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ABSTRACT

An elastic-perfectly plastic discretzsd siructure subjected 1o giver proportional loads,
uadergoes displacements, some of which are mossurcd, O thi Hisis af this experimental daws
the yisld limis and the hardening cooflicients are sougls, whergus the alsstic properties are
known. A numiber of pussible ways of tackling this inverse problem are outlined and
discussed. The present paper contains resulis 50 the sensilivity analysis for elastoplastic
problems in the case of discrete structures and steudturcd modetled by finite elements. This
forttlatin Govers giludtions whers Inuccuracias of practieal significance with known
statistical proiperiies alfect toth the micasurernenis and the modaling of the real system.
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The formalaion proposed here wears tie hardering mcduli ay paramelers o be identilizd
{together with the yicld limits). In the imverse prOblz, il ls convenient o heve o suigble
mathed for obluinlng the sensitvivy of the elastaptasue deliimation, ie: Jireclional derivatives
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of respensc with respect tw variztion of design parameters. The Sensitivity result can be used
io1ts own right for (he solution of the inverse problem and & sequential quadratic
programiming dlgonthm is suggesied.

Alternatively, this mathematical program is sét 28 a multicriteria opimizaltion and a
Pareto solution is sought. By using the maximum entropy formalism a s6lution may be
found indirecdly by the unconstrained minimization of a svalar function which i3 both
continuons and differentiable and thus considesably casier 10 solve. The post-optimality
analysis alse shiows the sensitivily of the parameters 1o identify with respect (o perturbationg
of 1the measured displacentents. The procedure developed is tesied by rieans of a 50 element
elastoplastic beam on a elaswoplastic unilateral foundsation,

THE ANALYSIS PROBLEM

The problem of elastoplustic analysis of structures modelled by finite elements can under Lhie
usual assumptions of small displacements and deforiiutions be formulited as quadratic
programming problems, For the sake of simplicity, refeience will be made 1o truss-like
struetures. The matriy relations which govern the clastoplastie response of these structures are
known o cover implicitly, just by re-interpreation of symbals, a broader calegory of discrate
structaral models of continua with piecewise yield locei, For the ilh élement, 2 reversible
(path independent or holononuc) siress-surain relation of the 1ype depicted in Fig.1 is fally
described analytically by lhe equations:
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g = elepl = (8t Qi +mi_p2i (1a)
szll' :~Q1+ET}i+H_1]P}l) 20 (10)
sz.j = Qi + (1"2i + Hgi pgi') >0 (1e)
pioped 20 0 gyipd=0 o @aipie 0 (d)

whicee q‘ is the totad generalized straim, St deniotes the claslic stlfness, Q! the generalized
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Holoaomie slasioplastic deformability laws which are represented, for one-compengat
two-visld-mode slements, by the relation st (1) will he considersd here in finite (not
incremental) quanutics. Such laws cover beth truly revergible nonlinear elastic cases and
irreversible elastoplastic siuations susceptible 10 the non-iocal-unsiiessing hypothesis under
sraportignal loacs. Tha relanens Lor i=l,..m il Be assembicd lor convenlence in the
follewing mauriz relations,

g=(r1Q+Np 2
@ =-NQ+Hp+r 20 (2b)
P >0 : g_ﬁ'Lt) = 0 2

whare S and H are diggonal mamices and N is a diagonal [T -1} matrix. Lety and F deénote
respectively vestors of the displacemenis ol the free nodes (o dogres of freedom) and of the
correspanding given independent nodal Ipads; Q and g will represent the m-veetors of
generalized stresses and strains, respectively. The geomelric compadihility and equilibrium
gquations read:

q=Cu &3

Cclg=w F )
whire Cis am by nomauix whichdepends only en the givenJayout of the structure and & 15
ihe load Tacler. For siruclures deseribed by an slastoplasic stregs-strain law with
workhardening and for o given ¢ | the resulung stress veelor () iy given by the minimizer of,

Min 120 S g+ 12p Hp (58
subjeetto, ClO=o F (3b}
@ =-NQrHp+r =0 (5c)

Qreal s p 20 3d)

This préblcm his 2 solution if the design makes the suucure capable of carrying the
given loads. The dual of (3] is tie convex quadratic program,

Min 12t pil <¢tsc -C‘SNi up o+ Lo FEoAb (61)

