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RESUMO 

 

Elementos de secção variável em aço são geralmente utilizados devido à sua eficiência 

estrutural relativamente a elementos prismáticos, uma vez que a utilização de cada secção é 

optimizada. 

 

O EC3 – parte 1-1 (CEN, 2005) fornece várias metodologias para a verificação de elementos 

e pórticos. Relativamente a elementos não uniformes, i.e., com secção variável, distribuição 

irregular de contraventamentos, eixo não recto, etc, surgem diversas dificuldades não 

existindo orientações para as contornar. Assim, a verificação acaba por não tirar partido das 

vantagens associadas a estes elementos, tornando-se conservativa. Neste trabalho de 

investigação analisam-se as metodologias de verificação para elementos de secção variável. 

 

Hoje em dia, o projectista possui ferramentas numéricas sofisticadas que lhe permitem estudar 

a estrutura como um todo, de um modo seguro e fiável. No entanto, não existe ainda 

orientação suficiente para proceder à verificação de estruturas através desta via. 

 

Assim, a verificação da estabilidade é geralmente feita através de fórmulas existentes nos 

regulamentos. O EC3-1-1 apresenta um conjunto de fórmulas para verificação da estabilidade 

de colunas, vigas e vigas-coluna. No entanto, a aplicabilidade das mesmas abrange apenas os 

casos mais simples: elementos simplesmente apoiados; com contraventamentos intermédios 

simétricos e regulares; ou secções duplamente simétricas e não variáveis. 

 

Assim, o EC3-1-1 inclui um método geral para verificação da encurvadura por flexão e da 

encurvadura lateral, especificamente desenvolvido para verificar estruturas que se encontram 

fora do âmbito das equações de interacção, nomeadamente elementos de secção variável. No 

entanto, a aplicação directa das imperfeições codificadas para elementos prismáticos, além de 

ser mecanicamente inconsistente, conduz a uma verificação que poderá ser demasiado segura 

para alguns casos ou insegura para outros casos. 
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Pelas razões mencionadas e porque elementos não uniformes em aço conduzem a soluções 

estruturais competitivas, esta dissertação tem como principal objectivo desenvolver novas 

regras de estabilidade para a verificação da encurvadura por flexão e lateral de elementos de 

alma variável, na qual o fenómeno de instabilidade é considerado através de um factor de 

imperfeição adequado. Pretendeu-se atingir simplicidade de aplicação e ao mesmo tempo 

transparência mecânica. Finalmente, as propostas são consistentes com as actuais regras 

existentes para elementos prismáticos, contribuindo assim para a harmonização das regras de 

verificação da estabilidade de elementos do Eurocódigo 3. 
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ABSTRACT 

 

Tapered steel members are usually adopted in order to optimize the load capacity at each 

cross section taking into account the respective distribution of stresses. 

 

Eurocode 3 – part 1-1 (CEN, 2005) provides several methodologies for the stability 

verification of members and frames. However, regarding non-uniform members in general, 

with tapered cross section, irregular distribution of restraints, non-linear axis, castellated, etc., 

several difficulties are noted. There are yet no guidelines to overcome any of these issues and, 

as a result, safety verification is conservative, not accounting for the advantages non-uniform 

members provide. This research deals with the stability design of tapered members.  

 

The designer has nowadays sophisticated numerical tools which allow him to study any of the 

above-mentioned structures. However, there is not yet enough guidance to safely perform 

fully non-linear numerical verification.  

 

Therefore, approaches based on structural analysis followed by design checks are usually 

preferred. EC3-1-1 provides a set of design formulae for member design, covering column 

and/or lateral-torsional buckling. However, these formulae are related to standard conditions 

of structural members, such as simply supported members, with double-symmetric and 

constant sections and with intermediate regular lateral restraints. 

 

As a consequence, EC3-1-1 includes a general method for lateral and lateral-torsional 

buckling of structural components, specifically developed to verify the structures that lie 

outside the validation range of the interaction formulae, namely tapered members. However, 

considering the coded buckling curves for application of this method is not only inconsistent 

from a mechanical point of view but also may lead to an over-conservative or even 

unconservative level of resistance. 
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For all of the referred reasons, and because tapered steel members lead to competitive 

structural solutions, this dissertation focus on developing new stability rules for lateral and 

lateral-torsional buckling of web-tapered members in which the buckling phenomena is 

accounted for by a proper buckling coefficient related to realistic imperfections. The objective 

is to have a straight forward procedure, nevertheless with mechanical consistency. The 

outcomes of this research are consistent with existing rules for prismatic members and aim at 

contributing to the harmonization of stability member verification procedures of Eurocode 3. 
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Lowercases 

a, A Auxiliary terms for application of proposed formula for Ncr,Tap 

a, b Auxiliary terms for application of the design method for tapered columns 

a0, a, b, c, d Class indexes for buckling curves according to EC3-1-1 

aγ Auxiliary term to the taper ratio for application of LTB proposed 

methodology 

b Cross section width 

bmax Maximum cross section width 

bmin Minimum cross section width 

c, t Cross section dimensions for class determination acc. to EC3-1-1  

e0 Maximum amplitude of a member imperfection 

aux0,e  Amplitude of the beam at h=hmin 

f Function for the displacement 

f Modification factor for χLT 

fy Yield stress 

h Cross section height 

hmax Maximum cross section height 

hmin Minimum cross section height 

hxcII,lim cross section height at xc,lim
II 

i Radius of gyration 

is Polar radius of gyration 

kc Correction factor for moment distribution 

kGMNIA Calibration factor to be applied to the results of the finite element analysis 

kyy, kzy,kyz, kzz Interaction factors dependent of the phenomena of instability and plasticity 

involved 

kyy
in_pl Interaction factor for in-plane instability 
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kσ  Buckling factor corresponding to the stress ratio ψ and boundary conditions 

mx Acting torque per unit length 

n Number of cases 

n Ratio of design normal force to design plastic resistance to normal forces of 

the gross cross section 

n(x) Distributed axial force 

nEd(x) Design distributed axial force 

py, pz distributed loading, y-y direction and z-z direction 

tf Flange thickness 

tf’ Flange thickness of a tapered member projected in a vertical plane  

tw   Web thickness    

v, w maximum deformation, out-of-plane and in-plane 

v0, w0 maximum initial imperfection, out-of-plane and in-plane 

xc,lim
II Second order failure cross section for a high slenderness level 

xc,N
i, xc,M

i, xc,MN
i Denomination of the failure cross section in Chapter 6 (to differentiate from 

the type of loading it refers to): N – do to axial force only; M – due to 

bending moment only; MN – due to the combined action of bending 

moment and axial force 

xc
I
 First order failure cross section 

xc
II Second order failure cross section 

xcr,max  Location corresponding to the maximum deflection 

xmin  Location corresponding to the smallest cross section 

x-x Axis along the member 

y-y Cross section axis parallel to the flanges 

z-z Cross section axis perpendicular to the flanges 
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A Cross section area 

Ac  Gross cross sectional area of the plate 

Ac,eff  Effective cross sectional area of the plate 
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Aeff  Effective cross sectional area 

Amin Cross section area of the smallest cross section in of a tapered member 

Av Shear area 

C1 Equivalent uniform moment factor for critical moment determination 

Cm Equivalent moment factor according to clause 6.3.3 

CoV Coefficient of variation 

E Modulus of elasticity 

FEM Finite Element Method 

G Shear modulus 

GM General Method 

GMNIA Geometrical and Material Non-linear Analysis with Imperfections 

I 2nd moment of area 

Ifl,z Flange inertia relatively to zz axis 

IT Torsional constant 

Iy, Iz Second moment of area, y-y axis and z-z axis 

Iy,eq Equivalent 2nd moment of area, y-y axis 

Iy,max Maximum 2nd moment of area, y-y axis 

Iy,min Minimum 2nd moment of area, y-y axis 

Iω Warping constant 

L Member length 

Lcr,z, Lcr,y Member buckling length regarding flexural buckling, minor and major axis 

LLT Member buckling length regarding lateral-torsional buckling 

FEd Design load 

FRk Characteristic value of resistance 

Fcr Elastic critical buckling load for global instability mode based on initial 

elastic stiffnesses 

LBA Linear Buckling Analysis 

Leq Equivalent member length 

LTB Lateral Torsional-Buckling 

M Bending moment 
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M3,y,Rd Design value of the interpolated resistance to bending moments about y-y 

axis for class 3 cross-sections, according to Greiner et. al (2011) 

M3,z,Rd Design value of the interpolated resistance to bending moments about z-z 

axis for class 3 cross-sections, according to Greiner et al. (2011) 

Mb,Rd Design buckling resistance moment 

Mcr Elastic moment for lateral-torsional buckling 

Mcr,tap Elastic critical moment of the tapered column 

Mcr,y,N Critical moment of a beam-column subject to axial force N and uniform 

bending moment My 

MEd Design bending moment 

Mf,Rd  Cross section resistance to bending considering the area of the flanges only 

Mn,3,y,Rd; Mn,3,z,Rd Reduced design value of the resistance to bending moments making 

allowance for the presence of normal forces, y-y axis and z-z axis, for class 3 

cross-sections according to Greiner et al. (2011) 

Mn,y,Rd; Mn,z,Rd Reduced design value of the resistance to bending moments making 

allowance for the presence of normal forces, y-y axis and z-z axis 

MNA Materially Non-linear Analysis 

Mpl,y,Rd Design value of the plastic resistance to bending moments about y-y axis 

Mpl,z,Rd Design value of the plastic resistance to bending moments about z-z axis 

MR Resistant bending moment 

Msup, Minf Flange bi-moment 

Mw Warping moment 

My, Mz Bending moments, y-y axis and z-z axis 

My,cr,MN Critical moment of a beam-column subject to N+My 

My,Ed, Mz,Ed Design bending moment, y-y axis and z-z axis 

My,max,cs Resistance to bending moments making allowance for the presence of 

normal forces, y-y axis 

My,max
Method Maximum bending moment for the given method, y-y axis 

My,Rd Design bending moment resistance, y-y axis 

My
II Second order strong axis bending moment 

Mz
II Second order weak axis bending moment 
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Mω
II Second order warping moment 

N Normal force 

Nb,Rd Design buckling resistance of a compression member 

Nb,Rd,min Design buckling resistance of a tapered compression member with the 

smallest cross-section 

Nb,Rd,tap Design buckling resistance of a tapered compression member 

Nb,y,Rd Design buckling resistance of a compression member, y-y axis 

Nb,z,Rd Design buckling resistance of a compression member, z-z axis 

Nconc Concentrated axial force 

Ncr,MN Critical axial force of a beam-column subject to N+My 

Ncr,T Elastic torsional buckling force 

Ncr,tap Elastic critical force of a tapered column 

Ncr,tap Elastic critical force of the tapered  column 

Ncr,tap
LBA  Elastic critical force of a tapered column obtained by a LBA analysis 

Ncr,tap
Method  Elastic critical force of a tapered column for a given method 

Ncr,y Elastic critical force for in-plane buckling 

Ncr,z Elastic critical force for out-of-plane buckling 

Ncr,z,tap Elastic critical force of the tapered  column about the weak axis 

NEd Design normal force 

Nmax,cs Maximum axial force making allowance for the presence of bending 

moment acting about y-y axis 

Nmax
Method Maximum normal force for the given method 

Npl Plastic resistance to normal force at a given cross section 

Npl,Rd Design plastic resistance to normal forces of the gross cross section 

NR Resistant normal force 

NRd Design resistance to normal forces 

Q Shear force 

T Torsion 

TT Uniform torsional component 

Tw Non-uniform torsional component 

U, Ub Strain energy, due to bending 
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UDL Uniformly distributed loading 

V Shear force 

V, Vb Potential energy, due to bending 

VEd Design Shear force 

VEd Vertical applied load on the structure 

HEd Horizontal applied load on the structure 

Vinf, Vsup Flange shear 

Vpl,Rd  Design resistance to shear 

Wpl,y, Wpl,z Plastic section modulus, weak and strong axis 

Wy,el, Wz,el Elastic bending modulus, weak and strong axis 

 

 

Lowercase Greek letters 

α Angle of taper 

α, αEC3 Imperfection factor according to EC3-1-1 

α1 Factor related to the uncertainty that results of the modeling by finite 

elements 

α2 Factor related to the uncertainty that results of the spreading of models of 

actions and resistances 

αb
(Method)  Load multiplier which leads to the resistance for a given method 

αcr Load multiplier which leads to the elastic critical resistance 

αcr Load multiplier which leads to the elastic critical resistance 

αcr,op Minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance with regard to lateral or lateral-torsional buckling 

αpl
cs,ends       Cross section resistance multiplier regarding both member ends, for class 1 

and 2 cross sections 

αpl
M Load amplifier defined with respect to the plastic cross section bending 

Moment 

αpl
N Load amplifier defined with respect to the plastic cross section axial force 

αu Load factor corresponding to the maximum load of the structure 

αu
cs   Cross section resistance multiplier 
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αult,k Minimum load amplifier of the design loads to reach the characteristic 

resistance of the most critical cross section 

β Correction factor for the lateral torsional buckling curves for rolled sections;  

β Generalized imperfection factor accounting for non-uniform force/moment 

and/or cross section 

β Reliability index 

βlim Value of the generalized imperfection factor β for a sufficient high 

slenderness 

γi Taper ratio: γw – according to bending modulus; γI – according to inertia; γh 

– according to height; γb – according to witdh 

M0 Partial factor for resistance of cross sections whatever the class is 

M1 Partial safety factor for resistance of members to instability assessed by 

member checks 

γM2 Partial factor for resistance of cross-sections in tension to fracture 

γRd Partial factor associated with the uncertainty of the resistance model 

δ’’cr,max  Curvature at the critical cross section, acc. to equation (5.9) of EC3-1-1 

δ0  General displacement of the imperfect shape 

δcr  General displacement of the critical mode 

δcr,hmin  Lateral displacement of the critical mode at h=hmin 

δx Longitudinal displacement 

δy Displacement about y-y axis 

δz Displacement about z-z axis 

ε  Coefficient depending on fy 

ε Utilization ratio at a given cross section 

εM Utilization ratio regarding the bending moment M 

εM+V Utilization ratio regarding bending and shear interaction 

εM
I  Utilization ratio regarding first order bending moment M 

εM
II Utilization ratio regarding the second order bending moment 

εN Utilization ratio regarding the axial force N 

εV Utilization ratio regarding shear 
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η Generalized imperfection 

η* Generalized imperfection for lateral-torsional buckling from the Ayrton-

Perry type formulation 

η’’cr Curvature of the buckling mode shape at the critical cross section 

ηcr Buckling mode shape 

ηEC3 , ηuniform Generalized imperfection for the prismatic member (considering cross 

section properties at the critical position) 

ηinit Initial equivalent imperfection 

ηnon-uniform Generalized imperfection for the tapered member 

ηnum Generalized imperfection (numerical) 

op  Global non-dimensional slenderness of a structural component for out-of-

plane buckling according to the general method of clause 6.3.4 

  Non-dimensional slenderness  

)x(  Non-dimensional slenderness at a given position 

y  Non-dimensional slenderness for flexural buckling, y-y axis 

z  Non-dimensional slenderness for flexural buckling, z-z axis 

LT  Non-dimensional slenderness for lateral-torsional buckling 

0,LT  Plateau length of the lateral torsional buckling curves for rolled sections 

0  Plateau relative slenderness 

p
 

Relative slenderness of the plate subject to local buckling 

ξ. η Rectangular coordinates, longitudinal and transversal 

ρ  Reduction factor for local plate buckling 

σ  Normal stress 

φ   Over-strength factor 

ϕ Global initial sway imperfection 

ϕ Maximum angle of twist 

ϕ Ratio between αpl
M and αpl

N 

ϕ0 Maximum initial angle of twist 

0
  Amplitude of the initial angle of twist 
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ϕcr  Rotation of the critical mode 

ϕx Rotation about x-x axis 

φy, φz    Over-strength factor for in-plane buckling, out-of-plane buckling 

χ Reduction factor 

χLT Reduction factor to lateral-torsional buckling 

χLT,mod Modified reduction factor for lateral-torsional buckling 

χnum Reduction factor (numerical) 

χop Reduction factor for the non-dimensional slenderness op
 

χov Reduction factor for the non-dimensional slenderness ov  

χy Reduction factor due to flexural buckling, y-y axis 

χz Reduction factor due to flexural buckling, z-z axis 

χz Reduction factor to weak axis flexural buckling 

ψ  Stress ratio 

ψ Ratio between the maximum and minimum bending moment, for a linear 

bending moment distribution  

ψlim Auxiliary term for application of LTB proposed methodology 

 

 

Uppercase Greek letters 

ΔMy,Ed Moments due to the shift of the centroidal y-y axis 

ΔMz,ed Moments due to the shift of the centroidal z-z axis 
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1 INTRODUCTION 

 

 

1.1 Motivation and objectives 

 

EC3 provides several methodologies for the stability verification of members and frames. The 

stability of uniform members in EC3-1-1 (CEN, 2005) is checked by the application of 

clauses 6.3.1 – stability of columns; clause 6.3.2 – stability of beams and clause 6.3.3 – 

interaction formulae for beam-columns. Regarding the stability of a non-uniform member, 

clauses 6.3.1 to 6.3.3 do not apply.  

 

Figure 1.1(a) and Figure 1.1(b) illustrate recent examples of the use of curved and tapered 

members or members with polygonal centroidal axis. The evaluation of the buckling 

resistance of such members lies outside the range of application of the interaction formulae of 

EC3-1-1 and raises some new problems to be solved. 

 

 
(a) Curved and tapered elements – Barajas Airport, 

Madrid, Spain 
(b) Members with polygonal centroidal axis (stairs) – 

Italy pavilion, World Expo 2010 – Shanghai 
Figure 1.1 Non-uniform members. Pictures obtained from (Steel Construct, no date [online]) 
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For those cases, verification should be performed according to clause 6.3.4 (general method). 

Alternatively, if a second order analysis in which both in-plane and out-of-plane second order 

effects and imperfections (local and global) are considered, the obtained second order forces 

shall be considered and only cross sectional checks apply, see EC3-1-1, clauses 5.2.2 (3) a) 

and (7) a), and Greiner et al. (2010). Alternatively, the strength capacity may also be checked 

by a numerical analysis that accounts for geometrical and/or material imperfections and 

material and/or geometrical nonlinearities, henceforth denoted as GMNIA. However, for any 

of these methodologies, several difficulties are noted for the verification of a non-uniform 

member. 

 

Firstly, taking as an example the case of beam-columns (uniform or not) with varying ratios 

of My,Ed to NEd over the member length, the cross sectional classification changes from cross 

section to cross section, see the example of Figure 1.2. For such a case, an exhaustive (and 

iterative) evaluation of the stresses (1st and 2nd order) along the member is required to identify 

the design cross section and, as a result, the cross section class. As this is not practical, the 

highest class is adopted which may result in over-conservative design. A qualitative analysis 

of the example shows that the stresses in the interval corresponding to class 3 cross section 

are not critical compared to the stresses in the remainder of the member. 

 

Class 3 Class 2 Class 1

My,Ed

NEd <<< Afy
 

Figure 1.2 Uniform beam-column with non-uniform loading 

 

Regarding non-uniform members in general, as mentioned, there is not a simple procedure 

available for evaluation of the critical cross section, i.e., critical design location. Alternatively, 
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equivalent cross section property formulae for the calculation of elastic critical forces of 

tapered members are available, either by calculation of, for example, an equivalent length 

(Galambos, 1998); depht (Galéa, 1986) or moment of inertia (Hirt and Crisinel, 2001). 

However, the introduction of these formulae in the buckling design formulae is not validated 

nor these equivalent properties were calibrated to be considered for the calculation of cross 

sectional properties associated to the stability resistance of the real member, but only for the 

term in the verification procedure concerning the critical load calculation. 

 

Secondly, the determination of an adequate buckling curve is also necessary and leads to 

inconsistencies, such as: 

(i) The buckling curves in the code were derived for uniform columns with a sinusoidal 

imperfection with one wave length. When dealing with non-uniform members (either 

with varying cross section, axis or loading), the direct use of such curves may over 

predict the resistance level as the buckling mode is usually not a sine function; 

(ii) The buckling curves in the code are geared towards specific buckling cases. That is why 

the interaction formulae and coefficients for uniform members have to take into account 

the transitions from one failure mode to the other (flexural buckling to lateral-torsional 

buckling, etc.) The “general method” can only treat these transitions in a very superficial 

way, by interpolation (not recommended by (ECCS TC8, 2006)) or, on the other hand, by 

a time-consuming specific calibration, not practical; 

(iii) If the General Method is applied to a tapered member, the question also arises of how to 

categorize the member in terms of buckling curves as the main parameter h/b 

(height/width) changes continuously, see Figure 1.3. Because of this, the more restrictive 

buckling curve is most likely to be chosen, leading to over conservative results. In fact, 

this aspect can be further generalized to the application of the method to structural 

components. The method is supposed to establish the safety level of “plane frames or 

sub-frames composed of such [single] members”. However, if the same structural system 

is characterized by single members, each one with distinct buckling curves, again the 

application of the method becomes unclear. 
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Curve d
(h/b>2)

Curve c
(h/b≤2)

hmax

bmax

bmin≤bmax

hmin≤hmax

  
Figure 1.3 Change of buckling curve in a tapered member 

 

If a second order analysis/verification is to be considered the correct shape and magnitude of 

the imperfection must also be considered. In EC3-1-1, as an alternative to Table 5.1 of clause 

5.3.2 (6) which gives amplitudes for bow imperfections (see Table 1.1), clause 5.3.2 (11) may 

be used for determination of the amplitude of the imperfection with the relevant buckling 

mode shape, ηcr, see Eq. (1.1). Again, a critical cross section is necessary for application of 

this expression. In addition, the curvature η’’ needs to be explicitly considered by the designer.  

 

Table 1.1 Design values of initial bow imperfection e0/L (Table 5.1 of EC3-1-1) 

Buckling curve acc.    
to EC3-1-1, Table 6.1 

Elastic analysis Plastic analysis 
e0/L e0/L 

a0 1/350 1/300 
a 1/300 1/250 
b 1/250 1/200 
c 1/200 1/150 
d 1/150 1/100 

 

 
max,

0 )()(
cr

cr
crinit EI

N
xex





  (1.1) 

 

In Eq. (1.1), Ncr is the axial critical load and EI ηcr,max
’’ is the bending moment due to ηcr at the 

critical cross section. 

 

Finally, on one hand the General Method requires sophisticated global FEM models but on 

the other hand it contains so many simplifications that one must wonder if it is worth to apply 

it when compared to a “full” non-linear second-order analysis of the system. The latter is not 
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really more complicated but more precise and “readable” for the designer. Therefore it 

nowadays makes sense to develop simple rules for the basic cases and to include as much 

knowledge as possible of the “real” behavior of members in these rules. 

 

Tapered steel members are commonly used over prismatic members because of their 

structural efficiency: by optimizing cross section utilization, significant material can be saved. 

However, if proper rules and guidance are not developed for these types of members, safety 

verification will lead to an over prediction of the material to be used. The main objective of 

this research is to provide stability verification procedures for linearly web-tapered members 

giving answer to the above-mentioned issues. For this, several goals will be fulfilled: 

 Overview of existing methodologies for elastic and inelastic buckling of tapered 

members; 

 Assessment and validation of the general methodology of EC3-1-1 for stability checking 

of non-uniform members. The General Method is given in clause 6.3.4 to give answer to 

the cases that cannot be verified by using clauses 6.3.1 to 6.3.3 and, as a result, tapered 

members. Results of the General Method are computed for a range of prismatic members, 

for which solutions of the same code exist and, in a second step, tapered members are 

verified and discussed; 

 Development of analytical formulations for web-tapered steel columns subject to flexural 

buckling and beams subject to lateral-torsional buckling based on an Ayrton-Perry 

formulation. It is then possible to maintain consistency with EC3-1-1 flexural buckling 

verification procedure, clause 6.3.1, by extending it with adequate modifications. 

Columns and beams with fork conditions, subject to constant axial force and to linearly 

varying bending moments or uniformly distributed load, respectively, are treated; 

 Based on the above, proper parameters for establishment of verification procedures that 

take into account the relevant instability modes of in-plane and out-of-plane flexural 

buckling of columns and lateral-torsional buckling of beams are calibrated; 

 Development of a simple procedure for major axis critical axial force determination of 

tapered columns, based on the critical axial force of the smallest cross section; 
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 The codified imperfection of clause 6.3.1 in EC3-1-1 for welded sections is modified and re-

calibrated as it is shown that current provisions do not follow accurately the residual stress 

pattern adopted for such cases. A similar modification is also proposed for lateral-torsional 

buckling verification of beams; 

 Discussion of the possible approaches for the stability verification of portal frames with 

tapered members. This is evaluated on the basis of future development of member buckling 

design rules for tapered beam-columns subject to flexural and lateral-torsional buckling. 

 

Finally, all the recommendations and proposals are in line with one of the main goals of TC8 

– Stability to achieve consistency and harmonized levels of safety within the checking 

procedures for any stability phenomena in EC3. 

 

 

1.2 The use of tapered members in steel structures 

 

Tapered members are used in structures mainly due to their structural efficiency, providing at 

the same time aesthetical appearance. Examples of the application of tapered steel members in 

various structures are given in Figure 1.4 to Figure 1.9. 

 

  
(a)  (b)  

Figure 1.4 Multi-sport complex – Coimbra, Portugal 
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(a) Dragão Stadium, Porto, Portugal (Picture 
obtained from (Steel Construct, no date [online])  

(b) ”Cidade de Coimbra” stadium, Coimbra, 
Portugal (Tal Projecto, no date [online]) 

Figure 1.5 Stadium rooftops 

 

(a) Exterior of the building (MIMOA, no date [online]) (b) Interior of the building (Veer, no date [online]) 
Figure 1.6 Bilbao exhibition center, Bilbao, Spain  

 

 
Figure 1.7 Building entrance, near Porto Alegre airport, Porto Alegre, Brazil (CBCA, no date [online])  
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Figure 1.8 Construction site in front of the Central Station, Europaplatz, Graz, Austria (Nahverkehrsdrehscheibe 

Graz-Hauptbahnhof, 02-02-2012 [online]) 
 

 
Figure 1.9 Three bridges over the Hoofdvaart Haarlemmermeer, the Netherlands (Steel Construct (no date) 

[online]) 

 

Tapered members are commonly applied in steel frames, namely industrial halls, warehouses, 

exhibition centers, etc. Adequate verification procedures are then required for these types of 

structures. Some structural configurations are illustrated in Figure 1.10, see also Optima Cube 

(no date) [online] for other examples of multiple span frames or even asymmetrical frames 

with unequal column heights. 
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(a) 
 

(b) 

(c) (d) 
Figure 1.10 Different portal frame configurations with tapered members (not to scale) 

 

In the scope of member design, maximum taper ratios (defined as the ratio between the 

maximum and the minimum height of the tapered member – γh=hmax/hmin) of γh=4 may be 

assumed to be of practical application. Figure 1.10(b), (c) and (d) illustrate this even for the 

shorter members. The rafter of Figure 1.10(d) presents a different configuration for the cross 

section of the haunches. The latter is not considered in this thesis. 

 

If the General Method (clause 6.3.4) is considered for verification of structural systems 

composed of non-uniform members, the imperfection factors to apply in the buckling check 

are mechanically inconsistent, of unclear choice, and may lead to over safe or even unsafe 

levels of resistance. On the other hand, if global (P-Δ) and local (P-δ) effects and global (ϕ) 

and local (e0) imperfections are considered for a second order analysis of the structure, the 

number of combinations and definition of the relevant in-plane (global and local) and out-of-

plane imperfections may not be simple to define. 

 

In this thesis, the flexural and lateral-torsional buckling verification of linearly web-tapered I-

section columns and beams with fork conditions respectively is treated, such that an answer is 

provided regarding adequate imperfection factors for each of those buckling modes. Possible 
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approaches for treatment of isolated beam-columns and members in the context of framed 

structures are then analyzed. 

 

 

1.3 Outline of the dissertation 

 

This thesis is divided in 7 chapters.  

 In Chapter 1 existing problems related to the stability verification of non-uniform 

members in general are presented and the objectives of this research are drawn; 

 In Chapter 2 existing stability verification procedures for tapered members are presented 

and discussed. Firstly, a general literature review is made. In a second step, the analytical 

background for prismatic members is presented as it will be the benchmark and starting 

point for the varying cross section case to be developed. The General Method in EC3-1-1 

is then presented and results are analyzed for a range of prismatic members. Specifically 

for the case of prismatic members analytical derivations of the method are carried out to 

be compared to the interaction formulae. The available procedures in EC3-1-1 for the 

stability verification of structures are described and finally general issues regarding the 

analysis of structures by FEM are pointed; 

 In Chapter 3 assumptions and simplifications for the numerical models are also 

presented and discussed; 

 Chapter 4 deals with the stability verification of tapered columns. Firstly, the analytical 

background for tapered columns is presented. Regarding the elastic in-plane flexural 

buckling of web-tapered columns subject to constant axial force, a simplified formula for 

calculation of the critical load is presented based on Raleigh-Ritz method. Introducing 

nonlinearities in the analytical model, an Ayrton-Perry model is developed and validated 

for tapered columns, with varying web and/or flange, subject to out-of-plane or in-plane 

buckling, and to constant or uniformly distributed axial force. Adequate parameters are 

then calibrated for web-tapered columns with constant axial force and discussed. 

Throughout this chapter specific issues such as the cross section class or the codified 

imperfections for welded cross sections are brought in and taken into account;  
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 In Chapter 5, lateral-torsional buckling of tapered beams is considered. Here, an 

analytical model is also developed and verified. Presence of shear and shear buckling is 

analyzed. For calibration of relevant parameters many decisions are taken especially due 

to the complexity brought in by the combination of non-uniform loading and cross 

section properties. Again, the codified imperfections for welded cross sections are 

analyzed and reevaluated; 

 Chapter 6 the proposed methodologies are applied for the stability verification of beam-

columns and possible methodologies based either on an interaction approach and 

generalized slenderness approach are evaluated. Out-of-plane verification is performed. 

These are then brought into the structural level, regarding the stability verification of 

portal frames; 

 Finally, Chapter 7 points the main conclusions of this research and important subjects to 

be further developed.  
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Chapter 2 

 

 

 

 

2 SAFETY VERIFICATION OF STEEL MEMBERS – THEORETICAL 

BACKGROUND AND DESIGN PROCEDURES 

 

 

2.1 Scope 

 

There are many alternatives to study stability aspects. The designer will choose which method 

to adopt according to the complexity of the problem; the precision of results; the level of 

safety to be achieved or even the simplicity of application of the method to the problem itself. 

Figure 2.1 describes the available possibilities for the analysis of a structure according to EC3 

part 1-1. 

 

 

Stability
verification of
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Buckling length
according to the
global buckling

mode of the
structure

Cross section
check in the

extremes of the
member

Global effects
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Local effects
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Figure 2.1: Methods of analysis 
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Tapered steel construction leads to competitive solutions and, as a result, a great deal of 

attention has been given to this subject. Many studies focusing on the elastic behavior and on 

elastic or inelastic stability issues have been carried out, either by analytical, numerical or 

experimental approaches. Nevertheless, the present research work is motivated by the fact 

that, for the time being, EC3-1-1 does not present satisfactory solutions for the stability 

verification of this type of members. 

 

In this chapter a literature review of relevant studies in the field of tapered members is firstly 

presented. Subsequently, the Eurocode methodologies for stability verification of members 

are described: 

(i) The analytical background for prismatic members is presented. Second order beam theory 

and Ayrton-Perry formulations adopted in EC3-1-1 for the stability verification of 

prismatic members are given as this is the basis for the developments of Chapters 4 and 5, 

respectively, regarding tapered columns and beams; 

(ii) The General Method in EC3-1-1, suitable for the stability verification of tapered 

members, is analyzed and discussed. A parallel study regarding its application to 

prismatic members is performed in order to validate the method against well-known 

solutions;  

The structural analysis procedures summarized in Figure 2.1 are then described and illustrated 

in Section 2.5. 

Finally, in the context of numerical analysis and verification of members and structures, the 

highest level of numerical analysis is generally introduced, i.e. non-linear analysis by FEM.  

 

 

2.2 Studies and solutions on tapered members 

 

A general review regarding the analysis and verification of tapered members is given in this 

section. It is worth mentioning that in Galambos (1988) a chapter is dedicated to this type of 

steel members. In addition, a very well documented overview may be found in the PhD thesis 

of Boissonnade (Boissonnade, 2002). 
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Firstly, the variation of the depth of the cross section in a tapered member relatively to a 

prismatic member leads to differences in the stress determination if the Bernoulli-Euler theory 

for prismatic bars is used. Additional normal stresses and/or shear stresses occur and this error 

increases with the angle of taper, α. Analytical solutions for determination of these stresses 

may be found in the literature (Timoshenko and Goodier, 1970). In reality, the surface in 

which normal stresses are developed is a circular surface that develops perpendicularly to the 

inclination of the flange and not vertical, see the red line in Figure 2.2(a). As a result, in order 

to achieve vertical equilibrium, shear stresses in the web must develop. For practical reasons, 

Bleich (1931) illustrates that the circular surface may be quite accurately replaced by a “bi-

linear” surface (see green line) of Figure 2.2(b), for evaluation of the elastic shear capacity.   

 

α
α

(a) (b) 
Figure 2.2: Direction and equilibrium of forces in a tapered segment 

 

However, it has been established that, for small tapering angles (<15º) this difference is 

negligible and, as a result, regarding member design, the design formulae for prismatic have 

been extended for the case of tapered members (Galambos, 1988). 

 

Experimental programs can be found reported in Butler and Anderson (1963) and in Prawel et 

al. (1974). The first deal with the elastic stability of web and flange tapered beams. Here, 

bracing requirements were investigated. Regarding the latter, inelastic stability was analyzed. 

Here, the measured residual stresses showed a similar distribution to the residual stresses of 

prismatic members with welded cross sections. The effect of material nonlinearity was also 

considered in Horne et al. (1979) and Salter et al. (1980). 
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Regarding expressions concerning the stability of tapered columns, it is mainly formulae for 

the calculation of the elastic critical forces that are available in the literature. For example, 

Hirt and Crisinel (2001) present an expression for determination of the equivalent inertia of 

tapered columns, Ieq, with I-shaped cross sections, depending on the type of web variation. 

Lee  (1972) (see also Galambos, 1998) present an expression for a modification factor g of the 

tapered member length. The critical load is then calculated based on the smallest cross 

section. In Petersen (1980), design charts for extraction of a factor β to be applied to the 

critical load of a column with the same length and the smallest cross section are available for 

different boundary conditions and cross section shapes. 

 

Ermopoulos (1997) presents the non-linear equilibrium equations of non-uniform members in 

frames under compression for non-sway and sway mode. Equivalent length factors are 

calibrated for both cases based and presented in forms of tables and graphs similar to the ones 

presented in Annex E of ENV1993-1-1 (1992). 

 

Nevertheless, the consideration of a critical position is still undefined, which, on the safe side, 

requires the consideration of the smallest cross section and as a result leads to over-

conservative design.  

 

Regarding design rules, a design proposal for stability verification of tapered columns can be 

found in Baptista and Muzeau (1998), in which an additional coefficient K, calibrated 

numerically and presented in the form of an abacus, is applied to the reduction factor of a 

column with the smallest cross section (see Eq. (2.1)): 

 

 MinrdbTaprdb NKN ,,,,   (2.1) 

 

In addition, some analytical formulations are available: in Raftoyiannis and Ermopoulos 

(2005) the differential equation of a tapered column subject to flexural buckling is derived, 

considering a parabolic shape for the imperfection; in Naumes (2009), the equilibrium 
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equation is also derived, considering the eigenmode shape. However, these expressions are 

not applicable for practical verification, as adequate factors for a design rule were not 

calibrated for this purpose.  

 

In AISC (Kim, 2010; Kaehler et al., 2010) an equivalent prismatic member which shall have 

the same critical load and the same first order resistance is defined. Such member is then to be 

verified considering the rules for prismatic columns. 

 

Considering now tapered beams, Kitipornchai and Trahair (1972) give an analytical solution 

for the elastic critical moment, covering any type of tapered I-beam and loading.  

Expressions for the elastic critical moment are given, for example, by Galéa (1986) in which 

the elastic critical load of a web-tapered beam subject to a uniform bending moment 

distribution is obtained by determination of an equivalent height and moments of inertia.  

Another procedure for the computation of the elastic critical moment based on equivalent 

moment C1 factors was presented by Ibañez and Serna (2010). Here, the tapered beam is 

replaced by an equivalent uniform beam by modification of the bending moment diagram. For 

application of the “Equivalent Moment Approach”, in a first step, the tapered beam subject to 

M(x) is replaced by a prismatic beam with the smallest cross section. The new moment M*(x) 

acting at each cross section of this equivalent beam is given by considering the critical 

moment which would be obtained at each cross section of the tapered beam, Mcr(x), such that 

M*(x)=M(x).[Mcr,0/Mcr(x)], in which Mcr,0 is the critical moment obtained by the smallest 

cross section. With this, an equivalent prismatic beam with a distribution of moments given 

by M*(x) is obtained. Finally, considering the adequate factor C1 for that moment distribution 

and the formula for prismatic beams, the critical moment of the tapered beam may be 

determined. 

 

In Andrade et al. (2005), an expression for the calculation of Mcr based in the Rayleigh-Ritz 

method is developed. Equivalent moment factors C1 are calibrated for the case of tapered 

beams with fork conditions subject to end moments. Similarly, Andrade et al. (2007b) 

develop expressions for critical moment determination of tapered beams subject to a 

concentrated load (the depth of the beam increases from the supports (x/L=0 and x/L=1) to the 
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middle (x/L=0.5)). Expressions for cantilevers subject to a tip load are presented in Andrade et 

al. (2006). 

 

For the case of tapered or haunched members with partial bracing near the tension flange, 

Horne et al. (1979) also present expressions for the calculation of the critical moment. 

 

If numerical analysis is to be performed, Boissonnade (2002) and Andrade et al. (2007a) refer 

the inadequacy of using stepped prismatic finite beam elements for the analysis of tapered 

members stability, as the inclination of the flange is not taken into account. In these studies, 

adequate elements to account for the torsional behavior of tapered members were developed. 

In Andrade et al. (2010a) the model is extended to discretely restrained tapered beams. 

 

Finally, when material and geometric non-linearity is taken into account, some studies, 

proposals and code rules are summarized:  

 In AISC, see Ziemian (2010), Kim (2010) and Kaehler et al. (2010), the mapping of the 

elastic buckling strength of tapered members to the design strength of equivalent 

prismatic members is performed, i.e., an equivalent prismatic beam with the same first 

order resistance and the same elastic critical load is determined and, afterwards, the rules 

for prismatic members are applied to the equivalent beam; 

 Bradford (1988) derives a finite element for the elastic buckling resistance of tapered 

double symmetric I-beams loaded by end moments or uniformly distributed load. 

Solutions are presented in graphical form and may be considered in the Australian 

(Standards Australia, 1998) or British (British Standard Institution, 1985) codes. When 

the new critical moment approach is applied to those standards more accurate design 

curves are achieved; 

 Andrade et al. (2007a, 2007c, 2010b) carried out numerical studies for the computation 

of the lateral-torsional buckling resistance of web-tapered I-beams subject to linear 

bending moment distribution and subject to concentrated loading. Results are plotted in a 

buckling curve format following the provisions of the General Method in EC3-1-1: for 

the tapered beam case the in-plane resistance multiplier is given by the first order 
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resistance multiplier here defined by a moment envelope; and the critical load multiplier 

is obtained numerically. The nonlinear resistance of the beam is also obtained by means 

of numerical analysis. With this information, it is possible to compute the overall 

reduction factor as a function of the overall slenderness (see Section 2.4). This study 

shows the inadequacy and high conservatism of considering curves c or d for application 

of the General Method as currently recommended. Moreover, the influence of the cross 

section flange/web proportions is also observed. It is shown that stockier cross sections 

(h/b<2 along the beam) present higher lateral-torsional buckling resistance than the 

narrow flange cross sections. 

