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RESUMO 

A resolução de um problema de optimização multiobjectivo envolve, em geral, não apenas 

uma fase de pesquisa, capaz de fornecer um conjunto representativo da frente óptima de 

Pareto, mas também uma fase de decisão, consistindo na escolha da solução (ou conjunto 

de soluções) aceitável como recomendação final tendo em vista a sua aplicação prática. 

Neste sentido, a incorporação de preferências durante o processo evolutivo permite focar a 

pesquisa evitando a exploração de soluções irrelevantes (minimizando assim o tempo de 

computação) e facilita a integração de conhecimento do decisor no processo de pesquisa 

(minimizando o esforço cognitivo). Estes aspectos são particularmente importantes quando 

o número de funções objectivo é grande e/ou a sua natureza é conflituante, uma vez que a 

dimensão do espaço de pesquisa assim como o número de soluções não-dominadas 

admissíveis tende a ser elevado. 

A proposta de uma abordagem evolutiva, designada por EvABOR (Evolutionary Algorithm 

Based on an Outranking Relation), apresentada neste trabalho incorpora as preferências de 

um decisor de modo a guiar a pesquisa para regiões do espaço mais de acordo com as 

preferências explicitadas. Estas são captadas e tornadas operacionais recorrendo aos 

parâmetros e princípios do método ELECTRE TRI. A relação de prevalência (outranking), na 

qual o ELECTRE TRI se baseia, é usada para substituir/complementar a relação de não 

dominância nos habituais operadores do algoritmo evolutivo (cruzamento, mutação e 

selecção). 

Dado que a qualidade das soluções iniciais pode influenciar o desempenho de um algoritmo 

evolutivo, e existindo conhecimento sobre o problema em causa, nomeadamente ao lidar 

com problemas reais, propõe-se uma metodologia de construção de soluções iniciais 

baseada no GRASP (Greedy Randomized Adaptive Search Procedure) permitindo também a 

incorporação de preferências. Adicionalmente, a necessidade de explorar as regiões do 

espaço de pesquisa de forma mais eficiente, levou à implementação de um procedimento de 

pesquisa local, baseado no Simulated Annealing, onde as preferências explicitadas pelo 

decisor são tidas em conta, sendo também incorporadas numa versão multiobjectivo do 

Simulated Annealing. Este trabalho teve como resultado um novo algoritmo onde se explora 

a hibridização do GRASP com o Simulated Annealing, incorporando as preferências tanto na 

fase de construção como na fase de pesquisa local. 
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Os algoritmos propostos foram aplicados na resolução de dois problemas recorrendo a 

dados reais: um problema de compensação de energia reactiva em redes de distribuição de 

energia eléctrica, no caso do EvABOR, e um problema de controlo remoto de cargas, no caso 

do algoritmo híbrido. 
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ABSTRACT 

The resolution of a multi-objective optimization problem involves, in general, not only a 

search phase adequate to provide a representative set of the Pareto-optimal front, but also 

a decision phase consisting in the identification of a solution (or a set of solutions) 

acceptable as a final recommendation having in mind practical implementation. The 

incorporation of preferences during the evolutionary process allows focusing the search 

according to the preference information elicited from the decision maker, avoiding the 

exploration of irrelevant solutions (thus minimizing the computational time) and facilitating 

the integration of knowledge in the search process (minimizing the cognitive effort). These 

aspects are particularly important in combinatorial problems, when the number of objective 

functions is large and/or their nature is conflicting, since the size of the search space as well 

as the number of non-dominated solutions tends to be very high. 

The evolutionary approach, called EvABOR (Evolutionary Algorithm Based on an outranking 

Relation), presented in this work incorporates the decision maker’s preferences to guide the 

search for regions of the space more in accordance with the elicited preferences. These are 

captured and made operational using the principles and parameters of the ELECTRE TRI 

method. The outranking relation in the ELECTRE TRI method is used to replace/complement 

the non-dominance relation in the usual evolutionary algorithm operators (crossover, 

mutation and selection). 

Since the quality of the initial solutions may influence the performance of an evolutionary 

algorithm a methodology based on GRASP (Greedy Randomized Adaptive Search Procedure) 

is proposed for the construction of initial solutions. This procedure is particularly relevant 

when knowledge about the problem at hand exists, which happens, in general, in real-world 

problems. Additionally, the need to exploit regions of the search space more efficiently led 

to the implementation of a local search procedure based on Simulated Annealing, in which 

the preferences elicited from a decision maker are taken into account. This motivated the 

development of a new approach for multi-objective optimization problems in which GRASP 

and Simulated Annealing are hybridized, incorporating preferences in the construction phase 

or/and the local search phase. 

The proposed algorithms are applied to provide decision support in the resolution of two 

real-world problems: a reactive power compensation problem in electrical distribution 
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networks, using the EvABOR algorithm, and a direct load control problem, using the hybrid 

algorithm. 
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CHAPTER 1 
 

 

 

 

 

1. INTRODUCTION
1
 

The adequate modeling of real-world optimization problems generally requires the 

consideration of distinct axes of evaluation for assessing the merits of potential solutions. 

Namely in engineering problems, aspects of operational, economical, environmental, and 

quality of service nature are at stake. Therefore, mathematical models must explicitly 

address these multiple, incommensurate and often conflicting aspects of evaluation as 

objective functions to be optimized. Multi-objective optimization (MOO) models enable to 

grasp the trade-offs between the objective functions that are relevant for decision purposes 

in order to reach a satisfactory compromise solution that can be accepted as the final 

outcome of the process. The essential concept in MOO is the one of non-dominated 

(efficient, Pareto-optimal) solutions, that is feasible solutions for which no improvement in 

all objective functions is possible simultaneously, since in order to improve an objective 

function it is necessary to accept worsening at least another objective function value. Then 

in MOO the main goal is to obtain the non-dominated set of solutions, named 

non-dominated front in the objective function space. However, it must be noticed that, in 

many real-world problems, the non-dominated front is unknown, being the goal of the 

optimization process to achieve an approximated front, as close as possible of the true one. 

The use of Evolutionary Algorithms (EAs) to deal with MOO models has gained an increasing 

relevance due to their ability to work with a population of individuals (solutions) that 

hopefully converges to the true non-dominated front  [Deb (2001), Coello et al. (2002)]. EAs 

are particularly suited for tackling hard combinatorial and/or non-linear models, as they are 

less susceptible to the shape or continuity of the non-dominated front than classical 

(mathematical programming) optimization methods. EAs can incorporate techniques to 

                                                 
1
 This chapter is partially based on [Oliveira E, Antunes C H, Gomes A. A comparative study of different 

approaches using an outranking relation in a multi-objective evolutionary algorithm. Computers & 

Operations Research 2013; 40 (6): 1602–1615]. 
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preserve the diversity of solutions for a comprehensive depiction of non-dominated front 

thus unveiling the trade-offs in different regions of the search space. These techniques 

possess advantages compared with the use of “scalarizing” functions, in which a surrogate 

scalar function aggregating the multiple objectives is optimized, as in traditional 

mathematical programming approaches. 

Although the non-dominance is the essential concept in MOO, it is a poor one, in the sense 

that it lacks discriminative power for decision recommendation purposes. Non-dominated 

solutions are not comparable between them, so no solution arises as the “final” one [Branke 

(2008), Branke et al. (2010)]. The rationalization of the comparison between non-dominated 

solutions requires taking into account the expression of the decision maker’s preferences 

that somehow “enrich” the non-dominance relation [Rachmawati and Srinivasan (2006)]. 

These preferences represent a set of opinions, values, convictions and perspectives of 

reality, which configure a personal model of the reality under study, which the decision 

maker (DM) leans on to evaluate the different potential solutions [Coello (2000), Branke and 

Deb (2004), Corne and Knowles (2007)]. 

Recent studies have shown that EAs based only on the non-dominance relation are 

insufficient to deal with MOO models, namely whenever the number of objective functions 

is large [Corne and Knowles (2007), Farina and Amato (2002), Knowles and Corne (2007)]. In 

these situations, the non-dominance relation may become inefficient in the selection of 

individuals for the next generation and lead to a weak selective pressure [di Pierro et al. 

(2007), Garza-Fabre et al. (2009)]. As it is referred to in [Deb et al. (2010)], in these cases the 

progress of the population tends to slow down and, the time consumed in the search 

process to find at least, a good approximation to the non-dominated front may become 

prohibitive. In addition to the problems associated with the selection procedure and the 

time consumed in the search process, a major difficulty arises at the end of the optimization 

process when it is necessary to choose a solution (or a small set of solutions for further 

screening) having in mind its practical implementation. In fact, in a real-world multi-

objective optimization problem (MOOP), the number of solutions in the non-dominated 

front is generally very large due to the conflicting nature of the objective functions, possibly 

its number, and the frequent combinatorial nature of the problem [Branke et al. (2010)]. 

The preference information supplied by the DM is of paramount importance to guide the 

search to the regions where solutions more in accordance with his/her preferences are 

located, thus narrowing the scope of the search to the regions of interest and reducing the 

computational effort [Branke and Deb (2004), Branke et al. (2001), Rachmawati and 
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Srinivasan (2009)]. The convergence to these regions is improved by incorporating 

mechanisms for preference expression into the evolutionary process. Therefore, techniques 

aimed at meaningfully capturing and incorporating the DM’s preferences into the 

evolutionary process should play a key role in real-world decision processes based on 

complex (namely combinatorial) MOO models. 

Besides EAs, other metaheuristics, such as Tabu Search (TS), Simulated Annealing (SA), 

Greedy Randomized Adaptive Search Procedure (GRASP), Iterated Local Search (ITS), Ant 

Colony Optimization (ACO), Particle Swarm Optimization (PSO), Variable Neighborhood 

Search (VNS), among others, have been applied to real-world optimization problems 

displaying a good performance [Osman and Laporte (1996), Osman and Kelly (1996), Dréo et 

al. (2006), Talbi (2009)]. Metaheuristics may be characterized as solution search methods for 

complex problems, namely of combinatorial and/or strong nonlinear characteristics for 

which the resolution using (exact) mathematical programming algorithms is impossible or 

computationally unacceptable in a reasonable time. The term metaheuristic was introduced 

by Glover in 1977 [Glover (1977)].  Several definitions for this term can be found in the 

literature. For Voß et al. (1999) a metaheuristic “is an iterative master process that guides 

and modifies the operations of subordinate heuristics to efficiently produce high quality 

solutions. It may manipulate a complete (or incomplete) single solution or a collection of 

solutions at each iteration. The subordinate heuristics may be high (or low) level procedures, 

or a simple local search, or just a construction method”. Metaheuristics balance exploration 

(diversification) and exploitation (intensification) procedures to effectively scan the search 

space. A wide overview of metaheuristics may be found in [Glover and Kochenberger (2003), 

Coello et al. (2002), Blum and Roli (2003), Talbi (2009)]. In this thesis, the main concepts of 

SA and GRASP metaheuristics, as well as their main approaches in the context of MOO will 

be presented in Chapter 4.  

The different characteristics of each metaheuristic make some of them more suited for 

certain types of problems. Consequently, a new research trend has been developed along 

this perspective, focusing mainly on the problem rather than the algorithm [Blum et al. 

2010]. With this perspective, the combination of some components from different 

metaheuristics is made to improve the performance of the overall approach thus leading to 

a new class of algorithms, called hybrid metaheuristics (HMH). The benefit of HMH is to 

include in the same algorithm the advantages of different metaheuristics working as a 

symbiosis with the same aim, which reveals to be a more efficient method to solve the 

problem at hand. 
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In the context of MOOP, having in mind the resolution of real-world problems, the issues 

referred to above and the recent developments in this area, three main algorithms are 

proposed in this work: an EA with the incorporation of preferences, named EvABOR 

(Evolutionary Algorithm Based on an Outranking Relation), an EA improved with a local 

search phase, named HESA (Hybrid Evolutionary Simulated Annealing), and a hybrid meta-

heuristic combining characteristics of GRASP and SA with incorporation of preferences. Two 

real-world problems have been dealt with using each one of these algorithms: a reactive 

power compensation problem and a direct load control problem. 

In this chapter the main motivations for the development of the proposed algorithms have 

been presented. In Chapter 2 the main concepts about multi-objective optimization are 

presented as well as the state-of-the-art in incorporation of preferences in EAs and also in 

hybrid metaheuristics with the focus on the hybridization of GRASP and SA. 

Chapter 3 is devoted to the development of the EvABOR algorithms. Preferences are 

incorporated in those algorithms using the parameters and principles of the ELECTRE TRI 

method which is devoted to the sorting problem, i.e., assigning alternatives (solutions) to 

ordered categories of merit according to multiple evaluation aspects. Consequently the first 

section of this chapter is devoted to explain the main concepts of this method. Three 

versions of the EvABOR algorithm are presented and used to obtain a set of non-dominated 

solutions to the reactive power compensation problem in accordance with the preferences 

elicited from a DM. The main difference between the three versions of EvABOR consists in 

the priority given to the non-dominance relation and the outranking relation (used in the 

ELECTRE TRI method) in the algorithms. Experiments using the reactive power compensation 

problem allow us to conclude about the best way to combine these two relations to obtain a 

non-dominated set of solutions according to preferences elicited from a DM. 

In Chapter 4 a general review about SA and GRASP metaheuristics is done, followed by the 

presentation of the proposed hybrid metaheuristics (the HESA and the GRASP+SA 

algorithms). The HESA algorithm is an extended approach of EvABOR with local search to 

improve the convergence of the initial algorithm to regions more in accordance with 

preferences. Considering the importance of the quality of initial solutions, a construction 

phase is developed in the spirit of the GRASP algorithm. The results obtained from the 

application of these algorithms to a direct load control problem are analyzed in the last 

section of this chapter. Finally, the most relevant conclusions about this work are drawn in 

the last chapter, as well as some directions in future research are pointed out. 
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CHAPTER 2 
 

 

 

 

 

2. MULTI-OBJECTIVE OPTIMIZATION: 

INCORPORATION OF PREFERENCES INTO EAS AND HMH
2 

 

2.1. INTRODUCTION 

A multi-objective optimization problem (MOOP) is characterized by the maximization or 

minimization of several objective functions possibly subject to a set of constraints. In this 

work, without loss of generality, the general concepts are presented for the minimization 

problem (if a maximization problem occurs it is explicitly referred). Considering this 

assumption a MOOP may be defined, in a general form, as follows: 

Minimize fm(X), m = 1,…, M; 

subject to gj(X)≥0, j = 1,…, J; 

                 hk(X)=0, k = 1,…, K; 

��
(�) ≤ �� ≤ ��

(�)
, i = 1,…, n, 

(2.1) 

where fm are the objective functions to minimize, gj and hk are constraints imposed by the 

particular characteristics of the MOOP; X is a vector of n decision variables ��, �	, …, �
 and, 

��
(�)

 and ��
(�)

 define the limits of the decision variable space. A vector X belonging to the 

decision variable space and satisfying all constraints is a feasible solution to the MOOP. 

In MOOP it does not exist, in general, a single feasible solution optimizing all objective 

functions. Due to their conflicting nature, there are solutions for which an improvement in 

one objective can only be obtained by decreasing the performance in other objective 

functions. Consequently, the concept of optimal solution, considered in single-objective 

                                                 
2
 This chapter is partially based on [Oliveira E, Antunes C H, Gomes A. A comparative study of different 

approaches using an outranking relation in a multi-objective evolutionary algorithm. Computers & 
Operations Research 2013; 40 (6): 1602–1615] and on [Oliveira E, Antunes C H, Gomes A. 
Incorporation of preferences in an evolutionary algorithm using an outranking relation - the EvABOR 
approach, International Journal of Natural Computing Research 2011; 2 (1), 63–85]. 
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optimization problems, is replaced by the concept of non-dominated (efficient or 

Pareto-optimal) solutions. A solution X1 dominates another solution X2 when X1 is better 

than X2 in at least one objective, and not worse in the other objectives. A solution is  

non-dominated if there is no other feasible solution that dominates it. The concept of 

efficient or non-inferior solution generally refers to the decision variable space whereas the 

concept of non-dominance or Pareto optimality generally refers to its image on the objective 

function space. 

The complexity and the dimension of MOOPs, particularly the combinatorial nature and the 

characteristics of the search space, require suitable methodological and computational tools. 

In recent years, the use of metaheuristics in the resolution of MOOP has increased 

significantly due to their ability to find a set of good quality solutions, although with no 

guarantee of Pareto-optimality, involving a reasonable computational effort without 

imposing too exigent requirements to the mathematical models. These techniques are 

particularly used in problems for which there are no suitable mathematical programming 

algorithms and/or the computational time is prohibitive. 

Several multi-objective metaheuristic approaches adapt the procedures designed for 

single-objective problems by resorting to weighted-sum scalar functions aggregating by 

means of weighting coefficients the multiple objective functions explicitly considered in the 

mathematical model. On one hand, this may be very limited because although recognizing 

the problem as a multi-objective one, the method to tackle it is then just a single objective 

optimization process without considering the true nature of the multi-objective problem. On 

the other hand, even by defining a strategy for changing the weights in a well-distributed 

manner it is not guaranteed that this results in a well-spread and diverse non-dominated 

front. Additionally, in combinatorial problems with binary and integer decision variables the 

optimization of weighted-sum scalar functions is not able to reach unsupported solutions 

(that is, those for which no supporting hyper-plane exists). Last but not least, interpreting 

these weights as coefficients of importance associated with the objective functions is 

generally not correct due to their interdependence with the measurement scales [Das and 

Dennis (1997), Deb (2001)]. 

EAs are one of the most popular metaheuristics approaches to deal with MOOPs. EAs are 

based on Darwin’s evolutionary theory, and they mimic the evolutionary principles of the 

nature in the context of search and optimization problems. In contrast to the classical 

methods, EAs deal with a population of individuals (solutions) at each iteration (generation) 

instead of a single solution, which allows finding multiple Pareto-optimal solutions in a single 
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run. EAs are indifferent to the convexity and form of the Pareto-optimal front which is an 

additional advantage. Using a biological analogy, a solution can be viewed as a chromosome 

whose elements are the genes, and new solutions are generated using operators that 

replicate the recombination and the mutation of chromosomes. In general, the 

recombination (crossover) operator works on two individuals (parents) and generates two or 

more individuals (offspring), which are the combination of their parent’s genes. The natural 

selection (the “survival of the fittest”) is also replicated in the EAs: the performance of each 

individual is evaluated and the ones with best performances have a higher probability to 

pass their characteristics to the next generation. In general, the evolutionary process begins 

with a population generated randomly and this evolves in the direction of the 

Pareto-optimal front in successive iterations using the crossover, mutation and selection 

operators. 

The first EA, called Vector Evaluated Genetic Algorithm (VEGA), is proposed by Schaffer in 

[Schaffer (1985)]. The main drawback of this approach is its lack of promoting diversity. If 

VEGA is applied for a large number of iterations the population tends to converge to 

individual optimal solutions. In [Goldberg (1989)] a multi-objective evolutionary algorithm 

(MOEA) using the concept of non-dominance is proposed and the use of a sharing 

mechanism to preserve the diversity of the non-dominated set. Several EAs devoted to 

MOOP have been developed; some of the most popular are Multi-Objective Genetic 

Algorithm (MOGA) [Fonseca and Fleming (1993)], Strength Pareto Evolutionary Algorithm 

(SPEA) [Zitzler and Thiele (1999)], Pareto Archived Evolution Strategy (PAES) [Knowles and 

Corne (2000)] and Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [Deb et al. (2002)]. 

Details about EAs can be found in the vast literature [Fonseca and Fleming (1995), Coello 

(1999), Veldhuizen and Lamont (2000), Deb (2001), Coello et al. (2002), Zhou et al. (2011)]. 

Despite the recognized success of EAs in the resolution of MOOPs, some issues have been 

considered, particularly in problems where the dimension of the search space is huge, which 

generally arises in real-world optimization problems. Consequently some mechanisms have 

been proposed to improve the efficiency and the efficacy of search procedures. Two of these 

approaches are the incorporation of preferences into EAs, to use additional information to 

guide the search process both reducing the computational effort and the cognitive effort in 

processing the results having in mind a final choice, and the hybridization of metaheuristics, 

as a means to use different techniques in different search phases or particular regions of the 

search space. 
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2.2. INCORPORATION OF PREFERENCES INTO EAS 

As in multi-objective mathematical programming algorithms, the incorporation of 

preferences into an EA can be done using one of the three main approaches as a priori, a 

posteriori and progressively (interactive) [Steuer (1986)]. 

In the a priori approach the preferences are elicited from the DM before the EA starts. A 

value (or utility) function is usually considered to transform the MOOP into a scalar 

optimization problem, in which the single objective function embodies the preference 

expression parameters [Fonseca and Fleming (1993), Deb (1999)]. A disadvantage usually 

pointed out to this approach lies on the fact that it is necessary to elicit all the preference 

information from the DM without knowledge of the possible alternatives, particularly in 

complex MOO mathematical models. 

The a posteriori approach is the most used in evolutionary MOO. In this approach the non-

dominated front is evaluated exhaustively with the aim of obtaining the whole 

Pareto-optimal front or at least the best approximation to this front. In a posteriori 

approaches a significant computational effort is generally devoted to the search of solutions 

that may be uninteresting from a practical point of view and convey no value-added for 

decision support purposes. The well-known algorithms NSGA-II [Deb et al. (2002)], SPEA2 

[Zitzler et al. (2002)] and PAES [Knowles and Corne (1999)] are examples of a posteriori 

methods, which are aimed at characterizing thoroughly the Pareto-optimal front. 

In the progressive (interactive) approach the preferences elicited from the DM are used to 

guide the search during the evolutionary process [Thiele et al. (2009), Chaudhuri and Deb 

(2010), Branke et al. (2010), Deb et al. (2010)]. It is assumed that those preferences may 

change over time as more knowledge is gathered, not just about the solution space and the 

trade-offs at stake between the objective functions, but also about the shaping of a DM’s 

preference structure. That is, the solutions provided by the EA contribute to a preference 

refinement process that in turn leads to focusing the search onto the regions in which 

solutions more in accordance with the preferences expressed by the DM are located. This 

enables a learning process of the trade-offs at stake between the competing objectives in 

different regions of the search space. Interactive approaches may require a priori 

specification of a few preference information parameters, while other parameters may be 

provided during the evolutionary process. In some interactive algorithms the preferences 

are elicited based on a set of solutions which are presented to the DM during the 

evolutionary process. This is the approach used in [Branke et al. (2010)] and 
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[Deb et al. (2010)] where, after a certain number of generations, a small set of alternatives is 

presented to the DM for choosing her/his preferred one or assessing intensities of 

preference between pairs of alternatives. Using this information the algorithm determines 

one [Deb et al. (2010)], or more [Branke et al. (2010)], value functions and the EA searches 

for non-dominated solutions that optimize these functions. 

The previous classification is done according to the point in the search process at which the 

incorporation of preferences occurs. Preference information may be incorporated into an EA 

using distinct sets of technical parameters, which may also be representative of different 

DM’s attitudes. Different processes can be referred to, such as goal attainment [Fonseca and 

Fleming (1993)] (in which the main idea is to be as close as possible to goals the DM would 

like to attain in each objective function), the specification of acceptable trade-off between 

objectives [Branke et al. (2001)] (thus using the notion of marginal rates of substitution) and 

the relative importance between objectives [Cvetkovic and Parmee (2002), Jin and Sendhoff 

(2002)] (assigning importance weights to the objectives). In other cases the concept of 

non-dominance is modified and/or replaced by other constructs [Fernández et al. (2010), 

Said et al. (2010)]. Some recent works use an outranking relation (between a pair of 

alternatives) for preference incorporation into an EA. Rekiek et al. (2000) combines the 

PROMETHEE II method [Brans and Mareschal (1986)] with an EA to rank each population 

during the evolutionary process based on preferences elicited a priori. Also, Coelho et al. 

(2003) use PROMETHEE II during the EA, in a method called PAMUC, to deal with 

preferences and constraints in an a priori approach. An a posteriori approach based on 

concepts of ELECTRE III and PROMETHEE methods is presented in [Fonteix et al. (2004)]. In 

[Parreiras et al. (2006), Parreiras and Vasconcelos (2007)] the PROMETHEE II method, or a 

modified PROMETHEE II, is also applied a posteriori for further analyzing the solutions in the 

Pareto-optimal front. 

In the algorithms proposed in this thesis, an outranking relation is used to enrich the 

non-dominance relation. The preferences are captured and made operational by using the 

parameters of the ELECTRE TRI method. The choice of this method relies on the fact that it is 

devoted to the sorting problem, allowing a comparison of each solution with predefined 

standards rather than using comparisons between solutions as in methods devoted to the 

choice and ranking problems as, for example, ELECTRE I and ELECTRE II/III. Another 

important advantage of ELECTRE TRI is the possibility of using a veto threshold to account 

for non-compensatory aspects. Although the non-dominance relation is the essential one in 

MOOP, it is not sufficient to include further non-controversial elements of the DM’s 
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preferences in order to discriminate between non-dominated solutions. As happens with 

other methods, ELECTRE TRI also allows to consider the relative importance of each 

objective function using a set of weights. However, in ELECTRE TRI, these values are scale 

independent and are truly coefficients of importance assigned to the objective functions, 

and they are not used to build a value function. Also, ELECTRE TRI enables the preference 

relation to be established in a gradual manner using indifference and preference thresholds 

and it is possible to express the exigency of the sorting defining a cutting-level. 