NLse N‘5N+H| p lp

subjectlo, u real s p 2 0 {6b)
By substitulion of vestors ¢ and @, the relationship 2a), (3) and () fead 1o the following
expression for the displacements:

4= S+ Gp (7a)
where,

@eKiF, K=C'SC and G=K1CISN (7b)
The vector u® represents the clastic displacement vecter and matrix G transforms veeter p into
the vector of plastic displacements, By seuing,

Q®=scKlF - ' (8a)

A=H+N'SN-G'KG (3bj
cne oblains the quadratic progrum,

sMin1/2p Ap-ptiee NPQ%-1nip ©(9a)
subjectto, p =z W : (5b)

. that ié equivalent w (6), At he opumum saluton ol (he claswplastic andlysis problems (8)
and (171 all the matrices and veetors myvolved arg differentiable. Moveover the acuve
constraints golumns are lincarly independesnt:
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SENSITIVITY ANALYSIS

Elagioplastic analysis problems formulated as quadraiic programming problems involye energy
functionals, equilibriom and yield constrainis that depend on the siruclural data and loading,
The problem of determining the variation of struciurdl response sabject 1o variation of these
parameters is considered in this sectlon. A geneeal tesult for discrete struclures is presented and
implications for the elastoplastic nverse problem are discussed. The general DErameric
guadraric program in the fom,

Min W (x,e) =172 x4 Q(e) x - f(€) x (10a)
subject 1o, Ayleitx-ble)=0 (106)
An(e)tx-ble)<D (10c)

will be considered, whare € is 2 real posilive parameler, x are teal and the matrices Q(g) are
symmetric and positive definite. Also. it is assumad that the matrices Q(E) A{g) = [A]{e)t
AZCS_)L] and the vectars [(£), b(g) are differentiable at € =0, with derivatives Q, A'and I,
b The Lagrange multiplicrs for probiem ( 10) are given by the dual problem,

Min Y (re) =12 1 tPey 1w -gle) 1 (11a)
with, W Teal : Va2 0 {11b)
where the matrix P(€) and the vector g€ ) are differeniiable wilh réspectio € and given by,

p(ej Al Quer! ate) ¢ gley=Ale/Q(e) ! fe)-b(e) (12)

Tn the dual problem P} and g(€) have derivetives P and g, respectively. For € 20
ymiall enough, the right-derivative {sensitivity) 14 " of the Lagrange multpliers is given as the
mniguessalotion of,

Min 172 V' P(o) v- [z - P' 1 (@)t (13a)
subjoct to, vy resl lor L ]-(n‘Jlraai {13h)
vi > 0 for a(a)il x - blo); = (0 and W 50> 0 (13¢)
vz 0 for am)_il x-bla); =0 and % 9ltk= 0 A (13d)
vi=10 for a(o)jl x - hioy < O {13e)
The stationarity conditiong'can be used to find sensitivitics ol the primal variables x',
= Qo)) - @ xlof + T - AT W) -Aw) 1] (14)

1t shouid be emphasized that this procedure gives the right-derivatives. The left derivatives
are the symmetric solutions if the set of active consiraints with zero Lagrange multipliers is
empty. In efastaplasc analysis of siruciures with positive sirainhardening, the solution is
unitjie and the active yield constraints are associmied with posilive plasiic multipliers. The
uplimizalion procedure for the elastoplastic analysis problém can be used 1o provide the
sensilivites as well

NUMERICAL EXAMPLE

A3 an sxample, the plasue dulormhuiions and arsaciaed sensilivilies are camputed for the
clastoplestic heam on elustoplisic feundation represented in Fig 2. The model has 26 degrees
Gf freedom und congisis of 30 deformable elements. Procisely 24 hinges whergthe flexural
deformahility of the bear is lumped,. and 16 springs, account for the foundaticn
deformability. The siructural model is subjecied o dive loadsonly.
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Far the clastic hardening behaviour characleristic of the elements indicated in Fig.3, the
hardening stiffness equats % of the elustic suffness specified for each element,

o jtaN eml dynm)
4
i
K128 o - i i
W, =008 ;
x
I~ W aa3iioden.om | — Plr —f
o Y tredxl KJ‘.q =T tem)
: T |
!'opi kl'““‘ﬁ' H:'O-Oﬁki ap
i
- i
I i ) |
Hy » 008§ 0 v Ky =005k i
2 :r-K'z--|25 —t‘ - T-M;I-I—l f
i P',.J

j —
L
Figore 3

The deformation profile at & =213 for the beam [oundation is shown in Fig4, where the
springs undergoing plastic strains are indicated as straight lines. {vis worth noting that only
the 20th hinge has been activated (in sagging bending), whereas Lhe upper yicld limit is jost
reached only in the 17th hingg, but ne plaslic rotatron has developed bere.

