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Abstract

In this thesis we study how humans manipulate everyday objects, and construct a probabilistic repre-

sentation model for the tasks and objects useful for autonomous grasping and manipulation by robotic

hands. An object-centric probabilistic volumetric model is proposed to represent the object shape ac-

quired by in-hand exploration. The object volumetric map is also useful to fuse the multimodal data

and map contact regions, and tactile forces during stable grasps. This model is refined by segmenting

the volume into components approximated by superquadrics modeling, and overlaying the contact

points used taking into account the task context. A novel approach for object identification by human

in-hand exploration of objects is proposed. Different contact points are associated to an object shape,

modeled by mixture models, allowing the object identification through the set of hand configurations

used during the in-hand exploration.

Humans excel when dealing with everyday manipulation tasks, being able to learn new skills,

and to adapt in different complex environments. This results from a lifelong learning, and also ob-

servation of other skilled humans. To obtain similar dexterity with robotic hands, cognitive capacity

is needed to deal with uncertainty. By extracting relevant multi-sensor information from the envi-

ronment (objects), knowledge from previous grasping tasks can be generalized to be applied within

different contexts. Based on this strategy, human demonstrations of manipulation tasks are recorded

from both the human hand and object points of view. The multimodal data acquisition system records

human hand and fingers 6D pose, finger flexure, tactile forces distributed on the inside of the hand,

color images and stereo depth map, and also object 6D pose. From the acquired data, relevant fea-

tures are detected concerning motion patterns, tactile forces and hand-object states. This will enable

modeling a class of tasks from sets of repeated demonstrations of the same task, so that a generalized

probabilistic representation is derived to be used for task planning in artificial systems.

In this research we also address an artificial system that relies on knowledge from previous

human object grasping demonstrations to accomplish the objective of robot grasp synthesis for un-
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ii Abstract

known objects. A learning process is adopted to quantify probabilistic distributions and the uncer-

tainty. These distributions are combined with preliminary knowledge towards inference of proper

grasps given a point cloud of an unknown object. We designed a method that comprises a twofold

process: object decomposition and grasp synthesis. The decomposition of objects into primitives is

used, across which similarities between past observations and new unknown objects can be made.

The grasps are associated with the defined object primitives, so that feasible object regions for grasp-

ing can be determined. The hand pose relative to the object is computed for the pre-grasp and the

selected grasp.

The results presented in this thesis show that the in-hand exploration of object is useful to

model and represent the object shape allowing its identification by the hand configurations during the

exploration. The features extracted from human grasp demonstrations are sufficient to distinguish

key patterns that characterize each stage of the manipulation tasks, ranging from simple object dis-

placement, where the same grasp is employed during manipulation (homogeneous manipulation) to

more complex interactions such as object reorientation, fine positioning, and sequential in-hand rota-

tion (dexterous manipulation). We have validated our approach of grasp synthesis on a real robotic

platform (a dexterous robotic hand). Results show that the segmentation of the object into primitives

allows identifying the most suitable regions for grasping based on previous learning. The proposed

approach provides suitable grasps, better than more time consuming analytical and geometrical ap-

proaches. Learning from human grasp demonstrations along with features extracted from objects

is a useful way to endow a robotic dexterous hand with enough skills to autonomously grasp and

manipulate novel objects.



Resumo

Nesta tese estuda-se a forma como os seres humanos manipulam objectos do quotidiano, modelando-

os de forma probabilı́stica. Os modelos probabilı́sticos são também utlizados para a representação das

tarefas e dos movimentos, com o objectivo de dotar mãos robóticas com elevado grau de autonomia.

Um modelo volumétrico probabilı́stico centrado no objecto é proposto para representar a sua forma a

partir de exploração táctil. O mapa volumétrico do objecto é também útil para a fusão de dados mul-

timodais, mapas da região de contacto e força táctil durante uma pega estável. Este modelo é refinado

através da segmentação do volume em componentes, aproximadas por superquádricas, e sobrepondo

os pontos de contactos tendo em conta o contexto da tarefa. Uma nova técnica para identificação

de objectos através de exploração táctil de objectos é proposta. Diferentes pontos de contacto são

associados a forma de um objecto através de modelos de misturas, permitindo a identificação de um

objecto através de um conjunto de configurações base que a mão toma durante a exploração.

Os seres humanos destacam-se quando se trata de tarefas de manipulação do quotidiano, sendo

capaz de aprender novas habilidades ou adaptar-se a novos e complexos ambientes. Esta capacidade

resulta de uma aprendizagem pessoal, mas também da observação de pessoas experientes. Para que

mãos robóticas adquiram essa destreza, é necessária uma capacidade cognitiva, que as permitam lidar

com as incertezas. Através da extracção de informação multisensorial do ambiente, o conhecimento

de manipulações anteriores pode ser generalizado para a aplicação em diferentes contextos. Baseado

nesta estratégia, as demonstrações de tarefas de manipulação são capturadas, tanto do ponto de vista

do objecto como o da mão. O sistema de aquisição multimodal captura poses da mão e de cada um

dos dedos, as medidas de flexão dos dedos, a força táctil distribuı́da na mão, imagens RGB, imagens

de profundidade, e também a pose do objecto. Estes dados permitem modelar classes de tarefas a

partir de conjuntos de demonstrações repetidas da mesma tarefa, para que um modelo probabilı́stico

generalizado possa ser derivado e usado no planeamento de tarefas por parte de sistemas artificiais.

Nesta tese também se aborda a sı́ntese da configuração geométrica da mão em tarefas de
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iv Resumo

manipulação, baseados no conhecimento adquirido através das demonstrações humanas. Um pro-

cesso de aprendizagem é desenvolvido para quantificar as distribuições probabilı́sticas e a incerteza.

Estas distribuições são combinadas com conhecimento prévio com o objectivo de se inferir a forma

correcta de agarrar o objecto, dada uma nuvem de pontos de um objecto desconhecido. O método pro-

posto é dividido em dois processos: decomposição do objecto e a sı́ntese da configuração geométrica

da mão para agarrar um objecto. A decomposição do objecto em primitivas permite que se usem

semelhanças de observações passadas para novos objectos desconhecidos. As acções são associadas

com as várias primitivas de um objecto, para que se determinem as regiões do objecto nas quais os ob-

jectos possam ser agarrados. A pose da mão relativa ao objecto é calculada para a fase de aproximação

e contacto com o alvo.

Os resultados apresentados nesta tese mostram que a exploração táctil de um objecto é útil

para modelar e representar a forma do objecto, permitindo a sua identificação através da configuração

geométrica da mão durante a exploração. As caracterı́sticas extraı́das a partir das demonstrações

são suficientes para distinguir padrões chave que caracterizam cada etapa da tarefa de manipulação,

desde a simples movimentação do objecto, onde a mesma pega é aplicada durante a manipulação

(manipulação homogénea), até interacções mais complexas, tais como reorientação do objeto, refina-

mento da pose ou rotação sequencial.

A nossa técnica de sı́ntese de configurações da mão para agarrar um objecto foi validada numa

plataforma robótica real. Os resultados demonstram que a segmentação de objectos em primitivas,

permite identificar as regiões mais adequadas para os agarrar, tendo uma melhor performance que as

aproximações analı́ticas. A aprendizagem através de demonstrações humanas, bem como as carac-

terı́sticas extraı́das de objectos, mostram vantagens na geração de muita autonomia de mão robótica

permitindo a manipulação de novos objectos.
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Chapter 1

Introduction

Robotics is increasingly moving towards the research and development of technologies that

allow the introduction of robots in our daily life. The optimal robot assistant should share a human

environment and be able to cope with human presence and interact in a very friendly way. To create

such applications a number of problems need to be solved, including transposing the movements used

in everyday tasks, as well as finding out how to interpret human interactions and how to use all this

knowledge to create robots that can successfully act as assistants.

Intelligent robots are becoming part of our everyday lives and examples where they are usually

employed are: caretakers for the elderly and for disabled people, assistants in surgery and patient

rehabilitation and educational toys. The expectation of having intelligent robots lead us to think

that in order for this to happen, the complexity of programming must be greatly reduced, and robot

autonomy must become much more natural. This challenge is particularly relevant to a new generation

of robots, which must interact with people, and operate in human environments.

In the human world, we are surrounded by many types of objects subject to manipulation by

human hands. To ensure the robots have enough skills to interact with our environment, and in order

1
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to make sure they handle objects proficiently, their hands must resemble our hands. An example of an

advanced robotic hand that performs all 24 movements of the human hand is the Shadow Dexterous

Hand produced by the Shadow Robot Company LTD [Sha]. Although this hand satisfies many degrees

of freedom, the objects forms are infinite and the robotic hand will always encounter unknown objects.

An autonomous robot hand will need to adapt to varying grasp tasks accurately in different situations.

To overcome such a challenge, artificial cognitive skills are needed to enable a robotic platform to

take decisions for the execution of each specific task, and also to adapt to a human environment.

Given that humans excel in manipulative tasks, which is a basic skill for our survival, and a

key feature in our world of artefacts and devices made by human hands, then this study focuses on

researching how humans manipulate everyday objects, and construct a probabilistic representation

model for the tasks and objects useful to autonomous grasping and manipulation by robotic hands.

In this thesis, human demonstrations of predefined object manipulation tasks are recorded from

both the human hand and from the object’s point of view. The multimodal data acquisition system

records hand and fingers 6D pose, finger flexure, tactile forces distributed on the inside of the hand,

color images and stereo depth map, and also object 6D pose. From the acquired data, relevant fea-

tures are detected concerning motion patterns, tactile forces and hand-object states. This will enable

the modelling of a class of tasks from sets of repeated demonstrations of the same task, so that a

generalized probabilistic representation is derived to be used for task planning in artificial systems.

An object-centric probabilistic volumetric model is proposed to fuse the multimodal data and to map

contact regions, gaze, and tactile forces during stable grasps. This model is refined by segmenting the

volume into components approximated by geometrical primitives, and overlaying the contact points

used taking into account the task context.

In this study, it is shown that the features extracted are sufficient to distinguish key patterns that

characterize each stage of the manipulation tasks, ranging from simple object displacement, where

the same grasp is employed during manipulation (homogeneous manipulation), to more complex

interactions such as object reorientation, fine positioning, and sequential in-hand rotation (dexterous

manipulation).

A system architecture for grasp synthesis is also presented in this thesis. The proposed ap-

proach relies on knowledge from previous human grasping of predefined objects. A learning process

is adopted to quantify the probability distributions and the uncertainty over the human grasp experi-

ences. These distributions are combined with preliminary knowledge of grasping choice for specific
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object shapes towards inference of proper grasping given an object point cloud coming from the sen-

sor observations. To accomplish our goal of generating grasp hypothesis given an unknown object,

our system is designed in a twofold process: object decomposition and grasp synthesis. This way, af-

ter the object decomposition we can find suitable regions for grasping, as well as the candidate grasps

for this object. The answers given by the system are validated by an artificial robotic dexterous hand

given an unknown object.

The main tasks involved in this thesis regarding dexterous manipulation are:

• In-hand exploration of objects for shape representation and object identification;

• Modelling of contact points and hand configurations of stable grasps during human demonstra-

tions;

• Planning grasp strategy (finding a suitable region on objects for grasping);

• Grasp synthesis for unknown objects;

• Learning and identification of hand trajectories and constraints during simple manipulation

tasks.

Through tasks oriented grasps, it is possible to learn how to grasp specific objects. It is not a

simple process to model a task, and it differs from one object to another. Empirical approaches were

introduced to the grasp synthesis problem to avoid analytical techniques computational complexity.

Empirical methods use learning algorithms to imitate human grasping strategies. Since commonly

used objects have different shapes and sizes, generalizing these techniques to novel objects is not

trivial. In this study, a generalization process to deal with unknown objects is performed by encom-

passing human demonstrations and object perception from previous familiar objects.

To acquire knowledge on the previous mentioned topics, an artificial perception system is built

and it can be used later to allow an artificial hand to accomplish different tasks, for instance, unknown

object exploration and identification, as well as grasping planning and synthesis.

In summary, different subtopics of grasping will be presented in this thesis. The objectives of

this research are threefold stages: the first is the in-hand exploration of objects to achieve the object

model (Chapter 2) that is segmented and represented by some geometrical primitives (Chapter 3).

This approach allows the object identification (Chapter 4), as well as to extract other object properties.

The second stage of this thesis is the extraction of grasp features by observing how humans perform
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a task (Chapter 5). We encompass the object model with human demonstrations (e.g., contact points)

for learning purposes. The object model is used to learn object graspable regions and also to associate

grasp types for a specific object. The methods and computational techniques presented in Chapters

2, 3 and 5 are used to assist the third stage of this thesis, a grasp synthesis system that is presented

in Chapter 6, where some proposed methods were integrated into a single framework, accomplishing

then the goal of generating candidate grasps for unknown objects to be executed in a robotic platform.

Figure 1.1: Overview of how a general integration of subtopics of Manipulation/Grasping are done.
In-hand exploration of objects and manipulation can be coupled during the exploration of unknown or
partially known object to accomplish some manipulation tasks where the grasping or in-hand actions
can be applied: [OC01] [FMLD12a] [FMLD12b] [FMLD10].

However, the integration and relation of the objectives mentioned (all topics of this thesis)

are done during different manipulation tasks. From a computational perspective, the integration of

different modules, such as object perception and recognition, hand trajectories, task generalization

and grasp synthesis into a common framework, provide a way to endow a robot with cognitive skills

to interact with objects in complex tasks. This integration can be done as drawn in Figure 1.1 as

referred by [OC01].

1.1 General Motivation

Humans are able to learn skills, adapt and interact in different complex environments using their

rich source of sensory perception. Despite humans having different sensory perception, there is still
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a world of sensory uncertainty. Perception is, in principle, multisensory; information from several

modalities can be combined in case a single modality is not enough to reach a robust estimate [EB04].

When several modalities complement each other, the resulting sensory cooperation naturally leads to

a more robust and complete estimate of the surrounding environment.

To deal with the uncertainty acquired by the artificial perception system for everyday tasks,

in this study we adopt a probabilistic reasoning to acquire knowledge from human manipulation of

objects, extracting the relevant patterns as well as properties of the surrounding environment (objects).

Learning and inference are the main topics acquired from human demonstrations and then this priori

knowledge is used to make generalizations in other situations. From the demonstrations, a quantified

uncertainty (distributions) is achieved using the preliminary knowledge of the reasoning and the data

coming from the observation of the phenomenon. After building the knowledge, a cognitive inference

can be achieved through Bayesian inference.

Different problems in the field of grasping and manipulation are still open, such as intelligent

in-hand manipulation of different objects, as well as full autonomous grasping of unknown objects.

Humans studies on haptics perception demonstrated that human hands are very skilled to characterize,

perceive and recognize using only the sense of touch. Humans use specific hand exploratory move-

ments to extract features and characterize the in-hand manipulated objects [KLM85], [LK87]. Newell

et al. [NETB01] showed that both visual and haptic object recognition is dependent on the orientation

of the object relative to the observer, and that they thus complement each other and cooperate. The

best view for recognising an object visually is the learned view (usually the front). The best view for

object recognition by the haptic modality, however, is the side the fingers naturally explore the most,

the back part of the object. This humans studies show us that by learning from human experiences

we can extract relevant data towards improving robotic grasping.

1.2 Thesis Contributions

The following scientific question is addressed in this thesis: ”How can we endow an artificial sys-

tem with appropriate cognitive skills (i.e., advanced perception capabilities) in order to grasp and

manipulate everyday objects in the most autonomous and natural way possible?”

The answer reached in this thesis involves understanding how humans manipulate everyday

objects, and constructing a probabilistic representation model for the tasks (at a trajectory level) and

objects. Therefore, in order to deal with any uncertainty from the sensors and surrounding envi-
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ronment, these models are useful for decision-making in order to achieve successful grasping and

manipulation. This research is focused on developing an artificial system with the adequate intelli-

gence to allow the recovery of shape representation, identification of objects as well as reasoning on

actions (movements) performed by humans hands. Relevant cues are extracted from human demon-

stration in order to replicate grasping of a variety of everyday objects and also skilled movements

of reaching, grasping and object in-hand exploration. This is the key point in this research if it is

to reach the mentioned goals by specific learning and inference on grasps and in-hand movements.

To achieve the mentioned contributions, multimodal data feedback for grasping and in-hand explo-

ration purposes are used. Moreover, the relevant features extracted are also used to build a database

of learned data and the knowledge of uncertainty in the observations are processed towards making

successful inferences.

To accomplish the objective of this thesis, the research falls into different grasping subtopics

where the contributions are addressed as follows:

• A probabilistic representation method for object models (Chapter 2) and tasks (Chapter 5) that

are important for autonomous robot grasping. A novel strategy for probabilistic representation

of objects by in-hand exploration based on human demonstrations that supports multimodality

and fusion is presented. The object volumetric map allows the representation of the partial

volume of the object, as well as contact points modelling of stable grasps. The probabilistic

representation model of tasks relies on the learning from 6D hand pose and trajectories for task

identification taking into account the motion patterns.

• A novel approach for object identification by in-hand exploration based on learning from pre-

vious hand configurations associated with object models to generate hypotheses of object iden-

tities to be matched to an object database (Chapter 4);

• Strategies for object shape segmentation for grasping synthesis: Using data learned from human

demonstrations of stable grasps and object modelling to identify suitable regions on objects for

grasping based also on statistics of previously observed grasps (Chapters 3 and 5).

During the Ph.D. studies, our research leaded us to a set of publications in peer reviewed inter-

national conferences and journals. A set of publications related to the chapter’s topic is listed in the

end of each chapter of the thesis, and a complete list of publications is also presented in the Appendix
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A. The Chapters 2, 3 and 4 brought forth publications covering the topics related to in-hand explo-

ration of objects for shape representation using a probabilistic volumetric map, followed of the object

segmentation into components, and later the object identification using the hand geometrical configu-

rations. Some results presented in Chapter 5 about grasp features detection and learning from human

grasp demonstrations for movements identification, modelling of contact points of stable grasps, and

grasp types detection were published. The Chapter 6 brought forth publications which addresses

stages and also an artificial system endowed with cognitive skills to allow a robot with intelligent

behaviour by acquiring knowledge from human grasp demonstrations to reason about how to behave

in response to an unknown object presented to the system with the objective of generating suitable

grasps for the robot execution.

1.3 Context of Current State of the Art

In this section, computational theories of grasping, considering research results in the literature of

neuroscience and robotics involving analytical and empirical approaches will be given. This research

will, in essence, provide information of different topics inside manipulation area. These numerous

techniques encode object modelling and identification by in-hand exploration. Another type analyses

grasp strategies based on learning by human demonstrations where grasp features are learned to build

a knowledge representation of tasks and objects. A global overview of different approaches is given

in this chapter to present the related works that this study have been based on, in order to develop

our ideas and contribute in this field. The methods and research results referenced in this chapter

are important for the reader’s comprehension about grasping and manipulation activities, employing

various approaches to solve different challenges in the area. However, in each chapter of this thesis,

more specific and detailed works are also presented, i.e., researches that are related to our contribution

are analysed and a specific critical discussion comparing our proposed method with others methods

is presented.

An important factor that needs to be considered in the development of robotic grasping is

ensuring stability during the object grasping. There are many approaches for robotic grasping that

tries to solve this problem, but various constraints are met. One is finding suitable stable grasps where

the task requirements are involved, making the process more complex. To model a robotic grasping,

generally, a set of constraints has to be satisfied. Firstly the robotic hand configurations, its finger
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capabilities, must be considered. Secondly the object geometric features must be taken into account.

Finally, the constraints of the task requirements must be analysed.

Specifying a set of contacts points on the object surface (taking also into consideration con-

straints) is called grasp synthesis. Grasp synthesis can be achieved by analytical or empirical ap-

proaches. Analytical approaches choose the finger positions and the hand configuration with kine-

matical and dynamical formulations. Thus, they generally optimize an objective function such as the

grasp stability or the task requirements. On the other hand, empirical (knowledge-based) approaches

use a learning strategy to choose a grasp depending on the task and on the object geometry. Different

algorithms have been developed in grasp planning for two-dimensional objects [Liu00], [PF95]. In

addition, grasp synthesis for three-dimensional objects are also an active research area because of the

complex geometry and high dimensionality of the grasp space.

Stability is a necessary, but not a sufficient condition for a grasping strategy. When we reach out

to grasp an object, we have a goal in our mind or a task to accomplish. Thus, in order to successfully

perform the task, the grasp should also be compatible with the task requirements. A grasping strategy

for unknown objects should consider the task-oriented grasps and has to deal with the variety of

object shapes and sizes. It has to guarantee stability, task compatibility and adaptability to grasp

novel objects and to answer to the famous question: ”where should an unknown object be grasped in

order to accomplish the task?”.

In the next subsections different approaches to grasping are described, based on the neurosci-

entists’ view of human manipulation activities, and also the artificial perception systems in robotics

that have been developed to achieve autonomy and dexterity in grasping tasks.

1.3.1 Grasping from the Neuroscience point of View

Humans are capable of reaching and grasping objects with great dexterity. Behavioural consequences

from the anatomical variations of the human hand due to adaptation have been studied in the neuro-

science field. Modern studies focus on the relationship between the brain function and the hand. The

hand has many functions whereby we reach for objects, grasp and lift them or manipulate or use them

to act on other things. Napier’s work [Nap80] first described the terms precision and power grips. The

biomechanical and neurophysical constraints were explained using his model, as well as movement

variations such as force, posture, duration and speed. The intended activity decided what type of grip

was necessary. The techniques in behavioral neuroscience, neuroimaging and electrophysiology help
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to reveal where exactly in the brain these processes have started. The sensorimotor transformation

relates to the older views.

Many researchers have described that grasping with reference to the grip aperture which hap-

pens to be the separation between the thumb and index finger and the size of the maximum grip

aperture (MGA) during prehension is linearly related to the size of objects to be grasped [Jea84],

[Jea88], [SE08] and [Cas05].

A neurological study with humans has shown that the visual perception of object size, shape

and orientation depends on visual pathways in the cerebral cortex that are separate from those medi-

ating these same object properties in the control of goal directed grasping [GMJC91], [GMB+94].

Castiello and Jeannerod [CJ91] reported in their work the importance of previous learned

knowledge in humans and in monkeys for visually guided grasping. This indicates that learning

from previous knowledge is relevant for grasping new objects. The study suggests that object fea-

tures are coded differently for their recognition and for their grasping and the knowledge or learning

is relevant to object grasping. Thus, a grasping strategy should be able, using a learning algorithm,

to grasp objects without recognizing them. It is clear that if we are able to recognize objects, we

will also be able to associate a grasp to each object category. Because of the variety of object shapes

and sizes, predicting every possible object the robot could encounter is impossible. This way, a robot

will certainly have to grasp non-identified objects and so do humans. In such situations, what objects

features may yield to a good grasp?

Humans can use and adapt skills learned and used in the past to grasp new objects. To account

for this capacity, a theory of object recognition was put forth by Irving Biederman [Bie87] which

extended previous work of Marr and Nishihara [MN78]. According to the Recognition By Compo-

nents theory of Biederman, humans are able to recognize objects by separating them into geometric

primitives. Biederman suggests that segmenting objects for their identification does not depend on

our familiarity with these objects. Thereby, we conduct the same process for any object, whether it is

familiar or unfamiliar. The author concludes that even nonsense objects may be identified by decom-

posing them into parts. Then, going through the robotics field, if an unknown object is decomposed

into geometrical primitives, each primitive emphasises a specific grasp? Taking into consideration

that learned previous knowledge is important as mentioned before, an unknown object can fall into

the category of familiar object or even associated by similarities allowing possible candidate grasps

for this object.
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1.3.2 Grasping in Robotics

We are addressing in this research a subtopic of human movements recognition for object manipu-

lation. Typically, in the literature the techniques for movement analysis have two main approaches.

The first group represents the movements at the trajectory level and generalises the representation of

the movements through the extraction of statistical regularities from several human demonstrations

of the movements. The second group of approaches proposes a symbolic learning and encoding of

movements based on the supervised labelling and segmentation of the primitives during the learning

stage.

An example for the first class of approaches is provided by Calinon et al. [CGB07]. In their

work, the extraction of continuous constraints from a set of demonstrations using different initial

configurations of the manipulated object is described. The Cartesian trajectories are projected using

Principal Components Analysis (PCA). The spatio-temporal constraints are then represented through

Gaussian Mixture Models (GMM). The approach has been successful on a robotic platform that

reproduces a generalised version (obtained using Gaussian Mixture Regression) of a demonstrated

task. Another example from the same class is shown by Ogawara et al. [OTKH09] where a method

to detect repeated motion patterns in a long motion sequence is developed. The approach considers

that repeated motion patterns are structured information that can be obtained without knowledge of

the context of motions. The method was evaluated and compared to other previous works that detect

repeated interactions between humans and objects in every-day manipulation tasks. The method

has shown a greater performance in terms of detectability and computational time. Pastor et al.

[PHAS09] proposed an approach to learn motor skills from human demonstrations modelled using

a set of differential equations - dynamic movement primitive (DMP) framework, and developed a

library of movements by labelling each recorded movement according to the task and the context.

The typical approach of symbolic representation methods is to initiate primitive sequence de-

tection in the human demonstrations stream of data, followed by pattern recognition methods which

provide the most probable temporal sequence of primitives. An example of this technique is used

by Kondo et al. [KUO08] that propose a method to describe in-hand manipulation demonstration

movements by recognising a sequence of contact state transitions between the human hand and the

manipulated object. The recognition algorithm is based on a Dynamic Programming approach by

comparing the similarity of the contact state transition between an input sequence and template ma-

nipulation primitives.
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The work by Krugger et al. [KHB+10] presents the automatic extraction of action primitives

and the corresponding grammar from continuous movements of several human demonstrations of

grasping tasks. The approach considers that all the actions can be described by a set of elementary

building blocks and there are a set of rules (grammar) that define how these action primitives can be

combined. The action primitives are represented by parametric Hidden Markov Models. One of the

key elements of those platforms is their ability to handle and explore objects as shown by Klatzky and

Lederman [KL90], Biederman et al. [Bie87] and Sahbani et al. [SEK09]. In this research we also

explore a multi-sensory approach to estimate the regions of the object that are going to be grasped

by analysing the visual gazing performed by the subject during the preliminary moments to the grasp

execution, as proposed by Flanagan et al. [FBJ06].

Another related work is presented by Bohg et al. [BK10a] that explore the grasping movements

as a combination of a descriptor based on visual shape context with a non-linear classification algo-

rithm that leads to a detection of stable grasping points for a variety of objects. When it is assumed

that an object with a similar graspable part can be grasped in the same manner, such as a handbag

or a mug (both are composed by curved parts like cylinders), it is possible to segment the objects in

primitives for grasp planning considering some shapes of single parts. The constituting parts of an

object shape influence the choice of an object’s graspable part, independently of their orientations.

The relative size of the object component is very important to select the graspable part [EKS10] and

[EKSP07].

In our work, a probabilistic description is used for the representation of 3D objects, which is

then segmented into few parts by approximating each object part using superquadrics primitives and

also using human demonstration of object graspable parts as proposed by El-Khoury et al. [EKSP07],

but in this research we overlay automatically the human demonstration of stable grasps on object’s

surface to learn them, which is different to the mentioned work that uses only human demonstration

of grasping choice given some objects components. In our representation we associate data on object

graspable parts such as contact points and tactile force obtained from demonstrations of in-hand

manipulation with successful grasps.

Imitation Learning: systems based on human demonstrations

Empirical grasping methods avoid the computational complexity of analytical techniques by attempt-

ing to mimic human grasping strategies. Empirical strategies for grasp planning can be divided into
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systems based on the observation of the object to be grasped and systems based on the observation

of a human performing the grasp. The former techniques generally learn to associate object’s char-

acteristics with a hand pre-shape, while in the latter, a robot observes a human operator performing

a grasp and then tries to imitate the same grasp. This technique is called learning by demonstration

approach.

Different Learning-by-Demonstration frameworks were proposed in the literature where the

robot observes the human performing a task and afterwards it is able to perform the task itself. One

of the problems arising in human based learning settings is the one of measuring human performance.

Many researchers use data gloves for mapping of human hand to artificial hand workspace and learn

the different joint angles [FdSH98], [EK04] hand preshapes [KWSN05] or the corresponding task

wrench space [AC08] in order to perform a grasp.

Robot programming by demonstration for grasping purposes is an active field in robotics. In

[SRHR04], the authors use situated multimodal interaction to teach a robot. The system combines

visual attention and gestural instruction by means of an interface for speech recognition and linguistic

interpretation to allow multimodal task-oriented instructions. Others use kinesthetic demonstrations

where the human teacher demonstrates the task by moving the robot arms and the sensor signals are

learned and generalised [CGB07] to other tasks. Stereo vision is often used to track the demonstrators

hand performing a grasp [HBZ06] or try to recognize its hand shape from a database of grasp images

[RKK08]. Mirror neurons modelling is another alternative when observing an action for imitation,

and it was also introduced to the grasping problem [OA02]. The research developed by Montesano et

al. [MLBSV08] relies on a probabilistic approach for learning and imitation. Their work addresses

the learning of affordances encoding the relationship between actions, objects and effects by the

interaction of a robot with the environment. The visual perception plays an important role in their

work.

We are motivated to focus our research on observing human demonstrations to rely our system

on human grasp experiences, since different human skills can be identified during the manipulation

tasks, and consequently trying to approximate and replicate them in artificial systems. However, we

are still observing and extracting some object properties to obtain relevant features to achieve feasible

results on grasp synthesis, and also on grasp movements identification.
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Systems based on Object Observations

Grasping strategies based on object observation analyse its properties and learn to associate them with

different grasps. Some approaches associate grasp parameters or hand shapes to object geometric

features in order to find good grasps in terms of stability [PMAT04], [LP05]. Others techniques learn

to identify grasping regions in an object image [BK10a], [SDKN07], [SPLS08].

The authors [MKCA03] model objects on a set of basic geometrical primitives and then they

define rules to generate a set of grasp starting positions and pre-grasp shapes that can then be tested on

the object model. By using hand preshapes, this method can limit the huge number of possible hand

configurations for grasp planning. The planner requires a manually constructed primitive decompo-

sition of the object, so that Goldfeder et al. [GALP07] removed the need for a manual decomposition

and introduced a multi-level superquadrics representation.

An automatic localization of a variety of differently shaped objects given a point cloud (clut-

tered setting) from a laser range sensor is proposed by [BV07]. The authors adopt superquadrics for

shape recovery. The detection is based on a hierarchical RANSAC search, and a fitting criteria is used

for voting quality purposes. Criteria for object shape and the relationship of object parts are used to

generate hypothesis and results show that the proposed method is adequate for object localization in

cluttered environment.

Lopez-Damian et al. [LDSA05] propose an iterative segmentation algorithm for grasping non-

convex objects. They compute first the inertial axes of the whole object and used them to generate

grasps on it. When failing to obtain valid grasps, the object decomposition process starts. At each iter-

ation of the decomposition step, two components are obtained and the authors try to generate feasible

grasps on them. The process is repeated until a grasp is found or the decomposition terminates.

