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ABSTRACT 

Regulation of mRNA translation plays a major role in controlling gene expression, 

since it allows rapid cellular responses to external stimuli without the involvement of 

transcription, mRNA processing or transport. Translational control can be transcript-

specific via regulatory cis-acting elements, such as internal ribosome etry sites (IRESs). 

mRNA translation initiation driven by IRES elements is independent of some canonical 

initiation factors that are inhibited by cellular stresses or in some physiological 

conditions and pathophysiologic settings. Accordingly, IRES-dependent translation 

allows continued protein synthesis in conditions with repression of the canonical 

mechanism of mRNA translation and has been reported in several transcripts encoding 

stress-responsive proteins, oncogenes and tumor suppressor genes. In this work, it is 

demonstrated that the mammalian (or mechanistic) target of rapamycin (MTOR) and 

the Δ160P53 protein isoform are expressed through IRES-driven translation.  

MTOR is a conserved serine/threonine kinase that integrates signals from growth 

factor stimulation as well as from cellular nutrient- and energy-status, acting namely on 

the protein synthesis machinery. Major advances are emerging regarding the effects 

and regulators of MTOR signaling pathway, however, regulation of MTOR gene 

expression, namely at the translational level, is not well known. Here, it is shown that 

the 5’ untranslated region (5’UTR) of the human MTOR mRNA contains an IRES 

element that allows cap-independent translation of MTOR. In addition, it is 

demonstrated that IRES-dependent translation of MTOR is stimulated by hypoxia with 

associated EIF2α phosphorylation, in a manner that is independent of hypoxia-inducible 

factor 1α (HIF1α) induction per se. The anti- and pro-apoptotic outcomes of the 

unfolded protein response induced by endoplasmic reticulum (ER) stress also 

stimulates MTOR IRES activity, with a more pronounced effect in the pro-apoptotic 
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phase with associated EIF2α phosphorylation. Furthermore, it is illustrated that MTOR 

IRES activity is potentiated by MTOR complex 1 (MTORC1) inactivation, suggesting a 

feedback loop in order to maintain MTOR expression. These data point out a novel 

regulatory mechanism of MTOR gene expression that integrates the protein profile 

rearrangement triggered by global translational inhibitory conditions. Furthermore, 

these results give a possible explanation how MTOR signalling is not lost in cellular 

stress conditions with impaired mRNA translation.  

The P53 protein has a fundamental role at restraining tumor development. Upon an 

insult, P53 develops a protective program that, depending on the stress and/or damage 

severity, relies either on a pro-survival response including temporary cell cycle arrest 

and damage repair or it induces cellular senescence, apoptotic or autophagic cell death. 

The tumor protein P53 (TP53) gene orchestrates the formation of several protein 

isoforms through the use of distinct promoters, alternative splicing and IRES-mediated 

translation. The P53 protein isoforms act either through modulation of the activity of 

P53 protein or display cellular functions that are executed in a P53-independent 

manner. P53 is one of the most studied proteins due to its role as a tumor suppressor 

and as TP53 represents one of the most common mutated genes in cancer. 

Nevertheless, new roles for the P53 family are still arising, with particular emphasis to 

its protein isoforms. Recently, a new P53 isoform originated by mRNA translation 

initiation at codon 160, the Δ160P53 protein isoform, was discovered. Nevertheless, 

the mechanism responsible for its expression was not addressed, as well as its function 

in the cell. Here, it is demonstrated that expression of the Δ160P53 protein isoform is 

induced upon cellular overconfluency, and by ER stress through augmented translation. 

It is identified an IRES element downstream of 160 start codon that is governing cap-

independent production of Δ160P53 protein isoform. Interestingly, it is demonstrated 
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that the 5´UTR of Δ160P53 inhibits the activity of the IRES element that assists its 

expression. In addition, it is shown that increased phosphorylation levels of EIF2α 

stimulate the activity of the IRES for Δ160P53. In line with this work, a collaborator 

group found that the Δ160P53 protein inhibits apoptosis, promotes cell growth and 

induces malignant transformation.  

This study presents the IRESs for MTOR and Δ160P53 as potential new therapeutic 

targets for treatment of innumerous diseases, such as cancer, associated with hyper-

activated MTOR signaling or with augmented expression of Δ160P53, respectively.  

 

Keywords: translation regulation; translation initiation; internal ribosome entry site (IRES); 

mammalian target of rapamycin (MTOR); Δ160P53.  
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RESUMO 

A regulação ao nível da iniciação da tradução de mRNAs é fundamental no processo 

de controlo de expressão génica uma vez que permite uma resposta celular rápida face 

a estímulos externos. Este controlo pode ocorrer de forma específica de transcrito, 

através de elementos reguladores em cis, tais como internal ribosome entry sites (IRESs), 

que medeiam a tradução de forma independente de alguns factores de iniciação 

canónicos que são inibidos em condições de stress celular, ou em algumas condições 

fisiológicas ou patológicas. Desta forma, a tradução dependente de IRES é refractária a 

condições que inibem a síntese proteica global. Estes elementos encontram-se em 

transcritos que codificam proteínas responsivas a stress, oncogenes ou supressores de 

tumor. O trabalho apresentado nesta dissertação mostra que os transcritos que 

codificam o mammalian (or mechanistic) target of rapamycin (MTOR) e a isoforma 

proteica de P53, Δ160P53, possuem elementos IRESs a regular a sua expressão.  

O MTOR é uma serina/treonina quinase conservada que integra sinais provenientes da 

estimulação por factores de crescimento, assim como dos estados nutricional e 

energético da célula actuando, nomeadamente, na maquinaria de tradução. Apesar da 

crescente compreensão acerca dos mecanismos de regulação e efeitos da via de 

sinalização do MTOR, o controlo da sua própria expressão, nomeadamente ao nível da 

tradução, permanece largamente desconhecido. Os resultados descritos nesta tese 

demonstram que a região 5´ transcrita e não traduzida (5’UTR) do mRNA MTOR 

humano contém um elemento IRES que permite a sua tradução de forma independente 

da estrutura cap. Adicionalmente, demonstra-se que a tradução de MTOR mediada por 

IRES é estimulada em hipoxia com associado aumento da fosforilação de EIF2α e que 

esta estimulação é independente da indução de hypoxia-inducible factor 1α (HIF1α) per 

se. A fase anti-apoptótica da unfolded protein response induzida por stress do retículo 
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endoplasmático (RE) estimula a tradução de MTOR mediada por IRES, contudo um 

efeito mais pronunciado é observado na fase pró-apoptótica com associado aumento 

da fosforilação de EIF2α. Mostra-se ainda que a inactivação de MTORC1 é 

acompanhada por estimulação do IRES do MTOR, sugerindo um circuito de auto-

regulação com o intuito de manter os níveis proteicos de MTOR constantes. Estes 

resultados demonstram um novo mecanismo regulador da expressão génica de MTOR, 

que integra o rearranjo de perfil proteico observado em condições que inibem 

globalmente a tradução. Para além disso, os resultados aqui apresentados podem 

explicar o facto da via de sinalização do MTOR não ser perdida em condições que 

inibem a síntese proteica.  

A proteína P53 possui papel fundamental no impedimento de desenvolvimento 

tumoral. Em condições de stress, P53 desenvolve um programa protector que, 

dependendo da severidade do stress e/ou dano causado, poderá promover a 

sobrevivência celular através da indução de uma paragem temporária do ciclo celular e 

da reparação dos danos ou promover a inviabilização da célula através da indução de 

senescência celular ou morte por apoptose ou autofagia. O gene tumor protein p53 

(TP53) expressa várias isoformas proteicas através da utilização de diferentes 

promotores, splicing alternativo ou tradução mediada por IRES, que actuam tanto 

através da modulação da actividade da proteína P53 como de forma independente 

desta. A sua função primordial na supressão da tumorigénese e o facto de TP53 ser um 

dos genes mais frequentemente mutados em cancro, faz com que este seja um dos 

genes mais estudados. Contudo, tem-se vindo a verificar que as funções da família de 

P53 ainda não são totalmente conhecidas e a descoberta de novos membros tem vindo 

a adensar a complexidade desta família. Recentemente foi descoberta uma nova 

isoforma proteica originada apartir de iniciação da tradução no codão 160, tendo sido 



16 
 

designada por Δ160P53. Porém, o mecanismo responsável pela sua expressão assim 

como a sua função permaneceram um mistério. O trabalho explanado nesta 

dissertação mostra que a expressão de Δ160P53 é induzida por sobre-confluência 

celular e em stress do RE através de taxas de tradução aumentadas. Adicionalmente, é 

aqui identificado um elemento IRES a jusante do codão de iniciação 160, o qual é 

responsável pela expressão da isoforma proteica Δ160P53. Curiosamente demonstra-

se que a 5´UTR de Δ160P53 inibe a actividade deste elemento IRES. Para além disso, 

mostra-se que o aumento da fosforilação de EIF2α estimula a síntese de Δ160P53 

mediada por IRES. Na sequência deste trabalho, um grupo colaborador mostrou que a 

proteína Δ160P53 inibe a apoptose, promove crescimento celular e induz 

transformação maligna.  

O trabalho descrito nesta tese apresenta os IRESs que assistem a síntese de MTOR e 

Δ160P53 como potenciais novos alvos terapêuticos para o tratamento de várias 

doenças, tal como cancro, com hiper-activação da via de sinalização do MTOR e 

expressão aumentada de Δ160P53, respectivamente. 

 

Palavras-chave: regulação da tradução; iniciação da tradução; internal ribosome entry site (IRES); 

mammalian target of rapamycin (MTOR); Δ160P53.  
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      SNAT2 Sodium-coupled neutral amino acid transporter 

   TAD Transactivation domains 

     TC Ternary complex  

      TEL2 Telomere maintenance 2  

     TG Thapsigargin 

      Thr Threonine 

      TMEM132A Transmembrane protein 132A       

TNFα Tumour necrosis factor α 

     TOP 5´terminal oligopyrimidine tracts 

    TP53 Tumor protein p53 

      tRNA Transfer RNA  

      TSC Tuberous Sclerosis Complex  

     TTI1 TELO2 interacting protein 1  
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TU Tunicamycin 

      U Upstream 

      UPR Unfolded protein response 

     UTR Untranslated region  

     VEGF Vascular endothelial growth factor  

    Vh Vehicle 

       XBP1 X-box binding protein 1 

     X-DC X-linked dyskeratosis congenita 

    XIAP X-linked inhibitor of apoptosis  

   YB1 Y-box binding protein 1 

     β-gal β-galactosidase  

      4EBP Eukaryotic translation initiation factor 4E binding protein 

     4ET Eukaryotic translation initiation factor 4E transporter 
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I. INTRODUCTION  

III.1. Eukaryotic mRNA translation initiation 

Eukaryotic gene expression involves a myriad of tightly regulated events. The fact that 

steady-state transcript levels only partially correlate with protein abundances in several 

organisms (de Sousa Abreu et al., 2009) evokes the possibility that post-transcriptional 

regulatory mechanisms strongly affect gene expression. Regulation at the level of 

mRNA translation, a process that leads to protein synthesis from genomic information, 

offers a rapid response to external stimuli without the involvement of transcription, 

mRNA processing or transport. mRNA translation is a multistep pathway 

encompassing initiation, elongation, termination and ribosome recycling steps. All 

phases of mRNA translation are subjected to regulatory mechanisms, although an 

overwhelming bias towards regulation at the initiation step is observed (reviewed in 

Sonenberg and Hinnebusch, 2009) 

This thesis will focus on mRNA translation initiation and its regulatory mechanisms. 

 

mRNA translation initiation requires several factors, including the ribosome which is 

composed of a small subunit (40S) and a large subunit (60S) that together form the 80S 

ribosome. The ribosome is the primary site of protein synthesis and recognizes and 

binds the cap structure, a 7-methyl guanosine that is linked to the 5´ terminal 

nucleoside of the mRNA through an inverted 5´-5´triphosphate bridge (Shuman, 2001).  

This binding occurs through one of the various eukaryotic translation initiation factors 

(EIFs) that are keys players in this process. Attached to the ribosome is one specific 

transfer RNA (tRNA), the initiator methionyl-tRNA (Met-tRNAi) (Cooper, 2000) that 

binds to the appropriate codon, AUG in the majority of cases, by complementary base 

pairing.  
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The goal of translation initiation is to form an elongation-competent 80S ribosome in 

which the anticodon of the Met-tRNAi is base-paired with the initiation codon of the 

mRNA located in the ribosomal peptidyl (P) site. The mechanism underlying this 

process for the majority of transcripts comprises formation and recruitment of the 

pre-initiation complex (PIC) to the 5´ cap structure of an activated mRNA, followed by 

ribosomal scanning of the 5´UTR in the 5´ to 3´direction, that proceeds until a start 

codon in a favorable context is found. The commitment of scanning-arrested PICs to 

the initiation codon is mediated by EIFs displacement which is followed by 60S 

ribosomal subunit joining resulting, ultimately, in 80S initiation complex formation 

(reviewed in Aitken, 2012) (Figure I.1). 

Met-tRNAi is delivered to the 40S ribosomal subunit by the EIF2 to which it binds.  

Further binding of GTP to EIF2 leads to the formation of the ternary complex (TC) 

(Levin et al., 1973). During ribosome recycling EIF1, EIF1A and EIF3 attach the 40S 

ribosomal subunit and, in conjunction with EIF5, induce a ribosomal “open 

conformation” to accommodate the TCs (Asano et al., 2001; Kolupaeva et al., 2005; 

Majumdar et al., 2003). Attachment of the TC to the 40S ribosomal subunit, bound to 

EIF1, EIF1A, EIF3 and EIF5, generates the PIC. The EIF4F complex is a key player in the 

subsequent loading of PIC into the mRNA. It is composed of the cap-binding protein 

EIF4E, the ATP-dependent RNA helicase EIF4A and the scaffoldding protein EIF4G. 

EIF4E interacts with the 5´cap structure and, along with EIF4G, recruits EIF4A to the 

mRNA to unwind secondary structures located within the 5´UTR in a ATP-dependent 

manner, preparing a landing site for PIC (reviewed in Aitken, 2012). 
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Figure I.1. Canonical eukaryotic translation initiation. Steps of canonical 

eukaryotic translation initiation. Translation initiation occurs after recycling of post-

termination complexes (post-TCs), which occur through release of associated factors 

and ribosomal subunit dissociation. (A) The ternary complex (TC), composed by 

initiator methionyl-tRNA (Met-tRNAi) and a GTP-bound EIF2, is formed and (B) is 

recruited to the 40S ribosomal subunit bound to EIF1, EIF1A, EIF3 and EIF5, leading to 

formation of the pre-initiation complex (PIC). (C) Meanwhile the EIF4F complex, 
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composed by EIF4E, EIF4G and EIF4A, is assembled in the mRNA 5´terminus, through 

EIF4E-5´cap structure interaction. EIF4G binds with the polyA-binding protein (PABP) 

generating a closed-loop mRNA configuration. EIF4F and the auxiliary protein EIF4B 

unwinds the 5´region of the circularized transcript for subsequent (D) PIC attachment, 

which occurs through interaction between EIF3 and EIF4G/EIF4B.  (E) The assembled 

PIC scans the 5´untranslated region (5´UTR) through secondary structure unwinding 

and ribosomal movement in the 5´to 3´direction, until (F) an initiation codon in a 

favorable context is found, with which the Met-tRNAi anti-codon base pairs, switching 

the scanning PIC to a closed conformation with EIF1 release. EIF5 triggers EIF2-bound 

GTP hydrolysis and EIF2-GDP partial release. (G) EIF5B triggers displacement of the 

remaining EIF2-GDP, EIF1, EIF4B, EIF4F, EIF5 and EIF3 and 60S ribosomal subunit 

joining, leading to 80S complex formation. (H) Subsequent hydrolyzes of EIF5B-bound 

GTP leads to its dissociation and the following release of EIF1A allows 80S complex to 

start the elongation step. Adapted with permission from Jackson et al., 2010.   

 

The RNA helicase activity of EIF4A is stimulated by EIF4B and EIF4H that increases the 

affinity of EIF4A for ATP and the mRNA and possibly by stabilization of the 5´UTR 

region where the ribosome initially binds and by disabling secondary structure´s 

refolding (Abramson et al., 1988; Lindqvist et al., 2008; Marintchev et al., 2009; Richter 

et al., 1999; Rogers et al., 1999, 2001). In addition, binding to EIF4G also stimulates 

EIF4A helicase activity by modulation of the affinity of this initiation factor for ATP and 

by induction of productive conformational changes (Marintchev et al., 2009; Schütz et 

al., 2008). It is deemed that eI4G is also involved in the interaction between EIF4E and 

the 5´ terminal cap, since when this initiation factor is coupled to EIF4E, the affinity 

between the latter and the cap structure is increased (Gross et al., 2003; Volpon et al., 

2006). By interacting with poly(A)-binding protein (PABP), a protein that binds to the 

polyadenylated 3´end of the transcript and the cap-associated EIF4E, EIF4G brings the 

5´ and 3´ends of the mRNA together, originating a closed-loop configuration (Wells et 

al., 1998).  

It has been suggested that EIF4F attachment to the mRNA relies on multiple 

interactions rather than on absolute contributions of each initiation factor. The cap 

structure is deemed to inspect the success of this network of interactions (Mitchell et 
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al., 2010). The redundancy of such interactions is demonstrated by the fact that EIF4G 

seems to be capable of interacting directly with mRNA in an EIF4E-independent 

manner, suggesting EIF4F assembly in the mRNA might also occurs solely via EIF4G 

(Kaye et al., 2009; Mitchell et al., 2010; Park et al., 2011; Yanagiya et al., 2008). On the 

other hand, EIF4G depletion leads to reduction rather than abolishment of translation 

initiation and it has been proposed that EIF4G function to enhance the EIF4F-mRNA 

interaction, instead (Hinton et al., 2007; Park et al., 2011; Ramírez-Valle et al., 2008). 

Furthermore, the absolute role of PABP in translation initiation has been questioned, 

since it seems to be most important under competitive conditions (Svitkin et al., 2009). 

The PIC component EIF3 serves as a ribosome-EIF4F bridge, by binding particularly to 

EIF4G and allowing PIC assembly onto the transcript (Hinnebusch, 2006; LeFebvre et 

al., 2006). EIF4B is also able to interact with EIF3 and a role for this initiation factor in 

the recruitment of PIC has also been demonstrated (Dmitriev et al., 2003; Méthot et 

al., 1996; Mitchell et al., 2010).  

Once at the 5´ terminal of the mRNA, PIC scans the 5´UTR by unwinding the 

secondary structures and moving in the 5´ to 3´direction, presumably through a base-

by-base process. Ribosomal backward movement has also been observed, although 

over a course of very few nucleotides (Kozak, 1991; Matsuda and Dreher, 2006). The 

process of mRNA unwinding requires EIF4A and is ATP-dependent, as previously 

mentioned, whereas ribosomal movement per se is independent of factors involved in 

mRNA unwinding , but is dependent on EIF1 and EIF1A (Passmore et al., 2007; Pestova 

and Kolupaeva, 2002). Ribosomal scanning and codon inspection proceeds until the 

correct initiation site is recognized, a process that is determined by start codon 

nucleotide context and its position relative to 5´ terminal of the mRNA. An optimal 

context is GCC(A/G)CCAUGG (Kozak context), in which the positions -3 and +4 (A 
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of AUG is set as +1) are crucial, specially a purine at position -3  (Kozak, 1984, 1986a, 

1987a). Usually the scanning PIC recognizes the first AUG in a good Kozak context 

(Kozak, 1991). The fidelity of this process is assured by EIF1 that prevents recognition 

of non-AUG codons, AUGs in poor contexts or located in the first eight 5´ terminal 

nucleotides. Furthermore, EIF1 induces PIC dissociation in case of incorrect start 

codon selection (Pestova and Kolupaeva, 2002; Pestova et al., 1998). Upon pairing of 

the mRNA start codon with Met-tRNAi anticodon, now localized in the P site of the 

ribosome, and EIF1 dissociation, PIC acquires a close conformation (Maag et al., 2005), 

a process that is deemed to involve interactions between the nucleotides at -3 and +4 

positions interact with PIC components (Pisarev et al., 2006).  

Subsequent commitment to a start codon occurs when EIF5, an EIF2-specific GTPase-

activating protein, elicits hydrolysis of EIF2-bound GTP which decreases EIF2 – Met-

tRNAi affinity and, thus, triggers partial EIF2-GDP dissociation (reviewed in Aitken, 

2012). Dissociation of the remaining EIF2-GDP and EIF1, along with 60S ribosomal 

subunit joining, is mediated by the GTPase EIF5B (Pestova et al., 2000; Unbehaun et al., 

2004). However it is thought that EIF3 is also released at this stage in an EIF5B-

dependent manner, it has been suggested that this initiation factor might remain 

attached to 80S-elongating complexes, according to its role in reinitiation events 

(Pöyry et al., 2007).  Formation of 80S initiation complex prompts hydrolysis of EIF5B-

bound GTP leading to its dissociation and subsequent release of EIF1A (Acker et al., 

2009).  

 

III.2. Translational regulation at the initiation level 

Translation regulation encompasses both non-specific mechanisms affecting the overall 

pool of transcripts, and mRNA-targeted controls through specific mRNA elements.  
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III.2.1. Overall mRNA translation initiation regulation   

The formation and/or regeneration of TCs and the assembly of functional EIF4F 

complexes are two important points of control of mRNA translation initiation. 

 

I.2.1.1. Control of ternary complex formation 

One major target of translation initiation regulation is the TC formation and 

regeneration. Following each round of translation, the dissociated EIF2 needs to be 

recharged with GTP, as the GDP-bound EIF2 form is unable to bind Met-tRNA. This 

exchange is performed by the guanine exchange factor EIF2B. When the α subunit of 

EIF2 is phosphorylated, the affinity between EIF2α and EIF2B increases, leading to 

sequestering of EIF2B from the free pool. Since EIF2B is less abundant than EIF2, 

subsequent rounds of translation will be inhibited by TC formation impairment 

(reviewed in Pavitt, 2005). Phosphorylation of EIF2α occurs on the conserved Ser51 

and is triggered by several stresses such as hypoxia, amino acid starvation, viral 

infection, heat shock and ER stress, by differential activation of four mammalian 

kinases: heme-regulated inhibitor (HRI), protein kinase RNA-dependent (PKR), PKR-

like endoplasmic reticulum kinase (PERK) and general control non-derepressible-2 

(GCN2) (reviewed in Wek et al., 2006). HRI is activated by iron or heme deficiency, 

heat, osmotic and oxidative stresses in erythroid cells (reviewed in Chen and Perrine, 

2013); as long as the interferon-inducible PKR is induced by binding to double-stranded 

RNAs and is important for the anti-viral response (Zheng and Bevilacqua, 2004); PERK 

becomes activated by the unfolded protein response (UPR) triggered by ER stress 

(Harding et al., 1999) whereas induction of GCN2 is triggered by amino acid starvation 

(reviewed in Dever and Hinnebusch, 2005).   
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Although the outcome of conditions inducing EIF2α phosphorylation is overall protein 

synthesis reduction, translation initiation of some transcripts is refractory or even 

augmented by this phenomenon, allowing a gene expression reprogramming towards 

translation of transcripts encoding proteins involved in stress response and 

translational recovery (reviewed in Proud, 2005).  

 

I.2.1.2. Control of EIF4F formation 

As previously mentioned, the 40S ribosomal recruitment to mRNAs is dependent on 

EIF4E-cap binding. Simultaneously, EIF4E binds to EIF4G generating, in combination 

with EIF4A, the EIF4F complex. Assembly of this complex into the mRNA is another 

major target of regulation of mRNA translation initiation (Duncan et al. 1987). This 

regulation is namely performed by the EIF4E-binding proteins (4EBPs), the EIF4E 

transporter (4ET), EIF4E-homologous protein (4EHP), phosphorylation events of 

EIF4G and the programmed cell death protein 4 (PDCD4). 

The competitive fitness of 4EBPs binding to EIF4E determines whether EIF4E binds to 

EIF4G or remains sequestered by them, since both initiation factors share the EIF4E-

binding site (Haghighat et al., 1995; Mader et al., 1995; Marcotrigiano et al., 1999). 

Hypo-phosphorylated 4EBPs display high binding affinity to EIF4E and thus disables 

EIF4F formation with concomitant translation initiation inhibition (Lin et al., 1994; 

Pause et al., 1994). The phosphorylation status of 4EBPs is governed by several kinases, 

such as MTOR (Beretta et al., 1996; Brunn et al., 1997; Burnett et al., 1998; Hara et al., 

1997), P110α and P110γ (Foukas and Shepherd, 2004) and is regulated in response to 

growth factors, nutrient, oxygen and energy status. 4EBPs activity is involved in cell 

cycle control and proliferation, since depletion of 4EBPs selectively inhibits synthesis of 

proliferation-promoting proteins and transcripts encoding proteins involved in cell 
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cycle progression (Dowling et al., 2010). In Drosophila, 4EBPs regulate tissue aging by 

removal of damaged and aggregated proteins that accumulate during muscle aging 

possibly through the autophagy/lysosome system (Demontis and Perrimon, 2010). 

Translation of transcripts harboring IRES elements is usually refractory to 4EBP 

phosphorylation (Thoreen et al., 2012).  

EIF4F complex formation is further impaired by 4E-T, that binds to EIF4E and 

sequesters it in the nucleus and P-bodies (a place of mRNA degradation or storage) 

(Dostie et al., 2000; Ferraiuolo et al., 2005). In addition, the EIF4E homolog protein 

(4EHP), that is unable to form EIF4F complexes, inhibits EIF4E attachment into the cap 

structure by competitive binding to the latter (Tee et al., 2004).  

Additionally, EIF4G phosphorylation results in decreased association of this initiation 

factor with EIF4E (Ling et al., 2005; Pyronnet et al., 2001). For instance, the p21 

protein (Cdc42/Rac)-activated kinase 2 binds and phosphorylates EIF4G, leading to a 

decrease in the interaction between EIF4G and EIF4E in addition to decreased EIF4E-

cap association (Ling et al., 2005). Furthermore, caspase and viral cleavage of EIF4G 

also impairs its ability to bind EIF4E, thus inhibiting EIF4F complex formation 

(Haghighat et al., 1996; Marissen and Lloyd, 1998).  

EIF4A is also subjected to control, namely by PDCD4 that binds to this initiation 

factor, blocking its interaction with the scaffold protein EIF4G and its RNA helicase 

activity (Chang et al., 2009; Suzuki et al., 2008; Yang et al., 2003).  

 

III.2.2. Translation regulation mRNA-specific 

Cis-acting elements endow transcripts with differential sensitivity to alterations in the 

activity of translational machinery components allowing mRNA-specific control. Those 

elements include, namely, secondary and tertiary structures, iron response elements, 
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interferon γ-activated inhibitor of translation elements, upstream open reading frames 

and internal ribosome entry sites.  

 

III.2.2.1. Secondary and tertiary RNA structure 

Hairpins and pseudoknots within transcripts 5´UTRs display an intrinsic ability to affect 

translation. These structures inhibit mRNA translation initiation with an efficiency that 

is determined by its position relative to the cap structure and its thermodynamic 

stability: when in close proximity, a hairpin with a Gibbs free energy of -30kcal/mol 

inhibits mRNA translation initiation very efficiently, whereas a hairpin located further 

away, needs to be more stable (less than -50kcal/mol) to affect the translational 

apparatus (Kozak, 1986b). In addition, the GC content of a hairpin influences per se its 

ability to affect mRNA translation (Babendure et al., 2006). Those structures are 

particularly present in mRNAs encoding oncogenes, transcription factors, growth 

factors and their receptors.  

 

III.2.2.2. Iron response elements 

Iron response elements (IREs) are small elements found in the 5´ or 3´UTRs of several 

transcripts encoding proteins involved in iron metabolism. These elements are 28-

nucleotides long and are responsible for regulation of mRNA translation or stability in 

response to iron levels (reviewed in Wallander et al., 2006). IREs located at the 5´ 

UTRs regulate mRNA translation initiation whereas those found in the 3´UTR control 

mRNA turnover (Theil, 1993). Iron deficiency triggers binding of the iron-regulatory 

proteins (IRPs) to the IREs elements which block PIC assembly thus leading to 

translation inhibition. On the other hand, when iron is abundant, IRPs are subjected to 
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posttranslational modifications that either diminish the affinity for the IREs elements or 

promote their own degradation by the proteasome (Guo et al., 1995).  

 

III.2.2.3. Interferon γ-activated inhibitor of translation element  

The interferon γ-activated inhibitor of translation (GAIT) element is a bipartite stem–

loop structure located at the 3´UTR of several transcripts involved in the inflammatory 

response, to which the GAIT complex binds, inhibiting protein translation (reviewed in 

Mukhopadhyay et al., 2009). This complex is composed by the ribosomal protein (RP) 

L13a (RPL13a), the glutamyl-prolyl tRNA synthetase, NS1-associated protein 1, and 

glyceraldehyde 3-phosphate dehydrogenase proteins (Mazumder et al., 2003; Sampath 

et al., 2004). The effect of GAIT complex on mRNA translation occurs through 

inhibition of PIC recruitment. The GAIT complex binds to the GAIT element and to 

the EIF3-binding site of EIF4G, thus inhibiting the EIF4G-EIF3 interaction (Arif et al., 

2009; Kapasi et al., 2007). This process occurs in a PABP and poly(A) tail-dependent 

manner (Kapasi et al., 2007; Mazumder et al., 2001).   

 

III.2.2.4. Upstream open reading frames (uORFs) and translation 

reinitiation 

The presence of uORFs within transcripts 5´UTRs has been reported in several 

mammalian genes, some of which with a negative impact in the expression of the main 

ORFs-encoded protein (Calvo et al., 2009). Translation initiation at uORF AUG is 

governed by the Kozak consensus sequence criteria (Kozak, 1984, 1986a, 1987a) and 

generally leads to reduction of main ORF expression (Calvo et al., 2009). A poor 

uORF initiation codon context triggers the leaky scanning phenomenon, in which the 

ribosome either recognizes the AUG and initiates translation or misses it and 
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continues scanning until a favorable context is found, determining a small or even 

absent effect of uORF at main ORF expression. On the other hand, a good AUG 

context might lead to uORF translation initiation with relative good efficiency.  After 

translation of an uORF, some ribosomes remain attached to the mRNA, resume 

scanning and reinitiate translation at a downstream start codon (Kozak, 1987b). In the 

majority of cases, only the 40S ribosomal subunit remains attached into the mRNA and 

resumes scanning after translation of an uORF. Neverthless, a recent work suggests 

the involvement of 80S ribosomes in some reinitiation events (Skabkin et al., 2013). 

The efficiency of translation reinitiation at a downstream ORF is determined by several 

aspects namely the uORF length and complexity, distance between uORF stop codon 

and the downstream initiation codon, TCs availability, uORF stop codon surrounding 

sequence and ribosome stalling by the uORF-encoded peptide.  

It has been demonstrated that reinitiation only occurs if EIF4F complex and EIF4B 

participate in the upstream translation event, or at least EIF4G p50 fragment, EIF4A 

and EIF4B (Poyry et al., 2004). Furthermore, in yeast, EIF3 remains bound to 80S 

during translation elongation and this is critical for increased translation reinitiation of 

post-terminating 40S ribosomes (Szamecz et al., 2008). Accordingly, downstream 

reinitiation occurs when the uORF is permissive for maintenance of ribosome-

associated initiation factors, which is determined by the time spent by the ribosome to 

translate it.  Downstream reinitiation after translation of a short and unstructured 

uORF might be highly efficient in opposition to a long or structured uORF (Kozak, 

2001). This is demonstrated by the fact that a decrease in reinitiation efficiency was 

observed upon expansion of uORF length from 13 to 33 codons (Kozak, 2001) and a 

completely abolishment of translation reinitiation was observed when this uORF was 

lengthened to 55 codons (Luukkonen et al., 1995). Furthermore, insertion of a stable 
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RNA hairpin also decreases reinitiation rate by translation elongation pausing (Kozak, 

2001). A particular case of reinitiation after a long uORF was reported at a viral 

mRNA. In this case, a cis-acting element consisting of the 87 nucleotides located 

immediately upstream of the uORF stop codon that is able to bind both 40S ribosomal 

subunit and EIF3, was mandatory for translation reinitiation at the second ORF, 

possibly by capturing some of the EIF3-40S complexes generated during ribosome 

disassembly (Poyry et al., 2007).  

Besides the time required for uORF translation, reinitiation efficiency is also dependent 

on the distance between uORF stop codon and the downstream initiation codon. For 

each round of translation EIF2 is inactivated, so reinitiation must de novo recruit an 

active GTP-bound EIF2. Nevertheless, scanning resumption starts appreciably before a 

new TC is acquired as it occurs rapidly after translation termination (Kozak 1987b, 

2001). In accordance, the intercistronic space must be long enough to allow TCs 

recruitment.  It has been demonstrated that a 79-nucleotide (nt) distance between 

uORF stop codon and the downstream AUG allows translation of the second ORF as 

efficiently as if no uAUG was present (Kozak, 1987b). Additionally, the availability of 

active TCs, also plays an important role in the reinitiation efficiency. While increased 

EIF2α phosphorylation reduces translation in an overall level (reviewed in Dever, 

2002), the presence of uORFs of appropriate length and position might result in 

increased protein synthesis instead. Augmented expression of activating transcription 

factor 4 (ATF4) and ATF5 by increased phosphorylation of EIF2α occurs by such 

mechanism (Vattem and Wek, 2004; Zhou et al., 2008). The 5´UTRs of both 

transcripts harbor two uORFs, a 5´ terminal short uORF1 and a downstream longest 

uORF2 which overlaps with ATF4 or ATF5 main ORF, respectively. Under normal 

conditions, i.e., high ternary complex levels, after translation of uORF1, ribosome 
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resumes scanning and re-acquires active TCs in time to reinitiate at uORF2. 

Translation reinitiation at ATF4 or ATF5 main ORF is compromised as it would imply 

backwards scanning over a longer distance that ribosome can handle (Kozak, 2001; 

Vattem and Wek, 2004; Zhou et al., 2008). When EIF2α phosphorylation increases, 

after translation of uORF1, ribosomes only acquire TC after bypassing uORF2 and 

before ATF4 or ATF5 main AUG, thus increasing their translation (Vattem and Wek, 

2004; Zhou et al., 2008). 

Reinitiation efficiency might also be reduced by ribosome stalling during uORF 

translation elongation or termination. In some cases, this stalling is caused by the uORF 

encoded peptide itself. It seems that it is not the peptide sequence that determines this 

effect, as no consensus sequence determining ribosome stalling has been identified until 

now. Ribosome stalling might interfere with downstream translation reinitiation not 

only because the stalled ribosome is disabled to reach the downstream AUG, but also 

because the newly loaded ribosomes find a barrier (reviewed in Morris and Geballe, 

2000).  

 

III.2.2.4.1. Non-AUG initiation codons 

In rare cases, mRNA translation may initiate at non-AUG codons that differ at a single 

nucleotide from the bona fide initiator (Peabody, 1989). The recognition of a non-AUG 

codon as a translational initiation site is severely dependent on an optimal Kozak 

context, requiring both a purine at position -3 and a “G” at position +4 (Kozak, 1991), 

and generally needs additional signals to be recognized, such as downstream stem-

loops (Kozak, 1989a).  The influence of the sequence context seems to be not 

restricted to positions -3 and +4, as some cases of dependency on nucleotides located 

at other positions had arised (Chen et al., 2008; Kozak, 1989a). Kozak tested 
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translation initiation at six different non-AUG initiators and found that GUG provided 

the more efficient translation but it was only functional when preceded by the 

sequence CCACC (Kozak, 1989a). This suggests that the imperfect codon-anticodon 

interaction is compensated by contact with nearby nucleotides, in particular with a 

purine at position -3 and a G in +4 (Kozak, 1991). As it occurs with AUG initiators in a 

weak Kozak consensus sequence, translation at non-AUG initiation codons is 

enhanced by downstream stem-loops located at specific positions. A stem-loop located 

at a distance of 17 and, to a less extent, 11 nucleotides downstream of the coding 

sequence beginning enhances translation efficiency (Kozak, 1990).  

