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Abstract  

The spread of computer-based systems and the growing number of 

its applications in critical tasks has increased the dependence of modern 

societies on that kind of systems. As a consequence, dependability 

benchmarking of computer systems, as a way to assess and compare the 

dependability of components and systems, has caught the attention of 

researchers and practitioners in recent years. 

One crucial component of dependability benchmarks is the fault 

injector. Dependability benchmarks must include fault injectors with very 

specific features: (i) they should be very easy to install and use, without the 

need for any complex setup or installation procedure;(ii) have high level of 

portability; (iii) have very low intrusiveness, in order to mitigate the 

performance loss; (iv) be capable of injecting faults in both user and system 

spaces; (v) and in code and data segments of any process, irrespective of 

their complexity; (vi) be independent of the availability of the source code 

of any system component or user process; (vii) be dynamically linked into a 

target system; and (viii) be compatible with the latest and most advanced 

software fault models. Since existing fault injectors do not fulfill these 

requirements, this thesis presents a pioneering SWIFI tool named 

DBench-FI (Dependability Benchmarking Fault Injector), specially 

developed for dependability benchmarking. Their unique characteristics 

make it one of the most versatile fault injectors available. 

Among the main components of a dependability benchmark suite, 

the most critical one is undoubtedly the faultload. It should embody a 

repeatable, portable, representative and generally accepted fault set. 

Concerning software faults, the definition of that kind of faultloads is 

particularly difficult, as it requires a much more complex emulation 
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method than the traditional stuck-at or bit-flip used for hardware faults. 

Moreover, a faultload based on software faults requires a clear separation 

between the software components which are selected as fault injection 

target and the benchmark target (i.e., the system under evaluation), as the 

injection of software faults actually changes the code of the target 

component. This way, the faults should be injected in one component (the 

fault injection target) in order to evaluate their impact in the other 

components or in the overall system, guaranteeing the inviolability of the 

benchmark target and the credibility of the dependability benchmark. 

Although faultloads based on software faults had already been 

proposed, the choice of adequate fault injection targets (i.e., actual software 

components where the faults are injected) is still an open and crucial issue. 

Knowing that the number of possible software faults that can be injected in 

a given system is potentially very large (especially for large and complex 

systems), the problem of defining a faultload made of a small number of 

representative faults is of utmost importance. This thesis presents a 

comprehensive fault injection study and proposes a strategy to guide the 

fault injection target selection to reduce the number of faults required for 

the faultload. Furthermore, it exemplifies the proposed approach with a 

real web-server dependability benchmark and a large-scale integer vector 

sort application. 
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Resumo em Língua Portuguesa 

O aumento da utilização dos sistemas informáticos e o número 

crescente das suas aplicações em tarefas críticas das sociedades modernas 

tem aumentado a dependência desse tipo de sistemas. Em consequência, 

nos últimos anos, as benchmarks de confiabilidade têm sido objeto de 

enorme interesse, quer por parte de investigadores, quer por parte da 

indústria. 

Um dos elementos fundamentais que integram as benchmarks de 

confiabilidade é o injetor de falhas. As benchmarks de confiabilidade devem 

incluir injetores de falhas com características muito específicas: (i) devem 

ser fáceis de instalar e de utilizar, não exigindo qualquer procedimento 

especial de instalação ou execução; (ii) devem possuir um elevado nível de 

portabilidade; (iii) devem possuir um baixo nível de intrusividade no 

sistema alvo, de forma a minorar a perda de desempenho; (iv) devem 

oferecer a capacidade de injetar falhas em todo o sistema alvo (quer no 

espaço do utilizador, quer no espaço do sistema); (v) assim como nos 

segmentos de código e de dados de qualquer processo, independentemente 

da sua complexidade; (vi) devem ser independentes da disponibilidade ou 

conhecimento do código fonte de qualquer componente do sistema ou 

processo de utilizador; (vii) ser dinamicamente integrados no sistema alvo; 

e (viii) ser compatíveis com os mais avançados e recentes modelos de falhas 

de software. Uma vez que os atuais injetores de falhas não satisfazem todos 

os requisitos mencionados, esta tese apresenta uma ferramenta de injeção 

de falhas pioneira, implementada por software (Software Implemented Fault 

Injection - SWIFI), denominada DBench-FI, especialmente desenvolvida 

para benchmarks de confiabilidade. As suas características únicas fazem dele 

um dos mais versáteis injetores de falhas atualmente existentes. 
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De entre os componentes fundamentais das benchmarks de 

confiabilidade (workload, faultload, medidas, e configuração experimental e 

procedimentos), a faultload é, sem dúvida, um dos mais críticos. Ela deve 

incorporar um conjunto de falhas repetível, portável, representativo e 

aceite pela comunidade e pela indústria. No que concerne a falhas de 

software, a definição desse tipo de fautloads é particularmente difícil, uma 

vez que exige métodos bastante mais complexos do que o tradicional 

stuck-at ou bit-flip utilizado nas falhas de hardware. Adicionalmente, as 

faultload baseadas em falhas de software exigem uma clara separação entre 

os componentes de software que são selecionados como alvo da injeção de 

falhas e o alvo da benchmark (i.e., o sistema sob avaliação), uma vez que a 

injeção de falhas de software altera efetivamente o código do componente 

alvo. Desta forma, as falhas devem ser injetadas num componente (o alvo 

da injeção de falhas) a fim de se avaliar o seu impacto nos outros 

componentes ou no sistema como um todo, garantindo a inviolabilidade do 

alvo da benchmark e a credibilidade das benchmarks de confiabilidade. 

Apesar de terem já sido propostas faultloads baseadas em falhas de 

software, a escolha dos alvos da injeção de falhas (ou seja, os componentes 

de software onde as falhas são injetadas) continua a ser um tópico em 

aberto, apesar de fundamental. Sabendo-se que o número de falhas de 

software que podem ser injetadas num dado sistema é potencialmente 

muito grande, o problema da definição de uma faultload composta por um 

número pequeno de falhas representativas é de extrema importância. Esta 

tese apresenta igualmente um estudo exaustivo de injeção de falhas e 

propõe uma estratégia de orientação da seleção dos alvos da injeção de 

falhas para a redução o número de falhas necessárias numa faultload. Além 

disso, exemplifica a abordagem proposta com a utilização de uma 

benchmark de confiabilidade, real, para web-servers e de uma aplicação de 

ordenação de vetores de números inteiros de larga dimensão. 
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Chapter 1  

1 Introduction 

This thesis is the result of several years of research in the field of dependability 

benchmarking at the Software and Systems Engineering Group of the Center for 

Informatics and Systems of the University of Coimbra. 

This opening chapter presents the motivation and the research goals for this work, 

providing a basis for the discussion that follows. The structure of the thesis is also 

presented in the final section of this chapter (Section 1.3).  

1.1 Goal and Motivation 

ith the spread of computing systems and the growing number 

of its applications in our everyday life, modern societies are 

becoming increasingly dependent on computer-based systems. 

System failures are a serious risk and cause more damages than ever 

before. Although more serious consequences arise from failures in safety 

critical applications, such as medical, aircraft, and nuclear power systems, 

there are other areas where such system failures cause important damage, 

like financial losses.  

W 
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There are many examples of system failures with consequent high 

costs in a wide range of areas. For example, in 1991, software problems in 

the Patriot missile-defense system used during the Gulf War prevented 

intercepting an Iraqi Scud missile killing 28 American soldiers and injuring 

around 100 other people [Blair et al. 1992]. Between June 1985 and January 

1987, a race condition bug led to what became tragically known as the 

Therac-25 accident - a computer controlled radiation therapy machine that 

massively overdosed six people, with resultant deaths and injuries 

[Leveson et al. 1995]. On 26th and 27th November 1992, design fatal flaws 

caused the failure of the London Ambulance Computer Aided Dispatch 

system [THRA 1993]. The economic impact that a bug can have in a nation-

wide money-critical system was fully shown in the credit card denial of 

authorization occurred in France, on 26th-27th June 1993 [Laprie 1995]. On 

4th June 1996, a software problem caused the maiden flight explosion of 

Ariane 5 [Lions 1996], resulting in a direct loss of at least 370 million dollars 

to the European Space Agency (ESA) [Dowson 1997]. On 7th August 1996, 

inadequate redundancy [Garber 1996] led to the blackout of America 

Online (AOL) computer network, preventing the service provider’s 

network for 19 hours, affecting 6 million users. On 14th August 2003, 

approximately 50 million people in the northeastern United States and 

southeastern Canada were impacted by the blackout of the General Electric 

energy management system [PSOTF 2004]. The outage was due to a 

software fault, triggered by a unique combination of events that led to a 

cascade of system failures and to an estimated total loss of 13 billion dollars 

[Wong et al. 2010]. On 7th March 2008, the reactor number 2 of the Edwin 

Irby Hatch nuclear power plant, in United States, was forced into an 

emergency shutdown for 48 hours after the installation of a software 

update on a computer operating on the plant’s business network 

[Krebs 2008]. The resulting loss was estimated in 5 million dollars [Wong et 

al. 2010]. More recently, on June 2012, a software fault originated by a bad 

software upgrade caused the collapse of the Royal Bank of 

Scotland/Natwest computer banking system. As a consequence, several 
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million of costumers were unable to access their accounts for several days 

[Masters et al. 2012, Scott 2012]. The cost of this system failure was 

estimated in more than 100 million pounds [Treanor 2012]. 

The use of formal methods for software validation is many times 

rejected [DeMillo et al. 1979], since they encompass a too complex and 

time-consuming process that cannot be managed and used, in practice, in 

software development. Instead, many software engineers and designers 

argue the use of more elaborate testing methods in order to ensure the 

correctness of software. However, a counter-argument to this view is the 

fact that, as stated by [Dijkstra 1972], testing could only prove the presence 

of bugs, but not their absence. 

In fact, it has been obvious over the last years that the high level of 

dependability, essential for modern computer systems, cannot generally be 

achieved using only a rigorous development process accepted by many of 

the actual certification schemes. The evaluation of dependability of 

computer systems is absolutely essential in an increasingly dependent 

society on that kind of systems. However, the intrinsic complexity of such 

an assessment is further aggravated by the growing complexity of both 

hardware and software [Silva et al. 2005]. Several research studies also 

show not only a clear predominance of software faults [Gray et al. 1991, 

Sullivan et al. 1992, Lee et al. 1995, Chou 1997, Kalyanakrishnam et al. 1999] 

when compared to other types of system faults, but also that its weight on 

the overall system dependability will tend to increase. As a consequence, it 

is nowadays generally accepted that most of the software components have 

residual faults, also known as software defects or bugs, which escape the 

traditional testing phases of software development process. Among the 

main causes for those circumstances, besides the well-known technical 

difficulties intrinsic to the software development and testing process 

[Lyu 1996, Musa 1996], one can mention the huge complexity of today’s 

software and the increasing pressure to reduce time to market. This 

scenario emphasizes the importance of system dependability assessment as 
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a measure of confidence that can be relied on a given system. This includes 

the evaluation of attributes like availability, reliability, safety, integrity, 

among others. More than ever, practical approaches for the evaluation of 

the dependability of computer systems are very much needed, especially 

standardized dependability benchmarks that allow comparing 

dependability attributes of analogous and alternative software products or 

components. However, the experimental evaluation of the dependability of 

computer systems is very difficult [Carreira et al. 1995] as it depends on 

fault activation probability, which in turn depends on either internal or 

external system factors like the different layers of the software, the actual 

hardware where the software is running, environment issues, and human 

interaction. 

After the success of the performance benchmarking initiatives that 

caught the attention of the industry in the last decades and have driven the 

creation of organizations like TPC (Transaction Processing Performance 

Evaluation Corporation) [TPC] and SPEC (Standard Performance 

Evaluation Corporation) [SPEC], dependability benchmarking has been the 

focus of attention of researchers and practitioners in the recent years 

[Kanoun et al. 2008, Brown et al. 2000, Vieira et al. 2003, Zhu et al. 2003a, 

Lightstone et al. 2003, Kanoun et al. 2001, Christmansson et al. 1996a, 

Durães et al. 2002a]. To many business critical systems and applications, 

dependability attributes like availability, integrity and reliability, among 

others, are as important as performance. The goal of dependability 

benchmarking is thus to provide a standard procedure specification to 

characterize a computer system or component, providing the assessment of 

dependability related measures.  

The main components of a dependability benchmark suite are 

[Kanoun et al. 2008, Koopman et al. 1999a]: 

 Workload – representing the work to be done by the system 

during the benchmark run and used to create a realistic operating 
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scenario. It should represent a typical operational profile for a 

particular application area. 

 Faultload – representing a repeatable, portable, representative 

and generally accepted set of faults and stressful conditions that 

could lead to undependability, if not properly handled by the 

system.  

 Measures - characterizing the performance and dependability of a 

system executing the workload in the presence of the faultload.  

 Experimental setup and benchmark procedures - describing the 

setup required to run the benchmark and the set of procedures 

and rules that must be followed during the benchmark execution 

in order to ensure uniform conditions for measurement. 

Among these components, one of the most critical and difficult to define is, 

doubtlessly, the faultload [Durães et al. 2004a], since it should represent a 

repeatable, portable, representative and generally accepted fault set. That 

difficulty is even higher in what concerns software faults, since they 

required a much more complex emulation method than the usual bit-flip 

fault injection approach used to emulate real hardware faults [Voas et 

al. 1997a]. Furthermore, a faultload based on software faults requires a clear 

separation between the software components that are selected as fault 

injection target and the benchmark target (i.e., system under evaluation), as 

the injection of software faults actually changes the code of the target 

component. This way, the faults should be injected in one component (the 

target) in order to evaluate their impact in the other components or in the 

overall system. In fact, the software faults injected in the target component 

actually allow answering the question of what would happen to the system 

if a residual fault in such component became activated. 

A representative faultload must be one that contains faults that 

represents the common programming bugs that escape the traditional 

software testing phases and still persist in existent software products 



8  Introduction 

 

[Durães et al. 2004b]. Although the faultload definition of that kind of faults 

had already been proposed [Durães et al. 2006], a problem still persists 

when that model is applied in very large and complex systems. Commonly, 

there is a large number of possible targets components for fault injection 

and, consequently, that represents a huge number of possible software 

faults to be injected. 

In fact, the use of dependability benchmarks driven by software 

faultloads (e.g., such as the ones proposed in [Kanoun et al. 2008]) has a 

major problem: it could take years to inject the faultload, which means that, 

in practice, it is not possible to run such dependability benchmarks. This is 

the case when the target system is a large piece of software, such as an 

operating system. Reducing the size of the faultload (but keeping it 

representative enough to obtain valid results) is essential to show industry 

and the research community that it is possible to use dependability 

benchmarks in large-scale systems. It should be noticed that among the 

mentioned faultload properties (repeatability, portability and 

representativeness), the representativeness is the one that needs special 

attention when reducing the faultload. In fact, properties such as 

repeatability and portability of the faultload are either not affected by the 

reduction of the number of faults or it is even easier to satisfy those 

properties with a reduced faultload. 

This thesis presents the results of more than two years of continuous 

fault injection experiments in real systems and proposes a strategy to 

answer a still open and crucial question: how to choose adequate fault 

injection targets, and thus reducing the total software fault injection 

experiments, without restricting the benchmark scope and 

representativeness? 

This study is an attempt to answer this question. The presented work 

is based on an experimental study and incorporates the results of a 

three-year research effort focused on showing that it is possible to obtain 
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accurate fault injection using a faultload that contains only a small fraction 

of all the possible faults that can be injected in a target system.  

1.2 Contributions 

As mentioned, the aim of this thesis is to propose an approach to 

guide the fault injection target selection of dependability benchmarks, 

decreasing the execution time of the benchmark, maintaining, 

simultaneously, their usefulness and representativeness. This is especially 

useful in large and complex systems where the experimentation time can 

be highly reduced without compromising the dependability benchmark 

results. This method will open the possibility to extend the dependability 

benchmarks to those kinds of systems, making them feasible and applicable 

(such benchmarks usually take several months or even years to execute due 

to its large faultload size).  

Within this context, the main contributions of the thesis are the 

following: 

1. To provide a software fault injector compatible with the 

demanding requirements of dependability benchmarks. Namely, 

it should be very easy to install and use, have high level of 

portability and very low intrusiveness, be capable of injecting 

faults in both user and system spaces, and in code and data 

segments of any process, irrespective of their complexity, be 

independent of the availability of any source code of any system 

component or user process, be dynamically linked into a target 

system and be compatible with the latest and most advanced 

software fault models. Concerning this last requirement, it was 

considered essential the compatibility of the fault injector with the 

Generic Software Fault Injection Technique (G-SWFIT) 

[Durães et al. 2006] – the state-of-the-art in software faults model. 
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G-SWFIT is based on a set of operators for software fault 

emulation through low-level code changes in the target 

executable code, mimicking the most common types of real 

software faults. These operators resulted from a field study based 

on the analysis and classification of more than 600 software faults 

found in real software applications. The developed tool is one of 

the most versatile software fault injectors currently available. 

2. To define and evaluate different hypothesis for the reduction of 

the number of software fault injection experiments. The 

evaluation is based on the analysis of the error obtained in 

consequence of the reduction of the fault injection experiments. 

This study uses the results obtained with a comprehensive 

faultload that includes all possible software target locations (the 

complete set of the kernel OS functions, referred in kernel 

symbols table), resulting in one of the most extensive fault 

injection studies ever reported. 

3. To present a strategy to guide the fault injection target selection of 

dependability benchmarks and to reduce the required number of 

software faults, thus decreasing the execution time of the 

benchmark, maintaining, simultaneously, their usefulness and 

representativeness. The proposed methodology is especially 

useful in large and complex systems, where the experimentation 

time can be severely reduced without compromising the 

dependability benchmark results. Conducted experiments 

showed that the fault injection experiments can be reduced by 

more than 75%, maintaining the induced error below 1%. This 

method will open the possibility to extend the dependability 

benchmarks to large and complex systems, making them feasible 

and practicably applied (such benchmarks would take several 

months or even years to execute due to its large faultload size). 
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1.3 Thesis organization 

The thesis is organized in seven chapters, as follows: 

 Chapter 1, this chapter, presents the motivation for the 

undergone investigation, the research objectives and the 

contributions of the thesis. 

 Chapter 2 contains some terminology and the state of the art in 

dependable computing area that are relevant to this study. More 

specifically, it surveys previous relevant work in the 

dependability benchmarking, fault injection and software faults to 

the assessment and improvement of dependable systems. This 

chapter is especially oriented to the reader who is not familiar 

with the dependable computing area, so it can be skipped by 

knowledgeable readers. 

 Chapter 3 provides an overview of dependability benchmarking 

of software systems, its goals, components, general framework 

and challenges currently raised in this area.  

 Chapter 4 presents a software fault injector specially developed 

for dependability benchmarking – the DBench-FI (Dependability 

Benchmarking Fault Injector). It describes in detail its architecture, 

the corresponding modules and the way they interact with each 

other and with the user, besides a detailed presentation of its 

implementation. 

 Chapter 5 describes the problem that arises in assessing the 

dependability of large and complex systems, particularly with 

regard to software faultloads. It also presents and provides an 

early assessment of the experimental strategy followed in this 

work for the definition of compact and representative faultloads 

based on software faults. 
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 Chapter 6 describes the experimental setup used to demonstrate 

the effectiveness of the proposed approach with two real and 

different systems: a web-server dependability benchmark and a 

large-scale integer vector sort application extended with 

performance and quality measures. 

 Chapter 7 concludes the thesis and indicates suggestions for 

future improvements and future research directions. 
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Chapter 2  

2 Background and Related Work 

This chapter introduces some basic concepts used in dependable computing systems 

and surveys the previous research works that are relevant to this study. This 

presentation of the pertinent terminology and of the state of the art includes the 

areas of dependability benchmarking and fault injection, with special emphasis to 

software systems, software fault injection and software faults. 

This chapter is especially oriented to the reader who is not familiar with the 

dependable computing area. As a consequence, it can be skipped by knowledgeable 

readers. 

2.1 Introduction 

he increasingly dependency of modern societies on computer 

systems has brought a greater awareness of the importance of the 

dependability concept. Several examples of computer failures, like 

the ones mentioned in the previous chapter, show the catastrophic 

consequences of that dependence. Computer systems may result in costs to 

the society, in addition to the expected benefits [CASDCST 1992], for which 

they were developed. In this context, a new role of questions is raised: Can 

T 
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we rely on computer systems? Are the computer systems dependable? 

What are the limits of that dependability? 

The accuracy of the computational results has preoccupied systems 

programmers and their users since the first generation of computers (from 

the late 1940’s to mid-1950). At that time, the use of unreliable components 

required the use of special techniques that allow the improvement of 

systems dependability. Among the used techniques, the error detection and 

correction, duplexing with comparison, triplication with voting and the 

diagnostics to locate failed components can be mentioned [Avizienis et 

al. 2000]. 

The growing use of computer systems in critical tasks of our society 

has increased the interest to develop systems that provide the expected 

service even in the presence of faults, known as fault tolerant systems. That 

need is even more obvious if we consider the adversity of the environment 

in which those systems sometimes operate and the fact that there are no 

perfect systems, that is, systems without any project or implementation 

defect. Moreover, the more complex a system is and the higher the number 

of its components, the higher is the probability of the occurrence of a failure 

in that system.  

The level of confidence that can be relied on a service of a system is a 

determining factor in the characterization of that system, being 

fundamental in systems where human lives or substantial economic values 

are at risk. Dependability, together with functionality, performance, cost 

and security establishes the fundamental properties of computing and 

communication systems [Avizienis et al. 2004].  
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2.2 Basic concepts and definitions 

2.2.1 Dependability 

Dependability is defined in [Laprie 1985, Laprie 1995] as that 

property of a computer system such that reliance can justifiably be placed 

on the service it delivers. In this context, the delivered service is the 

behavior of the system, as it is perceived by its user - another system that 

interacts with the provider and receives the service [Avizienis et al. 2004]. 

However, to assess whether a system satisfies the requirements of 

dependability is not an easy task, especially when complex and large 

systems are involved. Moreover, that assessment is further hampered by 

the fact that dependability is a global concept which embraces a set of 

different attributes, whose emphasis and importance depends on the 

characteristics of the system or application being analyzed. 

2.2.2 Attributes of dependability 

As mentioned, dependability is an integrating concept which 

embraces a number of different, but complementary, attributes [Laprie 

1995, Avizienis et al. 2004], that corresponds to different viewpoints of the system: 

 Availability – concerning the readiness for correct service; 

 Reliability – regarding the continuity of correct service; 

 Safety – related to the absence of catastrophic consequences on 

the user(s) and the environment: 

 Confidentiality – regarding to the non-occurrence of 

unauthorized disclosure of information; 

 Integrity – related to the absence of improper system alterations; 
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 Maintainability – concerning the ability to undergo modifications 

and repairs; 

Accordingly to the usual definitions, which consider it as a composite 

notion, security is not included as a single attribute of dependability 

[Avizienis et al. 2000]. Instead, security is considered as a combination of 

the mentioned attributes of confidentiality, integrity (concerning the 

absence of unauthorized system alterations) and availability (for 

authorized users only) [Avizienis et al. 2004]. Furthermore, dependability 

regarding to erroneous inputs is sometimes referred as robustness. 

2.2.3 Impairments to dependability 

According to [Jalote 1994, Clark et al. 1995], the first two attributes 

are, among all, the most relevant, given their importance on the fault 

tolerance capabilities of a system. However, the mentioned attributes of 

dependability may be emphasized in a greater or smaller extent, according 

to their importance on the application being analyzed. That importance 

should be considered in a relative or probabilistic rather than in an absolute 

or deterministic way, as the unavoidable presence or occurrence of faults 

prevents the existence of totally available, reliable, safe or secure systems 

[Avizienis et al. 2000]. 

In [Laprie 1995], faults, errors and failures are defined as the 

impairments to dependability. A fault is a defect that potentially causes an 

error. That is, the cause of an error is a fault. Although a fault has the 

potential to generate errors, those errors may not occur during the 

observation period. In other words, the presence of faults does not 

guarantee the occurrence of an error. However, the reverse is true: an error 

in a system state always involves the presence of a fault in that system. A 

fault that produces an error is said to be active. Otherwise, it is dormant. 

An Error is the part of the system state (altered by a fault) that is liable to 
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cause a subsequent failure. An error is a manifestation of a fault. 

Undetected errors in a system are said to be latent. A system failure occurs 

when the system does not comply with its specification, that is, when the 

system does not provide the expected service. Failures are caused by errors. 

If an error exists in a system state, then, unless some corrective measures 

are taken, there is a sequence of actions that can be performed and that 

could lead to a failure. A failure in a system does not always reveal the 

same way. Different forms of failures that can occur in a system are called 

types of failures or failure modes. The mentioned cause-effect relationship 

among these impairments, as described in [Jonhson 1989, Avizienis et al. 

2004], can be represented as depicted in Figure 2-1. 

 

Figure 2-1 – Relationship between fault, error and failure. 

Faults can be classified according to several factors or viewpoints 

[Laprie 1992, Laprie 1995, Laprie 1998, Avizienis 2004]. In the context of 

this work, two viewpoints deserve a special emphasis, among all other: 

phenomenological cause and persistence. Concerning phenomenological 

cause, the faults can be classified in: 

 Physical faults – faults caused by physical phenomena, internal 

or external to the system. 

 Human-made faults – faults that result from human action, either 

design faults, when committed during the system design and 

development phases, or operational faults, when due to input or 

operating conditions violation. 
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Relating to persistence, a fault can be considered in one of the 

following categories [Carreira et al. 1999, Koren et al. 2007]: 

 Permanent Faults – occur in a continuous and stable mode in 

time. Concerning hardware, a permanent fault means an 

irreversible damage that can only be recovered through the repair 

or the replacement of the faulty component; 

 Intermittent Faults – faults whose presence is limited in time, 

caused by unstable hardware, or varying hardware or software 

states. This kind of faults can be repaired by replacement or 

redesign of the hardware or software; 

 Transient Faults – faults that are caused by temporal 

environmental conditions like, for example, electromagnetic 

interference, or radiations.  

The main difference between intermittent and transient faults1 is that 

the latter cannot be repaired, since neither the hardware nor the software is 

                                                      

 

 

1 In the literature, the transient and intermittent bugs are sometimes referred as Heisenbugs, 

because they disappear when reexamined (in analogy to the Heisenberg Uncertainty 

Principle). By contrast, the permanent faults are referred to as Bohrbugs, as they represent 

good solid bugs, which are easy to diagnose upon detection (in analogy to the Bohr Atom 

Model). In recent taxonomies of software faults [Grottke et al. 2007], the Heisenbugs are 
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damaged [Siewiorek et al. 1992]. According to several studies, the transient 

faults occur much more frequently than the permanent faults and are also 

much more difficult to detect [Carreira et al. 1998a, Carreira et al. 1999, 

Clark et al. 1995]. 

2.2.4 Improving dependability 

The dependability of a system is defined by the dependability of 

hardware and software that constitutes it. The development of dependable 

systems requires, according to [Avizienis et al. 2000, Avizienis et al. 2004], 

the combined use of four techniques: fault prevention, fault tolerance, fault 

removal and fault forecasting.  

Fault prevention is the ability of avoiding the occurrence or 

introduction of faults in a system. Thus, it can be considered as the initial 

defensive mechanism towards dependability. It is attained by applying 

quality control techniques during the system design and development 

phases. General approaches include formal methods in requirement 

                                                                                                                                       

 

 
classified as a type of Mandelbugs (alluding to Benoît Mandelbrot, a leading researcher in 

fractal geometry) - a more general class of bugs, characterized by having complex and 

obscure causes, making their behavior appear chaotic or even non-deterministic. 
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specifications and rigorous testing of all system components and their 

interactions. Regarding software, it consists in good programming 

principles and environments (structural programming, modularization and 

formal verification techniques), whereas for hardware, it involves rigorous 

design rules (design reviews, component screening and testing). External 

faults such as lightning or radiation can be prevented by shielding, 

radiation hardening, etc. User and operation faults can be reduced by 

training and regular maintenance procedures.  

Fault tolerance aims to provide the systems the capability to deliver 

the correct service in the presence of faults (as represented in Figure 2-2). 

Obviously, fault tolerance assumes that fault prevention is not enough to 

eliminate all the possible faults in a system and, consequently, any system 

has some probability to have or is likely to develop a fault. That probability 

is even increased if we consider that it is impossible to eliminate all the 

environment aspects susceptible to change the system proper operation. 

Fault tolerance mechanisms are implemented using redundancy, error 

detection and subsequent system recovery mechanisms. A redundant 

system can mask a failed component with a redundant one and continue to 

operate without any service interruption, or at least, with the minimal 

interference on the external behavior, since the recovery mechanisms may 

cause some performance degradation. It should be noticed that fault 

tolerance is a recursive concept. That is, it is essential that the mechanisms 

which implement fault tolerance are themself protected against the faults 

that may affect them. 