Since the grasping problem sometimes demands many degrees of freedom, the previously men-

tioned methods use object decomposition into parts to define a small search space that is likely to

contain many grasps. They do not attempt to find the grasp based on what humans choose when

grasping an object, and that is consequently adapted to the task requirements.

1.4 Organization of the Thesis

The following chapters will address in detail all aspects of the proposed approach. Chapter 2 intro-

duces the proposed probabilistic framework to represent the full object model, partial volume of the

object as well as the contact points of stable grasps acquired from human manipulation of objects.
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The method is based on occupancy grid mapping using an object-centric representation. It is shown

that multimodality is allowed to improve the object perception. Chapter 3 describes the object seg-

mentation in single parts that is useful as a prelude to object grasping and shows that a good grasp

is the result of the object graspable part identification. Chapter 4 proposes a method for object iden-

tification using cues from human in-hand manipulation of objects such as contact points and hand

configurations to associate to hypotheses of candidate objects identities. Chapter 5 demonstrates the

relevant features extracted from human manipulation of objects, including motion patterns, sequences

of contact points, task modelling and identification which is useful information to assist in handling

tasks. Chapter 6 addresses a proposed system that relies on human grasp experiences for robot grasp

synthesis. Finally, the conclusion takes into consideration the advantages and limitations of the work,

and addresses possible future work.



Chapter 2

Object Shape Representation

2.1 Introduction

Accurate modelling of the world (environment and its components) is important in autonomous

robotics applications. More precisely, for grasping applications dealing with objects used in every-

day tasks, the object information (intrinsic and extrinsic) acquired before the robot executes a task is

crucial for grasp strategies. The object geometry (size and shape) play an important role in such ap-

plications, where its representation is also valuable for recognition into a class of known objects and

also for identification of regions on the object surface proper for a stable grasp. Since the robotic end-

effector usually relies on the knowledge of object geometry to plan or to estimate grasp candidates,

the more accurate the geometry of the object, higher is the likelihood of success when estimating the

candidate grasp for that object.

Different research fields (e.g., robotics and computer vision) still face the challenge of 3D ob-

ject reconstruction and representation for recognition, localization and also for intervention tasks. In

15
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case of object grasping, some approaches represent the object structure into polyhedral, which the

object is represented as a finite number of flat faces. Based on some properties (constant normal and

the position of a point on an object face), grasp synthesis adopts this object representation [Ngu87],

[LDW99], [DLSX00]. However, representation of polyhedral objects are efficient for grasping when

dealing with a low number of faces. Other object representations are based on the 3D point cloud

distribution where meshes algorithms are computed to represent the surface of the objects for later

compute algorithms to find contact points candidates based on the geometry representation [KDCI10],

[RS07]. Other approaches directly matches the 3D point cloud into shapes primitives represented by

superquadrics [MKCA03], [SEK09] to facilitate the grasp strategy. Usually the point cloud acquisi-

tion is derived from vision systems such as stereo cameras, time-of-flight cameras, multi-view from

monocular camera, or also by other modalities such laser range finders (e.g., Hokuyo, Sick, etc.) or

even from fusion (camera and laser), a basic example is the laser scanner (Konica Minolta). Several

computer vision algorithms have been proposed for object modelling and recognition, for instance,

space carving, octrees-based, shape from silhouette, etc.

This chapter presents the strategy for object shape representation using a probabilistic approach

to deal with sensors uncertainty. The method used allows not only the full 3D shape representation,

but also partial information of the object when less explored by the sensor as well as the contact points

(fingers positions) on the object surface. The next sub-section presents the methodology adopted, as

well as the advantages and disadvantages of the chosen approach; why it is important to acquire the

object representation by combining multi-sensory information, and also the role of each individual

modality, such as in-hand exploration of objects for representation and recognition.

2.2 Probabilistic Representation of Objects by In-Hand Exploration

The ability of manipulate different objects dexterously is one of the most well accomplished human

skills. This skill is studied and pursued by researches in the robotic field with the objective of endow-

ing a robot with this ability. Despite the different approaches found in the scientific papers which try

to imitate the human dexterity and also the advanced robotic hands developed using new technolo-

gies, there are still differences between humans and robots in handling tasks. The ability of human

manipulation involves different elements, such as hand, arm, eyes or head, where the human has

many degrees of freedom and can easily deal with the control of those parts, whereas robots found
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nowadays, do not have the control and skills that human do.

Humans use multiple sensory information to recognize objects. The best view for object rep-

resentation for haptic modality, however, is the side the fingers naturally explore the most [NETB01].

Studies of human experiences in grasping and object exploration tasks can be applied in the robotic

field,and so, endow a robot with similar skills through a generalization of these human abilities. Con-

tour following is a common ”exploratory procedure” that people use for determining the geometry of

an object [KL90]. When performing in-hand exploration of objects, the key idea is to use the hand

to extract object geometrical information. To achieve this goal, sensors are attached to the fingertips

to acquire the hand movements on the object surface. To deal with the sensors uncertainty and real

world noise, a probabilistic approach is used. This way, by computing the probability of the sen-

sors 3D position at a specific location in the workspace (grid map equally divided into voxels), it is

possible to know if that location belongs to the object surface.

Mapping techniques as occupancy grid [Mor88], [Elf89] has been used in the robotics field to

describe an environment of a mobile robot. Two-Dimensional grid has been used for static indoor

mapping as shown in [Thr02]. The idea is to verify the probability of each cell to be full or empty

after the sensors observation. Probabilistic volumetric maps are also useful in the robotics field as

presented in [RDC05] and [FCBD12]. The former provides means of integrating different occupancy

belief maps in order to update a central multimodal map using a Bayesian filtering. A grid divides

the workspace into equally sized voxels, and the edges are aligned with one of the axes of a reference

coordinate frame. The coverage of each voxel given the sequence of batches of measurements is

modelled through a probability density function. The probabilistic approach for building volumetric

maps of unknown environments is also based on information theory. Each mobile robot uses an en-

tropy gradient-based exploration strategy. A hierarchical Bayesian framework for multimodal active

perception is presented by [FCBD12], where examples of data fusion (visual and auditory perception)

are given. In this case, a Baysian Volumetric Map (BVM) is introduced as a probabilistic framework

for multimodal perception of 3D structure and motion which uses a log-spherical coordinate system

to promote an egocentric trait for precision of the objects close to observer, in a bio-inspired way. The

main motivations of using the probabilistic map are for a simpler way of static object reconstruction

and representation (which is the purpose of this work: rigid objects representation); and because of

the uncertainty of sensor noise caused by the real world (the sensor probability model depends on the

characteristics of the sensor and the object being sensed).
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During the in-hand exploration, the object might be moved or even released and re-grasped,

for example, when one uses the other hand to assist the hand performing the in-hand exploration.

This task becomes more complex when exploring objects not fixed in a specific position. To deal

with moving objects during the in-hand exploration, the object rotation and translation need to be

taken into consideration. Knowing the initial position of the object and the object displacements,

transformations can be computed to have all points in the same frame of reference. In our case, we

have a 6DoF sensor attached to the object so that we can map the hand contact points on an object

centred frame of reference, and properly register the point clouds to build the object model. In the

next two sections more details are given regarding the in-hand exploration using a single hand with

a fixed object and later the strategy of exploring the object while the other hand is used to hold the

object in such way that the exploration happens while the object is in movement.

2.2.1 Single Hand Exploration of Static Objects

In order to acquire the probabilistic representation of an object using a volumetric map, it is necessary

to know a priori an estimated area where the object is placed for mapping. Some problems are

addressed in this task, such as the need for the object to be completely static. Provided the sensors

we are using to extract information about the object pose are magnetic trackers (Polhemus Liberty

[Pol]), some limitation needs to be taken into account. After the initialization of the sensors, 3D

points are constantly acquired so that when the hands are performing the exploratory procedure, if

the fingers movements are not on the object surface, those generated 3D points probably do not

belong to the object shape. If the involuntary movements (outside of the object surface) are sporadic,

those 3D points will be ignored in the probabilistic map, since they do not have higher probability in

their occurrence (the volumetric representation is based on probabilities higher than a threshold: 0.7).

However, if a finger movement occurs with a higher frequency in the same region outside of the object

surface, it can affect the result. Another possibility of this happening is when someone is exploring

an object which is then moved from its original position. The final result will have a concentration of

points representing the same part of the object in different positions. The solution is presented in the

next subsection.

The setup for this experiment is composed of a wooden table, without any metallic parts, since

the magnetic tracker is sensitive to nearby ferromagnetic materials. The rigid 3D object is fixed on

the tabletop in a defined workspace. A workspace of 35cm3 was defined on the table for the object
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mapping. Each voxel of the volumetric map was defined to represent an area of 0.5cm3 due to the

sensor position resolution at 30cm range is approximately 1mm (as far the sensor is to the source, the

resolution can vary a bit and the sensor error increases). During the exploratory procedure, at short

period of discrete intervals the volumetric map is updated with the sensors measurements. Figure

2.1 shows the experimental setup area and Figure 2.2 shows the Polhemus magnetic tracker sensors

attached to the hand.

Figure 2.1: Experimental setup area and the workspace for mapping (grid 35cm3 equally divided
where each voxel is sized with 5cm3).

2.2.2 In-Hand Exploration of Non-static Objects

The experimental setup for in-hand exploration of non-static objects follows the same structure as the

single hand exploration. The difference with this new task is on the object position for mapping: the

object does not need to be static any more. Since the object is allowed to move, it is possible to use

the other hand (usually the left hand) to assist the right hand, holding the object for better exploration

of the object. This task becomes more complex than the first one presented in the previous subsection

due to the non-static objects. In this work the probabilistic map is used for the representation of the
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Figure 2.2: Polhemus Liberty Motion Tracking System [Pol]: Magnetic tracker sensors attached to
the hand (fingertips and back of the hand).

object shape, so there is a need to deal with the object rotations and translations during the in-hand

exploration. Knowing the initial object position and the object displacements, we can compute the

transformations to have all points in the same frame of reference (see figure 2.3). Given that the sensor

attached to the object has 6DoF {x,y,z,yaw, pitch,roll}, we can compute the rotations and translation

of the object. Before computing the probabilistic map in this context, we compute the transformations

to have all points of the object in the same frame of reference. We compute the rotation matrix of the

object in a specific instant using α = yaw (rotation in z axis), β = pitch (rotation in y) and φ = roll

(rotation in x). To map the point cloud in the same frame of reference, for all points, we find the

translation of the fingertip sensor to the object sensor and then we apply the rotation to that point:

p′ = Rot (2.1)

where p′ is the new position of the 3D point that we are mapping to the same frame of reference of the

object sensor; Ro is the rotation matrix 3x3 of the object sensor and t the translation of the fingertip

sensor to the object sensor. The rotation matrix can be built using (α,β,φ) given by the magnetic

sensor representing the object rotation. This way, the rotation matrix is computed as follows:

Rx,y,z(α,β,φ) = Rx(α)Ry(β)Rz(φ) =
cos(α) −sin(α) 0

sin(α) cos(α) 0

0 0 1

×


cos(β) 0 sin(β)

0 1 0

−sin(β) 0 cos(β)

×


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 .
(2.2)
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Figure 2.3: Example of in-hand exploration where is needed to compute the transformation at each
movement of the object to register all 3D points in the same frame of reference. The points belonging
to the object surface are represented by the map in the workspace.

2.2.3 Probabilistic Volumetric Map Cells Updating

Occupancy grids are discrete random fields, wherein each cell has an assigned value which represents

the probability of the cell being occupied. The dimensions of the voxels define the spatial resolution

of the representation. The edges of the grid are aligned with one of the axes of the world coordinate

frame W . In this work, the map is a 3D grid comprised of a set of cells c ∈ γ, denoted as voxels,

wherein each voxel is a cube with edge ε ∈ R. The voxels divide the workspace into equally sized

cubes with volume ε3 (see Figure 2.1). The occupancy of each individual voxel is assumed to be

independent from the other voxels occupancy and thus Oc is a set of independent random variables as

follows:

• c ∈M: Index a cell on the Map;

• Oc ∈ |0,1|: Binary value describing if the cell C is empty or occupied;

• Zc: In-hand exploration measurement that influences the cell c. It represents the measurements

acquired from 5 sensors, each one returns the 3D location of each finger movement in the map;

• P(Oc): Probability distribution of preliminary knowledge describing the occupancy of the cell

c, initially as a uniform distribution;

• P(Zc|Oc): Probability density function corresponding to the set of measurements that influences
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the cell C taken from the in-hand exploration measurements. This distribution is computed from

the in-hand exploration sensor model.

The knowledge about the occupancy of a voxel c in the map M, after k measurements Z received

from the sensors is represented by the probability density function P(Oc|Zc
k). Updating the 3D prob-

abilistic representation of the manipulated object shape upon a new measurement Zk means updating

the probability distribution function P([Oc = 1]|Zc
k) of the voxel c influenced by the measurement

Z. Voxels are influenced by a measurement Zk if the location associated with the sample computed

from the sensor model P(Zc
k |[Oc = 1]) is contained in that voxel c. As analogously demonstrated in

[RDC05], for each voxel c, the set of measurements Zc
n contains the n measurements Zc

k influencing

a voxel c. The probability density function of the object shape representation of voxel c given the Zc
n

measurements influencing that voxel c is represented by P(Zc
n|[Oc = 1]). To update the occupancy

estimation of a cell in the map, the Bayes rule is applied:

P([OC = 1]|Zc
k) =

P(Zc
k |[OC = 1])P([OC = 1])

P(Zc
k |[OC = 0])P([OC = 0)+P(Zc

k |[OC = 1])P([OC = 1])
, (2.3)

where P([OC = 0]) = 1−P([OC = 1]);P(Zc
k |[OC = 1]) is given by the probability density function

computed from the sensor model (more details on the sensor model are given in the next subsection)

and P(Zc
k |[OC = 0]) is a uniform distribution.

Assuming that consecutive measurements Zk are independent given the cell occupancy, the

following expression is obtained:

P([Oc = 1]|Zc
n) = βP(Oc)

n

∏
k=1

P(Zc
k |[Oc = 1]), (2.4)

where β is a constant representing a normalization factor ensuring that the left side of the equation

sums up to one over all Oc.

Using the Bayesian formulation, the following equation can be written over the map updating:

P([Oc = 1]|Zc
n) = P([Oc = 1])

n

∏
k=1

P(Zc
k |[Oc = 1])

∑P(Oc)P(Zc
k |Oc)

. (2.5)

The cells occupancy in the map are probabilities that is updated over time as long as the sensors

measurements are active. At the end of the in-hand exploration of the object, the cells are allowed

to represent only two states: full or empty, Oc ∈ {0,1}, so that a threshold is used for each cell to

consider one of the two states:
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Oc =

0, P(Oc|Zc
n)< 0.7

1, P(Oc|Zc
n)≥ 0.7

 . (2.6)

Figure 2.4 shows an example of the probabilistic volumetric map and its utility. The map can

be used to represent the full model of the object as well as partial volume of the object and contact

points overlaid on the object surface derived from human demonstration of stable grasps.

Figure 2.4: Examples of the probabilistic volumetric map. Left image: real object; middle image:
partial volume of the object; left image: map of the full object model and contact points overlaid on
the object surface (red voxels representing the contact points and blue voxel representing the centroid
of the object to define its frame of reference).

The next subsection presents the probability density function acquired from the sensor model

which is represented by a Gaussian distribution using the known sensor position error as the standard

deviation and the sensors positions relative to the center of each cell in the map to model the normal

distribution.

Probability Density Function from In-Hand Exploration Sensor Model

This subsection will describe how the probabilistic map is affected by using the fingertip pose data.

For in-hand exploration of objects, a magnetic sensor (Polhemus Liberty tracking sensor) is attached

to each fingertip to acquire the shape of an object by the contour following procedure. The thumb and

index fingers are the principal fingers for grip tasks and the index finger is responsible for opening

and closing grip, allowing the thumb to maintain stability. For in-hand exploration, using only the

thumb and index fingers, it is possible to achieve the object shape. Eventually, even with a static

object or when the object is not static, that is, moving during the exploration, other fingers can be

used (middle, ring and little fingers). The two main fingers are enough to cover the object shape

through the movements around the object.
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Each magnetic sensor attached to the fingertips returns the 3D coordinates of the finger location

based on the sensor frame of reference (source/emitter of the Polhemus Liberty tracking system). The

frame rate of each sensor was defined to be up to 15Hz. During the data acquisition, a workspace

(35cm3) is defined in the experimental area for mapping. The grid space is divided into equally sized

voxels (also denoted as cell) with 0.5cm3. During the displacement of each finger on the object

surface, it is possible to identify in which grid cell that measurement is inserted. Due to the size of

each cell, relative to the standard deviation of the magnetic tracking sensors measurements (up to 3

mm), inside each cell a 3D isotropic Gaussian probability distribution is defined, P(Zc
k |Oc), centred

at the cell central point with the standard deviation 0.3cm and mean value equal to the central point

coordinates of the cell. In other words, this means that the model attempts to ensure that, upon

receiving a measurement from the sensor attached to the fingertip, the closer the finger position is

to the center of a specific cell of the map, the more probable that cell is occupied. Furthermore,

during the object surface exploration, the more often that the finger passes through that cell, the cell

probability is updated with higher certainty in which that given point position actually belongs to the

object surface. The probability that a measurement belongs to a cell is given by a normal distribution

using the known sensor position error as the standard deviation and the sensors positions relative to

the center of each cell in the map as follows:

P(Zc
k |OC) =

1
(2π)3/2|Σ|1/2 e(−

1
2 (xxx−µµµ)TΣ−1(xxx−µµµ)), (2.7)

where P(Zc
k |Oc) represents the probability distribution of the sensor measurement given a specific cell

Oc; |Σ| represents the determinant of Σ (sensor noise variation). It can also represent a scalar value.

Due to the normalization, (2.7) takes the form:

P(Zc
k |[Oc = 1]) = exp

(
−
(x−ux)

2 +(y−uy)
2 +(z−uz)

2

2σ2

)
, (2.8)

where (x,y,z) are the coordinates of the 3D point on the object surface and u is the central coordinate

of the cell (for each axis).

Later on, the sensor model is used in (2.3) to update the probability of the cell in the map as

exemplified previously.

The in-hand exploration of objects can be performed by using the thumb and the other fingers,

i.e. the occupancy grid can be influenced by them over time, thus, expanding on the model for
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cell update, the contribution of the sensor on each finger through time can be made explicit on the

decomposition as follows:

P(0Zthumb, ...,
T Zthumb,

0 Zi, ...,
T ZN ,Oc) = P(Oc)

T

∏
t=0

P(tZthumb|Oc)
N

∏
i=1

P(T Zi|Oc), (2.9)

where T represents the current time instant and N = 4 the remaining four fingers of the hand. This

process for cell update over time recursively (i.e. initially using the cell probability as a uniform

distribution: empty or occupied, and later the cell probability - updated with the Bayes rule - is used

as prior for the next update), represents a Bayesian network.

The Bayesian network (BN) representation of the formalism applied to the decomposition of

the joint distribution in which the sensor model was used is given on Figure 2.5. The plate notation

relies on assumptions of duplicated sub-graph as many times as the associated repetition number (in

this particular case the hand fingers); the variables in the sub-graph are indexed according to the rep-

etition number; the links that cross a plate boundary are replicated for each sub-graph repetition; the

distributions are in the joint distribution as an indexed product of the sequence of variables. This rep-

resentation of plate notation is a useful add-on for Bayesian networks, introduced by Buntine [Bun94].

Bayesian formalisms for probabilistic model construction and some BN examples of occupancy grid

model can also be seen in chapter 3 of the book [FD13] by Ferreira and Dias.

Figure 2.5: BN for the occupancy grid model for object representation using in-hand exploration.
Left image shows the labels: prior, posterior and respective distributions, yet not necessary in DBN
representations. The variables are defined in terms of their notation and conditional dependence. The
instantiation is defined with their parameters and the random variables that support the model are
fully described (i.e. their significance and measurable space). Right image shows that contribution
of the sensor on each finger through time made explicit using the Bayesian network formalism with
plate notation applied to in-hand exploration of objects.
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2.2.4 Frame of Reference for Object-centric Representation

We are adopting an object-centric representation by estimating the frame of reference of each object

by its geometrical properties. For that, we compute the 3D moment invariants to find the centroid of

the point cloud which depends on the distribution of the points of the object surface. The centroid

will be located at the densest part of the point cloud.

The 3D moment invariants are a measure of the spatial distribution of the mass of a shape. Let

p(x,y,z) be a local continuous density function which is represented by the probability of a voxel to

be occupied (e.g., occupied when p(x,y,z) ≥ 0.7; empty, otherwise). To estimate the location of the

centroid of the point cloud, we first compute the zeroth moment (sum of the voxels’ probabilities)

followed by the first moments for each axis {x,y,z} (sum of the product of all x by the probability of

the respective voxel being occupied; the same for y and z). Then the centroid {cx,cy,cz} is computed

by the normalization of each c by the zeroth moment. The centroid is useful not only to define the

frame of reference of the object, but it can be used later with the contact points location to estimate

how the object can be grasped.

2.2.5 Experimental Results: Object Shape by In-Hand Exploration

Everyday objects were used for in-hand exploration, where some objects have simpler geometrical

shapes and others slightly more complex regarding concavity. Figure 2.6 demonstrates the raw data

acquired during the in-hand exploration of objects. The raw data represents the objects 3D models

before the computation of the probabilistic volumetric map.

Figure 2.6: Raw data of 3D object models derived from in-hand exploration. Left to right: mug,
sponge, bottle and wooden cat.
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Figure 2.7 shows the computed probabilistic volumetric map of the wooden cat in different

views and using different thresholds to decide whether the voxel is full (occupied) or empty. The cat

maps are represented by the occupied cells.

Figure 2.7: Computed probabilistic volumetric map of the wooden cat. Left image show all occupied
cells of the object map. Right image shows the occupied cells using (2.6) with threshold = 0.6; and
left image using threshold = 0.8.

Figure 2.8: Object representation using the probabilistic volumetric map: the first image is the ob-
ject, followed by the probabilistic volumetric map where the darker cells are those ones with higher
probability than the lighter ones. It shows the most explored region of the object. The last image is
the map showing clear cells just those ones occupied (probability higher than the specified threshold
0.7). We can see the global shape derived from the in-hand exploration.

In Figure 2.8, the achieved probabilistic map with occupied cells for the mug can be seen.

The first image shows the real object, the middle image shows the occupied cells. The darker voxels

represent the most explored regions. Due to the way the object was explored (vertical movements:

top-down) we can see some pattern represented by the darker vertical voxels. Note that parallel to the
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darker lines, from one side of the mug to the another side, we have the same pattern due to the thumb

and index finger which were always in a parallel position during the exploratory movement. The last

image shows the occupied cells (clear cells).

The probabilistic map demonstrated in Figure 2.9 shows the occupied cells for the sponge.

In this case we are not dealing with the softness of the object, the exploratory procedure, contour

following was performed in a soft way avoiding the deformation of the object. Here our interest is in

rigid representation of the objects.

Figure 2.9: Object representation using the probabilistic volumetric map: sponge and its computed
map.

Figure 2.10: Object representation using the probabilistic volumetric map: bottle and its computed
map.

Figure 2.10 shows the map achieved for the bottle. Figure 2.11 shows the in-hand exploration

result of a spray bottle. Figure 2.12 shows an example derived from in-hand exploration with the non-

static object as explained in subsection 2.2.2. In this case, different to the single hand exploration, the

subject that is performing the in-hand exploration can use both hands, one to explore, and another one

to assist holding the object during the exploratory procedure. It makes the object non-static, moving

during the exploration passing by different rotations and translations which makes it necessary to

have a registration process to have all point cloud in the same frame of reference. In the middle image

some noise can be seen. This is due to sensors noise in the rotation data {roll, pitch,yaw} during the
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Figure 2.11: Object shape representation by in-hand exploration of a spray bottle. The first image (left
to right) is the raw data (point cloud), next three images are different views of the voxels representation
of the object shape, and the last image is the occupancy representation of the cells, the darkest ones
represent the lower probabilities (less explored regions).

Figure 2.12: Example of registration process and mapping for moving objects. The first image shows
the raw data of non-static object derived from the in-hand exploration of a wooden cat; middle image
shows the point cloud after registration to a common frame of reference and then the last image is the
computed probabilistic map in which the cells threshold > 0.8.

data acquisition.

The results show that valid objects models can be obtained. The volumetric map also provides

information concerning the contact points and the most explored region of the object. Even with the

limitations of single hand exploration of static objects, it is possible to reduce some noise caused

by involuntary movements out of the object surface along the exploration by ignoring cells with low
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probability.

An on-the-fly viewer on Blender (a free and open-source 3D computer graphics software) was

developed. At same time as the data is acquired from in-hand exploration the probabilistic map is

computed and the result is shown through the Blender viewer. Since Blender works with python

language, a script to compute the volumetric map was developed in python and returns the occupancy

grid probabilities to be updated and visualized in Blender software. Figure 2.13 shows the interface

and rendering of the probabilistic volumetric map during in-hand exploration.

Figure 2.13: on-the-fly object modelling derived from in-hand exploration and the rendering in
Blender software.

2.3 Multimodality and Fusion

Dealing with multiple sources of information from different sensory modalities when forming a per-

cept is known as multimodality. The process of transforming a single percept from multiple sources

of information is known as fusion. It is often seen as a product of models and can be used when the

underlying models are defined independently so that they can be combined to form a shared variable.

Different sensors can be used to cooperate and assist the volumetric map. For instance, tac-

tile information is a good option to filter undesirable outliers, that is, points outside the object sur-

face. This can be done by using the tactile information when the positional data points are returned

from the magnetic tracker sensors (attached to the fingertips). The 3D points are valid just when
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the tactile sensors are activated, this means that the fingers are really touching the object surface,

this way filtering out the points of the hand configuration transitions from the object surface dur-

ing the exploration. It can be done because the data acquisition process is distributed and has syn-

chronized time stamps for the data. The tactile sensing device consists of 360 sensing elements

(Tekscan Grip System sensor [Tek]) which are distributed along the hand palm and fingers sur-

face. The sensing elements are grouped into 15 regions, corresponding to different areas of the

hand (distal, proximal and palm). Each of these regions can be defined as activation level states,

R ∈ {NotActive,LowActive,HighActive}. When the volumetric map is used to demonstrate a stable

grasp (fingertips positions on the object surface), instead of to represent only the full model of the

object, the force of each fingertip can be associated to the cell in the map and this information can be

kept for learning and later to reproduce the stable grasp by an artificial dexterous hand.

The next subsections present how to use other sensors modalities and how to build the volu-

metric model for data fusion to be used, for instance, with visual information to compute the cells

probability in the map beside the sensors used for in-hand exploration.

2.3.1 Visual Cues to Complement the Object Model

The ability of human manipulation involves different elements such as hand, arm, eyes or head where

the human has many degrees of freedom and can easily deal with the control of those parts, which is

not an easy task for robots, because they do not have the control and skills that humans do. Humans

use multiple sensory information to deal with and to recognize objects. Human studies [NETB01]

show the importance of multimodality, more specifically when combined haptic and visual cues.

Multimodal perception is used by humans to estimate the identity and properties of objects. The

combination of these two modalities can be used to clarify ambiguous situations. The best view of

the object when using visual cues is when the humans look at the direction straight ahead to the

object, and the best view for object representation for the haptic modality, is the side the fingers

naturally explore the most.

Using the probabilistic volumetric map to combine the visual and haptic information needs to

work in the same frame of reference to update the global map, since local maps for each modality are

acquired. The sensor model for visual information is used as the likelihood in Bayesian formulation

to update the global map.
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Sensors Calibration

The calibration step allows us to work in the same frame of reference when dealing with different

sensors. A calibration step was proposed for the Polhemus Liberty 240/8 magnetic tracking device

and Videre STH-MDCS3-9cm stereo camera. But it can be easily adapted for other sensors that

provide point cloud, for instance, Kinect device.

The first step of this calibration is to acquire the intrinsic and extrinsic parameters of the stereo

camera. Then it is necessary to have the two sets of point clouds, one for each sensor modality. The

magnetic sensors return the 3D points related to its frame of reference, so that to have the correspond-

ing 3D points from the camera, the magnetic sensor needs to be identified in the left and right image

of the camera to compute the corresponding 3D point. To make this task easier, a white tape is used

on the sensor to facilitate the identification of the marker in the image, and so acquire the 3D point

after the camera calibration (Figure 2.14). The intrinsic and extrinsic parameters as well as the stereo

camera calibration is performed following [Bou] using the camera calibration toolbox for Matlab.

Figure 2.14: Calibration strategy: Using a white tape on the sensor facilitates later to find the marker
in the image to compute the 3D point given the left and right images corresponding to the 3D point
of the sensor in its frame of reference.

Thirty images (left and right) were acquired simultaneously with the 3D point from the tracker

device sensor in different positions and orientations. The tracker sensor was attached at a tripod on

a red piece of paper for easy displacement and easy localization in the image. This idea is originally

inspired from auto calibration method between multi-cameras by [SMP05] and also based on the

method of [ANP+09] where a laser pointer was used to get different viewpoints in the image for the

calibration.

The frame of reference of the stereo camera and the magnetic tracker, {C} and {P} respectively,

are rigid to each other. Collecting two sets of 3D corresponding points in two coordinate references,
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c p = {c pi|i = 1, ...,N} and p p ={p pi|i = 1, ...,N}, then the 3D point from {P} to {C} is given by:

c p = pRc
p p+ ptc. (2.10)

To compute pRc and ptc (rotation and translation matrices of the homogeneous transformation)

Arun’s method [AHB87], also adopted by [ANP+09], has been used which is based on an algorithm

to find the least-squares solution of R and t using singular value decomposition (SVD) of a 3x3 matrix.

Figure 2.15 shows the result of the calibration. Left image: the magnetic tracker sensor attached

to a tripod during the calibration, and the reprojection of its 3D point is represented as yellow point

in the image plane. Right image: The reprojection of in-hand exploration of the bottle in the image

plane. Red dots represents the thumb and blue dots the index finger movements on the object surface.

Figure 2.15: Reprojection of 3D points of {P} in the image plane {C}. Left image shows how is
collected the left and right images from the stereo camera as well as the 3D points from the magnetic
tracker. The yellow dot represents the 3D point from {P} to {C}. Right image shows the reprojection
from {P} to {C} after the in-hand exploration of the bottle.

Figure 2.16 shows the evolution of the rotation and translation matrices estimates (left and right

images respectively) by the calibration according to the number of points used.

Table 2.1 shows the average reprojection error values, in pixels, according to the number of 3D

points used. The average error of the proposed calibration decreases when the method uses a higher

number of points. It is possible to consider that for N = 20 points the calibration method is stable.

Table 2.1: Reprojection error values in pixels (average error and standard deviation) according to the
number of points.

