
Setembro de 2013

Pre-Injection Phase

Operating System
Kernel

DBench-FI
Fault Injector

Injection
policy

DBench-FI
Controller

Kernel Analysis Phase

Best Strategy

Fault Injection Phase

Best Strategy
Evaluation

Process

Reference
Results

Faultload
Subsets

Software
Metrics of
OS Kernel

Software
Metrics

Analysis Tools

OS Kernel

G-SWFIT
Complete
Faultload

G-SWFIT
Faultload
Generator

G-SWFIT Fault
Operators Library

OS Kernel
Symbols Table

Strategy Analysis Phase

Pedro Miguel Lopes Nunes da Costa

DEPENDABILITY BENCHMARKING FOR LARGE AND COMPLEX SYSTEMS

Tese de doutoramento na área cientí�ca de Engenharia Informática, orientada pelo Senhor Professor Doutor João Gabriel Silva
e pelo Senhor Professor Doutor Henrique Madeira, e apresentada ao Departamento de Engenharia Informática da Faculdade de
Ciências e Tecnologia da Universidade de Coimbra.

Thesis submitted to the
UNIVERSITY OF COIMBRA

for the degree of Doctor of Philosophy
in Informatics Engineering

Dependability Benchmarking for
Large and Complex Systems

Pedro Miguel Lopes Nunes da Costa

Under supervision of

Prof. João Gabriel Silva
Dep. de Engenharia Informática

Universidade de Coimbra
Portugal

Prof. Henrique Madeira
Dep. de Engenharia Informática

Universidade de Coimbra
Portugal

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologia

Universidade de Coimbra
Portugal

September 2013

Departamento de Engenharia Informática

Faculdade de Ciências e Tecnologia
Universidade de Coimbra

Coimbra, Portugal – September 2013

- To my Wife, with love –

ix

Abstract

The spread of computer-based systems and the growing number of

its applications in critical tasks has increased the dependence of modern

societies on that kind of systems. As a consequence, dependability

benchmarking of computer systems, as a way to assess and compare the

dependability of components and systems, has caught the attention of

researchers and practitioners in recent years.

One crucial component of dependability benchmarks is the fault

injector. Dependability benchmarks must include fault injectors with very

specific features: (i) they should be very easy to install and use, without the

need for any complex setup or installation procedure;(ii) have high level of

portability; (iii) have very low intrusiveness, in order to mitigate the

performance loss; (iv) be capable of injecting faults in both user and system

spaces; (v) and in code and data segments of any process, irrespective of

their complexity; (vi) be independent of the availability of the source code

of any system component or user process; (vii) be dynamically linked into a

target system; and (viii) be compatible with the latest and most advanced

software fault models. Since existing fault injectors do not fulfill these

requirements, this thesis presents a pioneering SWIFI tool named

DBench-FI (Dependability Benchmarking Fault Injector), specially

developed for dependability benchmarking. Their unique characteristics

make it one of the most versatile fault injectors available.

Among the main components of a dependability benchmark suite,

the most critical one is undoubtedly the faultload. It should embody a

repeatable, portable, representative and generally accepted fault set.

Concerning software faults, the definition of that kind of faultloads is

particularly difficult, as it requires a much more complex emulation

x

method than the traditional stuck-at or bit-flip used for hardware faults.

Moreover, a faultload based on software faults requires a clear separation

between the software components which are selected as fault injection

target and the benchmark target (i.e., the system under evaluation), as the

injection of software faults actually changes the code of the target

component. This way, the faults should be injected in one component (the

fault injection target) in order to evaluate their impact in the other

components or in the overall system, guaranteeing the inviolability of the

benchmark target and the credibility of the dependability benchmark.

Although faultloads based on software faults had already been

proposed, the choice of adequate fault injection targets (i.e., actual software

components where the faults are injected) is still an open and crucial issue.

Knowing that the number of possible software faults that can be injected in

a given system is potentially very large (especially for large and complex

systems), the problem of defining a faultload made of a small number of

representative faults is of utmost importance. This thesis presents a

comprehensive fault injection study and proposes a strategy to guide the

fault injection target selection to reduce the number of faults required for

the faultload. Furthermore, it exemplifies the proposed approach with a

real web-server dependability benchmark and a large-scale integer vector

sort application.

xi

Acknowledgments

This thesis constitutes an important milestone in my life, for which I

am indebted to all the people who made it possible.

First and foremost, I would like to thank my advisors for all the

inspiration and support, despite the multiple tasks in which they are

committed as a consequence of the important positions they hold in the

University of Coimbra. I thank Professor João Gabriel Silva for the

encouragement and for integrating me into the, now called, Software and

Systems Engineering Group of the University of Coimbra. I am also truly

thankful to Professor Henrique Madeira for his constant guidance,

availability, valuable comments and stimulating discussions over the last

years.

I would also like to express my gratitude to all who assisted me at

different stages of this research. I am grateful to João Durães for the initial

incentive and for providing me the G-SWFIT analysis tool. I thank José Luís

Silva for his friendship and unsparing kindness aid on issues regarding

operating systems administration. I would also like to thank MSquared

Technologies and Testwell for providing me the versions of RSM and

CMT++, respectively, and to ISCAC Coimbra Business School for all the

facilities conceded in the context of the PROTEC/FCT doctoral grant.

I am grateful to my colleagues Manuel Castelo-Branco and António

Gonçalves for the friendship and encouragement.

To all the friends that I did not mentioned, but who have been

around these last years, encouraging and helping me, I would also like to

express my gratitude.

xii

Finally, this list would not be complete without mentioning my

family. I want to thank my lovely wife Paula and my son Diogo, on whose

constant encouragement, understanding and love I have relied on to

overcome the hard times of this program. I am also deeply thankful to my

mother and brother Carlos for their support and care. I would also like to

give a posthumous thank to my father for all the good times we spent

together.

 Pedro Nunes da Costa

 Coimbra, September 2013

xiii

Table of Contents

Resumo em Língua Portuguesa .. 1

1 Introduction .. 3

1.1 Goal and Motivation .. 3

1.2 Contributions .. 9

1.3 Thesis organization .. 11

2 Background and Related Work ... 13

2.1 Introduction .. 13

2.2 Basic concepts and definitions ... 15

2.2.1 Dependability ... 15

2.2.2 Attributes of dependability ... 15

2.2.3 Impairments to dependability 16

2.2.4 Improving dependability .. 19

2.3 Dependability benchmarking ... 22

2.3.1 Reference model ... 24

2.3.2 Dependability benchmark properties.......................... 27

2.3.3 Dependability benchmark proposals 29

2.4 Fault injection ... 37

2.4.1 Goals of fault injection ... 39

2.4.2 Fault injection in software development cycle 40

2.4.3 SWIFI tools .. 44

xiv

2.4.4 Software fault injection .. 47

2.5 Summary ... 55

3 Dependability Benchmarking of Software Systems 57

3.1 Introduction .. 57

3.2 General framework .. 59

3.2.1 Categorization dimension ... 60

3.2.2 Measure dimension .. 61

3.2.3 Experimentation dimension ... 62

3.2.4 Benchmark scenarios ... 63

3.3 Performing the experiments ... 65

3.4 Representativeness of Software Faults.................................... 67

3.5 Summary ... 83

4 Software Fault Injector ... 85

4.1 Introduction .. 85

4.2 Fault Injector Architecture .. 88

4.3 Fault Injection Design and Implementation 89

4.4 Using the DBench-FI .. 102

4.5 Advantages ... 109

4.6 Limitations .. 110

4.7 Summary ... 111

5 Software Faultload for Large and Complex Systems 113

5.1 Introduction .. 113

5.2 Fault distribution models.. 114

5.3 Experimental framework .. 122

5.3.1 Preliminary assessment study 124

5.3.2 Proposed metodology .. 133

5.4 Summary ... 140

6 Experimental Evaluation of Faultload Reduction Strategies .. 143

6.1 Introduction .. 144

6.2 Experimental setup .. 145

6.3 Results and discussion .. 151

6.4 Proposal strategy for faultload reduction............................. 178

6.5 Summary ... 181

7 Conclusion .. 183

7.1 Overview and future work ... 183

7.2 Contributions .. 188

8 Bibliography ... 191

xvii

List of Figures

Figure 2-1 – Relationship between fault, error and failure. 17

Figure 2-2 – Fault tolerance mechanisms. ... 20

Figure 2-3 – The taxonomy of dependability. .. 22

Figure 2-4 – Reference model for implementing dependability

benchmarks. ... 26

Figure 2-5 – Typical components of a fault injection environment. 39

Figure 2-6 – Automated low-level code mutations. .. 53

Figure 3-1 – Dependability benchmarking dimensions.................................. 60

Figure 3-2 – Dependability benchmarking scenarios. 64

Figure 3-3 – Relation between System Under Benchmark (SUB),

Benchmark target (BT) and Fault Injection Target (FIT). 66

Figure 3-4 – Process for generating faulty versions of the target

system. .. 80

Figure 3-5 – Experimental setup used in [Natella et al. 2013]. 81

Figure 4-1 – The DBench-FI fault injector architecture. 88

Figure 4-2 – The Linux operating system architecture. 95

Figure 4-3 – The process virtual address space in IA-32 systems. 97

Figure 4-4 – The DBench-FI fault injector methodology. 102

Figure 5-1 – Experimental Architecture. ... 124

Figure 5-2 – Experimental methodology of the preliminary

assessment study. .. 126

xviii

Figure 5-3 – Phases of the proposal experimental methodology. 138

Figure 6-1 - Web-server benchmark execution profile. 149

Figure 6-2 - Multithreaded quicksort benchmark execution profile. 150

Figure 6-3 - WS Experimental results: Conforming connections. 154

Figure 6-4 - WS Experimental results: Errors. .. 154

Figure 6-5 - WS Experimental results: Throughput. 155

Figure 6-6 - WS Experimental results: Experiments duration. 155

Figure 6-7 - MtQs Experimental results: Experiments duration. 156

Figure 6-8 - WS Experimental results: Errors. .. 157

Figure 6-9 – Failure modes of WS experiments. .. 158

Figure 6-10 – Failure modes of MtQs experiments. 159

Figure 6-11 - Deviations for each failure mode in the WS experiments,

considering the LOC strategy. (a) LOC Asc. (b) LOC Desc.. 167

Figure 6-12 - Deviations for each failure mode in the WS experiments,

considering the Vg strategy. (a) Vg Asc. (b) Vg Desc........................... 168

Figure 6-13 - Deviations for each failure mode in the WS experiments,

considering the B strategy. (a) B Asc. (b) B Desc.. 169

Figure 6-14 - Deviations for each failure mode in the WS experiments,

considering the Mi strategy. (a) Mi Asc. (b) Mi Desc. 170

Figure 6-15 – Deviations for each failure mode in the WS experiments,

considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. 171

Figure 6-16 - Deviations for each failure mode in the MtQs

experiments, considering the LOC strategy. (a) LOC Asc. (b)

LOC Desc. ... 173

Figure 6-17 - Deviations for each failure mode in the MtQs

experiments, considering the Vg strategy. (a) Vg Asc. (b) Vg

Desc. .. 174

Figure 6-18 - Deviations for each failure mode in the MtQs

experiments, considering the B strategy. (a) B Asc. (b) B Desc 175

Figure 6-19 - Deviations for each failure mode in the MtQs

experiments, considering the Mi strategy. (a) Mi Asc. (b) Mi Desc ... 176

Figure 6-20 - Deviations for each failure mode in the MtQs

experiments, considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. 177

xxi

List of Tables

Table 2-1 - Experimental techniques for dependability evaluation and

their suitability for the different phases of software development

cycles. .. 41

Table 3-1 –Defect attributes. ... 71

Table 3-2 – Failure attributes. ... 72

Table 3-3 – ODC defect types. .. 73

Table 3-4 – Fault nature totals across ODC types. ... 75

Table 3-5 – Comparison of Fault distribution across ODC defect

types. ... 76

Table 3-6 – Most common faults found in field for several software

systems. ... 78

Table 3-7 – Most frequent software fault types analyzed in [Natella et

al. 2013]. .. 79

Table 5-1 – Software fault types considered in [Moraes et al. 2006a]. 121

Table 5-2 - System calls used by the web-server target system. 128

Table 5-3 - System calls used by the multithreaded quicksort target

system. .. 129

Table 5-4 - Representativeness of the fault types considered in [Costa

et al. 2009], according to the G-SWFIT methodology. 131

Table 5-5 - Representativeness of the most common software fault

types used in the present methodology, according to [Durães et

al. 2006].. 136

xxii

Table 6-1 – Average performance results (no faults injected)...................... 152

Table 6-2 – Performance results in the presence of faults. 153

Table 6-3 - Percentage of fault injections needed to achieve a given

global deviation error limit in the WS Experiments. 161

Table 6-4 - Percentage of fault injections needed to achieve a given

global deviation error limit in the MtQs Experiments. 162

xxiii

Acronyms

API Application Programming Interface

BT Benchmark Target

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

DBench-FI Dependability Benchmarking Fault Injector

DBMS Database Management System

FIT Fault Injection Target

GHz Gigahertz

GiB Gibibyte

G-SWFIT Generic Software Fault Injection Technique

HWFI Hardware Implemented Fault Injection

I/O Input/Output

Kbps Kilobits per second

LKM Loadable Kernel Module

ODC Orthogonal Defect Classification

OLTP On-Line Transaction Processing

OS Operating System

RAID Redundant Array of Independent Disks

SUB System Under Benchmark

xxiv

SWIFI Software Implemented Fault Injection

TPC Transaction Processing Performance Council

TPC-C Transaction Processing Performance Council Benchmark C

WMC Weighted Methods in a Class

WS Web-Server

1

Resumo em Língua Portuguesa

O aumento da utilização dos sistemas informáticos e o número

crescente das suas aplicações em tarefas críticas das sociedades modernas

tem aumentado a dependência desse tipo de sistemas. Em consequência,

nos últimos anos, as benchmarks de confiabilidade têm sido objeto de

enorme interesse, quer por parte de investigadores, quer por parte da

indústria.

Um dos elementos fundamentais que integram as benchmarks de

confiabilidade é o injetor de falhas. As benchmarks de confiabilidade devem

incluir injetores de falhas com características muito específicas: (i) devem

ser fáceis de instalar e de utilizar, não exigindo qualquer procedimento

especial de instalação ou execução; (ii) devem possuir um elevado nível de

portabilidade; (iii) devem possuir um baixo nível de intrusividade no

sistema alvo, de forma a minorar a perda de desempenho; (iv) devem

oferecer a capacidade de injetar falhas em todo o sistema alvo (quer no

espaço do utilizador, quer no espaço do sistema); (v) assim como nos

segmentos de código e de dados de qualquer processo, independentemente

da sua complexidade; (vi) devem ser independentes da disponibilidade ou

conhecimento do código fonte de qualquer componente do sistema ou

processo de utilizador; (vii) ser dinamicamente integrados no sistema alvo;

e (viii) ser compatíveis com os mais avançados e recentes modelos de falhas

de software. Uma vez que os atuais injetores de falhas não satisfazem todos

os requisitos mencionados, esta tese apresenta uma ferramenta de injeção

de falhas pioneira, implementada por software (Software Implemented Fault

Injection - SWIFI), denominada DBench-FI, especialmente desenvolvida

para benchmarks de confiabilidade. As suas características únicas fazem dele

um dos mais versáteis injetores de falhas atualmente existentes.

2

De entre os componentes fundamentais das benchmarks de

confiabilidade (workload, faultload, medidas, e configuração experimental e

procedimentos), a faultload é, sem dúvida, um dos mais críticos. Ela deve

incorporar um conjunto de falhas repetível, portável, representativo e

aceite pela comunidade e pela indústria. No que concerne a falhas de

software, a definição desse tipo de fautloads é particularmente difícil, uma

vez que exige métodos bastante mais complexos do que o tradicional

stuck-at ou bit-flip utilizado nas falhas de hardware. Adicionalmente, as

faultload baseadas em falhas de software exigem uma clara separação entre

os componentes de software que são selecionados como alvo da injeção de

falhas e o alvo da benchmark (i.e., o sistema sob avaliação), uma vez que a

injeção de falhas de software altera efetivamente o código do componente

alvo. Desta forma, as falhas devem ser injetadas num componente (o alvo

da injeção de falhas) a fim de se avaliar o seu impacto nos outros

componentes ou no sistema como um todo, garantindo a inviolabilidade do

alvo da benchmark e a credibilidade das benchmarks de confiabilidade.

Apesar de terem já sido propostas faultloads baseadas em falhas de

software, a escolha dos alvos da injeção de falhas (ou seja, os componentes

de software onde as falhas são injetadas) continua a ser um tópico em

aberto, apesar de fundamental. Sabendo-se que o número de falhas de

software que podem ser injetadas num dado sistema é potencialmente

muito grande, o problema da definição de uma faultload composta por um

número pequeno de falhas representativas é de extrema importância. Esta

tese apresenta igualmente um estudo exaustivo de injeção de falhas e

propõe uma estratégia de orientação da seleção dos alvos da injeção de

falhas para a redução o número de falhas necessárias numa faultload. Além

disso, exemplifica a abordagem proposta com a utilização de uma

benchmark de confiabilidade, real, para web-servers e de uma aplicação de

ordenação de vetores de números inteiros de larga dimensão.

3

Chapter 1

1 Introduction

This thesis is the result of several years of research in the field of dependability

benchmarking at the Software and Systems Engineering Group of the Center for

Informatics and Systems of the University of Coimbra.

This opening chapter presents the motivation and the research goals for this work,

providing a basis for the discussion that follows. The structure of the thesis is also

presented in the final section of this chapter (Section 1.3).

1.1 Goal and Motivation

ith the spread of computing systems and the growing number

of its applications in our everyday life, modern societies are

becoming increasingly dependent on computer-based systems.

System failures are a serious risk and cause more damages than ever

before. Although more serious consequences arise from failures in safety

critical applications, such as medical, aircraft, and nuclear power systems,

there are other areas where such system failures cause important damage,

like financial losses.

W

4 Introduction

There are many examples of system failures with consequent high

costs in a wide range of areas. For example, in 1991, software problems in

the Patriot missile-defense system used during the Gulf War prevented

intercepting an Iraqi Scud missile killing 28 American soldiers and injuring

around 100 other people [Blair et al. 1992]. Between June 1985 and January

1987, a race condition bug led to what became tragically known as the

Therac-25 accident - a computer controlled radiation therapy machine that

massively overdosed six people, with resultant deaths and injuries

[Leveson et al. 1995]. On 26th and 27th November 1992, design fatal flaws

caused the failure of the London Ambulance Computer Aided Dispatch

system [THRA 1993]. The economic impact that a bug can have in a nation-

wide money-critical system was fully shown in the credit card denial of

authorization occurred in France, on 26th-27th June 1993 [Laprie 1995]. On

4th June 1996, a software problem caused the maiden flight explosion of

Ariane 5 [Lions 1996], resulting in a direct loss of at least 370 million dollars

to the European Space Agency (ESA) [Dowson 1997]. On 7th August 1996,

inadequate redundancy [Garber 1996] led to the blackout of America

Online (AOL) computer network, preventing the service provider’s

network for 19 hours, affecting 6 million users. On 14th August 2003,

approximately 50 million people in the northeastern United States and

southeastern Canada were impacted by the blackout of the General Electric

energy management system [PSOTF 2004]. The outage was due to a

software fault, triggered by a unique combination of events that led to a

cascade of system failures and to an estimated total loss of 13 billion dollars

[Wong et al. 2010]. On 7th March 2008, the reactor number 2 of the Edwin

Irby Hatch nuclear power plant, in United States, was forced into an

emergency shutdown for 48 hours after the installation of a software

update on a computer operating on the plant’s business network

[Krebs 2008]. The resulting loss was estimated in 5 million dollars [Wong et

al. 2010]. More recently, on June 2012, a software fault originated by a bad

software upgrade caused the collapse of the Royal Bank of

Scotland/Natwest computer banking system. As a consequence, several

Introduction 5

million of costumers were unable to access their accounts for several days

[Masters et al. 2012, Scott 2012]. The cost of this system failure was

estimated in more than 100 million pounds [Treanor 2012].

The use of formal methods for software validation is many times

rejected [DeMillo et al. 1979], since they encompass a too complex and

time-consuming process that cannot be managed and used, in practice, in

software development. Instead, many software engineers and designers

argue the use of more elaborate testing methods in order to ensure the

correctness of software. However, a counter-argument to this view is the

fact that, as stated by [Dijkstra 1972], testing could only prove the presence

of bugs, but not their absence.

In fact, it has been obvious over the last years that the high level of

dependability, essential for modern computer systems, cannot generally be

achieved using only a rigorous development process accepted by many of

the actual certification schemes. The evaluation of dependability of

computer systems is absolutely essential in an increasingly dependent

society on that kind of systems. However, the intrinsic complexity of such

an assessment is further aggravated by the growing complexity of both

hardware and software [Silva et al. 2005]. Several research studies also

show not only a clear predominance of software faults [Gray et al. 1991,

Sullivan et al. 1992, Lee et al. 1995, Chou 1997, Kalyanakrishnam et al. 1999]

when compared to other types of system faults, but also that its weight on

the overall system dependability will tend to increase. As a consequence, it

is nowadays generally accepted that most of the software components have

residual faults, also known as software defects or bugs, which escape the

traditional testing phases of software development process. Among the

main causes for those circumstances, besides the well-known technical

difficulties intrinsic to the software development and testing process

[Lyu 1996, Musa 1996], one can mention the huge complexity of today’s

software and the increasing pressure to reduce time to market. This

scenario emphasizes the importance of system dependability assessment as

6 Introduction

a measure of confidence that can be relied on a given system. This includes

the evaluation of attributes like availability, reliability, safety, integrity,

among others. More than ever, practical approaches for the evaluation of

the dependability of computer systems are very much needed, especially

standardized dependability benchmarks that allow comparing

dependability attributes of analogous and alternative software products or

components. However, the experimental evaluation of the dependability of

computer systems is very difficult [Carreira et al. 1995] as it depends on

fault activation probability, which in turn depends on either internal or

external system factors like the different layers of the software, the actual

hardware where the software is running, environment issues, and human

interaction.

After the success of the performance benchmarking initiatives that

caught the attention of the industry in the last decades and have driven the

creation of organizations like TPC (Transaction Processing Performance

Evaluation Corporation) [TPC] and SPEC (Standard Performance

Evaluation Corporation) [SPEC], dependability benchmarking has been the

focus of attention of researchers and practitioners in the recent years

[Kanoun et al. 2008, Brown et al. 2000, Vieira et al. 2003, Zhu et al. 2003a,

Lightstone et al. 2003, Kanoun et al. 2001, Christmansson et al. 1996a,

Durães et al. 2002a]. To many business critical systems and applications,

dependability attributes like availability, integrity and reliability, among

others, are as important as performance. The goal of dependability

benchmarking is thus to provide a standard procedure specification to

characterize a computer system or component, providing the assessment of

dependability related measures.

The main components of a dependability benchmark suite are

[Kanoun et al. 2008, Koopman et al. 1999a]:

 Workload – representing the work to be done by the system

during the benchmark run and used to create a realistic operating

Introduction 7

scenario. It should represent a typical operational profile for a

particular application area.

 Faultload – representing a repeatable, portable, representative

and generally accepted set of faults and stressful conditions that

could lead to undependability, if not properly handled by the

system.

 Measures - characterizing the performance and dependability of a

system executing the workload in the presence of the faultload.

 Experimental setup and benchmark procedures - describing the

setup required to run the benchmark and the set of procedures

and rules that must be followed during the benchmark execution

in order to ensure uniform conditions for measurement.

Among these components, one of the most critical and difficult to define is,

doubtlessly, the faultload [Durães et al. 2004a], since it should represent a

repeatable, portable, representative and generally accepted fault set. That

difficulty is even higher in what concerns software faults, since they

required a much more complex emulation method than the usual bit-flip

fault injection approach used to emulate real hardware faults [Voas et

al. 1997a]. Furthermore, a faultload based on software faults requires a clear

separation between the software components that are selected as fault

injection target and the benchmark target (i.e., system under evaluation), as

the injection of software faults actually changes the code of the target

component. This way, the faults should be injected in one component (the

target) in order to evaluate their impact in the other components or in the

overall system. In fact, the software faults injected in the target component

actually allow answering the question of what would happen to the system

if a residual fault in such component became activated.

A representative faultload must be one that contains faults that

represents the common programming bugs that escape the traditional

software testing phases and still persist in existent software products

8 Introduction

[Durães et al. 2004b]. Although the faultload definition of that kind of faults

had already been proposed [Durães et al. 2006], a problem still persists

when that model is applied in very large and complex systems. Commonly,

there is a large number of possible targets components for fault injection

and, consequently, that represents a huge number of possible software

faults to be injected.

In fact, the use of dependability benchmarks driven by software

faultloads (e.g., such as the ones proposed in [Kanoun et al. 2008]) has a

major problem: it could take years to inject the faultload, which means that,

in practice, it is not possible to run such dependability benchmarks. This is

the case when the target system is a large piece of software, such as an

operating system. Reducing the size of the faultload (but keeping it

representative enough to obtain valid results) is essential to show industry

and the research community that it is possible to use dependability

benchmarks in large-scale systems. It should be noticed that among the

mentioned faultload properties (repeatability, portability and

representativeness), the representativeness is the one that needs special

attention when reducing the faultload. In fact, properties such as

repeatability and portability of the faultload are either not affected by the

reduction of the number of faults or it is even easier to satisfy those

properties with a reduced faultload.

This thesis presents the results of more than two years of continuous

fault injection experiments in real systems and proposes a strategy to

answer a still open and crucial question: how to choose adequate fault

injection targets, and thus reducing the total software fault injection

experiments, without restricting the benchmark scope and

representativeness?

This study is an attempt to answer this question. The presented work

is based on an experimental study and incorporates the results of a

three-year research effort focused on showing that it is possible to obtain

Introduction 9

accurate fault injection using a faultload that contains only a small fraction

of all the possible faults that can be injected in a target system.

1.2 Contributions

As mentioned, the aim of this thesis is to propose an approach to

guide the fault injection target selection of dependability benchmarks,

decreasing the execution time of the benchmark, maintaining,

simultaneously, their usefulness and representativeness. This is especially

useful in large and complex systems where the experimentation time can

be highly reduced without compromising the dependability benchmark

results. This method will open the possibility to extend the dependability

benchmarks to those kinds of systems, making them feasible and applicable

(such benchmarks usually take several months or even years to execute due

to its large faultload size).

Within this context, the main contributions of the thesis are the

following:

1. To provide a software fault injector compatible with the

demanding requirements of dependability benchmarks. Namely,

it should be very easy to install and use, have high level of

portability and very low intrusiveness, be capable of injecting

faults in both user and system spaces, and in code and data

segments of any process, irrespective of their complexity, be

independent of the availability of any source code of any system

component or user process, be dynamically linked into a target

system and be compatible with the latest and most advanced

software fault models. Concerning this last requirement, it was

considered essential the compatibility of the fault injector with the

Generic Software Fault Injection Technique (G-SWFIT)

[Durães et al. 2006] – the state-of-the-art in software faults model.

10 Introduction

G-SWFIT is based on a set of operators for software fault

emulation through low-level code changes in the target

executable code, mimicking the most common types of real

software faults. These operators resulted from a field study based

on the analysis and classification of more than 600 software faults

found in real software applications. The developed tool is one of

the most versatile software fault injectors currently available.

2. To define and evaluate different hypothesis for the reduction of

the number of software fault injection experiments. The

evaluation is based on the analysis of the error obtained in

consequence of the reduction of the fault injection experiments.

This study uses the results obtained with a comprehensive

faultload that includes all possible software target locations (the

complete set of the kernel OS functions, referred in kernel

symbols table), resulting in one of the most extensive fault

injection studies ever reported.

3. To present a strategy to guide the fault injection target selection of

dependability benchmarks and to reduce the required number of

software faults, thus decreasing the execution time of the

benchmark, maintaining, simultaneously, their usefulness and

representativeness. The proposed methodology is especially

useful in large and complex systems, where the experimentation

time can be severely reduced without compromising the

dependability benchmark results. Conducted experiments

showed that the fault injection experiments can be reduced by

more than 75%, maintaining the induced error below 1%. This

method will open the possibility to extend the dependability

benchmarks to large and complex systems, making them feasible

and practicably applied (such benchmarks would take several

months or even years to execute due to its large faultload size).