 

Figure 2-2 – Fault tolerance mechanisms. 
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The fault tolerant architectures are presently used in a wide range of 

applications, from safety critical to commercial ones. For example, 

concerning safety critical systems, fault tolerant architectures are used in 

the flight control computers of the fly-by-wire systems of the Boeing 777 

and AIRBUS A320/A330/A340 airplanes [Torres 2000].  

Fault removal aims to reduce the number or the severity of the faults 

and may be performed during both the development and operational 

phases of a system. During the development phase, fault removal consists 

in verification, diagnosis and correction [Avizienis et al. 2004], usually done 

by debugging, and/or simulation of hardware and software. Fault removal 

during the operational is conducted by maintenance techniques, corrective 

or preventive. At this phase, faults can be removed replacing the faulty 

system components or by software updates. 

Fault forecasting predicts possible faults in order to prevent or avoid 

them or to limit their effects. This is accomplished by performing an 

evaluation, qualitative and quantitative, of the system behavior, with 

respect to fault occurrence or activation. This evaluation is commonly 

achieved using modeling and simulation of the system and faults. 

Qualitatively, it comprises the probabilistic evaluation of some attributes of 

dependability, interpreted as dependability measures. Quantitatively, it 

consists on the identification, classification and ranking of failure modes or 

event combinations that are liable to lead to system failures.  

The inclusion of all these four techniques should be analyzed earlier 

in the project phase of the systems, since it is very difficult to apply them in 

systems where dependability issues were not taken into consideration. 

Moreover, depending on the emphasis assigned to each dependability 

attribute, according to the specificities of each application, there must be a 

balanced use of these techniques. This trade-off is even more difficult as 

conflicts may exist between some dependability attributes, such as 

availability and security [Avizienis et al. 2000]. 
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The relation between dependability, its attributes, impairments and 

means can be represented in a single schema as exposed in Figure 2-3. 

 

Figure 2-3 – The taxonomy of dependability. 
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However, very often, the systems and configurations are optimized in 

order to achieve the best performance and do not represent the real systems 

used in field [Vieira et al. 2009]. This way, these performance-oriented 

configurations tend to characterize unrealistic scenarios, as they disregard 

dependability-related aspects that are required by many modern computer 

systems. In fact, recently, factors like dependability and maintainability of 

systems are also seen as very important. However, unfortunately, while 

there are different ways to evaluate and compare different systems and 

components, regarding its performance and functionality, the evaluation of 

the dependability attributes of a system turns out to be much more 

difficult. One of the main difficulties is related to the existence of a wider 

spectrum of measures in dependability benchmarks, when compared to 

performance benchmarks. 

The need of tools to evaluate and compare the dependability of 

systems is nowadays reinforced by the current trend of using commercial 

off-the-shelf (COTS) components and of COTS-based systems with high 

dependability requirements, as a way to reduce costs and shorten the 

development and deployment times. In fact, it is important to note that the 

increase of confidence in the general dependability of COTS, induced by its 

large-scale use, may not constitute a sufficient condition for its use in 

critical applications. In addition to the faults that those components may 

have, the COTS software components are developed without the 

knowledge of the specific context in which they will be used and are 

usually provided as a black box, mostly without a rigorous written 

specification [Guerra et al. 2004]. The integration of such components into 

computer systems creates additional dependability challenges that 

demands tools capable of evaluating and comparing the dependability 

attributes between systems.  

According to [Madeira et al. 2001], dependability benchmarks should 

provide a generic, cost-effective and reproducible way for evaluating the 

behavior of components and computer systems in the presence of faults, 
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allowing the quantification of dependability attributes, seen as measures, or 

the characterization of systems into well-defined dependability classes. It is 

important to note that some fault tolerance mechanisms may inflict a 

performance overhead in the systems, which is also interesting to evaluate. 

Indeed, a timely and correct service delivery, concerning the system 

specification, is of utmost importance, mainly in hard real-time systems. 

Furthermore, in addition to the characteristics of the dependability 

evaluation and validation techniques, a dependability benchmark should 

represent an agreement that is accepted by the computer industry and/or 

by the user community. Dependability benchmarks are, obviously, of 

utmost importance to complex, mission critical systems and for high-end 

business-critical applications. Moreover, they may also play a broader key 

role in the computer systems area, driving the industry to produce better 

systems, similarly to what happened before, in the performance and 

database areas.  

2.3.1 Reference model 

Dependability benchmarks are generally based in modeling or 

experimentation, or both. The modeling approaches include analytical 

[Trivedi et al. 1994] and simulation models [Rimén et al. 1993], and are 

generally used to support architectural decisions at design phase. They 

require the knowledge of the system functions and architecture, in terms of 

system components and their interactions, namely in what concerns to the 

fault tolerance and recovery mechanisms used to increase the system 

dependability. This knowledge is used to build a representation of the 

system, in order to model the system behavior and to analyze events and 

activities like failure occurrences, error detection and propagation, system 

recovery, etc. Those events and activities, characterized by event rates and 

conditional probabilities of success or failure, known as model parameters, 

are then used to analyze the system dependability. Block diagrams, faults 
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trees, Markov chains or stochastic Petri nets are examples of modeling 

techniques used for dependability modeling of computing systems. The 

required allocation of numerical values to the model parameters, such as 

coverage factor and restart times, are usually based on experimental 

measurement, field data or past experience related to similar systems. It is 

worth noting that the modeling approach may be unfeasible for large and 

complex systems, since systems made of many components with several 

dependencies usually lead to high complex models [Kanoun et al. 1996]. 

However, for some COTS-based systems, in particular to those systems 

whose architecture is not known in detail, the modeling approach can be 

used to produce, with a reduced effort, simple high-level models. 

On the other hand, experimental approaches are used in computer 

prototypes or actual systems in order to evaluate the effectiveness of the 

fault tolerance mechanisms and to characterize the system in the presence 

of faults. They are usually obtained from observation of the system in real 

field operation [Gray 1990], also known as field measurement, or through 

the execution of benchmark controlled experiments, based on fault injection 

techniques [Hsueh et al. 1997, Carreira et al. 1995, Clark et al. 1995, Madeira et al. 

2000, Moraes et al. 2007]. Field measurement is based on data collected on the 

system and its environment, concerning failures, fault tolerance and 

maintenance processes: time to failure occurrences, nature of failures, 

impact on system services, recovery time, etc. This data allow the 

evaluation of measures such as mean time between failures (known as 

MTBF), failure rate, system availability, etc. Field measurement can also be 

used to feed data into the design of new systems, avoiding the weaknesses 

found in the previous systems and enhancing the dependability of the new 

ones. However, since fault occurrence constitutes rare events, the execution 

of fault injection based experiments is usually used as a practical way to 

accelerate the characterization of the system faulty behavior. It consists on 

the deliberate introduction of artificial faults in a system or component, 

through the use of a workload and a faultload, in order to assess its 
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behavior in the presence of faults, and to obtain the relevant dependability 

measures [Arlat et al. 2002, Vieira et al. 2003, [Durães et al. 2004b, Kanoun et al. 

2006] and characterize the system. 

A reference model for implementing dependability benchmarks is 

represented in Figure 2-4. 

 

 Figure 2-4 – Reference model for implementing dependability benchmarks 

[Kanoun et al. 2008]. 
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2.3.2 Dependability benchmark properties 

According to [DBENCH 2004], in order to be useful, cost-effective 

and accepted by the computer industry and user community, an 

experimentation based dependability benchmark should satisfy a set of 

properties: 

 Representativeness – important in all benchmarking dimensions, 

representativeness is of special relevance in measures, workload 

and faultload. Measures should be meaningful to the benchmark 

context in order to attain the expected usefulness of the 

benchmark. The workload should represent a typical and realistic 

set of activities found in real systems in the benchmark, being, 

therefore, dependent of it. The faultload should represent a set of 

real faults that may affect the target system in real use. The 

definition of the faultload should also consider the context of the 

application area and the operating environment. 

 Repeatability and Reproducibility – concerning the guarantee 

that statistically equivalent results are obtained when the 

benchmark is run more than once in the same environment,  i.e., 

the same System Under Benchmark (SUB), with the same 

workload and faultload and with the same prototype. 

Reproducibility assures that statistically equivalent results are 

obtained by different teams when the benchmark is implemented 

from the same specifications and is used in the same SUB. 

 Portability - concerning the ease of transfer among various target 

systems, within a particular application area. This property 

allows the benchmark to compare computer systems and 

components. The portability is very dependent on the 

specification of some key benchmark components like faultload 

and workload. For example, the lack of portability of the faultload 

can limit the portability of the benchmark. 
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 Non-intrusiveness – regarding the changes that the benchmark 

inflicts on the SUB, which should be as small as possible. In order 

to avoid intrusiveness on the Benchmark Target (BT), faults must 

be injected only in components of the SUB outside the target of 

the benchmark. Thus the non-intrusiveness is guaranteed with 

regard to the BT. 

 Scalability – concerning the capability of the benchmark to 

evaluate systems of different sizes. The scaling rules of the 

benchmark specification typically affect its workload and 

faultload.  It is worth noting that very large faultloads may also 

require, as large workloads do, a huge time to execute the 

benchmark process. This circumstance constitutes a major 

limitation to execute dependability benchmarks in very large 

systems. 

 Benchmarking time and cost – regarding the time and cost 

needed to obtain the result from the benchmark. This property 

embodies the usability that a benchmark should have. The 

benchmark time comprises not only the execution time of the 

benchmark, but also the time needed for the setup and 

preparations and for data analysis. A dependability benchmark 

should take the minimum time possible, preferably only a few 

hours per system (in very large systems may be acceptable to 

have a benchmark time of a few days). With regard to the cost, 

the user perceived value of the benchmark should be higher than 

the cost associated to its execution, as a key objective of 

dependability benchmarks is to provide a cost-effective way to 

characterize the dependability of components and computer 

systems. 

 All these properties should be considered not only in the 

specification phase, namely, in the definition of the measures and 
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experimental dimensions, but also in the implementation and validation 

phases of the benchmark development process.  

2.3.3 Dependability benchmark proposals 

Dependability benchmarking has caught researchers’ attention in the 

last years and many dependability benchmarks have been proposed for 

different application domains. 

With the aim of promoting the research, practice adoption of 

dependability benchmarks, the IFIP (International Federation for 

Information Processing,) and, particularly, the 10.4 Working Group on 

Dependable Computing and fault Tolerance, created, in 1999, the Special 

Interest Group on Dependability Benchmarking (SIGDeB). The resulting 

work, merging the contributions from both academia and industry, has 

identified a set of standardized classes to characterize the dependability of 

computer systems [Wilson et al. 2002]. The work carried out aimed to allow 

the comparison of computer systems concerning four dimensions: 

availability, data integrity, disaster recovery and security. Complementary 

work was developed in the context of the DBench project2 - a European 

                                                      

 

 

2 Dependability Benchmarking Project, IST-2000–25425 DBENCH [DBENCH]. 
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project on dependability benchmarking, partially supported by the 

European Commission. 

The work done in SIGDeB and in project DBENCH marked the 

beginning of several proposals of dependability benchmarks for various 

kinds of systems. Due to the huge diversity of applications and systems in 

the computer industry, several dependability benchmarks have been 

developed for different application areas and systems (e.g., general 

purpose operating systems, real-time kernels, engine control applications, 

on-line transaction processing systems). However, they all share the 

properties presented, at least at an abstract level, and constitute an 

instantiation of it to a specific domain or a particular computer system. 

A general methodology for benchmarking the availability of 

computer systems was introduced in [Brown et al. 2000]. This work uses 

fault injection to cause situations where software RAID (Redundant Array 

of Inexpensive Disks) systems availability may be compromised. It adopted 

the workload and performance measures from existing performance 

benchmarks.  

An attempt to incorporate human behavior in dependability 

benchmarks and system designs as a way to incorporate effects of a human 

operator in dependability measures is presented in [Brown et al. 2001]. In 

[Brown et al. 2002] is presented a methodology for developing dependability 

benchmarks that capture the impact of human operators on systems. The 

proposal adopts the workload and the performance measures of existing 

performance benchmarks. The systems dependability is characterized by 

the performance degradation induced by the injected faults and by the 

perturbations generated by human operators. Research work towards the 

development of a dependability benchmark for human assisted recovery 

processes and tools in server systems is presented in [Brown et al. 2004a]. The 

proposed methodology, developed at the University of California-Berkeley, 

aims to evaluate human-assisted failure recovery tools and processes and 
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can be used both to quantify the dependability of recovery systems and to 

compare different recovery approaches. 

A practical characterization and comparison of COTS operating 

systems behavior in the presence of faulty device drivers is presented in 

[Durães et al. 2002a, Durães et al. 2003a]. This work is based on the emulation 

of high level real software faults through the modification of the 

ready-to-run binary code of the target software module, and proposes the 

use of a multidimensional perspective to evaluate different views of the 

benchmark results. The used fault emulation technique, named G-SWFIT, 

requires the existence of a library containing the complete set of code 

mutations, previously defined for the target platform, formerly scanned. A 

similar study proposing a practical approach to characterize the robustness 

of operating systems with respect to faulty drivers is presented in [Albinet et 

al. 2004]. In this work a Software Implemented Fault Injection (SWIFI) 

technique is used to corrupt the parameters of the interface between the 

device drivers and the kernel of the OS. In order to characterize the faulty 

behaviors, both internal (kernel error codes) and external measurements 

(e.g., raised exceptions, kernel hangs, and workload behavior) were 

considered. 

A comparison of fifteen commercial OS POSIX (Portable Operating 

System Interface) implementations concerning their robustness was first 

presented in the context of the Ballista Project, from Carnegie Mellon 

University [Koopman et al. 1999b]. A dependability benchmark comparison 

of three operating systems (Windows NT4, 2000 and XP) focused on 

robustness and with respect to erroneous inputs provided by the 

application software to the Operating System via the Application 

Programming Interface (API) is proposed in [Kalakech et al. 2004]. The 

workload used in this dependability benchmark was the TPC-C 

performance benchmark for transactional systems [TPCC], an already 

well-established and agreed benchmark. A similar dependability 

benchmark and its application to six versions of Windows operating 
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system and four versions of Linux operating system is presented in 

[Kanoun et al. 2005]. The workload used in this study was the PostMark, a 

file system performance benchmark for operating systems [Katcher 1997]. 

Concerning the faultload, this work mainly considers corrupted parameters 

in the Operating System (OS) system calls. In [Kanoun et al. 2006], a 

dependability benchmark for general-purpose operating systems is 

proposed, considering analogous faultload, and presented its application in 

several versions of windows and Linux operating systems. The workload 

used in this study is the JVM (Java Virtual Machine) and the benchmark 

measures considered are the OS robustness and the OS system reaction and 

restart times in the presence of faults. 

At IBM, the Autonomic Computing Initiative [IBMACI] aims to 

develop a suite of benchmarks to quantify the autonomic capacity of a 

system, which is defined as the capability of the system to react 

autonomously to problems and changes in the environment. This 

self-managing capability should incorporate four fundamental 

features: self-configuration, self-healing, self-optimization, and 

self-protection [Ganek et al. 2003]. A first discussion on the requirements of 

those benchmarks and a proposal of a set of metrics for the evaluation of a 

systems autonomic level is presented in [Lightstone et al. 2003]. In 

[Brown et al. 2004b] are presented the main challenges and pitfalls about 

benchmarking the autonomic capabilities of a system. This work proposes 

that autonomic benchmarks must quantify four dimensions of a system 

autonomic response: (i) the level of response; (ii) the quality of the 

response; (iii) the impact of the response on the system user; and (iv) the 

cost of any extra resources needed to support the autonomic response. A 

configuration complexity benchmark, process-based, that generates metrics 

that reflect the level of human involvement in the systems configuration 

process is presented in [Brown et al. 2004c]. In [Brown et al. 2005] is 

presented a benchmark for assessing the self-healing dimension of the 

autonomic capability. In this work, the system self-healing capabilities were 
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quantified with two metrics: (i) a measure of how effectively the system 

under test heals itself in response to the injected disturbances; and (ii) a 

measure of how autonomic that healing response is. 

A preliminary proposal of a dependability benchmark for real time 

kernels for onboard space systems is presented in [Moreira et al. 2003]. This 

work focuses mainly on the assessment of the predictability of response 

time of service calls in a Real-Time Kernel (RTK) used in space domain 

systems. The benchmark, called DBench-RTK, uses an Onboard Scheduler 

(OBS) process as workload and its faultload consists of a set of faults that is 

injected into kernel functions calls at the parameter level by corrupting 

parameter values. 

A dependability benchmark for OLTP (On-Line Transaction 

Processing) application environments is proposed in [Vieira et al. 2003]. 

This benchmark uses the workload of the TPC-C benchmark [TPCC] and 

specifies the measures and all the steps required to evaluate both the 

performance and dependability features of OLTP systems, with emphasis 

on availability. This study uses as faultload, a set of operator faults that 

emulates real faults experienced by OLTP systems in the field. Another 

dependability benchmark for transactional systems is proposed in 

[Buchacker et al. 2003]. Although this study also adopted the workload 

from the TPC-C performance benchmark, it considers a faultload based on 

hardware faults. 

Research work at Sun Microsystems proposes a high-level framework 

specifically dedicated to availability benchmarking of computer systems 

[Zhu et al. 2003a]. The proposed approach decomposes availability in three 

key components: fault/maintenance rate, robustness, and recovery. Within 

the scope of that framework, two dependability benchmarks were 

developed: one that measures specific aspects of a system robustness on 

handling maintenance events, such as the replacement of a failed hardware 

component or the installation of a software patch [Zhu et al. 2003b]; and a 
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second benchmark for measuring system recovery on a non-clustered 

standalone system [Mauro et al. 2004]. 

A dependability benchmark for engine control applications to allow 

the characterization of the impact of faults in on the control software 

embedded in engine Electronic Control Units (ECUs) is presented in 

[Ruiz et al. 2004]. This benchmark, based on the injection of transient 

hardware faults in the ECU, provides a set of measures that allows a 

comparison of two different diesel engine control systems concerning its 

safety. The workload used is based on the Europe standards for the 

emission certification of light duty vehicle. 

A dependability benchmark based on the injection of software faults 

was first proposed in [Durães et al. 2004a]. This benchmark uses the 

G-SWFIT technique (Generic Software Fault Injection Technique) in order 

to directly inject mutations at machine-code level that emulate high-level 

software faults [Durães et al. 2002b]. The inserted modifications reproduce 

the code that would have been generated by the compiler if the intended 

software faults were in the high level source code. A complete 

dependability benchmark for web-servers that also uses the G-SWFIT 

technique is proposed in [Durães et al. 2004b]. Adopting the workload and 

the performance measures of SPECWeb99 performance benchmark [SPEC], 

the benchmark uses a faultload that emulates both a realistic software 

defects and the effects of hardware and operator faults. 

A study at Intel Corporation has focused on benchmarking 

semiconductor technology [Constantinescu 2005a]. The work discusses the 

impact of semiconductor technology scaling on neutron induced Soft Error 

Rate (SER) and presents an experimental methodology and results of 

accelerated measurements carried out on Intel Itanium microprocessors. 

The work can be used as a dependability benchmark, as the used approach 

does not require any proprietary data about the microprocessor under 

evaluation. Relying on environmental test tools, Intel Corporation has also 

developed a set of benchmarks that allow the benchmarking of undetected 



Background and Related Work 35 

computational errors, also known as Silent Data Corruption (SDC) 

[Constantinescu 2005b]. This study performs a temperature and voltage 

operating test (the so-called Four Corners Test) on several prototype 

systems. 

Three analytical dependability benchmarks that examine the 

Reliability, Availability, and Serviceability (RAS) characteristics of 

computer systems were developed at Sun Microsystems [Elling et al. 2008]: 

the Fault Robustness Benchmark (FRB-A) allows the evaluation of the 

robustness techniques used to enhance systems resiliency, including 

redundancy and automatic fault correction; the Maintenance Robustness 

Benchmark (MRB-A) allows the evaluation of how the maintenance 

activities affect the ability of the system to provide a continuous service; 

and the Service Complexity Benchmark (SCB-A) allows the evaluation of 

the complexity of servicing mechanical components of computer systems. 

A dependability benchmark intended to evaluate the robustness of 

partitioning mechanisms of real-time operating systems is proposed in 

[Barbosa et al. 2010]. The benchmark includes both hardware-based and 

software-based faultloads and measures the spatial and temporal isolation 

among tasks. 

A software framework for assuring system dependability based on 

benchmark scenarios and quantitative measures is presented in [Fujita et al. 

2012]. The DS-Bench toolset performs benchmark test on the target system 

and obtains dependability metrics using various benchmarks programs and 

anomaly generators. 

Two different approaches for extending TPC benchmarks with 

dependability measures are presented and discussed in [Almeida et al. 

2010]: extending each TPC specification in a customized way; and, a more 

unified approach, defining a generic and independent specification that 

could be applied to any TPC benchmark. The advantages and 

disadvantages of each approach are also presented.  
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A proposal for the integration of dependability benchmarks into the 

recent ISO/IEC 25045 standard [ISOIEC 2010]3 is presented in [Friginal et 

al. 2011]. The approach provides the standard with the ability to assess the 

eventual impact of faults (referred as disturbances in the standard) on the 

quality of software components. The effectiveness and usefulness of the 

approach is demonstrated using three distinct different versions of 

Optimized Link State Routing (OLSR) as software components. 

However, despite the great efforts in the last decade in developing a 

vast variety of dependability evaluation methods and techniques, 

dependability benchmarks do not benefit yet from the level of maturity, 

recognition and consensus of the well-established area of performance 

benchmarks, which is supported by major companies in the computer 

industry and where TPC and SPEC play a key role. 

                                                      

 

 

3 The ISO/IEC 25045 is an extension of the ISO/IEC Systems and software Quality 

Requirements and Evaluation (SQuaRE) standard [ISOIEC 2005] in order to incorporate the 

viewpoint of recoverability into the procedures for evaluating the quality of software 

components. 
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2.4 Fault injection 

As mentioned in the previous section, one of the experimental 

methods used for dependability evaluation consists of analyzing the 

behavior of a system from the real field operation and collecting the 

information about its dependability, known as measurement-based 

analysis. Despite the advantage of allowing the identification of the failures 

and faults that more frequently occur in a system, this method requires the 

collecting of data over a long period of time, due to the infrequent 

occurrence of errors and failures observed in systems with high 

dependability levels. Factors such as the mentioned long time between 

failures, the destructive nature of a crash or the long error latency, make it 

difficult to identify the causes of failures in the system operational 

environment. Moreover, it is particularly difficult to recreate a scenario of 

failures in large and complex systems. 

The fault injection technique, also using an experimental approach, 

allows to overcome these drawbacks, by carrying out controlled 

experiments where the observation of the behavior of the system in the 

presence of faults is explicitly induced by the deliberate introduction 

(injection) of faults in the system [Arlat et al. 1990a]. Its recommendation by 

leading safety standards like NASA standard 8719.13B for software safety 

[Nasa 2004] and the ISO/DIS 26262 standard for automotive safety 

[ISODIS 2009], and its wide use over the last decades by many providers 

(e.g., ESA, IBM, Intel, Siemens, Sun, Volvo, etc.) and by the practitioners of 

dependable computer systems demonstrates the relevance of the method. 

Recently, reinforcing that pertinence, the fault injection technique was also 

included in the ISO/IEC Systems and software Quality Requirements and 

Evaluation (SQuaRE) standard [ISOIEC 2005] as a disturbance injection 

methodology for the assessment of the recoverability of software systems, 

through the evaluation module ISO/IEC 25045 [ISOIEC 2010]. 
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According to [Hsueh et al. 1997], a typical fault injection environment 

consists of the following components, as shown in Figure 2-5: 

 Target system – system in which the faults are injected, as it 

executes the tasks submitted by the workload generator. 

 Fault Injector – component responsible for the injection of faults 

in the target system. It could be implemented by hardware 

(HWIFI) or software (SWIFI) and it can support different fault 

types, fault locations and fault injection triggers. 

 Fault Library – Contains information about the type, location and 

number of faults, as well as of hardware semantic or software 

structure used by the fault injector. It should be considered a 

separate component in order to attain greater levels of flexibility 

and portability. 

 Workload Generator – Component responsible for the workload 

generation that is executed by the target system. 

 Workload Library – Contains information about the workload 

executed by the target system. May contain applications, 

benchmarks or synthetic workloads. Like the fault library, and for 

analogous reasons, it should be considered separated from the 

workload generator. 

 Controller – program that controls the fault injection 

experiments. It can be executed either on the target system or on a 

separate computer. 

 Monitor – Tracks the execution of the commands and initiates the 

data collection whenever necessary. 

 Data Collector – Performs the online collection of the experiments 

data. 
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 Data Analyzer – Performs, eventually offline, the processing and 

analysis of the collected data. 

 

Figure 2-5 – Typical components of a fault injection environment  

[Hsueh et al. 1997]. 

2.4.1 Goals of fault injection 

In [Arlat et al. 1990b] the two complementary main goals of fault 

injection are identified and characterized: validation and design-aid. The 

first is related to the fact that fault injection can be viewed as a means to 

testing the methods and mechanisms used to obtain the confidence in the 

system, with respect to the inputs they have been designed to cope 

with - the faults. In this context, two key aspects should be 

considered:  (i) the validation of the verification procedures, used to reveal 

faults during all the phases of the development process, and (ii) the 

validation of the fault tolerance mechanisms, aimed to achieving the 

dependability of the system in the operational phase. Therefore, the fault 

injection participates in two of the techniques used to attain the 
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dependability of a system, as refereed in section 2.2.4: fault removal, 

through the reduction, by verification, of the presence of faults in the 

design/implementation of the fault tolerance mechanisms; and fault 

forecasting, through the rating, by evaluation, of the efficiency of the 

operational behavior of such mechanisms [Arlat et al. 1990b, Avresky et al. 

1996, Christmansson et al. 1996a, Voas et al. 1997b]. Concerning the design-aid, 

the fault injection can be applied at the various stages of the development 

process. Their results are mainly used to measure the quality of the selected 

solutions and to change them, if necessary. 

It must be noticed that, due to the fact that faults are introduced in 

the target system, which causes the system to run in an altered state, the 

fault injection is generally unable to determine the accuracy of the results. 

That is, the fault injection is inadequate to ensure that an application, for 

example, produces the correct results, according to its specification. 

Instead, fault injection is very useful to prove that an application produces 

incorrect results under abnormal operating conditions [Voas et al. 1998]. 

Fault injection is thus appropriate for evaluating the behavior of the 

systems in the presence of faults and validating their fault tolerance 

mechanisms [Powell et al. 1995, Christmansson et al. 1996a, Rela et al. 1996, 

Voas et al. 1997b, Cukier et al. 1999]. 

2.4.2 Fault injection in software development cycle 

 Depending on the phase of the software development cycle in which 

the system is, different fault injection techniques can be applied, as 

summarized on Table 2-1: (i) Simulation-based fault injection and (ii) 

Prototype-based fault injection [Hsueh et al. 1997]. 

The simulation-based fault injection technique is used to evaluate the 

dependability of a system that is represented by a series of high-level 

abstractions, allowing early detection of design faults, before the system is 
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started to be built. The early stage of development, characterized by the 

absence of any implementation details, imposes a simulation based on 

simplified assumptions, like the occurrence of errors and failures according 

a predetermined distribution, such as the exponential distribution. With 

this technique, the faults are injected by directly modifying the 

computational state of the simulation [Carreira et al. 1999]. Among the most 

known simulation-based fault injectors, one can mention the FOCUS [Choi 

et al. 1992], the MEFISTO [Jenn et al. 1995] and the DEPEND [Goswami et al. 

1997] tools. Although this method is suitable for the evaluation of the 

effectiveness of fault tolerant mechanisms and a system dependability in 

the early phases of its development (conception and design), known as its 

main advantage, it requires accurate input parameters that are difficult to 

supply [Hsueh et al. 1997]. It should be noticed that parameters from 

previous experiments could not be adequate due to design and 

technological changes. This technique is also highly appropriate for the 

evaluation of dependability of critical systems where the injection of faults 

in the actual prototype or operational system would be dangerous, as 

happens in nuclear power systems and avionics. Despite these advantages, 

accurate results demand very detailed models, whose development can be 

very expensive. Moreover, manufacturers might not reveal the information 

needed and the simulation can take a long time to complete. 

 

Phase in Software 
Development Cycle 

Technique 

Conceptual and 
Design Simulation-based fault injection 

Prototype and 
Operational System 

Prototype-based fault injection 

Operational System Measurement-based analysis 

Table 2-1 - Experimental techniques for dependability evaluation and their 

suitability for the different phases of software development cycles. 
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On the other hand, Prototype-based fault injection allows the 

evaluation of the system without any assumptions about the system design, 

and thus, allows more accurate and realistic results, compared to 

simulation-based analysis. This technique consists on the injection of faults 

on the target system and on the observation of the corresponding effects. 