 In Vandermeulen (2007), solutions for a “plateau” slenderness 0  (i.e., the limit 

slenderness for which instability effects will influence the resistance of the beam) and 

adequate imperfection factors α are given for analyzed cases with linear bending moment 

distributions. If general expressions for 0  and α were then to be calibrated for a range of 

tapering and loading situations, the given rules in EC3-1-1 could be applied. 

 Braham and Hanikenne (1993) present a Merchant-Rankine formula for determination of 

the reduction factor of the tapered beam based on the generalized slenderness given by 

the squared root of the ratio between the plastic load and the critical load multipliers. For 

the elastic critical moment, at first, the equivalent height is given by the mid height of the 

beam. Because this is very limiting and does not account for the proper torsional behavior 

due to the flange inclination, a new definition for the equivalent height was derived and 

proposed in Braham (1997). 

 

However, most of these approaches treat the tapered member only by considering the correct 

value of the critical load (either by analytical formulae or numerically). The ultimate 

resistance is then brought into the prismatic member verification. 

 

Regarding beam-columns (Kim, 2010; Kaehler et al., 2010), the stability verification is 

performed on the basis of the interaction formulae for prismatic members with the provisions 

for the tapered beams and columns. Alternatively, in EC3-1-1, the generalized slenderness 

concept is considered and the out-of-plane stability of non-uniform members may be verified 
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with the General Method, clause 6.3.4, in which a generalized slenderness is applied in the 

Ayrton-Perry equation, considering the most restrictive buckling curve for flexural or lateral-

torsional buckling of clauses 6.3.1 or 6.3.2, respectively (or an interpolation between the two). 

Note however that, when plastic design is performed, in Clause 6.3.5 of EC3-1-1 lateral-

torsional buckling is prevented by limiting the length between the plastic hinge and proper 

restraining in the compression flange. Annex BB.3 of EC3-1-1 provides guidelines for 

determination of the stable length of tapered members.   

 

With increasing complexity, a second order analysis in which all global and local second 

order effects and imperfections may be considered such that only cross sectional checks (in a 

sufficient number of sections) need to be performed, see Figure 2.1. This is required because 

there are currently no satisfactory member stability verification procedures for non-uniform 

members, giving over-conservative results most of the times. Furthermore, regarding the 

General Method in EC3-1-1, it will be seen throughout this thesis that the consideration of 

certain buckling curves assumed to be adequate may even lead to unsafe results. As a result, 

all second order effects and imperfections need to be accounted for in the structural analysis 

such that only cross section checks need to be performed, see also Greiner et al., (2011).  

 

Finally, for a more complex analysis, a full non-linear analysis taking into account nonlinear 

geometrical and plasticity effects shall be performed. Provided that modeling and 

nonlinearities are correctly considered this alternative leads to the actual failure load of the 

structure. Code guidance for this approach is given in Eurocode 3, part 1-5 (CEN, 2006).  

 

In summary, although formula for the elastic critical loads or even finite element analysis may 

be considered for the elastic buckling resistance, the main problem lies in the further 

verification of the imperfect member with material nonlinearities. On the other hand, member 

verification may be avoided if the structural analysis accounts for all the relevant geometrical 

nonlinearities or, even more precisely, for all the geometrical and material nonlinearities. 

Because several difficulties are still present when considering the latter approaches (even for 

prismatic members), member stability verification procedures are preferred and developed in 

this thesis. Section 2.3 and Section 2.4 present and review EC3-1-1 background 
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methodologies for stability verification of members. The stability verification procedures to 

be developed have the same analytical background of the procedures for prismatic members 

adopted in EC3-1-1 and are therefore consistent with those, which are already familiar to the 

designer. Straight forward and mode conform design buckling rules are then provided, leading 

to a simple but at the same time efficient design. 

 

 

2.3 Ayrton-Perry approach for prismatic beams and columns and 

interaction formulae format – analytical background 

 

2.3.1 Introduction 

 

Eurocode 3 – EN 1993 for the design of steel structures has been developed with respect to 

member stability verification since its first edition in 1992 thanks to extensive research 

dedicated to the subject coordinated by ECCS (European Convention for Constructional 

Steelwork) – Technical Committee 8 (TC8). However, there are still many issues to solve.  

 

EC3 provides two distinct methodologies to verify the stability of beam-columns in buildings 

developed by different European teams. The existing interaction formulae for beam-columns 

in ENV 1993-1-1 (1992) needed to be improved as they gave either over-conservative or 

unconservative results for some cases and, therefore, two sets of new design formulae with 

different background have been derived by TC8 (Boissonade et al. 2006, Kaim, 2004). One is 

a mainly theoretically derived set of formulae called Method 1 (Boissonade et al, 2003) and 

the other is a simpler set of formulae for quick manual applications, calibrated with numerical 

simulations and it is called Method 2 (Greiner and Lindner, 2006). The interaction formulae 

in EC3-1-1 have reduction factors for pure axial force and for pure bending moment; the 

interaction between these effects is then taken into account by proper interaction factors 

attached to the bending terms. Method 1 consists of two sets of formulae in which the in-

plane stability and out-of-plane stability are evaluated. For both these formulae, torsional 

deformations may be included or not. Regarding Method 2, it is necessary to choose between 
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the two categories “susceptible” or “not susceptible” to torsional deformations. The method 

consists, therefore, of 4 formulae: out-of-plane stability (i) with and (ii) without torsional 

effects; and in-plane stability (iii) with and (iv) without torsional effects.  

 

However, there are still many aspects to be solved; some are highlighted here: 

 The formulation of the interaction formulae is oriented to isolated members which are 

assumed to be pinned at their extremities and subject to a well-defined transverse and end 

loading. Therefore, several parameters shall be determined, such as the buckling length, 

the equivalent moment factors and the maximum bending moment. Sometimes, this is not 

a clear procedure. Thus, each designer will evaluate a different level of safety, as there 

are limited guidelines for these procedures, e.g. the extraction of a member from a framed 

system; 

 While the buckling curves for flexural buckling were derived based on a mechanical 

model (Beer and Schulz, 1970) with equivalent geometric imperfections fulfilling the 

reliability requirements of 2 standard deviations away from the mean value for a normal 

distribution (Taras, 2010), the buckling curves for all other phenomena in EC3-1-1 are 

simply based on the column buckling curves. For example, regarding lateral-torsional 

buckling of beams, the derived buckling curves for flexural buckling of columns were 

simply adapted to best fit the results for beams concerning the General Case of clause 

6.3.2.2 (for the Special Case of clause 6.3.2.3 the existing buckling curves were 

calibrated to best fit the numerical results). Similarly, in the case of members with 

torsional restraints which are not symmetrical relatively to the center of gravity, the 

buckling mode might not be sinusoidal. Using the buckling curves for flexural buckling 

as a basis is clearly inconsistent. Moreover, numerical calculations for torsional-flexural 

buckling (Taras, 2010) show these procedures are very conservative for sections which 

activate torsional rigidity within the buckling process; 

 Within a member, the classification of a cross section may vary. Moreover, 

discontinuities may be observed in the utilization ratios corresponding to the limits from 

class 2 to class 3 for cross sections in bending. To overcome this problem, in the 

European Project RFCS Semi-Comp, see Greiner et al. (2011), an interpolation between 
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the plastic and elastic capacity of the cross section is performed. This interpolation is 

carried out by achieving the resistance for limit c/t of the analyzed cross section, taking as 

reference the c/t values of the plastic limit (for example, c/t=83 for major axis bending) 

and of the elastic limit (c/t =124 for major axis bending), see Figure 2.3. After 

establishing the interpolated resistant moments, cross section interaction verification shall 

be performed. Finally, for the determination of the “equivalent” member cross section 

class, a simplified procedure was established based on the determination of the utilization 

ratio along a satisfactory number of locations along the beam (e.g. 10 locations), 

considering the adequate cross section resistance at each position (elastic, plastic, or 

elasto-plastic, i.e., following the Semi-Comp approach). The position with the maximum 

utilization leads to first order failure cross section and is then used for specifying the 

equivalent class of the whole member. 

 

c/tref

MRd

c/tref

Mpl,Rd M3,Rd

Mel,Rd

class 2 class 3            class 4

 
Figure 2.3: Resistant moment determination for I- and H-sections according to Semi-Comp (Greiner et al., 2011) 

 

In the past years, several studies have been carried out and proposals were made in order to 

analyze and overcome several problems in the rules for the stability verification of prismatic 

members and provide harmonization and consistency within the existing rules in EC3-1-1. 

Extensive parametric studies (more than 20000 beam-element models) have been carried out 

in Graz University of Technology and provided by Ofner (1997) to study the interaction 

factors between axial force and bending moment. For the same purpose, Kaim (2004) has 

carried out numerical studies. Within the goals of the 2 research teams in TC8 that developed 

Method 1 and Method 2, extensive research was done (Boissonade et al., 2003; Greiner and 

Lindner, 2006). More recently, Taras (2010) has developed consistent buckling curves for 
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torsional and lateral-torsional buckling, based on the Ayrton-Perry formulation. The same 

author has also investigated the effect of laterally restrained I-sections along the weak-axis 

flange and, on a same logic, has developed buckling curves for this type of buckling mode. In 

addition a consistent design procedure was developed for in-plane stability verification of 

beam-columns by making use of a generalized slenderness definition. 

 

Section 2.3.2 to Section 2.3.4 present the analytical background for the stability verification of 

columns, beams and beam-columns according to EC3-1-1. 

 

Firstly, the second order theory formulae is presented for simply supported beam-columns 

with bi-symmetrical cross section subject to bending in both planes and axial force and with 

initial bow in-plane, out-of-plane and torsional imperfections. Note that this derivation can be 

found in detail in the PhD thesis of Kaim (2004). Following this procedure, simplifications 

are carried out in order to be applied to the cases of columns, beams and beam-columns. 

Parallel to this, the stability verification rules in EC3-1-1 are presented. 

 

The required notations are the following: 

 v(x), w(x), ϕ(x) – function of the deformations; 

 v0(x), w0(x), ϕ0(x) – function of the imperfections; 

 v, w, ϕ – maximum deformations (midspan – considering a sinusoidal function); 

 v0, w0, ϕ0 – maximum initial imperfections (midspan – considering a sinusoidal function); 

 N, My, Mz – uniform first order forces of the cross section; 

 py, pz, mx – distributed external loading; 

 A, is, IT, Iy, Iz, Iω – cross section properties; 

 

Note that, in accordance with the plane of loading of the beam-column, buckling about major 

axis and buckling about minor axis will be commonly referred by in-plane and out-of-plane 

buckling, respectively. This notation is also adopted for the case of flexural buckling of 

columns. 
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The elastic buckling axial loads are given by: 
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The elastic critical moment of a beam and also of a beam-column subject to axial force and 

uniform bending moment is given by (Trahair, 1993): 
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Imperfections and deflections are assumed to be sinusoidal. For example, regarding the out-

of-plane deflection, v, it is given by 
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The amplification factors for Ncr,z, Ncr,y, Mcr,y,N will be named as 
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Compressive stresses are assumed to be positive. The remaining sign conventions are 

illustrated in Figure 2.4. 
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My

Mz

z,w

y,v

x,ϕ

 
Figure 2.4: Sign convention 

 

2.3.2 Second-order beam theory for flexural and lateral-torsional buckling of 

beam-columns 

 

The differential equations for flexural and lateral-torsional buckling of prismatic members 

with double symmetric cross sections are given by Eq. (2.6). The first and second rows of the 

matrix deal, respectively with out-of-plane and in-plane flexural buckling. The third row is the 

differential equation for torsion. 
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Considering mx=0 and 

 Neglecting the differences between the uniform first order bending moments My and Mz 

and the sinusoidal moments resultant from pz and py, respectively; 

 Neglecting the stiffness terms due to the curvature of the imperfect member; 

 

and introducing the imperfections v0(x), w0(x), and ϕ0(x), Eq. (2.6) becomes 

 



 

 SAFETY VERIFICATION OF STEEL MEMBERS – THEORETICAL BACKGROUND AND DESIGN PROCEDURES 
 

 

 

 
 
  27 
 

 











































































































0

0

0

22

,
2

,

,

0
0

0
0

0

00

00
00


w
v

NiMM
MN
MN

M
M

w
v

NiMM
MN
MN

Ni

N
N

szy

z

y

y

z

szy

z

y

Tcrsz

ycr

zcr

(2.7) 

 

Eq. (2.7) can be expressed as 
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in which Kmat is the first order material stiffness matrix; Kgeo is the geometrical stiffness 

matrix; u and u0 are vectors containing respectively the second order deformations and 

imperfections at mid-span ; and FI is the first order load vector. 

 

The solution of Eq. (2.7) is 

 








































































































0

0

0

2

,
,

,

,

,

,

2
,,

,

,,

2
,,

2
,,

0
0

0

1





w
v

NiMM
MN
MN

M
M

ND
ND

NDM
M

ND

NDM

ND

MD

ND

MM

M
ND

MM

ND

M

MD
w
v

szy

z

y

y

z

zcrz
ycry

zcrzz
y

ycry

zcrzz

ycry

NycrM

ycry

zy

y
ycry

zy

zcrz

Nycr

NycrM

 (2.9) 

 

In Eq. (2.9), M 2cr,y,N>>M 2z for simplification (Kaim, 2004). 

 

Second order forces are obtained by multiplying the cross section stiffness (EI) with the 

curvatures, as expressed in Eq. (2.10). Shear deformations are neglected. If it is assumed that 

sin≈sin2, second order forces lead to the second set of equations in Eq. (2.10), see also 

Salzgeber (2000a). 
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Finally, applying a first yield criterion in which a linear distribution of stresses σ due to the 

applied (first and second order) forces is considered, failure occurs for σ=fy. 
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2.3.3 Flexural buckling of columns 

 

2.3.3.1 Derivation 

 

Consider a simply supported column subject to axial force N with lateral imperfection v0, 

only. Eq. (2.9) becomes: 
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Applying the first yield criterion of Eq. (2.11), 
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 (2.13) 

 

Note that, for the case of in-plane flexural buckling of the column, i.e., considering an in-

plane imperfection w0, only, Eq. (2.13) would be 
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Defining now the quantity χzNpl as the value of N which makes σ=fy and introducing the non-

dimensional slenderness zcrplz NN , , the Ayrton-Perry equation (Ayrton and Perry, 

1886) for flexural buckling about the weak axis is obtained, which is also the background to 

the current EC3-1-1 rules: 
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2.3.3.2 Application in EC3-1-1 

 

If the flexural instability mode (in-plane or out-of-plane) is kept undefined, Eq. (2.15) can be 

rewritten as 
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e0 is the amplitude of the imperfection regarding the respective buckling mode. The terms 

e0A/Wel may be defined as a generalized imperfection η. Representing η as a function of the 

relative slenderness cry NAf / , yields 
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η includes the effect of several imperfections such as residual stresses, initial out of 

straightness or eccentrically applied forces. Considering a plateau non-dimensional 

slenderness of 2.0z  for which flexural buckling is negligible, Eq. (2.17) becomes 
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The solution of Eq. (2.16) is given by 
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Or, taking into account the new definition of η,  
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The design buckling resistance of the column is given by 
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From which NRd shall be determined considering adequate section properties according to the 

respective cross-section class. 

 

In Eq. (2.18) α is an imperfection factor calibrated both by extensive numerical and 

experimental parametric tests (Beer and Schulz, 1970). It was later adopted in the codes in the 

Ayrton-Perry format (ECCS, 1978; Rondal and Maquoi, 1979). The values for the 

imperfection factor α and the corresponding buckling curves in EC3-1-1 (a0, a, b, c and d) are 

represented in Figure 2.5 and Table 2.1.  
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Figure 2.5: Imperfection factors α and corresponding buckling curves in EC3-1-1 

 

Table 2.1: Imperfection factors α and corresponding buckling curves in EC3-1-1 

Buckling curve  a0 a b c d 
Imperfection factor α    0.13 0.21 0.34 0.49 0.76 

 

For the cases analyzed in this thesis, the classification of the buckling curve for a given cross 

section is summarized in Table 2.2. 

 

Table 2.2: Selection of buckling curve for a given cross section and buckling mode 

Fabrication procedure h/b Buckling about axis Buckling curve 
Rolled I-sections >1.2 y-y a 
  z-z b 
 ≤1.2 y-y b 
  z-z c 
Welded I-sections  y-y b 
  z-z c 
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Finally, for the case of welded I-sections, the generalized imperfection η and corresponding 

imperfection factor α are reassessed in Chapter 4 as, for these cases, the given buckling curves 

in EC3-1-1 seem not to represent accurately the influence of the residual stress distribution. 

This has been discussed in Greiner et al. (2000) and in Taras (2010) for the case of lateral-

torsional buckling of welded beams. In fact, for welded columns, the buckling curve 

overestimates the resistance of the numerical model up to 8%. Note that the adopted 

magnitude of the compressive residual stresses in the flange (all most of the flange is subject 

to an initial stress of 0.25fy) may not be a truthful representation of reality, leading to 

restrictive resistance levels (Greiner et al., 2000). Nevertheless, in Taras (2010) modifications 

for welded cross-sections are proposed in line with the current residual stress definition for 

the case of lateral-torsional buckling of beams. 

 

2.3.4 Lateral-torsional buckling of beams 

 

2.3.4.1 Derivation 

 

Consider a simply supported beam with fork conditions, I-shaped cross section and initial 

imperfections v0 and ϕ0. Assuming small displacements, the two degrees of freedom may be 

coupled according to the following criteria (Taras, 2010): 
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The differential equations for lateral-torsional buckling (beam under uniform bending 

moment) are given by (see Eq. (2.6)): 
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In Eq. (2.23), v(x) and ϕ(x) are sinusoidal functions. It is known that Mcr is the nontrivial 

solution to this equation. Therefore, considering My=Mcr the first equation leads to: 
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which has a similar format to Eq. (2.22). 

 

Eq. (2.9) becomes 
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The second equation (in-plane) is independent from the other two. Introducing Eq. (2.22), the 

solution for v and ϕ is reached. 
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Consider now the following relationship between the initial imperfections ϕ0 and v0 given by 

Figure 2.6 and Eq.(2.27): 

 

ϕ0 v0
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Figure 2.6: Relationship between ϕ0 and v0 
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Applying again a first yield criterion (Eq. (2.11)) in which terms containing v0
2 are neglected 

due to their minor significance (Salzgeber, 2000a); replacing My by χLTWy,elfy; introducing the 

non-dimensional slenderness cryelyLT MfW , and zcryz NAf , ; considering 

ωmax=bh/4; and replacing Eq. (2.27) and Eq. (2.22) in the expressions for v and ϕ (Eq. (2.26)); 

a similar equation to Eq. (2.19) for flexural buckling is obtained (the complete derivation of 

this can be found in Taras (2010)): 
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2.3.4.2 Application in EC3-1-1 

 

Lateral-torsional buckling verification of beams is performed according to clause 6.3.2 of 

EC3-1-1. The buckling resistance is calculated using the buckling curves for flexural 

buckling. Whereas Eq. (2.28) leads to a consistent approach for lateral-torsional buckling of 

beams (if ηz is replaced by a similar expression to Eq. (2.18) with adequate imperfection 

factor α for the lateral-torsional buckling case), in EC3-1-1 the values of the imperfection 

factors α for flexural buckling are adapted to the lateral-torsional buckling of beams, 

according to numerical based-GMNIA calibrations.  

 

The reduction factor for lateral-torsional buckling is given by 
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The design buckling resistance of the beam is given by 

 

 RdyLTRdb MM ,,   (2.30) 

 

From which My,Rd shall be determined considering adequate section properties according to 

the respective cross-section class. 

 

The imperfection factors αLT are categorized differently than the factors for flexural buckling 

– the height to width ratio limit is given by h/b=2 while for flexural buckling is given by 

h/b=1.2. Here, more slender cross sections lead to higher imperfection factors, unlike for 
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flexural buckling. As a result, the lower torsional resistance that slender cross sections provide 

is accounted for by a higher imperfection. This categorization is however inconsistent with 

the residual stress definition of I-sections which is differentiated at the limit h/b=1.2. 

 

EC3-1-1 presents two approaches for the design check of lateral-torsional buckling effects of 

I-beams. One is denoted the “General Case” (clause 6.3.2.2). The other procedure, “Special 

Case” (clause 6.3.2.3) is intended for use for hot rolled or equivalent welded sections. This 

procedure introduces a correction factor f, which takes into account the effect of the bending 

moment diagram and considers new buckling curves that take into account the torsional 

stiffness of the beam (Rebelo et al, 2009). The reduction factor for lateral-torsional buckling 

according to the “Special Case” is given by 
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Recommended values in Eq. (2.31) for β and 0,LT are β=0.75 and 4.00, LT . Finally, for 

consideration of the bending moment distribution, χLT must be modified by a factor f (and 

respective correction factor kc) such that a modified reduction factor χLT,mod is obtained by  
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kc is a factor that takes into account the type bending moment distribution. The values of αLT 

in clause 6.3.2 of EC3-1-1 are given in Table 2.3.  

For the determination of the design buckling resistance of the beam, χLT in Eq. (2.30) must be 

replaced by χLT,mod. 
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Table 2.3: Buckling curves for lateral-torsional buckling 

Fabrication procedure h/b General Case Special Case 
Rolled I-sections ≤2 a b 
 >2 b c 
Welded I-sections ≤2 c c 
 >2 d d 

 

To assess the accuracy of the alternative design formulae for the verification of lateral-

torsional buckling, a statistical analysis of the results was performed on the basis of EN 1990-

Annex D (Rebelo et al, 2009). A proposal for the definition of the partial safety factor γrd 

(uncertanties in the resistance model) is presented for the various methods, in line with the 

target failure probability of EN 1990. In order to compare the influence of the load parameter 

f together with the “General Case” procedure, the use of the f-factor together with the 

“General Case” procedure is there addressed as “General Case/f’”. The 1331 studied cases 

covered several parameters: non-dimensional slenderness; bending moment diagrams; 

fabrication processes; cross section shapes; and yield stress of steel, representative of practical 

situations. It was seen that the General Case gives good results on the safe side, however with 

a great amount of spreading, especially for the low slenderness range. The scatter relatively to 

the “Special Case” is much lower, however the values do not remain exclusively on the safe 

side. In a second step of that study (Simões da Silva et al, 2009), the evaluation of the 

influence of the variability of steel properties on the lateral-torsional resistance of steel beams 

was performed in order to establish γm (uncertainties for the material product) by analyzing the 

results of a range of coupon tests. These two partial safety factors lead to the establishment of 

γM1 between γM1 = 1.0 up to γM1 = 1.2 for the special case and S460 steel grade. 

 

2.3.4.3 Ayrton-Perry based proposal (literature) 

 

In Taras (2010) a consistent formulation (see Section 2.3.4.1) based on the Ayrton-Perry 

format is derived. This formulation adjusts significantly better to the GMNIA results. A new 

format for the generalized imperfection is obtained from the Ayrton-Perry derivation and kept 

for a design proposal.  
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The factor 22 / zLT  provides a correct consideration of the cross section torsional rigidity 

and as a result, it is possible to maintain the limits h/b=1.2, consistent with the residual stress 

definition. Calibrated imperfection factors αLT are given in Table 2.4. 

 

Table 2.4: Imperfection factors by Taras (2010) 

Fabrication procedure h/b αLT 
Rolled I-sections >1.2 34.012.0 ,, elzely WW  

 ≤1.2 49.016.0 ,, elzely WW  

Welded I-sections  64.021.0 ,, elzely WW  

 

Furthermore, the correction factor elzely WW ,, of Table 2.4 is able to accurately reflect the 

change of residual stresses at the frontier h/b=1.2. To overcome excessive high values 

of elzely WW ,,   for cross sections with extreme geometry (low torsion rigidity), a limit value 

of α corresponding to the weak axis flexural buckling imperfection factor is established. In 

fact, the limiting value of αLT≤0.64 for welded cross sections coincides with the calibrated 

imperfection factor for weak axis flexural buckling of welded columns (to be further 

discussed and developed in Chapter 5). 

 

For beams subject to non-uniform bending moment distribution, an “over-strength” factor φ 

was developed. Finally, the reduction factor for lateral-torsional buckling of beams is given 

by 
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from which αLT is given in Table 2.4 and φ=1.05 for parabolic bending moment distribution 

and 215.01.025.1   for linear bending moment distribution (ψ is the ratio between 

the maximum and minimum bending moment applied in the beam). 

 

A similar approach is adopted for lateral-torsional buckling verification of tapered beams in 

Chapter 5. 

 

2.3.5 Bending and axial force interaction 

 

2.3.5.1 Analytical solution for the relevant modes 

 

Analogous to EC3-1-1 – clause 6.3.3, the in-plane and out-of-plane failure modes are 

presented here. The case of beam-columns under uniaxial bending and axial force (N+My) is 

studied. The procedure is based on Section 2.3.2 – second order theory for beam-columns and 

first yield criterion, considering lateral imperfections. Again, further information is given in 

Kaim (2004). In EC3-1-1 the interaction formulae for stability verification of beam-columns 

are based on these derivations considering a second-order in-plane theory. In order to account 

for the spatial or elastic-plastic behavior specific concepts are considered afterwards 

(Boissonade et al. 2006). 

 

The solution regarding in-plane flexural buckling without lateral-torsional buckling (w0) is 

given by 
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Similarly, for out-of-plane flexural buckling without lateral-torsional buckling (v0; IT=∞) Eq. 

(2.10) leads to 
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In Eq. (2.35) and Eq. (2.36), My may be replaced by CmMy such that the actual bending 

moment distribution My is replaced by an equivalent sinusoidal bending moment distribution 

therefore avoiding the determination of the critical second order cross section. Further 

manipulations lead to the well-known adopted format in EC3-1-1, see also Boissonade et al. 

(2006) and Lindner (2004). 
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The consideration of torsional effects for the case of out-of-plane flexural buckling 

considering lateral imperfections v0 is given by Kaim (2004) 
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Or, rewritten in another format (see also Boissonade et al., 2006) 
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provided that 
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and, for I-sections, that 

 

 
2

and
4 ,,

2 h
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h
II elzelz    (2.41) 

 

In Eq. (2.38), terms with v0
2 were neglected.  

 

The case of in-plane buckling subject to torsional deformations is discussed in the following. 

 

2.3.5.2 EC3-1-1 interaction formulae 

 

There are two different formats of the interaction formulae in EC3-1-1 which were derived for 

uniform beam-columns with double-symmetric cross sections. Method 1 was derived such 

that each physical phenomenon is accounted for through a well-defined factor, it is a theory-

based approach (Boissonnade et al, 2006) although coefficients were still calibrated to 

numerical benchmarks; In Method 2, simplicity prevails. The latter is a method calibrated 

with numerical simulations. 

 

The two stability interaction formulae of clause 6.3.3 in EC3-1-1 are given by 
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where:  

 NEd, My,Ed and Mz,Ed  are the calculation values of the axial force and bending moments 

around y and z, respectively; 
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 ∆My,Ed and ∆Mz,Ed are the moments due to the variation of the centroid for class 4 

sections; 

 χy and χz are the reduction factors due to buckling by bending around y and z, 

respectively, evaluated according to clause 6.3.1; 

 χLT  is the reduction factor due to lateral buckling, evaluated according to clause 6.3.2 (χLT 

= 1.0 for elements that are nor susceptible of buckling laterally); 

 kyy, kyz, kzy, and kzz are interaction factors dependent on the relevant instability and 

plasticity phenomena, obtained according to Annex A of EC3 (Method 1) or Annex B 

(Method 2); 

 

The several parameters of the interaction formulae of clause 6.3.3 are now briefly explained: 

 Firstly, the interaction formulae describe the stability behavior of a beam-column under 

axial force and bending moments – acting in-plane; out-of-plane; or in both planes. Each 

force is analyzed separately and then coupled together by the interaction factors kyy, kyz, 

kzy, and kzz above-mentioned. The detailed description and calculation of the interaction 

factors of Method 1 and Method 2 are given in Annexes A and B of EC3-1-1 

respectively; they include many of the effects of the beam-column such as the bending 

moment distribution or the plasticity of the cross section; 

 There are two formulae to check the stability of a member – in Method 2 Eq. (2.42) 

describes the in-plane behavior and Eq. (2.43) describes the out-of-plane behavior; in 

Method 1 the two equations are not separately bound to the in-plane and out-of-plane 

buckling modes and as a result both equations must be fulfilled for the check. If the 

member is susceptible to lateral-torsional buckling, it should be accounted for in each of 

these equations;  

 The interaction formulae are based on a second order theory and, therefore, they are 

based on second order forces and amplification factors (Boissonade et al, 2006). Due to 

lateral imperfections, the axial force N will produce second order bending moments. 

When the bending moment distribution or the structure is not symmetrical, it becomes 

necessary to know the position of the critical cross section in order to perform a safe 

evaluation. Regarding Method 1, the equivalent moment factors, Cm  (see Eq. (2.37)), 
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replace the first order bending system by an “equivalent sinusoidal” first order bending 

moment which will produce the same amplified bending moment in the span of the 

member (Boissonade et al, 2006). Regarding Method 2, equivalent uniform moment 

factors Cm were calibrated based on GMNIA calculations with non-uniform bending 

moment distributions which were compared to calculations with uniform bending 

moment. Finally, it is then enough to verify the buckling resistance in span with the 

applied moment affected by Cm. For this reason, additional to the application of the 

interaction formulae, a cross section verification of the extremes of the member is 

needed; 

 The interaction formulae are based on an in-plane second order theory. Spatial behavior 

is extended afterwards, accounting for the existence of out-of-plane forces; 

 The elastic-plastic behavior is not considered in the analytical format of the formulae. In 

Method 1, for the cases of class 1 and 2 cross section, the plasticity coefficients “Cij” are 

then defined and Mel,Rd is replaced by Cij.Mpl,Rd. In Method 2, this is accounted for in the 

the interaction factors kij; 

 The susceptibility of the member to have torsional deformations or not is considered 

differently in Method 1 and Method 2. The solution considering lateral-torsional buckling 

is based on a second order theory, see Eq.(2.38), but considering only lateral imperfection 

v0 (Boissonade et al, 2006). Here, twist will produce additional second order bending and 

warping moments. In Method 1, there are only two formulae whereas in Method 2 the 

two formulae to be considered are chosen according to the susceptibility of the member 

to exhibit torsional deformations or not – this is evaluated according to the type of cross 

section or the restraining against torsional deformations along the member; 

 Finally, in Salzgeber (2000b) it was found that in-plane buckling deformations combined 

with torsional effects needed to be accounted for – particularly for the case of members 

between lateral restraints, i.e., with an in-plane buckling length significantly higher than 

the out-of-plane buckling length, see also Boissonnade et al. (2006). As a result, if 

relevant, torsional effects shall be included in the in-plane verification formula. For this 

case, a combination of initial twist ϕ0 and in-plane w0 imperfections were considered. 

Torsional effects are accounted for by the inclusion of the reduction factor χLT to the 
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resistant bending moment My,Rk. Additionally, Method 1 includes factor CmLT which 

accounts for the influence of torsional deformations and modifies the interaction factor 

kyy (for the case of in-plane buckling). 

 

In addition, as already referred, clause 6.3.3 of EN 1993-1-1 states that the safety of a beam-

column requires the verification of the cross section capacity at the member ends using an 

appropriate interaction expression. The cross sectional resistance is checked using Section 6.2 

of EC3-1-1. Cross section resistance verifications considered in this thesis are described in the 

following, namely regarding bending and axial force interaction and shear. 

 

a) Bending and axial force interaction 

 

For the verification of bending and axial force interaction, clause 6.2.9 should be considered. 

Regarding I and H cross sections, these expressions are: 

 

 
a

n
MM RdyplRdyN 5.01

1
,,,, 


     but  RdyplRdyN MM ,,,,  ; (2.44a) 

 RdzplRdzN MM ,,,,         if    an  ; (2.44b)  

 























2

,,,, 1
1

a

an
MM RdzplRdzN

    if    an   (2.44c) 

 

where RdplEd NNn ,  and   5.02  AtbAa f . 

 

For a cross section of class 1 or 2 subject to axial force and uniaxial bending moment, the 

interaction diagram for the resistance of the cross section is illustrated in Figure 2.7: 
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N 

My 

(Nmax,CS; My,max,CS = MNy,Rd) 

(NEd; My,Ed) 
MNy,Rd < Mpl,y,Rd 

MNy,Rd = Mpl,y,Rd 

 
 Figure 2.7: Cross section plastic interaction diagram (N+My) 

 

The pair of forces (Nmax,CS; My,max.CS) in Figure 2.7 are obtained by solving the following 

system of equations: 
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The utilization ratio of the cross section (or the inverse of the cross section resistance 

multiplier) is given by the ratio between the vector norm of the applied internal forces and the 

vector norm of the bending and axial force resistance along the same load vector (Figure 2.7): 

 

 1
1

2
max,,

2
max,

2
,

2







CSyCS

EdyEd

cs
u MN

MN


 (2.46) 

 

For a class 3 cross section, the utilization ratio of the cross sections is given by 
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Finally, in Greiner et al. (2011) (Semi-Comp project) the verification to mono-axial bending 

and axial force interaction for cross section class 3 is given by 

 

  nMM RdyRdyN  1,,3,,3,
 (2.48a) 

  2
,,3,,3, 1 nMM RdzRdzN    (2.48b) 

 

b) Shear 

 

If shear stresses are present, Eq. (2.49) and Eq. (2.50) should be satisfied. For elastic 

verification the Von-Mises criterion may be used. 

 Shear resistance, clause 6.2.6 of EC3-1-1: 
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in which Av is the shear area. 

 

 Shear and bending interaction, clause 6.2.8 of EC3-1-1 or clause 7.1 of EC3-1-5 (CEN, 

2006): 
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in which Mf,Rd is the cross section resistance to bending considering the area of the 

flanges only.  
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2.4 Analysis of the General Method in EC3-1-1 

 

2.4.1 Introduction and scope 

 

Part 1-1 of Eurocode 3 includes a so called “general method” for lateral and lateral-torsional 

buckling of structural components such as: (i) single members, built-up or not, with complex 

support conditions or not; or (ii) plane frames or sub-frames composed of such members 

which are subject to compression and/or mono-axial main axis bending in the plane, but 

which do not contain rotative plastic hinges. The method uses a Merchant-Rankine type of 

empirical interaction expression to uncouple the in-plane effects and the out-of-plane effects. 

Conceptually, the method is an interesting approach because it deals with the whole structural 

component for the evaluation of the stability with respect to the various buckling modes 

(Müller, 2003). In addition, for more sophisticated design situations that are not covered by 

code rules but need finite element analysis, the method simplifies this task. It is noted that EN 

1993-1-6 (CEN, 2007) specifies a similar approach, the MNA/LBA approach known as the 

“Overall Method”, that may be seen as a generalization of the stability reduction factor 

approach used throughout many parts of Eurocode 3, see Rotter and Schmidt (2008). 

 

It is, however, questionable that the application of the general method results in a lower bound 

estimate of the safety of the structural component for the target probability of failure that is 

specified in EN 1990 (1992). In addition, the method specifies two alternative criteria for the 

evaluation of the out-of-plane effects, leading to different levels of safety.  

 

Apart from the doctoral thesis of Müller (2003), this method was not widely validated and 

there is scarce published background documentation to establish its level of safety. Within 

Technical Committee 8 of ECCS, the need to explore deeply the field and limits of the 

application of the General Method was consensually recognized (Snijder et al, 2006; ECCS 

TC8, 2006). In particular, several examples have been carried out at the University of Graz 

(Greiner and Ofner, 2007; Greiner and Lechner, 2007), comparing advanced finite element 

analyses (GMNIA) using beam elements with the General Method.  



 

   CHAPTER 2 
 

 

 

 
 
   48 
 

 

In this section the theoretical background of this method is firstly discussed. Analytical 

derivations of the method in line with clauses 6.3.1 to 6.3.3 for the stability verification of 

prismatic members are performed. It is seen that, even for prismatic members with double 

symmetric cross section, the method deviates from the buckling design rules although the 

existing buckling curves are to be considered (as stated in clause 6.3.4). More detail may be 

found in Simões da Silva et al. (2010a) in which a comprehensive analysis of the General 

Method when applied to prismatic simply supported members is carried out. 

 

Finally, application of the method to non-uniform members is then analysed. Detailed 

description of the numerical assumptions is given in Chapter 3, as a basis for the main 

developments of this thesis. 

 

2.4.2 Theoretical background – analogy to rules for prismatic members 

 

2.4.2.1 Description of the method 

 

The General Method, as given in EN 1993-1-1 in clause 6.3.4 states that the overall resistance 

to out-of-plane buckling for any structural component conforming to the scope defined in the 

introduction can be verified by ensuring that: 

 

 1/ 1, Mkultop   (2.51) 

 

where αult,k is the minimum load amplifier of the design loads to reach the characteristic 

resistance of the most critical cross section of the structural component, considering its in-

plane behavior without taking lateral or lateral-torsional buckling into account however 

accounting for all effects due to in-plane geometrical deformation and imperfections, global 

and local, where relevant. χop is the reduction factor for the non-dimensional slenderness to 

take into account lateral and lateral-torsional buckling and γM1 is the partial safety factor for 

instability effects (adopted as 1.0 in most National Annexes). 
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The global non dimensional slenderness op  for the structural component, used to find the 

reduction factor χop in the usual way using an appropriate buckling curve, should be 

determined from 

 

 opcrkultop ,, /   (2.52) 

 

where αcr,op is the minimum amplifier for the in-plane design loads to reach the elastic critical 

resistance of the structural component with respect to lateral or lateral-torsional buckling 

without accounting for in-plane flexural buckling. In the determination of αcr,op and αult,k, 

finite element analysis may be used. 

 

According to EC3-1-1, χop may be taken either as: (i) the minimum value of χz (for flexural 

buckling, according to clause 6.3.1 of EC3-1-1) or χLT (for lateral-torsional buckling, 

according to clause 6.3.2); or (ii) an interpolated value between χ and χLT (determined as in 

(i)), by using the formula for αult,k corresponding to the critical cross section. It is noted that 

ECCS TC8 (2006) recommends the use of the first option only. 

 

Finally, in EC3-1-6 (CEN, 2007) the Overall Method considers for the in-plane behavior a 

materially non-linear analysis, instead of (in the General Method) an in-plane analysis with 

the account of in-plane imperfections. Moreover, the Overall Method requires the use of a 

problem-specific buckling reduction factor χ, which is calibrated to the given conditions of 

loading and structural behaviour. 

 

2.4.2.2 Application to flexural column buckling 

 

In order to illustrate the application of the General Method to a trivial example, consider the 

pinned column of Figure 2.8 subject to an arbitrary axial force NEd. Let also assume that the 

in-plane direction corresponds to the cross-section major axis in bending. Let also assume, for 

simplicity, that buckling in a torsional mode is not relevant. 
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  NEd

 
Figure 2.8: Pinned column  

 

The application of clause 6.3.1 of EC3-1-1 leads, in succession, to: 
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(2.53) 

 

and 

 

   EdRdzbRdybRdb NNNN  ,,,,, ;min  (2.54) 

 

or, defining αb as the ultimate load multiplier with respect to the applied axial force, 
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Alternatively, the application of the General Method for the same reference applied axial 

force yields, successively: 
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Since 
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 zopzopy   0.1  (2.57) 

 

it follows that 

 

 EdRdplyopEdkultopRdb NNNN  ,,,   (2.58) 

 

or 
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Comparing Eq. (2.55) and Eq. (2.59) for this trivial example shows that the General Method 

does not exactly give the same result as the application of clause 6.3.1 even whenever the 

same column buckling curves are used. Assuming that flexural buckling around the minor 

axis is critical (χz ≤ χy), yields 
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 (2.60) 

 

Considering the case of pin-ended columns first, Figure 2.9 plots Eq. (2.60) for a range of 

profiles and lengths, with the aim to compare the results from General Method with clause 

6.3.1. 
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(a) Rolled cross sections (b) Welded cross sections 
Figure 2.9: Results of Eq. (2.60) – pin-ended columns 

 

The ratio between the ultimate load multipliers for the General Method and for clause 6.3.1 

decreases as the slenderness of the column increases. This can be explained by the fact that 

slender columns have lower reduction factors χy, leading to an increased difference between 

z  and op . The same reason is given for the higher differences illustrated in stocky cross-

sections relatively to slender cross-sections, see also Taras (2010). The latter present a high 

in-plane stiffness relatively to the out-of-plane stiffness and as a result op is closer to z . It 

can also be noticed that the results concentrate in groups according to the chosen buckling 

curve (see Table 2.5) or, in other words, curve b (higher imperfection) leads to a higher 

relative decrease in the ultimate resistance. 