Introduction 11

1.3 Thesis organization

The thesis is organized in seven chapters, as follows:

 Chapter 1, this chapter, presents the motivation for the

undergone investigation, the research objectives and the

contributions of the thesis.

 Chapter 2 contains some terminology and the state of the art in

dependable computing area that are relevant to this study. More

specifically, it surveys previous relevant work in the

dependability benchmarking, fault injection and software faults to

the assessment and improvement of dependable systems. This

chapter is especially oriented to the reader who is not familiar

with the dependable computing area, so it can be skipped by

knowledgeable readers.

 Chapter 3 provides an overview of dependability benchmarking

of software systems, its goals, components, general framework

and challenges currently raised in this area.

 Chapter 4 presents a software fault injector specially developed

for dependability benchmarking – the DBench-FI (Dependability

Benchmarking Fault Injector). It describes in detail its architecture,

the corresponding modules and the way they interact with each

other and with the user, besides a detailed presentation of its

implementation.

 Chapter 5 describes the problem that arises in assessing the

dependability of large and complex systems, particularly with

regard to software faultloads. It also presents and provides an

early assessment of the experimental strategy followed in this

work for the definition of compact and representative faultloads

based on software faults.

12 Introduction

 Chapter 6 describes the experimental setup used to demonstrate

the effectiveness of the proposed approach with two real and

different systems: a web-server dependability benchmark and a

large-scale integer vector sort application extended with

performance and quality measures.

 Chapter 7 concludes the thesis and indicates suggestions for

future improvements and future research directions.

13

Chapter 2

2 Background and Related Work

This chapter introduces some basic concepts used in dependable computing systems

and surveys the previous research works that are relevant to this study. This

presentation of the pertinent terminology and of the state of the art includes the

areas of dependability benchmarking and fault injection, with special emphasis to

software systems, software fault injection and software faults.

This chapter is especially oriented to the reader who is not familiar with the

dependable computing area. As a consequence, it can be skipped by knowledgeable

readers.

2.1 Introduction

he increasingly dependency of modern societies on computer

systems has brought a greater awareness of the importance of the

dependability concept. Several examples of computer failures, like

the ones mentioned in the previous chapter, show the catastrophic

consequences of that dependence. Computer systems may result in costs to

the society, in addition to the expected benefits [CASDCST 1992], for which

they were developed. In this context, a new role of questions is raised: Can

T

14 Background and Related Work

we rely on computer systems? Are the computer systems dependable?

What are the limits of that dependability?

The accuracy of the computational results has preoccupied systems

programmers and their users since the first generation of computers (from

the late 1940’s to mid-1950). At that time, the use of unreliable components

required the use of special techniques that allow the improvement of

systems dependability. Among the used techniques, the error detection and

correction, duplexing with comparison, triplication with voting and the

diagnostics to locate failed components can be mentioned [Avizienis et

al. 2000].

The growing use of computer systems in critical tasks of our society

has increased the interest to develop systems that provide the expected

service even in the presence of faults, known as fault tolerant systems. That

need is even more obvious if we consider the adversity of the environment

in which those systems sometimes operate and the fact that there are no

perfect systems, that is, systems without any project or implementation

defect. Moreover, the more complex a system is and the higher the number

of its components, the higher is the probability of the occurrence of a failure

in that system.

The level of confidence that can be relied on a service of a system is a

determining factor in the characterization of that system, being

fundamental in systems where human lives or substantial economic values

are at risk. Dependability, together with functionality, performance, cost

and security establishes the fundamental properties of computing and

communication systems [Avizienis et al. 2004].

Background and Related Work 15

2.2 Basic concepts and definitions

2.2.1 Dependability

Dependability is defined in [Laprie 1985, Laprie 1995] as that

property of a computer system such that reliance can justifiably be placed

on the service it delivers. In this context, the delivered service is the

behavior of the system, as it is perceived by its user - another system that

interacts with the provider and receives the service [Avizienis et al. 2004].

However, to assess whether a system satisfies the requirements of

dependability is not an easy task, especially when complex and large

systems are involved. Moreover, that assessment is further hampered by

the fact that dependability is a global concept which embraces a set of

different attributes, whose emphasis and importance depends on the

characteristics of the system or application being analyzed.

2.2.2 Attributes of dependability

As mentioned, dependability is an integrating concept which

embraces a number of different, but complementary, attributes [Laprie

1995, Avizienis et al. 2004], that corresponds to different viewpoints of the system:

 Availability – concerning the readiness for correct service;

 Reliability – regarding the continuity of correct service;

 Safety – related to the absence of catastrophic consequences on

the user(s) and the environment:

 Confidentiality – regarding to the non-occurrence of

unauthorized disclosure of information;

 Integrity – related to the absence of improper system alterations;

16 Background and Related Work

 Maintainability – concerning the ability to undergo modifications

and repairs;

Accordingly to the usual definitions, which consider it as a composite

notion, security is not included as a single attribute of dependability

[Avizienis et al. 2000]. Instead, security is considered as a combination of

the mentioned attributes of confidentiality, integrity (concerning the

absence of unauthorized system alterations) and availability (for

authorized users only) [Avizienis et al. 2004]. Furthermore, dependability

regarding to erroneous inputs is sometimes referred as robustness.

2.2.3 Impairments to dependability

According to [Jalote 1994, Clark et al. 1995], the first two attributes

are, among all, the most relevant, given their importance on the fault

tolerance capabilities of a system. However, the mentioned attributes of

dependability may be emphasized in a greater or smaller extent, according

to their importance on the application being analyzed. That importance

should be considered in a relative or probabilistic rather than in an absolute

or deterministic way, as the unavoidable presence or occurrence of faults

prevents the existence of totally available, reliable, safe or secure systems

[Avizienis et al. 2000].

In [Laprie 1995], faults, errors and failures are defined as the

impairments to dependability. A fault is a defect that potentially causes an

error. That is, the cause of an error is a fault. Although a fault has the

potential to generate errors, those errors may not occur during the

observation period. In other words, the presence of faults does not

guarantee the occurrence of an error. However, the reverse is true: an error

in a system state always involves the presence of a fault in that system. A

fault that produces an error is said to be active. Otherwise, it is dormant.

An Error is the part of the system state (altered by a fault) that is liable to

Background and Related Work 17

cause a subsequent failure. An error is a manifestation of a fault.

Undetected errors in a system are said to be latent. A system failure occurs

when the system does not comply with its specification, that is, when the

system does not provide the expected service. Failures are caused by errors.

If an error exists in a system state, then, unless some corrective measures

are taken, there is a sequence of actions that can be performed and that

could lead to a failure. A failure in a system does not always reveal the

same way. Different forms of failures that can occur in a system are called

types of failures or failure modes. The mentioned cause-effect relationship

among these impairments, as described in [Jonhson 1989, Avizienis et al.

2004], can be represented as depicted in Figure 2-1.

Figure 2-1 – Relationship between fault, error and failure.

Faults can be classified according to several factors or viewpoints

[Laprie 1992, Laprie 1995, Laprie 1998, Avizienis 2004]. In the context of

this work, two viewpoints deserve a special emphasis, among all other:

phenomenological cause and persistence. Concerning phenomenological

cause, the faults can be classified in:

 Physical faults – faults caused by physical phenomena, internal

or external to the system.

 Human-made faults – faults that result from human action, either

design faults, when committed during the system design and

development phases, or operational faults, when due to input or

operating conditions violation.

ErrorFault Failure

Activation Propagation

Latent

Error

Dormant

Fault

Termination Termination

18 Background and Related Work

Relating to persistence, a fault can be considered in one of the

following categories [Carreira et al. 1999, Koren et al. 2007]:

 Permanent Faults – occur in a continuous and stable mode in

time. Concerning hardware, a permanent fault means an

irreversible damage that can only be recovered through the repair

or the replacement of the faulty component;

 Intermittent Faults – faults whose presence is limited in time,

caused by unstable hardware, or varying hardware or software

states. This kind of faults can be repaired by replacement or

redesign of the hardware or software;

 Transient Faults – faults that are caused by temporal

environmental conditions like, for example, electromagnetic

interference, or radiations.

The main difference between intermittent and transient faults1 is that

the latter cannot be repaired, since neither the hardware nor the software is

1 In the literature, the transient and intermittent bugs are sometimes referred as Heisenbugs,

because they disappear when reexamined (in analogy to the Heisenberg Uncertainty

Principle). By contrast, the permanent faults are referred to as Bohrbugs, as they represent

good solid bugs, which are easy to diagnose upon detection (in analogy to the Bohr Atom

Model). In recent taxonomies of software faults [Grottke et al. 2007], the Heisenbugs are

Background and Related Work 19

damaged [Siewiorek et al. 1992]. According to several studies, the transient

faults occur much more frequently than the permanent faults and are also

much more difficult to detect [Carreira et al. 1998a, Carreira et al. 1999,

Clark et al. 1995].

2.2.4 Improving dependability

The dependability of a system is defined by the dependability of

hardware and software that constitutes it. The development of dependable

systems requires, according to [Avizienis et al. 2000, Avizienis et al. 2004],

the combined use of four techniques: fault prevention, fault tolerance, fault

removal and fault forecasting.

Fault prevention is the ability of avoiding the occurrence or

introduction of faults in a system. Thus, it can be considered as the initial

defensive mechanism towards dependability. It is attained by applying

quality control techniques during the system design and development

phases. General approaches include formal methods in requirement

classified as a type of Mandelbugs (alluding to Benoît Mandelbrot, a leading researcher in

fractal geometry) - a more general class of bugs, characterized by having complex and

obscure causes, making their behavior appear chaotic or even non-deterministic.

20 Background and Related Work

specifications and rigorous testing of all system components and their

interactions. Regarding software, it consists in good programming

principles and environments (structural programming, modularization and

formal verification techniques), whereas for hardware, it involves rigorous

design rules (design reviews, component screening and testing). External

faults such as lightning or radiation can be prevented by shielding,

radiation hardening, etc. User and operation faults can be reduced by

training and regular maintenance procedures.

Fault tolerance aims to provide the systems the capability to deliver

the correct service in the presence of faults (as represented in Figure 2-2).

Obviously, fault tolerance assumes that fault prevention is not enough to

eliminate all the possible faults in a system and, consequently, any system

has some probability to have or is likely to develop a fault. That probability

is even increased if we consider that it is impossible to eliminate all the

environment aspects susceptible to change the system proper operation.

Fault tolerance mechanisms are implemented using redundancy, error

detection and subsequent system recovery mechanisms. A redundant

system can mask a failed component with a redundant one and continue to

operate without any service interruption, or at least, with the minimal

interference on the external behavior, since the recovery mechanisms may

cause some performance degradation. It should be noticed that fault

tolerance is a recursive concept. That is, it is essential that the mechanisms

which implement fault tolerance are themself protected against the faults

that may affect them.

Figure 2-2 – Fault tolerance mechanisms.

ErrorFault Failure

Activation

Fault

Tolerance

Propagation

Background and Related Work 21

The fault tolerant architectures are presently used in a wide range of

applications, from safety critical to commercial ones. For example,

concerning safety critical systems, fault tolerant architectures are used in

the flight control computers of the fly-by-wire systems of the Boeing 777

and AIRBUS A320/A330/A340 airplanes [Torres 2000].

Fault removal aims to reduce the number or the severity of the faults

and may be performed during both the development and operational

phases of a system. During the development phase, fault removal consists

in verification, diagnosis and correction [Avizienis et al. 2004], usually done

by debugging, and/or simulation of hardware and software. Fault removal

during the operational is conducted by maintenance techniques, corrective

or preventive. At this phase, faults can be removed replacing the faulty

system components or by software updates.

Fault forecasting predicts possible faults in order to prevent or avoid

them or to limit their effects. This is accomplished by performing an

evaluation, qualitative and quantitative, of the system behavior, with

respect to fault occurrence or activation. This evaluation is commonly

achieved using modeling and simulation of the system and faults.

Qualitatively, it comprises the probabilistic evaluation of some attributes of

dependability, interpreted as dependability measures. Quantitatively, it

consists on the identification, classification and ranking of failure modes or

event combinations that are liable to lead to system failures.

The inclusion of all these four techniques should be analyzed earlier

in the project phase of the systems, since it is very difficult to apply them in

systems where dependability issues were not taken into consideration.

Moreover, depending on the emphasis assigned to each dependability

attribute, according to the specificities of each application, there must be a

balanced use of these techniques. This trade-off is even more difficult as

conflicts may exist between some dependability attributes, such as

availability and security [Avizienis et al. 2000].

22 Background and Related Work

The relation between dependability, its attributes, impairments and

means can be represented in a single schema as exposed in Figure 2-3.

Figure 2-3 – The taxonomy of dependability.

2.3 Dependability benchmarking

The direct evaluation and comparison of performance of systems,

concerning some of its characteristics like performance and functionality,

have long driven the computer industry to improve their products.

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Dependability

Means

Attributes

Impairments

Background and Related Work 23

However, very often, the systems and configurations are optimized in

order to achieve the best performance and do not represent the real systems

used in field [Vieira et al. 2009]. This way, these performance-oriented

configurations tend to characterize unrealistic scenarios, as they disregard

dependability-related aspects that are required by many modern computer

systems. In fact, recently, factors like dependability and maintainability of

systems are also seen as very important. However, unfortunately, while

there are different ways to evaluate and compare different systems and

components, regarding its performance and functionality, the evaluation of

the dependability attributes of a system turns out to be much more

difficult. One of the main difficulties is related to the existence of a wider

spectrum of measures in dependability benchmarks, when compared to

performance benchmarks.

The need of tools to evaluate and compare the dependability of

systems is nowadays reinforced by the current trend of using commercial

off-the-shelf (COTS) components and of COTS-based systems with high

dependability requirements, as a way to reduce costs and shorten the

development and deployment times. In fact, it is important to note that the

increase of confidence in the general dependability of COTS, induced by its

large-scale use, may not constitute a sufficient condition for its use in

critical applications. In addition to the faults that those components may

have, the COTS software components are developed without the

knowledge of the specific context in which they will be used and are

usually provided as a black box, mostly without a rigorous written

specification [Guerra et al. 2004]. The integration of such components into

computer systems creates additional dependability challenges that

demands tools capable of evaluating and comparing the dependability

attributes between systems.

According to [Madeira et al. 2001], dependability benchmarks should

provide a generic, cost-effective and reproducible way for evaluating the

behavior of components and computer systems in the presence of faults,

24 Background and Related Work

allowing the quantification of dependability attributes, seen as measures, or

the characterization of systems into well-defined dependability classes. It is

important to note that some fault tolerance mechanisms may inflict a

performance overhead in the systems, which is also interesting to evaluate.

Indeed, a timely and correct service delivery, concerning the system

specification, is of utmost importance, mainly in hard real-time systems.

Furthermore, in addition to the characteristics of the dependability

evaluation and validation techniques, a dependability benchmark should

represent an agreement that is accepted by the computer industry and/or

by the user community. Dependability benchmarks are, obviously, of

utmost importance to complex, mission critical systems and for high-end

business-critical applications. Moreover, they may also play a broader key

role in the computer systems area, driving the industry to produce better

systems, similarly to what happened before, in the performance and

database areas.

2.3.1 Reference model

Dependability benchmarks are generally based in modeling or

experimentation, or both. The modeling approaches include analytical

[Trivedi et al. 1994] and simulation models [Rimén et al. 1993], and are

generally used to support architectural decisions at design phase. They

require the knowledge of the system functions and architecture, in terms of

system components and their interactions, namely in what concerns to the

fault tolerance and recovery mechanisms used to increase the system

dependability. This knowledge is used to build a representation of the

system, in order to model the system behavior and to analyze events and

activities like failure occurrences, error detection and propagation, system

recovery, etc. Those events and activities, characterized by event rates and

conditional probabilities of success or failure, known as model parameters,

are then used to analyze the system dependability. Block diagrams, faults

Background and Related Work 25

trees, Markov chains or stochastic Petri nets are examples of modeling

techniques used for dependability modeling of computing systems. The

required allocation of numerical values to the model parameters, such as

coverage factor and restart times, are usually based on experimental

measurement, field data or past experience related to similar systems. It is

worth noting that the modeling approach may be unfeasible for large and

complex systems, since systems made of many components with several

dependencies usually lead to high complex models [Kanoun et al. 1996].

However, for some COTS-based systems, in particular to those systems

whose architecture is not known in detail, the modeling approach can be

used to produce, with a reduced effort, simple high-level models.

On the other hand, experimental approaches are used in computer

prototypes or actual systems in order to evaluate the effectiveness of the

fault tolerance mechanisms and to characterize the system in the presence

of faults. They are usually obtained from observation of the system in real

field operation [Gray 1990], also known as field measurement, or through

the execution of benchmark controlled experiments, based on fault injection

techniques [Hsueh et al. 1997, Carreira et al. 1995, Clark et al. 1995, Madeira et al.

2000, Moraes et al. 2007]. Field measurement is based on data collected on the

system and its environment, concerning failures, fault tolerance and

maintenance processes: time to failure occurrences, nature of failures,

impact on system services, recovery time, etc. This data allow the

evaluation of measures such as mean time between failures (known as

MTBF), failure rate, system availability, etc. Field measurement can also be

used to feed data into the design of new systems, avoiding the weaknesses

found in the previous systems and enhancing the dependability of the new

ones. However, since fault occurrence constitutes rare events, the execution

of fault injection based experiments is usually used as a practical way to

accelerate the characterization of the system faulty behavior. It consists on

the deliberate introduction of artificial faults in a system or component,

through the use of a workload and a faultload, in order to assess its

26 Background and Related Work

behavior in the presence of faults, and to obtain the relevant dependability

measures [Arlat et al. 2002, Vieira et al. 2003, [Durães et al. 2004b, Kanoun et al.

2006] and characterize the system.

A reference model for implementing dependability benchmarks is

represented in Figure 2-4.

 Figure 2-4 – Reference model for implementing dependability benchmarks

[Kanoun et al. 2008].

Despite each one of the mentioned approaches (modeling or

experimentation) has its advantages and limitations, results based on the

observation in real field data are naturally more significant that those based

on modeling or prototypes. Nevertheless, as mentioned, such kind of

analysis is usually impracticable, as it requires the collection of data related

to very specific and rare data events, and hence requiring a long period of

system observation in order to get statistically significant results. As a

result, the great majority of dependability benchmark proposals presented

so far is experimental and based on fault injection techniques, allowing the

execution of benchmark controlled experiments.

Modeling

Experimentation

Model

Processing

Experimental

Result

Processing

Dependability

Model of the

System

Real System or

Prototype

Modeling

Measures

Experimental

Measures

Benchmark

Measures

Workload

Faultload

Background and Related Work 27

2.3.2 Dependability benchmark properties

According to [DBENCH 2004], in order to be useful, cost-effective

and accepted by the computer industry and user community, an

experimentation based dependability benchmark should satisfy a set of

properties:

 Representativeness – important in all benchmarking dimensions,

representativeness is of special relevance in measures, workload

and faultload. Measures should be meaningful to the benchmark

context in order to attain the expected usefulness of the

benchmark. The workload should represent a typical and realistic

set of activities found in real systems in the benchmark, being,

therefore, dependent of it. The faultload should represent a set of

real faults that may affect the target system in real use. The

definition of the faultload should also consider the context of the

application area and the operating environment.

 Repeatability and Reproducibility – concerning the guarantee

that statistically equivalent results are obtained when the

benchmark is run more than once in the same environment, i.e.,

the same System Under Benchmark (SUB), with the same

workload and faultload and with the same prototype.

Reproducibility assures that statistically equivalent results are

obtained by different teams when the benchmark is implemented

from the same specifications and is used in the same SUB.

 Portability - concerning the ease of transfer among various target

systems, within a particular application area. This property

allows the benchmark to compare computer systems and

components. The portability is very dependent on the

specification of some key benchmark components like faultload

and workload. For example, the lack of portability of the faultload

can limit the portability of the benchmark.

28 Background and Related Work

 Non-intrusiveness – regarding the changes that the benchmark

inflicts on the SUB, which should be as small as possible. In order

to avoid intrusiveness on the Benchmark Target (BT), faults must

be injected only in components of the SUB outside the target of

the benchmark. Thus the non-intrusiveness is guaranteed with

regard to the BT.

 Scalability – concerning the capability of the benchmark to

evaluate systems of different sizes. The scaling rules of the

benchmark specification typically affect its workload and

faultload. It is worth noting that very large faultloads may also

require, as large workloads do, a huge time to execute the

benchmark process. This circumstance constitutes a major

limitation to execute dependability benchmarks in very large

systems.

 Benchmarking time and cost – regarding the time and cost

needed to obtain the result from the benchmark. This property

embodies the usability that a benchmark should have. The

benchmark time comprises not only the execution time of the

benchmark, but also the time needed for the setup and

preparations and for data analysis. A dependability benchmark

should take the minimum time possible, preferably only a few

hours per system (in very large systems may be acceptable to

have a benchmark time of a few days). With regard to the cost,

the user perceived value of the benchmark should be higher than

the cost associated to its execution, as a key objective of

dependability benchmarks is to provide a cost-effective way to

characterize the dependability of components and computer

systems.

 All these properties should be considered not only in the

specification phase, namely, in the definition of the measures and

Background and Related Work 29

experimental dimensions, but also in the implementation and validation

phases of the benchmark development process.

2.3.3 Dependability benchmark proposals

Dependability benchmarking has caught researchers’ attention in the

last years and many dependability benchmarks have been proposed for

different application domains.

With the aim of promoting the research, practice adoption of

dependability benchmarks, the IFIP (International Federation for

Information Processing,) and, particularly, the 10.4 Working Group on

Dependable Computing and fault Tolerance, created, in 1999, the Special

Interest Group on Dependability Benchmarking (SIGDeB). The resulting

work, merging the contributions from both academia and industry, has

identified a set of standardized classes to characterize the dependability of

computer systems [Wilson et al. 2002]. The work carried out aimed to allow

the comparison of computer systems concerning four dimensions:

availability, data integrity, disaster recovery and security. Complementary

work was developed in the context of the DBench project2 - a European

2 Dependability Benchmarking Project, IST-2000–25425 DBENCH [DBENCH].

30 Background and Related Work

project on dependability benchmarking, partially supported by the

European Commission.

The work done in SIGDeB and in project DBENCH marked the

beginning of several proposals of dependability benchmarks for various

kinds of systems. Due to the huge diversity of applications and systems in

the computer industry, several dependability benchmarks have been

developed for different application areas and systems (e.g., general

purpose operating systems, real-time kernels, engine control applications,

on-line transaction processing systems). However, they all share the

properties presented, at least at an abstract level, and constitute an

instantiation of it to a specific domain or a particular computer system.

A general methodology for benchmarking the availability of

computer systems was introduced in [Brown et al. 2000]. This work uses

fault injection to cause situations where software RAID (Redundant Array

of Inexpensive Disks) systems availability may be compromised. It adopted

the workload and performance measures from existing performance

benchmarks.

An attempt to incorporate human behavior in dependability

benchmarks and system designs as a way to incorporate effects of a human

operator in dependability measures is presented in [Brown et al. 2001]. In

[Brown et al. 2002] is presented a methodology for developing dependability

benchmarks that capture the impact of human operators on systems. The

proposal adopts the workload and the performance measures of existing

performance benchmarks. The systems dependability is characterized by

the performance degradation induced by the injected faults and by the

perturbations generated by human operators. Research work towards the

development of a dependability benchmark for human assisted recovery

processes and tools in server systems is presented in [Brown et al. 2004a]. The

proposed methodology, developed at the University of California-Berkeley,

aims to evaluate human-assisted failure recovery tools and processes and

Background and Related Work 31

can be used both to quantify the dependability of recovery systems and to

compare different recovery approaches.

A practical characterization and comparison of COTS operating

systems behavior in the presence of faulty device drivers is presented in

[Durães et al. 2002a, Durães et al. 2003a]. This work is based on the emulation

of high level real software faults through the modification of the

ready-to-run binary code of the target software module, and proposes the

use of a multidimensional perspective to evaluate different views of the

benchmark results. The used fault emulation technique, named G-SWFIT,

requires the existence of a library containing the complete set of code

mutations, previously defined for the target platform, formerly scanned. A

similar study proposing a practical approach to characterize the robustness

of operating systems with respect to faulty drivers is presented in [Albinet et

al. 2004]. In this work a Software Implemented Fault Injection (SWIFI)

technique is used to corrupt the parameters of the interface between the

device drivers and the kernel of the OS. In order to characterize the faulty

behaviors, both internal (kernel error codes) and external measurements

(e.g., raised exceptions, kernel hangs, and workload behavior) were

considered.

A comparison of fifteen commercial OS POSIX (Portable Operating

System Interface) implementations concerning their robustness was first

presented in the context of the Ballista Project, from Carnegie Mellon

University [Koopman et al. 1999b]. A dependability benchmark comparison

of three operating systems (Windows NT4, 2000 and XP) focused on

robustness and with respect to erroneous inputs provided by the

application software to the Operating System via the Application

Programming Interface (API) is proposed in [Kalakech et al. 2004]. The

workload used in this dependability benchmark was the TPC-C

performance benchmark for transactional systems [TPCC], an already

well-established and agreed benchmark. A similar dependability

benchmark and its application to six versions of Windows operating

32 Background and Related Work

system and four versions of Linux operating system is presented in

[Kanoun et al. 2005]. The workload used in this study was the PostMark, a

file system performance benchmark for operating systems [Katcher 1997].

Concerning the faultload, this work mainly considers corrupted parameters

in the Operating System (OS) system calls. In [Kanoun et al. 2006], a

dependability benchmark for general-purpose operating systems is

proposed, considering analogous faultload, and presented its application in

several versions of windows and Linux operating systems. The workload

used in this study is the JVM (Java Virtual Machine) and the benchmark

measures considered are the OS robustness and the OS system reaction and

restart times in the presence of faults.

At IBM, the Autonomic Computing Initiative [IBMACI] aims to

develop a suite of benchmarks to quantify the autonomic capacity of a

system, which is defined as the capability of the system to react

autonomously to problems and changes in the environment. This

self-managing capability should incorporate four fundamental

features: self-configuration, self-healing, self-optimization, and

self-protection [Ganek et al. 2003]. A first discussion on the requirements of

those benchmarks and a proposal of a set of metrics for the evaluation of a

systems autonomic level is presented in [Lightstone et al. 2003]. In

[Brown et al. 2004b] are presented the main challenges and pitfalls about

benchmarking the autonomic capabilities of a system. This work proposes

that autonomic benchmarks must quantify four dimensions of a system

autonomic response: (i) the level of response; (ii) the quality of the

response; (iii) the impact of the response on the system user; and (iv) the

cost of any extra resources needed to support the autonomic response. A

configuration complexity benchmark, process-based, that generates metrics

that reflect the level of human involvement in the systems configuration

process is presented in [Brown et al. 2004c]. In [Brown et al. 2005] is

presented a benchmark for assessing the self-healing dimension of the

autonomic capability. In this work, the system self-healing capabilities were

Background and Related Work 33

quantified with two metrics: (i) a measure of how effectively the system

under test heals itself in response to the injected disturbances; and (ii) a

measure of how autonomic that healing response is.

A preliminary proposal of a dependability benchmark for real time

kernels for onboard space systems is presented in [Moreira et al. 2003]. This

work focuses mainly on the assessment of the predictability of response

time of service calls in a Real-Time Kernel (RTK) used in space domain

systems. The benchmark, called DBench-RTK, uses an Onboard Scheduler

(OBS) process as workload and its faultload consists of a set of faults that is

injected into kernel functions calls at the parameter level by corrupting

parameter values.

A dependability benchmark for OLTP (On-Line Transaction

Processing) application environments is proposed in [Vieira et al. 2003].

This benchmark uses the workload of the TPC-C benchmark [TPCC] and

specifies the measures and all the steps required to evaluate both the

performance and dependability features of OLTP systems, with emphasis

on availability. This study uses as faultload, a set of operator faults that

emulates real faults experienced by OLTP systems in the field. Another

dependability benchmark for transactional systems is proposed in

[Buchacker et al. 2003]. Although this study also adopted the workload

from the TPC-C performance benchmark, it considers a faultload based on

hardware faults.