 

2.3. HYBRIDIZATION OF METAHEURISTICS 

Despite the success of metaheuristics and the applicability of these algorithms to a diverse 

set of problems in several areas (aerodynamics, fluid dynamics, telecommunications, data 

mining, finance, scheduling and production problems, among others), it has been recognized 

that there is no algorithm considered as the best approach to solve all type of problems 

[Raidl (2006), Talbi (2009), Blum et al. (2011)]. This assertion is also stated in [Wolpert and 

Macready (1997)] supported by the “no free lunch” theorem meaning that if an algorithm 

performs well on one set of problems then it will perform poorly (worse than random 

search) on others [Montgomery (2002)]. Consequently, in the last years a new paradigm of 

algorithms combining components of two or more metaheuristics has arisen. These 

algorithms, named hybrid metaheuristics (HMH), attempt to combine advantageous 

characteristics of each metaheuristic to obtain a more efficient and effective algorithm for 

the resolution of the problem at hand. As referred above, in HMH the focus is on the 

characteristics of the problem, and consequently the choice of metaheuristics to hybridize is 

extremely dependent on the nature of the problem. 

Several classifications of HMH have appeared in the literature, either due to the proposal of 

new HMHs or the different perspectives concerning how to combine the metaheuristics 

operational components [Talbi (2002), El-Abd and Kamel (2005), Raidl (2006), Talbi (2009), 

Blum et al. (2010)]. In the classification proposed by Raidl (2006) different categories are 

considered, taking into account the type of algorithms being hybridized, the level at which 

the different algorithms are combined (whether the identity of an algorithm is preserved or 

not), order of execution (if it is sequential, interleaved or parallel), and the control strategy 

(integrative or collaborative). This classification is based on the taxonomy proposed by Talbi 

(2002) also integrating the points-of-view of Cotta (1998) and Blum et al. (2005). Concerning 

the parallelism of HMH, this classification relies on the one proposed by El-Abd and Kamel 

(2005) and Cotta et al. (2005). The subcategories considered with respect to the 
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hybridization of metaheuristics with exact optimization techniques are adapted from 

Puchinger and Raidl (2005). Figure 2.1 shows Raidl’s classification. 

Talbi (2009) proposes other classification for metaheuristics, dividing the metaheuristics in 

four main groups: metaheuristics hybridized with metaheuristics, exact methods, constraint 

programming approaches, and machine learning and data mining techniques. For each 

group, Talbi classifies the metaheuristics as flat (homogeneous/heterogeneous, 

global/partial, general/specialist) or hierarchical (low level versus high level, and relay versus 

teamwork).  

More recently, Blum et al. (2010) classify the HMH in five categories. This classification is 

more restricted than the one proposed by Raidl and it is only based on the type of the 

combined algorithms. The authors consider the hybridization of metaheuristics with (meta-) 

heuristics, constraint programming, tree search methods, problem relaxations, and dynamic 

programming. 

 

2.4. HYBRIDIZATION OF ALGORITHMS WITH SA OR GRASP COMPONENTS 

One of the most popular hybrid algorithms is the combination of a local search method with 

other metaheuristics to intensify the exploitation of high-quality solutions in a specific local 

area and improve the convergence of the algorithm. The genetic local search (also called 

memetic algorithms) is an example of this type of hybridization, in which a local search 

phase is incorporated into an EA [Moscato (1989), Moscato et al. (2004), Hart et al. (2005), 

Neri et al.(2011)]. In MOOPs, the aim is to obtain a set of non-dominated solutions as near as 

possible to the Pareto-optimal front preserving the diversity of the population. However, the 

use of local search can introduce further complications for achieving diversity in the 

population, and therefore a convenient balance between local search and the evolutionary 

process must be achieved [Knowles and Corne (2005), Krasnogor and Smith (2005), Nguyen 

et al. (2007)].  A particular study about the balance between genetic search and local search 

in memetic algorithms applied to multi-objective permutation flowshop scheduling is done 

in [Ishibuchi et al. (2003)]. Despite the large number of works using metaheuristics in MOOP, 

few multi-objective memetic algorithms are described in the literature until 2005: A multi-

objective genetic local search (MOGLS) is proposed in [Ishibuchi and Murata (1996, 1998)]; 

in Knowles and Corne (2000) the memetic Pareto archived evolution strategy 

(M-PAES) is presented and [Jaszkiewicz (2002, 2002a, 2004)] proposes a random directions 

MOGLS and the Pareto memetic algorithm. A review about these and other works is done in 
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[Knowles and Corne (2005)]. Ishibuchi and Yamamoto (2004) present a fuzzy rule selection 

by multi-objective genetic local search algorithms and rule evaluation measures in data 

mining.  

 

Figure 2.1– Classification proposed by Raidl [Raidl (2006)]. 
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More recently memetic algorithms to deal with MOOPs have been proposed and the 

research in this area has been growing significantly: Arroyo and Armentano (2005), Liu et al. 

(2007), Wang and Tai (2007), Wanner et al. (2008), Caponio and Neri (2009), Jaszkiewicz and 

Zielniewicz (2009), Yoshida and Mori (2009), Ishibuchi et al. (2010), Lara et al. (2010), 

Nguyen et al. (2012). Updated surveys are available in [Chen et al. (2011), Zhou et al. (2011), 

Neri and Cotta (2012), Jaszkiewicz et al. (2012)]. 

In this thesis, the focus is on the hybridization of SA, as a local search method, with other 

metaheuristics. SA is one of the most successful metaheuristics used in the intensification 

phase in hybrid population-based metaheuristics [Anghinolfi and Paolucci (2008)]. However, 

this hybridization in the context of MOOP is not as vast as in single-objective optimization 

problems. Some recent works are referred below, most of them combining SA with a GA or 

an EA. Yogeswaran et al. (2007, 2009) propose a HMH using GA and SA to solve machine 

loading problems in flexible manufacturing systems, in which the system unbalance must be 

minimized and the system throughput must be maximized. Hui (2010) joins the advantages 

of SA and GA in a unified algorithm, called ASAGA, to optimize the key component sizes in a 

hydraulic hybrid vehicle. The optimization problem is formulated considering the fuel 

consumption, the braking energy regenerative ability, the driving performance and the 

added price off the hydraulic hybrid vehicle. Despite the conflicting character of these 

objectives, Hui uses a fitness function grouping them for solution evaluation. In the EMOSA 

algorithm an adaptive evolutionary multi-objective approach is combined with SA [Li and 

Landa-Silva (2011)]. EMOSA is an improved version of MOEA/D (multi-objective evolutionary 

algorithm based on decomposition) which employs SA for the optimization of each 

subproblem and adapts the search directions (weighting vectors) to increase the diversity of 

non-dominated solutions. Yannibelli and Amandia (2012) combine a multi-objective SA 

algorithm and a multi-objective evolutionary algorithm to solve a multi-objective project 

scheduling problem. In this problem two conflicting objective functions are considered: to 

minimize the project makespan and to assign the most effective set of human resources to 

each project activity. The multi-objective SA algorithm is integrated into the multi-objective 

evolutionary algorithm to improve the performance of the evolutionary search. 

Martinez-Martin et al. (2012) use and compare three hybrid multi-objective SA algorithms to 

the design of reinforced concrete bridge piers. The different approaches differ in the initial 

temperature and the probability acceptance function to accept worse solutions. The 

neighborhood move considered in both algorithms is based on the mutation operator of 

GAs. The concept of non-dominance is used in the evaluation of solutions. In [Zhang et al. 
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(2013)] a SA technique based multi-objective cultural differential evolutionary algorithm is 

presented to solve a daily hydrothermal operation scheduling with economic emission 

problem. The SA algorithm is incorporated into the cultural computational model. 

Another hybridization of SA usually found in MOOPs consists in its combination with 

components incorporating memory to prevent revisiting solutions. This is achieved using TS 

or some mechanism based on tabu lists. In [Burke et al. (2001)] a HMH is presented for 

solving a space allocation problem with two conflicting criteria: the misuse of the space and 

the penalty for the violation of soft constraints. The HMH is based on hill climbing, SA, tabu 

lists and a mutation operator. A machine loading problem in flexible manufacturing system is 

solved in [Swarnkar and Tiwari (2004)] using a hybrid algorithm based on TS and SA. In this 

approach a short-term memory provided by the tabu list can be used to avoid revisiting the 

solution while preserving the stochastic nature of the SA method. Baños et al. (2007) 

develop another hybrid algorithm, named MOSATS, that combines SA and TS in a population 

based context. MOSATS uses a crowding criterion in the probability acceptance function to 

improve the diversity of the population. This hybrid algorithm is applied for solving a graph 

partitioning problem. In [Cakir et al. (2011)] a MOO of a single-model stochastic assembly 

line balancing problem with parallel stations is presented. Two objective functions are 

considered: the minimization of the smoothness index and the minimization of the design 

cost. The proposed algorithm based on SA, named m_SAA, uses a multinomial probability 

mass function approach to decide about the acceptance of worse solutions and also includes 

a tabu list to prevent revisiting recently searched solutions. 

The SA has been combined also with PSO in [Xia and Wu (2005)] for solving a multi-objective 

flexible job-shop scheduling problem. Three objective functions are considered to minimize: 

the makespan or maximal completion time of machines, the total workload of the machines, 

which represents the total working time of all machines, and the critical machine workload, 

that is the machine with the biggest workload. A weighted sum of these objective functions 

is used in the evaluation of solution. 

Even though, in general, the initial population is generated randomly in EAs, it is known that 

a good quality of initial solutions can improve the convergence of the algorithm. This has 

motivated different approaches to the generation of initial solutions. Some of them are 

based on GRASP construction phase, where solutions are generated in accordance to the 

problem at hand by exploiting its characteristics. This aspect may be particularly important 

in real-world problems where the information about the problem may be used in the initial 

solutions generation. The GRASP algorithm is a multi-start local search approach consisting 
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in two distinct phases that are successively repeated: greedy randomized construction of 

starting solutions and a local search procedure (details about this metaheuristic will be 

presented in Chapter 4). In MOOPs, GRASP is often hybridized with path-relinking to 

introduce a memory structure. GRASP with hybrid path relinking for bi-objective winner 

determination in combinatorial transportation auctions is presented in [Buer and Pankratz 

(2009)]. In this work, a Pareto-based GRASP is introduced with a post-optimization 

procedure that hybridizes truncated path relinking with exact branch-and-bound. Another 

hybrid algorithm combining GRASP with path relinking is proposed in [Alpay (2009)]. In this 

case, the hybrid algorithm is used to address a production sequencing problem for 

mixed-model assembly line in a just-in-time production system. Two objective functions are 

considered: the minimization of setups and the maximization of stability of material usage 

rates. Despite the good performance of GRASP, Alpay refers that the GRASP performs poorly 

with regard to CPU time. Ishida et al. (2009) present the hybridization of GRASP with path 

relinking to create rules that together have good performance for classification. Marti et al. 

(2011) propose different hybridizations of GRASP and path-relinking for multi-objective 

optimization: a bi-objective orienteering problem and a bi-objective path dissimilarity 

problem. In [Kafafy et al. (2011)] a hybrid evolutionary metaheuristics applied on 0/1 

multi-objective knapsack problems is proposed. GRASP combined with data mining 

techniques is used to obtain an initial set of high quality solutions dispersed along the 

Pareto-optimal front and then a greedy randomized path-relinking with local search or 

reproduction operators are applied to improve the quality and to guide the search to explore 

new regions in the search space. An overview about hybridizations of GRASP with 

path-relinking is performed in [Festa and Resende (2013)]. 

GRASP has been also hybridized with other metaheuristics in the resolution of 

single-objective optimization problems [Resende (2008), Festa and Resende (2009c), 

Resende and Ribeiro (2010)]. However, few works with GRASP hybridization in MOOPs have 

been published. Lourenço et al. (2001) propose two hybrid algorithms to solve a bus driver 

scheduling problem: one based on the TS and the other based on genetic algorithms. In both 

approaches, GRASP is used as a procedure within these multi-objective algorithms. In the 

genetic algorithm, GRASP is used to define a new crossover operator called perfect offspring. 

In [Hanoun and Nahavandi (2012)] two objective functions are considered in the resolution 

of a flowshop scheduling problem. A greedy heuristic and SA are used, but a hierarchical 

optimization approach is followed: GRASP is used in the minimization of material waste and 

then SA is used in the minimization of the total tardiness time. 
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Considering that a HMH can also be viewed as an algorithm that not only combines 

components of different metaheuristics but also incorporates some of their characteristics, 

the mGRASP/MH algorithm presented in [Li and Landa-Silva (2009)] can be considered as a 

hybrid algorithm. Li and Landa-Silva present a GRASP approach including elitism, 

cooperation between solutions and weight-vector adaptations to accelerate convergence 

and diversify the search. In the construction phase of GRASP, the algorithm uses not only 

problem-specific greedy information but also the elite solution found in the previous local 

search. 

The hybridized approaches proposed in this thesis consist in a Hybrid Evolutionary Simulated 

Annealing (HESA) algorithm that has been developed in the spirit of a memetic approach, 

combining EvABOR-III (an Evolutionary Algorithm Based on Outranking Relation) with a local 

search method. SA has been used as the local search method to intensify the search of 

solutions belonging to the current best class of merit. The second hybrid approach combines 

GRASP with SA. The underlying idea is to generate better solutions than the ones created 

randomly and explore these solutions using a local search method. The incorporation of 

preferences is also included in these two hybrid algorithms in the local search phase. 
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CHAPTER 3 
 

 

 

 

 

3. EVOLUTIONARY ALGORITHMS BASED ON AN OUTRANKING 

RELATION FOR PREFERENCE INCORPORATION
3
 

In real-world MOOP, the dimension of the search space is usually very large and irregular 

due to the number of objective functions to be evaluated and the non-linear and/or 

combinatorial characteristics of the mathematical model. This may lead to a prohibitive 

computational effort for characterizing the non-dominated front or even obtaining a well 

spread non-dominated solution set. Besides, when the number of conflicting objectives to 

be dealt with increases, the number of non-dominated solutions also increases significantly. 

Despite the success of EAs in dealing with these issues [Coello et al. (2002), Deb (2001)], 

whenever a high number of non-dominated solutions exists the selection operator is usually 

less effective and the selection of solutions to the next generations becomes practically 

random thus slowing the evolutionary process [di Pierro et al. (2007), Garza-Fabre et al. 

(2009), Deb et al. (2010)]. This further complicates the practical exploitation of results in 

real-world problems when a solution (or a small set of solutions for further screening) must 

be chosen, due to the large number of solutions in the non-dominated front that generally 

occurs. 

The difficult characteristics of most real-world MOOPs and the associated issues mentioned 

above require methodological tools to improve the efficiency and the efficacy of the solution 

search methods. The incorporation of preferences is one of the most used approaches to 

improve these aspects. The incorporation of preferences in EAs aimed at providing decision 

                                                 
3
 This chapter is partially based on [Oliveira E, Antunes C H, Gomes A. A comparative study of different 

approaches using an outranking relation in a multi-objective evolutionary algorithm. Computers & 
Operations Research 2013; 40 (6): 1602–1615] and [Oliveira E, Antunes C H, Gomes A. Incorporation 
of preferences in an evolutionary algorithm using an outranking relation - the EvABOR approach, 
International Journal of Natural Computing Research 2011; 2 (1), 63–85]. 
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support in real-world problems presents two main advantages: it contributes to reducing the 

computational effort by focusing the search on regions of the search space that appear more 

interesting according to the preferences elicited from a DM, and it reduces the cognitive 

effort imposed on the DM by offering him/her solutions more in accordance with those 

expressed preferences and therefore displaying, in principle, more satisfactory trade-offs 

between the competing objectives [Branke and Deb (2004), Coello (2000)]. As a result, the 

overall efficiency of the algorithm is increased, as well as the effectiveness of the decision 

support process, since the search process has been guided towards a final non-dominated 

solution (or a reduced set of the most preferred solutions) according to meaningful 

preference expression mechanisms having in mind a practical implementation. 

An EA, which incorporates and makes the preferences elicited from a DM operational during 

the search process, by means of the technical parameters of the ELECTRE TRI method, has 

been developed. 

The introduction of the preference expression parameters used in the ELECTRE TRI method 

has revealed to be suitable both from the point of view of meaningfulness of preference 

elicitation and its use in the operational framework of an EA. The different versions of the EA 

developed (called EvABOR, Evolutionary Algorithm Based on an Outranking Relation) include 

features of the ELECTRE TRI method to guide the search according to the preference 

information expressed and use an outranking relation and the concept of classes of merit to 

generate the population for the next generation. Preferences are herein represented by 

means of technical parameters: weights, indifference, preference and veto thresholds, a set 

of references profiles and a cutting level (which may be perceived as the level of exigency of 

the classification). The weights reflect the true importance of each objective function (its 

“voting power”) and are not scaling coefficients to achieve some aggregate value. The veto 

threshold enables to preclude situations often arising in real-world problems in which full 

compensation between the objective function values is undesirable or even unacceptable. 

The indifference and preference thresholds enable to introduce a gradual preference 

relation. The reference profiles define the classes of merit in which the solutions are 

classified, as explained in the next section, and the aim of the EvABOR approaches is to 

obtain solutions belonging to the best class of merit as much as possible. 
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3.1. THE ELECTRE TRI METHOD 

 
The ELECTRE (ELimination Et Choix Traduisant la REalité) family of multi-criteria methods 

developed by Roy and his co-workers [Roy (1996)] is based on the construction and the 

exploitation of an outranking relation. The term outranking in this context means “is at least 

as good as” or “not worse than” [Roy (1991)]. The ELECTRE methods may be classified 

according to the type of the problem each one deals with: choice, sorting and ranking. The 

choice problem refers to the identification of the best alternative (solution) or a limited 

subset of the best alternatives (since incomparability is allowed). The ranking problem deals 

with the establishment of a partial or complete pre-order of the alternatives from the best 

to the worst one. The sorting problem consists in assigning each alternative to predefined 

ordered categories (classes of merit). The major difference between these formulations 

concerns the judgment of the alternatives [Mousseau et al. (2000), Zopounidis and Doumpos 

(2002)]. The choice and ranking approaches are based on relative judgments and 

consequently the evaluation depends entirely on the set of alternatives considered. The 

sorting approach considers an absolute judgment, in the sense that the pair-wise 

comparisons are made between the alternative to sort and a set of alternatives defined by 

the DM named reference profiles. This presents two important advantages. Firstly, since the 

number of reference profiles is in general much lower than the number of alternatives, 

significantly fewer comparisons must be done. The second issue is concerned with the 

quality of the alternatives. In the ranking problem the set of alternatives is partially or 

completely ordered; however, the quality of all alternatives may not be good enough 

according to the preferences elicited. A similar situation may arise in the choice problem if 

the set of alternatives does not comply with the DM’s preferences; the “best” alternative 

will be chosen, but it could not be a good enough alternative according to the preferences 

expressed.  

To guarantee the quality of solutions and reduce the number of pair-wise comparisons, the 

ELECTRE TRI method has been chosen to incorporate the preferences in the evolutionary 

process. Since ELECTRE TRI deals with the sorting problem, the comparisons are made 

between the alternatives and the reference profiles. Consequently a measure of the quality 

of the solutions is provided, which is given by the class of merit each solution is assigned to 

(a solution belonging to the best class of merit is preferred). Each category, ��, i = 1,…, n, is 

limited by two reference alternatives (profiles), ��� and ��, i = 1,…, n, defined for each 

criterion (objective function in the EA context) ��, j = 1,…, m (Figure 3.1). We assume, 
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without any loss of generality, that �
 is the best category and �� the worst category. An 

alternative �� that verifies ���
 < ��(��) < �� for all criteria �� is assigned to the category ��. 

However, in real-world problems the conflicting nature of the criteria leads generally to 

alternatives with a good performance in some criteria and a bad performance in others. 

Consequently the situation mentioned for alternative �� is rarely obtained and the other 

ELECTRE TRI parameters (thresholds, weights and a cutting-level) provide additional 

information about the preferences and the exigency of the classification. If an alternative �	 

verifies, for example, ���
 <  ��(�	) < ��, for all criteria �� except one, for instance ��, the 

class to which it is going to be assigned depends on the relative importance (weight) of each 

criterion ��, the difference between ��(�	) and the reference profiles that bound the class 

��  and the value of the cutting-level. Some examples about the assignment of a solution to a 

class of merit depending on the values of the ELECTRE TRI parameters can be found in 

Appendix A. 

 

Figure 3.1 - Definition of the classes of merit in ELECTRE TRI. 

For each reference profile defined for each criterion, a set of indifference, preference and 

veto thresholds is required. The aim of indifference �� and preference ��  thresholds is to 

introduce the acceptance of some imprecision when comparing two alternatives by 

considering them as indifferent if their individual performances in each criterion �� differ 

less than ��. The transition from indifference to preference changes gradually in a linear 

manner from �� to ��  (Figure 3.2). This acceptance is translated by the criterion concordance 

indexes �� and is evaluated for each criterion (Equation 3.1). The veto thresholds �� prevent 

an alternative having a good performance in one or more criteria but having a very bad 

performance in another criterion to be assigned to the best category, or they force this 

alternative to be assigned to a low preference category independently of having very good 

performance in all other criteria, thus allowing for the introduction of some 

non-compensatory aspects in the decision. The transition from ��  to �� changes also in a 

linear manner. 
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Figure 3.2 - Computation of criterion concordance index cj. 

 ��(�, ��) = ���  !,��" #$, %�(�)%�&��'()�
)�*�

+, (3.1) 

Other parameter of ELECTRE TRI is the weight -� associated to each criterion. The weights in 

ELECTRE TRI are scale-independent; that is, they are not linked to the scales in which each 

criterion is measured. In this framework the weights are not technical devices for translating 

the performances in the criteria into a common value measure (as in value-based 

approaches) but weights play the role of true importance coefficients (the voting power) of 

each criterion. 

The level of exigency (the majority requirement of criterion “coalitions”) to enforce the 

assignment of a given alternative to a category is stated by a real value, the cutting-level λ, 

defined in the interval [0.5,1]. 

In ELECTRE TRI the evaluation is done in two main phases: the building of a fuzzy outranking 

relation S and the exploitation of this relation with the purpose of assigning the solutions to 

the classes of merit. The outranking relation S validates or invalidates the assertion aS�� 

meaning “a is at least as good as ��” as referred before. Four main stages may be 

distinguished in establishing the outranking relation S, which are associated with the 

evaluation of:  

1. Criterion concordance indexes ��(�, ��); 

2. Global concordance indexes � .�,�/0; 

3. Criterion discordance indexes 1�(�, ��); 

4. Credibility degree σ(a, ��); 

The assertion aS�� is stated based on the concordance and the discordance principles. The 

concordance principle determines if there are sufficiently strong reasons to confirm this 

assertion and the discordance principle states if there are no impeditive reasons to 

contradict it. The concordance principle is evaluated using the criterion concordance indexes 

(Equation 3.1) indicating how much each criterion agrees with the assertion aS�� and the 

global concordance indexes (Equation 3.2) quantifying the relative importance of the 

0

1

cj (a,bi)

qj gj (b
i)-gj (a)

pj
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coalitions of criteria that are in favor of the previous assertion. The discordance principle is 

evaluated based on the criterion discordance indexes (Equation 3.3). 

 2(�, ��) =
3 4�

�
�5! .��&�,��'

3 4�
�
�5!

 (3.2) 

 7�(�, ��) = ���  !,��" #$, %�&��'%�(�))�
8�)�

+, (3.3) 

 

The last step of the ELECTRE TRI method consists in the assignment of each alternative to a 

class of merit. An assertion aS�� is considered to be valid if the value of the credibility 

degree σ(a,��) is greater than the cutting-level λ. The credibility degree is given by  

 σ(�, ��) = 2(�,��)∏ !7�&�,��'
!2&�,��'�∈;  (3.4) 

where F is the subset of the criteria for which the discordance index (Equation 3.3) is larger 

than the global concordance index � .�,�/0. 

Two assignment procedures (optimistic and pessimistic) may be adopted in the ELECTRE TRI 

method. In approaches proposed in this thesis the pessimistic procedure is applied so an 

alternative is assigned to the highest class of merit ��  for which the alternative outranks the 

lower bound reference profile of this class.  

The ELECTRE TRI method requires a significant set of parameters that embodies the DM’s 

preferences. These parameters must be elicited from DMs preferably via an analyst with 

expertise in this methodology. In the context of a real-world problem, some parameters may 

be predetermined according to the experience associated with previous studies. For 

instance, indifference and preference thresholds can be fixed as percentages (say 2% and 

10%, respectively) of the value ranges in each class. 

For further operational details about the ELECTRE TRI method see Mousseau et al. (2000). 

 

3.2. THE EVABOR APPROACHES 

 

In the Evolutionary Algorithm Based on an Outranking Relation (EvABOR) approaches the 

DM’s preferences are captured and incorporated into the EA using the outranking relation in 

the same spirit as in the ELECTRE TRI method. The main structure of EvABOR is the usual 

structure of an EA, including the crossover and the mutation operators followed by the 

selection of the individuals of the next generation (Figure 3.3). The DM’s preferences 

captured by the ELECTRE TRI parameters are incorporated in all the genetic operators 
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(crossover, mutation and selection) in order to guide the search to a region of the space in 

which solutions more in accordance with those preferences are located. 

 

Figure 3.3 – Flowchart of the EvABOR approaches. 

Three distinct EvABOR approaches have been developed. The main differences between 

these approaches lie on the selection of the individuals (from the progenitors and offspring 

set) that go to the next generation. EvABOR-I uses the outranking relation only, and 

consequently the ordered classes of merit, to select the solutions (dominated and 

non-dominated) to be carried to the next generation. In the other two approaches a 

symbiosis between the outranking and the non-dominance relations is used. EvABOR-II uses 

the ordered classes of merit considering only the non-dominated solutions in each class, 

whereas EvABOR-III uses the ordered classes of merit after a non-dominance test is applied 

to the whole population. This means that in EvABOR-II the priority is given to the outranking 

relation and in EvABOR-III it is given to the non-dominance relation in the selection of the 

next generation. 