N = 7 N = 10 N = 13 N = 15
AE 12.363 8.917 7.333 6.491
SD 3.450 3.092 2.923 2.825
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Figure 2.16: Evolution of the rotation and translation matrices estimates according to the number of
points used in the calibration process.

A calibration toolbox for Matlab was developed to compute the transformation between the

frames of references, to plot the average errors as well as plot of the points reprojection in another

frame of reference, for instance, data from in-hand exploration to the image plane. More details about

it can be seen in the annex of this thesis (appendix C).

Vision Sensor Model

The variables presented in equation (2.5) to estimate the probability of each cell is kept. In case of

using other sensors such as vision, the sensor model P(Zvision|OC) needs to be defined. Visual systems

are usually implemented as deterministic algorithms returning the visual properties like range values.

In the 3D world we have the position as Xk that represents the {x,y,z} coordinates of a point p and

the range measurement d j taken by the sensor and the position magnitude of vectors ~rk,i with the

direction of the projection line corresponding to each measurement. Adopting the solution proposed

by [RDC05], the voxel’s occupancy belief can be defined as Gaussian distribution. This distribution

uses the distance between the sensor and the detected obstacle, the distance between the sensor and

the voxel’s centre, following a linear model for the standard deviation. This solution relies on sensor

calibration to estimate global values for sensor model parameters to achieve the linear model.

Using different sensors, the joint distribution decomposition of the relevant variables shows

the dependency assumptions according to Bayes’ rule, and the posterior is the probability distribution

on each cell of the map using P(OC|ZvisionZgrasp) for each voxel. This way, the demonstrated equa-



2.3. Multimodality and Fusion 35

tions (2.3) to (2.5) can be adapted, adding to the model the likelihood correspondent to the visual

information. The general model can be represented as follows:

P([Oc = 1)]|ZC
vision,kZC

grasp,k) = αP(ZC
vision,k|[Oc = 1])P(ZC

grasp,k|[Oc = 1])P([OC = 1]). (2.11)

2.3.2 Bayesian Mixture Models

Bayesian modelling has often been used for multimodal fusion [CDB10]. Usually the Bayesian mod-

els follows assumptions of the naive Bayesian fusion model, in which the probability distribution over

each sensation is independent of the others given the phenomenon. Maximum Likelihood Estimation

(MLE) and also complete posterior distribution are usually employed to deal with multimodality and

fusion.

Mixture models are known as distributions of parametric forms with multiple components.

Generally, the probability distributions are Gaussian distributions. It can be seen as a basic tool to

build a model. Clustering and classification are the most common use of mixture models.

Here, the mixture model allows the combination of different sensors models into one. This way,

a global map can be updated after receiving the sensors measurements. Such models are weighted sum

of unimodal probability distributions in order to yield a desired multimodal probability distribution

as follows:

P(A) =
N

∑
i=1

wi×Pi(A), (2.12)

where N is the number of components (here represented by number of sensors); wi is the weight of

each component Pi(A), and ∑
N
i=1 wi = 1.

Entropy as Confidence Level

The Shannon entropy (information theory) H as demonstrated in [CT91] is used as a measure of the

uncertainty associated with a random variable. Here, entropy was adopted as a confidence level of the

sensor models to update the global probabilistic volumetric map by computing weights to perform

late fusion as mixture models. The weights are achieved using each entropy value computed as

demonstrated in (2.13) for each local map (vision and in-hand exploration). In a Bayesian framework,

each model contributes to the result of the inference in proportion to its probability. The mixture
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model is presented directly as weighted sums of the distributions, then the combination of different

models into one can be achieved. The intention is to look at the different sensor data to know the

confidence of each sensor.

Through Bayesian techniques, we can implement the sensor fusion and use entropy H as a

confidence level. A confidence variable w will be used as the weight for each sensor. The weight

w can be expressed as a prior P(w) in the Bayesian rule. For each sensor (each local map), we can

compute the entropy of the posterior probabilities as follows:

H(P([Oc = 1]|Z)) =−∑
c

P([Oc = 1]|Z) log(P([Oc = 1]|Z)), (2.13)

where P([Oc = 1]|Z) represents the posterior probability of the occupancy of each cell in the map

achieved by a specific sensor. The variable Z represents the sensors measurements and c is the index

of each grid cell.

Through the entropy H we can achieve the probability distribution of the weights of each sensor

as follows:

w = 1−

 h
n
∑

i=0
Hi

, (2.14)

where w is the weight result; h is the current value of entropy that is being transformed in a weight; i

is the index for each entropy value computed by (2.13).

Given the confidence of the occupied cells achieved by each sensor, we can fuse the sensors

belief multiplying each local map to the correspondent sensor’s weight achieved by the entropy. For

each cell of the volumetric map we can compute the mixture model belief for local maps fusion:

P([Oc = 1]|Z1, ...,ZS) =
S

∑
i=1

P(wi)P([Oc = 1]|Zi), (2.15)

where S represents the number of sensors.

Using (2.15), we update a global map with the probability distribution of each cell achieved

by different sensors for data fusion. Employing entropy as confidence level we will be sure of the

confidence of each sensor, that is, which is more reliable and then we build the global map from

local maps (vision and in-hand exploration) with more certainty of the measures of the sensors. The

only concern that needs to be taken into consideration when using the proposed methodology is the

computational cost due to the necessity of calculating (2.13) and (2.15) for each cell.
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A calibration between the sensors is needed to work with the local maps and the global one in

the same frame of reference.

2.3.3 Experimental Results

To update the global map of the object, after the sensors calibration has been achieved, each local

map is acquired separately (in-hand exploration and visual information). The global map is updated

as described in the previous subsection 2.3.2. The local map acquired from in-hand exploration

of objects is on-the-fly, and as long as the sensors return the data, the local map is updated. The

local map achieved by visual information is achieved after computing the 3D points. Before that,

a process of camera calibration is needed for it be possible to compute the correspondence of the

the points in the left and right images from the stereo camera. For that, the Small Vision System

(SVS) library (developed by Videre Design) [Vid] combined with OpenCV (computer vision library)

[ope] were used. Details of the calibration process and the triangulation algorithm to compute the

correspondence can be found in the SVS manual [Vid].

Figure 2.17 shows the result of the global map for the wooden cat. From left to right is shown:

the image of the wooden cat; the object map achieved by in-hand exploration; the textured point

cloud from stereo camera; the combined point cloud (from in-hand exploration and visual informa-

tion) achieved after the calibration process; and the global map with information from both modalities.

In the last image, the occupied cells threshold≥ 0.8. Using the calibration process we can work in the

same frame of reference and then we can retrieve the texture of the object by the visual information.

Blue color represents data from in-hand exploration and the other textured voxels are visual informa-

tion. The blue voxels are those which the visual information had lower confidence compared to the

in-hand exploration modality.

Figure 2.18 shows the result of the global map for the bottle. The top row shows the bottle

and different views of the combined point cloud after the calibration process (allowing both point

cloud in the same frame of reference). The bottom row shows two different views of the global map

containing both modalities where the blue voxels are those ones with higher confidence from in-hand

exploration modality and the other textured voxels are those ones where visual information prevailed.
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Figure 2.17: Probabilistic representation of the object global map (wooden cat) derived from in-hand
exploration and vision.

Figure 2.18: Probabilistic representation of the object global map (bottle) derived from in-hand ex-
ploration and vision.

2.4 Discussion

Through in-hand exploration of objects, suitable models are achieved by computing the probabilistic

occupancy grid method. The probabilistic representation for 3D objects was presented and showed

how given the sensors measurement of in-hand exploration, the probabilistic map is computed. The

object centroid is computed to define the object frame of reference for object-centric representation.

Two ways of in-hand exploration are presented: single hand exploration of static objects and in-hand

exploration of non-static objects when usually the individuals use the left hand to assist the other hand

for exploration. The results show that it is possible to achieve valid models of the object surface. We
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can deal with the problem of moving objects along the in hand-exploration, making the registration

of the points cloud to the same frame of reference, but we still can find some problems such as

noise in the angles measure. The object-centric representation does not fall into the memory and

computational cost problem (as happens sometimes in 3D mapping of environments) due to the area

limit defined for object mapping, which is suitable to represent daily objects (intention of this work)

for grasping in everyday tasks.

In this approach, data from different sensors is allowed to improve the object model by means

of fusing the multimodal perception into a single percept. When various sources of information are

involved to compute the volumetric map, each can sometimes lead to significantly different individual

percepts. This way, both modalities (in-hand exploration and visual information) can complement

each other to have a better representation of the object shape. The relative importance of different

cues can be determined based on the mixture distribution after computing the weight function by

Entropy to reach the sensors measurements confidence level. In this work, ambiguous information

coming from different modalities is described as a mixed distributions to update a global map of the

object.

The outputs of this work can be used in different robotic applications by integrating the object

information and human demonstrations of manipulation tasks to search for stable grasps and other

features (grasp transitions, estimated regions on objects for stable grasp given the task context, etc.)

towards improving the autonomous robotic dexterous manipulation. The object map can also be used

to overlay the partially observed volume of the object with data about hand-object contact points and

tactile forces suggesting suitability for grasp planning since a unified model has the relevant observed

information on how to grasp the object.

The publications related to this chapter’s subject, in-hand exploration of objects, are listed as

follows:

Journal

• Diego R. Faria, Ricardo Martins, Jorge Lobo, Jorge Dias. ”Extracting Data from Human Ma-
nipulation of Objects Towards Improving Autonomous Robotic Grasping”. Robotics and Au-
tonomous Systems, Elsevier, Volume 60, Issue 3, March 2012, Pages 396-410, 2012.

International Conferences

• Diego R. Faria, Ricardo Martins, Jorge Lobo, Jorge Dias. ”Probabilistic Representation of 3D
Object Shape by In-Hand Exploration”. In Proceedings of the 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IROS’10 - Taipei, Taiwan - October 2010.

• Diego R. Faria, Ricardo Martins, Jorge Dias. ”Grasp Exploration for 3D Object Shape Rep-
resentation using Probailistic Map”. in Proceedings of DoCEIS’10 - Doctoral Conference on
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Computing, Electrical and Industrial Systems. Costa da Caparica - Portugal, February, 2010.
Springer - ISBN: 978-3-642-11627-8.



Chapter 3

Segmentation and Modelling of Object

Components

3.1 Introduction

Humans usually identify object parts in order to choose a suitable region to grasp and they can easily

distinguish between things they have seen in the past and novel objects. The RBC theory [Bie87] mo-

tivated us to adopt methods of object segmentation, since it reveals that humans are able to identify

objects by segmenting them into shapes (geons). Geons are composed of different shapes primitives

(e.g., cylinders, sphere, cones, etc.) that can be assembled in various ways to form an unlimited

amount of objects. These geons are derived qualitatively using attributes of generalized cylinders,

describing characteristics of its shape, symmetry and size. Biederman [Bie87] suggests that segment-

ing objects for their identification does not depend on our familiarity with these objects. Thus, the

same process for any object can be done, whether it is familiar or not. If we see an unfamiliar object,

41
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despite its unfamiliarity, we are able to identify this object by segmenting it into parts at regions of

deep concavity, looking for known or familiar geons.

Based on this study, the intention is to apply a segmentation process on the object derived

from the object global shape representation. Then an approximation of geometrical primitives is

applied on the components of the object given by the segmentation process. The importance behind

these processes applied on objects is to use information of everyday objects, such as global shape

and its segmented components, to acquire the probability distribution of a graspable part given by

human demonstrations. The segmentation of the object into components and their approximation

using superquadrics decreases the huge amount of potential grasps for that specific object part. This

knowledge can be extended for ”unknown” objects to estimate the object location and the candidate

grasp given the information previously acquired from similar objects. Since an unknown or new

object is segmented and approximate to a known geometrical primitive, the system can consider this

object similar to another already observed to plan possible grasp after identify suitable regions on the

object for grasping.

The next subsections present the process for object segmentation and geometrical primitives

modelling for each component of the object.

3.2 Object Segmentation

In this section we will introduce two different methods that can be applied to segment an object to

find suitable components for robot grasping. In the first approach, we are clustering the output of the

probabilistic volumetric map (point cloud acquired by in-hand exploration) or from another modality

(e.g., RGB-D camera), to find the possible object components. By clustering, we can achieve outlier

removal and we can also keep the position and size information of the object. According to the points

cloud structure, using the known method of Gaussian mixture models (GMM), we can find the most

suitable clustering that will represent a component of the object. The second method of segmentation

is based on the major axis of the object to find the three possible components (top, middle and bottom

parts of the object), by analysing the magnitude of the object in each axis direction.

The objective of the segmentation is to simplify the object shape into components, modelling

each segment by geometrical primitives. Thus, from an ”unknown” object, it will fall into a familiar

class of objects by looking for the combination of geometrical primitives already known. Even when

the object is too complex in its shape, at least one primitive can be recognized to make it possible to
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generate candidate grasps for that similar or identified primitive reusing the knowledge from previ-

ously known objects. The main problem of 3D object segmentation into parts is to decompose the

complete object surface into different useful regions for grasping.

Within the literature of 3D mesh segmentation, there are two main approaches that satisfy this

condition, shape-based and boundary-based approaches. Shape-based approaches, known also as

primitive based approaches, decompose objects into parts according to similarity between the shapes

of parts models and objects parts [SLM94], [LJS97], [GB93], [DPR92], [CJB03]. Before segmenta-

tion, these approaches define a set of model shapes, such as a cylinder, a cuboid and a cone. They

then generate a hypothesis of the object representation as an assembly of shapes chosen from the

defined set of shapes. A measure of similarity between the hypothesis and the real object shape is

then computed. If this measure is above a threshold, another hypothesis is generated. Otherwise, the

segmentation process is terminated and the desired part representation is obtained. The advantage of

such approaches is that part segmentation and part identification are performed simultaneously. On

the other hand, their main problem is the possible non-uniqueness of the decomposition. For example,

an object roughly shaped as a cylinder may be represented as one cylinder or also as the assembly of

two cylinders with the same diameter.

Boundary-based approaches find first object boundaries. A common strategy in this kind of

segmentation is to compute surface features which contrast boundary and non-boundary points and

decompose the object into parts at boundary points. While many researchers have addressed the

problem of 3D model segmentation, we can find three main features that are used in all boundary-

based approaches: surface curvature, concaveness estimation and electrical charge physical features.

The authors in [WL97], presented a physics-based part segmentation approach. The novelty of this

method is that part boundaries are determined by using the idea of electrical charges instead of tra-

ditional curvatures for each vertex. The disadvantage of this method is the high computational cost

involved in computing electrical charges. On the other hand, the curvature estimation for 3D meshes

is not a trivial operation, as it is mathematically defined for a smooth surface only [MP77]. Most

of the existing algorithms are computationally expensive [MW99], [PRF02], [RB02], [RKS00]. The

authors in [ZPKG02] proposed a simple segmentation algorithm using Gaussian curvature analysis

and more recently, a 3D mesh watershed-based segmentation algorithm using Gaussian curvature and

concaveness estimation have also been proposed by [CG06].

Various approaches using object shape segmentation or approximation for grasping purposes
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can be found in the literature. In [MKCA03], the authors model the objects as set of simple shape

primitives (e.g., spheres, cylinders, cones and boxes). Then rules are defined to generate a set of

grasp starting positions and pre-grasp shapes that can then be tested on the object model. The method

can limit the huge number of possible hand configurations for grasp planning by using hand pre-

shapes. The authors proposed planner required a manually constructed primitive decomposition of

the object, then [GALP07] removed the need for a manual decomposition and introduced a multi-

level superquadrics representation. The proposed iterative segmentation algorithm by [LDSA05] is

applied for grasping non-convex objects. Firstly the inertial axes of the whole object is computed,

afterwards candidate grasps are generated. When there is failure to obtain valid grasps, the object de-

composition process starts. At each iteration of the decomposition step, two components are obtained

and the authors try to generate feasible grasps on them. The process is repeated until a grasp is found

or the decomposition terminates.

Considering that grasping problem induces a huge number of degrees of freedom, some meth-

ods use object decomposition into parts to define a small search space that is likely to contain many

grasps, and others are strictly directed at the object geometry to compute possible grasps. Usually

these methods based on object models do not attempt to find suitable grasps based on knowledge ac-

quired by human demonstration for learning. The human demonstration strategy usually does not pay

attention to the object model when dealing with grasps, obtaining only the grasp and movements char-

acteristics to grab an object, and it is consequently adapted to the task requirements. The objective

here is to pay attention to the object, by segmenting the object and later modelling the components

by using geometrical primitives approximation. This will allow to overlay the human grasp demon-

stration on the object regions (e.g., contact points of stable grasps on the surface) to learn the object

graspable parts.

3.2.1 Mixture Distribution-based Segmentation

In this subsection, we are addressing a segmentation method by means of Gaussian Mixture Models

given the object point cloud. It is another alternative that allows for the search for segments on

the object which are candidate regions for grasping. The estimation of the parameters (e.g., mean,

covariance matrix and weight) of each individual Gaussian density function (cluster) is accomplished

by the Expectation Maximization (EM) algorithm, also known as EM clustering, which is an iterative

method that attempts to find the maximum likelihood estimator of a parameter. A global parameter



3.2. Object Segmentation 45

that needs to be set is the maximum number of clusters kmax. An optimal kmax can be estimated by

MDL (Minimum Description Length) penalty function [Ris78] on the input data. In our case we

pre-set kmax = 3, since we have observed that it is sufficient for hand-held everyday objects.

Let a set of points (i.e., object point cloud represented by a matrix of points) be P ∈ R3, gen-

erated independent and identically distributed (i.i.d.) by a mixture of k Gaussians, and ℘j ⊂ P rep-

resenting a subset of the point cloud, that is, a specific cluster j = {1, ..,k}. Each set or subset of

3D points encloses many 3D points, PPP(x,y,z) = PPPi ∈℘j ⊂ P. The entire set of parameters is de-

noted as θ = {(w j,µ j,Σ j)}k
j, where µ j represents the mean of a specific cluster j (also represented as

℘j), the covariance matrix is represented by Σ j, and w j represents the weight of the cluster, which

specifies how likely each Gaussian is selected. The derivation of EM algorithm to estimate the set of

GMM parameters θ, for P (input) and any µ j,Σ j, is denoted as Gaussian according to the following

expression:

φ(℘j|µ j,Σ j) ,
1

(2π)d/2|Σ j|1/2 exp
(
−1

2
(℘j−µ j)

T
Σ
−1
j (℘j−µ j)

)
. (3.1)

The pdf for the combination of the k models to search for the most likely combination θ of

models to explain the observed data is achieved by (3.2). This means a learning of mixture models,

so that we are searching for the combination of the proper clusters that better describes the input data

P, achieving the subset of points ℘j, representing the proper cluster j, where j = {1, ...,k}.

P(℘j|θ) =
k

∑
j=1

w jφ(℘j|µ j,Σ j), (3.2)

where w j > 0, ∑
j
k w j = 1 and θ = {(w j,µ j,Σ j)}k

j.

To summarize the EM algorithm that estimates the GMM parameters, we apply then the fol-

lowing steps, first compute the initial log-likelihood, that is used later to check the convergence of the

EM algorithm:

`(0) =
1
n

n

∑
1

log
(

w(0)
j φ(℘j|µ

(0)
j ,Σ

(0)
j

)
, (3.3)

where n is the amount of samples contained in ℘j; the initial estimates w(0)
j ,µ(0)j ,Σ

(0)
j , j = {1, ...,k}

can be randomly chosen. During the initialization, we can take some k of the object point cloud P

as the first estimate of the cluster mean, setting the first estimate of the covariances to be the identity

matrices, and the first guess at the weights wi = ... = wk = 1/k, which is common when using this
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algorithm. A better alternative commonly used, and also adopted in our work, is using the K-means

algorithm to provide a good initialization for the EM. The E (Expectation) step is achieved by (3.4).

Let γm
i j be the estimate at the mth iteration of the probability that the ith sample was generated by the

jth Gaussian component (cluster), as demonstrated as follows:

γ
m
i j =

w(m)
j φ(℘j|µ

(m)
j ,Σ

(m)
j )

∑
k
j=1 w(m)

j φ(℘j|µ
(m)
j ,Σ

(m)
j )

, i = {1, ...,n}. (3.4)

To facilitate the representation of the next formulas, we use a notational simplification, denoting

the total membership weight of the jth cluster as s(m)
j as follows:

s(m)
j =

n

∑
i=0

γ
(m)
i j . (3.5)

Consequently, the M (maximization) step is given by:

w(m+1)
j =

s(m)
j

n
, (3.6)

µ(m+1)
j =

1

s(m)
j

n

∑
i=0

γ
(m)
i j ℘j, (3.7)

Σ
(m+1)
j =

1

s(m)
j

n

∑
i=0

γ
(m)
i j

(
℘j−µ(m+1)

j

)(
℘j−µ(m+1)

j

)T
, (3.8)

where the maximization step is computed for all clusters j = {1, ...k}. Afterwards, the new log-

likelihood is computed to verify the convergence of the algorithm |`(m+1)− `(m)|> δ (pre-set thresh-

old) as follows:

`(m+1) =
1
n

n

∑
1

log
(

w(m+1)
j φ(℘j|µ

(m+1)
j ,Σ

(m+1)
j )

)
. (3.9)

All steps mentioned above are summarised in Algorithm 1. More details about the theory and

use of the EM algorithm and the GMM learning can be found in [GC11].

Afterwards, each cluster generated by the EM clustering is represented as a segmented region

of the object that can be used as a candidate region for grasping. Examples of the segmentation using

the GMM method are shown in Figure 3.1.

The success of the GMM method depend on how the clusters are generated, taking also into

consideration the amount of clusters. Sets with a larger number of points have a significant impact on
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Algorithm 1: EM Algorithm for Estimating GMM Parameters

1 Inputs: Object point cloud P

2 Initialization: Choose the initial estimates w(0)
j ,µ(0)j ,Σ

(0)
j , j = {1, ...,k}, and compute the

initial log-likelihood as demonstrated in eq. (3.3).

3 while |`(m+1)− `(m)|> δ (pre-set threshold) do

4 E step: For j = 1, ...,k, compute γ
(m)
i j and s(m)

j as exemplified in eq. (3.4)-(3.5)

5 M step: For j = 1, ...,k, compute the new estimates: w(m+1)
j , µ(m+1)

j and Σ
(m+1)
j as

demonstrated in eq. (3.6)-(3.8)

6 Convergence step: compute the new log-likelihood `(m+1) as shown in eq. (3.9)

7 Outputs: θ = {(w j,µ j,Σ j)}k
j

Figure 3.1: Everyday objects (wii-mote, mug, sponge, bottle, ladle, Nintendo nunchuck and spray
bottle) segmentation using GMM clustering. These objects were acquired by different sensor modal-
ities to test the segmentation. Top row: laser scanner; bottom row and last image (at right): in-hand
exploration (bottle, sponge and spray bottle); RGB-D device (ladle and mug).

Figure 3.2: Examples of segmentation with little success of everyday objects using GMM clustering.
Some segments cannot be considered as a good candidate region for grasping (based on a qualita-
tive analysis). Some of the segmented regions are not suitable for subsequent approximation by a
geometrical primitive.

the algorithm’s processing time, due to the iteration steps to estimate the parameters of each cluster.

When kmax is defined to be more than three clusters, then the results for everyday objects are not so
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satisfactory, because sometimes an object with too many segments does not present reasonable candi-

date regions for grasping. Some examples of segmentation with little success (based on a qualitative

analysis) are presented in Figure 3.2.

3.2.2 Segmentation based on Major Axis Analysis

For the segmentation, we are assuming that all everyday objects are composed of a maximum of

three components: Top; Middle and Bottom, if the object size analysed in the major axis satisfies a

defined threshold δ of size. Otherwise, the object will be segmented into two parts (top and bottom),

or in the case of a small object, then it will be considered as a single segment (comprised of only one

shape primitive). The threshold δ for segmentation were found heuristically, where three segments are

achieved when the object size is bigger than 7cm. Figure 3.3 shows the example of the segmentation

strategy. The object frame of reference is found based on its center (origin), and the axes are defined

as {x,y,z}: right-hand rule (x: index finger pointing to front; y: middle, pointing to the left; and

z thumb, pointing to up position). For the segmentation we assume the major axis is in a vertical

position, having the segments as top, middle and bottom.

Figure 3.3: Object Segmentation Definition. The object is segmented into three parts: top, middle
and bottom. The segmentation takes into consideration the major axis (pc1: principal component),
i.e., the axis with bigger length.

The segmentation process is based on the idea of methods that analyses the major axis, such

as the known method in the state of the art, Principal Coordinate Analysis (PCoA), which is a related

statistical technique often used in information visualization for exploring similarities or dissimilarities

of the data. The idea here is simple; we arrange the data by the major axis based on distance measures.

More specifically, given a set of the 3D points P that form an object, where a 3D point follows the

notation PPPi = PPP(x,y,z,r,g,b) ∈ P, we search for the axis vector with higher magnitude. By analysing
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the points in each axis {x,y,z}, we can search the points with maximum and minimum coordinate

values to compute the object length in the Cartesian space, using the distance between these points.

Let ~e be a vector with the points at maximum and minimum coordinate in a specific axis {x,y,z},

which may take the following forms: ex = {xmin,xmax},ey = {ymin,ymax},ez = {zmin,zmax}. Then the

higher magnitude is computed as follows:

‖e‖=
√

e2
i + e2

j , (3.10)

where i is the first element of e, representing the point at the minimum coordinate in a specific axis

and j is the second element of e, representing the point at the maximum coordinate in the same axis.

Then we search for the major axis a as follows:

a =


{x}, ‖ex‖> ‖ey‖> ‖ez‖

{y}, ‖ey‖> ‖ex‖> ‖ez‖

{z}, ‖ez‖> ‖ex‖> ‖ey‖

(3.11)

Afterwards, the segmentation is applied based on the object axis vector with higher magnitude.

Let B be a specific boundary (top or middle or bottom region) of the object point cloud. Each 3D

point PPPi will belong to a specific region (i.e., Rt : top; Rm: middle; Rb: bottom), if this point is inside

of that region boundary. The boundary verification is achieved by the following steps:

PPPi ∈ Rt : (PPPa
i ≥ amax−Ba

t ), (3.12)

pppi ∈ Rb : (PPPa
i ≤ amin +Ba

b ), (3.13)

PPPi ∈ Rm : (amin +Ba
b )< PPPa

i < (amax−Ba
t ), (3.14)

where PPPi is a point that belongs to the object point cloud P, i = {1, ...,n}; PPPa
i is the point’s coordinate

in the major axis a; amax and amin are the points in the major axis at the maximum and minimum

coordinate, respectively; Ba
t is the boundary for Rt in a; Ba

b is the boundary for Rb in a; Ba
m is the

boundary for Rm in a. The region boundaries can be found as follows:
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Bt =


|amax−amin|

4 , |amax−amin| ≥ 7cm

|amax−amin|
2 , 5cm≤ |amax−amin|< 7cm

|amax−amin|, |amax−amin|< 5cm

(3.15)

Bm =
|amax−amin|

2
, (3.16)

Bb = Bt , (3.17)

where the boundaries Bm and Bb are used only if the object size is bigger then a determined threshold

δ. Algorithm 2 shows a summary version for object segmentation.

Figure 3.4 presents the results achieved for some everyday objects to validate the segmentation

method. The objects point clouds on the left were achieved by in-hand exploration (as explained in

Chapter 2) and on the right, by laser scanner.

Figure 3.5 presents two different cases of segmentation. For the mug object, the two scanning

methods had two distinct results. This will happen for objects that do not have a clear major axis,

and have similar dimensions along two axes. For these cases, the sensors and noise characteristics

can have a bigger impact, and some smoothing pre-processing might be required. The segmentation

method for the mug acquired by the laser scanner indicated the y direction as the the major axis.

Thereby, in this situation, we changed the parameter to segment the mug into two components instead

of three, which has resulted a more coherent segmentation. Within this situation, the mug’s handle

is separated from the body, unlike segmenting it into three components that would result the mug’s

body divided into two parts.

Figure 3.4: Results for the daily objects segmentation based on major axis. On left side is depicted
the models acquired by in-hand exploration and on right side the models acquired by laser scanner.
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Algorithm 2: Object Components Segmentation Algorithm based on Major Axis Analysis

1 Input: Object Point Cloud = P;

2 ∀PPP(x,y,z,r,g,b) = PPPi ∈ P, search for the points with maximum and minimum coordinates
values in each axis {x,y,z}, and build the the vectors:
ex = {xmax,xmin},ey = {ymax,ymin},ez = {zmax,zmin} ;

3 ∀e compute their magnitudes (‖ex‖, ‖ey‖, ‖ez‖);
4 Compare the magnitudes of the vectors ex,ey,ez and keep the the biggest one considering its

reference x or y or z as the major axis a ;

5 Verify the object size (in distance, e.g. cm) in the major axis, and search the regions Top: Rt ;
Middle: Rm and Bottom: Rb, by computing the boundaries Bt ,Bm,Bb as demonstrated in eq.
(3.15)-(3.17).

6 Segment the object by labelling the points in red if PPPi ∈ Rt , or in blue if PPPi ∈ Rm or in green if
PPPi ∈ Rb by computing eq. (3.12)-(3.14).

7 Outputs: Object Segments (top, middle and bottom) = Ptop, Pmid , Pbot

Figure 3.5: Difference in the segmentation of a mug acquired by different sensors. Left image presents
a mug acquired by in-hand exploration segmented into 3 components. Right image presents a mug
acquired by laser scanner segmented into 2 components.

The segmentation of everyday objects into three components can describe different candidate

regions for grasping. Searching for optimal or plausible contact points on the entire geometry of

the object (e.g., searching on the mesh) is time consuming. For real applications on a robotic hand,

the mesh would first have to be computed, followed by additional computations of stable grasping

regions. In our case, by segmenting the objects into three components, we can approximate each

segment by a geometrical primitive (e.g., quadrics) allowing an association with previously observed

candidate grasps for each geometrical primitive.

We have an implicit assumption that the grasps are adaptive (i.e., synergies of the fingers). This

means that an approximated grasp type is adjusted, thus, avoiding the association of an exact object’s

geometry with an exact grasp geometry. Then, our strategy of object decomposition is sufficient
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and with high possibility of grasping success for everyday objects, which justifies our segmentation

method.

3.3 Object Components: Primitives Detection

This section presents two methods to approximate the object shape into primitives. The first method

is based on learning and classification of geometrical shapes and the second is the well known method

of superquadrics modelling. The first method depends on a learning process of possible primitives,

but is still an effective approach of shape retrieval that can be acquired by a probabilistic classification

using Bayesian techniques. This approach is limited to a set of learned shapes. Here we are using

basic geometrical primitives, such as cylinder, plan and sphere to test the method. The second method

(superquadrics modelling) is used for more complex shapes that can be employed to fit a point cloud

into various shapes in a robust way. The second method is useful since the high number of shape

possibilities and the fitting step is on-the-fly which does not need a learning process.