lq:ﬂm lm.‘u«
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Figure 4
Fig.5 represents the nodal displaceménts abtained at different locations by using the
sensitivity information for variations of the beam sagging moment, foundation yield limit and
hardening moduli.
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The approximatiods agreé actual resulis given that the derivatives of the beam deformations
do notehange significantly. Siace thie guadratic coefficients for the sensitivity problem are the
sammie as for the analysis problem, it is necessary 10 assemible only one stiffness matrix.

THE INVERSE ELASTOPLASTIC PREBLEM

The inverse clastoplastic problem can be described as loflows. Whereas the elastic stiffnesses
Are all known, the steainhardening coelficients defining the diagonal matix H and the element
résistanies  will be (he parameters to identily. The yield limits depend lingarly on some
prknown parameters gathered in vector R,
r=BR {15)

For instance, the m structural members might be "a poioct” subdivided in g groups of egual
mermbers. in cach of which the 2 g resisiances are unknown; then R becomes an identification
or colocation mairix of arder 2 m x 2 g with binary entries, The diagonal clements of matrix
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A in (85) are directly relaed 1o the hardening matrix H. Some (say.d) ¢isplacements “hkM are
measured it tests pecformed on the strueture along a lvading process, say al lavels
B e & g This expenmental information (;uhk'r-‘.hzl ..... dik=1...,1) on the overall response
of the systém o be exploied to determine the unknown paramerers R goveming the local
elemerital streoyh. Lot uh_kc indicate the calculated displacements, ie: the valies which would
be supplied by the goveming relations set {mathématicdl miodel) under the same loads for the
sameé displacenient compenents subjecied (0 meAsIrements, generally depends on the valnes of
parameters fed in those relations.

A quite datural measure of discrepanicy between the measured and the theoretical
displacements is provided by 1he Euclidean norm of the difference vector or its square (shouid
psasures exhibit ditferent Tevels of confidence, then different weighting coefficients would be
appropnae).

P= Syt g St O™ - S (a6)
The minimization of this error with zespeet to the parameiers appears to provide a way of
identifying these paramelers.

Ertropy-based weighting coefficiénts

The maximum enropy formatism is a fundamentalconespt in information iheory3. In general
terms it is concerned with establishinig wha logical, unbiused inferences can be drawn from
available information. On the basig of the information available, there is o logical
justification for a criterien which uaduly Tavaurs ene specific coefficient rather than another.
T view of Shannon's intrepretation of the entropy function it is sntirely logical to maximize
the entropy of the weighting coelficients Wi These are oblained by sobving the maximum

entropy mathematical problem:

Max S/K =+ Zh=ld Zk=11 Wik inwhk (17a)
subsject 1o, Th=ld Zk=1t Whx=! (170)
Theld Lk=1,0 Whi Bhk = € (176)
w20 (17d)

§ is the Shannon entropy, K is a positive consiant and the gy Tepresent the levels of
confidence (or the square of the discrepancy between measured and theoretical displacements).

Equation {17¢) has an expected value of zera Tha ealropy maximization problem has
an algebraic solution for Wi

expll 2pil
= 18)

e T
Thelgd Zk=1t explB gyl
in which ., the Lagrange multiplier for Eq. (17¢) is closely related 0 € and can be found by
substituting result (18) into Eq. (17c). 1t 14y be deduced that for € to approach zero from
above b must be chosen positive.

VARICUS APPROACHES TO THE INVERSE PROBLEM

in this section a numnber of possible ways of tackling the identification problem formulated
earlier is envisaged and briefly oudined. Tet D denole a binary dxn matrix which seleets,
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among the n displacement components, those subjected fo measnrements; thus, through (7a)
the d veetor of calculated valizes for the kih test can beexpressed in the form,

S =D (e u®+Gpy) (15)
Making use of eq,(19} in (16), the function 10 minimize becomes a quadratic fori in the
plastic multipliers only.