 

Table 2.5: Buckling curves for Flexural Buckling about zz, (acc. Figure 2.9)  

Cross sections h/b Rolled Welded 
IPE 360 – IPE 200 

HEB 550 – HEB 400 
>1.2 b c 

HEB 360 – HEA 200 ≤1.2 c c 
 

The fact that the column resistance to out-of-plane flexural buckling needs to be reduced by 

the in-plane second order effects, when the given curves in the code were calibrated 

considering only one direction for the imperfection, leads to a deviation from the start. In fact, 

even if both directions are considered for the imperfection, the reduction felt by the in-plane 

imperfection is not as restrictive as the reduction provided by the consideration of the full in-



 

 SAFETY VERIFICATION OF STEEL MEMBERS – THEORETICAL BACKGROUND AND DESIGN PROCEDURES 
 

 

 

 
 
  53 
 

plane reduction in the resistance load multiplier αult,k. The example of Figure 2.10 supports 

this. Resistance is compared considering the following cases: 

 Nonlinear numerical analysis considering imperfections in both directions (GMNIA_yz); 

 Nonlinear numerical analysis considering imperfection in weak axis direction 

(GMNIA_z); 

 General Method considering an in-plane GMNIA analysis for αult,k and the well-known 

Euler critical load multiplier for αcr,op (GM); 

 Clause 6.3.1 of EC3-1-1 (6.3.1); 

 Eq. (2.60) (EQU). 

 

In Figure 2.10(a) results are presented relatively to a nonlinear numerical analysis considering 

imperfections in weak axis direction (GMNIA_z); in Figure 2.10(b) results are illustrated in a 

buckling curve format. If a slender cross section were to be illustrated, e.g. IPE200 (h/b=2), 

results would practically coincide, see Simões da Silva et al. (2010a). The numerical model 

accounting for imperfection in directions z-z and y-y presents slightly lower resistance than 

the reference model with out-of-plane imperfections only. Nevertheless, if compared to the 

General Method cases (numerical or analytical), differences can still reach 25%, confirming 

the above discussed. Numerical assumptions are described in detail in Chapter 3. 

 

0.8

0.85

0.9

0.95

1

0.2 0.7 1.2 1.7
λ̅z

αb
METHOD / αb

GMNIA_z

6.3.1
EQU
GM
GMNIA_yz

0.1

0.3

0.5

0.7

0.9

0.2 0.7 1.2 1.7
λ̅z

αb
METHOD

Euler
6.3.1
GMNIA_z
EQU
GM

(a) Relative differences to GMNIA_z (b) Buckling curve representation 
Figure 2.10: Evaluation of the General Method applied to prismatic columns (HEB300, h/b=1; Hot-rolled; S235) 
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The same applies to beam-columns, in which the consideration of the second order in-plane 

effects should not be as severe (Taras, 2010). Actually, most codes that consider this concept 

of generalized imperfection, consider for αult,k the cross section resistance without in-plane 2nd 

order effects. This is further discussed in Section 2.4.2.5. Finally note that if, for the case of 

columns, in the definition of αult,k, Npl is considered in Eq. (2.56) instead of Nb,y,rd, the general 

method yields exacly the same result as clause 6.3.1 of EC3-1-1. 

 

2.4.2.3 Application to lateral-torsional buckling 

 

For an unrestrained beam, let αult,k denote the load level that corresponds to the attainment of 

the flexural resistance at the critical cross-section. Application of the General Method gives 
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 (2.61) 

 

and, in this case, the General Method exactly coincides with the application of clause 6.3.2 of 

EC3. Note also, that for the case of beams, the in-plane second order effects do not affect the 

in-plane resistance αult,k and therefore cross-section resistance is attained. As a result, both 

methods coincide. 

 

2.4.2.4 Application to bending and axial force interaction 

 

Consider the pin-ended beam-column of Figure 2.11 subjected to an arbitrary axial force NEd 

and a uniform major axis bending moment My,Ed 

 

NEd

My,EdMy,Ed

 
Figure 2.11: Pin-ended beam-column 



 

 SAFETY VERIFICATION OF STEEL MEMBERS – THEORETICAL BACKGROUND AND DESIGN PROCEDURES 
 

 

 

 
 
  55 
 

Let 
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Clause 6.3.3 of EN 1993-1-1 states that the safety of a beam-column requires the verification 

of the cross-section capacity at the member ends using an appropriate interaction expression 

such as Eq. (2.44) for I and H cross-sections, and the verification of the stability interaction 

formulae Eq. (2.42) and Eq. (2.43), see Section 2.3.5.2. 

 

Assuming proportional loading (ϕ=constant) and class 1 or 2 cross sections (NRk=Npl,Rd and 

My,Rk=Mpl,y,Rd), an ultimate load multiplier can be defined with respect to the applied loading, 

given by  
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In Eq. (2.63), αpl
cs,ends denotes for the cross section resistance multiplier regarding both 

member ends (see Eq.(2.46)). The application of the General Method leads to 
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Assuming the same applied loading NEd and My,Ed and evaluating αult,k according to 6.3.3 gives 
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Note that Eq. (2.65) can only be considered for evaluation of the in-plane resistance if Method 

2 (Annex B of EC3-1-1) is applied. As referred previously, only in Method 2 the in-plane and 
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out-of-plane behavior are separately considered in the both sets of equations of clause 6.3.3 of 

EC3-1-1. Comparing Eq. (2.63) and Eq. (2.64), gives: 
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Or, considering also Eq. (2.65), 
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According to clause 6.3.4(4) of EN 1993-1-1, the reduction factor χop may be determined from 

either of the following methods: (i) the minimum value of χ (for lateral buckling, according to 

clause 6.3.1 of EC3-1-1) or χLT (for lateral-torsional buckling, according to clause 6.3.2); (ii) 

an interpolated value between χ and χLT (determined as in (i)). In EC3-1-1, it is suggested that 

the formula for αult,k corresponding to the critical cross section is used. This leads to: 
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 (2.68) 

 

The values of χ and χLT considered for the reduction factor χop, are calculated with the global 

non dimensional slenderness op  of the structural component, determined from Eq.(2.52). 

According to Trahair (1993), the elastic critical bending moment and axial force are given by 
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where Mcr is the elastic critical bending moment, Ncr,z is elastic critical compressive buckling 

force in a bending mode about the z-z axis and Ncr,T is the elastic critical compressive buckling 

force in a torsional mode. Eq. (2.69) is valid for beam-columns with constant bending 

moment distribution. To adapt the equation to other types of bending moment distribution, see 

Trahair (1993). Finally, introducing 
max,,,

max,

yRdypl

Rdpl

MM

NN
  in Eq. (2.69) leads to (Ncr,MN , 

My,cr,MN), so that αcr,op is given by: 
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Results of Eq. (2.67) are now analysed for a range of profiles, loading and lengths, with the 

aim to compare the results from General Method with clause 6.3.3, and find any trends. The 

cross sections were chosen in order to enclose a range of profiles with several depth/width 

ratios, and consist of class 1 or 2 cross sections. 

Concerning all results, comparing the General Method with Method 2 (for determination of 

αult,k) using Eq. (2.67) leads to a variation of results between 81% and 113%, as shown in 

Table 2.6: 

 

Table 2.6: All results of Eq. (2.67) for ϕ=1 – n=80 for each case ; χop= min(χz ; χLT  ) 

Fabrication 
Process 

Bending 
Moment 

EC3 Method 2 

Min. Max. 
Hot Rolled All 84.4 112.3 

Ψ=1 87.7 109.8 
Ψ=0 87.0 108.2 
Ψ=-1 84.4 101.2 
Conc. 90.0 111.1 
Dist. 89.0 112.3 

Welded Ψ=1 94.4 110.3 
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Figure 2.12 illustrates the results for rolled cross sections. Results are plotted for a range of 

member lengths between z =0.5 and z =2.5 for ϕ=1. χLT is calculated according to the 

General Case from EC3-1-1, and χop= min (χz ; χLT). 
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(c) Uniformly distributed loading 
Figure 2.12: Fig. 9 Results of Eq. (2.69) 

 

When Figure 2.12 is analyzed, it is seen that for more slender cross sections (larger h/b), the 

General Method is less conservative. Again, the results also tend to concentrate in groups 

according to the buckling curve, see Table 2.7. 

 

Table 2.7:Buckling curves for rolled cross sections (General Case for LTB) 

Cross sections Buckling curve – FBzz Buckling curve - LTB 
IPE 360 b b 
IPE 200  
HEB 550 – HEB 400 

b a 

HEB 360 – HEA 200 c a 
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 Consider now Figure 2.13 which represents the results for a HEB 300 for uniform moment 

(Ψ=1), with different ratios of ϕ=αpl
M/ αpl

N:  
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Figure 2.13: Results of Eq. (2.67) – beam-columns; Eq. (2.60) – columns; or Eq. (2.61) – beams; Ψ=1; HEB 

300; Method 2 

 

An inconsistency around ϕ=0, i.e., high bending moment relatively to the axial force is 

observed: for ϕ=0 (lateral torsional buckling), the results are calculated using Eq. (2.61), that 

is, χop= χLT while for ϕ>0 Eq. (2.67) is used whereby χop= min(χz, χLT)= χz in this case of a 

HEB 300 profile.  

 

In general, taking χop as the minimum value between χz or χLT, for ϕ=0, in case the reduction 

factor χz is smaller than χLT, the above discontinuity will be observed. For ϕ=∞, i.e., high axial 

force relatively to bending moment and in case reduction factor χLT is smaller than χz the same 

inconsistency is observed. However, if χop is calculated with Eq. (2.68) (interpolated value 

between χz and χLT), the discontinuity in the interaction curve disappears, as 
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To illustrate this, two cases are chosen such that: (a) χz < χLT and (b) χLT < χz. The results are 

plotted in the interaction curves of Figure 2.14, considering the results of Eq. (2.64) – clause 
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6.3.4 for beam-columns. For comparison, results of Eq. (2.59) – clause 6.3.4 for columns; Eq. 

(2.61) – clause 6.3.4 for beams; and Eq. (2.63) – clause 6.3.3, are also plotted.  
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Figure 2.14:Interaction curves regarding the value of  χop 

 

Using an interpolated value of χ and χLT leads to more accurate results in a way that the 

referred discontinuities are avoided. Nevertheless, if such an interpolation is to be proposed in 

the future, a more detailed study is needed in order to establish the limits of the application of 

the reduction factor χop along the interaction curve, as also pointed out by Taras (2010): 

whereas the interpolation curve χop provides a smooth transition between the curve χLT and χz 

(with varying ϕ), the real curve (i.e. GMNIA curve) does not vary continuously between the 

extremes ϕ=0 and ϕ=∞, as it may seem by analyzing results in the interaction curve 

representation (instead of in a buckling curve representation). This means that although the 

interpolation in Eq. (2.71) may solve the discontinuities in the limits of the interaction curve 

(ϕ=0 and ϕ=∞), it still does not describe with sufficient accuracy the mechanical behavior of 

the beam-column with varying ratios of NEd /My,Ed, i.e., in intermediate ϕ. This will be 

explored in Chapter 6 for the case of tapered members.  

 

To illustrate this, a IPE200 with z =0.5 and varying ϕ is given in Figure 2.15. In Figure 

2.15(a) results are represented in the buckling curve format, whereas in Figure 2.15(b) results 

are represented in the interaction curve format, such that the curve regarding the interpolation 
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is given by );( opop  . For the general method results, Eq. (2.64) is solved with the derived 

formula for the interpolated value of χop, Eq.(2.68). The GMNIA curve is given by 

 

 LBA
crkultop  3.3.6

,        and       3.3.6
,kult

GMNIA
bop    (2.72) 

 

from which αult,k
6.3.3 is given by Eq. (2.65) (i.e., evaluation of the in-plane buckling resistance 

according to clause 6.3.3). 
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(a) Buckling curve representation (b) Interaction curve representation 

Figure 2.15:Analysis of the interpolation of χop 

 

It is shown in Figure 2.16 that considering Eq. (2.71) does not lead to unsafe levels of 

resistance. Figure 2.16 illustrates the mean values ±1 standard deviation of the ratio 

αb
GMNIA/αb

Method for several intervals of ϕ, regarding 606 beam element simulations from the 

PhD thesis of Ofner (1997), see Simões da Silva et al. (2010a) for details. It is here visible 

that the interpolation of χ gives less conservative results than the minimum. Although it also 

leads to higher resistance than clause 6.3.3, it is always on the safe side relatively to GMNIA 

analysis. However, the conservatism associated to these results will be discussed in Section 

2.4.2.5. 
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Figure 2.16:Mean values with vertical bars denoting ±1 standard deviation of the ratio αb

GMNIA/αb
Method cases 

plotted against the defined sub-sets of Φ 

 

Finally, in terms of numerical results, a full 3D GMNIA analysis yields the highest resistance, 

see Simões da Silva et al. (2010). A statistical evaluation was also carried out in the referred 

study. The evaluation of the safety factor γRd according to Annex D of EN 1990 (2002) 

demonstrates that the General Method becomes more conservative with the increase of the 

length of the member (Figure 2.17). Finally, as also observed previously, more slender cross 

sections lead to higher safety factors. The evaluation of the partial safety factor, γRd, is carried 

out according to the procedure described in detail by Rebelo et al. (2009). 
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Figure 2.17:Variation of safety factor γrd with slenderness, χop=min(χ; χLT); χLT evaluated according to the 

General Case of clause 6.3.2; and αult,k evaluated according to Method 1 of EC3-1-1.  
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2.4.2.5 Some comments on the value of αult,k 

 

It was shown in Section 2.4.2.2 that the consideration in-plane local imperfections in the 

multiplier αult,k for the out-of-plane flexural buckling verification of columns gives 

inconsistent results with clause 6.3.1.  

This definition was adopted in clause 6.3.4 because the consideration of the cross section 

resistance load multiplier (with no local imperfections) may sometimes lead to unsafe results 

for the stability verification of beam-columns, even if the minimum between χz and χLT is 

considered (Ofner and Greiner, 2005).  

 

To differentiate the two alternatives, the following nomenclature is considered in the thesis: 

 General Method in its current format, in which αult,k is evaluated considering in-plane 

local imperfections – op  and  χop are considered for illustration of results; 

 Modification of the General Method, in which αult,k is evaluated excluding second order 

local effects. For a simply supported member, this corresponds to the cross section 

capacity. The subscript “op” (out-of-plane) is then replaced by “ov” (overall) (in the 

more general format of generalized slenderness procedures). 

 

Figure 2.18 reproduces one example given in Taras and Greiner (2006) for a simply 

supported beam-column with 75.0z  subject to constant bending moment and axial force 

with a hot-rolled cross section IPE500. From Figure 2.18(b), it is seen that the minimum 

reduction factor χov is given by the minimum ratio between the distances to the origin of the 

cross section resistance interaction curve and the GMNIA curve. For this case, it is achieved 

at ϕ=0.2. In Figure 2.18(a), χov,GMNIA=αb,GMNIA/αult,k. Note that for the lateral-torsional buckling 

curve, the more adequate developed buckling curves for lateral-torsional buckling (Taras, 

2010) are adopted. 
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(a) Buckling curve representation (b) Interaction curve representation 
Figure 2.18 Example of a member which χov is lower than both χz and χLT 

 

As a result, if the upper bound of the member resistance is then reduced, it may avoid the 

existence of unconservative cases in which the in-plane bending moment significantly reduces 

the out-of-plane resistance of the beam-column. Another possibility was given in Ofner and 

Greiner (2005), in which αult,k is determined considering the cross section capacity. Here, an 

amplification of the flexural buckling imperfection factor α is performed, which accounts for 

the bending moment deflection of the respective bending moment distribution. The resultant 

buckling curve χov is then determined considering this imperfection. This proposal leads to 

fairly accurate results for the case of in-plane flexural buckling or out-of-plane flexural 

buckling. However, if lateral-torsional buckling is a potential mode, the method becomes less 

accurate. 

 

Regarding the given approach in EC3-1-1 (in which αutl,k is decreased), it leads to over 

conservative resistance if the in-plane effects are of the same magnitude as the out-of-plane 

effects (for example, RHS sections), see Greiner and Ofner (2005); Ofner and Greiner (2005); 

Taras and Greiner (2006); or Taras (2010). Although this definition aims at accounting for the 

destabilizing effect of the in-plane bending moment on the out-of-plane resistance (Greiner 

and Ofner, 2005), this is not significant for all cases – for example, an in-plane bending 

moment distribution ψ=-1 will have a much lower destabilizing effect on the out-of-plane 

instability than a bending moment distribution ψ=1. As a result, for the first case, the 

reduction of the cross section capacity will be too restrictive. 
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As a result, the fact that safe results are obtained either for the minimum or for the 

interpolation given in Section 2.4.2.4 may be purely due to the fact that a lower estimate of 

the maximum capacity is set. Because this assumption does not truly correspond to the main 

reason of the generalized reduction factor being smaller than the minimum of χz and χLT, it is 

possible that this approach may, at some point, give unsafe levels of resistance.  

 

In the given parametric study of Section 2.4.2.4 note that, for the determination of χz and χLT, 

EC3-1-1 rules were considered, which are already a safe assumption relatively to the real χz 

and χLT GMNIA results. If the latter would have been considered, surely lower αb
GMNIA/αb

Method 

(Figure 2.16) values would be achieved.  

 

In summary, to be mechanically consistent, this buckling resistance reduction should not be 

accounted for by such a restriction of the cross section capacity especially considering local 

in-plane effects that in reality do not have such high effect in the out-of-plane buckling 

resistance all the times. In other words, the resistance reduction should be considered 

afterwards in the generalized reduction factor and not applied to αult,k. These aspects 

concerning a generalized slenderness concept are analyzed more in detail in Chapter 6, 

considering tapered beam-columns as case of study.  

 

2.4.3 Treatment of non-uniform members 

 

In the verification of the resistance of a non-uniform member, several assumptions have to be 

considered, which are not clear for the designer, as they are neither defined nor explained in 

the codes. These have been previously discussed in Section 1.1 and are: (i) evaluation of the 

design cross-section; (ii) definition of the cross-section class; and (iii) definition of the 

buckling curve. In Simões da Silva et al. (2010b) the stability verification of a web-tapered 

beam-column subject to uniformly distributed bending moment and constant axial force is 

performed, covering these aspects. 

 

Given that there are various options for the application of the General Method, Figure 2.19 

summarizes the procedures for the calculation of the ultimate load factor, for the more general 
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case of beam-columns. Although for a tapered member αult,k should be evaluated numerically 

(as there are currently no guidelines to determine αult,k analytically – as defined in the code i.e. 

accounting for in-plane local and global second order effects and imperfections), the 

theoretical approach of the General Method is also considered for verification of resistance.  
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it varies along the tapered member?

1/ 1, Mkultop 

In-Plane
GMNIA 

calculations

LBA 
calculations

opcrkultop ,, / 

(a) According to clause 6.3.4 – analytical expressions (b) According to clause 6.3.4 – numerical calculations 
Figure 2.19: Stability verification of the member according to the General Method 

 

Numerical evaluation of the General Method should simplify the procedure regarding all the 

questions which arise when verifying the buckling resistance of a tapered member. However, 
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when analyzing Figure 2.19 it seems that the main problem of its application lies in the 

correct definition of the buckling curve as already discussed. Throughout Chapters 4 to 6 

application of EC3-1-1 buckling curves is shown not to be proper.  

 

2.4.4 Final remarks 

 

For prismatic members, it is possible to directly evaluate the resistance using the General 

Method (6.3.4) evaluating αult,k according to 6.3.1 to 6.3.3 and αcr,op according to Eq. (2.70), 

leading to similar results, except for the extremes of the interaction curve. In such regions of 

the interaction curve, the minimum value of χ and χLT might not correspond to the real type of 

buckling mode. Using an interpolated value of χ and χLT, see Eq. (2.68), solves at least this 

problem. However, a more detailed parametric study is needed in order to establish the limits 

of the application of the reduction factor χop. The definition of αult,k was also seen to be 

inconsistent from the mechanical point of view. In addition, concerning the “generality” of the 

general method there is no clear definition given, however it becomes obvious that it is 

restricted to open sections and hollow sections are excluded. For those aspects and limitations 

the generality is mainly based on general forms of open cross sections and with out-of-plane 

behaviour, so that the term “general” method is questionable. 

 

Regarding non-uniform members, when in-plane GMNIA and LBA numerical simulations are 

considered to evaluate resistance according to the General Method, it is possible to avoid the 

difficult task of classifying the cross-section and knowing the position of the critical cross-

section for use of its properties in the verification of stability. On the other hand, the 

definition of the buckling curve is still unclear.  

 

As a result, in Chapter 4 and 5, adequate analytically based procedures for stability 

verification of web-tapered members are developed. These are further applied to beam-

columns in Chapter 6 in which the application of the General Method is again analyzed. 
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2.5 Possible methods for the structural analysis 

 

2.5.1 Introduction 

 

The structural analysis methods described in Figure 2.1 are analyzed in the following. Firstly, 

second order analysis may or may not be necessary depending on the relevance of the internal 

forces caused by deformations. In EC3-1-1, this condition may be assumed to be fulfilled if 

the following is satisfied: 

 

analysisplasticfor15

analysiselasticfor10





Ed

cr
cr

Ed

cr
cr

F

F

F

F




 (2.73) 

 

where αcr is the multiplier of the design loading which causes elastic instability in a global 

mode; FEd is the design loading on the structure; Fcr is the elastic critical buckling load for 

global instability mode based on initial elastic stiffnesses. 

 

If second order analysis is required, second order internal forces may be determined either by 

a precise second order analysis including step-by-step or other iterative procedures, or by the 

amplification of the first order internal forces (several approximate procedures may be found 

in the literature, see for example Simões da Silva et al. (2010b)). 

 

Regarding imperfections, global and local imperfections shall be taken into account according 

to clause 5.3 of EC3-1-1, respectively for frames and bracing systems and for individual 

members. The shape of imperfections may be derived from an elastic buckling analysis 

considering the relevant modes. Also, the most unfavorable direction and form should be 

considered. 

 

Regarding the member imperfection, individual bow imperfection shall be considered (by an 

amplitude of the bow imperfection e0, see also Table 1.1 of this thesis). For frames sensitive 
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to buckling in a sway mode, global imperfections shall be accounted for in form of an initial 

sway imperfection (on the structure level – global imperfection ϕ, see EC3-1-1).  

 

In a simplified way, imperfections may be replaced by equivalent forces, see Figure 2.20. 

 

NEd

NEd

ϕ

NEd

NEd

ϕ NEd

ϕ NEd

NEd

NEd

e0

NEd

NEd

4 Ned e0 /L

L

4 Ned e0 /L

8 Ned e0 /L2

 
Figure 2.20: Imperfections and corresponding equivalent horizontal forces 

 

Following EC3-1-1, there are mainly three levels of analysis.  

 Level 1: Second order analysis accounting for all the effects and imperfections – global 

and local (clause 5.2.2 a) of EC3-1-1). It becomes only necessary to check the cross-

section resistance of the member; 

 Level 2: Second order analysis considering only global effects and global geometrical 

imperfections (clause 5.2.2 b) of EC3-1-1). This method is the most commonly used. The 

stability verification of the members according to clauses 6.3.1 to 6.3.3 is carried out 

considering the buckling length of the member as the non-sway buckling length; 

 Level 3: First order analysis of the structure (clause 5.2.2 c) of EC3-1-1). Neither 

imperfections nor second order effects are included in the analysis of the structure and, as 

a result clauses 6.3.1 to 6.3.3 of EC3-1-1 must be verified considering the buckling length 

of the member defined according to the global buckling mode of the structure. 
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In Section 2.5.2, an example is given in order to illustrate the implementation of the several 

approaches (or even combination of those). Sections 2.5.2.2, 2.5.2.3 and 2.5.2.4 respectively 

correspond to the above-defined levels of analysis 1, 2 and 3. Because many times it is 

practical to mix the described methods of analysis, in Section 2.5.2.5 possible combinations 

are described. 

 

2.5.2 Example 

 

2.5.2.1 Introduction 

 

Consider the frame of Figure 2.21 with a similar configuration as in the frames presented in 

Figure 1.10 of Chapter 1 – a typical configuration for frames with tapered members. For 

illustration of the problem (verification is focused at the structural level and not at the member 

level), the frame is assumed to be composed of prismatic members such that member stability 

verification formulae are applicable.  

 

Consider also that the frame is unrestrained with respect to out-of-plane displacements at the 

top of the left column but braced at the apex and top of right column. Second order local and 

global effects and imperfections shall be considered in both directions (y-y and z-z are 

respectively the in-plane and out-of-plane member axis; LT stands for lateral-torsional) and 

are illustrated in Figure 2.21 and Figure 2.22. The frame is also assumed to be sensitive to 

buckling in a sway mode. In Figure 2.21 and throughout Section 2.5.2, red illustrates in-plane 

global imperfections; green illustrates out-of-plane global imperfections and yellow illustrates 

local member imperfections (in-plane, out-of-plane or both, depending on type of analysis). 
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in-plane global

P-δin-plane

P-δout-of-plane

P-Δin-plane

P- Δout-of-plane

Global + Local imperfections

out-of-plane global

in-plane global

Plane of the

structure

e0,y
(1)

+ e0,z
(1)

e0,y
(4)

+ e0,z
(4)

 
Figure 2.21: Frame subject to in-plane and out-of-plane second order effects 

x

e0,y + e0,z

y

z

 
Figure 2.22: In-plane and out-of-plane bow imperfections 

 

2.5.2.2 Second order analysis accounting for all the effects and imperfections 

 

Level 1 corresponds to the case in which second order analysis accounting for all the effects 

and imperfections – global and local (illustrated in Figure 2.21) – is performed. It becomes 

only necessary to check the cross-section resistance of the member at a sufficient number of 

cross sections, as all stability effects are already included in the structural analysis. The 

consideration of local effects and imperfections in the analysis of the structure might not be 

simple if it is done analytically (by approximate methods) and, therefore, if this method is 

chosen, numerical analysis is preferred. 
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2.5.2.3 Second order analysis considering only global effects and global geometrical 

imperfections 

 

The second level may be defined as a second order analysis considering only the global 

effects and global geometrical imperfections. This method is the most commonly used. As the 

global effects are already considered in the analysis of the structure, the stability verification 

of the members according to clauses 6.3.1 to 6.3.3 is much simpler. For this alternative, the 

buckling length of each member may be considered as the non-sway buckling length or, on 

the safe side, as the real length (Boissonnade et al, 2006). For example, assume that the 

column was fixed at the base – Lcr,column shall be safely considered as Lcolumn. In fact, note that 

the buckling length is never exactly the same as the member length because the restraining 

provided by the adjacent parts of the structure does not exactly coincide with the idealized 

fork conditions.  

 

Eq. 6.61
Eq. 6.62

with MII

with Lcr=L

Plane of the

structure

ϕ ϕ

 
Figure 2.23: Verification according to a second order analysis with global effects 

 

2.5.2.4 First order analysis of the structure 

 

The third level may be defined by a first order analysis of the structure. Neither imperfections 

nor second order effects are included in the analysis of the structure, i.e., first order bending 

moments are considered for the verification. In order to account for these effects, a stability 

verification of each member has to be performed. In EC3-1-1, for the case of prismatic 

members this is done by applying the interaction formulae of clauses 6.3.1 to 6.3.3 of EC3-1-

1 (members in bending and/or axial compression). Regarding clause 6.3.3 (beam-columns), 

equations 6.61 and 6.62 of EC3-1-1 shall be verified (respectively Eq. (2.42) and Eq. (2.43) of 
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this thesis). The difficulty of this method lies in the determination of the buckling length of 

the member which has to be defined according to the global buckling mode of the structure. In 

the example of Figure 2.21, see now Figure 2.24, the stability verification has to be 

performed for each member considering for each case the global buckling lengths. In Greiner 

and Lechner (2007), an example of a frame illustrates the determination of in-plane and out-

of-plane global buckling lengths. 

 

Lcr,y,global>Lcolumn

Lcr,z,global>Lcolumn (≈LLT)

Lcr,y,global>Lcolumn

Lcr,z,global≈Lcolumn (≈LLT)

Eq. 6.61
Eq. 6.62

with MI

with defined Lcr
Plane of the

structure

 
Figure 2.24: Verification according to first order analysis of the structure 

 

2.5.2.5 Combination between the methods of analysis 

 

For practical reasons the described methods may be combined in order to lead to more simple 

verification. In this section, the following is considered: 

a) Level 1 and Level 3: In-plane global and local imperfections are considered in the 

structural analysis (level 1) such that no in-plane stability member verification needs to 

be carried out. On the other hand, out-of-plane (global and local) stability verification is 

performed by member design formulae considering adequate out-of-plane buckling 

lengths (level 3); 

b) Level 2 and Level 3: only global effects and imperfections are considered in the structural 

analysis and stability must be checked individually for each member (level 2). However, 

because global out-of-plane imperfections may not be simple to define, only in-plane 

global imperfections are considered in the structural analysis by ϕ. As a result, in the 
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member design formulae adequate out-of-plane buckling lengths must be considered 

(level 3). 

 

a) Level 1 and Level 3 

 

Because the difficulty in combining in-plane and out-of-plane imperfections increases with 

the complexity of the structure, and also because many available software provide more 

reliable in-plane (than 3-D) second order calculations (see also Greiner and Lechner, 2007), a 

combination between the described methods of analysis – 1 (global and local second order 

effects in the structural analysis) and 2 (only global effects in the structural analysis) may be 

considered.  

 

For example, when only in-plane effects and imperfections are considered (global and local), 

only out-of-plane stability verification procedures from clauses 6.3.1 to 6.3.3 need to be 

considered as all in-plane instability effects are already contemplated in the structural 

analysis. However, if this alternative is chosen, the second order moments to be considered in 

the stability verification formulae should only account for the global in-plane imperfections as 

considering the local imperfections may be too restrictive for the required out-of-plane check, 

this was discussed in Section 2.4.2 concerning the consideration of in-plane local 

imperfections in the definition of αult,k.  

 

Out-of-plane member verification may be verified as follows:  

 If Method 1 of Annex A is used, both equations 6.61 and 6.62 shall be verified as in-

plane and out-of-plane behavior is not considered separately by the interaction factors of 

those equations. The reduction factor χy, however, is considered as 1;  

 On the other hand, if Method 2 of Annex B is used, the interaction factors equations 6.61 

and 6.62 were calibrated such that in-plane and out-of-plane member effects are 

represented separately in each of the equations, respectively. The question arises now on 

another possibility regarding the inclusion of the lateral-torsional buckling effect in the 

in-plane resistance (i.e. replacing the check by equation 6.61) – should the resistant 

moment in the cross section check (from the in-plane global and local structural analysis) 
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be reduced by χLT? This latter alternative may be useful for the verification of tapered 

members in structures, as will be discussed in Chapter 6. 

 

Illustration of the latter procedure is given in Figure 2.25, both for Method 1 and Method 2 of 

clause 6.3.3. 

 

Lcr,y,global≈Lcolumn

Lcr,z,global>Lcolumn (≈LLT)

Lcr,y,global≈Lcolumn

Lcr,z,global≈Lcolumn (≈LLT)

With MII (ϕ+e0,y):
• Cross-section check with My,Rk

With MII (ϕ);
With global Lcr,z and LLT:
• Eq. 6.61 with χy=1
• Eq. 6.62

Method 1 or Method 2

Method 2 (?) – alternative

With MII (ϕ+e0,y):
• Cross-section check with χLT*My,Rk

With MII (ϕ);
With global Lcr,z and LLT:
• Eq. 6.61 with χy=1
• Eq. 6.62

?
Plane of the

structure

e0,y
(1)

e0,y
(2)

e0,y
(3)

e0,y
(4)ϕ ϕ

 
Figure 2.25: Verification according to a second order analysis with in-plane global and local effects only 

 

b) Level 2 and Level 3 

 

In EC3-1-1, in-plane global imperfections are determined by ϕ. Out-of-plane global 

imperfections are not as simple to define and to separate from the local (zz or LT) 

imperfections. Because of this, a combination between the second and third procedures above 

described can be adopted in which, for the out-of-plane behavior, the global buckling critical 

length shall be determined (level 3). As a result, for the structural analysis, only in-plane 

global imperfections are considered, see Figure 2.26. 
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ϕ ϕ

• Eq. 6.61
• Eq. 6.62

with MII (ϕ)
with Lcr,y=L
With global Lcr,z and LLT

Lcr,y,global≈Lcolumn

Lcr,z,global>Lcolumn (≈LLT)

Lcr,y,global≈Lcolumn

Lcr,z,global≈Lcolumn (≈LLT)Plane of the

structure

 
Figure 2.26: Verification according to a second order analysis with in-plane global effects only 

 

 

2.6 Non-linear analysis of structures by FEM 

 

2.6.1 Introduction 

 

Design of steel structures by FEM allows for a more accurate representation of the physical 

phenomena that dictate the ultimate limit states of these structures. However, the added 

accuracy in the estimation of the behavior of a steel structure or component leads to increased 

complexity (Simões da Silva et al., 2011).  

 

When checking the strength capacity by the so called GMNIA analysis, complex shaped 

structures are verified more directly, as the assumption of coefficients regarding bending 

moment distributions, boundary conditions or properties of the cross-section are not necessary 

to be defined. However, the preparation of the data files is difficult and time-consuming; 

required data is missing or uncertain; and the physical interpretation and validation of results 

is not easy (Simões da Silva and Gervásio, 2007; Rebelo et al., 2009).  

 

Many aspects have to be carefully taken into account such as:  

(i) modeling of the structure or structural component and their respective boundary 

conditions;  

(ii) choice of software and its respective documentation;  



 

 SAFETY VERIFICATION OF STEEL MEMBERS – THEORETICAL BACKGROUND AND DESIGN PROCEDURES 
 

 

 

 
 
  77 
 

(iii) modeling of the materials’ properties;  

(iv) use of imperfections;  

(v) modeling of loads;  

(vi) specification of the criteria for limit states; 

(vii)  selection of partial coefficients to adopt.  

Moreover, a full calculation is needed for each load combination because of structural non-

linearity. 

 

2.6.2 Modeling 

 

2.6.2.1 General aspects 

 

The modeling of the structure is of major importance to characterize its real behavior. 

Features like the material law, imperfections, boundary conditions, or loading shall be 

correctly included in the model.  One of the advantages that the analysis by FEM provides is 

the possibility of modeling only a component of the structure (as long as the boundary 

conditions are chosen in order to lead to results on the safe side (CEN, 2006)). This reduces 

the calculation time and the computer effort. However, it requires a greater attention to the 

modeling of the boundary conditions, namely supports and loading. 

 

Concerning the type of finite element, it must be chosen according to the type of problem. 

Shell elements are able to overcome certain limitations of beam elements, e.g.: in a class 4 

cross-section the calculation of the effective cross-section becomes unnecessary (as long as 

proper local imperfections are considered); or the “shear lag” effect, which is not 

characterized if beam elements are used. In addition, attention must be paid to the formulation 

of the existing beam elements – some elements might not consider e.g. the warping of cross-

sections. On the opposite extreme of beam elements, solid elements should only be 

considered for the modeling of complex situations such as connections, since the calculation 

effort and time is much higher than for shell elements. 
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2.6.2.2 Treatment of imperfections 

 

At present, the consideration of imperfections is probably the biggest obstacle to the use of 

the finite element method as an everyday design tool. In fact, imperfections, by definition, 

must be considered in all their possible ways, in order to lead to the whole of the most adverse 

effects (Simões da Silva and Gervásio, 2007). 

 

Firstly, relevant buckling modes shall be determined. Not always the most unfavorable mode 

is the first mode, but also many times the interaction between several modes shall be taken 

into account. For example, Figure 2.27 illustrates slender I-section members subject both to 

local and global buckling. 

 

 

(a) Prismatic member (b) Tapered member 
Figure 2.27: Interaction of local and global buckling modes 

 

Furthermore, three-dimensional modelling makes this task even more difficult as the 

combination of potential shapes increases exponentially (Simões da Silva and Gervásio, 

2007). Besides the global geometrical imperfections, local imperfections such as the lack of 

linearity or the load eccentricity shall be considered. Material imperfections must also be 

considered. Finally, in case there is more than one relevant imperfection, a base imperfection 

must be defined, and the other imperfections may be reduced to 70% of their value. 

 

2.6.3 Type of analysis 

 

The type of analysis must be chosen according to the type of problem and the behavior of the 

structure. Material and/or geometrical nonlinearities may be considered. To trace the 
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structural response of problems, an iterative incremental procedure must be used (Rebelo et 

al., 2006). Newton-Raphson procedure is one of most commonly used.  

Besides adequate nonlinearities, geometrical and material imperfections may be included or 

not, leading to several combinations regarding the type of analysis: from a Linear Analysis 

(LA) to a Geometrical and Materially Nonlinear Analysis of the Imperfect structure 

(GMNIA). 

 

For example, a linear elastic analysis is enough to verify the elastic resistance of a structure 

without considering the effects of imperfections. On the other hand, for the verification of the 

elastic-plastic resistance at ultimate limit states, a GMNIA analysis is needed (Simões da 

Silva and Gervásio, 2007). Finally, a Linear Bifurcation Analysis (LBA) may be necessary to 

identify the relevant imperfections to be considered in a structure. 

 

As a result, according to the type of analysis, numerical analysis of structures may be very 

complex and lead to the ultimate load of a structure, or may simply be used as an auxiliary 

tool associated to the existing verification formulae (for example, the second order analyses 

considered in Section 2.5). 

 

2.6.4 Code guidance and safety verification 

 

Part 1-1 of EC3 does not have yet codified guidance for the verification of structures by finite 

element analysis. For example, when an analysis in shell elements is performed, results are 

obtained as stresses. Therefore, in order to apply most verification formulae in EC3-1-1, 

forces have to be obtained, which is not always a simple procedure.  

 

On the other hand, part 1-5 of EC3 for plated structures includes an Annex (Annex C) which 

is dedicated to this aspect. As well, due to complexity of shell structures, part 1-6 of EC3 was 

prepared having in mind the use of finite element software and advanced methods of analysis 

(Simões da Silva and Gervásio, 2007).  
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Nevertheless, part 1-1 of EC3 allows the use of this type of analysis, guiding the designer to 

Annex C of EC3-1-5. 

 

Finally, whenever advanced numerical analysis by FEM is considered, the safety verification 

is performed as follows: 

 In EC3-1-5, for safety verification, it is specified that the load factor αu corresponding to 

the maximum load of the structure must correspond to the legal reliability index β 

(Rebelo et al., 2006). The ultimate limit state is secured if 

 21 u  (2.74) 

 

where α1 is a factor related to the uncertainty that results of the modeling by finite 

elements, which must be obtained from the evaluation of numeric calibrations, carried out 

in accordance with Annex D of EN 1990 (CEN, 2002); and α2 is related to the uncertainty 

that results of the spreading of models of actions and resistances (can be taken as γM1 or 

γM2 depending on the phenomena of failure); 

 In EC3-1-6, to ensure the reliability of the numerically determined resistance, a 

calibration factor kGMNIA has to be applied to the results of the analysis, which serves as 

controlling parameter for the uncertainties associated to the modeled imperfections 

(Greiner, 2003). 

