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RESUMO

RESUMO

Elementos de seccdo varidvel em aco sdo geralmente utilizados devido a sua eficiéncia
estrutural relativamente a elementos prismaticos, uma vez que a utilizacdo de cada seccdo €

optimizada.

O EC3 — parte 1-1 (CEN, 2005) fornece varias metodologias para a verificagdo de elementos
e porticos. Relativamente a elementos ndo uniformes, i.e., com secc¢ao variavel, distribui¢ao
irregular de contraventamentos, eixo nao recto, etc, surgem diversas dificuldades nao
existindo orientacdes para as contornar. Assim, a verificagdo acaba por nao tirar partido das
vantagens associadas a estes elementos, tornando-se conservativa. Neste trabalho de

investiga¢do analisam-se as metodologias de verificagdo para elementos de sec¢ao variavel.

Hoje em dia, o projectista possui ferramentas numéricas sofisticadas que lhe permitem estudar
a estrutura como um todo, de um modo seguro e fidvel. No entanto, ndo existe ainda

orientagdo suficiente para proceder a verificacdo de estruturas através desta via.

Assim, a verificagdo da estabilidade ¢ geralmente feita através de férmulas existentes nos
regulamentos. O EC3-1-1 apresenta um conjunto de férmulas para verificagdo da estabilidade
de colunas, vigas e vigas-coluna. No entanto, a aplicabilidade das mesmas abrange apenas os
casos mais simples: elementos simplesmente apoiados; com contraventamentos intermédios

simétricos e regulares; ou sec¢des duplamente simétricas € ndo variaveis.

Assim, o EC3-1-1 inclui um método geral para verificacdo da encurvadura por flexdo e da
encurvadura lateral, especificamente desenvolvido para verificar estruturas que se encontram
fora do ambito das equagdes de interac¢cdo, nomeadamente elementos de sec¢do variavel. No
entanto, a aplicagdo directa das imperfei¢cdes codificadas para elementos prismaticos, além de
ser mecanicamente inconsistente, conduz a uma verificagdo que podera ser demasiado segura

para alguns casos ou insegura para outros casos.




RESUMO

Pelas razdes mencionadas e porque elementos nao uniformes em ago conduzem a solugdes
estruturais competitivas, esta dissertacdo tem como principal objectivo desenvolver novas
regras de estabilidade para a verificagdo da encurvadura por flexao e lateral de elementos de
alma variavel, na qual o fenomeno de instabilidade ¢ considerado através de um factor de
imperfei¢do adequado. Pretendeu-se atingir simplicidade de aplicacdo ¢ a0 mesmo tempo
transparéncia mecénica. Finalmente, as propostas sdo consistentes com as actuais regras
existentes para elementos prismaticos, contribuindo assim para a harmonizagdo das regras de

verificagdo da estabilidade de elementos do Eurocédigo 3.

Palavras-Chave
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ABSTRACT

ABSTRACT

Tapered steel members are usually adopted in order to optimize the load capacity at each

cross section taking into account the respective distribution of stresses.

Eurocode 3 — part 1-1 (CEN, 2005) provides several methodologies for the stability
verification of members and frames. However, regarding non-uniform members in general,
with tapered cross section, irregular distribution of restraints, non-linear axis, castellated, etc.,
several difficulties are noted. There are yet no guidelines to overcome any of these issues and,
as a result, safety verification is conservative, not accounting for the advantages non-uniform

members provide. This research deals with the stability design of tapered members.

The designer has nowadays sophisticated numerical tools which allow him to study any of the
above-mentioned structures. However, there is not yet enough guidance to safely perform

fully non-linear numerical verification.

Therefore, approaches based on structural analysis followed by design checks are usually
preferred. EC3-1-1 provides a set of design formulae for member design, covering column
and/or lateral-torsional buckling. However, these formulae are related to standard conditions
of structural members, such as simply supported members, with double-symmetric and

constant sections and with intermediate regular lateral restraints.

As a consequence, EC3-1-1 includes a general method for lateral and lateral-torsional
buckling of structural components, specifically developed to verify the structures that lie
outside the validation range of the interaction formulae, namely tapered members. However,
considering the coded buckling curves for application of this method is not only inconsistent
from a mechanical point of view but also may lead to an over-conservative or even

unconservative level of resistance.

il



ABSTRACT

For all of the referred reasons, and because tapered steel members lead to competitive
structural solutions, this dissertation focus on developing new stability rules for lateral and
lateral-torsional buckling of web-tapered members in which the buckling phenomena is
accounted for by a proper buckling coefficient related to realistic imperfections. The objective
is to have a straight forward procedure, nevertheless with mechanical consistency. The
outcomes of this research are consistent with existing rules for prismatic members and aim at

contributing to the harmonization of stability member verification procedures of Eurocode 3.

Kewords
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NOTATIONS

NOTATIONS

Lowercases

a, A Auxiliary terms for application of proposed formula for N, 7,

a,b Auxiliary terms for application of the design method for tapered columns

ag,a, b, c,d Class indexes for buckling curves according to EC3-1-1

ay Auxiliary term to the taper ratio for application of LTB proposed
methodology

b Cross section width

bmax Maximum cross section width

Bmin Minimum cross section width

c,t Cross section dimensions for class determination acc. to EC3-1-1

€0 Maximum amplitude of a member imperfection

€ 0.aux Amplitude of the beam at 7=h,,

f Function for the displacement

f Modification factor for y.r

fy Yield stress

h Cross section height

himax Maximum cross section height

himin Minimum cross section height

hyert lim cross section height at x,. e

i Radius of gyration

1s Polar radius of gyration

ke Correction factor for moment distribution

kamnia Calibration factor to be applied to the results of the finite element analysis

kyya kaakyza kzz

in_pl
kyy

Interaction factors dependent of the phenomena of instability and plasticity
involved

Interaction factor for in-plane instability
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NOTATIONS

Ks

mx

n(x)
ng4(X)
Py> Pz
tr

te

tw

v, W
Vo, Wo

1T
Xe,lim

i i i
XN 5 XeM > Xe,MN

I
Xec

XCII
Xer,max
Xmin
X-X
yy

zZ-7

Uppercases
A

A
Ac,eff

Buckling factor corresponding to the stress ratio y and boundary conditions
Acting torque per unit length

Number of cases

Ratio of design normal force to design plastic resistance to normal forces of
the gross cross section

Distributed axial force

Design distributed axial force

distributed loading, y-y direction and z-z direction

Flange thickness

Flange thickness of a tapered member projected in a vertical plane

Web thickness

maximum deformation, out-of-plane and in-plane

maximum initial imperfection, out-of-plane and in-plane

Second order failure cross section for a high slenderness level
Denomination of the failure cross section in Chapter 6 (to differentiate from
the type of loading it refers to): N — do to axial force only; M — due to
bending moment only; MN — due to the combined action of bending
moment and axial force

First order failure cross section

Second order failure cross section

Location corresponding to the maximum deflection

Location corresponding to the smallest cross section

Axis along the member

Cross section axis parallel to the flanges

Cross section axis perpendicular to the flanges

Cross section area
Gross cross sectional area of the plate

Effective cross sectional area of the plate
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Actr
Amin

CoV

FEM

y» IZ

<«

I
Iyeq
Iy,max

Iy,min

I

e

L
Lerz, Lery
Lit
Fra

Fr

Effective cross sectional area

Cross section area of the smallest cross section in of a tapered member
Shear area

Equivalent uniform moment factor for critical moment determination
Equivalent moment factor according to clause 6.3.3

Coefficient of variation

Modulus of elasticity

Finite Element Method

Shear modulus

General Method

Geometrical and Material Non-linear Analysis with Imperfections

2" moment of area

Flange inertia relatively to zz axis

Torsional constant

Second moment of area, y-y axis and z-z axis

Equivalent 2" moment of area, Y-y axis

Maximum 2" moment of area, y-y axis

Minimum 2" moment of area, y-y axis

Warping constant

Member length

Member buckling length regarding flexural buckling, minor and major axis
Member buckling length regarding lateral-torsional buckling

Design load

Characteristic value of resistance

Elastic critical buckling load for global instability mode based on initial
elastic stiffnesses

Linear Buckling Analysis

Equivalent member length

Lateral Torsional-Buckling

Bending moment
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NOTATIONS

M3y rd

M3, rd

Mp,rd
Mcr
Mcr,tap
Mcr,y,N

Mkq
Mt rd

Design value of the interpolated resistance to bending moments about y-y
axis for class 3 cross-sections, according to Greiner et. al (2011)

Design value of the interpolated resistance to bending moments about z-z
axis for class 3 cross-sections, according to Greiner et al. (2011)

Design buckling resistance moment

Elastic moment for lateral-torsional buckling

Elastic critical moment of the tapered column

Critical moment of a beam-column subject to axial force N and uniform
bending moment M,

Design bending moment

Cross section resistance to bending considering the area of the flanges only

M 3,y.rd; Mn32rd Reduced design value of the resistance to bending moments making

Mn,y,Rd; Mn,z,Rd

MNA
M1y rd
Mpl,z,Rd
Mg

Msupa Minf
My,

My, M,
My,cr,MN

My,Ed, Mz,Ed

My,max,cs

Method
My,max

allowance for the presence of normal forces, y-y axis and z-z axis, for class 3
cross-sections according to Greiner et al. (2011)

Reduced design value of the resistance to bending moments making
allowance for the presence of normal forces, y-y axis and z-z axis

Materially Non-linear Analysis

Design value of the plastic resistance to bending moments about y-y axis
Design value of the plastic resistance to bending moments about z-z axis
Resistant bending moment

Flange bi-moment

Warping moment

Bending moments, y-y axis and z-z axis

Critical moment of a beam-column subject to N+M,

Design bending moment, y-y axis and z-z axis

Resistance to bending moments making allowance for the presence of
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Chapter 1

1 INTRODUCTION

1.1 Motivation and objectives

EC3 provides several methodologies for the stability verification of members and frames. The
stability of uniform members in EC3-1-1 (CEN, 2005) is checked by the application of
clauses 6.3.1 — stability of columns; clause 6.3.2 — stability of beams and clause 6.3.3 —
interaction formulae for beam-columns. Regarding the stability of a non-uniform member,

clauses 6.3.1 to 6.3.3 do not apply.

Figure 1.1(a) and Figure 1.1(b) illustrate recent examples of the use of curved and tapered
members or members with polygonal centroidal axis. The evaluation of the buckling
resistance of such members lies outside the range of application of the interaction formulae of

EC3-1-1 and raises some new problems to be solved.

g ) ‘o il ¥ '-v.-__ i
WL 9 hetd A o L L -+ ieid Tl kol <
(a) Curved and tapered elements — Barajas Airport,  (b) Members with polygonal centroidal axis (stairs) —
Madrid, Spain Italy pavilion, World Expo 2010 — Shanghai

Figure 1.1 Non-uniform members. Pictures obtained from (Steel Construct, no date [online])
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For those cases, verification should be performed according to clause 6.3.4 (general method).
Alternatively, if a second order analysis in which both in-plane and out-of-plane second order
effects and imperfections (local and global) are considered, the obtained second order forces
shall be considered and only cross sectional checks apply, see EC3-1-1, clauses 5.2.2 (3) a)
and (7) a), and Greiner ef al. (2010). Alternatively, the strength capacity may also be checked
by a numerical analysis that accounts for geometrical and/or material imperfections and
material and/or geometrical nonlinearities, henceforth denoted as GMNIA. However, for any
of these methodologies, several difficulties are noted for the verification of a non-uniform

member.

Firstly, taking as an example the case of beam-columns (uniform or not) with varying ratios
of M, g4 to Ngs over the member length, the cross sectional classification changes from cross
section to cross section, see the example of Figure 1.2. For such a case, an exhaustive (and
iterative) evaluation of the stresses (1% and 2nd order) along the member is required to identify
the design cross section and, as a result, the cross section class. As this is not practical, the
highest class is adopted which may result in over-conservative design. A qualitative analysis
of the example shows that the stresses in the interval corresponding to class 3 cross section

are not critical compared to the stresses in the remainder of the member.

Class 3 Class 2 Class 1

Ivly,Ed

Ngg <<< Af,

Figure 1.2 Uniform beam-column with non-uniform loading

Regarding non-uniform members in general, as mentioned, there is not a simple procedure

available for evaluation of the critical cross section, i.e., critical design location. Alternatively,
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equivalent cross section property formulae for the calculation of elastic critical forces of
tapered members are available, either by calculation of, for example, an equivalent length
(Galambos, 1998); depht (Galéa, 1986) or moment of inertia (Hirt and Crisinel, 2001).
However, the introduction of these formulae in the buckling design formulae is not validated
nor these equivalent properties were calibrated to be considered for the calculation of cross
sectional properties associated to the stability resistance of the real member, but only for the

term in the verification procedure concerning the critical load calculation.

Secondly, the determination of an adequate buckling curve is also necessary and leads to

inconsistencies, such as:

(1) The buckling curves in the code were derived for uniform columns with a sinusoidal
imperfection with one wave length. When dealing with non-uniform members (either
with varying cross section, axis or loading), the direct use of such curves may over
predict the resistance level as the buckling mode is usually not a sine function;

(i) The buckling curves in the code are geared towards specific buckling cases. That is why
the interaction formulae and coefficients for uniform members have to take into account
the transitions from one failure mode to the other (flexural buckling to lateral-torsional
buckling, etc.) The “general method” can only treat these transitions in a very superficial
way, by interpolation (not recommended by (ECCS TC8, 2006)) or, on the other hand, by
a time-consuming specific calibration, not practical;

(ii1) If the General Method is applied to a tapered member, the question also arises of how to
categorize the member in terms of buckling curves as the main parameter A/b
(height/width) changes continuously, see Figure I1.3. Because of this, the more restrictive
buckling curve is most likely to be chosen, leading to over conservative results. In fact,
this aspect can be further generalized to the application of the method to structural
components. The method is supposed to establish the safety level of “plane frames or
sub-frames composed of such [single] members”. However, if the same structural system
is characterized by single members, each one with distinct buckling curves, again the

application of the method becomes unclear.
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Curved | Curvec
(h/b>2) | (h/b<2)

- .

h ; hminshmax
max

b,..,.<b

min— " max

blﬂ‘dx

Figure 1.3 Change of buckling curve in a tapered member

If a second order analysis/verification is to be considered the correct shape and magnitude of
the imperfection must also be considered. In EC3-1-1, as an alternative to Table 5.1 of clause
5.3.2 (6) which gives amplitudes for bow imperfections (see Table 1.1), clause 5.3.2 (11) may
be used for determination of the amplitude of the imperfection with the relevant buckling
mode shape, 7., see Eq. (1.1). Again, a critical cross section is necessary for application of

this expression. In addition, the curvature # needs to be explicitly considered by the designer.