The prototype-based fault injection is useful to: 

 Identify system weaknesses, regarding components causing 

dependability bottlenecks.  

 Analyze the system behavior in the presence of faults: (i) 

determine the coverage of error detection and recovery 

mechanisms, and (ii) evaluate the effectiveness of the fault 

tolerance mechanisms and the corresponding performance loss. 

In this context, most of the approaches fall into two main 

categories [Hsueh et al. 1997]: 

 Hardware Implemented Fault Injection (HWIFI) – The faults are 

injected on hardware level, through logical or electrical faults. 

This category can further be subdivided into HWIFI with contact, 

when there is physical contact with the circuit pins of the target 

system (e.g, methods that use pin level active probes and socket 

insertion), and HWIFI without contact, in the cases where the 

injector has no direct contact with the target system (e.g., faults 

are injected through heavy ion radiation and electromagnetic 

interferences). 

 Software Implemented Fault Injection (SWIFI) – The faults are 

injected at software level (through the corruption of code or data), 

reproducing errors that would have been produced by faults 

occurring in hardware of software. SWIFI techniques can also be 

further categorized into two new classes, depending on the time 

at which the faults are injected: (i) compile-time injection, 

corresponding to the case when the faults are injected into the 
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source code of the target program, and (ii) run-time injection, 

when the faults are injected during system run-time. 

Contrasting with SWIFI, HWIFI techniques require the use of 

additional and specific hardware to introduce physical faults on the target 

system, which increase the cost of its use. Moreover, the increasing 

complexity of hardware makes it harder to inject physical faults as well as 

to define the corresponding simulation models that effectively represent 

the systems. Thus, due to its greater flexibility, portability, lower cost and 

ease of development, the SWIFI tools have become a clear and popular 

choice in the last decades. However, despite these advantages, the SWIFI 

tools have some intrinsic drawbacks that should be mentioned: 

 Inaccessibility of some locations, when compared to HWIFI tools 

(e.g. some processor and system resources cannot be reached) 

[Carreira et al. 1998b]; 

 Difficulty in injecting permanent faults, except for very particular 

circumstances; 

 Disturbance of the execution and, consequently, on the 

performance of the system under test. This problem, known as 

intrusiveness, is a consequence of the instrumentation necessary 

to inject faults and monitor the corresponding effects in the target 

system. Special care should be taken in order to minimize its 

effects. 

 Poor time resolution due to the possible inability to follow some 

error propagation, particularly, for errors with very short latency 

like CPU and bus faults. 

Generically, as major drawbacks to the use of the prototype-based 

fault injection, one can mention the restriction of the study to the set of 

faults that can actually be emulated and the impossibility to obtain 

measures like availability and the mean time between failures. 
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Although all of the experimental techniques have their limitations, 

they should be used in their appropriate phases and, given their 

complementarity, their combination can result in a more complete study of 

the dependability of systems. 

As stated in section 2.3, fault injectors are a crucial part of 

dependability benchmarks. The next section briefly presents the most 

relevant fault injection tools developed in the last decades. For the purpose 

of this thesis, only those belonging to the SWIFI family are mentioned. 

2.4.3 SWIFI tools 

Many fault injection tools have been developed in the last decades. 

One of the early SWIFI fault injectors is FIAT (Fault Injection-Based 

Automated Testing Environment) [Segall et al. 1988]. This tool adds fault 

injection and monitoring capabilities to application code and operating 

system, by changing the code and data that is copied into memory at load 

time. Faults are triggered when target system execution reaches the 

locations where special instructions have been inserted in the code. 

Although this tool could inject memory faults at runtime, it was not able to 

inject most transient faults. A similar pre-runtime approach of changing the 

file image generated by the compiler was taken by DOCTOR, a tool 

developed for the HARTS real-time distributed system [Han et al. 1993]. 

The FINE tool (Fault Injection and moNitoring Environment) [Kao et 

al. 1993] uses a software monitor to trace the control flow and inject faults. 

Despite its large overhead and the need of the source code of the target 

application to inject faults, it is significantly more powerful than its 

predecessors, particularly, in the type of faults that could be injected. 

DEFINE [Kao et al. 1994], an extension of FINE, was developed to include 

distributed capabilities, introducing a modified hardware clock interrupt 
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handler to inject CPU and bus faults with time triggers and inject some 

kind of software faults. 

A tool called FERRARI (Fault and ERRor Automatic Real-time 

Injector), developed for injecting faults using the UNIX ptrace function is 

presented in [Kanawati et al. 1995]. The fault injection process initiates and 

executes the target process in a special trace mode, enabling the injection of 

transient and permanent faults. It is able to inject a very wide set of fault 

types, but was restricted to injection in user space. 

FTAPE (Fault Tolerant and Performance Evaluator) [Tsai et al. 1996] is 

part of a fault tolerant benchmark, which measures system failures and the 

system performance degradation during faulty conditions. It also includes 

a synthetic program for generating CPU, memory and I/O (Input/Output) 

activity. FTAPE is able to inject fault in CPU registers, memory and disk 

subsystem. It is capable to select the time and location of faults either based 

on the workload activity or randomly. 

The Xception tool, which uses the debugging and monitoring 

capabilities of the modern processors, is presented in [Carreira et al. 1998b]. 

It provides a set of spatial, temporal and data manipulation fault triggers 

like FERRARI or FTAPE, but with a minimal intrusion on the target system, 

apart from being able to also target system space. Xception was originally 

implemented on a PowerPC based machine, and has been ported to other 

processors since then, having originated the unique commercial fault 

injector available today. Another fault injector, called MAFALDA, 

presented in [Rodríguez et al. 1999], uses principles very similar to 

Xception, adding mechanisms to intersect and inject system calls in 

micro-kernels. 

The GOOFI (Generic Object-Oriented Fault Injection) tool, presented 

in [Aidemark et al. 2001], is designed to inject faults in various target 

systems, using different fault injection techniques. The generic architecture 

of GOOFI assists the user to adapt the tool for new target systems and new 
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fault injection techniques. The version presented in [Aidemark et al. 2001] 

supports pre-runtime SWIFI, to inject faults into the program and data 

areas of the target system before it starts to execute, and Scan-Chain 

Implemented Fault Injection (SCIFI). The SCIFI injects faults via the built-in 

test logic, such as boundary scan-chains and internal scan-chains, existent 

in many modern VLSI (Very Large Scale Integration) circuits. An extended 

and improved version of GOOFI is presented in [Skarin et al. 2010]. This 

new version of the fault injector, named as GOOFI-2, extends the 

predecessor version with one test port-based technique, which provides the 

ability to inject errors into some microprocessors, and two SWIFI 

techniques, which include the ability to use the debugging and monitoring 

functions available in advanced processors, and to inject faults into 

registers and memory without any specific hardware. 

An improved ptrace-based SWIFI tool is presented in [Xu et al. 2002]. 

HiPerFI (High-Performance Fault Injector) reduces very significantly the 

intrusiveness and overhead caused by the context switch between the 

injector process and the target application. It also integrates a method, 

similar to the approach used by Xception, which enables the fault injection 

mechanism to intersect the kernel exception handlers and thus extends 

significantly the tools triggering and injection capabilities. 

A SWIFI tool also capable of executing hardware-based and 

simulation-based fault injections is presented in [Stott et al. 2000]. NFTAPE 

(Networked Fault Tolerance and Performance Evaluator) is able to inject 

multiple fault models (bit-flips in registers and memory, communication 

errors and I/O faults) with multiple fault triggers, and is especially 

adequate for distributed systems. 

A pioneering fault injector tool, specifically developed for 

dependability benchmarking, is presented in [Costa et al. 2003]. The 

DBench-FI uses a flexible runtime kernel upgrading algorithm to provide a 

unique set of characteristics: (i) great simplicity of installation and use, 

since it can be downloadable from the web and executed on-the-fly, without 
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any special installation procedure; (ii) capable to inject faults/errors in the 

whole target system, and not just in the user space as some ptrace-based 

tools do, nor requiring a special launching procedure like the one requires 

by many debugging mechanisms; (iii) does not require the availability of 

source code of any system component or process; (iv) capable to inject 

faults even in tasks that are already running when it is installed, 

irrespectively of their complexity; (v) very low intrusiveness, since it is 

essentially undetectable; (vi) can be dynamically loaded into the system. 

It should be noticed that none of the previous tools satisfied the 

requirements of web distributable dependability benchmarking, either 

because the overhead caused would be too high; or only user space could 

be targeted; or the source code of the target applications was required; or a 

special debug mode imposing a particularly launch mode was required. 

Moreover, all of the previous tools have been proposed for the emulation of 

hardware faults and they are not adequate for the emulation of more 

complex faults such as software faults [Madeira et al. 2000, Jarboui et al. 

2002]. 

Despite the version presented in [Costa et al. 2003] is only able to inject 

memory faults, the DBench-FI fault injector is, as shown in [Costa et al. 

2009] and in the present work, actually compatible with G-SWFIT [Durães 

et al. 2006], the state-of-the-art in software faults model being one of the 

most versatile fault injector available. A detailed description of DBench-FI 

is presented in chapter 4, as it constitutes a central tool of the present 

research work. 

2.4.4 Software fault injection 

Despite the innumerous works on physical hardware fault injection 

and emulation, the problem of injecting software faults have barely been 

addressed. In fact, the potential of the mentioned tools for the emulation of 
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more complex faults such as software faults is very limited [Madeira et al. 

2000, Jarboui et al. 2002]. This gap can be explained by the limited knowledge 

about software faults in the real operational environment of systems and, 

consequently, by the difficulty of defining meaningful and representative 

sets of software faults. Nevertheless, several studies [Gray 1990, Sullivan et 

al. 1992, Lee et al. 1995, Chou 1997, Kalyanakrishnam et al. 1999, Li et al. 

2006] showed that software faults are actually predominant, when 

compared to other types of system faults, and, considering the huge and 

growing complexity of today’s software, its weight on the overall system 

dependability will tend to increase. In fact, nowadays it is generally 

accepted that most of the existing software components have residual 

defects or bugs, which escape the traditional testing phases of the software 

development process. Consequently, complex software systems, in which 

our society increasingly relies, are being executed under potential faulty 

conditions that have been neither detected nor foreseen [Gray 1985, 

Chillarege et al. 1992, Musa 1996, Weyuker 1998, Knight 2002]. 

Despite the permanent nature of the software faults [Avizienis et al. 

2004], practice shows that their behavior is transient. That is, when a failure 

is observed, it is very difficult to repeat all the precise conditions that 

trigger it, like particular timing relationships between several system 

components or other rare and somewhat irreproducible circumstances. 

Software faults typically manifest only during operations in real field, and 

usually under heavy or unusual workloads and timing contexts. In fact, 

studies on field data analysis show that most of software faults are due to 

overloads, race conditions or timing and exception errors [Sullivan et al. 1991, 

Chillarege et al. 1995]. 

The huge complexity of today’s software and the increasing pressure 

to reduce time to market, together with the recognized and well-known 

technical difficulties associated to the software development and testing 

processes [Lyu 1996, Musa 1996], have contributed to the actual scenario. 

The emulation of software faults and the assessment of the impact of 
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residual bugs on the validation of software fault tolerance mechanisms is 

thus of crucial importance as a measure of confidence that can be relied on 

a given system.  

The majority of the studies on software faults have addressed the 

software development process since that is their decisive origin. Software 

faults are always a consequence of an incorrect development process, 

revealing flaws introduced in any of its phases (requirement, specification, 

design, coding, testing, etc.). 

Contributions to the improvement of software development 

methodologies, namely on software testing, software reliability modeling 

and risk assessment were presented in [Lyu 1996, Musa 1996]. 

Mutation testing, sometimes considered the first form of software 

fault injection, is used for evaluating the adequacy of test data, while 

minimizing testing times [Budd 1981, DeMillo 1988, King et al. 1991]. 

Originally proposed in [Hamlet 1977], mutation testing consists of a 

software testing technique based on the automatic4 creation of different 

                                                      

 

 

4 Within the scope of mutation testing, the introduction of changes can also be done 

through manual insertions, usually by experienced engineers, known as hand-seeded faults. 

However, while hand-introduced faults have argued to be more realistic [Hutchins et al. 

1994], more recent empirical studies show that automatically generated faulty versions 

 

 

 



50 Background and Related Work 

 

versions of a program (called mutants), each one with a single and simple 

fault (based on a mutation operator), and on the definition of test cases 

capable to detect the largest number of the injected faults. The mutation 

testing technique determines the adequacy of the set of test cases by 

measuring the ratio of faulty versions that have been detected (in which 

case that mutant is considered “killed”), based on the comparison of the its 

output with the one produced by the original program, and hence it can be 

used to estimate and improve the reliability of software [Geist et al. 1992, 

Lyu et al. 2003, Dimov et al. 2010]. However, in spite of having been widely 

studied and used over three decades, some problems5 such as the high 

computational cost of executing the huge number of mutants against a test 

set, has preventing mutation testing from being a practical testing 

technique [Jia et al. 2011].  

Mutation testing can be considered a case of static or compile-time 

fault injection, as the source code of the original program is changed before 

its image is recompiled, loaded and executed, as opposed to the classical 

                                                                                                                                       

 

 
(mutants) provide a less costly, more practical and accurate method to estimate the fault 

detection ability of test cases [Andrews et al. 2005, Do et al. 2006]. 

5 Other difficulties related to the oracle cost [Budd et al. 1982, Weyuker 1982], i.e. the 

process of comparing the output of mutated programs with the original one, in each test 

case, have also been reported. 
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and dynamic fault injection, characterized by the change in the state of the 

program/system, during runtime. Regardless the similarities, it is 

important to highlight the difference of goals between the mutation testing 

and the fault injection techniques. While the first uses program mutations 

to identify an adequate test suite during the software development phase, 

fault injection aims to validate the fault tolerance mechanisms of a system 

at runtime, and evaluate the behavior of the system in the presence of 

faults. It is also worth noting that, despite its wide use in software testing, 

the mutation testing technique is not applicable in the context of COTS, 

since in this case the source code is typically not available. 

Some other studies collect the system operational data from field in 

order to improve the software development process. In [Gray 1990, Lee et al. 

1995] are presented the results of the analysis of the software dependability 

of Tandem systems, based on a census of costumer system outages. The 

impact of software defects on the availability of a large IBM system is 

presented in [Sullivan et al. 1991]. Also based on field data, [Iyer 1995] 

presents a study of the effect of the workload on the reliability of an IBM 

operating system. 

In [Voas et al. 1997b] the injection of artificial faults, both software 

and hardware, is proposed for the assessment of software components 

behavioral quality. Although the fault injection was initially developed in 

the context of hardware faults, namely with the emulation of transient and 

permanent faults using the simple bit-flip and stuck-at models, the need for 

software fault injection has arisen with the emergence of software faults as 

a major cause of system outages.  

With the recognition that the emulation of the most frequent types of 

programmer mistakes is a good approach for the emulation of software 

faults, like primarily stated in [Ng et al. 1996, Ng et al. 1999], some studies 

on the emulation of software faults by software fault injection and their 

representativeness have been made. The first studies about the problem of 

the accurate emulation of software faults by fault injection were presented 
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in [Christmansson et al. 1996a, Christmansson et al. 1996b].  Both works 

propose a general procedure to generate injectable errors and accelerate the 

failure process, based on the analysis of field data about discovered 

software faults that have been classified according to the Orthogonal Defect 

Classification (ODC) - a classification framework for software faults. In the 

first proposal, [Christmansson et al. 1996a] addresses the fault forecast 

issue, while in [Christmansson et al. 1996b] the procedure to generate 

injectable errors is proposed for fault removal.  

An experimental study on the accurate emulation of software faults 

by fault injection is presented in [Madeira et al. 2000]. In a first experiment, 

a set of real software faults has been compared with faults injected by the 

Xception SWIFI tool in order to evaluate the accuracy of the injected faults. 

Results showed the limitations of the usual SWIFI tools in the emulation of 

different classes of software faults, either because the right error patterns 

cannot be injected or the tool is too intrusive. This study also discusses the 

use of field data about real faults and suggests the use of software metrics 

as an alternative way to guide the injection process when field data is not 

available. A second experiment evaluates a set of rules for the injection of 

errors intended to emulate classes of faults. 

In [Ng et al. 2001] software faults (as well as low-level hardware 

faults) are injected into an operating system with the aim to improve and 

validate the robustness of a write-back file cache designed to be as reliable 

as a write-through file cache. Although the used fault model imitates some 

specific programming errors in the OS, it is not necessarily applicable to 

other software systems. 

An innovative technique for the injection of software faults is 

primarily proposed in [Durães et al. 2002b] and further developed and 

extended in [Durães et al. 2006]. The G-SWFIT (Generic Software Fault 

Injection) technique consists of finding key programming structures or 

patterns at the machine code level in order to emulate high level software 

faults through the modification of the ready-to-run binary code of the 
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target software component or module. It uses a set of operators for 

software fault emulation through low-level code mutations based on an 

extensive collection of real software faults, as represented in Figure 2-6. 

 

Figure 2-6 – Automated low-level code mutations [Durães et al. 2002b]. 

In fact, the idea that mutations and actual software faults produce 

identical error patterns and program behavior is supported by the results 

presented in [Daran et al. 1996]. One central advantage of the G-SWFIT 

method is that software faults can be emulated even when the source code 

of the target application is not available, as usually happens with COTS. 

This characteristic is essential for the evaluation of COTS or for the 

validation of fault tolerance mechanisms in COTS based systems. It should 

be emphasized that this technique presents an important advantage over 

the previously mentioned proposal of [Kalakech et al. 2004], based on the 

corruption in the API calls, as the later tries to emulate the effects of real 

software faults (i.e., errors [Avizienis et al. 2004]) instead of emulating the 

existence of the fault itself. Despite this work was based on the C language, 

the study also concludes that the considered fault types are independent on 

specific features of the C language and only minor differences should exist 

in the fault emulation operators for other languages, such as C++ and 

Pascal.  
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Furthermore, some studies show that it is unlikely that software 

faults could be easily emulated only by API level fault injection [Jarboui et 

al. 2002, Jarboui et al. 2003], or even provide empirical evidences that 

interface faults and software component faults cause substantial different 

impact in the system [Moraes et al. 2006b]. 

Besides the emulation accuracy, the injection of software faults 

encompasses two additional challenges: 

 The representativeness of the faultload; 

 The way of distributing the faults among different components in 

the target system. 

The first issue is related to the fact that the software faults should 

emulate a set of real software faults that may occur in the system, i.e., they 

should represent realistic faults that escape the software testing phases of 

the software development process and still persist in the system. Several 

recent research works, such as [Durães et al. 2006, Moraes et al. 2006a , Natella et 

al. 2013], address this subject and present several notable proposals for the 

definition of representative faultloads based on software faults, as 

explained later in section 3.4 - Representativeness of Software Faults. 

The second challenge concerns the practical difficulty of carrying out 

a software fault injection campaign using such representative, but huge, 

faultloads, induced by the vast number of possible fault types and target 

locations. This problem is even more evident and dramatic in large and 

complex systems, where the execution time of those campaigns can take 

several months or even years due to the faultload dimension. This issue is a 

central topic of the study presented on this thesis. It is fully presented in 

chapter 4 and discussed in depth in chapters 6 and following.  
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2.5 Summary 

This chapter described the terminology related to the dependability, 

their attributes, impairments and the mechanisms used to increase the level 

of confidence that can be relied on a given system. 

The state of the art of the area of dependable computing was also 

presented, through a survey on the relevant work in the areas of 

dependability benchmarking, fault injection and software faults. 
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Chapter 3  

3 Dependability Benchmarking of 
Software Systems 

This chapter shows the importance of dependability benchmarking focusing on 

software systems as well as the challenges that arise in this area. It starts to present 

a conceptual framework for dependability benchmark, as well as its key dimensions, 

and highlights the difficulties concerning the experimentation issues of the 

dependability evaluation of software systems. Finally, the problem of the 

representativeness of software faults is presented, and the relevant studies that 

have been carried out with the aim to solve this problematic are discussed in detail. 

3.1 Introduction 

espite the substantial improvements in the design and 

implementation processes of software systems over the last years, 

it is obvious that the complete elimination of software defects 

during software development process is very difficult to attain in practice. 

As a consequence, our society is increasingly dependent on complex 

software systems that are executed under potential and unforeseen faulty 

conditions. Due to this difficulty in producing software without defects or 

D 
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bugs, software developers adopted fault tolerant mechanisms to prevent 

the consequences of potential failures, which can range from minor 

inconveniences to real catastrophes [Weinstock et al. 1997]. Modern software 

systems must be fault tolerant (at least to a certain extent), that is, they 

should be able to provide the expected service even in the presence of 

faults. In fact, fault tolerance is even recommended by leading safety 

standards like NASA standard 8719.13B for software safety [Nasa 2004] and 

the ISO/DIS 26262 standard for automotive safety [ISODIS 2009].  

The importance of fault tolerance mechanisms has been reinforced by 

the current trend of using COTS and COTS-based systems to build larger 

and more complex systems [Durães et al. 2002b, Madeira et al. 2003], in 

application areas that require high dependability. In this context, residual 

software faults represent a growing risk of unpredictability consequences. 

According to [Lyu 1995], software fault tolerance techniques are divided 

into two groups: (i) single version and, (ii) multi-version software 

techniques. Single version techniques focus on the addition of design 

mechanisms into a single piece of software, aiming the detection, 

containment and handling of errors caused by the activation of design 

faults. Examples are concurrent error detection, checkpointing and 

recovery, and exception handling [Gray 1985, Cristian 1982]. Multi-version 

techniques consist on the structured use of multiple versions (or variants) 

of a piece of software in order to ensure that design faults in one version do 

not cause system failures. Examples of such techniques include N-version 

programming (NVP), recovery blocks (RcB), and N self-checking 

programming (NSCP) [Avizienis 1985, Lyu 1995]. 

Despite several studies have shown the pertinence and the efficiency 

of fault tolerance mechanisms on the dependability of systems [Arlat et al. 

1993], its validation and evaluation are complex and challenging tasks. 

Dependability benchmarks allow the answer to that challenge: they 

should provide generic ways of characterizing the behavior of components 
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and computer systems in the presence of faults, allowing the quantification 

of dependability measures. 

3.2 General framework 

The goal of dependability benchmarks is to provide a cost-effective 

and reproducible way to evaluate the behavior of components and 

computer systems in the presence of faults, allowing the quantification of 

dependability attributes or the characterization of system into well-defined 

dependability classes. Furthermore, dependability benchmarks should 

provide a uniform, repeatable and comparable way of performing that 

evaluation and compare alternative solutions. As these properties represent 

fundamental goals of a dependability benchmark, they should be taken in 

consideration right from the earliest phases of the benchmark definition. 

A general framework for defining dependability benchmark for 

computer systems was presented in the context of the DBench Project 

[DBENCH 2004]. The work carried out presents a conceptual framework 

and an experimental environment for dependability benchmarking of 

COTS and COTS-based systems and identifies the following three main 

classes of impacting dimensions: 

 Categorization – This dimension describes the considered target 

system, as well as the dependability benchmark context. It 

impacts the selection of meaningful benchmark measures, as well 

as all aspects related to experimentation on the target system. 

 Measure – This dimension specifies the dependability benchmark 

measures to be assessed, considering the choices made for the 

categorization dimension. 
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 Experimentation – This dimension includes all the aspects related 

to the execution of the experiments on the target system in order 

to get all the measures selected in the measure dimension. 

Figure 3-1 outlines the classification dimensions, as well as their 

relationships. 

 

Figure 3-1 – Dependability benchmarking dimensions [DBENCH 2004]. 

The following subsections detail the mentioned dimensions. 

3.2.1 Categorization dimension 

This dimension aims to unambiguously identify and specify the 

Benchmark Target (BT), with respect to its nature, application area and 

operating environment. It is worth noting that the application area is a key 

dimension, as it impacts the system execution profile, the operating 

environment and the benchmark measures. Different application areas 

require different dependability benchmarks. It should also be noticed that 

the operating environment may affect both the workload and the faultload, 

as it encompasses not only functional activity, but also faults, induced by 

external sources or human-related interaction ones [Voas et al. 1997a]. 
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This dimension also describes the benchmark context, which depends 

from the perspective of its execution and use of results and determines the 

requirements and the objectives of the benchmark. The benchmarking 

context is considered a composite dimension, since it includes: (i) the life 

cycle phase of the BT, in which the dependability benchmark is executed 

(the benchmark measures greatly depends on the specific phase in which 

they are obtained); (ii) the benchmark user, concerning the person or entity 

which is using the benchmark results; (iii) the benchmark scope, related to 

the possibility of the benchmark results to be used either internally, for 

system validation and tuning, or externally, for public distribution; (iv) the 

benchmark purpose, concerning the characterization of the dependability 

of the target system either in a qualitative or quantitative manner; and 

(v) the benchmark performer, regarding the person or entity that actually 

executes the benchmark (manufacturer, integrator, third-party or end-user). 

3.2.2 Measure dimension 

This dimension encompasses the measures that are relevant for the 

dependability benchmark, allowing a quantitative or qualitative 

characterization of the BT. It includes: (i) performance related measures, 

concerning the evaluation of system performance under faulty conditions; 

(ii) comprehensive measures, which characterize the system at the service 

delivery level (expected service), such as transactions per minute, 

availability or safety; and (iii) specific measures, associated to particular 

system features, such as the coverage factor or the latency time of fault 

tolerance mechanisms. 

Usual measures include the identification of system failure modes 

and the system performance evaluation, such as system time response and 

system throughput (as the injected faults may lead to performance 

degradation without leading to system failure). It is worth pointing out 

that, more than the absolute value of the workload execution time, what is 
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really important in dependability benchmarks is the identification of the 

impact of the faultload on that execution time. Moreover, dependability 

benchmarks usually also measure the time needed for the restoration of the 

expected service, after the occurrence of a faulty situation. 

3.2.3 Experimentation dimension 

The experimentation dimension includes all aspects related to the 

experiments executed on BT, according to the categorization and measure 

dimensions. They include: (i) the System Under Benchmark (SUB), a wider 

system which includes the Benchmark Target (BT); (ii) the workload, which 

should represent a typical operational profile for a specific application area; 

(iii) the faultload, which should also be representative of the real threats 

that may occur in the system; and (iv) the measurements to be performed, 

that allows the observation of the behavior of the BT under the applied 

execution profile, composed by the workload and the faultload. 

This dimension should identify and specify the System 

Under Benchmark (SUB), which consists in a setup (hardware and software 

resources) that hosts and runs the BT, and performs the experiments 

defined by the benchmark. The SUB is also used to apply both the 

workload and the faultload, and to collect the measurements relevant to the 

dependability benchmark. 

It is worth mentioning that the definition of a faultload is a practical 

process, based on observations, knowledge and reasoning. Information 

about failure data reported in the field [Kanoun et al. 1997], knowledge 

about the most frequent residual software defects found in deployed 

software systems [Durães et al. 2003b], characteristics of the operating 

environment, like the most frequent common administrator mistakes 

[Vieira et al. 2003], or even information from experimental and simulation 

studies, are examples of inputs used for the proper definition of faultloads. 
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3.2.4 Benchmark scenarios 

All the steps, and their interactions, needed to achieve a 

dependability benchmark form a benchmark scenario. According to 

[Kanoun et al. 2002, Madeira et al. 2002], there are three different key steps for 

system dependability benchmarking: analysis, experimentation, and modeling. 

Figure 3-2 shows a high-level scheme that depicts these stages and their 

relations. 

A benchmark starts by an analysis step, in which specific choices are 

made concerning the categorization and measure dimensions of the target 

system. Depending on the measure assessment method, the output of this 

step can consist in two different types: (i) the workload, faultload and 

measurements, for experimental measures, (output represented by link A), 

and (ii) a deeply analysis of the system behavior (output represented by 

link B) in order to prepare a system modeling, in case it is required. 

According to the choices made in the analysis step, the selection of the 

elements concerning the experimentation dimension is then achieved in the 

experimentation step (link A), which allows the characterization and 

assessment of the target system dependability. This step includes the 

execution of the workload and faultload, and the collecting of the 

measurements under the applied execution profile. As a consequence of the 

strong relationship between the experimentation process and the target 

system, all the components already defined at a high level during the 

previous steps (workload, faultload and measurements), should be refined 

in order to incorporate all the target system specificities. The correct 

implementation of these components at system level should be carefully 

addressed according to the procedures and rules defined in the benchmark, 

which usually include configuration disclosures and rules related to the 

scalability and to the benchmark measurements. 