 

There are however no guidelines to help the designer obtain these factors. In general, as the 

design of structures using full non-linear numerical analysis is time-consuming and, in 

addition there is not enough guidance, nearly all codes provide simple formulae for the 

buckling check as the previously mentioned for EC3-1-1. Similarly, buckling rules for 

stability verification of web-tapered members will be developed in the following chapters. 
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Chapter 3 

 

 

 

 

3 NUMERICAL MODEL 

 

3.1 Introduction 

 

The evaluation of the accuracy and the safety of a design model requires reliable estimates of 

the real behaviour of some reference cases. Advanced numerical simulations contemplating 

geometrical and material nonlinearities with imperfections (GMNIA) were adopted for this 

purpose, as is nowadays widely accepted (Rebelo et al, 2009). In Section 3.2 the adopted 

structural model and the underlying assumptions are described. A large number of numerical 

simulations were carried out, these are described in the context of the respective chapter. 

 

In addition, in order to develop a reliable numerical model, three well-detailed reference cases 

were taken from the literature to allow direct comparison with independent numerical 

simulations (Section 3.3). 

 

 

3.2 Structural model 

 

3.2.1 Finite element model 

 

A finite element model was implemented using the commercial finite element package 

Abaqus (2010), version 6.10. Four-node linear shell elements (S4) with six degrees of 

freedom per node and finite strain formulation were used.  
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For the material nonlinearity, an elastic-plastic constitutive law based on the Von Mises yield 

criterion is adopted.  

 

A load stepping routine is used in which the increment size follows from accuracy and 

convergence criteria. Within each increment, the equilibrium equations are solved by means 

of the Newton-Raphson iteration. 

 

Besides GMNIA, LBA simulations are also carried out in order to obtain the numerical 

critical loads for tapered members. 

 

The adopted mesh converged for the following discretization: 16 sub-divisions in the web and 

flanges; and 100 divisions along the axis of the member for every 10m of length. 

 

3.2.2 Material properties 

 

S235 steel grade was considered with a yield stress of 235 MPa (perfect elastic-plastic), a 

modulus of elasticity of 210 GPa, and a Poisson´s ratio of 0.3, see Figure 3.1. Strain 

hardening was noticed not to be of major importance for the analysed cases. 

 

 

f y

E= 210 GPa
f y= 236 MPa

y   

Figure 3.1: Modeling of steel behaviour, perfect elastic-plastic behaviour  
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3.2.3 Support conditions 

 

Unless specified otherwise, the boundary conditions for a simply supported single span 

member with end fork conditions are implemented in the shell model as shown in Figure 3.2. 

The following restraints are imposed: (ii) vertical (δy) and transverse (δz) displacements and 

rotation about xx axis (ϕx) are prevented at nodes 1 and 2. In addition, longitudinal 

displacement (δx) is prevented in node 1. Cross-sections A and B are modeled to remain 

straight however allowing for warping, i.e., the flanges can move independently from the 

web. 

 

A

1

B

2 x

z

y

 
Figure 3.2: Support conditions 

 

For other boundary conditions, the following is considered: 

 In-plane behavior: δy is restrained at bottom and top of the web. In addition, cross-

sections are modeled to remain straight against local displacements in the web; 

 Regarding the LBA analysis, web is prevented from buckling and distortion. 

 

3.2.4 Loading 

 

The modelling of the various loads is represented in Figure 3.3. Concentrated loading and/or 

moment is applied at nodes 1 and 2 of Figure 3.2, whereas distributed loading is applied 

along the nodes of the centre of the web (h/2). The maximum reference load corresponds to 

the the plastic resistance of the smallest cross section – for example, for a parabolic bending 

moment distribution, qL2/8=Mpl,y,hmin. 
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(a) Concentrated forces / moments (b) UDL 
Figure 3.3: Modelling of loads 

 

3.2.5 Imperfections 

 

3.2.5.1 Geometrical global imperfections 

 

Regarding global imperfections, a geometrical imperfection proportional to the eigenmode 

deflection is considered with a maximum value of e0=L/1000, see Figure 3.4. This is 

consistent with the values considered during the development of the European column 

buckling curves (Beer and Schulz, 1969): 

 

 
1000

)()()( 00

L
xexx crcr    (3.1) 

 

L/1000

 
Figure 3.4: Shape and magnitude of the imperfection (in-plane buckling of a web-tapered column) 

 

It was observed that the shape of the imperfections affected the results. The difference 

between considering either bow or eigenmode imperfections (see Figure 3.5) is analysed in 

Table 3.1 for the case of tapered columns. It can be observed that the consideration of bow 

imperfections leads to an over-evaluation of resistance with the increase of the level of taper 
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and/or the shape of the normal force diagram relatively to a concentrated axial force. The 

taper ratio γ is defined as the ratio between the maximum height and the minimum height 

(γh=hmax/hmin), or the maximum width and the minimum width (γb=bmax/bmin). 

 

Critical
Bow

 
Figure 3.5: Critical load imperfection vs. Bow imperfection 

 

Table 3.1: Analysis of the shape of the imperfection 

Taper Ratio 
γh=hmax/hmin 

(≡γb =bmax/bmin) 
Axial force 

αb,GMNIA 
Diff 
(%) Critical Bow 

1 
Concentrated 0.0505 0 
Distributed 0.0935 0.0938 -0.32 

3 
Concentrated 0.2496 0.2522 -1.04 
Distributed 0.3495 0.3635 -4.01 

5 
Concentrated 0.5211 0.5462 -4.82 
Distributed 0.6454 0.7050 -9.23 

 

Another example is the case of a prismatic beam with a bending moment distribution of ψ=-1, 

a numerical model with a sinusoidal imperfection can reach a resistance that is 30% higher 

than the corresponding model with the lateral-torsional buckling mode shape as the initial 

imperfection, see Figure 3.6. As the wave length of the buckling mode is half than wave 

length of the bow imperfection function, the latter will actually have a positive influence on 

half of the beam, leading to higher resistance. 
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Figure 3.6: Influence of the imperfection 

 

3.2.5.2 Geometrical local imperfections 

 

Tapered members usually have slender webs and, as a result, web buckling should be allowed 

in the numerical model. However, shear may have an influence in local buckling as well. In 

order to isolate the different types of buckling modes, the numerical models are considered as 

follows: 

 For computation of the elastic critical load, LBA models were carried out. In order to 

obtain the critical moment without considering local buckling, the web was prevented 

from buckling and distortion, as already mentioned; 

 For the nonlinear models, two cases were considered: 

a) Unless specified, the web is prevented from buckling. In the absence of significant 

shear stresses, plastic load capacity should be attained.  

b) The web is unrestrained. In this study, cross-sections up to class 3 (semi-compact) are 

considered. Again, in the absence of significant shear stresses, a cross-sectional 

resistance between the elastic and plastic capacity should be met (M3,Rd).  

 

For each of these cases, the cross-section resistance of the design models is considered 

accordingly. Regarding the members with a semi-compact cross-section, unless specified, the 
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cross-section resistance is obtained according to the proposals of the European Project RFCS 

Semi-Comp, see Greiner et al. (2011).  

 

Although the effects of shear buckling and local buckling due to bending cannot be detached, 

a qualitative analysis can be performed. The example of Figure 3.7 illustrates the out-of-plane 

web deformations of a case in which the presence of shear leads to a decrease in the plastic 

resistance of the cross-sections. Figure 3.7(b) illustrates the presence of shear buckling in the 

unrestrained model.  

 

(a) Web prevented from buckling (b) Web free to buckle – influence of shear stresses 
Figure 3.7: Influence of local stresses in a tapered beam, out-of-plane displacement contours in the web – 

ψ=0.25; γh=3 

 

3.2.5.3 Material imperfections 

 

For the material imperfections, residual stress patterns corresponding both to stocky hot-rolled 

(i.e. with a magnitude of 0.5fy on the safe side) and welded cross-sections were considered. 

Figure 3.8 shows the adopted residual stress pattern. If prismatic members with hot-rolled 

cross-sections and h/b>1.2 are studied, a magnitude of 0.3fy for the residual stresses is 

considered. 

 

0.5 f y

0.5 f y

0.5 f y

 

0.
8h

0.2b

 fy
0.25 fy

 

(a) Hot Rolled (h/b ≤ 1.2) (b) Welded 

Figure 3.8: Residual stresses adopted for the tapered members (+ Tension and – Compression) 
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In Figure 3.9, a possible fabrication procedure for the rolled case, which may exist for 

example in haunched beams, is illustrated (cutting of the web along the length of the column). 

This choice allowed the direct observation of the influence of the taper by comparing 

buckling curves for tapered members with curves for members without taper, but with 

otherwise the same residual stress distribution (Figure 3.8(a)). 

 
Figure 3.9: Fabrication procedure for hot-rolled tapered elements 

 

3.2.6 Definition of the tapered members 

 

Regarding tapered members, for the definition of the analytical models and development of 

design rules, the web was considered to vary symmetrically to its centroid axis, according to 

Figure 3.10.  

 

 

Figure 3.10: Tapered member with horizontal centroid axis 

 

However, because in practice the variation of the flanges relatively to the centroid axis is 

usually not symmetrical, some cases considering the configuration of Figure 3.11 are 

compared to Figure 3.10. In Figure 3.11, in which only the lower flange varies. Even that the 

supports are modeled to be at the center of the web, differences should be investigated as, for 

the same taper ratio, the taper angle of the lower flange is higher for the case of Figure 3.11.  
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Figure 3.11: Tapered member with horizontal centroid axis 

 

Figure 3.12 and Figure 3.13 illustrate the differences between GMNIA results for some 

selected cases and as may be observed, results are almost coincident. In Figure 3.12, in-plane 

buckling of a tapered column was chosen and in Figure 3.13(a) and Figure 3.13(b), lateral-

torsional buckling of two beams is illustrated, respectively with negligible and significant 

shear for the shorter lengths (further discussion regarding the presence of shear in tapered 

beams is given in Chapter 5). The latter is the case in which a slight difference may be noticed 

for the low slenderness range. Although it is not illustrated, differences between those taper 

member configurations regarding LBA analysis were also shown to be negligible. Based on 

numerical results, it may be assumed that the proposals to be provided in Chapter 4 and 

Chapter 5 are applicable to tapered members in which only the position of one of the flanges 

varies, with no greater error. 

 

The relative slenderness was obtained considering the elastic critical load of each numerical 

model and the first order failure load (not accounting for the influence of shear). In addition, 

the first order failure relative load considering the possible interaction of shear is also 

illustrated (see Section 2.3.5.2). In Figure 3.12 and Figure 3.13, the denomination 2fl and 1fl 

is representative of Figure 3.10 and Figure 3.11, respectively. 
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Figure 3.12: Buckling curve representation regarding in-plane flexural buckling – hi=bi=100mm and 

tf=tw=10mm (hot-rolled), γh=4 
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(a) HEB300 (hot-rolled), γh=3, ψ=0.75 (b) IPE200 (hot-rolled) – γh=3, ψ=-0.25 
Figure 3.13: Buckling curve representation regarding lateral-torsional buckling 

 

 

3.3 Validation of the model 

 

In order to validate the model, some simulations were compared to the results obtained by 

Ofner (1997) for a HEB300. For the beam and the column, rotations about xx axis are 

restrained. Results are represented in Figure 3.14. Agreement is excellent, especially 

considering that a shell model is being compared with a beam model.  
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(a) HEB 300; L=7.27 m; δy (mm) vs. N/Npl (b) HEB 300; L=7.27 m; δz (mm) vs. My/Mpl,y 
Figure 3.14: Validation of the model with cases from Ofner (1997) 

 

Table 3.2 summarizes some results for a beam-column with length L=10.90 m and constant 

bending moment, good agreement being noted with the results from Ofner (1997).  

 

Table 3.2: Beam-columns – L=10.9 m; HEB 300 

N
pl

M
pl




  
Ofner 

– beam – 
1/αpl

M 

GMNIA 
– shell – 
1/αpl

M 

Diff. 
(%) 

2 0.144 0.153 5.9 
1 0.246 0.259 5.0 

0.5 0.372 0.389 4.4 
 

Finally, performing an eigenvalue analysis for the three cases described in this section yields 

the results of Table 3.3 that also shows, for comparison, theoretical predictions obtained from 

Trahair (1993). 

 

Table 3.3: Critical load multiplier (My,cr,MN/Mpl,y – beam-columns; Mcr/Mpl,y – beams; Ncr/Npl – columns) 

Case 0.1z  Trahair LBA Diff. (%) 

Column 1 1.000 0.976 -2.40 
Beam 1.880 1.827 -2.82 
Beam-column – Φ=0.5 1.5 0.595 0.584 -1.85 
Beam-column – Φ=1.0 0.381 0.374 -1.84 
Beam-column – Φ=2.0  0.212 0.208 -1.89 
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3.4 Treatment of results 

 

Both LBA (Linear Buckling Analysis) and GMNIA are carried out to provide data for the 

analyses in the subsequent chapters. Regarding the nonlinear numerical analysis, the failure 

load is considered to be the maximum load factor. In addition, the second order failure 

position xc
II is also extracted from the numerical GMNIA model corresponding to the element 

with the maximum strain at the maximum load factor, αb, see Figure 3.15. 

 

xc  
Figure 3.15: Critical position according to GMNIA analysis 

 

xc
II 
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Chapter 4 

 

 

 

 

4 FLEXURAL BUCKLING OF TAPERED COLUMNS 

 

4.1 Introduction 

 

In this chapter, the case of columns subject to flexural buckling with varying cross-section is 

studied.  

 

The differential equation for any boundary conditions; type of cross-section variation and 

loading is firstly presented. Eigenmode conform imperfections are then applied to the model 

and finally an Ayrton-Perry formula is derived. 

 

Regarding the elastic range, the Rayleigh-Ritz method is applied and a formula for calculation 

of the elastic critical load of web-tapered columns subject to in-plane buckling is presented 

and compared to existing formulae from the literature. 

 

For the inelastic range, design proposals are made for in-plane and out-of-plane flexural 

buckling of linearly web-tapered columns subject to constant axial force, followed by a 

numerical parametric study covering a range of slenderness, cross-sections and fabrication 

process. The proposal is consistent with current rules for uniform columns provided in EC3-1-

1, i.e., clause 6.3.1. Some simplifications are analysed for the proposed model. At the end, an 

example is given, analysing current methodologies with the proposed one. 

 

In addition, a proposal for modification of the generalized imperfection of prismatic welded 

columns is made, regarding both in-plane and out-of-plane flexural buckling. This is made in 
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order to accurately reflect the mechanical behaviour resulting from the adopted residual stress 

pattern for columns with welded cross-sections. 

 

 

4.2 Elastic critical load of tapered columns 

 

4.2.1 Differential equation 

 

Figure 4.1 illustrates the equilibrium of a column segment for arbitrary boundary conditions 

in its deformed configuration: 

 

 

(a) Non-uniform column 
(simply supported) 

(b) Equilibrium of forces (c) Detail regarding 
distributed force 

Figure 4.1:  Equilibrium of a column segment 

 

Considering the axial force as 
L

x

conc dnNxN  )()( , neglecting second order terms and 

considering the internal moment given by
2

2

)()(
dx

d
xEIxM


 , the differential equation is 

given in Eq. (4.1): 

n(x)
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x
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δ

dx
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dx
dx
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N 
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dx
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     0)()(   xNxIE  (4.1) 

 

The solution of this equation leads to the elastic critical load, see (4.2). As it is not the 

purpose of this work to solve Eq. (4.1) analytically, numerical Linear Buckling Analysis 

(LBA) will be carried out and used to obtain the shape of the eigenmode as well as the critical 

load multiplier, αcr. 

 












)()(

)()(

)()(

xx

xnxn

xNxN

cr

Edcr

Edcr





 (4.2) 

 

NEd(x) is the applied axial force and αcr is the critical load multiplier, and δcr(x) is the critical 

eigenmode. 

 

4.2.2 Determination of the elastic critical load of web-tapered columns 

(literature) 

 

In Section 2.2 procedures for determination of the critical load of I-section tapered columns 

were briefly described. Two of the methods are now given in Table 4.1. These will also be 

considered throughout Chapter 4. 
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Table 4.1 Determination of the in-plane critical axial force from the literature 

Source  Description  
Hirt and Crisinel, 
(2001)  
 
 
 
 
[H&C] 
 

 Expression for equivalent moment of inertia for the tapered column, Ieq, 
depending on the type of web variation. Suitable for I-shaped cross sections. 

max,,2

,
2

, yeqy
eqy

cr CII
L

EI
N 



 
 

max,min,,92.008.0 yy IIrrC   

Lee et al. (1972) 
 
Galambos (1998)  
 
 
 
 
[L&al.] 
 

 Expression for a modification factor of the tapered member length, g, i.e., 
calculation of the equivalent length of a prismatic column with the smallest 
cross section which leads to the same critical load. Suitable for I-shaped cross 
sections. 

LgL
L

EI
N eq

eq

y
cr  ,

2

min,
2

 

  1/,0775.0108.0375.01 minmax
2  hhg   

 

4.2.3 Rayleigh-Ritz method for the calculation of the elastic critical load 

 

4.2.3.1 Introduction 

 

The differential equation of a column in its deformed configuration is given by Eq. (4.1). For 

a simply supported column with constant axial force, it is simplified by 

 

 0)(   NxEI  (4.3) 

 

The solution for δ in Eq. (4.3) is not explicit and therefore, approximate or numerical methods 

are required to obtain the solution. Rayleigh-Ritz Method is presented here. If an adequate 

displacement function δcr (Eq. (4.4)) satisfying the geometric boundary conditions is 

considered to approximate the real displacement, the structural system is reduced to a system 

with finite degrees of freedom (Chen and Lui, 1987). 

 

 facr   (4.4) 
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The total potential energy of the member is given by the sum of the strain U and potential V 

energy. Note that these are approximate, once the displacement function is also an 

approximation. 

 

Considering the principle of stationary total potential energy, the solution for the critical load 

is obtained by solving Eq. (4.5), see e.g. Chen and Lui (1987) for more details. 

 

  
0



a

VU  (4.5) 

 

For a simple supported column the strain energy Ub due to bending is given by 
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2

1



  (4.6) 

 

Or, because M=EIδcr’’, 

   
L

crb dxEIU
0

2

2

1   (4.7) 

 

And the potential energy Vb due to bending may be calculated by the work done on the system 

by the external forces 

     









 

L

cr

L

crb dxNdx

d

NNV
0

2

0

2

2

1

2

1 


 (4.8) 

 

Eq. (4.5) finally becomes 
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 (4.9) 

 

4.2.3.2 Adjustment of the displacement function 

 

The displacement function δcr to be considered in Eq. (4.9) needs to satisfy the boundary 

conditions. For a simply supported column δcr(0)=δcr(L)=0 and δcr’’(0)=δcr’’(L)=0. 

 

For a tapered column buckling in-plane with the smallest cross-section h=b=100 mm and 

tf=tw=10 mm (denoted as 100x10), the following function was adjusted based on the critical 

mode displacement: 
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  (4.10) 

 

In Eq. (4.10), xcr,max is the location corresponding to the maximum deflection and γh=hmax/hmin 

is the taper ratio regarding the maximum and minimum depth. xcr,max may be given by 

 

 Lx hcr   208.0
max, 5.0   (4.11) 

 

The fitted function for δcr given by Eq. (4.10) (δ_EQU) is illustrated in Figure 4.2 and 

compared to the eigenmode deflection (δ_LBA). A small error is obtained and Eq. (4.10) will 

be considered for application of the Rayleigh-Ritz Method. 
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Figure 4.2:  Displacement function for the in-plane critical mode of a web-tapered column (100x10; γh=5) 

 

4.2.3.3 Results 

 

Consider the cross section 100x10 for a range of taper ratios γh between 1 and 6. The solution 

of Eq. (4.10) is given in terms of Ncr,Tap=K/L2, in which K is a constant, and can be 

represented as a function of the critical load of the smallest section, Ncr,min. 

 

 
min,y

2min,crTap,cr EI

K
ANAN


  (4.12) 

 

Based on the values of K obtained by the Rayleigh-Ritz analysis for the several combinations 

of taper ratio and cross section type, an expression is now given for A. 

 

 
  

min.ymax.yI

I
156.0

Imin,crTap,cr

II

1tan04.01ANAN



 




 (4.13) 

 

Eq. (4.13) was calibrated to give results on the safe side as it can be observed in Figure 4.3. 

EQU_RR represents the results of A given by the Rayleigh-Ritz method, Eq. (4.12), whereas 

EQU_Adjusted represents Eq. (4.13). 
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Figure 4.3:  Calibration of factor A 

 

Note that the taper ratio chosen for calculation of the critical load in Eq. (4.13) is represented 

in terms of the ratio between the maximum and minimum inertia, i.e., γI=Imax/Imin. This is the 

best parameter to characterize the elastic flexural buckling behavior of the tapered column. 

When analyzing other sections, e.g., a HEB300 (smallest cross-section) that present the same 

γI, a very good agreement is noticed in the function for δcr and also in the function that 

characterizes the second moment of area along the column. As a result, the expression of Eq. 

(4.13) may be used for any section. For the member with a smallest cross section 100x10, 

γh=1.9 and for the HEB300, γh=2. Both members present γI=4.62. 

 

In addition, the above-defined expression may be considered with not much increase in error 

on cross sections with varying flange buckling out-of-plane. The inertia of the flanges 

buckling out-of-plane can be compared to the inertia of the web buckling in-plane. The 

analyzed member is composed of a smallest cross section 100x10 with γb=bmax/bmin=1.67 (and 

accordingly, a γI=4.62, in which for this case Iy is replaced by Iz). The same however cannot 

be considered for flange-tapered columns buckling in-plane, as the inertia varies linearly. A 

similar Rayleigh-Ritz procedure could be adopted for the latter, it is however not the scope of 

this study. 
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Figure 4.4 illustrates the moment of inertia (Iz or Iy) variation and Table 4.2 compares the 

analyzed cases with a Linear Buckling Analysis. Lengths of the columns were chosen in order 

to lead to similar (numerical) slenderness LBA
tapcrpl NN ,min, . The critical displacement δcr is 

not illustrated as results practically match.  

 

Table 4.2: Analysis of the critcal load obtained by Eq. (4.13) 

Ref. 
Section 

γh γb 
Buckling 

Mode 
Ncr

LBA

[kN] 
Npl,min 

[kN] (S235) y  
Ncr,min 

[kN] 
γI A 

Ncr,tap 

[kN] 
Diff 
(%) 

100x10 1.9 - In 248.5 658 1.63 110.6 246.9 0.64 
HEB300 2.0 - In 1242.6 3356.27 1.64 551.1 4.62 2.23 1231.0 0.94 
100x10 - 1.67 Out 252.4 658 1.61 114.4 255.4 -1.22 

*For HEB300 the fillet radius is not considered 
 

 

Figure 4.4:  Variation of inertia along the member  for distinct sections with the same γI=Imax/Imin 

 

Finally, for a range of cross-sections with varying γh (or γI) the error is analyzed in Figure 4.5. 

For comparison, the procedures given in Table 4.1 are also shown. Note that, because the 

taper ratio γh is an intuitive parameter to describe the tapered member, presentation of results 

relatively to that parameter γh is kept. The difference is given by Eq. (4.14), such that a 

positive difference illustrates a safe evaluation of Ncr by the given method. Maximum 

differences of 8% (on the safe side) are noted. It is measured relatively to the columns with 

higher slenderness, i.e., for which the numerical analysis does not present the effect of shear. 

For the low slenderness range this effect is higher and decreases asymptotically to the correct 
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critical load – this can be observed for the well-known solution of a simply supported column 

with prismatic cross-section (Euler load). 
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,1100(%)  (4.14) 

 

(a) According to γh  (b) According to γI 
Figure 4.5:  Analysis of the error given by the proposed expression for Ncr,tap 

 

 

4.3 Imperfect column 

 

4.3.1 Differential equation 

 

Consider now an initial imperfection proportional to the shape of the eigenmode (δcr(x)). 

Considering a similar approach to Section 4.2.1 and assuming that the internal forces are 

independent of the imperfection, the differential equation, Eq. (4.1), becomes 

 

     0)()()( 0   xNxNxEI  (4.15) 

 

Defining N(x)=αbNEd(x), where αb is the load multiplier corresponding to the plastic resistance 

of the column, the solution to Eq. (4.15) is given by 
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 )()( 0 xx
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


  (4.16) 

 

This leads to a second order bending moment of 
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Defining the utilization ratio ε as the ratio between the applied forces and the corresponding 

resistance, and considering a linear interaction between moment and axial force, the 

utilization ratio at each section of the column is given by 
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As a result, considering a first yield criterion, for a certain load multiplier αb, the utilization 

ratio attains a maximum of ε=1 at the second order failure position of the column, xc
II. As 

only one equation is given (Eq. (4.18)), but two variables are unknown (αb and xc
II), an 

iterative procedure is needed to obtain the solution. 

 

4.3.2 Assumptions for the magnitude of the imperfection 

 

As already mentioned, a similar derivation was carried out in Naumes (2009) applicable to 

flexural buckling in general, in which, for the magnitude of the initial imperfection, equation 

(5.9) of EC3-1-1 was considered. It will be shown in this section that this assumption leads to 

an expression matching clause 6.3.1 of EC3-1-1 for uniform columns at the critical position. 

This topic will be further discussed. 

 

Two cases are then considered for the proportionality factor of the eigenmode deformed 

shape: 
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a) Imperfection consistent with the derivation of the column buckling curves – the 

amplitude of this deflection is given by e0; 

b) Imperfection according to equation (5.9) of EC3-1-1 (equivalent geometric imperfection) 

– the amplitude of the critical mode is given multiplied by e0 and an additional factor. 

Again, this derivation may be found in Naumes (2009); 

 

In the above, e0 denotes the maximum amplitude of a member imperfection. 

 

4.3.2.1 Imperfection consistent with European column buckling curves formulation 

 

Following a similar approach as for the derivation of the European Column Buckling Curves, 

the imperfection is given by 

 

 00 )()( exx cr   (4.19) 

 

The utilization ratio ε considering this imperfection can now be derived 
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Considering  
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After some manipulations and reorganizing terms, the utilization ratio ε becomes 
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At the position x=xc
II, ε(xc

II)=1, 
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Considering 
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where αEC3= αEC3(xc
II). Eq. (4.23) becomes  
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Eq. (4.25) is identical to the Ayrton-Perry formulation for uniform columns. It can be shown 

that, for prismatic columns with constant axial force, the factor β(xc
II) is unity, see Eq. (4.26): 



 

   CHAPTER 4 
 

 

 

 
 
   106 
 

 

1)(

1
.sin.

)(.

))().((

2/

)(

2

2

2

2

2

2

2/































 































II
c

EdEdEdEd

Lx

II
cEdcr

II
ccr

II
c

II
c

x

NN
L

EI
L

EI

NN
L

EI

L

x
EI

xN

xxEI

Lx

IKxI












  (4.26) 

 

Finally, this factor takes into account the non-uniformity of the column and leads to a 

modification of the current column buckling curves, i.e. of clause 6.3.1 of EC3-1-1. 

 

4.3.2.2 Imperfection according to equation (5.9) of EC3-1-1 

 

The equivalent imperfection of equation (5.9) of EC3-1-1 is given by (see also Eq. (1.1) of 

Chapter 1) 
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The amplitude e0 shall here be obtained by Table 5.1 of EC3-1-1 (or Table 1.1 of this thesis). 

 

For a prismatic column, the critical position is at mid-span and, therefore, δ’’cr,max= 

δ’’cr(L/2)= δ’’cr(xc). Analogously, NEd=constant= NEd(xc
II). Eq. (4.27) becomes 
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Note: The sign (-) in Eq. (4.28) leads to a positive value of the imperfection. 

 

Analogous to 4.3.2.1, the utilization ratio ε becomes 
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At the position x=xc
II, ε(xc

II)=1, 
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In this case, Eq. (4.30) coincides exactly with equation (6.49) of EC3-1-1 and leads to the 

application of clause 6.3.1 for columns if the cross-section properties at the position x= xc
II 

are considered. 

 

4.3.3 Interpretation of the utilization ratio ε 

 

xc
II and αb are obtained as follows: 

 xi (0≤xi≤L) is assumed as xc
II and Eq. (4.25) (or Eq. (4.30)) is solved for αb (see Eq. (4.21) 

for the definition of αb); 

 After this, ε(x) in Eq. (4.22) (or Eq. (4.29)) is obtained for all values of x. Here, the 

assumptions of Eq. (4.24) for the generalized imperfection according to EC3-1-1 are 

considered; 

 If ε(xi)≥ ε(x), then xc
II=xi. If not, the procedure is repeated for x=xi+1. 

 

The variation of the utilization ratio ε of a non-uniform column (L=10 m) with the smallest 

cross-section 100x10 is illustrated in Figure 4.6, concerning Eq. (4.22) for out-of-plane 

buckling. For this, a taper ratio of γh=γb=5 was considered. In addition, a distributed loading is 

considered. For the case of out-of-plane buckling the variation of the flanges and the 
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distributed loading will mainly influence the buckling resistance of the tapered member (and 

the second order failure location, xc
II). 

 

To obtain the utilization ε, αcr and δ’’cr are obtained numerically from a LBA analysis. The 

utilization ratio ε is divided into 2 terms – εN concerns first order forces, i.e., axial force, and 

εMII concerns 2nd order forces, i.e., bending moment due to curvature of the member. The sum 

of these terms leads to the total utilization ratio ε. For short members, εN is much higher 

compared to εM as cross-sectional resistance is more significant, and vice-versa. It can be seen 

that the critical position xc
II is located at about 10% of the member length, close to the 

smallest cross-section. 

 

 
Figure 4.6:  Curvature δ’’ and utilization ratio ε (total, due to axial force only; due to 2nd order forces only) 

 

Note that in Figure 4.6 a discontinuity can be noticed at about x=3m. At this position, the 

class of the flanges in compression and bending about zz (out-of-plane buckling) changes 

from 2 (plastic verification) to 3 (elastic verification), which leads to a modification of the 

resistant moment Mr (according to the cross-section class definition in EC3-1-1) and, 

therefore, a discontinuity in the utilization ratio due to 2nd order forces. Again, if the 

interpolation of the Semi-Comp project (Greiner et al., 2010) for semi-compact cross sections 

would be considered, this discontinuity would not be observed.  
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4.3.4 Parametric study 

 

4.3.4.1 Definition and methodology 

 

Table 4.3 summarizes the sub-set of cases to be compared with the advanced numerical 

simulations. Although focus is given to the relevant case of in-plane flexural buckling, out-of-

plane buckling is also presented. Linearly web-tapered columns subject to uniform axial force 

are considered. More than 500 numerical simulations with shell elements were carried out. 

Both GMNIA numerical simulations constrained in-plane and LBA are carried out to provide 

data for application of the analytical formulations and for calibration of necessary parameters. 

Table 4.3 summarizes the parametric study, whereas Table 4.4 summarizes the alternative 

procedures to obtain the resistance of the tapered column. 

 

Table 4.3: Parametric study 

Taper Ratio 
γh 

 
Reference Cross-section  
(i.e. with hmin, at x=xmin) 

 Reference Column Slenderness  

cr

EdR NxN
x




/)(
)( min

min   

 

Fabrication Procedure 

1 ... 6 

 IPE 200   

0 ... 3 

 

Welded 
Hot-rolled (0.5 fy) 

HEB 300 
 

100x10 
(h=b=100 mm;  
tf=tw=10 mm) 

 

 

Table 4.4: Considered procedures for stability verification 
Method Description 
Eq. (4.25)  (a) Solution of the equation by an iterative procedure 
Eq. (4.30) (a) Solution of the equation by an iterative procedure 
Eq. (4.25) (b) Direct application – xc

II is extracted numerically 
Eq. (4.30) (b) Direct application – xc

II is extracted numerically 
≡ Eq. (4.30) considering β(xc

II)=1 
EC3-1-1 ≡ Eq. (4.25) considering xc

II at the smallest cross-section and 
β(xc

II)=1 
or 
≡ Eq. (4.30) considering xc

II at the smallest cross-section 
GMNIA - 
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The first two cases (a) were previously described. Regarding the other cases (b), no iteration 

procedure is needed because the critical location xc
II is assumed to be known from the 

numerical model. The procedure is implemented as follows: 

1. Extraction of xc
II from GMNIA model and of the critical load multiplier αcr from LBA 

model; 

2. Calculation of 
cr

II
cEd

II
cRII

c

xNxN
x




)(/)(
)(  , see Eq. (4.21); 

3. Calculation of the generalized imperfection ηnon-uniform(xc
II) (when applicable) defined in 

Eq. (4.25) as  
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4. Calculation of the reduction factor χ(xc
II) and finally of αb, given by 

)(/)().( II
cEd

II
cR

II
cb xNxNx  , see Eq. (4.21). 

 

Finally, concerning nonlinear numerical calculations, the maximum load factor of GMNIA 

analysis corresponds to αb load multiplier. The critical position xc
II is also extracted from the 

numerical model corresponding to the node with the maximum strain at the maximum load 

factor, αb, see Chapter 3. The critical load multiplier αcr is obtained numerically for the in-

plane cases. For the out-of-plane cases αcr was obtained from the Euler load of the smallest 

cross section with negligible error.  

 

Results are represented relatively to the failure first order location, xc
I. For the case of 

constant axial force, it coincides with the smallest cross section, xmin. Because NRk(xmin)=NEd, 

Eq. (4.21) becomes: 
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 (4.31) 

 

4.3.4.2 Accuracy of the analytical model 

 

Figure 4.7 illustrates the numerical results from GMNIA analyses against results from Eq. 

(4.25) for different taper ratios γh, regarding the maximum load factor αb and the relative 

critical position xc
II/L. A column consisting of the hot-rolled cross-section 100x10 defined in 

Table 3 is chosen for illustration. Although differences of -5% (unsafe) to 7% (safe) are 

noticed, it can be seen that the analytical model characterizes the behaviour of the tapered 

column well when compared to the numerical model. It is also noticeable an increase of up to 

20% in terms of resistance with the increase of tapering at a slenderness range of 5.0)( I
cx  

to 1)( I
cx , which shows the relevance of Eq. (4.25). Eq. (4.25) was solved considering an 

imperfection factor αEC3=0.34 (curve b of EC3-1-1), in agreement with the adopted residual 

stresses of 0.5fy. In Figure 4.7(a), the taper ratio of γh=1, i.e., prismatic column, is shown for 

comparison. It is expected that the relative critical location is located at mid-span where the 

curvature is maximum and therefore xc/L=0.5 (see Figure 4.7(a.2)). Moreover, Eq. (4.25) 

should give the same results as the EC3 curve b. This is visible in Figure 4.7(a.1).  
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(b.1) γh=2.5 (b.2) γh=2.5 

(c.1) γh=5 (c.2) γh=5 
Figure 4.7:  Analytical derivation; in-plane flexural buckling – Eq. (4.25) against GMNIA. (.1) Resistance 

αb≡χ(x0) against slenderness )( I
cx ; (.2) Critical position xc

II/L against slenderness )( I
cx . 

 

Figure 4.8 illustrates similar results for a web-tapered column buckling out-of-plane. Welded 

cross sections were chosen to illustrate this case. Although the increase in resistance is not as 

relevant (as the critical mode is practically not influenced by the variation of the web), an 

increase of 10% for the given taper ratio can still be noticed due to the variation of the cross 

section resistance along the column (i.e., due to the variation of the area A along the member). 

Again, Eq. (4.25) was solved considering an imperfection factor αEC3=0.49 (curve c of EC3-

1-1), in agreement with the adopted residual stress pattern for welded cross-sections subject to 

out-of-plane buckling. 
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(a.1) γh=2.5 (a.2) γh=2.5 
Figure 4.8:  Analytical derivation; out-of-plane flexural buckling – Eq. (4.25) against GMNIA. (.1) Resistance 

αb≡χ(xc
I) against slenderness )( I

cx ; (.2) Critical position xc
II/L against slenderness )( I

cx . 

 

4.3.4.3 Influence of the taper ratio 

 

In web-tapered members, the actual thickness of the flange to be taken into account is the 

projected thickness tf ´ in the vertical direction zz, i.e., higher than the plate thickness, tf, see 

Figure 4.9 and Eq. (4.32), leading to slightly different cross section resistance with the 

increase of member length.  

 
Figure 4.9: Projected thicknes tf´ of the flange in a web-tapered member 
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Figure 4.10 illustrates results for in-plane buckling concerning the welded cross-section 

100x10, organized by taper angle α.  
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For higher angles it becomes unrealistic to compute values corresponding to higher 

slenderness. For example, for the taper angle α=2º, a slenderness 65.0)( 0 x  would already 

correspond to a tapering ratio of γh=hmax/hmin≈8. 

 

 
Figure 4.10: Numerical calculations GMNIA organized by α. Resistance αb≡χ(xc

II) against slenderness )( I
cx . 

In-plane buckling 
 

If the buckling curves are organized by γh=hmax/hmin this will correspond to different angles α 

with increasing member length and, as a result, different plate thickness tf’ and different 

reference cross-section resistance. Nevertheless, the buckling curve is always represented in 

relative quantities. The representation of results according to γh along the slenderness range 

was shown to be adequate, see Figure 4.11 in which GMNIA results are illustrated against the 

slenderness )( I
cx  organized by taper ratio γh.  

 

Curve b of EC3-1-1 is shown for comparison. Note that, for the welded cross-section cases, 

the numerical curve corresponding to the uniform element (γh=1) shows deviations that fall 

below the code curve results for the relevant slenderness range up to 1. This will be discussed 

in Section 4.4.2.  
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A smooth increase in the resistance with the increase of taper ratio γh along all slenderness 

ranges can be observed in all cases of Figure 4.11. It also shows to be less significant for 

higher levels of γh. 

 

(a) 100x10 Hot-Rolled (b) 100x10 Welded 

(c) IPE200 Welded (d) HEB300 Welded 

Figure 4.11: Numerical calculations GMNIA organized by γh. Resistance αb≡χ(xc
II) against slenderness )( I

cx . 

In-plane buckling 
 

Finally, Figure 4.12 illustrates similar results to Figure 4.11 for out-of-plane buckling of 

IPE200 case. The same conclusions are observed. The assumed residual stress pattern for the 

hot-rolled tapered cases was 0.5fy. Note that for the rolled cases, γh=1 is not considered as, for 
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a IPE200 cross-section, the buckling curve should be b and the residual stress pattern should 

be 0.3fy. 

 

(c) IPE200 Hot-Rolled (d) IPE200 Welded 

Figure 4.12: Numerical calculations GMNIA organized by γh. Resistance αb≡χ(xc
II) against slenderness )( I

cx . 

Out-of-plane buckling 
 

4.3.4.4 Analysis of the critical position xc
II and of the imperfection factor β 

 

The importance of identification of the critical location has already been discussed. 

Nowadays, there is no straight-forward procedure to obtain this location. Therefore, most 

designers in practice will use the smallest cross-section properties for verification according 

to clause 6.3.1 of EC3-1-1.  

 

Moreover, an additional factor β(xc
II) derived in Section 4.3.2.1 and given in Eq. (4.25) 

characterizes the increase of resistance of the tapered member relatively to the prismatic 

member. This factor attains a limit for prismatic members, reaching unity for those cases. 

When associated to the generalized imperfection of the uniform member ηuniform to give a 

generalized imperfection of the tapered member ηnon-uniform, see Eq. (4.25), the latter becomes 

lower and, as a consequence the resistance of the tapered member becomes higher. 
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Figure 4.13 illustrates the influence of these two parameters for a member with an initial 

cross-section of 100x10 (hot-rolled) and γh=4, regarding in-plane buckling. Table 4.5 shows 

results for the case of 74.0)( I
cy x . In order to obtain the resistance for the cases 

considering xc
II, the numerical position was considered. Moreover, to calculate β(xc

II), ycr is 

extracted from LBA analysis. It can be seen that the factor β has a great influence in the 

resistance of the column. Table 4.5 shows an imperfection decrease of more than 50% 

(β(xc
II)=0.48) for the analysed case of 74.0)( I

cy x . 