In all approaches it is possible to define a level of intra-class elitism, in the sense of favoring 

each objective function, by means of the specification of a real parameter β∈]0,1]. When 

there are more individuals in a class than the necessary to complete the next generation, a 

percentage of the best solutions for each objective function is chosen. This percentage is 

proportional to the weight (the importance) of each objective function. A value of β=0 
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means that no intra-class elitism is applied.  At the end of the evolutionary process, if it is 

necessary, the non-dominance relation is used to obtain the set of non-dominated solutions 

in the region of interest. 

 

3.2.1. CROSSOVER OPERATOR 
 

In EvABOR approaches, the idea underlying the crossover operator is that parents that 

better fulfill the DM’s preferences are more likely to be chosen to produce offspring with 

characteristics similar to parents. Consequently, a solution belonging to the best class of 

merit has a higher probability of being selected as a parent. Parent individuals are selected 

using a binary tournament procedure similar to the one in NGSA-II [Deb et al. (2002)] but the 

outranking relation replaces the non-dominance relation. The binary tournament has the 

advantage that all solutions participate in the competition to obtain the parents. When two 

solutions compete to be one of the parents, the one that belongs to the best class of merit is 

chosen. If both solutions belong to the same class of merit then the one having the best 

performance in most objective functions is selected (Figure 3.4). The crossover operator is 

applied according to the crossover probability and a 2-point crossover has been 

implemented to obtain the offspring set.  

p_1 = permutation of the population 

p_2 = other permutation of the population 

dim_pop = dimension of the population 

for i =1 to dim_pop 

    if class of  (p_1(i)) > class of  (p_2(i)) 

       parent_1 = p_1(i) 

    elseif class of  (p_1(i)) < class of  (p_2(i)) 

       parent_1 = p_2(i) 

    else choose the solution that has better values for more 

objective functions 

    end 

end 

Figure 3.4 – Pseudo-code to choose one of the parents for the crossover operator in EvABOR 

approaches. 

  

3.2.2. MUTATION OPERATOR  

The mutation operator is applied, according to the mutation probability, to favor the 

diversity of the population. To achieve this aim more effectively, several mutation operators 

are implemented being this mutation operator portfolio strongly dependent on the physical 
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characteristics of the problem to be tackled. The choice of one of these operators is based 

on the criterion discordance indexes (Equation 3.3). These values provide information about 

which objective function has the worst performance according to the DM’s preferences, and 

consequently it is possible to select a more adequate mutation operator attempting to 

improve the objective function with the worst performance. That is, mutation operators that 

are likely to improve this objective function have a greater probability of being chosen 

(although the process remains essentially a random one). As criterion discordance indexes 

are evaluated using the reference profiles as well as the preference and veto thresholds 

elicited from the DM, the choice of the mutation operator is indeed guided by the DM’s 

preferences. It is important to emphasize that this approach is essentially useful when 

dealing with real-world problems in which the mutation operators can be assigned a physical 

meaning. 

 

3.2.3. SELECTION OF THE NEXT GENERATION  

The main differences between the three versions of the EvABOR algorithm are in the 

selection of the individuals that pass to the next generation. In EvABOR-I only the outranking 

relation is used to select those individuals. In EvABOR-II and III a symbiosis between the 

non-dominance relation and the outranking relation is considered (Figure 3.5). 

In EvABOR-I parents and offspring are sorted into classes of merit using the ELECTRE TRI 

method. The solutions belonging to the best class of merit pass to the next generation. If this 

number of solutions is not sufficient to complete the next generation, the solutions 

belonging to the next class of merit pass to the next generation. This process is repeated 

until the next generation is completed or a class has more solutions than is necessary to 

complete the next generation. When this situation occurs, the necessary number of 

solutions is randomly selected from the respective class or using an elitist process depending 

of the value of an EvABOR parameter β ∈[0,1], which regulates the degree of intra-class 

elitism.  

The zero value means that the solutions are chosen randomly from the respective class. If 

β =1 an intra-class elitist process based on the weight of the objective functions is applied. 

The number of solutions chosen is proportional to the weight of each objective function. For 

example, for three objective functions f1, f2 and f3 with weights 0.45, 0.30 and 0.25, 

respectively, EvABOR chooses 45% of the best solutions according to objective function f1, 

30% of the best solutions according to objective function f2, and 25% of the best solutions 
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according to objective function f3. The aim is to favor the objective function with higher 

weight (importance) according to the preferences elicited. A value of β∈]0,1[ means that 

(1-β).NS solutions are randomly chosen and β.NS are chosen from the ones that have the 

best values for each objective function (always proportionally to the weight of each 

objective function). NS denotes the necessary number of solutions to complete the next 

generation. 

In EvABOR-II, the selection of the next generation is similar to the one described for 

EvABOR-I, but only the non-dominated solutions of each class of merit are selected to pass 

to the next generation. The non-dominated solutions are selected beginning from the best 

class of merit until the next generation is completed. If the last class used has more 

non-dominated solutions than necessary, the solutions are picked randomly or in an elitist 

manner depending of the value of β, as described before. 

 
 

 

(a) (b) (c) 

Figure 3.5 – Selection of the next generation in: (a) EvABOR-I; (b) EvABOR-II and (c) EvABOR-III. 

In this second approach, dominated solutions can be included in the next generation 

because the non-dominated solutions picked from different class of merit may display 

dominance between them. In EvABOR-II the dimension of the population can be variable if 

the total number of non-dominated solutions in all classes is inferior to the initial dimension 

of the population. 

Contrarily to the other two approaches in which priority is given to the outranking relation, 

the selection in EvABOR-III gives priority to the non-dominance relation but enriches it with 

…

Sort the  population into 

classes of merit

Select the next generation 

using the classes of merit

…

…

Sort the  population into 

classes of merit

Select the non-dominated

solutions from each class of 

merit until completing the 

next generation

…

…

Obtain the non-dominated solutions 

from the population

• If #(ND) > #(initial population)

Then

Sort and select the solutions 

using the classes of merit

…

• If #(ND) < #(initial population)

Then

Next generation:=ND

Sort and select the remaining

solutions using the classes of merit

• If #(ND) = #(initial population)

Then

Next generation:=ND



 27 

the outranking relation. Initially, the set of non-dominated solutions is selected from the 

population (parents and offspring). The next procedure depends on the number of 

non-dominated solutions in the population: 

• If the number of non-dominated solutions is greater than the dimension of the 

population then the non-dominated solutions are sorted into classes of merit using 

the outranking relation, and the process to select the solutions passing to the next 

generation is the same as described above in EvABOR-I (but non-dominated 

solutions only are considered). A scheme illustrating this approach is presented in 

Figure 3.6. 

• If the number of non-dominated solutions is inferior to the dimension of the 

population then all non-dominated solutions pass to the next generation and the 

remaining solutions (dominated solutions) in the population are sorted into classes 

of merit using the outranking relation. The next generation is completed by selecting 

the dominated solutions from the best classes of merit using the process described 

for the other versions of EvABOR. 

• Finally, if the number of non-dominated solutions is equal to the dimension of the 

population then the next generation consists of these solutions. 

 

Figure 3.6 – Scheme of selection of the next generation from non-dominated solutions in EvABOR-III.  

Parents Offspring

Sort into classes of merit

Class 
n

Class 
n-1

Class 
n-2

Class 
1

…

Next Generation

Random or elitist choice 
(depending on the β value)

Non-dominance relation

Non-dominated solutions



28 

The structure of EvABOR approaches is modular, which means that the algorithms are 

prepared to use other type of multi-criteria approaches to replace (or to complement) the 

method used in this work. In these circumstances, operators that use ELECTRE TRI may be 

replaced. For instance, the function that selects the parents to the crossover, the function 

that identifies the mutation operator within the portfolio and the one that determines the 

individuals that pass to the next generation may be replaced. 

In each generation the outranking relation is assessed using the performances of each 

individual according to each objective function and the corresponding values of each 

reference profile. Consequently, for a population of m individuals, r reference profiles and k 

objective functions the computational effort of the outranking relation involves m.r.k 

comparison operations. It is important to note that r and k values are, in general, low. One 

advantage of ELECTRE TRI over other techniques is the lower number of pairwise 

comparisons required, since these are made between each individual and the reference 

profiles rather than between all individuals. 

 

3.3. A REACTIVE POWER COMPENSATION PROBLEM 

3.3.1. THE CASE STUDY 

Reactive power compensation is a relevant problem in electrical distribution systems to 

guarantee an efficient delivery of active power to loads also contributing to releasing system 

capacity, reducing system losses and improving system power factor and bus voltage profile. 

A reactive power compensation problem involves determining the size and location of 

capacitors (local sources of reactive power) in nodes of the electrical distribution network 

[Antunes et al. (2009)]. 

Mathematical programming techniques have been proposed to deal with this problem 

generally requiring some less practical assumptions about the network characteristics in 

order to facilitate computational manageability due to the intrinsic combinatorial nature of 

the reactive power compensation problem [Iba et al. (1988), Delfanti et al. (2000)]. Since 

different types of capacitors can be installed in different network nodes, a very large number 

of potential solutions must be evaluated in general. This led to the use of metaheuristic 

approaches to compute solutions in the Pareto-optimal front. Tabu Search, Simulated 

Annealing, Ant Colony Optimization, Particle Swarm Optimization, and Evolutionary/Genetic 

Algorithms have been used to tackle this problem, considering single and multi-objective 
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models [Zhang et al. (2007)]. In this thesis, the results obtained with EvABOR approaches are 

presented and analyzed. Having in mind a practical implementation, the incorporation of 

preferences elicited from a DM in the EA may be an attractive approach to guide the search 

to regions more in accordance with preferences elicited.  

The merit of potential solutions to this problem must be assessed using operational, 

economical and quality of service aspects. Therefore, multiple objective programming 

models have been used to provide decision support in this problem considering 

incommensurate and conflicting objective functions to be optimized [Zhang et al. (2007)].  In 

this work the minimization of resistive losses, capacitor installation cost and maximum 

deviation to the nominal voltage at each network node have been considered. The 

integer-valued decision (control) variables indicate the type of capacitor, characterized by a 

capacity value and a cost, to be installed in each network node. The real-valued decision 

variables refer to the active and reactive power as well as voltage at each network node. 

Constraints are related to requirements of acceptable node voltage profile (quality of 

service), power flow (physical laws in electric networks), and impossibility of capacitor 

location at certain nodes (technical restrictions). For further technical details on the 

multi-objective mathematical model and the power flow algorithm see Antunes et al. (2009) 

and Pires et al. (2012) where a mathematical model considering only two objective functions 

(cost and resistive power losses) has been developed. 

The network used as a case study is an actual Portuguese radial electrical distribution 

network with 94 nodes (Figure 3.7). The node zero is the sub-station and other nodes 

indicate the load demand points or derivations for lateral buses, in which capacitors may be 

installed. This network has some challenging features due to its extension in a rural region 

and a poor voltage profile. The study is done for peak load conditions, in which the active 

power losses are 320.44 kW and the number of nodes not respecting the voltage lower 

bounds is 66 in 94 nodes (the node’s voltage magnitude must be within ±10% of the nominal 

value). That is, the network is not working according to regulations in peak load conditions 

and therefore capacitors must be installed for reactive power compensation and voltage 

profile improving purposes. This means that the zero cost solution is not feasible. The 

solutions obtained must be practicable, so the number of capacitors to be installed has been 

limited (in this case, the maximum number of capacitors that can be installed is 20). 

Eight types of capacitors are considered (Table 3.1) for possible installation with capacities in 

the range of 50 to 400 kVAr and cost in the range of 2035€ to 9395€ (taken from a catalog of 

an electric equipment supplier). 
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Figure 3.7 – Actual electrical distribution network used. 

 

 Maximum Capacity (kVAr) Cost (Euro) 

C1 50 2035 
C2 100 2903 
C3 140 4545 
C4 200 4875 
C5 240 5716 
C6 300 6578 
C7 360 7337 
C8 400 9395 

Table 3.1 – Capacitor dimension and acquisition cost. 

 

3.3.2. IMPLEMENTATION DETAILS 

A solution (compensation scheme) to this problem is encoded as an array of integers with 

each element associated with a network node (Figure 3.8). A “0” means that no capacitor is 

installed in the corresponding node and an integer value refers to the type of the capacitors 

therein installed (8 different types of capacitors in this case). 

94 nodes 

 

0 5 0 … 7 0 0 

Figure 3.8 – Solution encoding. 
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Initially a random population is generated retaining just the feasible individuals (solutions 

that satisfy the voltage lower bound requirements at the nodes). During the evolutionary 

process a power flow algorithm computes active and reactive power, as well as the voltage, 

at each network node resulting from a given compensation solution associated with a 

location and size of capacitors.  

At each iteration parents are selected using a tournament technique. Other selection 

techniques, such as roulette wheel, were tested, but with worse overall results. A 2-point 

crossover operator (Figure 3.9) is applied. 

 

Solution A      

0 0 2 7 0 5 ... 0 3 0 1 0 0 

                           

Solution B 

0 0 3 4 5 7 ... 0 0 1 0 3 0 

 

Offspring 

0 0 2 7 5 7 ... 0 0 1 1 0 0 

Figure 3.9 – Example of the crossover operator. 

Six types of mutation operators have been implemented specifically for this problem (in the 

sense that a physical meaning in the electrical network can be associated with each of them, 

thus also conveying information about the actual problem): 

1. Reducing the capacity of a capacitor previously installed in a given node to the 

immediately lower size (Figure 3.10 (a)); 

2. Increasing the capacity of capacitor previously installed in a given node to the 

immediately upper size (Figure 3.10 (b)); 

3. Removing the capacitor previously installed in a given node (Figure 3.10 (c)); 

4. Installing a new capacitor in an uncompensated node (Figure 3.10 (d)); 

5. Relocating the capacitor previously installed in a given node to an adjacent node 

(Figure 3.10 (e) and (f)). 

As referred to in Section 3.2.2, one of these mutation operators is chosen according to the 

values of the criterion discordance indexes. The operators that have more probability of 

improving the worst objective function according to the preferences elicited have more 

probability of being chosen. However, it is important to note that the process remains 
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mostly random because some of these operators determine the sense of variation of some 

objective functions but other operators do not have the same behavior. For instance, when 

the size of a capacitor is increased or the number of capacitors in the network is increased 

the cost objective function will be degraded, but it is not possible to guarantee that the 

losses objective function improve (because this depends on several characteristics of the 

network and on the capacitors already installed). 
 

0 3 0 0 … 5 0 2 0 0  0 2 0 0 … 5 0 2 0 0 

(a) 
 

0 7 0 0 … 1 0 2 0 0  0 7 0 0 … 2 0 2 0 0 

(b) 
 

0 6 0 0 … 4 0 1 0 0  0 0 0 0 … 4 0 1 0 0 

(c) 
 

0 3 0 0 … 1 0 2 0 0  0 3 1 0 … 1 0 2 0 0 

(d) 

 
0 3 0 0 … 1 0 2 0 0  0 0 3 0 … 1 0 2 0 0 

(e) 
 

0 3 0 0 … 1 0 2 0 0  0 3 0 0 … 1 2 0 0 0 

(f) 

Figure 3.10 - Examples of the mutation operators. 

After the crossover and the mutation operators are applied, the selection of the solutions for 

the next generation is done according to the version of EvABOR to be applied. 

The unfeasible solutions that may arise during the search process are discarded from the 

population. Repairing procedures have been tested but they revealed too expensive 

computationally. 

 

3.3.3. ANALYSIS OF RESULTS  

Solutions to the reactive power compensation problem described in the previous section 

have been computed using the EvABOR approaches as well as an EA with the ELECTRE TRI 

method applied a posteriori. 

A comparison between the three EvABOR approaches has been done with the aim of 

discovering which is more effective to find a set of solutions more in accordance with the 
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preferences elicited from a DM. These solutions are also compared with a set of 

 non-dominated solutions obtained using the EA with preferences elicited a posteriori. 

The behavior of EvABOR approaches using different values of the intra-class elitist 

parameter β is analyzed as well as some results related to the crossover operator. Some 

illustrative examples are also presented to clarify how ELECTRE TRI parameters affect the 

evolutionary process, and their influence on the classification of the obtained solutions. 

The algorithms have been tested using different parameters for the EA. After a preliminary 

tuning phase, the crossover probability is set equal to 1 and the mutation probability equal 

to 0.2. 

THE INTRA-CLASS ELITIST BEHAVIOR ON EVABOR APPROACHES 

The β parameter controls the level of intra-class elitism of EvABOR approaches when 

solutions are chosen within the same class of merit. If the value of β is 0 this means that 

solutions are randomly picked from the different classes. The increase of this value also 

increases the intra-class elitism of EvABOR approaches. From the computational 

experiments carried out it is possible to infer that values of β near or equal to 1 lead to a sort 

of speciation process in which niches of solutions are created, located near the areas of the 

search space where the objective functions attain their individual optima, slowing the 

evolutionary process. 

In EvABOR-I this effect is visible observing the evolution of the front along the evolutionary 

process (Figure 3.11 (a)-(c)). This excessive intra-class elitist pressure, β=1, causes a loss of 

solution diversity as well as premature convergence. The niche effect also arises in the other 

two EvABOR approaches when considering β=1. However, for the same maximum number of 

iterations this effect tends to disappear in EvABOR-II and III (Figure 3.12). 

To understand the different behavior of EvABOR approaches concerning the intra-class elitist 

pressure, an analysis characterizing the population during the evolutionary process has been 

done. The number of non-dominated solutions and the number of remaining solutions in the 

population from one generation to the next during the evolutionary process are analyzed for 

different values of β. 
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(a) 

 

(b) 

 

 

(c) 

Figure 3.11 – Examples of non-dominated solutions obtained with β=1 using EvABOR-I. 

 (a) Iteration 50; (b) Iteration 100; (c) Iteration 200. 
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(a) (b) 

Figure 3.12 – Results using EvABOR-III when β=1: (a) 100 iterations; (b) 200 iterations. 

From this analysis it is possible to conclude that when β=1 a high number of solutions 

remains in the population from one generation to the next and the algorithm has more 

difficulty in producing new solutions to improve the convergence to obtain solutions 

belonging to the best class of merit (Figure 3.13). For β=0 that number is lower when 

compared with β=1, which indicates the algorithm’s capability to generate more new 

solutions increasing the convergence to the region of the search space more in accordance 

with the DM’s preferences (Figure 3.14). To illustrate and compare these situations, the 

evolution of the population during the evolutionary process is presented for EvABOR-I and III 

in Figure 3.13 and Figure 3.14. 

In conclusion, values of β equal or near 1 do not favor the population diversity and the 

convergence of the algorithm due to the excessive intra-class elitist pressure. Some more 

examples are presented in [Oliveira and Antunes (2010a)] and also in a section below where 

a detailed study of EvABOR-III is done. 

 

Stop Conditions 

Another interesting aspect unveiled is the fact that the number of solutions remaining in the 

population increases with the increase of the number of solutions belonging to the best class 

of merit. This aspect is particularly clear in EvABOR-III when β=0 since the number of 

solutions remaining in the population is not very high and the evolution of solutions in the 

classes of merit occurs faster than in the other approaches. The comparison of Figure 3.14 

(b) and Figure 3.15 enables confirming this effect. Note the increasing number of solutions 

that remain in the population after iteration 70, when more solutions belong to the best 

class of merit. 
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(a) 

 

(b) 

Figure 3.13 – Evolution of the population during the evolutionary process with β=1 using:  

(a) EvABOR-I; (b) EvABOR-III. 
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(a) 

 

(b) 

Figure 3.14 – Evolution of the population during the evolutionary process with β=0 using: 

(a) EvABOR-I; (b) EvABOR-III. 
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Figure 3.15 – Evolution of the population by classes of merit (β=0) using EvABOR-III. 

Expanding the previous comparison to 200 iterations it is possible to conclude that when the 

entire population belongs to the best class of merit about 90% of the solutions remain in the 

population in consecutive generations (Figure 3.16). This fact shows some stability in the 

population. Consequently, the EvABOR algorithms stop when the maximum number of 

iterations is attained or all solutions in the population belong to the best class of merit. 

Comparison of EvABOR Approches  

The comparison between the different EvABOR approaches has been done with the aim of 

discovering which one is more effective to find a set of solutions more in accordance with 

the preferences elicited from a DM (solutions belonging to the best class of merit). To 

compare the three EvABOR approaches some distinct instances of the reactive power 

compensation problem were created for testing the algorithms. Each one may be 

interpreted as representing a different level of exigency imposed by the DM. Three of these 

instances are presented in this section and used to compare the versions of the EvABOR 

algorithm. The three different instances will be also useful to introduce the influence of 

some ELECTRE TRI parameters in the EA. 

The dimension of the initial population is 100 for all the results herein presented, but other 

values have been considered with similar results concerning the comparison of the EvABOR 

approaches. As referred previously, the algorithms stop when the maximum number of 

iterations is attained or all solutions in the population belong to the best class of merit.  
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(a) 

 

 

(b) 

Figure 3.16 - Evolution of the classes (a) and type of solutions (b) during the evolutionary process. 

As seen before, the parameter β controls the intra-class elitism of EvABOR approaches. With 

the exception of values of β near or equal to 1, in which the selective pressure is high, the 

effect of this parameter in the different EvABOR approaches is similar. In this section, to 

illustrate the performance of each EvABOR version the results presented have been 

obtained considering β=0. 

The different approaches have been compared according to the number of solutions in the 

non-dominated front obtained, the classes of merit in this front, the percentage of  

non-dominated solutions belonging to each class, the number of iterations necessary to 

achieve all solutions belonging to the best class of merit, and the percentage of runs in 

which this latter situation occurs. The results presented are an average of 30 runs of each 

EvABOR approach. 
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In the first instance the ELECTRE TRI parameters used are the ones presented in Table 3.2. 

This instance is not very exigent in terms of technical parameters; however, the values 

considered herein allow us to analyze and compare the performance of the three EvABOR 

versions. 

Table 3.3 shows the results obtained with this set of parameters for a maximum of 100 and 

200 iterations. For both cases EvABOR-III has found the largest non-dominated front. This is 

justified by the challenging characteristics of this problem, namely related with the very 

large number of non-dominated solutions in the search space (due to the interplay between 

the size and location of the capacitors and its influence on cost, losses and maximum voltage 

deviation objective functions) and the way the EvABOR-III is able to deal with them. As 

EvABOR-III filters the non-dominated solutions followed by the intervention of the 

outranking relation, the number of non-dominated solutions tends to increase quickly and, 

in general, from early iterations all the solutions in the population are non-dominated. This 

can be verified in Figure 3.17, where the number of non-dominated solutions during the EA 

is presented as well as the number of solutions (dominated and non-dominated) that are 

preserved in the next generation (as a way to assess the performance of the algorithm to 

generate new solutions). 

 

 Resistive 

Losses 

(kW) 

Cost 

(€) 

Maximum Voltage 

Deviation 

(p.u.) 

Reference Profiles 

240 

260 

290 

320 

38000 

60000 

85000 

100000 

0.01 

0.03 

0.065 

0.09 

Th
re

sh
o

ld
s Indifference 5 8000 0.005 

Preference 10 15000 0.01 

Veto 30 40000 0.08 

Weights 100/3 100/3 100/3 

λ 0.5 

Table 3.2 - ELECTRE TRI parameters considered in the first instance. 
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 Maximum Number of Iterations = 100 Maximum Number of Iterations = 200 

EvABOR-I EvABOR-II EvABOR-III EvABOR-I EvABOR-II EvABOR-III 

Dimension of the  
non-dominated front  

53.4 98 100 59.8 99.8 100 

Classes in the  
non-dominated front 

4 and 5 4 and 5 4 and 5 4 and 5 4 and 5 5 

% of non-dominated 
solutions in the best class 

2.99% 31.63% 85.7% 0.17% 80.06% 100% 

% of runs with the best 
class only in the front 

5% 0% 60% 0% 60% 100% 

Number of iterations 
executed 

99.95 100 93.4 200 164 94.1 

Table 3.3 – Average values from 30 runs for the first instance. 

 

Figure 3.17 – Analysis of the type of solutions during the evolutionary process in EvABOR-III. 

A similar analysis has been done to EvABOR-II and EvABOR-III to characterize the population 

during the evolutionary process. As shown in Figure 3.18 the number of non-dominated 

solutions presented in each generation of EvABOR-I is much lower than in EvABOR-III (in 

which from early generations all the solutions in the population are non-dominated) and in 

EvABOR-II, then the final number of non-dominated solutions is lower than in the other two 

approaches (Figure 3.17 and Figure 3.19). This fact is due to the priority given to the 

outranking relation in EvABOR-I and to the non-dominance relation being applied only at the 

end of the evolutionary process. Consequently, dominated and non-dominated solutions 

belonging to the best classes of merit pass from one generation to the next one. At the end 

of the evolutionary process the dimension of the final population is reduced since the 

dominated solutions are excluded from the population. The corresponding values for 

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

No. of iterations

N
o
. 

o
f 

s
o
lu

ti
o
n
s

 

 

No. of non-dominated solutions

No. of remaining solutions from the previous generation

No. of remaining non-dominated solutions from the previous generation



42 

EvABOR-II are presented in Figure 3.19, as well as the dimension of the population at each 

iteration. Note that, in this case, in some generations some solutions obtained may not be 

non-dominated. This is due to the fact that the dominance relation to be applied to each 

class of merit may lead to a situation in which there are dominated solutions obtained from 

different classes of merit. In EvABOR-II the dimension of the population may vary, but this 

situation occurs only at the beginning of the evolutionary process when the number of 

dominated solutions in each class is very large. 

 

Figure 3.18 – Analysis of the type of solutions during the evolutionary process in EvABOR-I.  