 

III.2.2.5. Internal ribosome entry site 

The scanning model of translation initiation was proposed on 1978 by Marilyn Kozak 

(Kozak, 1978) and, since then, it prevails as the mechanism used by the vast majority of 

the transcripts. Though, early observations pointed out that this mechanism fails to 

explain how certain mRNAs are translated. In 1988, it was demonstrated that some 

viral uncapped mRNAs are not only efficiently translated, but also are able to compete 

with host mRNAs for the translational machinery, under viral infection (Jang et al., 

1988; Schneider and Shenk, 1987). Furthermore, ribosome profiling of cells infected 

with poliovirus (PV), that inhibits translation initiation in an EIF4G-cleavage-dependent 

manner, showed that about 3% of the mRNAs remained associated with polysomes 

(Johannes et al., 1999) many of them encoding proteins involved in cell stress 

responses. Particularly, under this translational inhibitory condition, translation of 

transmembrane protein 132A (TMEM132A) (previously kwon as binding protein 1 (BIP) 

transcript was found to be enhanced (Sarnow, 1989). Similar observations were found 

in other conditions with associated reduction of cap-dependent translation, such as 
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mitosis (Qin and Sarnow 2004) and apoptosis (Bushell et al., 2006). These data 

suggested a translational advantage of certain mRNAs, upon unfavorable conditions for 

the scanning-mediated mRNA translation. Then, two independent studies observed 

that PV and encephalomyocarditis virus (EMCV) 5´UTRs induce translation of a second 

cistron expressed by a dicistronic RNA, which lead to the conclusion that those 

sequences directly bind the 40S ribosomal subunit without the involvement of the 

mRNA 5´ terminal (Jang et al., 1988; Pelletier and Sonenberg, 1988).  Subsequent 

confirmation of these data came from the observation that circle RNAs containing 

EMCV 5´UTR efficiently recruit the translational machinery which was able to translate 

for consecutive rounds (Chen and Sarnow, 1995). First known as “ribosome landing 

pads”, those sequences were after termed IRES and classified into “viral” and “cellular” 

IRES. Subsequent studies demonstrated that IRES elements are present in other RNA 

viruses (Locker et al., 2011) as well as DNA viruses (Tahiri-Alaoui et al., 2009). The 

first cellular IRES discovered was within TMEM132A 5´UTR (Macejak and Sarnow, 

1991) and after then, several cellular IRESs have been discovered (reviewed in 

Martínez-Salas et al., 2012). 

 

III.2.2.5.1. IRES features 

An IRES is a cis-acting element consisting of a highly structured RNA sequence that 

attracts and binds the 40S ribosomal subunit without requiring the cap-structure. 

Although IRES elements are usually located within the 5´UTR of a transcript, some 

IRESs are also (Allam and Ali., 2009; Candeias et al., 2006) or exclusively (Jaag et al., 

2003) located in the mRNA coding region, in which they trigger production of 

truncated proteins.  Generally, IRES-containing transcripts have long 5´UTRs (reviewed 

in Baird et al., 2006) with high GC content, stable secondary structures, uAUGs or 
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uORFs (reviewed in Martínez-Salas et al., 2012). However, these are not universal 

characteristics and a great variability of features and mechanisms of action is observed 

between viral and cellular IRESs as well as among the discovered cellular IRESs. 

Whereas the viral IRESs are about 300-600 nts long, the cellular counterparts are 

shorter with an average of 100-200 nts (reviewed in Komar and Hatzoglou, 2005). 

IRESs of viruses fold in highly ordered RNA secondary and tertiary structures, 

generating several domains, whose structural integrity is required for IRES activity (eg., 

Honda et al., 1996). Usually, the different domains display distinct functions in the 

process of recruiting the translational machinery (Jang and Jan, 2010; Serrano et al., 

2009). On the other hand, cellular IRESs fold in a less stable RNA structure (Xia and 

Holcik, 2009) and their activity seem to rely on the action of individual modules that 

cooperatively act to attract the translational apparatus, though displaying IRES activity 

per se (eg., Coldwell et al., 2000; Stoneley et al., 1998). Nevertheless, cases of 

structural similarity of such modules with the ones found in viral IRESs have been 

reported. IRES elements within the TMEM132A and fibroblast growth factor 2 (FGF2) 

transcripts harbor a Y-type stem-loop structure followed by a small hairpin upstream 

of the initiation codon similar to the one found in the picornavirus IRESs (Le and 

Maizel, 1997). Furthermore, v-myc avian myelocytomatosis viral oncogene homolog 

(MYC) and v-myc avian myelocytomatosis viral oncogene lung carcinoma derived 

homolog (MYCL) IRESs possess pseudoknots (Jopling et al., 2004; Le Quesne et al., 

2001), a tertiary motif important for IRES activity of some viruses (Rijnbrand et al., 

1997). On the other hand, a negative influence of RNA secondary and tertiary 

structures has been proposed for some cellular IRESs. For instance, destabilization of 

some pseudoknots of MYC IRES stimulates its activation (Le Quesne et al., 2001). 

Furthermore, 40S ribosomal subunit attachment to the IRES element of the apoptotic 
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protease-activating factor 1 (APAF1) mRNA occurs in a single-stranded region (Mitchell et 

al., 2003). Another study demonstrated that yeast and fruit fly IRESs with weak 

secondary structures are more active than those containing strong secondary 

structures (Xia et al., 2009). Those findings show that cellular IRESs do not share with 

viral IRESs a predictable RNA structure stability-function relation.  

The enrichment of IRESs in GC nucleotides is not also an universal finding, as 

demonstrated by the fact that IRESs elements of seven yeast genes required for 

invasive growth possess an A-rich stretch immediately upstream of AUG (poorly 

structured sequence), that is required for IRES activation (Gilbert et al., 2007). This 

element is a binding site for the poly(A) binding protein (PAB1). In addition, the activity 

of the unstructured IRESs elements found on the fruit fly transcripts encoding Reaper, 

Hid, Grim and the Heat shock 70kDa protein is positively correlated with its content 

on adenine residues (Hernandez et al., 2004; Vazquez-Pianzola et al., 2006).   

 

III.2.2.5.2. Mechanism of action 

Translation initiation driven by an IRES element relies on cap-independent ribosomal 

recruitment to the vicinity of the start codon, which is generally assisted by initiation 

proteins that may include canonical EIFs and/or a battery of proteins called IRES trans-

acting factors (ITAFs). The requirement for both EIFs and ITAFs varies significantly 

between the different IRESs discovered so far. Even viral IRESs display differences in 

the translational machinery composition (reviewed in Martínez-Salas et al., 2012). 

Furthermore, IRES-mediated translation initiation might be totally independent of 

ribosomal scanning and allow direct positioning of AUG at the ribosomal P-site or rely 

on a “land and scan” mechanism that involves ribosomal scanning, in the 5´-3´ 

direction, from the landing site to the initiation codon (Belsham and Jackson, 2000). 
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IRES-dependent translation is, by definition, independent of the 5´ terminal cap 

structure, so it is not surprising that the majority of IRESs (both cellular and viral) 

operate in a manner that is independent on the cap-binding protein EIF4E (reviewed in 

Hellen and Sarnow, 2001). Few exceptions to this were reported for IRESs elements of 

hepatitis A virus and ring finger protein 1B, whose activation requires the EIF4E-EIF4G 

interaction (Ali et al., 2001; Boutsma et al., 2008). Indeed, it has been proposed that 

EIF4E has a negative effect on IRES-dependent translation, since it potentiates the 

competitive fitness of capped mRNAs for EIF4F complex recruitment. When the EIF4E 

levels drop, the remaining EIF4G/EIF4A complex, which has lower affinity for capped 

mRNAs and higher for IRES-containing mRNAs (Lomakin et al., 2000), are 

preferentially recruited by the IRES element (Svitkin et al., 2005). This model was 

proposed based on the EMCV IRES behavior, though the growing list of IRES that are 

stimulated upon conditions with impaired EIF4E (Thoreen et al., 2012), might suggest 

that this is a common mechanism for IRES dependent translation.  

The requirement for other EIFs is more variable and, for viral IRESs, determines a 

categorization into groups and types, along with its secondary structure and the 

position of the ribosome landing site relative to the initiation codon. The viral IRESs 

are divided into the Picornaviridae, Flaviviridae and Dicistroviridae groups and the former 

is further divided into four different types, type I-IV. IRESs elements of PV and EMCV 

are the prototypes of type 1 and 2 IRESs, respectively, and require EIF4A and the 

central domain of EIF4G for recruitment of PIC, which is enhanced by the action of 

EIF4B (Andreev et al., 2007; Belsham, 1992; de Breyne et al., 2009; López de Quinto et 

al., 2001). IRESs belonging to type 1 use the “land and scan” mechanism, whereas 

EMCV IRES-mediated translation relies on the “land and start” mechanism (Belsham 

and Jackson, 2000; Kaminski et al., 1990, 1994). In Hepatitis C Virus (HCV) IRES-driven 
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translation, the prototype of the type 3 IRESs, the 48S complex is directly assembled at 

the initiation codon, in a manner that is dependent on EIF3. In this IRES, the action of 

EIF2 might be substituted by EIF2D or EIF2A or monocarboxylate transporter 1 

(MCT1) in combination with density-regulated protein (DENR) (Dmitriev et al., 2010; 

Kim et al., 2011; Skabkin et al., 2010). IRESs belonging to type 4, prototyped by the 

intergenic region (IGR) IRESs, directly interact either with the 40S ribosomal subunit 

or with 80S ribosomes, in a manner that is independent of EIFs, but is dependent on 

the IRES structural conformation (Costantino et al., 2008; Wilson et al., 2000a). 

Among the IGR IRES pseudoknot domains that interact with the ribosomal subunits, 

the one occupying the P-site mimics the Met-tRNAi anticodon stem loop and a start 

codon (Costantino et al., 2008). 

The involvement of EIFs in IRES-mediated translation of cellular mRNAs is more 

random. For instance, TMEM132A IRES requires the EIF4G C-terminal that binds 

EIF4A (Thoma et al., 2004), MYC and v-myc avian myelocytomatosis viral oncogene 

neuroblastoma derived homolog (MYCN) IRESs are dependent on EIF4G C-terminal, 

EIF4A and EIF3, whereas MYCL IRES requires the EIF4F complex, PABP and EIF3 

(Spriggs et al., 2009). The aforementioned A-rich family of yeast IRESs requires EIF4G 

and is strongly dependent on PABP (Gilbert et al., 2007). Additionally, some IRESs, 

such as those within the v-src avian sarcoma (Schmidt-Ruppin A-2) viral oncogene 

homolog (SRC), X-linked inhibitor of apoptosis (XIAP), high affinity cationic amino acid 

transporter 1 (CAT1), TMEM132A, pim-1 oncogene (PIM1), platelet-derived growth 

factor-2 (PDGF2), vascular endothelial growth factor (VEGF) and MYC transcripts might 

operate in an EIF2-independent manner, as its activity is not inhibited by increased 

phosphorylation levels of EIF2α (Allam and Ali, 2009; Fernandez et al., 2002; Gerlitz et 

al., 2002; Thakor and Holcik, 2011). In accordance with its independence on some 
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EIFs, IRES-driven translation circumvents the inhibitory effect of physiological, stress or 

pathophysiological conditions that usually inhibit cap-dependent translation, such as 

those inhibiting EIF4F complex formation or TC regeneration.  

ITAFs are RNA-binding proteins that regulate IRES-driven translation and the vast 

majority is also involved in other biological processes such as transcription, RNA 

transport, splicing and stability (Pacheco et al., 2008; Vazquez-Pianzola et al., 2005; 

Weinlich et al., 2009). ITAFs might be positive or negative regulators of IRES-

dependent translation and their mechanism of action is deemed to rely on folding of 

the IRES element in an RNA configuration that is either beneficial or disadvantageous 

for translational apparatus binding. Additionally, ITAFs may also assist canonical EIFs in 

ribosomal recruitment or even display this role in an EIF-independent manner 

(reviewed in Komar and Hatzoglou, 2011).  This diversity of roles of ITAFs in 

modulating IRES activity is exemplified by the stimulatory effect of Upstream of N-ras 

(UNR) binding to APAF1 IRES, which induces a structural rearrangement of this 

element that triggers binding of polypyrimidine tract-binding protein (PTB) (Mitchell et 

al., 2003), allowing ribosome to land in an unfolded RNA segment. On the other hand, 

the ITAF RNA-binding motif protein 4 (RBM4) stimulates IRES activity by inciting 

EIF4A recruitment to IRES-containing transcripts, such as of the MYC and B-cell 

CLL/lymphoma2 (BCL2) mRNAs (Lin et al., 2007). Most ITAFs, such as the one of the 

heterogeneous nuclear ribonucleoprotein (HnRNP) group, are able to shuttle between 

the nucleus, where they normally reside, and the cytoplasm, as they harbor  nuclear 

export sequences (Michael et al., 1997; reviewed in Piñol-Roma, 1997). It has been 

demonstrated that ITAFs subcellular localization plays a role in modulating IRES 

activity. For instance, MYC, APAF1, VEGF, FGF2 and XIAP IRESs are affected by HnRNP 

A1 cellular cytoplasmic relocalization (Cammas et al., 2007). Similarly, chemotoxic 
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stress, a condition that induces translation initiation inhibition, is accompanied by 

maintenance of BCL2-associated athanogen (BAG1) IRES activity and concomitant 

cytoplasmic redistribution of BAG1 ITAFs PTB and poly(rC) binding protein 1 (PCBP1) 

(Dobbyn et al., 2008). Furthermore, the cytoplasmatic localization of RNA-binding 

protein 4 is essential for its ITAF activity (Lin et al., 2007). This ITAF subcellular 

relocalization might have opposite outcomes on modulation of different IRESs as 

demonstrated by the positive and negative effects displayed by cytoplasmic 

accumulation of hnRNP A1 on IRES activity of FGF2 and XIAP transcripts, respectively 

(reviewed in Lewis and Holcik, 2007). The influence of ITAF subcellular redistribution 

on IRES-dependent translation might imply that nuclear located ITAFs either bind 

transcripts harboring IRESs elements, thus inhibiting access to the cytoplasm-located 

translational machinery, or remain unassociated from IRES-containing mRNAs allowing 

them to migrate to the cytoplasmic compartment where they can be translated 

(Semler and Waterman, 2008). In both models, an appropriate signal would trigger 

cytoplasmic relocalization of nuclear located ITAFs (reviewed in Lewis and Holcik, 

2007). Posttranslational modifications of ITAFs might also influence its subcellular 

localization and, concomitantly, its effect on IRES-driven translation. This is 

demonstrated by the phosphorylation-triggered subcellular redistribution of HnRNP 

A1 (Van Oordt et al., 2000). Among the several discovered ITAFs, PTB has been 

proposed to be an “universal ITAF” as it regulates various IRESs namely PV, EMCV, 

APAF1, BAG1, cyclin-dependent kinase inhibitor 1B (CDKN1B) (Cho et al., 2005; Grover 

et al., 2008; Jang and Wimmer, 1990; Mitchell et al., 2005; Pestova et al., 1991; 

Pickering et al., 2003, 2004).  

The ribosome itself might also influence IRES-mediated translation, as demonstrated by 

the fact that the ribosomal RNA (rRNA) pseudouridylation status affects binding of 
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IRESs to ribosomes leading to alterations of IRES-dependent translation (Jack et al., 

2011). Furthermore, it has been shown that rRNA methylation compromises 

translation initiation via cellular but not viral IRESs, through inhibition of 80S initiation 

complex formation (Basu et al., 2011).  

Additionally, a role for 3´UTR in assisting IRES-mediated translation has been reported 

(Dobrikova et al., 2003; López de Quinto et al., 2002), suggesting that mRNA 

circularization might also play a role in IRES-dependent translation.  

 

III.2.2.5.3. Biological significance of IRESs 

Viruses have strategies to be able to synthesize their own proteins, considering they 

lack a translational apparatus. Providing that viral IRES-containing transcripts are not 

translated by the cap-dependent mechanism, one strategy relies on inhibition of host 

cap-dependent translation and use of IRES-mediated translation, allowing a competitive 

advantage for the translational machinery resulting in prevalence of viral translation 

(reviewed in Schneider and Mohr, 2003). For instance, picornavirus infection results in 

cleavage of host EIF4G and PABP, resulting in selective repression of host cap-

dependent translation in opposition to viral IRES-mediated translation that remains 

active (Rodríguez Pulido et al., 2007). On the other hand, most of their cellular 

counterparts use both mechanisms of translation initiation (Johannes and Sarnow, 

1998; Pinkstaff et al., 2001).  

Some stress, physiological and pathophysiological conditions are associated with 

reduced cap-mediated translation and increased IRES-driven translation (Graber and 

Holcik, 2007; Silvera et al., 2009; Spriggs et al., 2008). Those conditions include 

nutrient limitation, temperature shock, DNA damage response, hypoxia, ER stress, as 

well as apoptosis, mitosis, hibernation and tumorigenesis.  
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Starvation, even of a single essential amino acid, is accompanied by protein synthesis 

reduction (Everson et al., 1989). Nevertheless, transcript and protein levels of sodium-

coupled neutral amino acid transporter (SNAT2) are elevated through the actions of 

augmented EIF2α phosphorylation and IRES-activation, respectively (Gaccioli et al., 

2006). Additionally, the same condition prompts stabilization and augmented 

translation of the CAT1 transcript. mRNA is stabilized by binding of the cytoplasmic 

redistributed HuR protein to an AU-rich element (ARE) within CAT1 3´UTR, as long as 

the increment of CAT1 protein synthesis is achieved by translation initiation through 

an uORF-activated IRES element, in a EIF2α-dependent manner (Yaman et al., 2005). 

Both SNAT2 and CAT1 proteins are components of the system transport A, a neutral 

amino acid transport system, which is stimulated by amino acid depletion (reviewed in 

McGivan and Pastor-Anglada, 1994). 

The cold inducible RNA binding protein (CIRP) is involved in the cellular response to 

cold shock, a condition that is characterized by overall decrease of protein synthesis 

(reviewed in Sonna et al., 2002). In cold shock conditions (32ºC), CIRP translation is 

increased by an IRES element within a transcript with the full-length 5´UTR that is 

produced upon those conditions (Al-Fageeh and Smales, 2009).  

The DNA damage response (DDR) encompasses a series of events to promote 

damage repair or trigger cell death according to the nature or severity of the insult 

(Jackson and Bartek, 2009). Similarly to the aforementioned cellular stresses, DNA 

damage is accompanied by reduction of the cap-dependent translation rates  (Powley 

et al., 2009), although, some transcripts with important roles in the DDR continue to 

be translated, as it occurs with the serine hydroxymethyltransferase 1 (SHMT1). This 

protein is a member of the thymidylate biosynthetic pathway that is involved in DNA 

repair (Anderson and Stover, 2009) and it is produced upon UVC exposure through 
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an IRES element (Fox and Stover, 2009). In addition, the transcripts encoding P53 and 

BCL2 are IRES-driven translated upon cellular treatment with the DNA damage-

inducing agent etoposide (Sherrill et al., 2004; Yang et al., 2006).  

Caspase-mediated cleavage of EIF4G, EIF4B and 4EBP1 (Bushell et al., 1999, 2001; Tee 

and Proud, 2002) and alterations in the phosphorylation levels of EIF2α and 4EBP1 

culminate in protein synthesis inhibition during apoptotic conditions (reviewed in 

Clemens et al., 2000). A role for IRES-driven translation in the cell fate decision upon 

adverse conditions has been proposed, as transcripts encoding both proteins with anti- 

and pro-apoptotic functions have IRES elements (Holcik et al., 2000a). Transcripts 

whose translation is kept under apoptotic stimulus include those encoding MYC 

(Stoneley et al., 2000a), APAF1 (Coldwell et al., 2000), XIAP (Holcik et al., 1999). 

Deregulated expression of MYC triggers apoptosis (reviewed in Hoffman and 

Liebermann, 1998) and it has been demonstrated that maintenance of MYC protein 

levels under tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced 

apoptosis is achieved by IRES-driven translation (Stoneley et al, 1998, 2000a). The 

IRESs of the APAF1 and XIAP transcripts, encoding a pro- and an anti-apoptotic protein, 

respectively, are activated by different apoptotic stimulus. APAF1 IRES is stimulated by 

etoposide- induced apoptosis (Nevins et al., 2002) and it has been suggested that the 

IRES element within the APAF1 transcript accounts for the protein levels maintenance 

upon those conditions (Coldwell et al., 2000). In turn, IRES activity of XIAP is increased 

upon serum starvation, low-dose γ-irradiation and treatment with interleukin-6 

(Holcik et al., 1999, 2000b; Yamagiwa et al., 2004) but not in etoposide or thapsigargin-

induced apoptosis (Nevins et al., 2002; Warnakulasuriyarachchi et al., 2004). The 

apoptotic-stimulus specificity of IRES activation of those transcripts might determine 

whether the cells commit suicide or resume growth.  
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The G2/M transition is characterized by a substantial decrease in overall protein 

synthesis, namely through inhibition of the EIF4F assembly, or EIF2α phosphorylation 

(Bonneau and Sonenberg, 1987; Datta et al., 1999; Pyronnet et al., 2001) and an 

increase in IRES-mediated translation (Ramirez-Valle et al., 2010). It has been shown 

that the transcript of the ornithine decarboxylase (ODC), a key enzyme in the 

synthesis of polyamines, harbors an IRES element which is active during G2/M but not 

in the G1/S phase (Pyronnet et al., 2000). In addition, a p58-kDa isoform of the cyclin-

dependent kinase 11 (CDK11), is produced through an IRES element located within 

CDK11 mRNA coding region, during G2/M (Cornelis et al., 2000).  Impairment of IRES-

driven synthesis of CDK11p58 leads to impaired cytokinesis, aneuploidy and 

tumorigenesis (Wilker et al., 2007). The increase of IRES-dependent translation in 

mitosis has been attributed to phosphorylation of the MTORC1-component RAPTOR 

(Ramírez-Valle et al., 2010). Furthermore, a role for 14-3-3σ has also been described. 

During mitosis, 14-3-3σ binds to several EIFs, namely EIF4B and EIF2α and the 

elongation factor EF1α; in its absence, the switch towards IRES-dependent translation 

rather than cap-dependent translation is not observed (Wilker et al., 2007).  

Mammalian hibernation is characterized by impairment of overall translation (van 

Breukelen and Martin, 2001). Translation initiation mediated by IRESs elements is 

deemed to play a role in this adaptive process as transcripts harboring IRES elements 

are preferentially loaded into polysomes during arousal of hibernating ground squirrels 

in comparison to non IRES-containing mRNAs (Pan and van Breukelen, 2011).  

In summary, IRES-mediated translation is the preferred mechanism of translation of 

some transcripts during physiological or stress conditions which are inhibitory to the 

canonical mechanism. Accordingly, IRES-driven translation integrates translational 
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reconfiguration programs that are triggered to allow cells to bypass the adverse 

condition or commit irreversibly-damaged cells to death.  

 

III.2.2.5.4. Importance of IRES-mediated translation in cancer 

Deregulation of mRNA translational control has been associated with tumor 

development. Cellular transformation is often accompanied by a translational 

reconfiguration characterized by augmented overall protein synthesis, which results in 

increased cell growth and division, in combination with translational modulation of 

specific transcripts encoding proteins with oncogenic properties (reviewed in Silvera et 

al., 2010). This is accomplished namely by abnormal expression or activity of canonical 

initiation factors, tRNAs or translational regulatory proteins, as well as an increase in 

rates of ribosomal biogenesis and ribosomal subunits amounts (reviewed in Ruggero, 

2012; Silvera et al., 2010). In particular, overexpression, increased activity and 

phosphorylation of EIF4E has been associated with malignant transformation. The role 

of EIF4E in human cancer development is attributed to its role both on overall protein 

synthesis and on selective translation of transcripts encoding proteins involved in cell 

cycle progression, angiogenesis, cell growth, proliferation and apoptosis (Mamane et 

al., 2007; Topisirovic et al., 2003; Wendel et al., 2007). This selectivity of translation 

relies namely on the competitive advantage for EIF4E binding that mRNAs with highly 

structured 5´UTRs gain when this factor is in excess (Koromilas et al., 1992a). Several 

transcripts encoding proto-oncogenes, growth factors and growth-regulated proteins 

have long and structured 5´UTRs (reviewed in Willis, 1999). Inhibition of EIF4E, by 

elevated levels or hypophosphorylation of 4EBP1, are associated with good survival 

outcome of patients with ovarian and breast cancers and childhood 

rhabdomyosarcoma (Armengol et al., 2007). Induction of apoptosis is observed upon 
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ectopic expression of a 4EBP1 phosphorylation site-mutant into breast carcinoma cells 

(Avdulov et al. 2004). A role for EIF2α in tumorigenesis has been suggested by the fact 

that deregulated TC formation triggers cell transformation (Koromilas et al. 1992b). 

However, the influence of EIF2α phosphorylation status on tumorigenesis seems to be 

context- and cancer stage-dependent. In some studies, inhibition of EIF2α 

phosphorylation triggers malignant transformation (Donzé et al., 1995; Koromilas et 

al., 1992b), while in other conditions, mice with inactivated PERK or phosphorylated 

EIF2α  develop smaller and slowing growth tumors that display higher levels of 

apoptosis in hypoxic areas (Bi et al. 2005). Nevertheless, in other settings, inactivation 

of PKR did not influence tumorigenesis (Abraham et al., 1999; Yang et al., 1995).  

The balance between cap- and IRES-mediated translation displays a role in 

tumorigenesis. The initial burst in protein synthesis observed upon cellular 

transformation occurs mainly through the cap-dependent mechanism (Bellodi et al., 

2010). On the other hand, upon oncogene-induced senescence (OIS), a decrease in 

overall cap-dependent translation and increase in mRNA translation via IRESs elements 

is observed. One of the transcripts whose IRES-mediated translation is favored during 

OIS is TP53 (Bellodi et al., 2010a). In cells with mutations in the dyskeratosis congenita 

1 (DKC1) gene, a signature of the X-linked dyskeratosis congenita (X-DC) condition, 

this preferential IRES-dependent synthesis of P53 is impaired allowing cells to bypass 

the OIS-induced cell cycle arrest (Bellodi et al., 2010a). Furthermore in this condition, 

the activity of the IRESs elements within the transcripts encoding the cell cycle 

inhibitor CDKN1B and of the BCL2-like protein 1 (BCL2L1) and XIAP is also impaired 

(Yoon et al., 2006). Deregulation of IRES-mediated synthesis of the tumor suppressors 

CDKN1B and P53 account for the increased cancer susceptibility of X-DC patients 

(Bellodi et al. 2010a,b; Montanaro et al. 2010; Yoon et al., 2006).  It is interesting that 
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although the DKC1-encoded dyskerin is a pseudouridine synthase that alters rRNA, in 

X-DC only IRES but not cap-dependent translation is impaired (Yoon et al., 2006).  

Deregulation of EIFs expression or activity contributes to the balance between cap and 

IRES-mediated translation, as it occurs in large advanced breast cancers, in which 

overexpression of 4EBP1 and EIF4G assists a hypoxia-mediated switch towards IRES-

driven translation at the expense of cap-dependent translation. The transcritps 

selectively translated via IRESs elements encode proangiogenic factors, proteins 

involved in hypoxia response and cell survival, such as HIF1α, VEGFA and BCL2. This 

translation reconfiguration is required for tumor angiogenesis and progression 

(Braunstein et al., 2007). Overexpression of EIF4G is also observed in inflammatory 

breast cancer, in which it triggers IRES-mediated translation namely of VEGFA and 

catenin (cadherin-associated protein), delta 1 (CTNND1). VEGFA expression accounts 

for the high levels of angiogenesis and resistance to hypoxia observed in this tumor 

type, while CTNND1 protein maintenance is responsible for preservation of tumor 

cell emboli, a set of clusters of cancer cells linked by catenin delta-1-regulated E-

cadherin  (Silvera et al., 2009). The transcription factor MYC is commonly 

hyperactivated in human cancer types (Gardner et al., 2002) and it has been 

demonstrated that the oncogenic activity of MYC is intimately related to its role in 

protein synthesis, through distinct effects on cap- versus IRES–dependent translation. 

Whilst hyperactivation of this transcription factor augments overall protein synthesis 

rates, it impairs activity of some IRES elements (reviewed in Ruggero, 2009). 

Furthermore, the translation of MYC transcript itself is commanded by an IRES element 

(Stoneley et al., 1998), whose activity is enhanced by a C-T mutation in the DNA 

region of this cis-regulatory element. This increase in IRES-driven translation is 

responsible for MYC overexpression in multiple myeloma cells, in which it is 
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associated with enhanced cell proliferation (Chappell et al., 2000). The mutant MYC 

IRES element is a stronger mediator of mRNA translation initiation due to its higher 

affinity to the ITAFs PTB and the overexpressed Y-box binding protein 1 (YB1) 

(Cobbold et al., 2010).   

Aberrant expression or subcellular localization of ITAFs might also account for the 

role of IRES in tumorigenesis. For instance, PTB overexpression has been observed in 

some neoplasias, such as endometrial adenocarcinoma tumors (Wang et al., 2008). 

Loss of epithelial cell polarity and acquisition of mesenchymal features occurs at late 

stages of tumor progression, by a phenomenon referred as epithelial-mesenchymal 

transition (EMT), by which cells gain migratory and invasive properties (Thiery et al., 

2009). It has been demonstrated that YB1 induces EMT of breast epithelial cells by 

activation of IRES-dependent translation of the EMT-inducer snail family zinc finger 1 

(SNAI1). Other transcription factors involved in regulation of epithelial, growth-related 

and mesenchymal genes are induced by YB1 (Evdokimova et al., 2009). Furthermore, 

Laminin beta 1 (LAMB1), a protein involved in the cell-extracellular matrix interaction 

(Patarroyo et al., 2002), is also synthesized through an IRES element. Augmented 

protein synthesis of LAMB1 during EMT correlates with enhanced LAMB1 IRES activity 

(Petz et al., 2007), through a PDGF-dependent increase in the cytoplasmatic 

redistribution of Lupus La protein during this phenomenom (Petz et al., 2011, 2012). 

These data might indicate that this augmented IRES-mediated translation of LAMB1 has 

a role in tumor cell migration and metastization.  

 

III.3. Mammalian or mechanistic target of rapamycin 

A natural compound with antifungal and antiproliferative activities was isolated from a 

strain of Spreptomyces hygroscopicus and was called rapamycin after the place of its 
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discovery, Rapa Nui (Easter Island) (Vézina et al., 1975). Later, the gene encoding the 

protein responsible for the functions of this macrolide was found in yeast, and was 

named target of rapamycin (TOR) (Heitman et al., 1991). Shortly after, its mammalian 

ortholog (MTOR) was discovery and cloned (Brown et al., 1994; Sabatini et al., 1994; 

Sabers et al., 1995) and since then, intensive research has been made uncovering the 

overwhelming functions of this protein, revealing that MTOR is fundamental for proper 

cellular homeostasis. MTOR is a serine/threonine protein kinase of the 

phosphatidylinositol 3-kinase (PI3K)-related kinase family that integrates signals from 

growth factor stimulation and hormone receptor activation, as well as from cellular 

nutrient- and energy-status, regulating cell growth and metabolism (reviewed in Hay 

and Sonenberg, 2004).  

 

III.3.1. MTOR complexes 

MTOR is the core of two complexes, MTOR complex 1 (MTORC1) and MTORC2 

(Figure I.2) which display different functions according to distinct downstream targets 

(reviewed in Hay and Sonenberg, 2004). In conjunction with the regulatory-associated 

protein of MTOR (RAPTOR), the mammalian lethal with sec-13 protein 8 (MLST8), 

the DEP domain containing MTOR-interacting protein (DEPTOR), the TELO2 

interacting protein 1 (TTI1)/telomere maintenance 2 (TEL2) complex and the prolin-

rich PKB substrate 40 kDa (PRAS40), it forms MTORC1 (Hara et al., 2002; Jacinto et 

al., 2004; Kaizuka et al., 2010; Kim et al., 2002, 2003; Peterson et al., 2009; Sancak et 

al., 2007; Thedieck et al., 2007; Vander Haar et al., 2007; Wang et al., 2007). 
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Figure I.2. MTOR complexes. (A) Schematic representation of MTOR complex 1 

(MTORC1) and MTORC2. (B) Functions of shared and specific components of the 

MTOR complexes. The serine/threonine protein kinase mammalian or mechanistic 

target of rapamycin (MTOR) is the catalytic subunit of both complexes. The 

mammalian lethal with sec-13 protein 8 (MLST8) is a component of both complexes 

and is essential for MTORC2 activity, in opposition to MTORC1. The DEP domain 

containing MTOR-interacting protein (DEPTOR) inhibits MTORC1 and MTORC2 

activity. The TELO2 interacting protein 1 (TTI1) and its interacting partner telomere 

maintenance 2 (TEL2) are involved in MTORC1 and MTORC2 complex assembly and 

stability. Specific of MTORC1 is the regulatory-associated protein of mammalian target 

of rapamycin (RAPTOR) which regulates MTORC1 assembly, localization and 

substrate recruitment; and the proline-rich PKB substrate 40 kDa (PRAS40) that 

inhibits MTORC1 activity. MTORC2 possess the rapamycin-insensitive companion of 

MTOR (RICTOR) that regulates substrate binding and complex assembly; the mitogen-

activated protein kinase 2-associated protein 1 (MSIN1) that is also involved in 

complex assembly and is important, in conjunction with protein observed with 

RICTOR 1 and 2 (PROTOR1/2), for MTORC2 function towards its target serum- and 

glucocorticoid- induced protein kinase 1 (SGK1).    

 

MTORC2 is composed by MLST8, DEPTOR, TTI1/TEL2 complex, the rapamycin-

insensitive companion of MTOR (RICTOR), the mitogen-activated protein kinase 2-

associated protein 1 (MSIN1) and protein observed with RICTOR 1 and 2 

(PROTOR1/2) (Frias et al., 2006; Jacinto et al., 2004, 2006; Kaizuka et al., 2010; Kim et 
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al., 2003; Pearce et al., 2007, 2011; Peterson et al., 2009; Sarbassov et al., 2004; 

Thedieck et al., 2007) (Figure I.2).  

 

III.3.1.1. MTOR complex 1 

MTORC1 is responsive to amino acid availability, growth factor stimulation, cellular 

stress and energy levels and, upon a stimulatory signal, it promotes cell growth, 

proliferation and survival by increasing mRNA translation, lipid biosynthesis, hepatic 

ketogenesis, mitochondria and ribosome biogenesis, and by reducing autophagy and 

lysosomal biogenesis (reviewed in Laplante and Sabatini, 2013). A representation of the 

upstream regulators of MTORC1 and MTORC2 is displayed in Figure I.3.   

A key regulator of MTORC1 is the Ras homolog enriched in brain (RHEB) that, when 

bound to GTP, binds and activates MTORC1 kinase activity (Inoki et al., 2003; Long et 

al., 2005). RHEB is localized in the endomembrane system and the specific point of 

interaction and activation of MTORC1 is in the lysosomal surface (Sancak et al., 2010).  