Research work at Sun Microsystems proposes a high-level framework

specifically dedicated to availability benchmarking of computer systems

[Zhu et al. 2003a]. The proposed approach decomposes availability in three

key components: fault/maintenance rate, robustness, and recovery. Within

the scope of that framework, two dependability benchmarks were

developed: one that measures specific aspects of a system robustness on

handling maintenance events, such as the replacement of a failed hardware

component or the installation of a software patch [Zhu et al. 2003b]; and a

34 Background and Related Work

second benchmark for measuring system recovery on a non-clustered

standalone system [Mauro et al. 2004].

A dependability benchmark for engine control applications to allow

the characterization of the impact of faults in on the control software

embedded in engine Electronic Control Units (ECUs) is presented in

[Ruiz et al. 2004]. This benchmark, based on the injection of transient

hardware faults in the ECU, provides a set of measures that allows a

comparison of two different diesel engine control systems concerning its

safety. The workload used is based on the Europe standards for the

emission certification of light duty vehicle.

A dependability benchmark based on the injection of software faults

was first proposed in [Durães et al. 2004a]. This benchmark uses the

G-SWFIT technique (Generic Software Fault Injection Technique) in order

to directly inject mutations at machine-code level that emulate high-level

software faults [Durães et al. 2002b]. The inserted modifications reproduce

the code that would have been generated by the compiler if the intended

software faults were in the high level source code. A complete

dependability benchmark for web-servers that also uses the G-SWFIT

technique is proposed in [Durães et al. 2004b]. Adopting the workload and

the performance measures of SPECWeb99 performance benchmark [SPEC],

the benchmark uses a faultload that emulates both a realistic software

defects and the effects of hardware and operator faults.

A study at Intel Corporation has focused on benchmarking

semiconductor technology [Constantinescu 2005a]. The work discusses the

impact of semiconductor technology scaling on neutron induced Soft Error

Rate (SER) and presents an experimental methodology and results of

accelerated measurements carried out on Intel Itanium microprocessors.

The work can be used as a dependability benchmark, as the used approach

does not require any proprietary data about the microprocessor under

evaluation. Relying on environmental test tools, Intel Corporation has also

developed a set of benchmarks that allow the benchmarking of undetected

Background and Related Work 35

computational errors, also known as Silent Data Corruption (SDC)

[Constantinescu 2005b]. This study performs a temperature and voltage

operating test (the so-called Four Corners Test) on several prototype

systems.

Three analytical dependability benchmarks that examine the

Reliability, Availability, and Serviceability (RAS) characteristics of

computer systems were developed at Sun Microsystems [Elling et al. 2008]:

the Fault Robustness Benchmark (FRB-A) allows the evaluation of the

robustness techniques used to enhance systems resiliency, including

redundancy and automatic fault correction; the Maintenance Robustness

Benchmark (MRB-A) allows the evaluation of how the maintenance

activities affect the ability of the system to provide a continuous service;

and the Service Complexity Benchmark (SCB-A) allows the evaluation of

the complexity of servicing mechanical components of computer systems.

A dependability benchmark intended to evaluate the robustness of

partitioning mechanisms of real-time operating systems is proposed in

[Barbosa et al. 2010]. The benchmark includes both hardware-based and

software-based faultloads and measures the spatial and temporal isolation

among tasks.

A software framework for assuring system dependability based on

benchmark scenarios and quantitative measures is presented in [Fujita et al.

2012]. The DS-Bench toolset performs benchmark test on the target system

and obtains dependability metrics using various benchmarks programs and

anomaly generators.

Two different approaches for extending TPC benchmarks with

dependability measures are presented and discussed in [Almeida et al.

2010]: extending each TPC specification in a customized way; and, a more

unified approach, defining a generic and independent specification that

could be applied to any TPC benchmark. The advantages and

disadvantages of each approach are also presented.

36 Background and Related Work

A proposal for the integration of dependability benchmarks into the

recent ISO/IEC 25045 standard [ISOIEC 2010]3 is presented in [Friginal et

al. 2011]. The approach provides the standard with the ability to assess the

eventual impact of faults (referred as disturbances in the standard) on the

quality of software components. The effectiveness and usefulness of the

approach is demonstrated using three distinct different versions of

Optimized Link State Routing (OLSR) as software components.

However, despite the great efforts in the last decade in developing a

vast variety of dependability evaluation methods and techniques,

dependability benchmarks do not benefit yet from the level of maturity,

recognition and consensus of the well-established area of performance

benchmarks, which is supported by major companies in the computer

industry and where TPC and SPEC play a key role.

3 The ISO/IEC 25045 is an extension of the ISO/IEC Systems and software Quality

Requirements and Evaluation (SQuaRE) standard [ISOIEC 2005] in order to incorporate the

viewpoint of recoverability into the procedures for evaluating the quality of software

components.

Background and Related Work 37

2.4 Fault injection

As mentioned in the previous section, one of the experimental

methods used for dependability evaluation consists of analyzing the

behavior of a system from the real field operation and collecting the

information about its dependability, known as measurement-based

analysis. Despite the advantage of allowing the identification of the failures

and faults that more frequently occur in a system, this method requires the

collecting of data over a long period of time, due to the infrequent

occurrence of errors and failures observed in systems with high

dependability levels. Factors such as the mentioned long time between

failures, the destructive nature of a crash or the long error latency, make it

difficult to identify the causes of failures in the system operational

environment. Moreover, it is particularly difficult to recreate a scenario of

failures in large and complex systems.

The fault injection technique, also using an experimental approach,

allows to overcome these drawbacks, by carrying out controlled

experiments where the observation of the behavior of the system in the

presence of faults is explicitly induced by the deliberate introduction

(injection) of faults in the system [Arlat et al. 1990a]. Its recommendation by

leading safety standards like NASA standard 8719.13B for software safety

[Nasa 2004] and the ISO/DIS 26262 standard for automotive safety

[ISODIS 2009], and its wide use over the last decades by many providers

(e.g., ESA, IBM, Intel, Siemens, Sun, Volvo, etc.) and by the practitioners of

dependable computer systems demonstrates the relevance of the method.

Recently, reinforcing that pertinence, the fault injection technique was also

included in the ISO/IEC Systems and software Quality Requirements and

Evaluation (SQuaRE) standard [ISOIEC 2005] as a disturbance injection

methodology for the assessment of the recoverability of software systems,

through the evaluation module ISO/IEC 25045 [ISOIEC 2010].

38 Background and Related Work

According to [Hsueh et al. 1997], a typical fault injection environment

consists of the following components, as shown in Figure 2-5:

 Target system – system in which the faults are injected, as it

executes the tasks submitted by the workload generator.

 Fault Injector – component responsible for the injection of faults

in the target system. It could be implemented by hardware

(HWIFI) or software (SWIFI) and it can support different fault

types, fault locations and fault injection triggers.

 Fault Library – Contains information about the type, location and

number of faults, as well as of hardware semantic or software

structure used by the fault injector. It should be considered a

separate component in order to attain greater levels of flexibility

and portability.

 Workload Generator – Component responsible for the workload

generation that is executed by the target system.

 Workload Library – Contains information about the workload

executed by the target system. May contain applications,

benchmarks or synthetic workloads. Like the fault library, and for

analogous reasons, it should be considered separated from the

workload generator.

 Controller – program that controls the fault injection

experiments. It can be executed either on the target system or on a

separate computer.

 Monitor – Tracks the execution of the commands and initiates the

data collection whenever necessary.

 Data Collector – Performs the online collection of the experiments

data.

Background and Related Work 39

 Data Analyzer – Performs, eventually offline, the processing and

analysis of the collected data.

Figure 2-5 – Typical components of a fault injection environment

[Hsueh et al. 1997].

2.4.1 Goals of fault injection

In [Arlat et al. 1990b] the two complementary main goals of fault

injection are identified and characterized: validation and design-aid. The

first is related to the fact that fault injection can be viewed as a means to

testing the methods and mechanisms used to obtain the confidence in the

system, with respect to the inputs they have been designed to cope

with - the faults. In this context, two key aspects should be

considered: (i) the validation of the verification procedures, used to reveal

faults during all the phases of the development process, and (ii) the

validation of the fault tolerance mechanisms, aimed to achieving the

dependability of the system in the operational phase. Therefore, the fault

injection participates in two of the techniques used to attain the

Target System

Fault Injector Workload Generator Monitor

Controller

Fault

Library

Workload

Library

Data Collector

Data Analyzer

Fault Injection

System

40 Background and Related Work

dependability of a system, as refereed in section 2.2.4: fault removal,

through the reduction, by verification, of the presence of faults in the

design/implementation of the fault tolerance mechanisms; and fault

forecasting, through the rating, by evaluation, of the efficiency of the

operational behavior of such mechanisms [Arlat et al. 1990b, Avresky et al.

1996, Christmansson et al. 1996a, Voas et al. 1997b]. Concerning the design-aid,

the fault injection can be applied at the various stages of the development

process. Their results are mainly used to measure the quality of the selected

solutions and to change them, if necessary.

It must be noticed that, due to the fact that faults are introduced in

the target system, which causes the system to run in an altered state, the

fault injection is generally unable to determine the accuracy of the results.

That is, the fault injection is inadequate to ensure that an application, for

example, produces the correct results, according to its specification.

Instead, fault injection is very useful to prove that an application produces

incorrect results under abnormal operating conditions [Voas et al. 1998].

Fault injection is thus appropriate for evaluating the behavior of the

systems in the presence of faults and validating their fault tolerance

mechanisms [Powell et al. 1995, Christmansson et al. 1996a, Rela et al. 1996,

Voas et al. 1997b, Cukier et al. 1999].

2.4.2 Fault injection in software development cycle

 Depending on the phase of the software development cycle in which

the system is, different fault injection techniques can be applied, as

summarized on Table 2-1: (i) Simulation-based fault injection and (ii)

Prototype-based fault injection [Hsueh et al. 1997].

The simulation-based fault injection technique is used to evaluate the

dependability of a system that is represented by a series of high-level

abstractions, allowing early detection of design faults, before the system is

Background and Related Work 41

started to be built. The early stage of development, characterized by the

absence of any implementation details, imposes a simulation based on

simplified assumptions, like the occurrence of errors and failures according

a predetermined distribution, such as the exponential distribution. With

this technique, the faults are injected by directly modifying the

computational state of the simulation [Carreira et al. 1999]. Among the most

known simulation-based fault injectors, one can mention the FOCUS [Choi

et al. 1992], the MEFISTO [Jenn et al. 1995] and the DEPEND [Goswami et al.

1997] tools. Although this method is suitable for the evaluation of the

effectiveness of fault tolerant mechanisms and a system dependability in

the early phases of its development (conception and design), known as its

main advantage, it requires accurate input parameters that are difficult to

supply [Hsueh et al. 1997]. It should be noticed that parameters from

previous experiments could not be adequate due to design and

technological changes. This technique is also highly appropriate for the

evaluation of dependability of critical systems where the injection of faults

in the actual prototype or operational system would be dangerous, as

happens in nuclear power systems and avionics. Despite these advantages,

accurate results demand very detailed models, whose development can be

very expensive. Moreover, manufacturers might not reveal the information

needed and the simulation can take a long time to complete.

Phase in Software
Development Cycle

Technique

Conceptual and
Design Simulation-based fault injection

Prototype and
Operational System

Prototype-based fault injection

Operational System Measurement-based analysis

Table 2-1 - Experimental techniques for dependability evaluation and their

suitability for the different phases of software development cycles.

42 Background and Related Work

On the other hand, Prototype-based fault injection allows the

evaluation of the system without any assumptions about the system design,

and thus, allows more accurate and realistic results, compared to

simulation-based analysis. This technique consists on the injection of faults

on the target system and on the observation of the corresponding effects.

The prototype-based fault injection is useful to:

 Identify system weaknesses, regarding components causing

dependability bottlenecks.

 Analyze the system behavior in the presence of faults: (i)

determine the coverage of error detection and recovery

mechanisms, and (ii) evaluate the effectiveness of the fault

tolerance mechanisms and the corresponding performance loss.

In this context, most of the approaches fall into two main

categories [Hsueh et al. 1997]:

 Hardware Implemented Fault Injection (HWIFI) – The faults are

injected on hardware level, through logical or electrical faults.

This category can further be subdivided into HWIFI with contact,

when there is physical contact with the circuit pins of the target

system (e.g, methods that use pin level active probes and socket

insertion), and HWIFI without contact, in the cases where the

injector has no direct contact with the target system (e.g., faults

are injected through heavy ion radiation and electromagnetic

interferences).

 Software Implemented Fault Injection (SWIFI) – The faults are

injected at software level (through the corruption of code or data),

reproducing errors that would have been produced by faults

occurring in hardware of software. SWIFI techniques can also be

further categorized into two new classes, depending on the time

at which the faults are injected: (i) compile-time injection,

corresponding to the case when the faults are injected into the

Background and Related Work 43

source code of the target program, and (ii) run-time injection,

when the faults are injected during system run-time.

Contrasting with SWIFI, HWIFI techniques require the use of

additional and specific hardware to introduce physical faults on the target

system, which increase the cost of its use. Moreover, the increasing

complexity of hardware makes it harder to inject physical faults as well as

to define the corresponding simulation models that effectively represent

the systems. Thus, due to its greater flexibility, portability, lower cost and

ease of development, the SWIFI tools have become a clear and popular

choice in the last decades. However, despite these advantages, the SWIFI

tools have some intrinsic drawbacks that should be mentioned:

 Inaccessibility of some locations, when compared to HWIFI tools

(e.g. some processor and system resources cannot be reached)

[Carreira et al. 1998b];

 Difficulty in injecting permanent faults, except for very particular

circumstances;

 Disturbance of the execution and, consequently, on the

performance of the system under test. This problem, known as

intrusiveness, is a consequence of the instrumentation necessary

to inject faults and monitor the corresponding effects in the target

system. Special care should be taken in order to minimize its

effects.

 Poor time resolution due to the possible inability to follow some

error propagation, particularly, for errors with very short latency

like CPU and bus faults.

Generically, as major drawbacks to the use of the prototype-based

fault injection, one can mention the restriction of the study to the set of

faults that can actually be emulated and the impossibility to obtain

measures like availability and the mean time between failures.

44 Background and Related Work

Although all of the experimental techniques have their limitations,

they should be used in their appropriate phases and, given their

complementarity, their combination can result in a more complete study of

the dependability of systems.

As stated in section 2.3, fault injectors are a crucial part of

dependability benchmarks. The next section briefly presents the most

relevant fault injection tools developed in the last decades. For the purpose

of this thesis, only those belonging to the SWIFI family are mentioned.

2.4.3 SWIFI tools

Many fault injection tools have been developed in the last decades.

One of the early SWIFI fault injectors is FIAT (Fault Injection-Based

Automated Testing Environment) [Segall et al. 1988]. This tool adds fault

injection and monitoring capabilities to application code and operating

system, by changing the code and data that is copied into memory at load

time. Faults are triggered when target system execution reaches the

locations where special instructions have been inserted in the code.

Although this tool could inject memory faults at runtime, it was not able to

inject most transient faults. A similar pre-runtime approach of changing the

file image generated by the compiler was taken by DOCTOR, a tool

developed for the HARTS real-time distributed system [Han et al. 1993].

The FINE tool (Fault Injection and moNitoring Environment) [Kao et

al. 1993] uses a software monitor to trace the control flow and inject faults.

Despite its large overhead and the need of the source code of the target

application to inject faults, it is significantly more powerful than its

predecessors, particularly, in the type of faults that could be injected.

DEFINE [Kao et al. 1994], an extension of FINE, was developed to include

distributed capabilities, introducing a modified hardware clock interrupt

Background and Related Work 45

handler to inject CPU and bus faults with time triggers and inject some

kind of software faults.

A tool called FERRARI (Fault and ERRor Automatic Real-time

Injector), developed for injecting faults using the UNIX ptrace function is

presented in [Kanawati et al. 1995]. The fault injection process initiates and

executes the target process in a special trace mode, enabling the injection of

transient and permanent faults. It is able to inject a very wide set of fault

types, but was restricted to injection in user space.

FTAPE (Fault Tolerant and Performance Evaluator) [Tsai et al. 1996] is

part of a fault tolerant benchmark, which measures system failures and the

system performance degradation during faulty conditions. It also includes

a synthetic program for generating CPU, memory and I/O (Input/Output)

activity. FTAPE is able to inject fault in CPU registers, memory and disk

subsystem. It is capable to select the time and location of faults either based

on the workload activity or randomly.

The Xception tool, which uses the debugging and monitoring

capabilities of the modern processors, is presented in [Carreira et al. 1998b].

It provides a set of spatial, temporal and data manipulation fault triggers

like FERRARI or FTAPE, but with a minimal intrusion on the target system,

apart from being able to also target system space. Xception was originally

implemented on a PowerPC based machine, and has been ported to other

processors since then, having originated the unique commercial fault

injector available today. Another fault injector, called MAFALDA,

presented in [Rodríguez et al. 1999], uses principles very similar to

Xception, adding mechanisms to intersect and inject system calls in

micro-kernels.

The GOOFI (Generic Object-Oriented Fault Injection) tool, presented

in [Aidemark et al. 2001], is designed to inject faults in various target

systems, using different fault injection techniques. The generic architecture

of GOOFI assists the user to adapt the tool for new target systems and new

46 Background and Related Work

fault injection techniques. The version presented in [Aidemark et al. 2001]

supports pre-runtime SWIFI, to inject faults into the program and data

areas of the target system before it starts to execute, and Scan-Chain

Implemented Fault Injection (SCIFI). The SCIFI injects faults via the built-in

test logic, such as boundary scan-chains and internal scan-chains, existent

in many modern VLSI (Very Large Scale Integration) circuits. An extended

and improved version of GOOFI is presented in [Skarin et al. 2010]. This

new version of the fault injector, named as GOOFI-2, extends the

predecessor version with one test port-based technique, which provides the

ability to inject errors into some microprocessors, and two SWIFI

techniques, which include the ability to use the debugging and monitoring

functions available in advanced processors, and to inject faults into

registers and memory without any specific hardware.

An improved ptrace-based SWIFI tool is presented in [Xu et al. 2002].

HiPerFI (High-Performance Fault Injector) reduces very significantly the

intrusiveness and overhead caused by the context switch between the

injector process and the target application. It also integrates a method,

similar to the approach used by Xception, which enables the fault injection

mechanism to intersect the kernel exception handlers and thus extends

significantly the tools triggering and injection capabilities.

A SWIFI tool also capable of executing hardware-based and

simulation-based fault injections is presented in [Stott et al. 2000]. NFTAPE

(Networked Fault Tolerance and Performance Evaluator) is able to inject

multiple fault models (bit-flips in registers and memory, communication

errors and I/O faults) with multiple fault triggers, and is especially

adequate for distributed systems.

A pioneering fault injector tool, specifically developed for

dependability benchmarking, is presented in [Costa et al. 2003]. The

DBench-FI uses a flexible runtime kernel upgrading algorithm to provide a

unique set of characteristics: (i) great simplicity of installation and use,

since it can be downloadable from the web and executed on-the-fly, without

Background and Related Work 47

any special installation procedure; (ii) capable to inject faults/errors in the

whole target system, and not just in the user space as some ptrace-based

tools do, nor requiring a special launching procedure like the one requires

by many debugging mechanisms; (iii) does not require the availability of

source code of any system component or process; (iv) capable to inject

faults even in tasks that are already running when it is installed,

irrespectively of their complexity; (v) very low intrusiveness, since it is

essentially undetectable; (vi) can be dynamically loaded into the system.

It should be noticed that none of the previous tools satisfied the

requirements of web distributable dependability benchmarking, either

because the overhead caused would be too high; or only user space could

be targeted; or the source code of the target applications was required; or a

special debug mode imposing a particularly launch mode was required.

Moreover, all of the previous tools have been proposed for the emulation of

hardware faults and they are not adequate for the emulation of more

complex faults such as software faults [Madeira et al. 2000, Jarboui et al.

2002].

Despite the version presented in [Costa et al. 2003] is only able to inject

memory faults, the DBench-FI fault injector is, as shown in [Costa et al.

2009] and in the present work, actually compatible with G-SWFIT [Durães

et al. 2006], the state-of-the-art in software faults model being one of the

most versatile fault injector available. A detailed description of DBench-FI

is presented in chapter 4, as it constitutes a central tool of the present

research work.

2.4.4 Software fault injection

Despite the innumerous works on physical hardware fault injection

and emulation, the problem of injecting software faults have barely been

addressed. In fact, the potential of the mentioned tools for the emulation of

48 Background and Related Work

more complex faults such as software faults is very limited [Madeira et al.

2000, Jarboui et al. 2002]. This gap can be explained by the limited knowledge

about software faults in the real operational environment of systems and,

consequently, by the difficulty of defining meaningful and representative

sets of software faults. Nevertheless, several studies [Gray 1990, Sullivan et

al. 1992, Lee et al. 1995, Chou 1997, Kalyanakrishnam et al. 1999, Li et al.

2006] showed that software faults are actually predominant, when

compared to other types of system faults, and, considering the huge and

growing complexity of today’s software, its weight on the overall system

dependability will tend to increase. In fact, nowadays it is generally

accepted that most of the existing software components have residual

defects or bugs, which escape the traditional testing phases of the software

development process. Consequently, complex software systems, in which

our society increasingly relies, are being executed under potential faulty

conditions that have been neither detected nor foreseen [Gray 1985,

Chillarege et al. 1992, Musa 1996, Weyuker 1998, Knight 2002].

Despite the permanent nature of the software faults [Avizienis et al.

2004], practice shows that their behavior is transient. That is, when a failure

is observed, it is very difficult to repeat all the precise conditions that

trigger it, like particular timing relationships between several system

components or other rare and somewhat irreproducible circumstances.

Software faults typically manifest only during operations in real field, and

usually under heavy or unusual workloads and timing contexts. In fact,

studies on field data analysis show that most of software faults are due to

overloads, race conditions or timing and exception errors [Sullivan et al. 1991,

Chillarege et al. 1995].

The huge complexity of today’s software and the increasing pressure

to reduce time to market, together with the recognized and well-known

technical difficulties associated to the software development and testing

processes [Lyu 1996, Musa 1996], have contributed to the actual scenario.

The emulation of software faults and the assessment of the impact of

Background and Related Work 49

residual bugs on the validation of software fault tolerance mechanisms is

thus of crucial importance as a measure of confidence that can be relied on

a given system.

The majority of the studies on software faults have addressed the

software development process since that is their decisive origin. Software

faults are always a consequence of an incorrect development process,

revealing flaws introduced in any of its phases (requirement, specification,

design, coding, testing, etc.).

Contributions to the improvement of software development

methodologies, namely on software testing, software reliability modeling

and risk assessment were presented in [Lyu 1996, Musa 1996].

Mutation testing, sometimes considered the first form of software

fault injection, is used for evaluating the adequacy of test data, while

minimizing testing times [Budd 1981, DeMillo 1988, King et al. 1991].

Originally proposed in [Hamlet 1977], mutation testing consists of a

software testing technique based on the automatic4 creation of different

4 Within the scope of mutation testing, the introduction of changes can also be done

through manual insertions, usually by experienced engineers, known as hand-seeded faults.

However, while hand-introduced faults have argued to be more realistic [Hutchins et al.

1994], more recent empirical studies show that automatically generated faulty versions

50 Background and Related Work

versions of a program (called mutants), each one with a single and simple

fault (based on a mutation operator), and on the definition of test cases

capable to detect the largest number of the injected faults. The mutation

testing technique determines the adequacy of the set of test cases by

measuring the ratio of faulty versions that have been detected (in which

case that mutant is considered “killed”), based on the comparison of the its

output with the one produced by the original program, and hence it can be

used to estimate and improve the reliability of software [Geist et al. 1992,

Lyu et al. 2003, Dimov et al. 2010]. However, in spite of having been widely

studied and used over three decades, some problems5 such as the high

computational cost of executing the huge number of mutants against a test

set, has preventing mutation testing from being a practical testing

technique [Jia et al. 2011].

Mutation testing can be considered a case of static or compile-time

fault injection, as the source code of the original program is changed before

its image is recompiled, loaded and executed, as opposed to the classical

(mutants) provide a less costly, more practical and accurate method to estimate the fault

detection ability of test cases [Andrews et al. 2005, Do et al. 2006].

5 Other difficulties related to the oracle cost [Budd et al. 1982, Weyuker 1982], i.e. the

process of comparing the output of mutated programs with the original one, in each test

case, have also been reported.

Background and Related Work 51

and dynamic fault injection, characterized by the change in the state of the

program/system, during runtime. Regardless the similarities, it is

important to highlight the difference of goals between the mutation testing

and the fault injection techniques. While the first uses program mutations

to identify an adequate test suite during the software development phase,

fault injection aims to validate the fault tolerance mechanisms of a system

at runtime, and evaluate the behavior of the system in the presence of

faults. It is also worth noting that, despite its wide use in software testing,

the mutation testing technique is not applicable in the context of COTS,

since in this case the source code is typically not available.

Some other studies collect the system operational data from field in

order to improve the software development process. In [Gray 1990, Lee et al.

1995] are presented the results of the analysis of the software dependability

of Tandem systems, based on a census of costumer system outages. The

impact of software defects on the availability of a large IBM system is

presented in [Sullivan et al. 1991]. Also based on field data, [Iyer 1995]

presents a study of the effect of the workload on the reliability of an IBM

operating system.

In [Voas et al. 1997b] the injection of artificial faults, both software

and hardware, is proposed for the assessment of software components

behavioral quality. Although the fault injection was initially developed in

the context of hardware faults, namely with the emulation of transient and

permanent faults using the simple bit-flip and stuck-at models, the need for

software fault injection has arisen with the emergence of software faults as

a major cause of system outages.

With the recognition that the emulation of the most frequent types of

programmer mistakes is a good approach for the emulation of software

faults, like primarily stated in [Ng et al. 1996, Ng et al. 1999], some studies

on the emulation of software faults by software fault injection and their

representativeness have been made. The first studies about the problem of

the accurate emulation of software faults by fault injection were presented

52 Background and Related Work

in [Christmansson et al. 1996a, Christmansson et al. 1996b]. Both works

propose a general procedure to generate injectable errors and accelerate the

failure process, based on the analysis of field data about discovered

software faults that have been classified according to the Orthogonal Defect

Classification (ODC) - a classification framework for software faults. In the

first proposal, [Christmansson et al. 1996a] addresses the fault forecast

issue, while in [Christmansson et al. 1996b] the procedure to generate

injectable errors is proposed for fault removal.

An experimental study on the accurate emulation of software faults

by fault injection is presented in [Madeira et al. 2000]. In a first experiment,

a set of real software faults has been compared with faults injected by the

Xception SWIFI tool in order to evaluate the accuracy of the injected faults.

Results showed the limitations of the usual SWIFI tools in the emulation of

different classes of software faults, either because the right error patterns

cannot be injected or the tool is too intrusive. This study also discusses the

use of field data about real faults and suggests the use of software metrics

as an alternative way to guide the injection process when field data is not

available. A second experiment evaluates a set of rules for the injection of

errors intended to emulate classes of faults.

In [Ng et al. 2001] software faults (as well as low-level hardware

faults) are injected into an operating system with the aim to improve and

validate the robustness of a write-back file cache designed to be as reliable

as a write-through file cache. Although the used fault model imitates some

specific programming errors in the OS, it is not necessarily applicable to

other software systems.

An innovative technique for the injection of software faults is

primarily proposed in [Durães et al. 2002b] and further developed and

extended in [Durães et al. 2006]. The G-SWFIT (Generic Software Fault

Injection) technique consists of finding key programming structures or

patterns at the machine code level in order to emulate high level software

faults through the modification of the ready-to-run binary code of the

Background and Related Work 53

target software component or module. It uses a set of operators for

software fault emulation through low-level code mutations based on an

extensive collection of real software faults, as represented in Figure 2-6.

Figure 2-6 – Automated low-level code mutations [Durães et al. 2002b].

In fact, the idea that mutations and actual software faults produce

identical error patterns and program behavior is supported by the results

presented in [Daran et al. 1996]. One central advantage of the G-SWFIT

method is that software faults can be emulated even when the source code

of the target application is not available, as usually happens with COTS.