A modeling step is also required when comprehensive measures of the 

target system are likewise deemed of interest (link B). It is used to build a 
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representation of the system, in order to model the system behavior 

considering failure occurrences, errors detection and propagation, system 

recovery, and other similar events or activities. It is worth recalling that 

these analytical models require the allocation of numerical values to the 

model parameters, which is usually done through experimental 

measurement, field data or past experience related to similar systems. 

 

Figure 3-2 – Dependability benchmarking scenarios [Kanoun et al. 2002]. 

The modeling and the experimentation steps are usually used in a 

complementary way, as depicted in Figure 3-2. Modeling can be used to 

improve both the workload and the faultload, by assisting in the selection 

of their most significant classes (link C), and also to guide the selection of 

most relevant experimental measures and features that need to be assessed 

by the benchmark experimentation (link D). This is the case of 

dependability benchmarks in which the experimentation is supported by 

modeling (scenario 1: represented by all the three steps and the links A, B, 

C and D). On the other hand, in some benchmarks the experimentation 

may also help in the improvement and validation (or even in the 

correction) of the analytical model produced in the modeling step (link E). 

This occurs in benchmarks in which the modeling is supported by 

experimentation (scenario 2: represented by all the three steps and the links 
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A, B, and E), such as when some experimental measures are used by the 

analytical models. 

There are also dependability benchmarks in which modeling and 

experimentation are supported by each other (a combination of the 

previous scenarios 1 and 2), and where outputs are simultaneously 

constituted by experimental measures and features, as well as of 

comprehensive measures based on modeling (scenario 3: represented by 

the full steps and links of Figure 3-2). 

In addition to these three types of benchmark scenarios, there are also 

dependability benchmarks based only in experimentation (scenario 4: 

represented by the analysis and experimentation steps and by the link A). 

This is the case of the well-known performance benchmarks extended with 

dependability measures, as the ones used in this thesis. 

3.3 Performing the experiments 

The benchmark experiments aim to execute the workload and 

evaluate the behavior of the BT in the presence of faults, as a result of 

measurements. In practice, the SUB is often a wider system that includes 

the BT, such as when the BT is a software component like an operating 

system or a database management system (DBMS). It is also very important 

to note that the SUB should be carefully and explicitly documented, as the 

benchmark must be properly interpreted and reproducible. 

Furthermore, as already mentioned, in the case of benchmarking of 

software systems using software fault injection, it is fundamental the 

existence of a clear separation between the BT and the software 

components that are selected as Fault Injection Target (FIT). The BT should 

not be modified by the faultload in order to guarantee the inviolability of 

the BT and the credibility of the dependability benchmark, especially from 

the point of view of the BT provider. Instead, the software faults should be 
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injected in one component (the FIT) in order to evaluate their impact in the 

other components (the BT) or in the overall system.  

Figure 3-3 depicts the relation between the SUB, the BT and the FIT, 

in the case when the FIT is an operating system and the BT is an application 

program, such as, for example, a web-server.  

 

Figure 3-3 – Relation between System Under Benchmark (SUB), Benchmark 

target (BT) and Fault Injection Target (FIT). 

To perform the dependability benchmark, concerning the benchmark 

experimentation dimension, another element is needed in order to manage 

and automate the experiments. This key component, known as the 

Benchmark Management System (BMS), is responsible for the control of all 

the aspects of the benchmark experiments, namely: the workload 

submission, the injection of faults, the coordination and synchronization of 

the several components involved in the experiments and collecting the 

information needed to process measurements. The BMS usually includes 

several resources and instrumentation modules in order to fulfill its 

functions. Moreover, the specific tasks assigned to the BMS should be 

clearly defined in the benchmark specification, since they are very 

dependent on the benchmark characteristics. 

Beyond a description of the setup required to run the benchmark, in 

order to control the way a dependability benchmark is applied and used, 

and to ensure uniform conditions for measurements, dependability 
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benchmarks should also describe a set of procedures and rules. These 

procedures and rules are, naturally, dependent on the specificities of the 

benchmark itself and usually include system configuration disclosures, 

rules related to the scalability of the benchmark and rules related to the 

benchmark measurements. This latter kind of rules encompasses: (i) a 

precise specification of the benchmark measures; (ii) information about the 

domain in which those measures are valid and meaningful; and (iii) a 

detailed specification of all the procedures and steps required to obtain 

those measures (usually programs source code, language specification 

texts, etc.). 

3.4 Representativeness of Software Faults 

The acceptability of dependability benchmarks is mainly supported 

on two fundamental and complementary characteristics: reproducibility 

and generalization. The former requires the existence of well-defined 

procedures that allow repeating the benchmark in the same environment, 

possibly by a different team, and obtaining statistically equivalent results. 

The latter consists of the ability to generalize the experimental results 

through some kind of inductive and logical reasoning, making the results 

useful and meaningful in broader context than the one used in the 

experimental setup. 

Reproducibility is sometimes referred as normalization and 

encompasses the ability to reproduce the observations and the 

measurements, either in a deterministic or in a statistical way, providing 

confidence in the experimental results.  

Unfortunately, the reproducibility and the generalization are, in 

practice, very difficult to attain. The lack of portability of the tools used in 

the experiments, together with the difficulty to reproduce the experimental 

conditions, limits the reproduction of the results to a merely statistical 
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basis. On the other hand, the absence of the necessary representativeness of 

the experiments can also prevent the desired level of generalization. 

Representativeness concerns the ability of a dependability 

benchmark, its measures and experimental conditions, to represent real 

world scenarios in a realistic way. It determines the validity and the 

usefulness of the benchmark results. Representativeness concerns not only 

the statistical perspective of the results, but also the representativeness of 

almost all elements of the benchmark. For example, it is of crucial 

importance regarding the techniques used for fault injection, since it is 

fundamental to guarantee that the injected faults do represent the real 

faults experienced in the field. However, that is not an easy task. Several 

studies on fault representativeness, accuracy and equivalence of fault 

injection techniques [Daran et al. 1996, Folkesson et al. 1998, Madeira et al. 

2000] showed that not all injection techniques can accurately emulate all 

types of faults. 

The representativeness issue also assumes a special importance for 

the workload and faultload components of the benchmark. Concerning the 

workload, it is essential that execution profile simulates the activities found 

in real systems. Regarding the faultload, it must be ensured that the 

injected faults do represent real faults that may affect the systems in the 

field. However, unlike the definition of adequate workloads, which is an 

already resolved issue, with large use in performance benchmarks, the 

definition of representative faultloads is still an open issue. In fact, it is one 

of the most critical and difficult tasks in a dependability benchmark 

definition.  

Random fault distributions based on the size of the physical devices 

have been commonly accepted and used for the injection of hardware 

transient faults. However more sophisticated distributions are necessary for 

the injection of software faults. In fact, regarding software faults, the 

representativeness of the faultload is a special and central property, as the 

injected faults should represent realistic faults experienced in the field 
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[Vieira et al. 2003, Durães et al. 2004a], i.e., software faults that escape the usual 

software testing phases of software development process and still persist in 

the system. Only a faultload that is representative of these residual 

software faults can assure an accurate evaluation of dependability 

attributes, seen as measures, and an efficient validation of the fault tolerant 

mechanisms. Unfortunately, the representativeness of software faultloads 

is very difficult to attain. Information about real software faults found in 

field is fundamental to understand software faults and help in the 

characterization of significant fault attributes, such as fault locations and 

types, as well as their respective frequency of occurrence. However, field 

data and research works concerning software faults are rare and only in 

recent years they have been the focus of attention of researchers [Gray 1990, 

Lee et al. 1995, Chillarege et al. 1995, Christmansson et al. 1996a, Madeira et al. 

2000, Durães et al. 2006, Moraes et al. 2006a, Basso et al. 2009, Sanches et al. 2011, 

Natella et al. 2013]. 

The gathering and study of software faults have been widely used for 

the analysis and improvement of the software development and 

maintenance processes – the main goal of leading software quality 

standards and frameworks, such as the Capability Maturity Model 

Integrated (CMMI) [Chrissis et al. 2003].  

A uniform approach for the classification of software anomalies is 

provided in the IEEE Standard Classification for Software Anomalies [IEEE 

1994], which was further revised in 2010 [IEEE 2010]. This standard, sponsored 

by the Software & Systems Engineering Standards Committee of the IEEE 

Computer Society, states that software anomalies, seen as problems or 

defects, may be found during any stage of the software development life 

cycle (review, test, analysis, compilation, use of software products, use of 

documentation, etc.) In its initial version [IEEE 1994], the standard presents 

a comprehensive categorization of the potential defects into a set of defect 

types: logic problem, computation problem, interface/timing problem, data 

handling problem, data problem, documentation problem, document 
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quality problem, and enhancement. The finite nature and the specificity of 

the categories considered in this classification forced a redefinition of the 

standard. The latest version of the standard [IEEE 2010] replaced the list of 

defect types by a set of defect and failure attributes (Table 3-1 and Table 

3-2, respectively), aimed to help the identification and tracking of software 

anomalies and to improve the software development process. 

A significant contribution on collecting and analyzing observed 

software faults is presented in [Chillarege et al. 1992, Chillarege 1996]. This 

work presents the Orthogonal Defect Classification (ODC), a classification 

framework for the classification of software faults (i.e., defects) into 

mutually exclusive classes, in which signatures are extracted from defects 

that occur through development and field use, in order to improve the 

software product and the software development process. The usefulness of 

the ODC methodology in providing this feedback was confirmed by 

several pilot projects [Chillarege et al. 1992]. 

Though the intended primary goal of ODC is to provide a feedback 

on to the software development process at IBM, it ends up to be a useful 

defect classification regarding the problem of software fault emulation by 

fault injection. ODC is based on the previous observation that there is a 

case-effect relationship between the semantics of the software defects and 

the activities of the software development process [Chillarege et al. 1991]. 

According to ODC, a software fault is classified based on the modification 

that is necessary to undertake in the code in order to correct the defect. It is 

worth noting that this classification considers that mistakes may occur in 

every stage of the software development process (specification, design, 

coding, testing, documentation, etc.). Table 3-3 shows the ODC defect types 

directly related to code, and, therefore, relevant to the present work.  

Besides this fault classification has been built and used for the 

improvement of the software designing process at IBM, it also constitutes a 

central basis to understand and classify software faults from the injection 

point of view.  
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Attribute Definition 

Defect ID  Unique identifier for the defect. 

Description  Description of what is missing, wrong, or unnecessary. 

Status  Current state within defect report life cycle. 

Asset  
The software asset (product, component, module, etc.) 
containing the defect. 

Artifact  The specific software work product containing the defect. 

Version detected  
Identification of the software version in which the defect was 
detected. 

Version corrected  
Identification of the software version in which the defect was 
corrected. 

Priority  
Ranking for processing assigned by the organization 
responsible for the evaluation, resolution, and closure of the 
defect relative to other reported defects. 

Severity 
The highest failure impact that the defect could (or did) 
cause, as determined by (from the perspective of) the 
organization responsible for software engineering. 

Probability  Probability of recurring failure caused by this defect. 

Effect  
The class of requirement that is impacted by a failure caused 
by a defect. 

Type  
A categorization based on the class of code within which the 
defect is found or the work product within which the defect 
is found. 

Mode  
A categorization based on whether the defect is due to 
incorrect implementation or representation, the addition of 
something that is not needed, or an omission. 

Insertion activity  
The activity during which the defect was injected/inserted 
(i.e., during which the artifact containing the defect 
originated). 

Detection activity  
The activity during which the defect was detected (i.e., 
inspection or testing). 

Failure 
reference(s) 

Identifier of the failure(s) caused by the defect. 

Change reference  
Identifier of the corrective change request initiated to correct 
the defect. 

Disposition  Final disposition of defect report upon closure. 

Table 3-1 –Defect attributes [IEEE 2010]. 
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Attribute Definition 

Failure ID  Unique identifier for the failure. 

Status  Current state within failure report life cycle. See Table B.1. 

Title  
Brief description of the failure for summary reporting 
purposes. 

Description  
Full description of the anomalous behavior and the conditions 
under which it occurred, including the sequence of events 
and/or user actions that preceded the failure. 

Environment  
Identification of the operating environment in which the 
failure was observed. 

Configuration  
Configuration details including relevant product and version 
identifiers. 

Severity  
As determined by (from the perspective of) the organization 
responsible for software engineering. See Table B.1. 

Analysis  
Final results of causal analysis on conclusion of failure 
investigation. 

Disposition  Final disposition of the failure report. See Table B.1. 

Observed by  
Person who observed the failure (and from whom additional 
detail can be obtained). 

Opened by  Person who opened (submitted) the failure report. 

Assigned to  
Person or organization assigned to investigate the cause of the 
failure. 

Closed by  Person who closed the failure report. 

Date observed  Date/time the failure was observed. 

Date opened  Date/time the failure report is opened (submitted). 

Date closed  
Date/time the failure report is closed and the final disposition 
is assigned. 

Test reference  
Identification of the specific test being conducted (if any) when 
the failure occurred. 

Incident 
reference  

Identification of the associated incident if the failure report 
was precipitated by a service desk or help desk call/contact. 

Defect reference  
Identification of the defect asserted to be the cause of the 
failure. 

Failure reference  Identification of a related failure report. 

Table 3-2 – Failure attributes [IEEE 2010]. 
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The characteristics of the ODC classification, namely the fact that the 

considered classes are unambiguously close to the code and to the 

programmer, showed to be fundamental to a new perspective on the 

problem of the accurate emulation of software faults by fault injection. This 

problematic, fundamental in dependability benchmarks of software 

systems, was first addressed in [Christmansson et al. 1996a]. The study 

proposes a framework for the generation of errors that emulate real 

software faults, based on field data of the system under analysis, about 

discovered software faults that have been classified using ODC. Despite the 

innovative character of this work, its interest is, in practice, strongly 

restricted by the existence of field data on real software faults found in the 

target system, which makes the technique very difficult, or even 

impossible, to apply in practice. 

 

Defect type Description 

Assignment Value(s) assigned incorrectly or not assigned at all 

Checking 
Missing or incorrect validation of data or incorrect 
loop or conditional statements 

Interface 

Errors in the interaction among components, 
modules, device drivers, call statements, or 
parameters lists 

Timing/Serialization Missing or incorrect serialization of shared resources 

Algorithm 

Missing or Incorrect implementation that can be fixed 
by (re)implementing an algorithm or data structure 
without the need for requesting a design change 

Function 

Affects a sizeable amount of code and refers to the 
capability that is either implemented incorrectly or 
not implemented at all 

Table 3-3 – ODC defect types. 
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A subsequent study [Madeira et al. 2000] also showed that typical 

SWIFI tools were not adequate for the emulation of software faults through 

the use of error patterns like the ones proposed in [Christmansson et al. 

1996a], as only some types of those error patterns could be injected. One of 

the reasons relies on the fact that, in its genesis, the ODC classification does 

not take in account the fault emulation point of view, regardless the fact 

that the considered classes are unambiguously close to the code and to the 

programmer, once they are based on the correction of the software defects. 

With the aim bridging this gap, an ODC classification extension, built 

under the fault emulation perspective, is presented in [Durães et al. 2003b, 

Durães et al. 2006]. This proposal resulted from an exhaustive field study of 

real software bugs found in well-known open source software written in 

the C language (including user applications and system code)  and is based 

on the observation that a software defect consists of one or more missing, 

wrong or superfluous programming language constructs (such as program 

statements, functions, expressions, etc.). Accordingly, this study classifies 

each one of the ODC defect types into three new additional types, 

according to the corresponding erroneous program construct: Missing 

construct, Wrong construct or Extraneous construct. Table 3-4 shows the 

extended ODC classification, with concrete examples of each class of defect 

types, as well as the corresponding percentage of faults found in the field. 

It should be noticed that, as the analyzed field data does not include any 

information about the timing or serialization properties, the 

Timing/Serialization defect type was not considered. 

It is worth pointing out that both of the distributions, the one 

presented in [Durães et al. 2003b, Durães et al. 2006] and that presented in 

[Christmansson et al. 1996a], follow the same trend in the fault distribution 

across the ODC fault types (see Table 3-5). 
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Defect type Nature Examples of code mistake 
% of 

Faults 

Assignment 

Missing 
A variable was not assigned a value, a 
variable was not initialized, etc. 

9.3% 

Wrong 
A wrong value (or expression result, etc.) 
was assigned to a variable 

10.5% 

Extraneous 

A variable should not have been subject of 
an assignment (value, expression result 
etc.) 

1.6% 

Checking 

Missing 
An “if” construct is missing, part of a 
logical condition is missing, etc. 

16.9% 

Wrong 
Wrong “if” condition, wrong iteration 
condition, etc. 

7.9% 

Extraneous 
An "if" condition is superfluous and 
should not be present 

0.1% 

Interface 

Missing 

A parameter in a function call was 
missing; incomplete expression was used 
as parameter 

1.6% 

Wrong 
Wrong information was passed to a 
function call (value, expression result etc.) 

5,7% 

Extraneous 
Surplus data is passed to a function (e.g. 
one parameter too many in function call) 

0.0% 

Algorithm 

Missing 
Some part of the algorithm is missing (e.g. 
function call, an iteration construct, etc.) 

33.2% 

Wrong Algorithm is wrongly coded or ill-formed 6.0% 

Extraneous 
The algorithm has surplus steps or a 
unnecessary function is called 

0.9% 

Function 

Missing New program modules were required 3.1% 

Wrong 
The code structure has to be redefined to 
correct functionality 

3.0% 

Extraneous 
Portions of code were completely 
superfluous 

0.0% 

Table 3-4 – Fault nature totals across ODC types [Durães et al. 2006]. 
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In fact, it can be observed from Table 3-5 that, for both 

distributions: Algorithm defects are the dominant fault type; Assignment 

and Checking defects have similar frequency; and the Interface and 

Function defects are clearly the less frequent type of faults found in field, 

according to both works. Moreover, both works show similar values for all 

ODC types. 

 

ODC Defect type 
ODC Defect type distribution 

[Durães et al. 2006] [Christmansson et al. 1996a] 

Assignment 21.98% 21.4% 

Checking 17.48% 24.9% 

Interface 8.17% 1.6% 

Algorithm 43.41% 40.1% 

Function 8.74% 6.1% 

Table 3-5 – Comparison of Fault distribution across ODC defect types. 

The independency of both research works and the fact that they 

analyzed quite different program types, suggest that this fault distribution 

is reasonably independent from the nature of the program and, thus, it 

seems to confirm the representativeness of the respective software defects 

distribution for programs in general. 

The work presented in [Durães et al. 2006] used the new classification 

scheme to classify 668 faults from the field, through the analysis of 12 

widely deployed software systems. Results show that most of the software 

faults found belong to a small set of fault types, and that the remaining 

fault types encompass a small number of faults. Table 3-6 presents the most 

common set of fault types found. It is worth noting that this set of fault 

types represent a total of approximately 68% of all faults collected in field. 

The study shows that these types of software faults can be considered 

representative of the most common types of software faults and, 
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consequently, they should be considered in software faults emulation 

experiments. The paper [Durães et al. 2006] argues that, although other 

fault types may occur in the field with the analysis of more field data on 

real software faults, they are probably very rare, since they were not found 

among the analyzed faults. Moreover, they would not change the analysis 

of the most frequent types. 

The research work carried out in [Durães et al. 2006] presents 

important results towards the characterization of software faults. The 

proposed methodology allows a greater adaptability to software fault 

injection, as it contains clear indications of how to manipulate the target 

program code in order to inject a fault. In fact, it also proposes a library of 

fault emulation operators for software fault injection, as explained in 

section 2.4.4. These operators guide the mutation of the ready-to-run binary 

code of software modules in order to mimic real software faults, 

reproducing the code that would be generated by the compiler if the 

intended software faults were in the high-level source code. The technique, 

named G-SWFIT, consists in the scanning of the target code application for 

specific low-level instruction patterns (sequence of machine code 

instructions) and in applying the mutation to emulate the intended 

software fault. It is worth pointing out that, unlike [Christmansson et al. 

1996a], this work presents a technique for the emulation of real software 

faults, even when field data is not available for the target system, as it 

usually happens for third-party software components. 

Moreover, despite the full work was based on the C language, other 

languages like C++ and Pascal were also analyzed in this study. Results 

show that the considered fault types are not dependent on specific features 

of the C language and only minor differences should exist in the fault 

emulation operators. It should also be noticed that, as the G-SWFIT 

operators reproduce faults that escape the traditional testing phases of 

software development process, they only encompasses 12 software fault 

types of the total of 71 mutation operators proposed in [Delamaro et al. 
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1996] for the assessment of the exhaustiveness of test cases (regarding the C 

language). 

 

Fault Types 
# 

Faults 

ODC Type 

Ass. Chk. Int. Alg. Fun. 

Missing 

if construct plus statements 71 
   

 
 

AND sub-expr in expression used as 
branch condition 

47 
 

 
   

function call 46 
   

 
 

if construct around statements 34 
 

 
   

OR sub-expr in expression used as 
branch condition 

32 
 

 
   

small and localized part of the 
algorithm 

23 
   

 
 

variable assignment using an 
expression 

21  
    

functionality 21 
    

 

variable assignment using a value 20  
    

if construct plus statements plus else 
before statements 

18 
   

 
 

variable initialization 15  
    

Wrong 

logical expression used as branch 
condition 

22 
 

 
   

algorithm - large modifications 20 
    

 

value assigned to variable 16  
    

arithmetic expression in parameter 
of function call 

14 
  

 
  

data types or conversion used 12  
    

variable used in parameter of 
function call 

11 
  

 
  

Extraneous 
variable assignment using another 
variable 

9  
    

Total Faults for these types in each ODC type 452 93 135 25 192 41 

Coverage relative to each ODC type (%) 68 65 81 51 72 100 

Table 3-6 – Most common faults found in field for several software systems 

[Durães et al. 2006]. 
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In order to extend this fault model to different high level languages, 

with different programing paradigms, some subsequent studies were 

presented. The works presented in [Basso et al. 2009, Sanches et al. 2011] use 

the Java language to show that, when and object-oriented languages are 

considered, the set of the most common software fault types presented in 

Table 3-6 can be extended with new object-oriented fault types, according 

to the Java language specific characteristics and the object-oriented 

paradigm. 

An approach for improving software fault representativeness and, at 

the same time, reducing the size of the faultload produced by the G-SWFIT 

technique is presented in [Natella et al. 2013]. This study analyzed the 

representativeness of a large set of injected faults, representing the most 

frequent software fault types (as summarized on Table 3-7) found in field 

(according to [Durães et al. 2006]), with respect to its ability to escape actual 

test suites adopted by software developers for detecting faults before 

software release: the study argues that faults that are easily identified by 

test suites should not be considered as representative. 

 

Defect type Examples of code mistake 

MFC Missing Function Call 

MVIV Missing Variable Initialization using a Value 

MVAV Missing Variable Assignment using a Value 

MVAE Missing Variable Assignment using a an Expression 

MIA Missing IF construct Around statements 

MIFS Missing IF construct plus Statements 

MIEB Missing IF construct plus statements plus Else Before statements 

MLC Missing AND/OR clause in branch condition 

MLPA Missing small and Localized part of the algorithm 

WVAV Wrong Value Assigned to Variable 

WPFV Wrong variable used in Parameter of Function call 

WAEP Wrong Arithmetic Expression in Parameter of function call 

Table 3-7 – Most frequent software fault types analyzed in [Natella et al. 2013]. 
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This work uses a fault injection tool called SAFE [SAFE] to inject the 

most common software fault types found in field in three real world 

software systems widely used in business and safety-critical contexts, for 

which real test suites are available: the MySQL [MySQL] and PostgreSQL 

[PostgreSQL] DBMS engines, and the kernel of the RTEMS Real-Time 

Operating System [RTEMS, Rufino et al. 2007]. It is worth noting that the 

software faults are injected in the source code, instead of the binary code, 

through the production of a set of different faulty source code files, each 

containing a specific software fault, as summarized in Figure 3-4. The fault 

injection tool starts to statically analyze the target program and builds an 

abstract representation of the source code, called an Abstract Syntax Tree, 

responsible for guiding the identification of locations where a specific 

software fault type can be introduced, according to the software fault 

operators defined in [Durães et al. 2006].  Thereafter, the tool creates a set of 

patch files, each one containing a different faulty, but syntactically correct, 

version of the code, which is then compiled. 

 

Figure 3-4 – Process for generating faulty versions of the target system  

[Natella et al. 2013]. 

The experimental setup used in this study is presented in Figure 3-5. 

In each experiment the system under test is replaced with a faulty version, 

in which the Test Manager executes a test case and collects the test result. 

In order to analyze which faults can be considered representative, i.e. 

software faults that escape to test suites, each one of the generated faulty 

versions of the code was run against 50 test cases, randomly chosen for 

each software system. 
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Figure 3-5 – Experimental setup used in [Natella et al. 2013]. 

The conducted experiments show that a significant part of the 

injected faults is detected by most of the test cases and, consequently, the 

study argues that they should not be considered as representative: 14.57% 

and 23.13% for the MySQL and PostgreSQL DBMSs, respectively, and 

72.23% for the RTEMS. 

This work also states that there is a relationship between fault 

representativeness and fault locations, and shows that fault 

representativeness can be improved with the use of classification 

algorithms and software metrics for the selection of a subset of components 

suitable for the injection of representative software faults. Both a 

supervised (decision trees) and an unsupervised algorithm (Lloyd k-means 

clustering) were evaluated for the improvement of the faultload 

representativeness and a set of software metrics commonly used by 
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researchers and practitioners was used for analyzing software complexity: 

Lines of Code, McCabe’s Cyclomatic complexity and FanIn/FanOut6.  

This study concludes that the faultload can be improved, by 

including a greater number of representative faults, using either the 

supervised or the unsupervised algorithms (with an increase of 4.10% to 

26.08% and of 2.16% to 16.24%, respectively). At the same time, the 

proposed approach can reduce the faultload size of 30.30% to 69.43% for 

the supervised algorithm, and of 22.16% to 59.13% for the unsupervised 

one. 

It should be noticed that the supervised classifier requires a training 

set in order to classify unknown elements, which, in practice, reveals to be 

a strong limitation, since it involves an extensive and time consuming 

experimental analysis. In order to overcome this need (the main limitation 

of the supervised algorithm), this study also presents an unsupervised 

classifier, relying on the observation that suitable components have lowest 

FanIn and FanOut values, as those components are less exposed to testing. 

                                                      

 

 

6 FanIn/FanOut are software complexity metrics based on system structure and information 

flow, derived from the concept presented in [Henry et al. 1981]. FanIn represents the count 

of unique components (functions or files) that call (or are called by, in the case of FanOut) a 

given component, either directly, or indirectly (via other components).  
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3.5 Summary 

This chapter presented a conceptual framework for dependability 

benchmarking. It also discussed the challenges and difficulties faced with 

the dependability benchmarking of software systems, namely, concerning 

the experimentation issues and the representativeness of software faults. 

Relevant works in the area are also described in detail. 
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Chapter 4  

4 Software Fault Injector 

Previous chapters introduced the basic concepts of dependability and 

presented the fault injection as a method for its evaluation. Special emphasis was 

given to software fault injection and to dependability benchmarks, given its 

remarkable importance to industry and end users. 

This chapter is dedicated to the presentation of an innovative fault injector, 

called DBench-FI, specially designed for dependability benchmarks and whose 

unique characteristics make it the most flexible fault injector available. DBench-FI 

constitutes a central tool in the present study. 

4.1 Introduction 

s mentioned in Chapter 3, reproducibility and the generalization 

are two main properties of dependability benchmarks, which 

support its indispensable acceptability, among other demanding 

requirements. However, in practice, those two properties are very difficult 

to attain, mainly due to the inexistence of especially adequate tools which 

support the experiments. One of those crucial tools is the fault injector. 

Dependability benchmarks must include fault injectors with very specific 

A 
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features: (i) they should be very easy to install and use, without the need 

for any complex setup or installation procedure; (ii) have high level of 

portability;  (iii) have very low intrusiveness; (iv) be capable of injecting 

faults in both user and system spaces; (v) and in code and data segments of 

any process, irrespective of their complexity; (vi) be independent of the 

availability of any source code of any system component or user process; 

(vii) be dynamically linked into a target system; and (viii) be compatible 

with the latest and most advanced software fault models. 

Despite all the developments, none of the existing fault injection tools 

(presented in section 2.4.3) satisfied these requirements, mostly because of 

one or more of the following reasons: 

 The overhead caused by the fault injector is too high; 

 Only user space could be targeted; 

 The fault injector requires the availability of any system 

component or user process (usually, the source code of the target 

application); 

 A special debug mode imposing a particularly launch mode is 

required; 

 Complex installation procedures are required. 

In order to fulfill the mentioned requirements, a new version of the 

DBench-FI fault injector, primarily presented in [Costa et al. 2003], was 

developed. In addition to all the other characteristics that makes this SWIFI 

tool special adequate for dependability benchmarking, DBench-FI is now 

fully compatible with the Generic Software Fault Injection Technique 

(G-SWFIT), the state-of-the-art in software faults model [Durães et al. 2006]. 

