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Abstract

This thesis is concerned with the asymptotic limits of the solutions

of the homogeneous Dirichlet problem associated to a doubly nonlinear

evolution equation of the form ut = ∆pu
m + g, as the parameters p and

m go to infinity. This equation combines the nonlinearities of the porous

medium equation, which corresponds to the case p = 2, and the p-Laplace

equation, which corresponds to the case m = 1. The main contribution we

give is to generalize some of the results known for the asymptotic limits

of the solutions of initial-value problems associated to the porous medium

equation, as m tends to infinity, and to the p-Laplace equation, as p goes to

infinity. The motivation for the study of the limiting behaviour of solutions

to these equations arises from their potential physical applications, as they

serve as mathematical models for physical problems in several fields, for

example in the study of non-Newtonian fluids, turbulent flow of a gas

in porous media and glaciology. Moreover, under certain conditions on

the initial data, they give rise at the limit to problems with completely

different properties, with important physical applications of their own and

which require novel analytical approaches.

We will address the limits in p and m separately and in sequence, even-

tually completing a convergence diagram for the problem. As far as we

know, not much has been done on the asymptotic behaviour of the solu-

tions of the doubly nonlinear equation, when both m 6= 1 and p 6= 2. In

particular, the complete convergence diagram is a novelty.

We associate to the doubly nonlinear equation an integrable source term g

and integrable nonnegative initial data. To analyze the limit when p→∞,

we take any bounded domain of RN with smooth boundary. To evaluate

the limit as m goes to infinity, we further assume that the domain is either

a bounded interval of the real line or a ball of radius R, in which case we

also assume that the initial data is radial. We prove, under the additional



assumptions on the domain and initial data stated above, that the equa-

tion satisfied at the limit is independent of the order in which we take the

limits in p and m. We achieve the complete diagram for the regular limit

of the solutions, but we also present some results regarding the singular

limits of the solutions of the doubly nonlinear equation as p and m tend

to infinity. The nonlinear semigroup approach will be employed to pass

to the limit.

Keywords: doubly nonlinear equation, asymptotic limit, singular limit.
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Resumo

O objetivo deste trabalho é investigar os limites assimptóticos das

soluções do problema de Dirichlet homogéneo associado à equação de

evolução duplamente não linear ut = ∆pu
m + g, quando os parâmetros

p e m tendem para infinito. Esta equação combina a não linearidade da

equação dos meios porosos, que corresponde ao caso p = 2, com a não

linearidade da equação de p-Laplace, que corresponde ao caso m = 1.

A contribuição principal deste trabalho é generalizar alguns dos resulta-

dos conhecidos para os limites assimptóticos das soluções de problemas

de valor inicial associados à equação dos meios porosos, quando m tende

para infinito e à equação de p-Laplace, quando p tende para infinito. A

motivação para o estudo do comportamento no limite das soluções destas

equações radica nas suas aplicações f́ısicas, uma vez que constituem mode-

los matemáticos para problemas f́ısicos em diferentes contextos, por exem-

plo no estudo dos fluidos não Newtonianos, do fluxo turbulento de um gás

em meios porosos e em glaciologia. Adicionalmente, sob certas condições

iniciais, encontramos no limite problemas com propriedades completa-

mente diferentes, com aplicações f́ısicas que são interessantes por si sós e

que exigem uma abordagem anaĺıtica inovadora.

Estudaremos os limites em p e m separadamente e em sequência, eventual-

mente completando um diagrama de convergência para o problema. Tanto

quanto sabemos, muito pouco tem sido feito sobre o comportamento as-

simptótico das soluções da equação duplamente não linear, quando m 6= 1

e p 6= 2 simultaneamente. Em particular, o diagrama de convergência

completo é uma novidade.

Associamos à equação duplamente não linear um termo g integrável e

um valor inicial não negativo e também integrável. Para analisar o lim-

ite quando p → ∞, consideramos qualquer domı́nio limitado de RN com

fronteira regular. Para determinar o limite quando m tende para infinito,

assumimos que o domı́nio é um intervalo limitado da recta real ou uma



bola de raio R, e neste último caso assumimos também que o valor inicial

é radial. Provamos, sob as condições adicionais no domı́nio e no valor ini-

cial referidas, que a equação satisfeita no limite é independente da ordem

pela qual tomamos os limites em p e m. Além de obtermos o diagrama

completo para o limite regular das soluções, apresentamos alguns resulta-

dos relacionados com o limite singular da equação duplamente não linear

quando p e m tendem para infinito, usando a teoria dos semigrupos não

lineares.

Palavras-chave: equação duplamente não linear, limite assimptótico,

limite singular.
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Notation

|A| Lebesgue measure of a set A

χA characteristic function of a set A

supp (f) support of a function f

f+, f− max (f, 0), max (−f, 0)

f ∧ g, f ∨ g inf (f, g), sup (f, g)

B(x, r) ball in RN of centre x and radius r

→ strong convergence

⇀ weak convergence
∗
⇀ weak star convergence

sign(r) is the signum graph:

sign(r) =


−1 if r < 0,

[−1,+1] if r = 0,

1 if r > 0.

sign0(r) is the single-valued restriction:

sign0(r) =


−1 if r < 0,

0 if r = 0,

1 if r > 0.

sign+(r) is the restriction to the positive part:

sign+(r) =


−1 if r < 0,

[0,+1] if r = 0,

0 if r > 0.

sign+
0 (r) is the single-valued restriction to the positive part

sign+
0 (r) =

{
0 if r ≤ 0,

1 if r > 0.
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Introduction

In this thesis, we study the limiting behaviour of the solutions of the Dirichlet

problem associated to the doubly nonlinear equation

ut = ∆pu
m + g, with m(p− 1) > 1, (DNE)

as the parameters p and m tend to infinity, where

∆pw := div (|∇w|p−2∇w)

is the p-Laplace operator. This important parabolic equation includes the (degener-

ate) parabolic p-Laplace equation, for m = 1,

ut = ∆pu, with p > 2, (PLE)

and the porous medium equation, for p = 2,

ut = ∆um, with m > 1, (PME)

both of which are prototypes of diffusion equations and are extensively studied in the

literature.

The equation in (DNE) is known as the doubly nonlinear diffusion equation since

its diffusion coefficient D(u,∇u) = mp−1u(m−1)(p−1)|∇u|p−2 exhibits a double nonlin-

earity, depending on both u and its gradient∇u. It also possesses a double degeneracy,

for the slow diffusion case m(p− 1) > 1, as its diffusion coefficient vanishes at points

where |∇u| = 0 or u = 0. The study of this class of nonlinear evolution equations is

motivated by their physical applications. They are used as mathematical models for

physical problems in many fields, for example in the study of non-Newtonian fluids

[35], turbulent flow of a gas in porous media ([37]) and glaciology ([22],[32]).

Since the early eighties, extensive work has been done for the asymptotic limit of

initial-value problems associated to (PLE) and (PME), as the parameters p and m

tend to infinity, respectively. However, very few references appear in the literature on

the asymptotic limits of the general (DNE) in the case that both m 6= 1 and p 6= 2.
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As far as we know, only some progress has been made, especially in the case when

the domain is the whole of RN , under restrictive conditions on the initial datum, for

the asymptotic limit with respect to the parameter m, when p is fixed (see [15], [33]

and [31]).

In the present work, we consider the following homogeneous Dirichlet problem for

(DNE) 

ut = ∆pu
m + g on (0, T )× Ω

um = 0 on (0, T )× ∂Ω

u(0, ·) = u0(·) on Ω,

(0.1)

where Ω is a bounded domain of RN , with initial datum u0 ∈ L1(Ω) and source term

g ∈ L1(ΩT ).

Notice that for (DNE), variations of the parameters p and m affect directly the

diffusion coefficient

D(u,∇u) ≈ |∇um|p−2um−1 ≈ u(m−1)(p−1)|∇u|p−2.

We can see that formally, fixing m, D(u,∇u) converges to infinity for the points

where |∇um| > 1 and to zero for those where |∇um| < 1, as p tends to infinity.

Similarly, fixing p, D(u,∇u) converges to infinity for points where |u| > 1 and to

zero for those where |u| < 1, when m tends to infinity. We will see that these four

regions, {|∇um| > 1}, {|∇um| < 1}, {|u| < 1} and {|u| > 1}, will play an important

role in studying the asymptotic limits and in many cases we will need to study them

separately.

Our aim is to shed some light into the complete picture by generalizing some of

the results known for the prototype equations (PLE) and (PME) to the doubly

nonlinear equation, by means provided by nonlinear semigroup theory. Since (DNE)

inherits many of the characteristic features of (PLE) and (PME), the outline of the

theory will be similar. However, the appearance of the double degeneracy will offer

new challenges that will require using different techniques.

We will address the limits in p and m separately and in sequence, eventually

completing a convergence diagram for the problem. To be precise, we prove under

certain additional conditions on the initial data, the existence of the limit of solutions

of problem (0.1), as p tends to infinity, and the equation it satisfies at the limit, hence

generalizing the results found in [27] and [4]. We show as well, assuming that either Ω

is a bounded interval of the real line or a ball in RN , in which case we also assume that
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u0 is radial, that the solutions of (0.1) converge as the parameter m tends to infinity

and present the equation satisfied by this limit. We see that this equation coincides

with the one obtained in [33], where the asymptotic behaviour as m tends to infinity of

the solutions of the associated Cauchy problem to (DNE) was studied. However, we

highlight that working in a bounded domain requires using different techniques to pass

to the limit. Finally, we study the convergence of the solutions of the corresponding

limit equations as the exponents m and p tend to infinity, respectively, establishing

that once both parameters have been taken to infinity, the equation we obtain is the

same, independently of the order in which we take the limits in p and m. For the

original results, we refer to [5].

In a broader sense, the study of asymptotic limits of partial differential equa-

tions (pdes) attracts a lot of attention due to its physical interest. Indeed, several

physical and mechanical problems are modeled by perturbations of pdes, which are,

in many cases, given by parameters. Understanding the dependence of the pdes on

the variations of these parameters allows us to solve questions regarding important

properties they satisfy. Moreover, it may occur that variations of the evolution of

the pdes with respect to changes of the parameters are so significant, that in the

limit the problem may be completely different in nature. From the physical point

of view, this means that for large values of the parameters, there appear important

phenomena, which although intuitive, must be rigorously understood in terms of the

mathematical model.

This kind of problems also hold mathematical interest on their own in the study of

singular limits of homogeneous semigroups following the work of Bénilan. The notion

of convergence of nonlinear semigroups, as presented by Brézis and Pazy [20], pro-

vides the appropriate framework for studying the asymptotic limits of large classes

of evolution problems. In fact, for a sequence of evolution problems governed by

multivalued m-accretive operators, we can use nonlinear semigroup theory to under-

stand how the solutions of these problems depend continuously on the sequence of

operators. Specifically, let us consider the following sequence of problems

(uk)t + Akuk 3 g in (0,∞), uk(0) = u0, (0.2)k

for m-accretive operators Ak in a Banach space X and assume that there exists an

m-accretive operator A such that Ak → A in the sense of resolvents. Then, we can

conclude, as long as u0 ∈ D(A), that there exists a function u such that

uk → u in C(0,∞;X),

17



and u is the solution of

ut + Au 3 g in (0,∞), u(0) = u0. (0.2)

This powerful tool allowed to determine the convergence of solutions of evolution

problems, as well as the equation satisfied at the limit, merely from the convergence

of the sequence of operators, as long as the initial data was compatible with the

limiting m-accretive operator A. However, if u0 ∈ X\D(A), then the limit problem

(0.2) is not well posed. The limit of the solutions of the sequence of problems may

not exist.

Nevertheless, it turns out that for a large class of specific problems the limit exists

and it is interesting to understand the properties of the limit solution. When this

occurs, we say that there exists a singular limit. For the limit problem to be well

posed, there must be a discontinuity in the passage to the limit with respect to the

initial inconsistent data. The problem at the limit will then have a new initial data

which is adapted to the limit operator. We would have the following problem at the

limit

ut + Au 3 g in (0,∞), u(0) = u0, (0.2)′

where now u0 ∈ D(A). However, to this day, it is still unclear what are the features of

this new initial data. For a long time, it was believed that this u0 was the projection

of u0 onto the closure of the domain of the limit operator A. This is the case when

the sequence of operators Ak are the Yosida approximation of the limit operator

A, Ak := (I − (I + kA)−1)/k, where A is assumed to be maximal monotone in a

Hilbert space [18]. It also holds for certain approximations of homogenous m-accretive

operators in the case that the sequence of solutions of the approximate problems are

non-negative [14]. However, this does not hold in general, as it was shown to be false

for the limit problem as p tends to infinity of the Dirichlet problem associated to

(PLE), even for the convergence of non-negative solutions [27].

Outline of the thesis

In chapter 1, we collect several definitions and results that we will need throughout

the thesis. We start by compiling some standard results on Sobolev, Lebesgue and BV

spaces. Then we introduce some properties of accretive and m-accretive operators,

focusing in particular on subdifferential operators, as well as the evolution equations

associated to these operators. We present the concepts of mild and integral solutions

and finally provide an overview on the study of the convergence of the operators and

their corresponding semigroups.

18



In the first section of chapter 2, we gather the results known on the asymptotic

limit of the Cauchy problem associated to (PLE), when p tends to infinity, as well

as its physical significance. This section will have two main parts, which depend on

the condition imposed on the initial datum u0, i.e., whether ‖∇u0‖L∞(RN ) ≤ 1 or

‖∇u0‖L∞(RN ) > 1. We emphasize that the past studies on limiting behaviour of the

parabolic p-Laplace equation were carried out considering the domain to be the whole

of RN and solutions in the weak sense. To study the asymptotic behaviour of the

problem in (0.1) we will work on bounded domains and solutions in the mild sense.

Under these conditions, we will generalize the results obtained for (PLE) using the

classical results of the nonlinear semigroup theory.

Chapter 3 will follow a similar outline to chapter 2, only now we will analyze the

asymptotic limit with respect to the parameter m. We briefly give an overview of

the results obtained for the asymptotic limit of (PME), which has been extensively

studied in the literature. Furthermore, we discuss the main results which have been

proved for the Cauchy-Dirichlet problem associated to (DNE). Most of these results

will be adaptable to the case of bounded domains, except for a compactness result.

Our contribution will focus on certain BV estimates which will allow us to prove

the convergence of non-negative solutions of the Dirichlet problem, when m tends

to infinity, and the equation it satisfies at the limit, assuming that the domain is a

bounded interval in the real line or a ball, in which case we also assume that the

initial data is radial.

In chapter 4, we study the asymptotic behaviour of the solutions of the limit

equations obtained in chapter 2 and 3. In the first section we analyze the behaviour,

asm tends to infinity, of the limit obtained in chapter 2, for the regular case. Similarly,

in the second section, we examine the asymptotic behaviour, as p goes to infinity, of

the regular limit obtained in chapter 3. Hence, in the final section, we already have

all the ingredients necessary to complete the convergence diagram in the regular case.

We prove that the equation satisfied in the limit is the same, independently of the

order of the limits in p and m.

We conclude with a summary of the main results obtained and the problems that

still remain open and will be an interesting direction for research in the future.
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1. Preliminaries

In this chapter, we will recall some definitions and properties of function spaces

as well as classical results of nonlinear semigroup theory. Standard references for the

material presented here, for the nonlinear semigroup theory, are [7],[13] and [40].

1.1 Function spaces

Let Ω be a bounded domain in RN with boundary ∂Ω. For 1 ≤ p ≤ ∞, we denote

by Lp(Ω) the space of Lebesgue measurable functions u : Ω→ R such that, if p <∞,

‖u‖Lp(Ω) = ‖u‖p =

(∫
Ω

|u|pdx
)1/p

<∞,

and, for p =∞,

‖u‖L∞(Ω) = ‖u‖∞ = ess sup
Ω
|u| <∞.

Let us denote by Lploc(Ω) the space of Lebesgue measurable functions u such that

‖u‖Lp(K) < ∞, for all compact subsets K ⊂ Ω. For u ∈ C1(Ω), denote by ∂u
∂xi

(or

simply uxi), its partial derivative and by ∇u = (ux1 , · · · , uxN ) its gradient.

The Sobolev space W 1,p(Ω) with 1 ≤ p ≤ ∞, is the space of functions u ∈ Lp(Ω),

whose generalized derivatives or derivatives in the distribution sense uxi , belong to

Lp(Ω) for all i = 1, · · · , N , namely ∇u ∈ (Lp(Ω))N , endowed with the natural norm

‖u‖W 1,p(Ω) = ‖u‖1,p = ‖u‖Lp(Ω) + ‖∇u‖Lp(Ω).

W 1,p
0 (Ω) denotes the closure of C∞0 (Ω) under this norm. A function u ∈ W 1,p

loc (Ω)

if ‖u‖W 1,p(K) <∞, for every compact subset K ⊂ Ω. We recall that, for 1 < p <∞,

the dual space of Lp(Ω) is identified with Lp
′
(Ω), where p′ = p

p−1
is the conjugate of

p.

We recall the following Sobolev embedding for functions in W 1,p
0 , 1 ≤ p < N .
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Theorem 1.1.1. Let u ∈ W 1,p
0 (Ω) for some p ∈ [1, N). Then there exists a constant

C = C(N, p) such that

‖u‖q,Ω ≤ C‖∇u‖p,Ω,

for each q ∈ [1, p∗], where p∗ is the Sobolev conjugate of p, defined as

p∗ :=
Np

N − p
.

In particular, for all p ∈ [1, N)

‖u‖p,Ω ≤ C‖∇u‖p,Ω.

This last estimate is referred to as the Poincaré’s inequality for functions whose

trace on the boundary of Ω is zero.