This characteristic is essential for the evaluation of COTS or for the

validation of fault tolerance mechanisms in COTS based systems. It should

be emphasized that this technique presents an important advantage over

the previously mentioned proposal of [Kalakech et al. 2004], based on the

corruption in the API calls, as the later tries to emulate the effects of real

software faults (i.e., errors [Avizienis et al. 2004]) instead of emulating the

existence of the fault itself. Despite this work was based on the C language,

the study also concludes that the considered fault types are independent on

specific features of the C language and only minor differences should exist

in the fault emulation operators for other languages, such as C++ and

Pascal.

D
is

a
s
s
e

m
b
le

r

A
s
s
e

m
b
le

r 01011
0X010
01001

01011
00010
0X001

01011
00010
01001

01X11
00010
01001

01011
0001X
01001

Target

application

Low-level code

mutation Mutated versions

Low level

mutations library

54 Background and Related Work

Furthermore, some studies show that it is unlikely that software

faults could be easily emulated only by API level fault injection [Jarboui et

al. 2002, Jarboui et al. 2003], or even provide empirical evidences that

interface faults and software component faults cause substantial different

impact in the system [Moraes et al. 2006b].

Besides the emulation accuracy, the injection of software faults

encompasses two additional challenges:

 The representativeness of the faultload;

 The way of distributing the faults among different components in

the target system.

The first issue is related to the fact that the software faults should

emulate a set of real software faults that may occur in the system, i.e., they

should represent realistic faults that escape the software testing phases of

the software development process and still persist in the system. Several

recent research works, such as [Durães et al. 2006, Moraes et al. 2006a , Natella et

al. 2013], address this subject and present several notable proposals for the

definition of representative faultloads based on software faults, as

explained later in section 3.4 - Representativeness of Software Faults.

The second challenge concerns the practical difficulty of carrying out

a software fault injection campaign using such representative, but huge,

faultloads, induced by the vast number of possible fault types and target

locations. This problem is even more evident and dramatic in large and

complex systems, where the execution time of those campaigns can take

several months or even years due to the faultload dimension. This issue is a

central topic of the study presented on this thesis. It is fully presented in

chapter 4 and discussed in depth in chapters 6 and following.

Background and Related Work 55

2.5 Summary

This chapter described the terminology related to the dependability,

their attributes, impairments and the mechanisms used to increase the level

of confidence that can be relied on a given system.

The state of the art of the area of dependable computing was also

presented, through a survey on the relevant work in the areas of

dependability benchmarking, fault injection and software faults.

57

Chapter 3

3 Dependability Benchmarking of
Software Systems

This chapter shows the importance of dependability benchmarking focusing on

software systems as well as the challenges that arise in this area. It starts to present

a conceptual framework for dependability benchmark, as well as its key dimensions,

and highlights the difficulties concerning the experimentation issues of the

dependability evaluation of software systems. Finally, the problem of the

representativeness of software faults is presented, and the relevant studies that

have been carried out with the aim to solve this problematic are discussed in detail.

3.1 Introduction

espite the substantial improvements in the design and

implementation processes of software systems over the last years,

it is obvious that the complete elimination of software defects

during software development process is very difficult to attain in practice.

As a consequence, our society is increasingly dependent on complex

software systems that are executed under potential and unforeseen faulty

conditions. Due to this difficulty in producing software without defects or

D

58 Dependability Benchmarking of Software Systems

bugs, software developers adopted fault tolerant mechanisms to prevent

the consequences of potential failures, which can range from minor

inconveniences to real catastrophes [Weinstock et al. 1997]. Modern software

systems must be fault tolerant (at least to a certain extent), that is, they

should be able to provide the expected service even in the presence of

faults. In fact, fault tolerance is even recommended by leading safety

standards like NASA standard 8719.13B for software safety [Nasa 2004] and

the ISO/DIS 26262 standard for automotive safety [ISODIS 2009].

The importance of fault tolerance mechanisms has been reinforced by

the current trend of using COTS and COTS-based systems to build larger

and more complex systems [Durães et al. 2002b, Madeira et al. 2003], in

application areas that require high dependability. In this context, residual

software faults represent a growing risk of unpredictability consequences.

According to [Lyu 1995], software fault tolerance techniques are divided

into two groups: (i) single version and, (ii) multi-version software

techniques. Single version techniques focus on the addition of design

mechanisms into a single piece of software, aiming the detection,

containment and handling of errors caused by the activation of design

faults. Examples are concurrent error detection, checkpointing and

recovery, and exception handling [Gray 1985, Cristian 1982]. Multi-version

techniques consist on the structured use of multiple versions (or variants)

of a piece of software in order to ensure that design faults in one version do

not cause system failures. Examples of such techniques include N-version

programming (NVP), recovery blocks (RcB), and N self-checking

programming (NSCP) [Avizienis 1985, Lyu 1995].

Despite several studies have shown the pertinence and the efficiency

of fault tolerance mechanisms on the dependability of systems [Arlat et al.

1993], its validation and evaluation are complex and challenging tasks.

Dependability benchmarks allow the answer to that challenge: they

should provide generic ways of characterizing the behavior of components

Dependability Benchmarking of Software Systems 59

and computer systems in the presence of faults, allowing the quantification

of dependability measures.

3.2 General framework

The goal of dependability benchmarks is to provide a cost-effective

and reproducible way to evaluate the behavior of components and

computer systems in the presence of faults, allowing the quantification of

dependability attributes or the characterization of system into well-defined

dependability classes. Furthermore, dependability benchmarks should

provide a uniform, repeatable and comparable way of performing that

evaluation and compare alternative solutions. As these properties represent

fundamental goals of a dependability benchmark, they should be taken in

consideration right from the earliest phases of the benchmark definition.

A general framework for defining dependability benchmark for

computer systems was presented in the context of the DBench Project

[DBENCH 2004]. The work carried out presents a conceptual framework

and an experimental environment for dependability benchmarking of

COTS and COTS-based systems and identifies the following three main

classes of impacting dimensions:

 Categorization – This dimension describes the considered target

system, as well as the dependability benchmark context. It

impacts the selection of meaningful benchmark measures, as well

as all aspects related to experimentation on the target system.

 Measure – This dimension specifies the dependability benchmark

measures to be assessed, considering the choices made for the

categorization dimension.

60 Dependability Benchmarking of Software Systems

 Experimentation – This dimension includes all the aspects related

to the execution of the experiments on the target system in order

to get all the measures selected in the measure dimension.

Figure 3-1 outlines the classification dimensions, as well as their

relationships.

Figure 3-1 – Dependability benchmarking dimensions [DBENCH 2004].

The following subsections detail the mentioned dimensions.

3.2.1 Categorization dimension

This dimension aims to unambiguously identify and specify the

Benchmark Target (BT), with respect to its nature, application area and

operating environment. It is worth noting that the application area is a key

dimension, as it impacts the system execution profile, the operating

environment and the benchmark measures. Different application areas

require different dependability benchmarks. It should also be noticed that

the operating environment may affect both the workload and the faultload,

as it encompasses not only functional activity, but also faults, induced by

external sources or human-related interaction ones [Voas et al. 1997a].

Categorization

Considered system:

 System nature

 Application area

 Operating Environment

Benchmarking context:

 Life-cycle phase

 Benchmark user

 Benchmark scope

 Benchmark purpose

 Benchmark performer

Measure

 Measure nature

 (qualitative/quantitative)

 Measure type

 (dependability/performance-related)

 Measure extent

 (comprehensive/specific)

 Assessment method

 (experimentation/modelling)

Experimentation

 System Under

Benchmark (SUB)

 Workload

 Fautload

 Measurements

Dependability Benchmarking of Software Systems 61

This dimension also describes the benchmark context, which depends

from the perspective of its execution and use of results and determines the

requirements and the objectives of the benchmark. The benchmarking

context is considered a composite dimension, since it includes: (i) the life

cycle phase of the BT, in which the dependability benchmark is executed

(the benchmark measures greatly depends on the specific phase in which

they are obtained); (ii) the benchmark user, concerning the person or entity

which is using the benchmark results; (iii) the benchmark scope, related to

the possibility of the benchmark results to be used either internally, for

system validation and tuning, or externally, for public distribution; (iv) the

benchmark purpose, concerning the characterization of the dependability

of the target system either in a qualitative or quantitative manner; and

(v) the benchmark performer, regarding the person or entity that actually

executes the benchmark (manufacturer, integrator, third-party or end-user).

3.2.2 Measure dimension

This dimension encompasses the measures that are relevant for the

dependability benchmark, allowing a quantitative or qualitative

characterization of the BT. It includes: (i) performance related measures,

concerning the evaluation of system performance under faulty conditions;

(ii) comprehensive measures, which characterize the system at the service

delivery level (expected service), such as transactions per minute,

availability or safety; and (iii) specific measures, associated to particular

system features, such as the coverage factor or the latency time of fault

tolerance mechanisms.

Usual measures include the identification of system failure modes

and the system performance evaluation, such as system time response and

system throughput (as the injected faults may lead to performance

degradation without leading to system failure). It is worth pointing out

that, more than the absolute value of the workload execution time, what is

62 Dependability Benchmarking of Software Systems

really important in dependability benchmarks is the identification of the

impact of the faultload on that execution time. Moreover, dependability

benchmarks usually also measure the time needed for the restoration of the

expected service, after the occurrence of a faulty situation.

3.2.3 Experimentation dimension

The experimentation dimension includes all aspects related to the

experiments executed on BT, according to the categorization and measure

dimensions. They include: (i) the System Under Benchmark (SUB), a wider

system which includes the Benchmark Target (BT); (ii) the workload, which

should represent a typical operational profile for a specific application area;

(iii) the faultload, which should also be representative of the real threats

that may occur in the system; and (iv) the measurements to be performed,

that allows the observation of the behavior of the BT under the applied

execution profile, composed by the workload and the faultload.

This dimension should identify and specify the System

Under Benchmark (SUB), which consists in a setup (hardware and software

resources) that hosts and runs the BT, and performs the experiments

defined by the benchmark. The SUB is also used to apply both the

workload and the faultload, and to collect the measurements relevant to the

dependability benchmark.

It is worth mentioning that the definition of a faultload is a practical

process, based on observations, knowledge and reasoning. Information

about failure data reported in the field [Kanoun et al. 1997], knowledge

about the most frequent residual software defects found in deployed

software systems [Durães et al. 2003b], characteristics of the operating

environment, like the most frequent common administrator mistakes

[Vieira et al. 2003], or even information from experimental and simulation

studies, are examples of inputs used for the proper definition of faultloads.

Dependability Benchmarking of Software Systems 63

3.2.4 Benchmark scenarios

All the steps, and their interactions, needed to achieve a

dependability benchmark form a benchmark scenario. According to

[Kanoun et al. 2002, Madeira et al. 2002], there are three different key steps for

system dependability benchmarking: analysis, experimentation, and modeling.

Figure 3-2 shows a high-level scheme that depicts these stages and their

relations.

A benchmark starts by an analysis step, in which specific choices are

made concerning the categorization and measure dimensions of the target

system. Depending on the measure assessment method, the output of this

step can consist in two different types: (i) the workload, faultload and

measurements, for experimental measures, (output represented by link A),

and (ii) a deeply analysis of the system behavior (output represented by

link B) in order to prepare a system modeling, in case it is required.

According to the choices made in the analysis step, the selection of the

elements concerning the experimentation dimension is then achieved in the

experimentation step (link A), which allows the characterization and

assessment of the target system dependability. This step includes the

execution of the workload and faultload, and the collecting of the

measurements under the applied execution profile. As a consequence of the

strong relationship between the experimentation process and the target

system, all the components already defined at a high level during the

previous steps (workload, faultload and measurements), should be refined

in order to incorporate all the target system specificities. The correct

implementation of these components at system level should be carefully

addressed according to the procedures and rules defined in the benchmark,

which usually include configuration disclosures and rules related to the

scalability and to the benchmark measurements.

A modeling step is also required when comprehensive measures of the

target system are likewise deemed of interest (link B). It is used to build a

64 Dependability Benchmarking of Software Systems

representation of the system, in order to model the system behavior

considering failure occurrences, errors detection and propagation, system

recovery, and other similar events or activities. It is worth recalling that

these analytical models require the allocation of numerical values to the

model parameters, which is usually done through experimental

measurement, field data or past experience related to similar systems.

Figure 3-2 – Dependability benchmarking scenarios [Kanoun et al. 2002].

The modeling and the experimentation steps are usually used in a

complementary way, as depicted in Figure 3-2. Modeling can be used to

improve both the workload and the faultload, by assisting in the selection

of their most significant classes (link C), and also to guide the selection of

most relevant experimental measures and features that need to be assessed

by the benchmark experimentation (link D). This is the case of

dependability benchmarks in which the experimentation is supported by

modeling (scenario 1: represented by all the three steps and the links A, B,

C and D). On the other hand, in some benchmarks the experimentation

may also help in the improvement and validation (or even in the

correction) of the analytical model produced in the modeling step (link E).

This occurs in benchmarks in which the modeling is supported by

experimentation (scenario 2: represented by all the three steps and the links

Dependability Benchmarking of Software Systems 65

A, B, and E), such as when some experimental measures are used by the

analytical models.

There are also dependability benchmarks in which modeling and

experimentation are supported by each other (a combination of the

previous scenarios 1 and 2), and where outputs are simultaneously

constituted by experimental measures and features, as well as of

comprehensive measures based on modeling (scenario 3: represented by

the full steps and links of Figure 3-2).

In addition to these three types of benchmark scenarios, there are also

dependability benchmarks based only in experimentation (scenario 4:

represented by the analysis and experimentation steps and by the link A).

This is the case of the well-known performance benchmarks extended with

dependability measures, as the ones used in this thesis.

3.3 Performing the experiments

The benchmark experiments aim to execute the workload and

evaluate the behavior of the BT in the presence of faults, as a result of

measurements. In practice, the SUB is often a wider system that includes

the BT, such as when the BT is a software component like an operating

system or a database management system (DBMS). It is also very important

to note that the SUB should be carefully and explicitly documented, as the

benchmark must be properly interpreted and reproducible.

Furthermore, as already mentioned, in the case of benchmarking of

software systems using software fault injection, it is fundamental the

existence of a clear separation between the BT and the software

components that are selected as Fault Injection Target (FIT). The BT should

not be modified by the faultload in order to guarantee the inviolability of

the BT and the credibility of the dependability benchmark, especially from

the point of view of the BT provider. Instead, the software faults should be

66 Dependability Benchmarking of Software Systems

injected in one component (the FIT) in order to evaluate their impact in the

other components (the BT) or in the overall system.

Figure 3-3 depicts the relation between the SUB, the BT and the FIT,

in the case when the FIT is an operating system and the BT is an application

program, such as, for example, a web-server.

Figure 3-3 – Relation between System Under Benchmark (SUB), Benchmark

target (BT) and Fault Injection Target (FIT).

To perform the dependability benchmark, concerning the benchmark

experimentation dimension, another element is needed in order to manage

and automate the experiments. This key component, known as the

Benchmark Management System (BMS), is responsible for the control of all

the aspects of the benchmark experiments, namely: the workload

submission, the injection of faults, the coordination and synchronization of

the several components involved in the experiments and collecting the

information needed to process measurements. The BMS usually includes

several resources and instrumentation modules in order to fulfill its

functions. Moreover, the specific tasks assigned to the BMS should be

clearly defined in the benchmark specification, since they are very

dependent on the benchmark characteristics.

Beyond a description of the setup required to run the benchmark, in

order to control the way a dependability benchmark is applied and used,

and to ensure uniform conditions for measurements, dependability

System Under Benchmark (SUB)

Operating System

Fault Injection Target (FIT)

Application Program

Benchmark Target (BT)

Fault

Injection

Part of the target

system under

evaluation

Measures

Behaviour of

the system in

the presence of

faults

Dependability Benchmarking of Software Systems 67

benchmarks should also describe a set of procedures and rules. These

procedures and rules are, naturally, dependent on the specificities of the

benchmark itself and usually include system configuration disclosures,

rules related to the scalability of the benchmark and rules related to the

benchmark measurements. This latter kind of rules encompasses: (i) a

precise specification of the benchmark measures; (ii) information about the

domain in which those measures are valid and meaningful; and (iii) a

detailed specification of all the procedures and steps required to obtain

those measures (usually programs source code, language specification

texts, etc.).

3.4 Representativeness of Software Faults

The acceptability of dependability benchmarks is mainly supported

on two fundamental and complementary characteristics: reproducibility

and generalization. The former requires the existence of well-defined

procedures that allow repeating the benchmark in the same environment,

possibly by a different team, and obtaining statistically equivalent results.

The latter consists of the ability to generalize the experimental results

through some kind of inductive and logical reasoning, making the results

useful and meaningful in broader context than the one used in the

experimental setup.

Reproducibility is sometimes referred as normalization and

encompasses the ability to reproduce the observations and the

measurements, either in a deterministic or in a statistical way, providing

confidence in the experimental results.

Unfortunately, the reproducibility and the generalization are, in

practice, very difficult to attain. The lack of portability of the tools used in

the experiments, together with the difficulty to reproduce the experimental

conditions, limits the reproduction of the results to a merely statistical

68 Dependability Benchmarking of Software Systems

basis. On the other hand, the absence of the necessary representativeness of

the experiments can also prevent the desired level of generalization.

Representativeness concerns the ability of a dependability

benchmark, its measures and experimental conditions, to represent real

world scenarios in a realistic way. It determines the validity and the

usefulness of the benchmark results. Representativeness concerns not only

the statistical perspective of the results, but also the representativeness of

almost all elements of the benchmark. For example, it is of crucial

importance regarding the techniques used for fault injection, since it is

fundamental to guarantee that the injected faults do represent the real

faults experienced in the field. However, that is not an easy task. Several

studies on fault representativeness, accuracy and equivalence of fault

injection techniques [Daran et al. 1996, Folkesson et al. 1998, Madeira et al.

2000] showed that not all injection techniques can accurately emulate all

types of faults.

The representativeness issue also assumes a special importance for

the workload and faultload components of the benchmark. Concerning the

workload, it is essential that execution profile simulates the activities found

in real systems. Regarding the faultload, it must be ensured that the

injected faults do represent real faults that may affect the systems in the

field. However, unlike the definition of adequate workloads, which is an

already resolved issue, with large use in performance benchmarks, the

definition of representative faultloads is still an open issue. In fact, it is one

of the most critical and difficult tasks in a dependability benchmark

definition.

Random fault distributions based on the size of the physical devices

have been commonly accepted and used for the injection of hardware

transient faults. However more sophisticated distributions are necessary for

the injection of software faults. In fact, regarding software faults, the

representativeness of the faultload is a special and central property, as the

injected faults should represent realistic faults experienced in the field

Dependability Benchmarking of Software Systems 69

[Vieira et al. 2003, Durães et al. 2004a], i.e., software faults that escape the usual

software testing phases of software development process and still persist in

the system. Only a faultload that is representative of these residual

software faults can assure an accurate evaluation of dependability

attributes, seen as measures, and an efficient validation of the fault tolerant

mechanisms. Unfortunately, the representativeness of software faultloads

is very difficult to attain. Information about real software faults found in

field is fundamental to understand software faults and help in the

characterization of significant fault attributes, such as fault locations and

types, as well as their respective frequency of occurrence. However, field

data and research works concerning software faults are rare and only in

recent years they have been the focus of attention of researchers [Gray 1990,

Lee et al. 1995, Chillarege et al. 1995, Christmansson et al. 1996a, Madeira et al.

2000, Durães et al. 2006, Moraes et al. 2006a, Basso et al. 2009, Sanches et al. 2011,

Natella et al. 2013].

The gathering and study of software faults have been widely used for

the analysis and improvement of the software development and

maintenance processes – the main goal of leading software quality

standards and frameworks, such as the Capability Maturity Model

Integrated (CMMI) [Chrissis et al. 2003].

A uniform approach for the classification of software anomalies is

provided in the IEEE Standard Classification for Software Anomalies [IEEE

1994], which was further revised in 2010 [IEEE 2010]. This standard, sponsored

by the Software & Systems Engineering Standards Committee of the IEEE

Computer Society, states that software anomalies, seen as problems or

defects, may be found during any stage of the software development life

cycle (review, test, analysis, compilation, use of software products, use of

documentation, etc.) In its initial version [IEEE 1994], the standard presents

a comprehensive categorization of the potential defects into a set of defect

types: logic problem, computation problem, interface/timing problem, data

handling problem, data problem, documentation problem, document

70 Dependability Benchmarking of Software Systems

quality problem, and enhancement. The finite nature and the specificity of

the categories considered in this classification forced a redefinition of the

standard. The latest version of the standard [IEEE 2010] replaced the list of

defect types by a set of defect and failure attributes (Table 3-1 and Table

3-2, respectively), aimed to help the identification and tracking of software

anomalies and to improve the software development process.

A significant contribution on collecting and analyzing observed

software faults is presented in [Chillarege et al. 1992, Chillarege 1996]. This

work presents the Orthogonal Defect Classification (ODC), a classification

framework for the classification of software faults (i.e., defects) into

mutually exclusive classes, in which signatures are extracted from defects

that occur through development and field use, in order to improve the

software product and the software development process. The usefulness of

the ODC methodology in providing this feedback was confirmed by

several pilot projects [Chillarege et al. 1992].

Though the intended primary goal of ODC is to provide a feedback

on to the software development process at IBM, it ends up to be a useful

defect classification regarding the problem of software fault emulation by

fault injection. ODC is based on the previous observation that there is a

case-effect relationship between the semantics of the software defects and

the activities of the software development process [Chillarege et al. 1991].

According to ODC, a software fault is classified based on the modification

that is necessary to undertake in the code in order to correct the defect. It is

worth noting that this classification considers that mistakes may occur in

every stage of the software development process (specification, design,

coding, testing, documentation, etc.). Table 3-3 shows the ODC defect types

directly related to code, and, therefore, relevant to the present work.

Besides this fault classification has been built and used for the

improvement of the software designing process at IBM, it also constitutes a

central basis to understand and classify software faults from the injection

point of view.

Dependability Benchmarking of Software Systems 71

Attribute Definition

Defect ID Unique identifier for the defect.

Description Description of what is missing, wrong, or unnecessary.

Status Current state within defect report life cycle.

Asset
The software asset (product, component, module, etc.)
containing the defect.

Artifact The specific software work product containing the defect.

Version detected
Identification of the software version in which the defect was
detected.

Version corrected
Identification of the software version in which the defect was
corrected.

Priority
Ranking for processing assigned by the organization
responsible for the evaluation, resolution, and closure of the
defect relative to other reported defects.

Severity
The highest failure impact that the defect could (or did)
cause, as determined by (from the perspective of) the
organization responsible for software engineering.

Probability Probability of recurring failure caused by this defect.

Effect
The class of requirement that is impacted by a failure caused
by a defect.

Type
A categorization based on the class of code within which the
defect is found or the work product within which the defect
is found.

Mode
A categorization based on whether the defect is due to
incorrect implementation or representation, the addition of
something that is not needed, or an omission.

Insertion activity
The activity during which the defect was injected/inserted
(i.e., during which the artifact containing the defect
originated).

Detection activity
The activity during which the defect was detected (i.e.,
inspection or testing).

Failure
reference(s)

Identifier of the failure(s) caused by the defect.

Change reference
Identifier of the corrective change request initiated to correct
the defect.

Disposition Final disposition of defect report upon closure.

Table 3-1 –Defect attributes [IEEE 2010].

72 Dependability Benchmarking of Software Systems

Attribute Definition

Failure ID Unique identifier for the failure.

Status Current state within failure report life cycle. See Table B.1.

Title
Brief description of the failure for summary reporting
purposes.

Description
Full description of the anomalous behavior and the conditions
under which it occurred, including the sequence of events
and/or user actions that preceded the failure.

Environment
Identification of the operating environment in which the
failure was observed.

Configuration
Configuration details including relevant product and version
identifiers.

Severity
As determined by (from the perspective of) the organization
responsible for software engineering. See Table B.1.

Analysis
Final results of causal analysis on conclusion of failure
investigation.

Disposition Final disposition of the failure report. See Table B.1.

Observed by
Person who observed the failure (and from whom additional
detail can be obtained).

Opened by Person who opened (submitted) the failure report.

Assigned to
Person or organization assigned to investigate the cause of the
failure.

Closed by Person who closed the failure report.

Date observed Date/time the failure was observed.

Date opened Date/time the failure report is opened (submitted).

Date closed
Date/time the failure report is closed and the final disposition
is assigned.

Test reference
Identification of the specific test being conducted (if any) when
the failure occurred.

Incident
reference

Identification of the associated incident if the failure report
was precipitated by a service desk or help desk call/contact.

Defect reference
Identification of the defect asserted to be the cause of the
failure.

Failure reference Identification of a related failure report.

Table 3-2 – Failure attributes [IEEE 2010].

Dependability Benchmarking of Software Systems 73

The characteristics of the ODC classification, namely the fact that the

considered classes are unambiguously close to the code and to the

programmer, showed to be fundamental to a new perspective on the

problem of the accurate emulation of software faults by fault injection. This

problematic, fundamental in dependability benchmarks of software

systems, was first addressed in [Christmansson et al. 1996a]. The study

proposes a framework for the generation of errors that emulate real

software faults, based on field data of the system under analysis, about

discovered software faults that have been classified using ODC. Despite the

innovative character of this work, its interest is, in practice, strongly

restricted by the existence of field data on real software faults found in the

target system, which makes the technique very difficult, or even

impossible, to apply in practice.

Defect type Description

Assignment Value(s) assigned incorrectly or not assigned at all

Checking
Missing or incorrect validation of data or incorrect
loop or conditional statements

Interface

Errors in the interaction among components,
modules, device drivers, call statements, or
parameters lists

Timing/Serialization Missing or incorrect serialization of shared resources

Algorithm

Missing or Incorrect implementation that can be fixed
by (re)implementing an algorithm or data structure
without the need for requesting a design change

Function

Affects a sizeable amount of code and refers to the
capability that is either implemented incorrectly or
not implemented at all

Table 3-3 – ODC defect types.

74 Dependability Benchmarking of Software Systems

A subsequent study [Madeira et al. 2000] also showed that typical

SWIFI tools were not adequate for the emulation of software faults through

the use of error patterns like the ones proposed in [Christmansson et al.

1996a], as only some types of those error patterns could be injected. One of

the reasons relies on the fact that, in its genesis, the ODC classification does

not take in account the fault emulation point of view, regardless the fact

that the considered classes are unambiguously close to the code and to the

programmer, once they are based on the correction of the software defects.

With the aim bridging this gap, an ODC classification extension, built

under the fault emulation perspective, is presented in [Durães et al. 2003b,

Durães et al. 2006]. This proposal resulted from an exhaustive field study of

real software bugs found in well-known open source software written in

the C language (including user applications and system code) and is based

on the observation that a software defect consists of one or more missing,

wrong or superfluous programming language constructs (such as program

statements, functions, expressions, etc.). Accordingly, this study classifies

each one of the ODC defect types into three new additional types,

according to the corresponding erroneous program construct: Missing

construct, Wrong construct or Extraneous construct. Table 3-4 shows the

extended ODC classification, with concrete examples of each class of defect

types, as well as the corresponding percentage of faults found in the field.

It should be noticed that, as the analyzed field data does not include any

information about the timing or serialization properties, the

Timing/Serialization defect type was not considered.

It is worth pointing out that both of the distributions, the one

presented in [Durães et al. 2003b, Durães et al. 2006] and that presented in

[Christmansson et al. 1996a], follow the same trend in the fault distribution

across the ODC fault types (see Table 3-5).

Dependability Benchmarking of Software Systems 75

Defect type Nature Examples of code mistake
% of

Faults

Assignment

Missing
A variable was not assigned a value, a
variable was not initialized, etc.

9.3%

Wrong
A wrong value (or expression result, etc.)
was assigned to a variable

10.5%

Extraneous

A variable should not have been subject of
an assignment (value, expression result
etc.)

1.6%

Checking

Missing
An “if” construct is missing, part of a
logical condition is missing, etc.

16.9%

Wrong
Wrong “if” condition, wrong iteration
condition, etc.

7.9%

Extraneous
An "if" condition is superfluous and
should not be present

0.1%

Interface

Missing

A parameter in a function call was
missing; incomplete expression was used
as parameter

1.6%

Wrong
Wrong information was passed to a
function call (value, expression result etc.)