 

 

Figure 3.19 – Analysis of the type of solutions during the evolutionary process in EvABOR-II.  
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not the most important issue. In this context, it is more important to compare the quality of 

the solutions with respect to the preferences expressed by the DM. This analysis can be 

performed by comparing the classes of the solutions depicted in the non-dominated front 

and the number of solutions belonging to each class of merit, which act as a categorical 

measure of the quality of the solution. As far as this aspect is concerned, EvABOR-III presents 

the best performance again, since the percentage of solutions belonging to the best class of 

merit in the non-dominated front is always higher in this approach (Table 3.3). This is further 

reinforced when the maximum number of iterations is increased to 200. In this case all the 

solutions in the final non-dominated front belong to the best class of merit (class 5 in this 

illustrative example) in all runs, while in the other approaches the non-dominated front is 

composed by solutions in classes 4 and 5. Another important conclusion is that EvABOR-III is 

the algorithm that obtains the whole non-dominated set belonging to the best class of merit 

with a smaller number of iterations and more often than the other two approaches. For 

example, for a maximum of 100 iterations EvABOR-III obtains a non-dominated front 

composed by solutions in class 5 in 60% of the runs while the other approaches need much 

more iterations to obtain solutions belonging to this class or even do not achieve this type of 

solutions. 

In order to study deeply the behavior and the effectiveness of the EvABOR-I and EvABOR-II 

approaches, a maximum number of iterations larger than 100 is preferable. With 100 

iterations it seems that EvABOR-II displays a best performance than EvABOR-I. Considering a 

maximum of 200 iterations this conviction is confirmed: EvABOR-I does not achieve a 

non-dominated set with all solutions in the best class while EvABOR-II does. In fact, in 60% of 

the runs EvABOR-II obtains a non-dominated set formed only by solutions in class 5 and 

80.06% of the solutions in the non-dominated front belong to this class of merit. 

Analyzing the behavior of EvABOR-I in more detail to understand why the progress of the 

solutions towards the best classes of merit in this approach is slower when compared to the 

other approaches (Figure 3.20), it is possible to verify that in EvABOR-I the number of 

dominated solutions in several generations is very high (Figure 3.21). In fact, approximately 

half of the population consists of dominated solutions, being the reason why the search 

progress in EvABOR-I is slower. 
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(a)                                                                                                   (b) 

Figure 3.20 – Evolution of the classes during: (a) EvABOR-I; (b) EvABOR-III. 

 

Figure 3.21 – Evolution of the non-dominated solutions in each class during EvABOR-I. 

Figure 3.22 displays representative examples of the non-dominated front obtained with each 

EvABOR approach, where is possible to verify that the number of solutions belonging to the 

best class of merit is larger for EvABOR-III in comparison with EvABOR-I and EvABOR-II. 

The previous analysis gives strong indications that EvABOR-III is the version of the algorithm 

with best performance. In order to gather further elements for reinforcing this conclusion 

other instances have been considered. In Table 3.4 a more exigent set of preference 

parameters is defined by decreasing the threshold values associated with the cost objective 

function. The difference between the cost of a solution and the corresponding reference 

profiles must be lower than in the first instance in order to consider the solution as 
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(a) 

     

(b)      (c) 

Figure 3.22 – Example of the final generation found by: (a) EvABOR-I; (b) EvABOR-II; (c) EvABOR-III. 
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Losses 
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(€) 

Maximum 

Voltage 

Deviation 

(p.u.) 

Reference Profiles 

240 

260 

290 

320 

38000 

60000 

85000 

100000 

0.01 

0.03 

0.065 

0.09 

Th
re

sh
o

ld
s Indifference 5 5000 0.005 

Preference 10 10000 0.01 

Veto 30 30000 0.08 

Weights 100/3 100/3 100/3 

λ 0.5 

Table 3.4 – ELECTRE TRI parameters considered in the second instance. 
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 Maximum Number of Iterations = 100 Maximum Number of Iterations = 200 

EvABOR-I EvABOR-II EvABOR-III EvABOR-I EvABOR-II EvABOR-III 

Dimension of the  
non-dominated front 

57.53 99.83 100 55.63 99.30 100 

Classes in the 
 non-dominated front 

4 4 and 5 4 and 5 4 4 and 5 4 and 5 

% of non-dominated 
solutions in the best class 

0% 0.81% 7.43% 0% 3.5% 30.20% 

% of runs with the best 
class only in the front 

0% 0% 0% 0% 0% 0% 

Number of iterations 
executed 

100 100 100 200 200 200 

Table 3.5 – Average values from 30 runs with more exigent thresholds for the cost function. 

In Table 3.5 the average values from 30 runs for each EvABOR version, with a maximum of 

100 and 200 iterations, are presented considering the preference parameters defined in 

Table 3.4. These values allow us to reinforce the first conclusions about the performance of 

the three versions of the EvABOR algorithm. Despite the more exigent conditions imposed to 

the cost objective function, the EvABOR-III algorithm is again the one with the best 

performance when compared with the other two versions. The average dimension of the 

non-dominated front is larger using EvABOR-III, but the most important fact is that the 

percentage of solutions belonging to the best class of merit is larger when this version of 

EvABOR is used. This demonstrates its capability to attain solutions according to the 

preferences elicited even with more exigent sets of parameters. 

The comparisons of the values in Table 3.3 and Table 3.5 also confirm that the new set of 

thresholds is more exigent leading to a larger computational effort (a higher number of 

iterations) to achieve solutions belonging to the best class of merit. Also the quantity of 

these solutions is lower than in the first instance.  These effects are similar for the three 

EvABOR approaches. As the values of the cost thresholds are inferior with respect to the first 

instance, solutions having a higher cost may not be assigned to the best class of merit since 

the difference between their cost and the respective reference profile may be larger than 

the current indifference or preference thresholds. Additionally, the veto threshold can also 

prevent a solution with a bad performance in the cost objective function to be classified in 

the best class of merit even if the performance in the other objective functions is good. In 

this second instance this effect is more evident than in the previous one since the value of 

the veto threshold is lower. Figure 3.23 presents the comparison between the 

non-dominated set obtained in the first and in the second instances with EvABOR-III for a 

maximum of 200 iterations. Figure 3.23 (c) is a zoom of Figure 3.23 (b) to make clearer the 

lower number of solutions in class 5 obtained with the second instance and also the inferior 
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value of the cost function for these solutions. It is important to note the inferior value of the 

cost function for these solutions. As this set of parameters is more exigent regarding the cost 

objective function, for a solution be classified in the best class of merit its cost must be lower 

due to the stronger exigency imposed to this function by the new set of thresholds. 

   

(a)                                                                     (b) 

 

(c) 

Figure 3.23 – Comparison of non-dominated sets obtained with different values of thresholds using 

EvABOR-III. 

In a third instance the preference parameters related to the maximum voltage deviation are 

slightly more exigent: the reference profile of this objective function that bounds inferiorly 

the best class of merit is decreased from 0.01 to 0.006. All the other parameters defined in 

Table 3.2 remain the same. As we consider the maximum of all voltage deviations in all 

nodes, it is difficult to find solutions with better values for this objective function. This is the 

technical reason that leads to a low number of solutions belonging to the best class of merit 

in all runs (Table 3.6). However, as it is shown in this table, EvABOR-III is still the version of 

the algorithm with the best performance. EvABOR-II obtains solutions in the best class of 

merit in just 1 of the 30 runs only when considering a maximum of 200 iterations. Although 
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having some difficulty to obtain solutions in the best class of merit with this preference 

parameter set, EvABOR-III achieves this aim even for a maximum of 100 iterations. 

 

 Maximum Number of Iterations = 100 Maximum Number of Iterations = 200 

EvABOR-I EvABOR-II EvABOR-III EvABOR-I EvABOR-II EvABOR-III 

Dimension of the  
non-dominated front  

57.87 100 100 56.5 99.97 100 

Classes in the  
non-dominated front 

4 4 4 and 5 4 4 and 5 4 and 5 

% of non-dominated 
solutions in the best class 

0% 0% 1.5% 0% 0.1% 9.93% 

% of runs with the best 
class only in the front 

0% 0% 0% 0% 0% 0% 

Number of iterations 
executed 

100 100 100 200 200 200 

Table 3.6 – Average values from 30 runs with different reference profiles to the maximum voltage 

deviation. 

The comparison of data in Table 3.3 and Table 3.6 confirms that this third instance is more 

exigent than the first one. With this new set of parameters EvABOR-I does not obtain any 

solution belonging to the best class of merit contrarily to what happens in the first instance. 

EvABOR-II needs much more iterations to obtain solutions in the best class and this 

percentage is smaller than in the previous instance. Despite EvABOR-III presents the best 

performance in comparison with the other two versions, the number of solutions in class 5 is 

much fewer than in the first instance. 

An illustrative example is shown in Figure 3.24, where the differences between two 

non-dominated sets obtained with EvABOR-III, considering the first and the third instances, 

can be compared. Figure 3.24 (c) and (d) are a zoom of the region containing the solutions in 

the best class of merit, respectively. In these figures only solutions belonging to class 5 are 

displayed to facilitate analysis. In Figure 3.24 (b) and (d) it is possible to note that the value 

of the maximum voltage deviation of solutions belonging to the best class of merit is lower 

with respect to the case of solutions obtained in the third instance. This fact is due to the 

more exigent reference profile defined for the maximum voltage deviation objective 

function. Solutions (1) and (2) signaled in Figure 3.24 (c) and (d) have a good performance in 

losses and cost objective functions, respectively, but they are not classified in the best class 

of merit in the case of third instance, since the value for the maximum voltage deviation is 

too high (0.0723 p.u. for solution (1) and 0.07198 p.u. for solution (2)). Despite the good 

performance of solution (3) in the maximum voltage deviation objective function (0.06582 

p.u.), this solution is not assigned to class 5 due to the high cost and losses. 
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In all instances tested, EvABOR-III is always the version of the algorithm with best 

performance. Therefore, we may conclude that priority must be given to the non-dominance 

relation in the sense that this relation must be applied before the outranking relation to 

filter the non-dominated solutions. Otherwise, the existence of dominated solutions in the 

population may contribute to delay the progress towards achieving better classes of merit 

(as in EvABOR-I). Also, there is evidence leading us to affirm that the algorithm guides the 

search to the region of interest, according to the preferences elicited, more efficiently if the 

non-dominance relation is applied to the entire population (as in EvABOR-III) and not 

individually to each class of merit (as happens in EvABOR-II). 

 

 

(a)                                                                                              (b) 

  

(c)                                                                                         (d) 

 

Figure 3.24 – Comparison of two non-dominated sets obtained with EvABOR-III. 
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THE INFLUENCE OF THE β PARAMETER INTO EVABOR-III 

In the previous section a comparison of the three EvABOR approaches has been presented 

leading us to conclude that EvABOR-III is the most effective approach to find a set of 

solutions in accordance with the preferences elicited. In face of the superiority of EvABOR-III 

in the incorporation of preferences into the evolutionary process a more detailed analysis 

about the influence of the β parameter is done in this section. 

Dimension of the population 50 100 

β 0 0.5 1 0 0.5 1 

Dimension of the  
non-dominated front 

50 50 50 100 100 100 

No. of iterations executed 99.47 100 100 95.63 99.07 99.47 

No. of non-dominated 
solutions in class 5 

11.33 2.40 1.23 85.43 18.60 44.53 

No. of non-dominated 
solutions in class 4 

38.67 47.60 48.77 14.57 81.40 55.47 

Table 3.7– Average results from 30 runs with a maximum of 100 iterations. 

Dimension of the population 50 100 

β 0 0.5 1 0 0.5 1 

Dimension of the  
non-dominated front 

50 50 50 100 100 100 

No. of iterations executed 136.56 192.06 196.23 112.53 147.86 174.36 

No. of non-dominated 
solutions in class 5 

44.6 22.03 11.9 98.67 98.63 83.7 

No. of non-dominated 
solutions in class 4 

5.4 27.97 38.1 1.33 1.37 16.3 

Table 3.8 – Average results from 30 runs with a maximum of 200 iterations. 

The results of experiments carried out with the set of preferences defined in Table 3.2 for 

100 and 200 iterations, with a population size of 50 and 100 individuals, and different values 

for the β parameter are summarized in Tables 3.7 to 3.8. The main conclusions are similar 

independently of the maximum number of iterations. With fewer iterations, EvABOR-III 

provides better results, obtaining a higher number of solutions in the best classes of merit 

when β=0. The increase of the β parameter leads to a sort of speciation process in which 

niches of solutions are created, located near the areas of the search space where the 

objective functions attain their optimal values, slowing the evolutionary process. In this case 

the algorithm needs some more time to achieve the region more in accordance with the 

preferences elicited from the DM. This niche effect tends to disappear with the increase of 
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the number of iterations. Despite β=0 allows to obtain in average better results, the best 

values obtained for each objective function are achieved considering β=1 (Table 3.9). This 

result is expected due to the fact that solutions that pass to the next generation are chosen 

from the classes of merit in an elitist manner. 

Dimension of the population 50 100 

β 0 0.5 1 0 0.5 1 

Losses 

Minimum 240.85 237.03 236.48 240.29 240.31 238.77 

Maximum 246.41 262.72 264.78 246.29 246.48 253.97 

Average 243.26 247.39 251.23 243.12 243.27 245.02 

Standard deviation 1.41 7.47 10.91 1.46 1.57 4.29 

Cost 

Minimum 42253 27265 24738 41662 41193 33854 

Maximum 49688 66893 68705 47510 48004 56652 

Average 46244 49810 51883 45151 45353 46643 

Standard deviation 1746.2 11464.9 17565.4 1391.1 1611.9 5976.0 

Maximum 
Voltage 

Deviation 

Minimum 0.0654 0.0488 0.0472 0.0655 0.0650 0.0580 

Maximum 0.0737 0.0886 0.0902 0.0728 0.0731 0.0803 

Average 0.0698 0.0696 0.0700 0.0695 0.0693 0.0694 

Standard deviation 0.0020 0.0101 0.0151 0.0018 0.0020 0.0054 

Table 3.9 – Average values of the objective functions from 30 runs with a maximum of 200 iterations. 

 

THE INFLUENCE OF ELECTRE TRI PARAMETERS INTO THE SEARCH PROCESS 

In a previous section the comparison of EvABOR approaches is presented and the influence 

of the thresholds and the reference profiles on the search process has been also illustrated. 

In this section, an analysis of the effect of other ELECTRE TRI parameters on the evolutionary 

process is presented. Due to the superiority of EvABOR-III in the incorporation of 

preferences into the evolutionary process, the results presented in the current and in 

remaining sections are the ones obtained using this version of EvABOR. However, it is 

important to stress that the effect of these parameters into the other two EvABOR 

approaches is similar concerning the aspects here addressed (some other examples can be 

found in [Oliveira and Antunes (2010b)]. 
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To analyze the influence of weights in EvABOR approaches, three different instances have 

been considered, in which: 

• all the objective functions have the same weight (weighting vector=[100/3, 100/3, 

100/3]); 

•  the losses function has the largest weight (weighting vector=[60, 20, 20]); 

• the cost function has the largest weight (weighting vector=[20, 60, 20]). 

All the other ELECTRE TRI parameters are the ones considered in the first instance defined in 

Table 3.2. The value of β is 0 because this is the value with which EvABOR-III achieved the 

best performance (as referred in previous section). 

The weights in ELECTRE TRI reflect the true importance of each objective function and are 

not used as technical parameters for aggregating the objective functions in a scalar function 

and computing a common value measure as in other approaches. Comparing the several 

results obtained with the different versions of EvABOR it can be seen that the solutions 

computed are predominantly located in regions of the search space in agreement with the 

preference information conveyed by the different sets of weights. Figure 3.25 shows 3D and 

2D plots of the non-dominated front obtained from runs using EvABOR-III in the three 

instances with different set of weights. Comparing the regions highlighted with a green 

dashed rectangle in Figure 3.25 ((b), (d) and (f)) the influence of the weights is clear. For 

instance, when resistive losses is the objective function with higher weight there is a 

predominance of solutions with lower losses (Figure 3.25 (d)) and there are no solutions in 

the region with higher loss values (marked by a blue rectangle). However, if the cost is 

considered as the most important objective function, more solutions are obtained in the 

region of the search space with minimum cost (as may be observed within the ellipse). A 

similar conclusion can be reached by analyzing the representation of the statistical data in 

Figure 3.26. 

More information from 30 runs (average values) is provided in Table 3.10 where the 

components of the weighting vector refer to the resistive losses, cost, and voltage deviation 

objective functions, respectively. It is possible to verify that the minimum values for each 

objective function are obtained when the corresponding weight is the highest.  It is easier for 

the EvABOR-III algorithm to obtain solutions in the best class of merit when the objective 

function with a larger weight is the resistive losses (see Table 3.10). In this case the number 

of iterations to obtain all the solutions in the non-dominated front belonging to the best 

class of merit is lower than in the other cases. 
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(a) (b) 

 

(c) (d) 

 
 

(e) (f) 

Figure 3.25 – Impacts of different weights in the EvaBOR-III results. 
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(a) (b) 

Figure 3.26 – Statistical data representation for resistive losses (a) and cost (b). 

 

Weight vector=[Losses   Cost   Deviation] [100/3 100/3 100/3] [60 20 20] [20 60 20] 

Maximum no. of iterations 200 200 200 

No. of iterations executed 112.53 21 30.86 

Dimension of the population 100 100 100 

Dimension of the non-dominated front 100 100 100 

No. of solutions in  class 5 98.67 100 100 

No. of solutions in  class 4 1.33 0 0 

No. of solutions in  class 3 0 0 0 

No. of solutions in  class 2 0 0 0 

No. of solutions in  class 1 0 0 0 

Losses 

Minimum 240.29 239.31 239.89 

Maximum 246.29 245.50 253.90 

Average 243.12 242.60 243.87 

Standard deviation 1.46 1.56 2.57 

Cost 

Minimum 41662.37 41611.5 37316.5 

Maximum 47509.63 69232.03 47829.6 

Average 45151.14 58896.6 43322.5 

Standard deviation 1391.1 7297.6 2654.1 

Maximum Voltage 
Deviation 

Minimum 0.06547 0.05848 0.06566 

Maximum 0.07281 0.08027 0.08097 

Average 0.06953 0.06586 0.07436 

Standard deviation  0.0018 0.0054 0.0036 

Table 3.10 – Average values from 30 runs and different weight values using EvABOR-III. 

The veto threshold is another important parameter in ELECTRE TRI and consequently in the 

evolutionary process of EvABOR approaches. This parameter precludes a solution having a 

bad performance according to the preferences elicited in a given objective function from 

being classified in the best class of merit even if its performance is very good in the other 

objective functions. The EvABOR approaches have been tested with distinct veto thresholds 

for each objective function. For illustrative purposes, results obtained using EvABOR-III 

considering different values for the veto threshold (0.08, 0.075 and 0.04) for the maximum 
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voltage deviation objective are presented below. All other parameters are the same defined 

in Table 3.2. The three values of the veto threshold have distinct impacts on the results. 

While the less demanding value practically does not influence the sorting of solutions into 

categories, a slightly more demanding value (0.075) already prevents most solutions from 

being classified in the best class of merit. A strongly more demanding value (0.04) leads to a 

situation where no solution is classified in the best class of merit. Figure 3.27 shows 

comparative examples for different veto thresholds, in which two similar solutions are 

classified in different classes of merit (class 5 in (a) and class 4 in (b)) due to the different 

values of the veto threshold. When the veto threshold is 0.08 the solution is classified in 

class 5. However, when this threshold is a little more demanding (0.075) a similar solution is 

classified in class 4 (Figure 3.27 (c)). For a more demanding value for this threshold (0.04) all 

solutions in the non-dominated front belong to class 4. Table 3.11 summarizes some results 

from 30 runs obtained using EvABOR-III with the referred different veto thresholds for the 

maximum voltage deviation objective function. When the veto threshold is 0.08 a 

non-dominated set with almost all solutions belong to class 5 is obtained. 

  
(a)                                                                                    (b) 

 
(c) 

Figure 3.27 – Illustrative example of the veto thresholds influence using EvABOR-III. 
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Deviation veto threshold 0.08 0.075 0.04 

Maximum no. of iterations 200 200 200 

No. of iterations executed 112.53 200 200 

Dimension of the population 100 100 100 

Dimension of the non-dominated front 100 100 100 

No. of non-dominated solutions in  class 5 98.67 14.3 0 

No. of non-dominated solutions in  class 4 1.33 85.7 100 

Table 3.11 – Average values from 30 runs with different deviation veto thresholds using EvABOR-III. 

The role of the indifference and the preference thresholds is translated into a higher or a 

lower acceptance of the difference between the performances of a solution with the 

respective reference profiles. To illustrate this influence in EvABOR approaches, new values 

for the indifference and the preference thresholds are considered for the cost objective 

function (6000€ and 10000€, respectively). All the other parameters are the same of the first 

instance defined in Table 3.2. 

(a) (b) 

(c) (d) 

Figure 3.28 – Illustrative example of the indifference and the preference thresholds influence in 

EvABOR approaches: (a), (b): 1
st

 instance; (c), (d): current instance. 
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In this instance, for a solution to be classified in the best class of merit it is necessary that the 

value of the cost objective function is nearer to the inferior reference profile for this 

objective function (38000€) than in the initial scenario. Consequently, the number of 

solutions in the best class of merit tends to decrease but these solutions have a lower cost. 

An example, obtained using EvABOR-III, is presented in Figure 3.28, where in the initial 

instance all non-dominated solutions obtained belong to class 5 (Figure 3.28 (a) and (b)) and 

in the current instance fewer solutions are obtained in this class (Figure 3.28 (c) and (d)). 

Table 3.12 presents the average values from 30 runs obtained with EvABOR-III. In the new 

instance just about 47% of the solutions are classified in the best class of merit while in the 

initial instance about 98% of the solutions are in this class and are obtained without reaching 

the maximum number of iterations. 

Indifference and Preference Thresholds 

Initial Instance 

qcost =8000€ 

pcost =15000€ 

New Instance 

qcost =6000€ 

pcost =10000€ 

Maximum no. of iterations 200 200 

Average no. of iterations executed 112.53 200 

Dimension of the population 100 100 

Dimension of the non-dominated front 100 100 

Average no. of non-dominated solutions in  class 5 98.67 47.27 

Average no. of non-dominated solutions in  class 4 1.33 52.73 

Table 3.12 – Average values from 30 runs with different indifference and preference thresholds 

obtained with EvABOR-III. 

The level of exigency of the classification (majority requirement) is defined by the 

cutting-level λ. The minimum value of λ has been considered in the previous instances. 

When the cutting-level λ is increased to 0.7, thus increasing the level of exigency, solutions 

found by EvABOR approaches can be classified in different classes of merit. In this case a 

majority requiring two objective functions is necessary. An example to illustrate this fact is 

presented using EvABOR-III. All the parameters are the ones in Table 3.2 with the exception 

of the cutting-level that is 0.7 in the current instance. The increase of the exigency induced 

by the new value of the cutting-level leads that, for example, solution (240.4; 46440; 

0.07211) is not classified in class 5 (Figure 3.29 (c)) but a similar solution (240; 46060; 0.072) 

is classified in class 5 when λ is equal to 0.5 (Figure 3.29 (a)). 
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(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 3.29 – Illustrative example of the cutting-level influence in EvABOR approaches. 

Table 3.13 shows the average results for 30 runs with population sizes of 50 and 100 and a 

maximum number of iterations equal to 200 using EvABOR-III. It is possible to see that when 

the cutting-level λ=0.7 the algorithm was not able to compute solutions belonging to the 

best class of merit even using all the maximum number of iterations allowed, while when 

λ=0.5 it was able to identify a significant number of solutions belonging to the best class 

even without using all the iterations. This is illustrative of the effect of the cutting-level 

parameter in the evolutionary process and also in the classification of solutions. 
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Cutting-level value 0.5 0.7 0.5 0.7 

Dimension of the population 50 100 

Maximum no. of iterations 200 200 200 200 

No. of iterations executed 136.57 200 112.53 200 

Dimension of the non-dominated front 50 50 100 100 

No. of non-dominated solutions in  class 5 44.6 0 98.67 0 

No. of non-dominated solutions in  class 4 5.4 0 1.33 0 

No. of non-dominated solutions in  class 3 0 50 0 100 

No. of non-dominated solutions in  class 2 0 0 0 0 

No. of non-dominated solutions in  class 1 0 0 0 0 

Losses 

Minimum 240.85 238.13 240.29 237.87 

Maximum 246.41 264.27 246.29 270.50 

Average 243.26 244.30 243.12 244.97 

Standard deviation 1.41 5.90 1.46 6.40 

Cost 

Minimum 42253.5 47798.7 41662.4 44610.7 

Maximum 49688.4 75556.7 47509.6 76674.2 

Average 46243.6 59923.4 45151.1 58437.3 

Standard deviation 1746.2 6365.6 1391.1 6702.2 

Maximum Voltage 

Deviation 

Minimum 0.06538 0.04563 0.06548 0.04148 

Maximum 0.07369 0.07289 0.07281 0.07381 

Average 0.06985 0.06207 0.06953 0.06113 

Standard deviation 0.00202 0.00647 0.00180 0.00700 

Table 3.13 – Average values from 30 runs and different cutting-level values obtained using EvABOR-III. 

 

COMPARISON BETWEEN EVABOR APPROACHES AND AN EA WITH INCORPORATION OF PREFERENCES 

A POSTERIORI 

To analyze how the EvABOR algorithm guides the search to the region of the space more in 

accordance with the preferences elicited from the DM, it is interesting to compare the 

non-dominated fronts obtained previously with the one achieved with an EA without 

incorporation of preferences. The EA parameters are the same in all approaches. 