Despite this new capability, this new version of DBench-FI still maintains 

its initial characteristics. Namely, it still does not require any special 

installation procedure, contrasting with the majority of the existing SWIFI 

tools, like for instance Xception [Carreira et al. 1998b] (which requires some 
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changes to kernel that have to be done offline). With DBench-FI everything 

is done on-the-fly. 

It is worth noting that the main idea that supports the initial 

development of this fault injector was the creation of a conceptual model 

and an experimental environment for dependability benchmarks (the main 

goal of Project DBench [DBENCH], project in which it was developed), and 

the observation of the inexistence of a fault injector compatible with its 

integration. Therefore, the first version of the DBench-FI fault injector, 

presented in [Costa et al. 2003], uses a very simple error model - it just 

changes the value of memory locations (data segment) of user applications. 

This simple error model was deemed sufficient to demonstrate its ability to 

inject faults, and appropriate for the first versions of the benchmarks, 

particularly if the target areas for injection are carefully chosen, as was 

done in the experiments reported in the mentioned study.  

The new version of DBench-FI, supporting more complex fault 

models like G-SWFIT, was already tested and used in the research work 

presented in [Costa et al. 2009]. The current version targets the Linux OS on 

32 bit Intel processors, and uses a flexible runtime kernel upgrading 

algorithm to allow access to the target process memory space, that can be in 

either user or system space, enabling in this way the injection of faults. 

Presently DBench-FI is, to the best of our knowledge, one of the most 

versatile fault injectors available.  

The next section presents the architecture of the current version of 

DBench-FI, showing the modules that constitute it and the way they 

interact with each other and with the user. The implementation details are 

also presented, as well as some characteristics of operating systems in 

which relies the fault injector tool. 

The methodology used, which forms the basis of the fault injector, 

constitutes the main innovation comparing to the existing SWIFI tools, 

being responsible for the unique characteristics presented by the fault 
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injector. The DBench-FI enables a breakthrough in the areas of fault 

injection and dependability benchmarking, opening new perspectives 

hardly achievable with existing methods. 

4.2 Fault Injector Architecture 

The current version of DBench-FI consists of two modules, as shown 

in Figure 4-1: a fault injector core module and a fault injector controller module. 

 

Figure 4-1 – The DBench-FI fault injector architecture. 

The core module, dynamically linked with the kernel, is responsible for 

implementing the runtime kernel upgrading algorithm in order to add the 

fault injection functionality to the system, independently of any debug 

mode. The new kernel, incorporating this module, provides the user the 

capability of injecting faults into any process (in either data or code 

Operating 

System 

Kernel

Target 

Application

Fault 
Information 

File

Log File

Log File

Output File

API

Fault Injector 

Controller 
(faultload 

generator)

User

Fault Injector 

Core Module



Software Fault Injector  89 

 

 

segments) running on the target system, including those that are part of the 

operating system itself. The user interface is given by the fault injector 

controller module. It is worth noting that the integration of the fault injector 

core module with the OS kernel enables the injection of faults in the system 

space, in addition to the user space. 

All the information necessary for the fault injection process, such as 

the identification of the target process (through the process pid), the desired 

fault model, the type of faults to be injected (for example, stuck-at-0, 

stuck-at-1, bit-fip, etc.), the target address range, among others, are sent to 

the core module through the fault injector controller module.  

When integrated in a dependability benchmarking, the fault injector 

controller module is responsible for providing the API to the Benchmark 

Management System (BMS), becoming the faultload generator of the 

system. The target system with these two modules (the fault injector core 

module is integrated in the kernel) provides the user the ability to inject 

faults in whatever process that is already in execution, including those that 

are part of the OS itself. 

It should be noticed that there is no restriction on the fact that both 

modules have to reside on the same machine. They may be placed in 

different machines, if necessary for a particular experiment. 

4.3 Fault Injection Design and 

Implementation 

The fault injector has been implemented on an Intel Pentium IV 

system running the Linux RedHat 7.3 (kernel version 2.4.18-3). It has also 

been tested with Linux RedHat 9 (kernel version 2.4.20-8) and Ubuntu 10.04 

(kernel version 2.6.32-31). The dynamic algorithm responsible for the 
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linking of the fault injector with the OS kernel was implemented using 

Linux Loadable kernel Modules (LKMs)7. 

The DBench-FI fault injector is based on common characteristics and 

concepts of modern preemptive multitasking operating systems, which 

explains its high level of portability, not found in other SWIFI tools. For 

reasons that are explained below, two mechanisms of modern operating 

systems are of particular importance in the methodology used by 

DBench-FI: the memory management mechanism, where any process 

running on the system is viewed as having its own memory address space, 

and the process management mechanism, responsible for the 

implementation of the abstraction which consists on the existence of 

multiple processes seemingly running simultaneously, even on systems 

with a single processor. A thorough description of the components and 

mechanisms of the Linux kernel are described in [Mauerer 2008, Kerrisk 

2010, Love 2010]. 

                                                      

 

 

7 Loadable Kernel Modules allow a running operating system kernel to be 

dynamically extended, increasing its flexibility concerning the addition of new hardware 

support or functionality. They are usually used by device drivers and filesystems. Currently, 

most modern Unix-like operating systems, such as Solaris, Linux and FreeBSD use or support 

LKMs. 
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It is worth pointing out that, in Linux, like in all monolithic 

architectures, the operating system functionality is concentrated within the 

kernel. Regarding the architecture of the OS kernel, it should be noticed 

that Linux is considered essentially monolithic8, as it is packed in a single, 

large, binary image, which includes all its subsystems such as process 

management, memory management, file systems, etc., and runs in a single 

address space9. However, at the same time, the Linux kernel is also 

modular, as it supports the dynamic insertion and removal of code from 

itself at runtime, and thus compensating some of the known disadvantages 

of the monolithic kernels10. As a consequence, Linux kernel is not 

                                                      

 

 

8 Despite the Linux kernel incorporates both monolithic and microkernel ideas, it was 

originally developed according the monolithic paradigm in order to avoid the need to 

develop a message passing mechanism and a module loading architecture, and accelerating 

the achievement of a ready-to-run and fully operational OS [Maxwell 2002]. 

9 The great majority of commercial Unix variants are monolithic. Most notable 

exceptions are the Carnegie-Mellon's Mach 3.0, as well as other Unix-like systems based on 

this microkernel, such as the MAC OS X and the GNU Hurd operating systems, which follow 

a microkernel approach [Bovet et al. 2005]. 

10 The supporters of monolithic kernels argue a greater efficiency and performance in 

module communication, made through the direct call of functions (in kernel mode, in same 
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considered a pure monolithic kernel, as it incorporates both monolithic and 

microkernel ideas. 

The kernel function responsible for deciding the next executable task 

that will be dispatched to the CPU, known as schedule, assumes a special 

role in the design of DBench-FI. The schedule function is called in the 

following circumstances: (i) a task yields the processor; (ii) a task blocks in 

an I/O operation; (iii) a task uses up its time slice (quantum); or (iv) a task is 

                                                                                                                                       

 

 
address space), when comparing to the overhead caused by the necessary message-passing 

mechanisms that must exist between the various processes of a microkernel. On the other 

hand, microkernel supporters claim that they force system programmers to use “clean” and 

modularized programming approaches, which leads to an improved ease of development of 

new system modules. Other benefits of the microkernel architecture are the dynamic 

extensibility of the kernel and the ability to swap kernel components at runtime, and, 

consequently, a more efficient use of the system memory, since the modules are only loaded 

when they are actually required. These characteristics support the increased flexibility, 

portability and maintainability of microkernels design when compared to the monolithic 

variants. 
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preempted by another task (with higher priority11). Figure 4-2 gives a 

common view of the Linux kernel architecture, focusing on the interaction 

between applications, scheduler and hardware. 

Concerning the design and implementation of DBench-FI, another 

important characteristic is the Linux memory management system, which 

is made-up to be architecture independent. As any modern multitasking 

operating system, the Linux kernel provides memory protection 

mechanisms (vital to the system stability), which prevent any attempt, on 

behalf of a user process, of illegitimate access to a memory area that 

belongs to another user process or to the kernel itself. Moreover, any user 

process running on the target system is regarded as having its own virtual 

                                                      

 

 

11 Although the Linux kernel is preemptive (user mode processes may always be 

interrupted), there are some kernel critical regions which cannot be preempted by the 

scheduler until its execution ends. For this reason the Linux kernel is said to provide soft 

real-time behavior (its kernel tries to schedule applications within timing deadlines, 

although it may not always get it). Usually, fully preemptive kernels are associated with 

hard real-time operating systems, since they ensure the compliance with very stringent 

timing requirements for scheduling. 
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memory address space12, which includes its code, data and stack areas. A 

representation of a user process address space in Linux is shown in Figure 

4-3. It is worth noting that the kernel is mapped in the address space of 

every process, in the top area of its memory address space (from 

TASK_SIZE13 to 232 or 264, in IA-32 systems or IA-64 systems, respectively). 

                                                      

 

 

12 Virtual memory is referred as the practice of lying to processes about the real 

(physical) addresses at which they reside. To each user process is given the illusion that its 

address space always starts at 0 and extends from there. It is worth noting that some purists 

differentiate the concept of virtual memory from the notion of “disk-as-memory”. In fact, 

although the virtual memory is usually associated with swapping and paging techniques, it 

can be, in sensu stricto, differentiated from them (the latest techniques refer the OS ability of 

blending primary and secondary storage, providing to processes the use all of its memory as 

if it were always available): an OS can give each process a logical address space without 

making any association between primary and secondary storage [Maxwell 2002].  

13 In Linux, every user process has its own virtual address space ranging from 0 to 

TASK_SIZE (an architecture specific constant defined as a kernel symbol, which represents 

the maximum size that a user process can access in bytes, i.e., since the space address always 

starts at 0, it assumes the  maximum address that a user process can access+1). On IA-32 

systems, for instance, the TASK_SIZE assumes the value of 3 GiB (i.e., 3 × 230 bytes). 
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Figure 4-2 – The Linux operating system architecture. 

Concerning the mapped regions, for a correct understanding of the 

interconnection of the fault injector and the memory management functions 

of the OS kernel, it is important to point out the most significant differences 

that they have with each other. The code segment, referred as Process Code 

in Figure 4-3, is write-protected and shared by all processes that execute the 

code it contains. This represents a significant difference when compared to 

the remaining areas (data and stack), which are private to each process and 

where writing is allowed. Another fundamental distinction between the 

code area and the data and stack areas relates to the fact that the first 

cannot be dynamically reserved. In fact, a Linux user process can 

dynamically allocate three types of memory: stack, heap and mmaped
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memory14. A thorough description of the components and mechanisms of 

the Linux kernel are described in [Mauerer 2008, Kerrisk 2010, Love 2010]. 

As already mentioned, the DBench-FI was initially developed for the 

purpose of injecting faults in the memory address space of a given process. 

In its first version, presented in [Costa et al. 2003], it is possible to inject 

stuck-at-0, stuck-at-1, and bit-flip type of faults in the data segment of any 

user process (as well as on its stack area). Thereafter, it was added the 

ability to inject faults in the code segment of any process, as well as the 

possibility of the injected faults that assume a user defined value through a 

fault information file, as depicted in Figure 4-1 – The DBench-FI fault 

injector architecture. In the context of the software fault emulation, the 

                                                      

 

 

14 The range of valid virtual addresses of a process can change throughout its 

lifetime, as the kernel allocates and deallocates memory according to its needs. A process 

can allocate memory by increasing the size of the heap - raising the program break (the 

current limit of the heap), through the use of the brk() and sbrk() system calls (upon which 

the well-known malloc functions are based). A process can also create and free memory 

mappings into its virtual address space, using the mmap() and munmap() system calls, 

respectively. The process stack dynamically grows and shrinks as functions are called and 

returned. Special process registers are used for this purpose, as explained later on this 

chapter. 
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possibility of using this new type of faults, together with the possibility of 

targeting the code segment of any process, enables the use of more 

representative fault models. In fact, these improvements provided the 

compatibility of DBench-FI with the state-of-the-art in software faults 

model – the mentioned G-SWFIT, presented in [Durães et al. 2006]. 

 

Figure 4-3 – The process virtual address space in IA-32 systems. 

It is worth noting that, as expected, these latest enhancements did not 

involve any change in the methodology or in the model of the fault injector. 
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Concerning the design and implementation of DBench-FI, as one of 

the goals of DBench-FI consists on injecting faults in the address space of 

any process, including the operating system kernel itself, two different 

solutions were initially considered, both based in a new process running in 

kernel mode: 

 The interception of the OS scheduler and the detection of the 

target process in order to access its virtual address space. It is 

worth noting that the virtual address space of a process is only 

available when that same process is chosen by the schedule 

function to use the CPU; 

 Access the memory area of the target process through the lookup 

of the corresponding page table entries used by the memory 

management system of the OS. It is worth pointing out that the 

OS kernel maintains a page table for each process, in order to map 

the virtual addresses of a process to the corresponding physical 

addresses. 

Reasons of clarity, elegance and portability, justified the choice for the 

interception of the OS scheduler (the first solution considered). In order to 

detect the time when the target process was chosen to use the CPU, and its 

virtual memory address space is available for the injection of faults, the 

DBench-FI dynamically intercepts and changes the OS schedule function. 

The required fault can then be injected. 

In a first step, the address of the kernel schedule function is found, and 

then redirected to a new function called new_schedule, responsible for both 

the target process detection and the fault injection. The memory address 

where the schedule function resides is determined through a search in the
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Linux file /proc/ksyms15, which contains a list of every symbol that is 

exported by the OS kernel (known as kernel symbol table)16. This 

methodology presents a higher degree of portability across different 

versions and distributions of the Linux OS, when compared, for example, 

with the memory pattern search algorithm used in the first version of the 

fault injector [Costa et al. 2003]. However, this approach requires that the 

used kernel supports LKMs, which are, however, also required for the 

dynamic installation of the Fault Injector Core Module. Moreover, 

considering the benefits of the dynamic extensibility of the kernel, typical 

of the microkernel architectures, most of the current Linux kernels and 

distributions are compiled with this option enabled, which is indeed 

considered as default. It is important to mention that the used methodology 

requires supervisor privileges, since both the accesses to the LKMs features 

and to the /dev/ksyms file demands it for security reasons. 

                                                      

 

 

15 The Linux file /proc/ksyms is created on-the-fly when the kernel boots up. For Linux 

kernels version 2.6, and above, the /proc/ksyms file was replaced by /proc/kallsyms.  

16 The file /boot/system.map could also be used for this purpose, since it contains all 

symbols used by the kernel. However, this file is usually used for debugging purposes and, 

sometimes, it is not available (as it is not required for the OS booting process). 



100 Software Fault Injector 

 

 

The procedure used by DBench-FI is illustrated in Figure 4-4 and 

consists of the following steps: 

1) Determine the runtime address of the schedule kernel function on 

the OS kernel symbols table; 

2) Copy the first nine bytes of the kernel schedule function 

(represented by instructions A, B and C in Figure 4-4) to a new 

function called saved_instructions; 

3) Generate a jump instruction with the runtime address of the 

new_schedule function (where the target process detection and the 

fault injection will take place) and overwrite the first bytes of 

schedule code with the generated jump instruction;  

4) Create a jump instruction in order to execute the saved nine bytes 

of the kernel schedule function (saved in step (2) to 

saved_instructions) after the execution of new_schedule; 

5) Create a jump instruction in order to execute the rest of the 

original schedule function code (from the 10th byte forward of the 

original schedule function). 

It should be noticed that, considering the methodology used by the 

fault injector, as well as the implementation of the new_schedule function in 

a high level language (C language), it is fundamental to restore the stack 

after the identification of the target process and before the jump (step 4) to 

the original schedule instructions (saved in saved_instructions). Such need is 

justified for the following two reasons: 

1. The compiler, according to the calling conventions, automatically 

creates a prologue and an epilogue, which allows the use of the 

stack for passing data between the caller code and the called 

subprogram; 
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2. The function new_schedule is finished with a jump to 

saved_instructions (step 4) instead of using the conventional 

epilogue17. 

It should also be noticed that when the fault injector kernel module is 

loaded, the policy and the main algorithm of the original operating system 

scheduler remains the same. Additionally, when it is unloaded or removed, 

the redirections that were made are undone and the scheduler becomes 

exactly the original. 

Concerning the intrusiveness, it is important to enhance that when 

the fault injector is loaded but no faults are injected, the performance 

penalty corresponds to ten machine assembly instructions that were added 

in order to intercept and redirect the scheduler. This fact guarantees a very 

low and totally negligible intrusiveness, considering the current processors. 

 

                                                      

 

 

17 The x86 family processors have two general-purpose registers in order to 

manipulate data on the stack: the ESP and the EBP. While the first register points to the top 

of the stack, the second is used to reference data on the stack. At the end of a subprogram, 

the original values of the registers are restored (they are previously saved at the start of the 

subprogram). Detailed information about the stack and the calling conventions are 

presented in [Carter 2006] 
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Figure 4-4 – The DBench-FI fault injector methodology. 
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2. Executing the Fault Injection Controller, providing the required 

parameters for the fault injection campaign through a command 

line with the following syntax: 

dbfi_controller [{target_pid start_addr end_addr 

nbytes init_t reg_t maxfi type | –f filename 

| -gswfit filename fi_num}] 

The command dbfi_controller can be executed by itself, without any 

argument. Thereby, all the fault injection parameters will be provided in an 

interactive way.  

Though, the fault injection parameters can also be specified in the 

command line, through arguments, using the syntax: 

dbfi_controller target_pid start_addr end_addr 

nbytes init_t reg_t maxfi type 

The command arguments are explained below: 

 target_pid: Identifier (pid) of the target process. Zero indicates that 

the fault will be injected in the kernel address space – one of the 

mentioned requirements; 

 start_addr: Initial address (virtual) of a contiguous memory block 

that will be a potential target of fault injection. It should belong to 

the set of virtual addresses actually used by the target process 

(indicated in target_pid). Otherwise, in the case of any of these 

memory addresses actually be the target of fault injection (see the 

explanation of nbytes bellow), an appropriate error message will 

be sent to the user, referring that the address is not in use by the 

specified process; 
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 end_addr: End address (virtual) of a contiguous memory block 

that will be a potentially target of fault injection.  As in the 

previous case, it should belong to the set of virtual addresses 

actually used by the target process (indicated in target_pid). 

Otherwise, an appropriate message will be sent to the user, as 

explained for start_addr; 

 nbytes: Number of bytes, within the specified memory block (from 

start_addr to end_addr), that will be actually targeted by the fault 

injection campaign. Zero indicates that the entire block will be 

actually targeted, i.e., from start_addr to end_addr. If the value 

specified is less that the number of bytes of the memory block 

defined by start_addr and end_addr, a random location of 

contiguous nbytes within that memory block will be used as the 

actual target; 

 init_t: Time, in seconds, that will elapse before the first fault 

injection take place; 

 reg_t: The frequency of fault injection, in seconds. Zero indicates 

the use of temporal random fault injection triggers. A value of 𝑛, 

other than zero, indicates an interval of 𝑛 seconds between fault 

injections; 

 maxfi: Maximum number of fault injections; 

 type: Type of faults that will be injected in the virtual address 

space of the target process. Values of 0, 1 or bf, indicate stuck-at-0, 

stuck-at-1, and bit-flip, respectively. 

Concerning the fault triggers used by the DBench-FI, considering the 

options provided by the Fault Injection Controller, and more specifically, 

thought its init_t and reg_t arguments, the activation of the fault injection is 

based on temporal trigger conditions. This fact ensures the independence of 

the injected faults with respect to any specific activity of the target 
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application. Related to temporal fault triggers, two options are available in 

this implementation: a fault is injected once after a given time is elapsed 

since the application starts (using the init_t parameter), or a fault is 

repeatedly injected with a certain frequency (using the reg_t parameter 

with nonzero value). Temporal triggers that are randomly chosen (enabled 

with reg_t equal to zero) are particularly adequate to benchmarking, as they 

enable statistically significant results to be obtained. This way, regarding 

trigger conditions, two options are available: 

1. The fault is injected only once (with maxfi equal to one), after a 

certain time, in seconds, set by the user thorugh the argument 

init_t; 

2. The fault is injected repeatedly, after a given initial time (in init_t), 

in a certain frequency, random or user specified (with reg_t equal 

to zero or given it a nonzero value, respectively). 

The parameters used for the definition of the fault injection campaign 

can also be specified in a text file (as showed in Figure 4-1) with the 

following format (all the parameters must be in the order shown, separated 

by space characters): 

target_pid start_addr end_addr nbytes init_t reg_t maxfi type 

In this case, the syntax should be 

dbfi_controller –f filename 

where filename is the name of the mentioned text file. 

As explained, the current version of DBench-FI is also compatible 

with the state-of-the-art G-SWFIT software faults model [Durães et al. 2006]. 

In order to use this feature, the following syntax should be used: 
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dbfi_controller –gswfit filename fi_num 

where filename is the name of a G-SWFIT format file containing the full set 

of software faults that can be injected in a system and fi-num is the number 

of the software fault that will actually be injected in the target system. 

The identified file consists of a text file with one software fault per 

line. The specification of each software fault consists on an asterisk 

terminated string, with the corresponding fault injection parameters 

separated by commas, according to the following format: 

Type, Level, Arg3, Inj_Method, Addr, Nr_Bytes, Orig_Bytes, New_Bytes, 

# Comment1 # # Comment2 # … # Comment n #,* 

The listed parameters have the following meaning: 

 Type: Identifies the type of the software fault according the 

G-SWFIT model [Durães et al. 2006]. It can assume values like 

MIFS, MFC, MIA, etc.; 

 Level: Concerning the level of depth of the G-SWFIT pattern 

search in each target software component or module. Level zero 

indicates that the pattern will only be performed directly on the 

target code. Level one indicates that the pattern search will be 

performed on the target code and on functions that are called by 

them. And so on. It is worth pointing out that level zero was used 

for the purposes of the current work. Greater values would lead 

to the repetition of some fault injection experiments and, 

consequently, to a non-homogenous distribution of faults, which 

will be inadequate in the context of this study; 

 Arg3: Used for compatibility with the G-SWFIT faultload output 

file format. It represents the number of contiguous blocks of bytes 
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that would be changed by fault injection. According to the 

G-SWFIT methodology it should be equal to one; 

 Inj_Method: Used for compatibility with the G-SWFIT faultload 

file format. Regarding the G-SWFIT model it should be set to 

SUBS (indicating that a block of bytes will be substituted by 

another, according to the low-level code mutations defined by the 

set of operators of the G-SWFIT methodology); 

 Addr: The start address (hexadecimal) of the block of bytes that 

will be the target of the low-level code mutation for the emulation 

of the software fault according to the G-SWFIT methodology; 

 Nr_Bytes: The number of bytes of the block that will be the target 

of the low-level code mutation for the emulation of the software 

fault, according to the G-SWFIT methodology; 

 Orig_Bytes: The original bytes (hexadecimal) of the target that will 

mutated using the set of low-level operators for software fault 

emulation, according to the G-SWFIT methodology; 

 New_Bytes: The new bytes (hexadecimal) that will be injected in 

the block defined by Addr and Nr_Bytes, according to the 

low-level operators of the G-SWFIT methodology. 

The last section of the line, between the last pair of commas, is 

intended for posting comments, which are useful to increase human 

readability. In that section, each comment should be inserted between a 

pair of hash characters. The following line shows an example of a real 

G-SWFIT software fault specification: 

MIFS,0,1,SUBS,c0106ed0,2,7402,EB02,# je c0106ed4 # # MIFS c0106e60 

<machine_real_restart_R3da1b07a>) #,* 
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In this case, a MIFS (missing if statement) is emulated at address 

0xc0106ed0, substituting the bytes 7402 by EB02. The comments indicate 

that the original machine code instruction is je c0106ed4 located at function 

machine_real_restart, whose start address lies on 0xc0106e60. 

However, for an additional simplification of the process of installing 

and using the fault injector, it was created a script called DBenchFI. It is 

responsible for the loading and removal of the Fault Injector Core Module 

and the execution of the Fault Injection Controller, plus offering the 

possibility of identification of the target process by name and user to which 

it belongs. The syntax used is as follows: 

DBenchFI [{-n|-p}] target_proc [-u user_id] 

start_addr end_addr nbytes init_t reg_t maxfi 

type  

DBenchFI –f filename  

DBenchFI -gswfit filename fi_num 

DBenchFI -e 

The options and arguments of the script DBenchFI have the following 

meaning: 

-n The identification of the target process is done through the 

process name. That is, target_proc indicates the name of the target 

process. 

-p The identification of the target process is done through the 

process pid, given in target_proc (default option). 

-u Indicates that the target process belongs to the user 

mentioned in user_id. It is useful for resolving the ambiguity caused by 
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the existence of multiple users running the same process target. In the 

case that there is no univocal correspondence between target_proc and a 

particular target process, even after the specification of the user through 

user_id, the oldest process will be chosen (using the process creation date 

to resolve the ambiguity). 

-e Used for removing the Fault Injector Core Module. 

All the remaining arguments have direct correspondence with their 

homonymous for the Fault Injector Core Module, dbfi_controller, and have the 

same mentioned meaning. 

4.5 Advantages 

The methodology used in the design of DBench-FI confers it a 

number of important advantages (compared to the other existing fault 

injectors) regarding its inclusion in a dependability benchmark. Since the 

methodology it relies on is based on the interception the OS kernel 

scheduler and its redirection to a function that is within the kernel itself, 

DBench-FI is appropriate for the injection of faults into any system memory 

address, including the kernel memory segment. This capability makes this 

fault injector suitable to analyze the kernel robustness under faults, and 

represents a huge advantage comparatively to the ptrace-based SWIFI tools. 

Another important benefit relatively to the fault injectors based on the 

ptrace mechanism is that DBench-FI can inject faults into any running target 

application without having to load it explicitly or using any special 

procedure to execute it. It is worth noting that the fault injectors based on 

this function, like in any other debug tool, only allows the injection of faults 

in the user segment of target processes that they can explicitly launch. That 

is, DBench-FI allows the fault injection in processes that are already 

running when the fault injector is installed, regardless of the complexity of 
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the application they are part of. This is an essential requirement to analyze 

the dependability of complex systems like DBMSs and web-servers.  

An important issue with SWIFI tools is their portability to other 

systems and processors. The proposed methodology can be, with some 

minor changes, adapted to almost any operating system and processor. A 

further advantage is the simplicity and ease of use of DBench-FI, since it 

does not require any special procedure. In particular, there is no need to 

recompile the kernel or the target application, nor the knowledge of the 

source code of any of them. Concerning intrusiveness, the presented 

methodology provides the fault injector a negligible disturbance factor on 

the target system. 

The compatibility of DBench-FI with the G-SWFIT technique [Durães 

et al. 2006] is an important characteristic of this fault injector. This fact 

represents a major advantage when compared to other existing SWIFI tools, 

as, like stated in [Madeira et al. 2000, Jarboui et al. 2002], this kind of tools are 

not an obvious choice for the emulation of software faults. 

4.6 Limitations 

The main limitation of DBench-FI, besides the general SWIFI 

limitations described in section 2.4.2, is the limited set of fault models 

supported. This is not a limitation of the technique itself, but just of the 

current implementation, as the compatibility with the G-SWFIT model was 

considered more important for dependability benchmarking. However, if 

necessary, DBench-FI can easily be extended with the majority of the 

existing fault models of Xception [Carreira et al. 1998b], such as spatial fault 

triggers and the capability to inject faults in processor resources. 

Another obvious limitation of the presented technique is the fact that 

supervisor level privileges are required to install and use the fault injection 
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tool, as operating system security rules understandably prevent user level 

processes from modifying the kernel. 

It is worth to pointing out that, beyond the intrinsic restrictions that 

applies to the SWIFI tools, no other limitation is related to the used 

methodology, but rather with the current implementation of the fault 

injector. 

4.7 Summary 

Despite all the developments in the area of software fault injection, 

none of the existing SWIFI tools has characteristics compatible with the 

creation of a dependability benchmark. 

This chapter presented a pioneering SWIFI tool, named DBench-FI, 

whose innovative features allow its use in dependably benchmarks. Its 

architecture and implementation details are also described, as happens to 

some features of operating systems and processors in which its 

development is based. Their unique characteristics make it one of the most 

versatile fault injectors available and a central tool for the study presented 

in this thesis. 