Table 1.1 Design values of initial bow imperfection ey/L (Table 5.1 of EC3-1-1)

Buckling curve acc. Elastic analysis Plastic analysis
to EC3-1-1, Table 6.1 eo/L e/l
A 1/350 1/300
a 1/300 1/250
b 1/250 1/200
c 1/200 1/150
d 1/150 1/100
N
. = —_ 1.1
Minie (X) = €977, (X) i’ (1.1)

In Eq. (1.1), N,, is the axial critical load and E/ ncr,m(lx” is the bending moment due to 7., at the

critical cross section.

Finally, on one hand the General Method requires sophisticated global FEM models but on
the other hand it contains so many simplifications that one must wonder if it is worth to apply

it when compared to a “full” non-linear second-order analysis of the system. The latter is not
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really more complicated but more precise and “readable” for the designer. Therefore it

nowadays makes sense to develop simple rules for the basic cases and to include as much

knowledge as possible of the “real” behavior of members in these rules.

Tapered steel members are commonly used over prismatic members because of their

structural efficiency: by optimizing cross section utilization, significant material can be saved.

However, if proper rules and guidance are not developed for these types of members, safety

verification will lead to an over prediction of the material to be used. The main objective of

this research is to provide stability verification procedures for linearly web-tapered members

giving answer to the above-mentioned issues. For this, several goals will be fulfilled:

Overview of existing methodologies for elastic and inelastic buckling of tapered
members;

Assessment and validation of the general methodology of EC3-1-1 for stability checking
of non-uniform members. The General Method is given in clause 6.3.4 to give answer to
the cases that cannot be verified by using clauses 6.3.1 to 6.3.3 and, as a result, tapered
members. Results of the General Method are computed for a range of prismatic members,
for which solutions of the same code exist and, in a second step, tapered members are
verified and discussed;

Development of analytical formulations for web-tapered steel columns subject to flexural
buckling and beams subject to lateral-torsional buckling based on an Ayrton-Perry
formulation. It is then possible to maintain consistency with EC3-1-1 flexural buckling
verification procedure, clause 6.3.1, by extending it with adequate modifications.
Columns and beams with fork conditions, subject to constant axial force and to linearly
varying bending moments or uniformly distributed load, respectively, are treated;

Based on the above, proper parameters for establishment of verification procedures that
take into account the relevant instability modes of in-plane and out-of-plane flexural
buckling of columns and lateral-torsional buckling of beams are calibrated,

Development of a simple procedure for major axis critical axial force determination of

tapered columns, based on the critical axial force of the smallest cross section;
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e The codified imperfection of clause 6.3.1 in EC3-1-1 for welded sections is modified and re-
calibrated as it is shown that current provisions do not follow accurately the residual stress
pattern adopted for such cases. A similar modification is also proposed for lateral-torsional
buckling verification of beams;

e Discussion of the possible approaches for the stability verification of portal frames with
tapered members. This is evaluated on the basis of future development of member buckling

design rules for tapered beam-columns subject to flexural and lateral-torsional buckling.

Finally, all the recommendations and proposals are in line with one of the main goals of TC8
— Stability to achieve consistency and harmonized levels of safety within the checking

procedures for any stability phenomena in EC3.

1.2 The use of tapered members in steel structures

Tapered members are used in structures mainly due to their structural efficiency, providing at

the same time aesthetical appearance. Examples of the application of tapered steel members in

various structures are given in Figure 1.4 to Figure 1.9.

(b)

Figure 1.4 Multi-sport complex — Coimbra, Portugal
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(a) Dragdo Stadium, Porto, Portugal (Picture (b) ”Cidade de Coimbra” stdum, Coimbra,

obtained from (Steel Construct, no date [online]) Portugal (Tal Projecto, no date [online])
Figure 1.5 Stadium rooftops

(a) Exterior of the building (MIMOA, no date [online]) (b) Interior of the building (Veer, no date [online])
Figure 1.6 Bilbao exhibition center, Bilbao, Spain

Figure 1.7 Building entrance, near Porto Alegre airport, Porto Alegre, Brazil (CBCA, no date [online])
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Figure 1.8 Construction site in front of the Central StatioEuropaplatz, Ga, Austria (Nahverkehrsdrehscheibe
Graz-Hauptbahnhof, 02-02-2012 [online])

Figure 1.9 Three bridges over the Hoofdvaart Haarlemmermeer, the Netherlands (Steel Construct (no date)

[online])

Tapered members are commonly applied in steel frames, namely industrial halls, warehouses,
exhibition centers, etc. Adequate verification procedures are then required for these types of
structures. Some structural configurations are illustrated in Figure 1.10, see also Optima Cube

(no date) [online] for other examples of multiple span frames or even asymmetrical frames

with unequal column heights.
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(a) (b)

/ 1
T A

(c) (d)

Figure 1.10 Different portal frame configurations with tapered members (not to scale)

In the scope of member design, maximum taper ratios (defined as the ratio between the
maximum and the minimum height of the tapered member — y,-f,4/hmin) Of y,=4 may be
assumed to be of practical application. Figure 1.10(b), (c) and (d) illustrate this even for the
shorter members. The rafter of Figure 1.10(d) presents a different configuration for the cross

section of the haunches. The latter is not considered in this thesis.

If the General Method (clause 6.3.4) is considered for verification of structural systems
composed of non-uniform members, the imperfection factors to apply in the buckling check
are mechanically inconsistent, of unclear choice, and may lead to over safe or even unsafe
levels of resistance. On the other hand, if global (P-A) and local (P-9) effects and global (¢)
and local (ep) imperfections are considered for a second order analysis of the structure, the
number of combinations and definition of the relevant in-plane (global and local) and out-of-

plane imperfections may not be simple to define.

In this thesis, the flexural and lateral-torsional buckling verification of linearly web-tapered I-
section columns and beams with fork conditions respectively is treated, such that an answer is

provided regarding adequate imperfection factors for each of those buckling modes. Possible
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approaches for treatment of isolated beam-columns and members in the context of framed

structures are then analyzed.

1.3 Outline of the dissertation

This thesis is divided in 7 chapters.

In Chapter 1 existing problems related to the stability verification of non-uniform
members in general are presented and the objectives of this research are drawn;

In Chapter 2 existing stability verification procedures for tapered members are presented
and discussed. Firstly, a general literature review is made. In a second step, the analytical
background for prismatic members is presented as it will be the benchmark and starting
point for the varying cross section case to be developed. The General Method in EC3-1-1
is then presented and results are analyzed for a range of prismatic members. Specifically
for the case of prismatic members analytical derivations of the method are carried out to
be compared to the interaction formulae. The available procedures in EC3-1-1 for the
stability verification of structures are described and finally general issues regarding the
analysis of structures by FEM are pointed;

In Chapter 3 assumptions and simplifications for the numerical models are also
presented and discussed;

Chapter 4 deals with the stability verification of tapered columns. Firstly, the analytical
background for tapered columns is presented. Regarding the elastic in-plane flexural
buckling of web-tapered columns subject to constant axial force, a simplified formula for
calculation of the critical load is presented based on Raleigh-Ritz method. Introducing
nonlinearities in the analytical model, an Ayrton-Perry model is developed and validated
for tapered columns, with varying web and/or flange, subject to out-of-plane or in-plane
buckling, and to constant or uniformly distributed axial force. Adequate parameters are
then calibrated for web-tapered columns with constant axial force and discussed.
Throughout this chapter specific issues such as the cross section class or the codified

imperfections for welded cross sections are brought in and taken into account;
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In Chapter 5, lateral-torsional buckling of tapered beams is considered. Here, an
analytical model is also developed and verified. Presence of shear and shear buckling is
analyzed. For calibration of relevant parameters many decisions are taken especially due
to the complexity brought in by the combination of non-uniform loading and cross
section properties. Again, the codified imperfections for welded cross sections are
analyzed and reevaluated;

Chapter 6 the proposed methodologies are applied for the stability verification of beam-
columns and possible methodologies based either on an interaction approach and
generalized slenderness approach are evaluated. Out-of-plane verification is performed.
These are then brought into the structural level, regarding the stability verification of
portal frames;

Finally, Chapter 7 points the main conclusions of this research and important subjects to

be further developed.







2 SAFETY VERIFICATION OF STEEL MEMBERS — THEORETICAL

Chapter 2

BACKGROUND AND DESIGN PROCEDURES

2.1 Scope

There are many alternatives to study stability aspects. The designer will choose which method
to adopt according to the complexity of the problem; the precision of results; the level of
safety to be achieved or even the simplicity of application of the method to the problem itself.

Figure 2.1 describes the available possibilities for the analysis of a structure according to EC3

part 1-1.

| First order analysis |

I Second order analysis I
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Figure 2.1: Methods of analysis
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Tapered steel construction leads to competitive solutions and, as a result, a great deal of
attention has been given to this subject. Many studies focusing on the elastic behavior and on
elastic or inelastic stability issues have been carried out, either by analytical, numerical or
experimental approaches. Nevertheless, the present research work is motivated by the fact
that, for the time being, EC3-1-1 does not present satisfactory solutions for the stability

verification of this type of members.

In this chapter a literature review of relevant studies in the field of tapered members is firstly
presented. Subsequently, the Eurocode methodologies for stability verification of members
are described:

(1) The analytical background for prismatic members is presented. Second order beam theory
and Ayrton-Perry formulations adopted in EC3-1-1 for the stability verification of
prismatic members are given as this is the basis for the developments of Chapters 4 and 5,
respectively, regarding tapered columns and beams;

(1) The General Method in EC3-1-1, suitable for the stability verification of tapered
members, is analyzed and discussed. A parallel study regarding its application to
prismatic members is performed in order to validate the method against well-known
solutions;

The structural analysis procedures summarized in Figure 2.1 are then described and illustrated

in Section 2.5.

Finally, in the context of numerical analysis and verification of members and structures, the

highest level of numerical analysis is generally introduced, i.e. non-linear analysis by FEM.

2.2 Studies and solutions on tapered members

A general review regarding the analysis and verification of tapered members is given in this
section. It is worth mentioning that in Galambos (1988) a chapter is dedicated to this type of
steel members. In addition, a very well documented overview may be found in the PhD thesis

of Boissonnade (Boissonnade, 2002).
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Firstly, the variation of the depth of the cross section in a tapered member relatively to a
prismatic member leads to differences in the stress determination if the Bernoulli-Euler theory
for prismatic bars is used. Additional normal stresses and/or shear stresses occur and this error
increases with the angle of taper, a. Analytical solutions for determination of these stresses
may be found in the literature (Timoshenko and Goodier, 1970). In reality, the surface in
which normal stresses are developed is a circular surface that develops perpendicularly to the
inclination of the flange and not vertical, see the red line in Figure 2.2(a). As a result, in order
to achieve vertical equilibrium, shear stresses in the web must develop. For practical reasons,
Bleich (1931) illustrates that the circular surface may be quite accurately replaced by a “bi-

linear” surface (see green line) of Figure 2.2(b), for evaluation of the elastic shear capacity.

/
% \*a

SO ; _

(a) (b)

Figure 2.2: Direction and equilibrium of forces in a tapered segment

However, it has been established that, for small tapering angles (<15°) this difference is
negligible and, as a result, regarding member design, the design formulae for prismatic have

been extended for the case of tapered members (Galambos, 1988).

Experimental programs can be found reported in Butler and Anderson (1963) and in Prawel et
al. (1974). The first deal with the elastic stability of web and flange tapered beams. Here,
bracing requirements were investigated. Regarding the latter, inelastic stability was analyzed.
Here, the measured residual stresses showed a similar distribution to the residual stresses of
prismatic members with welded cross sections. The effect of material nonlinearity was also

considered in Horne ef al. (1979) and Salter et al. (1980).
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Regarding expressions concerning the stability of tapered columns, it is mainly formulae for
the calculation of the elastic critical forces that are available in the literature. For example,
Hirt and Crisinel (2001) present an expression for determination of the equivalent inertia of
tapered columns, /.,, with I-shaped cross sections, depending on the type of web variation.
Lee (1972) (see also Galambos, 1998) present an expression for a modification factor g of the
tapered member length. The critical load is then calculated based on the smallest cross
section. In Petersen (1980), design charts for extraction of a factor f to be applied to the
critical load of a column with the same length and the smallest cross section are available for

different boundary conditions and cross section shapes.

Ermopoulos (1997) presents the non-linear equilibrium equations of non-uniform members in
frames under compression for non-sway and sway mode. Equivalent length factors are
calibrated for both cases based and presented in forms of tables and graphs similar to the ones

presented in Annex E of ENV1993-1-1 (1992).

Nevertheless, the consideration of a critical position is still undefined, which, on the safe side,
requires the consideration of the smallest cross section and as a result leads to over-

conservative design.