5,7%

Extraneous
Surplus data is passed to a function (e.g.
one parameter too many in function call)

0.0%

Algorithm

Missing
Some part of the algorithm is missing (e.g.
function call, an iteration construct, etc.)

33.2%

Wrong Algorithm is wrongly coded or ill-formed 6.0%

Extraneous
The algorithm has surplus steps or a
unnecessary function is called

0.9%

Function

Missing New program modules were required 3.1%

Wrong
The code structure has to be redefined to
correct functionality

3.0%

Extraneous
Portions of code were completely
superfluous

0.0%

Table 3-4 – Fault nature totals across ODC types [Durães et al. 2006].

76 Dependability Benchmarking of Software Systems

In fact, it can be observed from Table 3-5 that, for both

distributions: Algorithm defects are the dominant fault type; Assignment

and Checking defects have similar frequency; and the Interface and

Function defects are clearly the less frequent type of faults found in field,

according to both works. Moreover, both works show similar values for all

ODC types.

ODC Defect type
ODC Defect type distribution

[Durães et al. 2006] [Christmansson et al. 1996a]

Assignment 21.98% 21.4%

Checking 17.48% 24.9%

Interface 8.17% 1.6%

Algorithm 43.41% 40.1%

Function 8.74% 6.1%

Table 3-5 – Comparison of Fault distribution across ODC defect types.

The independency of both research works and the fact that they

analyzed quite different program types, suggest that this fault distribution

is reasonably independent from the nature of the program and, thus, it

seems to confirm the representativeness of the respective software defects

distribution for programs in general.

The work presented in [Durães et al. 2006] used the new classification

scheme to classify 668 faults from the field, through the analysis of 12

widely deployed software systems. Results show that most of the software

faults found belong to a small set of fault types, and that the remaining

fault types encompass a small number of faults. Table 3-6 presents the most

common set of fault types found. It is worth noting that this set of fault

types represent a total of approximately 68% of all faults collected in field.

The study shows that these types of software faults can be considered

representative of the most common types of software faults and,

Dependability Benchmarking of Software Systems 77

consequently, they should be considered in software faults emulation

experiments. The paper [Durães et al. 2006] argues that, although other

fault types may occur in the field with the analysis of more field data on

real software faults, they are probably very rare, since they were not found

among the analyzed faults. Moreover, they would not change the analysis

of the most frequent types.

The research work carried out in [Durães et al. 2006] presents

important results towards the characterization of software faults. The

proposed methodology allows a greater adaptability to software fault

injection, as it contains clear indications of how to manipulate the target

program code in order to inject a fault. In fact, it also proposes a library of

fault emulation operators for software fault injection, as explained in

section 2.4.4. These operators guide the mutation of the ready-to-run binary

code of software modules in order to mimic real software faults,

reproducing the code that would be generated by the compiler if the

intended software faults were in the high-level source code. The technique,

named G-SWFIT, consists in the scanning of the target code application for

specific low-level instruction patterns (sequence of machine code

instructions) and in applying the mutation to emulate the intended

software fault. It is worth pointing out that, unlike [Christmansson et al.

1996a], this work presents a technique for the emulation of real software

faults, even when field data is not available for the target system, as it

usually happens for third-party software components.

Moreover, despite the full work was based on the C language, other

languages like C++ and Pascal were also analyzed in this study. Results

show that the considered fault types are not dependent on specific features

of the C language and only minor differences should exist in the fault

emulation operators. It should also be noticed that, as the G-SWFIT

operators reproduce faults that escape the traditional testing phases of

software development process, they only encompasses 12 software fault

types of the total of 71 mutation operators proposed in [Delamaro et al.

78 Dependability Benchmarking of Software Systems

1996] for the assessment of the exhaustiveness of test cases (regarding the C

language).

Fault Types

Faults

ODC Type

Ass. Chk. Int. Alg. Fun.

Missing

if construct plus statements 71

AND sub-expr in expression used as
branch condition

47

function call 46

if construct around statements 34

OR sub-expr in expression used as
branch condition

32

small and localized part of the
algorithm

23

variable assignment using an
expression

21

functionality 21

variable assignment using a value 20

if construct plus statements plus else
before statements

18

variable initialization 15

Wrong

logical expression used as branch
condition

22

algorithm - large modifications 20

value assigned to variable 16

arithmetic expression in parameter
of function call

14

data types or conversion used 12

variable used in parameter of
function call

11

Extraneous
variable assignment using another
variable

9

Total Faults for these types in each ODC type 452 93 135 25 192 41

Coverage relative to each ODC type (%) 68 65 81 51 72 100

Table 3-6 – Most common faults found in field for several software systems

[Durães et al. 2006].

Dependability Benchmarking of Software Systems 79

In order to extend this fault model to different high level languages,

with different programing paradigms, some subsequent studies were

presented. The works presented in [Basso et al. 2009, Sanches et al. 2011] use

the Java language to show that, when and object-oriented languages are

considered, the set of the most common software fault types presented in

Table 3-6 can be extended with new object-oriented fault types, according

to the Java language specific characteristics and the object-oriented

paradigm.

An approach for improving software fault representativeness and, at

the same time, reducing the size of the faultload produced by the G-SWFIT

technique is presented in [Natella et al. 2013]. This study analyzed the

representativeness of a large set of injected faults, representing the most

frequent software fault types (as summarized on Table 3-7) found in field

(according to [Durães et al. 2006]), with respect to its ability to escape actual

test suites adopted by software developers for detecting faults before

software release: the study argues that faults that are easily identified by

test suites should not be considered as representative.

Defect type Examples of code mistake

MFC Missing Function Call

MVIV Missing Variable Initialization using a Value

MVAV Missing Variable Assignment using a Value

MVAE Missing Variable Assignment using a an Expression

MIA Missing IF construct Around statements

MIFS Missing IF construct plus Statements

MIEB Missing IF construct plus statements plus Else Before statements

MLC Missing AND/OR clause in branch condition

MLPA Missing small and Localized part of the algorithm

WVAV Wrong Value Assigned to Variable

WPFV Wrong variable used in Parameter of Function call

WAEP Wrong Arithmetic Expression in Parameter of function call

Table 3-7 – Most frequent software fault types analyzed in [Natella et al. 2013].

80 Dependability Benchmarking of Software Systems

This work uses a fault injection tool called SAFE [SAFE] to inject the

most common software fault types found in field in three real world

software systems widely used in business and safety-critical contexts, for

which real test suites are available: the MySQL [MySQL] and PostgreSQL

[PostgreSQL] DBMS engines, and the kernel of the RTEMS Real-Time

Operating System [RTEMS, Rufino et al. 2007]. It is worth noting that the

software faults are injected in the source code, instead of the binary code,

through the production of a set of different faulty source code files, each

containing a specific software fault, as summarized in Figure 3-4. The fault

injection tool starts to statically analyze the target program and builds an

abstract representation of the source code, called an Abstract Syntax Tree,

responsible for guiding the identification of locations where a specific

software fault type can be introduced, according to the software fault

operators defined in [Durães et al. 2006]. Thereafter, the tool creates a set of

patch files, each one containing a different faulty, but syntactically correct,

version of the code, which is then compiled.

Figure 3-4 – Process for generating faulty versions of the target system

[Natella et al. 2013].

The experimental setup used in this study is presented in Figure 3-5.

In each experiment the system under test is replaced with a faulty version,

in which the Test Manager executes a test case and collects the test result.

In order to analyze which faults can be considered representative, i.e.

software faults that escape to test suites, each one of the generated faulty

versions of the code was run against 50 test cases, randomly chosen for

each software system.

C pre-
processor

C/C++
frontend

C/C++

Source Files

+

6 3

2

+

Abstract

Syntax Tree

Fault
Injector

Patch Files

(one fault per patch)

int main() {

 if (a && b)

 { c++; }

}

Dependability Benchmarking of Software Systems 81

Figure 3-5 – Experimental setup used in [Natella et al. 2013].

The conducted experiments show that a significant part of the

injected faults is detected by most of the test cases and, consequently, the

study argues that they should not be considered as representative: 14.57%

and 23.13% for the MySQL and PostgreSQL DBMSs, respectively, and

72.23% for the RTEMS.

This work also states that there is a relationship between fault

representativeness and fault locations, and shows that fault

representativeness can be improved with the use of classification

algorithms and software metrics for the selection of a subset of components

suitable for the injection of representative software faults. Both a

supervised (decision trees) and an unsupervised algorithm (Lloyd k-means

clustering) were evaluated for the improvement of the faultload

representativeness and a set of software metrics commonly used by

Test Controller System Under Test

Test Manager

Test case Test result

(pass/fail)

1. The system

is replaced with

a faulty version

3. Result is recorded

2. A test case

is executed

4. The experiments are

iterated over all the test

cases and faulty versions

Fault

82 Dependability Benchmarking of Software Systems

researchers and practitioners was used for analyzing software complexity:

Lines of Code, McCabe’s Cyclomatic complexity and FanIn/FanOut6.

This study concludes that the faultload can be improved, by

including a greater number of representative faults, using either the

supervised or the unsupervised algorithms (with an increase of 4.10% to

26.08% and of 2.16% to 16.24%, respectively). At the same time, the

proposed approach can reduce the faultload size of 30.30% to 69.43% for

the supervised algorithm, and of 22.16% to 59.13% for the unsupervised

one.

It should be noticed that the supervised classifier requires a training

set in order to classify unknown elements, which, in practice, reveals to be

a strong limitation, since it involves an extensive and time consuming

experimental analysis. In order to overcome this need (the main limitation

of the supervised algorithm), this study also presents an unsupervised

classifier, relying on the observation that suitable components have lowest

FanIn and FanOut values, as those components are less exposed to testing.

6 FanIn/FanOut are software complexity metrics based on system structure and information

flow, derived from the concept presented in [Henry et al. 1981]. FanIn represents the count

of unique components (functions or files) that call (or are called by, in the case of FanOut) a

given component, either directly, or indirectly (via other components).

Dependability Benchmarking of Software Systems 83

3.5 Summary

This chapter presented a conceptual framework for dependability

benchmarking. It also discussed the challenges and difficulties faced with

the dependability benchmarking of software systems, namely, concerning

the experimentation issues and the representativeness of software faults.

Relevant works in the area are also described in detail.

85

Chapter 4

4 Software Fault Injector

Previous chapters introduced the basic concepts of dependability and

presented the fault injection as a method for its evaluation. Special emphasis was

given to software fault injection and to dependability benchmarks, given its

remarkable importance to industry and end users.

This chapter is dedicated to the presentation of an innovative fault injector,

called DBench-FI, specially designed for dependability benchmarks and whose

unique characteristics make it the most flexible fault injector available. DBench-FI

constitutes a central tool in the present study.

4.1 Introduction

s mentioned in Chapter 3, reproducibility and the generalization

are two main properties of dependability benchmarks, which

support its indispensable acceptability, among other demanding

requirements. However, in practice, those two properties are very difficult

to attain, mainly due to the inexistence of especially adequate tools which

support the experiments. One of those crucial tools is the fault injector.

Dependability benchmarks must include fault injectors with very specific

A

86 Software Fault Injector

features: (i) they should be very easy to install and use, without the need

for any complex setup or installation procedure; (ii) have high level of

portability; (iii) have very low intrusiveness; (iv) be capable of injecting

faults in both user and system spaces; (v) and in code and data segments of

any process, irrespective of their complexity; (vi) be independent of the

availability of any source code of any system component or user process;

(vii) be dynamically linked into a target system; and (viii) be compatible

with the latest and most advanced software fault models.

Despite all the developments, none of the existing fault injection tools

(presented in section 2.4.3) satisfied these requirements, mostly because of

one or more of the following reasons:

 The overhead caused by the fault injector is too high;

 Only user space could be targeted;

 The fault injector requires the availability of any system

component or user process (usually, the source code of the target

application);

 A special debug mode imposing a particularly launch mode is

required;

 Complex installation procedures are required.

In order to fulfill the mentioned requirements, a new version of the

DBench-FI fault injector, primarily presented in [Costa et al. 2003], was

developed. In addition to all the other characteristics that makes this SWIFI

tool special adequate for dependability benchmarking, DBench-FI is now

fully compatible with the Generic Software Fault Injection Technique

(G-SWFIT), the state-of-the-art in software faults model [Durães et al. 2006].

Despite this new capability, this new version of DBench-FI still maintains

its initial characteristics. Namely, it still does not require any special

installation procedure, contrasting with the majority of the existing SWIFI

tools, like for instance Xception [Carreira et al. 1998b] (which requires some

Software Fault Injector 87

changes to kernel that have to be done offline). With DBench-FI everything

is done on-the-fly.

It is worth noting that the main idea that supports the initial

development of this fault injector was the creation of a conceptual model

and an experimental environment for dependability benchmarks (the main

goal of Project DBench [DBENCH], project in which it was developed), and

the observation of the inexistence of a fault injector compatible with its

integration. Therefore, the first version of the DBench-FI fault injector,

presented in [Costa et al. 2003], uses a very simple error model - it just

changes the value of memory locations (data segment) of user applications.

This simple error model was deemed sufficient to demonstrate its ability to

inject faults, and appropriate for the first versions of the benchmarks,

particularly if the target areas for injection are carefully chosen, as was

done in the experiments reported in the mentioned study.

The new version of DBench-FI, supporting more complex fault

models like G-SWFIT, was already tested and used in the research work

presented in [Costa et al. 2009]. The current version targets the Linux OS on

32 bit Intel processors, and uses a flexible runtime kernel upgrading

algorithm to allow access to the target process memory space, that can be in

either user or system space, enabling in this way the injection of faults.

Presently DBench-FI is, to the best of our knowledge, one of the most

versatile fault injectors available.

The next section presents the architecture of the current version of

DBench-FI, showing the modules that constitute it and the way they

interact with each other and with the user. The implementation details are

also presented, as well as some characteristics of operating systems in

which relies the fault injector tool.

The methodology used, which forms the basis of the fault injector,

constitutes the main innovation comparing to the existing SWIFI tools,

being responsible for the unique characteristics presented by the fault

88 Software Fault Injector

injector. The DBench-FI enables a breakthrough in the areas of fault

injection and dependability benchmarking, opening new perspectives

hardly achievable with existing methods.

4.2 Fault Injector Architecture

The current version of DBench-FI consists of two modules, as shown

in Figure 4-1: a fault injector core module and a fault injector controller module.

Figure 4-1 – The DBench-FI fault injector architecture.

The core module, dynamically linked with the kernel, is responsible for

implementing the runtime kernel upgrading algorithm in order to add the

fault injection functionality to the system, independently of any debug

mode. The new kernel, incorporating this module, provides the user the

capability of injecting faults into any process (in either data or code

Operating

System

Kernel

Target

Application

Fault
Information

File

Log File

Log File

Output File

API

Fault Injector

Controller
(faultload

generator)

User

Fault Injector

Core Module

Software Fault Injector 89

segments) running on the target system, including those that are part of the

operating system itself. The user interface is given by the fault injector

controller module. It is worth noting that the integration of the fault injector

core module with the OS kernel enables the injection of faults in the system

space, in addition to the user space.

All the information necessary for the fault injection process, such as

the identification of the target process (through the process pid), the desired

fault model, the type of faults to be injected (for example, stuck-at-0,

stuck-at-1, bit-fip, etc.), the target address range, among others, are sent to

the core module through the fault injector controller module.

When integrated in a dependability benchmarking, the fault injector

controller module is responsible for providing the API to the Benchmark

Management System (BMS), becoming the faultload generator of the

system. The target system with these two modules (the fault injector core

module is integrated in the kernel) provides the user the ability to inject

faults in whatever process that is already in execution, including those that

are part of the OS itself.

It should be noticed that there is no restriction on the fact that both

modules have to reside on the same machine. They may be placed in

different machines, if necessary for a particular experiment.

4.3 Fault Injection Design and

Implementation

The fault injector has been implemented on an Intel Pentium IV

system running the Linux RedHat 7.3 (kernel version 2.4.18-3). It has also

been tested with Linux RedHat 9 (kernel version 2.4.20-8) and Ubuntu 10.04

(kernel version 2.6.32-31). The dynamic algorithm responsible for the

90 Software Fault Injector

linking of the fault injector with the OS kernel was implemented using

Linux Loadable kernel Modules (LKMs)7.

The DBench-FI fault injector is based on common characteristics and

concepts of modern preemptive multitasking operating systems, which

explains its high level of portability, not found in other SWIFI tools. For

reasons that are explained below, two mechanisms of modern operating

systems are of particular importance in the methodology used by

DBench-FI: the memory management mechanism, where any process

running on the system is viewed as having its own memory address space,

and the process management mechanism, responsible for the

implementation of the abstraction which consists on the existence of

multiple processes seemingly running simultaneously, even on systems

with a single processor. A thorough description of the components and

mechanisms of the Linux kernel are described in [Mauerer 2008, Kerrisk

2010, Love 2010].

7 Loadable Kernel Modules allow a running operating system kernel to be

dynamically extended, increasing its flexibility concerning the addition of new hardware

support or functionality. They are usually used by device drivers and filesystems. Currently,

most modern Unix-like operating systems, such as Solaris, Linux and FreeBSD use or support

LKMs.

Software Fault Injector 91

It is worth pointing out that, in Linux, like in all monolithic

architectures, the operating system functionality is concentrated within the

kernel. Regarding the architecture of the OS kernel, it should be noticed

that Linux is considered essentially monolithic8, as it is packed in a single,

large, binary image, which includes all its subsystems such as process

management, memory management, file systems, etc., and runs in a single

address space9. However, at the same time, the Linux kernel is also

modular, as it supports the dynamic insertion and removal of code from

itself at runtime, and thus compensating some of the known disadvantages

of the monolithic kernels10. As a consequence, Linux kernel is not

8 Despite the Linux kernel incorporates both monolithic and microkernel ideas, it was

originally developed according the monolithic paradigm in order to avoid the need to

develop a message passing mechanism and a module loading architecture, and accelerating

the achievement of a ready-to-run and fully operational OS [Maxwell 2002].

9 The great majority of commercial Unix variants are monolithic. Most notable

exceptions are the Carnegie-Mellon's Mach 3.0, as well as other Unix-like systems based on

this microkernel, such as the MAC OS X and the GNU Hurd operating systems, which follow

a microkernel approach [Bovet et al. 2005].

10 The supporters of monolithic kernels argue a greater efficiency and performance in

module communication, made through the direct call of functions (in kernel mode, in same

92 Software Fault Injector

considered a pure monolithic kernel, as it incorporates both monolithic and

microkernel ideas.

The kernel function responsible for deciding the next executable task

that will be dispatched to the CPU, known as schedule, assumes a special

role in the design of DBench-FI. The schedule function is called in the

following circumstances: (i) a task yields the processor; (ii) a task blocks in

an I/O operation; (iii) a task uses up its time slice (quantum); or (iv) a task is

address space), when comparing to the overhead caused by the necessary message-passing

mechanisms that must exist between the various processes of a microkernel. On the other

hand, microkernel supporters claim that they force system programmers to use “clean” and

modularized programming approaches, which leads to an improved ease of development of

new system modules. Other benefits of the microkernel architecture are the dynamic

extensibility of the kernel and the ability to swap kernel components at runtime, and,

consequently, a more efficient use of the system memory, since the modules are only loaded

when they are actually required. These characteristics support the increased flexibility,

portability and maintainability of microkernels design when compared to the monolithic

variants.

Software Fault Injector 93

preempted by another task (with higher priority11). Figure 4-2 gives a

common view of the Linux kernel architecture, focusing on the interaction

between applications, scheduler and hardware.

Concerning the design and implementation of DBench-FI, another

important characteristic is the Linux memory management system, which

is made-up to be architecture independent. As any modern multitasking

operating system, the Linux kernel provides memory protection

mechanisms (vital to the system stability), which prevent any attempt, on

behalf of a user process, of illegitimate access to a memory area that

belongs to another user process or to the kernel itself. Moreover, any user

process running on the target system is regarded as having its own virtual

11 Although the Linux kernel is preemptive (user mode processes may always be

interrupted), there are some kernel critical regions which cannot be preempted by the

scheduler until its execution ends. For this reason the Linux kernel is said to provide soft

real-time behavior (its kernel tries to schedule applications within timing deadlines,

although it may not always get it). Usually, fully preemptive kernels are associated with

hard real-time operating systems, since they ensure the compliance with very stringent

timing requirements for scheduling.

94 Software Fault Injector

memory address space12, which includes its code, data and stack areas. A

representation of a user process address space in Linux is shown in Figure

4-3. It is worth noting that the kernel is mapped in the address space of

every process, in the top area of its memory address space (from

TASK_SIZE13 to 232 or 264, in IA-32 systems or IA-64 systems, respectively).

12 Virtual memory is referred as the practice of lying to processes about the real

(physical) addresses at which they reside. To each user process is given the illusion that its

address space always starts at 0 and extends from there. It is worth noting that some purists

differentiate the concept of virtual memory from the notion of “disk-as-memory”. In fact,

although the virtual memory is usually associated with swapping and paging techniques, it

can be, in sensu stricto, differentiated from them (the latest techniques refer the OS ability of

blending primary and secondary storage, providing to processes the use all of its memory as

if it were always available): an OS can give each process a logical address space without

making any association between primary and secondary storage [Maxwell 2002].

13 In Linux, every user process has its own virtual address space ranging from 0 to

TASK_SIZE (an architecture specific constant defined as a kernel symbol, which represents

the maximum size that a user process can access in bytes, i.e., since the space address always

starts at 0, it assumes the maximum address that a user process can access+1). On IA-32

systems, for instance, the TASK_SIZE assumes the value of 3 GiB (i.e., 3 × 230 bytes).

Software Fault Injector 95

Figure 4-2 – The Linux operating system architecture.

Concerning the mapped regions, for a correct understanding of the

interconnection of the fault injector and the memory management functions

of the OS kernel, it is important to point out the most significant differences

that they have with each other. The code segment, referred as Process Code

in Figure 4-3, is write-protected and shared by all processes that execute the

code it contains. This represents a significant difference when compared to

the remaining areas (data and stack), which are private to each process and

where writing is allowed. Another fundamental distinction between the

code area and the data and stack areas relates to the fact that the first

cannot be dynamically reserved. In fact, a Linux user process can

dynamically allocate three types of memory: stack, heap and mmaped

pid pid pid pid

Processes

Tasks

User Mode

System mode

Hardware

Process

Stack

Unused

Memory

Process

Data

(Heap)

Process

Code

Kernel

Process

Stack

Unused

Memory

Process

Data

(Heap)

Process

Code

Kernel

Process

Stack

Unused

Memory

Process

Data

(Heap)

Process

Code

Kernel

Process

Stack

Unused

Memory

Process

Data

(Heap)

Process

Code

Kernel

Scheduler

96 Software Fault Injector

memory14. A thorough description of the components and mechanisms of

the Linux kernel are described in [Mauerer 2008, Kerrisk 2010, Love 2010].

As already mentioned, the DBench-FI was initially developed for the

purpose of injecting faults in the memory address space of a given process.

In its first version, presented in [Costa et al. 2003], it is possible to inject

stuck-at-0, stuck-at-1, and bit-flip type of faults in the data segment of any

user process (as well as on its stack area). Thereafter, it was added the

ability to inject faults in the code segment of any process, as well as the

possibility of the injected faults that assume a user defined value through a

fault information file, as depicted in Figure 4-1 – The DBench-FI fault

injector architecture. In the context of the software fault emulation, the

14 The range of valid virtual addresses of a process can change throughout its

lifetime, as the kernel allocates and deallocates memory according to its needs. A process

can allocate memory by increasing the size of the heap - raising the program break (the

current limit of the heap), through the use of the brk() and sbrk() system calls (upon which

the well-known malloc functions are based). A process can also create and free memory

mappings into its virtual address space, using the mmap() and munmap() system calls,

respectively. The process stack dynamically grows and shrinks as functions are called and

returned. Special process registers are used for this purpose, as explained later on this

chapter.

Software Fault Injector 97

possibility of using this new type of faults, together with the possibility of

targeting the code segment of any process, enables the use of more

representative fault models. In fact, these improvements provided the

compatibility of DBench-FI with the state-of-the-art in software faults

model – the mentioned G-SWFIT, presented in [Durães et al. 2006].

Figure 4-3 – The process virtual address space in IA-32 systems.

It is worth noting that, as expected, these latest enhancements did not

involve any change in the methodology or in the model of the fault injector.

It should be also emphasized that, in consequence of the possible share of

the code segment across multiple processes, the faults injected in that area

may affect the behavior of all processes which share that region.

Process Stack

Unused

Memory

Process Data

(Heap)

Process Code

0xBFFFFFFF

0x0000000

Program

break

Available for
mmap

Kernel

TASK_SIZE

2
32

0

Userspace

Kernel space

0xFFFFFFFF

98 Software Fault Injector

Concerning the design and implementation of DBench-FI, as one of

the goals of DBench-FI consists on injecting faults in the address space of

any process, including the operating system kernel itself, two different

solutions were initially considered, both based in a new process running in

kernel mode:

 The interception of the OS scheduler and the detection of the

target process in order to access its virtual address space. It is

worth noting that the virtual address space of a process is only

available when that same process is chosen by the schedule

function to use the CPU;

 Access the memory area of the target process through the lookup

of the corresponding page table entries used by the memory

management system of the OS. It is worth pointing out that the

OS kernel maintains a page table for each process, in order to map

the virtual addresses of a process to the corresponding physical

addresses.

Reasons of clarity, elegance and portability, justified the choice for the

interception of the OS scheduler (the first solution considered). In order to

detect the time when the target process was chosen to use the CPU, and its

virtual memory address space is available for the injection of faults, the

DBench-FI dynamically intercepts and changes the OS schedule function.

The required fault can then be injected.

In a first step, the address of the kernel schedule function is found, and

then redirected to a new function called new_schedule, responsible for both

the target process detection and the fault injection. The memory address

where the schedule function resides is determined through a search in the

Software Fault Injector 99

Linux file /proc/ksyms15, which contains a list of every symbol that is

exported by the OS kernel (known as kernel symbol table)16. This

methodology presents a higher degree of portability across different

versions and distributions of the Linux OS, when compared, for example,

with the memory pattern search algorithm used in the first version of the

fault injector [Costa et al. 2003]. However, this approach requires that the

used kernel supports LKMs, which are, however, also required for the

dynamic installation of the Fault Injector Core Module. Moreover,

considering the benefits of the dynamic extensibility of the kernel, typical

of the microkernel architectures, most of the current Linux kernels and

distributions are compiled with this option enabled, which is indeed

considered as default. It is important to mention that the used methodology

requires supervisor privileges, since both the accesses to the LKMs features

and to the /dev/ksyms file demands it for security reasons.

15 The Linux file /proc/ksyms is created on-the-fly when the kernel boots up. For Linux

kernels version 2.6, and above, the /proc/ksyms file was replaced by /proc/kallsyms.

16 The file /boot/system.map could also be used for this purpose, since it contains all

symbols used by the kernel. However, this file is usually used for debugging purposes and,

sometimes, it is not available (as it is not required for the OS booting process).

100 Software Fault Injector

The procedure used by DBench-FI is illustrated in Figure 4-4 and

consists of the following steps:

1) Determine the runtime address of the schedule kernel function on

the OS kernel symbols table;

2) Copy the first nine bytes of the kernel schedule function

(represented by instructions A, B and C in Figure 4-4) to a new

function called saved_instructions;

3) Generate a jump instruction with the runtime address of the

new_schedule function (where the target process detection and the

fault injection will take place) and overwrite the first bytes of

schedule code with the generated jump instruction;

4) Create a jump instruction in order to execute the saved nine bytes

of the kernel schedule function (saved in step (2) to

saved_instructions) after the execution of new_schedule;

5) Create a jump instruction in order to execute the rest of the

original schedule function code (from the 10th byte forward of the

original schedule function).

It should be noticed that, considering the methodology used by the

fault injector, as well as the implementation of the new_schedule function in

a high level language (C language), it is fundamental to restore the stack

after the identification of the target process and before the jump (step 4) to

the original schedule instructions (saved in saved_instructions). Such need is

justified for the following two reasons:

1. The compiler, according to the calling conventions, automatically

creates a prologue and an epilogue, which allows the use of the

stack for passing data between the caller code and the called

subprogram;

Software Fault Injector 101

2. The function new_schedule is finished with a jump to

saved_instructions (step 4) instead of using the conventional

epilogue17.