The current version of DBench-FI is adequate for the injection of 

hardware faults (intermittent and transient faults) into the systems 

memory, as well as for software faults, according to the G-SWFIT model.  
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Chapter 5  

5 Software Faultload for Large and 
Complex Systems 

This chapter describes the problem of injecting realistic software faults in large and 

complex systems and puts into perspective the still open problem of the faultload 

size. It surveys the existing approaches that address this issue, discussing their 

strengths and limitations. Finally, it presents and provides and early assessment of 

an innovative experimental framework to define and evaluate different strategies 

for the definition of compact and representative faultloads. In this context, different 

hypothesis for the reduction of the number of software fault injection experiments 

are defined and an evaluation method of the error induced by the corresponding 

reduction is also presented. The proposed methodology is especially useful in large 

and complex systems, where dependability benchmarks usually take several months 

or even years due to its large faultload size. 

5.1 Introduction 

ne of the main goals of dependability benchmarks is to offer 

practical and efficient methods to characterize the behavior of 

components and systems and quantify dependability measures, O 
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considering the computing effort, the number of experiments and the time 

to run the benchmark. 

Concerning software systems, most recent techniques such as 

G-SWFIT, firstly presented in [Durães et al. 2003b], and later in [Durães et al. 

2006], use a set of operators for software fault emulation through low-level 

code mutations derived from an extensive collection of real software faults 

found in field. Although this innovative proposal emulates and represents 

real programming errors and application bugs, the sets of faults they 

generate tends to have a huge size, as it obviously happens with the 

resulting software faultload. This imposes a strong limitation to the 

execution of dependability benchmarks in software systems, especially in 

large and complex systems, where, in order to assure the necessary 

representativeness, the execution time of those benchmarks can take 

months or years due the mentioned faultload size. In fact, the great 

majority of studies on representativeness of software faults, mentioned in 

the previous chapter, just addressed the problem of finding realistic 

software fault models and ignored the important problem of the faultload 

size. 

5.2 Fault distribution models 

Despite some recent studies on software fault injection addressed the 

problem of finding realistic fault models, the problem of how to distribute 

the faults among different components in target systems have barely been 

discussed. Some recent studies on software fault injection use exhaustive 

fault coverage for small software components, injecting all the possible 

software faults, yet the most representative types, [Durães et al. 2004a, 

Durães et al. 2004b, Costa et al. 2009, Natella et al. 2013]. However, more 

sophisticated fault distribution models are needed when dealing with large 

components and systems, such as operating systems.  
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Large components and systems induce huge size faultloads, due to 

the vast number of possible software fault types and target locations, which 

could make impractical the fault injection campaign. For example, the 

software fault injection campaign carried out in the present work, 

presented in chapter 6 (Experimental Evaluation of Faultload Reduction 

Strategies), encompasses tens of thousands of software faults and resulted 

in more than two years of fault injection experiments. That problem, one of 

the currently most important issues in fault injection, and particularly in 

the area of software faults, has been largely neglected in the literature. 

Some exceptions are presented below. 

A similar problem arose earlier in mutation testing, where the large 

number of experiments, induced by the large number of mutants that need 

to be compiled and executed against test cases, especially in large and 

complex systems, soon became a barrier to the practical use of this 

technique in identifying adequate test data. It is worth noting that, 

although there is evidence on the use of the mutation testing technique in 

increasingly larger programs, those empirical studies applied only a few 

mutations operators [Jia et al. 2011]. In fact, in order to turn the mutation 

testing into a practical testing technique, and reduce the high 

computational cost of executing the huge number of mutants against a test 

set, several studies only use a subset of the potential mutants for a given 

program, representing a subset of all the possible faults, expecting that 

these will be sufficient to simulate all faults. 

Several approaches on the selection of a sufficient set of mutation 

operators were presented. Traditional approaches target only a few simple 

faults, constructed from several simple syntactical changes, which are close 

to the correct version of the program. This theory is based on two empirical 

principles first introduced by [DeMillo et al. 1978]: the Competent 

Programmer Hypothesis, and the Coupling Effect. The first principle states 

that programmers are competent and, consequently, they develop 

programs that tend to be close to the correct versions, as a result of their 
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multiple iterations through the software development process. On the other 

hand, the Coupling Effect states that test cases able to detect mutated 

programs differing from a correct one only by a simple error (fault), are so 

sensitive that they also implicitly detect more complex errors. In other 

words, it assumes a principle observed in real world programs, which 

states that complex errors are coupled to simple errors.  

Another simple technique for the reduction of the number of mutants 

is the mutant sampling. It consists in the selection of randomly chosen 

mutants from the entire set. Many empirical studies addressed this 

approach, analyzing the appropriate random selection rate, and minimal 

sample size, that should be used in order to maintain its usefulness 

[DeMillo et al. 1988, Sahinoglu et al. 1990, King et al. 1991]. 

The reduction in the number of mutants through the reduction of the 

applied number of mutation operators was firstly proposed as Constrained 

Mutation, by [Mathur 1991]. The methodology consists in the reduction of 

the mutation operators set by omitting those that generate most of the 

mutants, since many of which may turn out to be redundant [Offutt et al. 

1993, Offutt et al.  1996]18. Another type of selection strategy, based on test 

effectiveness, is presented in [Wong et al. 1995]. 

                                                      

 

 

18 In [Offutt et al. 1993, Offutt et al. 1996] the method was called Selective Mutation. 
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In [Mresa et al. 1999] is used a heuristic based on scores and costs 

assigned to each mutation operators to choose a subset of operators for use 

in efficient selective mutation testing. This study takes into account both 

the costs of the test set generation and of the detection of equivalent 

mutants. The experiments carried out show that it is possible to reduce the 

number of equivalent mutants while maintaining the effectiveness. 

A guideline for the determination of a sufficient set of mutation 

operators for C programs is presented in [Barbosa et al. 2001]. The results 

show that set of operators can be reduced by about 65%, while maintaining 

a mean mutation score of 99.6%. 

The studies presented in [Namin et al. 2006, Namin et al. 2007, Namin 

et al. 2008] use a statistical analysis procedure together with an associated 

linear model that predicts mutation adequacy with high accuracy, to 

address the problem of finding an adequate small set of mutation 

operators. The results presented in [Namin et al. 2008] indicated the 

identification of a subset of mutation operators that generates less than 8% 

of the mutants generated by the full set, consisting in the highest rate of 

reduction when compared to the other approaches. 

A different approach to improve the testing effectiveness is proposed 

in [Sridharan et al. 2010]. This work presents a Bayesian approach that 

prioritizes mutation operators whose mutants are likely to remain “hard-

to-kill” by the existing test suites. 

Regarding software fault injection, the use of a dependence analysis 

approach to reduce the number of experiments necessary to test the 

robustness of COTS is presented in [Moraes et al. 2005a]. This work extends 

the one presented in [Moraes et al. 2004], where the idea of architecture 

relevance for testing a COTS-based system was firstly presented. The 

proposed strategy is based on chaining [Stafford et al. 1997] - a software 

architecture dependence analysis technique aimed to reduce the portions of 

a system architecture that must be analyzed for some purpose, such as 
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testing or debugging. The approach is applied for testing a COTS database 

component called Ozone [Ozone], an Object-Oriented Database 

Management System (OODMS), executing the OO7 Benchmark Wisconsin 

[Carey et al. 1993, Zyl et al. 2006], a well-known benchmark used to evaluate 

OODBMS performance. This work concludes that the dependency analysis 

was effective in helping the selection of the target classes. 

The use of stratified sampling to reduce the amount of fault injections 

needed to test the robustness of the system without losing the confidence in 

the results is presented in [Moraes et al. 2005b]. Stratified sampling consists 

of a sample technique for partitioning a population into subpopulations 

called strata, by grouping elements with similar values for one or more 

characteristics [Podgurski et al. 1993]. This work uses the Weighted Methods 

per Class19 (WMC) [Chidamdber et al. 1991], to determine the strata. For the 

mentioned purposes two different strata are considered in this study: one 

for components with a WMC value greater than a pre-specified threshold 

value, obtained in an experimental study with several real world classes 

[Rosenberg et al. 2000], and the other for lower WMC values than the same 

                                                      

 

 

19 Weighted Methods per Class is an object oriented software complexity metric that consists on 

the sum of the complexities of all methods defined in a class. It represents the complexity of 

a class as a whole and can be used to indicate the level of time and effort required to 

develop and maintain a particular class. 



Software Faultload for Large and Complex Systems 119 

 

threshold. Results show that the exclusive use of the WMC metric is 

insufficient to choose the strata and other stratification criteria should be 

used for robustness testing purposes. 

A field data study on the use of software metrics to define 

representative fault distributions for software fault injection experiments is 

presented in [Moraes et al. 2006a]. The proposed methodology uses software 

complexity metrics and logistic regression [Hosmer et al. 1989] to estimate 

fault densities for each one of the modules of the target system and to 

distribute the injected faults. Seven software complexity metrics are used in 

this work: Lines of Code (LOC)20 (comment lines were not considered for 

the current purposes), Cyclomatic Complexity21 [McCabe 1976], number of 

function parameters, number of function return statements, Maximum 

Nesting Depth22, Program Length23 and Vocabulary Size24 (the last two 

                                                      

 

 

20 Lines of Code is one of the earliest and easiest (and also controversial) measures of software 

complexity. It consists on the count of the lines of the software’s source code.  

21 Cyclomatic Complexity is a measure of module’s independent control paths based on the 

mathematical graph theory. It is one of the most widely-accepted software complexity 

metrics.  

22 Maximum Nesting Depth measures the maximum indentation depth of module’s source 

code (e.g., in C language measures how deep is the maximum { } nesting in the module) 
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metrics are part of a broader suite of metrics known as Halstead’s Software 

Science Metrics or Halstead Metrics [Halstead 1977], and more precisely, 

represent two of the four equations needed to compute the Halstead’s 

Programming Effort complexity measure). This study uses the G-SWFIT 

technique [Durães et al. 2006] in order to scan the target system code and 

identify all possible locations for the injection of each type of software 

faults, identified as being representative of real software bugs found in 

field. Table 5-1 shows the software fault types considered in the study 

presented in [Moraes et al. 2006a]. The accuracy of the fault distribution 

generated by proposed methodology was compared with real fault 

distributions observed in field, which includes over more than 350 bug 

reports available from open source software projects. The study concludes 

that the used approach is consistent with field observations, for small and 

medium size software modules. Regarding large and complex software 

modules, the fault density observed in field data showed to be lower than 

the estimated by the proposed methodology. 

 

                                                                                                                                       

 

 

23 Program Length is the count of total number of operators and operands in a module. 

24 Vocabulary Size is the count of total number of distinct operators and distinct operands in a 

module. 
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Defect type Examples of code mistake 

Missing 

variable initialization (MVIV) 

variable assignment using a value (MVAV) 

variable assignment using an expression (MVAE) 

“if (cond)” surrounding statements (MIA) 

“AND expr” in expression used as a branch condition (MLAC) 

function call (MFC) 

“if (cond) { statement(s) }” (MIFS) 

“if (cond) statement(s) else” before statement(s) (MIEB) 

small and localized part on the algorithm (MLPC) 

functionality (MFCT) 

Wrong 

value assigned to variable (WVAV) 

logical expression used as a branch condition (WLEC) 

arithmetic expression in parameter of function call (WAEP) 

variable used in parameter of function call (WPFV) 

algorithm – large modification (WALL) 

data types or conversion used (WSUT) 

Extraneous variable assignment using another variable (EVAV) 

Table 5-1 – Software fault types considered in [Moraes et al. 2006a]. 

Despite having a different purpose (to improve the 

representativeness of the faultload generated by the G-SWFIT approach), 

the research work presented in [Natella et al. 2013], as already mentioned, 

also proposes a methodology to generate a smaller and refined faultload by 

removing the faults that are not representative of residual faults. 
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5.3 Experimental framework 

A representative faultload must be one that contains faults that 

represent the common programming bugs that escape the traditional 

software testing phases and still persist in existent software products. 

Although the faultload definition of that kind of faults had already been 

proposed, based on fault operators derived from the most frequent 

software fault types found in the field [Durães et al. 2006], the fault 

locations aspects have been completely neglected and the choice of 

adequate fault injection targets (i.e., actual software components where the 

faults are injected) is still an open and crucial issue.  

Given a particular software fault type, existing techniques, like 

G-SWFIT, allow the injection of faults in every software module or routine 

with a specific code pattern, emulating a particular type of software fault. 

However, the common large number of possible target components for 

fault injection leads to a huge number of possible software faults to be 

injected. Additionally, considering the time of each experiment (typically, 

the system should be restarted before injecting a new fault), one can easily 

observe that, in practice, it is impossible to run and test all the fault 

injection possibilities. This problem is even more obvious in large and 

complex systems, where the execution time of those dependability 

benchmarks can take several months or even years due the mentioned 

faultload size. 

One of the main goals of this work is to define a method to reduce the 

number of software fault injection target locations and thus the number of 

experiments needed to execute a dependability benchmark, without 

restricting or limiting the accuracy and the representativeness of its results.  

This methodology provides a way to perform accurate dependability 

benchmarks for large and complex systems, including COTS, which 

currently does not exist. 
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The proposed experimental framework is based on the definition of a 

strategy to guide the fault injection target selection and to reduce the 

number of software faults required for a dependability benchmark, or for 

an experimental evaluation using software fault injection. It consists of the 

following steps, based on two complete software fault injection 

experiments with two completely different systems, considering their 

complexity and the required computer resources of each one: 

 Define different hypothesis for the reduction of the number of 

software faults to inject (for example, select a subset of faults at 

random and inject only those faults, inject faults only in the code 

of functions with greater lines of code, etc.). 

 Evaluate each hypothesis in order to determine the best strategy 

to reduce the number of faults to inject with the minimum error 

possible, comparing the results obtained with the total fault set. 

 Propose practical guidelines for the definition of faultloads with a 

number of faults that can be used in practice (instead of faultloads 

with thousands of faults that would take months to be injected). 

A fundamental aspect of this approach is the clear separation 

between the fault injection target component and the system under 

observation, avoiding the problem of changing the system that is under 

evaluation. That is, the faults are injected in the FIT, with the goal of 

evaluating their impact on the rest of the system, the BT. Both the FIT and 

the BT are part of the SUB, a larger system that, from the benchmark point 

of view, consists in a set of processing units needed to run the workload. 

Another key element of the proposed framework is the Benchmark 

Management System (BMS), which includes a component, called the 

Benchmark Controller (BC), responsible for the control of all the aspects of 

the benchmark experiments: workload submission, software fault injection, 

coordination and synchronization of the several components involved in 

the experiments and collecting the information needed to process the 
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benchmark measures. Another component of the BMS is the Benchmark 

Client through which the BC sends and controls the workload execution on 

the BT (Figure 5-1). 

 

Figure 5-1 – Experimental Architecture. 

5.3.1 Preliminary assessment study 

In order to validate the proposed framework, an initial experimental study 

was carried out using the G-SWFIT fault model [Durães et al. 2006] and an 

early version of DBench-FI fault injector tool, especially designed and 

developed for dependability benchmarking (the current version of this tool 

was presented in chapter 4). This exploratory study on the guide of the 

fault injection target selection to reduce the number of faults required for 

the execution of dependability benchmarks is presented in [Costa et al. 

2009]. It consists in the injection of software faults in the kernel code of the 

OS system calls used by two different benchmark target systems: (i) a 

web-server benchmark based on the SPECweb99 industry standard 

performance benchmark for web-servers [SPEC], extended with faultload 

and dependability measures (failure modes); and (ii) a client-server 

application to sort large-scale integer vectors, based on a Multithreaded 

Quicksort algorithm, extended with performance and quality metrics. This 

last system mainly serves as a control application and as a comparison 
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system, as it has some completely different requirements concerning to 

computer resources. 

Four each BT system, there were analyzed four different hypotheses 

for the reduction of the number of faults to inject: 

 Lines of code (LOC) of each targeted system call. It is worth 

noting that the analyzed LOCs were in machine code and thus 

some well-known restrictions, that are generally applied to this 

size oriented metric, like language and programmer dependence, 

no longer make sense in this context; 

 The CPU time (CPUt) spent running in the kernel for each system 

call, relative to the SUB operating system, obtained during a 

normal execution, i.e. without any fault injection; 

 The number of calls (NrCalls) made by the OS to each one of the 

system calls considered, during a normal execution of the system 

workload; 

 A random selection of the software faults from the full set of 

faults, forming a subset of faults according to a uniform 

distribution. 

The used approach consists of two phases as depicted in Figure 5-2:  

 A Pre-Injection Phase, in which the benchmark is executed in 

order to identify the OS system calls used by the BT. The 

G-SWFIT faultload generator (software tool provided by the 

author of the study [Durães et al. 2006]) uses this list of OS system 

calls to identify all possible locations in the system calls code (it is 

worth noting that this code is part of the kernel) where it is 

possible to inject realistic software faults, according to the rules 

established by the G-SWFIT fault model. 

 A Fault Injection Phase, in which, firstly, is injected the 

exhaustive set of software faults to obtain reference results, and 
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then are performed experiments to evaluate the error observed in 

the results for the different hypothesis of reduction of the number 

of faults. 

 

Figure 5-2 – Experimental methodology of the preliminary assessment study. 

Regarding the Pre-Injection Phase, 50 OS system calls were used by 

the web-server system (see Table 5-2), whereas for the multithreaded 

quicksort algorithm, 27 OS system calls were found in use (see Table 5-3)25. 

For each BT system, Tables 5-2 and 5-3 also show the considered measures 

(LOC, CPUt and NrCalls) for the used system calls. As expected, 

                                                      

 

 

25 All the OS system calls used by both BT systems were previously profiled and 

analyzed. 
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considering the computer resources used by each one of the BT systems, 

the web-server system revealed to be much more OS intensive than the 

multithreaded quicksort algorithm. 

The results used in the experiments, also used to assess the error 

incurred by the reduction of the number of faults according to the different 

hypothesis, consist of the failure modes observed in each execution, from 

the external point-of-view of the Benchmark Controller. We consider the 

following well-known failure modes: 

 OK – Representing the cases where the injected faults do not 

cause any kind of incorrect behavior in the SUB, neither in the 

benchmark measures, nor in the dependability ones. This failure 

mode is considered in most of the fault injection studies reported 

in the last decades; 

 CRASH – Representing the cases where abrupt shut-down of the 

BT (process crash) is observed; 

 HANG – representing the cases where the SUB is frozen, either 

the BT or the OS itself, and the experiment running time exceeded 

a predefined time limit; 

 ERRORS – representing the cases where there is no hang or 

crash, but some incorrect results were observed by the BMS. More 

precisely, the Benchmark Client of the BMS detects errors in some 

of its requests. 

In order to evaluate the error in the results, incurred by each different 

hypothesis on the reduction of the number of faults to inject, and determine 

the best strategy to reduce the faultload size without restricting the 

benchmark results, a deviation is calculated relatively to the values 

obtained for each failure mode with the injection of the complete set of 

software faults. 
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Web-Server Experiments 

System Call 
LOC 

(#) 
CPUt 
(secs) 

NrCalls 
(#)  

System Call 
LOC 

(#) 
CPUt 
(secs) 

NrCalls 

(#) 

read 94 10.689682 1,020,296 
 
time 35 0.073008 10,332 

lseek 50 4.513927 788,945 
 

accept 80 0.393356 6,665 

brk 92 4.836866 507,793 
 

getsockname 43 0.085677 6,648 

mremap 44 0.288144 204,735 
 

shutdown 27 0.088628 6,648 

close 29 2.173133 194,735 
 

wait4 266 0.084326 5,530 

open 54 1.711256 115,988 
 

geteuid32 5 0.076937 5,271 

old_mmap 99 1.299173 103,516 
 
fork 11 0.291810 5,228 

fstat64 21 0.813122 99,138 
 

uname 41 0.068011 5,221 

stat64 21 1.192313 91,806 
 

execve 37 2.911191 5,169 

fcntl64 62 0.410780 59,998 
 

chdir 95 0.105711 5,169 

poll 283 14.219557 53,543 
 

lstat64 21 0.037768 5,168 

munmap 31 0.612648 47,057 
 

getuid32 5 0.038894 5,167 

setsockopt 51 0.347240 46,860 
 

getgid32 5 0.034692 5,167 

rt_sigprocmask 142 0.325903 46,503 
 

getegid32 5 0.033765 5,167 

mmap2 56 0.347523 42,763 
 
flock 58 0.035934 1,604 

mprotect 193 0.447871 36,227 
 

select 395 0.032389 361 

getpid 5 0.311780 32,996 
 

_llseek 77 0.009457 52 

write 94 1.036779 27,883 
 

setgroups32 39 0.013868 52 

rt_sigaction 88 0.335088 25,999 
 

setuid32 105 0.011012 52 

gettimeofday 57 0.143740 22,855 
 

setgid32 34 0.012440 52 

writev 35 0.510542 20,212 
 

socket 31 0.000943 45 

sendfile 163 1.058075 16,988 
 

connect 44 0.005816 45 

pipe 37 0.183040 15,506 
 

getsockopt 49 0.002144 45 

dup2 62 0.187953 15,501 
 
kill 24 0.000135 28 

getrlimit 31 0.159430 10,386 
 

unlink 94 0.000119 3 

    
 

Total (#50) 3,520 52.603596 3,733,118 

Table 5-2 - System calls used by the web-server target system. 
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Multithreaded Quicksort Experiments 

System Call LOC (#) CPUt (secs) NrCalls (#) 

mmap2 56 5.165528 330,894 

write 94 0.968005 21,351 

getppid 6 0.047278 4,476 

poll 283 0.099038 4,476 

read 94 0.720567 4,468 

rt_sigprocmask 142 0.325585 3,738 

sigreturn 79 0.035028 3,703 

wait4 266 0.253500 3,369 

kill 24 2.490447 3,079 

modify_ldt 43 0.223864 2,971 

munmap 31 0.041457 2,021 

mprotect 193 0.029026 2,021 

clone 17 0.953065 2,020 

rt_sigsuspend 85 0.178594 1,683 

getpid 5 0.009962 951 

old_mmap 99 0.000018 7 

open 54 0.010015 5 

brk 92 0.000014 5 

rt_sigaction 88 0.000007 5 

fstat64 21 0.000010 5 

close 29 0.000012 4 

time 35 0.000002 1 

pipe 37 0.000022 1 

uname 41 0.000003 1 

_sysctl 54 0.000005 1 

nanosleep 138 0.000001 1 

getrlimit 31 0.000005 1 

Total (#27) 2,137 11.551058 391,258 

Table 5-3 - System calls used by the multithreaded quicksort target system. 
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The deviation 𝑑𝑓𝑖  of each specific failure mode, relative to the failure 

mode rate value  𝑓𝑖
̅ , obtained considering the complete set of targets, is 

calculated using  

𝑑𝑓𝑖 = √(𝑥 − 𝑓�̅�)
2 

where 𝑓𝑖 , for 𝑖 = 1, … 4, represents each one of the failure modes 

considered in this study (OK, CRASH, HANG and ERRORS), and 𝑥 

denotes the rate value obtained for that failure mode considering a subset 

of initial fault injection targets. 

A global metric 𝑑𝑔 is also used to measure the overall deviation from 

the failure mode values obtained with a subset of the software fault targets, 

relative to the initial failure mode values calculated with the overall set: 

𝑑𝑔 = ∑ 𝑓�̅�

𝑛

𝑖=1

∙ 𝑑𝑓𝑖 

where 𝑛 is the total number of failure modes considered in the 

dependability benchmark. 

The metric used in this study is based in the user point-of-view of the 

system, through the use of well-known failure modes (OK, HANG, CRASH 

and ERRORS), as can be observed in the mathematical expression of 𝑑𝑔. 

Other metrics could be used, such as the ones related to specific 

mechanisms available in the target system, such as the coverage and 

latency of error detection mechanisms. However, the failure mode analysis 

is more general (i.e., it does not depends on specific features of the target 

system) and is more complete, as it captures the user’s perception of the 

system. 

This initial experimental study used the most frequent software fault 

types according to the G-SWFIT model, as shown in Table 5-4. An 

exception was the MLPC fault type, corresponding to the “Missing small 

and localized part of the algorithm”, which was not considered for this 
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preliminary study, as those kind of faults are not related to any specific 

statements in the code and its correction involves non trivial modifications 

[Durães et al. 2006]. The description of the considered software fault types, as 

well as the corresponding coverage, concerning the most frequent types of 

software faults found in field [Durães et al. 2006], and the respective ODC 

classes, are also indicated in Table 5-4.  

 

Fault 
type 

Description Coverage 
ODC 

Classes 

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm 

MFC Missing function call 8.64 % Algorithm 

MLAC 
Missing "AND EXPR" in expression 

used as branch condition 
7.89 % Checking 

MIA 
Missing "if (cond)" surrounding 

statement(s)  
4.32 % Checking 

MVAE 
Missing variable assignment using an 

expression 
3.00 % Algorithm 

WLEC 
Wrong logical expression used as 

branch condition 
3.00 % Assignment 

WVAV Wrong value assigned to a value  2.44 % Checking 

MVI M Missing variable initialization  2.25 % Assignment 

MVAV 
Missing variable assignment using a 

value 
2.25 % Assignment 

WAEP 
Wrong arithmetic expression used in 

parameter of function call 
2.25 % Assignment 

WPFV 
Wrong variable used in parameter of 

function call 
1.50 % Interface 

Total faults coverage 47.50 %  

Table 5-4 - Representativeness of the fault types considered in [Costa et al. 2009], 

according to the G-SWFIT methodology [Durães et al. 2006]. 
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It is worth noting that for this small set of fault types, which 

represents 47.50% of the complete set of software faults and four different 

ODC types, a total of 781 faults were defined for the web-server benchmark 

and 459 faults for the quicksort system. It is relevant to mention that in 

some system calls, 5 in the web-server system and 2 in quicksort system 

experiments, it was not injected any fault, as G-SWFIT model did not 

indicate any code mutation on that function targets. Moreover, that system 

calls are the smallest, in terms of LOC, of all of the considered set (getpid, 

getppid, geteuid32, getuid32, getgid32 and getegid32).  

Considering all the G-SWFIT software faults indicated, 1,240 

experiments have been executed, corresponding to the same number of 

injected software faults defined according to the G-SWFIT model (one 

single software fault injection was considered in each experiment). 

Results showed that in most of the experiments (82% for the 

web-server system and 80% for multithreaded quicksort system) the 

injected software faults did not cause any failure or visible impact on the 

system. This means that either the fault was not activated or the 

correspondent error remained latent until the end of the experiment. It may 

also happen that these errors have been corrected or canceled by the 

normal execution of the program (e.g., error overwritten by a fresh value). 

This initial experimental study concludes that none of the strategies 

provide a dramatic reduction of the number of faults if the goal is to keep a 

very small error in the results (e.g., less than 1%). This seems to be related 

to the fact that the total number of faults used to establish the reference 

results is relatively small (781 and 459 for each system). Nonetheless, for 

the web-server system, starting the fault injection experiments with the 

functions with greater LOCs allow achieving faster convergence to the 

results obtained with the complete set of faults. With this strategy, after the 

injection of only 51.47% of the total software faults, the induced error is 

about 3.8%, when comparing with the results obtained with the full set of 

software faults. This way, the fault injection experiments can be reduced by 
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almost 50%, representing an enormous saving of time in carrying out the 

experiments. Considering the total of time needed to inject the 781 faults in 

the web-server experiments, the reduction of time of the total 

experimentation can be estimated in, approximately, 208h. Moreover, the 

LOC, in machine code, is an accessible and fairly easy measure to obtain. 

Depending on the operating system of the target system, it can even be the 

easiest one, when compared to CPUt and NrCalls (however, not as simple 

as the random selection). 

It could also be observed that for complex and large workloads such 

as the web-server benchmark, the number of injected faults should be 

around 500 or higher in order to keep the error in the results lower than 

3%. Despite more experiments with other complex benchmarks/workloads 

are necessary to confirm this insight, this is an important practical 

indication for designers of future dependability benchmarks. On the other 

hand, smaller and simpler workloads, such as the existing in the 

multithreaded quicksort system, seem to allow a clearly smaller number of 

faults, no matter the strategy used to select the subset of faults. 

The work presented in [Costa et al. 2009] provides a first actual 

contribution to solve the problem of reducing the size of the faultload, 

which is essential to use practical dependability benchmarks in large and 

complex systems. But, more important than that, this study provided an 

early assessment of the proposed methodology that was subsequently 

developed and constitutes one of the key contributions of the study 

presented in this thesis. 

5.3.2 Proposed metodology 

The proposed methodology is an extension and refinement of the 

aforementioned framework assessment study, presented in [Costa et al. 

2009], and incorporates the results of a three-year research effort focused on 
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showing that it is possible to obtain accurate fault injection using a 

faultload that contains only a small fraction of all the possible software 

faults that can be injected in the target system. It consists of using the 

results obtained with a comprehensive faultload that includes all possible 

fault locations (i.e., total coverage faultload) to evaluate the accuracy of the 

results obtained with the different strategies used to reduce the size of the 

faultload. The experiments include the use of different target systems 

resulting in one of the most extensive fault injection studies ever reported. 