Regarding design rules, a design proposal for stability verification of tapered columns can be
found in Baptista and Muzeau (1998), in which an additional coefficient K, calibrated
numerically and presented in the form of an abacus, is applied to the reduction factor of a

column with the smallest cross section (see Eq. (2.1)):

Nb,rd,Tap = K x Nb,rd,Mm (2 1)

In addition, some analytical formulations are available: in Raftoyiannis and Ermopoulos
(2005) the differential equation of a tapered column subject to flexural buckling is derived,

considering a parabolic shape for the imperfection; in Naumes (2009), the equilibrium
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equation is also derived, considering the eigenmode shape. However, these expressions are
not applicable for practical verification, as adequate factors for a design rule were not

calibrated for this purpose.

In AISC (Kim, 2010; Kaehler ef al., 2010) an equivalent prismatic member which shall have
the same critical load and the same first order resistance is defined. Such member is then to be

verified considering the rules for prismatic columns.

Considering now tapered beams, Kitipornchai and Trahair (1972) give an analytical solution
for the elastic critical moment, covering any type of tapered I-beam and loading.

Expressions for the elastic critical moment are given, for example, by Galéa (1986) in which
the elastic critical load of a web-tapered beam subject to a uniform bending moment
distribution is obtained by determination of an equivalent height and moments of inertia.
Another procedure for the computation of the elastic critical moment based on equivalent
moment C; factors was presented by Ibafiez and Serna (2010). Here, the tapered beam is
replaced by an equivalent uniform beam by modification of the bending moment diagram. For
application of the “Equivalent Moment Approach”, in a first step, the tapered beam subject to
M(x) is replaced by a prismatic beam with the smallest cross section. The new moment M*(x)
acting at each cross section of this equivalent beam is given by considering the critical
moment which would be obtained at each cross section of the tapered beam, M,,(x), such that
M*(x)=M(x).[M..os/M.(x)], in which M., is the critical moment obtained by the smallest
cross section. With this, an equivalent prismatic beam with a distribution of moments given
by M*(x) is obtained. Finally, considering the adequate factor C; for that moment distribution
and the formula for prismatic beams, the critical moment of the tapered beam may be

determined.

In Andrade et al. (2005), an expression for the calculation of M,, based in the Rayleigh-Ritz
method is developed. Equivalent moment factors C; are calibrated for the case of tapered
beams with fork conditions subject to end moments. Similarly, Andrade et al. (2007b)
develop expressions for critical moment determination of tapered beams subject to a

concentrated load (the depth of the beam increases from the supports (x/L=0 and x/L=1) to the




CHAPTER 2

middle (x/L=0.5)). Expressions for cantilevers subject to a tip load are presented in Andrade et

al. (2006).

For the case of tapered or haunched members with partial bracing near the tension flange,

Horne et al. (1979) also present expressions for the calculation of the critical moment.

If numerical analysis is to be performed, Boissonnade (2002) and Andrade et al. (2007a) refer
the inadequacy of using stepped prismatic finite beam elements for the analysis of tapered
members stability, as the inclination of the flange is not taken into account. In these studies,
adequate elements to account for the torsional behavior of tapered members were developed.

In Andrade ef al. (2010a) the model is extended to discretely restrained tapered beams.

Finally, when material and geometric non-linearity is taken into account, some studies,

proposals and code rules are summarized:

e In AISC, see Ziemian (2010), Kim (2010) and Kaehler et al. (2010), the mapping of the
elastic buckling strength of tapered members to the design strength of equivalent
prismatic members is performed, i.e., an equivalent prismatic beam with the same first
order resistance and the same elastic critical load is determined and, afterwards, the rules
for prismatic members are applied to the equivalent beam;

e Bradford (1988) derives a finite element for the elastic buckling resistance of tapered
double symmetric I-beams loaded by end moments or uniformly distributed load.
Solutions are presented in graphical form and may be considered in the Australian
(Standards Australia, 1998) or British (British Standard Institution, 1985) codes. When
the new critical moment approach is applied to those standards more accurate design
curves are achieved;

e Andrade ef al. (2007a, 2007c, 2010b) carried out numerical studies for the computation
of the lateral-torsional buckling resistance of web-tapered I-beams subject to linear
bending moment distribution and subject to concentrated loading. Results are plotted in a
buckling curve format following the provisions of the General Method in EC3-1-1: for

the tapered beam case the in-plane resistance multiplier is given by the first order
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resistance multiplier here defined by a moment envelope; and the critical load multiplier
is obtained numerically. The nonlinear resistance of the beam is also obtained by means
of numerical analysis. With this information, it is possible to compute the overall
reduction factor as a function of the overall slenderness (see Section 2.4). This study
shows the inadequacy and high conservatism of considering curves ¢ or d for application
of the General Method as currently recommended. Moreover, the influence of the cross
section flange/web proportions is also observed. It is shown that stockier cross sections
(h/b<2 along the beam) present higher lateral-torsional buckling resistance than the

narrow flange cross sections.
e In Vandermeulen (2007), solutions for a “plateau” slenderness 4, (i.e., the limit

slenderness for which instability effects will influence the resistance of the beam) and

adequate imperfection factors a are given for analyzed cases with linear bending moment
distributions. If general expressions for 4, and o were then to be calibrated for a range of

tapering and loading situations, the given rules in EC3-1-1 could be applied.

e Braham and Hanikenne (1993) present a Merchant-Rankine formula for determination of
the reduction factor of the tapered beam based on the generalized slenderness given by
the squared root of the ratio between the plastic load and the critical load multipliers. For
the elastic critical moment, at first, the equivalent height is given by the mid height of the
beam. Because this is very limiting and does not account for the proper torsional behavior
due to the flange inclination, a new definition for the equivalent height was derived and

proposed in Braham (1997).

However, most of these approaches treat the tapered member only by considering the correct
value of the critical load (either by analytical formulae or numerically). The ultimate

resistance is then brought into the prismatic member verification.

Regarding beam-columns (Kim, 2010; Kaehler et al, 2010), the stability verification is
performed on the basis of the interaction formulae for prismatic members with the provisions
for the tapered beams and columns. Alternatively, in EC3-1-1, the generalized slenderness

concept is considered and the out-of-plane stability of non-uniform members may be verified
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with the General Method, clause 6.3.4, in which a generalized slenderness is applied in the
Ayrton-Perry equation, considering the most restrictive buckling curve for flexural or lateral-
torsional buckling of clauses 6.3.1 or 6.3.2, respectively (or an interpolation between the two).
Note however that, when plastic design is performed, in Clause 6.3.5 of EC3-1-1 lateral-
torsional buckling is prevented by limiting the length between the plastic hinge and proper
restraining in the compression flange. Annex BB.3 of EC3-1-1 provides guidelines for

determination of the stable length of tapered members.

With increasing complexity, a second order analysis in which all global and local second
order effects and imperfections may be considered such that only cross sectional checks (in a
sufficient number of sections) need to be performed, see Figure 2.1. This is required because
there are currently no satisfactory member stability verification procedures for non-uniform
members, giving over-conservative results most of the times. Furthermore, regarding the
General Method in EC3-1-1, it will be seen throughout this thesis that the consideration of
certain buckling curves assumed to be adequate may even lead to unsafe results. As a result,
all second order effects and imperfections need to be accounted for in the structural analysis

such that only cross section checks need to be performed, see also Greiner et al., (2011).

Finally, for a more complex analysis, a full non-linear analysis taking into account nonlinear
geometrical and plasticity effects shall be performed. Provided that modeling and
nonlinearities are correctly considered this alternative leads to the actual failure load of the

structure. Code guidance for this approach is given in Eurocode 3, part 1-5 (CEN, 2006).

In summary, although formula for the elastic critical loads or even finite element analysis may
be considered for the elastic buckling resistance, the main problem lies in the further
verification of the imperfect member with material nonlinearities. On the other hand, member
verification may be avoided if the structural analysis accounts for all the relevant geometrical
nonlinearities or, even more precisely, for all the geometrical and material nonlinearities.
Because several difficulties are still present when considering the latter approaches (even for
prismatic members), member stability verification procedures are preferred and developed in

this thesis. Section 2.3 and Section 2.4 present and review EC3-1-1 background

20



SAFETY VERIFICATION OF STEEL MEMBERS — THEORETICAL BACKGROUND AND DESIGN PROCEDURES

methodologies for stability verification of members. The stability verification procedures to
be developed have the same analytical background of the procedures for prismatic members
adopted in EC3-1-1 and are therefore consistent with those, which are already familiar to the
designer. Straight forward and mode conform design buckling rules are then provided, leading

to a simple but at the same time efficient design.

2.3 Ayrton-Perry approach for prismatic beams and columns and

interaction formulae format — analytical background

2.3.1 Introduction

Eurocode 3 — EN 1993 for the design of steel structures has been developed with respect to
member stability verification since its first edition in 1992 thanks to extensive research
dedicated to the subject coordinated by ECCS (European Convention for Constructional

Steelwork) — Technical Committee 8 (TCS8). However, there are still many issues to solve.

EC3 provides two distinct methodologies to verify the stability of beam-columns in buildings
developed by different European teams. The existing interaction formulae for beam-columns
in ENV 1993-1-1 (1992) needed to be improved as they gave either over-conservative or
unconservative results for some cases and, therefore, two sets of new design formulae with
different background have been derived by TCS8 (Boissonade et al. 2006, Kaim, 2004). One is
a mainly theoretically derived set of formulae called Method 1 (Boissonade et al, 2003) and
the other is a simpler set of formulae for quick manual applications, calibrated with numerical
simulations and it is called Method 2 (Greiner and Lindner, 2006). The interaction formulae
in EC3-1-1 have reduction factors for pure axial force and for pure bending moment; the
interaction between these effects is then taken into account by proper interaction factors
attached to the bending terms. Method 1 consists of two sets of formulae in which the in-
plane stability and out-of-plane stability are evaluated. For both these formulae, torsional

deformations may be included or not. Regarding Method 2, it is necessary to choose between
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the two categories “susceptible” or “not susceptible” to torsional deformations. The method

consists, therefore, of 4 formulae: out-of-plane stability (i) with and (ii) without torsional

effects; and in-plane stability (iii) with and (iv) without torsional effects.

However, there are still many aspects to be solved; some are highlighted here:

The formulation of the interaction formulae is oriented to isolated members which are
assumed to be pinned at their extremities and subject to a well-defined transverse and end
loading. Therefore, several parameters shall be determined, such as the buckling length,
the equivalent moment factors and the maximum bending moment. Sometimes, this is not
a clear procedure. Thus, each designer will evaluate a different level of safety, as there
are limited guidelines for these procedures, e.g. the extraction of a member from a framed
system;

While the buckling curves for flexural buckling were derived based on a mechanical
model (Beer and Schulz, 1970) with equivalent geometric imperfections fulfilling the
reliability requirements of 2 standard deviations away from the mean value for a normal
distribution (Taras, 2010), the buckling curves for all other phenomena in EC3-1-1 are
simply based on the column buckling curves. For example, regarding lateral-torsional
buckling of beams, the derived buckling curves for flexural buckling of columns were
simply adapted to best fit the results for beams concerning the General Case of clause
6.3.2.2 (for the Special Case of clause 6.3.2.3 the existing buckling curves were
calibrated to best fit the numerical results). Similarly, in the case of members with
torsional restraints which are not symmetrical relatively to the center of gravity, the
buckling mode might not be sinusoidal. Using the buckling curves for flexural buckling
as a basis is clearly inconsistent. Moreover, numerical calculations for torsional-flexural
buckling (Taras, 2010) show these procedures are very conservative for sections which
activate torsional rigidity within the buckling process;

Within a member, the classification of a cross section may vary. Moreover,
discontinuities may be observed in the utilization ratios corresponding to the limits from
class 2 to class 3 for cross sections in bending. To overcome this problem, in the

European Project RFCS Semi-Comp, see Greiner ef al. (2011), an interpolation between
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the plastic and elastic capacity of the cross section is performed. This interpolation is
carried out by achieving the resistance for limit ¢/f of the analyzed cross section, taking as
reference the c¢/f values of the plastic limit (for example, ¢//=83 for major axis bending)
and of the elastic limit (¢/f =124 for major axis bending), see Figure 2.3. After
establishing the interpolated resistant moments, cross section interaction verification shall
be performed. Finally, for the determination of the “equivalent” member cross section
class, a simplified procedure was established based on the determination of the utilization
ratio along a satisfactory number of locations along the beam (e.g. 10 locations),
considering the adequate cross section resistance at each position (elastic, plastic, or
elasto-plastic, i.e., following the Semi-Comp approach). The position with the maximum
utilization leads to first order failure cross section and is then used for specifying the

equivalent class of the whole member.

Mgy
@ Mnl Rd M3 Rd
~ S
¥
T~a Mel,Rd
__________ ~V
class 2 class 3 class 4

C/ tref

(-
Figure 2.3: Resistant moment determination for I- and H-sections according to Semi-Comp (Greiner et al., 2011)

In the past years, several studies have been carried out and proposals were made in order to
analyze and overcome several problems in the rules for the stability verification of prismatic
members and provide harmonization and consistency within the existing rules in EC3-1-1.
Extensive parametric studies (more than 20000 beam-element models) have been carried out
in Graz University of Technology and provided by Ofner (1997) to study the interaction
factors between axial force and bending moment. For the same purpose, Kaim (2004) has
carried out numerical studies. Within the goals of the 2 research teams in TC8 that developed
Method 1 and Method 2, extensive research was done (Boissonade et al., 2003; Greiner and

Lindner, 2006). More recently, Taras (2010) has developed consistent buckling curves for
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torsional and lateral-torsional buckling, based on the Ayrton-Perry formulation. The same
author has also investigated the effect of laterally restrained I-sections along the weak-axis
flange and, on a same logic, has developed buckling curves for this type of buckling mode. In
addition a consistent design procedure was developed for in-plane stability verification of

beam-columns by making use of a generalized slenderness definition.

