5) Increasing the expression and/or 

activity of endothelial nitric oxide synthase (eNOS). (6) Stimulation of endothelium-

derived nitric oxide release. (7) Enhancing the expression and/or activity of guanosine 

triphosphate cyclohydrolase (GCH1), to increase tetrahydrobiopterin synthesis (BH4), 

or direct supplementation with BH4, or with its precursor sepiapterin. (8) Enhancing the 

expression and/or activity of dihydrofolate reductase (DHFR), to increase BH4 

regeneration. (9) Scavengers of reactive oxygen species (ROS) like antioxidants. (10) 
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Inhibition of the activity and/or expression of enzymes that generate ROS such as 

NADPH oxidases (NOX), cyclooxygenases (COX), lipoxygenases (LOX) or 

cytochrome P450 monoxygenases (P450). (11) Enhancing the expression and/or activity 

of enzymes that metabolized ROS such as superoxide dismutase (SOD) or glutathione 

peroxidase. (12) Stimulators of soluble guanylyl cyclase (sGC). (13) Activators of sGC. 

(14) Inhibitors of phosphodiesterase-5 (PDE-5). BH2, dihydrobiopterin; CAT-1, cationic 

amino acid transporters; CaV, voltage-activated calcium channel; cGMP, cyclic 

guanosine monophosphate; EC, endothelial cell; FAD, flavin adenine dinucleotide; 

FMN, flavin mononucleotide; O2
–

, superoxide anion; ONOO
–
, peroxynitrite; PKG, 

protein kinase G; VSMC, vascular smooth muscle cell.  

Figure 10. Focus on the potential eNOS-based therapeutic approaches for endothelial 

dysfunction. The essential NOS cofactor tetrahydrobiopterin (BH4) is synthesized from 

guanosine 5'-triphosphate (GTP) via a de novo pathway by the rate-limiting enzyme 

GTP cyclohydrolase I (GCH1). Alternatively, the synthesis of BH4 can occur via other 

pathways including the salvage pathway, from dihydrobiopterin (BH2) back to BH4. As 

a substrate, L-arginine stimulates NO release from eNOS. Folic acid may improve 

eNOS functionality by stabilizing BH4 and stimulating the endogenous regeneration of 

BH2 back to BH4. Midostaurin, betulinic acid and ursolic acid upregulate eNOS and 

simultaneously decrease NADPH oxidase expression. AVE9488 and AVE3085 are two 

eNOS transcription enhancers that reverse eNOS uncoupling and improve eNOS 

functionality. Statins, angiotensin II type 1 receptor blockers (ARBs), estrogens and 

erythropoietin (EPO) enhance BH4 synthesis by stimulating GCH1 expression or 

activity. Statins, ARBs, angiotensin-converting enzyme (ACE) inhibitors, the 

aldosterone antagonist eplerenone and the renin inhibitor aliskiren prevent BH4 

oxidation by decreasing the expression and/or activity of NADPH oxidase.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

62 
 

Figure 11 Potential sites of therapeutic intervention in order to reduce hyperglycemia 

and its downstream effects. On the left there are the potential target sites: glycemic 

control; glycosylation inhibition; crosslink breakers; RAGE blockers; blocking of PKC 

signaling pathway; blocking of apoptosis.  

AGEs, advanced glycation end products; MAPK, mitogenic activated protein kinase; 

PKC, protein kinase C; RAGE, receptor for advanced glycation end products. 
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Table 1. Differences between a healthy and a dysfunctional endothelium. Besides 

impaired vasodilation (NO, PGI2), endothelial dysfunction is characterized by increase 

oxidative stress ( nitrotyrosine and uric acid), pro-coagulant (PAI-1, vWF, P-

selectin), pro-inflammatory biomarkers (sICAM, sVCAM, E-selectin, CRP, TNF-

alpha, IL-6, MCP-1); decrement in endothelial progenitor cells and increased molecular 

markers of damage (circulating endothelial cells, microparticules, MPs). 

 

CECs, circulating endothelial cells; CRP, C-reactive protein; EMPs, endothelial 

microparticles; EPCs, endothelial progenitor cells; IL-6, interleukin-6; MPs, 

microparticules; NO, nitric oxide; PAI-1, plasminogen activator inhibitor 1; PGI2, 

prostacyclin; ROS, reactive oxygen species; sICAM, soluble intercellular adhesion 

molecule; sVCAM, soluble vascular cell adhesion molecule; TNF-, tumor necrosis 

factor alpha; vWF, von Willebrand factor.  
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Table 2 Examples of mechanisms implicated in diabetic macrovascular disease. 

Cellular players Mechanisms 

Endothelial cells Increased reactive oxygen species 

Decreased NO bioavailability 

Increased harmful metabolites (peroxynitrite, nitrotyrosine) 

NF-B activation 

Increased lipid peroxidation products 

Increased glycation (AGEs) 

Impaired endothelial-dependent relaxation 

Monocyte-derived 

macrophages 

Increased IL1, IL6, CD36, MCP-1 

Activation of protein kinase C 

Vascular smooth 

muscle cells 

Increased proliferation 

Increased migration into intima  

Increased matrix degradation 

Altered matrix components (chondroitin, dermatan sulphate 

proteoglycans) 

Increased nonenzymatic collagen glycation 

Increased reactive oxygen species 

AGEs – Advanced glycation end products; IL-interleukin; MCP-1- Monocyte 

chemoattractant protein-1; NF-B-Nuclear factor-kappa B; NO-nitric oxide  
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Table 3. Approaches to access oxidative stress in biological systems 

Approach Examples 

Markers of increased pro-

oxidant activity 

Increase in oxidant-generating systems (NADPH 

oxidases, xanthine oxidase, mitochondrial ROS, 

NOS) 

Direct measurements of ROS/RNS generation 

(reduction of NBT, oxidant-sensitive dyes, direct 

radicals measurement by ESR) 

Markers of decrease in 

antioxidant activity 

Low-molecular-weight antioxidants (vitamins C 

and E, GSH) 

Antioxidant enzymes (SODs, GPx, GR, catalase, 

thioredoxin system, paraoxonase) 

Total antioxidant capacity 

Resistant to an external oxidant 

Altered cellular redox state Overall reducing activity (cyclic voltammetry) 

GSH/GSSG ratio 

Oxidative damage 

parameters 

Lipid oxidation (MDA, isoprostranes, 4-HNE) 

Protein oxidation (protein carbonylation, S-

nitrosylation, nitrotyrosine, gluthionylation) 

DNA oxidation (8-hydroxydeoxyguanosine, 

dihydropropidium iodide) 

ROS, reactive oxygen species; RNS, reactive nitrogen species; NOS, nitric oxide 

synthase; NADPH oxidases, nicotinamide adenine dinucleotide phosphate oxidases; 

NBT, nitroblue tetrazolium; ESR, electron spin resonance; SOD, superoxide dismutase; 

GR, glutathione reductase; GSH/GSSG, reduced glutathione/oxidized glutathione 

ration; GPx, glutathione peroxidase; 4-HNE, 4-hydroxynonenal; MDA, 

malondialdehyde.  
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