 

 
Figure 4.13:  Influence of the critical position and of the imperfection in the resistance of the tapered column. In-

plane buckling 
 

Table 4.5: Influence of the critical position and of the imperfection in the resistance of the tapered column (

74.0)( I
cy x ; αcr=1.85). In-plane buckling. 

Case xc
II/L β(xc

II) )( I
cy x  χ(xc

II) αb= χ(xc
II)NRk(xc

II)/NEd Diff (%) 

No xc
II | No β 0 1 0.735 0.764 0.764 17.5 

xc
II | No β 0.10 (GMNIA) 1 0.773 0.741 0.820 11.5 

xc
II | β 0.10 (GMNIA) 0.48 0.773 0.842 0.932 -0.6 

GMNIA 0.10 - - - 0.926 - 
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Finally, it can also be observed that the relative critical location xc
II/L and the additional 

imperfection factor β(xc
II) do not have a strong dependency of the fabrication process or of the 

initial cross-section proportions, see Figure 4.14 and Figure 4.15 computed for all the 

analysed cases. Note that here the relative critical location is higher. 

 

 

Figure 4.14:  Relative critical position xc
II/L against the relative slenderness )( I

cy x , all cases (in-plane 

buckling) 
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Figure 4.15:  Additional imperfection factor β(xc
II) against the relative slenderness )( II

cy x , all cases (in-plane 

buckling) 
 

The critical location xc
II/L is also illustrated for the out-of-plane cases in Figure 4.16. 

 

 

Figure 4.16:  Relative critical position xc
II/L against the relative slenderness )( I

cz x , all cases (out-of-plane 

buckling) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5

β(xc
II)

λy(xc
II)

1.00

1.50

2.00

2.50

3.00

4.00

5.00

γh=

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5

xc
II/L

λz(xc
I)

1

2

3

4

5

γh=



 

   CHAPTER 4 
 

 

 

 
 
   120 
 

Consider now the limit values of Figure 4.14 to Figure 4.16. For high slenderness, xc
II 

asymptotically reaches xc,lim
II and β reaches βlim. Consider a tapered simply supported column 

subject to constant axial force. The differential equation is given by Eq. (4.34). For N=αcrNEd, 

δ= δcr and Eq. (4.3) becomes 
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Considering eigenmode conform imperfection and the imperfection given by Eq. (4.19), the 

utilization due to second order forces is given by (see Eq. (4.18)) 
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(4.35) 

 

in which v(x)=I(x)/Wel(x) is given by h(x)/2 for in-plane buckling and by b/2 for out-of-plane 

buckling. 

 

For high slenderness, the weight of εM
II in the total utilization ratio ε is practically 100% and, 

as a result, 
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The limit second order failure location, xc,lim
II, may be obtained by determining the maximum 

of Eq. (4.36). The latter can be evaluated numerically. 

 

Considering Eq. (4.34), the imperfection factor β given in Eq. (4.33), for x=xc,lim
II becomes 
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Eq. (4.36) and Eq. (4.37) are the general solution for flexural buckling of tapered columns. 

For the case of in-plane buckling of a web-tapered column, xc,lim
II and βlim may be obtained by 

solving  
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Figure 4.17 compares Eq. (4.38) with the numerical results of Figure 4.14 and Figure 4.15 

for the 100x10 cross section. 

 

(a) xc,lim
II (b) βlim 

Figure 4.17: Analysis of the limit values for the critical location xc
II and the imperfection factor β 

 

For out-of-plane flexural buckling of web-tapered columns Eq. (4.36) and Eq. (4.37) may be 

further simplified considering that Iz(x) is constant. The differential equation Eq. (4.3) leads to 

the Euler load with a sinusoidal shape for δcr. xc,lim
II and βlim are then 
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The latter can be confirmed by analyzing Figure 4.16 in which xc
II in fact seems to approach 

x=0.5L. 

 

4.3.4.5 Influence of the function for the magnitude of the imperfection 

 

Results have been shown regarding the amplitude of the imperfection given by e0 (Section 

4.3.2), i.e., consistent with the derivation of the column buckling curves of EC3-1-1. Figure 

4.18 compares the solution of Eq. (4.25) and Eq. (4.30), in which for the latter, Eq. (4.28) 

(equation (5.9) of EC3-1-1) is considered for the imperfection. In the analyzed figures, the 

results of Eq. (4.25) and Eq. (4.30) are indicated as EQU_e0 and EQU_equiv, respectively. 

Two representations of resistance are considered and illustrated concerning a taper ratio of 

γh=4 and the reference cross-section 100x10 (hot-rolled) for in-plane buckling: Figure 4.18(a) 

illustrates the reduction factor )( I
cx as a function of the reduction factor χ(xc

I)≡αb, and, 

therefore, resistance can be directly compared; Figure 4.18(b) illustrates the reduction factor 

)( II
cx as a function of the reduction factor χ(xc

II) – it is stated in Naumes (2009) that when 

equation (5.9) of EC3-1-1 (Eq. (4.28)) is considered for the imperfection, results of the 

reduction factor χ(xc
II) coincide with current buckling curves for columns (see also Figure 

4.18(b)) and that good agreement is achieved with numerical models. This is to be expected if 

the imperfections considered in the numerical models are also obtained from Eq. (4.28). 

However, the magnitude of the geometrical imperfection should only be dependent on the 

member length (Taras, 2010). Moreover, for the calibration of EC3 imperfection factors for 

columns, this magnitude was given by e0=L/1000 (and additional residual stresses for the 

material imperfections). The same approach is considered in this study. Both Figure 4.18(a) 

and (b) show a better agreement with the EC3 consistent approach regarding Eq. (4.25). Note 

that the equivalent amplitudes of Table 5.1 of EC3-1-1 (or Table 1.1 of this thesis) were in 

fact calibrated afterwards based on the column buckling curves. 
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In addition, concerning Figure 4.18(b), GMNIA is also illustrated in terms of the reduction 

factor χ(xc
II), in which xc

II is obtained from the numerical model. Finally, Figure 4.19(a) and 

(b) respectively illustrate the resistance αb and relative critical location xc
II/L regarding all 

taper ratios of the analyzed cross-section 100x10 (hot-rolled), for in-plane buckling. A higher 

spread is noticed for Eq. (4.30). Eq. (4.25) is therefore considered for development of the 

design methodology. 

 

(a) Resistance αb≡χ(xc
II) against slenderness )( I

cx  (b) Resistance χ(xc
II) against slenderness )( II

cx  

Figure 4.18: Influence of imperfection magnitude – buckling curve representation 

 

(a) Resistance αb (b) Critical location xc
II/L 

Figure 4.19: Influence of imperfection magnitude – 100x10 (hot rolled), all taper ratios 

 

 

0.1

0.3

0.5

0.7

0.9

1.1

0.0 0.5 1.0 1.5 2.0 2.5

χ(xc
I)

≡αb

λy (xc
I)

EC3 - b

Euler

GMNIA

EQU_e0

EQU_equiv

0.1

0.3

0.5

0.7

0.9

1.1

0.0 0.5 1.0 1.5 2.0 2.5

χ(xc
II)

λy (xc
II)

EC3 - b

Euler

GMNIA

EQU_e0

EQU_equiv

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

α
b 

(a
n

al
yt

ic
al

)

αb (GMNIA)

EQU_equiv

EQU_e0

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6

x c
II

/L
(a

n
al

yt
ic

al
)

xc
II/L (GMNIA)

EQU_equiv

EQU_e0



 

   CHAPTER 4 
 

 

 

 
 
   124 
 

4.4 Design methodology 

 

4.4.1 Introduction 

 

Considering the developed analytical formulation and the numerical calculations, a 

verification procedure for the flexural buckling of tapered columns is now proposed.  

 

In a first step, regarding the imperfection factor for prismatic welded cross-sections it was 

noticed that, for I-sections, the imperfection factors α=0.34 and α=0.49, respectively for in-

plane and out-of-plane buckling, provide unsafe results for slenderness up to approximately 1 

(differences of 8% were observed, see Section 4.4.2). Because this proposal has, as a 

reference limit, the case of prismatic members (γh=1), new imperfection factors for prismatic 

welded cross-sections are calibrated. 

 

In a second step, the development of a verification procedure for tapered columns is carried 

out. Here, expressions for the critical location xc
II and the additional imperfection factor β(xc

II) 

are calibrated against numerical results of Section 4.3.4.4. Simplifications of the proposed 

method then are carried out leading to an equivalent safety level. 

 

4.4.2 Generalized imperfection for flexural buckling prismatic columns with 

welded I-section 

 

Ayrton-Perry formulation for prismatic columns is given by 
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 (4.40) 

 

The generalized imperfection ηEC3 of prismatic welded columns is given by Eq. (4.41), for a 

flange thickness tf≤40 mm 
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Figure 4.20(a) and Figure 4.21(a) illustrate the generalized imperfection of EC3-1-1 ηEC3, 

respectively for in-plane and out-of-plane buckling, compared to the generalized imperfection 

ηnum of about 100 numerical calculations covering a range of uniform columns with different 

h/b ratios varying from 0.95 (HEA200) to 2.5 (IPE500) and slenderness varying from 1.0  

to 0.2 . The value ηnum is calculated according to Eq. (4.42), see also Taras (2010), in 

which χ is extracted numerically and corresponds to the maximum load factor of GMNIA 

calculation, αb:  

   
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num
numnum 

 1
11

2
 (4.42) 

 

Figure 4.20(a) shows the difference, on the unsafe side, in considering for the in-plane 

imperfection factor α the value of 0.34. A value of α=0.45 was shown to fit the reduction 

factor χy very accurately up to slenderness of 1. However, in order not to get too conservative 

for slenderness above 1 and to take into account the buckling behaviour of columns with a 

welded residual stress pattern for that slenderness range, a cut-off of 27.0)2.0(  

was also shown to be adequate. If the cut-off of 0.27 is applied, for higher slenderness of 

about 5.1y , imperfection becomes unsafe again. However, for high slenderness range, the 

column is not so sensitive to the imperfection level and resistance converges to the Euler load. 

Figure 4.20(b) illustrates the reduction factor χy against the relative slenderness y . An 

analogous study is illustrated in Figure 4.21 for the case of out-of-plane buckling. Here, a 

value of α=0.64 (instead of currently adopted α=0.49) and a cut-off of the generalized 

imperfection of 34.0)2.0(   was shown to give accurate results. Finally, it is 

interesting to notice that α=0.64 was also given in Taras (2010) as the limit imperfection 

factor for lateral-torsional buckling of welded beams, see Table 2.4 of Chapter 2. 
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(a) Generalized imperfection η against y  (b) Resistance χy against y  

Figure 4.20: Generalized imperfection of in-plane flexural buckling of welded columns 
 

(a) Generalized imperfection η against z  (b) Resistance χz against z  
Figure 4.21: Generalized imperfection of out-of-plane flexural buckling of welded columns 

 

4.4.3 Possible approaches and calibration 

 

4.4.3.1 The “real” behavior 

 

a) Definition 

 

Eq. (4.25) was shown to follow accurately the buckling behavior of a tapered column. 

However, the application of this expression is not straight forward:  
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 The critical location xc
II is needed throughout the application of Eq. (4.25) and for this an 

iterative procedure is required; 

 Once xc
II is known, the additional imperfection factor β(xc

II) can be calculated. However, 

to obtain it, the function for the critical curvature is needed – this is not a direct 

procedure. 

 

xc
II and β(xc

II) vary with increasing slenderness, from a “plateau” slenderness in which 

β(xc
II)=0 (no imperfection) and xc

II= xc
I (=xmin) (cross section resistance governs) up to a limit 

slenderness xc,lim
II and βlim which may be determined by solving Eq. (4.38). 

 

Assuming that the critical load multiplier, αcr, is obtained from a numerical analysis, LBA, 

expressions regarding xc
II and β(xc

II) are still needed for the direct calculation of resistance. 

Elliptical expressions were shown to give good approximation for both these parameters.  

 

b.1) Flexural buckling in-plane 

 

Fitting equations for xc
II and β(xc

II) regarding in-plane buckling are illustrated in Figure 4.22 

and Figure 4.23 respectively. Corresponding expressions are shown in Figure 4.24 which 

illustrates the complete procedure for in-plane stability verification of tapered columns. Note 

that, for higher Taper Ratios, β could be lower as derived in Eq. (4.37). However, for safety 

reasons concerning the resistance multiplier αb, the limit of βlim=1 for all tapered ratios was 

chosen.  
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Figure 4.22: Fitting elliptical expression for the critical position, xc

II 
 

 
Figure 4.23: Fitting elliptical expression for the additional imperfection factor β(xc

II) 
 

Figure 4.24 illustrates the steps to be followed. Firstly, the critical position xc
II is determined 

based on the reference relative slenderness of the smallest cross-section. αcr shall be 

calculated numerically. Note that from this step, geometrical properties of xc
II are considered, 
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including slenderness calculation for the determined position. Imperfection can now be 

calculated by combining the imperfection effects of the uniform member (ηuniform) and of the 

non-uniform member (β). With this, the reduction factor at xc
II is determined and the 

verification is finally made.  

 

 
Figure 4.24: Design proposal for in-plane buckling 

 

In Figure 4.24, the parameter a is associated to the referred “plateau” slenderness, and the 

parameter b is equivalent to xc,lim
II.  
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b.2) Flexural buckling out-of-plane 

 

For the case of out-of-plane buckling, the same procedure as in Figure 4.24 is adopted with 

some modifications: 

 The parameter b (or xc,lim
II/L) can be replaced by b=0.5, as derived in Eq. (4.39). 

However, on the safe side the following expression (varying between xc,lim
II /L=0.5 and 

0.4) is proposed: 

 Lxb II
c

h

h /
10

41
lim,





 ; 

   The generalized imperfection ηuniform is replaced by 

 2.0)(  II
cuniform x , where 








Welded,34.064.0

RolledHot,49.0




; 

 Finally, the parameter a, associated to the “plateau” slenderness may be kept. 

 

c) Results 

 

Figure 4.25 illustrates the resistance of the numerical results χ(xc
I)≡αb as a function of the 

relative slenderness )( I
cx , concerning GMNIA analysis as well as the proposed formulation 

for in-plane buckling. The current EC3 curve for uniform members that would be applied is 

also illustrated (i.e. α=0.34; β=1; and considering xc
II as the minimum cross-section as no 

guidelines exist at the moment). Good agreement is noted with the proposed methodology. 
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(a) 100x10 | Hot-Rolled | γh=6 (b) 100x10 | Welded | γh=4 

(c) IPE200 | Welded | γh=3 (d) HEB300 | Welded | γh=2 

Figure 4.25: Resistance αb against  )( I
cy x . Evaluation of the proposed method, in-plane buckling 

 

Note that Figure 4.25(b) highlights a case which will be considered for the application 

example of Section 4.5.  

 

Finally, Figure 4.26 illustrates the results for the out-of-plane buckling verification proposal. 
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(a) IPE200 | Welded | γh=1.8 (b) HEB300 | Welded | γh=1.33 

Figure 4.26: Resistance αb against  )( I
cz x . Evaluation of the proposed method, out-of-plane buckling 

 

4.4.3.2 Uncoupling of first and second order effects  

 

a) Critical position 

 

The parameters xc
II and β take into account the combined effects of stability and cross-section 

resistance for a given slenderness, as discussed previously. A simplification is carried in the 

following by separating the effects of cross-section resistance from the effects of instability, 

i.e., in the Ayrton-Perry model, always consider xc,lim
II and βlim according to the proposed 

methodology in Section 4.4.3.1. The Ayrton-Perry result is then limited by the cross-section 

resistance (given by xc
I and corresponding β=0). This simplification is illustrated in Figure 

4.27 and results are shown in Figure 4.29. Excellent agreement is noticed and, as a result, this 

methodology will be considered. This avoids the calculation of a “plateau” slenderness and 

varying expressions along the beam length. Note that this only leads to similar results to the 

proposal in Section 4.4.3.1 because xc,lim
II  is considered with the corresponding βlim=1, both 

parameters corresponding to the same slenderness level. 
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(a) Considering expressions which vary along the slenderness (b) Separating second order 
effects from first order effects 

Figure 4.27: Simplification of xc
II and β 

 

Eq. (4.25) then becomes 
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Eq. (4.43) matches clause 6.3.1, as long as xc,lim
II  is considered. The values of α are obtained 

from Section 4.4.3.1. In addition, the cross section check at xc
I needs to be carried out, i.e. 

NEd≤NRk(xc
I). 

  

xc,lim
II  is summarized in Eq. (4.44): 
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 (4.44) 

 

b) Introduction of an “over-strength factor” 

 

An “over-strength” factor is now proposed. This concept was proposed in Taras (2010) for 

non-uniform bending moment distributions of prismatic beams. The “over-strength” factor is 

an intuitive parameter to qualitatively describe not only the lower spread of plasticity around 

the failure location, but also the increase in resistance for a given member with varying cross-

section and forces relatively to the reference case of a prismatic member with constant forces 

and/or bending moment diagrams. 
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It will be seen in Chapter 5, in which the lateral-torsional buckling of tapered beams is 

treated, the advantages of performing this transformation in the analytical model, Eq. (4.25). 

To maintain consistency, a similar model is presented for the case of columns. 

 

The “over-strength” factor can be defined as the ratio φ=αult,k(xc,lim
II)/ αult,k(xc

I). When replaced 

in Eq.(4.43), it becomes  
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The verification to flexural buckling is given by 
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in which α and η are again obtained from Section 4.4.3.1 and η is determined with the 

slenderness )( I
cx . Finally, regarding the definition of φ, for web-tapered columns subject 

to constant axial force a simple transformation may be performed based on the expressions for 

xc,lim
II . 
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Provided that xc,lim
II /L=1/(γh+1), the depth of a hypothetical cross section at xc,lim

II is given by 

(see Figure 4.28) 
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And φy becomes 
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(a) Cross section height at xc,lim
II  (b) Cross section area (any location) 

Figure 4.28:  Definition of height at xc,lim
II regarding in-plane buckling and cross section area  

 

Carrying out a similar derivation considering the expression of xc,lim
II  in Eq. (4.44) for out-of-

plane buckling, φz is given by 
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c) Results 

 

Figure 4.29 illustrates results of the simplified methodology both for in-plane and out-of-

plane flexural buckling. Note that both the “xc,lim
II” and the “φ” yield exactly the same results 

as a simple transformation was carried out to obtain the over-strength factor φ. The resistance 

given by the simplified proposal is practically the same as for the proposal given in Figure 

4.23. Actually, an improvement is noticed in terms of safety, as there is not such a restrictive 

decrease in the imperfection along the slenderness (due to β). The dotted orange line 

illustrates the proposal of Figure 4.23. 

 

(a) 100x10 | Hot-Rolled | γh=6 | in-plane (b) 100x10 | Welded | γh=4 | in-plane 

(c) IPE200 | Welded | γh=1.8 | out-of-plane (d) HEB300 | Welded | γh=3 | out-of-plane  

Figure 4.29: Resistance αb against  )( I
cx . Evaluation of the simplified proposal 
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4.4.4 Influence of cross section class 

 

In a web-tapered member, due to the variation of the web, local instability effects are likely to 

occur. As a result, the critical location is not necessarily the calibrated location in Section 

4.4.3. In fact, the maximum strain will probably occur in the web and not in the tip of the 

flanges as considered up to this point, once calibration was carried out considering the 

numerical models in which the web is restrained to local buckling. Figure 4.30 illustrates a 

column composed of a (hot-rolled) IPE200 regarding the smallest cross-section, with γh=2 

and a relative slenderness of 4.0)( I
cz x , subject to out-of-plane buckling. Regarding the 

unrestrained model, it can be seen that the critical location is in a different location than for 

the restrained model, meaning that the proposed methodologies may not accurately describe 

the buckling behavior when local effects are present.  

 

 
(a.1) Principal strains (a.2) Principal strains 

(b.1) Out-of-plane displacement of the web (b.2) Out-of-plane displacement of the web 
Figure 4.30: Analysis of contours: .1 – web restrained to local buckling; .2 – web unrestrained to local buckling 
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To overcome this, a simplification could be adopted such that the proposed design model is 

considered and the local effects are accounted for by the reduction of the cross section 

resistance, as currently done in EC3-1-1. It is described in the following.  

 

The cross-section resistance for a given I-section is given by 
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If the web in compression (ψ=1) is class 4, the area of the web Ac,eff  is to be reduced. Ac,eff 

may be determined from clause 4.4 of EC3-1-5: 
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For determination of the cross section class (in compression), the new limits proposed in the 

RFCS project Semi-Comp are considered: 
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In a first step, the first order utilization along the length of the column shall be determined, 

taking into account the cross section resistance at each location and respective class. The 
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location with the maximum utilization is the reference cross section, see also Greiner et al. 

(2011). For the analyzed column it is the smallest cross section, see Figure 4.31. 

 

 
Figure 4.31: Utilization of the analyzed column 

 

Then, for stability verification of the member, the simplified proposal given in Section 4.4.3.2 

is considered. Two options are be possible: 

 xc,lim
II approach – for the analyzed case it is xc,lim

II=0.45L, which corresponds to c/t=47.5, 

higher than c/t=38. Somehow a reduction in the resistance is then considered, although 

this location does not represent the failure location of the column with the slender cross 

section; 

 φ approach – for out-of-plane buckling it is given by Eq. (4.50) and leads to φz=1.18. 

However, note that, for this case, the “φ” approach does no longer coincide with the 

“xc,lim
II” approach, as this factor reflects the ratio between the first order resistance 

multipliers regarding the gross cross-section. As a result, resistance will be over-

estimated relatively to the “xc,lim
II” approach. One must wonder if the “φ” approach 

should be considered for cross sections prone to local instability.  

 

Results of the analyzed column are given in Figure 4.32 for varying column lengths. For 

calculation of slenderness, the gross area is considered for Ncr, according to EC3-1-1, clause 

6.3.1. As expected, the consideration of φ yields a higher level of resistance. On the other 

hand, considering xc,lim
II is quite conservative as the utilization of the cross-section at xc,lim

II is 
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higher than the utilization at the “effective” failure location, see also Figure 4.31 and Figure 

4.30(a.2). The fact that the φ approach almost coincides with the numerical should be 

interpreted as coincidental regarding the analyzed case. A higher taper ratio would lead to 

higher differences as the “effective” failure location would move towards the higher cross 

section whereas xc,lim
II would move on the opposite direction. 

 

 
Figure 4.32: Results for the analyzed column considering the proposed methodologies and the web unrestrained 

 

A wider parametric study would of course be needed to draw any conclusions on the 

conservativeness of any of the analyzed methodologies. Regardless of this, a more detailed 

study is required in the future to account correctly for the cross-section local buckling, 

whichever method is to be considered for calibration of a design proposal. 

 

 

4.5 Example 

 

A tapered column composed of a IPE200 welded cross-section in the smallest end with a 

linearly varying height and a taper ratio of γh=hmax/hmin=3 is now analyzed (Figure 4.33) (web 

restrained to local buckling). The applied load is NEd= 500 kN and the yield stress of fy=235 

MPa. The column has a length of L=12.9 m. In-plane buckling resistance is calculated using 

several methods. 
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Figure 4.33: Analyzed tapered column, in-plane buckling mode 

 

4.5.1 Elastic Critical Analysis 

 

A numerical linear eigenvalue analysis LBA attains a critical load multiplier of αcr=1.8501. 

For comparison, the critical load is also calculated by some of the methods described in Table 

1 and by the proposal given in Section 4.2.3. A negative difference illustrates a higher value 

of the critical load obtained in the literature relatively to the numerical value. Results are 

summarized in Table 4.6. 

 

Table 4.6: Calculation of critical axial force of the tapered column 
Method Approach αcr=Ncr,tapered/NEd Diff (%) 

Hirt and Crisinel (2001) Iy,eq (...) = 33% Iy,max 2.0219 -9.3 
Galambos (1998) Leq (...) = 52% L 1.7079 7.7 

Rayleigh-Ritz (Eq. (4.13)) A= Ncr,tapered/ Ncr,min (…) = 3.97 1.8348 0.8 
LBA Numerical 1.8501 - 

 

4.5.2 Stability verification 

 

In Section 4.5.2.1 the proposed verification procedure given in Figure 4.23 is applied and in 

Section 4.5.2.2 the simplified procedure considering the “over-strength” factor approach is 

considered. Note that it will yield the exact results as the “xc,lim
II” approach. The application of 

other methodologies is summarized in Section 4.5.2.3. A numerical GMNIA analysis leads to 

a maximum load factor of αb=1.004.  

 

The following cross section properties were considered in the numerical model. Firstly, the 

taper angle considering simplified minimum and maximum reference depths is obtained: 

 hmin=200 mm; hmax=3*200=600 mm; α=0.9º 
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Because the flange thickness is not exactly tf (but tf’) the depth of the web is kept and the total 

depth slightly increases. 

 Smallest cross section hw=183 mm; b=100 mm; tf= 8.5 mm; t’f= tf/cosα= 8.501 mm; tw=5.6 

mm; h=200.002 mm 

 Largest cross section hw=583 mm; b=100 mm; t’f=8.501 mm; tw=5.6 mm; h=600.002 mm; 

 

This leads into a correct taper ratio of γh=hmax/hmin= 600.002 / 200.002=3.0 (≈2.99998). As 

mentioned previously, a small error is obtained when results are organized by taper ratio as, 

due to the change of the angle along a member length, the projected thickness slightly 

changes and, naturally, the taper ratio changes too. This was seen to be negligible concerning 

member stability design (small taper angles) and results may be grouped by taper ratio. 

Nevertheless, verification is performed in the following considering the same assumptions as 

for the numerical models. 

 

4.5.2.1 Application of the proposed method 

 

a) Calculation of slenderness at x=xc
I (smallest cross-section) 

 832.0
1.8501
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b) Critical cross-section relative position, xc
II/L  
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c) Calculation of slenderness at x=xc
II 

  kNfxAxN y
II
c

II
cPl 5.740)()(  
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895.0
1.8501

500/5.740/)(
)( 

cr

Ed
II
cPlII

c

NxN
x


  

 

 

d) Determination of imperfection factor, η 

 Modified Eurocode-conform imperfection for uniform welded members (i.e. α=0.45 

instead of α=0.34 and cut-off of η≤0.27, see Section 4.4.2): 

    27.027.0313.02.0895.045.02.0)(  uniform
II
cuniform x   

 Additional Imperfection factor β(xc) 
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e) Reduction factor at x= xc
II 
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f) Verification 

 )(2.5045.740681.0)()(,
I
cPl

II
cPl

II
cRdb xNkNxNxN    

 5002.504,  EdRdb NN   Design check verified!  

008.15002.504,  EdRdbb NN  (GMNIA, αb=1.004) 
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4.5.2.2 Application of the proposed simplified method (φ approach) 

 

a) Overstrength-factor, φ 
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b) Determination of imperfection, η 
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c) Reduction factor 
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d) Verification 

 kNxNxN I
cPl

I
cRdb 3.4903.640766.0)()(,    

 5003.490,  EdRdb NN   Design check not verified!  

981.05003.490,  EdRdbb NN  (GMNIA, αb=1.004) 

 

4.5.2.3 Summary of results 

 

Results are summarized in Table 4.7 and Table 4.8. Firstly, from results of Section 4.5.2.1, 

the resistance calculated according to the proposed methodology is practically coincident with 

the GMNIA resistance (0.4% of difference). The simplified method of Section 4.4.3.2 yields 

slightly lower results giving a difference of 2.3% relatively to the numerical analysis.  
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Table 4.7 summarizes results considering the smallest cross-section for verification. Note that, 

in this case, the case corresponding to α=0.34 leads to a smaller difference (10%) because 

current buckling curves for welded columns lead to unsafe results in this slenderness range. 

Therefore, the comparable correct difference is 15%, which corresponds to proposed buckling 

curve with α=0.45 considering the cut-off of η≤0.27.  

 

Finally, in Table 4.8 the critical loads given by Galambos (1998); Hirt and Crisinel (2001) by 

Eq. (4.13) are also considered for application of the design procedure of Figure 4.23.  

 

 

Table 4.7: Results – xc
II=xmin (minimum cross-section), Current procedure EC3 (β=1) 

α 
(imperfection) 

Cutt-off: 
  27.02.0)( cx αb xc

II Diff (%) 

0.34 x 0.903 0 10.1 
0.45 √ 0.853 0 15.0 

GMNIA - 1.004 0.17 - 
 

Table 4.8: Results – Proposed method applied with other formulae for αcr; Simplified method 

Method )( I
cx  φ or xc

II β αb Diff (%) 

Hirt and Crisinel (2001)  0.796 xc
II=0.185L β(xc

II)=0.771 1.035 -3.1 
Galambos (1998) 0.866 xc

II=0.194L β(xc
II)=0.805 0.982 2.2 

Rayleigh-Ritz (Eq. (4.13)) 0.835 xc
II=0.191L β(xc

II)=0.791 1.006 -0.2 

LBA  
Method 0.832 xc

II=0.190L β(xc
II)=0.789 1.008 -0.4 

Simplified Method       φ           
0.832 

xc.lim
II=0.25L 

βlim=1 0.981 2.3 
 or xc,lim

II φ=1.206 
GMNIA - - - 1.004 - 

 

 

4.6 Conclusions 

 

In Chapter 4 an analytical derivation of non-prismatic columns was carried out and compared 

against numerical simulations. It was shown that, concerning non-uniform columns, Eurocode 

rules needed to be adapted in the following aspects: 

 A practical approach for the determination of the design position needed to be developed; 

 The column design formula had to be amended by an additional factor , which 

specifically takes into the second-order behavior of tapered columns. 



 

   CHAPTER 4 
 

 

 

 
 
   146 
 

 The current imperfection factor of clause 6.3.1 for welded sections needed to be modified 

and re-calibrated. 

 

In addition, the Rayleigh-Ritz method was considered for development of a simple formula 

for calculation of the major axis axial critical load of web-tapered columns. 

 

A wide parametric study of more than 500 LBA and GMNIA simulations was carried out 

regarding linearly web-tapered columns with constant axial force.  

 

After that, a proposal for the stability verification of these tapered columns was presented. It 

was noticed that, most of all, the consideration of the most stressed position is necessary in 

order not to achieve over-conservative levels of resistance. The above-mentioned factor   

was developed based on the prior analytical formulation and calibrated with numerical results. 

In a second step, an alternative and simplified proposal was also presented, based on the 

separation of the first order effects from the second order effects of the member, also giving 

very accurate results. For this proposal, either the limit values of  and xc
II previously 

calibrated or an “over-strength” factor are considered. 

 

In addition, an analysis for tapered columns with class 4 cross-section was carried out. 

Although the developed design procedures could be considered with relatively acceptable loss 

in accuracy for the analysed example, a detailed and wider study is required to provide a 

mechanically consistent design model. 

 

Finally, a new generalized imperfection for welded uniform columns was also calibrated in 

order to obtain improved results for the tapered cases. 
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Chapter 5 

 

 

 

 

5 LATERAL-TORSIONAL BUCKLING OF TAPERED BEAMS 

 

5.1 Introduction 

 

In Chapter 5, the case of web-tapered beams is studied. In a first step, a second order 

analytical model based on a Ayrton-Perry approach is derived for the case of tapered beams 

with uniform bending moment and further extended to other bending moment distributions. 

Several consistent simplifications are carried out in order to build a simple but coherent 

design model for the stability verification of tapered beams subject to linear bending moment 

distributions and to parabolic bending moment. More than 3000 numerical simulations are 

carried out for calibration and analysis of the results. Throughout the chapter, specific issues 

such as the presence of shear or the codified imperfections for welded cross-sections are 

brought in and taken into account. Finally, it is noted that the proposed model is consistent 

with recently proposed design models for the stability verification of prismatic beams. 

 

Throughout Chapter 5, whenever possible a parallelism is kept with Chapter 4, in which the 

flexural buckling of tapered columns is treated. 

 

 

5.2 Theoretical background 

 

5.2.1 Introduction 

 

In this section, the second order theory formulae for lateral-torsional buckling of beams with 

linearly tapered web symmetrical to its centroid are derived. The following steps are taken: 



 

   CHAPTER 5 
 

 

 

 
 
   148 
 

 Firstly, in Section 5.2.2 the warping and uniform torsion component of a tapered beam 

(linearly tapered web and/or flanges) is presented; 

 In Section 5.2.3 the second order theory differential equations regarding tapered beam-

columns subject to constant N and My are obtained. Equations for flexural buckling out-

of-plane, and torsional buckling are derived, the latter considering the derivation of 

Section 5.2.2; 

 In Section 5.2.5, the derived equations of Section 5.2.3 are used to obtain a relationship 

considering the coupling of the degrees of freedom v and ϕ and, consequently, a 

relationship between the initial imperfections v0 and ϕ0. Those equations are then 

presented in a simpler format, i.e. as a function of the relevant critical loads, considering 

the applied load My only. Imperfections v0 and ϕ0 are finally considered; 

 In Section 5.2.6, expressions for second order forces based on the preceding derivations 

are presented and a first yield criterion is used to find the resistance of the tapered beam 

at the most stressed cross-section. 

 

The normal stresses of the tapered member are obtained considering the theory of prismatic 

bars. It is assumed that the error is negligible for small tapering angles (Gere and 

Timoshenko, 1991; Simões da Silva and Gervásio, 2007). This is then confirmed with the 

numerical results. Finally, the effect of shear deformations is not considered. 

 

5.2.2 Torsion of tapered beams 

 

Consider a beam with an I-shaped cross-section and a symmetrically tapered web and/or 

flanges subject both to uniform and non-uniform torsion components (Figure 5.1). 
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(a) Deformations of the cross-section (b) Flange moment and shear 

Figure 5.1: Tapered beam subject to torsion 
 

The uniform torsional moment component is given by 

 

 )()()( xxGIxT TT    (5.1) 

 

in which G is the shear modulus and IT is the torsional constant.  

 

Considering now Iw=Ifl,z(h
2/2), the following relationships can be established: 
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In the above, Ifl,z denotes for the flange moment of inertia relatively to the zz axis. 

 

The non-uniform torsional moment is given by 
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 )()()()()( supsup xhxMxVxhxTW   (5.5) 

 

In Eq. (5.5), an additional warping component appears relatively to the prismatic beam case 

due to the inclination of the flanges given by
sup2

1
2 M

dx

dh






 , see Figure 5.1(b). 

 

Finally, the resistance to torsion is given by the sum of the warping torsion component, Tw 

and the uniform torsion component, TT: 
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 (5.6) 

 

The detailed derivation may be found in Kitipornchai and Trahair (1972). 

 

5.2.3 Second order theory differential equations for tapered beam-columns 

 

5.2.3.1 Introduction 

 

The equilibrium of a column segment for arbitrary boundary conditions in its deformed 

configuration is given by the following, see Eq. (4.1) of Chapter 4.  
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         vxNvxIEvxNvxIE )()(0)()(  (5.7) 

 

Assume now that the acting axial force is constant and that the column is loaded by a 

fictitious lateral load of intensity –Nv’’, statically equivalent to a lateral load of intensity (see 

also Timoshenko and Gere (1961)) 

 

 vdstvN
A

   (5.8) 

 

in which σ=N/A. 

For the case of a beam-column subject to axial force N, and bending moment about the major 

axis My, the normal stress acting on the deformed segment is given by 

 

 z
I

M

A

N

y

y  (5.9) 

 

The sign conventions are given in Section 2.3.1, Figure 2.4 of Chapter 2. 

 

In Sections 5.2.3.2 and 5.2.3.3, the following relationships are considered 

 

 Adst
A

 ;   0 
AA

dstydstz ;   
z

A

Idsty  2 ;   
y

A

Idstz  2  (5.10) 

 

5.2.3.2 Equation for the deflection about minor axis 

 

The out-of-plane deflection is given by a combination of the deflection v and of the rotation ϕ 

 

 zv    (5.11) 

 

The lateral load defined in Eq. (5.8), for the case of the beam-column is given by 
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After some manipulations and considering the expressions of Eq. (5.10), Eq. (5.12) becomes 

 

    









  y

A y

y
MvNdszvtz

I

M

A

N  (5.13) 

 

Finally, and analogous to Eq. (5.7) the differential equation for the deflection about minor 

axis of the tapered beam-column becomes 

 

     0)()(   yzyz MvNvxIEMvNvxIE  (5.14) 

 

5.2.3.3 Equation for torsion 

 

The resistant torque per unit length is given by the derivative of Eq. (5.6): 
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On the other hand, the acting torque causing compressive stresses in the deformed 

configuration of the member is given by (see Timoshenko and Gere, (1961)) 
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In Eq. (5.16), and analogous to Eq. (5.11) for the out-of-plane deflection, the in-plane 

deflection is given by a combination of the deflection w and of the rotation ϕ 
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The acting torque per unit length is then given by 
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Finally, the equilibrium of the acting and resistant torque leads to the differential equation 

regarding the twisting of the tapered beam-column 
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5.2.4 Determination of the critical moment of web-tapered beams (literature) 

 

If the equations Eq. (5.14) and Eq.  (5.19), respectively regarding out-of-plane buckling and 

twisting, are solved for N=0, the critical moment may be obtained.  
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In the following expressions from the literature (see Section 2.2) that may be used to obtain 

the critical moment of I-section tapered beams are described for the bending moment 

distributions treated in Chapter 5. Alternatively, numerical analysis (LBA) can be used. The 

latter will be considered for the analyses and calibration to be carried out. 

 

a) Linear bending moment distribution 

 

Andrade et al. (2005) propose the following expression for determination of the critical 

moment of web-tapered beams subject to a linear bending moment distribution 

(ψ=My,Ed,hmin/My,Ed,hmax): 
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α is the taper angle. C1 is then given by 
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 (5.23) 

 

b) Uniformly distributed loading 

 

In Galéa (1986), the elastic critical load of a web-tapered beam subject to a uniform bending 

moment distribution is obtained by determination of an equivalent height and moments of 

inertia. The critical load is then calculated using the formula for prismatic beams. For 

example, for the case of a simply supported beam, equivalent height and inertia are given by 

Eq. (5.24). For the case of other bending moment distributions, adequate coefficients for 

prismatic beams may be used. In the case of a uniformly distributed loading acting on the 

shear centre, C1=1.12. 
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5.2.5 Consideration of initial imperfections for tapered beams 

 

5.2.5.1 Coupling of the degrees of freedom v and ϕ 

 

The relevant equations for lateral-torsional buckling of tapered beams are Eq. (5.14) and Eq. 

(5.19), respectively regarding out-of-plane buckling and twisting. Note that if those are 

simplified for the case of a prismatic beam-column, the equations given in Eq. (2.6) of 

Chapter 2 regarding out-of-plane buckling and twisting are obtained. 

 

In Taras (2010), the coupling of the degrees of freedom v and ϕ for prismatic beams is defined 

as 

 

 
00, crzcr MvN   (5.25) 

 

in which v̅0 and ϕ0̅ are the amplitudes of the initial lateral deflection and angle of twist 

respectively (see also Section 2.3.4.1). 

Regarding tapered beams, in a first step, consider Eq. (5.14) in which My=0. The solution to 

this equation is the out-of-plane critical axial force of the tapered member Ncr,z,tap. 
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or 
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   vNvxIE Tapzcrz  ,,)(  (5.27) 

 

For the calculation of Mcr,Tap, both Eq. (5.14) and Eq. (5.19) are necessary with N=0: 
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Eq. (5.28)(a) can then be written as 

 

     Tapcrz MvxIE ,)(  (5.29) 

 

Combining Eq. (5.27) and Eq. (5.29) leads to 

 

   TapcrTapzcr MvN ,,,  (5.30) 

 

Finally, for the case of initial imperfections, a similar format to Eq. (5.30) is obtained. As the 

functions for v(x) and ϕ(x) are not known, it is not possible to further simplify Eq. (5.31). 