Min F= gy 0 Mpy + byt py + 6 {20)
where,

M=G'D'DG ; b= 2G' D! (o D= ™) ¢ g = (up™ b ox DY (e D -0 ™)

1t is worth noting that F is convex (as mateix M is positive semidefinite) and does not depend
on the parameters R, These intervene in the minimization constrainis, which are directly
supplied by the Tormalation (2) on the anaiysis problem and read:

Gp=- & N Q°+AH) p +BR20 @21y

20 Bilp=0 (21b3

The constrained optimization problem o witich the identification of the focai resistance
parameters has been cast, is characterized by a complementary censtraint requiring that
beiween a certain pair of comesponding variables at least ong component must vanish. Iis
peculiarity rests on the fact thal the constraints are all linear except the complementary
condition. Besides the nonlinesrily steming from the product A(H) pg in (21a), the
compleméntary condition makes the parameter identilication problem nenlinear and
nonconvex., For simplicity sake, the experimental data is assumed 10 be derived from a singlg
loading condition in the fellowing seclions. 5

Nonconvex Parametric Guadralic Program

If the hardening coefficiems in matrix H are assimed as giver constants and the identification
problem is congieved a3 a consuaingd mismumization with respeg! to vegtors pand R, the only
real source of mathematical and numerical difficulies is represenied by (he complementary
requirement. AL first, o quite natural way of tying lo circomvent this difficulty is w augment
splement ~andilion, Temoving it from the constraints:

the uhjcctive Mt wat

Min Tt RY ['(M o A Q,”,Zk: P S e (- pNIQPL p 4 ¢ (228
end o ln |
§, moso o= N'QO ‘ {2y
poz {22c)
where p is g real pesitive constant. 1L can be sued that problem {20) subject 1o 217 is
- i

ivalent o fhe nenconvex DJ) pro
coinoade, Ref.[2) provides o twe-phias
hardening coctlicienty are rogardsd,

{22b) becama nonlinear and the ng
paramelric nature of A(H). The sensitivity unalvsis progedure described previgusly for the
general copvex parametric OF cor bo adapied bere o ddentify = (al least) local solution:

Icm {22) in the sense that both minimum pOlnl?.S
weiwd for obiatning the globual opimig, Now, i the
sy be idemified, then inoguality constrains
rity of the ebiective function increases in view of the

Seguential Quadratic Programming
The minimization of the quadratic error function F in (16) with respect 1o both R and H can be
done aumerically. The objective function F(R,H) 15 given implicidy via the elastoplastic

analysis programs. u(RG}'{G}C is the displacement veetor of the strocture characterized by the
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yield Limits R z2ad hasdening meduli H in the dual program (&) (or in (9)). Therefore, F is a
continuously differentiable function of ue. The derivatives of F with respect to the parameiers
‘can be computed by using the resalts of the pammetric quadratic program (13,

3u,S (Bup®
MinF =Ty 4 Tuy" - up®®HY zjzl.g1 — AR ijl,gg( — b Hjjz {23)
3 R] /0 \a Hi r"lO

For this problem where ther¢ are only simple range censtraints imposed on (A Rj. A Hj),
compitationzl resulis can be obwined by use of standard sequential quadratic programming. By
Jeiting %' = [RY BY, (23) can be written,

I c 1 s 1
d llh \ f# d Uh ]

Nfil’lF=Ei=1’n Zj:!.ﬂ Zh=1.d( / | FA Ki A KJ -+
".iaxi Q L a_XjJi‘()
/8 L'lhc
+ ZinTharal —) Lo ™GO T Ax + Tyoqg L™ -ugGOF P @4
L8 X:/ g

Sofving (24) for particalar numerical values of up (x%)° and (2 13,5/ 8 x;)0 forms only an
iteration. The solution vector x ! of such an iteration represents a new set of parameters which
must be analysed and gives new values [or uh(’xllc and (3 uh‘:f 3x;), 1 10 replace those

comesponding to x¥ in (24). lterations contfinue until changes in the design variables become
smali.
Minimax Formulation
The information provided by the plastic multipliers and yield functions reduces the dependence
on the stipulated bounds for the parameter changes in sach iteration., The mathematical
programming algorithm described in this section consists of solving a mini-max problem that
is found by rewriting the objective function (16) and the constraints (21) as goals in a
normalized form. If £ represents a reference error, and p, ‘@ the corresponding plastic
multipliers and yield functions, selation (16} becomes,

™ - oy 0%
150 (25)

Lp=1d (“hm - Uh°)2 <E = gi=
; .