3.3.1 Components Modelling using Basic Primitives: A Probabilistic Approach

The data acquired from in-hand exploration is used to match the data with some basic geometrical

primitives, such as sphere, cylinder and plane. After the segmentation process, for example, using

the clustering segmentation, the object components can be approximated within basic geometrical

primitives. Using a probabilistic approach we are able to learn the basic primitives. Given the 3D

points of basic primitives, features are computed from the covariance matrix, extracting then three

eigenvalues to characterize each one. For that, a normalization of these values are computed as

follows:

ei =
λi

λmax
, (3.18)

where e represents the normalized eigenvalue; i represents an index for all eigenvalues found for each

type of primitive and λmax is the resulting sum between the three eigenvalues found for each primitive

type. After this normalization, the maximum and minimum new eigenvalues of each type of primitive

are used in the learning phase.

For the learning phase, 20.000 random synthetic primitives for each type of primitive were gen-

erated using the Matlab environment, inserting some Gaussian noise on the primitives to perform the
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learning phase based on histogram techniques. In the learning phase, a histogram for each primitive

accumulates all maximum and minimum eigenvalues corresponding to each primitive (Figures 3.6,

3.7, 3.8).

To compute a bivariate histogram, a matrix of dimension 10× 10 was created. For each ob-

servation, the normalized eigenvalues (emax and emin) are used and they correspond to the x and y

axes. After analysing all observation for each type of primitive, three histograms are generated.

Each histogram is then normalized representing the learned distribution to be used as likelihood dur-

ing the classification. Given a set of observation to represent a class of basic primitive s, we have

the probability of each pair of feature, emax and emin to represent each primitive, so that we have

P(E = {emax,emin}|s). To understand the general classification model some definitions are given as

follows:

• s is a known shape from all possible S (e.g., cylinder, sphere and plane);

• emax is a certain value of feature, representing the maximum normalized eigenvalue;

• emin is a certain value of feature, representing the minimum normalized eigenvalue.

Figure 3.6: Learned histogram: sphere primitive.

Learning the probability distribution P(E = {emax,emin}|s) for each known primitive and know-

ing the priors (uniform distribution), Bayes’ rule can be applied for the classification as follows:

P(s|E = {emax,emin}) =
P(E = {emax,emin}|s)P(s)

∑
j

P(E = {emax,emin}|s j)P(s j)
. (3.19)
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Figure 3.7: Learned histogram: cylinder primitive.

Figure 3.8: Learned histogram: plane primitive.

After the classification of each primitive (retrieving the correct shape given a point cloud), the

pose of each primitive is needed, so that we compute the rotation and scale of each shape. For that,

we use the algorithm proposed by [NDJR+09] that is used to retrieve shapes for novelty detection in

robotic maps. It finds the shape that better approximates to an ideal basic shape from Ψshape. They

use the mathematical space of the Gaussian mixture model which is described by the covariance and

mean of the Gaussian functions. The Gaussian mixture associated with the 3D points is denoted as

Π. The shape retrieval algorithm is based on the covariance matrices matching. The best model of the

shape and the rigid transformation T with respect to an ideal shape is the main idea of the algorithm.
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Gaussian functions are matched with each basic shape which measures the similarity between their

covariance matrices, dΨ = {dsphere,dcylinder,dplane}. The minimum value of dΨ determines the shape

that best approximates to the point cloud, just as a rigid transformation.

Covariance matching is a basic task in measurement design [FM99]. The main goal is to obtain

a distance measurement of two covariance matrices. The space of covariance matrices is not a vector

space and therefore a standard arithmetic difference does not measure the difference between them.

But covariance matrices are symmetric and positive semi-definite and then they can be formulated

using a distance based on Riemannian metric. They use the distance measure described by Foerstner

and Moonen [FM99] which is defined as follows:

d(Σ1,Σ2) =

√
N

∑
i=1

ln2λi(Σ1,Σ2) (3.20)

where Σ1 and Σ2 are the two input covariance matrices, λ represents the generalized eigenvalues of Σ1

and Σ2, and N is the dimensionality of the matrices. Considering Σ1 as the covariance of the Gaussian

function which identify a shape to be recognized and Σ2 as the covariance of a basic primitive. To

consider possibles rotations and scaling changes of the model, it must be noted that:

Σi = T Σ jT T = (R ·L)Σ j(R ·L)T (3.21)

where T represents the rigid transformation applied to the ideal geometric primitive, which is com-

posed of scale and rotation matrices, R and L. In this approach, the translation is directly known

with the mean information of each Gaussian and rotation is the known rotation matrix with three

degrees of freedom using Euler angles. The matrix L represents the diagonal matrix with scale for

each axis. The equation (3.20) can be minimized using a least squares minimization method based on

Levenberg-Marquardt algorithm, which modifies the rotation and scaling matrices in each iteration. A

starting guess of the parameters is required to reduce the number of iterations needed to converge and

remove local minima situations. The algorithm uses a good approximation to the rigid transformation

T according to the eigenvectors values of the two covariance matrices.

This mentioned method could be used to match the shape beyond of only rotation and scale.

However, we are using this method just to match the rotation and scale of each classified shape due the

probabilistic classification by the Bayesian model reaching sufficient and attractive results for simple

and few types of shape primitives.

After some trials with 3000 cases (1000 randomly for each shape), the classification model
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reached a satisfactory result of 97.53%. The small percentage of false negative occurred with the

cylinder and sphere primitives. The problem found in the classification was some confusion with the

cylinder and sphere when the cylinder diameter was similar to its height so that it was classified as a

sphere. Sometimes the sphere was classified as a cylinder due to the noise, it makes the radius varying

more than the tolerable. Another case was the cylinder being classified as a plane, it happens when

the cylinder height is close to zero, that is, when the radius is much bigger than the height.

An example of the shape retrieval regarding scale and orientation is presented in Figure 3.9.

Figure 3.9: Shape retrieval: left image shows the 3D points representing the object (bottle); middle
image the GMM applied as segmentation; and the last image shows the recovered primitives for each
of the object component.

This method has been tested due to the eigenvalues derived from the covariance matrices

(GMM density functions) may denote the variance of the samples representing the shape primitives.

We assume the maximum and minimum eigenvalues as features, because they are able to distinguish

the basic geometric shapes through the Cartesian coordinates of a point cloud in such a way that after

a learning phase, they can preserve a class separability criterion based on the scatter of the samples.

The results showed us that even using simulated shapes generated randomly with noise for

the learning phase, we reached good classifications with real and synthetic data. However, this ap-

proach is still limited to those mentioned basic primitives. If the shapes primitives possibilities are

increased, a new learning process for each primitive has to be done. This does not happen with

the superquadrics fitting method, because it adopts an iterative change of shape parameters allowing

different shapes possibilities without a learn phase for each new primitive. To deal with unknown

objects with more complex shapes, superquadrics (subsection 3.3.2) has proven to be a good shape

approximation method as it will be explained in the next subsection.
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3.3.2 Object Component Modelling using Superquadrics

Having segmented the object, we now want to model each segment as a geometric simple shape

or primitive. In this work we use superquadrics [Bar81], a technique that models a rich variety of

shapes (e.g., Figure 3.10), and that facilitates computing parameters that enclose important cues, such

as scale and orientation. Superquadrics has been used for 3D object modelling [SLM94] and for

segmentation of point cloud [CJB03], in robotics (novelty detection) [JNR+10] and successfully in

other works for grasping purposes [MKCA03] [EKSP07] [BV07].

Figure 3.10: Typical Superquadrics: a1 = a2 = a3 = 1, except ellipsoid.

The superquadrics models are expressed by a function fff : R3→ R as:

fff (x,y,z) =

((
x
a1

) 2
∈2

+
y
a2

2
∈2

)∈2
∈1

+

(
z

a3

) 2
∈1

, (3.22)

where ∈1 and ∈2 are the parameters for shape; a1,a2 and a3 are the scale factors on the {x,y,z} axes.

This form provides information on the position of a 3D point relative to the superquadric surface.

The implicit function fff (x,y,z) partitions the space into three regions: the point PPP(x,y,z) lies on the

surface if fff (x,y,z) = 1, if f (x,y,z)< 1 then the point is inside, and outside when fff (x,y,z)> 1. Even

if the five parameters of the model are compact, it allows to deal with a large variety of shapes such

as cylinders, spheres, ellipsoids, parallelepipeds and others. The shape parameters can be constrained
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to have, for example, just convex shapes (when ∈1< 2 and ∈2< 2).

The recovery of the superquadrics from a point cloud is represented in a global coordinate

system. Thus, we have another 6 parameters to express the rotation (Euler angles (φ,θ,ψ)) and

translation (px, py, pz). The function can also be expressed as fff (x,y,z,Λ), where the set of the 11

parameters can be represented as Λ = {a1,a2,a3,∈1,∈2, px, py, pz,φ,θ,ψ}, representing three param-

eters for scale in each axis, two parameters for shape variation; and six parameters representing the

translation and rotation in each axis, respectively.

After the segmentation process, the set points of each object component will be approximated

by a superquadric shape primitive. To estimate the parameters of the superquadric model, the gradient

least-square minimization of an error-of-fit function based on Levenberg-Marquardt method [JLS00]

is used as follows:

min
Λ

n

∑
i=1

(√
a1a2a3

(
fff∈1 (xi,yi,zi;Λ)−1

))2
, (3.23)

where
√

a1a2a3 are constraints used to find the smallest superquadric based on the scale parameters.

The power ∈1 makes the error metric independent of the superquadric shape. More details can be

found in [JLS00].

An important aspect for the success of the superquadrics fitting is on the initialization of the

method. This can influence the fitting which concerns the number of iteration, which determines the

local minimum for the convergence of the method. Thus, we are using an initial pose based on the

matrix M that represents the center of gravity and the central moments computed from the input data.

The shape parameters are initialized as an ellipsoid, ∈1=∈2= 1. The scale factors are based on the

computed eigenvalues of the inertia matrix M.

For each object component (segmented region), a superquadric model is generated. Figure 3.11

shows the superquadrics models generated for the segments of some everyday objects, simplifying

the object parts shape into geometrical primitives.

More parameters can be computed to represent a superquadric model, the 11 parameters already

explained, and a further 4 parameters that can be included in this set of parameters, such as the

centroid of the superquadric {cx,cy,cz} and its volume v.

We have limited the set of geometrical primitives that can compose everyday objects into the

following superquadrics models: box and its variation (rounded box), cube, cuboid, cylinder, el-

lipsoid, sphere, octahedron, spinning-top (squared, rounded and star shape) and variation 1 of the
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Figure 3.11: Superquadrics models obtained for some segmented everyday objects.

sphere (arch) and variation 2 of the sphere (butterfly shape). This was done because these thirteen

superquadrics models are sufficient to approximate and describe a big variety of everyday objects for

grasping.

The superquadrics fitting results and processing time depend on the point cloud size. The

superquadrics models can represent an object shape even when the input is a partial volume of the

object. For the everyday objects used in this work, we have achieved results that were satisfactory

and useful for the subsequent grasping synthesis. We can achieve a processing time for a point cloud

acquired from an RGB-D sensor of under a second on average, using a standard computer (e.g., a

Laptop with intel core i3-3500M processor, 2.26GHz, 4GB DDR3 Memory).

This process of decomposition (segmentation and object component modelling) will be used

during the learning phase as well as during the grasp synthesis when the artificial system faces an

unknown object for grasping as described in Chapter 6. These processes will assist the grasp synthesis

to chose the proper grasp for the decomposed part of the object. The method matches new observed

geometric primitives with the nearest previously recorded primitives, and uses the corresponding

observed human grasps to have a small set of candidate grasps.

3.4 Discussion

In this research we are dealing with everyday objects proper for grasping applications. The objects

that are used here satisfy some requirements, such as: big enough to be detectable by the sensor, small

enough to be held fully in the hand (even power grasp), afford several grasp configurations, complex
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enough not to be easily manipulated by a simple gripper, simple enough to be able perform actions

with the hand, simple in shape, existing in several slightly different shapes, possible to match to a

similar or familiar object in case of an unknown for the robot.

Both segmentation can be applied for everyday objects. The choice of the method depends on

the need of the application, for instance, if we are dealing with time processing, basic shapes, number

of points composing the object, etc. A question can be raised here, when and why is it necessary to

segment an object? The answer is simple, to approximate regions on the object in simple shapes to

find suitable grasps.

Using the segmentation method based on the major axis we could achieve satisfactory results

for everyday objects. This method is fast even for an object point cloud with a large number of points,

unlike other methods that are more time consuming, which gives a clear advantage of the method

based on the major axis. We can also verify the success of this method by a qualitative analysis

(comparing with human choice, asking how a subject would segment that specific object).

Although the segmentation method based on the main axis uses a fixed number of components,

with regions already set (top, middle and bottom), we could observe that grasp types can be associated

with these regions, thereby allowing the robotic hand to be able to grasp one of these regions. For

everyday objects, this algorithm proved to be efficient. However, for more complex objects, lets say

objects that have more concave or convex regions, or even with many handles, the method can also

work, as long as we correctly define the boundaries for the segmentation.

Adopting this method based on the major axis, we will always have at least a segment that

can represent a feasible candidate region for grasping, and consecutively, we will find the candidate

grasps for that region, which validates our method as sufficient and feasible for grasping purposes.

This method is quite fast even for a large number of points (about 10msec), unlike GMM that

for the same set acquired from the same sensor takes much longer (about 5 seconds). The GMM

method is automatic in the selection of the clusters (object regions), searching for the best fitting

given the object point cloud. However, the parameters estimation can be slow due to the number of

iterations necessary when using a large number of points, making the algorithm convergence slower.

After the object segmentation, methods for shape approximation are evaluated. In a first ap-

proach, features (eigenvalues) are detected to represent basic primitives such as sphere, cylinder and

plane. Acquiring the features of each shape, a learning phase was performed based on histogram

techniques that represents the likelihood in the Bayesian model for shape classification. This first ap-
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proach of shape classification is simple and efficient when we have a limited number of geometrical

primitives. In the second approach, the components segmented are used to model each component

into superquadrics models, which has the advantage over the first approach of the number of possible

shapes just changing the parameters of the superquadrics, without requiring a learning step for each

possible primitive. The concern of the superquadrics modelling is the processing time when a large

number of points are used during the fitting process to find the best option between the superquadrics

shapes possibilities. However, for everyday objects we achieve an acceptable processing time (on av-

erage varying between 2 and 3 seconds) when dealing with a point cloud with approximately 60000

points (for each component).

The object representation (segmentation and shape approximation) is a good strategy to gener-

ate candidate grasps. When the shape is associated for each segment of the object, we are recovering

the object pose parameters {x,y,z,yaw, pitch,roll}. This process of representation enables us to de-

crease the huge amount of possible grasps into a set of candidate grasps for a specific geometrical

primitive. The next chapters will better explain the adopted strategy to generate candidate grasps for

a specific object component.

The publications related to this chapter’s subject, object decomposition and components mod-

elling, are listed as follows:

Journals

• Diego R. Faria, Ricardo Martins, Jorge Lobo, Jorge Dias. ”Extracting Data from Human Ma-
nipulation of Objects Towards Improving Autonomous Robotic Grasping”. Robotics and Au-
tonomous Systems, Elsevier, Volume 60, Issue 3, March 2012, Pages 396-410, 2012.

• Diego R. Faria, Pedro Trindade, Jorge Lobo, Jorge Dias. ”Knowledge-based Reasoning from
Human Grasp Demonstrations for Robot Grasp Synthesis”. Under Review: Robotics and
Autonomous Systems, Elsevier, 2013.

International Conference

• Diego R. Faria, Jose Prado, Paulo Drews Jr., Jorge Dias. ”Object Shape Retrieval through
Grasping Exploration”. In the 4th European Conference on Mobile Robots, ECMR’09, Mlini/-
Dubrovnik, Croatia, September 2009, pp.43-48.





Chapter 4

Identifying Objects from Hand

Configurations

4.1 Introduction

Several studies have been carried out in neuroscience/psychology to better understand human percep-

tion [LK87] [KL90]. Haptic perception is an important mechanism in which humans get knowledge

about the properties of unknown objects. Humans have the ability to manipulate different objects dex-

terously using different exploratory movements for object haptic perception, such as contour follow-

ing to extract the global shape of the object, lateral motion to perceive the texture, pressure movement

to extract the softness characteristics of an object, static contact to perceive the temperature, enclosure

(e.g., grabbing a glass by side power-grasp), and unsupported holding to perceive the object weight

[LK87] [KL90].

63
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Artificial perception systems are required by robotic systems to navigate and interact with the

surrounding environment and persons. Human perception is studied and pursued by researches in the

robotic field to endow a robot with this ability. Typically, the planning of a robotic object identification

and recognition tasks start by estimating an initial model of the object by obtaining data through the

vision systems. Other approaches are dedicated to the estimation of the superficial characteristics of

the object such as texture and stickiness [OCLBC11], others to find objects global shapes by robotic

hand [BWB+07]. This chapter will discuss the second group of approaches for identification using a

probabilistic approach.

In [LSN+11] is proposed an algorithm for surfaces frictional properties estimation to classify

objects, while the surface is explored by a robotic finger equipped with a force/torque sensor. In

[OC01] is proposed a method to identify different types (cusp, step, bump) of superficial features

during the lateral sliding of a robotic finger. Some other works focus their analysis of the perceived

object representation on estimating the global shape of the object and finding suitable object regions

for stable grasping. In [CSPB11] only tactile information is used to evaluate the deformation signature

of several objects in order to discriminate the internal state (empty, full, open, close) and identity of

those objects. [GNGW10] presents an approach for haptic object recognition using an anthropomor-

phic robot hand which identifies objects from the haptic sensor data acquired by palpation sequences.

Given the sequence of sensor data, features are extracted from tactile patterns to describe the object

by key features. Here, the work differentiates, going further from these previous related works by not

only using the finger movements or tactile information to acquire the object shape, but we are learn-

ing and identifying possible hand configurations that can be associated with object shapes to select a

strong candidate from a hypothesis of object identities.

Canonical grasps from human demonstrations is presented by [dGSF06]. The authors proposed

an approach to learn grasp affordances by modelling the hand pose by mixture distributions. The main

objective was to learn the reach-to-grasp actions to set the proper affordance for an object. Human

hand actions representations for programming grasping actions is the goal of the approach presented

by [RFKK10]. A hand posture space is represented by a low dimensional space. Gaussian Process

Latent Variable Models (GPLVMs) were used to model the lower dimensional manifold of human

hand motions during object grasping which is useful for grasping actions modelling, mapping and

recognition. Based on these mentioned works, the proposed work here uses also mixture distributions

to model the hand configuration for a specific object to find similarities between a hand pose and
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a object shape to achieve some hypotheses of object identity when the object is being explored.

Modelling of actions or tasks performed with the object is not taken into consideration.

The aim of the work described in this chapter is to use cues from the hand kinaesthetic sen-

sory, distal fingers segments positions and movements, for retrieving object intrinsic information as

well as to find the object identity. By adopting a probabilistic representation model of the object

(probabilistic volumetric map) and contact points on the object surface generated during in-hand ex-

ploration, some characteristics of object shape associated with the hand configuration can be learned.

These characteristics are acquired by observing examples of some possible grasps for specific objects

(by using the contact points). The learning of hand configurations (grasps taxonomies) associated

for specific everyday objects is achieved through mixture distribution-based representation. Differ-

ent contact points associated with an object shape can be represented in a latent space and lie on a

lower dimensional non-linear manifold in the contact points space which is suitable for modelling and

recognition. From the multiples clusters are generated, each has an important representation of possi-

ble hand configurations for a specific object. Using the mixture distributions, a signature is extracted

by Gaussian Mixture Regression (GMR) to represent a candidate object given the hand configura-

tion during the in-hand exploration of objects. Acquiring a compact representation that describes and

associates hand configurations to candidate object shapes, improves the hypothesis belief for object

identification. Knowing the functionality of how object shapes are grasped is meaningful in terms of

description, so that, when an object is being explored, by using the hand configurations on the object

surface, we can identify candidate objects based on these inputs.

In order to achieve our goals and to propose more efficient and solid ways of object iden-

tification using dexterous manipulation through kinaesthetic stimuli, we are adopting probabilistic

methods. The benefit of the proposed approach is the belief acquired to search for a strong candidate

from the possible hypotheses for the object identification.

4.2 Learning Hand Configurations for Everyday Objects

An object’s geometry plays an important role in robotic applications, where its representation is also

valuable for identification into a class of known objects and also to search for regions on the object

surface proper for a stable grasp. In this research, the object is associated with possible hand config-

urations (i.e., valid grasp types for this object). Differently of chapter 2, the probabilistic volumetric

map is used here to represent the locations (ocuppied voxels in the grid) of the contact points that
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are also partial volume of the object surface during the in-hand exploration to assist in the object

identification.

The key of this work is, whilst a subject is manipulating an object by means of kinaesthetic sen-

sory modality, the artificial system generates and updates candidate object identities for the presented

contact points. For that, a learning phase is performed to associate possible taxonomies of grasp types

(i.e., hand configurations formed by contact points) to object shapes. Previous information of these

grasps taxonomies are demonstrated by human individuals. The next subsection presents the strategy

of the demonstration.

4.2.1 Human Demonstrations

A study in which several grasp taxonomies were analysed (robotics, biomechanics and medicine) has

been carried out by [FPS+09] and then some grasp taxonomies were evaluated. These taxonomies

were developed within the European project GRASP [GRA]. Based on the taxonomies proposed in

that work, we are considering some of the taxonomies in this study to associate some hand configu-

rations with object shapes.

Humans demonstrators (five male right handed individuals) participated to provide examples

of some grasp taxonomies for some objects. The intention was to build a knowledge repository

of contact points (fixed/static hand configuration) for some specific objects. Each individual has

attached six Polhemus [Pol] magnetic sensors to the hand, one on each fingertip to record the 6DoF

(position and orientation) {x,y,z,yaw, pitch,roll} of each sensor and another in the wrist to compute

the relative position of each fingertip with respect to the wrist. The pose of the hand is defined as

the fingers position relative to the palm. Each set of contact points are then represented in an 18

dimensionality space (6 sensors, each one ∈ R3).

Tactile sensors are also used here to assist the tracker sensors (Polhemus Liberty) in a simple

way. Since the tracker sensors when active return the positional data, and in a specific task such as

exploration of the object, just the contact points when the hand is static forming a hand shape on

the object surface is important for this work. Thus, we ignore the tracker sensors data during the

finger transitions, because it is not relevant here. The tactile sensors assist to filter the tracker sensors

data, using only the data that is acquired when the tactile sensors are active. We can easily do that

since our data acquisition process is distributed and with synchronized timestamps for the data. The

tactile sensing device consists of 360 sensing elements (Tekscan Grip System sensor [Tek]) which are
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distributed along the hand palm and fingers surface. The sensing elements are grouped into fifteen

regions as presented in Figure 4.1, corresponding to different areas of the hand. Each of these regions

can be defined as activation level states, R ∈ {NotActive,LowActive,HighActive}.

Figure 4.1: Sensors used in our experimental setup: Polhemus Liberty Magnetic Tracking System
and Tekscan Tactile sensor.

Some everyday objects with simple shapes were used for the hand configurations demonstra-

tions, such as a mug, bottle, Rubik cube, tennis ball and a ladle. We have asked for each subject to

perform the in-hand exploration of the object using seven hand configurations for each object. Two

different ways of recording the object were performed to be used in the learning phase. The first

one used fixed grasps belonging to the taxonomy defined in [GRA] as previous mentioned, which the

recording session started when the subject already had the hand configuration on the object surface

and after two seconds in this fixed position the recording session was finished. In the second one,

the subjects performed seven hand configurations sequentially, and the grasp transitions between one

grasp to another one were also recorded. In this last one, the subject performed the demonstrations by

the sequence of movements around the object and usually it takes no more than 15 seconds for each

individual demonstrating the seven grasp types for each object.

4.2.2 Mixtures of Contact Points Models and Signatures Extraction

The contact points space is built from the human demonstrations for everyday objects, where the con-

tact points are the occupied cells in the object map (P(Zc
n|[Oc = 1])). Features in the latent space are

extracted to find signatures of possible hand configurations associated with object shapes. Multiples

clusters are computed given the observations using Gaussian Mixture Models (GMM) distributions.
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Each specific distribution of contact points for a specific object is represented by a density func-

tion in the mixture models. Furthermore, the use of multiple density functions stores any covariance

that may exist between hand configurations and objects. This work, therefore employs, the mixture

distribution-based representation by means of GMM. The steps to compute the density function of

the mixture g is similar to the equations presented for object segmentation by using GMM explained

in Chapter 3, equations (3.1) to (3.9). Here, the difference is on the input data of the GMM model,

instead of using the full object point cloud P, we are using a set of contact points representing the

hand configurations overlaid on the object model, defined as a matrix of points, C∈R3. The Gaussian

densities is previously set, where the number maximum of clusters kmax = 4 to enclose the contact

points for a specific object model. The reason for adopting 4 clusters is related to the possible grasp

categories as presented in the study of grasp taxonomies [FPS+09] and also available on the website

of the GRASP project [GRA]. The estimation of the parameters of each individual density function

(Gaussian) and the weight variables are accomplished by using the Expectation Maximization (EM)

algorithm, in the same way as previous explained in Chapter 3.

Figure 4.2 shows examples of the clustering process which is the demonstrated hand configura-

tions associated with the objects, for later being generated a signature for each object, resulting from

the hand configurations. Each cluster encloses demonstrations of one or more hand configurations

(similar taxonomy) during the in-hand exploration.

The measure of similarity between the contact points is achieved by using mixture density

functions. Since we have a probabilistic model through GMM in the latent space, we can extract

contact points signatures (CPS) by a generalization process achieved by GMR. Then, a specific tra-

jectory (signature) is generated based on the demonstrated hand configurations for a specific object.

The GMR over a stochastic retrieval process provides a suitable way of reconstruct sequence from a

Gaussian model. Researches in different fields, such as robotics and machine learning have used the

statistical models (mixture distribution-based and local weighted regression) for learning, representa-

tion and generalization of data [CGB07], [CGJ96].

The main idea here is to extract from the latent space a generalized representation of hand

configurations (formed by contact points) for each object, so that the closest similarity between the

input and the generalized hand configuration signature can be found.
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Figure 4.2: GMM and GMR process. Each cluster encloses demonstrations of hand configurations.
A signature of the transition between the hand configurations is generated using the features in the
latent space when is applied GMR.

4.2.3 Similarity Measure for the Contact Points

The similarity measure is verified by comparing how likely the new observation ς (set of contact

points forming a hand configuration) is to the mixture distribution-based representation ξ (signature

of the hand-state class C) achieved by the computation of GMM/GMR . This way, we can identify

which class the demonstrated contact points belong to. Here, the class is defined as hand-object, that

is, the possible hand configurations for an object shape. For that, we are basing our approach on

[RFKK10], adapting it for our specific case.

From computing the probability P(ζ|ξ) we can infer how probable is a new observation belong-

ing to a specific signature, where a set of contact points ς is generated by the model ζ being similar

to the signature ξ. Since we have a probabilistic model for each C, through the GMM representation

achieving P(ξ|C), we can compute how likely the ς is generated for ξ by achieving P(ζ|ξ) enclosing

the GMM parameters as follows:

P(ς|ξ) =
k

∑
j=1

wξ

jφ(ς|µ
ξ

j ,Σ
ξ

j), (4.1)



70 Chapter 4. Identifying Objects from Hand Configurations

P(ζ|ξ) = ∏
∀ς∈ξ

P(ς|ξ), (4.2)

then the similarity function ŝ is computed by averaging the two entities:

ŝ(ζ,ξ) =
P(ζ|ξ)+P(ξ|ζ)

2
, (4.3)

so that the minimum distance between the result of ŝ to a specific class of hand-object ξ point to a class

that the new observation belongs to. It is necessary to compute (4.3) between the new observation

to all possible signatures. The minimum distance is achieved by min f (ŝ). The distance between the

result of ŝ and all possible hand-object ξi signature is computed as follows:

min
i∈{1,...,N}

f (ŝ) = |ŝ−P(ξi|ζ)| . (4.4)

Equation (4.1) states that the probability of a hand configuration given the contact points ς

belonging to a hand-object class is modelled as a weighted mixture of Gaussians by computing the

GMM as shown in Chapter 3. The mixture of probabilities of the contact points is generated by the

model ξ as presented in (4.2). The probability of a new hand configuration being generated by a

GMR model is computed following these equations above. By comparing those probabilities we can

estimate which is the most likely hand-object class that generated the contact points to try to find the

most probable object shape for that hand configuration.

4.3 Object Identification

The process of object identification starts by verifying the first demonstration of contact points form-

ing a hand configuration whilst the object is being explored by the in-hand exploration procedure. At

each hand configuration demonstrated we can search for possible object candidates identities. As long

as the in-hand exploration of an object is increasing, the list of possible objects (from the database)

is updated based on candidate objects with high occurrence (those objects associated with a hand

configuration). The hand configuration during in-hand exploration is compared with the learned sig-

natures by the similarity measure. Later the objects with higher occurrences are more probable than

those that appeared less during the exploration. This process reduces the hypotheses of object identity

not matching the partial point cloud formed by contact points with all objects in the database.

The probability distribution to find hypotheses of possible candidate objects is computed by
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simply counting the number of occurrences of the objects that are listed during the exploration of the

partial volume of the object shape.

The object database is composed of a set of models of everyday objects as mentioned before.

Each object is represented by the 3D Cartesian coordinates in the frame of reference of the sensor

that acquired the object model. The 3D object models were acquired by a 3D laser scanner (Konica

Minolta Vivid 910) and also acquired with full in-hand exploration of the object. The idea of having

two representations of the object is to guarantee that if not fitted to the object model with a high

degree of reliability (generated by the laser scanner) we have the approximated model achieved by

the in-hand exploration.

Figure 4.3 shows an example of the hypotheses generation (objects selection) for the demon-

strated contact points during the in-hand exploration of an object.

Figure 4.3: Hypotheses Generation: at each demonstrated contact points during the in-hand explo-
ration a hypotheses list of candidate objects identities are generated from the stored objects.

In this work, the identification is an estimation process to find the most probable object. Our

focus is to identify the objects given the hand configuration, so that the main contribution is from

the application of the selection of objects from the database using the GMM/GMR process. For the

selection process of candidate objects, we process the raw data from in-hand exploration into the wrist

frame of reference to find invariance to compute the hand configurations.

To match the partial volume of the object acquired from in-hand exploration, we are using the

data acquired using the probabilistic volumetric map in the object workspace. The set of contact

points represent partial volume of the object surface, then the point cloud is matched against the 3D
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models of the object stored in the database that was pre-selected during the hypothesis generation.

The matching is done using the classical algorithm Iterative Closest Point (ICP) first introduced by

[BM92]. By minimizing the difference between two clouds of points we can achieve the best match.

We are computing the Root Mean Square Error (RMSE) to estimate the best matching by choosing

the minimum RMSE resultant from all matching.