 

  0,0,, TapcrTapzcr MvN  (5.31) 
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5.2.5.2 Differential Equations 

 

Firstly Eq. (5.14) and Eq. (5.19) are simplified regarding the case of tapered beams. Then 

initial imperfections v0(x) and ϕ0(x) are introduced. Substituting Eq. (5.27) in Eq. (5.14) for 

N=0 yields 

 

 0,,  vNM Tapzcry  (5.32) 

 

Analogous to Eq. (5.29), (5.28)(b) can be written as: 

 

      

00

)()()(
)(

)(
)()()(

)(

)(
)()(

,

22


























 









 

vM

xhxhx
xh

xI
Exhxhx

xh

xI
ExxIG

Tapcr

WW
T    (5.33) 

 

Introducing Eq. (5.30) in Eq. (5.33), yields 
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Replacing Eq. (5.34) in Eq. (5.19) for N=0, leads finally to 
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If imperfections v0(x) and ϕ0(x) are introduced in the terms v(x) and ϕ(x) of Eq. (5.14) and Eq. 

(5.19) and if the stiffness terms due to the curvature of the imperfect member are neglected 
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(see also Kaim (2004)), simplified equations regarding a tapered beam with initial 

imperfections are obtained: 
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Introducing Eq. (5.31) in Eq. (5.36) the following system of equations is obtained 
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from which ϕ’’ is obtained as follows 
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and, consequently,  v’’ leads to 
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 (5.39) 

 

The obtained relationships are summarized in Eq. (5.40),  
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Note that Eq. (5.40) presents a similar format to Eq. (2.26) for prismatic members. Again, 

because for the case of prismatic beams the functions for ϕ0’’ and v0’’ may be simplified due 

to the sinusoidal mode shape, Eq. (2.26) may be presented as a function of the imperfection 

amplitudes and the corresponding result is also given by a discrete value. 

 

 

5.2.6 Buckling check 

 

5.2.6.1 Second order forces 

 

The following expressions may be used to determine the second order internal forces Mz
II and 

Mω
II, respectively the second order out-of-plane and warping moments. 
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Or, using Eq. (5.40), 
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5.2.6.2 Consideration of e0 according to EC3-1-1 

 

In order to perform a buckling check considering the first order bending moment My and the 

second order forces, Mz
II and Mω

II, consistent with the prismatic beam case presented in Taras 

(2010), the imperfection ϕ0 is presented in terms of the amplitude e0=L/1000, considered in 

EC3-1-1 for the derivation of buckling curves for uniform columns. For this, some 

manipulations are carried out and described in the following. 

Firstly, Figure 5.2 illustrates an arbitrary cross-section of the beam in its deformed 

configuration. 

ϕ0 v0

hmin/2h/2
≥hmin/2

e0,aux  
Figure 5.2: Deformed configuration of the tapered beam 



 

   CHAPTER 5 
 

 

 

 
 
   162 
 

The imperfection e0,aux(x) is an auxiliary parameter given by the value of the imperfection e0 

at h=hmin and may be defined as 
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In order to introduce e0 in Eq. (5.43), consider first e0,aux(x)= e0,aux. δcr,hmin(x), in which δcr,hmin 

is the lateral displacement of the critical mode at h=hmin. Assuming now a weighing factor, 

which relates the displacements at h and hmin, given by Eq. (5.44) and illustrated in Figure 

5.3, e0 can be determined, see Eq. (5.45). The critical displacements δcr,hmin and δcr,max=1 are 

obtained at the cross-section corresponding to the maximum critical displacement. 
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δcr,max=1

 
Figure 5.3: Weighing factor for determination of e0 

 

Eq. (5.43) becomes 
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in which δ’’cr,hmin can be obtained numerically. 

 

5.2.6.3 First yield criterion 

 

The utilization ratio ε as defined in Section 4.3.1 for columns is given in Eq. (5.46) for the 

case of beams 
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Consider now: ωmax=h.b/4 and Wz=Iz/(b/2); the second order forces defined in Eq. (5.42); the 

relationship of Eq. (5.45) regarding the second derivative of the initial rotation ϕ0
’’ and the 

amplitude e0; and 
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Adopting a similar procedure as for columns, the utilization ratio becomes after some 

manipulations 
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In Eq. (5.48) all terms are a function of x, except for the constants E, e0, Ncr,z,Tap, Mcr,Tap, hmin 

and ξ. Finally, at xc
II the utilization ratio attains a maximum of ε(xc

II)=1. ε(x) may be again 

manipulated by multiplying the second term by : 
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Eq. (5.48) finally becomes 

 



 

  LATERAL-TORSIONAL BUCKLING OF TAPERED BEAMS 
 

 

 

 
 
  165 
 

  









































































)(

)(

)(

)(

)(

)(

)(

)(

2
1

2

)(
1

)()(

)(

)(

)(

)(

)()(1

)(
)()(

2

2

2

2

min

,,

,

,

,,

,,

min,

2

2

02

II
cLT

II
cz

z

LT

II
c

II
cz

z

Tapzcr

Tapcr

Tapcr

Tapzcr

Tapzcr

zhcr

II
cz

II
cLT

II
cz

II
c

LTLT

LT
LT

x

x

x

x

xA

xW

xW

xA

h

N

M

xh

M

N

N

xEIx

x

x

xW

xA
e

xx

x
xx




















 (5.50) 

 

At x= xc
II, ε(xc

II) is given by 
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Eq. (5.51) finally becomes 
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Or, in a summarized format 
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Eq. (5.53) is identical to the Ayrton-Perry formula. If hmax=hmin, i.e., uniform member, the 

term β(xc
II)=1 and a similar equation as derived in Taras (2010) for lateral-torsional buckling 

of uniform beams is obtained. Also, apart from the weighing factor due to the manipulation 

carried out in Eq. (5.45) in order to obtain the initial rotation ϕ0
’’ as a function of e0, the 

additional factor β(xc
II) has a similar format as the factor β(xc

II) presented for tapered columns 

in Chapter 4. 

 

Finally, for a certain load multiplier αb given by 
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the utilization ratio attains a maximum of ε=1 at the critical position of the beam, xc
II. 

Similarly to the column case, an iterative procedure is needed to obtain xc
II and αb. 

 

 

5.2.7 Interpretation of the utilization ratio ε 

 

For application of the iterative procedure defined in Section 4.3.3, the considered values of 

αLT will be adopted as the ones calibrated in Taras (2010). These are given in Table 2.4.  

 

The variation of the utilization ratio ε of a non-uniform beam with hmin=b=100 mm, hmax=300 

mm, tf=tw=10 mm and L=9.2 m is illustrated in Figure 5.4, concerning Eq. (5.50). For this, αcr 

and δ’’cr,hmin are obtained numerically from a LBA analysis. The utilization ratio ε is divided 

into 2 terms – εM
I concerns first order forces, i.e., bending moment about strong axis, and εM

II 

concerns 2nd order forces, i.e., bending moment due to curvature of the member (about weak 

axis and warping moment). The sum of these terms leads to the total utilization ratio ε. For 

short members, εM
I is much higher compared to εM

II as cross-sectional resistance is more 

significant, and vice-versa. As a result, short members present a critical location xc
II close to 

the first order critical location (xc
I), i.e., the failure cross-section considering first order forces 

only. With the increase of the member length the second order failure location xc
II deviates 

from xc
I. For the example in Figure 5.4, the critical position xc

II is located at about 35% of the 

member length (xc
I= L/2). 
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Figure 5.4: Curvature δ’’cr,hmin and utilization ratio ε 

 

 

5.3 Evaluation of the analytical model 

 

5.3.1 Parametric study 

 

Table 5.1 summarizes the sub-set of cases to be compared with the advanced numerical 

simulations. The case of lateral-torsional buckling of linearly web-tapered beams subject to 

uniform bending moment is considered. About 100 numerical simulations with shell elements 

were carried out. Both GMNIA (Geometrical and Material Non-linear Analysis with 

Imperfections) numerical simulations and LBA are carried out to provide data for application 

of the analytical formulations. Table 5.1 summarizes the parametric study, where the Taper 

Ratio is defined as γh=hmax/hmin. 

 

Table 5.1: Parametric study – validation of the analytical model 

Taper Ratio 
γh 

 
Reference Cross-section
(i.e. with hmin, at x=xhmin)

Reference Beam Slenderness 
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1 ... 6  
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tf=tw=10 mm) 

0 ... 3 
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Table 5.2 summarizes the alternative procedures to obtain the resistance of the tapered beam: 

 

Table 5.2: Considered procedures for stability verification 

 LT  αLT and η (see Eq. (5.53)) αb Designation 

General Method EC3  
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In Table 5.2, χLT (or χop) is obtained as follows 
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Note that, although the generalized imperfection given in GM_η*Taras (Taras, 2010) is not 

currently included in EC3-1-1, it is considered for comparison as the developed model leads 

to this approach for the case of prismatic beams, γh=1. The difference between GM_η*Taras 

and EQU is the consideration of the xc
II and β(xc

II) for the tapered case. 

 

Finally, concerning nonlinear numerical calculations, the maximum load factor of GMNIA 

analysis corresponds to αb load multiplier for the case of uniform bending moment, as the first 

order failure location is the smallest cross-section, i.e., xc
I=xhmin. The critical position xc

II is 

also extracted from the numerical model corresponding to the element with the maximum 

strain at the maximum load factor, αb. 

 

Results are represented relatively to the location of the first order failure cross-section, which, 

for a constant bending moment distribution is xc
I≡xhmin. Because My,Rk(xhmin)=My,Ed, yields 
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 (5.57) 

 

5.3.2 Accuracy of analytical model 

 

Figure 5.5 illustrates results regarding the application of Eq. (5.50) against GMNIA 

calculations for the taper ratios of γh=2 (Figure 5.5(a)), γh =4 (Figure 5.5(b)) and γh=6 (Figure 

5.5(c)). Good agreement is achieved both for resistance and for the relative critical position. 

Regarding resistance, αb, it is noticeable that from a certain level of slenderness 4.1)( I
cLT x  

numerical results diverge from analytical results converging to a level of resistance of 
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αb≈Mpl,z(xc
I)/MEd. This happens because for this slenderness range the cross-section rotates so 

much that bending about the weak axis becomes relevant, i.e., the applied load about the 

strong axis acts about the weak axis on the critical cross-section, see also Taras (2010). 

Numerical results diverge from the analytical results as in the analytical model αb≤αcr 

(amplification factor 1-My/Mcr,Tap≥1, the Euler load is not exceeded). These are however non-

practical levels of slenderness about the week axis of approximately 6z . Nevertheless, 

regarding slenderness up to 4.1)( 0 xLT , maximum differences of 4% are noticed. 
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Figure 5.5: Analytical model resistance against GMNIA analysis 
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5.3.3 Influence of taper ratio 

 

Figure 5.6 and Figure 5.7 illustrate, for several taper ratios γh, results of Eq. (5.50) concerning 

respectively resistance and relative critical location.  

 

Regarding Figure 5.6, it is noticeable the increase of both the resistance and of the plateau 

length with the increase of tapering. This increase is less significant for higher taper ratios. 

When comparing γh=1 (prismatic beam) with other values of γh, the influence of the tapering 

factor β(xc
II) defined in Eq. (5.53) is also visible. This factor is illustrated in Figure 5.8. It is 

unity for prismatic beams and varies with the slenderness for tapered beams, therefore 

decreasing the generalized imperfection of uniform beams, ηuniform beams(xc
II), also defined in 

Eq. (5.53). It accounts for the variation of the critical location due to the increase of second 

order effects relatively to the cross-section resistance. As a result, for low slenderness, it is 0 

and for high slenderness it increases asymptotically to a certain limit. For the case of a 

prismatic beam with uniform bending moment, the increase of the second order relatively to 

the first order effects does not affect the location of the critical cross-section (it is always at 

mid-span) whereas when either a variation of the web height or of the bending moment 

distribution is present, this location will have to change due to the asymmetry of either the 1st 

or 2nd order utilization ratios (see again Figure 5.4 for illustration of the utilization ratio). 

 

As a result, in Figure 5.7, it can be seen that the relative critical location xc
II/L reaches 

asymptotically a limit value for high slenderness (almost no plasticity effect). With the 

increase of γh, this location tends to decrease. 
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Figure 5.6: Buckling curve representation for all Taper Ratios (Eq. (5.50)) 
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Figure 5.7: Critical location by Taper Ratio (Eq. (5.50)) 
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Figure 5.8: Imperfection factor β(xc

II) (Eq. (5.50)) 
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5.3.4 Buckling curve representation, xc
I vs. xc

II for γh=3 

 

As carried out for columns in Section 4.3.4.5, here two representations of resistance are also 

considered and illustrated concerning a beam (100x100x10x10) with a taper ratio of γh=3: 

Figure 5.9(a) illustrates the slenderness )( I
cx as a function of the reduction factor χ(xc

I)≡αb, 

and, therefore, resistance can be directly compared; Figure 5.9 (b) illustrates the slenderness 

)( II
cx as a function of the reduction factor χ(xc

II). These two forms of representation are 

compared in order to analyze if, when results of the reduction factor χ(xc
II) are considered, the 

buckling curve concerning the tapered elements γh=3 approximates to the buckling curve 

concerning uniform elements (represented as the red line). If this would happen, the 

calibration of an additional imperfection actor β(xc
II) would be unnecessary. For the case of 

columns, a slight approximation to the uniform case was noticed, however not significant. In 

the case of tapered beams, that approximation is even less relevant.   
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Figure 5.9: Buckling curve representation, γh=3 
 

5.3.5 Comparison of Methodologies 

 

Figure 5.10 illustrates, for γh=3, resistance calculated according to the methodologies 

described in Section 5.3.1. It is visible that Eq. (5.50) describes very well the tapering 

behavior. On the other hand, application of the General Method in EC3-1-1 leads to 

differences up to 26% and 34% respectively when curve a and b are used. 
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Figure 5.10: Comparison of Methodologies, γh=3 

 

 

5.4 Design model for other bending moment distributions 

 

5.4.1 Adequacy of the analytical model to other bending moment distributions 

 

As already mentioned in Section 5.3.3, either the variation of the web or of the bending 

moment distribution leads to a variation in the utilization ratio causing the second order 

failure location to vary with the member length. In fact, the variation of the first order 

utilization due to variation of the web in a beam with uniform bending moment can be 

compared to a beam with a prismatic cross-section but with a varying uniform bending 

moment which leads to the same utilization. This assumption is valid as long as the correct 

critical moment is considered in the analytical model as, for the case of tapered beams, it 

takes into account the additional bi-moment due to the inclination of the flange. As a result, 

the developed model in Section 5.2 can be applied to other bending moment distributions as 

long as the correct Mcr (or αcr) and the corresponding buckling mode shape is considered. 

 

Figure 5.11 illustrates the utilization ratio of a prismatic beam with a HEB300 cross-section a 

triangular bending moment distribution and a length of L=19.6 m ( 76.2z ) and a 
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corresponding relative slenderness is 95.0/)(  crpl
I
cLT MMx . The analytical model 

leads to a resistance of αb=0.834 against a numerical resistance of αb=0.870 (4% of difference 

on the safe side), as for the critical location, the analytical model leads to xc
II/L=0.805 against 

a numerical failure location of xc
II/L =0.817 (1.5% of difference). 

 

Note that, for this case, with the increase of member length, the critical location would vary 

from xc
II/L=1 (≡xc

I/L) decreasing up to a limit value of xc
II/L corresponding to a high 

slenderness level. 
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Figure 5.11: Application of the analytical model to other bending moment distributions. Utilization ratio ε 

 

5.4.2 Influence of the bending moment distribution in tapered beams 

 

Tapered members are usually adopted in order to optimize the load capacity at each cross-

section according to the respective distribution of stresses. For the case of a uniform bending 

moment distribution, it is clear that the best member is the prismatic member in which all 

cross-sections are fully utilized, considering first order forces. Therefore, it is logical that, 

with the increase of the taper ratio the member capacity increases (in relative terms) as shown 

in Figure 5.6 – i.e., for a same relative slenderness )(
2 I

cLT x , the reduction factor χ(xc
I) is 

higher. However, when other bending moment distributions are considered, it is not that clear 

that a higher taper ratio will lead to a higher (relative) resistance. For example, for the case of 
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a triangular bending moment distribution, the cross-section utilization is optimized for higher 

taper ratios. These aspects must be accounted for in a design model. 

 

Figure 5.12 illustrates the quantification of the “unused” resistance in a tapered beam with a 

linear bending moment distribution, ψ. For this calculation, the sum of the relative utilization 

is subtracted from the total capacity of the member. This calculation is better illustrated in 

Figure 5.13.  
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Figure 5.12: Quantification of the “unused” resistance 
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Figure 5.13: Determination of the “unused” resistance for a IPE200 (smallest cross-section), γh=2 and ψ=-0.25 
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Consider the bending moment distribution highlighted in Figure 5.12, corresponding to 

ψ=0.2.  Figure 5.14 illustrates this case for 1≤γh≤4. A taper ratio of γh ≈3.1 would lead to an 

optimized utilization for ψ=0.2. 
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Figure 5.14: Analysis of the “unused” resistance of the beam for  ψ=0.2 

 

It is worth mentioning that Figure 5.12 has the practical advantage of identifying the best 

taper ratio for a given bending moment distribution in a first step of the design procedure.  

Finally, regarding the first order failure cross-section it is again not clear how to identify its 

location in the beam, as it can be seen in Figure 5.15, in which the failure cross-section is 

determined considering plastic utilization. 
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Figure 5.15: First order failure location for a IPE200 (smallest cross-section) 



 

  LATERAL-TORSIONAL BUCKLING OF TAPERED BEAMS 
 

 

 

 
 
  179 
 

For example, for the case of ψ=0.3, high taper ratios lead to a failure location at the smallest 

cross-section, whereas for low taper ratios, the failure location is at the largest cross-section, 

see Figure 5.16. 
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Figure 5.16: First order failure location for a IPE200 (smallest cross-section), ψ=0.3 

 

Note that, for simplification, in Figure 5.12 to Figure 5.16, an elastic utilization was adopted 

to illustrate the behavior, i.e., My,Rk=My,el. In addition, due to the variation of the projected 

thickness tf ´ with the increase of member length (see Figure 4.9, Chapter 4), in order to 

obtain comparable results for the bending resistance organized by the taper ratio γh, the 

projected thickness tf ´ was assumed to be the same, i.e., member lengths such that tf ´≈ tf were 

adopted.  

 

Another issue is the possible variation of the cross-section class along the member. The 

example of Figure 5.17 illustrates a beam consisting of a IPE200 (smallest cross-section) with 

γh=3 and ψ=0.25 in which the first order failure location varies according to the methodology 

adopted for calculation of the utilization. It was decided in this study to consider the Semi-

Comp approach (Greiner et al., 2011), this way taking into account the plastic distribution in 

semi-compact cross-sections and avoiding discontinuities, see for example the yellow dots in 

Figure 5.17 which illustrate that a first order failure location of xc
I/L=0.765 would be obtained 

due to a jump from class 3 cross section to class 2 according to the current code provisions. A 

continuous utilization is obtained from the purple line in which the change from class 2 to 
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class 3 is considered according to Greiner et al. (2011). The red line illustrates the elastic 

utilization and the green line illustrates the plastic utilization. 
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Figure 5.17: First order failure location according to several methodologies for cross-section classification 

 

The first order failure location will be necessary for application of the model to be developed 

in the following. As a result, a simplified procedure is to determine the utilization ratio along 

a satisfactory number of locations along the beam (e.g. 10 locations, see Greiner et al., 2011)), 

considering the adequate cross-section resistance at each position (elastic, plastic, or elasto-

plastic, i.e., following the Semi-Comp approach). The position with the maximum utilization 

leads to first order failure cross-section. 

 

5.4.3 Choice of a proper taper ratio definition 

 

In order to account for the proportions of the cross-section, a suitable taper ratio shall be 

chosen. For example, for a given γh, two distinct smallest cross-sections, HEB300 and IPE200 

present different utilizations. To analyze this, the diagrams of Figure 5.12 were plotted in 

Figure 5.18 for these two cross-sections and compared according to the taper ratios γh= 

hmax/hmin; γI= Iy,max/hy,min and γw= Wy,el,max/Wy,elmin. The taper ratio γw was shown to be the best 

parameter to account for the cross-section shape of the tapered member. This parameter will 

be considered again for calibration in Sections 5.4.5.2 and 5.4.5.3. Nevertheless, for some 
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parameters in the formulae to be developed as well as for presentation of results, the ratio γh is 

also used. 
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Figure 5.18: Choice of the taper ratio 

 

5.4.4 Parametric study 

 

Table 5.3 summarizes the sub-set of numerical cases to be considered for calibration of the 

design model, where the taper ratio is defined as γh=hmax/hmin. More than 3000 numerical 

simulations with shell elements were carried out. Both GMNIA numerical simulations and 

LBA were again carried out. A limit value in γh=4 was here established, covering the relevant 

practical application range of tapered members (see also Section 1.1).  
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Table 5.3: Parametric study – calibration of the design model 
Taper 
Ratio 
γh 

 
Bending 
moment 

distribution 
 

Reference Cross-section 
(i.e. with hmin, at 

x=xhmin) 
 

Fabrication 
procedure 

 )( I
cLT x   

Local web 
displacements 

1 … 4 

 -1≤ψ≤1 
 

UDL 
(uniformly 
distributed 

load) 

 
IPE200 

 
Welded 

 
Hot-Rolled 

(res. Stresses 
0.5fy) 

 

0 … 3 

 

Restrained 
 

Unrestrained 

     

  
HEB300 

   
     
  

100x100x10x10 
   

     
 

5.4.5 Development of a design model 

 

5.4.5.1 Observed discontinuities of xc
II for ψ<0 

 

As a starting point of the problem, expressions for the second order critical location, xc
I ≤ xc

II≤ 

xc,lim
II, and the corresponding imperfection factor, β(xc

II) should be calibrated. Regarding 

β(xc
II), an elliptical expression varying from 0 in the “plateau” slenderness to 1 for a 

reasonable high slenderness could be calibrated without major difficulties, as long as the 

“plateau” slenderness and the “limit” slenderness is known. For the latter, a value of 

2lim, LT can be considered (as already established in Chapter 4). For the first one, again, the 

parameter does not vary linearly with the increase of taper and bending moment distribution. 

Nevertheless, assuming that this slenderness is known, expressions for xc
II need to be 

calibrated. This location should vary between xc
I, calculated according to Section 5.4.2 and 

the location for lim,LT , see Figure 5.19. However, for certain cases a discontinuity is noticed, 

see Figure 5.20(a). Although the first order utilization is maximum at x/L=0, see Figure 5.20 

(b), due to the shape of the second order forces utilization (approximately a sine function with 

different amplitudes in the positive and negative moment sides of the beam and with a 

inflection point at the node in which MEd is 0), a small increase in second order forces rapidly 

leads to a jump of the failure location to the positive moment side, leading to the observed 

discontinuity. As a result, and for practical reasons, a simplification is made in Section 

5.4.5.2, in which the first and second order effects are uncoupled, as already carried out in 

Section 4.4.3.2 for tapered columns. 
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Figure 5.19: Second order failure location for a IPE200 (smallest cross-section), γ=1.8 
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Figure 5.20: Second order failure location for a IPE200 (smallest cross-section), γh=1.8 and ψ=-0.75 
 

5.4.5.2 Simplification and calibration of the parameters xc
II and β 

 

As discussed previously, when cross-section resistance governs, β is 0 (no imperfection 

effect) and xc
II is xc

I. On the other hand, for high slenderness, β increases and xc
II converges to 

xc,lim
II. Due to some bending moment distributions this transition may not always be 

continuous and a possible simplification is to separate the effects of cross-section resistance 

from the effects of instability, i.e., in the Ayrton-Perry model, always consider xc,lim
II and, 

accordingly, βlim=1 (this limit was shown to be adequate and lead to safe estimations of 

resistance in Chapter 4). The Ayrton-Perry result is then limited by the cross-section 

resistance (given by xc
I and corresponding β=0). Excellent agreement is noticed and, as a 

result, this methodology will be considered, see Figure 5.21. 

 



 

   CHAPTER 5 
 

 

 

 
 
   184 
 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

χLT (xc
I)

λ̄LT (xc
I)

γh=2 ψ=0.5

GMNIA
xcII and β as f(λ)
xcII,lim and β=1
Euler

0.00

0.20

0.40

0.60

0.80

1.00

0 0.5 1 1.5 2
λ̄LT (xc

I)

γh=2 ψ=0.5

xcII
β(xcII)

xc
II/L; β(xc

II)

(a.1) Buckling curve representation for ψ=0.5 (a.2) xc
II and β for ψ=0.5 (continuous transition) 

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

χLT (xc
I)

λ̄LT (xc
I)

γh=2 ψ=-0.75

GMNIA
xcII and β as f(λ)
xcII,lim and β=1
Euler

0.00

0.20

0.40

0.60

0.80

1.00

0 0.5 1 1.5 2
λ̄LT (xc

I)

γh=2 ψ=-0.75

xcII
β(xcII)

xc
II/L; β(xc

II)

(a.1) Buckling curve representation for ψ=-0.75 (a.2) xc
II and β for ψ=-0.75 (discontinuous transition) 

Figure 5.21: Simplification of xc
II and β – results for a IPE200 (smallest cross-section) with γh=2 

 

Eq. (5.53) then becomes 
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(5.58) 

 

Calibration of xc,lim
II  is now carried out. It can be fairly accurately described by a single 

expression for all cross-sections analysed, see Eq. (5.59) and Figure 5.22. 
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Where α and αlim are given by 
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 1214.11lim  (5.59)(b) 

 

For a parabolic bending moment distribution, xc,lim
II becomes 
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Figure 5.22: Calibration of xc

II for linear bending moment distributions for IPE200 (smallest cross-section) 
 

The observed discontinuity in Figure 5.22 can be explained by the fact that for such high 

ratios between the minimum and maximum bending modulus, i.e., γw=Wy,el,max/Wy,el,min, the 

utilization ratio due to first order forces in the zone of minimum height has a very steep 

inclination. For this reason, the contribution of second order forces will not have much 

influence in the total utilization, resulting in a final failure location xc
II that is barely away 
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from xc
I, as illustrated in Figure 5.23. This effect increases with the increase of the taper ratio 

and with the decrease of the absolute value of ψ. The parameters α and αlim take this effect 

into account.  
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Figure 5.23: Critical location for a IPE200 (smallest cross-section) with γh=4 and  ψ=-0.75 and α≥αlim 

 

5.4.5.3 Introduction and calibration of an “over-strength” factor 

 

The “over-strength” factor approach was introduced in Chapter 4, section 4.4.3.2, and is here 

more detailed. The reason for considering an additional “over-strength” factor can be 

explained with the example of uniformly distributed loading in a prismatic beam. Note that, 

for this case, the second order failure location is coincident with the first order failure 

location, leading to the same load amplifier for both cases, αult,k(L/2)=My,Rk(L/2)/My,Ed(L/2). 

For this case, the increase in resistance of the parabolic bending moment case relatively to the 

uniform bending moment case is due to smaller size of the plastic zone that surrounds the 

failure location and as a result, due to a higher “supporting” action from the unyielded areas, 

see Taras (2010). For this reason, an “over-strength” factor was proposed in this research 

work for non-uniform bending moment distributions of prismatic beams. In order to maintain 

consistency with this approach, for the case of γh=1, an “over-strength” factor for a range of 

taper ratios and bending moment distributions is also considered here in the terms χLT and 

LT . Finally, the “over-strength” factor is an intuitive parameter to qualitatively describe not 

only the lower spread of plasticity around the failure location, but also the increase in 

(relative) resistance for a given beam with γh≠1 and ψ≠1 relatively to the reference case of γh= 

ψ =1. 
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The “over-strength” factor can be defined as the ratio φ=αult,k(xc,lim
II)/ αult,k(xc

I). When replaced 

in Eq. (5.58), it becomes  
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 (5.60) 

 

Note that the parameters )( lim,
II
cz x =f(A, Iz) and αLT=f(Wel,y, Wel,z) cannot be described as a 

function of φ. Although a simplification could be considered and, for example, the properties 

at x=xc
I or even at x=L/2 could be used instead of xc,lim

II, in order to keep mechanical 

consistency, it was decided to consider xc,lim
II using the expressions of Eq. (5.59). 

 

When plotted in the buckling curve, φ has the meaning illustrated in Figure 5.24. If it would 

not be limited by the cross-section resistance of the first order failure location, the full green 

line would have the path of the green dotted line up to χ(xc
I)=φ (see orange dotted line). Note 

also that a higher φ is also related to a higher “plateau” slenderness, illustrating the lower 

influence of the imperfections in the member.  

 

Finally, in Figure 5.24, the curve regarding the consideration of xc
I (and no φ) is also 

illustrated, leading to resistance levels up to 20% lower than the numerical curve. 
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Figure 5.24:Interpretation of φ 

 

In order to understand the variation of φ with ψ and γ, the numerical models of the cross-

section IPE200 (smallest cross-section) were considered for calculation of the φ factors that 

lead to the least error regarding the resistance. Each point regarding a given ψ and γw 

corresponds to a range of slenderness that lead to a best fit value of φ. It is illustrated in 

Figure 5.25.  
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Figure 5.25:Numerical best fit φ values for IPE200 (smallest cross-section) 
 

If Figure 5.25 is compared to Figure 5.12 (in which only first order effects are considered) a 

parallelism can be noticed, illustrating that the φ factor can be somehow related to the amount 

of spare resistance in the beam including first and second order effects. 
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Three zones can be defined: for ψ values that are lower than the relative minimums in ψ<0; 

for ψ values that are higher than the relative minimums in ψ>0; and between those two 

relative minimums. As a result, for calibration of φ, three functions are considered according 

to the value of ψ relatively to ψlim. |ψlim| is defined as the values of -ψ and +ψ that lead to an 

optimal member capacity (lowest φ) for a given γw respectively for negative and positive 

values of ψ, and can be approximated by Eq. (5.61)(a) as illustrated in Figure 5.26. 
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in which 

 

        178.01077.01009.010005.0 234  wwwwa   (5.61)(b) 

 

Note that the taper ratio γw is now considered in agreement with the evaluation carried out in 

5.4.3 in which the curves of Figure 5.18 were analyzed for three definitions of taper ratios.
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Figure 5.26: Values of ψ that lead to an optimal member capacity (lowest φ) for a given γw 

 

Finally, an expression for φ, valid for γh≤4 and γw≤6.5 is given in Eq. (5.62). 
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in which A, B and C are given in Table 5.4.  

 

Table 5.4: Necessary parameters for determination of φ to be considered in Eq. (5.62) 
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The functions defined in Table 5.4 present a discontinuity at ±ψlim. However, the differences 

are lower than 2% and shown to be negligible in the final resistance. Finally, Figure 5.27 and 

Table 5.5 illustrate the values of φ concerning linear bending moment distribution, within the 

defined limits of γw. 
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Figure 5.27:Graphic representation of φ according to Eq. (5.62) 
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Table 5.5: φ values according to Eq. (5.62) 

γw 
Ψ (=My,Ed,hmin/My,Ed,hmax) 

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 
1 1.200 1.241 1.263 1.266 1.250 1.216 1.163 1.091 1.000 

1.25 1.228 1.275 1.253 1.252 1.224 1.170 1.090 1.059 1.099 
1.5 1.245 1.354 1.238 1.233 1.201 1.142 1.056 1.121 1.178 

1.75 1.260 1.423 1.279 1.211 1.180 1.121 1.080 1.178 1.251 
2 1.274 1.483 1.347 1.189 1.161 1.102 1.115 1.230 1.318 

2.25 1.286 1.534 1.412 1.169 1.143 1.085 1.147 1.277 1.380 
2.5 1.298 1.576 1.472 1.152 1.128 1.067 1.176 1.321 1.437 

2.75 1.308 1.611 1.527 1.139 1.113 1.047 1.203 1.362 1.490 
3 1.317 1.639 1.575 1.126 1.100 1.026 1.228 1.400 1.540 

3.25 1.326 1.662 1.617 1.191 1.089 1.038 1.253 1.435 1.586 
3.5 1.333 1.680 1.652 1.250 1.078 1.050 1.276 1.469 1.629 

3.75 1.340 1.695 1.682 1.302 1.068 1.064 1.299 1.501 1.669 
4 1.346 1.707 1.707 1.346 1.059 1.078 1.322 1.532 1.707 

4.25 1.351 1.719 1.730 1.383 1.052 1.093 1.345 1.561 1.742 
4.5 1.355 1.731 1.751 1.416 1.044 1.110 1.368 1.590 1.775 

4.75 1.358 1.744 1.774 1.446 1.038 1.129 1.392 1.617 1.806 
5 1.361 1.760 1.799 1.476 1.032 1.149 1.415 1.644 1.835 

5.25 1.362 1.778 1.828 1.510 1.027 1.172 1.440 1.670 1.862 
5.5 1.362 1.801 1.862 1.547 1.022 1.196 1.465 1.695 1.887 

5.75 1.362 1.827 1.903 1.591 1.019 1.223 1.491 1.720 1.910 
6 1.360 1.859 1.952 1.640 1.015 1.252 1.518 1.745 1.932 

6.25 1.357 1.895 2.008 1.696 1.012 1.283 1.546 1.769 1.952 
6.5 1.353 1.936 2.070 1.755 1.010 1.316 1.574 1.793 1.970 

 

5.4.5.4 Introduction of a cut-off in the generalized imperfection η of welded I-sections 

 

Again, for welded cross-sections, the generalized imperfection for welded beams is redefined. 

In Taras (2010), the imperfection factor αLT was calibrated. Here, in addition, a limit value in 

the expression of  2.0)(  II
czLT x  given by 
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was shown to be adequate. In Eq. (5.63), ψ represents the ratio between the maximum and 

minimum bending moment. Results are given in Section 5.4.5.5, Figure 5.29. 
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5.4.5.5 Accuracy of the new formulation 

 

a) Design Procedure 

 

The verification of lateral-torsional buckling of web-tapered beams for which for γh≤4 and 

γw≤6.5, may be done as follows: 

1. Determine the first order failure location, xc
I, by calculating the utilization ratio 

ε(x)=My,Ed(x)/My,Rk(x) at a satisfactory number of locations, e.g. 10.  xc
I is the location in 

which ε is maximum. My,Rk(x) shall be determined considering My,pl if the cross-section is 

class 1 or 2, My,3,Rd if the cross-section is class 3 (Greiner et al., 2011). Then calculate the 

cross-section resistance load multiplier αult,k(xc
I)= My,Rk(xc

I) /My,Ed(xc
I). 

2. Determine the critical load amplifier αcr of the tapered beam. Finite element analysis may 

be performed for this. 

3. Verify the stability resistance:  
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2
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2

lim,lim,
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II
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II
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   

xc,lim
II  and φ are obtained from Eq. (5.59) and Eq. (5.62), respectively. 

 

b) Results 

 

Four examples regarding hot-rolled cross-sections are illustrated in Figure 5.28. Regarding all 

results, maximum differences of 10% relatively to the numerical models are observed. 
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Figure 5.28:Results for hot-rolled cross-sections 

 

c) Welded cross-sections 

 

Figure 5.29 illustrates the results for welded cross-sections considering a limiting value of the 

generalized imperfection η. For calibration of the cut-off, it was noticed that it varies with the 

bending moment distribution.  
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Figure 5.29: Results for welded cross-sections 

 

 

d) Interaction with shear 

 

In tapered members, the interaction with shear may not be negligible for low slenderness. 

Consider, for example, a tapered beam (IPE200 smallest cross-section), with γh=2.5 and a 

uniformly distributed loading. Not taking into account local buckling of the web (plastic 

resistance), the utilization ratio of a beam with a length of L=2 m is illustrated in Figure 5.30. 

For this case, first order failure is governed by the presence of shear in the smallest cross-

section. Verification to shear resistance and bending and shear interaction should be 

performed according to EC3-1-1 in addition to the stability verification. For this, the 

equations Eq. (2.49) and (2.50) of Chapter 2 should be satisfied. 
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Figure 5.30: Influence of shear stresses for a IPE200, γh=2.5, UDL 
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φ factors were calibrated taking into account the models in which the web is not allowed to 

exhibit local deformations. Accordingly, a plastic resistance in the models was considered. 

This was adopted in order not to consider possible shear buckling in the calibration of φ. φ 

factors can be considered in the models with the unrestrained web, as long as the adequate 

resistance level is considered. Nevertheless, as already observed in Chapter 4, when the φ 

factor calibrated for plastic capacity is considered, a slight unconservatism is noticed. (Figure 

5.31(a)). 

 

However, for some cases, in the presence of shear buckling, see Figure 5.31, the calibrated φ 

factors may not be sufficient for the stability verification of the beam. In further studies, the 

reduction of resistance due to shear buckling will be analyzed and taken into account. 
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Figure 5.31: Buckling curve representation for IPE200; ψ=-0.25; γh=3 

 

e) Comparison to other methodologies 

 

In EC3-1-1, the General Method may be applied to verify the lateral-torsional buckling 

stability of non-uniform members. The determination of the overall reduction factor, χop, shall 

be carried out as follows: 

 The minimum between χ for flexural buckling and χLT, considering clauses 6.3.1 and 

6.3.2 respectively; 

 An interpolated value between χ and χLT, in the case of bending and axial force 

interaction. 
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It was proven in Section 2.4.2.3 that, for the case of prismatic beams, the General Method 

leads to clause 6.3.2 if χLT is considered. Nevertheless, because χLT may not be the minimum 

between χ and χLT, the curve for flexural buckling is also considered in the analysis. For 

calculation of χLT, it is possible to consider either clause 6.3.2.2 (general case) or 6.3.2.3 (LTB 

curves for rolled sections or equivalent welded sections, denoted as special case). 

 

Table 5.6 presents the possible buckling curves according to the application of the General 

Method (clause 6.3.4) as described in Table 5.2. In addition, the buckling curves derived in 

Taras (2010) for prismatic beams are also considered for consistent comparison with the 

tapered case derived here. Note that existing procedures do not account for the second order 

failure location xc
II. As a result, xc

I is considered for determination of cross-section properties. 

 

Table 5.6:Possible buckling curves for web-tapered beams 
Clause Hot rolled Welded 
6.3.1 
χz(xc

I) 
(flexural buckling) 

h/b≤1.2  curve c 
(consistent with the residual 
stress pattern adopted) 

curve c 

6.3.2.2 
χLT(xc

I) 
(general case LTB) 

h/b≤2  curve a 
h/b>2  curve b 

h/b≤2  curve c 
h/b>2  curve d 

6.3.2.3 
χLT,mod(xc

I) 
(special case LTB) 

h/b≤2  curve b 
h/b>2  curve c 

h/b≤2  curve c 
h/b>2  curve d 
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The example of Figure 5.32 describes the inaccuracy obtained by the consideration of any of 

the curves that were calibrated or derived for the specific case of prismatic hot-rolled beams: 

 Figure 5.32(a) illustrates resistance when curve c for flexural buckling is considered. An 

improvement of 10% is obtained with the proposed method; 

 In Figure 5.32(b) it is visible how curve a may become unsafe when the General Case for 

calculation of the lateral-torsional buckling reduction factor is considered. Nevertheless, 

xc
I is located at the higher cross-section such that curve b could be considered. In 

comparison with curve a, it would actually lead to a better solution for this case; 
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 As already mentioned, for a non-uniform bending moment distribution, resistance is not 

necessarily higher than the resistance obtained for the prismatic beam. For this example 

of Ψ=0, φ=1.25 for γh=1 and φ=1.064 for γh=3. If the General Method of clause 6.3.4 is 

applied with the special case of clause 6.3.2.3 for calculation of the lateral-torsional 

buckling reduction factor, and a correction factor of kc=0.75 (for Ψ=0) is considered, 

18% and 28% increase in resistance is achieved respectively for curves c and b, see 

Figure 5.32(c). In Rebelo et al. (2008) it was shown that the resistance obtained by 

special case of clause 6.3.2.3 generally leads to higher resistance than the general case of 

clause 6.3.2.2. For the case of tapered members this is even more evident because of the 

wrong consideration of the kc factors developed for prismatic beams. This is however a 

possible and probable choice by the designer because of the possibility of accounting for 

the bending moment distribution in the determination of χLT and, as a result, of χop; 

 Finally, in Figure 5.32(d), the design method which was specifically developed for 

prismatic beams in Taras (2010) is also analyzed. Because this method is analytically 

consistent with the buckling behavior of prismatic beams subject to lateral-torsional 

buckling and is also the solution of the proposed method here for the case of γh=1, it is 

also illustrated here. 2 cases are analyzed. Firstly the consideration of xc
I instead of xc

II as 

well as φ=1 instead of the calibrated φ=1.064 yields lower results. Note that, for other 

(tapered) cases with higher φ (which can be greater than φ=2) the difference would even 

be more noticeable. On the other hand, if the φ factor developed for the triangular 

bending moment distribution of prismatic beams is wrongly considered (φprismatic,Ψ=0 

=1.25) in the tapered beam, the dotted blue line is obtained. The examples of Figure 

5.4(c) and (d) illustrate the need to calibrate adequate φ factors / failure locations for 

tapered beams subject to non-uniform bending moment distributions and that rules for 

prismatic members should not be used to verify the stability of non-uniform members, for 

as reliable as those may be. 
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clause 6.3.2.2 

0.6

0.7

0.8

0.9

1

1.1

0.3 0.5 0.7 0.9

χLT (xc
I)

λ̄LT (xc
I)

ψ= 0 γh= 3

GMNIA
Model φ= 1.064
Special Case, curve b, kc=0.75
Special Case, curve c, kc=0.75

0.6

0.7

0.8

0.9

1

1.1

0.3 0.5 0.7 0.9

χLT (xc
I)

λ̄LT (xc
I)

ψ= 0 γh= 3

GMNIA
Model φ= 1.064
Taras (prismatic), φ=1.25
Taras (prismatic), φ=1.0

(c) Curves b and c according to the Special Case of 
clause 6.3.2.4 

(d) Curves proposed in Taras (2010) for prismatic 
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φ=1.25 (Ψ=0) 
Figure 5.32: Comparison of methodologies – Buckling curve representation for HEB300 ψ=0; γh=3 

 

Regarding welded cross-sections, Figure 5.33 illustrates an example in which curve c is 

considered both for lateral-torsional buckling (considering clause 6.3.2.2, general case) and 

for flexural buckling. Note that the curve for lateral-torsional buckling may be c or d for 

welded cross-sections. Differences of 37% regarding curve c are visible in Figure 5.33. 