The sigi canstraints which impose limits on the variations of nonzero multipliers p and yield
funcsions @, lead 10, :

4 ply) 7
o) = - — - 120 (25b)
L
PaSv 4]
BE= - — -1 <0 . (25¢c)
' 3

where @ is given by (2b). The sensifivity result is obtained by considering the primal as well
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as its dual probiem and sessitivities are given for both the primal and dual variables. The
components of 8p/8x and & @/8x are chiamed from the piecewise solutien of the quadratic
pregram and hence are discontinuous piecewise ‘functions of x. The  complementary
-constraint is checked after each iteration.

The probiem of finding values for the cross aechonai areas whfcn minimize the maximum
of the goals has the form,

min , max =i ¢ (gl, ey Bl gc)' (26}
and belongs to the class of minimax aptimization. The procedure used (o solve this problem
is a recently developed entropy-based appoach. The minimax problem {26} is discontinuous
and non-differentiable, of which both atributes make its numerical solution by direct means
difficult. In ref.[4] it i3 shown that the minimax solution may be found indirectly by the
unconstrained minimization of a scalar function witich is both continuous and differentiable,
and is thus considerably easier to solve:

Min , Maxypex <glx)> = Min(lp)logl 2 exple g1} | @D
over variable x with a sequence of values of increasingly large posilive p=1.The scalar
function minimization allows the use of algorithms for convex optimization. The strategy
adoptad was to solve the implicit optimization problem by means of an ilerative sequence of
explicit approximation models. -An explicit approximation can be formulaied by taking Taylor
series expansions of all the goal funclions in problem (27), truncated after the linear term for
2, (x) and ga(x) and the quadratic term in thecase of g (x}.

/gy
Min {1/g) log| Zk=‘2,c exp plgk(xﬂ)q—‘lizl’N( — A+
Xy Jo
/ag_] ' 1 . /38 Hag]
-C;\tpp[gl(xoﬂzi:iﬂl —“j A.Xl‘l-_— z i=1.n Ejﬂl,ﬂl‘ l |_l Fa % Ax (')8)
(8:&.1 /:j 2 WA /0 dx; /

that 1s solved iteratively antil changes in the design parameters become small.

Discussion

In order o identify R+H parameters, one obviously needs at least (R+H) t independent
measured values. This condition is not sullicient: if it the experimeiits the plastic properties
are not activated, the yield limits are nowheére reactied and lower bounds on the paramerers are
provided by the elastic swresses relaied to (he solution Practically, the solution is highly
dependent upon the numbés and positions of the measurements. Measurements should be made
where the discrepancias are potentially higher: in the neighborhoed of the mest critical points
both in compression and tension iz an ansymumelrical way,

Normally (he number R+H of independent parameters to identily 15 mugch less than the
number {2 m) t of the variablées p which characterize the dimensions ef Lhe nonconvex
quadratic parametric program. Clearly the size of this identilication problem increases alinost
proporticnally with the number of ¢ different tesis and should be ruled out, This is in contrast
with both the sequential quadralic programming tcchnique and the mininax formulation which
are rather msensitive to the test number. Tn (he sequential quadratic programming appreach,
the nodal displacements u are approximated by first order Taylor series at Lhe corrent

parameters (R-G,HO} yielding a guadratic program in ihe parameter changes (AHRA H)L Since
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the solution largely depends on ihe assumed bounds, move limils should be small to avoid an
erratic hehaviour, The mininrax problem is less dependent on the bounds stipulated for the
parameter changes, providing a gmoother convergence, Hence the mumber of cyeles of
analysis/optimizatian in SQP is potentially greater than in the case of the the minimmax
approach. On the other Tiand, (he quasi-Newton algorithm used © solve (28) is less efficient
than the Touting used for quadratic programming. The algonithm used 1o minimize quadratic
functions is subject only ¢ upper and lowar bounds employed for the elastoplastic analysis,
senstiivity analysis and SQP uses partial LDLY fagiorization. The computational times are
gomparable o those required {or the sacrorization of the guadratic coefticiants maiTix.