Regarding the other positive signals, MTORC1 activation is dependent on the presence 

of amino acids, specially leucine and arginine (Blommaart et al., 1995; Hara et al., 

1998). Amino acids accumulated in the lysosomal lumen signals to MTORC1 through 

the vacuolar H+ -ATPase that interacts, in the lysosomal surface, with the Ragulator 

complex (Bar-Peled et al., 2012; Sancak et al., 2010; Zoncu et al., 2011).   
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Figure I.3. MTOR signaling. MTOR complex 1 (MTORC1) is regulated by growth 

factors, cytokines, the canonical Wnt pathway, cellular stress, energy and oxygen levels 

that signals to MTORC1 mainly through regulation of the tuberous sclerosis complex 

(TSC) complex (TSCcx), that inhibits the MTORC1-activator Ras homolog enriched in 

brain (RHEB). Amino acids directly activate MTORC1 by inducing its colocalization 

with RHEB. Activated MTORC1 induces protein and lipid synthesis and energy 

metabolism whilst inhibits lysosome biogenesis and autophagy. MTORC2 is regulated 

by growth factor stimulation which results in increased interaction of this complex 

with ribosomes. Upon activation, MTORC2 positively regulates actin cytoskeleton 

organization, cell survival and metabolism. Adapted with permission from Laplante and 

Sabatini, 2012. 

 

In turn, the Ragulator complex interacts with Ras-related GTP-binding protein (RAG) 

GTPases, and the guanine nucleotide exchange factor activity of this complex induces 

the loading of the RAG GTPase RAG B or RAG A with GTP. This GTP loading 

stimulates the binding of GTP-bound RAG B-containing heterodimers with RAPTOR 

(Bar-Peled et al., 2012; Sancak et al., 2008, 2010). These series of events lead to 

MTORC1 activation by physical relocation of MTORC1 to the cellular compartment in 

which RHEB resides, in a way that the binding of RAG GTPases with Ragulator 

relocates them to the lysosomal surface and binding of MTORC1 to GTP-bound RAG 
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B or RAG A relocates MTORC1 from the cytoplasm to this subcellular compartment 

(where RHEB is located) (Sancak et al., 2010).  

The stimulatory role of RHEB towards MTORC1 is inhibited by the Tuberous 

Sclerosis Complex (TSC), composed of the harmatin or tuberous sclerosis 1 (TSC1), 

tuberin or TSC2 and Tre2-Bub2-Cdc16 (TBC) 1 domain family, member 7 (TBC1D7) 

(Dibble et al., 2012; van Slegtenhorst et al., 1998). This complex binds to RHEB and 

stimulates its GTPase activity, thus converting it into its inactive GDP-form (Castro et 

al., 2003; Garami et al., 2003; Inoki et al., 2003; Tee et al., 2003). Although the amino 

acid-dependent activation of MTORC1 is independent on TSC complex (Roccio et al., 

2006; Smith et al., 2005), the majority of the upstream signals regulate MTORC1 

activity through this complex.  

Growth factors, such as insulin, activate the receptor tyrosine kinases (RTKs) that 

stimulate the PI3K and RAS pathways leading, ultimately, to TSC inactivation through 

its phosphorylation by the protein kinase B (PKB), the extracellular-signal-regulated 

kinase 1/2 (ERK1/2) and the ribosomal S6 kinase (RSK) (Inoki et al., 2002; Ma et al., 

2005; Manning et al., 2002; Potter et al., 2002; Roux et al., 2004). The PI3K/PKB 

signalling pathway also inhibit the PRAS40, reverting its inhibitory effect on MTORC1 

activity, in a TSC complex-independent fashion (Sancak et al., 2007; Thedieck et al., 

2007; Vander Haar et al., 2007; Wang et al., 2007). In addition, RSK also 

phosphorylates raptor, thus activating MTORC1 activity (Carriere et al., 2008). A 

series of feedback loops are created by MTORC1 activation, inhibiting the RTKs signals 

(Hsu et al., 2011; Tzatsos and Kandror, 2006; Um et al., 2004; Yu et al., 2011). For 

instance, upon MTORC1 activation, S6K1 phosphorylates the insulin receptor 

substrate 1 (IRS1), an activator of the PI3K signalling, which results in its degradation 

(Harrington et al., 2004; Um et al., 2004). In addition, IRS1 is also a node between 
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MTORC1 and MTORC2 signals, since MTORC2 induces its degradation (Kim et al., 

2012).  

Low ATP levels are sensed by adenosine monophosphate-activated protein kinase 

(AMPK) that induces ATP formation and reduces its consumption (Kahn et al., 2005). 

Activation MTORC1 is inhibited by this kinase (Kimura et al., 2003), through 

phosphorylation and activation of TSC2 (Inoki et al., 2006). In addition, AMPK directly 

phosphorylates RAPTOR which induces the binding of 14-3-3 to the MTOR binding 

partner, leading to MTORC1 inactivation  (Gwinn et al., 2008).   

Some cytokines, such as the tumour necrosis factor α (TNFα), also regulates 

MTORC1 through phosphorylation of TSC1 and inhibition of the TSC complex, by the 

inhibitor of nuclear factor Ƙ-B kinase-β (Lee et al., 2007). Furthermore, TNFα also 

activates MTORC1 by PKB-dependent stimulation of IKKα, that associates with 

MTOR, inducing its activity (Dan et al., 2007).  

The canonical Wnt pathway also plays a role in MTORC1 activation. When activated, 

this pathway inhibits the glycogen synthase kinase 3β (GSK3β) that phosphorylates and 

activates TSC2 (Inoki et al., 2006).  GSK3β is also inhibited by PKB and RSK (Patel et 

al., 2004).  

Several stress conditions interfere with MTORC1 activity. For instance, the stress 

triggered by DNA damage results in activation of the TSC complex, in a P53-

dependent manner, with concomitant inhibition of MTORC1 signalling (Feng et al., 

2005).   Additionally, hypoxia and endoplasmic reticulum stress are characterized by an 

intricate interplay with MTORC1 signalling, which will be addressed in detail.  
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III.3.1.1.1. MTORC1 and Endoplasmic Reticulum (ER) stress 

The ER is a membrane-bound organelle with a key role in cell growth and homeostasis 

due to its involvement in lipid and protein biosynthesis as well as in calcium storage, 

protein folding, maturation and transport. When ER function is perturbed namely by 

aberrant rates of protein synthesis or misfolding, by alterations in the calcium storage, 

oxidative stress or alterations in the redox equilibrium, an integrated response 

composed of three branches, collectively known as unfolded protein response (UPR), 

is triggered. The signalling proteins responsible for the activation of each branch are 

the inositiol-requiring protein 1 (IRE1), the PERK and the ATF6, respectively (reviewed 

in Ron and Walter, 2007).    

The primary outcome of UPR comprises the reduction of protein influx into the ER 

and an increment in the efficiency of its folding capacity, which is accomplished by 

reduction of protein production and translocation into the ER, in conjunction with an 

increase in expression of genes involved in protein folding. When those actions fail to 

restore ER function, the UPR elicits cell death. Upon ER stress, an unusual function of 

IRE1 is activated, encompassing the endonucleolytic cleavage and subsequent splicing of 

the transcript encoding X-box binding protein 1 (XBP1). The spliced XBP1 

transcriptionally induces the expression of a myriad of genes to amplify the ER folding 

capacity, including those encoding ER chaperones, and proteins involved in ER 

biogenesis, ER-associated protein degradation, phospholipid production and secretion 

(Lee et al., 2003). This UPR branch triggers an apoptotic route via activation of the 

apoptosis signal-regulating kinase-1 (ASK1) and its target c-Jun N-terminal kinase 

(JNK), through IRE-1 binding to the adaptor protein TNF receptor-associated factor-2 

(Nishitoh et al., 2002; Urano et al., 2000). It has been demonstrated that PKB inhibits 

the IRE1-JNK axis (Kato et al., 2011). IRE1 also triggers the so called regulated IRE1-
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dependent decay pathway, which induce degradation of several membrane-bound 

mRNAs (Hollien et al., 2009). The second branch of UPR is triggered by activation of 

PERK that phosphorylates EIF2α leading to overall protein synthesis reduction 

(Harding et al., 1999; Harding et al., 2000a, 2000b). This allows reduction of protein 

influx into the ER lumen which could accentuate the stress condition and disable a 

proper recovery (Harding et al., 1999). On the other hand, increased EIF2α 

phosphorylation levels allows the selective translation of ATF4 which, in turn, induces 

expression of proteins involved in ER redox control, such as the endoplamic reticulum 

oxidoreduction 1, and glucose metabolism, such as the glucokinase (Harding et al., 

2000b, 2003; Lu et al., 2004; Yoshizawa et al., 2009). In addition, ATF4 induces 

CCAAT/enhancer-binding protein homologous protein (CHOP), a key player of ER 

stress-triggered cell death (Harding et al., 2000b; Marciniak et al., 2004) that, in turn, 

regulates several proteins, such as the pro-apoptotic growth arrest and DNA damage-

inducible protein-34 (GADD34), a specific phosphatase of phosphorylated EIF2α 

(Marciniak et al., 2004; Novoa et al., 2001). Apoptosis is further induced by increased 

EIF2α phosphorylation through downregulation of the anti-apoptotic myeloid cell 

leukemia sequence 1 (BCL2-related) (MCL-1) protein (Allagnat et al., 2011). The PERK 

branch is inhibited by the PI3K/PKB signalling pathway (Mounir et al., 2011).  The third 

branch of UPR is triggered by the ATF6, which induces the expression of ER 

chaperones and proteins involved in membrane biogenesis (Bommiasamy et al., 2009; 

Haze et al., 1999, 2001; Yamamoto et al., 2007).  

The fact that UPR and MTORC1 are involved in similar biological processes, such as 

lipid synthesis and angiogenesis (reviewed in Appenzeller-Herzog and Hall, 2012) might 

anticipate an interplay between them. In fact, the link between MTORC1 signalling and 

UPR has a role in development of several pathological conditions, like in type 2 
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diabetes (Bachar et al., 2009), and it has been demonstrated that MTORC1 regulates 

and is regulated by UPR (reviewed in Appenzeller-Herzog and Hall, 2012). The effects 

of MTORC1 activation on increasing the overall protein production could be enough 

to trigger UPR due to ER overloading of proteins. However, it seems that the history 

is more complicated, and the players of this network are becoming known. The ATF6-

triggered UPR branch induces not only PKB (Yamazaki et al., 2009) but also RHEB 

(Schewe and Aguirre-Ghiso, 2008), which are both positive regulators of MTORC1 

activity, as previously mentioned. In turn, activated MTORC1 induces UPR and, 

although it seems that chronic activation of MTORC1 might affect all UPR branches  

(Kang et al., 2010; Kato et al., 2011, 2013; Ozcan et al., 2008), the IRE1-JNK axis is 

deemed to be the main target of MTORC1. By activating IRE1-JNK, MTORC1 assists 

ER stress-induced apoptosis (Kato et al., 2011, 2013; Ozcan et al., 2008) and it has 

been demonstrated that this induction occurs via suppression of the PKB inhibitory 

role towards the IRE1-triggered branch (Kato et al., 2011). This inhibition of PKB 

might be assisted by CHOP, as it mediates the induction of the tribbles homolog 3, 

which is an PKB inhibitor (Du et al., 2003; Ohoka et al., 2005). CHOP and MTORC1-

mediated inhibition of PKB might liberate the PKB-dependent inactivation of PERK-

EIF2α (Mounir et al., 2011) and might account for the inhibition of MTORC1 activity 

observed upon prolonged ER stress (Deldicque et al., 2011; Nakajima et al., 2011; Di 

Nardo et al., 2009). This inhibition of MTORC1 increases autophagic death of ER-

stressed cells (Qin et al., 2010).   

 

III.3.1.1.2. MTORC1 in Hypoxia 

Oxygen is essential for proper cell function and, in hypoxia, cells trigger a program that 

relies mainly in the action of HIFs. HIFs function as heterodimers consisting of an 
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oxygen- insensitive β subunit and one of three isoforms of the oxygen-sensitive α 

subunit, HIF1α, HIF2α and HIF3α (reviewed in Majmundar et al., 2010).  The HIF1α 

isoform is expressed in all the tissues, whereas HIF2α and HIF3α isoforms expression 

is confined to certain cells (Bertout et al., 2008). Upon hypoxic or anoxic conditions, a 

burst in the expression of the low abundant HIF1α protein isoform occurs, as well as 

its dimerization with HIFβ subunit (Wang et al., 1995). HIF dimers associate with co-

factors to form a functional transcriptional complex that binds and regulates 

transcription of a variety of genes harboring hypoxia response elements (Manalo et al., 

2005; Pawlus and Hu, 2013; Semenza et al., 1996). Those include genes involved in 

angiogenesis, glucose transport, redox homeostasis and lipid metabolism (reviewed in 

Majmundar et al., 2010). Additionally to this transcriptional-mediated gene expression 

reconfiguration, a translational reprogramming is also observed. Low oxygen availability 

causes EIF4E association with 4ET (that inhibits EIF4F complex formation), PERK-

mediated EIF2α phosphorylation by UPR induction, in addition to inhibition of the 

eukaryotic elongation factor 2 (EEF2) and MTORC1 signalling inhibition (Arsham, 

2003; Koritzinsky et al., 2006, 2007; Koumenis et al., 2002; Liu et al., 2006).  Those 

events result in overall translation inhibition and selective translation of a subset of 

transcripts (reviewed in Koritzinsky and Wouters, 2007). Inhibition of MTORC1 

signalling inhibition in hypoxia occurs through several mechanisms, as illustrated in 

Figure I.4.  Lack of oxygen restrains mitochondrial oxidative phosphorylation thus 

reducing the intracellular ATP levels with concomitant AMPK activation (reviewed in 

Kemp et al., 1999). According to its role in MTORC1 signalling regulation (as 

mentioned previously), it has been demonstrated that AMPK-mediated activation of 

TSC2 inhibits MTORC1 in hypoxic conditions, in a manner that is independent on 

HIF1α activity (Liu et al., 2006). 
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Figure I.4. MTORC1 regulation by hypoxic conditions. Hypoxia results in AMP-

activated protein kinase (AMPK) activation and increased transcription of regulated in 

development and DNA damage responses 1 (REDD1) both inhibiting MTORC1 

through activation of the TSC complex. In addition, the positive effect of RHEB 

towards MTORC1 is inhibited by the Bcl2/adenovirus E1B 19 kDA protein-interacting 

protein 3 (BNIP3) that binds and inhibits RHEB; and by promyelocytic leukemia (PML) 

that prevents subcellular colocatization of MTORC1 with RHEB. Adapted with 

permission from Cam and Houghton, 2011.  

 

On the other hand, ataxia telangiectasia (ATM)- phosphorylated and stabilized HIF1α 

transcriptionally induces expression of regulated in development and DNA damage 

responses 1 (REDD1) which activates the TSC complex, by disruption of its binding 

with 14-3-3 leading to stabilization of the TSC1-TSC2 interaction (Brugarolas et al., 

2004; Cam et al., 2010; DeYoung et al., 2008; Reiling and Hafen, 2004; Vega-Rubin-de-

Celis et al., 2010). In addition, HIF1α also induces transcription of Bcl2/adenovirus E1B 

19 kDA protein-interacting protein 3 (BNIP3) that binds and inhibits RHEB (Li et al., 

2007). Furthermore, in hypoxic conditions, the promyelocytic leukemia (PML) protein 

induces MTOR nuclear accumulation, thus inhibiting its co-localization with RHEB 

(Bernardi et al., 2006) (Figure I.4). Furthermore, it has been suggested that MTORC1 

activity is also inhibited by hypoxia through direct inhibition of the MTORC1 complex 

in a manner that requires a heme containing protein of unknown identity (Tan and 

Hagen, 2013).  
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In some experimental settings, MTORC1 signalling is inhibited shortly after the hypoxic 

insult whereas in others this inhibition occurs latter (Arsham, 2003; Koritzinsky et al., 

2006).  Probably the intensity of the hypoxic stimuli and combination with other stress 

signals might determine this variability. Actually, it has been suggested that EIF2α 

phosphorylation and EIF4F dissociation are triggered sequentially in severe hypoxic 

conditions. In that model, the protein synthesis reduction observed in the acute 

response to severe hypoxia is PERK-EIF2α-mediated, whereas the chronic response is 

mediated by MTOR inhibition and EIF4E sequestration by 4ET (Koritzinsky et al., 

2006).   

On the other hand, the interplay between MTORC1 signalling and hypoxia is 

bidirectional, as HIF1α expression is particularly affected by this signalling pathway as 

well as it transcriptional activity. MTORC1 induces HIF1α translation, in a manner that 

is highly dependent on HIF1α 5´UTR (Bernardi et al., 2006; Laughner et al., 2001; 

Thomas et al., 2006). A 5´ terminal oligopyrimidine tract (TOP) element within HIF1α 

5´UTR is partially responsible for this dependency of HIF1α mRNA translation on 

MTORC1 signalling (Thomas et al., 2006). Furthermore, the RHEB-MTOR axis induces 

HIF1α transcriptional activity by MTORC1-HIF1α interaction through RAPTOR, that 

promotes HIF1α interaction with its co-activator CBP/p300 (Hudson et al., 2002; Land 

and Tee, 2007; Zhong et al., 2000).  

The main substrates of MTORC1 complex are components of the translational 

apparatus; accordingly a particular emphasis will be given to the role of this complex in 

the regulation of protein synthesis. 
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III.3.1.1.3. MTORC1 translation regulation 

MTORC1 complex regulates directly or indirectly several components of the 

translational apparatus. The direct targets of phosphorylation are 4EBPs and S6 kinases 

(S6Ks) (Blommaart et al., 1995; Hara et al., 1998). 4EBPs are a family of proteins 

comprising 4EBP1, 4EBP2 and 4EBP3, while there are two mammalian S6K isoforms, 

S6K1 and S6K2 (Lin et al., 1994, 1994; Poulin et al., 1998; Shima et al., 1998) . Since the 

vast majority of reports are referring to 4EBP1 and S6K1, here the data referring to 

those proteins will be presented.  

MTORC1 directly binds to the mRNP complex and EIF3 is the platform for MTORC1 

activity on the regulation mRNA translation initiation (Holz et al., 2005). In the 

absence of a stimulatory signal, EIF3 binds to the unphosphorylated S6K1 forming a 

free EIF3-S6K1 complex. Upon stimulation, MTORC1 binds to this complex and this 

interaction triggers MTORC1-mediated S6K1 phosphorylation and its release from the 

EIF3-MTORC1 complex. In addition, MTORC1 directs the EIF3 complex to the cap 

structure to phosphorylate 4EBP1 which prompts its release from EIF4E (Harris et al., 

2006; Holz et al., 2005). The free S6K1 is fully activated by 3-phosphoinositide-

dependent protein kinase 1 (PDK1)-mediated phosphorylation (Alessi et al., 1997) and 

targets several substrates that assist mRNA translation.  

4EBP1 is involved in the regulation of EIF4F complex formation, as mentioned before. 

Upon MTORC1 activation, the hyper-phosphorylated 4EBP1 does not bind to EIF4E, 

allowing EIF4G binding and thus, EIF4F complex formation (Beretta et al., 1996; Brunn 

et al., 1997; Burnett et al., 1998; Haghighat et al., 1995; Hara et al., 1997; Lin et al., 

1994; Mader et al., 1995; Marcotrigiano et al., 1999; Pause et al., 1994). It has been 

demonstrated that 4EBP1 is re-phosphorylated by MTORC1 upon prolonged 

treatment with rapamycin, and this re-phosphorylation is accompanied by derepression 
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of cap-dependent translation, despite the maintenance of S6K1 dephosphorylation 

(Choo et al., 2008). This is in agreement with the finding that 4EBP1 is the major 

effector of MTORC1 signalling in the regulation of mRNA translation (Hsieh et al., 

2012; Thoreen et al., 2012). Acute inhibition of MTORC1 leads to reduction of mRNA 

translation, with a special effect on a subset of mRNAs that are highly dependent on 

4EBP1. The 5´UTRs of those mRNAs have either 5´TOPs, 5´ TOP-like motifs or 

pyrimidine-rich translational elements (PRTE). A 5´TOP consist of a 5´ terminal 

cytidine followed by 4 to 14 consecutive pyrimidines (reviewed in Meyuhas, 2000), 

whereas as 5´ TOP-like motifs have at least 5 consecutive pyrimidines and or PRTE 

comprise a uridine at position +6 flanked by pyrimidines (Hsieh et al., 2012; Thoreen 

et al., 2012). Translation of mRNAs containing IRES elements seems to be refractory, 

or even augmented by MTORC1 inhibition. mRNA translation of those TOP and TOP-

like mRNAs have a special requirement for EIF4G, as the EIF4E-cap interaction is 

assisted by this initiation factor, and MTORC1 inhibition disrupts the EIF4G-EIF4E 

interaction in a 4EBP-dependent manner (Hsieh et al., 2012; Thoreen et al., 2012). In 

addition, EIF4G is phosphorylated in a rapamycin dependent-manner (Raught et al., 

2000), though the direct effects of MTOR-mediated EIF4G phosphorylation in mRNA 

translation has not been addressed.  

Previously to the discovery of 4EBP1 as a master regulator of MTORC1-mediated 

mRNA translational control, especially of TOP and PRTE mRNAs, it was assumed that 

the other MTORC1 phosphorylation-target, S6K1 (Burnett et al., 1998), was 

determinant for efficient translation of transcripts with TOP elements (Jefferies et al., 

1994; Schwab et al., 1999). In particular, it was assumed that the effector protein 

responsible for this action of S6K1 was its phosphorylation-target ribosomal protein S6 

(RPS6) (reviewed in Hornstein et al., 2001). Nevertheless, this assumption was rapidly 
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changed upon the observation that TOP mRNAs are translated even upon deletion of 

S6K1 and concomitant RPS6 unphophorylation (Stolovich et al., 2002; Tang et al., 

2001). S6K1 phosphorylates EIF4B and PDCD4 with stimulation of protein synthesis 

(Dennis et al., 2012; Dorrello et al., 2006; Raught et al., 2004; Shahbazian et al., 2006). 

S6K-mediated phosphorylation of EIF4B is required for the assembly of this initiation 

factor into PIC (Holz et al., 2005); whereas PDCD4 phosphorylation reverts its 

inhibitory effect towards EIF4A (Yang et al., 2003). Newly synthesized transcripts 

undergo a pioneer round of translation, an important point for mRNA quality control, 

that differs from the steady-state translation namely because the cap structure is 

bound to the cap-binding protein 80 (CBP80) and CBP20 (Chiu et al., 2004). It has 

been found that the S6K1 Aly/REF-like target (SKAR), a phosphorylation target of 

S6K1 and regulator of cell growth (Richardson et al., 2004), interacts both with the 

exon-junction complex (EJC) of CBP80-bound mRNAs and with activated S6K. The 

EJC is a multisubunit complex deposited ~20 nt upstream of each exon-exon junction 

during splicing (Le Hir et al., 2000). These SKAR interactions are fundamental to 

recruit S6K1 to newly synthesized mRNAs, and the SKAR-S6K axis assists the 

increment in translation of spliced mRNAs (Ma et al., 2008). The cap-binding protein 

CBP80 itself is phosphorylated by S6K1 at sites which are phosphorylated also by 

growth factor stimulation (Wilson et al., 2000b). However, it has been suggested that 

S6K1 is not a fundamental player, by itself, in the mRNA translation rate, as rapamycin-

induced inactivation of S6K1 has a low negative impact on ribosomal occupancy of 

translating mRNAs in mouse embryonic fibroblast cells (Thoreen et al., 2012). Actually, 

it was recently suggested that S6K1 has a particular role in assuring translation fidelity 

rather than rate, possibly by affecting the ribosome speed during translation elongation 

(Conn and Qian, 2013). The fact that the S6K-RPS6 axis is involved in the production 
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of ribosomal proteins, by transcriptional induction, in conjunction with the fact that the 

MTOR-S6K1 axis activates the EEF2, a fundamental player of the mRNA translation 

elongation step, might account for those observations (Chauvin et al., 2013; Proud et 

al., 2001). Accordingly, a synergistic effect between S6K1 and the master regulator 

4EBP1 seems to be fundamental in the control of mRNA translation (Dennis et al., 

2012).  

In addition, MTORC1 also regulates mRNA translation by augmenting the expression 

of other components of the translational apparatus. MTORC1 increases the 

expression of rRNA by activating, in a S6K1-dependent manner, the tripartite motif-

containing protein-2A and inducing its interaction with RNA Pol I (Mayer et al., 2004), 

whose activation is also induced by S6K1 (Hannan et al., 2003). In addition, MTORC1 

induces transcription of 5S rRNA and tRNA by reversing the inhibitory effect of Maf1 

towards Pol III (Kantidakis et al., 2010; Shor et al., 2010).  

 

III.3.1.2. MTOR complex 2 

MTORC2 activity is important for actin cytoskeleton reorganization, protein synthesis 

and maturation, cell survival migration and metabolism (reviewed in Oh and Jacinto, 

2011). MTORC2 is unresponsive to acute treatment with rapamycin but its activity is 

modulated by growth factors, such as insulin, that stimulates the interaction of 

MTORC2 with ribosomes, via the PI3K signalling pathway, and this interaction seems 

to be required for MTORC2 activation (Figure I.3) (Zinzalla et al., 2011). The role of 

nutrients or amino acids in MTORC2 regulation has been subjected to intensive 

debate, although it is deemed that leucine has a role in MTORC2 signalling, since 

addition of this amino acid to starved cells induces MTORC2-dependent cell migration 

(Hernández-Negrete et al., 2007). In contrast to MTORC1, the TSC complex 
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positively regulates MTORC2 signalling in a manner that is independent on its GAP 

activity towards RHEB  (Huang et al., 2008).  

The MTORC2 signalling activates, by phosphorylation, different members of the AGC 

kinase family, such as the pro-survival serum- and glucocorticoid-induced protein 

kinase 1 (SGK1) (García-Martínez and Alessi, 2008). In addition, PKB is also activated 

by MTORC2, through phosphorylation either at Ser473 or Thr450 (Facchinetti et al., 

2008; Hresko and Mueckler, 2005; Ikenoue et al., 2008; Sarbassov et al., 2006), in a 

growth factor-sensitive or insensitive manner, respectively (Alessi et al., 1996; 

Bellacosa et al., 1998; Hauge et al., 2007). MTORC2-mediated activation of PKB is 

repressed by S6K1-mediated phosphorylation of RICTOR (Dibble et al., 2009).  

Furthermore, the protein kinase C isotypes, a family of proteins involved in 

cytoskeletal function, are phosphorylated by MTORC2 contributing to their 

maturation and stability (Ikenoue et al., 2008).  

 

III.3.2. MTOR inhibition by rapamycin 

The action of rapamycin on MTOR relies on its ability to bind to FK-506 binding 

protein of 12 kDa (FKB12), an intracellular receptor, which tightly binds to the 

FKBP12-rapamycin binding (FRB) specific domain of MTOR (Brown et al., 1994; Choi 

et al., 1996; Sabatini et al., 1994). Binding of the FKB12-bound rapamycin to MTOR 

precludes the accessibility of substrates to its catalytic center (Yang et al., 2013). In 

addition, upon prolonged exposure to this macrolide, the RAPTOR-MTOR binding is 

inhibited (Oshiro et al., 2004), possibly by a physical constraint imposed by the MTOR-

bound rapamycin/FKB12 complex (Yang et al., 2013). It has been observed that, in 

opposition to MTORC1 that is readily inhibited by rapamycin, only prolonged or high 

doses of this macrolide has an action on MTORC2, in cell type-dependent manner 
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(Jacinto et al., 2004; Sarbassov et al., 2004, 2006). It has been suggested that the 

components of MTORC2 physically inhibit the access of the rapamycin/FKBP12 to its 

binding site on FRB (Yang et al., 2013) and a prolonged treatment might be effective 

due to inhibition of RICTOR and MSIN1 binding to the rapamycin/FKB12 complex-

bound MTOR (Sarbassov et al., 2006; Yang et al., 2013). Furthermore, it has been 

demonstrated that rapamycin differently affects the MTORC1 substrates: whereas S6K 

is efficiently dephosphorylated upon rapamycin treatment, 4EBP1 is only moderately 

affected (Thoreen et al., 2009). In addition, the response of these substrates to 

prolonged exposure to rapamycin is different: while S6K dephosphorylation is 

maintained, 4EBP1 regains its phosphorylation in an MTORC1-dependent fashion 

(Choo et al., 2008).  

 

III.3.3. MTOR hyperactivation and the need for its inhibition  

MTOR is hyperactivated in several diseases including benign and malignant tumors. 

Among the several biological activities in which MTOR signalling participates, it has 

been suggested that its role in promoting protein synthesis is of fundamental 

importance in tumor development, by inducing expression of anti-apoptotic, angiogenic 

and glycolytic genes, as well as genes involved in cell cycle regulation (reviewed in 

Laplante and Sabatini, 2012). Studies addressing the overall targets of MTORC1-

mediated translational regulation showed a particular bias towards transcripts encoding 

proteins involved in protein synthesis, cell invasion and metastization (Hsieh et al., 

2012; Thoreen et al., 2012). Besides its role in inducing mRNA translation, MTORC1 

signalling further contributes to tumorigenesis by promoting lipid biosynthesis, 

important for membrane formation; stimulates the pentose phosphatase pathway, 

important for nucleotide synthesis and redox control; inhibits autophagy, that might 
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contribute to tumor cell survival or tumor development (reviewed in Laplante and 

Sabatini, 2012). The MTORC2 signalling is also involved in tumor development, namely 

by its role in regulating PKB, that is frequently deregulated in cancer (reviewed in 

Tokunaga et al., 2008).  

Several MTOR inhibitors, including rapalogs (rapamycin analogs), have been developed, 

showing good results in clinical trials, although with lower efficacy than expected 

(reviewed in Pópulo et al., 2012). The fact that MTORC1 signalling has rapamycin-

resistant roles (Choo et al., 2008; Thoreen et al., 2009), triggers negative feedback-

loops, namely leading to PKB activation, in combination with the fact that MTORC2 

signalling also activates PKB (reviewed in Huang and Manning, 2009), anticipate the 

poor capacity of rapalogs to reverse MTOR tumorigenic potential. Accordingly, two 

other classes of MTOR inhibitors were developed and are being used in clinical trials 

for several tumor types, the MTOR kinase inhibitors and dual PI3K/MTOR kinase 

inhibitors (reviewed in Don and Zeng et al., 2011), The MTOR kinase inhibitors block 

its catalytic activity by competition with ATP and have the advantage to predictably 

impair both complexes and inhibit the MTORC1 rapamycin-resistant functions 

(Feldman et al., 2009). Nevertheless, it has been demonstrated that some of these 

inhibitors, such as Torin 1, efficiently impairs proliferation and diminishes cell size 

through total abolishment of MTORC1 functions but in a manner that is independent 

of MTORC2 (Thoreen et al., 2009). However, other ATP-competitive inhibitors, such 

as INK128, are effective in targeting both MTORC1 and MTORC2 signalling pathways 

(Janes et al., 2013). It has been shown that this compound impairs prostate cancer 

development by triggering apoptosis and impairing cell proliferation, invasion and 

metastasis (Hsieh et al., 2012).  
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It has been reported that, although MTOR signalling inhibition is cytostatic, in some 

cases, enhanced survival of tumor cells is observed (reviewed in Easton and Houghton, 

2006; Faivre et al., 2006). This has been attributed mainly to MTORC1-triggered 

activation of the PI3K pathway, leading to enhanced cell survival (reviewed in Rosen 

and She, 2006). Accordingly, dual PI3K/MTOR kinase inhibitors have been developed 

and promising results have arisen from its use in clinical trials (reviewed in Pópulo et 

al., 2012). Regarding to the fundamental role of MTORC1 and MTORC2 in important 

biological processes, it remains to be determined the effects of long-term inhibition of 

MTOR signals.   

In addition to cancer, MTOR deregulation is also associated with other diseases, such 

as metabolic diseases, neurodegenerative disorders and autoimmune diseases 

(reviewed in Dazert and Hall, 2011).  

 

III.4. P53  

P53 was discovered in 1979 in a context of studying tumor development by SV40 

infection. Different groups realized that a cellular protein, with a molecular mass of 

53kDa, coprecipitated with the SV40 large T-antigen in cells infected with this virus 

(Kress et al., 1979; Lane and Crawford, 1979; Linzer and Levine, 1979; Melero et al., 

1979; Smith et al., 1979). In parallel, it was observed that cells transformed by the 

Abelson murine leukemia virus also produced the same protein (Rotter et al., 1980). 

Furthermore, it was shown that the humoral response of immunized mice with non-

viral transformed cells encompassed production of antibodies for this 53kDa protein 

(DeLeo et al., 1979). The refereed protein was named “P53” according to its 

molecular mass, which was estimated on basis of its migration in SDS-PAGE. However, 

it was found latter that the correct molecular mass of human P53 protein is actually 
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43.7 kDa and that the misconclusion derived probably from the presence of a high 

number of proline residues altering migration of P53 (or shall we say P43.7?).  

Initially and during some years, it was believed that P53 was an oncogene rather than a 

tumor suppressor. This assumption arose from many apparent compelling 

experimental evidences. It formed complexes with an oncogenic protein (Kress et al., 

1979; Lane and Crawford, 1979; Linzer and Levine, 1979; Melero et al., 1979; Smith et 

al., 1979) and its expression was enhanced in primary mouse tumors in opposition to 

normal thymocytes (Rotter, 1983). In addition, many of the studies addressing the 

oncogenic potential of P53 were erroneously performed with mutant instead of wild-

type TP53, due to erroneously cloning of TP53 cDNA sequences deriving from cancer 

cells and, thus, carrying mutations. As expected, overexpression of those mutant P53 

proteins contributed to tumour growth (Parada et al., 1984). The true story of P53 as 

a bona fide tumor suppressor instead started when the wild-type sequence deriving 

from normal tissues was established (Eliyahu et al., 1988; Finlay et al., 1988). The 

hallmarks for the recognition of TP53 as tumor suppressor gene were the following 

observations: 1. Loss of wild-type TP53 alleles in colorectal carcinomas by mutations 

and/or deletions (Baker et al., 1989); 2. Suppression of MYC and RAS-induced 

transformation by overexpression of wild-type TP53 (Eliyahu et al., 1989). 3. TP53 

germline mutations contribute to the hereditary Li-Fraumeni syndrome (Malkin et al., 

1990) and 4. TP53 knockout mice are prone to cancer (Donehower et al., 1992). With 

the emergency of several studies reporting the protective roles of P53, it turned from 

the “bad guy” to the "guardian of the genome".  
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III.4.1. P53 function 

P53 is a transcription factor of the P53 family, which is additionally composed of P63 

and P73 proteins that share structural, biochemical and biological similarities (reviewed 

in Dotsch et al., 2010). This protein has a pivotal role in suppressing tumor 

development through inhibition of cell proliferation and growth, by inducing temporary 

or permanent cell cycle arrest and by promoting cell death (reviewed in Zilfou and 

Lowe, 2009). Upon an abnormal cellular signal such as activation of oncogenes, DNA 

damage, loss of cell-cell contact and hypoxia, P53 either develops a protecting 

response allowing cells to bypass the adverse condition and survive, by inducing cell 

cycle arrest, triggering a DNA repair response, regulating the response to metabolic 

stress and promoting an antioxidant response; or triggers a program that ultimately 

leads to senescence, apoptosis or autophagic cell death (reviewed in Vousden and 

Prives, 2009). The protective or destructive outcome of P53 activation is determined 

mainly by the type and severity of the stress condition or cellular damage (reviewed in 

Bensaad and Vousden, 2007). Although it seems clear that both P53-triggered 

responses are homeostatic and tumor unfriendly, some pro-survival functions of P53 

may also assist tumorigenesis, when deregulated. In addition, its anti-survival functions 

might also contribute to premature aging (reviewed in Vousden and Prives, 2009).   