As this case study is a real-world problem, the true Pareto-optimal front is not known. 

However, an approximation to this set has been obtained with an EA similar to NSGA-II 

[Deb et al. (2002)]. The binary tournament selection is used to select parents in the 

crossover operator. If the individuals belong to different fronts, the one of the best front is 

chosen to be a parent. If the individuals belong to the same front, the solution to become a 

parent is picked randomly. The mutation operator is applied also according to the mutation 

probability but the choice of the operator from the five forms described in Section 3.3.2 is 
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random, i.e., the choice of the mutation operator is not guided. In the selection the 

population is sorted using the non-dominance relation. The new population is filled with the 

solutions of the first non-dominated fronts as in NSGA-II. However, if the last front has more 

solutions than needed, the solutions are chosen randomly, i.e., no crowding strategy is used 

to choose the remaining individuals. Despite the diversified and well-spread non-dominated 

set in the objective space obtained with this EA, its efficiency to attain solutions in the best 

class of merit is rather poor due to the large number of non-dominated solutions in the 

population. Figure 3.30 presents a comparison between a non-dominated front obtained 

with the EA without preference incorporation and the non-dominated sets obtained with 

EvABOR-III for the different instances considered before for a maximum of 100 iterations. 

This comparison is done with EvABOR-III since this is the version that proved to have the 

best performance. 

The solutions obtained with EvABOR-III are mostly concentrated in a region of the search 

space with the cost and losses objective functions values lower than the solutions obtained 

with the EA without incorporation of preferences. In this case there is an intensive 

exploration of regions that do not match with the preferences elicited despite the 

computational effort. This assertion can be confirmed applying the ELECTRE TRI method a 

posteriori to evaluate the quality of the solutions obtained by the EA regarding the 

preferences. When this analysis is done with the preferences considered in the previous 

instances, none or only a very small number of solutions is assigned to the best class of 

merit. The non-dominated set obtained with the EA without preference incorporation 

displayed in Figure 3.30 is also shown in Figure 3.31 after the sorting of the solutions 

considering the set of preferences defined in Table 3.2 (the first instance considered). Note 

that no solution belongs to the best class of merit, despite the non-exigent preferences 

elicited in this instance, while the non-dominated front obtained with EvABOR-III is, in 

general, only composed by solutions in that class (Table 3.3). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 3.30 – Comparison of non-dominated fronts obtained with an EA without incorporation of 

preferences and EvABOR-III. (a), (b): Instance 1; (c), (d): Instance 2; (e), (f): Instance 3. 

 

200 250 300 350 400 450
2

4

6

8

10

12

14

16
x 10

4

 

Resistive losses (kW)

 

C
o
s
t 

(E
u
ro

s
)

EA without preferences

Class 5: Instance 1

200 250 300 350 400 450
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1  

Resistive losses (kW)

 

M
a
x
im

u
m

 d
e
v
ia

ti
o
n
 (

p
u
)

EA without preferences

Class 5: Instance 1

250 300 350 400 450

2

4

6

8

10

12

14

x 10
4

 

Resistive losses (kW)

 

C
o
s
t 

(E
u
ro

s
)

EA without preferences

Class 4: Instance 2

Class 5: Instance 2

200 250 300 350 400 450
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1  

Resistive losses (kW)

 

M
a
x
im

u
m

 d
e
v
ia

ti
o
n
 (

p
u
)

EA without preferences

Class 4: Instance 2

Class 5: Instance 2

250 300 350 400

2

4

6

8

10

12

14

x 10
4

 

Resistive losses (kW)

 

C
o
s
t 

(E
u
ro

s
)

EA without preferences

Class 4: Instance 3

Class 5: Instance 3

250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1  

Resistive losses (kW)

 

M
a
x
im

u
m

 d
e
v
ia

ti
o
n
 (

p
u
)

EA without preferences

Class 4: Instance 3

Class 5: Instance 3



62 

 

Figure 3.31 – Sorting of the non-dominated front obtained with an EA without incorporation of 

preferences. 

To understand the behavior of the EA without incorporation of preferences concerning 

solutions belonging to the best class of merit, the evolution of these solutions during the 

evolutionary process has been analyzed. The number of solutions in the best class of merit 

(class 5) has been evaluated and compared before and after the non-dominance procedure 

(Figure 3.32). As it is possible to observe, despite some solutions in the best class of merit 

are obtained in EA, the selection of individuals to the next generation using only the 

non-dominance relation does not guarantee the continuity of these solutions in the 

population. The large number of non-dominated solutions, due to the contradictory nature 

of objective functions and the combinatorial characteristics of the problem, leads the sorting 

of the population by levels of non-dominance to be insufficient, because solutions belonging 

to the best class may be lost during the selection procedure using the non-dominance 

relation only. Note that solutions in the best class of merit can be non-dominated with 

respect to solutions belonging to other classes. For this reason, it is necessary to include in 

the algorithm some mechanism guaranteeing that these solutions go to the next generation, 

otherwise they can be lost. 

Finally, to exemplify a possible practical implementation for the reactive power 

compensation problem described in Section 3.3., a set of solutions belonging to the best 

class of merit (class 5) is presented. These solutions have been obtained with EvABOR-III in 

one of the runs performed with the third instance defined previously. Due to the stringent 

preference parameters established, the number of solutions is small, which somehow 

facilitates the choice of a final solution for practical implementation. However, if the number 

of solutions in the best class of merit is high it is possible to redefine a more exigent set of 

preference parameters (as explained before), or even to apply a method devoted to the 

200
250

300

350
400

450

0

5

10

15

x 10
4

0

0.05

0.1

 

Resistive losses (kW)

Pessimistic procedure

Cost (Euros) 

M
a

x
im

u
m

 d
e

v
ia

ti
o

n
 (

p
u

)

Class 1

Class 2

Class 3

Class 4



 63 

choice, or the ranking, problem to deal with solutions belonging to the best class of merit 

(therefore in accordance with the preferences elicited). 

 

Figure 3.32 – Number of solutions in class 5 during the evolutionary process. 

The solutions and the corresponding objective functions values are presented in Table 3.14 

and Table 3.15. Let us suppose that a DM would select solution 2 for practical 

implementation, as a well-balanced solution regarding the values obtained for the three 

objective functions of economical, technical and quality of service nature. Figure 3.33 

displays the location and the types of capacitors to be installed in the network. 

 

Solution Solution encoding 

1 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 7 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 

2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 5 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 

3 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 7 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 

4 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 7 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 4 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 

Table 3.14 – Physical characterization of solutions in class 5 (0 = no capacitor installed; 

values 1 to 8 = type of capacitor installed in that node 1-94). 

Solution Cost 
Resistive 

losses 

Maximum voltage 

deviation 

1 45304 244.6 0.068094 

2 45304 244.42 0.068413 

3 45407 244.9 0.067853 

4 45676 244.47 0.068161 

Table 3.15 – Objective function values for solutions in Figure 3.14. 
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Figure 3.33 – The compensated network. 

 

OTHER RESULTS 

As referred to in Section 3.2.1, the parents for the crossover operator are selected using a 

tournament technique. In this procedure the parents that are more in accordance with the 

preferences elicited are chosen to generate the offspring. Figure 3.34 presents the 

percentage of parents chosen according to one of the following conditions: belong to the 

best class or present better performance in more objective functions. These values are the 

average of 30 runs with 100 individuals and a maximum of 100 iterations, and the crossover 

and mutation probabilities are 1 and 0.2, respectively. The ELECTRE TRI parameters are the 

ones considered in Table 3.2. 

 

Figure 3.34 – Selection of the parents for tournament. 
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The analysis of these percentages during the evolutionary process (Figure 3.35 (a)) 

compared with the number of classes existing in a population at a certain instant 

(Figure 3.35 (b)) enables to conclude that when the number of classes decreases the parents 

tend to be chosen according to their performance in the objective functions. 

However, the previous percentages strongly depend on several factors, such as the 

maximum number of classes (a higher number of classes increases the probability to have 

more than one class in a particular generation), the number of classes in each generation 

and the maximum number of iterations. 

 

(a) 

  

(b) 

Figure 3.35 – (a) Selection of the parents for tournament during the evolutionary process;  

(b) Evolution of the population by classes of merit using EvABOR-III. 

The computational effort associated with the main operations within EvABOR-III is analyzed 

from a set of 30 runs performed considering the parameters presented in Table 3.2. The 

average percentage of the CPU time devoted to each task in each generation is evaluated. As 

it was expected the larger percentage of time (56.51%) is expended in the power flow 

algorithm, which computes the (active and reactive) power and the voltage at each network 

node resulting from a given compensation scheme (that is, a solution representing a given 
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location and sizing of the capacitors). The average percentage of time devoted to the 

outranking relation is 8.24% of the total time, considering all the steps in which preferences 

are used (crossover, mutation and selection operators). As the non-dominance relation is 

only performed in the selection operator it consumes 0.91% of the total time. The crossover, 

mutation and the selection operators spend 3.95%, 1.29% and 0.27%, respectively. The 

remaining time is consumed in other auxiliary tasks. 

The average time expended in a run is 25.8 seconds. The experiments are done in a Core 2 

Duo, 2.80 GHz with 4GBof RAM and the algorithm has been developed using Matlab 

R2008b software. 
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CHAPTER 4 
 

 

 

 

 

 

4. HYBRID ALGORITHMS WITH INCORPORATION OF PREFERENCES
4
 

In the previous chapter the incorporation of preferences into an EA has been presented. This 

approach have revealed good results having in mind the search of a set of non-dominated 

solutions according to the preferences elicited from the DM. However, whenever the 

expressed preferences are more exigent, the computational effort of EvABOR to obtain all 

population belonging to the best class of merit may increase significantly, even after 

obtaining a solution in the best class of merit. This point is especially relevant in MOOPs in 

which the search space is large due to the high number of objective functions and/or the 

combinatorial characteristics of the problem. Moreover, if the evaluation of solutions is 

computationally heavy, the execution time may become prohibitive if it is necessary to have 

a solution in real time. Consequently, to improve the exploitation in regions more in 

accordance with the expressed preferences a local search phase has been included in the 

EvABOR algorithm. The Simulated Annealing (SA) algorithm has been used in this phase and 

incorporation of preferences is also considered in this algorithm. 

In the previous EvABOR algorithms, the initial solutions are generated randomly. However, 

the quality of these solutions may influence the performance of the algorithm. To assess the 

                                                 
4
 This chapter is partially based on [Antunes CH, Lima P, Oliveira E, Pires DF. A Multi-Objective 

Simulated Annealing Approach to Reactive Power Compensation. Engineering Optimization, 2011; 

43(10), 1063-1077], [Antunes CH, Oliveira E, Lima P. A Multi-Objective GRASP Procedure for Reactive 

Power Compensation Planning. Optimization and Engineering (submitted)], [Gomes A, Henggeler 

Antunes C, Oliveira E. Direct load control in the perspective of an electricity retailer – a multi-objective 

evolutionary approach. In: Gaspar Cunha A, Takahashi R, Schaefer G, Costa L (Eds.), Soft Computing in 

Industrial Application, Advances in Intelligent and Soft Computing, 96, Springer, 2011. p. 13-26] and 

[Gomes A, Henggeler Antunes C, Martinho J, Oliveira E. Otimização multiobjetivo com algoritmos 

evolutivos - uma aplicação no sector elétrico. In: XVI Latin-Ibero-American Conference on Operations 

Research and XLIV Brazilian Symposium on Operations Research, 2012]. 
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influence of initial solutions on the overall results, a hybrid algorithm has been developed 

combining a construction phase, as in the Greedy Randomized Adaptive Search Procedure 

(GRASP), and a local search phase using the SA with incorporation of preferences. In the 

construction phase solutions are generated based on the knowledge about the problem at 

hand. To compare these two algorithms a direct load control problem with seven objective 

functions has been used. 

 

4.1. THE GRASP ALGORITHM 

 

The GRASP (Greedy Randomized Adaptive Search Procedure) meta-heuristic is a multi-start 

process consisting of two main phases: in the construction phase a feasible solution is built 

using a greedy randomized algorithm and its neighborhood is then explored in the local 

search phase until a local optimum is found [Feo and Resende (1995), Resende and Ribeiro 

(2003)]. These two phases are repeated at each iteration until a stop condition is reached. 

The aim of the construction phase is to generate a diverse set of good-quality starting 

solutions by introducing a controlled randomization component into a greedy algorithm. A 

solution is composed of elements that are progressively integrated. At each iteration of the 

construction phase, a set of candidate elements is defined consisting of all elements that can 

be incorporated into the solution under construction while maintaining its feasibility. In 

some problems, repairing procedures may be required to restore feasibility of the 

constructed solution, provided that the associated computational burden is not too high. In 

general, the selection of the next element to be integrated into the solution results from the 

evaluation of all candidate elements according to a greedy evaluation function. This greedy 

function assesses the marginal cost (degradation of the objective function value) resulting 

from the integration of that element into the solution being constructed. The so-called 

restricted candidate list (RCL) is defined greedily, by including the elements with least 

marginal cost, i.e. the best elements. The probabilistic feature relies on the (controlled) 

random selection of the element to be integrated into the solution under construction from 

the RCL. The integration of the selected element into the solution leads to its removal from 

the RCL and re-computing the marginal costs of the elements still in the RCL. Therefore, this 

construction phase can be classified as a greedy randomized procedure. The construction 

phase, balancing the greedy and the randomized aspects, is responsible for providing good 

quality starting solutions to the local search phase. 
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The local search phase is aimed at improving the solution constructed by exploring its 

neighborhood in a single-objective optimization problem. Whenever a better solution is 

found in the neighborhood of the current solution then it replaces the latter. As in any local 

search scheme, a careful definition must be made of the neighborhood structure and search 

technique, for the sake of both efficiency (namely computational effort) and effectiveness 

(quality of the solution produced). 

Pseudo-codes of a generic GRASP and the respective construction and local search phase to 

a single-objective optimization problem can be found in [Feo and Resende (1995)]. 

Despite the large number of works using GRASP in single-objective optimization problems 

and its application in several areas (see [Festa and Resende (2009a, 2009b, 2011)] for a vast 

bibliography), GRASP has not been used often to deal with MOOPs, unlike other 

metaheuristics such as SA or GA. Some works dealing with multi-objective GRASP 

approaches have been carried out in recent years and just a few uses the non-dominance 

concept in the optimization process. The GRASP algorithm presented by Vianna and Arroyo 

(2004) is based on the optimization of a weighted linear utility function for a multi-objective 

knapsack problem. In Higgins et al. (2008) a weighted-sum objective function is used to 

compute non-dominated solutions for an environmental planning problem involving 

biodiversity, water run-off and carbon sequestration objectives. The weight of each 

objective function is randomly generated. In Arroyo et al. (2008) a GRASP algorithm based 

on the optimization of different weighted utility functions is presented for the multi-

objective minimum spanning tree problem. In the construction phase the Kruskal algorithm 

is used and in the local search phase a “drop-and-add” neighborhood transformation is 

applied. Li and Landa-Silva (2009) applied GRASP to a multi-objective quadratic assignment 

problem. The algorithm uses an elitist-based greedy randomized construction, cooperation 

between solutions and an adaptive weighting technique to guide the search. Chica et al. 

(2010) apply the MORGA (multi-objective random greedy search algorithm) procedure to 

solve a time and space assembly line balancing problem. The MORGA diversification 

generation mechanism is inspired by the construction phase of GRASP and in this approach 

the selection of the task at each point in time is guided by a stochastic greedy function. The 

algorithm proposed by Mauttone and Urquhart (2009), to obtain an optimal design of routes 

and frequencies in urban public transit systems (a transit network design problem), 

generates a set of routes in the construction phase, changing the maximum route duration 

between successive GRASP iterations to obtain different trade-off levels. In the local search 
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phase, this is achieved using a random vector of weights. At the end of each GRASP iteration 

the non-dominated solutions are filtered. 

Only some recent works using the concept of non-dominance have been proposed to extend 

GRASP to the multi-objective optimization context. Reynolds and Iglesia (2009) and Reynolds 

et al. (2009) use this concept in their multi-objective GRASP algorithm for partial 

classification and rule selection, respectively. In Arroyo and Pereira (2011) the 

multi-objective GRASP (named M-GRASP) algorithm blends the concepts of scalarizing 

functions and non-dominance. However, the search of non-dominated solutions uses a 

weighted linear utility function with the weighting vectors uniformly chosen at each iteration 

of the heuristic with the purpose of covering the entire Pareto front. The local search phase 

is based on the Variable Neighborhood Search heuristic and combines weighted utility 

functions and Pareto dominance approaches. In Antunes et al. (submitted) a multi-objective 

GRASP using the non-dominance concept is presented for a reactive power compensation 

problem. In this approach a construction method based on several RCLs is proposed to 

obtain solutions with distinct characteristics to cover different regions of the space and, 

consequently, to improve solution diversity. Martí et al. (2011) present some variants of an 

algorithm combining GRASP with path-relinking to obtain non-dominated solutions for two 

bi-objective optimization problems (a path dissimilarity problem and a bi-orienteering 

problem). In these approaches, different constructive methods for both problems are tested 

considering the multi-objective character of the problems. Also, three versions of the GRASP 

algorithm are compared for the same optimization problems combining different methods 

for the constructive and the local search phases. 

As referred in [Resende et al. (2012)] one advantage of GRASP is the reduced number of 

parameters. Only two parameters are defined in the most usual GRASP algorithms: the 

maximum number of iterations and a parameter that controls the greedy/random selection 

in the construction phase. Another aspect that may be relevant is the GRASP facility for using 

parallelism due to the independence in the construction of each solution and its exploitation 

in the local search procedure. 

4.1.1. THE CONSTRUCTION PHASE: SOME DETAILS 

The construction phase in GRASP is closely related to the method used to construct the RCL, 

in particular the number of candidates to be included in the RCL, the level of 

greediness/randomness imposed to the algorithm, as well as the evaluation of each 

candidate element. 
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The number of elements to be included in the RCL may be defined a priori or be a dynamic 

value. Two main schemes to define the number of elements to be included in the RCL were 

proposed by Hart and Shogan (1987) and Feo and Resende (1989) for single-objective 

optimization problems: a cardinality based scheme and a percentage based scheme. In the 

first scheme the number of elements, k, to be included in the RCL is pre-defined. In the 

second scheme this number depends on the value of the greedy function for each candidate 

element. Only elements with objective function values with α% of the greedy value go to the 

RCL. The α parameter (α∈[0, 1]) controls the level of greediness/randomness of the 

algorithm. An increase of the α value increases the greediness of the construction phase. 

Although the percentage based scheme is the most used one, some adaptations of this 

mechanism have been implemented depending on the applications at hand. In alternative 

implementations, the value of α can be, for example, a fixed value tuned after a set of initial 

experiments or a value belonging to the interval [0, 1] uniformly chosen at each iteration of 

the construction phase. A discussion about several possibilities to define the value of α is 

presented in [Prais and Ribeiro (1999, 2000)] and an overview can be found in [Pitsoulis and 

Resende (2002)] and [Resende and Ribeiro (2010)]. 

Approaches for the construction phase may also differ in the technique used to pick the 

elements from the RCL. In some cases the selection is not random, as usual, but guided by a 

bias function [Binato et al. (2001), Bresina (1996)] or optimized using Bayesian Heuristic 

Approach [Mockus et al. (1997)]. In most construction procedures, the element selected 

from the RCL is removed from it, but in some cases this does not occur in a deterministic 

manner and a probability of removal is associated with each element [Bresina (1996)]. 

All the previous aspects as well as the way to integrate the greediness and the randomness 

in the construction phase, the possible inclusion of a memory and learning mechanisms to 

improve the performance of this phase, among others, have led to the proposal of several 

construction phase procedures. In [Resende and Werneck (2004)] some proposals of 

alternative construction methods are used for solving a p-median problem and a summary of 

construction approaches used in the single-objective context are described in [Resende and 

Ribeiro (2010)] and [Resende et al. (2012)]. 

In addition to the issues referred to above in the context of single-objective optimization, 

the adaptation of the GRASP construction phase to MOOPs requires taking into account the 

existence of multiple objective functions in the construction of the RCL. While in  

single-objective optimization problems the construction is guided by the single greedy 

function, in MOOPs the multiple objective functions must be considered in the evaluation of 
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elements to be included in the RCL. Different construction methods have been proposed 

with this aim in a multi-objective context. Martí et al. (2011) classify them as: pure 

construction and combined construction. In pure construction just one objective function is 

considered during a single construction. The objective function used can be randomly 

selected (pure-random construction) or selected using a pre-defined order (pure-ordered 

construction). In combined construction more than one objective function is considered in 

each construction phase. The objectives can be combined using a weighted sum or in a 

sequential way (in each step of the construction process a different objective is selected 

randomly or sequentially). 

4.2. SIMULATED ANNEALING 

The Simulated Annealing (SA) is an optimization algorithm based on a physical process, 

named annealing, consisting in the heating of a material until its fusion temperature so the 

material passes from the solid to the liquid state. Then the temperature is slowly decreased 

until the material achieves a minimum energy state. This annealing process was modeled by 

Metropolis and its co-workers in 1953 [Metropolis et al. (1953)]. Later Kirkpatrick et al. 

(1983) and Černý (1985) showed, in independent ways, that the referred model could be 

used to solve combinatorial optimization problems. In this analogy the energy state 

corresponds to the objective function cost, the slight perturbation in the energy state 

imposed by the change of temperature is compared to a movement into a neighborhood 

space, and the minimum energy state achieved at the end of the annealing process may be 

viewed as the minimum value of the objective function at the end of the optimization 

process. 

The SA algorithm is classified as a metaheuristic belonging to the set of local search 

algorithms. Initially, SA was created to deal with combinatorial optimization problems. 

However, despite the large majority of SA applications is in discrete optimization problems, 

also continuous optimizations problems can be solved. Vanderbilt and Louie (1984), Corana 

et al. (1987), Siarry et al. (1997), Tekinalp and Karsli (2007), Suppapitnarm et al. (2000) 

present examples of works dealing with continuous optimization problems. 

The first SA approaches were used to solve single-objective optimization problems. In this 

setting a neighbor solution x’ is generated from the current solution x. The new solution x’ is 

accepted as the current solution if it improves the objective function, else it may be 

accepted based on the value of an acceptance probability function. This function depends on 

a parameter, usually called temperature (due to the analogy with the physical process), 
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which decreases along the search process. The probability of accepting worse solutions 

depends on the temperature, and as such also decreases during the search process. 

The use of SA to MOOP requires the adaptation of some components from single-objective 

to multi-objective SA algorithms, namely with respect to the evaluation and selection of 

neighbor solutions and the definition of the acceptance function. Concerning to the 

evaluation and acceptance function, two main approaches may be considered: one based on 

an aggregating function and other based on the non-dominance concept. The first 

approaches of SA applied to MOOP use an aggregating function to transform a MOOP into a 

single-objective optimization problem and therefore it is possible to use a similar version of 

single-objective SA. Serafini (1994) uses a target-vector to solve a bi-objective optimization 

problem. In this approach an archive is used to store the non-dominated solutions found 

from the direct comparison of the new neighbor solutions and the current solution. If the 

neighbor solution is non-dominated with respect to the current solution, it will be included 

in the archive. Consequently, solutions in the archive may be dominated with respect to 

each other, requiring a further processing to determine the non-dominated solutions. In 

[Ulungu (1993), Ulungu et al. (1999)] the proposed multi-objective simulated annealing 

(MOSA) uses also an aggregating function. A main difference between MOSA and the Pareto 

Simulated Annealing (PSA) proposed by Czyzak and Jaszkiewicz (1997, 1998) relies on the 

fact that PSA uses a population instead of a single solution at each iteration. A review of 

other works ([Hansen (1997), Chang et al. (1998), Lučić & Teodorović (1999), Thompson 

(2001)]) using aggregating functions can be found in [Coello et al. (2002)]. The Pareto 

Simulated Annealing has been applied in several MOOPs in different areas and, more 

recently, Drexl and Nikulin (2008) use PSA to address an airport gate assignment problem 

with multiple objectives (minimize the number of ungated flights and the total passenger 

walking distances or connection times as well as to maximize the total gate assignment 

preferences). Li and Landa-Silva (2011) present EMOSA, which incorporates SA and adapts 

the search directions (weighting vectors) corresponding to various subproblems. In EMOSA, 

the weight vector of each subproblem is adaptively modified at the lowest temperature in 

order to diversify the search towards the unexplored parts of the Pareto-optimal front. 

Abdelsalam and Mohamed (2013) apply PSA to select a partner in a virtual enterprise 

considering two main objective functions (project completion time and total cost). 

Issues associated with the use of a weighted sum in MOOP are well known and consequently 

some SA approaches not using an aggregating function have been proposed in the last years. 

The concept of non-dominance is applied in the acceptance of neighbor solutions and/or in 
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the evaluation of the acceptance function. Ruiz-Torres et al. (1997) use this concept as the 

selection criterion in a scheduling problem where the objective is to minimize both the 

number of late jobs and the average flow-time. Suppapitnarm et al. (2000) combine the 

advantages of a local search with the non-dominance of Pareto. It does not use a 

“composite” (as called in this work) function, the values of the objective functions being 

used to decide about the non-dominance of a solution with respect to an archive composed 

by the non-dominated solutions. To avoid the convergence to local optima and to maintain 

diversity, the current solution can be replaced by one solution in the archive (the “return to 

base” strategy). Smith et al. (2004, 2008) incorporate the concept of relative dominance of a 

solution with respect to the other solutions in the evaluation of neighbor solutions. The 

relative dominance of a solution is a measure that essentially evaluates the quantity of 

solutions dominated by this solution. In AMOSA [Bandyopadhyay et al. (2008)] the 

non-dominated neighbor solutions are included in an archive at each iteration. When the 

dimension of this set is larger than a pre-defined value a clustering method is applied to 

guarantee the diversity of the solutions. AMOSA also uses a concept of dominance intensity 

to measure how strongly a solution is dominated with respect to other solution. This 

concept is used in the evaluation of the acceptance probability function. In [Singh et al. 