INFLUENCE OF INACCURACIES IN MEASUREMENTS

As long as it is "a prior" known that there i no inaccuracies in nicasprements and modelling
of the identification problem ireated in pusely dewerministic terms, the minimun of the error
function is zero. In real-life situations inaccuracies af practical significance affect both the
measuremnents and the modelling of the real system. One of the procedures for filtering such
"ioises is the post-optimality analysis of the guadratic program giving the error functon (24)
with respect 10 each parameler in trn. If the cocfficicnts 4y, Tepresent such sensitivities, the
‘parameter changes ¢an be obtained by the linear approximation:

Ax=Zpoy g% B 29

1f the inagcuracies have known sialistical properties, lhe mean and variznce of the parameter
changes are given by,
WAx = Zno1dh P Axg (30a)

2 _ 2 2 .
5 5,2 = Snergdh O A, * Theld Eisldish tn ¥ PhiC Ax, @ Ay CP
where £ is the correlation coeflicient between 48wy, and by Inaccuracics due to other

jastrumental errors and modeling can be treated ina similar way.
NUMERICAL EXAMPLE

The vertical displacements of the hinge points of e beam on elastoplastic foundation
represenied in Fig.2 are assumed (o be measurable and the wo yield limits of the hinges, the
compressive strength of the springs and the hardening cocfficients are. G be identified on the
‘basis of those measurements, In principle it should b possible 4o identify the yield limits, if
the carresponding yield modes & activated and if the mumber of measured displacements is not
less than the number of inknowns. Different starting points were used and both the seqaential
guadratic programming and the minimax formulation gave results in 2-3 iterations, AS stated
before, the quality of these solutions depends-on the location and number of the measurements
and this can be seen in the following Table:

Mesured Displacements Foundation yield limit | Beam sagging moment hardening moduli

All 0.0% i 0.1% 0.1%
17,19.21,23,24.26 0.0 0.1 0.1
14,15,16,17 0.4 1.0 54
17,18,19,21 0.1 _ 0.3 16
19,20,21.22 0.0 0.1 0.1
19,2021 0.0 0.t 0l
17,1821 0. 0.3 18
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It should be noted that the hogging yield limit of the beam cannot be identified correctiy on
the basis of the available information, since there are no positive plastic rotations in the
simulated experiment.

Since the parameter identificarion process depends on the precision of the measures, il is
appropriate (o test the sensitivity of the method with Tespect to possible measurement errors,
An investigation has been carried out by giving a 5% increment 1o every measurement, The
resulting errors in the parameters are 0.6, 1.3 and 3.4, respectively. It can be seen that the
effect on the parameter idemification is much less than the erder of magnitude of the
measurement errors in the ease of the foundation yield limit and the sagging limit moment and
smaller ini the case of the hardening coefficient. For some ather combinations of measurement
discrepancies, the error imvolving this parameter might be higher, bécause the displacements
are rather insensitive with respect to hardening moduli changes {as can be seen in Fig.3). In
order to partiatly simulate measurement irers the generated ‘measured” displacements were
rounded off at the first decimal, Alsodn this case the dislurbances on the identified parameters
proved 1o be negligible (0.7,0.1 and 9.1%, respectively). The procedure has also worked in a
subsequent numerical est, where the sumber of parameters to be identified is increased by also
assuming the zero tensile yield fimil of the sprng to be unknowi.

CONCLUSIONS

The present paper contains resulis on the sensitivicy analysis for elastoplastic problems in the
case of discrete siructures and struciures modelicd by finite elements. The result shows that
determination of fhe sensitivities can be based on the solution of an asscciated quadratic
programming with gnchanged quadratic lerm but with chinged linear 1erms and consiraints
which are given by the derivatives of the matrices involved as well as by the solution of the
primal analysis problem.The inverse problem of idengifying yield limits on the basis of
information on displacement response (o given loads has been tackled here i the context of
discrete structural models with holenomic elasio-plastic pizcewise-linear laws governing the
local deformability. As the dual variables in the elastoplastic analysis problems have a
physical intérpretation (eg, displacements and plastic straing) the sensitivities for the dnal
variables are also of intercst in the pdrameter identificalion context. Various solation
procedures resting on mathematical programming methods, all eapable of exploiting the
peculiar mathematical features of the proposed formulation have been devised and discussed,
inaccuracies primarily dus to the gpproximations embedied in the model and
instrumental noises' affecting the measures have been considered by the procedure employed for
the sensilivity analysis. The examples reparted show that the yield limits and hardening
mioduli are relatively insensilive willy respect 1o perlurbation of the measured displacements,
provided these aré chesen in location and nimber such that they are affected by the local
yielding processas.
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