Let us consider as well some properties of the space BV (Ω) as defined below:

Definition 1.1.1. A function u ∈ L1(Ω) has bounded variation in Ω if∫
Ω

|∇u| := sup

{∫
Ω

u divϕ : ϕ ∈ C∞0 (Ω;RN) and ‖ϕ‖∞ ≤ 1 in Ω

}
<∞.

We write

BV (Ω)

to denote the space of functions of bounded variation.

Remark 1.1.1. If u ∈ BV (Ω) and ∇u is the gradient of u in the sense of distributions,

then ∇u is a vector valued Radon measure and

∫
Ω

|∇u| is the total variation of ∇u
on Ω.

BV (Ω) is a Banach space endowed with the norm

‖u‖BV (Ω) = ‖u‖L1(Ω) +

∫
Ω

|∇u|.

Theorem 1.1.2. (Lower semicontinuity) Let Ω be an open set and let {uj} be a sequence

of functions in BV (Ω) which converges in L1(Ω) to a function u. Then∫
Ω

|∇u| ≤ lim inf
j→∞

∫
Ω

|∇uj|.

Theorem 1.1.3. (Compactness) Let Ω be open and bounded with ∂Ω Lipschitz. Assume

{uj} is a sequence in BV (Ω) that satisfies

sup
j
‖uj‖BV (Ω) <∞,

then there exists a subsequence {ujk} and a function u ∈ BV (Ω) such that

ujk → u in L1(Ω) as k →∞.

22



For 0 < T < ∞, let us denote by ΩT the cylindrical domain (0, T ) × Ω. The

space Lr(0, T ;Lp(Ω)) for r, p ≥ 1 is the collection of functions u(x, t), defined and

measurable in ΩT , such that for almost every t, 0 < t < T , the functions u ∈ Lp(Ω)

and

‖u‖r,p,ΩT =

(∫ T

0

(∫
Ω

|u(x, t)|pdx
)r/p

dt

)1/r

<∞.

Also, u ∈ Lrloc(0, T ;Lploc(Ω)), if for every compact subset K ⊂ Ω and every subin-

terval [t1, t2] ⊂ (0, T ] ∫ t2

t1

(∫
K

|u|pdx
)r/p

dt <∞.

Whenever r = p, we set Lp(0, T ;Lp(Ω)) = Lp(ΩT ). These definitions are extended in

the obvious way when either p or r are infinity.

The parabolic Sobolev space Lr(0, T ;W 1,p(Ω)) is the space of functions u(x, t),

such that for almost every t, 0 < t < T , the functions u ∈ W 1,p(Ω) and∫ T

0

(∫
Ω

|u|p + |∇u|p
)r/p

dt <∞.

The space C(0, T ;Lp(Ω)) is defined as the space of all measurable functions u on ΩT

such that for all t ∈ [0, T ], u(t, ·) ∈ Lp(Ω) and u(t, ·) is a continuous function from

[0, T ] to Lq(Ω), that is

lim
h→0
‖u(t+ h, ·)− u(t, ·)‖p,Ω = 0.

1.2 Accretive operators

Let A be an operator (possibly multivalued) A : X → P(X) acting on a Banach

space X endowed with a norm denoted by ‖ · ‖. The domain of A is defined as

D(A) = {x ∈ X | Ax 6= ∅} and its range as R(A) =
⋃
x∈D(A)Ax.

An operator A is single-valued if Ax is a singleton for all x ∈ D(A). The

operator A can be identified with its graph in X × X as follows: (x, y) ∈ A if and

only if x ∈ D(A) and y ∈ Ax. A will denote the closure in X ×X of the graph of A.

Definition 1.2.1. An operator A in X is accretive if

‖x− x̂‖ ≤ ‖x− x̂+ λ(y − ŷ)‖ whenever λ ≥ 0, and (x, y), (x̂, ŷ) ∈ A.

In practice it is useful to reformulate the definition of accretive operators in terms

of its resolvent operator (I + λA)−1 which we will denote by JAλ and the bracket [·, ·]
which will be defined below.
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Definition 1.2.2. For every x, y ∈ X, we define the bracket [·, ·] : X ×X → R by

[x, y] = inf
λ>0

[x, y]λ = inf
λ>0

‖x+ λy‖ − ‖x‖
λ

.

Proposition 1.2.1. The following are equivalent

(i) A is accretive,

(ii) JAλ is a single-valued contraction operator which means that it satisfies the following

inequality for any x, y ∈ D(JAλ ) and λ ≥ 0:

‖JAλ x− JAλ y‖ ≤ ‖x− y‖,

(iii) [x− x̂, y − ŷ] ≥ 0 whenever (x, y), (x̂, ŷ) ∈ A.

If X is a Banach lattice, in which case we can define the positive part of an

element x ∈ X, we can also define [·, ·]+ and the corresponding T -accretive operators

as follows.

Definition 1.2.3. For every x, y ∈ X, [·, ·]+ : X ×X → R is

[x, y]+ = inf
λ>0

‖(x+ λy)+‖ − ‖(x)+‖
λ

.

Definition 1.2.4. An operator A in X is T -accretive if one of the following equivalent

properties hold:

(i) ‖(x− x̂)+‖ ≤ ‖(x− x̂+ λ(y − ŷ))+‖ whenever λ ≥ 0, and (x, y), (x̂, ŷ) ∈ A.

(ii) JAλ is a single-valued T -contraction operator, which means that it satisfies the

following inequality for any x, y ∈ D(JAλ ) and λ ≥ 0:

‖(JAλ x− JAλ y)+‖ ≤ ‖(x− y)+‖.

(iii) [x− x̂, y − ŷ]+ ≥ 0 whenever (x, y), (x̂, ŷ) ∈ A.

We will need as well a stronger concept that ensures the existence of a unique

solution of x+ λAx = y for all y ∈ X and λ > 0.

Definition 1.2.5. An operator A in X is m-accretive if it verifies one of the following

equivalent properties:

(i) For all λ > 0, JAλ is an everywhere defined contraction.
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(ii) A is accretive and there exists λ > 0 such that R(I + λA) = X.

(iii) A is accretive and for all λ > 0, R(I + λA) = X.

Definition 1.2.6. An operator A of X is m-T -accretive if it is T -accretive and there

exists λ > 0 such that R(I + λA) = X.

Now let Ω be any open domain in RN and X = L1(Ω). Using the definition of

accretive and T -accretive operators we can see that the following propositions hold.

Proposition 1.2.2.

1. An operator A in L1(Ω) is accretive if and only if one of the following equivalent

properties holds for all (u, v), (û, v̂) ∈ A:

(i) ∫
Ω

sign0(u− û)(v − v̂)dx+

∫
{u=û}

|v − v̂|dx ≥ 0.

(ii) There exists α ∈ L∞(Ω), α(x) ∈ sign(u(x)− û(x)) a.e. in Ω such that∫
Ω

α(x)(v − v̂)dx ≥ 0.

2. An operator A in L1(Ω) is T -accretive if and only if one of the following equivalent

properties holds for all (u, v), (û, v̂) ∈ A:

(i) ∫
{u=û}

(v − v̂)+dx+

∫
{u>û}

(v − v̂)dx ≥ 0.

(ii) There exists α ∈ L∞(Ω), α(x) ∈ sign+(u(x)− û(x)) a.e. in Ω such that∫
Ω

α(x)(v − v̂)dx ≥ 0.

Let us note that in the case of Lp(Ω) spaces, 1 ≤ p ≤ ∞, T-accretivity implies

accretivity since the norm satisfies

‖x+‖ ≤ ‖y+‖ and ‖x−‖ ≤ ‖y−‖ implies ‖x‖ ≤ ‖y‖.

For all u, v ∈ L1(Ω), we denote u� v if and only if∫
Ω

j(u)dx ≤
∫

Ω

j(v)dx for all j : R→ [0,∞] convex, l.s.c and j(0) = 0.
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Definition 1.2.7. An operator A in L1(Ω) is completely accretive if it verifies one of

the following equivalent conditions:

(i)

u− û� u− û+ λ(v − v̂), ∀ (u, v), (û, v̂) ∈ A and λ > 0.

(ii) ∫
{u−û>k}

(v − v̂)dx ≥ 0 ≥
∫
{u−û<−k}

(v − v̂)dx, ∀ (u, v), (û, v̂) ∈ A and k > 0.

(iii) ∫
Ω

(v − v̂)h(u− û)dx ≥ 0, ∀ (u, v), (û, v̂) ∈ A and h ∈ H0,

where

H0 := {h ∈ C1(R); h(0) = 0 and 0 ≤ h′ ≤ 1}. (1.1)

It is clear that a completely accretive operator is accretive for all the norms Lp(Ω)

with 1 ≤ p ≤ ∞.

1.3 Subdifferential operators

We will examine a particular class of operators called subdifferential operators of

convex, proper, lower semicontinuous (l.s.c) functions.

Let us consider X a real Banach space and Φ a convex function. A function

Φ : X → (−∞,∞] is said to be proper if it is not identically equal to +∞ (that is, if

its effective domain D(Φ) defined by D(Φ) = {u ∈ X : Φ(u) < +∞ } is non-empty).

Definition 1.3.1. Let Φ : X → (−∞,∞] be proper and convex on a Banach space

X. The subdifferential of Φ is a possibly multi-valued operator ∂Φ : X → 2X
∗

defined

by (u, u∗) ∈ ∂Φ, i.e., u ∈ D(∂Φ), u∗ ∈ ∂Φ(u) if

Φ(v) ≥ Φ(u) + X∗〈u∗, v − u〉X ∀ v ∈ D(Φ),

with D(∂Φ) = {u ∈ X : ∂Φ(u) 6= ∅}, where X∗〈·, ·〉X denotes the natural duality

between X and X∗.

Clearly then D(∂Φ) ⊂ D(Φ).

In the case that X is a Hilbert space H we have that

u ∈ D(∂Φ) and w ∈ ∂Φ(u),
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provided

Φ(v) ≥ Φ(u) + (w, v − u),

for all v ∈ H, where (·, ·) is the inner product in H. It also holds that D(∂Φ) = D(Φ).

Given C a closed convex subset of H, we define the indicator function of C by:

IC(u) =


0 if u ∈ C,

+∞ if u /∈ C.
(1.2)

Then the subdifferential of IC is characterized by

v ∈ ∂IC(u)⇐⇒ u ∈ C and (v, w − u) ≤ 0 ∀w ∈ C. (1.3)

Maximal accretive operators in Hilbert spaces more commonly known as maximal

monotone operators are defined below. In the particular case when H = R they are

called maximal monotone graphs.

Definition 1.3.2. An operator A in a Hilbert space H is called maximal monotone

if it satisfies the following properties:

(i) for every u1,u2 ∈ D(A) and every v1 ∈ A(u1), v2 ∈ A(u2) we have

(v1 − v2, u1 − u2) ≥ 0.

(ii) Its graph is a maximal element among all monotone operators in H.

It is important to note that even though any accretive operator has a maximal

accretive extension by Zorn’s lemma and m-accretive operators are maximal elements

in the set of accretive operators, there are accretive operators which do not admit

any m-accretive extension. Therefore in a general Banach space these concepts do

not coincide, although they do coincide in a Hilbert space.

Proposition 1.3.1. Let Φ be a proper convex function in H. If Φ is lower semicontin-

uous, then its subdifferential ∂Φ is a maximal monotone operator.

Denote by M(Ω) the space of (a.e. equivalence classes) of measurable mappings

from Ω into R. Let us now consider X a linear subspace of M(Ω) and Φ : X →
(−∞,+∞]. We define as in [12] the operator ∂XΦ in X by

v ∈ ∂XΦ(u)⇐⇒ u ∈ D(Φ), v ∈ X and

Φ(w) ≥ Φ(u) +

∫
(w − u)v, for w ∈ X with (w − u)v ∈ L1(Ω),

(1.4)

where D(Φ) continues to be the effective domain of Φ.
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Remark 1.3.1. Notice that in the case that X ⊂ L2(Ω), ∂XΦ = (∂Φ̂)X where ∂Φ̂ is

the subdifferential in L2(Ω), as defined above, of the extension Φ̂ of Φ to L2(Ω) which

is +∞ on L2(Ω)\X.

The following result was proved in [12] for more general spaces.

Lemma 1.3.2. Let X be any Lp(Ω) space, 1 ≤ p ≤ ∞ and Φ : X → (−∞,+∞].

Assume that

Φ(u+ h(û− u)) + Φ(û− h(û− u)) ≤ Φ(u) + Φ(û), for u, û ∈ X, (1.5)

holds for h ∈ H0. Then ∂XΦ is completely accretive.

Let Φ = IC be the indicator function as defined in (1.2). In this case ∂XΦ is the

graph{
(u, v) ∈ C ×X :

∫
(u− w)v ≥ 0 for w ∈ C with (u− w)v ∈ L1(Ω)

}
, (1.6)

and property (1.5) for h ∈ Ĥ0 is then exactly

u, û ∈ C, h ∈ Ĥ0 =⇒ u+ h(û− u) ∈ C,

where

Ĥ0 = {h ∈ Lip(R) : h(0) = 0 and 0 ≤ h′ ≤ 1 a.e.},

the closure of H0 in C(R).

Proposition 1.3.3. Let A be a completely accretive operator in L1(Ω) and ϕ a maximal

monotone graph then A ◦ ϕ is T -accretive in L1(Ω).

Proof. A ◦ ϕ is T -accretive in L1(Ω), by proposition 1.2.2, if whenever (u, v), (û, v̂) ∈
A ◦ ϕ then ∫

{u=û}
(v − v̂)+dx+

∫
{u>û}

(v − v̂)dx ≥ 0.

Therefore, it is enough to prove that the second term is non-negative.

v ∈ A(ϕ(u)) if there exists w ∈ ϕ(u) such that v ∈ Aw.

By the complete accretivity of A, for (u,w), (û, ŵ) ∈ A,∫
Ω

(v − v̂)h(w − ŵ) ≥ 0, ∀h ∈ H0.
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Take h as a smooth approximation of (r − ε)+ ∧ ε, divide by ε > 0 and let ε → 0 to

obtain ∫
{w>ŵ}

(v − v̂) =

∫
Ω

(v − v̂)sign+
0 (w − ŵ) ≥ 0.

On the other hand by the maximal monotonicity of ϕ we have {u > û} = {w > ŵ}
and the result follows.

We will also need the following lemma by Brézis [19].

Lemma 1.3.4. Let A be a maximal monotone operator on a Hilbert space H. Let

Zn and Wn be measurable functions from Ω (a finite measure space) onto H. Assume

Zn → Z a.e. on Ω and Wn ⇀W weakly in L1(Ω;H). If Wn(x) ∈ A(Zn(x)) a.e. on Ω,

then W (x) ∈ A(Z(x)) a.e. on Ω.

1.4 Evolution equation associated to accretive op-

erators

Let A be an operator in X, u0 ∈ X and g ∈ L1(0, T ;X). We consider the

following Cauchy problem 
du

dt
+ Au 3 g on [0, T ],

u(0) = u0.

(P)

Let us recall some results from non-linear semigroup theory applied to obtain

existence of solutions of abstract differential equations as the one in (P).

1.4.1 Mild solutions

Let us revisit the method of implicit time discretization (ITD) which allows us to

find, under certain conditions on the operator A, approximations of solutions to the

ODE problem in (P).

Indeed, for every partition P = {0 = t0 < t1 < · · · < tn ≤ T}, we can consider

the discretized system

ui − ui−1

εi−1

+ Aui 3 gi i = 1, · · · , n, (1.7)

where εi−1 = ti−ti−1 is the time step and g1, g2, · · · , gn is a discretization of g adapted

to the partition P , which satisfies
n∑
i=1

∫ ti

ti−1

‖g(s)− gi‖ds ≤ ε.
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Let us denote such ε-discretization of the problem (P ) by DA(t0, · · · , tn : g1, · · · , gn).

Equation (1.7) can be rewritten as

ui−1 + εi−1gi ∈ ui + εi−1Aui. (1.8)

Using the definition of JAλ , the resolvent of A, (1.8) determines the values of ui by

ui = Jεi−1
(ui−1 + εi−1gi), i = 1, · · · , n.

This is well defined if and only if ui−1 + εi−1gi ∈ R(I + λA) for all i = 1, · · · , n,

which holds in particular for m-accretive operators. Therefore, given u0, we can

successively find the values of ui from its previous values ui−1. We can then define

the piecewise constant function uε : [0, T ]→ X by uε(0) = u0 and uε(t) = ui = u(ti)

for ti−1 < t ≤ ti, and retrieve from the discrete set {ui} a function uε defined for all

t ∈ [0, T ]. Such a function is considered an ε-approximate solution of (P).

The concept of mild solutions can be formulated as follows.

Definition 1.4.1. Let g ∈ L1(ΩT ). A mild solution of (P ) is a function u ∈
C(0, T ;X) that is obtained as a uniform limit of the ε-discretization DA(t0, · · · , tn :

g1, · · · , gn) of the problem. Namely, for every ε > 0, there exists an ε-discretization

with solution uε in [0, T ] and

‖u(t)− uε(t)‖ < ε, for t0 ≤ t ≤ tn.

Theorem 1.4.1. (Continuity properties of mild solutions) Let A be an accretive operator

in X and let u be a mild solution of (P ) for g ≡ 0 on [0, T ].

(i) If v is an ε-approximate solution of (P ) on [0, T ] with [0, s] in its domain 0 ≤ t ≤ T ,

and (x, y) ∈ A, then

‖u(t)− v(s)‖ ≤ ‖u(0)− x‖+ ‖v(0)− x‖+ ‖y‖|t− s|+ 3‖y‖
√
ε
√
T + ε+ 3ε.

(ii) If (x, y) ∈ A, then

‖u(t)− u(s)‖ ≤ 2‖x− u(0)‖+ ‖y‖|t− s| for 0 ≤ s ≤ T.