The response of P53 relies mainly on its ability to modulate expression, at the 

transcriptional level, of a myriad of genes (reviewed in Riley et al., 2008). P53 controls 

transcription through direct binding, as a tetramer, to a consensus site that contains 

two copies of the sequence RRRCA/TT/AGYYY separated by up to 13 bps (el-Deiry et 

al., 1992; Funk et al., 1992). Those P53 response elements (P53RE) are located mainly 

within the promoter and/or intronic region of P53-targets, that include genes involved 

in cell cycle arrest, apoptosis, DNA repair, transcription, metabolism, cell adhesion and 



74 
 

motility and membrane function (reviewed in Riley et al., 2008). Upon different stimuli, 

P53 regulates transcription of different genes and this selection is mainly determined 

by the P53REs and P53 protein levels. Genes with strong P53REs recruit P53 even 

when this protein is present in low levels (in unstressed or low-stressed cells), 

whereas increased P53 protein levels allow binding to weaker P53 consensus sites. The 

former encompasses genes required for cell cycle regulation while the latter comprises 

pro-apoptotic genes (Weinberg et al., 2005). The selectivity of P53 towards different 

genes is also determined by stress-triggered phosphorylation, acetylation and 

methylation events as long as by several P53 binding partners (reviewed in Gu and 

Zhu, 2012; Vousden and Prives, 2009).   

 

III.4.1.1. Pro-apoptotic role of P53 

A master role of P53 in preventing tumor development is the elimination of cells with 

transforming potential through induction of apoptosis. The apoptotic process occurs 

through the intrinsic or extrinsic pathways. In the intrinsic pathway the apoptotic 

stimuli, such as DNA damage, ER stress or oncogene activation, activates BCL2 

homology 3 (BH3)-only proteins that, in turn, stimulate BCL2-associated X protein 

(BAX) and BCL2-antagonist/killer (BAK) and lead to mitochondrial permeabilization. 

Subsequently, several apoptogenic factors are released from the mitochondria, such as 

cytochrome c, which triggers activation of the caspase cascade. The extrinsic pathway 

is induced by ligand binding to cell death receptors, which triggers the recruitment of 

adaptor molecules leading to activation of caspases 8 and 10 that, in turn, activates 

effector caspases. The effectors of both pathways are the caspases 3, 6 and 7 that 

cleave several cellular components ultimately leading to formation of apoptotic bodies 

(reviewed in Portt et al., 2011). The intrinsic pathway is regulated by P53, through 
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induction of the BH3-only protein members P53-upregulated modulator of apoptosis 

(PUMA) (Nakano and Vousden, 2001), phorbol-12-myristate-13-acetate-induced 

protein (PMAIP1) (Oda et al., 2000), and BH3 interacting-domain death agonist (BID) 

(Sax et al., 2002) as well as of BAX (Miyashita et al., 1994). It also induces the 

expression of APAF1 (Kannan et al., 2001; Moroni et al., 2001; Robles et al., 2001), to 

which the cytoplasmic relocated-cytochrome c binds, triggering formation of the 

apoptosome that activates the initiator caspase 9 (Jiang and Wang, 2000). The calcium-

binding protein PDCD6, that induces cytochrome c release, is also activated by P53 

(Suzuki et al., 2012). P53 regulates the extrinsic pathway namey by targeting the death 

receptor 5 (DR5) (Wu et al., 1997). In addition, P53 also induces the effector caspase 6 

(MacLachlan and El-Deiry, 2002).  

P53 also targets genes whose products are involved in the production of reactive 

oxygen species (ROS), whose accumulation is important for the apoptotic response 

triggered by this transcription factor (Johnson et al., 1996; Li et al., 1999). Additionally, 

P53 regulates several microRNAs that regulate expression of a myriad of genes 

involved in the apoptotic response (Chang et al., 2007). For instance, the miR-34s 

family, that is involved in temporary and permanent cell cycle arrest and cell death 

induction, namely by targeting BCL2, is transcriptionally regulated by P53 (Bommer et 

al., 2007). Moreover, P53 also triggers apoptosis in a transcriptional-independent 

manner. Following stress, P53 can be redistributed into the mitochondria where it 

inhibits the anti-apoptotic proteins BCL2L1 and BCL2 (Mihara et al., 2003).  
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III.4.1.2. Pro-survival role of P53 

One of the major causes of P53-mediated apoptosis is an irreversible damage on DNA 

(Roos and Kaina, 2006). Before committing an aberrant cell to the apoptotic route, 

P53 imposes a cell cycle arrest and manages a program to ensure proper damage 

repair. This “second chance” is given to low stressed-cells harboring manageable 

injuries. A key player in P53-mediated inhibition of cell cycle progression is the 

CDKN1A (el-Deiry et al., 1993; Harper et al., 1993). CDKN1A is transcriptional 

activated by P53 upon mild stress conditions or even in normal conditions when P53 

protein levels are low. The potent repressing activity of CDKN1A towards the G1/S 

transition regulators CDK 2, 3, 4 and 6, avoids cell cycle progression into S phase (el-

Deiry et al., 1993; Harper et al., 1993, 1995).The P53-mediated cell cycle arrest at G2 

is namely achieved by transcriptional activation of 14-3-3σ and GADD45 (Hermeking et 

al., 1997; Laronga et al., 2000; Zhan et al., 1999), that inactivate the cyclin B/CDK1 

complex   (Laronga et al., 2000; Zhan et al., 1999). Activation of this complex is 

fundamental for entry into mitosis  (reviewed in Lindqvist et al., 2009).   

The protective and pro-survival role of P53 relies also in the activation of a program 

that assists DNA repair. Besides its intrinsic ability to repair DNA lesions, P53 also 

induces the expression of genes involved in this process, such as MutL homolog 1 

(MLH1), damage-specific DNA binding protein 2 (DDB2) and GADD34, that are 

involved in mismatch repair, nucleotide excision repair and de novo DNA synthesis, 

respectively (Chen and Sadowski, 2005; Smith et al., 1994; Tan and Chu, 2002; 

reviewed in Gatz and Wiesmüller, 2006).  
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III.4.1.3. Tumor suppressor activities of P53 

The tumor suppressor activities of P53 are not confined to its ability to induce 

apoptosis and temporary cell cycle arrest, as this transcription factor also senses and 

regulates metabolic changes, triggers autophagy, induces senescence, elicits antioxidant 

and antiangiogenic responses and limits cell invasion.  

A role for P53 at inhibiting hyper-activated MTORC1 has been demonstrated. The 

activated P53-targets sestrin1 and sestrin2 induce AMPK-dependent phosphorylation 

of TSC2, leading to MTORC1 inhibition (Budanov and Karin, 2008). Other inhibitors 

of the MTOR signalling are also activated by P53, such as phosphatase and tensin 

homolog (PTEN) and insulin-like growth factor binding protein 3 (IGFBP3) (Feng et al., 

2007). This inhibition has a role in the reversibility of the P53-mediated cell cycle 

arrest (Korotchkina et al., 2010; Leontieva et al., 2010, 2011). The inhibition of the 

MTOR pathway constitutes also one way by which P53 induces autophagy (Feng et al., 

2005). Another way to induce autophagy is via activation of the damage-regulated 

autophagy modulator (DRAM), that leads to macroautophagy (Crighton et al., 2006). 

Autophagy triggered by P53 either contributes to increased cell survival or elicits cell 

death (Amaravadi et al., 2007; Crighton et al., 2006). Other functions of P53 have been 

ascribed to its role in the regulation of metabolism, such as decrease of glucose uptake 

(Kawauchi et al., 2008; Schwartzenberg-Bar-Yoseph et al., 2004), and promotion of 

mitochondrial respiration (Matoba et al., 2006), thus impairing the Warburg effect, a 

metabolic change of cancer cells towards energy production through aerobic glycolysis 

rather than oxidative phosphorylation (Warburg, 1956).  

P53 displays the ability to counteract aberrant cells also by inducing permanent cell 

cycle arrest, or senescence, of transforming and malignant cells (Chen et al., 2005; 

Schmitt et al., 2002; Serrano et al., 1997). The main effector of P53-mediated 
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senescence is CDKN1A and a role for the plasminogen activator inhibitor 1 (PAI1) has 

also been observed (Brown et al., 1997; Kortlever et al., 2006; Leal et al., 2008). 

P53 also develops an antioxidant response, through induction of several antioxidant 

genes that restrain the intracellular levels of reactive oxygen species thereby 

preventing DNA damage and genome instability (Liu et al., 2008; Sablina et al., 2005).  

Another important function of P53 at restraining tumor development is its 

antiangiogenenic action, namely by activating inhibitors of neovascularization and 

endothelial cell growth, such as the brain-specific angiogenesis inhibitor 1 and the 

collagen-4 prolyl hydroxylase (Nishimori et al., 1997; Teodoro et al., 2006).  

Furthermore, the invasive ability of a tumor cell is also constrained by P53, since it 

targets genes involved in restraining cell migration, EMT, filopodia formation and 

extracellular matrix degradation (Chang et al., 2011; Gadéa et al., 2002; Kunz et al., 

1995; Mashimo et al., 1998; Yuan et al., 2013). 

 

III.4.2. P53 protein and isoform counterparts 

The TP53 gene encodes twelve different proteins derived by alternative promoter 

usage, splicing and initiation of translation. Those P53 products display a crucial role in 

the P53 activity and its functions are dictated mainly by the P53 protein domains that 

are retained or lost (reviewed in Olivares-Illana and Faahraeus, 2010). Accordingly, the 

structure of P53 protein will be addressed first.  

 

III.4.2.1. Structure of P53 protein 

The human TP53 gene is located at chromosome 17p13.1 (McBride et al., 1986 and 

Isobe et al., 1986), spans 20 kb, contains 11 exons and two promoters: a distal (P1) 

and an internal (P2) within intron 4.   
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The human P53 protein has a subset of domains each corresponding to specific 

functions. Furthermore, it contains five areas of high conservation across species, 

which are termed conserved boxes. The N-terminal of P53 contains two acidic 

transactivation domains, TAD I and II, corresponding to amino acids 1-40 and 43-63, 

respectively (Venot et al., 1999). TAD I and II can function independently or in 

cooperation to activate transcription (Candau et al., 1997). TAD I comprises the 

conserved box I located at amino acids 15-29, which is required for binding of the 

mouse double minute 2 homolog (MDM2), an important regulator of P53 (Chen et al., 

1993; reviewed in Manfredi, 2010). A proline-rich domain (PXXP) is located at amino 

acids 63-91 and it influences transactivation of some P53-target genes (Venot et al., 

1998; Edwards et al., 2003). The DNA binding domain (DBD), that binds to the 

P53REs, spans amino acids 102 to 300 and contains the remaining conserved boxes (el-

Deiry et al., 1992).  The oligomerization domain (OD) spans amino acids 325 to 356 

comprising a nuclear export signal (NES) (amino acids 340 to 351). The P53 complexes 

into a tetramer via its OD to become a functional transcription factor (Clore et al., 

1995). The major nuclear localization signal (NLS) is located between amino acids 305 

and 322. The NES and NLS regulate protein travelling from and into the nucleus 

(Shaulsky et al., 1990). The C-terminus of P53 contains a regulatory domain (amino 

acids 365-393) and two less active NLSs (366- 372 and 377-381). A nonspecific DNA-

binding domain lies between amino acids 364 and 390, which downregulates the 

binding capacity of the central DBD (Bayle et al., 1995).  

 

III.4.2.2. P53 isoforms 

Transcription from TP53 gene at each promoter originates six isoforms, which can be 

divided into two sets, depending on the mRNA translation initiation site.  TP53 gene is 
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also subjected to alternative splicing of intron 9, generating three sets of isoforms with 

different C-terminal domains, α, β and γ. The α isoforms, which derives from complete 

exclusion of intron 9, contain the classical P53 C-terminal OD, whereas the β and γ 

isoforms are generated by partial retention of intron 9, resulting in substitution of the 

OD by 10 or 15 new amino acids, respectively (reviewed in Olivares-Illana and 

Faahraeus, 2010). Transcription from TP53 gene at the distal promoter originates three 

isoforms derived by mRNA translation initiation at the main methionine (codon 1), 

P53, P53β and P53γ and three other that internally initiate at codon 40, Δ40P53α, 

Δ40P53β and Δ40P53γ. TP53 gene transcribed from the intragenic promoter 

originates the Δ133P53 transcript leading to the formation of the isoforms Δ133P53α, 

Δ133P53β, Δ133P53γ and Δ160P53α, Δ160P53β, Δ160P53γ which are a result of 

initiation at codons 133 or 160, respectively (reviewed in Khoury et al., 2009). Those 

isoforms lack TAD I and II and part of DBD (Marcel et al., 2010a).  

The P53β and γ isoforms regulate P53 transcriptional activity though via distinct 

mechanisms. P53β isoform forms complexes with P53 and can either inhibit or 

increase P53 transcriptional activity. In addition, it has P53-independent transcriptional 

activity in P53REs (Bourdon et al., 2005; Fujita et al., 2009). It has been demonstrated 

that P53β isoform induces apoptosis in a P53-independent manner and enhances 

apoptosis trigerred by P53 (Bourdon et al., 2005). The P53γ protein isoform activates 

the internal promoter of TP53 gene, in a P53-independent manner, and regulates P53 

transcriptional activity on the BAX promoter (Bourdon et al., 2005).   

Δ40P53 protein isoforms are generated by alternative splicing of intron 2 (Ghosh et al., 

2004) or internal translation, mediated by an IRES element, at codon 40 (Candeias et 

al., 2006; Ray et al., 2006). Δ40P53 lacks TAD I, and the Mdm2-binding site (Yan et al., 

2002) but retains OD, DBD and TAD II. Accordingly, it has been shown that Δ40P53 
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form complexes with P53, modulating its activity and stability; and the content of 

Δ40P53 protein isoform on P53-Δ40P53 hybrid complexes is determinant on this 

modulatory role (Candeias et al., 2006; Courtois et al., 2002; Ghosh et al., 2004; 

Powell et al., 2008; Yin et al., 2002). A role for Δ40P53 in counteracting the growth 

suppressor activity of P53 has been observed (Courtois et al., 2002; Ghosh et al., 

2004). Its transcriptional activity differs from that of P53, as exemplified by its 

preferential induction of 14-3-3σ upon ER stress (Bourougaa et al., 2010). In those 

settings, synthesis of Δ40P53 is stimulated in PERK-dependent fashion and the 

induction Δ40P53 homo-oligomerization promotes G2 arrest without affecting G1 

progression. In these stress conditions, Δ40P53 is also able to trigger apoptosis in a 

P53-independent manner (Bourougaa et al., 2010). 

Δ133P53α isoform modulates the cellular outcome in response to DNA damage and 

developmental defects and has a role in promoting cell proliferation (Aoubala et al., 

2011; Chen et al., 2009; Fujita et al., 2009). Its expression is regulated by P53 itself 

upon genotoxic stress, by transactivation of the internal promoter (Aoubala et al., 

2010; Marcel et al., 2010a).  P53 binds P53REs via its L1 loop of the DBD, which is 

absent in Δ133P53α protein isoform. Accordingly, Δ133P53α is unable to bind P53REs 

in a P53-independent manner (Marcel et al., 2010a). Nevertheless, it has been shown 

that it complexes with P53 (Aoubala et al., 2010) and inhibits P53-P53RE binding 

(Marcel et al., 2010a), suggesting that the P53-Δ133P53α hybrid complex has an 

altered ability to regulate transcription. In fact, P53 transcriptional activity on CDKN1A 

promoter is inhibited by Δ133P53α (Bourdon et al., 2005). By reconfiguring the ability 

of P53 to regulate gene expression, Δ133P53α protein inhibits P53-mediated apoptosis 

(Aoubala et al., 2010; Bourdon et al., 2005; Chen et al., 2009). The Δ133P53α and γ 

protein isoforms stimulate angiogenesis, in opposition to Δ133P53β; and it seems that 
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the function of the two latter isoforms does not rely on their ability to affect P53 

transcriptional activity (Bernard et al., 2013; Bourdon et al., 2005).  

The Δ133P53 transcripts also generate the Δ160P53α, β and γ protein isoforms 

through initiation at codon 160 (Marcel et al., 2010b). Both Δ160P53α and β localize in 

the nucleus, similarly to Δ133P53α and β, but whilst Δ160P53α is perinuclear, 

Δ160P53β presents a foci pattern (Marcel et al., 2010b). The isoform Δ160P53γ was 

not experimentally identified until now. The functions of Δ160P53 isoforms are largely 

unknown, although a role for Δ160P53β in erythrocyte differentiation has been 

suggested as it is downregulated by hemin treatment (Marcel et al., 2010b). 

Additional splice variants were discovered in ovarian cancer cells, P53ΔE6 and P53δ, 

P53ε and P53ζ, arising from alternative splicing due to somatic mutations at splice sites 

of introns 6 and 9 (Hofstetter et al., 2010). However, little is known about theirs 

functions.  

 

III.4.2.2.1. P53 isoforms and cancer 

A role for P53 isoforms in tumorigenesis has been discovered. For instance, expression 

of P53β protein isoform in ovarian cancer cells is associated with poor overall survival 

when functional P53 is also present (Hofstetter et al., 2010). In those settings, aberrant 

expression of this P53 protein product is caused by mutations at splice sites of intron 9 

of TP53 gene (Hofstetter et al., 2010), which indicate that silent mutations at TP53 

gene affect expression of the P53 isoforms. Furthermore, Δ40P53 is overexpressed in 

mucinous ovarian cancer (Hofstetter et al., 2012) and it has been suggested that it is 

involved in melanoma development (Avery-Kiejda et al., 2008). Overexpression of the 

murine homolog of Δ133P53α (Δ122p53α) in mice causes enhanced cell proliferation, 

decreased apoptosis and tumor development (Slatter et al., 2011). Furthermore, 
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Δ133P53 in conjunction with P53β seems to be involved in adenoma-to-carcinoma 

transition, as the expression of Δ133P53α is reduced and P53β is increased in 

senescent colon adenomas, a tendency that is reversed in colon carcinomas (Fujita et 

al., 2009). The role and expression pattern of Δ160P53 isoform in cancer is unknown, 

although it is interesting to note that roughly 4% of all somatic mutations predicted to 

disrupt P53 coding sequence corresponding to the N-terminal region do not affect the 

sequence encoding Δ160P53 (Petitjean et al., 2007).  

 

III.4.3. IRES-mediated control of P53 

The TP53 transcript harbors two IRESs elements that regulate production of P53 full-

length protein and the N-terminal truncated protein isoform Δ40P53. These IRESs are 

located in TP53 5´UTR and coding region between AUG1 and AUG40, respectively 

(Candeias et al., 2006; Ray et al., 2006; Yang et al., 2006). The activity of each IRES 

element influence the other, in a way that the IRES for Δ40P53 also allows mRNA 

translation initiation at AUG1 and P53 IRES inhibits Δ40P53 protein synthesis 

(Candeias et al., 2006; Yang et al., 2006). Furthermore, the Y-shaped structure of the 

IRES for P53 positions the AUG in a hairpin domain that comprises also part of TP53 

coding region (Błaszczyk and Ciesiołka, 2011; Grover et al.,, 2011), suggesting a role 

for this region in the activity of the IRES element. Actually, it has been demonstrated 

that the natural structure of TP53 5´UTR requires a sequence downstream of the 

initiation codon (Błaszczyk and Ciesiołka, 2011). A distinct regulation of both IRESs 

elements is observed during cell cycle. Whereas the IRES element that induces cap-

independent production of P53 is mainly active in the G2/M transition, the IRES for 

Δ40P53 is mostly functional in the G1/S transition (Ray et al., 2006). Furthermore, a 

cell type- and cellular stress–specificity of activation of each TP53 IRES element is also 
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observed and this differential activation plays an important role in P53 activity. The 

IRES for P53 is activated by ectoposide-induced DNA damage, during OIS and is 

slightly augmented upon ER stress, while the IRES for Δ40P53 is mostly stimulated 

upon ER stress and serum starvation (Candeias et al., 2006; Grover et al., 2009; 

Weingarten-Gabbay et al., 2013; Yang et al., 2006). Upon ER stress, the Δ40P53 IRES is 

stimulated by PERK and the induced Δ40P53 protein isoform stimulates transcription 

of 14-3-3σ and concomitant G2 arrest. In those settings, not only P53 has no impact 

on G2 arrest but also the P53-mediated G1 arrest is suppressed by Δ40P53. The 

dominancy of function of Δ40P53 over P53 is deemed to be caused not only by 

increased expression of the former protein but also by ER stress-induced formation of 

transcriptionally active Δ40P53 homotetramers (Bourougaa et al., 2010). This 

differential activation might be attributed to ITAFs that differently modulate the activity 

of each IRES element, as it occurs with the recently identified P53 ITAF death-

associated protein 5 (DAP5), a member of the EIF4G family that retains EIF4G central 

domain, but lacks the N-terminal domain that binds to the cap-binding protein EIF4E 

(Imataka et al., 1997; Levy-Strumpf et al., 1997; Shaughnessy et al., 1997; Weingarten-

Gabbay et al., 2013; Yamanaka et al., 1997). It has been demonstrated that although 

DAP5 binds with similar affinities to P53 IRES and Δ40P53 IRES, it specifically assists 

the IRES-mediated translation of the latter, both in stress and unstressed condition, 

affecting the induction of the Δ40P53-preferential target 14-3-3σ. The modulatory 

activity of DAP5 on P53 IRES is restricted to few cellular conditions, suggesting that its 

action on this IRES element requires additional factors (Weingarten-Gabbay et al., 

2013).  Actually, several proteins bind to TP53 5´UTR (Takagi et al., 2005) and a 

combinatorial action of different ITAFs might be required for efficient IRES-mediated 

synthesis of P53. Indeed, it has been suggested that the interconnection between PTB, 



85 
 

PTB associated splicing factor (PSF/SFPQ) and Annexin A2 ITAFs might be important 

for the IRES-mediated translation of TP53 transcript (Sharathchandra et al., 2012). The 

modulatory effect of PTB is induced by its cytoplasmic translocation triggered upon 

DNA damage conditions (Grover et al., 2008; Sharathchandra et al., 2012). Curiously, 

PSF/SFPQ has been associated with cancer cell proliferation; and Annexin A2 is 

involved in cell motility, migration and invasion (Tsukahara et al., 2013; Zhai et al., 

2011). Other ITAFs modulating the IRES elements located in the TP53 transcript have 

been identified. For instance, a role for dyskerin in promoting IRES-mediated 

production of P53 has been demonstrated and mutations in the DKC1 gene lead to 

impaired IRES-mediated synthesis of P53 (Bellodi et al., 2010; Montanaro et al., 2010). 

Furthermore, the RPL13a also plays a role in the IRES-mediated ribosomal recruitment 

to the TP53 transcript (Chaudhuri et al., 2007). Other proteins influence TP53 mRNA 

translation, but the exact mechanism and involvement in IRES-mediated translation has 

not been directly assessed. An example is the stimulatory role of hnRNP Q on TP53 

mRNA translation through binding to its 5´UTR (Kim et al., 2013). Furthermore, 

nucleolin and RPL26 also regulate TP53 mRNA translation. Both proteins interact with 

a double-stranded RNA domain of TP53 mRNA, formed by 5´UTR-3´UTR base-

pairing; and differently regulate TP53 translation: whereas nucleolin has a repressor 

role in TP53 mRNA translation, RPL26 stimulates it (Chen et al., 2012; Chen and 

Kastan, 2010; Takagi et al., 2005). It has been suggested that the RPL26-mediated TP53 

mRNA translation induction upon stress conditions is caused by disruption of TP53 

mRNA-bound nucleolin dimers (Chen et al., 2012). Whether RPL26 and nucleolin 

proteins or the 5´UTR-3´UTR hybrid RNA domain have a role on TP53 IRES elements 

has to be determined. Furthermore, MDM2 binds to an RNA hairpin domain 

immediately downstream of TP53 initiation codon and stimulates translation of TP53 
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(Błaszczyk and Ciesiołka, 2011; Candeias et al., 2008). Upon genotoxic stress, MDM2 is 

redistributed to the nucleus and this subcellular localization is mandatory to incite 

TP53 mRNA translation (Gajjar et al., 2012). This suggests that MDM2 might be an 

ITAF of the TP53 IRESs. Last but not least, P53 protein itself binds to 5´UTR of TP53 

mRNA and negatively regulates its expression (Fontoura et al., 1997; Mosner et al., 

1995; Yin et al., 2003).  

These observations demonstrate that IRES-mediated translation has a key role in 

modulating P53 activity. The differential transcriptional targets of Δ40P53 and its 

dominancy, in some conditions, over P53 leading to inhibition of its growth 

suppression role, clearly establish a role for IRES-dependent translation in the tumor 

suppressor activity of P53. In addition to that, it has been demonstrated that silent 

mutations or single-nt polymorphisms found in human tumors decrease IRES-mediated 

translation of TP53 mRNA  (Grover et al., 2011; Khan et al., 2012).  
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IV. AIMS  

IRESs elements assist protein synthesis upon translational inhibitory conditions and 

have been reported in transcripts encoding proteins involved in stress responses, 

oncogenes and tumor suppressor genes (reviewed in Sonenberg and Hinnebusch, 

2007). The principal aim of this work was to investigate the IRES-mediated 

translational control of MTOR and Δ133P53 transcripts. MTOR signalling displays 

fundamental roles in cellular homeostasis and its deregulation is associated with 

numerous pathological conditions (reviewed in Laplante and Sabatini, 2012). The 

mechanisms regulating MTORC1 and MTORC2 signals as well as their downstream 

effects have been subjected to intensive research, in opposition to regulation of MTOR 

expression itself. The fact that MTOR signalling pathway is active upon translational 

inhibitory conditions (Schewe and Aguirre-Ghiso, 2008), and the immediate 

reactivation of inhibited MTORC1 upon a stimulatory signal (Hara et al., 1998; Tan and 

Hagen, 2013), prompted me to study whether MTOR expression is regulated at the 

translational level. The specific aims to address this question were to: 

i) Investigate whether human MTOR transcript has an IRES element; 

ii) Test if cellular stress conditions, in which MTOR signalling plays a role, 

affect the activity of this IRES element; 

iii) Analyze the activation status of MTOR IRES upon MTORC1 inactivation; 

iv) Check if MTOR IRES is affected by inhibition of two important translational 

control points. 

TP53, one of the most common mutated genes in cancer (reviewed in Rivlin et al., 

2011), governs the expression of several protein isoforms (reviewed in Khoury and 

Bourdon, 2009). The mechanism responsible for the expression of the majority of P53 

protein products is well known, in opposition to the N-terminal truncated Δ160P53 
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protein isoform. The fact that this isoform arises from internal initiation at codon 160 

of the Δ133P53 transcript (Marcel et al., 2010b), prompted me to study whether a 

cap-independent mechanism is governing its expression. The specific aims to achieve 

this goal were to: 

i) Analyze the Δ160P53 protein expression in stress conditions that are 

known to inhibit cap-dependent translation; 

ii) Test if an IRES element within Δ133P53 transcript is regulating Δ160P53 

protein expression; 

iii) Investigate the effect of stress conditions in the activity of this IRES element; 

iv) Address how is this IRES element regulated.  
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V. MATERIALS AND METHODS 

 

V.1. Plasmid constructs 

The dicistronic vector carrying Renilla luciferase (RLuc) and Firefly luciferase (FLuc) 

ORFs was based on the psiRF vector (Tahiri-Alaoui et al., 2009). A splice donor site 

within RLuc ORF was changed by site-directed mutagenesis, using primers #1 e #2 

(Table 1). The resulting construct was named pR_Fhp-. In order to prevent ribosome 

reinitiation, a sequence of a stable hairpin was PCR amplified with primers #3, #4 

(Table 1) from plasmid P53 “A” (Candeias et al., 2006), digested with XhoI and cloned 

into pR_Fhp-. The resulting construct was named pR_hp_F (refereed as pR_F, for 

simplicity). The same hairpin was PCR amplified with primers #5 and #6 (Table 1) from 

plasmid P53 “C” (Candeias et al., 2006) and cloned into pCR@2.1 TOPO (Life 

Technologies), generating the GFPhp_TOPO construct.  The GFPhp_TOPO construct 

was digested with AgeI and HindII and the originated overhangs were filled-in using 

Quick Blunting™ Kit (New England Biolabs), originating the hp_TOPO construct. The 

hp_TOPO construct was subsequently digested with NheI and the resultant fragment 

was cloned into the pR_Fhp- vector. The resulting construct was named phpR_F. 

Human -globin (HBB) 5’UTR and MTOR 5’UTR (NM_004958.3) were PCR amplified, 

using primers #7-#8 and #9-#10, respectively (Table 1). In parallel, pR_F vector was 

amplified with primers #11-#13 and #12-#13 for HBB and MTOR 5´UTR, respectively. 

The respective fragments were subjected to SOEing PCR with primers #7-#13 and #9-

#13 for HBB and MTOR 5’UTR, respectively (Table 1). The resultant PCR products 

were digested with XmaI/AccI or NotI/BsrGI, for HBB and MTOR 5’UTRs, respectively, 

and cloned into pR_F, generating the pR_HBB_F and pR_mTOR_F constructs, 

respectively. The same strategy was used for cloning MLH1 5’UTR, but with primers 
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#14 to #17 (Table 1) and the enzymes XmaI/BsrGI; the resultant construct was called 

pR_MLH1_F. In a similar manner, two putative IRESs sequences (258 and 432-nt long) 

of Δ160P53 were PCR amplified using primers #18-#19 and #18-#20, respectively. In 

parallel, pR_F vector was amplified with primers #21-#13 and #22-#13, respectively 

(Table 1). The respective fragments were subjected to SOEing PCR with primers #18-

#13 and the resultant PCR products were digested with NotI/BsrGI and cloned into 

pR_F. The generated constructs were called pR_ Δ160nt258_F and pR_160nt432_F, 

respectively. The same strategy used for generating the pR_160nt432_F construct 

was applied for cloning the 432-nt long sequence proceeded by the putative 160p53 

5´UTR, only with the exception that primer #23 was used instead of #18 (Table 1). 

The resultant construct was called pR_5´160432_F.  The human MYC and EMCV 

IRESs sequences were PCR amplified from MYC-IRES-Ova and EMCV-IRES-Ova 

plasmids (Apcher et al., 2008), using primers #24-#25 and #26- #27 for MYC and 

EMCV IRES, respectively (Table 1). In parallel, the pR_Fhp- vector was amplified with 

primers #28-#17 and #29-#17 for MYC and EMCV IRES, respectively (Table 1). SOEing 

PCR was performed with the resultant PCR products using primers #24-#17 and #26-

#17 for MYC and EMCV IRES, respectively (Table 1). The generated fragments were 

digested with EcoRI/AccI and cloned into psimutR_F, creating psimutR_MYC_F and 

psimutR_EMCV_F plasmids, respectively. To generate pR_c-myc_F and pR_EMCV_F, 

the previous plasmids were digested with XmaI/BsrGI and cloned into pR_F vector. To 

generate the promoterless constructs, pR_F was digested with NheI/BglII, blunt-ended 

with Quick Blunting Kit (New England Biolabs) and re-ligated, originating the 

promoterless_pR_F plasmid. pR_mTOR_F and pR_MLH1_F plasmids were digested 

with EcoRV/BsrGI and the resultant fragments were cloned into promoterless_pR_F, 
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originating the promoterless_pR_mTOR_F and promoterless_pR_MLH1_F, 

respectively.  

The remaining constructs were performed by Marco Candeias (Kyoto University, 

Japan).  

Table III.1 DNA oligonucleotides used in the current work.  

Primer Sequence 

#1 CGCTCCAGATGAAATGGGCAAGTACATCAAGAGCTTC 

#2 GAAGCTCTTGATGTACTTGCCCATTTCATCTGGAGCG 

#3 CCGCTCGAGCGGGGTACCAATGACGCGCGC 

#4 TCCCCCCGGGGGGATCATGGATCCTTTCGCGCG 

#5 CTAGCTAGCTAGTCATGGATCCTTTCGCGCG 

#6 CCCATTGACGCAAATGGGCGGTAGGCG 

#7 TCCCCCCGGGGGGAACATTTGCTTCTGACACAAC 

#8 CATCGGCCATGGTGTCTGTTTGAGGT 

#9 ATAAGAATGCGGCCGCTAAACTAGCTCCCGGCTTAGAGGACA 

#10 ATCGGCCATCTTGCCCTGAGGTTCGCG 

#11 ACAGACACCATGGCCGATGCTAAGAACA 

#12 CAGGGCAAGATGGCCGATGCTAAGAACATT 

#13 GTGAGAGAAGCGCACACAG 

#14 TCCCCCGGGGGAGAAGAGACCCAGCAACCCAC 

#15 TAGCATCGGCCATTTTGGCGCCAGAAGAGC 

#16 GGCGCCAAAATGGCCGATGCTAAGAACA 

#17 GCAAATCAGGTAGCCCAGG 

#18 ATAAGAAAGCGGCCGCTAAACTATGGCCATCTACAAGCAGTC 

#19 GCATCGGCCATGCCGCCCATGCAGGA 

#20 CATCGGCCATGCTCCCTGGGGGCAGCT 

#21 GGCGGCATGGCCGATGCTAAGAACA 

#22 CAGGGAGCATGGCCGATGCTAAGAACA 

#23 ATAAGAATGCGGCCGCTAAACTATTTTTGCCAACTGGCCAAGAC 

#24 GGAATTCCAATTCCAGCGAGAGGCAGAG 

#25 TAGCATCGGCCATCGTCTAAGCAGCTGCAAGGAGA 

#26 GGAATTCCAATTCCGCCCCTCTCCCTCCCC 

#27 TAGCATCGGCCATTTATCATCGTGTTTTTCAAAGG 

#28 GCAGCTGCTTAGACGATGGCCGATGCTAAGAACA 

#29 CGATGATAAATGGCCGATGCTAAGAACA 

#30 GTCTCGAACTTAAGCTGCAG 

#31 CGAAGTACTCGGCATAGGTG 

#32 GGACGCTCCAGATGAAATGG 

#33 TTACACGGCGATCTTGCCG 

 

III.2. Cell culture and plasmid transfection 

HEK293T, HeLa, A549, Sw480, HCT116, H1299 and NIH3T3 cells were cultured in 

Dulbecco’s modified Eagle’s medium (DMEM) while NCM460 cells were maintained in 
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Roswell Park Memorial Institute medium (RPMI) 1640, both supplemented with 10% 

(v/v) fetal bovine serum. Cells were kept at 37ºC in a humidified atmosphere 

containing 5% CO2. Transient transfection was performed using Lipofectamine 2000 or 

293fectin (Invitrogen), according to manufacturer’s instructions, in 35-mm plates and, 

then, harvested after the indicated times. H1299 cells were transfected with 300ng of 

each plasmid. To assay FLuc and RLuc activities, 1µg (HEK293T, Sw480 and H1299), 

1.5µg (HeLa), 2ug (NCM460) or 2.5µg (A549 and HCT116) of each dicistronic plasmid 

were transfected. For the experiments involving drug treatments for the MTOR 

analysis, HEK293T cells were transiently transfected with 0.5µg of each dicistronic 

DNA. For the promoterless assays and to test hairpin efficiency at inhibiting ribosome 

scanning, cells were co-transfected with a plasmid encoding β-galactosidase (β-gal) and 

the dicistronic plasmids (β-gal:dicistronic) as follows: 0.5µg:0.5µg for HEK293T cells; 

1.5µg:1.5µg for HeLa cells and 2µg:1µg for A549 cells. To mimic hypoxia, 2 hours post-

transfection, HEK293T cells were changed to fresh medium supplemented with 100µM 

or 200µM CoCl2 (Sigma-Aldrich), or vehicle (Vh) (H20) during 24 hours. To induce ER 

stress, 19 hours post-transfection, HEK293T, A549 or H1299 cells were treated with 

1μM or 0.25μM thapsigargin (TG) (Sigma-Aldrich) or Vh (DMSO) during 20 hours. 