Section 2.3.2 to Section 2.3.4 present the analytical background for the stability verification of

columns, beams and beam-columns according to EC3-1-1.

Firstly, the second order theory formulae is presented for simply supported beam-columns
with bi-symmetrical cross section subject to bending in both planes and axial force and with
initial bow in-plane, out-of-plane and torsional imperfections. Note that this derivation can be
found in detail in the PhD thesis of Kaim (2004). Following this procedure, simplifications
are carried out in order to be applied to the cases of columns, beams and beam-columns.

Parallel to this, the stability verification rules in EC3-1-1 are presented.

The required notations are the following:

o v(x), wx), ¢(x) — function of the deformations;

o vy(x), wy(x), po(x) — function of the imperfections;

e v, w, ¢ — maximum deformations (midspan — considering a sinusoidal function);

* v Wy, ¢9— maximum initial imperfections (midspan — considering a sinusoidal function);
e N, M,, M. —uniform first order forces of the cross section;

® p, p- m,— distributed external loading;

e A iyl 1, I, I,—cross section properties;

Note that, in accordance with the plane of loading of the beam-column, buckling about major
axis and buckling about minor axis will be commonly referred by in-plane and out-of-plane
buckling, respectively. This notation is also adopted for the case of flexural buckling of

columns.
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The elastic buckling axial loads are given by:

The elastic critical moment of a beam and also of a beam-column subject to axial force and

uniform bending moment is given by (Trahair, 1993):

Mjr = ]\]cr,z]vcr,Tis2 Mfr,v,N = Ncr,chr,T (1 - N ](1 - N jisz (23)
’ N ,Z N T

Imperfections and deflections are assumed to be sinusoidal. For example, regarding the out-

of-plane deflection, v, it is given by

—vein| &
v(x) = vsm( 7 J (2.4)

The amplification factors for N.,. N, M., yWill be named as

2

N N M,

(2.5)

cr,z cr,y cr,y,N

Compressive stresses are assumed to be positive. The remaining sign conventions are

illustrated in Figure 2.4.
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zZ,W

Figure 2.4: Sign convention

2.3.2 Second-order beam theory for flexural and lateral-torsional buckling of

beam-columns

The differential equations for flexural and lateral-torsional buckling of prismatic members
with double symmetric cross sections are given by Eq. (2.6). The first and second rows of the
matrix deal, respectively with out-of-plane and in-plane flexural buckling. The third row is the

differential equation for torsion.

EIZV””-i-NV” 0 My¢” P,
0 +| ELw" "+ Nw' |+ M_§" =| p. (2.6)
MyV” MZW” EI([)¢HH_(G[T¢H_NZ'SZ¢Vl) m,

Considering m,=0 and
e Neglecting the differences between the uniform first order bending moments M, and M.
and the sinusoidal moments resultant from p. and p,, respectively;

e Neglecting the stiffness terms due to the curvature of the imperfect member;

and introducing the imperfections vy(x), wo(x), and ¢y(x), Eq. (2.6) becomes
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Ncr,z 0 0 N 0 My v - Mz N O My VO
0 N,, 0O (-] 0 N M, [w] =\ M, [+] 0 N M_|w, |27
0 o0 N, | |M, M. iN||¢ 0 | |M, M. Nii|é
Eq. (2.7) can be expressed as
(K, —ngo)u =F' + KU, (2.8)

in which K, is the first order material stiffness matrix; Kg., is the geometrical stiffness
matrix; u and uy are vectors containing respectively the second order deformations and

imperfections at mid-span ; and F" is the first order load vector.

The solution of Eq. (2.7) is

— 5 _
M. v M M, M.
D.N,. DN, )
\‘/;V — 1 M}’MZ DMMCZF,y,N MzDchr,z %
2
¢ DMMcr,y,N Dchr,y Dchr,y Dchr,y
M.D.N,,. (2.9)
y D DZNer
L yooery |
M ][N 0 My,
|| M, [+| 0 N M_|w,
0 M, M. Ni|%

In Eq. (2.9), M Zcr,y, N>>M?, for simplification (Kaim, 2004).

Second order forces are obtained by multiplying the cross section stiffness (El) with the
curvatures, as expressed in Eq. (2.10). Shear deformations are neglected. If it is assumed that

sin~sin’, second order forces lead to the second set of equations in Eq. (2.10), see also
Salzgeber (2000a).
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M = EIL,(=w"(x) +v§ (x)$(x) = v(x)y (x)) M =N, (w=v,p=vé,)
M = ELG"(0) + W ()P + W' (@ (x) = M =N, _(v+wg+wd,)(2.10)
Mrf)l = _E1w¢” M([ul = _ischr,a)¢

Finally, applying a first yield criterion in which a linear distribution of stresses ¢ due to the

applied (first and second order) forces is considered, failure occurs for o=f,.

o N M M m!

= + - <
fy Afy Wyfy szy Iw /wmax fy

1 2.11)

2.3.3 Flexural buckling of columns

2.3.3.1 Derivation

Consider a simply supported column subject to axial force N with lateral imperfection vy,

only. Eq. (2.9) becomes:

[ M2
cr,y,N 0 0
Dchr,z
v M2 Nv,
w|= 21 0 . 0 0| » v= vy (2.12)
¢ Mcr,y,N D,VNC’ Y O 1_ N N
O 0 DZ NE}”,Z Ncr,z cr,z

Applying the first yield criterion of Eq. (2.11),

28



SAFETY VERIFICATION OF STEEL MEMBERS — THEORETICAL BACKGROUND AND DESIGN PROCEDURES

o N M} M" M!' N ~N,.(v+0+0) 0
_—= —+ — —_ = + — 2 —
fy Npl My,el Mz,el Mw,el Afy Wz,elfy
LN, v, < (2.13)
Af N B
g (1 - N)Wz,elfy

Note that, for the case of in-plane flexural buckling of the column, i.e., considering an in-

plane imperfection wy, only, Eq. (2.13) would be

A Vw, <1 (2.14)

Af, N
(a

cr,y

Defining now the quantity y.N,; as the value of N which makes o=f, and introducing the non-

dimensional slenderness A = N, /Ncr,z , the Ayrton-Perry equation (Ayrton and Perry,

1886) for flexural buckling about the weak axis is obtained, which is also the background to

the current EC3-1-1 rules:

v, A

A 5 2
Vo L 1 (=) (-z)(1-g. 2=

_ 7. (2.15)
Wz,el 1 - Zz ﬂ“zz Wz,el

Xt

2.3.3.2Application in EC3-1-1

If the flexural instability mode (in-plane or out-of-plane) is kept undefined, Eq. (2.15) can be

rewritten as

(1—;()(1—;413{;—/1;{:% (2.16)

el
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ep 1s the amplitude of the imperfection regarding the respective buckling mode. The terms

epA/W. may be defined as a generalized imperfection 7. Representing # as a function of the

relative slenderness A = [ Af L/ N, ,yields

e Ad e, L-A e 1 L e 1 e | 1 —
oA G d & LB G ) % L EIf R 2.17
7 w, LI/v Lilvi Lilv Llilv /s @17)

n includes the effect of several imperfections such as residual stresses, initial out of

straightness or eccentrically applied forces. Considering a plateau non-dimensional

slenderness of 4. = 0.2 for which flexural buckling is negligible, Eq. (2.17) becomes

e, | 1

n =T[m7r,/E/fy }(/1—0.2) =a(A-0.2) (2.18)

a
The solution of Eq. (2.16) is given by

1

ge— 1
p-A$ -2

<1 with ¢=051+7+4) (2.19)

Or, taking into account the new definition of 7,

1

ge— L
p-A$ -2

<1 with ¢:0.5(1+a(2—0.2)+12) (2.20)

The design buckling resistance of the column is given by

Nyra = Min(Nb,y,Rd N2 ra ) = Min(?(y X )NRd (2.21)
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From which Ng, shall be determined considering adequate section properties according to the

respective cross-section class.

In Eq. (2.18) a is an imperfection factor calibrated both by extensive numerical and
experimental parametric tests (Beer and Schulz, 1970). It was later adopted in the codes in the
Ayrton-Perry format (ECCS, 1978; Rondal and Maquoi, 1979). The values for the
imperfection factor a and the corresponding buckling curves in EC3-1-1 (ay, a, b, ¢ and d) are

represented in Figure 2.5 and Table 2.1.

—_ =
S N

e 2
AN o

Reduction factor
o
N

Sl
o

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Non-dimensional slenderness A

Figure 2.5: Imperfection factors o and corresponding buckling curves in EC3-1-1

Table 2.1: Imperfection factors a and corresponding buckling curves in EC3-1-1

Buckling curve g a b c d
Imperfection factor o 0.13 0.21 0.34 0.49 0.76

For the cases analyzed in this thesis, the classification of the buckling curve for a given cross

section is summarized in Table 2.2.

Table 2.2: Selection of buckling curve for a given cross section and buckling mode

Fabrication procedure h/b  Buckling about axis  Buckling curve
Rolled I-sections >1.2 y-y
7-Z

<1.2 y-y

7-Z

Welded I-sections y-y
7-Z

o olo oo e
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Finally, for the case of welded I-sections, the generalized imperfection # and corresponding
imperfection factor a are reassessed in Chapter 4 as, for these cases, the given buckling curves
in EC3-1-1 seem not to represent accurately the influence of the residual stress distribution.
This has been discussed in Greiner et al. (2000) and in Taras (2010) for the case of lateral-
torsional buckling of welded beams. In fact, for welded columns, the buckling curve
overestimates the resistance of the numerical model up to 8%. Note that the adopted
magnitude of the compressive residual stresses in the flange (all most of the flange is subject
to an initial stress of 0.25f,) may not be a truthful representation of reality, leading to
restrictive resistance levels (Greiner et al., 2000). Nevertheless, in Taras (2010) modifications
for welded cross-sections are proposed in line with the current residual stress definition for

the case of lateral-torsional buckling of beams.

2.3.4 Lateral-torsional buckling of beams

2.3.4.1 Derivation

Consider a simply supported beam with fork conditions, I-shaped cross section and initial

imperfections vy and ¢y. Assuming small displacements, the two degrees of freedom may be

coupled according to the following criteria (Taras, 2010):

M
Y=t (2.22)

The differential equations for lateral-torsional buckling (beam under uniform bending

moment) are given by (see Eq. (2.6)):
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EI v'"'+0 0 My¢” 0
0 + E]yw""+0 + 0 =0| —
M},v” 0 El ¢""—(GI,¢"-0) 0
(2.23)
EIv'+M ¢=0 M M,
! - V'=- y¢ - -M }¢+Elw¢””—GIT¢”:O
Myv”+EIw¢””—GIT¢”:O EI. 7 EI.

In Eq. (2.23), v(x) and ¢(x) are sinusoidal functions It is known that M., is the nontrivial

solution to this equation. Therefore, considering M, =M., the first equation leads to:

2
M
EIV'+M =0 — Ez{—v;’—zsin(%x)}+Mc{¢sin(%x)}=o - v=g (224

cr,z

which has a similar format to Eq. (2.22).

Eq. (2.9) becomes

— MZ -
v cr O My
- 0 0 M
% D.M? 0 v || Yo
w|= ! = 0 L 0 M, |+ 0 0 0 |0 (2.25)
¢ DMMcr M Nz’)r,y N 0 My 0 O ¢0

The second equation (in-plane) is independent from the other two. Introducing Eq. (2.22), the

solution for v and ¢ is reached.
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MZ‘ 5 V= V() Mcr M)’
|:Vi| 1 N < My¢0 +Myv0 Ncr,z Mcr _My (2 26)
= cr.z e d .
5 s
’ 1=y M>¢,+ N, .M v, ¢=¢0—M}’
Mfr ¢ : o g Mcr _M}'

Consider now the following relationship between the initial imperfections ¢y and vy given by

Figure 2.6 and Eq.(2.27):

¢0 Vo

Figure 2.6: Relationship between ¢, and v,

h M h e,
€ =V 5 %, N s 5 s s hi2+M, /N, (2.27)

cr,z

Applying again a first yield criterion (Eq. (2.11)) in which terms containing v, are neglected

due to their minor significance (Salzgeber, 2000a); replacing M, by y.rW,, .fy; introducing the

non-dimensional ~slenderness  A.r = W, uf, /M, and A= JAf, /N, considering

wmax=bh/4; and replacing Eq. (2.27) and Eq. (2.22) in the expressions for v and ¢ (Eq. (2.26));
a similar equation to Eq. (2.19) for flexural buckling is obtained (the complete derivation of

this can be found in Taras (2010)):
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| ¢=o.5(1+77*+LT2)
<1 with A’ Ae,  Aur’ (2.28)

Xir = =
¢LT_'V¢LT2_ALT2 77*: z 2 Wl - 2 2 .

2.3.4.2 Application in EC3-1-1

Lateral-torsional buckling verification of beams is performed according to clause 6.3.2 of
EC3-1-1. The buckling resistance is calculated using the buckling curves for flexural
buckling. Whereas Eq. (2.28) leads to a consistent approach for lateral-torsional buckling of
beams (if #, is replaced by a similar expression to Eq. (2.18) with adequate imperfection
factor a for the lateral-torsional buckling case), in EC3-1-1 the values of the imperfection
factors a for flexural buckling are adapted to the lateral-torsional buckling of beams,

according to numerical based-GMNIA calibrations.
The reduction factor for lateral-torsional buckling is given by

Xir = : <1 with gy =050+, (Air —0.2)+4us”)  (2.29)

¢LT - ¢LT2 _ZLTZ

The design buckling resistance of the beam is given by

Mb,Rd = ILTMy,Rd (2.30)

From which M, z; shall be determined considering adequate section properties according to

the respective cross-section class.