(iii) If û is a mild solution of û′ + Aû 3 0 on [0, T ], then

‖u(t)− û(t)‖ ≤ ‖u(0)− û(0)‖ for 0 ≤ t ≤ T.
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If g ≡ 0, an accretive operator A that satisfies the range condition, i.e., D(A) ⊂
R(I +λA) for all λ > 0, generates a strongly continuous semigroup of contraction. A

strongly continuous semigroup is a functional object that plays an important role in

the theory of existence of mild solutions and it is defined below.

Definition 1.4.2. Let D be a subset of X. A family of mappings S(t), t ≥ 0, of D

into itself satisfying

(i) S(t+ s)x = S(t)S(s)x for t, s ≥ 0 and x ∈ D, and

(ii) limt→0 S(t)x = x for x ∈ D,

is called a strongly continuous semigroup on D.

Crandall and Liggett [23] proved the following:

Theorem 1.4.2. Let A be an accretive operator in X that satisfies the range condition.

Then, for any u0 ∈ D(A), the limit

lim
n→∞

(JAt/n)nu0 = lim
n→∞

(
I +

t

n
A

)−n
u0 = S(t)u0 (1.9)

exists uniformly on compact subsets of [0,∞). Moreover, the family of operators S(t),

t > 0 is a strongly continuous semigroup of contractive mappings of D(A) ⊂ X.

Formula (1.9) is called the Crandall-Ligget exponential formula for the nonlinear

semigroup generated by −A. Furthermore, by Brézis and Pazy [19], the problem

(P) with g ≡ 0 admits a unique mild solution u ∈ C(0, T ;X) such that u(0) = u0

and such a solution satisfies the exponential formula. Therefore, the solution can be

represented as follows:

u(t) = lim
n→∞

(I +
t

n
A)−nu0 := e−tAu0.

For a general g ∈ L1(0, T ;X) the following theorem holds.

Theorem 1.4.3. Let A be an m-accretive operator acting on X and g ∈ L1(0, T ;X).

Then for all u0 ∈ D(A) there exists a unique mild solution of (P).
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1.4.2 From mild solutions to integral solutions

Theoretically, it is difficult to determine from the definition whether a given

function is a mild solution of u′ + Au 3 g. However, mild solutions satisfy a family

of integral inequalities which give us a more direct characterization of these solutions

and that lead us to define integral solutions.

Definition 1.4.3. Let A be an accretive operator and g ∈ L1(0, T ;X). A function

u ∈ C(0, T ;X) is an integral solution of u′ + Au 3 g on [0, T ] if it satisfies

‖u(t)− x‖ − ‖u(s)− x‖ ≤
∫ t

s

[u(τ)− x, g(τ)− y]dτ,

for every (x, y) ∈ A and 0 ≤ s ≤ t ≤ T . An integral solution of the initial-value

problem v′ + Av 3 g, v(0) = x, on [0, T ] is an integral solution u of the relation

v′ + Av 3 g which satisfies u(0) = x.

Mild and integral solutions are connected in the following way.

Theorem 1.4.4. Let A be an m-accretive operator in X and g ∈ L1(0, T ;X). Then for

every x ∈ D(A), the initial value problem (P ) has a unique integral solution. Moreover,

this integral solution is the mild solution.

Theorem 1.4.5. Let A be an accretive operator and f, g ∈ L1(0, T ;X). If v is an

integral solution of v′ + Av 3 f on [0, T ] and u is a mild solution of u′ + Au 3 g on

[0, T ], then

d

dt
‖u(t)− v(t)‖ ≤ [u(t)− v(t), g(t)− f(t)] in D′(0, T ).

The following lemma will allow us to rewrite the inequality above in an “integrated

form”.

Lemma 1.4.6. (Generalized Gronwall lemma) Let T > 0, ϕ ∈ C([0, T ]) and ψ ∈
L1(0, T ). Then the following assertions are equivalent

(i)

ϕ(t)− ϕ(s) ≤
∫ t

s

ψ(τ)dτ, for 0 ≤ s ≤ t ≤ T,

(ii) ∫ T

0

(
ϕ(t)

d

dt
ξ(t) + ψ(t)ξ(t)

)
dt ≥ 0 for ξ ∈ D(0, T )+,
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which means by definition that ϕ′ ≤ ψ in D′(0, T ).

Remark 1.4.1. By the previous lemma, under the conditions of Theorem 1.4.5, we

have

‖u(t)− v(t)‖ − ‖u(s)− v(s)‖ ≤
∫ t

s

[u(τ)− v(τ), g(τ)− f(τ)]dτ

≤
∫ t

s

‖g(τ)− f(τ)‖dτ, (1.10)

for 0 ≤ s ≤ t ≤ T .

1.5 Convergence of semigroups

Let (Ak)k>0 be a family of operators on X, then lim infk→∞Ak is defined by

(x, y) ∈ lim infk→∞Ak if there exits (xk, yk) ∈ Ak such that xk → x and yk → y in X.

Proposition 1.5.1. Let Ak be m-accretive operators for k = 1, 2, · · · ,∞, D be a dense

set in X, λ > 0 and recall that we set JAkλ = (I + λAk)
−1, for k = 1, 2, · · · ,∞. Then

the following statements are equivalent:

(i) lim infk→∞Ak = A∞.

(ii) lim infk→∞Ak ⊇ A∞.

(iii) limk→∞ J
Ak
λ z = JA∞λ z, ∀ z ∈ D.

(iv) For some λ0 > 0, limk→∞ J
Ak
λ0
z = JA∞λ0 z, ∀ z ∈ D.

Proof. (i)⇒ (ii) and (iii)⇒ (iv) are self-evident.

(ii)⇒ (iii) By the accretivity of Ak, given

(x, y) ∈ A∞ ⊂ lim inf
k→∞

Ak,

then

lim
k→∞

(I + λAk)
−1(x+ λy) = x. (1.11)

As A∞ is m-accretive, for z ∈ X we may uniquely write z = x + λy and therefore

x = (I + λA∞)−1z. This, together with (1.11), gives (iii).

(iv) ⇒ (i) First notice that, if for any z ∈ D, (iv) is satisfied, then it must

hold for any element in X, since JAkλ0 , k = 1, · · · ,∞, are contractive operators defined

everywhere.
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Let now (x, y) ∈ lim infk→∞Ak. Then, by (1.11) and (iv), we have that

x = lim
k→∞

(I + λ0Ak)
−1(x+ λ0y) = (I + λ0A∞)−1(x+ λ0y).

Therefore (x, y) ∈ A∞ and A∞ ⊃ lim infk→∞Ak. On the other hand, defining

xk = (I + λ0Ak)
−1(x+ λ0y), yk = λ−1

0 (x+ λ0y − xk),

it is clear that (xk, yk) ∈ Ak, and from (iv), it follows that xk → x and yk → y as

k →∞.

Then (x, y) ∈ lim infk→∞Ak and A∞ ⊂ lim infk→∞Ak. Thus A∞ = lim infk→∞Ak.

Let Ak be m-accretive operators, k = 1, 2, · · · ,∞, u0k ∈ D(Ak), gk ∈ L1(0, T ;X),

and consider the family of Cauchy problems
duk
dt

+ Akuk 3 gk on (0, T )

uk(0) = u0k ,

(Pk)

where the solutions uk are taken in the mild sense. We are interested in when the

convergence of the operators in the resolvent sense implies the convergence of the

solutions of the Cauchy problem.

Theorem 1.5.2. Let X be a Banach space, Ak a sequence of accretive operators on

X, k = 1, 2. · · · ,∞, u0k ∈ D(Ak) and uk a mild solution of (Pk) with gk ≡ 0. Then, if

(i) A∞ ⊆ lim infk→∞Ak,

and

(ii) u0k → u0∞ in X,

then

uk → u∞ in C(0, T ;X), when k →∞.

Proof. Since u∞ is a mild solution of (P∞), fixing ε > 0, we know that there exists a

solution v∞ of an ε-discretization DA∞(0 = t0, · · · , tn : e1, · · · , en) of the problem on

[0, T ] satisfying

‖v∞(0)− u0∞‖ < ε.

Let wi ∈ A∞v∞(ti), 1 ≤ i ≤ n, be given by
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v∞(ti)− v∞(ti−1)

ti − ti−1

+ wi = ei, i = 1, 2, · · · , n.

Since A∞ ⊂ lim infk→∞Ak, there are sequences (xki , y
k
i ) ∈ Ak, 1 ≤ i ≤ n, such that

xki → v∞(ti) and yki → wi as k →∞. Setting xk0 = u0k and defining eki by

xki − xki−1

tk − tk−1

+ yki = eki , 1 ≤ i ≤ n,

and

vk(t) =


xk0 = u0k for t = t0 = 0

xki for ti−1 ≤ t ≤ ti, 1 ≤ i ≤ n,

then vk is a solution of an ε′-discretization DAk(0 = t0, · · · , tn : ek1, · · · , ekn) of (Pk) on

[0, T ]. Moreover, for every δ > 0, letting k > M(δ),

‖vk(t)− v∞(t)‖ ≤ δ + ε.

Once again, since A∞ ⊂ lim infk→∞Ak, considering any (p∞, q∞) ∈ A∞, we can

choose (pk, qk) ∈ Ak such that pk → p∞ and qk → q∞.

Using also Theorem 1.4.1 (i), (ii), and u0k → u0∞ as k →∞ for arbitrary δ > 0,

we obtain

lim sup
k→∞

sup
0≤t≤T

‖uk(t)− u∞(t)‖ ≤ δ‖u0∞ − p∞‖+ ‖q∞‖(2ε+ 8(ε(T + 2ε))1/2) + 7ε.

Recalling that u0∞ ∈ D(A∞) and q∞ ∈ A∞p∞ is arbitrary, we can consider p∞ such

that p∞ → u0∞ and take ε→ 0 to conclude that uk tends to u∞ uniformly on [0, T ].

Theorem 1.5.3. Let X be a Banach space, Ak a sequence of m-accretive operators on

X, k = 1, 2. · · · ,∞, u0k ∈ D(Ak) and uk a mild solution of (Pk). Then, if

(i) A∞ ⊆ lim infk→∞Ak,

(ii) u0k → u0∞ in X,

(iii) gk → g∞ in L1(0, T ;X),

then

uk → u∞ in C(0, T ;X), when k →∞.
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Proof. Let us denote the mild solution of u+Aku 3 g, with u(0) = u0, k = 1, · · · ,∞,

by Ek(u0, g). This defines Ek as a mapping

Ek : D(Ak)× L1(0, T ;X) 7−→ C(0, T ;X).

Suppose now that g is a step function such that u′k + Akuk 3 g, k = 1, 2, · · · ,∞,

then it follows by the previous theorem that Ek(u0k , g) → Ek(u0∞ , g) uniformly in

[0, T ]. Indeed on each interval of constancy of the step function we can consider

Âk = Ak − z, where z ∈ X is the value of g on each time interval and the result

follows. For general gk ∈ L1(0, T ;X) we have, by (1.10),

‖Ek(u0k , gk)(t)− E∞(u0∞ , g∞)(t)‖ ≤ ‖Ek(u0k , g)(t)− E∞(u0∞,g)(t)‖

+

∫ T

0

‖g(t)− gk(t)‖dt+

∫ T

0

‖g(t)− g∞(t)‖dt.

Therefore

lim sup
k→∞

sup
0≤t≤T

‖Ek(u0k , gk)(t)− E∞(u0∞ , g∞)‖ ≤ 2

∫ T

0

‖g(t)− g∞‖dt,

for every step function g. Since step functions are dense in L1(0, T ;X), the proof is

complete.

However, in general, D(A∞) 6=
⋂
k≥1

D(Ak), and therefore, only if u0∞ ∈ D(A∞), we

have the certainty, by Theorem 1.4.3, that the solution u∞, to which the sequence of

solutions (uk)k≥0 converges, is the unique mild solution of
du∞
dt

+ A∞u∞ 3 g∞ in [0, T )

u∞(0) = u0∞ .

Now if u0∞ /∈ D(A∞) and the limit uk exists, then the limit is singular, since an initial

boundary layer at t = 0 appears in the passage to the limit.

More generally, we can consider the following problem
duk
dt

+ Akuk 3 F (uk) on (0, T )

uk(0) = u0k ,

(Pk(F ))

where F is a continuous perturbation in X, and as before Ak is a sequence of m-

accretive operators, k = 1, 2, · · · ,∞, u0k ∈ D(Ak). The problem (Pk(F )) has a

unique mild solution. Moreover, we have the following result.
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Theorem 1.5.4. Let X be a Banach space, Ak a sequence of m-accretive operators on

X and F : X → X continuous and bounded such that F + kI is accretive where k ∈ R
and I is the identity in X, and u0k ∈ D(Ak), k = 1, 2, · · · ,∞. Denote by uk the unique

mild solution of (Pk(F )). Then, if

(I + Ak)
−1x→ (I + A∞)−1x in X, when k →∞,

and

u0k → u0∞ in X,

we have that

uk → u∞ in C(0, T ;X), when k →∞.

Let us as well point out a property of the resolvents that we will need later on.

Proposition 1.5.5. Let D be a dense subset in X and Ak, A be accretive operators

such that, as k →∞,

JAkλ f → JAλ f, ∀ f ∈ D.

If Ak is m-accretive, then A is m-accretive and

JAkλ f → JAλ f, ∀ f ∈ X. (1.12)

Proof. Let us consider x = JAkλ f , f ∈ D. Then f = x + λy for some y ∈ Akx and

therefore there exist (xn, yn) ∈ Ak such that, denoting fn = xn + λyn, fn → f in X

as n→∞. Then

‖JAkλ f − JAλ f‖ ≤ ‖x− xn‖+ ‖fn − f‖ → 0 as n→∞.

Similarly for A which is also accretive. Hence, for all ε > 0,

‖JAkλ f−JAλ ‖ ≤ ‖J
Ak
λ f−JAkλ f‖+‖JAkλ f−JAλ f‖+‖JAλ f−JAλ f‖ ≤ ε, ∀ f ∈ D. (1.13)

It is then easy to see that (1.12) holds for all f ∈ X.

Now let us take an arbitrary z ∈ X, since R(I + Ak) = X by the m-accretivity

of Ak there exists zn ⊂ R(I + Ak) such that zn → z as n→∞ in X and there exist

xk = (I +Ak)
−1zn. Then xk → x, where x = JAλ zn, and therefore zn ∈ R(I +A) and

A is m-accretive.
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2. Limit of solutions of (DNE) as
p→∞

We wish to study the following doubly nonlinear diffusion problem (DNE)p,m,

(up,m)t = ∆pu
m
p,m + g in (0,∞)× Ω

ump,m = 0 on (0,∞)× ∂Ω

up,m(0, ·) = u0(·) on Ω,

(2.1)

where

∆pw = div (|∇w|p−2∇w)

is the p-Laplace operator. We will devote this section to identifying the limit um of

the family of solutions up,m of (DNE)p,m, as p goes to infinity, as well as the equation

satisfied at the limit by um. The main problem will be to find a suitable topology,

which must be weak enough and therefore have sufficient compactness properties to

allow us to pass to the limit, but at the same time be strong enough to pass important

properties onto the function um, which enable us to find the equation that is satisfied

at the limit and in what sense.

2.1 Asymptotic limit for the (PLE)

For m = 1, the equation in (DNE)p,m reduces to the parabolic p-Laplace equation

(PLE)

(up)t −∆pup = g.

Therefore, we will give a short summary of the main results in terms of the asymptotic

limit of solutions of initial-value problems for this equation, when p goes to infinity.

As already highlighted by Aronsson et al. in [4], the p-Laplacian is a prototype of

a “fast/slow” diffusion operator, in the sense that its nonlinear diffusion coefficient
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|∇u|p−2, for large but finite values of p, is very large within the region {|∇u| > 1 + δ}
for each small δ > 0, and therefore there is a very rapid movement of mass, whereas

it is very small within the region {|∇u| < 1 − δ}, which implies there is very little

material being transported. The set {1− δ ≤ |∇u| ≤ 1 + δ} is an intermediate zone.

The diffusion coefficient tends to infinity above the level {|∇u| = 1} and to zero below

it, as p tends to infinity, and we encounter at the limit an “infinitely fast/infinitely

slow” diffusion operator, which is interesting not only from a mathematical stand

point, but also for its physical interpretation.

In 1995, the authors in [4] discovered that the highly nonlinear evolution problem

for the p-Laplacian reduces to a much simpler problem in the limit that in fact has an

important physical meaning, as it not only provided a mathematical framework for

sandcone models proposed earlier by Aronsson [3], but it also helped in understanding

the structure of sandcones growing and interacting with each other as they are being

fed by point sources ([4], see also [41]). Also, other physical interpretations have been

given to the evolution problem at the limit, for example, a Bean’s critical-state model

for type II superconductivity ([6], [43] and [44]) and river networks ([41], see also [24]).

We refer to [17], [39] and [38] for the limiting behaviour of the variable exponent p-

Laplacian and to [1] and [2] for the limit as p→∞ of the nonlocal analogous of the

p-Laplace equation.

The authors in [4] considered the following Cauchy problem for the parabolic

p-Laplace equation:
(up)t − div (|∇up|p−2∇up) = gp in (0,∞)× RN

up = u0 on {t = 0} × RN ,

(2.2)

where N+1 ≤ p <∞ and u0 is a Lipschitz function with compact support, satisfying

‖∇u0‖L∞(RN ) ≤ 1. (2.3)

Assuming the basic physical condition that a sandpile is stable if and only if its

slope (determined by its resting angle) is everywhere less than or equal to one, the

condition (2.3) for the distribution u0, which represents the height of the sandpile at

t = 0, implies that the initial sand heaps are stable.

The function gp is smooth, with compact support in RN × [0, T ] for each T > 0.