Alternatively, H1299 cells were treated, 24 hours post-transfection, with 12µM 

tunicamycin (TU) (Sigma-Aldrich) or Vh (DMSO), alone or in combination with 

10µg/mL cyclohexamide (CHX) or 25µM MG132 for 2 hours. Untransfected A549 and 

HCT116 cells were treated with 1μM TG, 12µM TU or Vh (DMSO) during 20 hours. 

To inactivate MTORC1, 14 hours post-transfection, HEK293T cells were treated with 

80nM rapamycin (Rap) (Sigma) or drug Vh (DMSO) during 6 hours. For stress induced 

by cell over-confluency, A549, NIH3T3 and H1299 cells were grown during 2-10 days 
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to achieve overconfluency, or collected at a density of 300cells/mL (normal cell 

density). 

 

III.3. In vitro transcription and RNA transfection 

pR_F e pR_mTOR_F plasmids were linearized at the 3’ end using ClaI, in vitro 

transcribed, capped and poly-adenylated with mMessage mMachine T7 kit (Ambion) 

and poly(A) tailing kit (Ambion), respectively, according to manufacturer’s instructions. 

RNA samples were treated with Turbo DNase (Ambion) and purified by 

phenol:chloroform extraction. Transcripts quality was analyzed by denaturing 

formaldehyde-agarose gel electrophoresis. HEK293T cells were transfected with 1µg 

of each RNA, using Lipofectamine 2000 (Invitrogen) and luciferase activity was assayed 

4 hours post-transfection. 

 

III.4. RNA isolation 

Total RNA from transfected cells was prepared using Nucleospin RNA extraction II 

(Marcherey-Nagel) followed by treatment with RNase-free DNase I (Ambion) and 

purification by phenol:chloroform extraction.  

 

III.5. Reverse transcription-PCR  

First strand cDNA synthesis from 1µg of total RNA was carried out using SuperScript 

II Reverse Transcriptase (Life Technologies) and oligod(T) primer, according to the 

manufacturer's standard protocol. cDNAs were PCR amplified using primers #30 and 

#31 (Table III.1) for fragment I, or #32 and #33 (Table III.1) for fragment II. To 

control for DNA contamination, PCR reactions were also carried out without prior 
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cDNA synthesis. Samples were analyzed by electrophoresis on 0.8% agarose gels. The 

resulting fragments were then gel-purified and sequenced.  

 

III.6. Luciferase assays 

Cell lysis was performed with Passive Lysis Buffer (Promega) and then cells were 

subjected to a freeze-thaw cycle at -80ºC to 37ºC and centrifuged at maximum speed 

for 5 minutes. The cell lysates were used to determine luciferase activity with the 

Dual-Luciferase Reporter Assay System (Promega) and a Lucy 2 luminometer (Anthos 

Labtec), according to the manufacturer’s standard protocol. Ten µL of cell lysate were 

assayed for FLuc and RLuc enzymatic activities. Ratio is the unit of FLuc after 

normalized to RLuc, and each value was derived from three independent experiments. 

 

III.7. Sodium dodecyl sulphate - polyacrilamide gel electrophoresis 

(SDS-PAGE) and immunoblot 

Protein lysates were resolved, according to standard protocols, in 12, 10 or 8% SDS-

PAGE and transferred to PVDF membranes (Bio-Rad). Membranes were probed using 

rabbit polyclonal anti-MTOR (Sigma) at 1:1500 dilution, mouse monoclonal anti-HIF1α 

(BD Biosciences) at 1:750 dilution, rabbit monoclonal anti-PARP (Cell Signalling) at 

1:750 dilution, rabbit monoclonal anti-Phospho-p70 S6K (Thr389) (Cell Signalling) at 

1:1000 dilution, rabbit monoclonal anti-p70 S6K (Cell Signalling) at 1:750 dilution, 

rabbit polyclonal anti-Phospho-EIF2α (Ser52) (Invitrogen) at 1:750 dilution, rabbit 

polyclonal anti-EIF2α (Cell Signalling) at 1:500 dilution, rabbit polyclonal CM1 (a gift 

from Borek Vojtesek, Masaryk Memorial Cancer Institute, Czech Republic) at 1:8,000 

dilution, mouse monoclonal anti-α-tubulin (Sigma) at 1:10,000 dilution or mouse 

monoclonal anti-PCNA (Calbiochem) at 1:1000 dilution. Detection was carried out 
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using secondary peroxidase-conjugated anti-mouse IgG (Bio-Rad) or anti-rabbit IgG 

(Bio-Rad) antibodies followed by chemiluminescence. 

 

III.8. Statistical analysis 

Data are presented as means ± standard deviation of at least three independent 

experiments. Test F was used for evaluation of variances equality.  Student’s two-tailed 

t-test was used for estimation of statistical significance. Significance for statistical 

analysis was defined as p<0.05. 

 

III.9. RNA folding prediction 

The MFold program (http://mfold.rna.albany.edu/?q=mfold) was used for prediction of 

RNA secondary structure. This prediction is based on the thermodynamic stability 

using an empirically determined energy table. Stability of the predicted secondary 

structure is inversely correlated with the estimated energy (Mathews et al., 1999). The 

following constraints were applied: free energy increment was set to 10%. As a first 

approach, three MTOR RNA segments were analyzed: nt 1 to 50, nt 1 to 121 (full-

length 5’UTR) and nt 1 to 171 (full-length 5’UTR and a portion of MTOR coding 

region). As a second approach, the analysis was expanded to the following sequences: 

nt 1-221 and 1-271. The most stable secondary structure predicted for each segment 

was compared to the others and the conserved elements (loops, stems, hairpins, etc.) 

were considered.   
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IV. RESULTS  

Marco Candeias (University of Kyoto, Japan) performed the work presented at Figures 

Figures IV.8 and IV.9. Rafaela Lacerda and Alexandre Teixeira (Instituto Nacional de 

Saúde Dr. Ricardo Lisboa, Portugal) performed the in vitro transcription of pR_F and 

pR_MTOR_F constructs (RNAs used in Figure IV.3).   

 

IV.1. IRES-dependent translational regulation of MTOR 

 

IV.1.1. Human MTOR 5’UTR has IRES classical features   

Some transcripts have translational advantage in adverse conditions through regulatory 

elements within their 5’UTRs, such as upstream uORFs and/or IRESs that allow or 

facilitate their translation independent of the availability of ternary and/or EIF4F 

complexes (reviewed in Sonenberg and Hinnebusch, 2007). Indeed, these  elements 

have been identified in a number of eukaryotic mRNAs encoding proteins involved, 

namely, in signal transduction pathways, gene expression regulation, apoptosis or/and 

stress responses (reviewed in Sonenberg and Hinnebusch, 2007). The fact that MTOR 

is a key player of a signalling pathway involved in several cellular functions (reviewed in 

Laplante and Sabatini, 2012), prompted us to examine whether the 5’UTR of human 

MTOR mRNA has uORF and/or IRES features. The alignment of human MTOR 5’UTR 

with that of chimpanzee, mouse, chicken, turkey and rat revealed relatively conserved 

sequences, especially those in close proximity to the AUG codon (Figure IV.1A), 

which may indicate the existence of a regulatory element. Further inspection revealed 

that human MTOR 5´UTR does not contain any uAUG. On the other hand, fifteen 

potential non-AUG initiators were found, five of which fulfilled the requirement of a 

purine at position -3 and a “G” at position +4 (Kozak, 1991) (Table IV.1). Since the 
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severe dependence of non-AUG initiation codons on an optimal Kozak context may 

rely also on the entities of other surrounding nucleotides (Chen et al., 2008; Kozak, 

1989a, 1991), the sequence context of those five potential initiators was compared 

with Kozak consensus sequence and the results showed that none of them matched 

perfectly. It has been demonstrated that hairpins located 11 and mainly 17-nts 

downstream of the start codon enhance translation at initiation codons with poor 

Kozak context (Kozak, 1990). Accordingly, the AUG_hairpin program (Kochetov et 

al., 2007) was used for prediction of hairpins at those positions and no eligible 

downstream hairpins for any of the five selected non-AUG codons (Table IV.1) were 

predicted. Thus, it is unlikely that MTOR 5´UTR contains a functional uORF.  In 

contrast, it has a high GC-content (74%) and is 121-nts long, being longer than the 

stated dogma of the “usually < 100 nt” median (reviewed in Baird, 2006). Analysis of 

MTOR 5’UTR sequence with M-Fold program (Zuker, 2003) showed that its predicted 

folding has a Gibb’s free energy of -55.50 kJ/mol, is Y-shaped and contains a stem-loop 

from nt 4 to 25 (SL I; Figure IV.1B). This stem-loop is conserved in the resultant 

folding of nt 1 to 50, nt 1 to 121 (full-length 5’UTR) and nt 1 to 171 (full-length 5’UTR 

and a portion of MTOR coding region) of the MTOR mRNA. The relative conservation 

of MTOR 5’UTR and its IRES-like features suggests that MTOR translation might be 

regulated via an IRES element. 
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Figure VI.1. MTOR 5’UTR has IRES classical features. (A) Nucleotide 

sequence alignment of the human (Homo sapiens), chimpanzee (Pan troglodytes), mouse 

(Mus musculus), chicken (Gallus gallus), rat (Rattus norvegicus) and turkey (Meleagris 

gallopavo) MTOR mRNA 5’UTRs shows two segments highly conserved among different 

species. Highly conserved nucleotides are shown in black boxes and non-conserved 

sequences are shown in white boxes. Distance (in nucleotides) from the AUG 

initiation codon is indicated above the sequence. (B) RNA secondary structure of 

human MTOR 5’UTR predicted by M-Fold program 

(http://mfold.rna.albany.edu/?q=mfold). A putative stem-loop structure (SL I) from 

nucleotides -98 to -118 (relatively to the AUG codon at position +1), nucleotides 

position, and the Gibb’s free energy of         the predicted secondary structure are 

indicated.  
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Table IV.1. None of the fifteen potential non-AUG initiation codons located 

at MTOR 5´UTR represents a bona fide translation initiator. The surrounding 

sequence of codons differing at a single nucleotide from AUG, located at MTOR 

5´UTR, was analyzed in terms of Kozak consensus sequence match.  The initiation 

context of five non-AUG codons fulfill the Kozak context requirements for a purine at 

position -3 and a “G” at position +4, but not for the nucleotides at the remaining 

positions. Analyses with AUG_hairpin program 

(http://wwwmgs.bionet.nsc.ru/mgs/programs/aug_hairpin/) show no eligible hairpins 

around nucleotides 11 and 17 downstream of the beginning of the coding sequence.    

 

Potential 

non-AUG 

initiator 

Surruonding 

sequence 
Kozak context match Downstream 

stem-loop Purine at 

position -3 and 

“G” at position 

+4 

Nucleotides at 

the remaining 

positions 

GUG CGGGCGGUGG Yes No No 
GUACCGGUGC No - - 

CUG CCGGUGCUGG Yes No No 
CGGCAGCUGA No - - 
CGGGGCCUGA No - - 

UUG GAGGCCUUGG Yes No No 

ACG UGGGGCACGG Yes No No 

AAG GCGGGGAAGG Yes No No 
GGCCUGAAGC No - - 
UGGCCGAAGC No - - 
CAGGGCAAGA No - - 

AGG GCUUAGAGGA No - - 
CGGGGAAGGC No - - 
CAGCUGAGGC No - - 
AACCUCAGGG No - - 

 

 

IV.1.2. MTOR 5’UTR supports Firefly luciferase activity in a dicistronic 

context with impaired reinitiation  

The most common method to test for IRES activity of a given sequence relies on DNA 

dicistronic reporter systems encoding mRNAs in which the upstream cistron is cap-

dependent translated, whereas the downstream ORF is only translated if preceded by 

an IRES element. In this study, a dicistronic DNA reporter with Renilla luciferase 

(RLuc) ORF as the first cistron and Firefly luciferase (FLuc) ORF as the second cistron, 

was used. The multiple cloning site between both cistrons has no IRES activity (Tahiri-

Alaoui et al., 2009). Since stable hairpins are effective at inhibiting ribosome scanning 
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(Kozak, 1986b), a hairpin structure was used in order to prevent translation 

reinitiation (Candeias et al., 2006). To confirm that the hairpin was effectively inhibiting 

ribosome scanning in our system, a stable hairpin was cloned upstream of RLuc, 

generating the phpR_F construct (Figure IV.2A) and the resultant RLuc activity from 

this construct was compared to that of a hairpin-less DNA dicistronic construct 

(pR_Fhp- from figure IV.2A). For that, HEK293T cells were transiently transfected 

with the aforementioned dicistronic DNA constructs along with a plasmid encoding β-

galactosidase (β-gal), and cellular extracts were prepared and assayed for luciferase 

activity. RLuc activities were normalized to the activity of β-gal and the subsequent 

ratio of RLuc to β-gal (R/β-gal) was compared to that from the pR_Fhp- vector, 

arbitrarily set to 1 (Figure IV.2B). As seen in Figure IV.2B, insertion of the stem-loop 

upstream of RLuc effectively diminished its activity (~60%), demonstrating that it 

inhibits ribosome scanning, as previously shown (Candeias et al, 2006). By using a 

construct in which the hairpin is located upstream of FLuc ORF, instead (pR_hp_F 

from Figure IV.2A), it is possible to observe that this hairpin did not destabilizes RLuc 

activity, when located downstream of RLuc ORF (Figure IV.2B). Accordingly, the latter 

construct was used to test for IRES activity; and from now on it will be referred, for 

the sake of simplicity, as pR_F.  

The HBB 5´UTR was used as a negative control for IRES activity, since its translation is 

exclusively cap-dependent (Lockard and Lane, 1978). The positive controls were MYC 

IRES (cellular IRES) (Stoneley et al., 1998), and EMCV IRES (viral IRES) (Jang et al., 

1988). Human MTOR 5´UTR (NM_004958.3) and the aforementioned control 

sequences were cloned upstream of FLuc, in a way that the native initiation codon is 

replaced by the FLuc initiation codon. The resultant constructs were called 

pR_mTOR_F (MTOR), pR_HBB_F (HBB), pR_c-myc_F (MYC) and pR_EMCV_F 
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(EMCV).  For normalization, the aforementioned empty reporter plasmid (pR_F) was 

used, which contains a short linker sequence between the hairpin and FLuc cistron 

(Figure IV.2C). Expression of each of these reporter genes was assessed after 

transient transfection into a panel of human cell lines – HEK293T, HeLa, and A549 

cells and measurement of luciferase activity (Figure IV.2D-F).  FLuc activity of each 

construct was normalized to the activity units from RLuc expressed in the same 

mRNA. The subsequent ratio between FLuc and RLuc (F/R) was compared to that 

from the empty pR_F vector, arbitrarily set to 1 (Figure IV.2D-F). Results showed that 

insertion of MTOR 5’UTR in the dicistronic reporter significantly enhanced relative 

production of FLuc: 4-fold in HEK293T cells, 3-fold in HeLa cells, and 2-fold in A549 

cells. Besides, HBB 5’UTR did not induce relative FLuc activity, and MYC and EMCV 

IRESs were active in the three cell lines tested, as expected (Figure IV.2D-F). The 

MTOR 5’UTR-mediated relative FLuc activity was greater than the observed for EMCV 

IRES and similar to that of MYC IRES in HEK293T cells. In HeLa cells, relative FLuc 

activity driven by MTOR 5’UTR was about 60% of that driven by MYC IRES and 74% of 

that from EMCV IRES. On the other hand, in A549 cells, protein production from the 

second cistron through MTOR 5’UTR represented 40% of that through MYC IRES and 

was about 16% of the observed from EMCV IRES. Of note, in A549 cells, MTOR 

5’UTR-mediated relative FLuc activity was similar to that observed for EMCV IRES in 

HEK293T cells, in which this IRES element is known to be active (Venkatesan et al., 

2003). Together, these results show that MTOR 5’UTR allows production of FLuc in a 

dicistronic DNA reporter system with impaired translation reinitiation, strongly 

suggesting that this segment has IRES activity.   
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Figure IV.2. MTOR 5’UTR supports Firefly luciferase (FLuc) activity in a 

dicistronic reporter DNA construct with impaired reinitiation (A) Scheme 

depicting the dicistronic reporter pR_Fhp-, phpR_F  and pR_hp_F constructs. A stable 

hairpin was cloned upstream or downstream of the Renilla luciferase (RLuc) open 

reading frame (ORF) (RLuc box), generating the phpR_F and pR_hp_F constructs, 

respectively. The dicistronic transcriptional units expressing RLuc and Firefly luciferase 

(FLuc) are under the control of SV40 promoter. (B) The hairpin inhibits RLuc activity 

when located upstream but not when located downstream of RLuc ORF. HEK293T 

cells were transiently co-transfected with each of the constructs described in (A), 

along with a plasmid expressing -galactosidase (-gal). Luciferase activity was 

measured 16 hours post-transfection. The values (relative light units; RLU) are shown 

as the luminescence ratio between RLuc and -gal compared to that of the 

corresponding pR_Fhp- construct, which was arbitrarily set to 1. (C) Scheme depicting 

the dicistronic reporter pR_F (pR_hp_F from A), pR_HBB_F, pR_mTOR_F, pR_c-

myc_F, pR_EMCV_F constructs. The 5’ untranslated regions (5’UTRs) of HBB or of 

human MTOR mRNAs, the human MYC and the EMCV IRESs elements were cloned 

into the empty vector (pR_F), downstream of the RLuc ORF (RLuc box) and 

downstream of a stable hairpin structure, but upstream of the FLuc ORF (FLuc box), 

to create the pR_HBB_F, pR_mTOR_F, pR_c-myc_F, pR_EMCV_F constructs, 

respectively. (D-F) Relative enhancement of downstream reporter enzyme expression 

mediated by HBB, MTOR, MYC or EMCV segments, comparing to that from the empty 

construct, in HEK293T (D), HeLa (E), and A549 (F) cells. Cells were transiently 

transfected with the dicistronic plasmids depicted in (C) as indicated. Luciferase activity 

was measured 16 hours (HEK293T) or 24 hours (HeLa and A549) post-transfection. 

The values (relative light units; RLU) are shown as the luminescence ratio between 

FLuc and RLuc, normalized to that of the empty construct, which was arbitrarily set to 

1. Data are presented below each graph as the means ± standard deviation (SD) of at 

least 3 independent experiments. Statistical analysis was performed using the Student’s 

t test (unpaired, two-tailed); (∗) p<0.05; (∗∗) p<0.01; (∗∗∗) p<0.001. 

 

IV.1.3. MTOR 5´UTR-mediated FLuc expression is neither due to 

abnormal splicing nor promoter activation. 

Cryptic promoter activity or abnormal splicing in the 5’UTR might generate a false-

positive result if the generated monocistronic and/or aberrant dicistronic RNAs 

encode an enzymatically active FLuc. To test R_mTOR_F mRNA for abnormal splicing, 

a computer-assisted analysis for prediction of potential splice sites was performed with 

Splice View. This analysis revealed that MTOR 5´UTR does not contain any potential 

splice acceptor site. To confirm this prediction, the integrity of the RNA expressed in 

HEK293T cells from the pR_mTOR_F construct was analyzed by RT-PCR. As shown 

in Figure IV.3, only a full-length RNA is produced. Furthermore, the correspondent 
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PCR fragments were sequenced and no cryptic splicing was found (data not shown), 

indicating that the observed MTOR 5’UTR-mediated FLuc activity did not result from 

aberrantly spliced mRNAs. The same result was obtained in A549 and HeLa cells 

expressing the pR_mTOR_F construct (Figure IV.3B). 

 

Figure IV.3. Dicistronic plasmid carrying human MTOR 5’UTR does not 

express alternatively spliced mRNAs. (A) Scheme depicting the dicistronic 

reporter R_mTOR_F mRNA expressed in HEK293T, HeLa and A549 cells. After 

transient transfection of the mentioned cell lines with the dicistronic pR_mTOR_F 

plasmid, RNA was extracted and the integrity of R_mTOR_F mRNA was analyzed by 

RT-PCR, which was performed with 2 pairs of primers (represented by arrows) 

originating overlapping fragments (I and II) spanning the entire transcript until the 3’ 

end of Firefly luciferase (FLuc) cistron. (B) Ethidium bromide-stained agarose gel 

showing RT-PCR products. The amplified fragments, in the presence (cDNA) or in the 

absence of cDNA (-RT) are identified above the respective lane. The molecular weight 

marker (M) used is the NZY Ladder III. The correct full-length 1489bp fragment I was 

amplified from cDNA, while a longer fragment was amplified from plasmid DNA 

(pDNA), as it carries a 133bp chimeric intron upstream of the Renilla luciferase (RLuc) 

cistron. Amplification of fragment II revealed a 1987bp fragment in the cDNA samples 

and corresponding pDNA. 

 

Potential cryptic promoter activity of MTOR 5’UTR was assessed by evaluating 

luciferase activity in promoterless reporters. SV40 promoter was removed from the 

dicistronic DNA constructs pR_F and pR_mTOR_F (Figure IV.4A; constructs 4 and 5) 

which were subsequently transfected into HEK293T, HeLa and A549 cells. As the 
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5’UTR of the human gene encoding the DNA mismatch repair MLH1 protein 

(NM_000249.3) contains a cryptic promoter (Arita et al., 2003; Ito et al., 1999), it was 

used as a positive control for cryptic promoter activity (Figure IV.4A; constructs 3 and 

6). After transient co-transfection of each one of these constructs with a plasmid 

encoding β-galactosidase (β-gal) into HEK293T, HeLa, and A549 cells, Renilla and 

Firefly luciferase activities were determined and normalized to the activity of β-gal. The 

subsequent ratios of RLuc to β-gal or FLuc to β-gal (R/β-gal or F/β-gal) were 

compared to those from the empty pR_F vector (Figure IV.4B-D), arbitrarily set to 1. 

Results showed that in all the tested cell lines, removal of SV40 promoter decreased 

RLuc activity from all the constructs to background levels (Figure IV.4B-D).  

In HeLa and A549 cells, a strong decrease in FLuc activity from the pR_F and 

pR_mTOR_F constructs was observed when the promoter was deleted, meaning that 

MTOR 5’UTR does not have cryptic promoter in these cells. On the other hand, the 

high levels of FLuc activity expressed from the dicistronic plasmid containing MLH1 

5’UTR was unaffected by SV40 removal, as expected since it has a cryptic promoter 

(Figure IV.4C-D). A similar result was obtained from the pR_MLH1_F construct 

expressed in HEK293T cells; indeed, MLH1 5’UTR mediated FLuc production 19-fold 

comparing to that from pR_F empty construct, which remained unchanged upon 

removal of SV40 promoter (Figure IV.4B). In addition, in HEK293T cells, deletion of 

SV40 promoter induced a reduction of FLuc activity from pR_F and pR_mTOR_F 

constructs, which was less sharp than the reduction of RLuc activity, although 

significant (Figure IV.4B). Of note, the relative decrease in FLuc activity from the 

pR_mTOR_F promoterless construct comparing to its promoter-containing 

counterpart was similar to that observed for the empty construct (Figure IV.4B). FLuc 

coding region displays cryptic promoter activity (Vopalensky et al., 2008) and the fact 
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that its activity was reduced by removal of SV40 from the pR_F construct (Figure 

IV.4B) denotes that some translation reinitiation or ribosome read-through was 

occurring in this system. Though, the similar reduction of FLuc activity from the 

promoterless pR_F and pR_mTOR_F constructs in comparison with the SV40-

containing counterparts demonstrated that those non-IRES events occur similarly in 

both constructs. Thus, these data point out that MTOR 5’UTR does not seem to 

display cryptic promoter activity. 

 

IV.1.4. Human MTOR 5’UTR IRES activity does not require nuclear 

experience in HEK293T cells 

One way to eliminate any contribution from cryptic promoters or splicing activation is 

to transfect cells with mRNA instead of plasmid DNA. Thus, to definitively confirm 

that MTOR 5’UTR-mediated FLuc activity is a result of cap-independent translation, 

transfection of dicistronic mRNAs was performed. For that, mRNAs were in vitro 

transcribed from the T7 RNA polymerase promoter-containing pR_F and 

pR_mTOR_F DNA reporters, capped, and polyadenylated. The integrity of the 

resultant mRNAs was confirmed on a formaldehyde-agarose gel (Figure IV.5A and B). 

Both mRNAs were transfected into HEK293T cells and the resulting RLuc and FLuc 

activities were measured (Figure IV.5C). The ratio of FLuc to RLuc (F/R) produced 

from R_mTOR_F mRNA was compared to that from the negative control, R_F 

mRNA, arbitrarily set to 1. Insertion of the MTOR 5’UTR segment resulted in a 2.2-

fold increase in relative FLuc over the negative control (Figure IV.5C). These data 

unequivocally show that MTOR 5’UTR-mediated FLuc production is not due to cryptic 

promoter or splicing activation; instead, human MTOR 5’UTR shows IRES activity, 

which mediates cap-independent translation.  
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Figure IV.4. MTOR 5’UTR does not display cryptic promoter. (A) 

Representation of the dicistronic reporter pR_F, pR_mTOR_F, and pR_MLH1_F 

constructs with and without SV40 promoter, as in Figure IV.2C. MLH1 5’UTR was 

used as a positive control for cryptic promoter activity. HEK293 (B), HeLa (C) and 

A549 (D) cells were transiently co-transfected with each of the constructs described 

in (A), along with a plasmid expressing -galactosidase (-gal). Luciferase activity was 

measured 16 hours (HEK293T) or 24 hours (HeLa and A549) post-transfection. The 

values (relative light units; RLU) are shown as the luminescence ratio between Renilla 

luciferase (RLuc) and -gal or Firefly luciferase (FLuc) and -gal compared to that of 

the corresponding empty construct, which was arbitrarily set to 1. Data are presented 

below each graph as the means ± SD of three independent experiments. Statistical 

analysis was performed using the Student’s t test (unpaired, two-tailed); (∗) p<0.05; 

(∗∗) p<0.01; (∗∗∗) p<0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.5. In vitro transcribed dicistronic mRNAs containing MTOR 5’UTR 

undergo IRES-driven translation after transient transfection. (A) Schematic 

illustration of the in vitro transcribed, capped and polyadenylated dicistronic R_F and 

R_mTOR_F reporter mRNAs. (B) Ethidium bromide-stained formaldehyde-agarose 

gel showing the integrity of 3μg of each mRNA before (-) and after (+) polyadenylation 

(polyA), as indicated. Lane 1 contains the 0.24-9.5kb RNA ladder (Invitrogen). (C) The 

capped and polyadenylated dicistronic mRNAs were transiently transfected into 

HEK293T cells and the Renilla (RLuc) and Firefly luciferase (FLuc) enzymatic activities 
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were measured 4 hours post-transfection. The values (relative light units; RLU) are 

shown as the luminescence ratio between FLuc and RLuc, normalized to that of the 

R_F mRNA, which was arbitrarily set to 1. Data are presented below the graph as the 

means ± SD of four independent experiments. Statistical analysis was performed using 

the Student’s t test (unpaired, two-tailed); (∗∗) p<0.01. 

 

IV.1.5. Hypoxic conditions with associated EIF2α phosphorylation and cap-

dependent translation reduction stimulate MTOR IRES activity 

The cellular response to hypoxia is characterized by HIF1α stabilization, that elicits a 

gene expression reconfiguration program (Manalo et al., 2005; Wang et al., 1995), 

characterized both by transcriptional induction of several genes and a translational 

reprogramming (Manalo et al., 2005; Arsham, 2003; Koritzinsky et al., 2006; Koumenis 

et al., 2002; Liu et al., 2006). Inactivation of EIF2B through phosphorylation of EIF2α, is 

one way by which, in hypoxia, protein synthesis is globally inhibited whereas a subset 

of mRNAs are preferentially translated, namely those encoding proteins involved in the 

hypoxic response (Koritzinsky and Wouters, 2007; Koritzinsky et al., 2006, 2007; 

Koumenis et al., 2002). Since MTORC1 is involved in the hypoxic response by 

regulating expression of HIF1α and modulating its transcriptional activity (Bernardi et 

al., 2006; Hudson et al., 2002; Land and Tee, 2007; Laughner et al., 2001; Thomas et al., 

2006; Zhong et al., 2000), it was hypothesized that MTOR IRES-driven translation might 

be affected by hypoxic conditions. To test this, HEK293T cells were transiently 

transfected with the pR_F, pR_HBB_F, pR_mTOR_F, or pR_c-myc_F constructs 2 

hours before treatment with the hypoxia-mimicking agent cobalt chloride (CoCl2) 

(200μM) for 20 hours. The cellular hypoxic stimulus was monitored by Western blot 

with an anti-HIF1α antibody; and α-tubulin was used as a loading control. As seen in 

Figure IV.6A, 200µM of CoCl2 stabilized the O2-sensitive HIF1α subunit and increased 

the phosphorylated EIF2α (P-EIF2α) protein levels. Total EIF2 levels, on the contrary, 

were not considerably affected by this treatment (Figure IV.6A; lower panel). 
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Enhanced EIF2 phosphorylation may be considered as an indicator for reduction in 

global cap-dependent translation. Nevertheless, to better measure the effect of 

hypoxia on cap-dependent translation, the MYC IRES-containing dual luciferase 

reporter was used to distinguish cap-dependent versus cap-independent translation, as 

it is known that MYC IRES is unresponsive to hypoxic stress (Lang et al., 2002). Thus, 

the RLuc/FLuc ratio determines the cap-dependent translation status in the hypoxic-

mimicking conditions used. As seen in Figure IV.6B, hypoxia attenuated cap-dependent 

translation by about 35% when compared to the control condition. In these settings, 

the endogenous MTOR protein levels were also monitored revealing that, although 

cap-dependent translation was compromised, MTOR protein levels remained 

unchanged (Figure IV.6A,B). To test whether the maintenance of MTOR levels is due 

to increased cap-independent MTOR IRES activity, FLuc/RLuc ratios expressed from 

the pR_F, pR_HBB_F, and pR_mTOR_F constructs, under normoxic and hypoxic 

conditions, were also evaluated by dual luciferase assays and relative luciferase activity 

of each construct was compared to that obtained from the empty pR_F construct at 

the corresponding condition (Figure IV.6C). It is observed that, in fact, relative MTOR 

IRES activity was significantly potentiated under hypoxia. As expected, the activity from 

the negative control remained unaltered (Figure IV.6C).  
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Figure IV.6. Relative MTOR IRES activity is enhanced in CoCl2-induced 

hypoxia when EIF2α is phosphorylated. HEK293T cells were transiently 

transfected with the dicistronic constructs pR_F, pR_HBB_F, pR_mTOR_F and pR_c-

myc_F (Figure IV.2C) and treated 2 hours later with drug vehicle (Vh), 200µM-CoCl2 
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(A-C), or 100µM-CoCl2 (D-F) for 24 hours. (A) Phosphorylation of EIF2 by 200μM-

CoCl2 has no impact on endogenous MTOR protein levels. Western blot analysis of 

transfected HEK293T cell extracts treated with 200μM-CoCl2, using antibodies against 

MTOR, HIF1α, total and phosphorylated EIF2 (P-EIF2) proteins. The -tubulin 

specific antibody controls for protein loading. HIF1α stabilization demonstrates 

hypoxia induction and EIF2α phosphorylation is demonstrated by increased P-

EIF2α/EIF2α ratio. (B) Cap-dependent translation is reduced in 200μM-CoCl2 treated 

cells. In vivo cap-dependent translational assays were performed using the dual 

Renilla/Firefly luciferase (R/F) assay, in extracts from HEK293T transfected with pR_c-

myc_F plasmid and treated with 200μM-CoCl2.. The values are shown as the 

luminescence (RLuc/FLuc) ratio, normalized to that of the pR_c-myc_F construct in 

control conditions (Vh), which was arbitrarily set to 100.  (C) Hypoxia with associated 

EIF2α phosphorylation and cap-dependent translation reduction increases relative 

MTOR IRES activity. Luminescence assays were performed using extracts from 200μM-

CoCl2-treated cells described in (A). The values (relative light units; RLU) are shown as 

the luminescence (FLuc/RLuc) ratio, normalized to that of the pR_F construct in each 

condition, arbitrarily set to 1. Data are presented as the means ± SD from three 

independent experiments. Statistical analysis was performed using Student’s t test 

(unpaired, two-tailed); (∗) p<0.05. (D) Cellular treatment with 100μM-CoCl2 induces 

hypoxia with no EIF2 phosphorylation. Western blot analysis of extracts from 

HEK293T cells transfected with pR_F and pR_mTOR_F plasmids and treated with 

100μM-CoCl2. HIF1α stabilization demonstrates hypoxia induction but with unchanged 

P-EIF2α/EIF2α ratio. (E) In hypoxic conditions without EIF2 phosphorylation, cap-

dependent translation is not inhibited. In vivo cap-dependent translational assays were 

performed in extracts from 100μM-CoCl2-treated cells as in B. (F) Chemical hypoxia 

with no EIF2α phosphorylation does not affect relative MTOR IRES activity. Extracts 

from 100μM-CoCl2-treated HEK293T cells transfected with pR_F and pR_mTOR_F 

plasmids were used to measure luciferase activity by luminometry assays as in C. 

 

 

Furthermore, the observed increase of relative MTOR IRES activity was not attributed 

to HIF1α induction per se since, in hypoxic conditions that induced HIF1α expression 

but had no impact on EIF2α phosphorylation nor on cap-dependent translation – 

100μM CoCl2 cellular treatment – (Figure IV.6D and E), there was no stimulation of 

MTOR IRES activity (Figure IV.6F). Thus, the results illustrate that hypoxic conditions 

with associated EIF2α phosphorylation increase relative MTOR IRES activity, in a HIF1α 

induction-independent manner.    
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IV.1.6. MTOR IRES-driven translation is stimulated by ER stress both in 

the anti- and pro-apoptotic unfolded protein response output, with 

a more pronounced effect when EIF2α phosphorylation is 

increased 

UPR is activated when ER integrity is disrupted by accumulation of unfolded or 

misfolded proteins, alterations in calcium stores, disturbances of the redox balance in 

the ER lumen and oxidative stress (reviewed in Ron and Walter, 2007). PERK 

activation, that triggers one of the UPR branches, increases EIF2α phosphorylation 

which reduces the influx of proteins into the ER and induces a translational 

reprogramming (Harding et al.,, 1999; Harding et al., 2000a). As UPR and MTORC1 

signalling mutually regulate each other (reviewed in Appenzeller-Herzog and Hall, 

2012), it was hypothesized that MTOR is one of the transcripts preferentially translated 

upon ER stress-induced UPR. For that, HEK293T cells were transiently transfected 

with the dicistronic DNA plasmids pR_F, pR_HBB_F, pR_mTOR_F and pR_c-myc_F 

(Figure IV.2C) and treated with 1µM Thapsigargin (TG) for 20 hours. TG induces ER 

stress by reducing ER Ca2+ stores, leading to an increase of EIF2α phosphorylation and 

global translation inhibition (Thastrup et al., 1990; Wong et al., 1993). Figure IV.7A 

shows that TG treatment resulted in increased EIF2α phosphorylation as 

demonstrated by the augmented ratio between P-EIF2α and total EIF2α protein levels 

(P-EIF2α/EIF2α) in TG-treated versus untreated cells (Figure IV.7A). Knowing that the 

primary homeostatic and anti-apoptotic outcome of UPR is reversed by prolonged or 

severe ER stress, in which cells undergo apoptosis (reviewed in Tabas and Ron, 2011), 

the apoptotic output of the used experimental conditions was analyzed. The molecular 

marker used to test apoptosis was cleavage of the nuclear DNA repair enzyme poly 

(ADP-ribose) polymerase (PARP), which suffers proteolytic cleavage in response to 
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many apoptotic stimuli (Oliver et al., 1998). It is observed that PARP cleavage 

increases in TG-treated cells comparing to DMSO Vh-treated control cells (Figure 

IV.7A). Thus, increased EIF2α phosphorylation paralleled the apoptotic output of UPR, 

which is in agreement with its pro-apoptotic role (Allagnat et al., 2011; McCullough et 

al., 2001). To quantify the effect of TG treatment on cap-dependent translation, the 

same strategy as before for the hypoxic conditions was used. As seen in Figure IV.7B, 

TG treatment attenuated cap-dependent translation by about 40% (Figure IV.7B). 