It should also be noticed that when the fault injector kernel module is

loaded, the policy and the main algorithm of the original operating system

scheduler remains the same. Additionally, when it is unloaded or removed,

the redirections that were made are undone and the scheduler becomes

exactly the original.

Concerning the intrusiveness, it is important to enhance that when

the fault injector is loaded but no faults are injected, the performance

penalty corresponds to ten machine assembly instructions that were added

in order to intercept and redirect the scheduler. This fact guarantees a very

low and totally negligible intrusiveness, considering the current processors.

17 The x86 family processors have two general-purpose registers in order to

manipulate data on the stack: the ESP and the EBP. While the first register points to the top

of the stack, the second is used to reference data on the stack. At the end of a subprogram,

the original values of the registers are restored (they are previously saved at the start of the

subprogram). Detailed information about the stack and the calling conventions are

presented in [Carter 2006]

102 Software Fault Injector

Figure 4-4 – The DBench-FI fault injector methodology.

4.4 Using the DBench-FI

The DBench-FI fault injector consists of two main files: dbfi_drv.o and

dbfi_controller, corresponding to the Fault Injector Core Module and to the

Fault Injection Controller, respectively. The use of the Dbench-FI fault

injector involves two steps:

1. Loading the Fault Injector Core Module using the facilities provided

by the LKMs;

.

.

.

schedule

new_schedule

jmp new_schedule

Instruction D

Instruction A

Instruction B

Instruction C

 jmp saved_instructions

jmp sched_Instr_D

if PID = Target PID
Inject Faults

Restore stack

saved_instructions

(2)

(1)

(3)

(4)

(5)

Software Fault Injector 103

2. Executing the Fault Injection Controller, providing the required

parameters for the fault injection campaign through a command

line with the following syntax:

dbfi_controller [{target_pid start_addr end_addr

nbytes init_t reg_t maxfi type | –f filename

| -gswfit filename fi_num}]

The command dbfi_controller can be executed by itself, without any

argument. Thereby, all the fault injection parameters will be provided in an

interactive way.

Though, the fault injection parameters can also be specified in the

command line, through arguments, using the syntax:

dbfi_controller target_pid start_addr end_addr

nbytes init_t reg_t maxfi type

The command arguments are explained below:

 target_pid: Identifier (pid) of the target process. Zero indicates that

the fault will be injected in the kernel address space – one of the

mentioned requirements;

 start_addr: Initial address (virtual) of a contiguous memory block

that will be a potential target of fault injection. It should belong to

the set of virtual addresses actually used by the target process

(indicated in target_pid). Otherwise, in the case of any of these

memory addresses actually be the target of fault injection (see the

explanation of nbytes bellow), an appropriate error message will

be sent to the user, referring that the address is not in use by the

specified process;

104 Software Fault Injector

 end_addr: End address (virtual) of a contiguous memory block

that will be a potentially target of fault injection. As in the

previous case, it should belong to the set of virtual addresses

actually used by the target process (indicated in target_pid).

Otherwise, an appropriate message will be sent to the user, as

explained for start_addr;

 nbytes: Number of bytes, within the specified memory block (from

start_addr to end_addr), that will be actually targeted by the fault

injection campaign. Zero indicates that the entire block will be

actually targeted, i.e., from start_addr to end_addr. If the value

specified is less that the number of bytes of the memory block

defined by start_addr and end_addr, a random location of

contiguous nbytes within that memory block will be used as the

actual target;

 init_t: Time, in seconds, that will elapse before the first fault

injection take place;

 reg_t: The frequency of fault injection, in seconds. Zero indicates

the use of temporal random fault injection triggers. A value of 𝑛,

other than zero, indicates an interval of 𝑛 seconds between fault

injections;

 maxfi: Maximum number of fault injections;

 type: Type of faults that will be injected in the virtual address

space of the target process. Values of 0, 1 or bf, indicate stuck-at-0,

stuck-at-1, and bit-flip, respectively.

Concerning the fault triggers used by the DBench-FI, considering the

options provided by the Fault Injection Controller, and more specifically,

thought its init_t and reg_t arguments, the activation of the fault injection is

based on temporal trigger conditions. This fact ensures the independence of

the injected faults with respect to any specific activity of the target

Software Fault Injector 105

application. Related to temporal fault triggers, two options are available in

this implementation: a fault is injected once after a given time is elapsed

since the application starts (using the init_t parameter), or a fault is

repeatedly injected with a certain frequency (using the reg_t parameter

with nonzero value). Temporal triggers that are randomly chosen (enabled

with reg_t equal to zero) are particularly adequate to benchmarking, as they

enable statistically significant results to be obtained. This way, regarding

trigger conditions, two options are available:

1. The fault is injected only once (with maxfi equal to one), after a

certain time, in seconds, set by the user thorugh the argument

init_t;

2. The fault is injected repeatedly, after a given initial time (in init_t),

in a certain frequency, random or user specified (with reg_t equal

to zero or given it a nonzero value, respectively).

The parameters used for the definition of the fault injection campaign

can also be specified in a text file (as showed in Figure 4-1) with the

following format (all the parameters must be in the order shown, separated

by space characters):

target_pid start_addr end_addr nbytes init_t reg_t maxfi type

In this case, the syntax should be

dbfi_controller –f filename

where filename is the name of the mentioned text file.

As explained, the current version of DBench-FI is also compatible

with the state-of-the-art G-SWFIT software faults model [Durães et al. 2006].

In order to use this feature, the following syntax should be used:

106 Software Fault Injector

dbfi_controller –gswfit filename fi_num

where filename is the name of a G-SWFIT format file containing the full set

of software faults that can be injected in a system and fi-num is the number

of the software fault that will actually be injected in the target system.

The identified file consists of a text file with one software fault per

line. The specification of each software fault consists on an asterisk

terminated string, with the corresponding fault injection parameters

separated by commas, according to the following format:

Type, Level, Arg3, Inj_Method, Addr, Nr_Bytes, Orig_Bytes, New_Bytes,

Comment1 # # Comment2 # … # Comment n #,*

The listed parameters have the following meaning:

 Type: Identifies the type of the software fault according the

G-SWFIT model [Durães et al. 2006]. It can assume values like

MIFS, MFC, MIA, etc.;

 Level: Concerning the level of depth of the G-SWFIT pattern

search in each target software component or module. Level zero

indicates that the pattern will only be performed directly on the

target code. Level one indicates that the pattern search will be

performed on the target code and on functions that are called by

them. And so on. It is worth pointing out that level zero was used

for the purposes of the current work. Greater values would lead

to the repetition of some fault injection experiments and,

consequently, to a non-homogenous distribution of faults, which

will be inadequate in the context of this study;

 Arg3: Used for compatibility with the G-SWFIT faultload output

file format. It represents the number of contiguous blocks of bytes

Software Fault Injector 107

that would be changed by fault injection. According to the

G-SWFIT methodology it should be equal to one;

 Inj_Method: Used for compatibility with the G-SWFIT faultload

file format. Regarding the G-SWFIT model it should be set to

SUBS (indicating that a block of bytes will be substituted by

another, according to the low-level code mutations defined by the

set of operators of the G-SWFIT methodology);

 Addr: The start address (hexadecimal) of the block of bytes that

will be the target of the low-level code mutation for the emulation

of the software fault according to the G-SWFIT methodology;

 Nr_Bytes: The number of bytes of the block that will be the target

of the low-level code mutation for the emulation of the software

fault, according to the G-SWFIT methodology;

 Orig_Bytes: The original bytes (hexadecimal) of the target that will

mutated using the set of low-level operators for software fault

emulation, according to the G-SWFIT methodology;

 New_Bytes: The new bytes (hexadecimal) that will be injected in

the block defined by Addr and Nr_Bytes, according to the

low-level operators of the G-SWFIT methodology.

The last section of the line, between the last pair of commas, is

intended for posting comments, which are useful to increase human

readability. In that section, each comment should be inserted between a

pair of hash characters. The following line shows an example of a real

G-SWFIT software fault specification:

MIFS,0,1,SUBS,c0106ed0,2,7402,EB02,# je c0106ed4 # # MIFS c0106e60

<machine_real_restart_R3da1b07a>) #,*

108 Software Fault Injector

In this case, a MIFS (missing if statement) is emulated at address

0xc0106ed0, substituting the bytes 7402 by EB02. The comments indicate

that the original machine code instruction is je c0106ed4 located at function

machine_real_restart, whose start address lies on 0xc0106e60.

However, for an additional simplification of the process of installing

and using the fault injector, it was created a script called DBenchFI. It is

responsible for the loading and removal of the Fault Injector Core Module

and the execution of the Fault Injection Controller, plus offering the

possibility of identification of the target process by name and user to which

it belongs. The syntax used is as follows:

DBenchFI [{-n|-p}] target_proc [-u user_id]

start_addr end_addr nbytes init_t reg_t maxfi

type

DBenchFI –f filename

DBenchFI -gswfit filename fi_num

DBenchFI -e

The options and arguments of the script DBenchFI have the following

meaning:

-n The identification of the target process is done through the

process name. That is, target_proc indicates the name of the target

process.

-p The identification of the target process is done through the

process pid, given in target_proc (default option).

-u Indicates that the target process belongs to the user

mentioned in user_id. It is useful for resolving the ambiguity caused by

Software Fault Injector 109

the existence of multiple users running the same process target. In the

case that there is no univocal correspondence between target_proc and a

particular target process, even after the specification of the user through

user_id, the oldest process will be chosen (using the process creation date

to resolve the ambiguity).

-e Used for removing the Fault Injector Core Module.

All the remaining arguments have direct correspondence with their

homonymous for the Fault Injector Core Module, dbfi_controller, and have the

same mentioned meaning.

4.5 Advantages

The methodology used in the design of DBench-FI confers it a

number of important advantages (compared to the other existing fault

injectors) regarding its inclusion in a dependability benchmark. Since the

methodology it relies on is based on the interception the OS kernel

scheduler and its redirection to a function that is within the kernel itself,

DBench-FI is appropriate for the injection of faults into any system memory

address, including the kernel memory segment. This capability makes this

fault injector suitable to analyze the kernel robustness under faults, and

represents a huge advantage comparatively to the ptrace-based SWIFI tools.

Another important benefit relatively to the fault injectors based on the

ptrace mechanism is that DBench-FI can inject faults into any running target

application without having to load it explicitly or using any special

procedure to execute it. It is worth noting that the fault injectors based on

this function, like in any other debug tool, only allows the injection of faults

in the user segment of target processes that they can explicitly launch. That

is, DBench-FI allows the fault injection in processes that are already

running when the fault injector is installed, regardless of the complexity of

110 Software Fault Injector

the application they are part of. This is an essential requirement to analyze

the dependability of complex systems like DBMSs and web-servers.

An important issue with SWIFI tools is their portability to other

systems and processors. The proposed methodology can be, with some

minor changes, adapted to almost any operating system and processor. A

further advantage is the simplicity and ease of use of DBench-FI, since it

does not require any special procedure. In particular, there is no need to

recompile the kernel or the target application, nor the knowledge of the

source code of any of them. Concerning intrusiveness, the presented

methodology provides the fault injector a negligible disturbance factor on

the target system.

The compatibility of DBench-FI with the G-SWFIT technique [Durães

et al. 2006] is an important characteristic of this fault injector. This fact

represents a major advantage when compared to other existing SWIFI tools,

as, like stated in [Madeira et al. 2000, Jarboui et al. 2002], this kind of tools are

not an obvious choice for the emulation of software faults.

4.6 Limitations

The main limitation of DBench-FI, besides the general SWIFI

limitations described in section 2.4.2, is the limited set of fault models

supported. This is not a limitation of the technique itself, but just of the

current implementation, as the compatibility with the G-SWFIT model was

considered more important for dependability benchmarking. However, if

necessary, DBench-FI can easily be extended with the majority of the

existing fault models of Xception [Carreira et al. 1998b], such as spatial fault

triggers and the capability to inject faults in processor resources.

Another obvious limitation of the presented technique is the fact that

supervisor level privileges are required to install and use the fault injection

Software Fault Injector 111

tool, as operating system security rules understandably prevent user level

processes from modifying the kernel.

It is worth to pointing out that, beyond the intrinsic restrictions that

applies to the SWIFI tools, no other limitation is related to the used

methodology, but rather with the current implementation of the fault

injector.

4.7 Summary

Despite all the developments in the area of software fault injection,

none of the existing SWIFI tools has characteristics compatible with the

creation of a dependability benchmark.

This chapter presented a pioneering SWIFI tool, named DBench-FI,

whose innovative features allow its use in dependably benchmarks. Its

architecture and implementation details are also described, as happens to

some features of operating systems and processors in which its

development is based. Their unique characteristics make it one of the most

versatile fault injectors available and a central tool for the study presented

in this thesis.

The current version of DBench-FI is adequate for the injection of

hardware faults (intermittent and transient faults) into the systems

memory, as well as for software faults, according to the G-SWFIT model.

113

Chapter 5

5 Software Faultload for Large and
Complex Systems

This chapter describes the problem of injecting realistic software faults in large and

complex systems and puts into perspective the still open problem of the faultload

size. It surveys the existing approaches that address this issue, discussing their

strengths and limitations. Finally, it presents and provides and early assessment of

an innovative experimental framework to define and evaluate different strategies

for the definition of compact and representative faultloads. In this context, different

hypothesis for the reduction of the number of software fault injection experiments

are defined and an evaluation method of the error induced by the corresponding

reduction is also presented. The proposed methodology is especially useful in large

and complex systems, where dependability benchmarks usually take several months

or even years due to its large faultload size.

5.1 Introduction

ne of the main goals of dependability benchmarks is to offer

practical and efficient methods to characterize the behavior of

components and systems and quantify dependability measures, O

114 Software Faultload for Large and Complex Systems

considering the computing effort, the number of experiments and the time

to run the benchmark.

Concerning software systems, most recent techniques such as

G-SWFIT, firstly presented in [Durães et al. 2003b], and later in [Durães et al.

2006], use a set of operators for software fault emulation through low-level

code mutations derived from an extensive collection of real software faults

found in field. Although this innovative proposal emulates and represents

real programming errors and application bugs, the sets of faults they

generate tends to have a huge size, as it obviously happens with the

resulting software faultload. This imposes a strong limitation to the

execution of dependability benchmarks in software systems, especially in

large and complex systems, where, in order to assure the necessary

representativeness, the execution time of those benchmarks can take

months or years due the mentioned faultload size. In fact, the great

majority of studies on representativeness of software faults, mentioned in

the previous chapter, just addressed the problem of finding realistic

software fault models and ignored the important problem of the faultload

size.

5.2 Fault distribution models

Despite some recent studies on software fault injection addressed the

problem of finding realistic fault models, the problem of how to distribute

the faults among different components in target systems have barely been

discussed. Some recent studies on software fault injection use exhaustive

fault coverage for small software components, injecting all the possible

software faults, yet the most representative types, [Durães et al. 2004a,

Durães et al. 2004b, Costa et al. 2009, Natella et al. 2013]. However, more

sophisticated fault distribution models are needed when dealing with large

components and systems, such as operating systems.

Software Faultload for Large and Complex Systems 115

Large components and systems induce huge size faultloads, due to

the vast number of possible software fault types and target locations, which

could make impractical the fault injection campaign. For example, the

software fault injection campaign carried out in the present work,

presented in chapter 6 (Experimental Evaluation of Faultload Reduction

Strategies), encompasses tens of thousands of software faults and resulted

in more than two years of fault injection experiments. That problem, one of

the currently most important issues in fault injection, and particularly in

the area of software faults, has been largely neglected in the literature.

Some exceptions are presented below.

A similar problem arose earlier in mutation testing, where the large

number of experiments, induced by the large number of mutants that need

to be compiled and executed against test cases, especially in large and

complex systems, soon became a barrier to the practical use of this

technique in identifying adequate test data. It is worth noting that,

although there is evidence on the use of the mutation testing technique in

increasingly larger programs, those empirical studies applied only a few

mutations operators [Jia et al. 2011]. In fact, in order to turn the mutation

testing into a practical testing technique, and reduce the high

computational cost of executing the huge number of mutants against a test

set, several studies only use a subset of the potential mutants for a given

program, representing a subset of all the possible faults, expecting that

these will be sufficient to simulate all faults.

Several approaches on the selection of a sufficient set of mutation

operators were presented. Traditional approaches target only a few simple

faults, constructed from several simple syntactical changes, which are close

to the correct version of the program. This theory is based on two empirical

principles first introduced by [DeMillo et al. 1978]: the Competent

Programmer Hypothesis, and the Coupling Effect. The first principle states

that programmers are competent and, consequently, they develop

programs that tend to be close to the correct versions, as a result of their

116 Software Faultload for Large and Complex Systems

multiple iterations through the software development process. On the other

hand, the Coupling Effect states that test cases able to detect mutated

programs differing from a correct one only by a simple error (fault), are so

sensitive that they also implicitly detect more complex errors. In other

words, it assumes a principle observed in real world programs, which

states that complex errors are coupled to simple errors.

Another simple technique for the reduction of the number of mutants

is the mutant sampling. It consists in the selection of randomly chosen

mutants from the entire set. Many empirical studies addressed this

approach, analyzing the appropriate random selection rate, and minimal

sample size, that should be used in order to maintain its usefulness

[DeMillo et al. 1988, Sahinoglu et al. 1990, King et al. 1991].

The reduction in the number of mutants through the reduction of the

applied number of mutation operators was firstly proposed as Constrained

Mutation, by [Mathur 1991]. The methodology consists in the reduction of

the mutation operators set by omitting those that generate most of the

mutants, since many of which may turn out to be redundant [Offutt et al.

1993, Offutt et al. 1996]18. Another type of selection strategy, based on test

effectiveness, is presented in [Wong et al. 1995].

18 In [Offutt et al. 1993, Offutt et al. 1996] the method was called Selective Mutation.

Software Faultload for Large and Complex Systems 117

In [Mresa et al. 1999] is used a heuristic based on scores and costs

assigned to each mutation operators to choose a subset of operators for use

in efficient selective mutation testing. This study takes into account both

the costs of the test set generation and of the detection of equivalent

mutants. The experiments carried out show that it is possible to reduce the

number of equivalent mutants while maintaining the effectiveness.

A guideline for the determination of a sufficient set of mutation

operators for C programs is presented in [Barbosa et al. 2001]. The results

show that set of operators can be reduced by about 65%, while maintaining

a mean mutation score of 99.6%.

The studies presented in [Namin et al. 2006, Namin et al. 2007, Namin

et al. 2008] use a statistical analysis procedure together with an associated

linear model that predicts mutation adequacy with high accuracy, to

address the problem of finding an adequate small set of mutation

operators. The results presented in [Namin et al. 2008] indicated the

identification of a subset of mutation operators that generates less than 8%

of the mutants generated by the full set, consisting in the highest rate of

reduction when compared to the other approaches.

A different approach to improve the testing effectiveness is proposed

in [Sridharan et al. 2010]. This work presents a Bayesian approach that

prioritizes mutation operators whose mutants are likely to remain “hard-

to-kill” by the existing test suites.

Regarding software fault injection, the use of a dependence analysis

approach to reduce the number of experiments necessary to test the

robustness of COTS is presented in [Moraes et al. 2005a]. This work extends

the one presented in [Moraes et al. 2004], where the idea of architecture

relevance for testing a COTS-based system was firstly presented. The

proposed strategy is based on chaining [Stafford et al. 1997] - a software

architecture dependence analysis technique aimed to reduce the portions of

a system architecture that must be analyzed for some purpose, such as

118 Software Faultload for Large and Complex Systems

testing or debugging. The approach is applied for testing a COTS database

component called Ozone [Ozone], an Object-Oriented Database

Management System (OODMS), executing the OO7 Benchmark Wisconsin

[Carey et al. 1993, Zyl et al. 2006], a well-known benchmark used to evaluate

OODBMS performance. This work concludes that the dependency analysis

was effective in helping the selection of the target classes.

The use of stratified sampling to reduce the amount of fault injections

needed to test the robustness of the system without losing the confidence in

the results is presented in [Moraes et al. 2005b]. Stratified sampling consists

of a sample technique for partitioning a population into subpopulations

called strata, by grouping elements with similar values for one or more

characteristics [Podgurski et al. 1993]. This work uses the Weighted Methods

per Class19 (WMC) [Chidamdber et al. 1991], to determine the strata. For the

mentioned purposes two different strata are considered in this study: one

for components with a WMC value greater than a pre-specified threshold

value, obtained in an experimental study with several real world classes

[Rosenberg et al. 2000], and the other for lower WMC values than the same

19 Weighted Methods per Class is an object oriented software complexity metric that consists on

the sum of the complexities of all methods defined in a class. It represents the complexity of

a class as a whole and can be used to indicate the level of time and effort required to

develop and maintain a particular class.

Software Faultload for Large and Complex Systems 119

threshold. Results show that the exclusive use of the WMC metric is

insufficient to choose the strata and other stratification criteria should be

used for robustness testing purposes.

A field data study on the use of software metrics to define

representative fault distributions for software fault injection experiments is

presented in [Moraes et al. 2006a]. The proposed methodology uses software

complexity metrics and logistic regression [Hosmer et al. 1989] to estimate

fault densities for each one of the modules of the target system and to

distribute the injected faults. Seven software complexity metrics are used in

this work: Lines of Code (LOC)20 (comment lines were not considered for

the current purposes), Cyclomatic Complexity21 [McCabe 1976], number of

function parameters, number of function return statements, Maximum

Nesting Depth22, Program Length23 and Vocabulary Size24 (the last two

20 Lines of Code is one of the earliest and easiest (and also controversial) measures of software

complexity. It consists on the count of the lines of the software’s source code.

21 Cyclomatic Complexity is a measure of module’s independent control paths based on the

mathematical graph theory. It is one of the most widely-accepted software complexity

metrics.

22 Maximum Nesting Depth measures the maximum indentation depth of module’s source

code (e.g., in C language measures how deep is the maximum { } nesting in the module)

120 Software Faultload for Large and Complex Systems

metrics are part of a broader suite of metrics known as Halstead’s Software

Science Metrics or Halstead Metrics [Halstead 1977], and more precisely,

represent two of the four equations needed to compute the Halstead’s

Programming Effort complexity measure). This study uses the G-SWFIT

technique [Durães et al. 2006] in order to scan the target system code and

identify all possible locations for the injection of each type of software

faults, identified as being representative of real software bugs found in

field. Table 5-1 shows the software fault types considered in the study

presented in [Moraes et al. 2006a]. The accuracy of the fault distribution

generated by proposed methodology was compared with real fault

distributions observed in field, which includes over more than 350 bug

reports available from open source software projects. The study concludes

that the used approach is consistent with field observations, for small and

medium size software modules. Regarding large and complex software

modules, the fault density observed in field data showed to be lower than

the estimated by the proposed methodology.

23 Program Length is the count of total number of operators and operands in a module.

24 Vocabulary Size is the count of total number of distinct operators and distinct operands in a

module.

Software Faultload for Large and Complex Systems 121

Defect type Examples of code mistake

Missing

variable initialization (MVIV)

variable assignment using a value (MVAV)

variable assignment using an expression (MVAE)

“if (cond)” surrounding statements (MIA)

“AND expr” in expression used as a branch condition (MLAC)

function call (MFC)

“if (cond) { statement(s) }” (MIFS)

“if (cond) statement(s) else” before statement(s) (MIEB)

small and localized part on the algorithm (MLPC)

functionality (MFCT)

Wrong

value assigned to variable (WVAV)

logical expression used as a branch condition (WLEC)

arithmetic expression in parameter of function call (WAEP)

variable used in parameter of function call (WPFV)

algorithm – large modification (WALL)

data types or conversion used (WSUT)

Extraneous variable assignment using another variable (EVAV)

Table 5-1 – Software fault types considered in [Moraes et al. 2006a].

Despite having a different purpose (to improve the

representativeness of the faultload generated by the G-SWFIT approach),

the research work presented in [Natella et al. 2013], as already mentioned,

also proposes a methodology to generate a smaller and refined faultload by

removing the faults that are not representative of residual faults.

122 Software Faultload for Large and Complex Systems

5.3 Experimental framework

A representative faultload must be one that contains faults that

represent the common programming bugs that escape the traditional

software testing phases and still persist in existent software products.

Although the faultload definition of that kind of faults had already been

proposed, based on fault operators derived from the most frequent

software fault types found in the field [Durães et al. 2006], the fault

locations aspects have been completely neglected and the choice of

adequate fault injection targets (i.e., actual software components where the

faults are injected) is still an open and crucial issue.

Given a particular software fault type, existing techniques, like

G-SWFIT, allow the injection of faults in every software module or routine

with a specific code pattern, emulating a particular type of software fault.

However, the common large number of possible target components for

fault injection leads to a huge number of possible software faults to be

injected. Additionally, considering the time of each experiment (typically,

the system should be restarted before injecting a new fault), one can easily

observe that, in practice, it is impossible to run and test all the fault

injection possibilities. This problem is even more obvious in large and

complex systems, where the execution time of those dependability

benchmarks can take several months or even years due the mentioned

faultload size.

One of the main goals of this work is to define a method to reduce the

number of software fault injection target locations and thus the number of

experiments needed to execute a dependability benchmark, without

restricting or limiting the accuracy and the representativeness of its results.

This methodology provides a way to perform accurate dependability

benchmarks for large and complex systems, including COTS, which

currently does not exist.

Software Faultload for Large and Complex Systems 123

The proposed experimental framework is based on the definition of a

strategy to guide the fault injection target selection and to reduce the

number of software faults required for a dependability benchmark, or for

an experimental evaluation using software fault injection. It consists of the

following steps, based on two complete software fault injection

experiments with two completely different systems, considering their

complexity and the required computer resources of each one:

 Define different hypothesis for the reduction of the number of

software faults to inject (for example, select a subset of faults at

random and inject only those faults, inject faults only in the code

of functions with greater lines of code, etc.).

 Evaluate each hypothesis in order to determine the best strategy

to reduce the number of faults to inject with the minimum error

possible, comparing the results obtained with the total fault set.

 Propose practical guidelines for the definition of faultloads with a

number of faults that can be used in practice (instead of faultloads

with thousands of faults that would take months to be injected).

A fundamental aspect of this approach is the clear separation

between the fault injection target component and the system under

observation, avoiding the problem of changing the system that is under

evaluation. That is, the faults are injected in the FIT, with the goal of

evaluating their impact on the rest of the system, the BT. Both the FIT and

the BT are part of the SUB, a larger system that, from the benchmark point

of view, consists in a set of processing units needed to run the workload.

Another key element of the proposed framework is the Benchmark

Management System (BMS), which includes a component, called the

Benchmark Controller (BC), responsible for the control of all the aspects of

the benchmark experiments: workload submission, software fault injection,

coordination and synchronization of the several components involved in

the experiments and collecting the information needed to process the

124 Software Faultload for Large and Complex Systems

benchmark measures. Another component of the BMS is the Benchmark

Client through which the BC sends and controls the workload execution on

the BT (Figure 5-1).

Figure 5-1 – Experimental Architecture.

5.3.1 Preliminary assessment study

In order to validate the proposed framework, an initial experimental study

was carried out using the G-SWFIT fault model [Durães et al. 2006] and an

early version of DBench-FI fault injector tool, especially designed and

developed for dependability benchmarking (the current version of this tool

was presented in chapter 4). This exploratory study on the guide of the

fault injection target selection to reduce the number of faults required for

the execution of dependability benchmarks is presented in [Costa et al.

2009]. It consists in the injection of software faults in the kernel code of the

OS system calls used by two different benchmark target systems: (i) a

web-server benchmark based on the SPECweb99 industry standard

performance benchmark for web-servers [SPEC], extended with faultload

and dependability measures (failure modes); and (ii) a client-server

application to sort large-scale integer vectors, based on a Multithreaded

Quicksort algorithm, extended with performance and quality metrics. This

last system mainly serves as a control application and as a comparison

Server Machine
SUB

OS Kernel

Client Machine
BMS

Benchmark
Client

Benchmark
Controller

(BC)

Benchmark

Target (BT)

Control Data
Performance

Measures

FIT

Workload

Faultload

Obervations & Measures

Dependability
Measures

Software Faultload for Large and Complex Systems 125

system, as it has some completely different requirements concerning to

computer resources.