Furthermore gp is a smooth approximation to the time-varying measures

g =
m∑
k=1

gk(t)δdk(x), (2.4)
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where δdk denotes a Dirac mass at the point dk and the functions {gk}mk=1 are non-

negative and Lipschitz. Here, g represents a given source term which physically can

be interpreted as adding material to the evolution system. In this case, where g has

the structure (2.4), the measure g records the point sources at the locations {dk}mk=1

such that the sand is added to the pile at the rate gk(t) ≥ 0 for t ≥ 0, k = 1, · · · ,m.

The following reinterpretation of the p-parabolic problem in (2.2), was used:
gp − (up)t = ∂Ip(up) a.e. t > 0

up = u0 t = 0,

where ∂Ip denotes the single-valued subdifferential of the functional Ip:

Ip(v) =


1

p

∫
RN
|∇v|pdx if v ∈ L2(RN), |∇v| ∈ Lp(RN),

+∞ otherwise.

(2.5)

The passage to the limit under the conditions listed above was completely solved

in [4] and the main results are summarized in the following proposition:

Proposition 2.1.1. Consider the Cauchy problem for the parabolic p-Laplacian in (2.2)

with conditions on the initial value u0 and source term gp as explained above. Then we

can extract a subsequence {pi}, pi tending to infinity, and a limit u such that, for each

T > 0, 
upi → u a.e. and in L2(0, T ;RN)

∇upi ⇀ ∇u, (upi)t ⇀ ut weakly in L2(0, T ;RN),

(2.6)

and the limit function u satisfies
g − ut ∈ ∂I∞(u) a.e. t > 0

u = u0 t = 0,

(2.7)

where ∂I∞ is the subdifferential of the convex functional

I∞(v) =


0 if v ∈ K,

+∞ otherwise,

for

K = {w ∈ L2(RN) : |∇w| ≤ 1 a.e.}.

41



Moreover the problem in (2.7) has a unique solution u with the explicit form

u(t, x) = max (0, z1(t)− |x− d1|, · · · , zm(t)− |x− dm|),

where the non-negative height functions {zk(t)}mk=1 satisfy a certain coupled system

of ODEs. It then follows that u determines the height of a pile of noncohesive sand

which will grow continuously as long as the slope does not exceed one. As more sand

falls into the pile, added by the source term g, the slope locally increases until it

reaches the peak value one, beyond which the pile becomes unstable and suddenly

pours down.

We can also interpret these results using the terminology of non-linear semigroup

theory introduced in the Preliminaries as done in [14]. Taking X = L2(RN), let us

define the m-accretive operator Ap by

Apu := −∆pu = ∂Ip(u),

for u belonging to

D(Ap) = {u ∈ L2(RN) : ∆pu ∈ L2(RN)}.

Let us also define

A∞(u) := ∂I∞(u),

where

D(A∞) = K.

Note that since u0 ∈ D(A∞), by theorem 1.5.3 of the Preliminaries, the result of

proposition 2.1.1 reduces to proving that

(I + Ap)
−1f → (I + A∞)−1f in L2(RN), (2.8)

which follows by [14]. In other words, if we consider the stationary problem associated

to the operator Ap, zp := J
Ap
λ (f), for f ∈ L2(RN), and considering without loss of

generality λ = 1, i.e.,

zp + Ap(zp) = f in RN ,

it would be enough to show that there exists a limit function z such that

zp → z in L2(RN),

and z is the unique solution of

f ∈ z + A∞(z).
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Note also that, by the definition of I∞, we have that

v ∈ ∂I∞(u)⇐⇒ u ∈ K and 0 ≥
∫
v(w − u)dx, ∀w ∈ K.

We can conclude that if f ∈ K, then

(I + Ap)
−1f → f in L2(RN).

It follows, considering g ≡ 0 and u0 ∈ K, that the unique solution of (2.7) is the

trivial solution u ≡ u0, which is of course time-independent.

Let us now present a shortened version of the main results in [27], where once again

the Cauchy problem for the parabolic p-Laplacian is considered. However, unlike in

[4], Evans, Feldman and Gariepy considered an initial condition u0 that does not

belong to K and g ≡ 0, i.e.,
(up)t −∆pup = 0 in (0,∞)× RN

up = u0 on {t = 0} × RN ,

(2.9)

where u0 : RN → R has compact support, is nonnegative and Lipschitz, with

||∇u0||L∞(RN ) = L > 1. (2.10)

Therefore, in this case, there is no source term, which means that no more sand

will be added to the pile and condition (2.10) implies that the authors consider an

initial configuration which is unstable.

The following result for the limit, as p goes to infinity, was proved.

Proposition 2.1.2. Consider the initial value problem in (2.9) with initial value u0 as

described above. Then, there exists a subsequence pj → ∞ and a Lipschitz function u

such that 

upj → u uniformly on compact subsets of [0,∞)× RN ,

∇upj ⇀ ∇u weakly star in L∞((0, T )× RN),

(upj)t ⇀ ut weakly star L∞((0, T )× RN),

and the limit function u satisfies

|∇u| ≤ 1 a.e. (2.11)
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A function vj that “stretches” the time variable is defined as follows

vj(t, x) = tupj

(
tpj−1

pj − 1
, x

)
, for 0 ≤ t ≤ 1, x ∈ RN . (2.12)

By (2.9), vj solves

(vj)t −∆pvj =
vj
t

in (τ, 1)× RN , (2.13)

where τ = 1
L

, and the authors were able to conclude that there exists a function v

such that

vj → v uniformly on [τ, 1]× RN , (2.14)

and v solves 
v

t
− vt ∈ ∂I∞(v) (τ ≤ t ≤ 1)

v = v0 (t = τ),

(2.15)

where v0 = τu0. Finally, by the time transformation in (2.12), (2.14) and the uniform

convergence of upj

(
1

pj−1
, x
)

to u, it was obtained that

u(x) = v(1, x).

As the authors pointed out, physically it is natural that the sand particles would

rapidly reorganize themselves to reach a state of stability, represented by u, which is

independent of the initial conditions. Once the critical state has been reached, the

motion stops. The mapping u0 7→ u records the final state of repose of the sandpile

after various avalanches.

Remark 2.1.1. The subdifferential ∂I∞(u) is not defined for u /∈ K. Since u0 /∈
D(A∞) = D(∂I∞) and yet a limit of the family of solutions up as p tends to infinity

exists, we are dealing with what is called a singular perturbation problem. The

singularity arises as a boundary layer appears in a neighbourhood of t = 0 in the

passage to the limit. This boundary layer is explained as a period during which the

solution rapidly changes before reaching its stable profile. In the particular case of

the parabolic p-Laplacian in (2.9) this is seen clearly, as the property of the initial

value (2.10) is not compatible with the property (2.11) of the limiting function u.

The main tool used to overcome this incompatibility and the more delicate trans-

formation of u0 7→ u is the stretching of the time variable in (2.12). Note that it allows

a regularization of the problem in the sense that the new problem (2.13) satisfies the

conditions of proposition 2.1.1. More specifically the initial value vj(τ) → τu0 ∈ K.

Such a scaling argument was generalized in [14] to the setting of abstract nonlinear

evolution equations governed by homogeneous accretive operators.
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Remark 2.1.2. It is known that the resolvent operator (I+λ∂I∞)−1 is equal to ProjK

which denotes the projection onto the closed set K. Therefore

(I + λ∂I∞)−1u0 = ProjKu0.

However, it was proved in [27] that there exists an initial data u0 with compact

support such that

ProjKu0 6= v(x, 1).

Therefore the sequence of solutions up converges to a time-independent profile u(x) =

v(x, 1) which is not the projection of the initial data u0 onto the closure of the domain

of A∞.

2.2 Properties of solutions of the doubly nonlinear

diffusion equation

We will now review some results regarding the existence and properties of solu-

tions of the problem (DNE)p,m in (2.1), proved in [33].

Let us define the nonlinear operator Ap,m in L1(Ω) by

Ap,mu = −∆pu
m,

D (Ap,m) = { u ∈ L∞(Ω) : um ∈ W 1,p
0 (Ω) and ∆pu

m ∈ L1(Ω) },
(2.16)

where rm denotes |r|m−1r for all r ∈ R.

Let us now consider the functional Φp : L2(Ω)→ [0,+∞] defined as follows

Φp(u) =


1

p

∫
Ω

|∇u|pdx if u ∈ W 1,p
0 (Ω) ∩ L2(Ω)

+∞ otherwise.

(2.17)

The functional Φp is convex, proper, l.s.c, Φp(0) = 0 and for all h ∈ H0, where H0

is given by

H0 := {h ∈ C1(R) : h(0) = 0 and 0 ≤ h′ ≤ 1}, (2.18)

we have

Φp(w + h(ŵ − w)) + Φp(ŵ − h(ŵ − w)) ≤ Φp(w) + Φp(ŵ), ∀w, ŵ ∈ L2(Ω). (2.19)
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As already noted in [33], v = Ap,m(u) in D′(Ω) if and only if
u ∈ L∞(Ω), um ∈ W 1,p

0 (Ω) ∩ L2(Ω)

Φp(η) ≥ Φp(u
m) +

∫
Ω

v(η − um)dx, ∀ η ∈ L∞(Ω).

(2.20)

The following proposition, proved in [8], holds for more general operators in do-

mains not necessarily bounded. For completeness, we will provide a simplified version

which applies to the operator Ap,m in a bounded domain.

Proposition 2.2.1. For all m ≥ 1, we have:

(i) Ap,m is T -accretive in L1(Ω).

(ii) R(I + λAp,m) ⊇ L∞(Ω) for all λ > 0.

(iii) D(Ap,m) is dense in L1(Ω).

(iv) (I + λAp,m)−1f � f for all λ > 0 and f ∈ L∞(Ω).

(v) For all u, û ∈ D(Ap,m), we have∫
Ω

(Ap,mu− Ap,mû)h(um − ûm) ≥ 0, ∀ h ∈ H0,

where H0 is given by (2.18).

Proof. Let us consider u ∈ D(Ap,m), then um + h(γ − um) ∈ L∞(Ω) for h ∈ H0 and

any γ ∈ L2(Ω). We have by (2.20), that for v = Ap,mu,

Φp(u
m + h(γ − um)) ≥ Φp(u

m) +

∫
vh(γ − um). (2.21)

Using as well (2.19), with w = um and ŵ = γ, we obtain that

Φp(γ) ≥ Φp(γ − h(γ − um)) +

∫
vh(γ − um). (2.22)

Similarly, taking v̂ = Ap,mû and ĥ(r) = −h(−r), we have that

Φp(γ) ≥ Φp(γ − ĥ(γ − ûm)) +

∫
v̂ĥ(γ − ûm), ∀ γ L2(Ω).

Considering in the previous expression γ = um then

Φp(u
m) ≥ Φp(u

m + h(ûm − um))−
∫
v̂h(ûm − um). (2.23)

46



Therefore, by (2.21) with γ = ûm and (2.23), we have∫
vh(ûm − um) ≤ Φp(u

m + h(ûm − um))− Φp(u
m)

≤
∫
v̂h(ûm − um),

and (v) is satisfied.

Take h as a smooth approximation of (r − ε)+ ∧ ε, divide by ε > 0 and let ε→ 0

to obtain ∫
{û>u}

v̂ − v =

∫
(v̂ − v)sign+

0 (ûm − um) > 0.

By proposition 1.2.2, (i) is satisfied.

Let us now denote u := (I+λAp,m)−1f and v = Ap,mu, then f = u+λv. Therefore,

to prove (iv), we need to see that

u� u+ λv ∀λ > 0.

By proposition 2.2 in [12], it is enough to prove that∫
{u<−k}

v ≤ 0 ≤
∫
{u>k}

v, for k > 0. (2.24)

By (2.22), with ĥ(r) = −h(−r),

Φp(γ) > Φp(γ − ĥ(γ − um)) +

∫
vĥ(γ − um).

Then, taking γ = 0, ∫
h(um)v > Φp(h(um)) ≥ 0.

Consider h as a smooth approximation of (r−km)+∧ε ( resp. −[ (−r+(−k)m)+∧ε ])

divide by ε > 0 and let ε→ 0. Thus (2.24) is proved.

By standard variational arguments, we know that for all f ∈ L2(Ω) there exists a

unique solution u ∈ L2(Ω) such that um ∈ W 1,p
0 (Ω) and it satisfies

f = u−∆pu
m in D′(Ω).

Then, considering f ∈ L∞(Ω), by (iv), we have that ‖u‖∞ ≤ ‖f‖∞ and (ii) follows.

To prove (iii), it is enough to show that

{u ∈ L∞(Ω) : Φp(u
m) <∞} ⊆ D(Ap,m).

By (ii), for an arbitrary u ∈ L∞(Ω), there exists a uλ ∈ D(Ap,m) such that uλ =

(I+λAp,m)−1u. We have also by (iv) that ‖uλ‖p ≤ ‖u‖p for 1 < p <∞. Then uλ ⇀ u
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in Lp(Ω) for any 1 < p <∞. In this case, by the definition of uλ, v =
u− uλ
λ

= Ap,mu,

and therefore by (2.20)

Φp(u
m) ≥ Φp(u

m
λ ) +

∫
u− uλ
λ

(um − umλ ).

Taking λ→ 0, we have ∫
(u− u)(um − um) ≤ 0,

and so u = u. Thus uλ → u in L1(Ω).

By the previous proposition, Ap,m (the closure of Ap,m in L1(Ω)) is m-T -accretive

in L1(Ω) and by standard nonlinear semigroup theory results we have the following

result.

Corollary 2.2.2. For all u0 ∈ L1(Ω), T > 0 and g ∈ L1(ΩT ), there exists a unique

mild solution of the following evolution problem
ut + Ap,mu = g on [0, T ),

u(0) = u0,

(2.25)

and therefore of (DNE)p,m.

Furthermore Ap,m generates a nonlinear semigroup of contraction in L1(Ω) denoted

by Sp,m(t). Using also the regularity of mild solutions, it was proved as well in [33]

that (DNE)p,m for g ≡ 0 has a solution in the following sense.

Proposition 2.2.3. Given u0 ∈ L1(Ω), 1 < p <∞, m >
1

p− 1
and g ≡ 0, we have

(i) u(t) = Sp,m(t)u0 is the unique solution of (DNE)p,m in the following sense:

u ∈ C(0,∞;L1(Ω)) ∩ L∞([δ,∞)× Ω) ∩W 1,∞(δ,∞;L1(Ω))

um ∈ L∞(δ,∞;W 1,p
0 (Ω)), ∀δ > 0, um(0) = u0

d

dt

∫
Ω

uv +

∫
Ω

|∇um|p−2∇um · ∇v = 0 in D′(0,∞), ∀ v ∈ W 1,p
0 (Ω).

(2.26)

(ii) If u0, û0 ∈ L1(Ω) and u, û are the corresponding solutions, then∫
Ω

(u(t)− û(t))+dx ≤
∫

Ω

(u0 − û0)+dx, ∀ t > 0.
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2.3 Regular limit of the (DNE) when p→∞

In the present section, we generalize the results in [4] to the doubly nonlinear

diffusion problem (DNE)p,m in (2.1), using the nonlinear semigroup approach.

We see, by (2.20), that the operator Ap,m continues to “act as a subdifferential”

even when m 6= 1. It seems reasonable then, that when p goes to infinity, the operator

A∞,m, obtained at the limit, will also “act as a subdifferential” of an indicator function

of a convex set K̃. Indeed, we know by (2.8) that

I∞ ⊆ lim inf
p→∞

Ip. (2.27)

Let us now define Φ∞ : L1(Ω)→ [0,+∞] by

Φ∞(u) =


0 u ∈ K̃ = {ξ : |∇ξ| ≤ 1 a.e.}

+∞ otherwise.

Then

∂L1Φ∞ =

{
(u, v) ∈ K̃× L1(Ω) :

∫
(u− w)v ≥ 0 for w ∈ K̃ with (u− w)v ∈ L1(Ω)

}
.

We would expect Ap,m to converge to some operator A∞,m that acts as ∂L1Φ∞(um).

Actually, we will prove that A∞,m behaves as follows:

v ∈ A∞,mu⇐⇒


u, v ∈ L1(Ω), um ∈ W 1,∞(Ω) ∩ C0(Ω),

um ∈ K̃ and 0 ≥
∫

Ω

v(ξ − um)dx ∀ ξ ∈ K̃,
(2.28)

where

K̃ := {ξ ∈ L1(Ω) : |∇ξ| ≤ 1 a.e.}. (2.29)

Let us at this point focus on the stationary equation associated to the operator

Ap,m, i.e., zp,m := (I + Ap,m)−1f for f ∈ L∞(Ω), since we will be interested in the

properties of the resolvent operator to pass to the limit.

By proposition 2.2.1, we see that for every f ∈ L∞(Ω), zp,m is the unique solution

of the problem 
zp,m −∆pz

m
p,m = f on Ω

zp,m = 0 on ∂Ω,

(2.30)
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in the following sense 
zp,m ∈ L∞(Ω), zmp,m ∈ W

1,p
0 (Ω) and

−∆pz
m
p,m = f − zp,m in D′(Ω).

(2.31)

We will need the following a priori estimates, uniform with respect to p, for the

elliptic equation in (2.30) associated to the problem (DNE)p,m.

Lemma 2.3.1. If zp,m is the solution of (2.30) for f ∈ L∞(Ω), then zmp,m is uniformly

bounded in W 1,q
0 (Ω) for any q > 1.

Proof. Let us denote zp,m simply by zp. We know by (2.31) that zp satisfies∫
Ω

|∇zmp |p−2∇zmp · ∇ϕdx =

∫
Ω

(f − zp)ϕdx, ∀ϕ ∈ D(Ω). (2.32)

By density, (2.32) continues to hold for all ϕ ∈ W 1,p
0 (Ω) and we can substitute ϕ = zmp

in the previous expression. Then:∫
Ω

|∇zmp |pdx =

∫
Ω

(f − zp)zmp dx ≤ ||f − zp||L∞(Ω)||zmp ||L1(Ω)

≤ C||f − zp||L∞(Ω)||∇zmp ||L1(Ω)

≤ 2C||f ||L∞(Ω)

∫
Ω

|∇zmp |dx

≤ C||f ||L∞(Ω)

(∫
Ω

|∇zmp |p
)1/p

|Ω|1−1/p.