4.4 Experimental Results

A few sequences of contact points that form the hand configurations are overlaid in the full volume

of the object as presented in Figure 4.4. Thus, we are using the same strategy to identify the hand

configuration by the contact points. In that example, four sequences of hand configurations were

detected during the in-hand exploration of object, as well as the partial volume of the object model.

The results demonstrated that we can represent the global shape of the object by using the contact

points, and also the hand configurations during the exploration.

Figure 4.4: Sequences of contact points overlaid on the object surface during the demonstrations of
hand design while the in-hand exploration was performed by an individual. For each sequence is
identified the hand configuration given the contact points.

We state that using five sequences of hand configurations for the objects that we are dealing
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with in our database, we can achieve the hypotheses to identify correctly the object that is being ex-

plored. In the example given in this work (mug), after observing some in-hand exploration performed

by five subjects, the most common hand configuration detected for the mug is presented in Figure

4.5. This figure represents the result after using the similarity measure to identify possible candidate

objects associated to each hand configuration. We can select more than one object for each hand

configuration resultant from (4.3) and (4.4). Afterwards the probability of occurrences of all objects

listed during the in-hand exploration is computed as shown in Figure 4.5. The probability distribution

for each object is independent from each other.

Figure 4.6 shows the result of the matching of the new observation (partial in-hand exploration

of a mug) to the pre-selected objects based on hand configurations. The gray point clouds are the

3D models stored in the database. The green color is the partial volume acquired during the in-

hand exploration. The objects in the top row are the selected objects from the similarity measure

using the signatures achieved during the learning phase. The bottom row presents the most probable

object model (mug) acquired from laser scanner and the less probable model (ladle) acquired from

the laser scanner. In the top row we can see that selected objects models are full models from in-hand

exploration as well as from laser scanner (rubik cube). The object model, mug (in-hand exploration)

in the red box indicates the best match between all models. The object model (mug, laser scanner)

in the blue-box is the matching between all models acquired from laser scanner. The RMSE for

all objects, from left to right, top to down: bottle-mug = 0.2730; mug-mug = 0.0044; mug-cube =

14.2485; mug-mug (laser scanner) = 5.5247; mug-ladle = 22.5571.

In order to have satisfactory results without mistakes, it is better to perform the matching be-

tween models acquired from the same sensors (for the stored objects in the database). This means

that, if we perform a matching between an object from in-hand exploration with an object model

from laser scanner, the others matching should follow the same strategy, matching between the in-

hand exploration and the other models acquired from laser scanner, since we have different models

acquisition for the same object.

4.5 Discussion

The perception acquired by human hands (haptic: kinaesthetic, cutaneous, thermal) plays an im-

portant role in human life during everyday tasks when prehensile and manipulation activities are

performed to acquire objects’ intrinsic and extrinsic information. Using cues from human in-hand
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Figure 4.5: Most common hand configurations identified for the mug during the in-hand exploration.
The grasps presented are following the taxonomy shown in the Human Grasping Database developed
inside the GRASP project [GRA].

exploration of objects, hand configurations can be learnt and associated with object shapes to derive

suitable models to identify the manipulated objects.

A probabilistic 3D grid-based method for representation of the partial volume of the object de-

rived form in-hand exploration as well as the set of contact points on the object surface are used. By

means of mixture distribution-based signatures are learned and generated using a sequence of hand

configurations for a specific object. Later using a similarity measure function, we can compute the

probability of a new observation being associated with object shapes. This process allows a selec-

tion of candidates object identities to reduce the amount of objects for matching. This way, we have

hypotheses generation, which discards the less probable objects, keeping just the strong candidates

found by the computed weights based on the probability distribution of the objects acquired when

a list of candidate objects is generated and updated during the exploration. The accumulated set of

contact points (partial volume of the object shape) during the object in-hand exploration is matched

to those ones selected from the database (most probable candidate objects). Then the object identifi-

cation is achieved by matching between point clouds (in-hand exploration of object and the selected
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Figure 4.6: Matching between object models using ICP method. The best matching between the new
observation and the object stored in the database after the selection of candidates is the object in the
red box (mug), RMSE = 0.0044. The best matching between the the laser scanner models was the
object in the blue box (mug), RMSE = 5.5247.

models from the database).

Results are presented for human manipulation of objects, but this can also be applied to artificial

hands, although we have not addressed the hand control, only the object identification. The results

also suggest that the methodology adopted has the potential and is possible to acquire satisfactory

results using cues from kinaesthetic stimuli during in-hand exploration of objects.

The publication related to this chapter’s subject, identifying objects by in-hand exploration, is

given as follows:

International Conference

• Diego R. Faria, Jorge Lobo and Jorge Dias. ”Identifying Objects from Hand Configurations
during In-hand Exploration”. In proceedings of the 2012 IEEE International Conference on
Multisensor Fusion and Information Integration (MFI 2012), Hamburg, September, 2012.





Chapter 5

Grasp Features from Human

Demonstrations

5.1 Introduction

One of the key elements of the performance of robotic platforms is the ability to perform autonomous

grasping, manipulation, exploration and characterization of objects that are not completely known/fa-

miliar. Autonomous grasping and learning by imitation are topics that have been the focus of interest

of many research groups in robotics for decades. This research aims to learn and model the human

dexterity to endow a robot with such skills. The main objectives inside grasping strategy are to ensure

stability and the ability of grasping unknown objects. Therefore, we focus on observing the human

grasping performance to extract relevant features for learning, allowing then inferences in different

grasping context.

In robotics, the analysis of human movements has been applied in research areas related with

77
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task learning by imitation of human demonstrations. This approach is based on the principles de-

scribed by several studies from human developmental sciences that, humans can acquire skills by

watching and analysing others performing tasks. The challenge of using the human grasp demon-

strations to model the manipulation strategies that will be performed by robotic platforms consists of

building the bridge between the observed performances and the reproduction of movements that will

produce the same effect.

In this chapter we present a framework to extract relevant information from human demon-

stration using multimodal data overlaid with object information, having both the perspective of the

object state during the manipulation task and the perspective of the human performing the manipula-

tion. Identifying different stages of a manipulation task and characterizing each phase of the task is

important so as to retain the context in which different grasps and forces were used. One of the main

elements in a manipulation task is the object being manipulated, and the effect of the human hand

actions on the transformation of the object status from the starting conditions to the task goal. The

object-centric probabilistic volumetric model is used here to represent the contact regions and forces

that enabled successful grasps during the human demonstrations. The object centric framework will

facilitate future matching for an artificial system observing objects and searching for cues on how to

grasp it, taking into account the task context.

The next sections present the feature extraction implemented for the multimodal data from hu-

man demonstrations which builds upon these features to segment and identify manipulation stages

and derive a generalized task representation, as well as the probabilistic map representation of con-

tact and tactile data for successful stable grasp. The manipulation knowledge acquired from human

demonstrations can be unified with object information into a framework to be used in grasping plan-

ning strategies and autonomous grasping.

5.2 Manipulation Task Database

5.2.1 Experimental Setup and Data acquisition

In this research the human grasp demonstrations play an important role in the ability of learning and

identification of manipulation tasks, which includes hand and object movements, contact points of

stable grasps, etc. The acquired data is used to model and extract the relevant aspects of the human

demonstrations, providing the inputs for the methods presented in this chapter to represent the ma-
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nipulation tasks, such as homogeneous and dexterous manipulation tasks [KI95]. The experimental

activities with humans executing manipulation tasks are performed in our experimental area presented

in Figure 5.1. The experimental area is equipped with multiple data acquisition devices in order to

capture the different types of data used by humans to perform successful manipulation tasks. The

system records human gaze, hand and fingers 6D pose, finger flexure, tactile forces distributed on

the inside of the hand, colour images and stereo depth map. Using objects instrumented with inertial

and force sensors, 6D pose and tactile forces on the object are also captured. This experimental area

setup was built inside the Mobile Robotics Laboratory (MRLab), Institute of Systems and Robotics-

University of Coimbra (ISR-UC), as part of the European project HANDLE [HANb].

Figure 5.1: Global overview of the experimental area, data acquisition devices and objects available.

As previously mentioned, the data acquisition was implemented as a distributed and synchro-

nized acquisition generating the timestamps for each sensor. We have used the Network Time Protocol

(NTP) to have all computer clocks synchronized. A hierarchy of the computers was developed, where

the server commands the clients, sending messages to communicate between them. Each client has

one or more sensor plugged into it. Using the sockets programming, the server sends messages to

all clients at same time to start the acquisition in a synchronized way. The same happens to stop

the acquisition. This way, it is possible to access the multimodal data and correlate the data, find-

ing the corresponding frames in different sensor modalities. Figure 5.2 shows a sketch of our data

acquisition.
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Figure 5.2: General representation of the data acquisition architecture implemented in the experimen-
tal area.

5.2.2 Data Storage

The data acquisition along with the database developed at ISR-UC was used in this research. In the

database, different tasks achieved by human demonstrations can be found, such as simple manipu-

lation tasks (e.g., object displacement), in-hand manipulation tasks where dexterous hand and finger

movements are important (e.g., hand writing, pick-up an object and rotate it, task using screwdriver,

etc.). An online database, the Handle Project - Data Collection Database [HANa], is publicly avail-

able with the collected datasets.

The data storage was developed in order to share the collected datasets. We have used the XML

(eXtensible Markup Language) structure which allows us to define some standard for data reading and

recording. The online database allows the upload and download of the XML structure with all ac-

quired data from recording sessions of various systems. The XML structure allows the categorization

of data so that an application can make a more consistent search. Some advantages of this structure

are: advanced database search, flexible development of web applications, data integration from differ-

ent sources, etc. Non-web applications also benefit from this format, simplifying the data set analysis

and manipulation, for instance when loading a dataset into Matlab or another tool, a consistent set

or subset can be selected, with associated setup and calibration information with the underlying raw
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data in a simple direct format, such as text files and standard image formats.

During the data acquisition, each scenario can have several sessions. The application generates

one XML file per data acquisition session for each sensor used. For each data acquisition session, a

set of folder and files are created in order to store the acquired data. The folders and files are created

according to a specific and pre-defined structure as shown in Figure 5.3.

Figure 5.3: Schematic representation of the organization of folders (filled boxes) and files created
during a data acquisition session; several session folders and device folders can be created.

The root.xml file stores the global information of the session acquisition regarding number of

sensors used, timestamps format, folders for each device where the XML files are saved, and other

information about calibration file (folders and file names), data and time of the recorded session,

and if there is an annotation file to describe the actions phases and movements primitives/actions

of the manipulation task. The structure and hierarchy of the data.xml file depends of the type of

device it refers to. The specific structure of the elements of the various types of devices depends on

the sensors returned data. An example is shown in Figure 5.4. The other devices follow the same

idea, but with the information of the specific sensors, for instance, stereo camera instead of returning

{x,y,z,roll, pitch,yaw} like the magnetic tracker, in this case, the file has information about left and

right images names and location (frame 1 to frame N for each camera).

Given a specific scenario and a specific task, after the sensors data are recorded to reach a task

goal, a user can use some tools to make manual annotations on what is happening in the scene as a

task description to be stored in the database. The annotations provide a descriptive ground truth of

real actions in the collected data. In the Handle project, the work team at ISR-UC has developed an

on-line tool for annotation based on the images to describe each, or a set, of timestamps related to the
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Figure 5.4: Content of the data.xml file for the Polhemus Liberty device for tracker sensor 1.

sensors signals. An automatic tool was also developed in partnership with other partners of the project

to analyse the sensors signals and automatically annotate the primitives (actions and movements) of

each task.

5.3 Grasp Detection from Contact Points Overlaid on the Object Model

Some grasping strategies for robotic systems are based on analysing the object geometric properties to

fit suitable grasps, others on learning from human demonstrations using specific objects. Research on

human motion and grasping has been carried out for automatic generation of grasping strategy such

as [AA88], [KI95], [KFUM09]. Usually many approaches try to find a successful grasp given a 3D

object model. Some of them associate the object model in specific geometrical primitives, [MKCA03]

or fit to superquadrics model, [GALP07]. Thus, it is possible to set a specific number of candidate

grasps for each object component. In [HK08] for instance, potential grasps are searched through cues

provided by the primitives that were associated with a specific object. The authors in [RV08] compute

grasp points based on the center of mass of the object’s top surfaces. The object models are acquired
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based on range images. Tests with a real robotic hand were not accomplished, but simulations were

carried out to find a proper pose of the end-effector for those contact points. Saxena et al. [SDKN07]

proposed a system that infers where to grasp an object using visual information. They apply machine

learning techniques to train a grasping point model on labelled synthetic object images. Bohg et

al. [BK10b] shows the analysis of grasping as a combination of a descriptor based on visual shape

context with a non-linear classification algorithm that leads to a detection of stable grasping points

for a variety of objects. The approach developed by [LP05] depends on the availability of a 3D object

model to find a suitable grasp as a shape matching problem between the hand and the object. They

use a database of human grasp examples and the object shape features are used to match against the

hand postures.

In this section is explained how the grasp types are detected using the contact points of stable

grasps overlaid on the object map. The fingertip locations on the object map cells (i.e., object surface)

are the contact points used to detect the hand configurations. It allows to associate the grasp types

with the object model or its components (geometrical primitives) as explained in the grasp synthesis

chapter (Chapter 6).

To detect a grasp type automatically, we rely on the fingertip 6D pose relative to the wrist. For

this, each finger has attached to it a tracker sensor, and an additional sensor is placed on the wrist. This

allows us to compute the hand configurations defined in the grasp list [GRA]. To have the fingertip

6D data into the wrist coordinate system, we compute for each fingertip f = {x,y,z,roll, pitch,yaw}

(contact points) the following step:

fnew = {( fx−wx)+wx,( fy−wy)+wy,( fz−wz)+wz,αw,βw,γw}, (5.1)

where f represents each fingertip in {x,y,z} (in the frame of reference of the tracker sensor) and w

the wrist coordinates; αw,βw,γw are the angles roll, pitch and yaw of the wrist.

Later, the grasp type detection by using contact points on the object surface is achieved based

on the transformed data representing a hand configuration. A grasp type is identified as a squared

mean distance value between the fingers as shown in (5.3). As mentioned before, the grasp type used

in this work are the ones defined in the grasp list adopted from [GRA], so that each discrete grasp

type has an identity by using the hand configuration as explained next. First the Euclidean distances

between thumb and index finger are computed, followed of the distances of the thumb and middle,

thumb and ring, thumb and little, index and middle, middle and ring, and finally ring and little.
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Dν =
1
N

N

∑
k=1

(dpq)
2
k , (5.2)

where dpq =
√
(px−qx)2 +(py−qy)2 +(pz−qz)2, and p an q represent the Cartesian coordinates

of two fingers (e.g., thumb and index, or index and middle, and so on). Given a new observation of

stable grasp, after computed the contact points distances, we can associate it to a pre-defined grasp

by a similarity measure to search for the closest grasp similarity:

ĝs = min
i∈{1,...,N}

f (ĝs) = |Dν−δi|, (5.3)

where Dν is the mean distance computed given the contact points; {δ1, ...δn} are the grasping thresh-

olds, i.e., each grasp is represented by a δ value. Many observations (different subjects) of the same

grasp value was computed (5.3) and an average for δ was achieved to represent a learned grasp. The

result ĝs is the grasp that will represent a new observation of contact points.

The grasp detection steps are presented in Algorithm 3. Figure 5.5 shows some demonstrations

adopted in one of the objects for learning and the identified grasps types.

Figure 5.5: Some grasps that were identified for the spray.

A few sequences of contact points that form the hand configurations are presented in Figure

4.4 in Chapter 4. The sequences are overlaid in the full volume of the object computed in the object

volumetric map. The four sequences presented are identified by using the contact points in the wrist
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Algorithm 3: Grasp Type Detection

1 Inputs: 6D fingertips contact points (acquired when the tactile sensors are active, i.e. touching
the object)

2 For each fingertip: Compute a transformation of the fingertip 6D data
f = {x,y,z,roll, pitch,yaw} into the wrist coordinate system as demonstrated in eq. (5.1);

3 Compute the Euclidean Distances d between the thumb fingertip and the other 4 fingertips:
d(t, i), d(t,m), d(t,r), d(t, l), t = thumb, i = index, m = middle, r = ring, l = little ;

4 Compute the Euclidean distance between the other fingertips d(i,m),d(m,r),d(r, l) ;

5 Compute the grasp value by an averaged sum of the squared Euclidean distances between the
fingertips Dν =

1
n ∑

n
k=1(di, j)

2
k ;

6 Search for the minimum distance Dν and the learned grasping thresholds {δ1, ...δn}, by
computing a similarity function ĝs: mini∈{1,...,N} f (ĝs) = |Dν−δi|

7 Output: Grasp type

frame of reference as explained previously. According to the grasp taxonomy: sequences 1, 3 and

4 were identified as precision disk and sequence 2 is power disk. The examples presented show the

potential of the probabilistic volumetric map applied for in-hand exploration of objects as well as for

human demonstration of stable grasp.

In the next chapter we will show how to build a learning phase based on probability tables to

distinguish what kind of grasp is more probable to happen in each specific situation and also the object

region that was chosen for the grasp. For that, some trials relying on human grasp demonstrations of

how to grasp an object given the object model will be presented.

5.4 Grasping Movements Recognition by Learning from Human Demon-

stration

Some of the most performed actions by humans in their daily activities involve the handling of objects

for a specific task. The study of human reach-to-grasp and manipulation movements are important for

researches of different areas. In computer science field, hand trajectories segmentation and classifica-

tion are useful for human-machine interaction using gestures to interact with machines, for example,

the hand can be used as a computer mouse. Various theories have been proposed for predicting hand

trajectories. Hand trajectory segmentation and classification are also useful in the robotics field for

imitation learning for human-robot interaction. Typically, the global hand’s trajectory during a ma-

nipulation task can be segmented into different stages: reach, lift, transport and release [FBJ06]. In
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this section we focus our attention on grasping movements. The intention is the development of an

automated system for trajectories segmentation and classification by a probabilistic approach. In this

work, the estimation and classification of reach-to-grasp movements when someone is performing the

grasping is shown. By analysing these movements we are able to understand some human behaviours

during the hand journey to reach and grasp an object. This information can be used to endow robots

using the movements before the object manipulation, i.e., the capability of a robot recognizing how

a human grasps an object to imitate the human action. This methodology can also be applied for

gesture recognition tasks for human-robot interaction.

In order to learn and characterize the hand trajectories, we are discretizing them into significant

changes in direction along the trajectories, hereafter named curvatures, and also detecting some pre-

defined hand orientations with respect to a vertical reference. In this work, we are working with hand

trajectories in 3D space. With our experimental setup, we have 6D pose data at 30Hz given by the

tracker device that is attached to the fingertips and on the back of the hand. A smoothing mean filter

with a centred window of 9 samples is used, followed by a 0 to 1 scale normalization using the initial

and final points as reference. The trajectory is then segmented into action phases. The hand trajectory

curvatures and hand orientation along each phase will be used to characterize each segment, so as to

identify all the phases of the human manipulation demonstrations.

Figure 5.6 shows examples of features extraction along a hand trajectory: top image illustrates

the curvatures along a 3D trajectory (pick-up and place); bottom image shows the hand orientation

along the same trajectory.

5.4.1 3D Trajectories Segmentation: Curvatures and Hand Orientation Detection

A pre-processing step is applied in the raw data (hand trajectory) to smooth the possible noise. Due

to the sensors (magnetic tracker) precision and resolution (spatial resolution: 8mm and angular res-

olution: 0.15 degrees), small shaky movements can be seen as noise when dealing with curvatures

detection. To avoid this, a simple mean filter is applied (at each four previous and four forward neigh-

bours of each point) to smooth the trajectory. A trajectory normalization is also applied to rescale

all trajectories to the same size (0 to 1). This way, the hand movements that are not started in a pre-

defined initial position can also be recognized by the trajectory shape when we detect the discretized

curvatures. Figure 5.7 illustrates the pre-processing steps applied to the 3D hand trajectories.

In this work we are considering the discretization of curvature along 8 key directions, i.e.,
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Figure 5.6: Top image: Example of a 3D trajectory of pick-up and place and possible curvatures
along the trajectory; Bottom image: Example of hand orientation along the trajectory.

c ∈ C = {up,down, le f t,right, up-left, up-right, down-left, down-right} along the hand trajectory.

These are derived from the trajectory with a threshold on the level of significant change that triggers a

new feature. The hand orientation is represented as o ∈ O = {top,side,hand-out}, and derived from

the plane formed by three fingers (index, middle and ring finger).

As long as the trajectory is in 3D space, for better curvature detection we can work in cylindrical

(r,θ,h) or spherical coordinate system (r,θ,ϕ). Using two points of the trajectory we have the vectors

representation in 3D space. The angle formed between these two vectors by the projection on (x,y)

plane we achieve the θ angle which give us the azimuth information, if the angle is increasing, we

have the direction left, or if it is decreasing we reach the direction right. The same 2 vectors and their

formed angles by the projection on (z,y) plane, we can achieve ϕ angle for pitch (tilt) information.

In a 3D space we can make some combinations of the possible directions, for example, given the h

information we have up and down directions; given the θ angle, we have left and right directions;
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Figure 5.7: Top image: Illustration of trajectories normalization. Bottom image: Smoothed trajectory
- Blue color represents the raw data; Red color represents the smoothed trajectory.

given the radius information r, we have further and closer directions, so that we can have several

combinations of features. The height information h is achieved in a simpler way using the cylindrical

coordinate system, calculating the difference between the z axis values from both points. In spherical

coordinate system just the θ angle can not give us the height or diagonals movements, being necessary

to also verify the radius r, if it is increasing or decreasing and there are no changes in ϕ angle, this

way, we reach this information. To know the directions up or down, there are changes on ϕ, and the

variables r, θ remains the same. In cylindrical coordinate system we need to combine r, θ and h to

know features like up-right, up-left, down-right and down-left. The next steps demonstrate how to

achieve (r,θ,ϕ) in spherical coordinate system:

r1 =
√

x2
1 + y2

1 + z2
1, (5.4)

sinϕ =

√
x2

1 + y2
1

r1
, (5.5)
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cosϕ =
z1

r1
, (5.6)

ϕ1 = arctan2(sinϕ,cosϕ), (5.7)

cosθ =
x1√

x2
1 + y2

1

, (5.8)

sinθ =
y1√

x2
1 + y2

1

, (5.9)

θ1 = arctan2(sinθ,cosθ). (5.10)

Then with the second vector acquired by the second 3D point we follow the same steps that

are used in (5.4) to (5.10) achieving then r2,ϕ2 and θ2. After that, we achieve the θ angle and pitch

information (height) given by ϕ angles as follows:

h = r2 cosϕ2− r1 cosϕ1, (5.11)

θ = θ2−θ1. (5.12)

By adopting the cylindrical coordinate system, to find the height information, we can simplify

the computation eliminating the equations (5.4) to (5.7) and we can replace the equation (5.11) by:

h = z2− z1. (5.13)

Then, to find the feature c ∈ {up, down, le f t, right, up-right (UR), up-left (UL), down-right

(DR), down-left (DL)} we use the following rules:
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c =



Up, height > 0 and θ v 0 and r(x,y) v 0

Down, height < 0 and θ v 0 and r(x,y) v 0

Right, height = 0 and θ < 0 and r(x,y) = 0

Left, height = 0 and θ > 0 and r(x,y) = 0

UR, height > 0 and θ < 0 and r(x,y) v 0

UL, height > 0 and θ < 0 and r(x,y) v 0

DR, height < 0 and θ > 0 and r(x,y) v 0

DL, height < 0 and θ < 0 and r(x,y) v 0

, (5.14)

where r(x,y) is the radius in cylindrical coordinate system represented in (x,y) plane. It is computed

as follows:

r(x,y) = r2(x,y)− r1(x,y), (5.15)

where r1 and r2 are given by:

r1(x,y) =
√

x2
1 + y2

1, (5.16)

r2(x,y) =
√

x2
2 + y2

2. (5.17)

If h,θ, and r are equal to zero, then there is no movement.

Splitting the trajectory in some parts, in a simpler way just defining the slices (e.g., 8 parts),

or in a more complex way, detecting first the manipulation stages (explained in the next section), we

can characterize the trajectory, so that each part can differentiate the type of grasp. After curvatures

detection, the probability distribution of these features in each part of the trajectory is computed as

follows:

P(ci) =
o
N
, (5.18)

where o represents the occurrences a specific curvature ci in a specific hand displacement (trajectory

part) and N is the total of curvatures found in each part, i.e., the sum of the total of occurrence of all

ci.

Regarding hand orientation, using three sensors on three fingertips we can approximate the
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hand plane computing its orientation to find out if it represents top, side-grasp or hand-out. The three

parallel fingers (index, middle and ring) usually remain parallel in the most part of the hand shapes

for grasping, so it is a good example to form the hand plane. The hand orientation is achieved by

computing the norm of the hand plane when we verify the angle formed using the hand norm related

to the vertical axis (z) of the magnetic tracker frame of reference. The hand orientation is computed

given three points in each segment of the trajectory, then using the total occurrence of the discretized

orientations (top-grasp, side-grasp and hand-out) in each segment, we can achieve the probability

distribution as follows:

P(oi) =
o
N
, (5.19)

where o represents the occurences of hand orientation oi a specific trajectory segment and N represents

the total of occurrences of all hand orientations found in that specific trajectory segment.

In the test case, first we are demonstrating grasping movements during the reaching phase until

the grasp action. For this specific work, we have used a dataset with 140 trajectories for reaching

movements, where 70 trajectories were performed for each type of movement: top-grasp and side-

grasp. The movements were performed by 7 subjects, each subject demonstrated 10 times each type

of movement. For each observation of our dataset, a XML file that stores the characterization of

the trajectory is created, i.e., the segmentation information: amount of detected features and their

probabilities in each trajectory segment. Two XML files for each trajectory were created, one with

curvatures information and another with hand orientation. This information is useful to perform

the histogram learning that will be used in the classification step. Figure 5.8 shows examples of

reaching trajectories (Cartesian; inches measure) for pickup and place task for top-grasp (top-row)

and side-grasp actions (bottom row). Figure 5.9 shows an example of the normalized and smoothed

trajectory of top-grasp action after the pre-processing phase. Table 5.1 shows the result of trajectory

segmentation by hand orientation acquired from the first trajectory (top-row) exemplified in Figure

5.9. The same process shown in Table 5.1 is done for the segmentation by curvatures as shown in

Table 5.2.
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Figure 5.8: Top row: raw data representing trajectories of top-grasps actions during the reaching
movement. Bottom row: Side-grasps.

Figure 5.9: Hand trajectory after the pre-processing step (smoothing and normalization): Top-grasp
action.

5.4.2 Learning and Estimation for Trajectories Classification applying Bayesian Tech-

niques

The learning phase is based on histogram of the discretized features. Some studies have prompted

us to apply Bayesian method to classify human movements. Computational models for human per-

ception and action have been explored by researches. Some studies about the human brain reports

that Bayesian methods have achieved success in creating computational theories for perception and

sensorimotor control [KP04].

In the learning phase all trajectories of our dataset session are analysed, where each observation
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Table 5.1: Hand Orientation extracted along the trajectory: Result of our application for the trajectory
shown in Figure 5.9. The second column is the amount of features found in each segment; the third
column is the corresponding probability of each feature.

Trajectory Hand Orientation Hand Orientation Probab.
Parts Side-Top Side-Top

1 5-4 0.56-0.44
2 3-8 0.28-0.72
3 4-7 0.37-0.63
4 3-8 0.28-0.72
5 2-10 0.17-0.83
6 1-11 0.08-0.92
7 1-13 0.07-0.93
8 1-16 0.06-0.94

Table 5.2: Curvatures extracted along the trajectory: Result of our application for the trajectory shown
in 5.9. The second column is the amount of features found in each segment; the third column is the
corresponding probability of each feature.

Trajectory Curvatures amount Curvatures Probab.
Parts D-U-L-R-UL-UR-DL-DR D - U - L - R - UL - UR - DL - DR

1 1-2-0-0-0-3-1-1 0.120-0.260-0.00-0.00-0.000-0.38-0.12-0.120
2 1-4-0-0-2-4-1-1 0.080-0.300-0.00-0.00-0.150-0.30-0.08-0.080
3 1-5-0-0-2-3-0-1 0.080-0.420-0.00-0.00-0.160-0.25-0.00-0.080
4 1-1-0-0-1-6-1-1 0.090-0.090-0.00-0.00-0.090-0.54-0.09-0.090
5 1-1-0-0-1-4-0-1 0.125-0.125-0.00-0.00-0.125-0.50-0.00-0.125
6 1-1-1-2-0-1-1-4 0.090-0.090-0.09-0.18-0.000-0.09-0.09-0.360
7 3-0-1-0-1-0-2-3 0.300-0.000-0.10-0.00-0.100-0.00-0.20-0.300
8 5-3-2-1-3-1-1-2 0.278-0.167-0.11-0.05-0.167-0.05-0.05-0.110

represents a simple task: pick up the object. Given a set of observations to represent a type of

Grasping G, at some displacement D, we have the probability of each type of curvature C in each

part of a trajectory represented as P(C|G, D). The same rule is used for hand orientation learning, so

that we have P(O|G, D) where O represent all possible hand orientations. Here, the learned table is

a mean histogram calculated from all top grasp and all side grasp probability tables acquired during

the extraction process.

Each grasp type has its specific learning table. Figure 5.10 shows the Grasping Learning Tables

(mean histograms) obtained after analysing all trajectories of our dataset, the curvatures features

histogram and hand orientation histograms for each class of grasping, respectively.

Due to this learning process adopting histogram techniques, some features might have zero

probability, because they never have been observed, i.e., a few types of curvatures or hand orientations

will never happen to some specific trajectory. Whenever these features with zero probability occur
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Figure 5.10: Grasping learning tables: Mean histogram for top and side grasping actions - curvatures
and hand orientation features. Each feature has a probability assigned to it at each segment (1 to 8).

in the classification step, the corresponding hypothesis will receive also a zero probability. Since

for the inference, the classifier is continuous, based on a multiplicative update of beliefs, these zeros

would lead to a definite out-rule of the hypothesis. To avoid this problem we are using the Laplace

Succession Law to produce a minimum probability for non-observed evidences, as follows::

∀ni = 0, Pmin([ni = 0]) =
ni +1
N +χ

=
1

N +χ
, (5.20)

where Pmin([ni = 0]) is the resulting minimum probability that will be assigned to the non-observed

features (ni = 0); χ represents the total number of features (i.e., for all possible features, curvatures

C = 9 and orientation O = 3); ni is a specific feature (the non-observed feature: curvature or hand

orientation); N represents the total of occurrences (sum of all occurrences of features).