In order to inject representative software faults, like in the validation 

study, the G-SWFIT fault model [Durães et al. 2006] was used. G-SWFIT is 

based on a set of operators for software fault emulation through low-level 

code changes in the target executable code, mimicking the most common 

types of real software faults. It is worth noting that these operators resulted 

from a field study based on the analysis and classification of more than 600 

software faults found in real software applications. Table 5-5 shows the 

software fault types selected for inclusion in the used faultload, 

corresponding to the 12 most frequent types of software faults found in 

[Durães et al. 2006]. It is worth pointing out that this small set of fault types 

represents 50.69% of the complete set of software faults and four different 

ODC types (adding the MLPC fault “Missing small and localized part of 

the algorithm” to the set of software fault types used in the experimental 

validation study [Costa et al. 2009]).  

As shown in [Durães et al. 2006], the long tail that characterizes the 

complete fault type distribution (Table 5-5 shows only the most frequent 

types; the tail is quite long with many fault types that are rare) makes very 

difficult to include more fault types in the faultload. For example, the last 

type of fault considered in the list shown in Table 5-5 (WPFV - Wrong 

variable used in parameter of function call) corresponds to 1.5% of the 

faults found in the mentioned field study [Durães et al. 2006]. That is, it is 

already a relatively infrequent type of software fault. For this reason, the 

set of fault types proposed in [Durães et al. 2006] has been used in many 
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studies in recent years and is considered as a good approximation for a 

difficult problem that is the definition of fault models for software faults.  

The problem of trying to inject fault types that correspond to faults 

that are relatively rare is that even very large pieces of software may have 

just a few code locations (or even none) where such fault types can be 

injected. In other words, according to mentioned field study, nearly 50% of 

the software faults found in field falls in 12 types of software faults shown 

in Table 5-5, while the remaining 50% of the faults represent a very large 

number of specific types that are rather infrequent26.  

 

                                                      

 

 

26 The software fault injection technique used in this work consists in the scanning of 

the target code application (ready-to-run binary code) for specific low-level instruction 

patterns (sequence of machine code instructions) and in applying a mutation to emulate an 

intended software fault. Each fault type is associated to a given code pattern and a given set 

of preconditions that make the faults (bugs) plausible. For example, the fault type MFC 

(Missing Function Call) means that the programmer has forgotten to call a given function 

(and such bug has escaped to all the testing procedures). The field study presented in 

[Durães et al. 2006] show the typical circumstances (related to code) where such kind of fault 

appears in the field making it possible to reproduce such fault type, provided that the target 

program has the code pattern and circumstances that allow the injection of the fault. 
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Fault 
type 

Description Coverage 
ODC 

Classes 

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm 

MFC Missing function call 8.64 % Algorithm 

MLAC 
Missing "AND EXPR" in expression 

used as branch condition 
7.89 % Checking 

MIA 
Missing "if (cond)" surrounding 

statement(s)  
4.32 % Checking 

MLPC 
Missing small and localized part of the 

algorithm 
3.19% Algorithm 

MVAE 
Missing variable assignment using an 

expression 
3.00 % Algorithm 

WLEC 
Wrong logical expression used as 

branch condition 
3.00 % Assignment 

WVAV Wrong value assigned to a value  2.44 % Checking 

MVI M Missing variable initialization  2.25 % Assignment 

MVAV 
Missing variable assignment using a 

value 
2.25 % Assignment 

WAEP 
Wrong arithmetic expression used in 

parameter of function call 
2.25 % Assignment 

WPFV 
Wrong variable used in parameter of 

function call 
1.50 % Interface 

Total faults coverage 50.69 %  

Table 5-5 - Representativeness of the most common software fault types 

used in the present methodology, according to [Durães et al. 2006]. 

As software fault injection target locations we consider the operating 

system kernel of the SUB, as shown in Figure 5-3. More precisely, we 

consider as possible targets the complete set of the OS functions, referred in 

the kernel symbols table. The exact identification of the fault (code target 
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addresses and fault type) is thus obtained applying the G-SWFIT 

methodology to each of the functions of that set. 

Given the G-SWFIT faultload, the software faults are injected using 

the DBench-FI fault injector (an innovative SWIFI tool specially developed 

for this purpose, presented in detail in chapter 4), as its unique set of 

features make it especially adequate for dependability benchmarks: (i) it 

provides a very low intrusiveness, since it is essentially undetectable and 

presents no noticeable performance degradation of the FIT; (ii) it is capable 

of runtime fault injection (on the fly) in both user and kernel spaces and in 

both data and code segments; (iii) it does not require any application source 

code to be available; (iv) it can be dynamically loaded into a system; and (v) 

it can inject faults even on applications that are already running in the 

system when it is installed. 

The used approach consists of four main phases as indicated in 

Figure 5-3: (i) Pre-Injection Phase; (ii) Kernel Analysis Phase; (iii) Fault 

Injection Phase; and (iv) Strategy Analysis Phase. 

In the Pre-Injection Phase are identified all the locations in the OS 

kernel where it is possible to inject realistic software faults, according to the 

rules established in [Durães et al. 2006]. It is worth noting that, in this 

approach, the G-SWFIT faultload generator (software tool provided by the 

author of the study [Durães et al. 2006]) uses the exported kernel symbols 

table of the OS in order to detect all the possible targets in the OS kernel 

functions. The result of the Pre-Injection Phase is the complete set of 

software faults that it is possible to inject in such set of targets (i.e., the set 

of the OS functions). 

In the Fault Injection Phase the exhaustive set of software faults is 

injected to obtain the reference results necessary for the Strategy Analysis 

Phase, in which are performed the experiments to evaluate the error 

observed in the results for the different hypothesis on the reduction of the 

number of faults to inject. 
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The Strategy Analysis Phase consists in the comparison of the results 

obtained when considering a subset of the initial targets with the results 

obtained in the initial experiments (the reference results). This final step 

analyzes how one can choose a subset of the targeted OS kernel functions 

and fault locations without hampering the initial benchmark results 

obtained with the total set of faults. 

 

Figure 5-3 – Phases of the proposal experimental methodology. 

In order to guide that faultload subset selection, some software 

metrics have previously been obtained from the OS kernel source code in 

the Kernel Analysis Phase. For that purpose, several characteristics and 

related metrics of each of the targeted kernel functions were considered: 

 Lines of code (LOC), which consists in the count of the lines of 

the software source code. It is worth noting that the analyzed 

LOCs were in machine code and thus some well-known 

restrictions generally applied to this size oriented metric, like 
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language and programmer dependence, no longer make sense in 

this context; 

 The Extended Cyclomatic Complexity (Vg), based on the 

McCabe’s software metric [McCabe 1976], describe the control 

flow complexity of each of the mentioned kernel functions. A 

higher Vg number corresponds to a function with greater number 

of execution paths and, consequently, a function harder to 

understand and implement; 

 Halstead’s Delivered Bugs (B), directly correlated with the 

complexity of code, estimates the number of errors (bugs) in the 

implementation. This measure is included in a broader set of 

measures developed by M. Halstead, to determine the 

quantitative measure of complexity based on operators and 

operands in a module [Halstead 1977]; 

 Maintainability Index (Mi), a composite measure based on 

lines-of-code, McCabe’s and Halstead’s measures, which strives 

to express the relative maintainability of the code. It is worth 

noting that the used formula (the forms and rationale of which 

were developed by P. Oman [Oman et al. 1992]), widely accepted in 

the software industry, does not consider the amount of line 

comments, as some comments consist just of some standard 

blocks; 

 Functional Complexity (Fc) is obtained by the sum of the number 

of input parameters, the number of return points and the Vg 

(Extended Cyclomatic Complexity) of each function. 

Additionally, this study also considers a Random selection of 

software faults (RandSF), according to a uniform distribution, in order to 

obtain a subset of faults from the initial full set of faults initially considered. 
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The mentioned software metrics, with the exception of the LOC that 

was specifically calculated, were obtained with the RSM (Resource 

Standard Metrics) [RSM] and the CMT++ (Complexity Measures Tools for 

C/C++) Tools [CMT]. 

As already explained in the preliminary assessment study (section 

5.3.1), the evaluation of the error incurred by the reduction of the number 

of faults according to each different hypothesis is based on well-known 

failure modes observed from the user point-of-view of the system (OK, 

CRASH, HANG, and ERRORS), and on the deviation relatively to the 

values obtained for each failure mode with the injection of the complete set 

of software faults (see the definition of the mathematical expression of 𝑑𝑔). 

Chapter 6 (Experimental Evaluation of Faultload Reduction 

Strategies) presents and discusses the experimental results of this 

methodology with two real and different applications: a web-server 

dependability benchmark and a large-scale integer vector sort application 

extended with performance and quality measures. A proposal strategy for 

the reduction of the faultload can be found in section 6.4. 

5.4 Summary 

This chapter described the problem of the faultload dimension which 

arises from the adoption of realistic software fault models in dependability 

benchmarks of large and complex software systems. The execution of such 

benchmarks usually take several months or even years due to its large 

faultload size, which means that, in practice, it is not possible to execute 

them. 

The chapter surveyed and discussed the strengths and limitations of 

the existing studies that address the issue of the distribution of faults 

among different components in target systems, and presented an 

experimental methodology that allows the definition of compact and 
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representative faultloads based on software faults. The presented 

methodology allows a significant decreasing on the execution time of 

dependability benchmarks, maintaining, simultaneously, its usefulness and 

representativeness. It is especially useful to open the possibility to extend 

dependability benchmarks to large and complex systems, where the 

experimentation time can significantly be reduced, making the benchmarks 

feasible and useful in such class of systems. 
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Chapter 6  

6 Experimental Evaluation of 
Faultload Reduction Strategies 

This chapter describes the experimental setup used to evaluate the different 

strategies for the reduction of the number of software fault injection experiments 

(presented in section 5.3 - Experimental framework) with two real and different 

applications: a web-server dependability benchmark and a large-scale integer vector 

sort application extended with performance and quality measures. It presents and 

analyzes the results of more than two years of comprehensive fault injection 

experiments, encompassing more than 41 thousand software faults, and proposes a 

strategy to choose adequate fault injection targets without restricting the 

benchmark scope and keeping accurate dependability benchmark results.  

The proposed strategy will open the possibility to extend the use of 

dependability benchmarks to large and complex systems, which otherwise would be, 

in practice, impossible to run due to its large faultload size (such benchmarks 

usually take several months or even years to execute). 
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6.1 Introduction 

 

ore than 41 thousand continuous fault injection experiments 

have been carried out in more than two years27, in order to 

evaluate different strategies to guide the fault injection target 

selection and to reduce the number of software fault injection experiments 

for a dependability benchmark, or for an experimental evaluation using 

software fault injection. The main goal is to find a strategy to reduce the 

fault injection target set and thus decrease the execution time of the 

dependability benchmark experiments, while maintaining the 

dependability benchmark usefulness and representativeness. This method 

will open the possibility to extend the dependability benchmarks to large 

and complex systems, making them feasible and practicably applied (such 

benchmarks usually take several months or even years due to its large 

faultload size). 

                                                      

 

 

27 It is worth noting that the time needed to complete each fault injection experiment 

largely depends on the chosen BT system. For large and complex systems, such as the 

web-server benchmark used in this study, the injection of each software fault takes about 20 

minutes (average value), as showed later in this chapter.  

M 
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6.2 Experimental setup 

The experimental setup used in this work is composed of two 

systems: 

 A server machine (Intel Pentium IV 2.66GHz, 512MB), which 

corresponds to the SUB, including the BT and the DBench-FI fault 

injector; 

 A client machine (Intel Pentium IV 2.0GHz, 512MB), which 

corresponds to the BMS, running the benchmark client. 

Both machines are connected via a 100Mbps Ethernet connection and 

run the Linux RedHat operating system (kernel 2.4.18-3). 

The dependability benchmark used is a web-server benchmark (WS) 

based on the SPECweb99 industry standard performance benchmark for 

web-servers [SPEC], extended with faultload and dependability measures 

(failure modes). In the specific setup used in the experiments, the Apache 

web-server was used. 

In order to evaluate the different strategies to reduce the number of 

injected faults, a second workload was used, running in the same 

environment as the dependability benchmark mentioned above. This 

second workload (quite different from the WS benchmark, in terms of 

required computer resources) consists of a client-server application to sort 

large-scale integer vectors, based on a Multithreaded Quicksort algorithm 

(MtQs), extended with performance and quality metrics. 

The experiments were chosen and designed to show that, even 

considering two totally different applications, it is possible to consider a 

subset of all the possible fault injection targets maintaining, at the same 

time, the usefulness of the benchmark results. This method will open the 

possibility to extend the dependability benchmarks to large and complex 

systems, making them feasible and practicably applied. As mentioned in 

previous chapters, that is exactly one of the main goals of dependability 
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benchmarks: to offer practicable and efficient methods, considering the 

computing effort, the number of experiments and the time to run the 

benchmark, in order to analyze a set of measures and charactering a 

system. 

The web-server dependability benchmark is a very realistic 

benchmarking scenario already used as a case study in [Durães et al. 2004a]. 

In those experiments, the BT consists of the Apache web-server and the BC 

is the SPECWEB99. 

The used SPECweb99 performance benchmark can be briefly 

described by its components: 

 Benchmark setup – SPECweb99 uses a previously defined number 

of clients in order to submit requests to the web-server under 

evaluation. One of those clients, known as the prime client, 

coordinates all the actions of all the others. In these experiments, 

all the clients run in the same machine (the BMS) and are referred 

as the Benchmark Client in Figure 5-1 – Experimental 

Architecture. In fact, running in physical different machines or 

operating systems is not really a requirement of SPECweb99. 

 Workload – the workload used by SPECweb99 and submitted to 

the server is representative of the most common web-server 

operations and is composed of typical POST and GET requests, 

including both static and dynamic operation types [SPEC]. The 

defined workload also emulates common actions such online 

registration requests and advertising services. 

 SPECweb performance measures – the measures are obtained 

through the SPECweb prime client and for this specific work the 

following were considered relevant: (A) SPEC, the main 

SPECweb99 metric, measures the number of simultaneous 

connections that a server can support. Known as conforming 

connections, they are defined as those that have an average bit 
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rate of at least 320kbps and less than 1% of reported errors; 

(B) Throughput (Thr), considered as the number of operations 

(e.g., POSTs and GETs) per second; (C) Operation Count Errors 

(Err), considered as the number of errors found by the client in 

the requested operations. 

 SPECweb99 benchmark rules – this performance benchmark require 

very specific rules for experiment conduction in order to the 

acceptance of the final reporting results by the SPEC organization. 

Concerning those rules, we recommend the reading of [SPEC] for 

more detailed information. In the conducted experiments, in 

order to reduce their total time, not all of those impositions were 

accomplished, as the respective final benchmark reporting results 

is completely out of the scope of this paper. Specifically, in this 

benchmark there were requested 40 simultaneous connections to 

the server, using three batches or iterations of 300 seconds each 

and a Warmup Time, Rampup Time and Rampdown Time28 of 30 

                                                      

 

 

28 Warmup, Rampup and Rampdown times are changeable SPECWeb99 benchmark 

parameters. The Warmup time is the time, in seconds, intended to warm up any caches 

before taking any measurement. The Rampup time is the warmup time, in seconds, before the 

2nd and following iterations of the test. The Rampdown time represents the time, at the end 

of each iteration, required for the end of SPECWeb99 workload. 
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seconds each. These parameters represent SPECweb99 benchmark 

constants, as defined in [SPEC]. 

Each web-server experiment consists of running the workload on the 

Apache web-server and on the injection of one software fault few seconds 

after the experiments start (see Figure 6-1 - Web-server benchmark 

execution profile.). In this way, the software fault is injected after the 

web-server reaches the Steady State Condition29 (the warmup time was set to 

30 seconds). The DBench-FI fault injector, as mentioned, takes the faultload 

and injects each software fault directly in the code of the running target - a 

predefined function located in the OS kernel. It is worth noting that, 

concerning the HANG failure mode, the BMS defines for this group of 

experiments a maximum of 30 minutes each. This maximum time is 

sufficient considering that the normal execution time to complete each 

experiment of three iterations is about 20 minutes (as referred later in the 

section 6.3 - Results and discussion). After that time is elapsed, the SUB is 

considered hanged and is remotely restarted by the BMS, via software or 

hardware. 

                                                      

 

 

29 The system achieves the Steady State Condition after a given warmup time. This 

state guarantees that the system is able to maintain its maximum transaction processing 

throughput. 
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Figure 6-1 - Web-server benchmark execution profile. 

After each experiment run, the BMS gather the measures related to 

performance degradation, mainly given through SPECweb99 performance 

benchmark, as well as some other metrics related to dependability, namely, 

the information about the resulting failure mode. In addition to the 

mentioned performance metrics, the total time to complete each one of the 

experiments (ExpT) it is also collected by the BMS. 

Relatively to the Multithreaded Quicksort application it is important 

to note that it mainly serves as a control application and as a good 

comparison system, as it has some completely different requirements 

concerning to computer resources. It consists of an application responsible 

for the sort of a 10,000,000 integer randomly generated vector and a client 

that requests the resulting sorted file. In those experiments, the BT consists 

of the Multithreaded Quicksort application and the Benchmark Client is the 

application client that asks for that ordered vector file. Each of those 

experiments consists in generating the 10,000,000 integer random vector, 

executing the Multithreaded Quicksort on that vector and, finally, writing 

the resulting vector to a file that will be read and tested by the client that 

has made the request. In each experiment (see Figure 6-2 - Multithreaded 

quicksort benchmark execution profile.), one single software fault is 

Warmup time Rampup timeIterations

Iteration 1

SPECweb workload

Steady State  
Condition

OS start OS reboot

SPECweb

Start

SPECweb

End

Software Fault 
Injecttion

Collect 

measures

Rampdown time

Iteration 2 Iteration 3



150 Experimental Evaluation of Faultload Reduction Strategies 

 

injected when the application starts. Thus, the software fault is injected at 

the start of the random vector generation phase, just before the execution of 

the sorting algorithm. 

 

Figure 6-2 - Multithreaded quicksort benchmark execution profile. 

Like the WS experiments, the DBench-FI fault injector takes the 

faultload and injects each software fault directly in the OS kernel code of 

the SUB, on top of which is running the sorting algorithm. For this group of 
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that an error exists (Err) if the vector is not correctly ordered. In that case, a 

metric based in the number of wrong placed integers in the vector is 

calculated as an indicator of the quality of the obtained result. 

All the executed experiments, either related to the WS or to the MtQs, 

required no human intervention as their execution were completely 

automated through the use of a set of appropriate tools incorporated in the 

BMS. 

6.3 Results and discussion 

For each kind of experiments, concerning both the WS and the MtQs 

benchmark experiments, some previous performance tests, 100 for each of 

the following types, were made in order to obtain a measure of the 

intrusiveness of the DBench-FI fault injector in the benchmark systems: 

 Without DBench-FI fault injector. That is, without the respective 

fault injector module inserted in the OS kernel; 

 With the DBench-FI fault injector in profile mode. That is, using 

software fault injection but without really changing any target. 

The Table 6-1 shows the average values for every performance 

measure considered in each type of experiment. 

The comparison of these performance results and the degradation 

value obtained give us a measure of the DBench-FI fault injector overhead 

and intrusiveness in all of the experiments presented throughout this 

section. As can be observed, it is not detected any intrusiveness or 

performance degradation imposed by the used fault injector. Moreover, as 

no errors were observed in any of those experiments, we can conclude that 

the intrusion factor of the fault injector either in the WS or in the MtQs 

calculations is non-existent. 
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WS 
Experiments 

Without 
DBench-FI 

With 
DBench-FI 

Intrusion 
Factor 

SPEC (#) 40 40 0 

Thr (Ops/sec) 126.5 126.5 0 

ErrR (# Ops) 0.0 0.0 0.0 

ExpT (hh:mm:ss) 00:19:00 00:19:00 - 

    

MtQs 
Experiments 

Without 
DBench-FI 

With 
DBench-FI 

Intrusion 
Factor 

ExpT (hh:mm:ss) 00:00:26 00:00:26 - 

Err (#) 0.0 0.0 0.0 

Table 6-1 – Average performance results (no faults injected). 

As some strategies to reduce the number of injected faults rely on the 

characteristics of the kernel functions, the entire OS kernel functions were 

analyzed and the related metrics obtained - Kernel Analysis Phase (Figure 

5-3 - Phases of the proposal experimental methodology). Recall that the 

considered metrics are, as defined in section 5.3 - Experimental framework: 

Lines of code (LOC), Extended Cyclomatic Complexity (Vg), Halstead’s 

Delivered Bugs (B), Maintainability Index (Mi), and Functional Complexity 

(Fc). 

Considering all the G-SWFIT software faults indicated in Table 5-5 

(Representativeness of the most common software fault types 

used in the present methodology, according to [Durães et al. 2006]), 41,750 

fault injection experiments have been executed in 1,153 kernel 

functions - 20,875 for each type of workload (WS and MtQs). These faults 

corresponds to the total number of software faults that can be injected in 

the code of the OS kernel (considering the entire exported kernel symbols 

table), according to the rules proposed in [Durães et al. 2006] for the 

realistic emulation of software faults. It is worth mentioning that in some 

very small OS functions (with very few lines of assembly code) referred by 
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the exported kernel symbol table it was not injected any fault, as the 

G-SWFIT fault model did not indicate any suitable code locations on those 

target functions. It is also important to note that for 21 targeted functions, 

originally programmed in assembly language, only the ASM LOC measure 

was collected. This is due to restrictions of both of the used tools to extract 

the software metrics [RSM], [CMT]. 

Concerning the performance in the presence of injected faults, the 

final experimental results obtained are shown in Table 6-2. 

 

 
WS Experiments* MtQs Experiments 

 

SPEC 
(#) 

Thr 
(Ops/sec) 

ErrR 
(# Ops) 

ExpT 
(hh:mm:ss) 

Err 
(#) 

ExpT 
(hh:mm:ss) 

Min 0.00 2.2 0.0 00:00:43 0.0 00:00:05 

Max 40.00 171.2 65,239.3 00:30:07 9,990,571.0 00:15:00 

Avr 37.8 126.5 23.7 00:19:15 3,172.7 00:00:40 

StdDev 9.1 3.6 865.6 00:03:10 174,255.7 00:01:46 

* Experimental results considering the average value of all the 3 SPECweb iterations. 

Table 6-2 – Performance results in the presence of faults. 

Concerning the WS experiments, as result of the mentioned execution 

profile, there were observed that some injected software faults caused 

several non-conforming connections (SPEC) and/or some lower values of 

throughput (Thr) and also several error operations (Err) detected by the 

SPECweb99 benchmark. It is worth noting that for this type of experiments, 

the presented values are the average of all iterations executed (3 SPECweb 

iterations in each one of the 20,875 experiments). The resulting charts are 

shown in Figures 6-3 to 6-6. 
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Figure 6-3 - WS Experimental results: Conforming connections. 

 

Figure 6-4 - WS Experimental results: Errors. 
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Figure 6-5 - WS Experimental results: Throughput. 

 

Figure 6-6 - WS Experimental results: Experiments duration. 
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With respect to the MtQs experimental results (see Figure 6-7 and 

Figure 6-8), some experiences have also led to errors in the results. Such 

situations occurred when either the result vector was completely 

unavailable by the client (considering that there is no HANG or CRASH of 

the BT) or the result corresponds to an existent but incorrect ordered 

vector. It is worth noting that this last case was only observed in 16 

experiments. This means that, in most of the times, when the resulted 

sorted vector was written to disk, no errors had been detected by the client 

in the ordered integer vector. This is explained by the specific 

characteristics of the MtQs application, namely, by the file based result to 

the client’s request. We also observed that, like in the WS, some 

experiments present different execution times due to the induced kernel 

code disturbance. 

 

Figure 6-7 - MtQs Experimental results: Experiments duration. 
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software faults injected in the OS kernel did not cause any failure or visible 

impact on the application (see Figure 6-9 - Failure modes of WS 

experiments, and Figure 6-10 - Failure modes of MtQs experiments). It is 

worth noting that these results are consistent with the results of fault 

injection experiments reported in the literature. Moreover, this rarefaction 

(i.e., only a few faults cause a visible impact on the BT) is one of the reasons 

for the difficulty in reducing the faultload size. 

 

Figure 6-8 - WS Experimental results: Errors. 

Many factors may contribute to this behavior. Since we need the 

failure modes obtained with the total set of faults (i.e., all the possible faults 

that G-SWFIT can inject in the Linux kernel) to be used as a reference result 

for the evaluation of the different strategies proposed to reduce the number 

of faults to be considered in the faultload, we consider the whole Linux 
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faults (injected in the OS) that caused no visible effects on the applications. 

Other factors such as errors that remained latent until the end of the 

experiment or have been corrected or canceled by the normal execution of 

the program (e.g., error overwritten by a fresh value) are plausible causes 

as well. Obviously, even when the injected fault damages the OS, it may 

happen that the components affected by the fault had no effect on the 

applications (WS and MtQs). 

 
Figure 6-9 – Failure modes of WS experiments. 

It is worth noting that we excluded the use of well-known techniques 

such as monitoring (to detect when the fault is activated) or code profiling 

(to previously identify the OS code areas that are used more intensively by 

the application) because the goals of our research require reference results 

obtained by a non-intrusive faultload that include all the possible faults. 

The similarity between the values obtained for the OK failure mode 

for both systems, despite the great difference between their computational 

characteristics, suggests a similarity behavior of the systems in the presence 

of a faulty OS (considering the occurrence of problems), independently of 

the used applications (BT). 
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Figure 6-10 – Failure modes of MtQs experiments. 

Concerning the strategy analysis phase of the approach and in order 

to choose a subset of software fault targets, and, consequently, decrease the 

number of injected faults and the resulting total experimentation time, 

without restricting the benchmark usefulness, we analyzed, as mentioned, 

6 different approaches: LOC, Vg, B, Mi, and Fc metrics, and RandSF, a 

random selection of software faults, following a uniform distribution. Still 

for the random selection, it is important to notice that for each group of 

randomly chosen OS kernel functions (from 1 to 1,153), there were executed 

2,000 experiments, and analyzed the resulting maximum, minimum, 

average and standard deviation values. That is, 2,000 experiments for each 

one of the combinations of 𝑛 functions among 1,153, for 𝑛 between 1 and 

1,153 (in other words, 2,000 experiments of 1 randomly chosen function 

among the 1,153 target functions; 2,000 experiments of 2 randomly chosen 

functions among the 1,153 target functions; etc.). This selection method 

mainly serves as a control strategy. 

For each one of the 6 mentioned approaches, Table 6-3 shows the 

percentage of total fault injections needed to obtain a given global 
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deviation error limit in the WS experiments, considering the full set of 

targets (the two best strategies of each global deviation error limit are 

presented in a shaded background). Correspondent data for the MtQs 

experiments can be found in Table 6-4. These tables shows, for each one of 

approaches based on software metrics (LOC, Vg, B, Mi and Fc), two 

different ways of choosing the kernel target functions: based on the 

ascending (Asc) and descending (Desc) orders of the correspondent metric. 

For example, for the LOC approach, it is possible to start the software fault 

injection in functions with greater LOC values (LOC approach in 

descending order – LOC Desc) or in functions with smaller LOC values 

(LOC approach in ascending order - LOC Asc). Thus, we consider 11 

different strategies to choose the adequate fault injection targets: two sort 

orders for each one of the 5 software metrics based approaches plus a 

random approach, as explained above. The presented values show that, for 

example, for the WS experiments, using LOC Asc (i.e., choosing as injection 

order the OS functions with smallest LOC), it is necessary to inject 29.56% 

of the faults (6,170 faults) to achieve a global deviation error in the failure 

modes less than or equal to 2%. 