The second inequality is due to Poincaré’s inequality, with p = 1, and the third

is due to the fact that zp � f by proposition 2.2.1 (iv), since then we have that

||zp||L∞ ≤ ||f ||L∞ . Therefore(∫
Ω

|∇zmp |pdx
)1/p

≤ (C||f ||L∞(Ω))
1/(p−1)|Ω|1/p.

On the other hand, by Hölder’s inequality,

||∇zmp ||q ≤ ||∇zmp ||p|Ω|1/q−1/p,

for any p > q and we finally obtain that {zmp } is uniformly bounded in W 1,q
0 (Ω) for

any q > 1.
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As a result of lemma 2.3.1, for a subsequence {pi}, there exists a function wm such

that, when pi →∞,

zmpi,m ⇀ wm in W 1,q(Ω) for any q > 1. (2.33)

Moreover, by Sobolev embedding,

zmpi,m → wm in Lq(Ω) as p→ +∞. (2.34)

Hence, passing if necessary to yet another subsequence, we would get

zmpi,m → wm a.e.. (2.35)

Denoting zm := w
1/m
m , then

zpi,m → zm a.e.. (2.36)

By (2.33), zmm ∈ W 1,∞(Ω)∩C0(Ω), since taking q > N , W 1,q
0 (Ω) = W 1,q(Ω)∩C0(Ω).

We will also need the following property of the limiting function zm.

Lemma 2.3.2. The limit function zm in (2.36) satisfies the following estimate

‖∇zmm‖L∞(Ω) ≤ 1. (2.37)

Proof. We can prove this in exactly the same way as lemma 3.2 in [27]. Fixing η > 0,

and denoting

Aη = {x ∈ Ω | |∇zmm | ≥ 1 + η},

then

(1 + η)|Aη| ≤
∫
Aη

|∇zmm |dx ≤ lim inf
pi→+∞

∫
Aη

|Dzmpi,m|dx (2.38)

≤ lim inf
pi→+∞

(∫
Ω

|∇zmpi,m|
pidx

)1/pi

|Aη|1−1/pi ≤ |Aη|, (2.39)

where the last inequality is a consequence of lemma 2.3.1. Therefore |Aη| = 0 and

(2.37) is satisfied.

To apply the classical results of the nonlinear semigroup theory we will need the

following result.

Lemma 2.3.3. For all f ∈ L∞(Ω) and λ > 0, we obtain, when p→∞,

(I + λAp,m)−1f → (I + λA∞,m)−1f in L1(Ω). (2.40)
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Proof. We need to check that there exists a function zm such that

zp,m → zm in L1(Ω), (2.41)

and zm is the unique solution of

f − zm ∈ A∞,m(zm), ∀ f ∈ L∞(Ω). (2.42)

Let us consider ξ ∈ K̃. By approximation, we may assume that ξ has compact

support. Therefore, since f − zp,m ∈ Ap,m(zp,m), according to (2.17) and (2.20),

1

p

∫
Ω

|∇ξ|pdx ≥ 1

p

∫
Ω

|∇zmp,m|pdx+

∫
Ω

(f − zp,m)(ξ − zmp,m)dx

≥
∫

Ω

(f − zp,m)(ξ − zmp,m)dx.

It follows, taking the limit as p goes to infinity, that

0 ≥ lim
p→∞

∫
Ω

(f − zp,m)(ξ − zmp,m).

Since zp,m � f , then

‖zp,m‖r ≤ ‖f‖r, for any 1 ≤ r ≤ ∞. (2.43)

Therefore in particular for q′, the conjugate of q,

zp,m ⇀ zm in Lq
′
(Ω).

We have as well, by (2.34), that

zmp,m → zmm in Lq(Ω), ∀ q > 1.

Then, when p→∞,

0 ≥
∫

Ω

(f − zm)(ξ − zmm)dx, ∀ ξ ∈ K̃, (2.44)

which proves (2.42); (2.41) follows from (2.36) and (2.43).

Let us prove the uniqueness of zm. Let us suppose that both zm,1, zm,2 satisfy the

limit equation, i.e.,

0 ≥
∫

Ω

(f − zm,1)(ξ − zmm,1)dx (2.45)

and

0 ≥
∫

Ω

(f − zm,2)(ξ − zmm,2)dx. (2.46)
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We then substitute ξ = zmm,i, i = 1, 2, in the respective inequalities. Notice that by

lemma 2.3.2, zmm ∈ K̃ and this is a valid choice. Add (2.45) to (2.46) to obtain∫
Ω

(zm,1 − zm,2)(zmm,1 − zmm,2)dx ≤ 0

which would then give us zm,1 = zm,2.

Corollary 2.3.4. The operator A∞,m is m-T -accretive in L1(Ω); furthermore for all

f ∈ L1(Ω) and λ > 0, when p→∞,

(I + λAp,m)−1f → (I + λA∞,m)−1f in L1(Ω). (2.47)

Proof. By lemma 2.3.3 and proposition 1.5.5, it is enough to prove that A
(m)
∞ is T -

accretive. Let us denote by A(1) := ∂L1Φ∞ and considering φm(r) = |r|m−1r then

A∞,m ⊆ A(1) ◦ φm,

in the sense that

v ∈ A∞,mu =⇒ u, v ∈ L1(Ω), ∃w ∈ φm(u) such that v ∈ A(1)w.

We also have that

u, û ∈ K̃, h ∈ H0 =⇒ u+ h(û− u) ∈ K̃,

therefore A(1) is a completely accretive operator by lemma 1.3.2, and since φm is a

maximal monotone graph, then A∞,m is T - accretive by proposition 1.3.3.

The main theorem in this section then follows.

Theorem 2.3.5. Consider the problem (DNE)p,m in (2.1), where Ω is a bounded

domain in RN , u0 ∈ L1(Ω), um0 ∈ K̃ and g ∈ L1(ΩT ). Then there exists a subsequence

pi, tending to infinity, and a function um such that, for each T > 0,

upi,m → um in C([0, T ];L1(Ω)),

and um is the unique mild solution of
g − (um)t ∈ A∞,m(um) in (0, T ]× Ω

um = u0, {t = 0} × Ω,

(2.48)

where A∞,m is given by (2.28)-(2.29).
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Proof. By corollary 2.3.4, we have the convergence in the resolvent sense of the m-

accretive operator Ap,m to the m-accretive operator A∞,∞, as p tends to infinity. Since

we also have that u0 ∈ D(A∞,m), all the hypotheses of theorem 1.5.3 are fulfilled and

the result follows.

In the particular case that g ≡ 0 and um0 ∈ K̃, then the family of solutions of

(DNE)p,m converges to the initial data by the following results.

Proposition 2.3.6. For all f ∈ L1(Ω) such that fm ∈ K̃, then as p→∞, we obtain

(I + λAp,m)−1f → f in L1(Ω),

for all λ > 0.

Proof. If zp,m is a solution of (2.30), we know by (2.17) and (2.20), that by approxi-

mation, for all ξ ∈ K̃,

1

p

∫
|∇ξ|pdx ≥ 1

p

∫
|∇zmp,m|pdx+

∫
(f − zp,m)(ξ − zmp,m)dx.

Considering ξ = fm, then

1

p

∫
|∇fm|pdx ≥

∫
(f − zp,m)(fm − zmp,m).

Take p→∞ to obtain

0 ≥ lim
p→∞

∫
(f − zp,m)(fm − zmp,m)dx.

Since zp,m � f , we know as well that there exists a function zm such that
zp,m ⇀ zm in Lq

′
(Ω),

zmp,m → zmm in Lq(Ω),

for any 1 < q <∞. Hence

0 ≥
∫

(f − zm)(fm − zmm)dx,

and f = zm a.e. in Ω.

Lemma 2.3.7. Let m >
1

p− 1
, u0 ∈ L1(Ω) and up,m a solution of (DNE)p,m with

g ≡ 0. If um0 ∈ K̃ then, when p→∞, we have

up,m → u0 in C(0, T ;L1(Ω)).
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Proof. Let us consider the m-accretive operator Am defined by

Amu = 0, and D(Am) = {u ∈ L1(Ω) : um ∈ K̃}.

Then, by the previous proposition, for all um ∈ D(Am),

(I + λAp,m)−1um → um in L1(Ω),

and therefore

Am ⊆ lim inf
p→∞

Ap,m.

Hence, by theorem 1.5.2, if um0 ∈ K̃ then

up,m → u in C(0, T ;L1(Ω)),

where u is the unique mild solution of
ut + Amu = 0 in (0,∞)

u(0) = u0.

Thus u ≡ u0.

2.4 Singular limit of the (DNE) when p→∞

Here, we generalize the results in [27] for the problem (DNE)p,m in (2.1) and

therefore study the behaviour at the limit when um0 /∈ K̃. For this, we will consider the

natural rescaling, taking into account what has been done for the problem (DNE)p,m,

when m = 1 in [27] and for p = 2 in [16], which is the following

vj,m(t, x) = tupj ,m

(
tm(pj−1)

m(pj − 1)
, x

)
, (0 ≤ t ≤ 1). (2.49)

We will consider the problem (DNE)p,m, for which the source term g ≡ 0, u0 is

nonnegative and um0 is Lipschitz with

||∇um0 ||L∞(Ω) = L > 1.

Considering now u ∈ D(Ap,m) and λ > 0, we have that

λu ∈ D(Ap,m) and Ap,m(λu) = λβAp,m(u),

where β = m(p− 1). Therefore Ap,m is a homogeneous operator and since the proper

rescaling and the definition of A∞,m have been established, as well as the result of

55



theorem 2.3.5, proposition 2.3.6, and lemma 2.3.7, the passage to the limit in this

case is solved by the methods in [14]. I will recall for completeness the results there

using the structure in [16].

We will need the following lemma.

Lemma 2.4.1. As pj →∞, we have that, when t < τ , where τ = 1
L1/m ,

upj ,m

(
tm(pj−1)

m(pj − 1)
, x

)
→ u0(x) in L1(Ω).

Proof. Denote by ũp,m the unique solution of (DNE)p,m with g ≡ 0 and initial con-

dition ũ0 = τu0. Notice that in this case ũm0 ∈ K̃. Then, by proposition 2.3.6, when

fm ∈ K̃
zp,m := (I + Ap,m)−1f → f in L1(Ω).

In particular, if f = τu0, then as p→∞,

1

τ
zp,m → u0, (2.50)

and also

Ap,m(zp,m)→ 0 in L1(Ω). (2.51)

Let us now denote tp :=
tm(p−1)

m(p− 1)
. We know, by the contractive property of the

generated semigroup, that∥∥∥∥e−tpAp,mu0 − e−tpAp,m
1

τ
zp,m

∥∥∥∥
1

≤
∥∥∥∥u0 −

1

τ
zp,m

∥∥∥∥
1

. (2.52)

Using the homogeneity of the operator A
(m)
p , we also obtain∥∥∥∥e−tpAp,m 1

τ
zp,m −

1

τ
zp,m

∥∥∥∥
1

≤
∥∥∥∥tpAp,m(1

τ
zp,m

)∥∥∥∥
1

≤

∥∥∥∥∥ 1

m(p− 1)

(
t

τ

)m(p−1)

Ap,m(zp,m)

∥∥∥∥∥
1

. (2.53)

Therefore by (2.52) and (2.53) and recalling the exponential representation of the

solution upj ,m(tpj) = e−tpjApj,mu0

||upj ,m(tpj)− u0||1 ≤ 2

∥∥∥∥u0 −
1

τ
zpj ,m

∥∥∥∥
1

+
1

m(pj − 1)

(
t

τ

)m(pj−1)

||Apj ,m(zpj ,m)||1.

By (2.50) and (2.51) we get the desired convergence when pj →∞.

The main theorem reads as follows.
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Theorem 2.4.2. Let vj,m be as in (2.49), where upj ,m is the solution of the problem

(DNE)p,m in (2.1), for g ≡ 0 and for initial condition u0 as described above. Then, there

exists a limit function vm such that, when j →∞, we have

vj,m → vm in C(0, T ;L1(Ω)),

and vm satisfies the following properties:

(i) vm(t) = tu0 for any t ∈ [0, τ ] where τ = 1/L1/m < 1 ,

(ii) vm is the unique mild solution of the evolution problem
vm
t
− (vm)t ∈ A∞,mvm (τ < t ≤ 1)

vm = v0 = τu0 (t = τ).

(2.54)

Proof. By the definition of vj,m in (2.49) and by (DNE)p,m, vj,m satisfies
(vj,m)t −∆p(v

m
j,m) =

vj,m
t

(τ < t ≤ 1)

vj,m(x, τ) = τupj ,m(x, τpj) (t = τ).

By lemma 2.4.1,

vj,m(x, τ)→ τu0,

when j →∞, and certainly (τu0)m ∈ K̃. Therefore, since

(I + λAp,m)−1f → (I + λA∞,m)−1f, ∀ f ∈ L1(Ω),

holds by lemma 2.3.3, by theorem 1.5.4,

vj,m → vm in C(0, T ;L1(Ω)),

and now it is clear that (i) holds and that vm satisfies (2.54).

Corollary 2.4.3. Let up,m be the solution of problem (DNE)p,m in (2.1), with g ≡ 0

and for initial conditions u0 as described above. Then, there exists a subsequence {pj}
such that, as pj →∞, we have

upj ,m(t)→ vm(1) in L1(Ω),

where vm is given by theorem 2.4.2.
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Proof. It is straightforward, by the transformation in (2.49), that

upj ,m(t) =
vj,m((m(pj − 1)t)1/m(pj−1))

(m(pj − 1)t)1/m(pj−1)
.

Since (m(pj − 1)t)1/(m(pj−1)) → 1 as pj →∞, then upj ,m(t)→ vm(1).

Remark 2.4.1. When m = 1, the operator Ap,m reduces to the p-Laplace operator

defined in L1(Ω), which restricted to L2(Ω) coincides with the subdifferential ∂Ip

in bounded domains. The same argument applies to show that the limit operator

A∞,m coincides with ∂I∞, when m = 1 and restricted to L2(Ω). Therefore, theorem

2.3.5 serves as a generalization (in the mild sense) of proposition 2.1.1. Similarly,

the results of theorem 2.4.2 and corollary 2.4.3 are a generalization of the results in

proposition 2.1.2 and the equation satisfied in the limit as described in (2.15).
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3. Limit of solutions of (DNE)
when m→ +∞

We intend to study in this section the asymptotic behaviour of the family of solutions

up,m of problem (DNE)p,m as defined in (2.1), as the parameter m goes to infinity.

We will see that the passage to the limit is more delicate in this case in comparison

with the study when p goes to infinity.

3.1 Asymptotic behaviour for the (PME)

When p = 2, the equation in (DNE)p,m simplifies to the porous medium equation

(PME)

(um)t −∆umm = g.

This equation, for g ≡ 0, is a prototype of evolution equations of the form

(um)t = ∆φm(um), (3.1)

where φm is a monotone graph. In the early eighties, Bénilan and Crandall raised the

question of the continuous dependence of solutions of initial-value problems for (3.1)

as functions of the nonlinearity φm. Namely, given a sequence φm which converges in

the sense of graphs to a maximal monotone graph φ∞, what is the behaviour at the

limit of the family of solutions um. Since the nonlinearity |u|m−1u converges in the

sense of graphs to the multivalued maximal monotone graph φ∞ defined as

φ∞(r) =



∅ if r < −1

(−∞, 0] if r = −1

{0} if |r| < 1

[0,+∞) if r = 1

∅ if r > 1,

(3.2)
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then, by the results proved in [11], it follows that the solutions um of the Dirichlet

problem associated to the porous medium equation converge in C(0,∞;L1(Ω)) to u,

where u is the unique solution of
ut = ∆w in (0,∞)

u(0) = u0,

(3.3)

with w ∈ φ∞(u). The unique solution u of problem (3.3) is the trivial solution u ≡ u0,

then

um → u0 in C(0,∞;L1(Ω)).

Note that (3.3) is only well-posed as long as ‖u0‖∞ ≤ 1. There was then a growing

interest in what occurs when the initial data u0 takes values outside [−1, 1]. It was

Elliot, Herrero, King and Ockendon in [25] that first conjectured that the problem for

the porous medium equation with inconsistent initial values develops “mesas” at the

limit as m → ∞. This term mesa has been used to describe a pattern at the limit

that resembles the features of this landscape of the far west, a flat top surface with

relatively steep sides.

Important progress was made throughout the eighties to rigorously solve this ques-

tion. During this period, Caffarelli and Friedman proved that for a bounded initial

data with very strong geometric assumptions, the family of solutions um converges

in the weak-star topology of L∞(Ω) to a function u which solves a “mesa problem”

with plateau of height one ([21], see also [28], [29] and [42]). Precisely, u equals one

on a set, which is characterized as the noncoincidence set of a variational inequality,

and equals the initial data outside that set.

The authors also noted the physical interest in the porous medium equation for

large values of the parameter m, given that the equation appears in several physical

problems, among them the spreading of a liquid film under gravity [34] for m = 3

and a radiation in ionized gases for m ∈ (5.5, 6.5) [45].