Bayesian classification models have already proven their usability in gesture recognition sys-

tems [RD07]. Based on this study, a Bayesian classification of grasp types analysing reach-to-grasp

movements is presented here. The estimation and classification of a type of grasp happens along a

trajectory that is being performed by a human subject. In each hand displacement (a segment of the

trajectory) the probability of each type of grasp is updated, i.e., the application informs us which

grasping is more probable to happen by the higher probability between top and side grasp variables.
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During the classification, the estimation of each grasp type is computed, showing the probabil-

ity of each grasp type at each hand displacement (corresponding by 1/8 of the trajectory). To better

understand the general grasp classification model, some definitions are done: g is a known grasp from

all possible G (Grasp types); c is a certain value of feature C (Curvature types); i is a given index

from all possible hand displacement that composes the distance D, representing the trajectory size,

where i = 1/8 of D. The probability P(c|g, i) that a feature C has certain value c can be defined by

learning the probability distribution P(C|G, D). Knowing P(c|G, i) and the prior P(G) we are able

to apply the Bayes rule and compute the probability distribution for G given the hand displacement i

of the learned table and the feature c. Initially, the prior P(G) is assumed as a uniform distribution,

and during the classification its value is updated according to the Dynamic Bayesian Network (DBN)

theory:

P(Gk+1|ck+1, i) ∝ P(ck+1|G, i)P(G). (5.21)

We assume the same model of classification for hand orientation which is differentiated just

by segmentation information, that is, the hand orientation instead of curvatures, where o is a certain

value of feature O (hand orientation for side and top grasp). Knowing P(o|G, i) and the prior P(G)

we apply Bayes rule as follows:

P(Gk+1|ok+1, i) ∝ P(ok+1|G, i)P(G). (5.22)

We formulate the equation in a recursive way (DBN). The posterior probability of a previous

trajectory part becomes the prior for the next trajectory part (next hand displacement). Assuming that

each hand displacement can find new curvatures and new hand orientations, then we can express the

on-the-fly behaviour by using the index k that represents a certain hand displacement performed by

the person in the reach-to-grasp movement. The rule for classification is based on it being necessary

the highest probability value reaching a certain threshold (e.g., 0.7). We expect that a reach-to-grasp

movement that is being performed by a subject to grasp the mug by top or side grasp will produce a

grasp hypothesis with a significant probability. The Maximum a Posteriori (MAP) estimate is adopted

to identify the grasp type.

Entropy (information theory) is used in this work as confidence level in the same way as ex-

plained in Chapter 2, here trying to improve and achieve a better classification based on results of
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previous classification. After analysing the classifications results of trajectories by hand orientation

and by curvatures as shown in 5.21 and 5.22, we can apply entropy to verify the best classification

between both. For that, a confidence variable will be used as weight w ∈ {w1, ...,wn} for each model

of classification. The weight P(w) is used in the Bayesian mixture model as follows:

P(G|F, D) =
n

∑
j=1

P(w j)×P(g j| f , i), (5.23)

where P(g| f , i) represents the classification result of each hand displacement computed as shown in

5.21 and 5.22, f represents o or c in the equation. Variable N is the number of components (here rep-

resented by types of classification); wi is the weight of each component P(w j), and ∑
N
i=1 wi = 1. Each

kind of classification is multiplied for its corresponding weight based on analyses of previous clas-

sification. Given the confidence of classification, we fuse the classification belief using the weights

reached by the entropy.

5.4.3 Experimental Results for 3D Trajectories

The discretized features used in this work are sufficient to characterize and identify hand trajectories

for reaching movements, and they can also be applied for identification of more complex movements

(different task contexts), which encloses other stages, such as reaching, lift, transport and release.

All trajectories used for the learning stage were performed following a protocol in the experi-

mental area. The subject is in front of the table and the object is located on the table. The right-handed

subject has 6 sensors attached to the hand (on the fingertips and one on the wrist). An initial position

of the hand is marked on the table. All trajectories have to be started from this initial position and

when the trajectory is finished (it is considered when the hand touches the object), the hand has to

come back to the initial position. For the test case, we are using a mug. Its orientation is a side

position to the subject’s field of view. This means that the mug has the handle part turned to the right

side in the subject’s field of view.

Figure 5.11 shows a side grasp trajectory performed by a right-handed subject and Table 5.3

shows the answer of the application along this trajectory classifying it by two independent features,

first by using curvatures detection and the second one using hand orientation. It shows the probability

updated by Bayes rule for both variables (top and side) in each part of the trajectory. The final

probability in the last part of the trajectory (in the 8th part) is the result of the classification.

Comparing this case of trajectory shown in Figure 5.11, we can see that both classifications
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Figure 5.11: Side-grasp trajectory (after smoothing and rescale).

Table 5.3: Classification using Curvatures (C) and Hand Orientation (O) for the trajectory shown in
Figure 5.11. The trajectory was classified as side grasp with 98.32% using curvatures and 92% using
hand orientation. The estimation for top or side grasps in each part of the trajectory is shown.

Trajectory Part Top%(C) Side%(C) Top%(O) Side%(O)
1 34 66 19.10 80.90
2 34 66 4.76 95.24
3 34 66 4.76 95.24
4 0.68 99.32 4.76 95.24
5 0.68 99.32 4.76 95.24
6 0.68 99.32 8.25 91.75
7 0.68 99.32 10.83 89.17
8 1.68 98.32 8.00 92.00

achieved good performance classifying the trajectory correctly. In this experiment the classification

by curvatures was better than by hand orientation. It happened because when adopting the hand

orientations, the big difference between top and side grasp happened just in the end of the trajectory,

when the subject was almost touching the object for the initial grasp. The results showed us that

the reaching movements are similar before the grasp. In the case of curvatures detection, even the

reaching movements being similar, more differences are detected due to the variation of the directions

during the movement, since we can detect different types of curvatures given a sequence of two points

of the trajectory. The curvatures can be detected in different ways, for example, at time (t +1, .., t +

10), or at trajectory segments of 1cm, ...,10cm. In this work, we have used at each two points of

the trajectory, when there is a variation (i.e., when the first point is different from the second point).

Thus, we could detect more differences between one individual to another, being possible to better
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characterize the movement. Therefore, our model is asynchronously updated based on the directions

or orientation changes at each distance sequence (segment) of the trajectory. During the classification

can be made independent of the segments stipulated, but at each hand displacement or in a temporal

way (at each time instant t, t + 1). The idea of using the trajectory segments was considered in this

work to have a probability distribution at a sequence of changes in direction.

Following the protocol, two right-handed subjects, around 25 to 30 years old, have performed

reach-to-grasp movements to test our application. Table 5.4 shows the results of the classification

of 10 trials of side grasp using curvatures features, using hand orientation features and combining

them using entropy as confidence level (weight) in a Bayesian mixture model, enclosing both class of

features (likelihoods) into a single classification model. The false negative values in the classification

using curvatures features happened due to the side-grasp trajectory are similar to the top-grasp. The

classification using curvatures features when positive achieved higher values than the classification

using hand orientation features. However, using hand orientation features, we did not have false

negative values. Using the entropy H in these trials to reach an uncertainty measurement, we could

assign weights for each classification model (each one using a specific class of feature), achieving the

following weights: P(wcurv) = 0.61 and P(whor) = 0.38.

Figure 5.12 presents a graphic with the classification results of a movement to perform a top-

grasp action, where three models are used to classify the same trajectory. The first classification is

using a Bayesian model relying on the likelihood with discretized curvatures features, the second with

hand orientations features and another adopting the entropy weights in Bayesian Mixture Model to

use the previous two likelihoods into a single model. The classification can be seen in each sample

(segment or hand displacement) of the trajectory. Figure 5.13 shows a graphic representing the com-

parison between the three types of classification. The results show us that using the entropy belief is a

kind of balance between the classification using the two types of features for the trials shown in Table

5.4.

The application was developed using the language C++. For these trials, laptop HP Pavilion

dv5000, AMD Turion 64, 2.0Ghz, 1Gb of RAM was used. The segmentation process and classifica-

tion are performed in real time.

To test the efficiency of the proposed classification framework, another class of trajectory was

employed, typical trajectory for gesture recognition for human-robot interaction, or even for human-

computer interaction. For that, more movements were learned (e.g., bye-bye and circle), with 30
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Figure 5.12: Classification of a movement of top-grasp during the reaching step. Three different
model of classification: 1. Bayesian model relying on curvatures, 2. Bayesian model relying on hand
orientation, 3. Bayesian mixture model relying on the weights given by entropy for the two previous
models.

Figure 5.13: Comparison graphic. Classification using two different types of features and the third
one using weights reached by entropy.

observations for both. Table 5.5 shows in the two first rows the classification of circles movements

performed 10 times by two different subjects (first and second row, respectively), and the last two

rows show the classification of the bye-bye movement after performed 10 times by these two subjects

(third and fourth row, respectively). The results are similar to the top and side-grasp classification. In

10 trials, we have found a false negative for each movement.

The application for segmentation and classification of reach-to-grasp movements using two

different ways of changes detection along the 3D trajectory showed to be a good alternative to distin-

guish the hand trajectories. Entropy as uncertainty measurement was applied to reach a confidence
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Table 5.4: Result of 10 trials of Side-grasp trajectory. Two false Negative (less than 50%) on trial 3
and 5 using curvatures. The trials 4, 6 and 10 in hand orientation were considered as side-grasp, but
with low probability, less than the threshold of 70%. Just one false negative (trial 3) was detected.
Entropy was used to combine both features into a single classification model. The trials 5 and 10
were considered side-grasp with low probability.

Trial 1-Classification using 2-Classification using 3-Entropy to combine
Curvatures Hand Orientation both features

1 98.32% 92.00% 95.85%
2 86.63% 76.93% 82.86%
3 21.67% 91.53% 48.81%
4 84.69% 61.12% 75.52%
5 5.78% 82.53% 67.41%
6 99.33% 51.22% 80.63%
7 99.68% 90.43% 96.08%
8 99.97% 91.53% 96.68%
9 88.98% 95.69% 91.58%

10 78.67% 55.98% 69.85%

Table 5.5: Classification of Circle (2 first rows) and bye-bye (2 last rows) movements.
Trial 1-Classification using 2-Classification using 3-Entropy to combine

Curvatures Hand Orientation both features
1 95.30% 80.65% 89.40%
2 86.53% 78.95% 83.54%
3 87.59% 76.52% 82.90%
4 89.84% 82.92% 86.91%

level giving weights for both classifications for their fusion in a mixture model. The results have

shown that using the weights reached from entropy for a joint classification has balanced the results,

improving some classification when its probability is too low. The Bayesian techniques have shown

to be an efficient way of classification for grasping movements.

5.4.4 Simplifying for 2D Case: Hand Trajectories Segmentation and Classification

A simplification can be done to work with trajectories in 2D case. Here, to exemplify the proposed

method, we are following the same initial idea of the last three previous subsections regarding the

pre-processing step to smooth and normalize the trajectories as well as the learning and classification

using Bayesian techniques. The main difference is on the discretized features detection. The focus

of this work is on the changes detection in directions along the 2D trajectory, here also named as

curvature detection. In this subsection we are not using the hand orientation. The sensors used to

acquire the data were the magnetic tracker device, in the same way as the 3D case, but could be used
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with monocular camera, tracking the hand trajectory and using the 2D data.

The changes detection along the trajectories is given by the computation of 2nd order derivative.

For curvature detection along the trajectory, we decided to simply split the trajectory into segments

as demonstrated in the 3D case, and afterwards the curvatures detection is made in each segment. It

is done due to the on-the-fly classification that is performed during the hand displacement, i.e., to

estimate and classify the trajectory that is being performed at each hand displacement, updating the

trajectory classification. Initially we tested to split the rescaled trajectories into 1/4 and 1/8 of the

trajectory size to verify the quality of the results.

Giving three points at each trajectory segment, we compute the second order derivative being

able to detect the curvatures as expressed below:

d1 =


y2−y1
x2−x1

,(x2− x1) , 0 and (y2− y1) , 0;

0 ,(y2− y1) == 0 or (x2− x1) == 0
, (5.24)

d2 =


y3−y2
x3−x2

,(x3− x2) , 0 and (y3− y2) , 0;

0 ,(y3− y2) == 0 or (x3− x2) == 0
, (5.25)

Curvature = d2−d1, (5.26)

where d1 and d2 are the first and second derivative respectively and xi, yi represent the Cartesian

coordinates of the points. The curvature value is discretized given a determined threshold:

k =


−1, curvature <−0,7 ⇒ down

0, −0,7 < curvature < 0,7 ⇒ line

1, curvature > 0,7 ⇒ up

, (5.27)

where k is the discretized curvature value. The threshold value was found in an empirical way. After

some tests with threshold values and analysing the trajectory shape, we could find a value that satis-

factorily returned the trajectories curvatures. By now, in this 2D case, the curvatures are limited to

down, up, and when there is no significant changes in the direction, named here as line.

Figure 5.14 shows examples of reach-to-grasp trajectories for top and side-grasp performed

and plotted in a 3D view. The trajectories were performed following the same protocol of the 3D case

explained in the previous sub-section using the same object (mug) for the grasp action. Tables 5.6

and 5.7 show the curvature detection along the trajectories presented in Figure 5.14, top-grasp and
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Table 5.6: Trajectory Segmentation: Result for trajectory shown in Figure 5.14 (left image:top-grasp).
Slices Curv. Amount Curv. Probab.

D-L-U D-L-U
1 3-2-5 0.3-0.2-0.5
2 3-2-2 0.43-0.285-0.285
3 3-2-1 0.5-0.333.0.167
4 1-1-3 0.2-0.2-0.6
5 1-1-2 0.25-0.25-0.5
6 1-0-3 0.25-0-0.75
7 1-0-2 0.333-0-0.667
8 3-0-2 0.6-0-0.4

Table 5.7: Trajectory Segmentation: Result for the trajectory shown in Figure 5.14, side grasp.
Slices Curv. Amount Curv. Probab.

D-L-U D-L-U
1 4-4-6 0.29-0.29-0.42
2 3-0-2 0.6-0-0.4
3 3-0-2 0.6-0-0.4
4 2-1-1 0.5-0.25-0.25
5 2-1-1 0.5-0.25-0.25
6 2-1-1 0.5-0.25-0.25
7 2-1-1 0.5-0.25-0.25
8 2-3-1 0.333-0.5-0.167

side-grasp respectively.

Figure 5.14: Reach-to-grasp trajectories (raw data: inches measure). Left image: Top-Grasping;
Right image: Side-Grasping.

The learning phase and classification model follow the same steps of the 3D case, as explained

in equation (5.21). The learned tables P(C|GD) computed by histogram techniques after analysing

human demonstrations of the hand trajectories for top-grasp and side grasp actions are shown in

Figure 5.15.
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Figure 5.15: Learning tables: Left image represents the Top-Grasping Learning Table P(C|GD). The
probabilities of the curvature down vary of 0.14 to 0.35. The probabilities of line vary of 0.16 to 0.57.
The probabilities of curvature up vary of 0.19 to 0.66. The right image represents the Side-Grasping
Learning Table P(C|GD). The probabilities of curvature down vary of 0.16 to 0.4. The probabilities
of line vary of 0.3 to 0.6. The probabilities of curvature up vary of 0.2 to 0.5. The sum of the the
features down, line and up in each trajectory part must be 1.

Table 5.8: Classification Result: Estimation of trajectory shown in Figure 5.14 (left image: top-
grasp). At each trajectory part is shown the probability of the trajectory to be Top- or Side-Grasp.
This trajectory was classified with probability of 87.12% as Top-Grasp.

Slices Curv. Amount Curv. Probab. TG% SG%
D-L-U D-L-U

1 3-2-5 0.3-0.2-0.5 47.001 53.009
2 3-2-2 0.43-0.285-0.285 43.193 56.807
3 3-2-1 0.5-0.333.0.167 38.787 61.213
4 1-1-3 0.2-0.2-0.6 55.894 44.106
5 1-1-2 0.25-0.25-0.5 71.707 28.293
6 1-0-3 0.25-0-0.75 79.174 20.826
7 1-0-2 0.333-0-0.667 83.523 16.477
8 3-0-2 0.6-0-0.4 87.120 12.880

Tables 5.8 and 5.9 show the answers of the framework along the trajectories presented in Figure

5.14 classifying them. The application updates the probability of the variables Side-Grasp and Top-

Grasp demonstrating which type of grasp is more probable at each hand displacement (trajectory

part).

Following the same strategy as the 3D case, 2 right-handed subjects performed the reach-to-

grasp trajectories to test the framework. After 10 trials we have observed the top-grasp movements

were classified as having better results than side-grasp. This happened due to the side-grasp trajecto-

ries being performed with more variance between the movements. Table 5.10 shows the performance
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Table 5.9: Classification Result: Estimation of trajectory shown in Figure 5.14 (right image: side-
grasp). At each trajectory part is shown the probability of the trajectory to be Top- or Side-Grasp.
This trajectory was classified with percentage of 83.70% as Side-Grasp.

Slices Curv. Amount Curv. Probab. TG% SG%
D-L-U D-L-U

1 4-4-6 0.29-0.29-0.42 47.00 53.00
2 3-0-2 0.6-0-0.4 43.19 56.81
3 3-0-2 0.6-0-0.4 38.78 61.22
4 2-1-1 0.5-0.25-0.25 38.78 61.22
5 2-1-1 0.5-0.25-0.25 38.78 61.22
6 2-1-1 0.5-0.25-0.25 38.78 61.22
7 2-1-1 0.5-0.25-0.25 38.78 61.22
8 2-3-1 0.333-0.5-0.167 16.30 83.70

Table 5.10: Classification Result: 10 trials of Top-Grasping performed by 2 subjects. Blue color:
probabilities > 70%; Red Colour: probabilities < 50%. In the trial 7 the trajectory was classified as
Top-Grasp but with lower probability.

Trial Probability True Positive False Negative
1 77.17% x
2 71.71% x
3 85.54% x
4 88.38% x
5 85.11% x
6 38.79% x
7 55.89%
8 83.52% x
9 87.11% x
10 38.06% x

of 10 trials of Top-Grasp trajectories and Table 5.11 trials of Side-Grasp highlighting the probabilities

in the classification, the true positive and false negative rate.

The results show that it is possible to achieve correct classification, although with a low rate

of classification. However the classification results are not superior compared to the 3D case. This is

explained due to the limitation of features detection along the trajectory, i.e., limited types of changes

in direction.

5.5 Manipulation Tasks Identification by Learning and Generalizing

Hand Motions

An important issue for modelling and recognition of human actions and behaviours are the motion

patterns found during some activity. In different daily tasks the motion assumes an important key
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Table 5.11: Classification Result: 10 trials of Side-Grasp performed by 2 subjects. Blue color: prob-
abilities > 70%; Red Colour: probabilities < 50%. The trajectories in the trials 3, 5, 7 and 9 were
classified as Side-Grasp with lower probabilities.

Trial Probability True Positive False Negative
1 76.90% x
2 78.70% x
3 56.81%
4 28.29% x
5 54.20%
6 83.70% x
7 52.99%
8 76.20% x
9 59.13%
10 37.13% x

point to describe a specific action. The variety of human activity in an everyday environment is

very diverse; the same way that repeated performances of the same activity by the same subject can

vary, similar activities performed by different individuals are also slightly different. The basic idea

behind this is if a particular motion pattern appears many times in long-term observation, this pattern

must be meaningful to a user or to a task. In this section manipulation tasks at trajectory level to find

similarities (significant patterns) given by multiple observations is the focus of the work. The intention

is to learn and to generalize a specific task by the hand movement including fingers motion, as well as

the object trajectory along the task for its recognition. This application is useful for task recognition

in robot imitation learning and it can be applied in such a way that the generalized movements can be

used in other contexts by a robot. We are not going through the imitation part, but we are focusing on

the ability of learning and generalization.

5.5.1 Segmenting and Identifying Manipulation Stages

Segmenting a task in action phases can help us to characterize each movement of a task, as well as

to understand the behaviour of the hand in each phase. By knowing the action phases of a task, we

can discriminate easily a fixed grasp task (homogeneous manipulation) from a dexterous task due

to the action transitions. Simple tasks (e.g., object displacement) can be composed of the following

action phases: reach, load, lift, hold/transport, unload and release. A dexterous task is characterized

by having the in-hand manipulation phase, where fine movements are performed with the intention

of re-configuring the object state while it is being held by the hand. Dexterous tasks are usually

composed of the following action phases: reach, load, lift, in-hand manipulation, unload and release.
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Figure 5.16 illustrates an example of action phases in a simple homogeneous manipulation task, where

the in-hand manipulation is replaced by a fixed grasp transport phase.

Figure 5.16: Example of action phases in a simple homogeneous manipulation task, where the same
grasp is employed during the manipulation.

By observing the multimodal data, some assumptions can be made to find those phases during

a task. For example, in the reaching phase, there is no object movement, the load phase is active

when there is tactile information, and the transport phase when the object is moving. Since we have

a synchronized data acquisition, by using the timestamps, we can analyse the multimodal data to

know the state of each sensor in a specific time. Another option is segmenting by a probabilistic

classification. Since we can extract features from the sensor signals, we can learn from multiple

observations and then characterize each phase in a probabilistic way. Dealing with the uncertainty of

sensor noise due to the real world is a reason for adopting a probabilistic approach to automatically

classify the action phases.

5.5.2 Motion Pattern: Finding Similarities

An important step to model the human actions and behaviours is the motion pattern detection during

an activity. In this work we are focusing on similarities (significant patterns) given by many observa-

tions of human actions. By looking for similarities among the features of a dataset of trajectories, it

is possible to represent the dataset by its relevant features as illustrated in Figure 5.17. The relevant

information are repeated motion patterns that are used to generate a generalized trajectory.

In this work, we use some grasp classes to estimate the grasp type along the task to esti-
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Figure 5.17: Motion Patterns: Similarities detection in the action phases of the trajectories in a dataset
of a manipulation task.

mate the grasp transitions when a human is manipulating the object. In each task it is necessary

to identify the types of the defined grasping/gesture and then compute the probability distribution

P(Grasp|Observation) of each one along the action phases of the task for each trajectory by analysing

the grasping occurrences.

The dataset of trajectories are aligned temporally such as demonstrated in [CGB07], applying

as a pre-processing step Dynamic Time Warping (DTW), a pattern-based method that allows the se-

quential information description of the data by the temporal distortion between different examples

[SC78]. The next step is to detect the features and compute the probability distribution of the feature

occurrences. Then similarities in all trajectories of a dataset are found, i.e., features with high prob-

ability (high occurrence in all the trajectories). A threshold is set on this probability to obtain a set

of relevant features. The representation of a dataset of a specific task at trajectory level is given by

the general form of the data. It is obtained after selecting the relevant features and then applying a

regression on the spatial information of the relevant features.

5.5.3 Trajectory Generalization for Task Representation

There are some possibilities to achieve the general form (a smoothed trajectory) of a dataset of tra-

jectories. The first one is an interpolation applied after the features selection (similarities between

trajectories) as a function of arc length along a space curve using parametric splines. The second way

is using the spatio-temporal information of all features extracted from all trajectories of a dataset,
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where a polynomial regression is applied to fit the data to have a smoothed trajectory. The poly-

nomial regression can be a good choice due to the curvilinear response during the fit and it can be

adjusted because it is a special case of multiple linear regressions model. In case of applying re-

gression, to have a correct fit, the regression needs to be done locally, at subregions of the trajectory

due to the shape of the trajectories. In general, for our data, a cubic order polynomial regression is

enough for the fitting. In this type of curvilinear regression, the choice of degree and the evaluation

of the quality of the fitting depend on an empirical analysis. Although polynomial regression fits

a non-linear model to the data, as a statistical estimation problem, it is linear, in the sense that the

regression function is linear in the unknown parameters that are estimated from the data. It is based

on least square fitting.

The general model of polynomial regression is given below:

Yi = β0 +β1xi +β11x2
i + εi (5.28)

where xi = Xi−X̄ and ε is an unobserved random error with mean zero conditioned on a scalar vari-

able; ε can be computed as error of least square fitting; β minimizes the least square error. Examples

of regression in sub-regions of hand trajectories is shown in Figure 5.18.

Figure 5.18: Regression applied on sub-regions of an action phase of a manipulation task. 2D view:
left and middle images: x, y view; right image: x, z. Examples of quadratic and cubic order regres-
sion.

The hand motion generalization is useful to represent a task. For each dataset we intend to have

a generalized data that can be used to endow a robot to perform the generalized movement. Each task

will be represented by the generalized hand trajectory combining with the learned force intensities,

grasp transition and contact points for stable grasp in each action phase of the task.

Figure 5.19 (left image) shows the raw data of the used dataset corresponding to the task: pick-

up a mug and place it in another position (hand trajectories); and the right image shows the detected

action phases using the sensors information. Figure 5.20 (left image) shows an example of the 3D

positions of the features extracted (curvatures: trajectory directions) from all observations before
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finding similarities; middle image presents relevant features selection by analysing the probability

distribution of the features to know which type of feature is more relevant, later after computing the

least square among all features points of the trajectories dataset we can estimate the coordinates of

them; last image shows an example of interpolation of the features points as a function of arc length

along a space curve by parametric splines.

Figure 5.19: Left: Raw data(in inches): trajectories dataset (object displacement); Right: Trajectory
segmentation by action phase.

Figure 5.20: Left: Extracted features (Cartesian positions); Middle: Relevant features (similarities
among all trajectories); Right: Generalized trajectory by interpolation of the points as a function of
arc length along a space curve (adopting parametric splines).

Figure 5.21 shows the interpolation using parametric splines using the Cartesian 3D coordinates

of the selected features after finding similarities between trajectories of a dataset of the task pick-up

a mug and lift it (pour task).

5.5.4 Tasks Identification

In the same way as the 3D hand trajectory classification as presented in previous section, here the

task is represented as a complete hand trajectory involving different manipulation stages, as well as

the object trajectory. Other relevant information can be used to identify a task, such as the grasp
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Figure 5.21: Pick-up and lift task representation at trajectory level: Interpolation using parametric
splines using the Cartesian 3D coordinates of the selected features between the trajectories of the
dataset of the same tasks.

transitions during each manipulation stage which demands the detection of grasp types as explained

before in this chapter. The learning phase is based on histogram techniques as presented in the

previous section using the defined and discretized features. Figure 5.22 illustrates the task features

used at trajectory level for the task identification.

Figure 5.22: Task features at trajectory level.

First of all, it is important to identify if the task that will be classified has all action phases of

the learned tasks and then it is possible to know if the task falls into the class of simple tasks or more

complex tasks which includes the in-hand manipulation stage. Then, applying a continuous classifi-

cation based on multiplicative updates of beliefs by Bayesian techniques taking into consideration the

learned observations (relevant features of the general form of signals), we can identify a given task
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into a class of the learned tasks.

Let tg be a known task goal from all possible tasks T ; c is a certain value of feature C (Curva-

ture types) found in the hand trajectories; Cob j represents curvatures found in the object trajectories;

G represents the learned grasping type; o is a certain value of feature O (hand orientation types) and

i is a given index from all possible action phases A. The probability P(c | tg, i) that a feature C has

certain value c can be defined by learning the probability distribution P(C |G, A); P(o | tg, i) of fea-

ture O learning P(O |T , A); P(g | t, i) learning P(G |T , A) and P(cob j | tg, i) of feature Cob j learning

P(Cob j |T , A). Then the task classification model is represented as follows:

P(T |c,cob j,o,g, i) =
P(c|T , i)P(cob j|T , i)P(o|T , i)P(g|T , i)P(T )

∑ j P(c|T , i)P(cob jT , i)P(o|T , i)P(g|T , i)P(T )
. (5.29)

Note that, here differently of the the previous section where we treat 3D hand trajectories

(reaching movements), we are encompassing different likelihoods in the Bayesian formulation. We

notice that adopting many likelihoods for the Bayesian model we can achieve a better classification

than using just a specific class of feature in the model. The multimodal information helps to improve

the classification reducing the ambiguities on the sensors signals.

5.5.5 Experimental Results

The trajectories that were used to test the task classification are pick-up and place and pick-up and

lift using a mug as an everyday object. Here we follow the same protocol (to perform a task) and

experimental setup as the 3D hand trajectory classification presented in the previous section. Given

a new hand trajectory and the corresponding object trajectory, we want to identify the task. The

classification variables (possible types of tasks, the learned ones) are updated in each action phase.

Figure 5.23 exemplifies a new observation, that is, the hand trajectory that is going to be iden-

tified (pick-up the object and place it). The learned tasks fall into the simple task class, pick-up and

place and pick-up and lift the object to pour. Table 5.12 shows the result of the classification of a new

observation of pick-up and place.

Figure 5.24 shows more results regarding task classification. The left image shows the be-

haviour on-the-fly of the classification at each time t to recognize if the task is pick-up and place

(pp) or pick-up and lift (pl). The right image shows 10 trials of task classification using the proposed

classification method presented in (5.29) enclosing multimodal features compared to a simple classi-

fication model using just a single type of features (curvatures), as presented in the previous section.
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Figure 5.23: Task trajectory to be identified: pick-up and place.

Table 5.12: Classification Result
Action Phases Pick-up and Place % Pick-up and Lift %
Reaching 45.00 55.00
Load 48.10 51.90
Lift 59.32 40.68
Transport 69.83 30.17
Release 78.00 22.00

The results show that the multimodality ensures a better classification.

Figure 5.24: Task classification results after 10 trials. Comparison of classification using multimodal
features and single feature for the same trials.

5.6 Object-centric Framework for Manipulation Knowledge

In the previous sections we addressed how features extracted from hand trajectories and contact points

of stable grasps during in-hand manipulation could enable the segmentation and classification of the

action phases, and also how an object probabilistic volumetric map could be used to plan the grasp

strategies. This section presents how is possible to unify them into a single framework that associates

the object probabilistic model and the hand approach vectors, initial grasps, and sequencing of grasps

during in-hand dexterous manipulation. The rational behind this framework is that when confronted

with objects for the first time, the artificial system can perform a match of the observed partial shape
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with the volumetric map, and use the data in the framework to key the possible approach trajectories

and grasps span for manipulating the object.

When searching in the framework for object graspable parts we also need to take into account

the task context. Humans not only make some type of segmentation and identification of object parts

in order to choose the best place to grasp, but are also task oriented in this choice.

From the multimodal data, we are able to extract relevant information of the performed manip-

ulation tasks, such as different phases of the manipulation during the hand trajectory. From the hand

trajectories and tactile data we identify the grasp types and transitions. These are mapped onto the

object probabilistic volumetric model, so as to retain the relevant data from human demonstrations,

concerning both the manipulation and object characteristics. The object centred framework will fa-

cilitate future matching for an artificial system observing objects and searching for cues on how to

grasp it, and also taking into account the task context.

Figures 5.25 to 5.27 present some of the data collected in this framework. Figure 5.25 shows

the hand trajectory during the in-hand manipulation task. The task is pick-up the object, rotate and

repose it in another location. Figure 5.26 (left image) shows the object trajectory, where it is possible

to visualize the object rotation during its trajectory for the same task; and the right image shows some

transitions of hand shape during the same task. Figure 5.27 shows the object point of view, that is,

the sequence of some contact points location during the in-hand manipulation phase.

Figure 5.25: Hand trajectory (sensor attached to the back of the hand) during the in-hand manipulation
task (pick-up the mug, rotate and release it).