Under these conditions, it is also noticed that MTOR protein levels remained 

unchanged relatively to the control conditions (Figure IV.7A). It was then tested 

whether this maintenance of MTOR protein levels were due to increased cap-

independent translation of MTOR mRNA. For that, FLuc/RLuc ratios expressed from 

the pR_F, pR_HBB_F and pR_mTOR_F constructs (Figure IV.2C) in cells under 

DMSO or TG treatment, were also evaluated by dual luciferase assays as above. It is 

observed that relative MTOR IRES activity was significantly increased from 3.45-fold to 

6.81-fold in DMSO- versus TG-treated cells, respectively (Figure IV.7C). Together, 

these data show that IRES-driven translation of MTOR mRNA is stimulated by the ER 

stress-induced pro-apoptotic UPR. 

Next, it was investigated whether MTOR IRES is also stimulated by the anti-apoptotic 

phase of UPR. For that, a set of the above indicated transfected cells was treated with 

low concentrations of TG (0.25µM) or Vh (DMSO), tested for PARP cleavage and 

EIF2α phosphorylation as before. As demonstrated in Figure IV.7D, no increase of 

EIF2α phosphorylation and no cleaved PARP were observed. Instead, some cleaved 

PARP was detected at DMSO-treated cells, which may reflect the confluence of 

control cultured cells (Figure IV.7D). These results indicate that these conditions of 
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TG treatment triggered the anti-apoptotic phase of UPR. In this stage, the endogenous 

levels of MTOR protein were also maintained (Figure IV.7D). 

 

 

Figure IV.7. Relative MTOR IRES activity is enhanced by the unfolded 

protein response (UPR). HEK293T cells were transiently transfected with the 

dicistronic constructs pR_F, pR_HBB_F, pR_mTOR_F and pR_c-myc_F (Figure 

IV.2C) and treated 19 hours later with DMSO (Vh), 1µM-thapsigargin (TG) (A-C), or 
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0.25µM-TG (D-F) for 20 hours. (A) Phosphorylation of EIF2 by 1μM-TG treatment 

has no impact on endogenous MTOR protein levels. Western blot analysis of extracts 

from transfected and 1μM-TG treated HEK293T cells, using antibodies against MTOR, 

PARP, total and phosphorylated EIF2 (P-EIF2) proteins. The -tubulin specific 

antibody controls for protein loading. PARP cleavage demonstrates induction of pro-

apoptotic phase of UPR and EIF2α phosphorylation is demonstrated by increased P-

EIF2α/EIF2α ratio. (B) Cap-dependent translation decreases in 1μM-TG treated cells. 

In vivo cap-dependent translational assays were performed using the dual Renilla/Firefly 

luciferase (R/F) assay, in extracts from 1μM-TG treated HEK293T cells transfected 

with pR_c-myc_F plasmid. The values are shown as the luminescence (RLuc/FLuc) 

ratio, normalized to that of the pR_c-myc_F construct in control conditions (Vh), 

which was arbitrarily set to 100.  (C) Pro-apoptotic UPR with EIF2α phosphorylation 

increases relative MTOR IRES activity. Luminescence assays were performed using 

extracts from 1μM-TG-treated cells described in (A). The values (relative light units; 

RLU) are shown as the luminescence FLuc/RLuc ratio, normalized to that of the pR_F 

construct in each condition, arbitrarily set to 1. Data are presented as the means ± SD 

from three independent experiments. Statistical analysis was performed using Student’s 

t test (unpaired, two-tailed); (∗) p<0.05. (D) Treatment with 0.25μM-TG induces the 

anti-apoptotic UPR with unphosphorylated EIF2α. Western blot analysis of extracts 

from transfected and 0.25μM-TG treated HEK293T cells. Reversal of PARP cleavage 

demonstrates the anti-apoptotic output of UPR, in which the EIF2α/EIF2α ratio is 

unchanged. (E) In the anti-apoptotic UPR with unphosphorylated EIF2α, cap-

dependent translation is not inhibited. In vivo cap-dependent translational assays were 

performed in extracts from 0.25μM-TG-treated cells as in B. (F) The anti-apoptotic 

UPR with unphosphorylated EIF2α stimulates relative MTOR IRES activity. Extracts 

from 0.25μM-TG-treated HEK293T cells transfected with pR_F, pR_HBB_F and 

pR_mTOR_F constructs were used to measure luciferase activity by luminometry 

assays as in C. 

 

The effect of the anti-apoptotic outcome of ER stress on cap-dependent translation 

was quantified as above. The results indicated that cap-dependent translation is not 

affected by treatment with 0.25µM TG, which is in accordance with the absence of 

increased EIF2α phosphorylation (Figure IV.7D and E). Analysis of MTOR IRES activity 

was performed as previously described and demonstrated that, in the anti-apoptotic 

phase of UPR, relative MTOR IRES activity increased from 4.55-fold to 5.40-fold over 

the background (Figure IV.7F). However, comparing to the results obtained when cells 

are in the pro-apoptotic stage of UPR (Figure IV.7C versus IV.4F), the increase in 

MTOR IRES activity was less accentuated. Together these data show that relative 

MTOR IRES activity is enhanced by the anti-apoptotic outcome of UPR with 
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unphosphorylated EIF2α, but a more robust effect is observed in the pro-apoptotic 

phase with increased EIF2α phosphorylation. 

   

IV.1.7. MTOR IRES activity is stimulated by rapamycin-induced MTORC1 

inactivation 

A major function of MTORC1 is to regulate protein synthesis through phosphorylation 

of several substrates including S6Ks and the inhibitory 4EBPs (Blommaart et al., 1995; 

Hara et al., 1998). Based on these data, it was examined whether MTOR IRES-mediated 

translation is affected upon MTORC1 signaling inactivation by rapamycin treatment. 

For that, HEK293T cells were transiently transfected with the dicistronic DNA 

plasmids pR_F, pR_HBB_F, pR_mTOR_F and pR_c-myc_F plasmids (Figure IV.2C) 

and treated 14 hours later with 80nM rapamycin for no more than 6 hours, to prevent 

the confounding effects of MTORC2 inactivation as well (Sarbassov et al., 2006). In 

parallel, a similar set of control transfected cells was treated with vehicle (DMSO). 

MTORC1 inhibition was evaluated by the phosphorylation status of the downstream 

S6K1 effector. As seen in Figure IV.8A, rapamycin blocked canonical MTORC1-

dependent phosphorylation of S6K1 and, as expected, did not increase 

phosphorylation of EIF2 (Figure IV.8A; lower panels). As MYC translation is 

unchanged upon MTORC1 inactivation (Thoreen et al., 2012), the MYC IRES-containing 

dicistronic construct was used to quantify how much cap-dependent translation was 

compromised in these conditions. Results showed that cap-dependent translation 

efficiency was affected to some extent (Figure IV.8B), which is in accordance with 

previous results reporting that rapamycin only partially reduces cap-dependent 

translation (Choo et al., 2008). In these conditions, the dicistronic mRNAs translation 

was examined to assess MTOR IRES-mediated translation in rapamycin- versus DMSO-
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treated cells. The obtained results showed that rapamycin exposure significantly 

stimulated relative MTOR IRES activity (Figure IV.8C). As expected, the activity from 

the negative control remained unchanged (Figure IV.8C). Together these data 

demonstrate that relative MTOR IRES activity is stimulated by rapamycin-induced 

MTORC1 inactivation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.8. Relative MTOR IRES activity is stimulated by rapamycin-

induced MTORC1 inactivation. HEK293T cells were transiently transfected with 

the dicistronic constructs pR_F, pR_HBB_F, pR_mTOR_F and pR_c-myc_F (Figure 

IV.2C) and treated 14 hours later with 80nM-rapamycin (Rap) or equal volume of 

DMSO (Vh) for 6 hours. (A) MTORC1 inactivation by Rap treatment. Western blot 

analysis of transfected HEK293T cell extracts treated with 80nM-Rap, as indicated, 

using antibodies against total and phosphorylated p85 and p70 (P-p85 and P-p70) S6K 

proteins, as well as total and phosphorylated EIF2 (P-EIF2) proteins. The 

proliferating cell nuclear antigen (PCNA) specific antibody controls for protein loading. 

Inhibition of phosphorylation of p85 and p70 S6Ks demonstrates MTORC1 
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inactivation, and unphosphorylation of EIF2α is demonstrated by unchanged levels of 

total EIF2α and P-EIF2α proteins. (B) In conditions of MTORC1 inactivation and 

unphosphorylated EIF2α, cap-dependent translation decreases. In vivo cap-dependent 

translational assays were performed using the dual Renilla/Firefly luciferase (R/F) assay, 

in extracts from 80nM-Rap-treated HEK293T cells transfected with pR_c-myc_F 

plasmid. The values are shown as the luminescence (RLuc/FLuc) ratio, normalized to 

that of the pR_c-myc_F construct in control conditions (Vh), which was arbitrarily set 

to 100.  (C) Inactivation of MTORC1 with no EIF2α phosphorylation, increases relative 

MTOR IRES activity. Luminescence assays were performed using extracts from 80nM-

Rap-treated cells described in (A). The values (relative light units; RLU) are shown as 

the luminescence ratio between FLuc and RLuc, normalized to that of the pR_F 

construct in each condition, arbitrarily set to 1. Data are presented as the means ± SD 

from three independent experiments. Statistical analysis was performed using the 

Student’s t test (unpaired, two-tailed); (∗) p<0.05.  

 

IV.2. Colorectal cell malignization and metastization is accompanied by 

differential  increase in translation driven by different IRESs elements 

Deregulation of cap-dependent mRNA translation is critical for induction of colorectal 

cell transformation and metastization (She et al., 2010; Ye et al., 2013). Given the role 

of IRES-mediated translation on tumorigenesis, as previously mentioned, we wanted to 

test whether IRES-dependent translation varies between different colorectal cancer 

(CRC) stages. For that, the IRES-mediated translation driven by MTOR, MYC and 

EMCV IRESs in NCM460 cells (derived from normal intestinal mucosa), Sw480 cells 

(derived from a moderately differentiated adenocarcinoma of descending colon) and in 

the metastatic HCT116 cell line (derived from poorly differentiated colon cancer) was 

assessed. Those cell lines were transiently transfected with the dicistronic pR_F, 

pR_HBB_F, pR_mTOR_F, pR_c-myc_F and pR_EMCV_F (Figure IV.2C) and the F/R 

ratios were obtained as previously. Results demonstrated that the three IRESs are 

active in all the tested cell lines though at different degrees (Figure IV.9). The 

NCM460 cell line presents the lowest IRES activation level of the three IRESs, 

paralleling the levels observed in HCT116 cells for MYC and MTOR.  Both MYC and 

MTOR IRESs are more activate in the Sw480 cell line. On the other hand, EMCV IRES 
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is equally activated in NCM460 and Sw480 cells and is highly potentiated in HCT116 

cells (Figure IV.9). Together our results suggest that different IRES elements respond 

differently to colorectal cell malignant transformation and metastization. Whereas the 

activation level of the cellular MYC and MTOR IRESs seems to increase upon cellular 

malignization, a phenomenon that is reversed upon CRC metastization, the viral EMCV 

IRES presents the highest level at a metastatic CRC stage.    

 

 

Figure IV.9. The enhancement of IRES-mediated translation of cellular 

mRNAs induced by colorectal cell malignant transformation is reversed by 

metastization whereas EMCV IRES activity is only enhanced in a metastatic 

stage. NCM460, Sw480 and HCT116 cell lines were transiently transfected with the 

dicistronic constructs pR_F, pR_HBB_F, pR_mTOR_F, pR_c-myc_F and pR_EMCV_F 

(Figure IV.2C). Luciferase activity was measured 24 hours post-transfection. The 

values (relative light units; RLU) are shown as the luminescence ratio between Firefly 

luciferase (FLuc) and Renilla luciferase (RLuc), normalized to that of the empty 

construct, arbitrarily set to 1. Data are means ± standard deviation (SD) of at least 3 

independent experiments. Statistical analysis was performed using the Student’s t test 

(unpaired, two-tailed); (∗) p<0.05; (∗∗) p<0.01.  
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IV.3. IRES-dependent synthesis of Δ160P53 

 

IV.3.1. Expression of Δ160P53 isoform is translationally regulated upon 

stress conditions 

The Δ133P53 transcript, originated from the TP53 intragenic promoter, generates the 

Δ133P53 isoform and a 32 kDa-protein isoform, referred as Δ160P53. Given that this 

protein isoform results from mRNA translation initiation at codon 160 (Marcel et al., 

2010b), it was hypothesized that it is regulated by an IRES element. To assess that, 

first, the expression levels of Δ160P53 protein isoform in stress conditions were 

evaluated. For that, cell lines expressing endogenous P53 protein (human lung 

carcinoma A549 and HCT116 cells) as well as H1299, a human lung carcinoma P53-null 

cell line transiently transfected with a plasmid containing the cDNA for the Δ133P53 

transcript (Δ133); were treated with the ER stress-inducer TG (Thastrup et al., 1990; 

Wong et al., 1993). Full length and P53 isoforms were detected by Western Blot with 

P53-specific CM1 antibody, and α-tubulin was used as a loading control. As seen in 

Figure IV.10A, the hardly detectable endogenous levels of Δ160P53 protein in normal 

conditions were increased upon ER stress, in A549 and HCT116 cells. Furthermore, 

Δ160P53 protein expression from the Δ133P53 cDNA-containing plasmid was induced 

upon TG-triggered ER stress, in H1299 cells (Figure IV.10A). In order to test whether 

the induction of Δ160P53 was limited to ER stress A549, mouse embryonic fibroblast 

NIH3T3 and Δ133-transfected H1299 cell lines were subjected to another type of 

stimulus, cell confluency above 100% (over-confluency or O-C), and Δ160P53 protein 

levels were detected as previously mentioned. Figure IV.10B shows that the low 

endogenous levels of Δ160P53 protein observed in unstressed cells are increased by 

stress triggered by over-confluency, in A549 cells. Similarly, Δ160P53 protein 
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expression from the Δ133P53 cDNA-containing plasmid is increased by O-C–induced 

stress, in H1299 cells. Unstressed NIH3T3 cells did not express neither Δ133P53 nor 

Δ160P53 protein isoforms, but over-confluency induces a ~32kDa-protein and 

comparison with the protein isoforms expressed in H1299 transfected with a plasmid 

carrying the cDNA for wild-type Δ133P53 transcript or containing a substitution from 

methionine to alanine at codons 133 (M133A Δ133), revealed that this protein 

corresponds to the Δ160P53 isoform. Interestingly, in overconfluent NIH3T3 cells, the 

protein levels of Δ160P53 were even greater than those of P53 (Figure IV.10B). These 

data show that induction of Δ160P53 protein isoform is not exclusively triggered by ER 

stress, and extends to cellular over-confluency–triggered stress. Next, it was tested 

whether the induction of Δ160P53 resulted from increased protein production or 

decreased protein degradation. First, the P53-null cell line H1299 was transiently 

transfected with the aforementioned plasmid containing the cDNA for wild-type 

Δ133P53 transcript or containing a substitution from methionine to alanine at codons 

133 (M133A Δ133) or 160 (M160A Δ133), respectively; and the protein levels of each 

isoform was analyzed. Results showed that mutating the initiation start site at codon 

160 abolished Δ160P53 expression whereas mutating AUG133 actually increased 

Δ160P53 levels (Figure IV.10C). The fact that Δ160P53 protein isoform is produced 

even when Δ133P53 is not expressed means that the observed induction of this 

protein results from post-transcriptional regulation. In order to check whether this 

event relies on augmented mRNA translation or protein stability, Δ133P53-transfected 

H1299 cells were treated with cyclohexamide (CHX), a translation elongation inhibitor 

(Obrig et al., 1971) or carbobenzoxy-Leu-Leu-leucinal (MG132), a proteasome 

inhibitor (reviewed in Lee and Goldberg, 1998), alone or in combination with 

tunicamycin (TU), a ER-stress inducer (Brandish et al., 1996; HEIFetz et al., 1979; 
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Keller et al., 1979). Results demonstrated that Δ160P53 protein was induced by TU 

treatment when protein degradation was impaired and that this induction was similar 

to the observed when cells were only treated with the ER stress-activating drug. On 

the other hand, CHX treatment reversed the TU-triggered Δ160P53 induction (Figure 

IV.10D). Together these data demonstrate that Δ160P53 expression is induced by 

cellular stress conditions through increased mRNA translation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV.10. Δ160P53 protein isoform is induced upon stress conditions, 

through a translational regulatory mechanism. (A) Δ160P53 protein 

expression is induced by Endoplasmic Reticulum (ER) stress. A549 and HCT116 cells 

were treated with 1μM Thapsigargin (TG) or DMSO vehicle (Vh) for 20 hours; and 

H1299 cells were transiently transfected with a plasmid containing the cDNA for the 
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wild-type Δ133P53 transcript (Δ133) for 19 hours and treated with 1µM Thapsigargin 

(TG) during 20 hours. Western blot analysis of extracts of A549, HCT116 and 

transfected H1299, using antibody CM-1 for detection of P53 and against human -

tubulin, for control of protein loading, is shown. Molecular weight markers (M) were 

used to confirm the identity of the isoforms. (B) Δ160P53 protein expression is 

induced by over-confluency (O-C). A549 and NIH3T3 untransfected cells, and H1299 

cells transiently transfected with a plasmid containing the cDNA for the wild-type 

Δ133P53 transcript, were grown during 2-10 days to achieve O-C or collected at a 

density of 300cells/mL (normal cell density). To confirm the identity of the isoforms, 

H1299 cells were transiently transfected with a plasmid containing the cDNA for the 

wild-type Δ133P53 transcript or containing a substitution from methionine to alanine 

at codons 133 (M133A Δ133) (right panel). Western Blot analysis of the 

correspondent extracts, performed as in A., is shown. (C) A post-transcriptional event 

is responsible for Δ160P53 protein induction. H1299 cells were transiently transfected 

with a plasmid containing the cDNA for the wild-type Δ133P53 transcript or 

containing a substitution from methionine to alanine at codons 133 (M133A Δ133) or 

160 (M160A Δ133). Western Blot analysis of the correspondent extracts, performed 

as in A, is shown. (D) Δ160P53 protein induction is a result of increased protein 

synthesis. H1299 cells were transiently transfected with a plasmid containing the 

cDNA for the wild-type Δ133P53 transcript (Δ133) for 24 hours and treated with 

12µM Tunicamycin (TU) or DMSO vehicle (Vh), alone or in combination with 10µg/mL 

cyclohexamide (CHX) or 25µM MG132 for 2 hours. The correspondent extracts were 

analyzed by Western Blot as in A.  

 

IV.3.2. Δ160P53 isoform is produced by cap-independent translation 

through a coding region located-IRES element, whose activity is 

stimulated by ER stress and is inhibited by its 5´UTR  

The fact that Δ160P53 protein isoform is a result of internal initiation at codon 160 

(Marcel et al., 2010b), in combination with the previous findings demonstrating that its 

expression increases through a translational event, in stress conditions in which overall 

protein synthesis is reduced (Figure IV.7; Wong et al., 1993), might indicate that an 

IRES element is driving Δ160P53 protein production. To assess that, a dicistronic DNA 

reporter containing enhanced green fluorescent protein (EGFP) ORF as the first 

cistron and Δ160P53 coding region as the second cistron was used. The same hairpin 

used in the previous described pR_F dicistronic reporter was cloned downstream of 

EGFP, originating the pE_160_ORF construct. The region from -78-nt to Δ160P53 
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ATG was considered as its putative 5´UTR and was cloned upstream of Δ160P53 

coding region, originating the pE_5´160_ORF reporter (Figure IV.11A). H1299 cells 

were transfected with the abovementioned dicistronic constructs and treated with TG. 

Δ160P53 protein isoform expression was analyzed as previously. As seen in Figure 

IV.11B, Δ160P53 protein expressed either from the 5´UTR-containing or the 

5´UTRless dicistronic plasmids was induced by TG treatment. Surprisingly, the protein 

levels of Δ160P53 expressed from the 5´UTRless construct were higher than that of 

Δ160P53 5´UTR-containing reporter plasmid (Figure IV.11B). These data indicate that 

Δ160P53 is cap-independent translated through an IRES element located downstream 

of AUG160 and that its 5´UTR is inhibitory.  

 

 

Figure IV.11. An IRES element within Δ160P53 coding region supports its 

translation, in a dicistronic reporter DNA construct with impaired 

reinitiation, and its putative 5´UTR is inhibitory. (A) Scheme depicting the 

dicistronic constructs pE_ 160_ORF and pE_ 5’160_ORF. A stable hairpin was cloned 

downstream of the Enhanced Green Fluorescent Protein (EGFP) open reading frame 

(ORF) (EGFP box) and upstream of Δ160P53 coding region (Δ160P53 box) alone or 

preceded by its putative 5´UTR (nucleotide -78 to – 1, in which + 1 is the A from 

Δ160P53 ATG), to create pE_ 160_ORF and pE_ 5’160_ORF constructs, 

respectively. The dicistronic transcriptional units are under the control of SV40 

promoter. (B) Western blot analysis of extracts of H1299 cells transiently transfected 

with plasmids depicted in A and treated, 19 hours later, with 1µM Thapsigargin (TG) 

or DMSO (Vh) for 20 hours, using antibody CM1 for detection of P53 and -tubulin 

for control of protein loading.   

 

A more detailed study of this IRES element was performed using the previously 

described pR/F dicistronic DNA reporter. The HBB 5´UTR was used as a negative 

control for IRES activity (Lockard and Lane, 1978) and the positive control was the 
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MYC IRES (Stoneley et al., 1998), as previously. The DNA regions including Δ160P53 

coding region until nt 432 alone or proceeded by its putative 5´UTR, as well as the 

Δ160P53 coding region until nucleotide 258 were cloned upstream of FLuc, originating 

pR_Δ160nt432_F, pR_ 5´Δ160nt432_F and pR_ Δ160nt258_F respectively (Figure 

IV.12A). H1299 and HCT116 cells were transiently transfected with the 

aforementioned plasmids, luciferase activity was measured and the ratio between FLuc 

and RLuc was compared to that of the empty constructs.  The results showed that 

Δ160P53 coding region induces cap-independent production of FLuc in both cell lines, 

to a similar extent. Inclusion of the 5´UTR abolished IRES-mediated synthesis of 

Δ160P53 in both cell lines (Figure IV.12B). The minimal RNA length used that turned 

out positive for IRES activity was 432 nts from AUG160, as the Δ160P53 coding 

sequence until nt 258 was negative for IRES activity (Figure IV.12C).  

In order to test whether Δ160P53 IRES element was responsive to ER stress also in 

this system, A549 cells transfected with pR_Δ160nt432_F, pR_ 5´Δ160nt432_F and 

the control plasmids, were treated with TG and the respective luciferase activities 

were evaluated by dual luciferase assays. The relative luciferase activity of each 

construct was compared to that obtained from the empty pR_F construct at the 

corresponding condition. Results showed that Δ160P53 IRES element is boosted from 

1.47-fold to 2.32-fold over background in Vh versus TG-treated cells. Furthermore, a 

stimulatory effect of TG-treatment was also observed when the Δ160P53 5´UTR was 

present (Figure IV.13A).  Together, these data demonstrate that synthesis of Δ160P53 

is mediated by a coding region located-IRES element whose activity is inhibited by its 

5´UTR and stimulated by ER stress.  
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Figure IV.12. Δ160P53 coding region until nucleotide 432 induces Firefly 

luciferase activity in a dicistronic reporter DNA construct with impaired 

reinitiation and its putative 5´UTR abolishes this induction. (A) Scheme 

depicting the dicistronic constructs pR_F , pR_HBB_F, pR_c-myc_F, pR_160nt432_F, 

pR_5´160432_F and pR_ Δ160nt258_F. The 5’ untranslated region (5’UTR) of HBB, 
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the human MYC IRES element and the Δ160P53 coding region until nt 432 alone or 

proceeded by its putative 5´UTR, as well as the Δ160P53 coding region until 

nucleotide 258, were cloned upstream of FLuc into the pR_F vector, downstream of 

the RLuc ORF (RLuc Box) and of a stable hairpin structure, but upstream of the FLuc 

ORF (FLuc box), to create pR_HBB_F, pR_c-myc_F, pR_160nt432_F, 

pR_5´160432_F and pR_ Δ160nt258_F constructs, respectively. The dicistronic 

transcriptional units are under the control of SV40 promoter. (B) Δ160P53 coding 

region until nucleotide 432 induces FLuc activity which is inhibited by its putative 

5´UTR. H1299 and HCT 116 cells were transiently transfected with the dicistronic 

constructs pR_F, pR_HBB_F, pR_c-myc_F, pR_160nt432_F and pR_5´160432_F, 

depicted in A, and luciferase activity was measured 24 hours post-transfection. The 

values (relative light units; RLU) are shown as the luminescence ratio between FLuc 

and RLuc, normalized to that of the empty construct, arbitrarily set to 1. Data are 

presented below each graph as the means ± standard deviation (SD) of at least 3 

independent experiments. Statistical analysis was performed using the Student’s t test 

(unpaired, two-tailed); (∗) p<0.05. (C) Δ160P53 coding region until nucleotide 258 

does not induce FLuc activity. H1299 cells were transiently transfected with the 

dicistronic plasmids pR_F and pR_ Δ160nt258_F depicted in (A) and luciferase activity 

was measured as in (B).  

 

Figure IV.13. Δ160P53 IRES is stimulated by endoplasmic reticulum stress 

in a pR/F system with impaired reinitiation. A549 cells were transiently 

transfected with dicistronic constructs pR_F, pR_HBB_F, pR_c-myc_F, 

pR_160nt432_F and pR_5´160432_F depicted in Figure IV.12A and treated 19 

hours later with DMSO (Vh) or1µM-thapsigargin (TG) for 20 hours. (A) Δ160P53-

driven Firefly luciferase (FLuc) activity is induced by ER stress. Luminescence assays 

were performed using extracts from A549 transfected cells.  The values (relative light 

units; RLU) are shown as the luminescence FLuc/RLuc ratio, normalized to that of the 
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pR_F construct at each condition, arbitrarily set to 1. Data are presented as the means 

± SD from three independent experiments. Statistical analysis was performed using 

Student’s t test (unpaired, two-tailed); (∗) p<0.05. (B) 1μM-TG treatment increases 

EIF2α phosphorylation. Western blot analysis of extracts of A549 cells transfected 

with pR_160nt432_F construct and treated with DMSO (Vh) or 1µM-thapsigargin 

(TG), using antibodies against total and phosphorylated EIF2α (P-EIF2α) proteins and 

against human -tubulin, for protein loading control. 

 

IV.3.3. Increased EIF2α phosphorylation accounts for the induction of 

IRES-driven production of Δ160P53 upon ER stress 

Increase of EIF2α phosphorylation is one of the cellular responses to ER stress 

(Harding et al., 1999; Harding et al., 2000a) and this condition has been associated with 

stimulation of activity of some IRESs, such as MTOR as previously shown. Accordingly, 

it was assessed whether increased phosphorylation levels of EIF2α might be accounting 

for the Δ160P53 IRES induction observed upon ER stress. For that, extracts from TG- 

treated A549 cells transfected with pR_Δ160nt432_F that assayed positive for Δ160 

IRES activity (Figure IV.13A), were analyzed by Western Blot with antibodies against 

EIF2α total and phosphorylated (EIF2α) proteins. Results demonstrated that TG-

treatment that stimulated Δ160p53 IRES activity also augmented phosphorylation of 

the EIF2 α-subunit (Figure IV.13B). These data indicate that induction of IRES-driven 

synthesis of Δ160P53 correlates with an increase of EIF2α phosphorylation, suggesting 

that the latter event is responsible for the stimulatory effect observed upon ER stress 

conditions on Δ160P53 IRES activity.    
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V. DISCUSSION AND CONCLUSIONS 

 

V.1. Dicistronic DNA reporter – a tool to assay for IRES activity  

Dicistronic DNA reporter systems are powerful tools to test IRES activity of a given 

sequence. The first cistron serves as an internal normalizer, since it allows corrections 

of transfection efficiencies. And, more importantly, it constitutes a “barrier” for 

ribosomes recruited to the mRNA in a cap-dependent manner, especially when 

followed by structured RNA sequences that prevent ribosome reinitiation events. The 

used dicistronic reporter harbors a stable hairpin downstream of RLuc, the first 

cistron. Here, it is demonstrated that this hairpin efficiently inhibits ribosome scanning, 

as previously shown (Figure IV.2B; Candeias et al., 2006). Furthermore, one additional 

stop codon is located downstream of RLuc of the dicistronic DNA plasmid, in order to 

prevent ribosome read-through. The AUG position relative to the IRES element might 

be important for internal translation initiation, considering that some IRESs directly 

recruit the translational apparatus to the initiation codon (eg., Kaminski et al., 1990), in 

addition to the fact that the overall RNA secondary structure of some IRESs elements 

displays an important role for translational machinery assembly (Jang and Jan, 2010; 

Serrano et al., 2009), whereas other IRESs have independent sequence modules 

coordinating ribosome recruitment (Jopling et al., 2004). Accordingly, the IRESs (and 

control) sequences were cloned immediately upstream of FLuc in a way that the IRES 

initiator is located at his native position (Figure IV.2B). One exception was applied for 

the putative IRES for Δ160p53, as it was anticipated that Δ160p53 coding region could 

play a role for the activity of this cis-regulatory element (as latter confirmed).  

Expression of the second cistron from a dicistronic DNA plasmid might arise also from 

IRES-independent events, such as splicing activation or cryptic promoter activity of the 
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sequence under study. The presence of a splice acceptor site within the intercistronic 

region might elicit production of aberrantly spliced transcripts carrying FLuc ORF that 

is translated in a cap-dependent manner. Appendix 1 shows an example of how cryptic 

splicing events at the dicistronic R/F reporter may generate false-positive results. 

Insertion of a putative adenomatous polyposis coli (APC) IRES sequence (Goss et al., 

2002) in the intercistronic region of pR/F plasmid highly increased FLuc activity (193-

fold over background) (Figure VII.1), that was reduced by a stable hairpin upstream of 

RLuc (Figure VII.3), indicating that FLuc expression was somewhat cap-dependent. 

RNA integrity control by RT-PCR and sequencing, revealed a splice acceptor site 

within APC sequence eliciting production of a single aberrantly spliced mRNA (Figure 

VII.4) or both unspliced and spliced transcripts (Figure VII.5), according to the 

location of the splice donor site within RLuc ORF. One of the spliced transcripts 

encoded an RLuc-FLuc fusion protein, in which RLuc was C-terminally deleted, 

explaining the observed decrease of RLuc activity promoted by the APC sequence 

(Figure VII.2), while FLuc protein was intact. Accordingly, the high FLuc levels 

observed were due to cap- rather than IRES-dependent translation. A silent mutation 

at RLuc splice donor site abolished the aforementioned splicing event but generated 

other aberrantly spliced transcripts, in conjunction with the unspliced mRNA (Figure 

VII.4). These findings highlight the importance of discarding false positive results that 

might arise from cryptic splicing activation. Furthermore, it demonstrates that our 

approach accurately identifies cryptic splicing events. It is worth emphasizing that Goss 

et al. used two unrelated approaches to study APC IRES activity. Accordingly, one 

cannot exclude that the putative APC IRES is a “true” IRES (Goss et al., 2002).  

FLuc might be also expressed in an IRES-independent manner if the DNA sequence in 

the intercistronic region of pR/F displays cryptic promoter activity, generating a 
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monocistronic transcript encoding FLuc protein that co-exist with the full-length 

transcript.  A strategy to rule out cryptic promoter events is to assess FLuc expression 

from promoterless reporter vectors. If FLuc expression remains unchanged upon 

promoter removal, the sequence placed between the cistrons has cryptic promoter 

rather than IRES activity, as it occurs for MLH1 5´UTR (Figure IV.4). On the other 

hand, if FLuc expression is reduced to background levels, one can discard cryptic 

promoter activity of the sequence under study, as it occurs for MTOR 5´UTR-driven 

FLuc production (Figure IV.4C, D). Interestingly, transfection of promoterless plasmids 

in HEK293T cells originates some expression of RLuc (Figure IV.4B). Our pR/F 

plasmid is based on the phRL-SV40 Vector (Promega), and a study showed that this 

plasmid might be transcribed from non-SV40 promoter plasmid regions. This study 

further showed that pBS, a promoterless cloning plasmid vector, and pEGFP-C1 vector 

also harbor spurious transcription, demonstrating that this event is not restricted to 

phRL-SV40 vector (Nejepinska et al., 2012).  Those findings might explain why RLuc is 

expressed from the promoterless plasmids in the present study. Nevertheless, it 

remains to be clarified why this spurious transcription only occurs in HEK293T cells.  

One may speculate that differences in expression of transcription factors regulating 

this non-SV40-triggered transcription in HEK293T comparing to HeLa and A549 cells, 

might account for these observations. As this spurious transcription originates 

transcripts encoding also RLuc protein, which is our internal normalizer, it will not 

affect the IRES outcome of the sequences under study. Furthermore, in this study, 

FLuc activity driven by HBB 5´UTR (negative control for IRES activity) was measured in 

parallel, in order to check if a non-IRES related event was affecting the measurement 

outcome.    
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Cryptic promoter activity of FLuc ORF has been reported (Vopalensky et al., 2008); in 

addition, removal of SV40 promoter from the empty construct diminishes FLuc 

expression (Figure IV.4B). Accordingly, in our system, FLuc protein expressed by the 

empty plasmid is also being produced by an event occurring at the dicistronic mRNA 

itself. This event might be ribosome reinitiation or read-through. It is considered that 

ribosome reinitiation is an improbable event in the used system because: (i) ribosome 

reinitiation after a long uORF is highly inefficient (Kozak, 2001; Luukkonen et al., 1995), 

since post-terminating ribosomes must carry some initiation factors to effectively 

reinitiate (Poyry, 2004; Szamecz et al., 2008)); (ii) a stable hairpin that reduces RLuc 

expression by about 60% (Figure IV.2B), was introduced downstream of RLuc ORF. It 

has been reported that reinitiation after translation of a 55-codon uORF, which is far 

shorter than the 312-codon RLuc ORF of the used DNA reporter system, is 

completely inhibited (Luukkonen et al., 1995). Even if some EIFs-carrying ribosomes 

were able to remain attached to the mRNA after RLuc translation, downstream 

scanning will be impaired by the stem-loop hairpin. Accordingly, although an additional 

stop codon is located downstream of RLuc ORF, it is considered that the most 

probable event contributing to FLuc expression deriving from the empty vector 

(besides its cryptic promoter activity) is read-through. Therefore, in HEK293T cells, 

taking into account that some dicistronic transcripts are still produced, even when 

SV40 promoter is removed, FLuc expression deriving from the empty construct 

reflects not only spurious transcription at FLuc, but also some ribosome read-through 

at the remaining mRNAs. Note that these considerations are referring to residual 

values of FLuc expression (deriving from the empty DNA dicistronic plasmid) and that 

the events occurring at this reporter plasmid (which is our normalizer) are the same 

observed for the dicistronic plasmid containing the putative IRES. Bearing in mind that 
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a plasmid carrying a negative control sequence is also subjected to the same events, 

those limitations will produce little (if any) effect in the obtained results. To my 

knowledge, it is difficult to have a perfect system.   