It was in 1989 that the problem was completely solved in [9] for non-negative initial

data. The following result was obtained for the Dirichlet porous medium problem

(um)t = ∆|um|m−1um in (0,∞)× Ω

um = 0 on (0,∞)× ∂Ω

um(0) = u0 on Ω,

(3.4)

where Ω is an open domain of RN not necessarily bounded, m ≥ 1, and u0 ∈ L1(Ω).
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Theorem 3.1.1. Let um be the solution of problem (3.4) with initial value u0 ∈ L1(Ω),

u0 ≥ 0. Then there exists a time-independent limit function u0 such that, when m→∞,

um → u0 = u0χ[w=0] + χ[w>0] in L1(Ω),

uniformly for t in a compact set in (0,∞), where w satisfies

w ∈ H2(Ω) ∩H1
0 (Ω), w ≥ 0, 0 ≤ ∆w + u0 ≤ 1 in D′(Ω), w(∆w + u0 − 1) = 0,

or equivalently w is the solution of the mesa problem

u0, w ∈ L1(Ω)+, sign(w)−∆w 3 u0 in D′(Ω), u0 ∈ sign(w). (3.5)

Let us define A(∞) as follows:

z ∈ A(∞)(v)⇐⇒


v, z ∈ L1(Ω), ∃w ∈ H1

0 (Ω), v ∈ sign(w) a.e. on Ω

and

∫
Ω

∇w.∇ξ =

∫
Ω

z ξ, ∀ ξ ∈ H1
0 (Ω) ∩ L∞(Ω).

Then the following holds.

Corollary 3.1.2. Under the hypothesis of the previous theorem

u0 = (I + A(∞))−1u0 = Proj
H−1

D(A(∞))

u0,

where Proj
H−1

D(A(∞))

u0 is the projection of u0 onto the convex set D(A(∞)) by the H−1(Ω)

norm.

The nonlinear diffusion coefficient of the porous medium equation, um−1, for large

but finite values of m, is very large at all points where u > 1, hence all mass in

that region tends to be quickly diffused into regions of lesser concentration. In the

limit, the diffusion coefficient tends to infinity above the level u = 1 and zero below

it. It makes sense that the region {u > 1} instantaneously collapses and the region

{u < 1} tends not to be affected, as there is no evolution below u = 1, and we

have a convergence to a stationary profile. The limit is singular, when u0 > 1, and

a discontinuity arises in the neighbourhood of t = 0, after which the limit profile

becomes compatible with φ∞.

Notice that the limit configuration is time-independent since there is a trivial

boundary condition and no reaction term. In the case that there is a non-trivial

Dirichlet boundary condition, an evolutionary problem is obtained at the limit, as

shown in [30] by Gil and Quirós. Indeed, in the following result, it was shown by the

authors that the limit function is a solution of a Hele-Shaw problem.
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Theorem 3.1.3. Let u0 be measurable, bounded and compactly supported, g the trace

of a function in W 1,2(Ω) ∩ L∞(Ω) and (um, wm) be the solution of

ut = ∆w, w = um

w = g on ∂Ω

u(x, 0) = u0.

Then, when m→∞, we have

um(t, ·)→ u(t, ·) in L1(Ω) for all t > 0

wm → w in L1((T1, T2)× Ω) for all T2 > T1 > 0

where (u,w) satisfies the following Hele-Shaw evolution problem

ut = ∆w, w ∈ φ∞(u)

w = g on ∂Ω

u(x, 0) = u0,

(3.6)

where u0 is as defined in theorem 3.1.1.

Both the proof of theorem 3.1.1 and its generalization in [30], rely heavily on the

following regularizing effect for solutions of the porous medium equation [10],

−ut ≤
u

(m− 1)t
in ΩT ,

which holds only if u0 ≥ 0. The problem still remained of what occurs for initial data

of changing sign. Then in 2003, inspired by the work of Evans et al. for the singular

limit of the p-Laplacian, the following result was obtained by Bénilan and Igbida in

[16].

Theorem 3.1.4. Let um be the solution of problem (3.4) for u0 ∈ L∞(Ω), no longer

required to be non-negative. Then, there exists a function z such that, as m tends to

infinity,

um → z(1) in L1(Ω) uniformly for t in a compact set of (0,∞),

where z satisfies the following properties
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(i) z(t) = tu0 for any t ∈ [0, a], where

a =


1 if ‖u0‖∞ ≤ 1

1/‖u0‖∞ if ‖u0‖∞ > 1,

(ii) z is the unique mild solution of the evolution problem
zt + A(∞)z 3 z/t in (a,∞)

z(a) = au0.

In this case, we have that

(I + A(∞))−1u0 = u0 = u0χ[w=0] + χ[w>0] − χ[w<0],

where w ∈ φ∞(u0), now not necessarily non-negative, is still the solution of the mesa

problem

sign(w)−∆w 3 u0.

However, as explained in [14], in general z(1) 6= u0.

3.2 Regular limit of (DNE) when m→ +∞

Recall the operator Ap,m as already defined in (2.16) and let V denote W 1,p
0 (Ω)

or W 1,p(RN) depending on whether the domain Ω is bounded or the whole of RN .

When Ω = RN , it was proved in [33] that Ap,m converges in the resolvent sense to the

operator Ap,∞, which behaves as follows:

v ∈ Ap,∞u⇐⇒


u, v ∈ L1(Ω), ∃w ∈ V, u ∈ sign(w) a.e. in Ω

and −∆pw = v in D′(Ω).

(3.7)

We would like to see that this result continues to hold for bounded domains. We

will show that the convergence holds for the following particular cases:

(i) Ω is a bounded interval in R,

(ii) Ω = B(0, R) and f is radial and nonnegative.
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We recall that we denote zp,m := (I + Ap,m)−1f , for f ∈ L∞(Ω), and once again

examine the stationary problem associated to the operator Ap,m, which is as follows
zp,m −∆pz

m
p,m = f in Ω

zp,m = 0 on ∂Ω.

(3.8)

Remark 3.2.1. To prove the result in RN , it was used that J
Ap,m
λ is invariant by

translation, together with the L1- contraction properties of solutions of (3.8), to

obtain
‖zp,m‖1 ≤ ‖f‖1,

‖zp,m(x+ h)− zp,m(x)‖1 ≤ ‖f(x+ h)− f(x)‖1 ∀h > 0.

Therefore zp,m is relatively compact in L1
loc(RN). Since we are interested in working

in bounded domains, we no longer have the translation invariance to make use of,

and we need a different compactness result. The equivalent compactness result for

bounded domains is more difficult to obtain. In this case, we will need to restrict

even further the choice of domain. We emphasize that all the other results in [33],

used for the convergence of the operators, apply to general open domains in RN , not

necessarily bounded. We will recall these results below and their proofs, for bounded

domains, for completeness.

We will see first that by the following results, also from [33], the convergence of

the operator Ap,m in the resolvent sense holds if ‖f‖∞ ≤ 1.

Proposition 3.2.1. [33, Lemma 2.4] If ||f ||∞ ≤ 1, then when m→∞, we have

(I + λAp,m)−1f → f in L1(Ω),

for all λ > 0.

Proof. If zp,m is a solution of (3.8) then∫
Ω

|∇zmp,m|p−2∇zmp,m · ∇ϕdx =

∫
Ω

(f − zp,m)ϕdx, ∀ϕ ∈ D(Ω). (3.9)

Let us first consider f such that

‖f‖∞ ≤ c < 1. (3.10)

Then ∫
Ω

|zmp,m|dx ≤ ‖zmp,m‖∞|Ω| ≤ ‖f‖m∞|Ω| < cm|Ω| → 0.
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Hence

zmp,m → 0 in L1(Ω).

Now by density we can take ϕ = zmp,m in (3.9) and we obtain∫
Ω

|∇zmp,m|pdx =

∫
Ω

(f − zp,m)zmp,mdx

≤ 2‖f‖∞‖zmp,m‖1

and

∇zmp,m → 0 in Lp(Ω).

Therefore, by (3.9),

zp,m → f in L1(Ω) as m→∞. (3.11)

If ‖f‖∞ ≤ 1, we can consider a sequence fn in L1(Ω) which verifies (3.10) such

that fn → f as n→∞ in L1(Ω). Then, by the accretivity of Ap,m in L1(Ω), it follows

that (3.11) continues to hold in this case.

This result is then enough to prove that up,m converges to the initial data u0, if

g ≡ 0 and ‖u0‖∞ ≤ 1.

Lemma 3.2.2. [33, Proposition 2.3] Let m > 1/(p − 1), u0 ∈ L1(Ω) and up,m be a

solution of (DNE)p,m in (2.1) with g ≡ 0. If ‖u0‖∞ ≤ 1, then when m→∞ we have

up,m → u0 in C(0, T ;L1(Ω)),

for all λ > 0.

Proof. Let A be the m-accretive operator defined by

Au = 0 and D(A) = {u ∈ L1(Ω) : ‖u0‖∞ ≤ 1}.

Then, by the previous result, we have

(I + λAp,m)−1u→ u in L1(Ω) when m→∞,

for all u ∈ D(A) and

A ⊆ lim inf
m→∞

Ap,m.

As u ≡ u0 is the unique mild solution of
du

dt
+ Au = 0 on [0,∞)

u(0) = u0,

(3.12)

the result follows.
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Just as in the previous chapter we will need certain uniform bounds in m to pass

to the limit.

Lemma 3.2.3. If zp,m is the solution of (3.8) then zmp,m is bounded in W 1,p
0 (Ω).

Proof. In the same way as in lemma 2.3.1 we can see that if zp,m is a solution of (3.8)

then

∫
Ω

|∇zmp,m|pdx ≤ C‖f‖∞
(∫

Ω

|∇zmp,m|p
)1/p

|Ω|1−1/p,

and therefore ∫
Ω

|∇zmp,m|pdx ≤ (c‖f‖∞)
p
p−1 |Ω|.

Hence zmp,m is uniformly bounded in W 1,p
0 (Ω).

We will at this point need to restrict our choice of domain. Let us first consider

the problem in (3.8) in one dimension, where we momentarily suppress the subscripts

m and p: 
z − (|(zm)x|p−2(zm)x)x = f in I an interval of R

z = 0 on ∂I.

(3.13)

Consider as well ρ ∈ C∞0 (I), ρ ≥ 0,

∫
ρ = 1 and for any function k let us define the

convolution

ρε ∗ k(x) =

∫
ρε(x− y)k(y)dy, ε > 0,

where ρε(y) = ρ(y/ε)/ε. Adapting accordingly the results in [26], which apply for

the doubly nonlinear diffusion equation in (DNE)p,m in one dimension, we have the

following result.

Theorem 3.2.4. Let z be the unique solution of (3.13) for f ≥ 0, f ∈ L∞(I). For

p > 4, m > 0 there exists a smooth approximation Ψε(z, b) to Ψ(b) = b|b|p−2 with

Ψε(z, b) = b|b|p−2 +
nε

m
zn−mb,

where n = (p− 1)(m+ 1)− 1, such that for fε = ε+ ρε ∗ f and z0ε = ε, the problem
zε − (|(zmε )x|p−2(zmε )x)x − ε(znε )xx = zε − (Ψε(zε, (z

m
ε )x))x = fε in I

zε = z0ε on ∂I,

(3.14)

has a unique solution zε ∈ C∞(I) satisfying
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(i) 0 < ε < zε < ε+ ‖f‖∞.

(ii) zε converges uniformly in compact subsets of I to z.

(iii) (zmε )x → (zm)x as ε→ 0 a.e. x ∈ I.

Proof. It is easy to see that given the choice of fε, then

0 < ε ≤ fε ≤ ε+ ‖f‖∞.

Taking into account as well the choice of initial data z0ε = ε, then (i) follows by the

maximum principle. Furthermore, we have that

0 < c ≤ (Ψε)b = (p− 1)|b|p−2 +
nε

m
zn−mε ≤ C,

where c and C depend only on ε and ‖f‖∞. Hence the equation in (3.13) is uniformly

elliptic and by the general theory of quasilinear elliptic partial differential equations

(see, for e.g., [36]), we obtain the existence of a smooth solution zε of problem (3.14).

The convergence of the solution zε of (3.14) to the solution z of (3.13) as ε tends to

0, as well as the convergence in (iii) follow as in [26].

Remark 3.2.2. If p < 4, then the previous theorem continues to hold. However,

depending on the relationship between p and m, a different approximation operator

Ψε would be needed to pass to the limit in ε.

Theorem 3.2.5. Let zp,m be a solution of (3.8). If one of the following conditions is

satisfied:

(i) Ω = I is a bounded interval in R and f ∈ L∞(Ω) is nonnegative,

(ii) Ω = B(0, R) and f ∈ L∞(Ω) is radial and nonnegative,

then the total variation of zp,m is uniformly bounded.

Proof.

(i) By theorem 3.2.4, there exists a smooth approximation of the solution zm,p

of (3.8), which we will continue to denote by zε. We differentiate (3.14) with

respect to x to obtain

(zε)x −
(
|(zmε )x|p−2(zmε )x +

nε

m
zn−mε (zmε )x

)
xx

= (fε)x.
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Let bε = (zmε )x and consider a sequence of functions which satisfy hδ ∈ C∞(R),

h′δ ≥ 0, 0 = hδ(0) ≤ |hδ| ≤ 1. Multiply by hδ(bε) and integrate over I to get∫
I

hδ(bε)(zε)x ≤
∫
I

(
|bε|p−2bε +

nε

m
zn−mε bε

)
xx
hδ(bε) +

∫
I

(fε)xhδ(bε)

≤ −
∫
I

(
|bε|p−2bε +

nε

m
zn−mε bε

)
x

(hδ(bε))x +
∑
∂I

hδ(bε)(zε − fε)

+

∫
I

|(fε)x|

≤ −
∫
I

(
|bε|p−2bε +

nε

m
zn−mε bε

)
bε

(bε)xh
′
δ(bε)(bε)x

+
∑
∂I

(|z0ε |+ |fε|) +

∫
I

|(fε)x|

≤ ‖(fε)x‖1 +
∑
∂I

(|z0ε|+ |fε|).

Taking hδ such that hδ(r)→ sign0(r) as δ → 0, then∫
I

|(zε)x| ≤
∫
I

|(fε)x|+
∑
∂I

(|z0ε|+ |fε|).

Hence, by the lower semicontinuity of the seminorm in BV , we have, as ε→ 0,∫
I

|(zp,m)x| ≤
∫
I

|(f)x|.

(ii) Since f is radial, that is, f(x) = l(|x|) and J
Ap,m
λ is invariant by rotation, then

the solution of (3.8) is radial and there exists vp,m such that zp,m(x) = vp,m(|x|)
and verifies 

v − (rN−1|(vm)r|p−2(vm)r)r
rN−1

= l in (0, R)

v(0) = v(R) = 0.

(3.15)

As

∫
B(0,R)

|∇zp,m(x)|dx and

∫ R

0

|(vm,p)r|rN−1dr differ only by a constant which

is independent of m then it is enough to prove the uniform bound of the second.

We can then take a smooth approximation of the problem as in the previous

case
rN−1vε −

(
rN−1|(vmε )r|p−2(vmε )r + ε n

m
vn−mε (vmε )r

)
r

= lεr
N−1 in (0, R)

vε(0) = vε(R) = v0ε .

(3.16)
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We differentiate the equation in (3.16) with respect to r to obtain

(rN−1vε)r −
(
rN−1|(vmε )r|p−2(vmε )r + ε

n

m
vn−mε (vmε )r

)
rr

= (lεr
N−1)r.

Denote now bε = (vmε )r and hδ as above, multiply the above equation by hδ(bε)

and integrate over (0, R) to obtain∫ R

0

(rN−1vε)rhδ(bε)dr =

∫ R

0

(
rN−1|bε|p−2bε + ε

n

m
vn−mε bε

)
rr
hδ(bε)dr

+

∫ R

0

(lεr
N−1)rhδ(bε)dr

≤ −
∫ R

0

(
rN−1|bε|p−2bε + ε

n

m
vn−mε bε

)
r

(hδ(bε))r

+
∑
∂I

hδ(bε)
(
rN−1|bε|p−2bε + ε

n

m
vn−mε bε

)
r

+

∫ R

0

|(lεrN−1)r|

≤ RN−1(v0ε − lε(R)) +

∫ R

0

|(lεrN−1)r|dr.

Therefore∫ R

0

(vε)rr
N−1hδ(bε)dr =

∫ R

0

(vεr
N−1)rhδ(bε)dr −

∫ R

0

(rN−1)rvεhδ(bε)dr

≤ RN−1(v0ε − lε(R)) +

∫ R

0

|(lεrN−1)r|dr

−
∫ R

0

(rN−1)rvεhδ(bε)dr

≤ RN−1(v0ε − lε(R)) +

∫ R

0

|(lε)r|rN−1dr + C(R)‖lε‖∞.

Taking hδ such that hδ(r)→ sign0(r) as δ → 0, then∫ R

0

|(vε)r|rN−1dr ≤ RN−1(v0ε − lε(R)) +

∫ R

0

|(lε)r|rN−1dr + C(R)‖lε‖∞.

Hence as ε→ 0∫ R

0

|(vp,m)r|rN−1dr ≤
∫ R

0

|lr|rN−1dr + C(R)‖l‖∞.
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Lemma 3.2.6. [33, Lemma 2.11] For all m ≥ 1, let wm ∈ W 1,p
0 (Ω) and gm ∈ L1(Ω) be

such that

−∆pwm = gm in D′(Ω). (3.17)

If there exists w∞ ∈ W 1,p
0 (Ω) and g∞ ∈ L1(Ω) such that, when m→∞, we have

gm → g∞ in L1(Ω), (3.18)

wm ⇀ w∞ in W 1,p(Ω), (3.19)

gmwm → g∞w∞ in L1(Ω), (3.20)

then

−∆pw∞ = g∞ in D′(Ω), (3.21)

and furthermore, we have

∇wm → ∇w∞ , in (Lp(Ω))N , when m→∞. (3.22)

Proof. By (3.19), we have that

wm → w∞ in Lp(Ω).