In this work, the analysis of the stable grasps executed by humans during manipulation tasks

is performed using a multimodal approach, in order to capture the multiple signals and strategies.
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Figure 5.26: Left image: Object trajectory during the in-hand manipulation task (in green colour);
The blue circle shows the in-hand manipulation phase (object rotation along the trajectory); Right
image: Graphs representing some transitions of hand shapes during the in-hand manipulation task.
The nodes represent the locations of the fingertips and wrist.

Figure 5.27: Sequence of some contact points overlaid in the static representation of the object (vol-
umetric map) during the manipulation task. The contact points are given by the fingertips locations
during the in-hand manipulation phase.

An object-centric probabilistic volumetric model is used to represent the multimodal data and map

contact regions, gaze and tactile forces during stable grasps. One aspect that characterizes the manip-

ulation task is the trajectory described by the hand (fingers, palm and wrist) to reach and contact the

object, in order to perform the initial stable grasp. The location of the contact points of the fingertips

on the object surface are acquired using Polhemus Liberty motion tracking system.

The biological signals related to tactile inputs are also relevant to perform the fine control of

the manipulation tasks. The information about the level of activity of each region of the hand, during

the contact with the object while the initial stable grasp, is acquired using the tactile sensing array
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Tekscan Grip System.

The gaze has been used as an analysis tool of physiological responses to stimuli as an indication

of cognition. The gaze in response to visual, auditory or cognitive stimulus is measured, during the

manipulation task, using an SMI iView eye tracker device. The gaze provides important cues about

the strategies used to find and anticipate the appropriated region of the object to be grasped. The

eye tracking system uses infra-red illumination and computer-based image processing. The pupil is

detected and after calibration, the pupil centre location is translated into gaze data. The gaze direction

is mapped by the system in the scene images by a red cross as presented in Figure 5.28.

Figure 5.28: Eye tracker. Left image: Subject performing a manipulation using the eye tracker; Right
image: Typical output of the eye tracker. Red cross indicates the estimated gaze direction.

Another way of using the object model is by using an eye tracker to estimate the regions of the

object that are observed by the subject while doing the reach motion planning and during the load

phase. Figure 5.29 shows some snapshots of the estimated observed regions during the manipulation

of a mug, placed in a configuration where the handle of the mug is completely visible by the subject.

The volumetric map represents both the observed regions of the mug and the regions which were

effectively grasped. Figure 5.30 represents the results achieved in a situation where the handle of the

mug was not completely visible to the subject. Although, during initial instants, the attention of the

subject is captured by the partially visible handle of the mug, due to its inaccessibility, the subject

chooses to grasp the mug using a side grasp applied to the lateral regions of the mug.

5.7 Discussion

This Chapter presented how to extract features from human demonstration from multimodal data for

grasping movements, task recognition, and how to encompass human demonstration of stable grasps
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Figure 5.29: Human gaze during grasping and the contact points on the object surface. Task: Reach-
ing and Grasping by the Object Handle. The visual gaze during the grasping shows that the human
usually looks to the region of the object where will be performed the grasp.

Figure 5.30: Human gaze during grasping and the contact points on the object surface. Task: Reach-
ing and Grasping the mug by side-grasp. This type of grasping was chosen due to the orientation of
the object - it influences the type of grasping.

with object model representation. The presented work starts from simple hand trajectories to more

complex tasks involving in-hand manipulation of objects.

A consistent database with human demonstrations of manipulation tasks (from simple to more

complex tasks including in-hand manipulation of objects) was used to test the proposed methods.

The database was developed inside the European Handle project [HANb] at ISR-UC and is avail-

able on-line for the scientific community. The experimental setup with a distributed multimodal data

acquisition used in this work was also developed inside the Handle project at ISR-UC. Using mul-

timodal data to learn from human demonstrations of manipulation tasks, we can learn and derive

suitable models of manipulation tasks and of the manipulated objects that can be used to endow an

artificial dexterous hand to perform manipulation tasks. From the motion patterns, a generalized prob-

abilistic representation for each type of task was derived. Results show the successful break down of

action phases along a trajectory, as well as the suitability of the selected features as descriptors for the

probabilistic approach used in task identification.
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The utility of the object probabilistic volumetric map was shown in this chapter to overlay the

partially observed volume of the object with data about human visual gaze when initiating a grasp

task, hand-object contact points and tactile forces. Results of this representation suggest its suitability

for grasp planning since a unified model has the relevant observed information on how to grasp the

object.

Adopting a probabilistic framework we can correctly estimate and identify characteristics on

the object model as well as grasping movements. The advantage of using probabilistic approaches is

the way of dealing with the uncertainty of the sensors data allowing the reasoning and inference with

high confidence based on previous observed knowledge.
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Chapter 6

Grasp Synthesis based on Human Grasp

Demonstrations

6.1 Introduction

Humans are able to learn new skills, and to adapt to different complex environments and interact

with objects (including unknown) to manipulate them. This results from a lifelong learning, and

also observation of other skilled humans. To obtain similar dexterity with robotic hands, cognitive

capacity is needed to deal with uncertainty. By extracting relevant multi-sensor information from

the environment (objects), knowledge from previous grasping tasks can be generalized to be applied

within different contexts. Based on this strategy, we show in this chapter that learning from human

experiences is a way to accomplish our goal of robot grasp synthesis for unknown objects. We address

an artificial system that relies on knowledge from previous human object grasping demonstrations. A

learning process is adopted to quantify probabilistic distributions and uncertainty. These distributions

are combined with preliminary knowledge towards inference of proper grasps given a point cloud of

119
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an unknown object. In this chapter, we designed a method that comprises a twofold process: object

decomposition and grasp synthesis. The decomposition of objects into primitives is used, across

which similarities between past observations and new unknown objects can be made. The grasps

are associated with the defined object primitives, so that feasible object regions for grasping can be

determined. The hand pose relative to the object is computed for the pre-grasp and the selected grasp.

To accomplish the objective defined in this chapter, we are encompassing many of the meth-

ods presented in previous sections into a single framework. Figure 6.1 depicts an overview of our

proposed approach

Figure 6.1: Overview of the grasp generator modules.

The next section will present the learning strategy using the human grasp demonstrations that

is based on the Bayesian techniques presented in previous chapters for reasoning, i.e., inferring how

to generate proper grasps for a specific object, and estimating the proper region on the object for

grasping. Then, the grasp synthesis architecture that encloses the steps mentioned before to develop

the decompose module, where methods of object segmentation and shape modelling given an object

point cloud are adopted, as explained in Chapter 3, that was also used in the learning process and

when the system is applied in a real context using the robotic platform. Later, the generation of

grasp pose relative to the object will be presented within the grasp synthesis module, followed by

the the experimental results, including simulations and also an example in a real application using

a dexterous robotic hand. In the end of this chapter we will draw some conclusions and present
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directions for future work about this topic.

6.2 Learning from Human Grasp Demonstrations

In this section we address the learning from human grasp demonstration that will assist the grasp

hypothesis generation, which we are basing on previous works, such as the models presented in

Chapter 5 to build the learning strategy.

The learning phase follows a probabilistic approach, and in general finds a model that describes

the dependency of one random variable on another one. Let qi ∈ Q, i = {1, ...,n} be possible object

regions (quadrics) and gi ∈G, i= {1, ...,n} be the possible grasp types, then the dependency is defined

by a conditional probability distribution P(Q|G) that is the probability density function (pdf ) of a

random variable representing one of the target classes given the random variable representing the

input vector (features). In other words, this means that, given the space of possible inputs Q and

the possible targets space G, an estimate of the class that encloses the input space is given by a

classification model resulting P(G|Q).

The human grasp demonstrations result in a dataset D with N labelled examples coming from

the learning phases as presented subsequently in the following subsections. An example of a labelled

dataset is given by the possible candidate grasps G associated with each quadric qi representing an

object region. Each gi represents a discrete grasp type that is included in a list of 33 grasp types

[GRA], which is used in this work. Each grasp type can be found using the hand fingertips 6D data

given in the wrist coordinate system, forming a hand configuration. We have a database that includes

the datasets of the labelled examples coming from the observations and it also includes the learned

probability tables achieved during the learning phases. From the observed data, inferences can be

made to assist the grasp synthesis to estimate possible grasps given a quadric model, or to search

for possible candidate regions on the object to perform a grasp, or even the candidate regions on the

object given a task context T . In general, a hypothesis is represented as h : qi→ G that can correctly

predict the set of possible grasps G associated with each qi, which means that the classifier (inference

model) is represented as a function f : qi→G that assigns a class label gi ∈G, i= {1, ...,n} associated

to the object region for grasping qi ∈ Q, i = {1, ...,n}. The inference models are based on Bayesian

techniques that will be explained later.

Figure 6.2 depicts an overview of the learning and inference strategies adopted in this work. In

the next subsections, the steps for learning and inference based on human grasping experiences will
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be described .

Figure 6.2: Overview of the learning process to assist the inference to search for candidate grasps for
a given object model.

6.2.1 Overview of Bayesian Inference using the Learned Data

Here, we first give a general explanation of how we perform inference adopting Bayesian theory

applied in the context of grasping. Later, in the next subsections on learning, we will show the models

we defined that use the learned likelihoods useful for our grasp synthesis system, taking decisions on

which are the most probable grasps and suitable regions for grasping given the object model.

Probabilistic techniques such as Bayesian theory is used to support the decision given the

learned likelihood. A strong assumption is that all inputs are mutually independent of each other

given the class label (e.g., grasps types associated with object regions under a task context). When

adopting a Dynamic Bayesian Network (DBN) for the learned likelihood, the joint probability dis-

tribution is represented as a set of random variables. The set of parameters in a DBN encloses the

conditional probability distribution of the random variables and the learned probability tables. Then

using the Markov condition, each node is stated as independent of its non-descendants given its par-

ents. Figure 6.3 presents a general example of an application in a grasp context to better understand

the models. It represents the probability of a grasp type happening when some events occur, such as

when the artificial system finds a specific object region, represented as a quadric qi ∈Q, i = {1, ...,n},

and inside of a task context T . The events (parents) represent the set of parameters Q, T that trigger
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an effect (node G).

Figure 6.3: Bayesian network to represent a general model when a grasp type is estimated given some
causes Q, T .

The DBN can be used as a classifier that gives the posterior probability distribution of the class

node G given the values of other attributes (set of events). The model represented in Figure 6.3 can

be expressed as the posterior distribution P(G|Q,T ) given the observations enclosing the random

variables Q, T as follows:

P(G|Q,T ) =
P(Q,T |G)P(G)

∑ j P(Q j,T |G)P(G j)
, (6.1)

then, using the MAP estimation argmax
gi∈G

P(G|QT ), we have the classification result. The dynamics

in the BN is when the system’s state at time t depends only on its immediate predecessor t−1. The

time instant t of the system evolves over time according to the system dynamics that is specified by

the conditional density function P(Gt+1|Gt).

The general models mentioned in this section were given to exemplify the techniques adopted

for inference using the learned data to assist the grasp synthesis. The learned likelihoods used in this

work were built based on histogram techniques. The idea is to rely on statistical data to achieve a

successful estimate. The learning phases and inferences used in our artificial system are explained in

the next subsections.
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6.2.2 Experimental Setup for Data Acquisition

The experimental activities with humans executing grasping tasks are performed in our experimental

area with multiple data acquisition devices (Figure 6.4) in order to capture how humans perform

successful grasps. The data acquired is used to model and extract the relevant aspects of the human

demonstrations, as well as providing input for the methods presented in this work. For that, we are

reading data from two perspectives: the human hand and the object. In the first case, finger 6D

pose using a magnetic tracking system and the tactile forces distributed on the inside of the hand are

used. For the object, a point cloud model is used, obtained from in-hand exploration, as explained in

Chapter 2, from an RGB-D sensor and also off-line from a laser scanner sensor. An online database,

the Data Collection Database [HANa] of the HANDLE project, is publicly available with the datasets

collected.

Figure 6.4: Sensors used in our experimental setup: Motion Tracking System, Tactile sensor and
RGB-D sensor.

6.2.3 Learning Object Graspable Regions: Assigning Weights to Shape Primitives

In this section we address how to assign a weight (based on human statistics) to an object shape

primitive for an initial grasping, without paying attention to the task context. The objective is to

search for the shape primitive that has assigned more weight (between the three components of the

object) to describe this region as suitable for grasping.

Through the human grasp demonstrations, we analyse the human choice to find the object

graspable component given the three geometrical primitives that compose the object shape. We are

biasing the geometrical primitives using the statistical data by quantifying the human grasp demon-
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stration with a probability distribution based on histogram techniques. This way, given an unknown

object and its three components, we will have weights distributed for each primitive to know which

one is the best part as a candidate region for grasping. Afterwards, we have built a learned table

with information of primitives preferences based on their weights. Adopting a verification of dual-

combination of shapes, we verify the object components weights to know which component is the

graspable part, by comparing the weight of the first object component with the second, later the com-

ponent with the bigger weight from the previous verification is compared with the third component

of the object. The learned table from the observations is a probability table of a dual-combination of

geometrical primitives, so that later an estimate can be made to select which part of the object is the

best one for grasping when the grasp synthesis system faces different geometrical primitives on the

object.

A heuristic rule is also used for biasing the geometrical primitive representing the bottom part

of the object if its pose is in a vertical position, which decreases the probability of the most suitable

region for grasping. If the object pose is in a horizontal position, then this rule does not apply to the

bottom part, because it can be a candidate for grasping in the same way as the other object regions.

During this learning process, we analyse the human preference for grasping given a set of

primitives that can compose an object. A questionnaire was made to find out the human’s choice

given two shapes primitives. A set of geometrical shapes was shown to the subjects, and they were

instructed to point (grasp) the shape that is the graspable choice (easier to grasp or could be grasped in

more different ways than the other one) in the subject’s point of view. The primitives used to observe

the human’s choice are the set of the defined superquadrics for this work as described in Chapter 3.

The set of shapes were shown to each subject (demonstrated two shapes per time), and to

facilitate the human choice, the subject could grasp and interact with both shape primitives, and later

the subject had to decide which one is preferable for grasping, if those two shapes were part of a single

object. A system was developed (questionnaire) showing the two shapes that were demonstrated, and

the subject should register in the system his choice (primitive 1 or primitive 2). An incremental

function was computed for each primitive to build a histogram distribution. Each subject registered

the choice for all possible combinations of the set of defined primitives.

The learning is achieved given the shape primitives (also referred to as quadrics) qi ∈ Q, i =

{1, ...,n} that compose an object, so that they are labelled when a graspable choice is made, for later

computing the distribution of each labelled primitive. The histogram is computed as follows:
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n =
k

∑
i

Hi, (6.2)

where Hi is a function that counts the number of observations that fall into each of the disjoint cat-

egories c representing dual-combination of the possible qi (e.g., given an object, its components in

dual representation is q1− q2 and qi− q3, where qi can assume the form of q1 or q2); k is the total

number of categories and n is the total number of observations. Then the normalization to compute

the probability distribution is achieved by:

P(ck) =
nk

N
, (6.3)

where 0 ≤ ck ≤ 1 (normalization of each category ck, i.e., combination of quadrics); 0 ≤ k ≤ K−

1, which K is the total number categories; N is the number of observations; nk is the number of

observations for each category; P(ck) is the probability of the kth category.

Figure 6.5 shows some examples of the statistical data represented in histograms. In this figure

we can see some histograms of pairs of quadrics and the distribution of preference between both. We

can also verify an example of the choice (preference) for the graspable quadrics when given a set of

quadrics.

From these observations and statistics we could build a probability table (histogram), repre-

senting a learned table, as presented in Figure 6.6. To read this learned table, the axes {x,y} represent

the possible pairs of the geometrical shapes (quadrics) that can compose a given object. The prob-

ability is assigned to the quadric qi in x axis when it makes a pair with qi in y axis. The color-map

varies from 0 to 1 representing the probability (weight) of each quadric qi.

Later an inference for an object graspable region can be made, taking into account the quadrics

that form the object, as demonstrated next.

Inference for Object Graspable Region given the Object Shape Primitives

We now address how to perform an inference to find the most probable graspable region on the

object given a pair of primitives. The learned table presented in Section 6.2.3 (Figure 6.6) is used as

likelihood in a Bayesian inference to update the probability of a graspable region of an object given

the combination of quadrics (e.g. given the sequence of the components/quadrics qi that compose an

object: q1 and q2, q1 and q3, q2 and q3, we can identify the graspable region for an initial grasp type

(not taking into consideration the task context).
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Figure 6.5: Examples of the statistical data acquired during the human grasp demonstrations. The
statistics assist to weight the geometrical primitives as preference for grasping when dealing with a
specific pair of quadrics.

The model for inference is given by:

P(Q = qi|ck) =
P(ck|Q = qi)P(Q = qi)

∑ j P(ck|Q = qi)P(Q = qi)
, (6.4)

where P(Q = qi|ck) is the probability of the object graspable region qi given the combination (pair)

of quadrics ck. Then the classification is achieved according to the maximum a posteriori (MAP)

estimate.

6.2.4 Learning Suitable Objects Graspable Regions in Task-oriented Grasps

This learning process is to identify graspable regions on objects that are suitable for grasping given

a task context. We are also using this learning process for a more consistent estimate of graspable

regions to assist the grasp synthesis when the system is under a task context. The idea is given an

object model and task context, using the knowledge learned from human grasp demonstrations, the

artificial system can estimate the best region (primitives) to perform a proper grasp for that situation.
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Figure 6.6: Probability Distribution in the Learned Table: Pointing the preference given a pair of
quadrics qi-qi, i = {1, ...,n}. The axes {x,y} represents all possible pairs of quadrics qi that can
compose an object. The probability assigned for the pair of quadrics is show through the color-map.

In this specific learning process, we have adapted our previous work with improvements for the grasp

detection given the contact points on the object surface to quantify the human graspable choice.

In order to estimate the object region as graspable given a specific context (task-oriented), the

combination of human demonstrations of stable grasps and object intrinsic information play an im-

portant role in the decision. In the learning process, we have the 3D object model of the object in

a volumetric map, so that we can overlay the contact points of stable grasps on the object surface,

represented in the grid cells of the object map. It also allows the identification of the grasp type by

analysing the contact points locations forming the hand configuration. The probabilistic representa-

tion of object shape using 3D map, the grasp types detection using contact points, the overlaid contact

points on the object map was presented in the previous Chapters 2 and 5.

For the human grasp demonstrations we are using from our experimental setup (Figure 6.4)

the finger 6D poses using a magnetic tracking system, and the tactile forces distributed on the inside

of the hand. Thus, with the volumetric information of the object we can overlay the contact points

given by human demonstrations on the object surface. The contact points locations are given as 3D

positions of the fingers (acquired by the magnetic tracker sensors) when a subject touches the object

(i.e. the tactile sensors are active). The contact points locations are easily overlaid on the object
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surface (cells in the object map), since we are working in the same frame of reference of the magnetic

tracker allowing to map the contact points on the object surface. We consider that the system has

previously acquired a 3D model of the object by in-hand exploration or other modality (e.g. vision)

in order to have the volumetric model representation. Figures 6.7 and 6.8 show examples of contact

points overlaid on the objects surface. The figures present objects grabbed by a human subject with a

successful stable grasp during a manipulation task.

Figure 6.7: Examples of contact points of stable grasps from human demonstration on objects sur-
faces. The objects are: sponge, mug, wooden cat and bottle.

Figure 6.8: Examples of contact points of stable grasps from human demonstration on the object
(spray bottle) surface.

In this work, we can label manually the grasp type by observing the hand configurations during
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the grasp execution, or even in an automatic way, by computing the hand configurations using the

contact points on the object surface. To identify a grasp type automatically, we rely on the fingertip

6D pose relative to the wrist as previously explained in Chapter 5.

After some trials of human demonstration on how to grasp an object given the objects models

and the context, we could build a probability table to distinguish what kind of grasping is more prob-

able to happen in each specific situation and also the object region that was chosen for the grasping.

Given a set of observations to represent a specific task T , for instance, some simple tasks

T ∈ {pick-up and place; pick-up and lift; pick-up and pour/tilt}, we have the probability of each

grasp type in a specific context represented as P(G|T ). The probability of each grasp type gi ∈G, i =

{1, ...,n} in a specific context is given by the frequency of observations as expressed below:

P(G = gi) =
o
N
, (6.5)

where o is the number of occurrences for the specific grasp type gi and N is the total number of

possible grasps G.

To identify the object graspable region, we verify the locations of the contact points on the

object surface, and that region where the points are located represents a quadric model qi (component

of an object). Given a set of observations to represent a task T , we have the probability of each object

component being the object graspable region P(qi|T ). It is computed in a similar way as shown in

(6.5) where each component of the object has a probability associated with the graspable region given

the context by computing the occurrences based on humans’ choices for the object region defined as

graspable.

Figure 6.9 shows some statistics computed after the human demonstrations for the chosen

object graspable component for a few everyday objects (mug, bottle and wii-mote).

Inference for Object Graspable Region in Task-oriented Grasps

The object graspable region can be identified applying the Bayes’ theorem. Given a task context T ,

to identify the object graspable region between the primitives that compose the object {q1,q2,q3} as

explained in Chapter 3, first it is necessary to detect the object components represented by quadrics

models qi. The probability distributions are obtained from the occurrence statistics acquired during

the learning process used to build the likelihood.

Given a context T , we can estimate the object graspable part qi as follows:
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Figure 6.9: Statistics computed from the observations. Three different tasks performed many times
by different individuals. By analysing the probability distribution of the chosen primitives to perform
the grasp, the object graspable part (given the task context) can be estimated.

P(Q = qi|T ) =
P(T |Q = qi)P(Q = qi)

∑ j P(T |Q = q j)P(Q = q j)
, (6.6)

where the posterior information P(Q = qi |T ) is computed for each primitive qi of the object in a

specific task T ; the likelihood P(T |Q = qi) is the learned probability for each primitive of the object

given a task context as previously explained. The normalisation factor is the sum of the probability

of each object primitive being the graspable region.

A basic example of this application is given during the grasp planning, when a robot needs

to execute a task. After detecting the object and its geometrical primitives, the robot can identify

the object graspable region for possible suitable grasps, using the learned information from human

demonstrations,.

After learning a set of objects and task context, when the object is observed again in the same

context, the system is able to detect the graspable part as shown in Figure 6.10. The graspable com-

ponent is chosen according to the maximum a posteriori (MAP) estimate. In these specific examples,

we have used just two components due to two reasons: (i) the third component for these specific ob-

jects had zero probability or a very low probability assigned to the third component inside the specific

context; (ii) these specific objects still have a good representation even with two components. Indeed,

just for a better visualisation of the results for these specific objects inside these specific contexts,

we have adapted the results showing only the two more expressive components of the object. In a
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real situation, we keep the three components of the object, even if one of the components has a zero

probability assigned to it.

Figure 6.10: Identification of object graspable component for the sponge, wii-mote, spray-bottle, mug
and bottle. For these trials we have used only two components for each object. Each component has a
probability of being graspable, the maximum a posteriori estimate indicates the graspable component
in each context.

In case of unknown objects, we have adopted a generalisation process, reusing the prior knowl-

edge for other contexts, for instance, if a unknown object has one primitive in common with a known

object, a similar grasp can be attempted. The unknown object falls to a familiar object, i.e. after the

object segmentation process (applying the superquadrics model), this object will have known geo-

metrical primitives. Given a task, a Bayesian classification as shown in (6.6) is computed for each

object primitive to infer the most probable object primitive for that task.

The feasibility and the quality of the work is somehow dependent of how a given object is

represented after the segmentation and how its components are matched to a specific model. This

way, the system can generate the hypotheses of regions on objects being graspable, and for each

primitive a set of grasp types is associated.

6.2.5 Learning Grasping Choice from Human Observations

From human grasp demonstrations we can also observe the grasps types that are assigned to the

object regions. This way, we can build a set of possible candidate grasp types to a specific object or

for specific geometrical primitives that compose this object.

The learning process is achieved given a dataset D with N labelled examples of grasps types
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associated with an object component. Since we have the grasp detection and object components

detection, we can learn and associate a set of grasps with each geometrical primitive that can represent

an object component.

Through histogram based learning, we quantify the probability table containing a set of grasps

G for each quadric qi ∈ Q. Since we defined a list of possible candidate grasps and the possible geo-

metrical primitives, we have observed some grasps by human demonstrations for the defined geomet-

rical primitives. It means that n grasps can be mapped to a specific shape, i.e., G = {gi, ...,gn} 7→ qi.

Afterwards, a selection of the more probable candidates grasps for each geometrical primitive based

on the probability distributions can be made.

The probability table that was built in this learning process can be seen as a 3D histogram,

where each quadric qi (in axis z) has n grasps G (in axis x) with probabilities associated with each

grasp (axis y) to be the most probable grasp for each quadric qi. In this learning process, for each

random variable, the distribution was normalized given the respective occurrences computed in a

similar way as previously shown in (6.5).

As mentioned in the previous chapter, due to this learning process adopting histogram tech-

niques, some features might have zero probability, because they never have been observed, i.e., a few

grasps will never be applied to some specific shape. Whenever these features with zero probability oc-

cur in the classification step, the corresponding hypothesis will receive also a zero probability. Since

for the inference, the classifier is continuous, based on a multiplicative update of beliefs, these zeros

would lead to a definite out-rule of the hypothesis. To avoid this problem we are using the Laplace

Succession Law to produce a minimum probability for non-observed evidences, in the same way as

previously explained in Chapter 5, during the grasp movements recognition, but here with different

type of variables as presented below:

∀ni = 0, P(ni) =
ni +1
N +χ

∣∣∣∣∣∣∣
= 1

N+χ

[ni=0]

, (6.7)

where P(ni) is the resulting minimum probability that will be assigned to the non-observed grasping

(ni = 0); χ represents the total number of features (i.e., all possible grasps types, G = 33); ni is

a specific feature (the non-observed grasps); N represents the total of occurrences (i.e., sum of all

occurrences of features).

The probability table give us the likelihood useful for both estimation P(G|Q), probability of
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a grasping occurring given a geometrical shape, and P(Q|G), probability to estimate a geometrical

shape given the set of grasp types. However, in our specific case, we base on the statistical data to

associate the most probable grasps with each quadric, using their probabilities as weights to set the

preference of the candidate grasps.

Figure 6.11 shows the raw data representing the statistics from human demonstrations where 10

subjects (the majority men), all righted-hand, aged between 22-33 years old, demonstrated for each

quadric the most probable grasps (from the grasp list [GRA]) with a minimum of 1 up to 10 grasps.

The 10 subjects have demonstrated for the defined superquadrics models of this work, a total of 510

demonstrations (possible grasps). From this data we could verify different statistical information,

such as the preferences and the mode of the samples. For instance, the superquadrics models that

had more associated grasps, the top-5 are: cylinder, box, cube, cuboid, sphere, respectively. The

grasps with more frequency during the demonstrations: g27-quadpod, g13-precision sphere, g1-large

diameter, g3-medium wrap, g31-ring.

Figure 6.12 shows the learned table with the probability distribution after a normalization of

the statistical data, which is useful for inference. The normalization for the likelihood is achieved by

P(Q|G = gi) =
o
N where o is the occurrence of a specific grasp gi during the human grasp demonstra-

tion and N is the total of demonstrations (all possible grasps) for a specific quadric qi.

Figure 6.11: Grasp choice given the object quadrics: statistical data acquired by human demonstra-
tions. The demonstrations were chosen from a grasp list [GRA] with 33 grasps types for 13 possi-
ble quadrics models Q = {box, cube, cuboid, cylinder, ellipsoid, sphere, octahedron, rounded box,
rounded spinning-top, squared spinning-top, star spinning-top, variation1-sphere(spherical arch),
variation2-sphere (buterfly shape)}.
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Figure 6.12: Probability Distribution: learned table from the statistics presented in Figure 6.11. Each
grasp type has a probability of occurring given a quadric model.

Inference for Grasping Choice

The inference over the learned table presented in Section 6.2.5 (Figure 6.12) is represented into two

possible questions: first P(G|Q) meaning the probable grasp given one or more quadric model repre-

senting an object, and second P(Q|G) meaning the opposite, the most probable quadric model given

a set of grasps. The first and second inference are computed adopting Bayes rule since we know the

likelihoods and priors. The Bayesian inferences are demonstrated as follows:

P(G = gi|Q,s) =
P(Q,s|G = gi)P(G = gi)

∑ j P(Q,s|G = gi)P(G = gi)
, (6.8)

P(Q = qi|G,s) =
P(G,s|Q = qi)P(Q = qi)

∑ j P(G,s|Q = qi)P(Q = qi)
, (6.9)

where s represents a set of information (temporal), for instance: for (6.8) a set of quadrics to update

the probability of the candidate grasps for an object composed of n quadrics; for (6.9) a set of grasps

to update the probability of the possible quadrics.

The prior P(G) in (6.8) is achieved by another distribution function (probability table) as pre-

sented in subsection 6.2.3, considering a weight 0 < w 6 1 based on the pair of quadrics. Indeed, it

means that if a specific quadric has a higher weight than other, then the grasp associated with this

quadric will have a higher probability. The prior P(Q) in (6.9) is a uniform distribution.
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6.2.6 Learning from Object Observations

More information is extracted when dealing with the object model. Through observations of object

components, after the detection given a point cloud P from a specific sensor, we also learn and build

a probability table by analysing some statistics. Adopting the same strategy of histogram based

learning as explained before, we have built for each everyday object that we are dealing with in this

work, a probability distribution taking into consideration the components of the object. Given a set of

quadrics Q we have the probability distribution of each quadric qi being the component of the object

(i.e., belonging to an object region such as the top, middle or bottom.

Figure 6.13 shows an example of probability table of a specific object (spray bottle) demon-

strating the probability of each quadric qi being an object component. The same was done for other

objects.

Figure 6.13: Spray Bottle - Probability Distribution of qi being considered as an object component ci.

Later an inference can be made to identify an object as demonstrated in the next subsection.

Inference for Object Identification

The inference to identify an object given the sequence of quadrics qi following the order {q1,q2,q3}

is computed for all variables (i.e., all possible objects identities) using (6.10), and each one has a like-

lihood (Figure 6.13) representing the learned components of an everyday object. The identification is

computed as follows:

P(O|Q,s) = βP(Q,s|O)P(O), (6.10)

where P(O|Q,s) is the probability of an object identity given the sequence of quadrics representing

each object component; β is the normalization factor, β = 1
∑P(Q,s|O)P(O) meaning the sum of all likeli-
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hoods (learned table for all objects) for those 3 object components detected; s represents the sequence

{1,2,3} of the detected quadrics.

With the learned information and using the inference for a limited set of objects, we have built

a table containing the inference results, so that when the artificial system faces a novel object, it can

detect a combination of 3 quadrics to identify the object or at least reasoning that it might be similar

to one previously observed. Identifying an object is another alternative to find a graspable region, as

well as grasp associated with this object or its components to find the candidate grasps.

6.2.7 Storing Learned Data

Since we have a limited number of objects, object components modelled with superquadrics models,

task context and grasping types, we can restrict all possibilities of one or more random variables using

the inference results and the learning data.