Although it is not illustrated, considering curve d would lead to a drop in the resistance level 

up to 45%. 
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Figure 5.33: Comparison of methodologies; ψ=-0.25; γh=3 (welded cross section) 

 

5.4.5.6 Statistical analysis 

 

Finally, a statistical evaluation of all cases and methodologies considered for this study is 

carried out. Only members with a practical slenderness level of 5.1)( I
cLT x and whose 

plastic resistance is not affected by the presence of shear are considered for this purpose, 

covering a total of 2808 cases. Figure 5.34 to Figure 5.36 illustrate the numerical resistance 

against the resistance obtained by the proposed methodology (Figure 5.34); and obtained by 

clause 6.3.4 using (i) the general case for determination of χop (Figure 5.35) and (ii) the 

special case for determination of χop (Figure 5.36). It is evident the improvement the proposed 

methodology relatively to the other cases. Figure 5.35(a) illustrates that curve a can lead to 

differences between approximately 20% on the unsafe side and 25% on the safe side. On the 

other hand, curve c, commonly considered for application of clause 6.3.4 for the case of 

tapered beams may lead to a loss in resistance up to 40%, see Figure 5.35(c). The application 

of curve c in the special case is shown in Figure 5.36 in which a high spread of results is 

visible. 
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Figure 5.34:Resistance obtained by the proposal against the numerical models 
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Figure 5.35:Resistance obtained by the General Method (considering the general case of clause 6.3.2.2 for the 

reduction factor determination) against the numerical models 
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Figure 5.36:Resistance obtained by the General Method (considering the speciall case of clause 6.3.2.3 for the 

reduction factor determination) against the numerical models – curve c 
 

Finally, following a similar procedure as in Rebelo et al. (2008) and Simões da Silva et al. 

(2008), statistical indicators of the ratio χLT,Method (xc
I) / χLT,GMNIA (xc

I) are given in  

Table 5.7 to Table 5.9. In  

Table 5.7, the various methodologies considered here are analyzed according to fabrication 

procedure. Again, the lower spread and the average value of the proposal relatively to the 

other methodologies, show the accuracy of the calibrated method. In addition, an 



 

   CHAPTER 5 
 

 

 

 
 
   202 
 

improvement is observed with the introduction of a cut-off in the generalized imperfection for 

the welded cases. If all cases are analyzed Table 5.8 indicates that, if the transformation of 

variables considered in Eq. (5.60) is not adopted, i.e., 

 

 )(
)(

lim,
II
cLT

I
cLT x

x





     and     )()( lim,

22 II
cLT

I
cLT xx    (5.64) 

 

an adequate accuracy level is also reached. Although this alternative approach avoids the 

calculation of a φ factor as the second order failure location is always considered in the terms 

χLT and LT , it does not take into account the increase in resistance of the uniformly 

distributed load case for γh=1, as already referred. It also does not lead to the design method 

developed in Taras (2010) for the other bending moment distributions of γh=1 (as the 

calibrated xc,lim
II do not exactly match φ for those cases, once a direct transformation would be 

too complex to carry out as done for web tapered columns subject to constant axial force). In 

addition a cross-section resistance check at xc
I would still have to be performed (this check is 

implicit in the “φ” approach). Nevertheless, it could be a suitable and simpler alternative to 

avoid the determination of φ. Table 5.8 also presents a simplification relatively to the 

proposed method in which the terms determined with xc,lim
II are now obtained with xc

I. 

Although this simplification leads to a loss in mechanical consistency, this would avoid the 

use of Eq. (5.59) for calculation of xc,lim
II. 

 

Finally, Table 5.9 gives statistical results of the proposed design model according to the 

various subsets of cross-section; fabrication procedure; modeling of the web stiffness; taper 

ratio and bending moment distribution. Uniformity in results is visible, regardless of the 

subset analyzed. A safety factor may be afterwards established in order to account for the 

higher ratios of χLT,Method (xc
I) / χLT,GMNIA (xc

I). 

 

In  

Table 5.7 to Table 5.9, CoV is the coefficient of variation given by the ratio between the 

standard deviation and the mean. 
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Table 5.7: Statistical evaluation of the ratio χLT,Method (xc

I) / χLT,GMNIA (xc
I) according to the methodology 

Methodology n Mean St. Dev. CoV (%) Min. Max. 
Hot-rolled        
 Proposal with φ and  xc,lim

II 2455 1.00 0.02 2.5 0.86 1.10 
 General Case - curve a 1024 0.92 0.08 8.19 0.70 1.16 
 General Case - curve b 1024 0.87 0.09 9.93 0.63 1.05 
 General Case - curve c 2455 0.83 0.09 11.28 0.57 1.01 
 General Case - curve d 1024 0.75 0.12 15.77 0.49 1.00 
 Special Case - curve b 1024 1.02 0.08 7.61 0.77 1.37 
 Special Case - curve c 1024 0.98 0.08 7.83 0.71 1.26 
 η* Taras with φ≥1 2455 0.98 0.06 6.39 0.73 1.13 
 η* Taras with φ=1 2455 0.91 0.06 6.10 0.73 1.03 
Welded        
 Proposal with φ and  xc,lim

II 353 0.99 0.03 2.65 0.89 1.09 
 Proposal with φ and  xc,lim

II - no cut-off in η 353 0.97 0.04 3.86 0.88 1.08 
 General Case - curve a 353 0.97 0.09 9.74 0.75 1.28 
 General Case - curve b 353 0.91 0.09 9.60 0.68 1.16 
 General Case - curve c 353 0.85 0.09 10.53 0.62 1.05 
 General Case - curve d 353 0.76 0.10 13.13 0.54 0.99 
 Special Case - curve c 353 1.03 0.09 9.03 0.77 1.37 
 Special Case - curve d 353 0.96 0.09 9.26 0.69 1.21 
 η* Taras with φ≥1 353 0.94 0.07 7.87 0.71 1.08 
 η* Taras with φ=1 353 0.88 0.06 7.36 0.70 1.06 

 

Table 5.8: Statistical evaluation of the ratio χLT,Method (xc
I) / χLT,GMNIA (xc

I) regarding all n=2808 cases 
Methodology n Mean St. Dev. CoV (%) Min. Max. 
 Proposal with φ and  xc,lim

II 2808 1.00 0.03 2.5 0.86 1.10 
 Proposal with φ and  xc

I (instead of xc,lim
II) 2808 1.00 0.03 2.7 0.86 1.16 

 Proposal with  xc,lim
II only (instead of φ) 2808 1.01 0.03 2.67 0.84 1.15 

 General Case - curve c 2808 0.83 0.09 11.20 0.57 1.05 
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Table 5.9: Statistical evaluation of the ratio χLT,Method (xc
I) / χLT,GMNIA (xc

I) – analysis of the proposal by sub-sets 
Sub-set / case n Mean St. Dev. CoV (%) Min. Max. 

Smallest cross-section        
 100x100x10x10 266 1.00 0.03 2.68 0.90 1.07 
 HEB300 758 1.00 0.02 2.36 0.93 1.10 
 IPE200 1784 1.00 0.03 2.56 0.86 1.10 

Fabrication procedure        
 Hot Rolled 2455 1.00 0.02 2.47 0.86 1.10 
 Welded 353 0.99 0.03 2.65 0.89 1.09 

Modeling of web stiffness        
 Web prevented from local buckling 1447 1.00 0.02 2.46 0.86 1.09 
 Web free to local buckling 1361 1.00 0.03 2.56 0.86 1.10 

γ        
 γh=1 517 1.00 0.02 1.97 0.93 1.07 
 1<γh≤2 1350 1.00 0.02 2.14 0.92 1.07 
 2<γh≤3 615 1.00 0.03 3.20 0.86 1.10 
 3<γh≤4 326 0.99 0.03 3.22 0.86 1.10 

Bending moment distribution        
 -1≤Ψ<-0.5 582 1.00 0.02 2.15 0.86 1.09 
 -0.5≤Ψ<0 516 1.01 0.03 2.84 0.89 1.10 
 0≤Ψ<0.5 551 1.01 0.03 2.72 0.92 1.09 
 0.5≤Ψ<1 655 0.99 0.02 2.51 0.89 1.07 
 Ψ=1 340 0.99 0.02 1.75 0.92 1.02 
 UDL 164 1.00 0.02 2.31 0.91 1.06 

 

 

5.5 Example 

 

5.5.1 Introduction 

 

A tapered beam composed of a IPE200 welded cross-section in the smallest end with a 

linearly varying height and a taper ratio of γh=hmax/hmin=3 is now analyzed, see Figure 5.37. 

The applied bending moment is My,Ed=50 kNm with ψ=0.75 and the yield stress of fy=235 

MPa. The beam has a length of L=2.72 m and a taper angle of α=4.21º. The safety of the 

beam is verified in the following in order to illustrate application of the proposed 

methodology. 
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200 mm My,Ed=50 kNm

2.72 m

600 mm

α=4.21º
My,Ed=37.5 kNm

 
Figure 5.37: Analyzed tapered beam 

 

A numerical linear eigenvalue analysis LBA attains a critical load multiplier of αcr=2.022 

(Mcr,Tap=101.1 kNm), whereas a GMNIA analysis attains an ultimate load multiplier of 

αb=1.167 (Mb,Rd,Tap=58.4 kNm), see Figure 5.38.  

 

 
Figure 5.38: Lateral-torsional buckling mode displacement 

 

The following cross section properties were considered in the numerical model (see the 

example of Chapter 4). Firstly, the taper angle considering simplified minimum and 

maximum reference depths is obtained: 

 hmin=200 mm; hmax=3*200=600 mm; α=4.21º 

 

Because the flange thickness is not exactly tf, the depth of the web is kept and the total depth 

slightly increases. 

 Smallest cross section hw=183 mm; b=100 mm; tf= 8.5 mm; t’f= tf/cosα= 8.523 mm; tw=5.6 

mm; h=200.046 mm 

 Largest cross section hw=583 mm; b=100 mm; t’f=8.523 mm; tw=5.6 mm; h=600.046 mm; 

 

This leads into a correct taper ratio of γh=hmax/hmin= 600.046 / 200.046=3.0 (≈2.9995).  
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5.5.2 Determination of the first order resistance 

 

The utilization at each section is illustrated in Figure 5.36 and shall be obtained at, at least 10 

cross sections, considering the following expression 
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M   (5.65) 
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Figure 5.39: First order utilization 

 

It is seen that the first order failure location xc
I is at the smallest cross section. The utilization 

ratio at this section is given by 
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I
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I
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as illustrated in Figure 5.36. Note that, for the analysed case, the cross section class is always 

1 or 2. For example, for the higher cross section, the cross section class is given by 
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 1241.104
6.5

583

6.5

523.8523.8046.600
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


t

c  (5.67) 

 

Because c/t=104.1≤124 (Table 5.2 of EC3-1-1) the highest cross section class is 2. 

 

In addition, the cross sections should be verified against the presence of shear. This should 

also be carried out along the member length. However, because the maximum effect of shear 

will occur at the smallest cross section which also coincides with the first order failure cross 

section due to bending, it is enough to verify this cross section. Shear is verified according to 

clause 6.2.6 of EC3-1-1 (see also Chapter 2). 
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Because VEd ≤ 50% Vpl,Rd, interaction of bending and shear does not need to be accounted for 

(clause 6.2.8 of EC3-1-1). 

 

Shear is then verified. Nevertheless, note that, according to clause 6.2.6(6), when hw/tw>72 

shear buckling resistance for webs without intermediate stiffeners should be verified 

according to section 5 of EN 1993-1-5. This would be the case of this example, in which 

hw/tw=104.1 for the maximum height. Because the web is restrained to local buckling in the 

numerical models, this does not occur. In real situations this aspect shall however be taken 

into consideration. 
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5.5.3 Stability verification according to the proposed method 

 

The procedure is summarized in Section 5.4.5.5. 

 

a) Calculation of slenderness at x=xc
I (smallest cross-section) 

 First order resistance multiplier: 317.1759.0/1)(/1)(/1)(,  I
c

I
c

I
ckult xxx   

 807.0
022.2

317.1)(
)( , 

cr

I
ckultI

c

x
x




  

 

b) Determination of auxiliary terms 

 Second order failure location, x=xc,lim
II, Eq. (5.69) 
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 Over-strength factor, φ, Eq. (5.61) 
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c) Generalized imperfection 

 Imperfection factor, αLT 
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c) Verification 

 Reduction factor 
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 Verification 
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The beam is verified! 

 

d) Summary 

The beam attains a maximum load factor of αb=1.12. When compared to the GMNIA 

resistance (αb=1.167), a difference of 4.0% on the safe side is achieved. 
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5.6 Final remarks 

 

In this chapter, an analytical derivation of linearly web-tapered beams subject to uniform 

bending moment was carried out and compared against numerical simulations. Differences up 

to 4% were noticed relatively to numerical results. The model was then shown to be adequate 

for non-uniform bending moment distributions.  

 

In a second step, a design model was developed in line with recent proposals for prismatic 

beams. The calibration of the second order failure location xc
II and of an “over-strength” 

factor φ was carried out in order to be considered in the Ayrton-Perry equation. From the 

statistical evaluation it was seen that the model gives differences up to 10% whereas the 

application of, for example, the buckling curve c of EC3-1-1 may lead to differences of 40% 

on the safe side. On the other hand, the application of the same buckling curve c considering 

the Special Case procedure of clause 6.3.2.3 can lead to results that are 25% unsafe.  

 

In addition, a cut-off in the generalized imperfection of welded cross-sections was calibrated 

in order to improve the adequacy of the design method to the behavior of the member along 

the slenderness range. 

 

It was also seen that some variations to the proposed method may be further performed: (i) 

either the xc,lim
II could be replaced by xc

I so that only φ needs to be determined; or (ii) φ could 

be replaced by xc,lim
II avoiding the calculation of φ. Although some disadvantages were shown 

for each of these alternatives, more simple procedures would be obtained. 

 

Finally, it was shown that the presence of shear buckling may have an influence in the 

resistance obtained by the proposed method, such that additional checks should be performed. 

This will be considered in a next step of the research. The same applies to local buckling due 

to bending as already stated in Chapter 4. 
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Chapter 6 

 

 

 

 

6 ON THE VERIFICATION OF TAPERED MEMBERS AND FRAMES 

UNDER AXIAL COMPRESSION AND UNIAXIAL BENDING 

 

6.1 Introduction 

 

In EC3-1-1, the safety verification of a tapered beam-column may be performed either by the 

General Method; by a second order analysis considering all relevant imperfections followed 

by a cross section check or by a numerical analysis taking account of all relevant nonlinear 

geometrical and material effects. These alternatives were discussed in the previous chapters 

and some aspects may be highlighted again here: 

 The verification of a member by a full nonlinear analysis is, for the time being, not the 

preferred alternative. On the other hand, the consideration of in-plane (local and global) 

imperfections for the determination of the in-plane load multiplier αult,k of the General 

Method, may result in a need to perform those complex numerical analyses as there are 

yet no analytical stability verification procedures for non-uniform members. Similarly, 

the determination of the imperfections to consider in a second order analysis to be 

followed by a cross section check is also unclear; 

 The General Method requires the in-plane resistance of the member considering second 

order in-plane effects and imperfections. Besides the discussion in Section 2.4.2.5 

regarding the definition of αult,k, it was proved that, for the case of columns (even 

prismatic), considering the in-plane imperfection does not lead to the out-of-plane 

ultimate resistance, resulting in a loss of resistance up to 20%. As a result, for the stability 

verification of a beam-column it is decided here to consider the most general approach in 

which αult,k is given purely by the cross-sectional resistance. In-plane effects are 

accounted for separately; 
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 For prismatic members, it was seen that the consideration of the minimum between the 

lateral-torsional reduction factor and the out-of-plane reduction factor results in a 

discontinuity in the M-N interaction curve, for high bending moment relatively to axial 

force or vice versa, depending on the mode of “minimum” reduction factor. As a result, 

an interpolation between the lateral-torsional and the out-of-plane modes is mechanically 

more consistent, although an adequate interpolation needs to be developed. The same 

applies to non-prismatic members; 

 The consideration of the existing buckling curves a0 to d to tapered beams or columns is 

not only incorrect as it may lead to a spread in the safety level of -40% on the safe side to 

30% on the unsafe side. If a generalized slenderness approach is to be considered, the 

developed buckling curves for tapered columns (Chapter 4) and tapered beams (Chapter 

5) should be applied. 

 

As a result, in Chapter 6, the several possibilities for the stability verification of tapered beam-

columns are brought into discussion. Firstly, possible member stability procedures (both in-

plane and out-of-plane) are presented based on a direct adaptation of EC3-1-1 rules: both the 

interaction formulae format and a generalized slenderness approach format are considered, 

although focus is given on the latter as in reality, the interaction formulae was not intended for 

verification of non-uniform members. Still regarding the generalized slenderness approach, 

possible interpolation procedures are analyzed. The General Method of clause 6.3.4 is again 

shown to lead to inconsistent and unreliable resistance levels, in what concerns member 

design. Finally, in the context of the global structure, some of the methods of analysis 

presented in Section 2.5 are analyzed so that in-plane stability may or may not be checked by 

adequate verification formulae. Framed structures are considered for this discussion.  

 

Only global instability failure modes are analyzed here, i.e., the cross section plastic capacity 

may be fully attained and accordingly, the numerical models do not develop local buckling 

deformations. In addition, only the “over-strength” factor approaches developed in Chapters 4 

and 5 are considered for the following analysis, although similar procedures could be 

considered with the “critical location” proposals. 
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Some general aspects are now mentioned regarding some limitations of the General Method 

but that may be overcome: 

 The determination of αult,k must be reevaluated as already discussed; 

 At the moment, the General Method does not account for out-of-plane loading, which 

when compared to the interaction formulae is a negative aspect. If such a procedure is 

judged to be better (i.e. than the interaction format), it may be further developed to 

include out-of-plane loading; 

 Although the General Method is focused here only for the stability verification of out-of-

plane buckling, it is not necessarily limited to it (if correctly adapted). Studies on the 

generalized slenderness concept have been carried out concerning in-plane buckling of 

prismatic members (Greiner and Ofner, 2005; Ofner and Greiner, 2005) and, in fact, a 

proposal for the in-plane stability verification of prismatic beam-columns was developed 

leading in many times to more accurate results than the interaction formulae itself (Taras, 

2010). 

 

6.2 Member stability verification – possible adaptations of EC3-1-1 rules 

 

6.2.1 Interaction formulae 

 

The interaction formulae of clause 6.3.3 for the stability verification of prismatic beam-

columns are presented in Eq. (2.42) and Eq. (2.43) of this thesis. For uniaxial bending and 

class 1, 2 or 3 cross section they are given by 
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in which NEd and My,Ed are the design values of the compression force and the maximum 

moment about the yy axis along the member. The interaction factors kyy and kzy may be 

determined either by Annex A (Method 1) or Annex B (Method 2) of the same code. Finally, 

besides the verification of Eq. (6.1) and Eq. (6.2), an additional cross section check is required 

at the extremes of the member. 

 

The adaptation of the interaction formulae to the verification of tapered member naturally 

leads to some questions as there is not an analytical background specifically developed for the 

tapered beam-column case as it was performed for prismatic members. Nevertheless, an 

adjustment can be fairly easily analyzed especially when considering Method 2. 

 

In a tapered beam-column the following verifications shall be performed: 

 Out-of-plane stability verification; 

 In-plane stability verification; 

 Cross section verification at the most heavily loaded cross section, i.e., with the highest 

first order utilization. 

 

In the following, possible alternatives for each of these verifications are discussed and results 

are analyzed further in Section 6.3.2.1.  

 

6.2.1.1 Cross section verification 

 

The first order failure location of tapered beam-columns varies with varying levels of axial 

force relatively to the applied bending moment leading. Putting aside the fact that cross 

section class may vary with varying height of the beam-column, consider the example of 

Figure 6.1 which illustrates results of a member composed of a (hot-rolled) IPE200 cross 

section with a taper ratio of γh=2.5 and subject to uniformly distributed loading and constant 

axial force. The beam attains a maximum utilization at about 35% of the member length 

(xc,M
I/L). With increasing axial force the maximum utilization location, xc,MN

I, moves towards 

the smallest cross section, which is the first order failure location of the column, xc,N
I, as the 

axial force is constant.  
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For illustration, My,Ed corresponds to the maximum applied bending moment along the 

member, irrespective of the utilization – for the example of Figure 6.1 (uniformly distributed 

loading) the pairs (NEd; My,Ed(L/2)) are considered. If, for example, the utilization at xc,MN
I is 

considered for representation at each point of the curve, no direct information regarding the 

load that actually leads to first order failure can be obtained, as each point corresponds to a 

different cross section location. Therefore, the first option is preferred and adopted along the 

examples of Chapter 6.  
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Figure 6.1 First order failure location with varying axial force relatively to the bending moment 

 

As a result, and also as referred in Chapter 5, cross section verification should be performed 

in a sufficient number of locations in order to find the cross section with the highest first order 

utilization. For example, for a class 1 or 2 I-section at an arbitrary location of the beam-

column subject both to major axis bending and axial force, the utilization ratio may be 

determined from (see also Eq. (2.44)) 
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Also, if NEd≤0.25Npl,Rd and NEd≤0.5hwtwfy/γM0, the axial force does not need to be taken into 

account and the utilization is given by 

 0.1
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Rdypl

Edy  (6.3b) 

 

Another interesting aspect that can be observed from Figure 6.1 and that may lead to some 

questions is the vertical plateau around the high axial force zone. This can be explained 

because, for high axial force relatively to bending moment, the first order failure location of 

the beam-column approaches the first order location of the column (smallest cross-section) 

xc,MN
I xc,N

I. For the particular cases of bending moment distributions in which there is no 

applied bending moment at the smallest cross section, for high axial force, the utilization of 

the axial force at the smallest cross section is higher than the utilization of the combined 

loading at the immediate adjacent cross sections. Note that this only happens because the 

member is tapered. As a result, the failure location is the smallest cross section in which only 

axial force is present, leading to the vertical plateau of Figure 6.1. 

 

Finally, a comparison between the first order resistance obtained by Eq. (6.3) and by 

performing a plastic distribution of stresses (analytical approach) is illustrated in Figure 6.2, 

for the same example of Figure 6.1, showing that results are very similar. For the analyses to 

be carried out throughout Chapter 6, Eq. (6.3) is considered.  
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Figure 6.2 Comparison between EC3-1-1 cross section resistance and analytical plastic resistance regarding 

combined bending and axial force 
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6.2.1.2 Possible adaptation of the interaction formulae to tapered members 

 

Eq. (6.1) and Eq. (6.2) shall now be adapted to the case of tapered beam-columns: 
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The first question that arises is related the correct location to take into consideration in the 

given interaction formulae. The expression in EC3-1-1  

“NEd, My,Ed are the design values of the compression force and the maximum bending 

moments about the yy (…) axis along the member”, 

shall be replaced by  

“NEd/NRk, My,Ed/My,Rk are the design values of the maximum first order utilization due to 

the compression force and due to the maximum bending moments about the yy (…) axis 

along the member”. 

 

For the case of prismatic beam-columns this location is always the location of maximum 

bending moment utilization as the axial force is constant; however, for tapered beam-

columns, it may not be the case. However, according to the definitions of Chapter 4 and 5, 

FEd/(χFRk)=1/(χαult,k,F) is a constant value along the member length (F represents either the 

axial force or the bending moment). As a result, it is irrelevant which location is chosen and is 

here recommended (for simplicity reasons) the consideration of the first order failure location 

of the axial force acting alone (xc,N
I) for the utilization term regarding axial force; and the first 

order failure location of the bending moment acting alone (xc,M
I) for the utilization term 

regarding the bending moment. This leads to 
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6.2.1.3 Interaction factors kyy and kzy 

 

The interaction factors given in Annex A (Method 1) and Annex B (Method 2) of EC3-1-1 are 

directly adapted to the tapered beam-column case in the following. Method 1 is composed of 

two sets of formula in which the transition between the consideration of torsional 

deformations or not is implicit. In addition, a more complex transition between cross-section 

resistance failure (for the low slenderness range) and instability failure is also accounted for. 

However, this method contains too many parameters in a sense that it is not flexible for an 

adaptation for tapered beam-columns. A possible application of the method to non-uniform 

members would bring many questions and probably would not lead to a satisfactory result as, 

from the beginning, this method was specifically developed for prismatic members. A more 

detailed analysis and even calibration of new interaction factors would therefore be required 

to attain satisfactory results. It is not the purpose of this study and, as a result, only Method 2 

is considered for a straightforward application/adaptation of the interaction formulae to the 

case of tapered beam-columns. Because I-sections are susceptible to torsional deformations, 

according to Method 2, the interaction factors to be considered are summarized in Table 6.1. 

The terms NEd/(χNRk) are the same as considered in the interaction equation. Regarding the 

relative slenderness, for the slenderness y  or z , the question again arises on which location 

is to be considered: (i) at xc,N
I; or (ii) at xc,N,i

II, i.e. )()( ,,,
I

Nci
II

iNci xx   . One could think 

that the location should be the same as the one considered for NEd/(χNRk) (alternative (i)); 

however, because that slenderness is related to a “plateau” level, alternative (ii) is probably 

more suitable. A sensitive analysis concerning the parametric study to be analyzed further in 

Chapter 6 showed that this aspect hardly influences the value of the interaction factor and, as 

a result, no deeper study is given to this subject. 
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Table 6.1 Possible interaction factors for web-tapered beam-columns according to Method 2 
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Finally, regarding the equivalent uniform moment factors Cm,y and Cm,LT, Table B.3 of EC3-1-

1 can be adopted provided that the diagram to be considered is the bending moment first order 

utilization diagram instead of the bending moment diagram itself, see Table 6.2. 

 

Table 6.2 Adaptation of the equivalent uniform moment factors Cm for prismatic members 

Moment utilization diagram Range Cmy and CmLT 

ε(Ms)

ε(Mh)
ε(Mh)ψε

L/2

αs=ε(Ms)/ε(Mh)

0≤αs≤1 -1 ≤ ψε ≤ 1 0.2 + 0.8 αs ≥ 0.4 

-1≤αs<0 

0 ≤ ψε ≤ 1 0.1 - 0.8 αs ≥ 0.4 

-1 ≤ ψε < 0 0.1(1-ψε) - 0.8 αs ≥ 0.4 

ε(Ms)
ε(Mh)

ε(Mh)ψε

L/2

αs=ε(Mh)/ε(Ms)
 

0≤αs≤1 -1 ≤ ψε ≤ 1 0.95 + 0.05 αh 

-1≤αs<0 

0 ≤ ψε ≤ 1 0.95 + 0.05 αh 

-1 ≤ ψε < 0 0.95 + 0.05 αh(1+2 ψε) 

 

In a tapered beam subject to a linear bending moment distribution, the diagram of the 

utilization can be fairly well compared to the diagram of a prismatic beam subject both to 
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uniformly distributed loading and end moments. The Cm factor may be obtained from the 

respective Cm factor due to that diagram. For the case of a tapered beam-column subject to 

uniformly distributed loading the error would be higher. Figure 6.3 illustrates these two 

examples. 
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(a) IPE200 (rolled) | γh=2.5 | UDL  (b) IPE200 (rolled) | γh=3 | ψ=-0.5 
Figure 6.3 Determination of Cm factors for tapered beam-columns (plastic utilization ε) 

 

6.2.2 Generalized slenderness approaches for out-of-plane stability 

verification 

 

6.2.2.1 The general method in its current format 

 

For application of the general method of clause 6.3.4 of EC3-1-1, the following steps are 

taken (see Section 2.4): 

 

a) Determination of the generalized slenderness given by crkult,op /ααλ  : 

o αcr may be obtained numerically; 

o αult,k may be obtained numerically and should account for the in-plane imperfections; 
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b) Calculation of the generalized reduction factor, χop: 

o Minimum between the reduction factor χz and χLT, both calculated with op . For web-

tapered beam-columns and taking into account the assumptions for the residual stress 

pattern of the hot-rolled cases (0.5fy), the buckling curves to consider are: 
 

 For χz For χLT (general case) 

Rolled I-section c 
h/b≤2  a 
h/b>2  b 

Welded I-section c 
h/b≤2  c 
h/b>2  d 

 

o As no clear guidelines are given for an interpolation between χz and χLT in the code nor 

it is recommended by ECCS TC8 (2006), this alternative is not considered; 

 

c) Verification: 1/γαχ M1kult,op  . 

 

6.2.2.2 Modification of the General Method – general aspects 

 

It was seen that the consideration of in-plane local imperfections in the determination of αult,k 

could be mechanically inconsistent with the column buckling case. As a result the more 

general approach in which αult,k is obtained by the cross section resistance of the beam-column 

is also considered and treated in the following. It will, as expected, lead to higher levels of 

resistance. 

Additionally, an in-plane verification shall be performed considering one of the alternatives of 

Section 6.2.1 regarding Eq. (6.4). The subscript “op” is here replaced by “ov”, as referred in 

Chapter 2. In general, both alternatives will be referred to as a “generalized slenderness” 

concept. 

 

a) Determination of the generalized slenderness given by crkult,ov /ααλ   

 αcr may be obtained numerically; 

 αult,k is here given by the load multiplier that leads to the cross-section resistance of the 

first order failure location of the column, xc,MN
I, see Eq. (6.3). To obtain αult,k the pair of 

loads (NEd(xc,MN
I), My,Ed(xc,MN

I)) shall be increased proportionally until the condition ε=1 
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of Eq. (6.3) is met. The cross section resistance multiplier is given by 

αult,k=My,Ed,MAX(xc,MN
I)/My,Ed(xc,MN

I)=NEd,MAX(xc,MN
I)/NEd(xc,MN

I). For the cases that Eq. 

(6.3b) applies, naturally the first condition is considered and 

αult,k=My,Ed,MAX(xc,MN
I)/My,Ed(xc,MN

I). 

 

b) Calculation of the generalized reduction factor, χov 

 

Apart from the determination of αult,k, the generalized reduction factor χov shall be obtained 

from a generalized slenderness .ov With the variation of the ratio M/N, or ϕ (see Eq. (2.62)), 

the slenderness ov varies between LT for ϕ=0 (beam) up to z  for ϕ=∞ (column), see the 

orange dots of Figure 6.4.  
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Figure 6.4 Determination of χov 

 

According to the general method in EC31-1, the reduction factor χov shall be calculated with 

the generalized slenderness ov  considering the imperfection factors for lateral-torsional 

buckling or flexural buckling, respectively χov,LT and χov,zz. This corresponds to the green dots 

of Figure 6.4 (vertical line). Furthermore, if an interpolation between those reduction factors 

is to be carried out, χov,Interpol is then found somewhere in the vertical green line. However, if 

this approach is analyzed, it can be right away observed that ovLTovzzov   ,,  correspond 
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to different member lengths. For example, if the generalized slenderness of the beam-column 

(with a given length) is considered to evaluate χov,zz, the generalized slenderness assumes the 

role of flexural buckling slenderness. A column with such slenderness does not present the 

same length as the analyzed beam-column, even for the case of prismatic members, as 

illustrated in the scheme of Figure 6.5. A similar conclusion would be achieved for the case 

of ovLTov  , . It is clear that, irrespective of considering the “minimum” of χov or the 

“interpolation” between χov,LT and χov,zz, the resistance of the beam-column is based on the 

properties of members that have different lengths and, therefore, different member 

behaviours. This is even more evident for the case of tapered members that will exhibit 

different taper angles with the variation of the member length. As a result, a more consistent 

approach is to determine the value of χov based on the actual LT  and z  respectively of the 

beam and column with the real member length of the beam-column. This corresponds to the 

orange line of Figure 6.4.  
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Figure 6.5 Column with a member length corresponding to ovz    

 

In order to distinguish from the 2 analyzed approaches, the approach in Figure 6.4 

corresponding to the green line is denoted as “ ov approach” whereas the corresponding to the 
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orange line is denoted as “ real approach”. Still regarding the ov approach, if the reduction 

factors χov,LT and χov,zz were to be obtained the following would have to be considered, see 

Table 6.3: 

 
Table 6.3 Procedure for reduction factor determination according to a ov approach 

 For χz,op (see Chapter 4) For χLT (see Chapter 5) 
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Table 6.3 highlights the z  parameter that must correspond to the slenderness z  of a beam 

with ovLTovLT   , , in order to coincide with the proposed buckling curves for tapered 

beams in Chapter 5. In other words, the length of a fictitious beam with a lateral-torsional 

slenderness with a value of ov  would have to be achieved – as it is known, obtaining a 

member length from the value of the lateral-torsional buckling slenderness is not simple, even 

for prismatic members and, should not be provided for a practical design procedure. As a 

result, a “ real approach” is preferred not only due to a higher mechanical background but also 

because it leads to a more simple procedure. 

 

c) Verification: 1/γαχ M1kult,ov   

 

6.2.2.3 Possible forms of interpolation  

 

As already referred in Chapter 2, Greiner and Ofner (2005); Ofner and Greiner (2005); and 

Taras and Greiner (2006) present GMNIA results regarding prismatic members that, when 

plotted in a buckling curve representation, may fall below the lowest of the column flexural 

buckling or lateral-torsional buckling curves. One must then reflect if the “interpolation” term 
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is adequate as the χov values corresponding to intermediate ϕ (beam-columns) are not always 

between the extreme cases of   ϕ=0 and ϕ=∞, i.e., beams and columns. Nevertheless, some 

possible approaches for an “interpolation” or “transition” between  χLT and χz  are presented in 

the following, based on the “ real approach”: 

 

1. Suggested interpolation in EC3-1-1 (clause 6.3.4 – general method) based on a linear 

cross section interaction – GM_cs interpolation: 
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 (6.8) 

 

2. Interpolation based on the relative position of ov  to z  and LT  – λ interpolation 

(Figure 6.6). This alternative corresponds to a line in the buckling curve representation. 

LT zov

LT
ov

z

 
Figure 6.6 λ interpolation 

 

3. Interpolation that would lead to exact application of the adjusted interaction formulae 

(equation 6.62 of EC3-1-1), as described in Sections 6.2.1.2 and 6.2.1.3 – kzy 

interpolation. Note that this case is only considered here in order to evaluate the χov given 

by the interaction formula in the buckling curve representation. In addition, at a point, a 

slightly modification of χLT is analyzed such that it may lead to slightly different results 

than the (“original”) interaction formula. 
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Results provided by these alternatives and possible variations are given and discussed in 

Section 6.3. It will be shown that a deeper study is needed in order to establish a procedure 

which correctly takes into account the weight between lateral and lateral-torsional buckling. 

 

6.3 Out-of-plane buckling of tapered beam-columns 

 

6.3.1 Parametric study 

 

The parametric study concerning 273 beam-columns which will fail in out-of-plane buckling 

(with or without lateral-torsional buckling) is summarized in  

Table 6.4. Results of the various methods described in 6.2 are given in Section 6.3.2. The 

cases were chosen such that: 

 Torsional deformations may or may not occur; 

 The first order failure location is not always at the smallest cross section with the varying 

ratio M/N; 

 Buckling curves for the different fabrication procedures could be analyzed; 

 Different slenderness for the same cases could be analyzed; 

 In-plane buckling would not lead to failure but could lead instead to a decrease of the in-

plane load multiplier αult,k if this is obtained according to the general method in EC3-1-1. 

 

Table 6.4 Parametric study 

 cs / 
fabrication 

γh 
Bending 
moment )( minhz x  xc,M

I /L φLT 
χLT 

(xc,M
I) 

χz 
(xc,N

I) 
χy 

(xc,N
I) 

1 IPE200 hr 2.5 UDL 1.2 0.35 1.07 0.624 0.466 1 
2 IPE200 hr 3 Ψ =-0.5 2.5 0 1.74 0.772 0.136 1 
3 IPE200 hr 3 Ψ =-0.5 1.2 0 1.74 1 0.474 1 
4 IPE200 hr 1.2 Ψ =-0.25 2 1 1.25 0.782 0.197 0.918 
5 HEB300 hr  2 Ψ =0.25 1 1 1.08 0.802 0.563 0.993 
6 HEB300 hr 1.5 Ψ =0 1.5 1 1.19 0.874 0.318 0.813 
7 HEB300 hr 1.5 Ψ =0 0.7 1 1.19 1 0.750 0.995 
8 HEB300 hr 2 Ψ =1 1 0 1.4 1 0.563 0.993 
9 IPE200 w 1.5 Ψ =-0.5 0.6 1 1.26 1 0.792 1 

10 IPE200 w 1.2 Ψ =0 0.9 1 1.22 0.951 0.618 1 
11 IPE200 w 1.5 Ψ =-0.5 1.2 1 1.26 0.910 0.498 1 
12 IPE200 w 1.2 Ψ =0 1.7 1 1.22 0.690 0.299 0.922 
13 IPE200 w 3 Ψ =-0.5 2 0 1.74 0.885 0.233 1 
14 IPE200 hr 2.5 UDL 0.5 0.35 1.07 0.931 1 1 
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6.3.2 Results and discussion 

 

6.3.2.1 Adaptation of the interaction formulae 

 

Figure 6.7 compares the procedure presented in Section 6.2.1, regarding Eq. (6.7) with the 

numerical results. Differences of 10% and 14% on the safe side are achieved respectively for 

Figure 6.7(a) and (b). 
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Figure 6.7 Interaction curve representation concerning interaction formulae results 

 

Notice now the examples of Figure 6.8 that correspond to a beam column such that 

χLT(xc,M
I)=1. Because web-tapered sections present higher ratios h/b, these present low 

torsional rigidity and fail mostly in flexural buckling. On the other hand, the examples of 

Figure 6.8  are mainly beam-columns such that the reduction factor is χLT=1 and with very 

low slenderness, LT , sufficiently smaller than the plateau slenderness, see Figure 6.9. If, in 

addition the bending moment is much higher relatively to the axial force, flexural buckling is 

negligible relatively to the bending moment effect and, as a result, cross section capacity 

prevails. The interaction factor kzy does not properly take advantage of this behavior for the 

case of tapered members which often present a higher slenderness plateau. 
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Figure 6.8 Interaction curve representation concerning interaction formulae results 
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Figure 6.9 Instability in a tapered beam-column with a high lateral-torsional slenderness plateau 

 

In general, the consideration of the analyzed adapted interaction approach for tapered beam-

columns leads to a resistance level between 80% and 103% of the GMNIA resistance, with an 

average of 93% and a coefficient of variation of CoV=5.66%. In Figure 6.10, to have a 

common basis, the generalized reduction factors are compared: χov
GMNIA=αb

GMNIA/αult,k and 

χov
interaction=αb

interaction/αult,k, in which αb is the resistance multiplier obtained numerically or by 

the interaction approach and αult,k is the cross section resistance multiplier.  