Moreover, there exists h ∈ (Lp
′
(Ω))N such that

|∇wm|p−2∇wm ⇀ h in (Lp
′
(Ω))N . (3.23)

This, together with (3.18), gives

− div h = g∞ in D′(Ω). (3.24)

It is therefore enough to show that

h = |∇w∞|p−2∇w∞ a.e. in Ω. (3.25)

We claim that ∀ η ∈ RN

1

p
|∇w∞|p + h · η − 1

p
|η|p ≤ h · ∇w∞,

and therefore (3.25) is satisfied.

Let us fix ξ ∈ D(Ω), ξ ≥ 0 and η ∈ (L∞(Ω))N . We have by the convexity of
|r|p

p
that

1

p

∫
Ω

|∇wm|pξ +

∫
Ω

|∇wm|p−2∇wm · ηξ −
1

p

∫
Ω

|η|pξ ≤
∫

Ω

|∇wm|pξ. (3.26)
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On the other hand, by (3.17), taking as test function ξwm and taking the limit as

m→∞, we obtain

lim
m→∞

∫
Ω

|∇wm|pξ = lim
m→∞

∫
Ω

gmwmξ − lim
m→∞

∫
Ω

|∇wm|p−2∇wm · wm∇ξ

=

∫
Ω

g∞w∞ξ −
∫

Ω

h · w∞∇ξ

=

∫
Ω

h · ∇(w∞ξ)−
∫

Ω

h · w∞∇ξ

=

∫
Ω

h · ξ∇w∞. (3.27)

The second equality follows from the hypotheses (3.18)-(3.20) and the third from

(3.24). By (3.19) and (3.23), we also have

1

p

∫
Ω

|∇w∞|pξ ≤ lim inf
m→∞

1

p

∫
Ω

|∇wm|pξ,

limm→∞

∫
Ω

|∇wm|p−2∇wm · ηξ =

∫
Ω

h · ηξ.

(3.28)

Using (3.27) and (3.28) to pass to the limit in (3.26), as m→∞, we obtain

1

p

∫
Ω

|∇w∞|pξ +

∫
Ω

h · ηξ − 1

p

∫
Ω

|η|pξ ≤
∫

Ω

h · ξ∇w∞,

and the claim is true. To prove (3.22) recall that we have that

∇wm ⇀ ∇w∞ in Lp(Ω)

and by (3.27), since h = |∇w∞|p−2∇w∞,

|∇wm| → |∇w∞| in Lp(Ω). (3.29)

We are now ready to prove the convergence in the resolvent sense of the operator

A
(m)
p as m tends to infinity.

Lemma 3.2.7. Let one of the following conditions be satisfied:

(i) Ω is a bounded interval in R,

(ii) Ω = B(0, R) and f is radial,
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then for f ∈ L∞(Ω), f ≥ 0 and λ > 0, when m→∞, we have that

(I + λAp,m)−1f → (I + λAp,∞)−1f in L1(Ω).

Proof. Let f ∈ L∞(Ω) and zp,m be a solution of (3.8), by theorem 3.2.5, if conditions

(i) or (ii) are satisfied, then there exists zp such that

zp,m → zp in L1(Ω), (3.30)

and by lemma 3.2.3 there exists some wp such that

zmp,m ⇀ wp in W 1,p
0 (Ω). (3.31)

Therefore zp ∈ sign(wp) a.e. in Ω. Since we also have that

‖zp,m‖∞ ≤ ‖f‖∞,

then

(f − zp,m)(zp,m)m → (f − zp)wp in L1(Ω)

and all the hypothesis of lemma 3.2.6 are satisfied, from which we obtain

−∆pwp = f − zp in D′(Ω)

and

∇zmp,m → ∇wp in Lp(Ω).

Corollary 3.2.8. [33] Let one of the following conditions be satisfied:

(i) Ω is a bounded interval in R and f ∈ L1(Ω) such that f ≥ 0,

(ii) Ω = B(0, R) and f ∈ L1(Ω) such that f is radial and f ≥ 0,

then Ap,∞ is m-T -accretive and for all λ > 0, when m→∞, we have

(I + λAp,m)−1f → (I + λAp,∞)−1f in L1(Ω),

where Ap,∞, for p > N , is defined as follows

v ∈ Ap,∞u⇔


u, v ∈ L1(Ω),∃w ∈ L∞(Ω) ∩W 1,p

0 (Ω), u ∈ sign(w) a.e. Ω and

−∆pw = v a.e. in Ω.
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Proof. Similarly to corollary 2.3.4 in Chapter 2, it is enough to prove that Ap,∞ is

T -accretive which follows since Ap,∞ ⊆ A1φ∞, where φ∞ = sign−1 is a maximal

monotone graph and A1 is the single-valued completely accretive operator defined by

A1u = −∆pu,

D(A1) = {u ∈ L∞(Ω) ∩W 1,p
0 (Ω); ∆pu ∈ L1(Ω)}.

The main theorem then follows.

Theorem 3.2.9. Let up,m be the solution of the problem (DNE)p,m in (2.1), where

g ∈ L1(ΩT ) and one of the following conditions is satisfied:

(i) Ω is a bounded interval in R and 0 ≤ u0 ≤ 1

(ii) Ω = B(0, R) and u0 is radial such that 0 ≤ u0 ≤ 1.

Then, there exists a function up such that, when m→∞, for each T > 0,

up,m → up in C(0, T ;L1(Ω))

and up is the unique mild solution of
(up)t + Ap,∞(up) 3 g in Ω× [0, T ]

up(0) = u0,

where Ap,∞ is given by (3.7).

Proof. Since u0 belongs to D(Ap,∞), the result follows from corollary 3.2.8 and theo-

rem 1.5.3.

3.3 Singular limit of the (DNE) when m→∞ and

a conjecture

Given the result in theorem 3.1.1 for the porous medium equation, it is no wonder

that the following was conjectured in [15] for solutions up,m of the general Dirichlet

problem (DNE)p,m in (2.1), with g ≡ 0:
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Conjecture Let u0 ∈ L1(Ω), u0 ≥ 0. Then there exists a limit function u0,p such

that

up,m → u0,p = u0χ[wp=0] + χ[wp>0], (3.32)

and wp is the solution of the mesa problem
sign(wp)−∆pwp 3 u0 in D′(Ω)

wp = 0 on ∂Ω.

(3.33)

It was proved in [33] that the conjecture holds in the following particular cases:

1. Ω is an open domain in RN not necessarily bounded and ||u0||∞ ≤ 1. It was

proved that

up,m → u0 in C(0, T ;L1(Ω)).

The conjecture then holds since for ||u0||∞ ≤ 1, wp ≡ 0 is the unique solution

of (3.33).

2. Ω = RN and u0 is radial decreasing, i.e., u0(x) = h(|x|) and h : [0,∞)→ [0,∞)

is decreasing. It was also assumed that h(0) > 1.

Then, when m→∞,

up,m → u0,p = u0χ[|x|≥a] + χ[|x|≤a] in C(0,∞;L1(Ω)),

where a > 0 is given by ∫ 1

0

h(ar)drN = 1.

The conjecture holds since [wp = 0] = [|x| ≥ a] .

3. Ω = B(0, R) and u0 is radial decreasing.

Remark 3.3.1. With the exception of case 3, none of the equations satisfied at the

limit depend on p.

The following result was also proved in [33] for Ω = R.

Theorem 3.3.1. Let up,m be the solution of (DNE)p,m in (2.1) for g ≡ 0, u0 ∈
L1(R) ∩ L∞(R), u0 ≥ 0. For all u ∈ L1(R) such that up,mk → u in C(0,∞;L1(R))

when mk →∞, there exists A ⊆ R a bounded open set verifying

∃W ∈ C(R), W ′ = u0 − 1 a.e. in A, W = 0 a.e. in R− A,

such that

u = χA + u0χR\A a.e. in R.
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Remark 3.3.2. Even though this result shows that u is a mesa, it was not possible to

relate the set A with {wp > 0} where wp is the solution of

−∆pwp + signwp 3 u0 in D′(R).

On the other hand, we can apply the method in [14] for homogeneous accretive

operators, in the same way as in the case of the convergence with respect to p, to

prove the existence of the singular limit and the equation it satisfies. We consider the

same stretching of the time variable:

vp,j(t, x) = tup,mj

(
tmj(p−1)

mj(p− 1)
, x

)
. (3.34)

If we consider that there is no reaction term, we have the following result.

Theorem 3.3.2. Consider up,m the solution of (DNE)p,m in (2.1) with g ≡ 0. Suppose

moreover that one of the following conditions is satisfied:

(i) Ω is a bounded interval in R and u0 ≥ 0, ‖u0‖∞ = M > 1,

(ii) Ω = B(0, R) and u0 is radial such that u0 ≥ 0, ‖u0‖∞ = M > 1.

Then, as j →∞,

vp,j → vp in C(0,∞;L1(Ω)), (3.35)

where vp is given by

(i) vp(t) = tu0 for any t ∈ [0, b], and b = 1/M ,

(ii) vp is the unique mild solution of the evolution problem
(vp)t + Ap,∞vp 3

vp
t

in (b,∞)

vp(b) = bu0,

(3.36)

and finally, when mj →∞,

up,mj → vp(1) in L1(Ω) uniformly for t in a compact set of (0,∞) . (3.37)

Proof. Let ûp,m be the unique mild solution of (DNE)p,m with g ≡ 0 and initial

condition û0 = bu0, i.e., û0 ∈ D(Ap,∞). Then, by proposition 3.2.1, when m→∞,

1

b
zp,m → u0 in L1(Ω)
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and also

Ap,mzp,m → 0 in L1(Ω).

Denoting tmj :=
tmj(p−1)

mj(p− 1)
, then it follows by the same scheme as in the proof of

lemma 2.4.1 that, when mj →∞,

up,mj(x, tmj)→ u0(x) in L1(Ω).

Hence, by the rescaling in (3.34),

vp,j(x, b)→ bu0, as j →∞.

Using as well the result of corollary 3.2.8, we see that the hypotheses of theorem 1.5.4

are satisfied and thus (3.35) holds, where vp is the unique mild solution of (3.36). The

convergence in (3.37) follows as in corollary 2.4.3.

We will show below what is the relation between the results of theorem 3.3.2 and

the conjecture, using a similar structure to the proof of proposition 1 in [14]. Let us

observe that, formally, we have that the function vp, obtained at the limit in theorem

3.3.2, satisfies the following relation

vp(t, ·)
t
− (vp)t(t, ·) ∈ Ap,∞vp(t, ·).

Hence, there exists ŵp such that ŵp(t, ·) ∈ W 1,p
0 (Ω), vp(t, ·) ∈ sign(ŵp(t, ·)) and

−∆pŵp(t, ·) =
vp
t

(t, ·)− (vp(t, ·))t in D′(Ω). (3.38)

Furthermore, we have that vp(·, t) is decreasing with respect to t. Indeed, since u0 ≥ 0

then vp ≥ 0 and hence either vp = 1 or by (3.38) vp(t,·)
t

= (vp(t, ·))t.

(i) In the case that Ω = I is a bounded interval in R, then for any ϕ ∈ D(I),∫
I

(vp(x, 1)− u0)ϕdx =

∫
I

(∫ 1

b

d

dt

(vp
t

))
ϕdx

=

∫
I

(∫ 1

b

1

t

(
(vp)t −

vp
t

)
dt

)
ϕdx

= −
∫
I

(∫ 1

b

1

t
|(ŵp)x|p−1(ŵp)xdt

)
ϕxdx.

Let us denote

W :=

∫ 1

b

1

t
|(ŵp)x|p−2(ŵp)xdt,
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then, we obtain,

Wx = vp(x, 1)− u0 in D′(I).

Now if vp(x, 1) < 1 then 0 ≤ vp(x, t) < 1 for all b < t < 1. Hence, there exists

θ < 1 such that

vp,j ≤ θ < 1.

Consider as well

Wmj(x) :=

∫ 1

b

1

t
|(vmjp,j )x|p−2(v

mj
p,j )x(x, t)dt.

Then, by [33, Lemma 3.5], we have that

sup |Wmj(x)| ≤ Cp

(
Mk+1θmj−k

c

) p−1
c pc

j(p− 1)− 1
,

where Cp is a constant that depends only on p, c = m(p−1)−1 and k ∈ ( 1
p−1

,m).

Taking k to infinity and then mj, necessarily we have that W ≡ 0. Otherwise,

if vp(x, 1) = 1, clearly

Wx = 1− u0 in D′(I).

We have then that an equivalent to theorem 3.3.1 continues to hold in a bounded

interval, i.e., vp(x, 1) is the solution of a mesa problem.

(ii) If Ω = B(0, R) and u0 is non-negative and radial decreasing, then by (3.38),

1

rN−1
(rN−1|(ŵp)r|p−1)r = −(vp(t, r))t +

vp(t, r)

t
in D′(0, R),

and then we obtain that, for any ϕ ∈ D(0, R),∫
Ω

(vp(r, 1)− u0)ϕrN−1dr =

∫ R

0

(∫ 1

b

d

dt

(vp
t

)
dt

)
ϕrN−1dr

=

∫ R

0

(∫ 1

b

1

t

(
(vp)t −

vp
t

)
dt

)
ϕrN−1dr

= −
∫

Ω

(∫ 1

b

1

t
|(ŵp)r|p−1dt

)
(ϕ)rr

N−1dr.

Let us denote wp a function that satisfies the following

wp(r) =

∫ R

0

(∫ 1

b

1

t
|(ŵp)r(s, t)|p−1dt

) 1
p−1

ds. (3.39)
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Therefore

vp(r, 1)− u0 =
1

rN−1
(rN−1|(wp)r|p−1)r in D′(0, R).

Denoting u0,p(|x|) = vp(r, 1) and wp(|x|) = wp(r), we have

∆pwp = u0,p − u0 in D′(Ω).

Hence, it is only left to show

u0,p ∈ sign(wp) a.e. in B(0, R). (3.40)

Since vp(r, 1) ∈ sign(ŵp) then 0 ≤ vp(r, 1) ≤ 1. Now, from (3.39), we have that

wp ≥ 0. Then, if vp(r, 1) = 1 it follows that 0 ≤ wp ∈ φ∞(vp(r, 1)). On the

other hand, if 0 ≤ vp(r, 1) < 1 then 0 ≤ vp(r, t) < 1 for all b < t ≤ 1. Hence, as

in the previous case, we have that there exists θ < 1 such that

vp,j ≤ θ < 1,

and considering

wp,mj =

∫ R

0

(∫ 1

b

1

t
|(vmjp,j )r(s, t)|p−1dt

) 1
p−1

ds,

then, by [33, Lemma 3.8],

wp,mj(r) ≤ R

{
cMk(p−1)θ(m−k)(p−1)

δp−1(k(p− 1) + 2)
+

2Mδ(p− 1)

k(p− 1)− 1

} 1
p−1

,

for all r ≥ r0 − δ, for any δ > 0, where k and c are as in case (i) and r0 =

inf {r ∈ R+ : vp(r, 1) < 1}. Taking k and then mj to infinity, we obtain at the

limit that wp ≡ 0.
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4. Asymptotic behaviour of the
limit equations

In this chapter, we will analyze the asymptotic behaviour of the solutions of the limit

equations obtained in chapters 2 and 3, when, respectively, m and p go to infinity.

Taking into account the restrictions already imposed on the initial data, as well as

the domain, we will be able to study the equations satisfied by the limits.

4.1 Asymptotic behaviour of the limit equation in

p of the (DNE) when m→∞

Recall that in chapter 2 we obtained the convergence of the solutions up,m of the

problem (DNE)p,m in (2.1), as p tends to infinity. Depending on the conditions

satisfied by the initial data u0 and the source term g, we obtained a regular or

singular limit and the equations satisfied by these limits. In this section, we study

the asymptotic behaviour of the regular solutions um as m tends to infinity and the

corresponding equation satisfied at the limit.

We have already seen that the operator Ap,m converges, as p tends to infinity, to

the operator A∞,m given by

v ∈ A∞,mu⇐⇒


u, v ∈ L1(Ω), um ∈ W 1,∞(Ω) ∩ C0(Ω),

um ∈ K̃ and 0 ≥
∫

Ω

v(ξ − um)dx, ∀ ξ ∈ K̃,
(4.1)

with

K̃ := {ξ ∈ L1(Ω) : |∇ξ| ≤ 1 a.e.}. (4.2)

As already noted, φm(r) = |r|m−1r converges in the graph sense to the multivalued
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maximal monotone graph φ∞, given by,

φ∞(r) =



∅ if r < −1

(−∞, 0] if r = −1

{0} if |r| < 1

[0,+∞) if r = 1

∅ if r > 1.

It seems then appropiate to expect that the operator A∞,m converges in the resolvent

sense to the operator A∞,∞ defined in the following way

v ∈ A∞,∞(u)⇐⇒


u, v ∈ L1(Ω), ∃w ∈ W 1,∞(Ω) ∩ C0(Ω) with w ∈ K̃,

u ∈ sign(w) and 0 ≥
∫

Ω

v(ξ − w)dx, ∀ ξ ∈ K̃.
(4.3)

Under the conditions of theorem 2.3.5, the equation that the solution of (DNE)p,m

satisfies in the limit, when p→∞, is
(um)t + A∞,m(um) 3 g in Ω× (0, T ]

um(0) = u0m .