Four each BT system, there were analyzed four different hypotheses

for the reduction of the number of faults to inject:

 Lines of code (LOC) of each targeted system call. It is worth

noting that the analyzed LOCs were in machine code and thus

some well-known restrictions, that are generally applied to this

size oriented metric, like language and programmer dependence,

no longer make sense in this context;

 The CPU time (CPUt) spent running in the kernel for each system

call, relative to the SUB operating system, obtained during a

normal execution, i.e. without any fault injection;

 The number of calls (NrCalls) made by the OS to each one of the

system calls considered, during a normal execution of the system

workload;

 A random selection of the software faults from the full set of

faults, forming a subset of faults according to a uniform

distribution.

The used approach consists of two phases as depicted in Figure 5-2:

 A Pre-Injection Phase, in which the benchmark is executed in

order to identify the OS system calls used by the BT. The

G-SWFIT faultload generator (software tool provided by the

author of the study [Durães et al. 2006]) uses this list of OS system

calls to identify all possible locations in the system calls code (it is

worth noting that this code is part of the kernel) where it is

possible to inject realistic software faults, according to the rules

established by the G-SWFIT fault model.

 A Fault Injection Phase, in which, firstly, is injected the

exhaustive set of software faults to obtain reference results, and

126 Software Faultload for Large and Complex Systems

then are performed experiments to evaluate the error observed in

the results for the different hypothesis of reduction of the number

of faults.

Figure 5-2 – Experimental methodology of the preliminary assessment study.

Regarding the Pre-Injection Phase, 50 OS system calls were used by

the web-server system (see Table 5-2), whereas for the multithreaded

quicksort algorithm, 27 OS system calls were found in use (see Table 5-3)25.

For each BT system, Tables 5-2 and 5-3 also show the considered measures

(LOC, CPUt and NrCalls) for the used system calls. As expected,

25 All the OS system calls used by both BT systems were previously profiled and

analyzed.

Pre-Injection Phase Fault Injection Phase

Operating System
Kernel

Injection

policy

DBench-FI
Fault Injector

Controller

G-SWFIT

faultload

(location &

fault type)

G-SWFIT
Faultload
Generator

OS Kernel
Symbols Table

G-SWFIT Fault
Operators

Library

DBench-FI

Fault Injector

Module

Software Faultload for Large and Complex Systems 127

considering the computer resources used by each one of the BT systems,

the web-server system revealed to be much more OS intensive than the

multithreaded quicksort algorithm.

The results used in the experiments, also used to assess the error

incurred by the reduction of the number of faults according to the different

hypothesis, consist of the failure modes observed in each execution, from

the external point-of-view of the Benchmark Controller. We consider the

following well-known failure modes:

 OK – Representing the cases where the injected faults do not

cause any kind of incorrect behavior in the SUB, neither in the

benchmark measures, nor in the dependability ones. This failure

mode is considered in most of the fault injection studies reported

in the last decades;

 CRASH – Representing the cases where abrupt shut-down of the

BT (process crash) is observed;

 HANG – representing the cases where the SUB is frozen, either

the BT or the OS itself, and the experiment running time exceeded

a predefined time limit;

 ERRORS – representing the cases where there is no hang or

crash, but some incorrect results were observed by the BMS. More

precisely, the Benchmark Client of the BMS detects errors in some

of its requests.

In order to evaluate the error in the results, incurred by each different

hypothesis on the reduction of the number of faults to inject, and determine

the best strategy to reduce the faultload size without restricting the

benchmark results, a deviation is calculated relatively to the values

obtained for each failure mode with the injection of the complete set of

software faults.

128 Software Faultload for Large and Complex Systems

Web-Server Experiments

System Call
LOC

(#)
CPUt
(secs)

NrCalls
(#)

System Call
LOC

(#)
CPUt
(secs)

NrCalls

(#)

read 94 10.689682 1,020,296

time 35 0.073008 10,332

lseek 50 4.513927 788,945

accept 80 0.393356 6,665

brk 92 4.836866 507,793

getsockname 43 0.085677 6,648

mremap 44 0.288144 204,735

shutdown 27 0.088628 6,648

close 29 2.173133 194,735

wait4 266 0.084326 5,530

open 54 1.711256 115,988

geteuid32 5 0.076937 5,271

old_mmap 99 1.299173 103,516

fork 11 0.291810 5,228

fstat64 21 0.813122 99,138

uname 41 0.068011 5,221

stat64 21 1.192313 91,806

execve 37 2.911191 5,169

fcntl64 62 0.410780 59,998

chdir 95 0.105711 5,169

poll 283 14.219557 53,543

lstat64 21 0.037768 5,168

munmap 31 0.612648 47,057

getuid32 5 0.038894 5,167

setsockopt 51 0.347240 46,860

getgid32 5 0.034692 5,167

rt_sigprocmask 142 0.325903 46,503

getegid32 5 0.033765 5,167

mmap2 56 0.347523 42,763

flock 58 0.035934 1,604

mprotect 193 0.447871 36,227

select 395 0.032389 361

getpid 5 0.311780 32,996

_llseek 77 0.009457 52

write 94 1.036779 27,883

setgroups32 39 0.013868 52

rt_sigaction 88 0.335088 25,999

setuid32 105 0.011012 52

gettimeofday 57 0.143740 22,855

setgid32 34 0.012440 52

writev 35 0.510542 20,212

socket 31 0.000943 45

sendfile 163 1.058075 16,988

connect 44 0.005816 45

pipe 37 0.183040 15,506

getsockopt 49 0.002144 45

dup2 62 0.187953 15,501

kill 24 0.000135 28

getrlimit 31 0.159430 10,386

unlink 94 0.000119 3

Total (#50) 3,520 52.603596 3,733,118

Table 5-2 - System calls used by the web-server target system.

Software Faultload for Large and Complex Systems 129

Multithreaded Quicksort Experiments

System Call LOC (#) CPUt (secs) NrCalls (#)

mmap2 56 5.165528 330,894

write 94 0.968005 21,351

getppid 6 0.047278 4,476

poll 283 0.099038 4,476

read 94 0.720567 4,468

rt_sigprocmask 142 0.325585 3,738

sigreturn 79 0.035028 3,703

wait4 266 0.253500 3,369

kill 24 2.490447 3,079

modify_ldt 43 0.223864 2,971

munmap 31 0.041457 2,021

mprotect 193 0.029026 2,021

clone 17 0.953065 2,020

rt_sigsuspend 85 0.178594 1,683

getpid 5 0.009962 951

old_mmap 99 0.000018 7

open 54 0.010015 5

brk 92 0.000014 5

rt_sigaction 88 0.000007 5

fstat64 21 0.000010 5

close 29 0.000012 4

time 35 0.000002 1

pipe 37 0.000022 1

uname 41 0.000003 1

_sysctl 54 0.000005 1

nanosleep 138 0.000001 1

getrlimit 31 0.000005 1

Total (#27) 2,137 11.551058 391,258

Table 5-3 - System calls used by the multithreaded quicksort target system.

130 Software Faultload for Large and Complex Systems

The deviation 𝑑𝑓𝑖 of each specific failure mode, relative to the failure

mode rate value 𝑓𝑖
̅ , obtained considering the complete set of targets, is

calculated using

𝑑𝑓𝑖 = √(𝑥 − 𝑓�̅�)
2

where 𝑓𝑖 , for 𝑖 = 1, … 4, represents each one of the failure modes

considered in this study (OK, CRASH, HANG and ERRORS), and 𝑥

denotes the rate value obtained for that failure mode considering a subset

of initial fault injection targets.

A global metric 𝑑𝑔 is also used to measure the overall deviation from

the failure mode values obtained with a subset of the software fault targets,

relative to the initial failure mode values calculated with the overall set:

𝑑𝑔 = ∑ 𝑓�̅�

𝑛

𝑖=1

∙ 𝑑𝑓𝑖

where 𝑛 is the total number of failure modes considered in the

dependability benchmark.

The metric used in this study is based in the user point-of-view of the

system, through the use of well-known failure modes (OK, HANG, CRASH

and ERRORS), as can be observed in the mathematical expression of 𝑑𝑔.

Other metrics could be used, such as the ones related to specific

mechanisms available in the target system, such as the coverage and

latency of error detection mechanisms. However, the failure mode analysis

is more general (i.e., it does not depends on specific features of the target

system) and is more complete, as it captures the user’s perception of the

system.

This initial experimental study used the most frequent software fault

types according to the G-SWFIT model, as shown in Table 5-4. An

exception was the MLPC fault type, corresponding to the “Missing small

and localized part of the algorithm”, which was not considered for this

Software Faultload for Large and Complex Systems 131

preliminary study, as those kind of faults are not related to any specific

statements in the code and its correction involves non trivial modifications

[Durães et al. 2006]. The description of the considered software fault types, as

well as the corresponding coverage, concerning the most frequent types of

software faults found in field [Durães et al. 2006], and the respective ODC

classes, are also indicated in Table 5-4.

Fault
type

Description Coverage
ODC

Classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

MFC Missing function call 8.64 % Algorithm

MLAC
Missing "AND EXPR" in expression

used as branch condition
7.89 % Checking

MIA
Missing "if (cond)" surrounding

statement(s)
4.32 % Checking

MVAE
Missing variable assignment using an

expression
3.00 % Algorithm

WLEC
Wrong logical expression used as

branch condition
3.00 % Assignment

WVAV Wrong value assigned to a value 2.44 % Checking

MVI M Missing variable initialization 2.25 % Assignment

MVAV
Missing variable assignment using a

value
2.25 % Assignment

WAEP
Wrong arithmetic expression used in

parameter of function call
2.25 % Assignment

WPFV
Wrong variable used in parameter of

function call
1.50 % Interface

Total faults coverage 47.50 %

Table 5-4 - Representativeness of the fault types considered in [Costa et al. 2009],

according to the G-SWFIT methodology [Durães et al. 2006].

132 Software Faultload for Large and Complex Systems

It is worth noting that for this small set of fault types, which

represents 47.50% of the complete set of software faults and four different

ODC types, a total of 781 faults were defined for the web-server benchmark

and 459 faults for the quicksort system. It is relevant to mention that in

some system calls, 5 in the web-server system and 2 in quicksort system

experiments, it was not injected any fault, as G-SWFIT model did not

indicate any code mutation on that function targets. Moreover, that system

calls are the smallest, in terms of LOC, of all of the considered set (getpid,

getppid, geteuid32, getuid32, getgid32 and getegid32).

Considering all the G-SWFIT software faults indicated, 1,240

experiments have been executed, corresponding to the same number of

injected software faults defined according to the G-SWFIT model (one

single software fault injection was considered in each experiment).

Results showed that in most of the experiments (82% for the

web-server system and 80% for multithreaded quicksort system) the

injected software faults did not cause any failure or visible impact on the

system. This means that either the fault was not activated or the

correspondent error remained latent until the end of the experiment. It may

also happen that these errors have been corrected or canceled by the

normal execution of the program (e.g., error overwritten by a fresh value).

This initial experimental study concludes that none of the strategies

provide a dramatic reduction of the number of faults if the goal is to keep a

very small error in the results (e.g., less than 1%). This seems to be related

to the fact that the total number of faults used to establish the reference

results is relatively small (781 and 459 for each system). Nonetheless, for

the web-server system, starting the fault injection experiments with the

functions with greater LOCs allow achieving faster convergence to the

results obtained with the complete set of faults. With this strategy, after the

injection of only 51.47% of the total software faults, the induced error is

about 3.8%, when comparing with the results obtained with the full set of

software faults. This way, the fault injection experiments can be reduced by

Software Faultload for Large and Complex Systems 133

almost 50%, representing an enormous saving of time in carrying out the

experiments. Considering the total of time needed to inject the 781 faults in

the web-server experiments, the reduction of time of the total

experimentation can be estimated in, approximately, 208h. Moreover, the

LOC, in machine code, is an accessible and fairly easy measure to obtain.

Depending on the operating system of the target system, it can even be the

easiest one, when compared to CPUt and NrCalls (however, not as simple

as the random selection).

It could also be observed that for complex and large workloads such

as the web-server benchmark, the number of injected faults should be

around 500 or higher in order to keep the error in the results lower than

3%. Despite more experiments with other complex benchmarks/workloads

are necessary to confirm this insight, this is an important practical

indication for designers of future dependability benchmarks. On the other

hand, smaller and simpler workloads, such as the existing in the

multithreaded quicksort system, seem to allow a clearly smaller number of

faults, no matter the strategy used to select the subset of faults.

The work presented in [Costa et al. 2009] provides a first actual

contribution to solve the problem of reducing the size of the faultload,

which is essential to use practical dependability benchmarks in large and

complex systems. But, more important than that, this study provided an

early assessment of the proposed methodology that was subsequently

developed and constitutes one of the key contributions of the study

presented in this thesis.

5.3.2 Proposed metodology

The proposed methodology is an extension and refinement of the

aforementioned framework assessment study, presented in [Costa et al.

2009], and incorporates the results of a three-year research effort focused on

134 Software Faultload for Large and Complex Systems

showing that it is possible to obtain accurate fault injection using a

faultload that contains only a small fraction of all the possible software

faults that can be injected in the target system. It consists of using the

results obtained with a comprehensive faultload that includes all possible

fault locations (i.e., total coverage faultload) to evaluate the accuracy of the

results obtained with the different strategies used to reduce the size of the

faultload. The experiments include the use of different target systems

resulting in one of the most extensive fault injection studies ever reported.

In order to inject representative software faults, like in the validation

study, the G-SWFIT fault model [Durães et al. 2006] was used. G-SWFIT is

based on a set of operators for software fault emulation through low-level

code changes in the target executable code, mimicking the most common

types of real software faults. It is worth noting that these operators resulted

from a field study based on the analysis and classification of more than 600

software faults found in real software applications. Table 5-5 shows the

software fault types selected for inclusion in the used faultload,

corresponding to the 12 most frequent types of software faults found in

[Durães et al. 2006]. It is worth pointing out that this small set of fault types

represents 50.69% of the complete set of software faults and four different

ODC types (adding the MLPC fault “Missing small and localized part of

the algorithm” to the set of software fault types used in the experimental

validation study [Costa et al. 2009]).

As shown in [Durães et al. 2006], the long tail that characterizes the

complete fault type distribution (Table 5-5 shows only the most frequent

types; the tail is quite long with many fault types that are rare) makes very

difficult to include more fault types in the faultload. For example, the last

type of fault considered in the list shown in Table 5-5 (WPFV - Wrong

variable used in parameter of function call) corresponds to 1.5% of the

faults found in the mentioned field study [Durães et al. 2006]. That is, it is

already a relatively infrequent type of software fault. For this reason, the

set of fault types proposed in [Durães et al. 2006] has been used in many

Software Faultload for Large and Complex Systems 135

studies in recent years and is considered as a good approximation for a

difficult problem that is the definition of fault models for software faults.

The problem of trying to inject fault types that correspond to faults

that are relatively rare is that even very large pieces of software may have

just a few code locations (or even none) where such fault types can be

injected. In other words, according to mentioned field study, nearly 50% of

the software faults found in field falls in 12 types of software faults shown

in Table 5-5, while the remaining 50% of the faults represent a very large

number of specific types that are rather infrequent26.

26 The software fault injection technique used in this work consists in the scanning of

the target code application (ready-to-run binary code) for specific low-level instruction

patterns (sequence of machine code instructions) and in applying a mutation to emulate an

intended software fault. Each fault type is associated to a given code pattern and a given set

of preconditions that make the faults (bugs) plausible. For example, the fault type MFC

(Missing Function Call) means that the programmer has forgotten to call a given function

(and such bug has escaped to all the testing procedures). The field study presented in

[Durães et al. 2006] show the typical circumstances (related to code) where such kind of fault

appears in the field making it possible to reproduce such fault type, provided that the target

program has the code pattern and circumstances that allow the injection of the fault.

136 Software Faultload for Large and Complex Systems

Fault
type

Description Coverage
ODC

Classes

MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

MFC Missing function call 8.64 % Algorithm

MLAC
Missing "AND EXPR" in expression

used as branch condition
7.89 % Checking

MIA
Missing "if (cond)" surrounding

statement(s)
4.32 % Checking

MLPC
Missing small and localized part of the

algorithm
3.19% Algorithm

MVAE
Missing variable assignment using an

expression
3.00 % Algorithm

WLEC
Wrong logical expression used as

branch condition
3.00 % Assignment

WVAV Wrong value assigned to a value 2.44 % Checking

MVI M Missing variable initialization 2.25 % Assignment

MVAV
Missing variable assignment using a

value
2.25 % Assignment

WAEP
Wrong arithmetic expression used in

parameter of function call
2.25 % Assignment

WPFV
Wrong variable used in parameter of

function call
1.50 % Interface

Total faults coverage 50.69 %

Table 5-5 - Representativeness of the most common software fault types

used in the present methodology, according to [Durães et al. 2006].

As software fault injection target locations we consider the operating

system kernel of the SUB, as shown in Figure 5-3. More precisely, we

consider as possible targets the complete set of the OS functions, referred in

the kernel symbols table. The exact identification of the fault (code target

Software Faultload for Large and Complex Systems 137

addresses and fault type) is thus obtained applying the G-SWFIT

methodology to each of the functions of that set.

Given the G-SWFIT faultload, the software faults are injected using

the DBench-FI fault injector (an innovative SWIFI tool specially developed

for this purpose, presented in detail in chapter 4), as its unique set of

features make it especially adequate for dependability benchmarks: (i) it

provides a very low intrusiveness, since it is essentially undetectable and

presents no noticeable performance degradation of the FIT; (ii) it is capable

of runtime fault injection (on the fly) in both user and kernel spaces and in

both data and code segments; (iii) it does not require any application source

code to be available; (iv) it can be dynamically loaded into a system; and (v)

it can inject faults even on applications that are already running in the

system when it is installed.

The used approach consists of four main phases as indicated in

Figure 5-3: (i) Pre-Injection Phase; (ii) Kernel Analysis Phase; (iii) Fault

Injection Phase; and (iv) Strategy Analysis Phase.

In the Pre-Injection Phase are identified all the locations in the OS

kernel where it is possible to inject realistic software faults, according to the

rules established in [Durães et al. 2006]. It is worth noting that, in this

approach, the G-SWFIT faultload generator (software tool provided by the

author of the study [Durães et al. 2006]) uses the exported kernel symbols

table of the OS in order to detect all the possible targets in the OS kernel

functions. The result of the Pre-Injection Phase is the complete set of

software faults that it is possible to inject in such set of targets (i.e., the set

of the OS functions).

In the Fault Injection Phase the exhaustive set of software faults is

injected to obtain the reference results necessary for the Strategy Analysis

Phase, in which are performed the experiments to evaluate the error

observed in the results for the different hypothesis on the reduction of the

number of faults to inject.

138 Software Faultload for Large and Complex Systems

The Strategy Analysis Phase consists in the comparison of the results

obtained when considering a subset of the initial targets with the results

obtained in the initial experiments (the reference results). This final step

analyzes how one can choose a subset of the targeted OS kernel functions

and fault locations without hampering the initial benchmark results

obtained with the total set of faults.

Figure 5-3 – Phases of the proposal experimental methodology.

In order to guide that faultload subset selection, some software

metrics have previously been obtained from the OS kernel source code in

the Kernel Analysis Phase. For that purpose, several characteristics and

related metrics of each of the targeted kernel functions were considered:

 Lines of code (LOC), which consists in the count of the lines of

the software source code. It is worth noting that the analyzed

LOCs were in machine code and thus some well-known

restrictions generally applied to this size oriented metric, like

Pre-Injection Phase

Operating System
Kernel

DBench-FI

Fault Injector
Injection

policy

DBench-FI
Controller

Kernel Analysis Phase

Best Strategy

Fault Injection Phase

Best Strategy
Evaluation

Process

Reference
Results

Faultload
Subsets

Software
Metrics of
OS Kernel

Software
Metrics

Analysis Tools

OS Kernel

G-SWFIT
Complete
Faultload

G-SWFIT
Faultload
Generator

G-SWFIT Fault
Operators Library

OS Kernel
Symbols Table

Strategy Analysis Phase

SOFTWARE
FAULTS

Software Faultload for Large and Complex Systems 139

language and programmer dependence, no longer make sense in

this context;

 The Extended Cyclomatic Complexity (Vg), based on the

McCabe’s software metric [McCabe 1976], describe the control

flow complexity of each of the mentioned kernel functions. A

higher Vg number corresponds to a function with greater number

of execution paths and, consequently, a function harder to

understand and implement;

 Halstead’s Delivered Bugs (B), directly correlated with the

complexity of code, estimates the number of errors (bugs) in the

implementation. This measure is included in a broader set of

measures developed by M. Halstead, to determine the

quantitative measure of complexity based on operators and

operands in a module [Halstead 1977];

 Maintainability Index (Mi), a composite measure based on

lines-of-code, McCabe’s and Halstead’s measures, which strives

to express the relative maintainability of the code. It is worth

noting that the used formula (the forms and rationale of which

were developed by P. Oman [Oman et al. 1992]), widely accepted in

the software industry, does not consider the amount of line

comments, as some comments consist just of some standard

blocks;

 Functional Complexity (Fc) is obtained by the sum of the number

of input parameters, the number of return points and the Vg

(Extended Cyclomatic Complexity) of each function.

Additionally, this study also considers a Random selection of

software faults (RandSF), according to a uniform distribution, in order to

obtain a subset of faults from the initial full set of faults initially considered.

140 Software Faultload for Large and Complex Systems

The mentioned software metrics, with the exception of the LOC that

was specifically calculated, were obtained with the RSM (Resource

Standard Metrics) [RSM] and the CMT++ (Complexity Measures Tools for

C/C++) Tools [CMT].

As already explained in the preliminary assessment study (section

5.3.1), the evaluation of the error incurred by the reduction of the number

of faults according to each different hypothesis is based on well-known

failure modes observed from the user point-of-view of the system (OK,

CRASH, HANG, and ERRORS), and on the deviation relatively to the

values obtained for each failure mode with the injection of the complete set

of software faults (see the definition of the mathematical expression of 𝑑𝑔).

Chapter 6 (Experimental Evaluation of Faultload Reduction

Strategies) presents and discusses the experimental results of this

methodology with two real and different applications: a web-server

dependability benchmark and a large-scale integer vector sort application

extended with performance and quality measures. A proposal strategy for

the reduction of the faultload can be found in section 6.4.

5.4 Summary

This chapter described the problem of the faultload dimension which

arises from the adoption of realistic software fault models in dependability

benchmarks of large and complex software systems. The execution of such

benchmarks usually take several months or even years due to its large

faultload size, which means that, in practice, it is not possible to execute

them.

The chapter surveyed and discussed the strengths and limitations of

the existing studies that address the issue of the distribution of faults

among different components in target systems, and presented an

experimental methodology that allows the definition of compact and

Software Faultload for Large and Complex Systems 141

representative faultloads based on software faults. The presented

methodology allows a significant decreasing on the execution time of

dependability benchmarks, maintaining, simultaneously, its usefulness and

representativeness. It is especially useful to open the possibility to extend

dependability benchmarks to large and complex systems, where the

experimentation time can significantly be reduced, making the benchmarks

feasible and useful in such class of systems.

143

Chapter 6

6 Experimental Evaluation of
Faultload Reduction Strategies

This chapter describes the experimental setup used to evaluate the different

strategies for the reduction of the number of software fault injection experiments

(presented in section 5.3 - Experimental framework) with two real and different

applications: a web-server dependability benchmark and a large-scale integer vector

sort application extended with performance and quality measures. It presents and

analyzes the results of more than two years of comprehensive fault injection

experiments, encompassing more than 41 thousand software faults, and proposes a

strategy to choose adequate fault injection targets without restricting the

benchmark scope and keeping accurate dependability benchmark results.

The proposed strategy will open the possibility to extend the use of

dependability benchmarks to large and complex systems, which otherwise would be,

in practice, impossible to run due to its large faultload size (such benchmarks

usually take several months or even years to execute).

144 Experimental Evaluation of Faultload Reduction Strategies

6.1 Introduction

ore than 41 thousand continuous fault injection experiments

have been carried out in more than two years27, in order to

evaluate different strategies to guide the fault injection target

selection and to reduce the number of software fault injection experiments

for a dependability benchmark, or for an experimental evaluation using

software fault injection. The main goal is to find a strategy to reduce the

fault injection target set and thus decrease the execution time of the

dependability benchmark experiments, while maintaining the

dependability benchmark usefulness and representativeness. This method

will open the possibility to extend the dependability benchmarks to large

and complex systems, making them feasible and practicably applied (such

benchmarks usually take several months or even years due to its large

faultload size).

27 It is worth noting that the time needed to complete each fault injection experiment

largely depends on the chosen BT system. For large and complex systems, such as the

web-server benchmark used in this study, the injection of each software fault takes about 20

minutes (average value), as showed later in this chapter.

M

Experimental Evaluation of Faultload Reduction Strategies 145

6.2 Experimental setup

The experimental setup used in this work is composed of two

systems:

 A server machine (Intel Pentium IV 2.66GHz, 512MB), which

corresponds to the SUB, including the BT and the DBench-FI fault

injector;

 A client machine (Intel Pentium IV 2.0GHz, 512MB), which

corresponds to the BMS, running the benchmark client.

Both machines are connected via a 100Mbps Ethernet connection and

run the Linux RedHat operating system (kernel 2.4.18-3).

The dependability benchmark used is a web-server benchmark (WS)

based on the SPECweb99 industry standard performance benchmark for

web-servers [SPEC], extended with faultload and dependability measures

(failure modes). In the specific setup used in the experiments, the Apache

web-server was used.

In order to evaluate the different strategies to reduce the number of

injected faults, a second workload was used, running in the same

environment as the dependability benchmark mentioned above. This

second workload (quite different from the WS benchmark, in terms of

required computer resources) consists of a client-server application to sort

large-scale integer vectors, based on a Multithreaded Quicksort algorithm

(MtQs), extended with performance and quality metrics.

The experiments were chosen and designed to show that, even

considering two totally different applications, it is possible to consider a

subset of all the possible fault injection targets maintaining, at the same

time, the usefulness of the benchmark results. This method will open the

possibility to extend the dependability benchmarks to large and complex

systems, making them feasible and practicably applied. As mentioned in

previous chapters, that is exactly one of the main goals of dependability

146 Experimental Evaluation of Faultload Reduction Strategies

benchmarks: to offer practicable and efficient methods, considering the

computing effort, the number of experiments and the time to run the

benchmark, in order to analyze a set of measures and charactering a

system.

The web-server dependability benchmark is a very realistic

benchmarking scenario already used as a case study in [Durães et al. 2004a].

In those experiments, the BT consists of the Apache web-server and the BC

is the SPECWEB99.

The used SPECweb99 performance benchmark can be briefly

described by its components:

 Benchmark setup – SPECweb99 uses a previously defined number

of clients in order to submit requests to the web-server under

evaluation. One of those clients, known as the prime client,

coordinates all the actions of all the others. In these experiments,

all the clients run in the same machine (the BMS) and are referred

as the Benchmark Client in Figure 5-1 – Experimental

Architecture. In fact, running in physical different machines or

operating systems is not really a requirement of SPECweb99.

 Workload – the workload used by SPECweb99 and submitted to

the server is representative of the most common web-server

operations and is composed of typical POST and GET requests,

including both static and dynamic operation types [SPEC]. The

defined workload also emulates common actions such online

registration requests and advertising services.

 SPECweb performance measures – the measures are obtained

through the SPECweb prime client and for this specific work the

following were considered relevant: (A) SPEC, the main

SPECweb99 metric, measures the number of simultaneous

connections that a server can support. Known as conforming

connections, they are defined as those that have an average bit

Experimental Evaluation of Faultload Reduction Strategies 147

rate of at least 320kbps and less than 1% of reported errors;

(B) Throughput (Thr), considered as the number of operations

(e.g., POSTs and GETs) per second; (C) Operation Count Errors

(Err), considered as the number of errors found by the client in

the requested operations.

 SPECweb99 benchmark rules – this performance benchmark require

very specific rules for experiment conduction in order to the

acceptance of the final reporting results by the SPEC organization.