The imperfection factors a; 7 are categorized differently than the factors for flexural buckling
— the height to width ratio limit is given by A/b=2 while for flexural buckling is given by

h/b=1.2. Here, more slender cross sections lead to higher imperfection factors, unlike for
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flexural buckling. As a result, the lower torsional resistance that slender cross sections provide
is accounted for by a higher imperfection. This categorization is however inconsistent with

the residual stress definition of I-sections which is differentiated at the limit #/b=1.2.

EC3-1-1 presents two approaches for the design check of lateral-torsional buckling effects of
I-beams. One is denoted the “General Case” (clause 6.3.2.2). The other procedure, “Special
Case” (clause 6.3.2.3) is intended for use for hot rolled or equivalent welded sections. This
procedure introduces a correction factor f, which takes into account the effect of the bending
moment diagram and considers new buckling curves that take into account the torsional
stiffness of the beam (Rebelo et al, 2009). The reduction factor for lateral-torsional buckling

according to the “Special Case” is given by

1 1
Yir = — S{ _
i ¢LT _‘\J¢LT2 _IBZLTZ l/ﬂ’LTz

with g,y =05(1+a, (Air — Auro) + BAsr’)

(2.31)

Recommended values in Eq. (2.31) for § and Avroare B=0.75 and A.r0 = 0.4. Finally, for
consideration of the bending moment distribution, y;r must be modified by a factor f (and

respective correction factor k.) such that a modified reduction factor y; 7.4 is obtained by

Kirms =% ]Lf <1 with f=1-05(-k, )[1—2(2” —0.8)2]31 (2.32)

k. 1s a factor that takes into account the type bending moment distribution. The values of a;r
in clause 6.3.2 of EC3-1-1 are given in Table 2.3.
For the determination of the design buckling resistance of the beam, y;r in Eq. (2.30) must be

replaced by y1.7mod.
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Table 2.3: Buckling curves for lateral-torsional buckling

Fabrication procedure h/b General Case Special Case
Rolled I-sections <2 a b

>2 b c
Welded I-sections <2 c c

>2 d d

To assess the accuracy of the alternative design formulae for the verification of lateral-
torsional buckling, a statistical analysis of the results was performed on the basis of EN 1990-
Annex D (Rebelo et al, 2009). A proposal for the definition of the partial safety factor y,,
(uncertanties in the resistance model) is presented for the various methods, in line with the
target failure probability of EN 1990. In order to compare the influence of the load parameter
f together with the “General Case” procedure, the use of the f-factor together with the
“General Case” procedure is there addressed as “General Case/f’”. The 1331 studied cases
covered several parameters: non-dimensional slenderness; bending moment diagrams;
fabrication processes; cross section shapes; and yield stress of steel, representative of practical
situations. It was seen that the General Case gives good results on the safe side, however with
a great amount of spreading, especially for the low slenderness range. The scatter relatively to
the “Special Case” is much lower, however the values do not remain exclusively on the safe
side. In a second step of that study (Simdes da Silva et al, 2009), the evaluation of the
influence of the variability of steel properties on the lateral-torsional resistance of steel beams
was performed in order to establish y,, (uncertainties for the material product) by analyzing the
results of a range of coupon tests. These two partial safety factors lead to the establishment of

yum between yy; = 1.0 up to yy; = 1.2 for the special case and S460 steel grade.

2.3.4.3Ayrton-Perry based proposal (literature)

In Taras (2010) a consistent formulation (see Section 2.3.4.1) based on the Ayrton-Perry
format is derived. This formulation adjusts significantly better to the GMNIA results. A new
format for the generalized imperfection is obtained from the Ayrton-Perry derivation and kept

for a design proposal.
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A’ Ae Aur’ -
= ZLTZ = ZLTZ N="="50,(:-02) (2.33)
z el,z z z

The factor A.r°/A.” provides a correct consideration of the cross section torsional rigidity
and as a result, it is possible to maintain the limits #/b=1.2, consistent with the residual stress

definition. Calibrated imperfection factors o, are given in Table 2.4.

Table 2.4: Imperfection factors by Taras (2010)

Fabrication procedure h/b

oLt
Rolled I-sections >12  0.12 ,Wy,el/Wz,el <0.34
<12 016/, /W, <049
Welded I-sections 0.21 ,Wy,el /Wz,el <0.64

Furthermore, the correction factor /W, , /W.,, of Table 2.4 is able to accurately reflect the

change of residual stresses at the frontier #/b=1.2. To overcome excessive high values

of W, /W.,. for cross sections with extreme geometry (low torsion rigidity), a limit value

of a corresponding to the weak axis flexural buckling imperfection factor is established. In
fact, the limiting value of a;7<0.64 for welded cross sections coincides with the calibrated
imperfection factor for weak axis flexural buckling of welded columns (to be further

discussed and developed in Chapter 5).

For beams subject to non-uniform bending moment distribution, an “over-strength” factor ¢

was developed. Finally, the reduction factor for lateral-torsional buckling of beams is given

by

Xir = (02 = <1
¢LT_‘\J¢LT — QAL

(2.34)

z

2
with ¢,, = 0.5(1 + ¢(a” (A:— 0.2)’%L—T2 + ALTZB
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from which a7 1s given in Table 2.4 and ¢=1.05 for parabolic bending moment distribution
and @ =1.25-0.1y —0.15y > for linear bending moment distribution (y is the ratio between

the maximum and minimum bending moment applied in the beam).

A similar approach is adopted for lateral-torsional buckling verification of tapered beams in

Chapter 5.

2.3.5 Bending and axial force interaction

2.3.5.1 Analytical solution for the relevant modes

Analogous to EC3-1-1 — clause 6.3.3, the in-plane and out-of-plane failure modes are
presented here. The case of beam-columns under uniaxial bending and axial force (N+M,) is
studied. The procedure is based on Section 2.3.2 — second order theory for beam-columns and
first yield criterion, considering lateral imperfections. Again, further information is given in
Kaim (2004). In EC3-1-1 the interaction formulae for stability verification of beam-columns
are based on these derivations considering a second-order in-plane theory. In order to account
for the spatial or elastic-plastic behavior specific concepts are considered afterwards

(Boissonade et al. 2006).

The solution regarding in-plane flexural buckling without lateral-torsional buckling (wy) is

given by

=1 (2.35)

Similarly, for out-of-plane flexural buckling without lateral-torsional buckling (vo; I;=x) Eq.

(2.10) leads to

39



CHAPTER 2

=1 (2.36)

In Eq. (2.35) and Eq. (2.36), M, may be replaced by C,M, such that the actual bending
moment distribution M, is replaced by an equivalent sinusoidal bending moment distribution
therefore avoiding the determination of the critical second order cross section. Further

manipulations lead to the well-known adopted format in EC3-1-1, see also Boissonade ef al.

(2006) and Lindner (2004).

1- c.M
N 1NN, Y =1 (2.37)
AN, 1-xN/N, (1-N/NM,,
)7

The consideration of torsional effects for the case of out-of-plane flexural buckling

considering lateral imperfections v is given by Kaim (2004)

N + My + VO l'ﬁ‘ szNcr,z + l.schr,wMyNnr,zVO _ 1 (2 38)
Npl DyMy,el DMMz,eI Dz Mczr,y,N Mczr,y,NDMM(u,el
Or, rewritten in another format (see also Boissonade ef al., 2006)
h
2 N, 22 —M
N M, + o N A{ N T 22 i - (2.39)
Npl DyMy,el DM DzMz,el Mcr,y,NMz,el Mz,elMcr,y,N
provided that
) ’EI,
ls Ncr,a) = L2 (240)
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and, for I-sections, that

(2.41)

In Eq. (2.38), terms with v,° were neglected.

The case of in-plane buckling subject to torsional deformations is discussed in the following.

2.3.5.2EC3-1-1 interaction formulae

There are two different formats of the interaction formulae in EC3-1-1 which were derived for

uniform beam-columns with double-symmetric cross sections. Method 1 was derived such

that each physical phenomenon is accounted for through a well-defined factor, it is a theory-

based approach (Boissonnade et al, 2006) although coefficients were still calibrated to

numerical benchmarks; In Method 2, simplicity prevails. The latter is a method calibrated

with numerical simulations.

The two stability interaction formulae of clause 6.3.3 in EC3-1-1 are given by

NEd

M, +AM, Mo, +AM

=i 2 <1.0 (2.42)
ZyNRk/7M1 " ZLTMy,Rk/VMl g Mz,Rk/7M1
NEd My,Ed +AMy,Ed Mz,Ed +AMZ,Ed <1 0 (2 43)
ZZNRk/VMl 7 ZLTMy,Rk/7M1 - Mz,Rk/7M1

where:

around y and z, respectively;

Nga, My gqaand M. g, are the calculation values of the axial force and bending moments
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AM, gq and AM. g, are the moments due to the variation of the centroid for class 4
sections;

x» and y. are the reduction factors due to buckling by bending around y and z,
respectively, evaluated according to clause 6.3.1;

xor 18 the reduction factor due to lateral buckling, evaluated according to clause 6.3.2 (y.r
= 1.0 for elements that are nor susceptible of buckling laterally);

ky, k. k., and k.. are interaction factors dependent on the relevant instability and
plasticity phenomena, obtained according to Annex A of EC3 (Method 1) or Annex B
(Method 2);

The several parameters of the interaction formulae of clause 6.3.3 are now briefly explained:

Firstly, the interaction formulae describe the stability behavior of a beam-column under
axial force and bending moments — acting in-plane; out-of-plane; or in both planes. Each
force is analyzed separately and then coupled together by the interaction factors £k, k.,
k-, and k.. above-mentioned. The detailed description and calculation of the interaction
factors of Method 1 and Method 2 are given in Annexes A and B of EC3-1-1
respectively; they include many of the effects of the beam-column such as the bending
moment distribution or the plasticity of the cross section;

There are two formulae to check the stability of a member — in Method 2 Eq. (2.42)
describes the in-plane behavior and Eq. (2.43) describes the out-of-plane behavior; in
Method 1 the two equations are not separately bound to the in-plane and out-of-plane
buckling modes and as a result both equations must be fulfilled for the check. If the
member is susceptible to lateral-torsional buckling, it should be accounted for in each of
these equations;

The interaction formulae are based on a second order theory and, therefore, they are
based on second order forces and amplification factors (Boissonade et al, 2006). Due to
lateral imperfections, the axial force N will produce second order bending moments.
When the bending moment distribution or the structure is not symmetrical, it becomes
necessary to know the position of the critical cross section in order to perform a safe

evaluation. Regarding Method 1, the equivalent moment factors, C,, (see Eq. (2.37)),
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replace the first order bending system by an “equivalent sinusoidal” first order bending
moment which will produce the same amplified bending moment in the span of the
member (Boissonade et al, 2006). Regarding Method 2, equivalent uniform moment
factors C,, were calibrated based on GMNIA calculations with non-uniform bending
moment distributions which were compared to calculations with uniform bending
moment. Finally, it is then enough to verify the buckling resistance in span with the
applied moment affected by C,. For this reason, additional to the application of the
interaction formulae, a cross section verification of the extremes of the member is
needed;

The interaction formulae are based on an in-plane second order theory. Spatial behavior
is extended afterwards, accounting for the existence of out-of-plane forces;

The elastic-plastic behavior is not considered in the analytical format of the formulae. In
Method 1, for the cases of class 1 and 2 cross section, the plasticity coefficients “C;;” are
then defined and M, rq 1s replaced by Cj M, rs. In Method 2, this is accounted for in the
the interaction factors k;;;

The susceptibility of the member to have torsional deformations or not is considered
differently in Method 1 and Method 2. The solution considering lateral-torsional buckling
is based on a second order theory, see Eq.(2.38), but considering only lateral imperfection
vo (Boissonade et al, 2006). Here, twist will produce additional second order bending and
warping moments. In Method 1, there are only two formulae whereas in Method 2 the
two formulae to be considered are chosen according to the susceptibility of the member
to exhibit torsional deformations or not — this is evaluated according to the type of cross
section or the restraining against torsional deformations along the member;

Finally, in Salzgeber (2000b) it was found that in-plane buckling deformations combined
with torsional effects needed to be accounted for — particularly for the case of members
between lateral restraints, i.e., with an in-plane buckling length significantly higher than
the out-of-plane buckling length, see also Boissonnade et al. (2006). As a result, if
relevant, torsional effects shall be included in the in-plane verification formula. For this
case, a combination of initial twist ¢y and in-plane w, imperfections were considered.

Torsional effects are accounted for by the inclusion of the reduction factor y.r to the
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resistant bending moment M, g;. Additionally, Method 1 includes factor C,.r which
accounts for the influence of torsional deformations and modifies the interaction factor

ky, (for the case of in-plane buckling).

In addition, as already referred, clause 6.3.3 of EN 1993-1-1 states that the safety of a beam-
column requires the verification of the cross section capacity at the member ends using an
appropriate interaction expression. The cross sectional resistance is checked using Section 6.2
of EC3-1-1. Cross section resistance verifications considered in this thesis are described in the

following, namely regarding bending and axial force interaction and shear.

a) Bending and axial force interaction

For the verification of bending and axial force interaction, clause 6.2.9 should be considered.

Regarding I and H cross sections, these expressions are:

1-n < .
MN,y,Rd = pl,y,Rd 1_—0 Sa bUt MN,y,Rd = Mpl,y,Rd N (2.443)
My re =M, .2e if n<a; (2.44b)
2
n—a :
MN,z,Rd = Mpl,z,Rd |:1 - ( 1 s j :l lf n>a (2.44C)

where 7= Ny, /N,y and a Z(A—thf)/A <0.5.