 

Finally, note that this study was only carried out to give an overview of an “interaction type” 

buckling check. Although adequate interaction factor kzy accounting for specific buckling 

behavior of tapered members could improve results,further improvements of the interaction 

factors would possibly require too many differentiations in the end not leading to a practical 

approach. 
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Figure 6.10 Results given by the interaction approach 

 

6.3.2.2 General method 

 

The consideration of the in-plane second order effects and imperfections for αult,k may lead to 

a decrease of the capacity of the member when applying the General Method. Figure 6.11 

illustrates the in-plane flexural buckling (numerical GMNIA in plane) and the cross section 

resistance regarding cases #5 and #6. For lower slenderness the GMNIA in plane curve moves 

towards the cross section resistance curve.  
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Figure 6.11 In-plane flexural buckling vs. cross section capacity 
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Figure 6.12 illustrates the same cases when the General Method is considered. Results are 

given regarding curves a, b and c. GM num and GM CS illustrate the cases in which αult,k is 

obtained from the GMNIA in plane analysis and from the cross section resistance, 

respectively. Differences between the two approaches for the given example can go up to 8%, 

such that for Figure 6.12(a), the maximum differences are observed in the intermediate area 

of the interaction curve whereas for Figure 6.12(a) they are observed in the high axial force 

area. 
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Figure 6.12 Results of the general method considering different assumptions for αult,k 

 

Focusing now on the level of safety given by the general method, from Figure 6.12 it can also 

be seen that the safety provided by the method may be either too conservative (up to 25%) or 

too unconservative (up to 20%). This is because there is not a clear decision on which curve 

to adopt. The examples of Figure 6.13 show that this assumption may lead to an over-

conservative resistance level: up to 30% for Figure 6.13(a) (case #12) and up to 45% for 

Figure 6.13(b) (case #13). Resistance given by the analyzed interaction formula is also 

presented for comparison leading to maximum (safe sided) differences of 12% and 10% for 

case #12 and #13, respectively. 

 

Regarding welded cross sections, the curves to consider are either c (for flexural buckling); or 

c or d for lateral-torsional buckling. The analyzed sections are IPE200 (smallest cross section) 
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with increasing height along the member, i.e., only in one extreme of the member curve c 

would apply for lateral-torsional buckling. Nevertheless, the argument that for the case #13 

the first order failure location is xc,M
I=0, could be used in order to justify the use of curve c 

(this argument has no analytical background). Results given by curve c are therefore also 

presented. 
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Figure 6.13 Results of the general method leading to over-conservative level of resistance 

 

Results of the general method are plotted against numerical results in Figure 6.14 (flexural 

buckling curve – c) and Figure 6.15 (extreme possibilities for the lateral-torsional buckling 

curve – a and d). The points in Figure 6.14 and Figure 6.15 are obtained as the points from 

Figure 6.10. 
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Figure 6.14 Results of the general method for out-of-plane flexural buckling – curve c 
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Figure 6.15 Results of the general method for lateral-torsional buckling 

 

Finally, Table 6.5 summarizes statistical results for the general method. For comparison, the 

interaction approach is also presented. Comparing the analyzed verification procedures, the 

interaction approach leads to a best approximation to the numerical results. As for the General 

Method, curve c gives a decrease in resistance of more than 30%. Curve d and curve a may be 
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excluded from the beginning, respectively for the excessive conservatism (resistance is 45% 

lower than the numerical results) or lack of it (resistance is 20% higher for curve a). In 

summary, any of the curves a, b, c or d present a high weight of cases whose ratio χov
Method/ 

χov
GMNIA falls below 0.9 (safe) and above 1.03 (unsafe) when compared to the interaction 

approach.  

 

Table 6.5: Statistical evaluation concerning the ratio χov
Method/ χov

GMNIA for the analyzed methodologies 

Case Methodology n Mean St. Dev. CoV 
(%) 

Min. Max. % cases 
<0.9 

% cases 
>1.03 

                

All 6.3.3 mod 273 0.93 0.053 5.66 0.78 1.07 26.7 2.2
  GM - c (zz) 273 0.87 0.067 7.77 0.63 0.99 67.0 0.0

Hot-Rolled GM - curve a (LT) 198 1.04 0.086 8.30 0.78 1.21 8.1 59.6
GM - curve b (LT) 198 0.95 0.074 7.80 0.71 1.09 23.7 10.6

Welded GM - curve c (LT) 75 0.85 0.066 7.73 0.63 0.99 77.3 0.0
  GM - curve d (LT) 75 0.76 0.068 8.92 0.55 0.90 100.0 0.0

 

6.3.2.3 Modified General Method – overview of the analyzed possibilities 

 

In this section, results of the parametric study are evaluated. At the same time that the 

possible “interpolation” alternatives between χz and χLT presented in Section 6.2.2.3 are 

analyzed, the shape of the real χov (GMNIA) and its relative position in the buckling curve are 

evaluated, in order to try to understand the physical behavior and a possible starting point for 

an adequate “interpolation” procedure. 

 

Case #5 is firstly illustrated in Figure 6.16, in which results are plotted over the buckling 

curve and the M-N interaction curve.  
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Figure 6.16 Results of the analyzed methodologies for case #5: #5 HEB300 hr | γh=2 | Ψ =0.25 | 1)( min hz x  

 

When Figure 6.16(a) and (b) is analyzed it is noticed that both the GM_cs and the λ 

interpolation lead to unsafe levels of resistance. This can be confirmed in Figure 6.16(c). 

Firstly, regarding the GM_cs interpolation, it actually follows an opposite path from the 

GMNIA points. This can be easily explained: the interpolation provided by Eq. (6.8) may be 

arranged as 
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It is clear that it represents a 1/x type function (of ϕ) such that for ϕ=0 (beam) it leads to χLT 

and for ϕ=∞ it leads to χz. The transition is therefore nonlinear but nevertheless smooth along 
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ϕ. When plotted over the interaction curve (see Figure 6.17) the same shape of the curve 

corresponding to the cross section resistance (αult,k) must be obtained but varying between 

χz*N and χLT*My. For the analyzed case, it is then seen that χov (given by the ratio between the 

buckling – orange line, and cross section resistance – blue line) will hardly decrease for high 

bending moment which confirms the shape in Figure 6.16(b) (buckling curve representation). 
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Figure 6.17 Case #5 – Relationship between the GM_cs interpolation and the cross section resistance 

 

Considering now the λ interpolation, it is given by a linear interpolation between χz and χLT 

based on the relative position of the generalized slenderness to the out-of-plane and lateral-

torsional slenderness. The interpolation is directly visualized in the buckling curve 

representation and as a result may many times lead to an unsafe value of χov.  

The kzy interpolation (i.e., interaction format based interpolation) leads exactly to the 

interaction approach. It is seen that for high axial force the interaction factor does not 

correctly follow the GMNIA curve, becoming linear (see Figure 6.16(c)).  

 

Focus now on case #2. Results are shown in Figure 6.18.  
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Figure 6.18 Results of the analyzed methodologies for case #2: IPE200 hr | γh=3 | Ψ =-0.5  | 5.2)( min hz x  

 

Firstly, regarding the GM_cs interpolation, for this case it presents quite accurate results. By 

comparing this methodology to the cross section resistance curve in the interaction curve 

representation it is then understandable that the transition is much smoother when plotted over 

the buckling curve format. Because χz is much lower than χLT, the bi-linearity of the cross 

section capacity interaction curve will not be felt as pronounced in the final χov=αb
Method/ αult,k. 

However, when observing Figure 6.19 a small angle can still be noticed. 
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Figure 6.19 Case #2 – Relationship between the GM_cs interpolation and the cross section resistance  

 

Regarding the λ approach, for this case the curvature of the buckling curve in between χz and 

χLT is such that the difference between the line corresponding to χov
Method and the χov

GMNIA 
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leads to an actual violation of the condition NEd≤χNRk. This may then be observed in the 

interaction curve representation. While in the interaction approach it is assured that the 

utilization due to the bending moment and due to the axial force are not higher than unity 

(otherwise the buckling check would not be verified), in a generalized slenderness approach 

this cannot be checked because αult,k contains the information of the combination of the axial 

force and bending moment acting together (not accounted by the respective reduction factors). 

As a result, an additional check would have to be performed. However, because the kzy 

interpolation is in fact no more than the interaction formula represented in terms of χov, that 

additional check is not required for this alternative. Finally, it is obvious that a linear λ 

interpolation cannot be considered. 

 

Consider case #3 previously analyzed for the interaction approach.  Due to the low lateral-

torsional buckling slenderness, for high bending moment, cross section capacity will prevail. 

Results concerning the generalized slenderness approach are illustrated in Figure 6.20 

regarding the kzy interpolation, i.e., the interaction approach is illustrated in the buckling 

curve format. The resultant χov curve starts decreasing from ϕ=0 (beam) and, as a result, it is 

incorrectly illustrating that buckling starts occurring as soon as axial force is present (ϕ>0). 

However, if advantage is taken from the lateral-torsional buckling curve that is not reduced 

(i.e. χLT*φLT instead of χLT) only for the purpose of interpolating χov, an improvement can be 

achieved, see kzy* interpolation curve in Figure 6.20. After obtaining the new χov, the 

condition χov ≤1 shall be satisfied. Note that this alternative is just a simplification and means 

that for some cases the resultant χov could be slightly unconservative. However, because this 

interpolation is related to the member over-strength factor φLT, if φLT is small (but higher than 

1), then resultant χov will be closer to the original interpolation approach. For the analyzed 

case, φLT=1.74. 
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Figure 6.20 Results of the analyzed methodologies for case #3: IPE200 hr | γh=3 | Ψ =-0.5 | 2.1)( min hz x  

 

Figure 6.21 illustrates results for the kzy interpolation for case #9. From this case the 

interaction factor kzy does not provide (mechanically) satisfactory results. The consideration of 

χLT*φLT does not give a satisfactory answer here. As already mentioned, for this case the cross 

section failure governs here and the interaction formula is not able to provide a smooth 

transition between instability and cross section resistance failure.  

 

0.7

0.8

0.9

1

1.1

1.2

0.3 0.4 0.5 0.6 0.7

zz curve
LT curve
Euler
kzy* interpolation
GMNIA

χz, χLT, χov

ovLTz  ,,

0
10
20
30
40
50
60
70
80
90

0 200 400 600 800
NEd [kN]

My,Ed [kNm] kzy* interpolation

GMNIA

cross section

(a) Buckling curve representation (zoomed) (b) Interaction curve representation 

Figure 6.21 Results of the kzy* interpolation for case #9: IPE200 w | γh=1.5 | Ψ =-0.5 | 6.0)( min hz x  

 

One last case is analyzed. Case #14 ( )( minhz x =0.5) presents flexural buckling and lateral-

torsional buckling over-strength factors of, respectively φz=1.26 and φLT=1.07. For this case of 
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uniformly distributed loading the over-strength factor is low when compared to the over-

strength factor for lateral-torsional buckling. This causes the buckling curve for flexural 

buckling to be higher for than the buckling curve for lateral-torsional buckling for the lower 

slenderness range, see Figure 6.22. As a result, χov will vary from a lower χov (corresponding 

to χLT) up to χz. Case #1 ( )( minhz x =1.2) is also illustrated for comparison.  
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(a) Buckling curve representation (b) Interaction curve representation 
Figure 6.22 Results for case #14: IPE200 hr | γh=2.5 | UDL  

 

Figure 6.22 also illustrates that with the increase of the member length, the χov curve has a 

tendency be smoother. This is because with the increase of distance from the cross section 

capacity curve, the ratio χov= αb
Method/αult,k decreases and the bi-linear variation of the cross 

section capacity (associated to αult,k) has a lower effect in the final result.  

 

Still regarding Figure 6.22, case #14 may be given as a counterexample to illustrate that the 

consideration of in-plane local effects according to the General Method does not always give 

an answer to the unconservativeness of χop relatively to the minimum of the buckling curves. 

Of course this is not as noticeable if the existing code curves are used because these are 

already conservative (but nevertheless inaccurate to use in tapered members). For this case it 

would be curve c, which is seen to be safe relatively both to the flexural buckling and lateral-

torsional buckling developed curves for this tapered member, see again Figure 6.22.  
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Considering then curve c, Figure 6.23 illustrates the interaction curves depending on the 

calculation of αult,k – i.e., considering local in-plane imperfections or not – which for this 

slenderness level are very close. As previously mentioned, the inclusion of in-plane 

imperfections should provide safe results, however (for this case) some results (slightly) on 

the unsafe side are still achieved. Note also that this is a case in which the bending moment 

distribution will have more effect in the out-of-plane capacity and that is why the generalized 

reduction factor reduces significantly up to a certain ϕ level. This would be a case in which 

the provided EC3-1-1 definition for αult,k would work. This confirms (see also Section 2.4.2.5) 

that the consideration of in-plane local imperfections in the upper bound of the member 

resistance, in the end does not seem to always solve the targeted problem of providing a safe 

resistance level if the minimum buckling curve is considered. Besides this aspect and also 

because of the high conservativeness it brings to the cases in which in-plane instability has 

higher effect,  αult,k should be obtained from the cross section resistance and this problem 

should be overcome by a more grounded approach. 
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Figure 6.23 M-N interaction curve considering different assumptions for αult,k 

 

In summary, from the previous analyses it is possible to conclude that an interpolation (or 

transition) between the flexural and lateral-torsional buckling modes is not a straight forward 

procedure and that some of the alternative interpolation schemes may sometimes be unsafe. 

The third type of interpolation (kzy interpolation) has the advantage of establishing the lateral 

and lateral-torsional buckling limits, for NEd and for My,Ed respectively and always gives safe 
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results. This alternative coincides with the adapted interpolation formula. Regarding  

generalized slenderness procedure, a slenderness interpolation would be the simplest approach 

but could only be developed provided that a nonlinear function suitable to the buckling 

behavior of each member is considered. For this a wider parametric study must be carried out. 

 

Other examples of the parametric study are finally analyzed. Figure 6.24, Figure 6.25, Figure 

6.26 and Figure 6.27 illustrate respectively the GMNIA and cross section resistance cases #2 

and #3; cases #6 and #7; cases #9 and #11 and cases #10 and #12. The following comments 

are given: 

 With the increase of the member length, the relative distance between z  and LT  

increases leading to a lower effect of the in-plane bending moment in the out-of-plane 

resistance. At the same time, the influence of the cross section resistance becomes lower 

and due to this, χov which is given by the ratio between the ultimate load and the cross 

section resistance becomes less affected by the latter and the appearance in the buckling 

curve format is therefore smoother; 

 At low slenderness cross section capacity may be critical and therefore χov=1 (see mainly 

Figure 6.24 and Figure 6.26). So far, none of the presented alternatives were able to 

consider this aspect; 

 If buckling starts occurring for high bending moment relatively to axial force, for the low 

slenderness range the difference in the inclination of χov may be more visible because of 

the shape of the cross section resistance variation. This difference occurs at the value of ϕ 

in which the axial force starts having an effect on the cross section capacity (a visible 

change of slope in the cross section resistance interaction curve – see the grey lines in 

Figure 6.25 and Figure 6.26). As a result, a possible type of interpolation could be 

developed such that it is given by a certain function up to the referred ϕ; and by other 

function from that limit. See also case #5 (Figure 6.16); 

 Finally, it may also be observed that with increasing slenderness the zones with higher 

axial force approach the flexural buckling curve more quickly (lower effect of the in-

plane bending moment), which could eventually be used to develop an interpolation 

function for this zone. In general, all figures below illustrate this. See also case #14 
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(Figure 6.22). Although they are not illustrated, cases #4 and #13 (high slenderness 

examples) also present this behavior.  
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Figure 6.24 Results for cases #2 and #3: IPE200 hr | γh=3 | Ψ =-0.5 
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Figure 6.25 Results for cases #6 and #7:  HEB300 hr | γh=1.5 | Ψ =0 
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Figure 6.26 Results for cases #9 and #11: IPE200 w | γh=1.5 | Ψ =0.5 
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Figure 6.27 Results for cases #10 and #12: IPE200 w | γh=1.2 | Ψ =0 

 

6.4 Stability verification of frames composed of tapered members 

 

6.4.1 Introduction and scope 

 

In Chapter 4 and Chapter 5 design procedures for respectively flexural buckling of columns 

and lateral-torsional buckling of beams were developed for the case of isolated members with 

fork conditions. However, members in real structures often do not exhibit these idealized 

boundary conditions. Due to this, several procedures exist on how to tackle the problem, 

either by considering all the relevant imperfections in the structural analysis or by extracting 
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the member from the real structure by adequate buckling lengths in order to perform its 

stability verification separately from the global structure. These methods were discussed in 

Section 2.5 and are brought into this section for the design of structural systems (focus on 

frames) with tapered members. 

 

As a starting point, only straight tapered members buckling out-of-plane between points that 

are braced in both flanges (i.e. in which both lateral and torsional deformation is prevented) 

are considered. Partial bracing is not contemplated in this analysis. As a result, for the 

considered cases, the buckling lengths may be assumed to be approximately equal to the 

member length, i.e., an approximation to fork conditions. Note that, even if the buckling 

lengths of tapered members with other boundary conditions are determined, either 

numerically or by approximate formulae, throughout the analytical derivations of Chapter 4 

and 5, the member verification methodologies were developed on the basis of a second order 

location which is not the same when the buckling mode is different from the standard simply 

supported case. This is true even for prismatic members. Of course if member imperfection 

amplitudes are adapted to be relative to the length of the “equivalent” simply supported 

member and because resistance is brought into a relative slenderness scale, the buckling 

curves may actually be similar. Nevertheless more attention needs to be given to this subject 

before outlining any conclusions. As a result, only simply supported “isolated” members are 

considered at this point. 

 

In summary, in the scope of the present study, some of the possibilities of structural analysis 

and member verification (see also Section 2.5) are now presented for the case of frames with 

tapered members, assuming that, as a starting point, isolated member verification procedures 

are provided. The possibilities for these design procedures were discussed in the previous 

sections of Chapter 6 and are summarized in Table 6.6. The developed reduction factors in 

Chapter 4 and Chapter 5 are naturally considered in the procedures. In Section 6.4.2.2, these 

procedures are combined with the structural methods of analysis such that in-plane stability 

verification may alternatively be covered by the account of in-plane global and local 

imperfections in the second order analysis. 
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Table 6.6: Potential member stability design procedures to be developed 

In-plane stability verification  Out-of-plane stability verification 
 

Interaction approach: 
 Considering kyy interaction factor (from EC3-

1-1 Annex B) – to be validated; 
 
Or 
 

Generalized slenderness approach?  
 

 

Interaction approach: 
 Considering kzy interaction factor (from EC3-1-1 

Annex B) – is it realistic and worth improving 
for for the case of tapered members? 

 

Or 
 

Generalized slenderness approach (modified 
general method): 
 αult,k is determined according to the most stressed 

cross section considering first order effects only; 
 A proper interpolation procedure needs to be 

developed; 
  

 

6.4.2 Possible methods of structural analysis and subsequent stability 

verification 

 

Consider the simply supported frame of Figure 6.28, prevented from out-of-plane and 

torsional deformations at the end of each rafter and column.   

 

 
Figure 6.28 Frame with tapered columns and tapered rafters 

 

In Section 6.4.2.1 the definition of the local and global imperfections is analyzed whereas in 

Section 6.4.2.2, methods for the structural analysis of the frame are combined with the 

member stability procedures summarized in Table 6.6. 
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6.4.2.1 Definition of imperfections 

 

Assuming elastic global analysis and that αcr of the frame is αcr<10, second order analysis 

needs to be performed. The sway imperfections ϕ are obtained from clause 5.3.2 of EC3-1-1. 

Local imperfections shall be obtained from Table 5.1 of EC3-1-1 or Table 1.1 of this thesis 

repeated here in Table 6.7 for sake of simplicity. 

 

Table 6.7: Design values of initial bow imperfection e0/L (Table 5.1 of EC3-1-1) 

Buckling curve acc.    
to EC3-1-1, Table 6.1 

Elastic analysis Plastic analysis 
e0/L e0/L 

a0 1/350 1/300 
a 1/300 1/250 
b 1/250 1/200 
c 1/200 1/150 
d 1/150 1/100 

 

Because non-uniform members, either tapered or with non-uniform loading do not exactly 

exhibit a sinusoidal shape for the buckling mode, it is questionable whether the local member 

imperfections should be modeled with a bow shape or not. In addition, the amplitudes 

presented in Table 6.7 were calibrated for specific buckling curves that are different than, for 

example, the buckling curve calibrated for members with welded cross sections subject to 

flexural buckling in-plane (Chapter 4). As a result, the definition of local imperfections is not 

clear. Some comments are given in the following: 

 In-plane imperfection factors for in-plane flexural buckling of linearly web-tapered 

columns are given in Chapter 4, Figure 4.24. Regarding members with hot-rolled cross 

sections, the flexural in-plane imperfection factor is α=0.34 (curve b). e0/L is then given 

by e0/L=1/250 in Table 6.7; On the other hand, the imperfection factor for columns with 

welded cross-sections buckling in-plane was re-calibrated in Chapter 4 leading to a value 

of α=0.45. As a result, e0/L needs to be calibrated. Because 1/250≤e0/L≤1/200, on the 

safe side it could be considered e0/L=1/200; 

 As referred in Chapter 4, the imperfections should have the in-plane flexural eigenmode 

shape of the simply supported column in order to lead to the most unfavorable results. As 

a result, the consideration of bow imperfections (or equivalent forces) for non-uniform 

members should be validated in the future; 
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 Finally, for other members with a non-linear variation of the axis or that are composed by 

different types of cross sections distributed along the length, such as the rafters of Figure 

1.10(a) (see Figure 6.29), no procedure was developed in the scope of this work 

regarding the flexural buckling imperfection factors to be considered. In fact, according 

to the analytical derivation of Chapter 4, the imperfection factors for columns with 

prismatic cross sections may be used independently of the variation function of the taper, 

but provided that the centroid axis is linear (the influence of the taper is then accounted 

for by a proper second order failure location, xc,N
II or, alternatively, over-strength factor, 

φ). That is not the case of the examples in Figure 6.29, in which the centroid axis is not 

linear. In addition, for the cross section of the haunch on the left extreme of the rafter of 

Figure 6.29(b) the code does not provide flexural buckling imperfection factors. For the 

case of in-plane buckling, curve c is probably satisfactory and safe; however, because 

these configurations are usually considered in practice, a buckling curve should be 

calibrated (or confirmed) in the future. 

 

  
(a) (b)  

Figure 6.29 Different taper configurations 

 

6.4.2.2 Methods of analysis 

 

a) In-plane and out-of-plane member verification procedure exists (Level 2) 

 

If proper in-plane verification procedure is available, only P-Δ and global (ϕ) imperfections 

are required in the frame analysis. The verification is then performed as follows: 

1. Out-of-plane verification check (for each member):  

o Determine χz and χLT considering the buckling length equal to the member length; 

o Obtain the second order forces from P-Δ effects and imperfections (ϕ); 
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o Perform the out-of-plane check considering the second order forces and either an 

interaction or generalized slenderness approach. 

2. In-plane verification: 

o Determine χy considering the buckling length equal to the member length; 

o Consider χLT from step no. 1; 

o Obtain the second order forces from P-Δ effects and imperfections (ϕ); 

o Perform the in-plane check considering the second order forces and either an 

interaction or generalized slenderness approach; 

3. Perform a cross section check (considering the calculated second order forces) at a 

sufficient number of sections, e.g. 10 sections per member. 

 

b) Only out-of-plane member verification procedure is provided (Level 1 and Level 3) 

 

Considering that only out-of-plane member stability may be checked individually, the global 

and local in-plane second order effects and imperfections of the frame need to be accounted 

for in the structural analysis. For this, the second order analysis of the frame must contemplate 

the imperfections of Figure 6.30. This example illustrates the combination of level 1 and 3 of 

analysis, see also Section 2.5.2.5 a).  

e0,y
(4)

Lcr,y,global≈Lcolumn

Lcr,z≈Lcolumn (≈LLT)

e0,y
(1)

e0,y
(2)

e0,y
(3)

ϕ ϕ

e0,y
(4)

 
Figure 6.30 In-plane global and local imperfections 

 

 

Finally, after definition of the local and global in-plane imperfections, following then a 

similar procedure as in Figure 2.25, the verification of the frame is perfomed as follows: 
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1. Out-of-plane verification check (for each member):  

o Determine χz and χLT considering the buckling length equal to the member length; 

o Obtain the second order forces from P-Δ effects and imperfections (ϕ) only; 

o Perform the out-of-plane check considering the second order forces and either an 

interaction or generalized slenderness approach. 

2. In-plane verification: 

o Obtain the second order forces from P-Δ and P-δ effects and imperfections (ϕ and 

e0,y); 

o To include the torsional effects, reduce My,Rk by χLT My,Rk (to be in line with the 

interaction formula 6.61 of EC3-1-1), considering χLT of each member; 

o Perform a cross section check (considering the calculated second order forces and the 

reduced moment capacity) at a sufficient number of sections, e.g. 10 sections per 

member. 

 

 

6.5 Final remarks 

 

In this chapter, the stability verification of web-tapered beam-columns was discussed. 

Firstly, regarding out-of-plane buckling of beam-columns it was seen that the General 

Method, which is the current alternative for the stability verification of such members, not 

only does not provide clear guidelines of which curve to be considered, but also may lead to a 

high (and random) spread regarding the level of safety. Because of this, based on the results 

of Chapter 4 (for columns) and 5 (for beams), simple adaptations of both the interaction 

formulae of clause 6.3.3 and the general method of clause 6.3.4 were analyzed: 

 The interaction formula is applied considering the utilization of the forces NEd/NRk and 

My,Ed/My,Rk at an arbitrary position and the respective reduction factors at the same position. 

For simplicity reasons it is recommended to consider xc,N
I and xc,M

I, respectively. The 

interaction approach leads to results that are mostly on the safe side. Maximum differences 

of 20% relatively to the numerical results are achieved; 
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 A “modified” General Method is considered such that the generalized slenderness is 

calculated with the cross section resistance load multiplier for αult,k. Several alternatives for 

the interpolation between the flexural buckling and lateral-torsional buckling reduction 

factors calculated with the generalized slenderness were analyzed. It was seen that a deeper 

analysis needs to be carried out to provide a proper interpolation procedure considering the 

stability behavior of the member and also to provide limits between the stability and cross 

section resistance for the low slenderness range.  

 

Regarding the verification of non-uniform members, the General Method (modified or not) 

should give a quite accurate answer. However the fact that in the end a proper interpolation 

may not be as simple to develop and further give accurate results for each and any possible 

combination of loading / taper ratio and that the General Method as given in the code was 

shown more than once to not be accurate and mechanically solid, leads to the question of 

whether  a new generalized slenderness model built analogous to the analytical models 

developed in Chapters 4 and 5 would be worth developing by considering the relevant first 

and second order force utilizations – this shall be analyzed in a next step of the research. 

 

Finally, in Section 0 the possible design procedures were analyzed in the context of frame 

analysis and, in line with Chapter 2, the possibilities for the global structural verification were 

described. 
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Chapter 7 

 

 

 

 

7 CONCLUSIONS AND FURTHER WORK 

 

 

7.1 Summary of the design proposals for tapered columns and beams 

 

Sections 7.1.1 and 7.1.2 summarize the design proposals of Chapters 4 and 5 respectively. 

 

7.1.1 Flexural buckling of web-tapered columns 

 

In Chapter 4, proposals were made for in-plane and out-of-plane flexural buckling of linearly 

web-tapered columns subject to constant axial force. The verification of the column is 

determined according to clause 6.3.1 of EC3-1-1 however considering the properties at a 

calibrated limit second order failure location, xc,lim
II, or alternatively a calibrated over-strength 

factor φ. These are summarized respectively in Table 7.1 and  

Table 7.2, both for in-plane and out-of-plane flexural buckling. 
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Table 7.1 Proposed verification procedures for web-tapered I-section beams – xc,lim
II approach 

 Out-of-plane flexural buckling In-plane flexural buckling 
αult,k(xc

 I) NRk(xc
 I)/NEd – for NEd=const. is the smallest cross section 

αcr ≈Ncr,z,hmin/NEd (approximately the Euler 
load of an equivalent column with the 

smallest cross section) 

Numerically e.g. or Ncr,y,Tap by proposed exp.: 

  1tan04.01, 156.0
min,  

IIcr ANA   

xc,lim
II    hh  1041   h11  

)(xλ II
c  

crEd
II
cRkcr

II
ckult NxNx  /)()( lim,, 

α Hot-rolled: 0.49 
Welded:  0.64 

Hot-rolled: 0.34 
Welded:  0.45 

η 

   

 2.0)( lim, II
cz x

 

   If welded, 
  34.0z  

 2.0)( lim, II
cy x

If welded, 
27.0z  

ϕ  )(15.0 lim,

2 II
cz x   

χ(xc
I) 

1)(1 lim,

22  II
cx  

Verification 1)()( lim,,lim,  II
ckult

II
c xx  ; 1)(, I

ckult x  

 

Table 7.2 Proposed verification procedures for web-tapered I-section columns – φ approach 

 Out-of-plane flexural buckling In-plane flexural buckling 
αult,k(xc

 I) See Table 7.1 
αcr See Table 7.1 See Table 7.1 

)(xλ I
c  

cr
I
ckult x  )(,

 

φ 


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
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 
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hhw
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ht


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10

)1)(41(
1

min

 
1

1
1

min
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
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hw
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
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α See Table 7.1 See Table 7.1 
η 

   

 2.0)( I
czz x

 

   If welded, 
  34.0z  

 2.0)( I
cyy x

 

If welded, 
27.0y  

ϕ  )(15.0
2 I

cx   

χ(xc
I) 

1)(
22  I

cx  

Verification 1)()( ,  I
ckult

I
c xx   

 

7.1.2 Lateral-torsional buckling of web-tapered beams 

 

In Chapter 5, proposals were made for lateral-torsional buckling of linearly web-tapered 

beams. The stability verification of the beam is based on an Ayrton-Perry model in which 

specific parameters regarding the lateral-torsional buckling mode derive from the model, 
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relatively to the Ayrton-Perry model for flexural buckling. Analogous to the column case, the 

verification is finally determined based on the properties of the (mode specific) second order 

limit failure location xc,lim
II. Several possibilities for calibration of a procedure were analyzed. 

Table 7.3 summarizes the procedure in which both xc,lim
II and an over-strength factor φ are 

considered In addition to Table 7.3, verification to shear should be performed. 

 

Table 7.3 Proposed verification procedure for web-tapered I-section beams – xc,lim
II and φ combined approach 

  Lateral-torsional buckling 
αult,k(xc

 I) 
 

My,Rk(xc,M
I)/My,Ed(xc,M

I) – 
the minimum along the beam, e.g. 10 sections 

αcr 
 

Numerically e.g. or by expressions for Mcr from the literature, see Section 
5.2.4. The multiplier αcr shall afterwards be obtained with respect to the 

applied load. 

)(xλ I
cLT  

cr
I
ckult x  )(,

 

xc,lim
II  See Table 7.4 

φLT 
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See Table 7.5 for A,B,C and aγ 
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Table 7.4 Calculation of xc,lim,M
II/L for lateral-torsional buckling of tapered I-beams 

For ψ     
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Table 7.5 Calculation of φ for lateral-torsional buckling of tapered I-beams 
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7.2 Conclusions 

 

In this thesis an overview of the stability verification rules for non-uniform members was 

carried out. Firstly, existing approaches throughout the literature were described and the given 

procedures in EC3-1-1 were then analyzed. 

 

There are mainly three levels of member stability verification available in EC3-1-1. The 

interaction formula is suitable to the most simple cases of prismatic members with well-

defined boundary conditions and symmetrical cross-sections. Regarding non-uniform 

members, the General Method of clause 6.3.4 is supposed to give answers to the stability level 

of such members. Alternatively, either a second order analysis of the system considering the 

relevant second order effects and imperfections or even a numerical analysis accounting for 

all the material and geometrical nonlinearities can be performed although these options add 

too much complexity to the problem. 

 

In Chapter 2, these possibilities are analyzed and the General Method is explored firstly for 

prismatic members and secondly for tapered members. Even when dealing with prismatic 

members the following gaps are observed: 

 When the General Method is derived for the flexural buckling of columns it does not 

coincide with clause 6.3.1 due to the consideration of in-plane member imperfections in 
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the definition of the resistance load multiplier, αult,k. . Even when there are in-plane 

member second order effects present, these do not have such a weight in the final 

buckling resistance; 

 For determination of the reduction factor, the General Method gives the possibility of 

considering either the minimum or an interpolated value between the reduction factors for 

flexural buckling and lateral-torsional buckling, determined with the generalized 

slenderness of the combined load case. If the minimum between the reduction factors for 

out-of-plane flexural bucking and lateral-torsional buckling is adopted (instead of an 

interpolated value), discontinuities are observed for the extremes of the interaction M-N 

curves. Although a interpolation of those reduction factors was derived based on the 

definitions of αult,k of clause 6.3.4, a more detailed study is needed to account for the 

proper behavior of the beam-column when considering a mode interpolation, as the 

referred derivation does not always seem to be correct for intermediate ϕ (≈M/N) values; 

 The account for second order local member effects and imperfections in the value of αult,k 

was discussed and seen to be inappropriate in a way that in-plane imperfections do not 

affect so significantly the out-of-plane capacity of the member. 

 

Regarding non-uniform members many difficulties arise such as the choice of the cross-

section class or the critical location for verification. But the main and pertinent question is the 

choice of one of the buckling curves according to EC3-1-1, which are organized by the ratio 

depth/width. In a tapered member, this ratio varies and consequently the buckling curve may 

vary. 

 

On the structural level, the possibilities for the structural analysis combined with the analyzed 

stability member check procedures were then described and interpreted. Again, many 

difficulties were noticed whether second order effects are accounted for by a proper global 

buckling length or a modeled imperfection, instead of by commonly used stability member 

check procedures.  
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As a result, and because the latter are widely used in practical design, in this thesis member 

stability rules for web tapered columns and beams were developed. Proper generalized 

imperfections were calibrated respectively in Chapter 4 and 5 based on an Ayrton-Perry 

formulation, making it possible to achieve consistency with the prismatic rules for steel 

members. Three options are possible: 

 Account for the real behavior of the column (subject to flexural buckling) or the beam 

(subject to lateral-torsional buckling) with varying length (or slenderness) and, as a result, 

account for the weight between cross-section resistance and imperfection. An additional 

imperfection factor β and a second order failure location xc
II need to be determined for 

stability check; 

 Separation of the first and second order effects. The factor βlim and xc,lim
II are the ones 

calibrated for sufficient high slenderness in which instability effects are dominant. A 

limitative value given by the first order failure (cross-section) resistance needs to be then 

considered; 

 Transformation of the previous into an “over-strength” factor which is an indicator of the 

increase of resistance relatively to the basic case of a prismatic member with a constant 

stress level along the member length. 

 

For the calibration of the new parameters, the generalized imperfections for prismatic 

members with welded cross sections were adjusted to truthfully follow the adopted residual 

stress pattern widely accepted and considered for the development of stability rules in EC3. 

The developed rules for tapered columns coincide with the rules for prismatic columns when 

γh=1, whereas for beams, the developed rules coincide with the mechanically consistent 

proposals for prismatic beams given in previous proposals from the literature (Taras, 2010). 

In addition, for tapered columns, the Rayleigh-Ritz method was considered to obtain the 

flexural buckling critical load of web-tapered columns leading to differences lower than 8% 

for the relevant range of taper ratio, γh≤4. 

 

Finally, in Chapter 6, the developed rules for flexural buckling of tapered columns and lateral-

torsional buckling of beams were applied to the case of beam-columns. Two approaches are 
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possible, both regarding in-plane and out-of-plane buckling verification. These are either the 

interaction or generalized slenderness concept: 

 Regarding the first, the interaction formulae were developed specifically for prismatic 

members such that, in order to be extended to tapered members some improvements of 

the interaction factors would have to be carried out – especially in order to avoid 

significant gaps between instability and cross section failure. Nevertheless, maximum 

differences of 20% on the safe side were achieved relatively to the numerical GMNIA 

analysis; 

 Regarding the latter, some types of logical interpolation procedures were analyzed and 

inadequacies were seen for all the alternatives. A generalized slenderness concept was 

then seen not to be as straight forward as envisaged in the code, even if the minimum of 

the referred flexural and lateral-torsional buckling reduction factors in accordance with 

the analyzed non-uniform member would be used. Although it is a useful concept to 

account for all the possible member non-uniformities as it relativizes those in a 

slenderness which could be used with the defined imperfection factors for uniform 

members, this was seen to not be quite as simple. As a result, wider parametric studies 

should be carried out in order to develop adequate interpolation rules for the most 

commonly applied non-uniform members.  

 In the end, it was seen that either adequate interpolation rules may be developed or 

interaction factors may be improved, respectively regarding the generalized slenderness 

or interaction concept. 

 

Finally, provided that a member check is available, it is brought into the structural analysis 

regarding portal frames prevented from out-of-plane global displacements. In order to avoid 

in-plane member check, local in-plane imperfection amplitudes e0/L would have to be 

calibrated based on the new imperfection factors derived in Chapter 4 for welded cross 

sections although, on the safe side, amplitudes for curve c could be used. Finally, it was seen 

that, if adequate member verification procedures are developed, the verification of plane 

frames with tapered members would be brought to the same level of complexity as for frames 

with prismatic members.  
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7.3 Future research 

 

Throughout the chapters of this thesis some limitations were noted and are to be considered in 

a further continuation of this study: 

 The consideration of local effects (due to bending and due to shear) in the tapered 

member verification are of major importance and as a result, an additional check shall be 

investigated, probably by the determination of a failure location due to local effects in 

which the cross section resistance shall be reduced by the effective resistance; 

 The account of partial restraints must be considered in the basic cases of beams and 

columns as these greatly improve the out-of-plane stability resistance and are commonly 

provided in, for example, roof structure supports or side walls; 

 Application and validation of the proposed methodologies to the case of web-tapered 

beam-columns, correctly taking into account the in-plane and out-of-plane buckling 

modes, regardless of the (interaction or generalized slenderness) approach to be 

considered. In addition, regarding the account for member in-plane buckling effects, 

these may alternatively be considered by the calibration of adequate amplitude 

imperfections e0/L to be considered in the structural analysis; 

 Validation of the application of the developed rules for other boundary conditions. 

Relevant issues are necessarily attached to this subject such as the amplitude of the 

imperfections to be considered for calibration of the design rule or the change of the 

(real) second order failure location. The analytical accuracy of such simplifications to the 

existing design rules should be evaluated and, if necessary, proper adaptations should be 

provided; 

 Verification of any non-uniform member subject to any boundary conditions and loading, 

which can be further attained by the development of a general approach based on the 

distribution of the compression force in the flange (as instability is mainly due to the 

buckling of the flange in compression). To this distribution – which may be fairly 

described by the utilization of forces along the member – an adequate “over-strength” 

factor (or “compressed flange utilization factor”) is to be associated. For this, new factors 

need to be calibrated for several types of common “stress utilization” functions. 
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The work developed in this thesis aims at contributing to many of the issues that are currently 

present for the stability verification of non-uniform members. Because tapered members are 

frequently employed in practical applications, e.g., portal frames, these were considered as the 

starting point of a wider study to be continued in the future. 
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