(2010)] AMOSA is extended for multi-objective constrained optimization problems, using the 

Constrained Pareto Simulated Annealing (C-PSA). Antunes et al. (2010) also use an archive to 

maintain the non-dominated neighbor solutions found in the search process. However, in 

this work a population is used at each iteration. The non-dominance concept is used to 

compare the neighbor solution with the current solution and also to evaluate its 

non-dominance with respect to the archive. In [Suman and Kumar (2006)] a survey about 

single and multi-objective SA is provided. 

 

4.2.1. THE ACCEPTANCE PROBABILITY FUNCTION  

SA is a local search method in which neighbor solutions are generated from a current 

solution. In a local search scheme a solution may get trapped in a local optimum. To 

overcome this problem SA can accept solutions that do not improve the objective function(s) 

based on an acceptance probability function. 

In single-objective optimization the acceptance function is usually considered as a 

probability function depending on the temperature and the performance of the neighbor 

solution in comparison to the current solution. In this case if the neighbor solution improves 

the single objective function the neighbor solution is accepted, else it can be accepted 
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depending on the value of the acceptance probability function. In its original form the 

acceptance function is given by (4.1): 

    <∆>
?        (4.1) 

where ∆@ is the difference between the objective function for the original solution and the 

neighbor solution and T is the temperature. 

However, in a multi-objective context three possibilities must be considered: the neighbor 

solution dominates the current solution, and it is accepted; the neighbor solution and the 

current solution are non-dominated between them or the neighbor solution is dominated by 

the current solution. In these two latter situations the new solution may be accepted 

depending on the value of the acceptance probability function. Consequently, the 

application of SA in a multi-objective optimization context requires also the adaptation of 

the acceptance probability function to deal with more than one objective function. Distinct 

acceptance probability functions have been used and tested in multi-objective SA 

algorithms. Some of the most usual are: scalar linear, strong and weak rules [Serafini (1994), 

Kubotani and Yoshimura (2003), Tekinalp and Karsli (2007)]. Defining the difference between 

the performance of the competing solutions 'x  and x in objective function j by 

  pjxfxf jjj ,...,1         )'()( =−=δ     (4.2) 

and the aggregation of these differences by the weighted-sum ∆ = w j  
j =1

p

∑ δ j , in which wj is 

the “weight” assigned to the objective function fj, the previous acceptance probability 

functions are defined as follows: 
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Ulungu et al. (1999) compare the use of the weak rule with the scalar linear function. The 

weights are defined based on a minimum satisfaction level for each objective function. 
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In Serafini (1994) other possible acceptance functions are presented and a new composite 

function based on the weak rule and the product rule (Equation 4.6) is evaluated. The 

weights are initialized to one and modified during the search process.  

 ∏
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Thompson (2001) uses the acceptance function, called simple product by Serafini (1994), 

and defined as: 
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This acceptance probability function is the product of the single probabilities associated with 

each objective function. 

In Antunes et al. (2010) an acceptance probability function based on the logistic curve is 

used (Equation 4.8). The difference of performance between the competing solutions is a 

weighted sum of the difference of the normalized objective function values. This aggregation 

takes into account the ranges of values that each objective function attains in the 

non-dominated frontier computed so far (for normalization purposes, thus avoiding the 

undesirable effects of aggregating objectives functions expressed in different orders of 

magnitude). 
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4.3. HYBRID APPROACHES 

 

4.3.1. A HYBRID EVOLUTIONARY SIMULATED ANNEALING ALGORITHM 

As referred to above one of the most popular hybrid metaheuristics is the combination of 

EAs with a local search method. EvABOR-III (described in Chapter 3) has been improved with 

a local search procedure to refine the search of solutions belonging to a certain class of 

merit. This method is triggered when a solution belonging to a new (higher) class of merit is 

found. The idea is to intensify the exploitation in the neighborhood of that new solution to 

increase the convergence to solutions belonging to a better class of merit than the current 

one. The local search method is based on SA due to the good results it has provided in 
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MOOPs. The preferences elicited from the DM are also incorporated in the probability 

acceptance function in SA. 

The main structure of the EvABOR algorithm with the SA hybridization, called Hybrid 

Evolutionary Simulated Annealing (HESA) algorithm, is presented in the flowchart in 

Figure 4.1. After the crossover and the mutation operators are applied, the non-dominated 

offspring are obtained and classified in classes of merit. If any offspring belongs to a higher 

class of merit (regarding the best class in the previous iteration), SA is applied to exploit the 

neighborhood of these offspring (the “best” offspring). 

 

Figure 4.1 – Flowchart of HESA. 

 

SA WITH INCORPORATION OF PREFERENCES 

The exploitation of the neighborhood of each “best” offspring is performed for each 

temperature value (as in classical SA), which is successively decreased until a minimum 

value. The temperature decrease implies that the probability to accept a solution for further 
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exploration also decreases, as usual. An archive is used during the local search to save the 

solutions belonging to the best class. This archive is initialized with offspring that belong to 

the new best class of merit found after crossover and mutation operators are applied. The 

neighbor solutions of each offspring in the archive are obtained using a set of neighborhood 

structures specifically designed for the problem at hand and are classified using the ELECTRE 

TRI method using the preferences elicited. This preference information included in the 

probability acceptance function is also used to decide about the exploitation of neighbor 

solutions. As the aim of this local search is to increase the convergence to a region more in 

accordance with the preferences elicited from the DM, it makes sense that the preference 

information is used during the search process. Three main cases are considered in this 

phase: 

1) If the new neighbor solution dominates (consequently it belongs to the same or a 

higher class of merit) the current solution, this is replaced by the neighbor solution 

in the archive. 

2) If the neighbor solution and the current solution are non-dominated then the 

acceptance depends on the quality of the solution according to the preferences 

elicited. If the class of merit of the neighbor solution is not inferior to the class of the 

current solution then the neighbor solution is added to the archive. If the class of 

merit of the neighbor solution is inferior to the class of the current solution then the 

neighbor solution can be accepted depending on the value of the credibility degree. 

This value is used in ELECTRE TRI to classify a solution into a class of merit in 

comparison with the cutting-level λ, so it can be viewed as an indicator of the quality 

of the solution. Additionally, being a value within [0,1], it is suitable to be used as an 

acceptance function. 

3) If the neighbor solution is dominated with respect to the current solution then it can 

yet be accepted for further exploitation. If the neighbor and current solutions belong 

to the same class of merit then the acceptance depends on the credibility degree (as 

in the previous point), else a probability acceptance function is used (in this case the 

current solution belongs to a higher class than the neighbor solution). 

Before the exploitation of a solution in the archive the non-dominated solutions are filtered. 

The dimension of the archive is reduced and priority is given to the non-dominated solutions 

belonging to the best (and new) classes of merit. 

The pseudo-code of SA with the incorporation of preferences is shown in Figure 4.2.  
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temp = t0 

archive = set of “best” solutions 

while temp >= final temperature 

  for i = 1 to #(archive) 

    current solution = archive(i) 

    while current solution≠{} 

      Select randomly a neighborhood structure 

      Obtain the neighbor solution 

      Evaluate the neighbor solution 

      Determine the class of the neighbor solution 

      if neighbor solution dominates current solution 

         archive(i) = current solution 

         current solution = {} 

      end 

      if neighbor and current solutions are non-dominated between them 

         if class(neighbor solution)>= class(current solution) 

     archive = archive ∪ {neighbor solution} 

            current solution = {} 

         else 

     if random value in [0,1]<= credibility degree 

               current solution = neighbor solution 

     else current solution = {} 

     end 

         end 

      end 

      if neighbor solution is dominated by current solution 

         if class(neighbor solution)= class(current solution) 

     if random value in [0,1]<= credibility degree 

               current solution = neighbor solution 

     else current solution = {} 

            end 

  else 

     if random value in [0,1]<= probability function 

               current solution = neighbor solution 

     else current solution = {} 

     end 

         end 

      end 

    end while 

    archive = non-dominated solutions of the archive 

  end for 

temp = coef*temp 

end while 

Figure 4.2 – Pseudo-code of SA with incorporation of preferences. 



80 

4.3.2. GRASP+SA 

In metaheuristics a usual process to obtain the initial solutions is randomly generate one or 

more solutions. However, it is known that the quality of initial solutions may influence the 

global performance of metaheuristics. Consequently, whenever information about the 

characteristics of the problem or about preferences regarding the final solutions is available, 

it may be advantageous to use this information in the construction of solutions. 

In this hybrid approach, this idea is included in a construction phase. The procedure 

implemented is based on the principles of the GRASP algorithm (Section 4.1.1). For this 

purpose different RCLs are used, each one based on a different objective function or on a 

specific characteristic of the problem. If preferences are elicited from a DM, these may also 

be used to sort the candidate elements in the RCL. 

The construction phase is followed by a local search to exploit the neighborhood of each 

solution. The local search is done according to the algorithm presented above. These phases 

are repeated until the stop condition is achieved (e.g., a maximum number of iterations, all 

solutions belong to the best class of merit).  

The selection of solutions that go to the next iteration is done using the procedure 

presented in Section 3.2.3. The pseudo-code of this hybrid algorithm is displayed in 

Figure 4.3. 

while not stop condition do 

    Greedy randomized construction phase 

    Local search phase 

    Update non-dominated solutions 

    Selection of the next generation 

end 

Update the non-dominated set of solutions 

Figure 4.3 – Pseudo-code of GRASP+SA. 

 

4.3.3. PARALLELISM IN THE PROPOSED APPROACHES  

One the advantages associated with metaheuristics is the possibility to use parallelism in 

their implementation. Although this aspect is not as explored as others in this area, some 

works use this mechanism. Some references about such works can be found in [Coello 

(2002), Konak et al. (2006), Talbi (2009), Resende and Ribeiro (2010)]. The importance of the 
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parallelism led Raidl (2006) to consider it as a criterion in his classification of metaheuristics 

(Figure 2.1) depending on the way memory is used (shared or distributed) and data 

allocation is done (dynamic or static), among others. Talbi (2009) also explores this aspect in 

the classification proposed and presents some mechanisms used in the implementation of 

parallel metaheuristics. 

In this work parallelism is used in the three algorithms to decrease the computational time. 

This aspect is particularly important in the second case-study (the direct load control 

problem) in which physically based load models are used in the evaluation of solutions. The 

evaluation done in parallel decreases substantially the computational time involved in this 

process. In EvABOR approaches parallelism is used in the evaluation of solutions. In the HESA 

and the GRASP+SA algorithms parallel computation is also used in the exploration of the 

neighborhood of each solution and in the construction phase of GRASP+SA. 

 

4.4. THE DIRECT LOAD CONTROL PROBLEM 

 

4.4.1. CASE STUDY  

The changes in the electrical sector pushing the evolution of power systems towards 

smart-grids, with the increasing integration of information and communication technology 

and the dissemination of distributed generation, allows the use of demand as a resource to 

increase energy efficiency [Mohsenian-Rad et al. (2010), Karangelos and Bouffard (2012)]. In 

this setting, demand is viewed as a resource with some potential of management and 

control, by changing the usual demand patterns without degrading the quality of the energy 

services provided. Demand-side management (DSM) programs have been used by utilities to 

modify the load pattern of consumers, either for operational benefits (e.g. increase load 

factor, reduce peak power demand or reliability concerns) or supporting energy or 

environmental policies. 

DSM programs can be classified in two main groups: price-based actions (consumers are 

encouraged to reduce peak demand taking advantage of variable electricity prices thus 

reducing their electricity bills) or incentive-based programs (giving customers some financial 

stimuli for reducing peak demand during critical periods) [US Department of Energy (2006)]. 

Direct load control (DLC) actions are one of the possibilities to change consumption patterns. 

In these programs consumers are stimulated to modify their load pattern to reduce peak 

load especially in critical periods by turning off some end-use loads during short periods of 
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time. Loads providing an energy service that can be temporarily interrupted or deferred in 

time without decreasing the quality of service provided are suitable for being used in these 

programs. Thermostatic loads (air conditioners, heat pumps, electric water heaters and 

electric space heaters, for example) are loads with these characteristics and are commonly 

used in this kind of programs. However, control actions must be carefully implemented to 

prevent some undesirable effects, for instance, the so-called payback effect. This effect may 

occur when the power is restored to the controlled loads leading to an increase in peak 

power demand. Other undesirable consequences are a possible strong decrease in profits 

and the increase of the discomfort caused to consumers. This aspect is very important for 

the success of DSM programs, since it may impact negatively the willingness of consumers 

[Jorge et al. (2000)]. Consequently, the minimization of the discomfort as well as the 

maximization of profits have been considered as objective functions in the search and 

identification of load control strategies [Ng and Sheble (1998), Gomes et al. (2004, 2007, 

2012)]. Besides, the minimization of peak demand and the minimization of operational costs 

are the most usual objectives in DSM programs, but the minimization of losses as well as the 

minimization of spinning reserve have been also considered [Gooi et al. (1999), Gomes et al. 

(2004, 2007, 2008, 2012)]. Despite in the literature some works are only focused on the 

selection of a control strategy [Bhatnagar and Rahman (1986), Kurucz et. al. (1996)], the 

design of a set of solutions guaranteeing the achievement of multiple objectives are crucial 

for the success of a load management program. The appropriate assessment of impacts at 

different levels of aggregation of demand (Figure 4.4), and therefore according to the 

interests of different potential economic actors in the various branches of activity in the 

electricity market, must be taken into account in the design of control strategies. 

 

Figure 4.4 – Example of a sub-station and distribution power transformers. 

In this chapter the aim is to design and select load control strategies to minimize the 

maximum peak power demand in a sub-station (SS) and in two distribution power 

transformers (PT1 and PT2), to maximize profits with the sale of electricity, to minimize the 
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potential discomfort caused to consumers and the total time in which loads are in 

curtailment. The discomfort is assessed by a variable (usually associated with temperature) 

and increases whenever it is over or under a pre-specified threshold. To address this aspect, 

two objective functions are considered: the maximum continuous time interval in which 

discomfort has occurred and the total time of its occurrence. 

The loads to be controlled are 500 air conditioners (ACs) units, grouped in 24 groups, as 

presented in Table 4.1. This table also presents some characteristics of the controlled loads. 

Loads are usually grouped according to the similarity of their characteristics and the 

geographic proximity. The demand patterns of ACs are obtained by simulation using 

physically based load models [Gomes et al. (2004, 2007)], in three aggregation levels: 

demand in PT1 (PT1), demand in PT2 (PT2) and aggregated demand. The use of physically 

based load models, which reproduce the physical phenomena occurring in loads, is an 

important tool (despite the additional computational effort) for assessing the impacts of 

control actions, including potential undesirable effects (as for example, the payback effect). 

 

Groups ACs (####) Power (kW) PTs/SS 

1 15 1,6 PT2 

2 20 2,8 PT1 

3 30 2,7 SS 

4 20 4 SS 

5 25 1,6 SS 

6 20 1,4 SS 

7 35 2,4 SS 

8 20 2,4 SS 

9 20 4 PT1 

10 30 3,8 SS 

11 15 1,8 PT2 

12 25 8 SS 

13 30 2,4 SS 

14 20 3,4 PT2 

15 30 2,4 SS 

16 25 1,6 SS 

17 10 2,4 PT1 

18 15 1,4 PT1 

19 15 1,8 PT2 

20 15 1,6 PT1 

21 10 1,8 PT2 

22 15 1,4 PT1 

23 20 1,4 SS 

24 20 2,4 SS 

Table 4.1 – Some characteristics of controlled loads. 
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Typical load diagrams in each one of the aggregation levels are displayed in Figure 4.5. It is 

important to note that there are non-controlled loads (NCLs) that contribute to increase the 

maximum peak power demand in the different aggregation levels. These loads are also 

displayed in Figure 4.6 to Figure 4.8 and the maximum power in each one of the aggregation 

levels is presented in Table 4.2, allowing the comparative analysis between the load demand 

by the ACs and the non-controllable loads.  

 

Figure 4.5 – Total demand in each one of the aggregation levels. 

  

Figure 4.6 – Load diagrams at PT1. 
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Figure 4.7 – Load diagrams at PT2. 

 

Figure 4.8 – Load diagrams at SS. 

The curtailment actions have been applied in the period of time between 10:00 to 21:00 

having in mind the objective functions to optimize and the usual period in which air 

conditioners are in use. The simulation restricted to this interval of time reduces the 

computational effort required from the physically based load models. 
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  Maximum (kW) 

Air Conditioners (ACs) 

PT1 117,973 

PT2 93,333 

SS 750,073 

 Non-Controlled Loads (NCLs) 

PT1 707,000 

PT2 553,000 

SS 6660,139 

ACs + NCLs 

PT1 823,600 

PT2 645,333 

SS 7394,072 

Table 4.2 – Maximum power in each one of the aggregation levels. 

 

4.4.2. IMPLEMENTATION DETAILS 

Finding solutions to the problem previously described is, in general, a hard task due to the 

multiple and conflicting objectives considered and the combinatorial nature of the problem. 

One control strategy encompasses the control actions (on/off patterns) to be applied to all 

groups and the same control actions are applied to the loads belonging to the same group. 

The two approaches described in Section 4.3 (HESA and GRASP+SA) are used to search and 

identify a set of curtailment patterns to apply to each group of loads and their results are 

also compared with the ones obtained using EvABOR-III. 

For both algorithms the encoding of solutions is the same: a bi-dimensional array (number of 

groups x period of time) in which each row corresponds to each group during the period 

under evaluation. The binary representation is used to capture the on/off patterns to be 

applied to each group: a “1” in the ijth position in the array means that a curtailment action is 

applied to group i in the instant of time j while a “0” means that no action is applied in the 

same instant. 

THE EVABOR-III ALGORITHM 

The implementation of the crossover operator in EvABOR-III to be used in the DLC problem is 

similar to the one implemented for the reactive power compensation problem, i.e. a 2-point 

crossover is used. However, in this case, the implementation is carefully designed to 

preserve the curtailment patterns of each group. Figure 4.9 exemplifies the structure used in 

the crossover operator to obtain an offspring. The selection of individuals that go to the next 

generation is the one described in Chapter 2. In the experiments presented in this chapter 
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the value of the intra-class elitism is equal to 0.5. Concerning the mutation operator, an 

adaptive mutation operator, already used with the same case study in previous works with 

proven results [Gomes et al. (2008)], replaces the original mutation operator of EvABOR-III. 

As a binary representation is used there are two possibilities to occur a mutation in each 

gene (corresponding to an instant of time): “0” mutates to “1” and “1” mutates to “0”. Two 

different mutation probabilities are associated with each one of the previous mutations. The 

performance of the solution in each objective function is used to compute the probability 

values. Details about this mutation operator can be found in [Gomes et al. (2008)]. 

 

Figure 4.9 – Scheme of the crossover operator to the DLC problem. 

THE HESA ALGORITHM 

The genetic operators, crossover, mutation and selection, implemented in the HESA 

algorithm used in this case study are the same described previously and implemented in 

EvABOR-III. The exploitation of the solutions belonging to a new class of merit in the local 

search phase is carried out using the following different neighborhood structures specifically 

designed for the problem at hand: 

1. Reduction of the maximum off interval: the largest off interval is chosen (randomly if 

there is a tie) and a reduction within the range [1…5] minutes (randomly chosen) is 

applied at the right or at the left of the pattern. The aim of this neighborhood 

structure is trying to reduce the maximum time interval and the total time in which 
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discomfort occurs. Moreover, this neighborhood structure also contributes to 

reduce the total time in which loads are in curtailment. 

2. Increasing the minimum off interval: the minimum off interval is chosen (randomly if 

there is a tie) and a period (between 1 to 5 minutes) of curtailment is added at the 

right or at the left of the minimum interval. This neighborhood structure avoids the 

existence of potentially ineffective curtailments due to too short duration and 

prevents high on/off switching rates.  

3. Shifting part of the curtailment pattern of a group: the shift dimension is selected 

randomly within the range [2-6] minutes and may be done to the right or to the left 

of the curtailment pattern. This neighborhood structure is applied to a maximum of 

eight groups chosen randomly and it produces small adjustments in the curtailment 

pattern. These adjustments can be useful to prevent the payback effect if the 

neighborhood structure generates solutions with diversified curtailments. 

4. Exchanging curtailment patterns between groups supplied by the same PT: within a 

control strategy, two groups of loads supplied by the same PT are selected randomly 

and their control patterns are exchanged. 

5. Exchanging curtailment patterns between any groups. In this case the existing 

curtailment patterns may be exchanged between any groups in every control 

strategy. The aim of this structure is to improve the diversity of the set of solutions. 

The first and the second neighbor structures are applied to a minimum of 10 groups (the 

number is chosen randomly).  Experiments have demonstrated that if these structures are 

applied to a small set of groups the variation of the objective functions is negligible. 

In the local search of the HESA algorithm, if the neighbor solution is dominated by the 

current solution and this belongs to a higher class than the neighbor solution, the 

acceptance of this neighbor solution for exploration depends on the value of the credibility 

degree (as a way to assess the quality of the solution regarding the preferences elicited) and 

on the SA temperature. In Table 4.3 the values of the acceptance probability function 

considered in this section (temperature × credibility degree) are presented considering some 

examples of the credibility degree and the temperature. The probability to accept a neighbor 

solution decreases in two situations: 

1. For the same value of the credibility degree with the decrease of the temperature. 

2. For the same value of the temperature with the decrease of the credibility degree. 
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Credibility 

degree 

Temperatures values 

2 1.6 1.024 0.65536 0.4194304 0.268435456 0.109951163 

0.0739217 0.147843 0.118275 0.075696 0.048445 0.031005 0.019843 0.008128 

0.1573922 0.314784 0.251827 0.161170 0.103149 0.066015 0.042250 0.017305 

0.2711419 0.542284 0.433827 0.277649 0.177696 0.113725 0.072784 0.029812 

0.3648516 0.729703 0.583762 0.373608 0.239109 0.153030 0.097939 0.040116 

0.4000000 0.800000 0.640000 0.409600 0.262144 0.167772 0.107374 0.043980 

0.4144051 0.828810 0.663048 0.424351 0.271585 0.173814 0.111241 0.045564 

0.6683639 1 1 0.684405 0.438019 0.280332 0.179413 0.073487 

0.7736972 1 1 0.792266 0.507050 0.324512 0.207688 0.085069 

0.8392210 1 1 0.859362 0.549992 0.351995 0.225277 0.092273 

0.9740781 1 1 0.997456 0.638372 0.408558 0.261477 0.107101 

1 1 1 1 0.655360 0.419430 0.268435 0.109951 

Table 4.3 – Examples of values of the acceptance probability function. 

These two situations are in accordance with the preferences elicited since a decrease in the 

value to the credibility degree corresponds to a decrease in the acceptance probability, as 

well as with the underlying idea of the SA algorithm since the acceptance probability also 

decreases with the decrease of the temperature. 

This acceptance probability function has the advantage of being easy to evaluate and also 

reflecting the effect of both the temperature and the elicited preferences. 

GRASP+SA ALGORITHM 

The GRASP+SA algorithm consists in two main phases: a construction phase where a set of 

solutions (curtailment patterns) is generated based on the knowledge about the direct load 

control problem and a local search phase to exploit these solutions. These two phases are 

repeated until a maximum pre-defined number of iterations is achieved or all solutions in 

the population belong to the best class of merit. 

In the construction phase of GRASP each element of a solution must be included in an 

incremental manner, as described in Section 4.1.1. In this case study the “atomic” element 

(the gene of the individual) is each minute in which a curtailment may be applied, as the size 

of a single potential solution is 24 (groups) x 660 (minutes). However, if the RCLs are 

composed by this type of candidate elements it will be impracticable, in real-time, to 

construct solutions due to the combinatorial characteristics of the problem and to the time 

required to evaluate each solution. Consequently, the candidate elements considered in this 

approach are possible curtailment patterns for each group. 
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In the construction phase the following steps are repeated until a curtailment pattern for all 

groups is obtained: 

1) Randomly select a group in the range [1-24] (total number of groups). Each group is 

selected just once; 

2) Obtain several curtailment patterns solutions for the current group using different 

methods; 

3) Evaluate these solutions; 

4) Construct the RCL; 

5) Select the element from the RCL according to the value of the α parameter. 

To improve the quality of the solutions these steps can be repeated using the curtailment 

pattern obtained in the previous iteration of the current construction phase. A balance 

between the number of iterations of the construction phase and the quality of solutions 

according to the preferences elicited must be considered due to the computational time 

required in the evaluation of solutions. The pseudo-code of the construction phase is 

presented in Figure 4.10.  The number of solutions to be generated in the construction 

phase is an input parameter of the GRASP+SA algorithm and it may be different from the 

dimension of the population. The construction phase procedure is called for each solution to 

obtain in this phase. This task can be performed in a parallel mode. 

In step 2) of the construction phase, two methods to construct a curtailment pattern to each 

group have been tested: patterns based on the adaptive mutation operator (used in 

EvABOR-III and in the HESA algorithm) and patterns based on mutation probability evaluated 

using a pre-defined threshold (a percentage of the maximum peak power demand in each 

PT). A third approach has been tested: cyclic patterns with diverse on/off periods. Despite 

this strategy has been used in real world, after a few initial experiments it has been 

concluded that solutions obtained using cyclic patterns performs worse, so the other two 

approaches have been considered in the experiments presented in this chapter. 