For a cross section of class 1 or 2 subject to axial force and uniaxial bending moment, the

interaction diagram for the resistance of the cross section is illustrated in Figure 2.7:
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(Nmax, [ A/Iy,max,cs = MNde)

(NEa; My, ga) Mhs.a < Mytrd

MNy,Rd = Mpl,y,Rd

>
>

M,

y

Figure 2.7: Cross section plastic interaction diagram (N+M,)

The pair of forces (Npax,cs; My max.cs) In Figure 2.7 are obtained by solving the following

system of equations:

1= N /N,
M yman =My =Mpiyre = "0sq = Mo, (2.45)
Nmax,CS — NEd
My,max,cs My,Ed

The utilization ratio of the cross section (or the inverse of the cross section resistance
multiplier) is given by the ratio between the vector norm of the applied internal forces and the

vector norm of the bending and axial force resistance along the same load vector (Figure 2.7):

N, +M .°
lcs _ \/ Ed v, Ed <1 (2.46)

a 2 2
u \/Nmax,CS +M

y,max,CS

For a class 3 cross section, the utilization ratio of the cross sections is given by
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M
Neg | Mo (2.47)
Af, Wy, f,

Finally, in Greiner ef al. (2011) (Semi-Comp project) the verification to mono-axial bending

and axial force interaction for cross section class 3 is given by

My sk =Ms,ra (1-n) (2.482)

My ;s.ra =M; .z (1 - nz) (2.48b)
b) Shear

If shear stresses are present, Eq. (2.49) and Eq. (2.50) should be satisfied. For elastic
verification the Von-Mises criterion may be used.

e  Shear resistance, clause 6.2.6 of EC3-1-1:

/3
Vo <L Virra =4, L 03 (2.49)

pl.Rd Yo

in which 4, is the shear area.

e Shear and bending interaction, clause 6.2.8 of EC3-1-1 or clause 7.1 of EC3-1-5 (CEN,
20006):

M
— B ) if VVEd <05
PR B PR (2.50)
M+V M M V 2 V
pEL - LM g TE 1) <1, if —E 505
pl,y,Rd Mp[,y,Rd Vpl,Rd pl,Rd

in which Mz, is the cross section resistance to bending considering the area of the

flanges only.
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2.4 Analysis of the General Method in EC3-1-1

2.4.1 Introduction and scope

Part 1-1 of Eurocode 3 includes a so called “general method” for lateral and lateral-torsional
buckling of structural components such as: (i) single members, built-up or not, with complex
support conditions or not; or (ii) plane frames or sub-frames composed of such members
which are subject to compression and/or mono-axial main axis bending in the plane, but
which do not contain rotative plastic hinges. The method uses a Merchant-Rankine type of
empirical interaction expression to uncouple the in-plane effects and the out-of-plane effects.
Conceptually, the method is an interesting approach because it deals with the whole structural
component for the evaluation of the stability with respect to the various buckling modes
(Miiller, 2003). In addition, for more sophisticated design situations that are not covered by
code rules but need finite element analysis, the method simplifies this task. It is noted that EN
1993-1-6 (CEN, 2007) specifies a similar approach, the MNA/LBA approach known as the
“Overall Method”, that may be seen as a generalization of the stability reduction factor

approach used throughout many parts of Eurocode 3, see Rotter and Schmidt (2008).

It is, however, questionable that the application of the general method results in a lower bound
estimate of the safety of the structural component for the target probability of failure that is
specified in EN 1990 (1992). In addition, the method specifies two alternative criteria for the

evaluation of the out-of-plane effects, leading to different levels of safety.

Apart from the doctoral thesis of Miiller (2003), this method was not widely validated and
there is scarce published background documentation to establish its level of safety. Within
Technical Committee 8 of ECCS, the need to explore deeply the field and limits of the
application of the General Method was consensually recognized (Snijder et al, 2006; ECCS
TCS, 2006). In particular, several examples have been carried out at the University of Graz
(Greiner and Ofner, 2007; Greiner and Lechner, 2007), comparing advanced finite element

analyses (GMNIA) using beam elements with the General Method.
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In this section the theoretical background of this method is firstly discussed. Analytical
derivations of the method in line with clauses 6.3.1 to 6.3.3 for the stability verification of
prismatic members are performed. It is seen that, even for prismatic members with double
symmetric cross section, the method deviates from the buckling design rules although the
existing buckling curves are to be considered (as stated in clause 6.3.4). More detail may be
found in Simdes da Silva et al. (2010a) in which a comprehensive analysis of the General

Method when applied to prismatic simply supported members is carried out.

Finally, application of the method to non-uniform members is then analysed. Detailed
description of the numerical assumptions is given in Chapter 3, as a basis for the main

developments of this thesis.

2.4.2 Theoretical background — analogy to rules for prismatic members

2.4.2.1 Description of the method

The General Method, as given in EN 1993-1-1 in clause 6.3.4 states that the overall resistance
to out-of-plane buckling for any structural component conforming to the scope defined in the

introduction can be verified by ensuring that:

Zopault,k/}/Ml Zl (251)

where o, 1s the minimum load amplifier of the design loads to reach the characteristic
resistance of the most critical cross section of the structural component, considering its in-
plane behavior without taking lateral or lateral-torsional buckling into account however
accounting for all effects due to in-plane geometrical deformation and imperfections, global
and local, where relevant. y,, is the reduction factor for the non-dimensional slenderness to
take into account lateral and lateral-torsional buckling and y,; is the partial safety factor for

instability effects (adopted as 1.0 in most National Annexes).
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The global non dimensional slenderness Ao for the structural component, used to find the

reduction factor y,, in the usual way using an appropriate buckling curve, should be

determined from

EOP = Y, ault,k /acr,op (252)

where 0., 1s the minimum amplifier for the in-plane design loads to reach the elastic critical
resistance of the structural component with respect to lateral or lateral-torsional buckling
without accounting for in-plane flexural buckling. In the determination of a..., and oz,

finite element analysis may be used.

According to EC3-1-1, y,, may be taken either as: (i) the minimum value of y. (for flexural
buckling, according to clause 6.3.1 of EC3-1-1) or y;r (for lateral-torsional buckling,
according to clause 6.3.2); or (ii) an interpolated value between y and y;r (determined as in
(1)), by using the formula for a,; corresponding to the critical cross section. It is noted that

ECCS TCS8 (2006) recommends the use of the first option only.

Finally, in EC3-1-6 (CEN, 2007) the Overall Method considers for the in-plane behavior a
materially non-linear analysis, instead of (in the General Method) an in-plane analysis with
the account of in-plane imperfections. Moreover, the Overall Method requires the use of a
problem-specific buckling reduction factor y, which is calibrated to the given conditions of

loading and structural behaviour.
2.4.2.2 Application to flexural column buckling

In order to illustrate the application of the General Method to a trivial example, consider the
pinned column of Figure 2.8 subject to an arbitrary axial force Ng,. Let also assume that the
in-plane direction corresponds to the cross-section major axis in bending. Let also assume, for

simplicity, that buckling in a torsional mode is not relevant.
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Z; R NEd

Figure 2.8: Pinned column

The application of clause 6.3.1 of EC3-1-1 leads, in succession, to:

T | | Ne_ame N
ﬂy:\/Ny :\/sz > X, = Nb,y,Rd:Zy pl:Zprz,Rd 2 Ny
cr,y cr,y 7/M1
(2.53)
_ Af N buckling N
Az = — = z = X = szRd:Zz_pl:ZleRd 2Ny,
\/Ncr,z \/Ncr,z ” )/Ml "
and
Nyra= min{Nb,y,Rd SNy ra } 2 Ny, (2.54)
or, defining a; as the ultimate load multiplier with respect to the applied axial force,
N N
al¥ = min{ byd  _batd } >1.0 (2.55)
Ed NEd

Alternatively, the application of the General Method for the same reference applied axial

force yields, successively:

N
b,y,Rd
Qe =
’ N — a N r.N —
d Itk b,y,Rd 1,Rd
B 5 Q= [ e vt VN P (2.56)
_ Ncr,z acr,()p Ncr,z Ncr,z
croop N
Ed

Since
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X, S0 0 <A = g, 2 1. (2.57)
it follows that
Nyri = Xop@uisiNea = Xop XN pira 2 Nig (2.58)
or
a™ =y, %, Ny >1.0 (2.59)
NEd

Comparing Eq. (2.55) and Eq. (2.59) for this trivial example shows that the General Method
does not exactly give the same result as the application of clause 6.3.1 even whenever the
same column buckling curves are used. Assuming that flexural buckling around the minor

axis is critical (y: < y,), yields

M
G Xpky

63.1
ab Zz

(2.60)

Considering the case of pin-ended columns first, Figure 2.9 plots Eq. (2.60) for a range of
profiles and lengths, with the aim to compare the results from General Method with clause

6.3.1.
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(a) Rolled cross sections

(b) Welded cross sections

Figure 2.9: Results of Eq. (2.60) — pin-ended columns

The ratio between the ultimate load multipliers for the General Method and for clause 6.3.1
decreases as the slenderness of the column increases. This can be explained by the fact that

slender columns have lower reduction factors y,, leading to an increased difference between
A- andzop. The same reason is given for the higher differences illustrated in stocky cross-
sections relatively to slender cross-sections, see also Taras (2010). The latter present a high

in-plane stiffness relatively to the out-of-plane stiffness and as a result zop is closer toA-. It

can also be noticed that the results concentrate in groups according to the chosen buckling
curve (see Table 2.5) or, in other words, curve b (higher imperfection) leads to a higher

relative decrease in the ultimate resistance.

Table 2.5: Buckling curves for Flexural Buckling about zz, (acc. Figure 2.9)

Cross sections h/b Rolled  Welded
IPE 360 — IPE 200 >1.2 b C
HEB 550 — HEB 400
HEB 360 - HEA 200 <1.2 c c

The fact that the column resistance to out-of-plane flexural buckling needs to be reduced by
the in-plane second order effects, when the given curves in the code were calibrated
considering only one direction for the imperfection, leads to a deviation from the start. In fact,
even if both directions are considered for the imperfection, the reduction felt by the in-plane

imperfection is not as restrictive as the reduction provided by the consideration of the full in-
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plane reduction in the resistance load multiplier a,;x. The example of Figure 2.10 supports

this. Resistance is compared considering the following cases:

e Nonlinear numerical analysis considering imperfections in both directions (GMNIA_yz);

e Nonlinear numerical analysis considering

(GMNIA_z);

imperfection in weak axis direction

e General Method considering an in-plane GMNIA analysis for a,;; and the well-known

Euler critical load multiplier for a.,,., (GM);

e C(Clause 6.3.1 of EC3-1-1 (6.3.1);

e Eq.(2.60) (EQU).

In Figure 2.10(a) results are presented relatively to a nonlinear numerical analysis considering

imperfections in weak axis direction (GMNIA_z); in Figure 2.10(b) results are illustrated in a

buckling curve format. If a slender cross section were to be illustrated, e.g. IPE200 (h/6=2),

results would practically coincide, see Simoes da Silva ef al. (2010a). The numerical model

accounting for imperfection in directions z-z and y-y presents slightly lower resistance than

the reference model with out-of-plane imperfections only. Nevertheless, if compared to the

General Method cases (numerical or analytical), differences can still reach 25%, confirming

the above discussed. Numerical assumptions are described in detail in Chapter 3.

abMETHOD / abGMNIA,Z

Z

1 .
0.95 -
0.9 1
—o—06.3.1
| cece@ens EQU ......
0.85 —GM | e
— <o = GMNIA yz
0.8 T T T
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Iy

abMETHOD

| e, \‘\ ------- Euler
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(a) Relative differences to GMNIA z
Figure 2.10: Evaluation of the General Method applied to prismatic columns (HEB300, 2/b=1; Hot-rolled; S235)

(b) Buckling curve representation
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The same applies to beam-columns, in which the consideration of the second order in-plane
effects should not be as severe (Taras, 2010). Actually, most codes that consider this concept
of generalized imperfection, consider for o, the cross section resistance without in-plane ond
order effects. This is further discussed in Section 2.4.2.5. Finally note that if, for the case of
columns, in the definition of @, N, 1s considered in Eq. (2.56) instead of Ny, 4, the general

method yields exacly the same result as clause 6.3.1 of EC3-1-1.
2.4.2.3 Application to lateral-torsional buckling

For an unrestrained beam, let o, denote the load level that corresponds to the attainment of

the flexural resistance at the critical cross-section. Application of the General Method gives

_ Mpl,,v,Rd
Ly = o W
max,Ed 5 Itk pl,y,Rd Py
- /Iop = E =\/ M :A‘LT - Zop =ZLT (261)
_ Mcr acr,op cr
acr 0,
M
max,Ed

and, in this case, the General Method exactly coincides with the application of clause 6.3.2 of
EC3. Note also, that for the case of beams, the in-plane second order effects do not affect the
in-plane resistance a,;x and therefore cross-section resistance is attained. As a result, both

methods coincide.
2.4.2.4 Application to bending and axial force interaction

Consider the pin-ended beam-column of Figure 2.11 subjected to an arbitrary axial force Ngy

and a uniform major axis bending moment M, g4

My,Ed M)’,Ed

ﬁ A < N

Figure 2.11: Pin-ended beam-column
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Let

My
N N pl,Rd My M pl.y,Rd apl
al = ol = 2R ¢=—"1 (2.62)
pl N pl M N
Ed y.Ed a,

Clause 6.3.3 of EN 1993-1-1 states that the safety of a beam-column requires the verification
of the cross-section capacity at the member ends using an appropriate interaction expression
such as Eq. (2.44) for I and H cross-sections, and the verification of the stability interaction

formulae Eq. (2.42) and Eq. (2.43), see Section 2.3.5.2.