FLuc expression deriving from a transfected dicistronic RNA reporter unequivocally 

discards cryptic promoter activity in the sequence under study. However, some 

cellular IRESs require the so-called “nuclear experience” that might be important for 

assembly of ITAFs (Semler and Waterman, 2008) or mRNA modifications such as 

pseudouridylation (Ge and Yu, 2013) and methylation (Zheng et al., 2013). A negative 

result for a putative IRES by directly transfecting RNA into the cytoplasm might arise 

from a nuclear event-dependency only. Accordingly, it is considered that RNA 

transfection must only be performed as a complementary approach to rule out cryptic 

promoter activity, unless DNA-based methods turn out to be unfeasible.  

 

V.2. MTOR 

MTOR protein kinase regulates cell growth, proliferation, autophagy, cell cycle 

progression and autophagy, acting as a master switch between anabolic and catabolic 

processes (reviewed in Laplante and Sabatini, 2012). Regulation and function of 

MTORC1 and MTORC2 signalling are subject to extensive studies, however little is 

known about MTOR protein expression regulation itself.  

To cope with stress conditions, cells reduce energy consumption, by inhibiting overall 

mRNA translation, and direct efforts towards synthesis of stress-responsive proteins. 

Indeed, this is achieved namely by inactivating MTORC1 signals (reviewed in Sengupta 

et al., 2010). The reversibility of this inactivation is demonstrated by the fact that 

amino acids replenishment restores p70 S6 kinase activity of amino acid-starved cells 

(Hara et al., 1998). Thus, it is expected that MTOR protein expression itself is not 
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greatly reduced by global translational inhibitory conditions, in order to let cells bypass 

the adverse condition and efficiently resume its translational ability by re-activating 

MTORC1 signaling. In the present work, it is demonstrated that the human MTOR 

transcript harbors an IRES element and that the IRES-driven translation of MTOR 

mRNA is stimulated in stress conditions with reduced mRNA translation, but 

maintenance of MTOR protein levels. 

 

V.2.1. MTOR 5´UTR has IRES-like features 

Cross-species sequence conservation might be an indication of a regulatory function. 

Conservation studies show that although different species have MTOR 5´UTRs with 

different lengths (Figure IV.1A), a degree of conservation is observed. The sequence 

from nt -76 to -69 might play a regulatory role as it displays high similarity among all 

the analyzed 5´UTRs. Furthermore, the cross-species conservation of the nucleotides 

immediately upstream of the translational start site goes beyond the Kozak consensus 

sequence (Kozak, 1984, 1986a, 1987a), since it encompasses nucleotides -30 to -1 

(Figure IV.1A). Secondary structure prediction suggested that the human MTOR 

5´UTR harbors a 5´end stem-loop, SL I, (Figure IV.1B) and it has been reported that a 

secondary structure located nearby the 5´ terminal cap inhibits cap-translation by 

limiting mRNA accessibility for preinitiation complex assembly (Kozak, 1989b). On the 

other hand, a stem loop located in this position is important for the activity of namely 

the bovine viral diarrhea virus IRES element (Yu et al., 2000).  In addition, it has been 

reported that IRES-containing mRNAs harbors longer 5´UTRs than non-IRES 

containing transcripts (reviewed in Baird, 2006) and MTOR 5´UTR is longer than the 

average.  
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The presence of elements within MTOR 5´UTR that usually represses cap-dependent 

translation and are involved in IRES-dependent translation is a good indicator of 

regulation of MTOR expression through internal initiation.  

 

V.2.1.1. Does MTOR transcript have a real IRES? 

The existence of an IRES element within MTOR 5’UTR is supported by the fact that it 

induces FLuc activity from a pR/F system expressed in three different cell lines (Figure 

IV.2). FLuc activity mediated by MTOR 5’UTR is neither a result of aberrantly spliced 

mRNAs (Figure IV.3), nor of cryptic promoter activity in the MTOR 5’UTR as 

demonstrated by the effect observed upon removal of SV40 promoter and by 

transfection of in vitro transcribed reporter RNAs (Figures IV.4 and IV.5). 

As stated before, the expression of the second cistron from a dicistronic DNA plasmid 

may occur by a non-IRES event, such as splicing activation or cryptic promoter activity.  

Only a full-length unspliced dicistronic mRNA was originated by the pR_mTOR_F 

plasmid (Figure IV.3) demonstrating that splicing activation is not responsible for the 

observed FLuc induction. Removal of SV40 promoter from the pR_mTOR_F plasmid 

reduced MTOR 5´UTR-driven FLuc activity to background levels in HeLa and A549 

cells (Figure IV.4 C,D). In HEK293T, the limitations of spurious transcription activation 

at non-SV40 promoter regions, makes evaluation of cryptic promoter activity of MTOR 

5´UTR more challenging. MTOR 5´UTR-driven FLuc production is marginally reduced 

when SV40 promoter is removed (Figure IV.4B). Although, upon SV40 removal, RLuc 

is also reduced in a less extent in HEK293T cells when compared to the observed in 

other cell lines (Figure IV.4). It is reasoned that if FLuc induction occurred by cryptic 

promoter activity of MTOR 5´UTR, removal of SV40 promoter would had no effect on 

FLuc, as it occurs with MLH1 5´ UTR-driven FLuc (which contains a promoter). 
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Indeed, FLuc activity is reduced by SV40 removal (Figure IV.4B), to a similar extent 

than the observed in the empty plasmid (Figure IV.4A), discarding a false positive 

result arising from cryptic promoter activity at MTOR 5´UTR. Furthermore, translation 

of a monocistronic transcript deriving from spurious transcription at MTOR 5´UTR 

would be reduced by cap-mediated translational inhibitory conditions. In opposition to 

that, MTOR-driven FLuc activity is stimulated by ER stress, hypoxia and rapamycin 

treatment, with associated reduction of RLuc translation (Figures IV.6- IV.7). The fact 

that MTOR 5´UTR-driven FLuc induction is also observed upon RNA transfection 

(Figure IV.5) further confirms that cryptic promoter activity of MTOR 5´UTR is not 

responsible for FLuc induction. On the other hand, a higher rate of ribosome read-

through or increased efficiency of translation reinitiation at FLuc AUG in the MTOR-

containing transcript comparing to the empty counterpart could also explain the 

observed results. It has been demonstrated that the nucleotides surrounding the stop 

codon play a role in termination efficiency (Brown et al., 1990; Cassan and Rousset, 

2001; Tate et al., 1996). Moreover, the nucleotide immediately upstream of the stop 

codon determines read-through efficiency (Cassan and Rousset, 2001. The nucleotide 

context of the MTOR 5´UTR-containing plasmid is equal to the empty plasmid. Both 

have an additional stop codon and a stable hairpin downstream of the RLuc ORF. 

Hence, differences in read-through events between the empty and MTOR 5´UTR-

containing transcripts are highly improbable.  

As previously stated, ribosome reinitiation at FLuc AUG is improbable due to RLuc 

ORF length and constraints of the stable hairpin located in the intercistronic space. 

Nevertheless, assuming that a few subsets of ribosomes are able to retain some EIFs 

during RLuc translation and overcome the scanning inhibitory effect caused by the 

stem-loop hairpin, a decrease on the availability of functional TCs due to increased 
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phosphorylation of EIF2α would reduce translation reinitiation efficiency or, since the 

intercistronic region is relatively long, would have no effect. On the contrary, a 

stimulation of MTOR 5´UTR-driven FLuc activity is observed in conditions with 

associated EIF2α phosphorylation (Figures IV.6 and IV.7).  The existence of a uORF in 

the intercistronic region that fails to be translated under stress conditions, leading to 

enhanced reinitiation of FLuc when TCs are low, could explain these observations. 

This would imply that, under stress conditions with low functional TCs, the ribosome, 

after translating a long uORF, would bypass a given uORF in the intercistronic region 

and reinitiate at FLuc AUG, liberating the uORF-mediated repression of FLuc 

translation reinitiation. However, this would not explain why FLuc expression is 

induced by MTOR 5´UTR under unstressed conditions. As observed for ATF4 (Vattem 

and Wek, 2004) and other examples not mentioned in this thesis, uORFs with different 

lengths, located at different positions relative to downstream ORF AUG or upstream 

ORF stop codon might determine main ORF expression in several different ways, both 

under unstressed and stress conditions. Nevertheless, the inhibitory effect of a hairpin 

on translation reinitiation is dual: it inhibits ribosome scanning (and reinitiation is 

dependent on scanning) and, if a uORF is being translated, it pauses translation 

elongation which leads to dissociation of EIFs (Kozak, 1986b, 2001).  On the other 

hand, the pausing of a scanning ribosome could grant more time to the re-acquisition 

of TCs. However, this effect would also result in translation reinitiation at FLuc AUG 

at the empty and HBB–containing transcripts, which is not observed. Accordingly, 

translation reinitiation at FLuc AUG in the MTOR 5´UTR-containing transcript is 

unlikely to occur. Hence, it is considered that the observed MTOR 5´UTR-driven FLuc 

activity is neither a result of an RLuc translation-dependent event, nor splicing 
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activation or even due to production of aberrant monocistronic transcripts due to 

cryptic promoter activity at MTOR 5´UTR. 

Here it is shown that MTOR IRES activity varies between different cell lines and the 

same effect is observed for the cellular and viral IRESs controls. The present data show 

that the activity of MYC IRES is greater in HeLa than in HEK293T cells, which is in 

accordance with previous reports (Stoneley et al, 2000b). However, a greater 

activation of EMCV IRES in HeLa than in HEK293T cells is observed, while Creancier 

et al. (2001) reported the opposite (Creancier et al., 2001). These discrepancies might 

be due to different features of the pR/F system used in both studies: in this study, a 

stable hairpin was inserted downstream of RLuc cistron into the empty, negative 

control and IRES-containing reporters in order to have similar levels of translation 

reinitiation inhibition in all constructs; on the contrary, Creancier et al. (2001) 

introduced an hairpin only in the empty construct (Creancier et al., 2001). This and 

other differences in the characteristics of the used dicistronic reporter systems might 

be responsible for the different results.   

Comparing the activity of MTOR IRES with that from the positive controls IRESs used, 

it is observed that in HEK293T cells, its activity is similar to that observed from MYC 

IRES and greater than that from EMCV IRES element (Figure IV.2); in addition, it has 

been demonstrated that MYC IRES is just 3-fold less active than its cap-dependent 

translation (Stoneley et al., 2000b). These results suggest that MTOR IRES activity is 

robust and might account for the maintenance of MTOR protein levels under stress 

conditions with associated overall protein synthesis inhibition.  

Like cap-dependent translation, IRES-mediated translation requires a battery of 

proteins for effective recruitment of the translational machinery that might include 

canonical initiation factors and/or ITAFs. The presented data indicate that MTOR IRES 
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activity is neither dependent on functional ternary complexes, as it is resistant to an 

increase of EIF2α phosphorylation, nor on EIF4F complexes, since it is still functional 

when correct formation of EIF4F complexes is disrupted by inactivation of MTORC1 

signaling. The phosphorylation state of 4EBP1 was not addressed in this study and it 

has been demonstrated that 4EBP1 might regain its phosphorylation upon prolonged 

treatment with rapamycin (Choo et al., 2008). Nevertheless, in this study, cells were 

exposed to this macrolide only for 6 hours (Figure IV.8). The fact that, 4EBP1 

phosphorylation might be only moderately decreased upon rapamycin treatment 

(Thoreen et al., 2009) in combination with the fact that this MTORC1-phosphorylation 

target is the master effector of MTORC1 signalling in the regulation of protein 

synthesis (Hsieh et al., 2012; Thoreen et al., 2012), might explain why treatment with 

rapamycin only had a little effect on protein synthesis (Figure IV.8). Nevertheless, if 

IRES-driven translation of MTOR required functional EIF4F complexes, even a slight 

change in the 4EBP1 phosphorylation levels would have a negative effect on its activity, 

which is not observed. In addition, S6K1 is known to phosphorylate PDCD4, inducing 

its degradation (Dorrello et al., 2006). PDCD4 inhibits EIF4A-EIF4G interaction (Yang 

et al., 2003), further suggesting that MTOR IRES activity is independent of EIF4F 

complexes and, consequently, of ribosomal scanning. The RNA helicase activity of 

EIF4A is particularly important for scanning of highly structured 5’UTRs (Svitkin et al., 

2001). Furthermore, the role of S6K1 on EIF4A also relies on its ability to 

phosphorylate EIF4B (Raught et al., 2004; Shahbazian et al., 2006), that stimulates the 

RNA helicase activity of EIF4A  (Abramson et al., 1988; Lindqvist et al., 2008; Rogers et 

al., 1999, 2001). Actually, conditions with low ternary complex and EIF4F levels 

stimulated MTOR IRES activity (Figures IV.6- IV.8), suggesting that the competitive 
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fitness of MTOR transcript for binding the translational machinery is potentiated in 

comparison to the cap-dependent translated mRNAs.  

It has been suggested that the intracellular concentration of ITAFs plays a role in 

modulating IRES activity (reviewed in Lewis and Holcik, 2007), which might also 

account for the stimulatory effect triggered by the stress conditions used in this study. 

Furthermore, it can explain the different levels of activation of MTOR IRES obtained 

across the three cell lines. Many ITAFs shuttle between the nucleus and the cytoplasm 

(Michael et al., 1997; reviewed in Piñol-Roma, 1997); in addition, it has been suggested 

that the experience of different subcellular compartments (nuclear and cytoplasmatic) 

of IRES-containing mRNAs determines the assembly of different ITAFs to the mRNP 

(reviewed in Lewis and Holcik, 2007). Based on these data, transfection of reporter 

RNAs was performed, showing that MTOR IRES activity is not dependent on a nuclear 

event, but might be stimulated by it, since the levels of MTOR IRES activation obtained 

in the RNA transfection assays are lower than those observed when cells were 

transfected with the reporter DNA constructs. One might speculate that the MTOR 

mRNP is composed of predominantly cytoplasmatic ITAFs but the assembly of a 

nuclear protein or a protein that shuttles to the nucleus might be beneficial. 

Furthermore, the cytoplasmatic redistribution of MTOR ITAFs upon CoCl2-induced 

hypoxia, TG-triggered ER stress or rapamycin-driven MTORC1 inactivation might also 

account for the observed MTOR IRES stimulation.  A similar event occurs for  BAG1 

IRES-driven translation that is sustained in chemotoxic stress due to cytoplasmatic 

relocalization of the BAG1 ITAFs PTB and PCBP1 (Dobbyn et al., 2008).  
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V.2.2. MTOR IRES is stimulated by stress conditions 

Hypoxic and ER stress conditions orchestrate a series of signals that decrease protein 

translation and initiate a translational reprogramming (Arsham, 2003; Harding et al., 

1999; Harding et al., 2000a, 2000b; Koritzinsky et al., 2006, 2007; Koumenis et al., 

2002; Liu et al., 2006). One mechanism by which hypoxia reduces protein synthesis is 

through activation of the UPR branch triggered by PERK stimulation (Koritzinsky et al., 

2006, 2007; Koumenis et al., 2002; Liu et al., 2006). This branch leads to 

phosphorylation of EIF2α, which allows selective translation of transcripts encoding 

proteins involved in stress response (reviewed in Wek et al., 2006), namely through 

IRES or uORF elements. One example of selective protein synthesis is the EIF2α 

phosphorylation-dependent translation of the transcript encoding ATF4, that is 

important for the cellular response to ER stress (Blais et al., 2004). Under normal 

conditions, efficient translation of ATF4 is impaired by two uORFs within its 5’UTR, 

whereas conditions with reduced levels of ternary complexes favor reinitiation at the 

main start codon by decreased translational efficiency of the second uORF (Vattem 

and Wek, 2004). Furthermore, an alternatively spliced variant of ATF4 is translated via 

an IRES element which is activated by PERK-induced EIF2α phosphorylation (Chan et 

al., 2013). Additionally, the mRNA translation of HIF1α, a major coordinator of the 

hypoxic response, is maintained in hypoxia through an IRES element (Lang et al., 2002).   

The findings presented here demonstrate that MTOR IRES activity is potentiated by 

hypoxia and UPR with increased levels of phosphorylated EIF2α that might account for 

maintenance of MTOR protein expression. Although other mechanisms might 

stimulate MTOR IRES, our results suggest that EIF2α phosphorylation may be, at least 

partially, involved in that activation, as (i) hypoxic conditions only increase relative 

MTOR IRES activity when EIF2α is phosphorylated, independent of HIF1α stabilization, 
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and (ii) MTOR IRES activation during TG-induced UPR is more evident when EIF2α is 

phosphorylated. It has been shown that MTOR is involved in the hypoxic response 

namely as it potentiates HIF1α mRNA translation and modulates HIF1α-dependent 

transcriptional induction (Bernardi et al., 2006; Hudson et al., 2002; Land and Tee, 

2007; Laughner et al., 2001; Thomas et al., 2006; Zhong et al., 2000). Furthermore, 

MTORC1 signaling is inactivated by hypoxia through HIF1α-independent and 

dependent mechanisms, particularly when in conjunction with other stresses (reviewed 

in Wouters and Koritzinsky, 2008). It has been suggested that severe exposure to 

hypoxia is characterized by a biphasic inhibition of mRNA translation in which the first 

phase (acute response) of inhibition is achieved by PERK-EIF2α activation, which 

switches to MTORC1- and 4ET- mediated protein synthesis reduction (Koritzinsky et 

al., 2006). The obtained results suggest a new layer of MTOR regulation in hypoxia. It is 

tempting to speculate that enhanced IRES activity of MTOR is a cellular attempt to 

maintain MTORC1 functional in the acute response to hypoxia by creating a positive 

feedback loop in which hypoxia-induced EIF2α phosphorylation activates MTOR IRES, 

which in turn, aids HIF1α stabilization. Actually, it has been suggested that the degree 

of MTORC1 inactivation under hypoxia is not enough to reduce HIF1α protein 

expression (Thomas et al., 2006). The MTOR IRES might be aiding this incomplete 

inactivation.  

 

MTORC1 signalling and ER stress-triggered UPR reciprocally regulate each other and, 

in particular, by activating the IRE1-JNK axis of UPR, MTORC1 induces apoptosis upon 

ER stress (Kato et al., 2011, 2013; Ozcan et al., 2008), so it is not surprising that MTOR 

is one of the transcripts that is preferentially translated during UPR. Indeed, it is shown 

that MTOR IRES is largely stimulated by UPR. Thus, it was hypothesized that a 
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synergistic effect between increased phosphorylation of EIF2α and pro-apoptotic 

signals might be responsible for this substantial stimulation of MTOR IRES activity. 

Indeed, it is observed that a stimulation of MTOR IRES activity also occurs in UPR with 

unphosphorylated EIF2α, but to a lesser extent. However, the maintenance of EIF2α 

phosphorylation parallels the anti-apoptotic response of ER stress. Thus, another UPR-

mediated signal might also be triggering MTOR IRES activity. One cannot exclude that 

this signal is dependent on PERK activation, since EIF2α may be unphosphorylated 

despite activation of the PERK branch (Novoa et al., 2001). The list of genes with 

translational advantage in response to MTORC1-inactivating conditions is growing 

(Thoreen et al., 2012) and the data presented here suggest that MTOR is one of those 

genes. Stimulation of MTOR IRES by treatment with rapamycin is consistent with a 

previous study demonstrating that some IRES-containing transcripts are translationally 

upregulated by MTORC1-inactivating conditions (Thoreen et al., 2012). Particular 

stimulation of MTOR IRES activity by MTORC1 inactivation suggests a feedback loop to 

maintain MTOR protein levels.  

A complex interplay between UPR- or hypoxia- and MTOR-triggered signals has been 

reported. The fact that the former conditions stimulate IRES-driven MTOR translation 

envisions an extra layer of interconnection between these pathways. Furthermore, 

MTORC1-inactivating conditions also stimulate mRNA translation of MTOR through its 

IRES element. These findings suggest that stimulation of MTOR IRES-mediated 

translation is a cellular response to stress conditions. If translation of MTOR would 

only occur via the cap-dependent mechanism, MTOR levels could be decreased by 

translational inhibitory conditions, leading to reduced levels of available MTORC1 and 

MTORC2, thus compromising cellular homeostasis. Instead, our results support a 

model in which IRES-mediated translation of MTOR mRNA contributes to MTOR 
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protein expression maintenance in cellular stress conditions that is able to assemble 

the MTORC1 and MTORC2 (independent of their activation status), either 

contributing to a proper stress response and/or allowing cells to restore normal 

growth and proliferation after bypassing the translational adverse condition (Figure 

V.1). Nevertheless, it could also contribute to aberrant constitutive activation of 

MTOR pathway and potentiate development of MTOR-associated diseases. The study 

presented here proposes MTOR IRES as a new therapeutic target for treatment of 

diseases with aberrant hyper-activation of MTOR mediated pathways, such as cancer. 

 

 

Figure V.1. MTOR IRES-driven translation contributes to MTOR protein 

expression maintenance in cellular stress conditions. Our results support a 

model in which IRES-driven MTOR translation regulation integrates the program of 

translational reconfiguration towards synthesis of stress-responsive proteins, triggered 

by adverse conditions. IRES-mediated translation of MTOR mRNA contributes to 

maintenance of expression of MTOR protein that is able to assemble the MTORC1 

and MTORC2. By this mechanism, cells guarantee that MTORC1 and MTORC2-

mediated signals are not lost upon translational inhibitory conditions. 
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V.3. Δ160P53 

P53 protein has a pivotal role in suppressing tumorigenesis, namely by induction of 

cell-cycle arrest and apoptosis of stressed cells (reviewed in Zilfou and Lowe, 2009).  

When the stress condition induces a manageable cellular damage, P53 activates a 

program that lead to cell cycle arrest at the G1 and G2 phases (eg., Stewart et al., 

1995). Nevertheless, when the damage is severe and cells acquire transforming 

abilities, P53 triggers senescence or induces cell death through apoptosis or autophagy 

(reviewed in Vousden and Prives, 2009). As a consequence, a mutation in TP53 gene 

generally triggers tumor development and, actually, TP53 is the most common mutated 

gene in human cancer (reviewed in Rivlin et al., 2011). Nevertheless, the behavior of 

tumors with deregulation of P53 activity is not predictable (eg., Ahrendt et al., 2003) 

and several opposing roles have been ascribed to the P53 signalling (reviewed in 

Vousden and Prives, 2009). The discovery of P53 isoforms, that display both P53-

dependent and independent functions (Bourdon et al., 2005), has partially resolved this 

mystery. For instance, P53β protein isoform oligomerize with P53 and modulates P53-

mediated replicative cellular senescence and apoptosis (Fujita et al., 2009). 

Furthermore, it has been shown that this isoform induces apoptosis in a P53-

independent manner (Bourdon et al., 2005). On the other hand, Δ133P53 inhibits 

apoptosis triggered by P53 through reconfiguration of P53-mediated gene expression 

(Aoubala et al., 2010; Bourdon et al., 2005; Chen et al., 2009). These findings highlight 

that P53 isoforms are important modulators of P53 activity. Recently, a new P53 

isoform (Δ160P53) arising from mRNA translation initiation at codon 160 from the 

Δ133P53 transcript has been discovered (Marcel et al., 2010b). Notwithstanding, the 

regulatory mechanism governing its expression has not been studied. Here, it is 

demonstrated that Δ160P53 expression is translationally regulated by an IRES element 
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whose activity is stimulated upon stress conditions. It is further shown that this cis-

regulatory element is located downstream of AUG160, and that its activity is inhibited 

by Δ160P53 5´UTR but induced by EIF2α phosphorylation. 

 

V.3.1. Δ160P53 expression regulation upon stress conditions 

Specific mRNA translation regulation of P53 products upon stress conditions has been 

reported. For instance, genotoxic stress forces expression of the Δ40P53 isoform, 

through increased mRNA translation of a mutant TP53 transcript, which contributes to 

genotoxic-induced urinary bladder tumors (Melis et al., 2011).  Here it is shown that 

ER stress induces Δ160P53 protein expression both in P53-expressing and -null cell 

lines. Furthermore, overconfluency, a stress that inhibits overall protein translation 

(Gerlitz et al., 2002), also increased Δ160P53 protein levels. In ER stressed A549 and 

HCT116 cells endogenous Δ160P53 protein induction was accompanied by reduction 

or maintenance of Δ133P53 protein isoform, respectively. Overconfluent A549 cells 

expressed similar endogenous levels of the Δ133P53 and Δ160P53, whilst in O-C 

NIH3T3 expressed Δ160P53 but not Δ133P53 protein isoforms (Figure IV.10A, B).  

 

V.3.2. Δ160P53 is originated through IRES-driven translation 

It has been demonstrated that IRES-mediated translation plays a role in the regulation 

of P53 protein isoforms. An IRES element within TP53 transcript 5´UTR governs its 

translation and the Δ40P53 isoform is a result of IRES-mediated translation initiation at 

codon 40 (Candeias et al., 2006; Ray et al., 2006; Yang et al., 2006). The data presented 

here adds another IRES element governing P53 protein isoforms. The Δ160P53 IRES 

element is active in two different dicistronic DNA reporter vectors (Figures IV.11- 13) 

and its stimulation accompanies Δ160P53 endogenous protein induction. The activity 
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of the IRES for Δ160P53 in the pR/F reporter is relatively low when compared to that 

of MYC (Figure 2C-F) and of MTOR (Figure 19B, 20A) IRESs, which could indicate that 

the mRNA translation efficiency of this IRES element might be low. Although, one 

must note that the FLuc expressed from the Δ160P53 IRES-containing plasmid is fused 

with Δ160P53 N-terminal. Thus, the low relative FLuc/RLuc ratio observed might 

reflect a reduced enzymatic activity of this FLuc-Δ160P53 fusion protein, instead of 

inefficiency of the IRES for Δ160P53. Actually, a robust Δ160P53 protein expression 

deriving from the pE_160_ORF dicistronic reporter is observed (2A-B). In addition, 

although the endogenous expression of Δ160P53 protein is low, it is similar or even 

greater than that observed for the cap-mediated translated Δ133P53 (Figure IV.10). 

Actually, in overconfluent NIH3T3 cells, Δ160P53 protein is expressed at higher levels 

than P53 (Figure IV.10B; right panel).  

Mechanistically, the IRES element for Δ160P53 has three particular features: it is 

inhibited by its putative 5´UTR, it is stimulated by EIF2α phosphorylation and it is 

located within Δ160P53 coding region. The two latter features are not exclusive from 

this IRES element, since MTOR IRES described in this thesis is also stimulated by EIF2α 

phosphorylation and the IRES element that allows cap-independent production of the 

5-kDa replication-associated protein 1 (RAP1) is located within the mRNA coding 

region (Jaag et al., 2003).  Furthermore, interestingly, the IRES commanding Δ40P53 

synthesis also promotes translation of P53 (Candeias et al., 2006). The fact that the 

RNA sequence harboring IRES activity is downstream of Δ160P53 AUG might mean 

that this IRES element relies on the “land and start” rather than on the “land and scan” 

mechanism, since backward scanning is an inefficient mechanism and only occurs over a 

course of very few nucleotides (Matsuda and Dreher, 2006; Kozak, 1991). The 

structure formed by the Δ160P53 IRES might allow a direct binding of the translational 
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machinery to the AUG, as it occurs with EMCV IRES element (Kaminski et al., 1994). 

Indeed, in line with this work, it was found that a probable secondary structure of 

Δ160P53 IRES positions the AUG in an accessible loop (Candeias MM, unpublished 

data).   

Furthermore, the induction of the activity of the IRES for Δ160P53 upon conditions 

with low TC levels might mean that another initiation factor is responsible for the 

Met-tRNAi delivery to the 40S ribosomal subunit, as occurs with HCV and XIAP IRESs 

(Dmitriev et al., 2010; Kim et al., 2011; Skabkin et al., 2010; Thakor and Holcik, 201) 

or even that this IRES element operates in a Met-tRNAi-independent manner, as for 

IGR IRESs (Costantino et al., 2008; Wilson et al., 2000a). 

To our knowledge no other IRES element is inhibited by an upstream sequence. It is 

possible that this inhibition relies on structural destabilization of Δ160P53 IRES by its 

5´UTR. It is interesting to note that two hotspots of synonymous cancer mutations 

(Strauss, 2000) are located within Δ160P53 IRES element and its 5´UTR. Unpublished 

data from Candeias et al. (Kyoto University, Japan) actually show that a synonymous 

mutation at codon 151, thus within Δ160P53 5´UTR, changes Δ160P53 IRES secondary 

structure and strongly suggests that it abolishes the inhibitory IRES-5´UTR interaction 

(Candeias et al., unpublished data).   

 

V.3.3. Activity of the IRES element for Δ160P53 upon ER stress 

In the onset of ER stress, P53 is sequestered and inactivated in the cytoplasm (Pluquet 

et al., 2005; Qu et al., 2004) whereas prolonged or severe ER stress induces P53 

expression, nuclear redistribution and transcriptional activity, which is important for 

ER stress-induced apoptosis (Lin et al., 2012). Furthermore, the involvement of P53 

products in the ER stress-triggered apoptosis has been demonstrated by the fact that 
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Δ40P53 induces the expression of the pro-apoptotic proteins PUMA and PMAIP1 and 

is capable of apoptosis induction on ER stress in a P53-independent manner 

(Bourougaa et al., 2010). This isoform is induced by PERK-dependent stimulation of its 

IRES element, which leads to induction of 14-3-3σ, G2 arrest and suppression of P53-

mediated G1 arrest (Bourougaa et al., 2010). The Δ40P53 functions are mainly dictated 

by the detention and absence of P53 protein domains. It retains TADII and the C-

terminal OD, but lacks the N-terminal MDM2-binding site. Accordingly, it is able to 

regulate gene expression and form complexes with P53 with altered stabilities and 

functions  (Candeias et al., 2006; Courtois et al., 2002; Ghosh et al., 2004; Powell et al., 

2008; Yin et al., 2002). 

Here it is shown that ER stress induces Δ160P53 isoform. The fact that this isoform 

retains the OD domain might mean that, at least in part, this isoform might be involved 

in the ER stress response in a P53-dependent manner. Although, curiously, unpublished 

results from Candeias et al. (Kyoto University) demonstrate that, at least part of 

Δ160P53 isoform functions, are P53-independent (Candeias et al., unpublished data).  

In addition, it is anticipated that Δ160P53 stability is regulated differently from P53 and 

similarly to Δ40P53, as it also lacks the MDM2-binding site.  

The results presented here demonstrate that Δ160P53, a short isoform of P53, is 

stimulated upon stress conditions by induction of a coding region-located IRES 

element. It is demonstrated that EIF2α phosphorylation, which mediates overall cap-

dependent translation inhibition in several stress and physiological conditions, is the 

most probable responsible event for this induction. Actually, it seems that mRNA 

translation through IRES elements contributes to the orchestration of the P53 

network of proteins, upon different conditions. The fact that the IRES element for 

Δ160P53 and its inhibitory 5´UTR are in a region that is frequently mutated in cancer, 
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might suggest an important role for this isoform in tumour development. Actually, 

results from our collaborator group demonstrate that the Δ160P53 protein isoform is 

an oncogene (Candeias et al., unpublished data). 

 

V.4. IRES and cancer 

Here, an IRES element within MTOR transcript was identified, and the involvement of 

the MTOR signalling in tumorigenesis is well known. In addition, the presented results 

demonstrate that the oncogenic Δ160P53 protein isoform is also synthesized through 

IRES-mediated translation. To expand our knowledge about the involvement of IRES-

driven translation in tumorigenesis, it was assessed whether colorectal cell 

transformation and metastization might be accompanied with global alterations in 

translation mediated by such cis-regulatory elements. It was observed that both 

cellular IRESs (MYC and MTOR) behave similarly, in a way that their activity is 

stimulated by cellular transformation to a malignant phenotype, which is reversed by 

malignization. On the other hand, the activity of EMCV IRES is only stimulated in the 

metastatic cell line (Figure IV.9). It has been demonstrated that overexpression of 

EIF4E contributes to the initial burst of protein synthesis observed in colon 

carcinogenesis (Rosenwald et al., 1999) and an increase in its activity is essential for 

maintaining transformation and induction of motility and metastization of colorectal 

cancer cells (Ye et al., 2013). As brought up above, it has been proposed that EIF4E 

might actually act as a cap- to IRES-mediated translation switcher (Svitkin et al., 2005). 

Furthermore, it has been suggested that the expression of other initiation factors is 

deregulated in CRC, such as of EIF2α, that seems to play a role in tumor initiation and 

progression (Rosenwald et al., 2003). The data presented here suggest that 

deregulation of initiation factors activity during CRC tumorigenesis does not account 



152 
 

per se for the activation status of general IRES-mediated translation. Those 

observations corroborate the fact that the mechanism of action of different IRESs 

varies significantly, and that the activation level of different IRES entities is differentially 

affected by canonical initiation factors. The stimulation of IRES elements is also 

dependent on ITAFs and actually, it has been demonstrated that differential alterations 

in the expression and subcellular localization of hnRNPs are observed in primary and 

metastatic colorectal cancer (Hope and Murray, 2010).   

One cannot exclude that in the used settings, a global mechanism might be affecting 

the entire set of cellular IRESs differently from that of viral IRESs, as both MYC and 

MTOR IRESs behaved similarly during CRC malignant transformation and metastization, 

in opposition to what happens to EMCV IRES. Nevertheless, it is more likely that the 

different requirement of initiation factors for ribosome recruitment (both canonical 

and non-canonical), dictate specific stimulation of a certain IRES element under 

different physiological or pathophysiological conditions. 

 

V.5. A note about IRES-mediated translation 

The translational apparatus of IRES-mediated translation relies on a variety of canonical 

initiation factors that might participate through canonical and non-canonical 

interactions; as well as accessory proteins that are involved in other biological 

processes which are not related to the “standard” mechanism of translation initiation 

involving cap recognition. The mRNP composition of viral IRESs allows their 

classification in different groups and types of IRESs, while it is highly variable for cellular 

IRESs (reviewed in Martínez-Salas et al., 2012). No common structural motif is found in 

cellular IRESs in opposition to viral IRESs that are highly conserved structures with 

defined functions (Honda et al., 1996; Martınez-Salas, 2008). The only primary 
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sequences identified until now to have a role in cellular IRES activity are the 

polypyrimidine sequences, for PTB binding (Mitchell et al., 2005) and poly(A) tracts for 

PAB1 binding (Gilbert et al., 2007).   

The independence of EIF4E seems to be the most universal feature of the battery of 

IRESs identified until now (with the exception of some aforementioned viral IRESs) 

(reviewed in Hellen and Sarnow, 2001). Furthermore, the independence of EIF2 seems 

to be a feature of several IRESs, as demonstrated by the growing list of transcripts 

whose IRES-driven translation is not impaired by conditions with associated increase in 

phosphorylation of EIF2α (Allam and Ali, 2009; Fernandez, et al., 2002; Gerlitz et al., 

2002; Thakor and Holcik, 2011). It has been demonstrated that a possible explanation 

for this independence might rely on the substitution of EIF2 function by utilization of 

other initiation factors, combination of initiation factors or IRES structural mimicking 

of Met-tRNAi to directly assemble the 80S ribosomes (Costantino et al., 2008; 

Dmitriev et al., 2010; Kim et al., 2011; Pestova et al., 2008; Skabkin et al., 2010; Thakor 

and Holcik, 2011).   