The on/off patterns identified resorting to the adaptive mutation operator are applied 

during the period of time between 10:00 to 21:00, meaning that in this type of construction 

curtailments can be applied at any instant of time, i, according to the probability value. In 

the other approach based on a pre-defined threshold, curtailments are applied in a more 

restrict period of time, as control actions are only applied when demand is higher than the 

pre-defined threshold, which is usually identified as a percentage, perc, of the maximum 
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peak power demand in the sub-station and in two distribution power transformers (Figure 

4.11). For each instant of time and for each transformer (SS, PT1 and PT2) two probability 

values (the probability of change from “1” to “0” and the probability of change from “0” to 

“1”) are evaluated as displayed in pseudo-code of Figure 4.12. 

 

for k=1:num_internal_cycles do 

    list of groups={1,2,…,23,#groups} 

    while list of groups~={} do 

Randomly select a group i from the list of groups 

Remove group i from the list of groups 

Obtain several curtailment patterns (solutions) for the 

group i using different methods 

Evaluate solutions 

Construct the RCL 

Select the element from the RCL according to the value of 

the α parameter 

    end 

end 

Figure 4.10 – Pseudo-code of the construction phase. 

 

Figure 4.11 – Example of a period of time defined using a pre-defined threshold. 

aux_superior[i]= max(0, demand_in_instant[i]-perc*max_of_DC) 

aux_inferior = max(aux_superior[i]) 

Prob_01_PT[i]= aux_superior[i]/aux_inferior*max_prob_mutation 

Prob_10_PT[i] = (1-aux_superior[i]/aux_inferior)*max_prob_mutation 

Figure 4.12 – Pseudo-code to evaluate the mutation probability using a pre-defined threshold. 
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In Figure 4.12 perc is the percentage (80% in the experiments presented in the next 

section) of the maximum peak power, max_of_DC is the maximum peak power demand 

and the max_prob_mutation is the maximum mutation probability value. The value of 

this parameter is equal to 0.01 in the evaluation of the mutation probability based on a 

pre-defined threshold, as well as in the other algorithms using the adaptive mutation 

operator. This method of construction of curtailment patterns focuses the actions on the 

periods of time where the power demand is higher, while the first method allows spreading 

the curtailments along all period of time, thus complementing the first one. As can be 

observed, comparing Figure 4.13 and Figure 4.14, the curtailment patterns after the 

construction phase reflects the characteristics of the load diagrams at each transformer in 

the sense that a large number of curtailments is applied in periods in which the power 

demand is higher. Note the difference between the curtailment patterns applied to the 

groups supplied by PT1, where the curtailment actions are more expanded in time, when 

compared to the other groups. In Figure 4.14 this effect is particularly evident in groups 2, 

18, 20 and 22. 

The local search phase and the selection of solutions that pass to the next generation in 

GRASP+SA are the same described in the HESA algorithm. 

 

 

Figure 4.13 – Total demand in each one of the aggregation levels.  
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Figure 4.14- Example of a curtailment pattern obtained in the construction phase. 

 

4.4.3. ANALYSIS OF RESULTS 

This section begins by analyzing some particular aspects of each proposed algorithm and 

then a comparative analysis between EvABOR-III, HESA and GRASP+SA algorithms is 

performed. 

In this section the analysis of the results is done using the preferences captured by the 

ELECTRE TRI parameters presented in Table 4.4. The thresholds considered are defined as a 

percentage of the difference between the reference profiles. The dimension of the 

population considered in these experiments is 30 individuals, the crossover probability is set 

equal to 1, the maximum mutation probability is 0.01 and the maximum number of 

iterations is 4000 for EvABOR-III and HESA and 10 for GRASP+SA. The lower maximum 

number of iterations in GRASP+SA is due to the usage of internal cycles aimed at improving 

the solution during the construction phase. In this phase, only 10 solutions are generated 

due to the computational effort required in the evaluation of solutions. However, for 

comparing with the other two algorithms the dimension of the final population is composed 

by 30 individuals. The remainder solutions are obtained by means of local search. 
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Maximum 

Power at 

PT1 (kW) 

Maximum 

Power at 

PT2 (kW) 

Maximum 

Power at SS 

(kW) 

Profits 

(Euros) 

No. Minutes 

in 

curtailment 

Max. 

Interval 

Total Time in 

discomfort 

Reference Profiles 

815 

820 

610 

620 

7100 

7250 

1500 

1800 

1000 

1071 

5 

10 

40 

80 

Weights 100/7 100/7 100/7 100/7 100/7 100/7 100/7 

Th
re

sh
o

ld
s Indifference 10% 

Preference 30% 

Veto 80% 

λ 0.7 

Table 4.4 - ELECTRE TRI parameters. 

IMPROVEMENT WITH THE LOCAL SEARCH PHASE 

In some runs, EvABOR-III has presented some difficulties to complete the population with 

solutions belonging to the best class of merit after the achievement of one solution in this 

class. This motivated the development of a local search phase to be included in the 

EvABOR-III algorithm. Two examples of this fact are displayed in Figure 4.15:  

• In the first one, the algorithm obtains all individuals of the population belonging to 

the best class of merit but the computational effort is too high. This situation is 

presented in the first column of Table 4.5, in which it is possible to observe that the 

algorithm needs more 2359 iterations to complete the population with solutions in 

the best class of merit after the first one has been found.  

• In the second example, EvABOR-III obtains the first solution belonging to class 3 in 

the 934th iteration but until the final of the run only two more solutions in this class 

are obtained. 

This situation had already been observed in the previous case study, but the execution time 

is not so problematic due to the characteristics of the problem. However, in the DLC 

problem, the use of physically based load models in the evaluation of solutions substantially 

increases the execution time, which may lead to a prohibitive computational effort, 

especially if solutions for practical implementation need to be computed in due time. 
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Figure 4.15 – Examples of the evolution of classes of merit in EvABOR-III. 

Table 4.5 and Table 4.6 present similar situations to the EvABOR-III and HESA algorithms 

regarding the first iteration in which these algorithms obtain the first solution belonging to 

the best class of merit. Comparing, for example, the first column of both tables, the first 

iteration with at least one solution in the best class of merit is around the 600th iteration. In 

this case, both algorithms obtain all solutions belonging to the best class of merit, but the 

execution time and the number of solutions evaluated in EvABOR-III are much higher than in 

the HESA algorithm. The comparison of the corresponding columns of both tables allows to 

conclude that the incorporation of the local search phase in EvABOR-III clearly improves its 

efficacy: it is possible to find all solutions in the best class of merit with HESA in much less 

time and in similar conditions EvABOR-III does not achieve this performance. The values 

shown in Table 4.5 and Table 4.6 for some particular runs are also presented in Tables B.1 

and B.2 in Appendix B for the 30 runs considering in this analysis. 

First iteration with at least 1 solution in 
class 3 

626 272 934 1667 2540 

Last iteration 2985 931 4000 4000 4000 

No. of iterations to complete the 
population with solutions in class 3 

2359 659 - - - 

No. of solution evaluations 89551 27931 120001 120001 120001 

Total execution time (second) 9833 3069 12902 12948 13121 

Obtained classes 3 3 2 and 3 2 and 3 2 and 3 

Table 4.5 – Values obtained with EvABOR-III. 

First iteration with at least 1 solution 
in class 3 

696 247 1001 1857 2539 

Last iteration 696 247 1001 1857 2539 

No. of iterations to complete the 
population with solutions in class 3 

0 0 0 0 0 

No. of solution evaluations 22310 8733 31633 56350 77425 

Total execution time (second) 2555 1006 3437 6011 8529 

Obtained classes 3 3 3 3 3 

Table 4.6 – Values obtained with HESA. 
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CONSTRUCTION PHASE OF THE GRASP+SA ALGORITHM 

After the HESA algorithm finds the first solutions belonging to the best class of merit, more 

solutions belonging to the same class are easily obtained in the local search phase. However, 

as it is possible to observe from Table 4.5 and Table 4.6, the solutions belonging to the best 

class of merit may be firstly obtained at the initial iterations (97th and 626th iteration, for 

example) or at a later stage of the algorithm (2539th iteration, for example). The aim of the 

construction phase is to establish a procedure that somehow guarantees more consistently 

the finding of solutions belonging to the best class of merit or, at least, more in accordance 

with the preferences elicited, using the available knowledge about the problem. 

In GRASP+SA the construction phase can be improved using internal cycles. To assess the 

number of these cycles some experiments have been done considering 1, 3 and 6 internal 

cycles in the construction phase. Table 4.7 presents a set of results obtained using 1 and 3 

internal cycles with 30 runs. A statistical data representation of this information is presented 

in Figure 4.16 and Figure 4.17. For the case of 6 internal cycles only a few runs have been 

done, since it has proved to be too computationally expensive without significant 

improvements in the construction of solutions. The values presented in Table 4.7 are 

obtained from the information available in Table B.4 and Table B.5 in Appendix B, in which 

the values corresponding to the 30 runs are displayed. 

When 3 internal cycles are used, the percentage of runs only with solutions in the best class 

of merit in the front (93.33%) is significantly larger than when using 1 internal cycle (40%). 

Concerning the number of evaluated solutions and the execution time, two different cases 

must be analyzed: the set of all runs and the set of runs in which only solutions in the best 

class of merit are obtained in the final front. In the first case, the number of evaluated 

solutions and the execution time increase in average around 40%, when the number of 

cycles increases from 1 to 3. However, if the median is considered, those values are similar. 

In the second case, the number of evaluated solutions and the execution time increase, in 

average, also in the order of 40%, when 3 internal cycles are used. If the value of the median 

is considered, the increase is around 12%. Despite the increase of these values, the use of 3 

internal cycles is justified due to the largest number of runs with solutions in the best class 

of merit only. 

A relevant aspect to refer is that the solutions belonging to the best class of merit are always 

firstly found in the construction phase, underlining the importance of this phase. After this, 
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the remaining solutions to complete the population are obtained in the local search phase, 

in the same iteration.  

Maximum no. of iterations of the  cycle in the 

construction phase 
1 3 

Classes in the non-dominated front 2 and 3 2 and 3 

% of runs with solutions belonging to class 3 only in the 
non-dominated front 

40.00% 93.33% 

% of runs with solutions belonging to class 2 only in the 
non-dominated front 

60.00% 6.67% 

Number of solutions 
evaluated in all runs 

Minimum 12023 17826 

Maximum 34634 91373 

Average 27506.53 39024.83 

Median 29881 29365 

Standard deviation 5404.72 18281.3 

Number of solutions 
evaluated in runs with 

solutions belonging to class 3 
only 

Minimum 12023 17826 

Maximum 32950 64095 

Average 25139.94 35285.67 

Median 25638.5 29179.5 

Standard deviation 5804.99 12180.26 

Execution time of all runs 

Minimum 2137 3414 

Maximum 6826 17809 

Average 5279.23 7520.8 

Median 5744 5565.5 

Standard deviation 1120.23 3559.78 

Execution time of the runs 
with solutions belonging to 

class 3 only 

Minimum 2137 3414 

Maximum 6323 12312 

Average 4761.94 6786.18 

Median 4924 5524.5 

Standard deviation 1170.63 2341.39 

Table 4.7 – Values from 30 runs of GRASP+SA. 

 

Figure 4.16 – Statistical data representation for the number of solution evaluations. 
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Figure 4.17 – Statistical data representation for the time execution. 

To reinforce the previous conclusions about the number of the internal cycles a set of 

experiments with different preference information (Table B.3 in Appendix B) is performed. 

An analysis of the 30 runs obtained with these preferences is presented in Tables B.6 and B.7 

in Appendix B. Despite the number of evaluated solutions and the execution time have 

increased significantly when 3 internal cycles are used, this option continues to be 

preferable due to the number of iterations in which solutions in the best class of merit are 

obtained. 

A COMPARATIVE ANALYSIS OF THE PROPOSED ALGORITHMS 

In this section a comparison of the three algorithms implemented to provide decision 

support in the DLC problem is presented. The preference information used for this analysis is 

displayed in Table 4.4. In the GRASP+SA algorithm three internal cycles are considered, 

according to the results presented in the last subsection. 

The different approaches have been compared according to the classes of merit in the 

non-dominated front, the percentage of non-dominated solutions belonging to each class, 

the total number of solutions evaluated and the execution time. The latter two aspects are 

assessed considering all the runs performed and also the runs in which solutions in the best 

class of merit only are obtained. The results presented are obtained from an average of 30 

runs for each algorithm implemented. 

Comparing the algorithms regarding the quality of solutions according to the preferences 

elicited, it is possible to conclude about the efficiency of GRASP+SA. In around 93% of the 

runs performed, this algorithm obtains all solutions in the front belonging to the best class of 

merit (Table 4.8). This value is equal to 60% of the runs for the HESA algorithm. Concerning 

this aspect, the EvABOR-III algorithm is the one with worst performance. A significant 

difference between EvABOR-III and the other two algorithms is that EvABOR-III is the only 
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algorithm in which some runs present solutions belonging to class 2 and class 3. In the other 

two algorithms if, at least, one solution belonging to the best class of merit is achieved, the 

local search is able to obtain the remaining solutions to complete the population with 

solutions in the same class of merit. Regarding the number of solutions evaluated, the 

GRASP+SA algorithm is again the algorithm with the best performance when all runs are 

considered and also for runs with solutions in the best class of merit only. The GRASP+SA 

performs worse than the other two algorithms regarding the execution time in the runs 

when solutions in the best class of merit only are achieved. However, this increase (around 

10%, in average) is insignificant when comparing with EvABOR-III. In Table 4.8 a summary of 

values related to these aspects are displayed and Table B.1, Table B.2 and Table B.5 in 

Appendix B present this information obtained from the 30 runs performed. Statistical data 

representation for the number of solutions evaluated and the execution time for the three 

algorithms are also presented in Figure B.1 to Figure B.4 in Appendix B. If the previous 

analysis is restricted to EvABOR-III and HESA, it is possible to conclude that, in all aspects 

considered before, the HESA algorithm has better performance than EvABOR-III. 

 EvABOR-III HESA GRASP+SA 

Classes in the  
non-dominated front 

2 and 3 2 and 3 2 and 3 

% of runs with solutions belonging to class 3 only in the 
non-dominated front 

46.(6)% 60% 93.33% 

% of runs with solutions belonging to class 2 only in the 
non-dominated front 

26.(6)% 40% 6.67% 

% of runs with solutions belonging to classes 2 and 3 in 
the non-dominated front 

26.(6)% 0% 0% 

Number of solutions 
evaluated in all runs 

Minimum 13651 6747 17826 

Maximum 120001 120141 91373 

Average 90296 72757.6 39024.83 

Median 120001 70723.5 29365 

Standard Deviation 40114.58 44758.81 18281.30 

Number of solutions 
evaluated in runs with 
solutions in class 3 only 

Minimum 13651 6747 17826 

Maximum 115891 104011 64095 

Average 56347.43 42101.29 35285.68 

Median 41266 37049 29179.5 

Standard Deviation 35878.88 29701.90 12180.26 

Execution time of all runs 

Minimum 1464 764 3414 

Maximum 13433 13607 17809 

Average 9849.43 8035.2 7520.8 

Median 12777.5 7834.5 5565.5 

Standard Deviation 4365.61 4913.13 3559.78 

Execution time of the runs 
with solutions in class 3 only 

Minimum 1464 764 3414 

Maximum 12540 11789 12312 

Average 6167.64 4683.47 6786.18 

Median 4484 4042 5524.5 

Standard Deviation 3922.87 3283.40 2341.39 

Table 4.8 – Comparison of the three algorithms. 
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Besides these conclusions, regarding the number of solutions evaluated, the execution time 

required and the quality of solutions in the front according to the preferences elicited from 

the DM, it is also important to analyze the diversity of these solutions and the objective 

function values. 

Comparing the objective function values obtained with the three algorithms, an aspect is 

clear: in most runs GRASP+SA is able to obtain a high number of solutions with inferior 

maximum power at PT1, and some of them at SS (Figure 4.18), with a much lower number of 

instants in curtailment (Figure 4.19), without decreasing too much the profits in a majority of 

solutions (Figure 4.20) and with a decrease in the total time in discomfort when comparing 

to the solutions obtained with EvABOR-III and HESA (Figure 4.19). Due to the performance in 

those objective functions, solutions with these characteristics obtained with GRASP+SA are 

classified in the best class of merit despite the exigency imposed by the cutting-level (λ=0.7) 

and the higher value of the maximum power at PT2 in comparison with solutions obtained 

with EvABOR-III and HESA. 

The improvement in the reduction of the maximum peak power at PT1 with GRASP+SA is 

due to the iterative method used in the construction phase, where curtailments are 

progressively added to or excluded from the control patterns. This method decreases the 

total number of instants of time in curtailment; consequently the total time in discomfort 

tends to be inferior and the profits may not decrease too much (depending on the periods of 

time under control). These aspects lead that GRASP+SA obtains solutions in the best class of 

merit even if the maximum power at PT2 is higher than in the solutions obtained with 

EvABOR-III and HESA. Due to the characteristics of PT2, a higher number of curtailments 

must be applied to the groups (or at least, to some groups) supplied by this distribution 

power transformer. 

From the previous discussion, it is expected that the control strategies obtained with 

GRASP+SA and the other two algorithms have different characteristics as well as resulting 

load diagrams. Three examples of control patterns are presented in Figure 4.21 to Figure 

4.23 corresponding to two solutions that minimize the maximum peak power at PT2 and a 

third one that minimizes the maximum peak power at PT1, respectively. The two first control 

patterns have been obtained with EvABOR-III and HESA and the third with GRASP+SA. Note 

the similarity between the solutions obtained with EvABOR-III and HESA, with a high number 

of curtailments applied to the groups. The control strategies presented in Figure 4.21 and 

Figure 4.22 correspond to the solutions numbered in Figure 4.24 and the corresponding 

objective functions values are presented in Table 4.9. In Appendix B, Table B.8 to Table B.10 
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present the remaining objective functions values for all solutions displayed in Figure 4.24. 

From these tables it is possible to observe that the maximum peak power at any distribution 

transformer is improved in all solutions obtained with GRASP+SA without decreasing too 

much the profits. The reduction at PT2 is not so high as with the other algorithms but there 

are solutions with an improvement of 4.60% and the maximum value of the reduction of the 

peak at SS is similar to the one obtained with EvABOR-III and HESA. 

 

(a) 

    

(b) (c) 

Figure 4.18 – Examples of non-dominated solutions obtained with: EvABOR-III (red marks); 

HESA (blue marks) and GRASP+SA (green marks). 
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(a) 

  

(b) (c) 

Figure 4.19 – Examples of non-dominated solutions obtained with: EvABOR-III (red marks); 

HESA (blue marks) and GRASP+SA (green marks). 
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(a) 

 

(b) (c) 

Figure 4.20 – Examples of non-dominated solutions obtained with: EvABOR-III (red marks); 

HESA (blue marks) and GRASP+SA (green marks). 
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Figure 4.21 – Example of a control strategy obtained with EvABOR-III. 
 

 

Figure 4.22 – Example of a control strategy obtained with HESA. 
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Figure 4.23 – Example of a control strategy obtained with GRASP+SA. 
 

 

Figure 4.24 – Examples of solutions minimizing the maximum peak power at PT1 (GRASP+SA)  

and PT2 (EvABOR-III and HESA). 
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EvABOR-III HESA GRASP+SA 

Solution (1) 

in Figure 4.24 

Solution (2) 

In Figure 4.24 

Solution (3) 

in Figure 4.24 

Solution (4) in 

Figure B.10 (b) 
(Appendix B) 

Maximum power 
at PT1 (W) 

824600 -0.12% 824533.3 -0.11% 816133.3 0.91% 816666.7 0.84% 

Maximum power 
at PT2 (W) 

602177.8 6.69% 601200 6.84% 619066.7 4.07% 619155.6 4.06% 

Maximum power 
at SS (W) 

7250539 1.94% 7238939 2.10% 7242673 2.05% 7133525 3.52% 

No. minutes in 
curtailment 

1534 - 1469 - 697 - 951 - 

Profits (Euros) 1068.407 0.31% 1068.234 0.33% 1068.026 0.34% 1065.523 0.58% 

Maximum interval 
in discomfort 

1 - 4 - 5 - 4 - 

Total time in 
discomfort 

6 - 26 - 16 - 16 - 

Table 4.9 – Examples of objective function values obtained with the three algorithms. 

The load diagrams at PT1 and PT2 (Figure 4.25 and Figure 4.26) show the reduction in peak 

power demand at these distribution transformers when loads are under control patterns 

displayed in Figure 4.23 and Figure 4.22. The final load diagram at PT1 displayed in Figure 

4.25 corresponds to solution (3) in Figure 4.24 and, the final load diagram at PT2 displayed in 

Figure 4.26 corresponds to solution (2) in Figure 4.24. It is important to emphasize the length 

of peak at PT1 (it lasts about 4 hours) making harder the efforts to reduce the peak demand 

in this distribution transformer. GRASP+SA performs this task easier than the other two 

algorithms and, in addition, the minimum value of the maximum peak power at SS is also 

found by this algorithm in the experiments done. The load diagram at SS corresponding to 

this case is displayed in Figure 4.27 and the control actions to be applied are displayed in 

Figure 4.28. This is the solution (4) in Figure B.10 (b) in Appendix B, and the remaining 

objective functions values are presented in the 4th column of Table 4.9. Note that the 

reduction at PT2 is around 4% without increasing the peak at PT1, contrary to what happens 

with solutions obtained with EvABOR-III and HESA, with a higher improvement at PT2 but 

with a degradation of the maximum power at PT1 and a smaller improvement at SS. In Table 

4.9 the percentage of improvement/degradation in each objective function is also 

presented. 
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Figure 4.25 – Load diagrams at PT1. 

 

Figure 4.26 – Load diagrams at PT2. 

 

Figure 4.27 – Load diagrams at SS. 
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Figure 4.28 – Example of a control strategy to minimize the maximum peak power at SS. 
 

Comparing solutions belonging to the best class of merit obtained in distinct runs of 

GRASP+SA, it is possible to conclude that these solutions are concentrated in different 

regions of the search space. This effect is a consequence of the local search around solutions 

belonging to the best class of merit, in general only one or two, obtained in the construction 

phase. The same effect appears in some runs performed with HESA, but this effect is not so 

visible as in GRASP+SA. In EvABOR-III the results from different runs are more consistent 

regarding the regions where solutions are located. Figure 4.18 to Figure 4.20 illustrate this 

aspect by displaying solutions obtained with three runs of each algorithm. In Appendix B, 

solutions obtained in 10 runs of each algorithm are displayed in Figure B.5 to Figure B.10, 

which illustrate better the situation described above. 

With respect to the other approaches, GRASP+SA guarantees solutions in the best class of 

merit or at least more in accordance with the preferences elicited from the DM in a more 

consistent way, the total time loads under control is inferior and the best values for the 

minimization of the peak at PT1 is achieved. 

  

10 11 12 13 14 15 16 17 18 19 20 21

Control pattern to minimize the maximum peak power at SS
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CHAPTER 5 
 

 

 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In this work a novel approach for incorporation of preferences into a multi-objective 

evolutionary algorithm has been developed using the ELECTRE TRI method to sort the 

solutions obtained during the evolutionary process into classes of merit. This is carried out 

based on a set of preferences elicited from a DM by combining the non-dominance and the 

outranking relations. This mechanism enriches the non-dominance relation and allows 

focusing the search on more significant regions with respect to preference satisfaction, thus 

reducing both the computational effort and the cognitive burden on the DM. 

Three versions of the Evolutionary Algorithm Based on an Outranking Relation (EvABOR) 

have been developed, which have been illustrated and compared using a reactive power 

compensation problem. The computational experiments allow concluding about the 

superiority of EvABOR-III, showing that the outranking relation is more effective to improve 

the search when applied to non-dominated solutions only, i.e. after the non-dominance 

relation intervenes. 

The results obtained show that the incorporation of preferences into an EA effectively 

reduces the computational effort, as it has been recognized by other authors [Branke and 

Deb (2004), Fernández et al. (2010), Deb et al. (2010)]. Since performing just the 

characterization of the non-dominated solution set does not provide the required 

information to support decision making in real-world problems, the choice of a solution to 

be implemented is facilitated by introducing the DM’s preferences in a meaningful manner 

into the search process in such a way that the final set of non-dominated solutions 

presented to the DM is in accordance with the preferences elicited. The choice of the 

mutation operators in the EA is adapted to the solution characteristics taking into account 

the preferences elicited from the DM. This option proved to be more effective than letting 

operators be completely random. 
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The incorporation of a procedure based on SA into EvABOR-III confirms the advantage of 

including a local search phase into an EA. In this procedure, preferences are incorporated 

into the acceptance function: solutions more in accordance with the expressed preferences 

have a greater probability to be accepted for further exploitation.  The Hybrid Evolutionary 

Simulated Annealing (HESA) algorithm has proven to be more effective in founding solutions 

in best classes of merit than EvABOR-III for the same set of preferences elicited from the 

DM. HESA overcomes the difficulty presented by EvABOR-III, in some runs, to complete the 

population with solutions belonging to the best class of merit after the achievement of one 

solution in this class. Moreover, in HESA the number of solutions belonging to the best class 

of merit is higher while the execution time is lower. This aspect is particularly important in 

dealing with real-world MOOPs in which solutions in a due time may be required. 

Concerning the hybridization of GRASP with SA, a noticeable improvement of the quality of 

the initial solutions using the construction phase has been obtained. The existence of 

knowledge about the problem, which generally occurs when dealing with real-world 

problems, should be used to improve the construction of solutions. The use of different RCLs 

in the construction phase of each solution has revealed to be useful in MOOPs, improving 

the performance of the objective functions considered in each RCL. GRASP+SA requires an 

additional effort due to the evaluation of the candidate elements to be included in the RCL, 

but this is compensated by its effectiveness in obtaining solutions in the best class of merit. 