Assuming proportional loading (¢=constant) and class 1 or 2 cross sections (Ngx=N,;zs and

M, re=M,1,ra), an ultimate load multiplier can be defined with respect to the applied loading,

given by
1 N M N M 1
6.3.3 = max - + kzy — ’ = + kyy — ’ cs,ends (263)
Q" Zszl,Rd ZLTMpl,y,Rd Zpr/,Rd XM 1, ra a,’

In Eq. (2.63), o,/ "® denotes for the cross section resistance multiplier regarding both

member ends (see Eq.(2.46)). The application of the General Method leads to

a}?M = Z()p ault,k (264)

Assuming the same applied loading Ng; and M, g, and evaluating a,, x according to 6.3.3 gives

1

N . M
:max[i+k’v’;”l rE mlen dYJ (2.65)

o [RANY MpLy,Rd ol

Note that Eq. (2.65) can only be considered for evaluation of the in-plane resistance if Method

2 (Annex B of EC3-1-1) is applied. As referred previously, only in Method 2 the in-plane and
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out-of-plane behavior are separately considered in the both sets of equations of clause 6.3.3 of

EC3-1-1. Comparing Eq. (2.63) and Eq. (2.64), gives:

a™
a;.s.s
2.66
NEd M ), Ed NEd My Ed 1 ( )
Zap ault,k max + kzy - 5 + kyy , ) cs,ends
Zszl,Rd ZLTMpz,y,Rd Zprz,Rd ZLTMpl,y,Rd x,
Or, considering also Eq. (2.65),
k k al
max i + = ) L + = 5 csi;ds
a™ X: X Xy Xur® oy )
ot = Xop Lk g (2.67)
max| — + = , csiitds
zy ¢ apl’

According to clause 6.3.4(4) of EN 1993-1-1, the reduction factor y,, may be determined from
either of the following methods: (i) the minimum value of y (for lateral buckling, according to
clause 6.3.1 of EC3-1-1) or y.r (for lateral-torsional buckling, according to clause 6.3.2); (ii)
an interpolated value between y and y;r (determined as in (i)). In EC3-1-1, it is suggested that

the formula for a,;,x corresponding to the critical cross section is used. This leads to:

xEd + AA;Iy,Ed < Xop
Rk Rk +1
;\4 = Zu =¢¢—1 (2.68)
NEd + y.Ed LA
INpe XM, £ Au

The values of y and y;r considered for the reduction factor y,,, are calculated with the global
non dimensional slenderness A,, of the structural component, determined from Eq.(2.52).

According to Trahair (1993), the elastic critical bending moment and axial force are given by
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2
My | _ [ Neanw [ N (2.69)
Mcr Ncr,z NCr,T

where M., is the elastic critical bending moment, N, . is elastic critical compressive buckling
force in a bending mode about the z-z axis and N, ris the elastic critical compressive buckling
force in a torsional mode. Eq. (2.69) is valid for beam-columns with constant bending
moment distribution. To adapt the equation to other types of bending moment distribution, see

Np/,Rd /Nmax
Mphy,Rd /My,max

Trahair (1993). Finally, introducing ¢ = in Eq. (2.69) leads to (Neuy

M, e mn), SO that ac,.,.p 1S given by:

a, = = (2.70)

Results of Eq. (2.67) are now analysed for a range of profiles, loading and lengths, with the
aim to compare the results from General Method with clause 6.3.3, and find any trends. The
cross sections were chosen in order to enclose a range of profiles with several depth/width
ratios, and consist of class 1 or 2 cross sections.

Concerning all results, comparing the General Method with Method 2 (for determination of
ouk) using Eq. (2.67) leads to a variation of results between 81% and 113%, as shown in

Table 2.6:

Table 2.6: All results of Eq. (2.67) for ¢=1 —n=80 for each case ; yop= min(),; xr )

Fabrication Bending _EC3 Method 2

Process Moment  Min. Max.
Hot Rolled All 84.4 112.3
¥=1 87.7 109.8

¥=0 87.0 108.2
Y=-1 84.4 101.2
Conc. 90.0 111.1
Dist. 89.0 112.3
Welded Y=1 94 .4 110.3
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Figure 2.12 illustrates the results for rolled cross sections. Results are plotted for a range of

member lengths between 4:=0.5 and A.=2.5 for ¢=1. yrr is calculated according to the
General Case from EC3-1-1, and y,,= min (x- ; yv1).

115 115
——IPE 360 ——IPE 360
o L WT\}S)ZI | pE200 110 1 ‘4’:13[;1’:1 IPE 200
— |- HE550B = | < HES50B
- 105 e — w105 e |
e M/ —HES500 A i M \\\% —HES500 A
£ 100 ——HE450B £ 100 — ——HE450B
<t < =
< o5 = vt |~ HE400B| | os . |-—~HE400B
2 N —~ HE360B| |2 |-~ HE360B
= 90 == = 90
HE 340 B HE 340 B
85 HE 300 B 85 HE300B
HE 200 A HE 200 A
80 ‘ ‘ ‘ ‘ ‘ : 80 : : : : : :
0 05 1 15 2 25 3 0 05 1 15 2 25 3
Az Az
(a) Constant bending moment (b) Triangular bending moment
E — —1IPE 360
10 Dli}f - L IPE200

——HES550B

105 .\,/// - HE500 A
100 S %/"\1

on

on

g ——HE450B

< N =24 L

i 95 '\\R T~ HE400B

: = - HE360B
90 = HE 340 B
85 HE300B

HE 200 A

80 : : , : : :

0 0.5 1 1.5 2 2.5 3
Az
(c) Uniformly distributed loading
Figure 2.12: Fig. 9 Results of Eq. (2.69)

When Figure 2.12 is analyzed, it is seen that for more slender cross sections (larger /4/b), the
General Method is less conservative. Again, the results also tend to concentrate in groups

according to the buckling curve, see Table 2.7.

Table 2.7:Buckling curves for rolled cross sections (General Case for LTB)

Cross sections Buckling curve — FBzz  Buckling curve - LTB
IPE 360 b b
IPE 200

b a

HEB 550 - HEB 400
HEB 360 — HEA 200 c a
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Consider now Figure 2.13 which represents the results for a HEB 300 for uniform moment

(P=1), with different ratios of g=0y,/""/ 0"

O=|m(
0.01
110 0.05
105
o 0.1
© 100 02
© :
- Zf) 025
O
| |
. 03
80
=2
HE 300 B "4
IPZI )\,_Z ' Inf

Figure 2.13: Results of Eq. (2.67) — beam-columns; Eq. (2.60) — columns; or Eq. (2.61) — beams; ¥=1; HEB
300; Method 2

An inconsistency around ¢=0, i.e., high bending moment relatively to the axial force is
observed: for ¢=0 (lateral torsional buckling), the results are calculated using Eq. (2.61), that
18, op= xor While for ¢>0 Eq. (2.67) is used whereby y,,= min(y., y.1)= x- in this case of a
HEB 300 profile.

In general, taking y,, as the minimum value between y. or y;r, for ¢=0, in case the reduction
factor y. is smaller than y; 7, the above discontinuity will be observed. For ¢=o0, i.e., high axial
force relatively to bending moment and in case reduction factor y;r is smaller than y. the same
inconsistency is observed. However, if y,, is calculated with Eq. (2.68) (interpolated value

between y. and y;7), the discontinuity in the interaction curve disappears, as

¥ = p+1 gﬁlgng’p = Xu @.71)
v g_ki ;i_l;l;lolop :Z
X X

To illustrate this, two cases are chosen such that: (a) y. < yzr and (b) y.r < y.. The results are

plotted in the interaction curves of Figure 2.14, considering the results of Eq. (2.64) — clause
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6.3.4 for beam-columns. For comparison, results of Eq. (2.59) — clause 6.3.4 for columns; Eq.

(2.61) — clause 6.3.4 for beams; and Eq. (2.63) — clause 6.3.3, are also plotted.

0.9 0.7
| 633 6323
0.8 ™ ~#-6.3.4 (minimum) 0.6 - . -#-6.3.4 (minimum) |-
0.7 LN 6.3.4 (interpolated) | 6.3.4 (interpolated)
06 ‘\\,\ 6.3.4 - D= {000} 0.5 \ 6.3.4-®0={0:0} |
e >
z0s \ Zos \
0.4 503 N
=3 | IPE200 W = IPE 360 K\
2=t \ 0.2 4 A z=1
0.2 | Hot Rolled: \ Welded: \
01 4| Curvezz-b : 0.1 9| Curvezz-c¢ \
Curvelt-a \ CurvelLt-d "%
0 T T 7N ] 0 T T "”’_\
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6
N/Npl N/Npl
(@ % <xr (®) % <%

Figure 2.14:Interaction curves regarding the value of y,,

Using an interpolated value of y and y;r leads to more accurate results in a way that the
referred discontinuities are avoided. Nevertheless, if such an interpolation is to be proposed in
the future, a more detailed study is needed in order to establish the limits of the application of
the reduction factor y,, along the interaction curve, as also pointed out by Taras (2010):
whereas the interpolation curve y,, provides a smooth transition between the curve y;r and y.
(with varying ¢), the real curve (i.e. GMNIA curve) does not vary continuously between the
extremes ¢=0 and ¢=co, as it may seem by analyzing results in the interaction curve
representation (instead of in a buckling curve representation). This means that although the
interpolation in Eq. (2.71) may solve the discontinuities in the limits of the interaction curve
(¢=0 and ¢=00), it still does not describe with sufficient accuracy the mechanical behavior of
the beam-column with varying ratios of Ngs /M, g4, 1.€., In intermediate ¢. This will be

explored in Chapter 6 for the case of tapered members.

To illustrate this, a IPE200 with 24-=0.5 and varying ¢ is given in Figure 2.15. In Figure
2.15(a) results are represented in the buckling curve format, whereas in Figure 2.15(b) results

are represented in the interaction curve format, such that the curve regarding the interpolation
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is given by (zap; X.p)- For the general method results, Eq. (2.64) is solved with the derived

formula for the interpolated value of y,,, Eq.(2.68). The GMNIA curve is given by
Zop = afl'i‘,f /achBA and Xop = abGMNM/afl'i‘,f (2.72)

from which a.;,:">~ is given by Eq. (2.65) (i.e., evaluation of the in-plane buckling resistance

according to clause 6.3.3).

xop ® My/%\/lpl,y
11 : AN —o—GMNIA
0.8 yop interpolated (EQU)
0.8 -
0.6
0.6 -
0.4 -
Curve a
0.4 1 Curve ¢ 0.2 1
—o—GMNIA
02 yop interpolated (EQU) 0 | | | LN\
T 05 | 15 0 02 04 06 08 1
»op N/N,,;
(a) Buckling curve representation (b) Interaction curve representation

Figure 2.15:Analysis of the interpolation of ¥,

It is shown in Figure 2.16 that considering Eq. (2.71) does not lead to unsafe levels of
resistance. Figure 2.16 illustrates the mean values +1 standard deviation of the ratio

GMNIA /g, Method for several intervals of ¢, regarding 606 beam element simulations from the

Op
PhD thesis of Ofner (1997), see Simdes da Silva et al. (2010a) for details. It is here visible
that the interpolation of y gives less conservative results than the minimum. Although it also
leads to higher resistance than clause 6.3.3, it is always on the safe side relatively to GMNIA
analysis. However, the conservatism associated to these results will be discussed in Section

2.4.25.
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—o— GMNIA/6.3.3
1.30 - -o- GMNIA/6.3.4 MIN
—o~ GMNIA/6.3.4_INT

T10:0.02] 1005:0.1] 102:03] 04:05] 10751 [1.53]
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i (~N/M)

GMNIA /al Method
D

Figure 2.16:Mean values with vertical bars denoting +1 standard deviation of the ratio a, cases

plotted against the defined sub-sets of @

Finally, in terms of numerical results, a full 3D GMNIA analysis yields the highest resistance,
see Simoes da Silva et al. (2010). A statistical evaluation was also carried out in the referred
study. The evaluation of the safety factor yz; according to Annex D of EN 1990 (2002)
demonstrates that the General Method becomes more conservative with the increase of the
length of the member (Figure 2.17). Finally, as also observed previously, more slender cross
sections lead to higher safety factors. The evaluation of the partial safety factor, yg,, is carried

out according to the procedure described in detail by Rebelo et al. (2009).

1.10

1.05 ==
<
3 1.00

095 ——EC3-6.3.3

-#-EC3-6.34
EC3-6.3.4 (num)
0.90 \ . .
10;0.8] 10.8;1.2]  11.2;1.8] 11.8;00[
Az

Figure 2.17:Variation of safety factor y,q with slenderness, y,,=min(y; y.7); x.t evaluated according to the

General Case of clause 6.3.2; and a,,,; evaluated according to Method 1 of EC3-1-1.
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2.4.2.5Some comments on the value of ay;k

It was shown in Section 2.4.2.2 that the consideration in-plane local imperfections in the
multiplier a,;x for the out-of-plane flexural buckling verification of columns gives
inconsistent results with clause 6.3.1.

This definition was adopted in clause 6.3.4 because the consideration of the cross section
resistance load multiplier (with no local imperfections) may sometimes lead to unsafe results
for the stability verification of beam-columns, even if the minimum between y. and y;r is

considered (Ofner and Greiner, 2005).

To differentiate the two alternatives, the following nomenclature is considered in the thesis:

e General Method in its current format, in which a,; is evaluated considering in-plane
local imperfections — o and Xop are considered for illustration of results;

e Modification of the General Method, in which a,;x 1s evaluated excluding second order
local effects. For a simply supported member, this corresponds to the cross section
capacity. The subscript “op” (out-of-plane) is then replaced by “ov” (overall) (in the

more general format of generalized slenderness procedures).