The mechanism of action of IRES-mediated translation might prompt one to wonder if 

it represents an evolutionary adaptation to adverse conditions. On other hand,  

considering that it implies a simpler mean to initiate translation, IRES-driven translation 

might be a reminiscent of the mechanism of translation initiation used by the 

eukaryotic ancestors, that remained conserved upon evolution in order to allow an 

effective response to demanding conditions. It seems quite logical to suppose that 

IRES-driven translation is an ancient form of translation that evolved into the more 

complex cap-dependent mechanism, though remaining the main mechanism of 

translation during stress. Accordingly, oscillations between normal and stress 

conditions either favored the canonical or the IRES-dependent mechanism, 
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respectively. The more ordered and universal rearrangement of proteins and 

interactions observed in the canonical mechanism was achieved through extended 

periods of normal conditions (i. e., unstressed conditions), leading to the generation of 

an equilibrated mechanism. On the other hand, the more disperse and variable battery 

of initiation factors participating in IRES-dependent translation was achieved through 

selective pressure under stressed conditions, using proteins rather than EIFs; or EIFs 

with unusual interactions or functions. These assumptions might be substantiated by 

the discovery of IRESs elements that function in yeast, insects, plants and mammals 

(Dorokhov et al., 2002; Woolaway et al., 2001). Furthermore, the cap structure and 

the cap-binding protein EIF4E are only used by eukaryotes (Marcotrigiano et al., 1997; 

Matsuo et al., 1997). In addition, the canonical mechanism allows translation with 

higher efficiency in comparison to IRES-dependent translation in normal conditions, 

although the latter mechanism allows efficient mRNA translation upon adverse 

conditions. These observations suggest that cap-dependent translation is an 

evolutionary update of the pre-existed IRES-mediated translation. Some similarities 

with prokaryotic translation or translational control mechanisms are observed for 

some IRESs elements, such as those found in the transcripts of the human NK6 

homeobox 2 and insulin-like growth factor 1 receptor. They are very small, nine and 

nineteen nts, respectively, and base pair with 18S rRNA, similarly to the prokaryotic 

Shine-Dalgarno interaction with 30S ribosomes (Chappell et al., 2004; Meng et al., 

2010). Furthermore, CAT1 IRES activity is stimulated by ribosome stalling during 

translation of an uORF, which is similar to the mechanisms controlling prokaryotic 

transcription and translation (Fernandez et al., 2005; Lee and Yanofsky, 1977; 

Narayanan and Dubnau, 1987).  
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The vast majority of cellular IRESs assist translation with a poorer efficiency comparing 

to the viral counterparts (reviewed in Komar and Hatzoglou, 2005).  The fact that the 

vast majority of viral mRNAs does not possess the cap structure and are translated 

through highly organized IRES elements (eg., Honda et al., 1996), might indicate that 

the IRES-mediated translation of viral transcripts is an evolved version of this 

mechanism of translation, and resulted from the evolution of a single mechanism of 

translation.     

If this theory proves to be accurate, within years, due to the constant stress conditions 

that we force our cells to be exposed to, a dissertation about IRES-dependent 

translation will substitute affirmations as “inefficient IRES-mediated translation” by 

“IRES-dependent translation as efficient as cap-dependent translation” or at least “the 

cellular and viral IRES-mediated translation efficiency is similar”.  
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VI. CONCLUDING REMARKS AND FUTURE DIRECTIONS 

My original contribution to knowledge is that human MTOR transcript has an IRES 

element that (i) does not require nuclear experience to be active; (ii) is induced by 

hypoxia only when the phosphorylation levels of EIF2α are augmented, and not when 

HIF1α protein is stabilized per se; (iii) is stimulated by UPR mainly in the pro-apoptotic 

phase with low TC levels and (iv) is potentiated by MTORC1 signalling inhibition. In 

addition, it is demonstrated that Δ160P53 protein isoform is induced, by augmented 

translational rates, in UPR and stress driven by cellular over-confluency and that an 

IRES element within Δ133P53 transcript is responsible for this induction. This IRES 

element is inhibited by Δ160P53 5´UTR and stimulated by EIF2α phosphorylation.  

The vast majority of IRES elements are located within the 5´UTR of transcripts, 

although some cases of hybrid 5´UTR-coding region IRESs have been reported (Allam 

and Ali, 2009; Candeias et al., 2006) By extending the analysis of MTOR 5´UTR in 

terms of secondary structure prediction, through submission of longer sequences of 

MTOR mRNA to M-Fold program (Zuker, 2003), it was realized that it is possible that 

MTOR coding region might play a role in IRES-mediated translation. A representative 

structure of this analysis is shown in Figure VI.1. This structure folds with a Gibb´s 

Free Energy of -63.33 kcal/mol and besides the previously predicted SL I, it harbors 

another individual stem-loop, SL II, and a composed secondary structure consisting of 

stem-loops III and IV (ΔG = -37.03 kcal/mol) (Figure VI.1). As previously mentioned, 

the sequence from nt -76 to -69 has cross-species conservation (Figure IV.1A) and in 

the present prediction, this sequence forms the stem from SL II (Figure VI.1). In 

addition, the other highly conserved sequence of MTOR 5´UTR corresponds to SL III 

and part of SL IV (Figure IV.1A and Figure VI.1). Those findings might indicate that SL 

II, SL III and SL IV form naturally. Furthermore, in this prediction, the composed 
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secondary structure has a Y-like shape and resembles the Y-type structural motif 

found in TMEM132A, FGF2 and picornavirus IRESs (Le and Maizel, 1997). Moreover, 

the MTOR initiation codon is located in the apical loop of SL IV (Figure VI.1) and thus, 

is accessible for the translational machinery. Accordingly, it is tempting to speculate 

that SL III and SL IV contribute to AUG presentation to the translational machinery. 

The 5´ terminal of human MTOR 5´UTR is not present in MTOR transcripts from all the 

analyzed species (Figure IV.1A), suggesting that it does not play an essential role for 

MTOR IRES activity. Therefore, SL I can either function as a non-essential enhancer of 

MTOR IRES activity, such as the 75-nts hairpin of HCV IRES (Reynolds et al., 1995) or 

it can rather serve to inhibit the canonical cap-dependent mechanism.  It would be of 

full interest to verify the aforementioned predictions, by determination of MTOR IRES 

structure through, namely, chemical and enzymatic probing. It has been observed that 

IRES-mediated translation might depend on the overall RNA structure, in which 

different stem loops and pseudoknots cooperatively function to recruit the 

translational apparatus (Jang and Jan, 2010; Serrano et al., 2009). This is particularly 

true for viral IRESs. Cellular IRESs most commonly have different modules that are 

able to trigger internal initiation on their own (eg., Coldwell et al., 2000; Jopling et al., 

2004; Stoneley et al., 1998). After establishment of MTOR IRES structure, it would be 

of full interest to address whether the entire structure is needed for ribosomal 

recruitment or if it has a modular composition. For that, deletion analysis of MTOR 

IRES must be performed, in which the different domains must be used individually and 

in combination to assay for MTOR IRES activity. 
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Figure VI.1. Representative RNA secondary structure of MTOR 5´UTR and 

part of its coding region, obtained by computer-assisted analysis. Sequences 

of different lengths of MTOR mRNA were submitted to M-Fold program 

(http://mfold.rna.albany.edu/?q=mfold) for prediction of secondary structures and a 

representative structure is presented. Putative stem-loop structures are shown, SL I 

from nucleotides (nts) -96 to -119, SL II from nts -52 to -81 and a composed structure 

(SL III and SL IV) from nts 27 to -50 (relatively to the AUG codon at position +1). 

Nucleotides position and the Gibb’s free energy of the predicted secondary structure 

are indicated.  

 

In line with this work, the secondary structure of the IRES for Δ160P53 has already 

been established (Candeias et al., unpublished data), although it was not addressed 

whether its ability to attract the translational apparatus relies on separate modules or 

on the overall structure. Accordingly, the same approach could be performed for the 

IRES governing Δ160P53 synthesis.  

In the present study it was also demonstrated that the activity of the IRESs for MTOR 

and Δ160P53 is stimulated in conditions with associated increase in the 
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phosphorylation levels of EIF2α. Furthermore, it was also shown that IRES-driven 

translation of MTOR is enhanced upon MTORC1 inhibition. Those findings strongly 

suggest that the IRESs for MTOR and Δ160P53 are not only able to recruit the 40S 

ribosomal subunits independent of ternary complexes and that the former IRES 

element function in a manner that is independent of functional EIF4F complexes, but 

also that both possess competitive advantage for ribosomal recruitment in such 

conditions. It has been reported that other initiation factors can function as EIF2 

substitutes in a way that they are also able to deliver Met-tRNAi to the 40S ribosomal 

subunit, such as EIF2A (Kim et al., 2011) EIF2D (Dmitriev et al., 2010), EIF5B (Pestova 

et al., 2008; Thakor and Holcik, 2011) or MCT1 in combination with DENR, which are 

homologous to N-terminal and C-terminal regions of EIF2D, respectively (Skabkin et 

al., 2010). Of particular interest is EIF2A, that stimulates Met-tRNAi binding to the 40S 

ribosomal subunit in a manner that is dependent on AUG (Zoll et al., 2002). EIF2A is 

involved in IRES-driven translation of HCV under stress conditions with increased 

EIF2α phosphorylation, through direct binding to a HCV IRES domain that also 

interacts with 40S ribosomal subunit. This proximity is probably responsible for the 

EIF2A-associated Met-tRNAi delivery to the 40S ribosomal P site  (Kim et al., 2011). 

Similarly, XIAP IRES recruits the 40S ribosomal subunit in an EIF5B-dependent manner 

upon, augmented eIF2α phosphorylation (Thakor and Holcik, 2011). In addition, it has 

been demonstrated that the vast majority of IRES do not require the cap-binding 

protein EIF4E (reviewed in Hellen and Sarnow, 2001). In order to see whether the 

translational advantage conferred by the IRES elements for MTOR and Δ160P53 in the 

aforementioned stress conditions comes from the fact that their PICs are composed of 

initiation factors that are not used by the canonical cap-dependent mechanism or 

whether they bypass the requirement of EIFs that are required for the latter 
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mechanism, it would be of full interest to determine PIC composition of those IRESs 

elements, through mass spectrometry analysis of their native PICs.  

The involvement of ITAFs constitutes an extra layer of regulation of IRES-dependent 

translation that might explain how different IRESs respond differently to the same 

stress conditions, such as occurs in etoposide-induced apoptosis in which the IRES 

within the APAF1 transcript is active, whereas the IRES activity of XIAP is inhibited 

(Nevins et al., 2002; Warnakulasuriyarachchi et al., 2004); how some IRES are 

functional only in some physiological settings, such as the G2/M-dependent induction of 

the IRES for CDK11p58 (Cornelis et al., 2000); how inhibitory conditions for cap-

dependent translation are accompanied by stimulation of IRES-driven translation 

(reviewed in Spriggs et al., 2008) and the cell-type specificity of activation of some 

IRESs (eg., Candeias et al., 2006). It has been demonstrated that the nuclear-

cytoplasmic shuttling of ITAFs might determine whether those accessory proteins are 

in close contact with their cognate IRESs elements in order to modulate their 

translational efficiency (reviewed in Komar and Hatzoglou, 2011). Accordingly, it would 

be of interest to determine the ITAFs involved in the IRESs governing MTOR and 

Δ160P53 expression, under unstressed and stressed conditions, and to test whether a 

subcellular redistribution is responsible for the stimulatory effect observed in 

translational adverse conditions. For that RNA electrophoretic mobility shift assays 

and RNA affinity pulldown assays combined with identification of each protein through 

mass-spectrometry and subsequent immunofluorescence of the correspondent ITAF 

could be performed.  

As a next step, one could perform toeprinting analysis in order to identify the MTOR 

and Δ160P53 IRESs binding sequences for the components of the translational 

machinery.  
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The data presented here strongly suggest that the increase in EIF2α phosphorylation 

levels is accounting for the stimulatory effect on the activity of the IRESs for MTOR 

and Δ160P53, observed upon ER stress and also hypoxia, for the former IRES. In order 

to further confirm that EIF2α phosphorylation is responsible for this stimulation, one 

might assay for IRES activity upon ectopic expression of an unphophorylatable EIF2α 

protein. The same approach could be performed for 4EBP1 and S6K1, in order to 

check what MTORC1 targets are responsible for MTOR IRES stimulation upon 

rapamycin treatment. It is further demonstrated that a stimulation of MTOR IRES is 

observed in the anti-apoptotic outcome of ER stress, in which EIF2α is 

unphosphorylated or dephosphorylated, which prompted to the conclusion that 

another UPR event is stimulating MTOR IRES activity. In order to find what event is 

further inducing IRES-driven translation of MTOR, a first approach could be to impair 

each of the three UPR branches, namely by RNAi targeting IRE1, PERK and ATF6. 

Here, it is proposed a model in which the MTOR IRES is fundamental for maintenance 

of MTOR protein levels and, thus, for preventing MTORC1 and MTORC2 signalling 

lost upon stress conditions with associated cap-dependent mRNA translation 

reduction. Since it was not addressed whether MTOR transcript is also translated by 

the cap-dependent mechanism, a first step to confirm our model would be to test 

whether MTOR transcript is also translated by the canonical cap-dependent 

mechanism. One approach to achieve that goal would be to address whether MTOR 

protein levels produced from a monocistronic transcript with or without a stable 

hairpin, in close proximity to the cap structure, are the same. If both mechanisms are 

present, one could validate our model by inhibiting MTOR IRES, namely through oligos 

targeting a sequence important for MTOR IRES structure or binding to the translational 

machinery, and analyze MTOR endogenous levels and the phosphorylation levels of 
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MTORC1 and MTORC2 targets upon and after stress conditions (namely, ER stress, 

hypoxia and rapamycin exposure). In hypoxia, evaluation of translational rate of HIF1α 

transcript upon functional or inhibited MTOR IRES would also give insights about the 

importance of this cis-regulatory element in MTOR-mediated increase in HIF1α mRNA 

translation (Bernardi et al., 2006; Laughner et al., 2001; Thomas et al., 2006). 

It would be interesting to test whether the other MTORC1 and MTORC2 

components are also IRES-driven translated and whether those cis-regulatory elements 

are also accounting for MTOR signalling maintenance upon adverse conditions.  

In order to address whether the cap-dependent mechanism is also accounting for 

Δ160 protein expression, one could use the same approach as previously mentioned 

for the MTOR IRES.  

The promising results of MTOR inhibitors in cell lines, mice and clinical trials in 

humans (reviewed in Pópulo et al., 2012), highlight the importance of MTOR inhibition 

in diseases with hyper-activated MTOR signaling, such as cancer. Inhibition of IRES-

mediated translation of MTOR might constitute another therapeutic strategy to impair 

the adverse events arising from hyper-activation of MTOR signalling. By targeting the 

MTOR transcript itself, an inhibition of both MTORC1 and MTORC2 signalling 

pathways would be possible. Morpholinos are small (usually 25-nt) molecules that bind 

RNA sequences by base pairing and are used namely to impair translation. By a steric-

blocking mechanism, morpholinos can be used to inhibit protein binding to a given 

RNA sequence (reviewed in Summerton, 1999). Accordingly, it is proposed that the 

development of a morpholino targeting the MTOR IRES domain(s) responsible for 

recruitment of the translational machinery would constitute a good way to inhibit 

MTOR expression and, concomitantly, MTORC1 and MTORC2 pathways. As 
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morpholinos also block scanning ribosomes, if MTOR is also translated by the cap-

mediated mechanism, a dual inhibition would be achieved. 

Since Δ160P53 is an oncogene protein (Candeias et al., unpublished data) a 

morpholino targeting the IRES for Δ160P53 would be of particular interest, as well.  
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VII. APPENDIX 1 

 

VII.1. INTRODUCTION 

The APC plays a critical role in the Wnt signalling and is involved in cell adhesion, 

migration and differentiation, cell cycle control, transcription and apoptosis (Aoki and 

Taketo, 2007; Fearnhead et al., 2001). APC is a tumor suppressor gene and mutant 

forms of APC have been associated with CRC tumorigenesis. Germline mutations of 

this gene are associated with familial adenomatous polyposis (FAP), an autosomal 

dominant hereditary disease characterized by various (more than 100) adenomatous 

polyps in colon and rectum, some of which progress to cancer (Groden et al., 1991; 

Joslyn et al., 1991; Kinzler et al., 1991; Vasen et al., 2008). Furthermore, somatic 

mutations of APC, that occur in the majority of sporadic cases of CRC, are also found 

in small adenomas and microscopic dysplastic lesions (Jen et al., 1994; Mori et al., 1992; 

Powell et al., 1992; Smith et al., 1994a), suggesting its involvement in early stages of 

CRC development. A milder form of this disease, called attenuated familial 

adenomatous polyposis (AFAP) is characterized by fewer polyps with delayed onset 

and progression to CRC in comparison to FAP and is caused mostly by germline 

mutations in the APC gene (reviewed in Knudsen et al., 2003) . Mutations in the APC 

gene are generally frameshift or point mutations resulting in premature stop codons 

which lead to synthesis of truncated proteins, both in FAP and AFAP  (Hernegger et 

al., 2002). The APC regions commonly mutated in AFAP patients are the 5´ end, 3´ end, 

exon 9, or intron 9 (reviewed in Knudsen et al., 2003). It has been suggested that CRC 

development at patients with AFAP require somatic mutations of both the wild-type 

and germline mutant APC alleles (Spirio et al., 1998; Su et al., 2000). An APC allele 

bearing a 5´ end mutation (codon 157 at exon 4) generates a shorter but functional 
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APC protein through IRES-driven internal initiation at codon 184 (Goss et al., 2002). 

Goss et al. suggested that this mechanism might explain the less severe phenotype 

observed in AFAP with 5´ end mutations (Goss et al., 2002). It has been reported that, 

regarding the 5´ end mutations of APC, mutation at codon 157 represents the most 

downstream mutation responsible for the AFAP phenotype (Spirio et al., 1993). A FAP 

phenotype is reported in patients with a nonsense mutation at codon 168 (Olschwang 

et al., 1993), such as with downstream mutations (Spirio et al., 1993), which might 

suggest a role for this DNA sequence. Accordingly, it would be interesting to study 

whether mutations affecting APC IRES (Goss et al., 2002) are responsible for this 

apparent functional boundary within the APC gene determining FAP versus AFAP 

phenotype. Thus, it was intended to deepen the study of APC IRES in terms, namely, of 

structural modifications of APC IRES element due to reported mutations.  

Here, it is shown that the APC region from codon 157, with a nonsense mutation, to 

codon 184, has an acceptor splice site disabling the use of the dicistronic DNA 

reporter to assess for IRES activity. This splice acceptor site has an AG dinucleotide 

immediately before the excision point and is preceded by a polypirimidine rich tract. 

The sequence TGGGTAAGT within RLuc ORF function as a splice donor site when 

located at nt 242 and nt 884 originating a 799-bp and 157-bp intron, respectively.     
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VII.2. MATERIALS AND METHODS 

 

VII.2.1. Plasmid constructs 

The DNA sequence from codon 157 to 184 of APC was PCR amplified with primers #1 

and #2 (Table VII.2.1). In parallel, the previously mentioned pR_Fhp-vector was 

amplified with primers #3 and #4. The respective fragments were subjected to SOEing 

PCR with primers #1 and #4 and the resultant PCR products were digested with XhoI 

and BsrGI and cloned into pR_Fhp- and phpR_F (Table VII.2.1). The resultant 

constructs were named pR_APC_Fhp- and phpR_APC_F, respectively. To generate 

the promoterless constructs, the pR_Fhp- and pR_APC_Fhp- constructs were 

digested with NheI/BglII, blunt-ended with Quick Blunting Kit (New England Biolabs) 

and re-ligated, originating the promoterless pR_Fhp- and pR_APC_Fhp- contructs, 

respectively. A splice donor site within Renilla ORF of the pR_APC_Fhp- plasmid was 

changed by site-directed mutagenesis, using primers #5 e #6. 

 

Table VII.2.1. DNA oligonucleotides used in the current work.  

Primer Sequence 

#1 CCGCTCGAGCGGTAGTATTACGCTCAACTTCAGAATC 

#2 CATCGGCCATATCTGTTTGTAAGGAAAA 

#3 TACAAACAGATATGGCCGATGCTAAGAACATT 

#4 GTGAGAGAAGCGCACACAG 

#5 CGCTCCAGATGAAATGGGCAAGTACATCAAGAGCTTC 

#6 GAAGCTCTTGATGTACTTGCCCATTTCATCTGGAGCG 

#7     GTCTCGAACTTAAGCTGCAG 

#8     TTACACGGCGATCTTGCCG 
 

 

VII.2.2. Cell culture and plasmid transfection 

Sw480 cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 

10% (v/v) fetal bovine serum. Cells were kept at 37ºC in a humidified atmosphere 

containing 5% CO2. Transient transfection was performed using Lipofectamine 2000 
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(Invitrogen), according to manufacturer’s instructions, in 35-mm plates and, then, 

harvested after 24h. To assay IRES activity, Sw480 were transfected with 1µg of each 

dicistronic plasmid alone or in combination with 1µg of a plasmid encoding β-

galactosidase (β-gal).  

 

VII.2.3. RNA isolation 

Total RNA from transfected cells was prepared using Nucleospin RNA extraction II 

(Marcherey-Nagel) followed by treatment with RNase-free DNase I (Ambion) and 

purification by phenol:chloroform extraction.  

 

VII.2.4. Reverse transcription-PCR  

First strand cDNA synthesis from 1µg of total RNA was carried out using SuperScript 

II Reverse Transcriptase (Life Technologies) and oligod(T) primer, according to the 

manufacturer's standard protocol. cDNAs were PCR amplified using primers #7 and 

#8 (Figure VII.4), or #4 and #7 (Figure VII.5) (Table VII.2.1). To control for DNA 

contamination PCR reactions were also carried out without prior cDNA synthesis. 

Samples were analyzed by electrophoresis on 0.8% agarose gels. The resulting 

fragments were then gel-purified and sequenced.  

 

VII.2.5. Luciferase assays 

Lysis was performed in all cell lines with Passive Lysis Buffer (Promega) and then cells 

were subjected to a freeze-thaw cycle at -80ºC to 37ºC and centrifuged at maximum 

speed for 5 minutes. The cell lysates were used to determine luciferase activity with 

the Dual-Luciferase Reporter Assay System (Promega), according to the 

manufacturer’s standard protocol. Ten µL of cell lysate were assayed for FLuc and 
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RLuc enzymatic activities. Ratio is the unit of FLuc after normalized to RLuc, and each 

value was derived from three independent experiments. 

 

VII.2.6. Statistical analysis 

Data are presented as means ± standard deviation of at least three independent 

experiments. Test F was used for evaluation of variances equality.  Student’s two-tailed 

t-test was used for estimation of statistical significance. Significance for statistical 

analysis was defined as p<0.05. 
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VII.3. RESULTS AND DISCUSSION 

 

VII.3.1. The region spanning codons 157 to 184 of APC allows Firefly 

luciferase activity in a dicistronic context 

In order to confirm the existence of an IRES element at APC coding region between 

codons 157 (with a nonsense mutation) and 184, this region was cloned between RLuc 

and FLuc ORFs of the previously described dicistronic pR_Fhp- dicistronic plasmid, 

originating the pR_APC_Fhp- construct (Figure VII.1A). Sw480 cells were transiently 

transfected with the aforementioned constructs and luciferase activity was measured. 

FLuc activity of pR_APC_Fhp- construct was normalized to the activity units from 

RLuc expressed in the same mRNA. The subsequent ratio between FLuc and RLuc 

(F/R) was compared to that from the empty pR_Fhp- construct, arbitrarily set to 1 

(Figure VII.1B). Results show that the putative APC IRES enhances FLuc activity 192-

fold over background.   

 

Figure VII.1. The region from codons 157 (with a nonsense mutation) to 

184 of APC open reading frame (ORF) induces Firefly luciferase activity in a 

dicistronic context.  (A) Scheme depicting the dicistronic constructs pR_Fhp- and 

pR_APC_Fhp- constructs. The APC open reading frame (ORF) spanning codons 157 

(with a nonsense mutation) to 184 was cloned in the intercistronic space of the IRES-

less plasmid vector (pR_Fhp-), originating the pR_APC_Fhp- plasmid. The dicistronic 

transcriptional units expressing Renilla luciferase (RLuc) ORF (RLuc box) and Firefly 

luciferase (FLuc) ORF (FLuc Box) are under the control of SV40 promoter. (B) 
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Relative enhancement of downstream reporter enzyme expression mediated by the 

putative APC IRES, comparing to that from the IRES-less plasmid vector. Sw480 cells 

were transiently transfected with the aforementioned plasmids and luciferase activity 

was measured 24 hours post-transfection. The values (relative light units; RLU) are 

shown as the luminescence ratio between FLuc and RLuc, normalized to that of the 

empty pR_Fhp- construct, which was arbitrarily set to 1. Data are presented below 

each graph as the means ± standard deviation (SD) of at least 3 independent 

experiments. Statistical analysis was performed using the Student’s t test (unpaired, 

two-tailed); (∗∗) p<0.01. 

 

VII.3.2. The region spanning codons 157 to 184 of APC does not display 

cryptic promoter activity  

Expression of a second cistron from a dicistronic DNA plasmid reporter vector might 

also be due to IRES-independent events, such as cryptic promoter activity or activation 

of splicing, producing aberrant monocistronic or dicistronic mRNAs encoding a 

functional protein (in this case, FLuc). In order to discard a false-positive result due to 

cryptic promoter activity of the APC region from codons 157 to 184, expression of 

FLuc derived from a promoterless plasmid was evaluated. For that, SV40 promoter 

was removed from the dicistronic DNA constructs pR_Fhp- and pR_APC_Fhp- 

(Figure VII.2A). Sw480 cells were transfected with the pR_Fhp- and pR_APC_Fhp- 

reporter plasmids with and without promoter along with a plasmid encoding β-

galactosidase (β-gal). Renilla and Firefly luciferase activities were determined and 

normalized to the activity of β-gal. The subsequent ratios of RLuc to β-gal or FLuc to 

β-gal (R/β-gal or F/β-gal) were compared to those from the empty pR_Fhp- vector 

(Figure VII.2B), arbitrarily set to 1. Results showed that removal of SV40 reduced FLuc 

and RLuc activities of both plasmids to background levels, demonstrating that the 

observed FLuc expression driven by APC is not due to a cryptic promoter event. 

Interestingly, it was observed that insertion of the APC fragment upstream of FLuc, in 

the promoter-containing plasmid, also reduces RLuc activity when comparing to the 

pR_Fhp- empty vector. (Figure VII.2B). 



171 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.2. The region of APC open reading frame (ORF) between codons 

157 (with a nonsense mutation) and 184 does not display cryptic promoter 

activity. (A) Scheme depicting the dicistronic constructs pR_Fhp- and pR_APC_Fhp- 

vectors with and without SV40 promoter, as in Figure VII.1. (B) Sw480 cells were 

transiently co-transfected with the dicistronic constructs with and without promoter 

(A) along with a plamid expressing -galactosidase (-gal). Luciferase activity was 

measured 24 hours post-transfection. The values (relative light units; RLU) are shown 

as the luminescence ratio between Renilla luciferase (RLuc) and -gal or Firefly 

luciferase (FLuc) and -gal compared to that of the corresponding empty construct, 

which was arbitrarily set to 1. Data are presented below each graph as the means ± 

SD of three independent experiments. Statistical analysis was performed using the 

Student’s t test (unpaired, two-tailed); (∗) p<0.05; (∗∗∗) p<0.001. 
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In order to evaluate the cap independence of APC-driven FLuc expression, a stable 

hairpin was cloned upstream of RLuc of the pR_APC_Fhp- reporter, generating the 

phpR_APC_F construct (Figure VII.3A), and the R/β-gal or F/β-gal ratios were 

obtained as before and compared to those from the pR_APC_Fhp- vector (Figure 

VII.3A), arbitrarily set to 1. If FLuc expression derives solely from IRES-mediated 

translation, only RLuc activity will be reduced by this hairpin. Figure VII.3B shows that 

the hairpin exerts an inhibitory effect not only on RLuc activity but also on FLuc 

activity, suggesting that FLuc expression is somewhat dependent on RLuc.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.3. Firefly luciferase activity driven by the putative APC IRES is 

not independent of Renilla luciferase. (A) Scheme depicting the dicistronic DNA 

reporter pR_APC_Fhp- and phpR_APC_F constructs. A stable hairpin was cloned 

upstream of Renilla luciferase (RLuc) open reading frame (ORF) (RLuc box) of the 

pR_APC_Fhp- construct, originating phpR_APC_F.  (B) Sw480 cells were transiently 

co-transfected with the dicistronic plasmids depicted in A along with a plasmid 

expressing -galactosidase (-gal). Luciferase activity was measured 24 hours post-

transfection. The values (relative light units; RLU) are shown as the luminescence ratio 

between RLuc and -gal or Firefly luciferase (FLuc) and -gal compared to that of the 

pR_APC_Fhp- vector, which was arbitrarily set to 1. Data are presented below each 
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graph as the means ± SD of three independent experiments. Statistical analysis was 

performed using the Student’s t test (unpaired, two-tailed); (∗∗) p<0.01; (∗∗∗) p<0.001. 

 

VII.3.3. The dicistronic reporter carrying the putative APC IRES is 

subjected to cryptic splicing 

It was wondered whether this dependence of APC-driven FLuc expression on RLuc was 

due to a splicing event. In order to check this hypothesis, the APC region under study 

in conjunction with RLuc ORF and part of FLuc coding region, was submitted to Splice 

View analysis, allowing a computer-assisted prediction of potential splice sites. As 

depicted in Table VII.3.1, two splice acceptor sites within APC were predicted. Both 

potential splice acceptor sites have an AG dinucleotide before the potential excision 

point, which might suggest that the GT-AG rule for splice junctions is obeyed (Mount, 

1982).   

 

Table VII.3.1. Four splice donor sites at the 3´ end of Renilla luciferase 

(RLuc) open reading frame (ORF) as well as two splice acceptor sites at 

APC ORF from codon 157 (with a nonsense mutation) to 184 were 

predicted. Potential splice sites were predicted by Splice View program 

(http://zeus2.itb.cnr.it/~webgene/wwwspliceview_ex.html) through submission of the 

DNA sequence spanning Renilla luciferase (RLuc) open reading frame (ORF), the 

intercistronic region, the putative APC IRES sequence and the first 50 nucleotides (nts) 

of FLuc ORF from the pR_APC_Fhp- (Figure VII.1A) construct. The nt numbering is 

referred to the translation initiation site of RLuc and the 5´ end of the putative APC 

IRES, for splice donor and acceptor sites, respectively. PDS - Predicted splice Donor Site; 

PAS - Predicted splice Acceptor Site. 

Predicted splice Donor Sites upstream of the putative APC IRES 

Identification Exon/Intron Localization 

PDS#1 TGG/GTAAGT RLuc ORF nt 242 – 250 

PDS#2 GAG/GTTAGA RLuc ORF nt 631 – 639 

PDS#3 AAG/GTGAAG RLuc ORF nt 838 – 846 

PDS#4 TGG/GTAAGT RLuc ORF nt 884 – 892 

Predicted splice Acceptor Sites at the putative APC IRES 

Identification Intron/Exon Localization 

PAS#1 CAACTTCAG/AATC Nt 13 – 25 

PAS#2 TACAAACAG/ATAT Nt 71 – 83 
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To confirm this prediction, the integrity of the RNA expressed from pR_APC_Fhp- 

was checked through RT-PCR, and the generated PCR fragments were sequenced. As 

shown in Figure VII.4A, a single fragment was generated by PCR amplification with one 

pair of oligonucleotide primers spanning the entire transcript until FLuc codon stop. 

However, sequencing of the generating PCR fragment revealed that the region from nt 

887 of RLuc coding region to nt 79 of the putative APC IRES was deleted (Figure 

VII.4B). The nt 79 is the “G” from the dinucleotide AG of PAS#2 (Table VII.3.1). 

Splice View also predicted several potential splice donor sites at RLuc ORF 3´end 

(Table VII.3.1). Of interest, the excision site for PDS#4 is at nt 886. This potential 

donor site almost perfectly matches the consensus sequence: AG|GTRAGT for splice 

donor sites (Senapathy et al., 1990). Furthermore, a string of nine pyrimidines is found 

6 nts upstream of the PAS#2 excision point. It is known that the polypyrimidine tract 

adjacent to the excision point of a splice acceptor site is an important binding site for 

splice factors (Reed, 1989). Accordingly, this result strongly suggests that the RNA 

expressed from the pR_APC_Fhp- reporter was subjected to cryptic splicing, 

generating an aberrant monocistronic transcript containing RLuc ORF with a 

3´deletion of 50-nts followed by two 3´ end nts from the APC sequence under study, 

and the entire FLuc ORF, which is in-frame with RLuc ORF. This mRNA encodes a 

RLuc-FLuc fusion protein, in which the sixteen C-terminal amino acids of RLuc are 

lacking, the most C-terminal glycine residue is substituted by aspartate and the FLuc 

protein is complete, explaining the RLuc expression-dependency on FLuc activity and 

the decrease of RLuc activity promoted by the APC sequence.  
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Figure VII.4. The dicistronic reporter carrying the putative APC IRES is 

subjected to cryptic splicing resulting in excision of a 157-nt intron. Sw480 

were transiently transfected with the dicistronic pR_APC_Fhp- construct. Twenty-four 

hours later, RNA was extracted and RT-PCR was performed with one pair of 

oligonucleotide primers (represented by arrows), originating a fragment spanning the 

entire transcript until the 3´ end of Firefly luciferase (FLuc) cistron. (A) Ethidium 

bromide-stained agarose gel showing RT-PCR products. A single PCR fragment is 

observed. cDNA: presence of cDNA; -RT: absence of cDNA; pDNA: pR_APC_Fhp- vector, 

containing a 133-bp chimeric intron upstream of Renilla luciferase (RLuc); M: molecular 

weight marker (NZY Ladder III). (B) Sequencing chromatogram demonstrating deletion 

of the DNA sequence between nt 887 from RLuc open reading frame (ORF) and nt 79 

from the putative APC IRES. PDS - Predicted splice Donor Site; PAS - Predicted splice 

Acceptor Site. 

 

In order to prevent the occurrence of cryptic splicing, the PDS#4 (Table VII.3.1) from 

pR_APC_Fhp- plasmid was mutated and a similar approach as before. As shown in 

Figure VII.5A, PCR amplification using a pair of primers spanning the RLuc coding 

region and part of FLuc ORF generated three fragments. By sequencing the generated 

fragments, it was realized that fragment A did not show any deletion (data not shown), 

in opposition to fragment C which lacked a 799-bp sequence from nt 245 of RLuc ORF 

to nt 79 of the putative APC IRES (Figure VII.5B). The fact that the excision point of 

PDS#1 (Table VII.3.1) is at nt 244 strongly suggests that this deletion corresponds to 

removal of a 799-bp cryptic intron. The resultant spliced transcript is similar to the 

observed previously, except for the RLuc ORF 3´ end deletion that is, in this case, of 

692 nts. Fragment B showed a mixture of DNA sequences downstream of nt 245 of 

RLuc ORF (data not shown), suggesting the occurrence of other cryptic splicing events 
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at this region. Together these data demonstrate that the APC fragment tested for IRES 

activity induces alternative splicing in the dicistronic reporter used, disabling the 

analysis of IRES activity.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VII.5. The dicistronic DNA reporter construct carrying the putative 

APC IRES and harboring a point mutation at PDS#4 expresses alternatively 

spliced mRNAs. A silent mutation was introduced at PDS#4 of the dicistronic 

pR_APC_Fhp- construct, by site-directed mutagenesis. Sw480 cells were transiently 

transfected with the generated plasmid vector. Twenty-four hours later, RNA was 

extracted and RT-PCR was performed with one pair of oligonucleotide primers 

(represented by arrows). (A) Ethidium bromide-stained agarose gel showing RT-PCR 

products. Besides the correct 1822-bp fragment (fragment A), two additional 

fragments (B and C) are observed, indicating for the occurrence of alternative splicing. 

cDNA: presence of cDNA; pDNA: pR_APC_Fhp- vector, containing a 133-bp chimeric intron 

upstream of Renilla luciferase (RLuc); M: molecular weight marker (NZY Ladder III). (B) 

Sequencing chromatogram of PCR fragment C demonstrating deletion of the DNA 

sequence between nt 245 from RLuc open reading frame (ORF) and nt 79 from the 

putative APC IRES. PDS - Predicted splice Donor Site; PAS - Predicted splice Acceptor Site. 
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