(4.4)

Let us show that indeed the operator A∞,m converges in the resolvent sense to

the operator A∞,∞. For this, we look closer at the stationary problem associated to

A∞,m. Denoting zm := (I + A∞,m)−1f , the problem has a solution in the following

sense 
zm ∈ L1(Ω), zmm ∈ W 1,∞(Ω) ∩ C0(Ω),

|∇zmm | ≤ 1 a.e., 0 ≥
∫

Ω

(f − zm)(ξ − zmm)dx, ∀ ξ ∈ K̃.
(4.5)

Lemma 4.1.1. Let Ω be a bounded domain, then for all f ∈ L∞(Ω) and λ > 0, we

have,

(I + λA∞,m)−1f → (I + λA∞,∞)−1f in L1(Ω),

when m→∞.
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Proof. We would like to show that there exists a unique function z such that, when

m→∞,

zm → z in L1(Ω) (4.6)

and

z ∈ sign(w) such that 0 ≥
∫

Ω

(f − z)(ξ − w)dx, ∀ ξ ∈ K̃. (4.7)

Since zmm is Lipschitz continuous, let us consider y ∈ ∂Ω, then

|zmm(x)| ≤ |zmm(x)− zmm(y)|+ |zmm(y)| ≤ ‖∇zmm‖∞|x− y| ≤ diam(Ω).

Therefore, there exists a subsequence {mi} such that, for some w,

zmimi → w uniformly (4.8)

and

∇zmimi
∗
⇀ ∇w in L∞(Ω : RN). (4.9)

Moreover

‖∇w‖∞ ≤ lim inf
mi→∞

‖∇zmimi‖∞ ≤ 1. (4.10)

We will now use the Frechét-Kolmogorov’s theorem to prove the relative compactness

in L1(Ω) of {zm, m > 1} and therefore the existence of a function z to which a

subsequence of zm converges in L1(Ω). According to this result, since ‖zm‖1 ≤ ‖f‖1,

to prove the relative compactness, it would be enough to prove that for every y ∈ RN

small enough and Ω′ ⊂⊂ Ω there exists a continuous function ψ such that

sup
m
‖zm(x+ y)− zm(x)‖L1(Ω′) ≤ ψ(y), (4.11)

and

lim
|y|→0

ψ(y) = 0.

Let us consider the equation in (4.5). Then, for all Ω′ ⊂⊂ Ω, ξ1, ξ2 ∈ K̃ with

supp ξi ⊂ Ω′ and y ∈ RN such that |y| < dist (supp ξi, ∂Ω), i = 1, 2, the following

holds

0 ≥
∫

Ω′
(f(x)− zm(x))(ξ1(x)− zmm(x))dx (4.12)

and

0 ≥
∫

Ω′
(f(x+ y)− zm(x+ y))(ξ2(x)− zmm(x+ y))dx. (4.13)

Let us take a sequence of functions hδ ∈ C∞(Ω), 0 ≤ h′δ ≤ 1, 0 = hδ(0) ≤ |hδ| ≤ 1

and the following choices for ξ1 and ξ2

ξ1(x) = hδ(z
m
m(x+ y)− zmm(x)) + zmm(x),
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and

ξ2(x) = −hδ(zmm(x+ y)− zmm(x)) + zmm(x+ y).

Adding (4.12) and (4.13), we have that,∫
Ω′
hδ(z

m
m(x+ y)− zmm(x))(zm(x+ y)− zm(x))dx

≤
∫

Ω′
(f(x+ y)− f(x))hδ(z

m
m(x+ y)− zmm(x))dx

≤
∫

Ω′
|f(x+ y)− f(x)|dx.

Taking hδ such that hδ(r)→ sign0(r) as δ → 0,∫
Ω′
|zm(x+ y)− zm(x)|dx ≤

∫
Ω′
|f(x+ y)− f(x)|dx

and (4.11) is satisfied. By (4.6) and (4.8), it then follows that z ∈ sign(w). Recall as

well

‖zm‖∞ ≤ ‖f‖∞.

Therefore using also (4.8), taking the limit as m tends to infinity in (4.5), we get

0 ≥ lim
m→∞

∫
Ω

(f − zm)(ξ − zmm)dx =

∫
Ω

(f − z)(ξ − w)dx.

To prove uniqueness, let us suppose that there exists two solutions, that is, zi ∈
sign(wi), i = 1, 2, which satisfy

0 ≥
∫

Ω

(f − z1)(ξ − w1)dx (4.14)

and

0 ≥
∫

Ω

(f − z2)(ξ − w2)dx. (4.15)

Substituting ξ = w2 and ξ = w1 respectively in (4.14) and (4.15), since w ∈ K̃, by

(4.10), we obtain

0 ≥
∫

Ω

(z1 − z1)(w1 − w2)

and therefore the solution is unique.

Corollary 4.1.2. A∞,∞ is m-T -accretive and for all f ∈ L1(Ω) and λ > 0, we obtain,

when m→∞,

(I + λA∞,m)−1f → (I + λA∞,∞)−1f in L1(Ω).
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Proof. Similarly to corollary 2.3.4, it is enough to prove that A∞,∞ is T -accretive,

which follows since A∞,∞ ⊆ A(1) ◦ φ∞, where we recall that A(1) is defined as

A(1) =

{
(u, v) ∈ K̃× L1(Ω) :

∫
(u− w)v ≥ 0 for w ∈ K̃ with (u− w)v ∈ L1(Ω)

}
.

We are now ready to obtain the regular limit of the solutions um and the equation

it satisfies, under the additional condition that ‖u0m‖∞ ≤ 1. The following theorem

holds.

Theorem 4.1.3. Consider the problem in (4.4), where u0m and g satisfy the same

conditions as in theorem 2.3.5, as well as ‖u0m‖∞ ≤ 1. Then, there exists a subsequence

mi tending to infinity, and a unique function u such that, for each T > 0,

umi → u in C(0, T ;L1(Ω)),

with

u0m → u0∞ in L1(Ω),

and u is the unique mild solution of
ut + A∞,∞(u) 3 g in Ω× (0, T ]

u(0) = u0∞ ,

(4.16)

where A∞,∞ is given by (4.3).

Proof. The result follows from lemma 4.1.1, corollary 4.1.2 and from the classical

results in theorem 1.5.3, since u0m ∈ D(A∞,m) and u0∞ ∈ D(A∞,∞).

4.2 Asymptotic behaviour of the limit equation in

m of the (DNE) when p→∞

In chapter 3, assuming certain conditions on the initial data u0, source term g and

the domain Ω, we obtained the convergence of solutions um,p of (DNE)p,m as m tends

to infinity. It was necessary to study separately the cases ‖u0‖∞ ≤ 1 and ‖u0‖∞ > 1.

For each case, we identified the equation that the corresponding solutions satisfy in

the limit. We will henceforth in this section study the asymptotic behaviour of the

regular solutions, as the parameter p goes to infinity.
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It was already proved, under certain restrictive conditions, that the operator Ap,m

converges to Ap,∞, defined as

v ∈ Ap,∞u⇐⇒


u, v ∈ L1(Ω), ∃w ∈ W 1,p

0 (Ω), u ∈ sign(w) a.e. in Ω

and −∆pw = v in D′(Ω).

(4.17)

Given what we know about the behaviour of the p-Laplace operator when p → ∞
(see (2.27)), it is natural to seek the convergence in the resolvent sense of the operator

Ap,∞ to the operator A∞,∞, defined as follows:

v ∈ A∞,∞u⇐⇒


u, v ∈ L1(Ω), ∃w ∈ W 1,∞(Ω) ∩ C(Ω) with w ∈ K̃, w = 0 on ∂Ω

u ∈ sign(w) a.e. in Ω and 0 ≥
∫

Ω

v(ξ − w)dx ∀ ξ ∈ K̃,

(4.18)

with

K̃ := {ξ ∈ L1(Ω) : |∇ξ| ≤ 1 a.e.}.

Hence, we will study the elliptic problem associated to the operator Ap,∞. De-

noting zp := (I + Ap,∞)−1f for all f ∈ L∞(Ω), this problem has a solution in the

following sense
zp ∈ L1(Ω), ∃wp ∈ W 1,p

0 (Ω), zp ∈ sign(wp) a.e. in Ω

and −∆pwp = f − zp in D′(Ω).

(4.19)

Lemma 4.2.1. For all f ∈ L∞(Ω) and λ > 0, we have

(I + λAp,∞)−1f → (I + λA∞,∞)−1f in L1(Ω),

when p→∞.

Proof. Recall that by proposition (2.2.1) (iv), for f ∈ L∞(Ω) and zp,m a solution of

(2.30), we have

‖zp,m‖r ≤ ‖f‖r for any 1 ≤ r ≤ ∞,

and taking m→∞, it continues to hold

‖zp‖r ≤ ‖f‖r for 1 ≤ r ≤ ∞, (4.20)

for zp = (I + Ap,∞)−1f . On the other hand, we see that there exists a wp which is a

solution of the equation in (4.19) and therefore satisfies∫
Ω

|∇wp|p−2∇wp · ∇ϕdx =

∫
Ω

(f − zp)ϕdx ∀ϕ ∈ D(Ω).
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By density, we can consider ϕ = wp in the previous expression to obtain∫
Ω

|∇wp|pdx ≤ ‖f − zp‖∞‖wp‖1

≤ C‖f − zp‖∞‖∇wp‖1

≤ 2C‖f‖L∞(Ω)

(∫
Ω

|∇wp|pdx
) 1

p

|Ω|1−
1
p .

The second inequality is due to Poincaré’s inequality, with p = 1, and for the third

we use (4.20) and Hölder’s inequality. We have as well, by Hölder’s inequality,

‖∇wp‖q ≤ ‖∇wp‖p|Ω|
1
q
− 1
p ,

for any p > q and we obtain that {wp} is uniformly bounded in W 1,q
0 (Ω) for any q > 1.

Hence, there exists a subsequence {pi} and a function w such that, when pi →∞,

wpi ⇀ w in W 1,q(Ω), for any q > 1.

Thus, passing as necessary to yet another subsequence and relabeling, we deduce{
wpi → w in Lq(Ω),

wpi → w a.e.
(4.21)

By the bound in (4.20),we have that there exists a function z such that, for q′ the

conjugate of q, when pi →∞,

zpi ⇀ z in Lq
′
(Ω).

Recalling that zp ∈ sign(wp), then by Lemma 1.3.4, it continues to hold in the limit

that z ∈ sign(w). Moreover,

zpi → z a.e.

This together with (4.20) gives us the following strong convergence

zpi → z in L1(Ω). (4.22)

Besides, by the equation in (4.19), we also have that, for all ξ ∈ L∞(Ω) ∩W 1,p
0 (Ω),

1

p

∫
Ω

|∇ξ|pdx ≥ 1

p

∫
Ω

|∇wp|pdx+

∫
Ω

(f − zp)(ξ − wp)dx ≥
∫

Ω

(f − zp)(ξ − wp)dx.

Taking ξ ∈ K̃, assuming by approximation that ξ has compact support, we have by

(4.21) and (4.20),

0 ≥ lim
pi→∞

∫
Ω

(f − zpi)(ξ − wpi)dx =

∫
Ω

(f − z)(ξ − w)dx.
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Moreover, we have that,

‖∇w‖∞ ≤ 1. (4.23)

Indeed, as in lemma 2.3.2, taking η > 0 and denoting

Aη = {x ∈ Ω | |∇w| ≥ 1 + η},

then

(1 + η)|Aη| ≤
∫
Aη

|∇w|dx ≤ lim inf
p→∞

(∫
Ω

|∇wp|pdx
)1/p

|Aη|1−1/p ≤ |Aη|

and |Aη| = 0, showing that (4.23) holds.

Uniqueness follows as in the previous chapters, assuming that there exist solutions

z1, z2 such that for the respective w1, w2 with zi ∈ sign(wi), i = 1, 2, we have

0 ≥
∫

Ω

(f − z1)(ξ − w1)dx,

and

0 ≥
∫

Ω

(f − z2)(ξ − w2)dx.

Taking ξ = w2 and ξ = w1 respectively in the previous inequalities and adding we see

that the solution to the equation must be unique.

Similarly to corollary 4.1.2, we have the following result.

Corollary 4.2.2. A∞,∞ is m-accretive and for all f ∈ L1(Ω) and λ > 0, when p→∞,

we have

(I + λAp,∞)−1f → (I + λA∞,∞)−1f in L1(Ω).

Whenever the conditions of theorem 3.2.9 are satisfied, the equation that the

solution of (DNE)p,m satisfies in the limit, when m→∞, is
(up)t + Ap,∞(up) 3 g in Ω× [0, T ]

up(0) = u0.

(4.24)

In the same way as in the previous chapters, we have the following result.

Theorem 4.2.3. Consider the problem (4.24), where g ∈ L1(ΩT ), Ap,∞ is defined in

(4.17) and one of the following conditions is satisfied:

(i) Ω is a bounded interval in R and u0 is nonnegative such that ‖u0‖∞ ≤ 1 or
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(ii) Ω = B(0, R) and u0 is radial and nonnegative such that ‖u0‖∞ ≤ 1.

Then, there exists a function u such that, for each T > 0,

up → u in C(0, T ;L1(Ω))

and u is the unique mild solution of
ut + A∞,∞u 3 g in Ω× [0, T ]

u(0) = u0,

(4.25)

where A∞,∞ is defined in (4.18).

Proof. The result holds using theorem 4.2.1 and corollary 4.2.2, as well as theorem

1.5.3, considering that u0 ∈ D(A∞,∞).

4.3 Complete diagram

Therefore, by the results of lemmas 2.3.3, 3.2.7, 4.1.1 and 4.2.1, the following is

satisfied.

Lemma 4.3.1. Let one of the following conditions hold:

(i) Ω is a bounded interval in R and f ∈ L∞(Ω) is nonnegative,

(ii) Ω is a ball in RN and f ∈ L∞(Ω) is radial and nonnegative.

Then, we have,

L1 − lim
p→∞

lim
m→∞

(I + λAp,m)−1f = L1 − lim
m→∞

lim
p→∞

(I + λAp,m)−1f = (I + λA∞,∞)−1f,

where we recall that Ap,m is defined as

Ap,mu = −∆pu
m,

D (Ap,m) = { u ∈ L∞(Ω) : um ∈ W 1,p
0 (Ω) and ∆pu

m ∈ L1(Ω) },
(4.26)

and A∞,∞ is given by

v ∈ A∞,∞(u)⇐⇒


u, v ∈ L1(Ω), ∃w ∈ W 1,∞(Ω) ∩ C0(Ω) with w ∈ K̃,

u ∈ sign(w) and 0 ≥
∫

Ω

v(ξ − w)dx, ∀ ξ ∈ K̃,
(4.27)

with

K̃ := {ξ ∈ L1(Ω) : |∇ξ| ≤ 1 a.e.}.
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More importantly, if we consider one of the following hypotheses:

(i) Ω is a bounded interval in R and u0m is non-negative, um0m ∈ K̃ and ‖u0m‖∞ ≤ 1

or

(ii) Ω = B(0, R) and u0m is radial, non-negative such that um0m ∈ K̃ and ‖u0m‖∞ ≤ 1,

as well as g ∈ L1(ΩT ), then the equation that the solutions up,m of (DNE)p,m in (2.1)

satisfy at the limit, when p and m tend to infinity, in sequence, is the same whichever

limit we take first.

Hence, the results can be summarized in the convergence diagram below.

(up,m)t + Ap,mup,m = g

up,m(0) = u0m

(um)t + A∞,mum 3 g

um(0) = u0m

(up)t + Ap,∞up 3 g

up(0) = u0∞

ut + A∞,∞u 3 g

u(0) = u0∞

p→∞

m→∞m→∞

p→∞

Figure 4.1: Complete convergence diagram
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Conclusions

In this thesis, we considered a doubly nonlinear diffusion equation

ut = ∆pu
m + g with m(p− 1) > 1,

homogeneous Dirichlet boundary conditions, nonnegative integrable initial data u0

and integrable source term g. In order to discuss the properties of the doubly nonlin-

ear equation within the nonlinear semigroup theory we associated it to an accretive

operator Ap,m via the results in [8] and [33]. Once it was proved that Ap,m con-

verges in the resolvent sense to an operator denoted by A∞,m as p→∞, the conver-

gence of the mild solutions followed under consistent initial values (u0 ∈ D(A∞,m)),

i.e., ‖∇um0 ‖∞ ≤ 1. This allowed to prove the convergence also in the case that

‖∇um0 ‖∞ > 1 in a more abstract formulation. The results constituted a generaliza-

tion of the results in [4] and [27] for the p-Laplace equation to the doubly nonlinear

equation in the setting of mild solutions.

In the case of the asymptotic behaviour with respect to m, we showed that the

results proved in [33] for the Cauchy problem associated to the doubly nonlinear

equation apply as well to the Dirichlet problem in a bounded interval of the real line

and in a ball, considering furthermore a radial initial data. The difficulty in this case

lied in proving the convergence of the solutions of the associated elliptic problem in

L1(Ω), needed to prove the convergence of the operator Ap,m to the operator Ap,∞,

and thus the convergence of the mild solutions for u0 ∈ D(Ap,∞), i.e., ‖u0‖∞ ≤ 1.

In terms of future work in this matter, it would be interesting to prove that the

convergence of the operators also hold for more general bounded domains, even for

domains not necessarily bounded in RN . To this end, we would need to find a way

to overcome the extra difficulty provided by the non-linearity of the p-Laplacian in

several dimensions. More importantly, it would be very interesting to work further to-

wards proving the conjecture, as formulated in [15] for the doubly nonlinear equation,

in order to generalize the results known for the singular limit of the porous medium

equation. In that case, one of the important steps used to prove the convergence to
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the stationary Hele-shaw problem is a Baiocchi type transformation necessary to pass

from the evolution problem to the stationary one. It would probably be necessary to

find out what is the equivalent one for the general doubly nonlinear equation.

After identifying the operators A∞,m and Ap,∞ to which Ap,m converge, as p and

m tend to infinity respectively, we prove that these operators converge to the oper-

ator A∞,∞, completing the convergence diagram for the operators and hence of the

associated mild solutions. In this case, only consistent initial data were considered.

We concluded that under the combined conditions to ensure the convergence of the

operators with respect to both the parameters p and m, the equation satisfied in the

limit is the same, whichever limit we take first.
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