Figure 2.18 reproduces one example given in Taras and Greiner (2006) for a simply

supported beam-column with A-=0.75 subject to constant bending moment and axial force
with a hot-rolled cross section IPE500. From Figure 2.18(b), it is seen that the minimum
reduction factor y,, is given by the minimum ratio between the distances to the origin of the
cross section resistance interaction curve and the GMNIA curve. For this case, it is achieved
at $=0.2. In Figure 2.18(a), yov,Grmnia=0nb,cunia/0wi k- Note that for the lateral-torsional buckling
curve, the more adequate developed buckling curves for lateral-torsional buckling (Taras,

2010) are adopted.
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(a) Buckling curve representation (b) Interaction curve representation

Figure 2.18 Example of a member which y,, is lower than both y, and y; 7

As a result, if the upper bound of the member resistance is then reduced, it may avoid the
existence of unconservative cases in which the in-plane bending moment significantly reduces
the out-of-plane resistance of the beam-column. Another possibility was given in Ofner and
Greiner (2005), in which a,; is determined considering the cross section capacity. Here, an
amplification of the flexural buckling imperfection factor a is performed, which accounts for
the bending moment deflection of the respective bending moment distribution. The resultant
buckling curve y,, is then determined considering this imperfection. This proposal leads to
fairly accurate results for the case of in-plane flexural buckling or out-of-plane flexural
buckling. However, if lateral-torsional buckling is a potential mode, the method becomes less

accurate.

Regarding the given approach in EC3-1-1 (in which a,; is decreased), it leads to over
conservative resistance if the in-plane effects are of the same magnitude as the out-of-plane
effects (for example, RHS sections), see Greiner and Ofner (2005); Ofner and Greiner (2005);
Taras and Greiner (2006); or Taras (2010). Although this definition aims at accounting for the
destabilizing effect of the in-plane bending moment on the out-of-plane resistance (Greiner
and Ofner, 2005), this is not significant for all cases — for example, an in-plane bending
moment distribution w=-1 will have a much lower destabilizing effect on the out-of-plane
instability than a bending moment distribution w=1. As a result, for the first case, the

reduction of the cross section capacity will be too restrictive.
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As a result, the fact that safe results are obtained either for the minimum or for the
interpolation given in Section 2.4.2.4 may be purely due to the fact that a lower estimate of
the maximum capacity is set. Because this assumption does not truly correspond to the main
reason of the generalized reduction factor being smaller than the minimum of y, and y;7, it is

possible that this approach may, at some point, give unsafe levels of resistance.

In the given parametric study of Section 2.4.2.4 note that, for the determination of y. and y;r,
EC3-1-1 rules were considered, which are already a safe assumption relatively to the real y.
and y;.r GMNIA results. If the latter would have been considered, surely lower abGMNIA/abMe’hOd

(Figure 2.16) values would be achieved.

In summary, to be mechanically consistent, this buckling resistance reduction should not be
accounted for by such a restriction of the cross section capacity especially considering local
in-plane effects that in reality do not have such high effect in the out-of-plane buckling
resistance all the times. In other words, the resistance reduction should be considered
afterwards in the generalized reduction factor and not applied to a,;r These aspects
concerning a generalized slenderness concept are analyzed more in detail in Chapter 6,

considering tapered beam-columns as case of study.

2.4.3 Treatment of non-uniform members

In the verification of the resistance of a non-uniform member, several assumptions have to be
considered, which are not clear for the designer, as they are neither defined nor explained in
the codes. These have been previously discussed in Section 1.1 and are: (i) evaluation of the
design cross-section; (ii) definition of the cross-section class; and (iii) definition of the
buckling curve. In Simdes da Silva et al. (2010b) the stability verification of a web-tapered
beam-column subject to uniformly distributed bending moment and constant axial force is

performed, covering these aspects.

Given that there are various options for the application of the General Method, Figure 2.19

summarizes the procedures for the calculation of the ultimate load factor, for the more general
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case of beam-columns. Although for a tapered member a,,,x should be evaluated numerically
(as there are currently no guidelines to determine o, x analytically — as defined in the code i.e.

accounting for in-plane local and global second order effects and imperfections), the

theoretical approach of the General Method is also considered for verification of resistance.

General Method — Theoretical approach

~

. I _
/ Which position of the cross-section
to evaluate resistance?

Which class of cross-section to
choose when it varies along the

tapered member? 4
In-plane Out-of-plane
resistance elastic
J/ critical load
Clause 633Mm ‘ s(ejz‘?if)sn
(Method 2) -~
(in—plane) resistance
ith —1 at end
W X sections
‘ ault,k ‘ ‘ acr,op ‘
\/

ﬁ“‘)p = Y ault,k /acr,op

it varies along the tapered member?

‘X ALT

VoV
Xop =
Minimum (x, 1)

Xop —

/" Which buckling curve to consider when

Interpolated (x, x.1)

‘ General Method — Numerical approach ‘

o~
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Zopault,k /7/M1 2 1

(a) According to clause 6.3.4 — analytical expressions

— R/

Xop @it k Iy 21

(b) According to clause 6.3.4 — numerical calculations

Figure 2.19: Stability verification of the member according to the General Method

Numerical evaluation of the General Method should simplify the procedure regarding all the

questions which arise when verifying the buckling resistance of a tapered member. However,
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when analyzing Figure 2.19 it seems that the main problem of its application lies in the
correct definition of the buckling curve as already discussed. Throughout Chapters 4 to 6

application of EC3-1-1 buckling curves is shown not to be proper.

2.4.4 Final remarks

For prismatic members, it is possible to directly evaluate the resistance using the General
Method (6.3.4) evaluating a,x according to 6.3.1 to 6.3.3 and a.,., according to Eq. (2.70),
leading to similar results, except for the extremes of the interaction curve. In such regions of
the interaction curve, the minimum value of y and y;r might not correspond to the real type of
buckling mode. Using an interpolated value of y and y;r, see Eq. (2.68), solves at least this
problem. However, a more detailed parametric study is needed in order to establish the limits
of the application of the reduction factor y,,. The definition of a.;x was also seen to be
inconsistent from the mechanical point of view. In addition, concerning the “generality” of the
general method there is no clear definition given, however it becomes obvious that it is
restricted to open sections and hollow sections are excluded. For those aspects and limitations
the generality is mainly based on general forms of open cross sections and with out-of-plane

behaviour, so that the term “general” method is questionable.

Regarding non-uniform members, when in-plane GMNIA and LBA numerical simulations are
considered to evaluate resistance according to the General Method, it is possible to avoid the
difficult task of classifying the cross-section and knowing the position of the critical cross-
section for use of its properties in the verification of stability. On the other hand, the

definition of the buckling curve is still unclear.

As a result, in Chapter 4 and 5, adequate analytically based procedures for stability
verification of web-tapered members are developed. These are further applied to beam-

columns in Chapter 6 in which the application of the General Method is again analyzed.
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2.5 Possible methods for the structural analysis
2.5.1 Introduction

The structural analysis methods described in Figure 2.1 are analyzed in the following. Firstly,
second order analysis may or may not be necessary depending on the relevance of the internal
forces caused by deformations. In EC3-1-1, this condition may be assumed to be fulfilled if

the following is satisfied:

F
a, =—=—2>10 for elastic analysis

cr F
e (2.73)
F, . .
a, =——215 for plastic analysis

cr
Ed

where o, is the multiplier of the design loading which causes elastic instability in a global
mode; Fg, is the design loading on the structure; F., is the elastic critical buckling load for

global instability mode based on initial elastic stiffnesses.

If second order analysis is required, second order internal forces may be determined either by
a precise second order analysis including step-by-step or other iterative procedures, or by the
amplification of the first order internal forces (several approximate procedures may be found

in the literature, see for example Simdes da Silva et al. (2010b)).

Regarding imperfections, global and local imperfections shall be taken into account according
to clause 5.3 of EC3-1-1, respectively for frames and bracing systems and for individual
members. The shape of imperfections may be derived from an elastic buckling analysis
considering the relevant modes. Also, the most unfavorable direction and form should be

considered.

Regarding the member imperfection, individual bow imperfection shall be considered (by an

amplitude of the bow imperfection e, see also Table 1.1 of this thesis). For frames sensitive
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to buckling in a sway mode, global imperfections shall be accounted for in form of an initial

sway imperfection (on the structure level — global imperfection ¢, see EC3-1-1).

In a simplified way, imperfections may be replaced by equivalent forces, see Figure 2.20.

lNEd lNEd lNEd lNEd
) —> | —
i —>
| e
L, —
[ ]
i |=> ::
L 5
L 5
L 5
L 5
¢ Ny —>| 4N, e,/L
<+— [ —> | —
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Figure 2.20: Imperfections and corresponding equivalent horizontal forces

Following EC3-1-1, there are mainly three levels of analysis.

Level 1: Second order analysis accounting for all the effects and imperfections — global
and local (clause 5.2.2 a) of EC3-1-1). It becomes only necessary to check the cross-
section resistance of the member;

Level 2: Second order analysis considering only global effects and global geometrical
imperfections (clause 5.2.2 b) of EC3-1-1). This method is the most commonly used. The
stability verification of the members according to clauses 6.3.1 to 6.3.3 is carried out
considering the buckling length of the member as the non-sway buckling length;

Level 3: First order analysis of the structure (clause 5.2.2 c¢) of EC3-1-1). Neither
imperfections nor second order effects are included in the analysis of the structure and, as
a result clauses 6.3.1 to 6.3.3 of EC3-1-1 must be verified considering the buckling length

of the member defined according to the global buckling mode of the structure.
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In Section 2.5.2, an example is given in order to illustrate the implementation of the several
approaches (or even combination of those). Sections 2.5.2.2, 2.5.2.3 and 2.5.2.4 respectively
correspond to the above-defined levels of analysis 1, 2 and 3. Because many times it is
practical to mix the described methods of analysis, in Section 2.5.2.5 possible combinations

are described.

2.5.2 Example

2.5.2.1 Introduction

Consider the frame of Figure 2.21 with a similar configuration as in the frames presented in
Figure 1.10 of Chapter 1 — a typical configuration for frames with tapered members. For
illustration of the problem (verification is focused at the structural level and not at the member
level), the frame i1s assumed to be composed of prismatic members such that member stability

verification formulae are applicable.

Consider also that the frame is unrestrained with respect to out-of-plane displacements at the
top of the left column but braced at the apex and top of right column. Second order local and
global effects and imperfections shall be considered in both directions (y-y and z-z are
respectively the in-plane and out-of-plane member axis; LT stands for lateral-torsional) and
are illustrated in Figure 2.21 and Figure 2.22. The frame is also assumed to be sensitive to
buckling in a sway mode. In Figure 2.21 and throughout Section 2.5.2, red illustrates in-plane
global imperfections; green illustrates out-of-plane global imperfections and yellow illustrates

local member imperfections (in-plane, out-of-plane or both, depending on type of analysis).

70



SAFETY VERIFICATION OF STEEL MEMBERS — THEORETICAL BACKGROUND AND DESIGN PROCEDURES

I
-——— == ISl Seal
_____ __‘.-' =~los=2 Plane of the
=
Pl
structure
in-plane in-plane global

out-of-plane

W

Global + Local imperfections

0=
-

Figure 2.22: In-plane and out-of-plane bow imperfections

2.5.2.2Second order analysis accounting for all the effects and imperfections

Level 1 corresponds to the case in which second order analysis accounting for all the effects
and imperfections — global and local (illustrated in Figure 2.21) — is performed. It becomes
only necessary to check the cross-section resistance of the member at a sufficient number of
cross sections, as all stability effects are already included in the structural analysis. The
consideration of local effects and imperfections in the analysis of the structure might not be
simple if it is done analytically (by approximate methods) and, therefore, if this method is

chosen, numerical analysis is preferred.
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2.5.2.3Second order analysis considering only global effects and global geometrical

imperfections

The second level may be defined as a second order analysis considering only the global
effects and global geometrical imperfections. This method is the most commonly used. As the
global effects are already considered in the analysis of the structure, the stability verification
of the members according to clauses 6.3.1 to 6.3.3 is much simpler. For this alternative, the
buckling length of each member may be considered as the non-sway buckling length or, on
the safe side, as the real length (Boissonnade et al, 2006). For example, assume that the
column was fixed at the base — L., conmn shall be safely considered as L.oums. In fact, note that
the buckling length is never exactly the same as the member length because the restraining
provided by the adjacent parts of the structure does not exactly coincide with the idealized

fork conditions.
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Figure 2.23: Verification according to a second order analysis with global effects

2.5.2.4First order analysis of the structure

The third level may be defined by a first order analysis of the structure. Neither imperfections
nor second order effects are included in the analysis of the structure, i.e., first order bending
moments are considered for the verification. In order to account for these effects, a stability
verification of each member has to be performed. In EC3-1-1, for the case of prismatic
members this is done by applying the interaction formulae of clauses 6.3.1 to 6.3.3 of EC3-1-
1 (members in bending and/or axial compression). Regarding clause 6.3.3 (beam-columns),

equations 6.61 and 6.62 of EC3-1-1 shall be verified (respectively Eq. (2.42) and Eq. (2.43) of
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this thesis). The difficulty of this method lies in the determination of the buckling length of
the member which has to be defined according to the global buckling mode of the structure. In
the example of Figure 2.21, see now Figure 2.24, the stability verification has to be
performed for each member considering for each case the global buckling lengths. In Greiner
and Lechner (2007), an example of a frame illustrates the determination of in-plane and out-

of-plane global buckling lengths.
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Figure 2.24: Verification according to first order analysis of the structure

2.5.2.5Combination between the methods of analysis

For practical reasons the described methods may be combined in order to lead to more simple

verification. In this section, the following is considered:

a) Level 1 and Level 3: In-plane global and local imperfections are considered in the
structural analysis (level 1) such that no in-plane stability member verification needs to
be carried out. On the other hand, out-of-plane (global and local) stability verification is
performed by member design formulae considering adequate out-of-plane buckling
lengths (level 3);

b) Level 2 and Level 3: only global effects and imperfections are considered in the structural
analysis and stability must be checked individually for each member (level 2). However,
because global out-of-plane imperfections may not be simple to define, only in-plane

global imperfections are considered in the structural analysis by ¢. As a result, in the
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member design formulae adequate out-of-plane buckling lengths must be considered

(level 3).

a) Level 1 and Level 3

Because the difficulty in co