EvABOR-III, HESA and GRASP+SA have been tested using a direct load control problem with 

seven objective functions. GRASP+SA has proven its superiority to find solutions that 

minimize the maximum peak power at PT1, PT2 and SS, using an lower number of 

curtailments, decreasing the total time in discomfort for the consumers without decreasing 

too much the profits.  

Due to the local search phase, HESA and GRASP+SA tend to concentrate the non-dominated 

solutions belonging to the best class of merit in regions of the search space around the 

solutions in the best class of merit firstly found by the algorithm. This aspect is more visible 

in the GRASP+SA algorithm. 

Comparing solutions belonging to the best class of merit obtained in distinct runs of 

GRASP+SA, it is possible to conclude that these solutions are concentrated in different 

regions of the search space. This effect is a consequence of the local search phase.  

 In future work already outlined additional approaches will be developed to improve the 

diversity of solutions belonging to the best class of merit and to obtain a more consistent set 
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of non-dominated solutions in fronts obtained in distinct runs of GRASP+SA. The 

incorporation of preferences also in the construction phase should be also assessed to be 

included in new versions of GRASP+SA. 

Further work will involve exploring the incorporation of preferences into other 

metaheuristics, by using meaningful parameters that could be easily expressed by the DM. 

Mechanisms of learning could also be explored associated with preference expression in 

dynamic environments. The results obtained in this work should in the near future be 

extended in other directions, including the assessment of solution robustness both taking 

into account the variation of model parameters and coefficients but also different forms of 

uncertainty in preference elicitation. 

Another research avenue consists in dealing with mechanisms for solution diversity control 

and the adaptive nature of control parameters in hybrid metaheuristics whenever the DM’s 

preferences play a role in the search process.  
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APPENDIX A 
 

Sorting alternatives in ELECTRE TRI - illustrative examples 
                                   

 

 Resistive 

Losses 
Cost 

Maximum Voltage 

Deviation 

Reference Profiles 

240 

260 

290 

320 

38000 

60000 

85000 

100000 

0.01 

0.03 

0.065 

0.09 

Th
re

sh
o

ld
s Indifference 5 8000 0.005 

Preference 10 15000 0.01 

Veto 30 40000 0.08 

Weights 1/3 1/3 1/3 

λ 0.5 

Table A.1 – ELECTRE TRI parameters considered in the experiments. 

The desirable situation would be obtaining solutions with performances lower than the 

inferior reference profiles (or, at least, near these values) in all objective functions, according 

to the preferences presented in the previous table, as happens with the solution marked 

with a red asterisk in Figure A.1. In this case the solution will be clearly classified in class 5. 

However, due to the conflicting nature of the objective functions the previous situation is, in 

general, very difficult to obtain. However, it is possible to achieve solutions belonging to the 

best class of merit with different but yet satisfactory (according to the preferences elicited) 

trade-offs between the objective functions. For example, the solution marked with a green 

rectangle in Figure A.1 belongs also to class 5. However, the value of the maximum voltage 

deviation is high (0.07147) when compared with the inferior reference profile. As, in this 

scenario, the cutting-level is 0.5 and the veto threshold is high (0.08), it does not preclude 

the solution from being classified in the best class of merit. 

Based on the weight of each objective function, the reference profiles, the thresholds and 

the cutting-level, the ELECTRE-TRI method has the capability to classify solutions presenting 

different trade-offs between the objective functions. For example, the solution marked with 

a blue circle in Figure A.1 has different performances in the three objective functions. Based 

on the technical parameters elicited from the DM the solution is classified in class 3. A 

similar situation is represented with a pink triangle, but in this case the solution is classified 
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in class 4. In fact, in the first case the discordance criterion index is greater than in the 

second one, which forces the solution to be classified in the class 3 instead of class 4.   

 

Figure A.0.1– Examples of classification of solutions using ELECTRE TRI. 
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APPENDIX B 
 

 

Results related to the EvABOR-III algorithm 

 

Run 

Obtained classes at 

the final 

non-dominated set 

and respectively 

number of 

solutions 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of iterations 

performed 

No. of the 

iteration with 

the first 

solutions in 

class 3 

No. of 

iterations to 

complete 

the 

population 

1 3 1464 13651 455 97 358 

2 3 9833 89551 2985 626 2359 

3 3 12504 115891 3863 2771 1092 

4 2 12846 120001 4000 - - 

5 3 3389 30511 1017 767 250 

6 2 (15) and 3 (15) 13116 120001 4000 2540 - 

7 2 13433 120001 4000 - - 

8 2 13313 120001 4000 - - 

9 3 3410 31231 1041 375 666 

10 3 5651 51301 1710 548 1162 

11 2 12916 120001 4000 - - 

12 2 (21) and 3 (9) 12709 120001 4000 2655 - 

13 2 (27) and 3 (3) 12902 120001 4000 934 - 

14 3 3069 27931 931 272 659 

15 2 (26) and 3 (4) 13074 120001 4000 3534 - 

16 2 (5) and 3 (25) 13218 120001 4000 2781 - 

17 2 (10) and 3 (20) 12948 120001 4000 1667 - 

18 3 10606 96661 3222 876 2346 

19 2 (29) and 3 (1) 13148 120001 4000 3458 - 

20 3 1479 13651 455 97 358 

21 3 10158 89551 2985 626 2359 

22 3 12540 115891 3863 2771 1092 

23 2 13105 120001 4000 - - 

24 3 3317 30511 1017 767 250 

25 2 (15) and 3 (15) 13121 120001 4000 2540 - 

26 2 13093 120001 4000 - - 

27 2 13063 120001 4000 - - 

28 3 3369 31231 1041 375 666 

29 3 5558 51301 1710 548 1162 

30 2 13131 120001 4000 - - 

Table B.1 – Values related to EvABOR-III. 
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Results related to the HESA algorithm 

 

Run 
classes obtained at the 

final non-dominated set 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of 

iterations 

1 3 764 6747 204 

2 2 12931 120105 4000 

3 3 7140 64022 2101 

4 3 5118 45389 1486 

5 3 4448 39501 1283 

6 2 13286 120079 4000 

7 2 13594 120087 4000 

8 2 13571 120126 4000 

9 3 2555 22310 696 

10 3 886 7509 221 

11 3 6011 56350 1857 

12 3 947 8068 189 

13 3 3437 31633 1001 

14 3 8529 77425 2539 

15 3 2835 25667 835 

16 2 12950 120141 4000 

17 2 13070 120123 4000 

18 3 1006 8733 247 

19 2 13053 120103 4000 

20 3 10685 97468 3186 

21 2 13008 120129 4000 

22 3 4042 37049 1210 

23 2 13122 120108 4000 

24 3 6530 59612 1949 

25 2 13189 120128 4000 

26 2 13221 120080 4000 

27 3 11789 104011 3424 

28 2 13607 120130 4000 

29 3 2586 22701 736 

30 3 3146 27194 867 

Table B.2 – Results for the HESA algorithm. 

In HESA, the iteration in which solutions belonging to the best class of merit are firstly found 

is the same as the total number of iterations performed, because in the local search phase at 

the same iteration the algorithm founds the remaining solutions belonging to the best class 

of merit to complete the population. 
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Results related to the GRASP+SA algorithm 

 

Table B.4 and Table B.5 present results for the GRASP+SA algorithm using the set of 

preferences displayed in Table 4.4 in Chapter 4, while the results presented in Table B.6 and 

Table B.7 are related to the runs using a different set of preferences (different weights 

assigned to the objective functions, Table B.3).  

 

 

Maximum 

Power at 

PT1 

Maximum 

Power at 

PT2 

Maximum 

Power at SS 
Profits 

No. Minutes 

in 

curtailment 

Max. 

Interval 

Total Time in 

discomfort 

Weights 20 20 20 10 10 10 10 

Table B.3 – Different weights assigned to the objective functions. 

 

The 5th column of Table B.4 to Table B.7 shows the number of the iteration in which 

solutions belonging to the best class of merit are firstly found and how many of these 

solutions are obtained in the construction phase. If a single value is indicated this means that 

only one solution belonging to class 3 is found in the construction phase. 

Comparing the values in this column in Table B.4 and Table B.5 (equal weights assigned to 

the objective functions) and in Table B.6 and Table B.7 (different weights),  it is possible to 

confirm that when only one internal cycle in the construction phase is used, a higher number 

of iterations of GRASP+SA is needed to obtain the first solutions in the best class of merit. 
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Run 
Classes obtained at the 

final non-dominated set 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of the iteration with the first solutions in 

class 3 (number of these solutions in this 

iteration found in the construction phase) 

1 3 3632 19838 5 (2 sol) 

2 2 5705 29745 - 

3 2 5919 30607 - 

4 3 4904 25567 8 

5 3 6183 32073 9 (2 sol) 

6 2 6826 34634 - 

7 3 5233 27673 8 

8 3 2906 16243 4 (2 sol) 

9 3 6323 32830 10 

10 3 5379 28235 9 

11 2 5926 30595 - 

12 2 5895 30615 - 

13 3 3531 19468 5 

14 3 4312 22819 7 (2 sol) 

15 3 6242 32950 10 

16 3 2137 12023 3 

17 2 6062 31256 - 

18 3 5540 29141 9 

19 2 6112 31491 - 

20 3 4944 26151 8 

21 2 5783 30017 - 

22 3 4855 25283 8 

23 3 4501 23797 7 

24 3 3772 19911 6 

25 3 6276 32807 10 

26 2 6200 31540 - 

27 2 5881 30040 - 

28 2 6133 31186 - 

29 3 5045 25710 8 

30 2 6220 30951 - 

Table B.4 – Results for GRASP+SA with 1 internal cycle in the construction phase. 
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Run 
Classes obtained at the 

final non-dominated set 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of the iteration with the first solutions in 

class 3 (number of these solutions in this 

iteration found in the construction phase) 

1 3 5498 28202 3 

2 3 5428 27327 3 

3 3 9185 45737 5 

4 3 3796 19574 2 

5 3 5476 27652 3 (2 sol) 

6 3 7518 37444 4 (2 sol) 

7 3 7421 38030 4 

8 3 5157 27342 3 

9 3 6902 36556 4 

10 3 5354 28020 3 

11 3 5531 29365 3 

12 3 5600 28994 3 (2 sol) 

13 3 11206 58629 6 

14 3 5301 27759 3 

15 3 6900 36263 4 

16 2 17809 91373 - 

17 3 5179 27342 3 

18 3 6928 36556 4 

19 3 5336 28020 3 

20 3 5505 29365 3 

21 3 5518 28994 3 (2 sol) 

22 3 11241 58629 6 

23 3 5295 27759 3 

24 3 6968 36263 4 

25 2 17802 91373 - 

26 3 9184 48679 5 (2 sol) 

27 3 5262 26968 3 

28 3 11598 60609 6 

29 3 12312 64095 7 (2 sol) 

30 3 3414 17826 2 

Table B.5 – Results for GRASP+SA with 3 internal cycles in the construction phase. 
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Run 
Classes obtained at the 

final non-dominated set 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of the iteration with the first solutions in 

class 3 (number of these solutions in this 

iteration found in the construction phase) 

1 2 6294 31760 - 

2 3 6421 32850 10 (2 sol) 

3 2 6155 31201 - 

4 2 6170 31780 - 

5 2 6466 33489 - 

6 2 6172 31478 - 

7 2 5919 30318 - 

8 2 6020 30900 - 

9 2 5974 30620 - 

10 2 5999 30317 - 

11 2 6116 30899 - 

12 2 5874 30047 - 

13 2 6168 30710 - 

14 2 6036 30328 - 

15 2 6808 34376 - 

16 2 6128 30974 - 

17 2 6142 30955 - 

18 2 6241 31820 - 

19 2 6243 32122 - 

20 2 7280 37229 - 

21 2 5993 31820 - 

22 2 6200 32122 - 

23 2 7186 37229 - 

24 2 6038 31202 - 

25 2 6012 30913 - 

26 2 5839 30030 - 

27 2 5765 29751 - 

28 2 5870 30657 - 

29 2 5964 30911 - 

30 2 6217 32067 - 

Table B.6 – Values related to GRASP+SA with 1 internal cycle in the construction phase considering 

different weights to the objective functions. 
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Run 
Classes obtained at the 

final non-dominated set 

Execution time 

(seconds) 

No. of solutions 

evaluated 

No. of the iteration with the first solutions in 

class 3 (number of these solutions in this 

iteration found in the construction phase) 

1 3 17215 90184 9 

2 3 6472 32555 4 

3 2 16963 87151 - 

4 2 18038 92219 - 

5 2 17781 90522 - 

6 3 14597 76446 8 

7 2 18175 93102 - 

8 3 17752 93133 9 

9 2 18350 93999 - 

10 3 11292 55451 7 

11 3 14844 77432 8 

12 3 18701 97881 10 

13 3 5501 28436 3 (2 sol) 

14 2 18025 92286 - 

15 2 16984 87912 - 

16 3 8865 45932 5 

17 3 8854 46118 5 

18 2 17943 92261 - 

19 2 24405 123377 - 

20 3 8864 45460 5 (2 sol) 

21 3 14782 77432 8 

22 3 19167 97881 10 

23 3 5437 28436 3 (2 sol) 

24 2 18000 92286 - 

25 3 10823 55254 6 (2 sol) 

26 3 10377 54416 5 

27 2 18445 93110 - 

28 3 10598 54050 6 (3 sol) 

29 3 14431 77432 8 

30 3 18686 97881 10 

Table B.7 – Values related to GRASP+SA with 3 internal cycles in the construction phase considering 

different weights to the objective functions. 
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Figure B.1 – Statistical data representation for the number of solution evaluations. 

 

Figure B.2 – Statistical data representation for the execution time. 
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Figure B.3 – Statistical data representation for the number of solutions evaluated. 

 

Figure B.4 – Statistical data representation for the execution time. 
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Results obtained from 10 runs of EvABOR-III 
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(c) 

Figure B.5 – Examples of final generation obtained in 10 runs of EvABOR-III (3D representation). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure B.6 – Examples of final generation obtained in 10 runs of EvABOR-III (2D representation). 
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Results obtained from 10 runs of HESA 
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(c) 

Figure B.7 – Examples of final generation obtained in 10 runs of HESA (3D representation). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure B.8 – Examples of final generation obtained in 10 runs of HESA (2D representation). 
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Results obtained from 10 runs of GRASP+SA 
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(c) 

Figure B.9 – Examples of final generation obtained in 10 runs of GRASP+SA (3D representation). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure B.10 – Examples of final generation obtained in 10 runs of GRASP+SA (2D representation). 
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Table B.8 – Objective function values obtained with EvABOR-III. 

 

No. 

Curtailments

Max. Int. 

Discomfort

Total Time 

Discomfort

824400 -0.10% 602777.8 6.59% 7261339 1.80% 1476 1068.618874 0.29% 1 7

824666.7 -0.13% 605044.4 6.24% 7253806 1.90% 1471 1068.433839 0.31% 4 14

824333.3 -0.09% 610777.8 5.35% 7263273 1.77% 1308 1068.782582 0.27% 5 20

824600 -0.12% 602177.8 6.69% 7250539 1.94% 1534 1068.406644 0.31% 1 6

823400 0.02% 607666.7 5.84% 7261339 1.80% 1444 1068.713181 0.28% 3 12

822200 0.17% 606844.4 5.96% 7248273 1.97% 1241 1068.272467 0.32% 5 10

824400 -0.10% 605333.3 6.20% 7254806 1.88% 1424 1068.608268 0.29% 3 10

823533.3 0.01% 611377.8 5.26% 7245739 2.01% 1534 1068.166316 0.33% 5 10

822666.7 0.11% 606244.4 6.06% 7257406 1.85% 1484 1068.465999 0.30% 4 18

821733.3 0.23% 606844.4 5.96% 7259473 1.82% 1415 1068.567279 0.29% 4 29

824266.7 -0.08% 606133.3 6.07% 7252139 1.92% 1474 1068.381706 0.31% 4 15

822466.7 0.14% 605466.7 6.18% 7248139 1.97% 1501 1068.422321 0.31% 5 18

824333.3 -0.09% 611377.8 5.26% 7258606 1.83% 1507 1068.592152 0.29% 5 23

823400 0.02% 610644.4 5.38% 7245206 2.01% 1470 1068.290458 0.32% 5 14

822733.3 0.11% 610066.7 5.46% 7218873 2.37% 1375 1067.632052 0.38% 5 9

824333.3 -0.09% 606844.4 5.96% 7251473 1.93% 1393 1068.329869 0.32% 5 11

824533.3 -0.11% 608466.7 5.71% 7241939 2.06% 1437 1068.150675 0.33% 5 8

824333.3 -0.09% 609044.4 5.62% 7248606 1.97% 1465 1068.337548 0.32% 5 11

824133.3 -0.06% 606244.4 6.06% 7241206 2.07% 1473 1068.211854 0.33% 1 6

824466.7 -0.11% 606844.4 5.96% 7241606 2.06% 1463 1068.075314 0.34% 1 4

824333.3 -0.09% 610644.4 5.38% 7259006 1.83% 1416 1068.58439 0.29% 5 10

820666.7 0.36% 605466.7 6.18% 7262939 1.77% 1466 1068.717059 0.28% 5 35

821400 0.27% 607644.4 5.84% 7253339 1.90% 1390 1068.501824 0.30% 5 7

823533.3 0.01% 611777.8 5.20% 7256939 1.85% 1457 1068.412069 0.31% 0 0

823533.3 0.01% 606111.1 6.08% 7250539 1.94% 1487 1068.461786 0.30% 5 13

824266.7 -0.08% 610644.4 5.38% 7243606 2.03% 1498 1068.274395 0.32% 5 13

823600 0.00% 608200 5.75% 7243806 2.03% 1520 1068.24073 0.32% 5 14

824333.3 -0.09% 609066.7 5.62% 7256939 1.85% 1481 1068.537632 0.30% 5 7

824666.7 -0.13% 605333.3 6.20% 7239473 2.09% 1533 1068.12061 0.34% 2 9

822200 0.17% 609066.7 5.62% 7208873 2.50% 1435 1067.41697 0.40% 3 9

Max 0.36% 6.69% 2.50% 1534 1068.782582 0.40% 5 35

Min -0.13% 5.20% 1.77% 1241 1067.416970 0.27% 0 0

PT1 PT2 SS Profits
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Table B.9 – Objective function values obtained with HESA. 

No. 

Curtailments

Max. Int. 

Discomfort

Total Time 

Discomfort

821800 0.22% 602755.6 6.60% 7251073 1.93% 1464 1068.529348 0.30% 4 17

822200 0.17% 603755.6 6.44% 7260406 1.81% 1511 1068.689541 0.28% 4 27

822200 0.17% 603755.6 6.44% 7259206 1.82% 1534 1068.647799 0.29% 4 27

824533.3 -0.11% 601200 6.84% 7238939 2.10% 1469 1068.234117 0.33% 4 26

822933.3 0.08% 601800 6.75% 7233139 2.18% 1469 1068.116366 0.34% 4 20

824533.3 -0.11% 602755.6 6.60% 7222139 2.33% 1461 1067.807278 0.36% 4 17

824533.3 -0.11% 602755.6 6.60% 7222806 2.32% 1468 1067.829767 0.36% 4 17

824533.3 -0.11% 602755.6 6.60% 7239339 2.09% 1445 1068.203448 0.33% 4 17

824533.3 -0.11% 604355.6 6.35% 7237273 2.12% 1445 1068.149845 0.33% 4 17

824533.3 -0.11% 604355.6 6.35% 7222806 2.32% 1468 1067.830812 0.36% 4 17

824000 -0.05% 603555.6 6.47% 7223873 2.30% 1531 1067.855524 0.36% 4 29

824533.3 -0.11% 602155.6 6.69% 7239539 2.09% 1469 1068.242941 0.32% 4 24

824533.3 -0.11% 602755.6 6.60% 7224806 2.29% 1461 1067.872704 0.36% 4 17

824533.3 -0.11% 602755.6 6.60% 7256273 1.86% 1488 1068.63699 0.29% 4 16

823800 -0.02% 604155.6 6.38% 7253739 1.90% 1469 1068.515832 0.30% 4 16

824533.3 -0.11% 604533.3 6.32% 7256739 1.86% 1492 1068.680171 0.28% 4 24

824000 -0.05% 602155.6 6.69% 7238606 2.10% 1510 1068.219618 0.33% 4 31

822400 0.15% 603755.6 6.44% 7242673 2.05% 1531 1068.234773 0.32% 4 28

822933.3 0.08% 603600 6.47% 7245606 2.01% 1469 1068.34633 0.31% 4 20

824533.3 -0.11% 602755.6 6.60% 7231806 2.19% 1465 1068.059915 0.34% 5 21

824533.3 -0.11% 603600 6.47% 7233739 2.17% 1468 1068.158084 0.33% 4 19

824533.3 -0.11% 603600 6.47% 7238139 2.11% 1490 1068.247912 0.32% 4 20

822933.3 0.08% 602555.6 6.63% 7227806 2.25% 1489 1067.946558 0.35% 4 24

824533.3 -0.11% 603400 6.50% 7263539 1.77% 1469 1068.768471 0.28% 4 23

824533.3 -0.11% 602555.6 6.63% 7224806 2.29% 1461 1067.872806 0.36% 4 18

824533.3 -0.11% 604533.3 6.32% 7262073 1.79% 1469 1068.819169 0.27% 4 24

824533.3 -0.11% 602155.6 6.69% 7261939 1.79% 1469 1068.733796 0.28% 4 24

824533.3 -0.11% 602555.6 6.63% 7224806 2.29% 1474 1067.872827 0.36% 5 25

822933.3 0.08% 603755.6 6.44% 7241673 2.06% 1469 1068.259601 0.32% 4 20

822933.3 0.08% 601800 6.75% 7233139 2.18% 1469 1068.116366 0.34% 4 20

Max 0.22% 6.84% 2.33% 1534 1068.819169 0.36% 5 31

Min -0.11% 6.32% 1.77% 1445 1067.807278 0.27% 4 16

PT1 PT2 SS Profits
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Table B.10 – Objective function values obtained with GRASP+SA. 

 

No. 

Curtailments

Max. Int. 

Discomfort

Total Time 

Discomfort

816133.3 0.91% 619066.7 4.07% 7242673 2.05% 697 1068.026321 0.34% 5 16

816133.3 0.91% 620111.1 3.91% 7259539 1.82% 660 1068.592168 0.29% 5 11

816866.7 0.82% 615666.7 4.60% 7227139 2.26% 647 1067.674369 0.38% 2 5

816333.3 0.88% 615666.7 4.60% 7260473 1.81% 605 1068.521193 0.30% 5 9

816866.7 0.82% 615777.8 4.58% 7225339 2.28% 647 1067.622383 0.38% 2 11

816333.3 0.88% 615666.7 4.60% 7227139 2.26% 654 1067.668544 0.38% 5 13

816866.7 0.82% 615777.8 4.58% 7232473 2.19% 595 1067.87286 0.36% 2 4

816333.3 0.88% 615777.8 4.58% 7232473 2.19% 605 1067.871758 0.36% 5 12

816333.3 0.88% 615777.8 4.58% 7243673 2.03% 605 1068.137803 0.33% 5 12

816866.7 0.82% 615777.8 4.58% 7229858 2.22% 647 1067.749006 0.37% 2 9

816866.7 0.82% 615777.8 4.58% 7230673 2.21% 608 1067.823707 0.36% 2 10

816600 0.85% 618911.1 4.09% 7239806 2.09% 638 1068.118088 0.34% 1 2

816600 0.85% 619333.3 4.03% 7257206 1.85% 638 1068.519405 0.30% 1 3

816600 0.85% 620111.1 3.91% 7246206 2.00% 638 1068.269164 0.32% 1 2

816600 0.85% 619333.3 4.03% 7257206 1.85% 658 1068.525919 0.30% 1 3

816600 0.85% 619066.7 4.07% 7237673 2.12% 638 1068.061668 0.34% 2 6

816866.7 0.82% 615777.8 4.58% 7233873 2.17% 650 1067.906505 0.36% 2 10

816333.3 0.88% 615777.8 4.58% 7261473 1.79% 657 1068.588011 0.29% 5 16

816600 0.85% 618911.1 4.09% 7253139 1.91% 645 1068.439807 0.31% 5 12

816600 0.85% 619066.7 4.07% 7251006 1.93% 638 1068.399023 0.31% 2 6

816600 0.85% 618911.1 4.09% 7257939 1.84% 645 1068.547345 0.30% 5 12

816866.7 0.82% 615777.8 4.58% 7256673 1.86% 632 1068.5106 0.30% 2 10

816333.3 0.88% 615777.8 4.58% 7245339 2.01% 657 1068.138994 0.33% 5 16

816866.7 0.82% 615777.8 4.58% 7237273 2.12% 613 1067.982352 0.35% 2 4

816333.3 0.88% 619666.7 3.98% 7261206 1.80% 653 1068.525425 0.30% 5 14

816600 0.85% 618311.1 4.19% 7251339 1.93% 666 1068.388569 0.31% 5 12

816600 0.85% 618911.1 4.09% 7239806 2.09% 647 1068.118805 0.34% 1 4

816333.3 0.88% 615777.8 4.58% 7263073 1.77% 646 1068.635213 0.29% 5 16

816600 0.85% 620866.7 3.79% 7256939 1.85% 656 1068.521075 0.30% 2 6

816600 0.85% 620111.1 3.91% 7259539 1.82% 648 1068.591243 0.29% 5 11

Max 0.91% 4.60% 2.28% 697 1068.635213 0.38% 5 16

Min 0.82% 3.79% 1.77% 595 1067.622383 0.29% 1 2

PT2 SS ProfitsPT1
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