We have built tables storing the learned data, as well as tables with the inference results for

the set of possibilities from the learned data. We can use this information to generalise, and apply in

other contexts, or in case of grasping or objects, we can use similarities, i.e., find the most similar one

to apply in a new context or to an unknown object.

This process was done in order to have sufficient data stored to facilitate and speed up the

processes for a real time application during the execution, reducing then the processing time, since

we want a system working in a feasible time for our application that can also be incorporated in other

context (e.g., for in-hand manipulation tasks with grasp transitions).

6.3 Grasp Synthesis

The main purpose of the grasp synthesis is to find feasible grasps, given a 3D object model, and

the robot end-effector configuration to maintain a stable grasp during the execution. Therefore, to

accomplish this task, we first need to use the object characteristics to find the proper region for

grasping, as well as the pose and configuration of the hand relative to the object to approach the object

and successfully grasp it. Thus, we have developed an artificial system based on the idea presented

in Figure 6.1. The experimental robotic system was a joint effort built within the HANDLE project

consortium [HANb], and ROS (Robot Operating System) was used to combine contributions from all

the project partners to have a working system. This work is one of the contributions integrated in the

project. In the next subsections the modules that comprise the grasp synthesis system architecture are
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presented, as well as the details of the system strategy implementation.

6.3.1 Using Decomposition Module in the Grasp Synthesis

The decomposition is used for the grasp synthesis objective. As explained in Chapter 3, given an

object point cloud (unknown object), we first decompose the object into key components and later,

inferences on the learned data to detect suitable regions for grasping and the proper configuration

(grasp type using the GRASP taxonomy [GRA]) are made, as explained in Section 6.2.

In this work we have used as a pre-processing step to our system a ROS module named Extract

Objects and Table developed by the HANDLE project consortium [HANb]. When the object point

cloud is acquired by an RGB-D sensor, by using the ROS algorithms from the PCL (Point CLoud

Library) [PCL], we can only extract the object model, ignoring the table and background. The object

for manipulation is placed on the table in the sensor range. Algorithms like RANSAC (Random

Sample Consensus) [FB81] are used to remove the tabletop, removing the non-interesting regions of

the point cloud resulting only the object point cloud or a cluster of objects in case of many objects.

Following the ROS structure, the nodes communicate between each other by publishing mes-

sages to topics. A message is a simple data structure including types or arrays similar to the structures

defined in C/C++ programming. The nodes were implemented in C++ (OOP - Object-oriented pro-

gramming) adopting the ROS architecture. The object point cloud is then passed as a message to

the Decomposition module. Then in the segmentation step, the object is converted into a new frame

of reference (object-centred). The inputs for the second node of the Decomposition module (shape

modelling) is a table of object segments (e.g., the segments Ptop, Pmid , Pbot) that was published as a

message to a specific topic by the first node (segmentation). The output of this second module is a

published message into a topic containing the 15 parameters of the superquadrics model, represent-

ing the scale in each axis {a1,a2,a3}, two parameters representing the superquadric shape {∈1,∈2},

three parameters representing the translation {px, py, pz} and three angles representing the rotation

{φ,θ,ψ} in each axis, as well as the centroid coordinates {cx,cy,cz} and the volume of the quadric

vq. In the second node, since we achieved the object pose by the computation of the superquadrics

models, we can use the extracted information to generate the candidate grasps for each quadric qi of

the object based on the learned data.
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6.3.2 Grasp Synthesis Module

This module is in charge of searching for the proper candidate grasp, returning a list of grasp hypoth-

esis given a 3D object model, as well as the correct hand pose to approach the object for grasping. All

learned data that was stored are used in this module to assist the grasp generator to make inference

over the data, as mentioned in Section 6.2. In our approach we decided to store the learned data and

some inference results over some pre-defined situations such as grasp types associated with some

geometrical models to gain time, reducing in this way the processing time. Later with the grasp type

for a given object, we have to compute the hand pose relative to the object for the grasping execution.

The developed artificial system will always face an inference given the object information,

these possible inferences were previously described in Section 6.2, which demands the use of the

learned data from human grasp demonstrations for the estimate. The next subsection will present

more details on the grasp list generation.

Grasps List Generation

When the artificial system receives the inputs coming from the decomposition module, the objective

is to then have the candidate grasps for each part of the object.

The superquadrics parameters, the object centroid, object pose and scale (in the metrical su-

perquadric coordinate system) are computed as demonstrated also in [JLS00]. This way, we know the

object orientation and the limits of the object (width, height and depth), which allows the system to

generate the possible candidate pre-grasp and the grasps near to the object boundary.

A discrete space-state is used as defined in the HANDLE project [HANb] for the frames of

references (world for robot platform base, robotic hand and object) as presented in Figure 6.14.

Since we have computed the object pose during the decomposition module, and we know the

defined hand state, then the system searches for the learned data in the database to find the possible

candidate grasps for the detected superquadrics. Afterwards, for each grasp, the hand pose relative to

the object is computed at pre-grasp position and for the selected grasp. We set the pre-grasp position

of the hand at 10cm away from the object with neutral state (open hand) as shown in Figure 6.14. The

hand pose for each grasp type is computed in the top and side-grasp pose relative to the object pose

(i.e., the hand shape of the grasp is preserved, but we have two options for approaching the object,

by its top or its side). Usually the top-grasp pose is the chosen one for simple tasks like pick-up and

place. Some grasps are limited to the side position, such as adducted thumb or medium wrap, used
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Figure 6.14: Frame of references adopted to generate the grasps pose relative to the object pose.
Figure adapted from HANDLE Project Wiki page for the definitions of the ROS modules for the final
demonstration of the project [HANb].

for example, to grasp a pipette by its side when it is on a vertical stand.

To generate the hand pose in top and side positions, the object pose and size, the frames of

reference of the object and the hand are taken into consideration. The robotic platform consists in

several joints and links as seen in Figure 6.14 (Shadow dexterous Hand [Sha]). A proper frame of

reference structure was defined and thus the relations between the Shadow dexterous hand and object

need to be calculated. The final goal for getting the transformation matrices was to be able to set the

correct grasp pose of the hand relative to the object, in two different grasp directions: top OTT and

side OTS. The following relations define these side and top grasp poses transformations respectively:

OTS =
O TH

HTR
RTS, (6.11)
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OTT =O TR
HTR

RTT , (6.12)

where OTH defines the transformation between the frames of reference of the Object {O} and a hand

wrist {H}; PTR defines the transformation between the frames of reference of the hand {H} and the

actual frame of reference used in the robotic platform {R} for the hand, as illustrated in Figure 6.14;

RTS defines the transformation between the frames of reference of the robotic platform {R} and the

side grasp position {S}; RTT defines the transformation between the frames of reference of the robotic

platform {R} and the safe top grasp position {T}.

Below are the matrices that relate to these frames of reference:

OTH =



0

Rsq 0

0

1 1 1 1


, HTR =



0 0 1 0

0 −1 0 0

1 0 0 0

1 1 1 1


,

RTS =



1 0 0 0

0 1 0 a2

0 0 1 −∆WH

1 1 1 1


, RTT =



0 1 0 0

−1 0 0 a3

0 0 1 −∆WH

1 1 1 1


, (6.13)

where a2 and a3 are the dimensions of the superquadrics that is necessary to set the grasp pose away

from the object at a certain distance, and ∆WH is the distance from the wrist to the center of the

hand. Rsq represents a rotation matrix based on the {φ,θ,ψ} (yaw-pitch-roll) angles extracted from

the superquadrics components.

The grasp list is given by the grasps associated with each quadric qi that composes the object

as previously detailed in Section 6.2. After generating the grasp list and their poses for top and side

approach, the artificial system will choose using a rank pool of weighed grasps, based on the learned

probabilities. A high weight is assigned to the grasp in case of a success in a specific context, if a

failure happens, the grasp will have a lower weight assigned to it in that context. Simulations were

done a priori to test specific grasps in different hand poses and different contexts to assist the grasp

rank pool to update the weights of each grasp in specific situations and with specific objects. The

decision and learning of the rank pool module is based on Gaussian Process Regression implemented
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and applied by a partner of the HANDLE project consortium as presented in [VB12].

The grasp execution by the robotic platform is performed after the acquisition of the object

point cloud and all processes for the grasp generation. The grasp generator module encloses other

modules beyond the scope of this work. In fact our module is one of three that compile to provide

suitable grasps into a common rank pool from which a decision is made. The system also has a GUI

(Graphical User Interface) to monitor and also interact when necessary to remove candidate grasps or

take decisions.

For the robot execution (which is not the focus of this work), the mapping of the chosen grasp

to the robotic platform takes into consideration the grasps hand pose, object pose and the robotic

hand kinematics. The adopted approach is the one used by the HANDLE project to map the grasps

to the robotic hand that has been implemented in the GraspIt! simulator [Mil01] and is called the

Eigengrasp-planner [CGA07]. The consortium of the HANDLE project explores the use of grasp-

synergies and then the eigengrasps for the Shadow robotic hand. The basic idea of grasping based on

synergies is to combine a quick search of the reduced subspace spanned by the relevant eigengrasps

with a later adjustment phase as a hierarchical approach where the synergies pre-shape the hand

with approximate finger positions around the object. Sampling a large set of suitable (e.g. human-

like) hand poses and performing the principal component analysis, the resulting set of eigenvectors

provide a new basis of the hand joint space, where the set of eigenvectors is called as the synergies

matrix. More details are given in Deliverable 24 (D24) of the HANDLE project [Hen12]. For each

discrete grasp type used in this work, a mapping is made using this strategy, allowing later the correct

grasp execution by the robotic hand.

Algorithm 4 presents the general idea of the grasp synthesis. The algorithm uses the methods

explained in Chapter 3 for the object decomposition, the learned and inference processes explained in

Section 6.2, and the grasp pose as explained in Section 6.3, following the respective order: Decompo-

sition (object segmentation and shape modelling) and Grasp List Generation (candidate grasps given

the object parameters and their poses relative to the object). The algorithm does not enclose the ex-

ecution part, where the egeingrasps are used to map the discrete grasps to their correct configuration

for the robotic hand performing the object grasping, since our goal is the grasp generation.
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Algorithm 4: Grasp Synthesis Steps Before the Robot Execution

1 Input: Object Point Cloud P

// Object Decomposition:
2 pclouds[Ptop, Pmid , Pbot]← segment (P) ;

3 ob jParamList [a1,a2,a3,e1,e2,x,y,z,φ,θ,ψ,cx,cy,cz,vq]← getShapeSQ (pclouds) ;

// Using the stored Learned data for inference given the object shape
parameters:

4 grasps []← getGraspList(ob jParamList) ;

// Generating Hand Pose (grasp list) relative to the Object Pose
5 handPoses []← genGraspPose(grasps,ob jParamList)

6 Outputs: Grasp List (grasps) and their poses (handPoses) relative to the object (P)

6.4 Experimental Results

As previously mentioned, the artificial system was implemented under the ROS platform using C++

language to perform the grasp synthesis. The sensor used to acquire the object point cloud during

the robot execution is an RGB-D camera. The processing time of the artificial system to run all

algorithms described in this work for grasp synthesis (Decomposition and Grasp Generator) takes on

average, under 2 seconds before executing the grasp. From all algorithms, the most time consuming

is the shape modelling using superquadrics, since it depends on the size of the point cloud to compute

the parameters. The learned data and the pre-processing inference enable us to have a fast decision

over the object model. The next subsections show the results achieved using our proposed artificial

system for grasp synthesis.

6.4.1 Simulated Tests

The first stage of tests of our application were performed in an off-line mode. Basically, we have

simulated an application that triggers all modules (Decomposition and Grasp Generator), passing

as input a point cloud previously acquired from different sensors. This way we could verify the

consistence and the outputs of the system for those objects.

Figure 6.15 depicts the segmentation of an everyday object (unknown to the system). First

image (top-left) shows the data (raw object point cloud) from the sensor (MS-Kinect) after removing

the table-top. The left image shows the segmentation of the object during the decompose module.

Figure 6.16 shows some everyday objects just to exemplify the outputs of each module present-

ing the candidate grasps and hand pose (in top and side grasp orientation for the chosen grasp type)
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Figure 6.15: Decompose view in a simulator. The images show all steps for the segmentation. Left
image represents the raw object data from the Kinect sensor after removing the table-top. The right
image shows the segmentation result of the unknown object achieved by our decompose module.

of the object graspable parts. The generated grasp list follows an order of appearance indicating the

grasp with highest weight (higher probability to be the selected grasp) down to the lowest one. The

figure presents the result of our simulated tests for those objects.

Figure 6.16: Results using the object point clouds to test our modules. The application returned some
grasp associated with the geometrical shapes (quadrics qi) of the object. The marked quadrics in red
are the object parts with higher probability to be the graspable part, and the grasps associated with
this specific part have a higher weight. The order of appearance of the grasp types indicates the most
probable grasp for that component.

Some assumptions need to be taken into account before sending the list of candidate grasps

to the next module. We have to verify if the grasps are feasible for specific parts of the object. For
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instance, if the graspable part is the middle component of the object, then, top-grasp orientation is

not allowed for that component if it is in a vertical position, and the same happens to the bottom part.

Some grasp configurations for the top and bottom parts of the object may be not proper, due to the

size of the segmented part. So, after generating the grasp list, we verify if we need to discard some of

the grasps generated.

In general, the results achieved from our simulated tests are suitable for the objects presented

to the system.

6.4.2 Tests in the Robotic Platform

The modules explained in this work are used to search for feasible grasps given a 3D object, these

are then mapped to the robotic platform using the correct kinematics for the execution. Here, we are

not dealing with the planning of the trajectory to approach the object, only the grasp type (and its

pose) for the robotic platform. The trajectory planning (reaching movements) are addressed by other

modules of the integrated system inside the HANDLE consortium [HANb].

Figure 6.17: Selected grasp (grasp 27 from [GRA]: Quadpod) for the object (box) executed in a
robotic platform.

The criteria that the robotic platform uses to chose a specific grasp was defined inside the

HANDLE project [HANb] and it is explained as follows:

• If one of the provided grasps is a good starting point to reach the final grasp after in-hand

manipulation that is set by the task (grasp transition sequence is easy);

• If the quality of the grasp is higher than those ones provided by other means (other grasp

generators);

• If the grasp candidate (hand pose) is suitable for the Inverse Kinematics limits.

In general our modules provided good candidates that assisted the robotic platform in perform-

ing successful grasps. However some problems were encountered, such as the robotic hand pose not
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Figure 6.18: Selected grasp executed in a simulator before the execution in the robotic platform.

Figure 6.19: Tests in the simulator to verify the valid grasps of the generated list.
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being reachable, because it is so close to the table, and finding a correct offset of the grasp to avoid

the hand colliding with the object before completing the grasp. More trials will enable a better tuning

and also to re-weight the candidate grasps based on the success rate.

Figure 6.17 shows an example of execution when one of the grasp of our modules was chosen

as suitable for the object. The sequence shows when the robotic hand touches the object to perform

the grasp, then the robotic hand lifts the object and finally releases it.

Figure 6.18 presents the simulation (inside the integrated software developed under HANDLE

consortium [HANb]) to chose a specific grasp before the robotic platform execution. In this specific

case our grasp was chosen and tested to validate the grasp.

Figure 6.19 shows a sequence of tests using the grasps from our system to indicate which grasps

are valid and not valid.

The everyday objects used to test the modules are unknown to the system, so that we are apply-

ing the mentioned modules to approximate the object shape into familiar shapes to generate a set of

candidate grasps for each known shape. In general, we can affirm that, after some improvements us-

ing offsets for hand pose to avoid some restrictions (table limit, hand kinematics), the grasp generator

module is a solution to generate valid grasps for everyday objects.

6.5 Discussion

The knowledge acquired from both human demonstrations and object’s properties allowed the devel-

opment of an artificial system to respond with grasp synthesis given a novel object to be manipulated

by a robotic dexterous hand. The developed artificial system faces a novel object as input, then it is

segmented into meaningful parts to later be approximated into known shapes (superquadrics mod-

els). Afterwards the artificial system uses previous learned data of how to grasp known objects to be

re-used for new objects. The proposed approach limits the amount of grasps for each known object

primitive based on learned humans’ choice.

The implemented modules generate a list of candidate grasps providing a ranked poll possible

grasps. Results show that valid grasps may be generated for everyday objects to be used by a robotic

dexterous hand. As future work we intend to implement re-weighting the candidate grasp list based

on the success rate of the artificial system. We also intend to improve the grasp generation by re-

weighting the grasp candidates after a simulation using the grasp hypothesis for a specific object.

Improvements with offsets of hand pose relative to the object pose might be done to avoid some
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collision between the robotic hand and table or robotic hand and object before the final grasping (i.e.,

fingers touching the object before the final hand pose).

The publications related to this chapter’s subject are given as follows:

Journal

• Diego R. Faria, Ricardo Martins, Jorge Lobo, Jorge Dias. ”Knowledge-based Reasoning from
Human Grasp Demonstrations for Robot Grasp Synthesis”. Under Review Robotics and Au-
tonomous Systems, Elsevier, 2013.

International Conference

• Diego R. Faria, Ricardo Martins, Jorge Lobo, Jorge Dias. ”A Probabilistic Framework to Detect
Suitable Grasping Regions on Objects”. In 10th IFAC Symposium on Robot Control (SYROCO
2012), Dubrovnik, Croatia, September, 2012.



Chapter 7

Overall Conclusions and Future Work

Probabilistic approaches for manipulation of everyday objects were proposed adopting mul-

timodal data from human demonstrations. The learning process adopted is based on the relevant

features extracted from the manipulation tasks. This is also useful to find the most probable object

regions for successful grasping. The knowledge acquired from the data is useful for autonomous

grasping by robotic systems. The outputs of this work can be used in different robotic applications,

such as grasp planning and synthesis, imitation learning and etc. The constraints introduced by the

presented models can be integrated by the applications during the estimation and synthesis of grasp

and movements in different scenarios with everyday objects.

In this study, firstly (Chapter 2) presented how to perceive objects by the kinaesthetic capa-

bility, exploring the objects in-hand. Adopting a probabilistic volumetric map (occupancy grid tech-

niques), the object global shape is represented during the exploration. The probabilistic map deals

with the sensors uncertainty and real world noise. Bayesian estimation is then used to update each

map cell state (i.e., occupied when the fingers pass through that location or empty when the fingers

do not explore that region). The object probabilistic volumetric map was proposed to overlay the par-

tially observed volume of the object with data about human visual gaze when initiating a grasp task,

149
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hand-object contact points and tactile forces. During the object representation, the object centroid is

computed to define the object frame of reference for object-centric representation. Two ways of in-

hand exploration were presented: single hand exploration of static objects and in-hand exploration of

non-static objects, when individuals usually use the left hand to assist the other hand for exploration.

The results show that it is possible to achieve valid models of the object surface. In this approach,

data from different sensors are allowed to improve the object model by means of fusing the multi-

modal perception into a single percept. Results of this representation suggest its suitability for grasp

planning since a unified model has the relevant observed information on how to grasp the object.

In addition to the object perception given the object volumetric representation, the object is seg-

mented into components enabling the recognition by components (Chapter 3) for selection of object

regions that are suitable for grasping. The segmentation of the object into components facilitates the

matching by an artificial system observing objects to perform successful grasping taking into account

the task context. Moreover, each component of the object is approximated (by fitting each segment

of the object) into geometrical primitives given by the parametric modelling of superquadrics. This

way, by simplifying the object shape we set the huge amount of candidate grasps into a limited list

of possible grasps for that component. In this study, we are assuming that unknown objects, after

segmented and associated with geometrical shapes, will have similar or familiar shapes compared to

known objects, then allowing possible estimates of candidate grasps for these objects.

Afterwards, in Chapter 4, the capability of perceiving the objects through the hand is explored

to have a better perception of the object, recognizing it. For that, the partial volume of the object

acquired when an individual grasps the object in different ways is used. A learning stage is em-

ployed to associate possible grasps (hand configurations given the contact point on the object surface)

with objects. The learning process is achieved by means of GMM/GMR. This application has shown

that hand configurations (similar contact points) can be grouped into clusters and later by a regres-

sion model, a signature representing the object identity and grasp types associated with the object is

achieved. Thus, among everyday objects, a pre-selection of candidate identities is made (i.e., hypoth-

esis generation). Then, a matching between the partial point cloud of the object that is being explored

and the full point clouds of objects selected from the database is made. The pre-selection step selects

the more probable objects (those ones that can be grasped in the same way), avoiding the matching

of the candidate object to all objects stored in the database.

The strategy adopted for in-hand exploration of objects shows that the perception acquired by
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human hands (haptic: kinaesthetic, cutaneous and thermal) plays an important role when prehensile

and manipulation activities acquiring objects’ intrinsic and extrinsic information are performed to

allow its representation and identification. Results are presented for human manipulation of objects,

but the same can be mapped to artificial hands for object identification.

Proposed feature extractions of the multimodal data collected from human grasp demonstra-

tions in manipulation tasks were presented. Based on these features, segmentation of the action phases

and trajectory classification were accomplished. From the motion patterns, a generalized probabilistic

representation for each type of task was derived. Results show the successful break down of action

phases along a trajectory, as well as the suitability of the selected features as descriptors for the prob-

abilistic approach used in task identification. This work with multimodal data also allows for the

use of contact regions and tactile force intensities for grasp transitions classification, based on a set

of grasp primitives as shown in [MFD10] and [FMLD12a] and can be used to correctly classify the

grasp sequences in different tasks. The presented work starts from simple hand trajectories to more

complex tasks involving in-hand manipulation of objects, and also shows how to use statistics of hu-

man demonstrations of grasps to estimate proper grasps and suitable regions on objects for grasping

inside a task context or just for an initial grasp without considering the context. A consistent database

with human demonstrations of manipulation tasks (from simple to more complex) was used to test the

proposed methods. This study about hand trajectories, task identification and contact points of stable

grasps can be used to endow an artificial dexterous hand to perform manipulation tasks.

All research developed in this thesis can be joint into a single framework to be used as knowl-

edge for autonomous robotic grasping as explained in Chapter 1. In this thesis we have joint the

knowledge acquired from human grasp demonstrations to design an artificial system for grasp syn-

thesis (Chapter 6), where different strategies demonstrated in this thesis were encompassed. The

system relies on the human grasp demonstrations using previous learned data of how to grasp known

objects to be re-used for new objects. Therefore, in this study we have contributed to autonomous

grasping by applying a probabilistic reasoning on the knowledge acquired from previous observations.

Results show that valid grasps may be generated for everyday objects to be used by a robotic dexter-

ous hand. Thus, relevant data was extracted to endow a robotic platform with enough capabilities for

autonomous robot grasping.
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Future Works and Novel Concepts

As future work, we propose to extend our framework of grasp synthesis bringing together all knowl-

edge studied in this research into a more complete framework. This extension will include knowledge

of hand trajectories of reaching movements and handling tasks, in-hand exploration and object iden-

tification, grasp synthesis to be performed by an artificial dexterous hand. The idea exemplified in

Chapter 1, Figure 1.1 will be developed for grasping planning and execution, or even to perceive the

object by exploration, using the hands and visual sensing to identify and grasp novel objects.

Improvements will be studied for in-hand exploration combined with other modalities such as:

using primitives from tactile to improve and update the cell status; improving the visual modality

models - adopting stereo vision or using another device, such as RGB-D sensor. Other types of im-

provements will be investigated for object identification through in-hand exploration. Human studies

can reveal different strategies to adapt and interact in different complex environments, so that we in-

tend to base on human demonstrations. Statistical analysis on human data will allow robust inferences

to be applied in grasping strategies.

A more thorough study on specific probabilistic reasoning techniques will be investigated to

deal with the perception uncertainty when different modalities are adopted. The fact of going through

this way is that, the sensory cooperation leads to a more robust and complete estimate of the sur-

rounding environment.

A study for the development of some metrics to evaluate the execution of the approaches pre-

sented in this work will be addressed. In the same way, an analysis of the results to identify possible

failures verifying the most relevant information (patterns) to accomplish a grasping task, taking into

consideration its constraints, will also be carried out with the objective of contributing for autonomous

grasping.
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Appendix B

Grasp List used in this Study

The grasps used for the object identification by the hand configurations and also for the grasp synthesis

system are presented in Figure B.1. Each grasp taxonomy was defined after a study based on human

grasps made by consortium within the European GRASP project [GRA].

Figure B.1: Grasps list defined by the European GRASP project. More details and the complete
taxonomy is available at [GRA].
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Appendix C

SCamPol Toolbox for Matlab

A toolbox for Matlab was developed for the calibration of two different sensors to work in the same

frame of reference. This toolbox was developed with the purpose of data fusion as explained in

Chapter 2. The toolbox is available for download at the author website (http://www.isr.uc.pt/∼diego).

The calibration method supports 3D points from a specific sensor and a stereo camera. Here we

are acquiring the 3D points from the Polhemus Liberty 240/8 tracking device and the Videre STH-

MDCS3 stereo camera to achieve a transformation to re-project the 3D points from the tracker device

into the image plane (stereo camera frame of reference) and vice-versa (3D points from stereo into

the tracker frame of reference). For this calibration, we implemented a Matlab toolbox which, given a

set of images from the stereo camera and the 3D points from the motion tracking device, it estimates

the rigid transformation between the frame of references. The calibration assumes that the sensors

are rigidly mounted in relation to each other. Figure C.1 shows a representation of a setup and the

relevant frames of reference.

The calibration allows us to transform a 3D point in the local frame of reference of the tracker

device into the stereo camera frame of reference. The first step of this calibration is to acquire the

intrinsic and extrinsic parameters of the stereo camera, e.g., using the Bouget Camera Calibration

toolbox (by Jean-Yves Bouguet, Camera calibration toolbox for Matlab:

http://www.vision.caltech.edu/bouguetj/calibdoc/index.html).

By using a white tape attached to a sensor of the tracker device, we can recognize this marker

in the image to obtain the corresponding 3D point from the stereo depth map, given the stereo camera

calibration (see Figure C.2).

As previously explained in Chapter 2, the stereo camera and the tracker frame of references,
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Figure C.1: Representation of an experimental setup with stereo camera and Polhemus rigidly
mounted, and also the relevant frame of references.

Figure C.2: Calibration strategy: using a white tape on the tracker sensor to acquire both 3D points,
in the frame of reference of the tracker sensor, and also from the stereo camera by localizing the white
mark in the images.

{C} and {P} respectively, are rigid to each other. Collecting two sets of 3D corresponding points in

two coordinate references, we can achieve the transformation to map a 3D point from {P} to {P}.

The Main menu of the SCamPol toolbox is presented in the graphic user interface in Figure

C.3.

Figure C.3: Graphic User interface: Main menu of the SCamPol toolbox.

To use this toolbox, first it is necessary to have the stereo camera calibration data of the stereo
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camera to be possible to compute the 3D points from the images (left and right). During the acqui-

sition, the 3D points from the tracker sensor need to be acquired with the stereo image. For each

acquisition two images (left and right) and the 3D point of the tracker is saved. The images have

the sensor visible, for later to find the correspondence between the sensor coordinates at the left and

right images, allowing to find the 3D location of the sensor by the stereo vision. For each acquisition

is recommended that the sensors is placed in different locations in the experimental area to have a

variance between the sensor translation and rotation. Note that the 3D data of the sensor need to be

collected at same time that the left and right images are acquired. Figure C.4 shows an example of

some acquired images with the sensors in different positions.

Figure C.4: Example of the images acquisition. The left images from the stereo camera are in the top
row and the right images are in the bottom row. The yellow circles show the sensor location in the
images.

The options of the SCamPol toolbox are described bellow.

Load Stereo Camera Calibration File: This option is used to load the stereo camera calibra-

tion file in order to be possible the computation of the frame of references transformation. The stereo

camera calibration file is given by the camera calibration toolbox (Bouget) for Matlab.

Images Names: This option allows the users to define the base name of the images acquired

for calibration. The images have be named with a base name for example, leftimage and rightimage.

Afterwards the software assigns a sequential number to the names.

Read Images: All the images are loaded in the memory. A window with the loaded left images

is opened for the visualization. The same happens with the right images as presented in Figure C.5.

Load 3D points files from the tracker device: For each loaded image (left and right) will

have a corresponding 3D point that will be inside a text file (txt) acquired from motion tracker device
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Figure C.5: Window View of the images acquired for calibration after being loaded.

with the x,y,z coordinate values. Each 3D point in the file is corresponding to each image in the

sequence from 1 to n, that is, the first point in the file corresponds to the first image and so on.

Extract 3D points from the images: By selecting this option, the user will be asked to man-

ually mark the motion tracking sensor position in the images (left and right). All image sequences

(left and right) will be opened in order to select the region where the tracker sensor is located in the

image coordinate. It is not necessary to select a precise location in the image, just the region where

the sensor is located, and then the software automatically will find the top of the white mark on the

sensor which corresponds its position x,y coordinates. Figure C.6 shows an example of the selection

of the sensor location in the image by a user. After finishing this step, the software have the sensor

positions in the images and it is possible compute the 3D position, given the stereo calibration pa-

rameters. The next step is to compute the calibration by achieving a transformation between the two

frames of reference.

Run the Calibration: This option allows the users to compute the calibration between the

stereo camera and the motion tracker sensor. After running the calibration step, the software automat-

ically re-projects a 3D point of the tracker sensor on the corresponding image plane (left image).

Error Analysis: This option allows the users to evaluate the quality of the calibration result.

A table will be shown with the evolution of the errors along the images; it is the average re-projection

error values in pixels according to the number of 3D points that were used. The average error of the
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Figure C.6: Selection window: selection of the sensor region in the image to find its coordinate in the
images (left and right) to allow the computation of the 3D point.

proposed calibration decreases when the method uses a higher number of points. It is possible to

consider that for N = 20 points, the calibration method is stable. A graphic of the re-projection errors

also will be displayed after choosing this option. Figure C.7 shows a graphic with the number of the

points that were used in the calibration, and the value of re-projection errors in the scale of pixel.

Figure C.7: Graphic generated by the toolbox with the number of points used in the calibration and
the value of re-projection errors in the scale of pixels.

Re-project in the Images Plane: By selecting this option, it is possible to re-project the 3D

points of the Polhemus tracker device in the image plane. It is necessary to select the image for re-

projection, the 3D point file of the sensor, and the calibration file (transformation matrix) generated
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by the SCamPol toolbox. An example of re-projection is shown in Figure C.8. In this example a

person moved the sensor generating the 3D points on the object surface.

Figure C.8: Re-projection example: 3D points acquired from the tracker sensor in the image plane.

Plots: This option allows the users of to generate three possible plots: one for the number

of points used in the calibration and the value of re-projection errors in the scale of pixel, another

showing the evolution of the rotation matrix, and the last one shows the translation matrix estimated

by the calibration according to the number of points used. Figure 49 shows the three possible graphics

that can be generated for errors analyzes.

Save Calibration: This option start up the process to save the calibration file with the rotation

and translation matrices of the homogeneous transformation.
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