It is very important to note that the values indicated in Tables 6-3 and 

6-4 represents the worst-case scenarios. That is, possible smaller sets of 

faults that incidentally could produce results with a smaller error are not 

being considered. Instead, it is found the worst combination of faults (i.e., 

the largest set) needed to assure a given error limit. In other words, any 

form of casuistic occurrence along the experiments is eliminated, by 

ensuring that the indicated values are such that, for each approach, none of 

the remaining experiments inflict a higher global deviation value. I.e., being 

𝑑𝑔𝑖
 a global deviation value for a given number of faults 𝑖, 

𝑑𝑔𝑖
= 𝑚𝑖𝑛 {𝑑𝑔𝑗

, ∀𝑗 ≤ 𝑖: 𝑑𝑔𝑗
> 𝑑𝑔𝑘

, ∀𝑘 > 𝑗} 

𝑖, 𝑗, 𝑘 ∈ {𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠}. 
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WS Experiments 

  

Error (𝑑𝑔 - global deviation values) 

  

0 <=0.5% <=1% <=2% <=3% <=4% 

LOC 

Asc 
100.0% 53.84% 45.03% 29.56% 19.29% 12.19% 

20,875 11,239 9,399 6,170 4,027 2,544 

Desc 
100.0% 90.17% 21.95% 14.81% 12.59% 9.00% 

20,875 18,822 4,582 3,091 2,628 1,879 

Vg 

Asc 
100.0% 59.16% 44.73% 28.42% 19.41% 16.44% 

20,875 12,349 9,338 5,933 4,051 3,431 

Desc 
100.0% 87.39% 25.05% 18.72% 1.61% 0.80% 

20,875 18,242 5,230 3,908 337 168 

B 

Asc 
100.0% 62.65% 41.82% 33.94% 19.40% 12.16% 

20,875 13,078 8,730 7,085 4,049 2,538 

Desc 
100.0% 90.10% 70.16% 10.09% 1.61% 1.61% 

20,875 18,809 14,646 2,106 337 337 

Mi 

Asc 
100.0% 91.32% 32.92% 16.74% 10.87% 9.77% 

20,875 19,063 6,872 3,494 2,269 2,040 

Desc 
100.0% 69.97% 39.73% 24.47% 17.30% 13.15% 

20,875 14,607 8,293 5,109 3,611 2,746 

Fc 

Asc 
100.0% 63.99% 53.69% 40.74% 29.71% 25.71% 

20,875 13,357 11,207 8,504 6,202 5,366 

Desc 
100.0% 82.63% 76.77% 10.05% 5.01% 1.62% 

20,875 17,250 16,025 2,097 1,046 338 

RandSF Max 
100.0% 97.05% 85.93% 58.23% 41.89% 26.35% 

20,875 20,260 17,938 12,155 8,745 5,500 

Table 6-3 - Percentage of fault injections needed to achieve a given global 

deviation error limit in the WS Experiments. 
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MtQs Experiments 

  

Error (𝑑𝑔 - global deviation values) 

  

0 <=0.5% <=1% <=2% <=3% <=4% 

LOC 

Asc 
100.0% 61.55% 47.69% 33.49% 22.62% 18.18% 

20,875 12,848 9,955 6,992 4,721 3,796 

Desc 
100.0% 93.34% 70.84% 13.04% 7.87% 1.68% 

20,875 19,485 14,788 2,722 1,643 351 

Vg 

Asc 
100.0% 63.31% 50.69% 30.29% 21.69% 17.92% 

20,875 13,215 10,581 6,322 4,528 3,741 

Desc 
100.0% 87.39% 43.67% 3.91% 3.03% 0.80% 

20,875 18,242 9,116 816 632 168 

B 

Asc 
100.0% 67.31% 46.36% 34.73% 21.56% 17.85% 

20,875 14,050 9,678 7,249 4,501 3,727 

Desc 
100.0% 90.81% 70.92% 6.06% 0.80% 0.80% 

20,875 18,957 14,805 1,264 168 168 

Mi 

Asc 
100.0% 91.75% 14.79% 10.59% 9.77% 1.46% 

20,875 19,152 3,088 2,211 2,040 304 

Desc 
100.0% 43.95% 39.51% 26.12% 19.33% 16.62% 

20,875 9,174 8,248 5,452 4,036 3.469 

Fc 

Asc 
100.0% 53.28% 47.30% 28.27% 17.61% 2.32% 

20,875 11,122 9,873 5,901 3,677 485 

Desc 
100.0% 82.34% 14.51% 9.84% 1.62% 1.62% 

20,875 17,189 3,028 2,055 338 338 

RandSF Max 
100.0% 95.95% 81.35% 61.79% 38.70% 22.75% 

20,875 20,030 16,982 12,900 8,078 4,748 

Table 6-4 - Percentage of fault injections needed to achieve a given global 

deviation error limit in the MtQs Experiments. 
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In other words, for a fixed sort strategy, the mathematical expression 

of 𝑑𝑔𝑖
  assures that for a certain subset 𝑖 of injected faults, no other subset of 

software faults that includes 𝑖 produces a greater global deviation (in the 

limit, it would be possible that, luckily, the injection of faults in one single 

function, the first in a certain sort strategy, could produce a null deviation). 

Analogous definitions hold for individual failure modes. 

Looking at the reduction of the number of faults, in both relative 

(percentage) and absolute terms, the following observations can be drawn 

based on the obtained results:  

 Some of the strategies provide a good reduction of the number of 

faults (lower than 50%), keeping the error in the results very small 

(e.g., less than or equal to 1%).  

 Smaller and simpler workloads, such as MtQs, seem to allow 

identical number to what would be necessary for more complex 

workloads. Particularly, it can be observed that, in order to obtain 

smaller errors in the results (less than or equal to 0.5%), the 

number of injected faults is identical to what would be needed in 

complex and large workloads. 

 Concerning the WS experiments (that represent relatively large 

and complex workloads), the best strategies to select a subset of 

faults to inject, for errors between 3% and 4%, are Vg Desc and 

B Desc. However, we can state that the approach Fc Desc is very 

close to those ones, also showing a good convergence for that 

error range. For that kind of workloads, and for errors in the 

range between 1% and 2%, we can mention LOC Desc ad Vg Desc 

as the two best strategies. For small errors (lower than or equal to 

0.5%), the LOC Asc and the Vg Asc showed to be the best 

strategies (with 53.84% and 59.16%, respectively, of the total 

injected faults). 
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 Concerning smaller and simpler systems, represented by the 

MtQs experiments, the best strategy to decrease the number of 

faults, for errors between 2% and 4% are B Desc and Vg Desc, 

closely followed by the Fc Desc. However if we consider errors in 

the range from 1% to 2%, we can mention the Fc Desc and the Mi 

Asc as the best strategies. For smaller errors, lower than or equal 

to 0.5%, the Mi Desc and the Fc Asc revealed to be the best ones. 

 In general, we can state that the best strategies for errors in the 

range 1% to 4% are not the best ones for smaller errors (lower 

than or equal to 0.5%), and vice-versa. More precisely, both WS 

and MtQs experiments seem to show that, regardless of the 

strategy used, the Asc order is the best one for very low errors 

(lower than or equal to 0.5%). On the other hand, we can state that 

the Desc orders are the best ones for errors between 1% and 4%. 

This situation can be explained by the function-based choice used 

in this study. More complex functions, those with higher software 

complexity measures, and potentially best represented in 

faultload (which includes all the possible software fault 

locations), induces a one-step block analysis of a greater set of 

software fault injections. On the contrary, less complex functions 

(typically represented in the faultload only by a few software 

faults) induce a more fine and step-by-step analysis. 

Consequently, the former type of functions provides a faster, but 

rough, convergence, in opposition to the latter type, with a 

slower, but accurate, convergence. The criteria Mi Desc is an 

exception to this rule, and will be explained later. 

 The random selection (RandSF) of a subset of faults is the worst 

strategy of all to reduce the number of software fault injections. It 

is worth noting that this selection strategy is, by far, the easiest 

fault reduction strategy concerning implementation, as all others 
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require some sort of previous target analysis, which is obviously 

not the case of the RandSF strategy. 

In addition to the analysis provided by the Tables 6-3 and 6-4, it is 

also important to analyze the error evolution in a less discrete way. The 

following charts (from Figure 6-11 to Figure 6-15, for the WS; and from 

Figure 6-16 to Figure 6-20, for the MtQs) show the error evolution 𝑑𝑓𝑖  for 

each failure mode (represented by its name) and the global error 𝑑𝑔 

(represented as Global Dev), as well as their relationship. Each individual 

chart represents each strategy for the definition of subsets of faults. The 

vertical blue line indicates the percentage of injected faults needed to 

achieve 1% of error (global deviation) in each of the considered strategies 

(that value seems to be a turning value, as explained below). It is important 

to notice that, as described for the table values analysis, one should not 

consider smaller incidental errors produced by smaller sets of faults. On the 

other hand, besides the global deviation, it is also important to analyze the 

individual deviation values for each one of the failure modes considered 

(OK, CRASH, HANG and ERRORS), as, depending on the SUB 

characteristics and on some specificities of the target system, a certain 

failure mode can be more important and relevant than others. 

Regarding the LOC approach in the WS experiments (from Figure 

6-11 to Figure 6-15), for example, we can observe in the charts of Figure 

6-11 that if the experiments were made starting with the functions with 

greater LOC values (descending order - LOC Desc), from a certain order, 

the global deviation value remains near zero and with minor changes. The 

same behavior is noticed in the LOC Asc (in ascending order). However, 

the convergence in LOC Desc is clearly quicker: 20% of the total injected 

faults induce a global error near 1.3% (it is worth to recall that we are using 

the worst-case scenarios). As already mentioned, this observation is 

explained by the function-based analysis used in this study. Despite the 

differences in the convergence speed, an analogous behavior holds for all 

the other failure mode deviations. This behavior was not so evident in the 
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discrete values presented in previous tables. The charts also show that, 

considering the LOC Asc approach, injecting about 45% of the total 

software fault injection considered, we can obtain a global deviation of 

about 1%. Moreover, that value remains with minor changes in the 

experiments immediately following and converges to zero as we inject the 

remaining software faults. 

One can also observe that, regardless of the metrics used to select the 

targets, the convergence lines of the Asc approaches present similar 

behaviors and the same holds for Desc orders (except for the Mi metric, as 

explained below). This similarity seems to induce the definition of two 

groups: one for each sorting option, Asc and Desc. In fact, the charts seem 

to confirm that, regardless of the strategy used, the Asc order is the best for 

very low errors (lower than or equal to 0.5%). We can state that the Desc 

orders are the best ones for errors between 1% and 4%. An exception to this 

rule is related to the Mi approach, in which an exchange of the charts can 

be observed. This variation is justified by the definition of the 

Maintainability index, Mi, which, as developed by P. Oman [Oman et al. 

1992], is greater for smaller and less complex functions, in opposition to all 

the other metrics. This observation seems to indicate 1% as a turning value, 

where the Desc strategies start to be less efficient then the Asc ones 

(reversed for the Mi strategy). 

Despite the referred similarity of the presented charts, a more 

detailed look shows that the Vg, B, and Fc approaches, in Desc order, reveal 

a higher convergence of global deviation values up to about 2%. On the 

other hand, for very low deviation values, in the order of magnitude of 

0.5%, the LOC, Vg and B approaches, in Asc order, show a greater 

efficiency. This confirms our observations from Table 6-3 - Percentage of 

fault injections needed to achieve a given global deviation error limit in the 

WS Experiments. 
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(a) 

 
(b) 

Figure 6-11 - Deviations for each failure mode in the WS experiments, 

considering the LOC strategy. (a) LOC Asc. (b) LOC Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 
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(a) 

 
(b) 

Figure 6-12 - Deviations for each failure mode in the WS experiments, 

considering the Vg strategy. (a) Vg Asc. (b) Vg Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 
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(a) 

 
(b) 

Figure 6-13 - Deviations for each failure mode in the WS experiments, 

considering the B strategy. (a) B Asc. (b) B Desc. The vertical blue line indicates 

the percentage of injected faults needed to achieve a global deviation of 1%. 
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(a) 

 
(b) 

Figure 6-14 - Deviations for each failure mode in the WS experiments, 

considering the Mi strategy. (a) Mi Asc. (b) Mi Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 



Experimental Evaluation of Faultload Reduction Strategies 171 

 

 
(a) 

 
(b) 

Figure 6-15 – Deviations for each failure mode in the WS experiments, 

considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. The vertical blue line indicates 

the percentage of injected faults needed to achieve a global deviation of 1%. 
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Concerning the MtQs experiments, like in the WS, we can observe 

from the charts from Figure 6-16 to Figure 6-20, that all approaches lead to 

convergence lines with similar behavior, considering their respective orders 

(Asc or Desc), except for the Mi approach (justified by the definition of the 

Maintainability index, Mi, as explained above). In these experiments, a 

more detailed analysis of the charts confirms that the best strategy is still 

the Vg Desc, for errors up to 2%. For errors less than 0.5%, the Mi Desc 

criterion is the best choice to select the subset of faults. 

Considering both benchmark systems, these charts confirm that the 

best strategies for higher errors (greater than 2%) are those that have a 

worse performance considering lower errors (around 0.5%), and vice-versa. 

On the other hand, considering the behavior similarities of all the 

approaches, even with different types of SUBs (the WS, representing 

relative large and complex systems, and MtQs, representing a much 

smaller benchmark system) the charts and the data suggest that the Vg 

criteria (Asc, for errors lower than 0.5%, and Desc for greater errors) is a 

good global choice to answer our initial question: how to choose an 

adequate fault injection target, and thus reduce the total software fault 

injection experiments, without restricting the benchmark scope. 

Despite the better performance of the Vg strategy, the LOC approach 

(in machine code) still shows to be a good strategy (in Asc order, for errors 

lower than 0.5%, and Desc for greater errors). The LOC approach is of 

particular importance because it is easier to obtain than all the other 

software measures (though always more complex than the random 

selection) and it does not require the availability of the target source code. 

Furthermore, unlike the other software metrics, the LOC strategy does not 

require the use of any complementary tool in order to analyze the code, as 

it can be obtained directly from the analysis of the OS kernel binary. 
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(a) 

 
(b) 

Figure 6-16 - Deviations for each failure mode in the MtQs experiments, 

considering the LOC strategy. (a) LOC Asc. (b) LOC Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 
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(a) 

 
(b) 

Figure 6-17 - Deviations for each failure mode in the MtQs experiments, 

considering the Vg strategy. (a) Vg Asc. (b) Vg Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 
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(a) 

 
(b) 

Figure 6-18 - Deviations for each failure mode in the MtQs experiments, 

considering the B strategy. (a) B Asc. (b) B Desc. The vertical blue line indicates 

the percentage of injected faults needed to achieve a global deviation of 1%. 
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(a) 

 
(b) 

Figure 6-19 - Deviations for each failure mode in the MtQs experiments, 

considering the Mi strategy. (a) Mi Asc. (b) Mi Desc. The vertical blue line 

indicates the percentage of injected faults needed to achieve a global deviation of 

1%. 
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(a) 

 
(b) 

Figure 6-20 - Deviations for each failure mode in the MtQs experiments, 

considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. The vertical blue line indicates 

the percentage of injected faults needed to achieve a global deviation of 1%. 
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The results show that if we choose to start the WS experiments by the 

OS kernel functions with lower Vg (Vg Desc approach), after the injection 

of 25.05% of the total faults (5,230 fault injections), we obtain a 𝑑𝑔 (Global 

Dev) value less or equal than 1%. The same happens for each one of the 𝑑𝑓𝑖 

(deviations of individual failure modes). In this way, we can reduce the 

fault injection experiments by approximately 75%, representing an 

enormous save of time in carrying out the benchmark experiments. 

Considering the total time needed to inject all the 20,875 faults in the WS 

experiments, we can estimate the reduction time of the total experiments in, 

approximately, 5,020 hours. 

6.4 Proposal strategy for faultload 

reduction 

Considering the results of the experimental evaluation carried out 

(presented in previous sections), a generic approach can be followed in 

order to solve the problem of the large size of the faultload, which arises in 

benchmarking the dependability of large and complex systems.  

The proposed approach consists in the generation of an accurate 

faultload, specifically created for a given target system, and encompasses 

the following steps: 

1. Obtain the complete list of target functions that should be 

considered as targets of the software fault injection (the OS kernel 

functions were considered in the conducted experimentation 

study). 

2. Analyze all the functions listed in the previous step in order to 

obtain the correspondent software metrics (Vg or LOC, according 

to the results obtained in the experimental evaluation study). It is 

worth pointing out that, despite the better global performance of 
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the Vg strategy, the LOC approach also proved to be a good 

strategy. Moreover, the LOC software metrics is a lot easier to 

obtain than the Vg (even when compared with the other software 

metrics), and it is does not require the availability of the source 

code. The LOC metric can be directly obtained from the target 

functions binary code, which make this software metric especially 

adequate for COTS and COTS-based systems. 

3. Sort the list of functions based on the selected software metric and 

in the intended order. According to the results obtained in the 

experimental study, for a greatest reduction on the size of the 

faultload, the descending order should be used. On the other 

hand, if it is accepted to have a faultload with a greater number of 

faults, the ascending order should be chosen instead. 

4. Generate the faultload using the G-SWFIT (Generic Software 

Fault Injection) methodology [Durães et al. 2006] to determine the 

set of software faults that can be injected in each of the functions 

listed in the previous step (the presented research work used a 

tool provided by the author of the G-SWFIT methodology). The 

G-SWFIT technique consists in the scanning of the target code for 

specific low-level instruction patterns (sequence of machine code 

instructions) in order to emulate high-level software faults 

through the modification of the ready-to-run binary code of the 

target software component. It uses a set of operators for software 

fault emulation through low-level code mutations based on an 

extensive collection of real software faults, found in field. 

5. Tailor the whole set of faults generated in order to obtain a 

reduced size faultload containing a given number of faults. The 

error imposed by the reduction of the number of faults can be 

estimated, according to our research. In other words, the faultload 

is calibrated for a given error bound. According to the conducted 

experimental study, using the Vg Desc or the LOC Desc 
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approaches, the complete faultload can be reduced to merely 

4,000 software faults in order to obtain an expected maximum 

error of 2% (which seems to be a reasonable error for 

dependability benchmarks). Moreover, this faultload is adequate 

for dependability benchmarks, regardless of the complexity of the 

BT system (as evidenced by the values presented in Tables 6-3 

and 6-4). 

It should be noticed that the faultload generated using the proposed 

approach is specifically generated for the selected target system. Different 

targets systems should originate different faultloads. 

As a result of the presented study, two ready-to-use calibrated 

faultloads are made available in http://eden.dei.uc.pt/~pncosta/. They 

were specifically generated for the target system used in the fault injection 

campaign carried out on this research work – the Linux RedHat 7.3 

operating system (kernel version 2.4.18-3). The faultloads were generated 

according to the mentioned approach, using the Vg Desc and the LOC Asc 

strategies and contain 4,000 and 13,000 software faults, respectively. 

Concerning the errors induced by the use of the provided faultloads, our 

research study suggests that it is lower than 2% for the faultload based on 

the Vg Desc (the smaller faultload) and lower than 0.5% for the faultload 

based on LOC Asc (the larger faultload). 

The faultloads generated with the proposed approach are especially 

useful for dependability benchmarks, as the error induced by the reduction 

of the number of faults was estimated on the presented experimental 

evaluation and measured against the results obtained with the complete 

faultload.  
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6.5 Summary 

This chapter described the testbed used to evaluate different 

strategies to guide the fault injection target selection of dependability 

benchmarks and reduce the required fault injection experiments, without 

restricting the benchmark scope and keeping accurate results. It presents 

and analyzes the results obtained with an exhaustive set of fault injection 

experiments using a comprehensive faultload, which includes all possible 

software target locations of an operating system kernel (the complete set of 

the kernel OS functions, referred in kernel symbols table), resulting in one 

of the most extensive fault injection studies ever reported. More than 41 

thousand of continuous fault injection experiments, carried out in more 

than 2 years, show that the fault injection experiments of a dependability 

benchmark can be reduced by more than 75%, maintaining the induced 

error below 1%. The effectiveness of the innovative approach is 

demonstrated with two real and different systems: a web-server 

dependability benchmark and a large-scale integer vector sort application 

extended with performance and quality measures. 

The proposed methodology allows answering the problem of 

extending the use of dependability benchmarks to large and complex 

systems, making them feasible and practicably applied. It is worth pointing 

out that such benchmarks usually take several months or even years due to 

its large faultload size, which means that, in practice, it is not possible to 

execute them. 
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Chapter 7  

7 Conclusion 

This is the last chapter of this thesis and it provides an overview of the 

research work carried out in recent years, in the field of dependability 

benchmarking, at the Software and Systems Engineering Group of the Center for 

Informatics and Systems of the University of Coimbra. 

7.1 Overview and future work 

ependability benchmarks should provide generic, cost-effective 

and reproducible ways for characterizing the behavior of 

components and computer systems in the presence of faults, 

allowing the quantification of dependability attributes or the 

characterization of system into well-defined dependability classes.  

A key element in dependability benchmarks is the existence of a 

suitable fault injection tool to support the experiments. Dependability 

benchmarks must include fault injectors with very specific features: (i) they 

should be very easy to install and use, without the need for any complex 

setup or installation procedure; (ii) have high level of portability; (iii) have 

very low intrusiveness; (iv) be capable of injecting faults in both user and 

D 
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system spaces; (v) and in code and data segments of any process, 

irrespective of their complexity; (vi) be independent of the availability of 

any source code of any system component or user process, (vii) be 

dynamically linked into a target system; and (viii) be compatible with the 

latest and most advanced software fault models. 

Despite all the developments, none of the existing fault injection tools 

(presented in section 2.4.3) satisfied these requirements. In order to fulfill 

this gap, this work presents a pioneering SWIFI tool, named DBench-FI 

(Dependability Benchmarking Fault Injector), specially developed for 

dependability benchmarking. It has a unique set of features, required by 

that type of application: very low intrusiveness, capable of injecting both in 

user and system space, does not require application source code to be 

available, can be dynamically loaded into a system, and can inject even on 

applications that are already running when it is installed. 

The methodology used in its design, based on the OS kernel schedule 

upgrading algorithm, together with a carefully crafted integration with the 

scheduler and memory management functions, constitutes the main 

innovation of this SWIFI tool, and is responsible for the unique 

characteristics presented by the fault injector. The DBench-FI enables a 

breakthrough in the areas of fault injection and dependability 

benchmarking, opening new perspectives hardly achievable with existing 

methods and making it one of the most versatile fault injectors available. 

The current version of DBench-FI is adequate for the injection of 

hardware faults (intermittent and transient faults) in the systems memory, 

as well as for software faults, according to the G-SWFIT model - the 

state-of-the-art in software faults model. It is a central tool for the 

experimental evaluation presented in this thesis (chapter 6). Future 

versions of DBench-FI can be easily extended to include the majority of the 

existing fault models of Xception fault injector [Carreira et al. 1998b], such 

as spatial fault triggers and the capability to inject faults in processor 

resources. 
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Another major challenge in the design of dependability benchmarks 

is the definition of the faultload. Concerning software faultloads, that 

difficulty is further increased because of the known difficulties in assuring 

fault representativeness and the need of complex fault emulation methods.  

Faultloads based on software faults had already been proposed. 

However, in order to assure the necessary representativeness, they require 

a large number of fault injection locations and, consequently, a huge 

number of experiments. That problem is even more dramatic in large and 

complex systems, where the execution time of those dependability 

benchmarks can take months or years due the mentioned faultload size. 

This thesis presents the results of comprehensive fault injection 

experiments performed during more than two years of continuous fault 

injection runs in two completely different applications: a real web-server 

dependability benchmark and a large-scale integer vector sort client-server 

application extended with performance and quality metrics. The goal was 

to define the best strategy to reduce the number of faults while keeping 

accurate dependability benchmark results. 

The reduction of the number of faults is achieved by an approach to 

guide the fault injection target selection in the code of the target systems. 

The goal is to identify the software fault target locations that assure good 

accuracy in the dependability benchmarks experiments while reducing 

dramatically the time needed to run the benchmark (because the number of 

faults is highly reduced).  

The fault reduction strategy is based on measures of the target code, 

namely, Lines Of Code (LOC), the Extended Cyclomatic Complexity (Vg), 

Halstead’s Delivery Bugs (B), Maintainability Index (Mi) and Functional 

Complexity (Fc). A randomly chosen subset of targets among the full set of 

injection targets, following a uniform distribution, is also studied (RandSF). 

In this case, for each subset, percentage of the full set, 2000 experiences 

have been carried out. 
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The results presented in this thesis extends our initial experimental 

study [Costa et al. 2009] (presented in section 5.3.1- Preliminary assessment 

study), as we consider the whole operating system kernel of the SUB 

(referred by the exported kernel symbols table) as the set of targets to 

establish the benchmark reference results instead of just the OS system calls 

used by the benchmark. 

A study of the quality and usefulness of the dependability 

benchmark results for each approach is presented, and we can conclude 

that, in what concerns software fault injection, using the Vg criteria to 

choose the target functions for fault injection, allow a faster achieving of 

identically results, with respect to failure modes, globally and individually 

considered. The results show that we can reduce the fault injection 

experiments by approximately 75%, maintaining the induced error (global 

deviation) below 1%. This represents an enormous save of time in carrying 

out the benchmark experiments, especially in large and complex systems. 

Despite this choice, the LOC approach (in machine code) also proved 

to be a valid and interesting strategy, especially if we consider that it is 

easier to obtain than all the other measures. Moreover, it is highly suitable 

for systems where the source code is not available for analysis or whether 

the tool for the software metrics analysis is unavailable. Furthermore, 

without being the best approach, random subsets of the software fault 

injection targets have also showed to be a valid strategy. 

Besides these conclusions, some other relevant observations should 

be taken into account: 

 In order to guide the target selection and reduce the number of 

faults, the best strategies for higher errors (within the range of 1% 

to 4%) are the worst ones when errors are intended to be smaller 

(lower than 0.5%), and vice- versa. 

 The experiments performed with either a complex and large 

workload or a smaller and simpler one show that, regardless of 
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the strategy used, the ascending order (Asc) is the best one for 

very low errors (lower or equal to 0.5%). It can be stated that the 

descending orders (Desc) are the best for errors between 1% and 

4%. The Mi criteria is an exception to this rule, since, contrariwise 

to what happens with the other metrics, Mi is greater for smaller 

and less complex functions. 

 In order to keep the error lower than 0.5%, the number of injected 

faults is identical in both benchmark systems, despite the great 

differences in their workloads. This reveals independence 

between the number of faults and the complexity of the 

benchmark target, for very low errors. 

It should be noticed that the complete workload-faultload space is in 

fact huge and testing the complete space is truly impossible. Thus, as 

performing a large set of experiments covering many points in the space 

workload-faultload is unfeasible, this study uses a worst case example, 

which is a completely different workload, concerning the workload 

complexity and the required computer resources. In fact, the integer vector 

sort application is very different from the real web-server dependability 

benchmark. The similarity of the obtained results in these two completely 

different systems seems to indicate that is reasonable to assume that the 

reduced fault set is a good approximation of the comprehensive fault set. It 

is worth mentioning that the faults are applied to the operating system and 

the different workloads represent different points in the workload space. 

Future implementations of dependability benchmarks may 

encompass compact and representative faultloads generated according the 

approach presented in this research study. The presented methodology can 

be used in the future with new fault injection targets in order to generate 

accurate and specific faultloads. New applications can also be used as 

benchmark targets in order to evaluate the impact of the injected faults. 
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7.2 Contributions 

Taken as a whole, the main contributions of this work can be 

summed up in the following items: 

 To provide a software fault injector compatible with the 

demanding requirements of dependability benchmarks. Namely, 

it should be very easy to install and use, have very low 

intrusiveness, be capable of injecting faults in both user and 

system spaces, and in code and data segments of any process, 

irrespective of their complexity, be independent of the availability 

of any source code of any system component or user process, be 

dynamically linked into a target system and be compatible with 

the latest and most advanced software fault models. Concerning 

this last requirement, it was considered essential the compatibility 

of the fault injector with the Generic Software Fault Injection 

Technique (G-SWFIT) [Durães et al. 2006] – the state-of-the-art in 

software faults model. G-SWFIT is based on a set of operators for 

software fault emulation through low-level code changes in the 

target executable code, mimicking the most common types of real 

software faults. These operators resulted from a field study based 

on the analysis and classification of more than 600 software faults 

found in real software applications. The developed tool consists 

in one of the most versatile software fault injectors currently 

available. 

 To define and evaluate different hypothesis for the reduction of 

the number of software fault injection experiments. The 

evaluation is based on the analysis of the error obtained in 

consequence of the reduction of the fault injection experiments. 

This study uses the results obtained with a comprehensive 

faultload that includes all possible software target locations (the 

complete set of the kernel OS functions, referred in kernel 
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symbols table), resulting in one of the most extensive fault 

injection studies ever reported. 

 To present a strategy to guide the fault injection target selection of 

dependability benchmarks and to reduce the required number of 

software faults, thus decreasing the execution time of the 

benchmark, maintaining, simultaneously, their usefulness and 

representativeness. The proposed methodology is especially 

useful in large and complex systems, where the experimentation 

time can be severely reduced without compromising the 

dependability benchmark results. Conducted experiments 

showed that the fault injection experiments can be reduced by 

more than 75%, maintaining the induced error below 1%. This 

method will open the possibility to extend the dependability 

benchmarks to large and complex systems, making them feasible 

and practicably applied (such benchmarks usually take several 

months or even years due to its large faultload size). 

 To provide accurate and ready-to-use faultloads, compatible with 

a given target system. These faultloads can be used as the 

faultload component of dependability benchmarks, as the error 

introduced by the reduction of the number of faults was 

measured against the results obtained with the complete 

faultload. This strategy allows us to provide reduced sized 

faultloads that assure an error lower than a given limit. 
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