Concerning those rules, we recommend the reading of [SPEC] for

more detailed information. In the conducted experiments, in

order to reduce their total time, not all of those impositions were

accomplished, as the respective final benchmark reporting results

is completely out of the scope of this paper. Specifically, in this

benchmark there were requested 40 simultaneous connections to

the server, using three batches or iterations of 300 seconds each

and a Warmup Time, Rampup Time and Rampdown Time28 of 30

28 Warmup, Rampup and Rampdown times are changeable SPECWeb99 benchmark

parameters. The Warmup time is the time, in seconds, intended to warm up any caches

before taking any measurement. The Rampup time is the warmup time, in seconds, before the

2nd and following iterations of the test. The Rampdown time represents the time, at the end

of each iteration, required for the end of SPECWeb99 workload.

148 Experimental Evaluation of Faultload Reduction Strategies

seconds each. These parameters represent SPECweb99 benchmark

constants, as defined in [SPEC].

Each web-server experiment consists of running the workload on the

Apache web-server and on the injection of one software fault few seconds

after the experiments start (see Figure 6-1 - Web-server benchmark

execution profile.). In this way, the software fault is injected after the

web-server reaches the Steady State Condition29 (the warmup time was set to

30 seconds). The DBench-FI fault injector, as mentioned, takes the faultload

and injects each software fault directly in the code of the running target - a

predefined function located in the OS kernel. It is worth noting that,

concerning the HANG failure mode, the BMS defines for this group of

experiments a maximum of 30 minutes each. This maximum time is

sufficient considering that the normal execution time to complete each

experiment of three iterations is about 20 minutes (as referred later in the

section 6.3 - Results and discussion). After that time is elapsed, the SUB is

considered hanged and is remotely restarted by the BMS, via software or

hardware.

29 The system achieves the Steady State Condition after a given warmup time. This

state guarantees that the system is able to maintain its maximum transaction processing

throughput.

Experimental Evaluation of Faultload Reduction Strategies 149

Figure 6-1 - Web-server benchmark execution profile.

After each experiment run, the BMS gather the measures related to

performance degradation, mainly given through SPECweb99 performance

benchmark, as well as some other metrics related to dependability, namely,

the information about the resulting failure mode. In addition to the

mentioned performance metrics, the total time to complete each one of the

experiments (ExpT) it is also collected by the BMS.

Relatively to the Multithreaded Quicksort application it is important

to note that it mainly serves as a control application and as a good

comparison system, as it has some completely different requirements

concerning to computer resources. It consists of an application responsible

for the sort of a 10,000,000 integer randomly generated vector and a client

that requests the resulting sorted file. In those experiments, the BT consists

of the Multithreaded Quicksort application and the Benchmark Client is the

application client that asks for that ordered vector file. Each of those

experiments consists in generating the 10,000,000 integer random vector,

executing the Multithreaded Quicksort on that vector and, finally, writing

the resulting vector to a file that will be read and tested by the client that

has made the request. In each experiment (see Figure 6-2 - Multithreaded

quicksort benchmark execution profile.), one single software fault is

Warmup time Rampup timeIterations

Iteration 1

SPECweb workload

Steady State
Condition

OS start OS reboot

SPECweb

Start

SPECweb

End

Software Fault
Injecttion

Collect

measures

Rampdown time

Iteration 2 Iteration 3

150 Experimental Evaluation of Faultload Reduction Strategies

injected when the application starts. Thus, the software fault is injected at

the start of the random vector generation phase, just before the execution of

the sorting algorithm.

Figure 6-2 - Multithreaded quicksort benchmark execution profile.

Like the WS experiments, the DBench-FI fault injector takes the

faultload and injects each software fault directly in the OS kernel code of

the SUB, on top of which is running the sorting algorithm. For this group of

fault injection tests, the BMS defines a maximum time of 15 minutes for

each experiment to run. This maximum time is sufficient considering the

normal execution time to complete each experiment (as mentioned later in

section 6.3 - Results and discussion). Similarly to what we mentioned for

the WS experiments, after that maximum time is elapsed the SUB is

considered hanged and is remotely restarted by the BMS, via software or

hardware.

After each run of this MtQs experiments, the BMS provides measures

related to performance degradation, based on the execution time to

complete all the process of generating, sorting and writing the vector

(ExpT), as well as some other metrics related to dependability, namely the

information about the resulting failure mode. For this purpose we consider

Quicksort workload

Random
Vector Ready

OS start OS reboot

Quicksort

Start

Quicksort

End

Software Fault
Injecttion

Collect

measures

File Analysis
Random vector

construction
Ordering Vector Writing File

Multithreaded

Quicksort

Experimental Evaluation of Faultload Reduction Strategies 151

that an error exists (Err) if the vector is not correctly ordered. In that case, a

metric based in the number of wrong placed integers in the vector is

calculated as an indicator of the quality of the obtained result.

All the executed experiments, either related to the WS or to the MtQs,

required no human intervention as their execution were completely

automated through the use of a set of appropriate tools incorporated in the

BMS.

6.3 Results and discussion

For each kind of experiments, concerning both the WS and the MtQs

benchmark experiments, some previous performance tests, 100 for each of

the following types, were made in order to obtain a measure of the

intrusiveness of the DBench-FI fault injector in the benchmark systems:

 Without DBench-FI fault injector. That is, without the respective

fault injector module inserted in the OS kernel;

 With the DBench-FI fault injector in profile mode. That is, using

software fault injection but without really changing any target.

The Table 6-1 shows the average values for every performance

measure considered in each type of experiment.

The comparison of these performance results and the degradation

value obtained give us a measure of the DBench-FI fault injector overhead

and intrusiveness in all of the experiments presented throughout this

section. As can be observed, it is not detected any intrusiveness or

performance degradation imposed by the used fault injector. Moreover, as

no errors were observed in any of those experiments, we can conclude that

the intrusion factor of the fault injector either in the WS or in the MtQs

calculations is non-existent.

152 Experimental Evaluation of Faultload Reduction Strategies

WS
Experiments

Without
DBench-FI

With
DBench-FI

Intrusion
Factor

SPEC (#) 40 40 0

Thr (Ops/sec) 126.5 126.5 0

ErrR (# Ops) 0.0 0.0 0.0

ExpT (hh:mm:ss) 00:19:00 00:19:00 -

MtQs
Experiments

Without
DBench-FI

With
DBench-FI

Intrusion
Factor

ExpT (hh:mm:ss) 00:00:26 00:00:26 -

Err (#) 0.0 0.0 0.0

Table 6-1 – Average performance results (no faults injected).

As some strategies to reduce the number of injected faults rely on the

characteristics of the kernel functions, the entire OS kernel functions were

analyzed and the related metrics obtained - Kernel Analysis Phase (Figure

5-3 - Phases of the proposal experimental methodology). Recall that the

considered metrics are, as defined in section 5.3 - Experimental framework:

Lines of code (LOC), Extended Cyclomatic Complexity (Vg), Halstead’s

Delivered Bugs (B), Maintainability Index (Mi), and Functional Complexity

(Fc).

Considering all the G-SWFIT software faults indicated in Table 5-5

(Representativeness of the most common software fault types

used in the present methodology, according to [Durães et al. 2006]), 41,750

fault injection experiments have been executed in 1,153 kernel

functions - 20,875 for each type of workload (WS and MtQs). These faults

corresponds to the total number of software faults that can be injected in

the code of the OS kernel (considering the entire exported kernel symbols

table), according to the rules proposed in [Durães et al. 2006] for the

realistic emulation of software faults. It is worth mentioning that in some

very small OS functions (with very few lines of assembly code) referred by

Experimental Evaluation of Faultload Reduction Strategies 153

the exported kernel symbol table it was not injected any fault, as the

G-SWFIT fault model did not indicate any suitable code locations on those

target functions. It is also important to note that for 21 targeted functions,

originally programmed in assembly language, only the ASM LOC measure

was collected. This is due to restrictions of both of the used tools to extract

the software metrics [RSM], [CMT].

Concerning the performance in the presence of injected faults, the

final experimental results obtained are shown in Table 6-2.

WS Experiments* MtQs Experiments

SPEC
(#)

Thr
(Ops/sec)

ErrR
(# Ops)

ExpT
(hh:mm:ss)

Err
(#)

ExpT
(hh:mm:ss)

Min 0.00 2.2 0.0 00:00:43 0.0 00:00:05

Max 40.00 171.2 65,239.3 00:30:07 9,990,571.0 00:15:00

Avr 37.8 126.5 23.7 00:19:15 3,172.7 00:00:40

StdDev 9.1 3.6 865.6 00:03:10 174,255.7 00:01:46

* Experimental results considering the average value of all the 3 SPECweb iterations.

Table 6-2 – Performance results in the presence of faults.

Concerning the WS experiments, as result of the mentioned execution

profile, there were observed that some injected software faults caused

several non-conforming connections (SPEC) and/or some lower values of

throughput (Thr) and also several error operations (Err) detected by the

SPECweb99 benchmark. It is worth noting that for this type of experiments,

the presented values are the average of all iterations executed (3 SPECweb

iterations in each one of the 20,875 experiments). The resulting charts are

shown in Figures 6-3 to 6-6.

154 Experimental Evaluation of Faultload Reduction Strategies

Figure 6-3 - WS Experimental results: Conforming connections.

Figure 6-4 - WS Experimental results: Errors.

0

5

10

15

20

25

30

35

40

45

0 5,000 10,000 15,000 20,000

C
o

n
n

ec
ti

o
n

s
(#

)

Experiments

WS Conforming Connections

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

0 5,000 10,000 15,000 20,000

Er
ro

rs
 (#

)

Experiments

WS Errors

Experimental Evaluation of Faultload Reduction Strategies 155

Figure 6-5 - WS Experimental results: Throughput.

Figure 6-6 - WS Experimental results: Experiments duration.

00

20

40

60

80

100

120

140

160

180

0 5,000 10,000 15,000 20,000

Th
ro

u
gh

p
u

t
(o

p
s/

se
c)

Experiments

WS Throughput (Thr)

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

0 5,000 10,000 15,000 20,000

D
u

ra
ti

o
n

 (m
m

:s
s)

Experiments

WS Experiments Duration

156 Experimental Evaluation of Faultload Reduction Strategies

With respect to the MtQs experimental results (see Figure 6-7 and

Figure 6-8), some experiences have also led to errors in the results. Such

situations occurred when either the result vector was completely

unavailable by the client (considering that there is no HANG or CRASH of

the BT) or the result corresponds to an existent but incorrect ordered

vector. It is worth noting that this last case was only observed in 16

experiments. This means that, in most of the times, when the resulted

sorted vector was written to disk, no errors had been detected by the client

in the ordered integer vector. This is explained by the specific

characteristics of the MtQs application, namely, by the file based result to

the client’s request. We also observed that, like in the WS, some

experiments present different execution times due to the induced kernel

code disturbance.

Figure 6-7 - MtQs Experimental results: Experiments duration.

Regarding the mentioned failure modes, it can be observed that, in

most of the experiments (92.50% for the WS and 93.32% for the MtQs), the

00:00

05:00

10:00

15:00

20:00

0 5,000 10,000 15,000 20,000

D
u

ra
ti

o
n

 (m
m

:s
s)

Experiments

MtQs Experiments Duration

Experimental Evaluation of Faultload Reduction Strategies 157

software faults injected in the OS kernel did not cause any failure or visible

impact on the application (see Figure 6-9 - Failure modes of WS

experiments, and Figure 6-10 - Failure modes of MtQs experiments). It is

worth noting that these results are consistent with the results of fault

injection experiments reported in the literature. Moreover, this rarefaction

(i.e., only a few faults cause a visible impact on the BT) is one of the reasons

for the difficulty in reducing the faultload size.

Figure 6-8 - WS Experimental results: Errors.

Many factors may contribute to this behavior. Since we need the

failure modes obtained with the total set of faults (i.e., all the possible faults

that G-SWFIT can inject in the Linux kernel) to be used as a reference result

for the evaluation of the different strategies proposed to reduce the number

of faults to be considered in the faultload, we consider the whole Linux

kernel code (memory management, scheduler, file system, I/O

management, etc.) as the fault injection target. This suggests that many

faults have not been activated, which per se explains a large fraction of the

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

0 5,000 10,000 15,000 20,000

Er
ro

rs
 (#

)

Experiments

MtQs Errors

158 Experimental Evaluation of Faultload Reduction Strategies

faults (injected in the OS) that caused no visible effects on the applications.

Other factors such as errors that remained latent until the end of the

experiment or have been corrected or canceled by the normal execution of

the program (e.g., error overwritten by a fresh value) are plausible causes

as well. Obviously, even when the injected fault damages the OS, it may

happen that the components affected by the fault had no effect on the

applications (WS and MtQs).

Figure 6-9 – Failure modes of WS experiments.

It is worth noting that we excluded the use of well-known techniques

such as monitoring (to detect when the fault is activated) or code profiling

(to previously identify the OS code areas that are used more intensively by

the application) because the goals of our research require reference results

obtained by a non-intrusive faultload that include all the possible faults.

The similarity between the values obtained for the OK failure mode

for both systems, despite the great difference between their computational

characteristics, suggests a similarity behavior of the systems in the presence

of a faulty OS (considering the occurrence of problems), independently of

the used applications (BT).

Ok
92.50%

CRASH
2.12%

HANG
4.98%

ERRORS
0.41%

Failures
7.50%

WS Failure Modes

Experimental Evaluation of Faultload Reduction Strategies 159

Figure 6-10 – Failure modes of MtQs experiments.

Concerning the strategy analysis phase of the approach and in order

to choose a subset of software fault targets, and, consequently, decrease the

number of injected faults and the resulting total experimentation time,

without restricting the benchmark usefulness, we analyzed, as mentioned,

6 different approaches: LOC, Vg, B, Mi, and Fc metrics, and RandSF, a

random selection of software faults, following a uniform distribution. Still

for the random selection, it is important to notice that for each group of

randomly chosen OS kernel functions (from 1 to 1,153), there were executed

2,000 experiments, and analyzed the resulting maximum, minimum,

average and standard deviation values. That is, 2,000 experiments for each

one of the combinations of 𝑛 functions among 1,153, for 𝑛 between 1 and

1,153 (in other words, 2,000 experiments of 1 randomly chosen function

among the 1,153 target functions; 2,000 experiments of 2 randomly chosen

functions among the 1,153 target functions; etc.). This selection method

mainly serves as a control strategy.

For each one of the 6 mentioned approaches, Table 6-3 shows the

percentage of total fault injections needed to obtain a given global

Ok
93.32%

CRASH
3.78%

HANG
1.62% ERRORS

1.27%

Failures
6.68%

MtQs Failure Modes

160 Experimental Evaluation of Faultload Reduction Strategies

deviation error limit in the WS experiments, considering the full set of

targets (the two best strategies of each global deviation error limit are

presented in a shaded background). Correspondent data for the MtQs

experiments can be found in Table 6-4. These tables shows, for each one of

approaches based on software metrics (LOC, Vg, B, Mi and Fc), two

different ways of choosing the kernel target functions: based on the

ascending (Asc) and descending (Desc) orders of the correspondent metric.

For example, for the LOC approach, it is possible to start the software fault

injection in functions with greater LOC values (LOC approach in

descending order – LOC Desc) or in functions with smaller LOC values

(LOC approach in ascending order - LOC Asc). Thus, we consider 11

different strategies to choose the adequate fault injection targets: two sort

orders for each one of the 5 software metrics based approaches plus a

random approach, as explained above. The presented values show that, for

example, for the WS experiments, using LOC Asc (i.e., choosing as injection

order the OS functions with smallest LOC), it is necessary to inject 29.56%

of the faults (6,170 faults) to achieve a global deviation error in the failure

modes less than or equal to 2%.

It is very important to note that the values indicated in Tables 6-3 and

6-4 represents the worst-case scenarios. That is, possible smaller sets of

faults that incidentally could produce results with a smaller error are not

being considered. Instead, it is found the worst combination of faults (i.e.,

the largest set) needed to assure a given error limit. In other words, any

form of casuistic occurrence along the experiments is eliminated, by

ensuring that the indicated values are such that, for each approach, none of

the remaining experiments inflict a higher global deviation value. I.e., being

𝑑𝑔𝑖
 a global deviation value for a given number of faults 𝑖,

𝑑𝑔𝑖
= 𝑚𝑖𝑛 {𝑑𝑔𝑗

, ∀𝑗 ≤ 𝑖: 𝑑𝑔𝑗
> 𝑑𝑔𝑘

, ∀𝑘 > 𝑗}

𝑖, 𝑗, 𝑘 ∈ {𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑓𝑎𝑢𝑙𝑡𝑠}.

Experimental Evaluation of Faultload Reduction Strategies 161

WS Experiments

Error (𝑑𝑔 - global deviation values)

0 <=0.5% <=1% <=2% <=3% <=4%

LOC

Asc
100.0% 53.84% 45.03% 29.56% 19.29% 12.19%

20,875 11,239 9,399 6,170 4,027 2,544

Desc
100.0% 90.17% 21.95% 14.81% 12.59% 9.00%

20,875 18,822 4,582 3,091 2,628 1,879

Vg

Asc
100.0% 59.16% 44.73% 28.42% 19.41% 16.44%

20,875 12,349 9,338 5,933 4,051 3,431

Desc
100.0% 87.39% 25.05% 18.72% 1.61% 0.80%

20,875 18,242 5,230 3,908 337 168

B

Asc
100.0% 62.65% 41.82% 33.94% 19.40% 12.16%

20,875 13,078 8,730 7,085 4,049 2,538

Desc
100.0% 90.10% 70.16% 10.09% 1.61% 1.61%

20,875 18,809 14,646 2,106 337 337

Mi

Asc
100.0% 91.32% 32.92% 16.74% 10.87% 9.77%

20,875 19,063 6,872 3,494 2,269 2,040

Desc
100.0% 69.97% 39.73% 24.47% 17.30% 13.15%

20,875 14,607 8,293 5,109 3,611 2,746

Fc

Asc
100.0% 63.99% 53.69% 40.74% 29.71% 25.71%

20,875 13,357 11,207 8,504 6,202 5,366

Desc
100.0% 82.63% 76.77% 10.05% 5.01% 1.62%

20,875 17,250 16,025 2,097 1,046 338

RandSF Max
100.0% 97.05% 85.93% 58.23% 41.89% 26.35%

20,875 20,260 17,938 12,155 8,745 5,500

Table 6-3 - Percentage of fault injections needed to achieve a given global

deviation error limit in the WS Experiments.

162 Experimental Evaluation of Faultload Reduction Strategies

MtQs Experiments

Error (𝑑𝑔 - global deviation values)

0 <=0.5% <=1% <=2% <=3% <=4%

LOC

Asc
100.0% 61.55% 47.69% 33.49% 22.62% 18.18%

20,875 12,848 9,955 6,992 4,721 3,796

Desc
100.0% 93.34% 70.84% 13.04% 7.87% 1.68%

20,875 19,485 14,788 2,722 1,643 351

Vg

Asc
100.0% 63.31% 50.69% 30.29% 21.69% 17.92%

20,875 13,215 10,581 6,322 4,528 3,741

Desc
100.0% 87.39% 43.67% 3.91% 3.03% 0.80%

20,875 18,242 9,116 816 632 168

B

Asc
100.0% 67.31% 46.36% 34.73% 21.56% 17.85%

20,875 14,050 9,678 7,249 4,501 3,727

Desc
100.0% 90.81% 70.92% 6.06% 0.80% 0.80%

20,875 18,957 14,805 1,264 168 168

Mi

Asc
100.0% 91.75% 14.79% 10.59% 9.77% 1.46%

20,875 19,152 3,088 2,211 2,040 304

Desc
100.0% 43.95% 39.51% 26.12% 19.33% 16.62%

20,875 9,174 8,248 5,452 4,036 3.469

Fc

Asc
100.0% 53.28% 47.30% 28.27% 17.61% 2.32%

20,875 11,122 9,873 5,901 3,677 485

Desc
100.0% 82.34% 14.51% 9.84% 1.62% 1.62%

20,875 17,189 3,028 2,055 338 338

RandSF Max
100.0% 95.95% 81.35% 61.79% 38.70% 22.75%

20,875 20,030 16,982 12,900 8,078 4,748

Table 6-4 - Percentage of fault injections needed to achieve a given global

deviation error limit in the MtQs Experiments.

Experimental Evaluation of Faultload Reduction Strategies 163

In other words, for a fixed sort strategy, the mathematical expression

of 𝑑𝑔𝑖
 assures that for a certain subset 𝑖 of injected faults, no other subset of

software faults that includes 𝑖 produces a greater global deviation (in the

limit, it would be possible that, luckily, the injection of faults in one single

function, the first in a certain sort strategy, could produce a null deviation).

Analogous definitions hold for individual failure modes.

Looking at the reduction of the number of faults, in both relative

(percentage) and absolute terms, the following observations can be drawn

based on the obtained results:

 Some of the strategies provide a good reduction of the number of

faults (lower than 50%), keeping the error in the results very small

(e.g., less than or equal to 1%).

 Smaller and simpler workloads, such as MtQs, seem to allow

identical number to what would be necessary for more complex

workloads. Particularly, it can be observed that, in order to obtain

smaller errors in the results (less than or equal to 0.5%), the

number of injected faults is identical to what would be needed in

complex and large workloads.

 Concerning the WS experiments (that represent relatively large

and complex workloads), the best strategies to select a subset of

faults to inject, for errors between 3% and 4%, are Vg Desc and

B Desc. However, we can state that the approach Fc Desc is very

close to those ones, also showing a good convergence for that

error range. For that kind of workloads, and for errors in the

range between 1% and 2%, we can mention LOC Desc ad Vg Desc

as the two best strategies. For small errors (lower than or equal to

0.5%), the LOC Asc and the Vg Asc showed to be the best

strategies (with 53.84% and 59.16%, respectively, of the total

injected faults).

164 Experimental Evaluation of Faultload Reduction Strategies

 Concerning smaller and simpler systems, represented by the

MtQs experiments, the best strategy to decrease the number of

faults, for errors between 2% and 4% are B Desc and Vg Desc,

closely followed by the Fc Desc. However if we consider errors in

the range from 1% to 2%, we can mention the Fc Desc and the Mi

Asc as the best strategies. For smaller errors, lower than or equal

to 0.5%, the Mi Desc and the Fc Asc revealed to be the best ones.

 In general, we can state that the best strategies for errors in the

range 1% to 4% are not the best ones for smaller errors (lower

than or equal to 0.5%), and vice-versa. More precisely, both WS

and MtQs experiments seem to show that, regardless of the

strategy used, the Asc order is the best one for very low errors

(lower than or equal to 0.5%). On the other hand, we can state that

the Desc orders are the best ones for errors between 1% and 4%.

This situation can be explained by the function-based choice used

in this study. More complex functions, those with higher software

complexity measures, and potentially best represented in

faultload (which includes all the possible software fault

locations), induces a one-step block analysis of a greater set of

software fault injections. On the contrary, less complex functions

(typically represented in the faultload only by a few software

faults) induce a more fine and step-by-step analysis.

Consequently, the former type of functions provides a faster, but

rough, convergence, in opposition to the latter type, with a

slower, but accurate, convergence. The criteria Mi Desc is an

exception to this rule, and will be explained later.

 The random selection (RandSF) of a subset of faults is the worst

strategy of all to reduce the number of software fault injections. It

is worth noting that this selection strategy is, by far, the easiest

fault reduction strategy concerning implementation, as all others

Experimental Evaluation of Faultload Reduction Strategies 165

require some sort of previous target analysis, which is obviously

not the case of the RandSF strategy.

In addition to the analysis provided by the Tables 6-3 and 6-4, it is

also important to analyze the error evolution in a less discrete way. The

following charts (from Figure 6-11 to Figure 6-15, for the WS; and from

Figure 6-16 to Figure 6-20, for the MtQs) show the error evolution 𝑑𝑓𝑖 for

each failure mode (represented by its name) and the global error 𝑑𝑔

(represented as Global Dev), as well as their relationship. Each individual

chart represents each strategy for the definition of subsets of faults. The

vertical blue line indicates the percentage of injected faults needed to

achieve 1% of error (global deviation) in each of the considered strategies

(that value seems to be a turning value, as explained below). It is important

to notice that, as described for the table values analysis, one should not

consider smaller incidental errors produced by smaller sets of faults. On the

other hand, besides the global deviation, it is also important to analyze the

individual deviation values for each one of the failure modes considered

(OK, CRASH, HANG and ERRORS), as, depending on the SUB

characteristics and on some specificities of the target system, a certain

failure mode can be more important and relevant than others.

Regarding the LOC approach in the WS experiments (from Figure

6-11 to Figure 6-15), for example, we can observe in the charts of Figure

6-11 that if the experiments were made starting with the functions with

greater LOC values (descending order - LOC Desc), from a certain order,

the global deviation value remains near zero and with minor changes. The

same behavior is noticed in the LOC Asc (in ascending order). However,

the convergence in LOC Desc is clearly quicker: 20% of the total injected

faults induce a global error near 1.3% (it is worth to recall that we are using

the worst-case scenarios). As already mentioned, this observation is

explained by the function-based analysis used in this study. Despite the

differences in the convergence speed, an analogous behavior holds for all

the other failure mode deviations. This behavior was not so evident in the

166 Experimental Evaluation of Faultload Reduction Strategies

discrete values presented in previous tables. The charts also show that,

considering the LOC Asc approach, injecting about 45% of the total

software fault injection considered, we can obtain a global deviation of

about 1%. Moreover, that value remains with minor changes in the

experiments immediately following and converges to zero as we inject the

remaining software faults.

One can also observe that, regardless of the metrics used to select the

targets, the convergence lines of the Asc approaches present similar

behaviors and the same holds for Desc orders (except for the Mi metric, as

explained below). This similarity seems to induce the definition of two

groups: one for each sorting option, Asc and Desc. In fact, the charts seem

to confirm that, regardless of the strategy used, the Asc order is the best for

very low errors (lower than or equal to 0.5%). We can state that the Desc

orders are the best ones for errors between 1% and 4%. An exception to this

rule is related to the Mi approach, in which an exchange of the charts can

be observed. This variation is justified by the definition of the

Maintainability index, Mi, which, as developed by P. Oman [Oman et al.

1992], is greater for smaller and less complex functions, in opposition to all

the other metrics. This observation seems to indicate 1% as a turning value,

where the Desc strategies start to be less efficient then the Asc ones

(reversed for the Mi strategy).

Despite the referred similarity of the presented charts, a more

detailed look shows that the Vg, B, and Fc approaches, in Desc order, reveal

a higher convergence of global deviation values up to about 2%. On the

other hand, for very low deviation values, in the order of magnitude of

0.5%, the LOC, Vg and B approaches, in Asc order, show a greater

efficiency. This confirms our observations from Table 6-3 - Percentage of

fault injections needed to achieve a given global deviation error limit in the

WS Experiments.

Experimental Evaluation of Faultload Reduction Strategies 167

(a)

(b)

Figure 6-11 - Deviations for each failure mode in the WS experiments,

considering the LOC strategy. (a) LOC Asc. (b) LOC Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

168 Experimental Evaluation of Faultload Reduction Strategies

(a)

(b)

Figure 6-12 - Deviations for each failure mode in the WS experiments,

considering the Vg strategy. (a) Vg Asc. (b) Vg Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

Experimental Evaluation of Faultload Reduction Strategies 169

(a)

(b)

Figure 6-13 - Deviations for each failure mode in the WS experiments,

considering the B strategy. (a) B Asc. (b) B Desc. The vertical blue line indicates

the percentage of injected faults needed to achieve a global deviation of 1%.

170 Experimental Evaluation of Faultload Reduction Strategies

(a)

(b)

Figure 6-14 - Deviations for each failure mode in the WS experiments,

considering the Mi strategy. (a) Mi Asc. (b) Mi Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

Experimental Evaluation of Faultload Reduction Strategies 171

(a)

(b)

Figure 6-15 – Deviations for each failure mode in the WS experiments,

considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. The vertical blue line indicates

the percentage of injected faults needed to achieve a global deviation of 1%.

172 Experimental Evaluation of Faultload Reduction Strategies

Concerning the MtQs experiments, like in the WS, we can observe

from the charts from Figure 6-16 to Figure 6-20, that all approaches lead to

convergence lines with similar behavior, considering their respective orders

(Asc or Desc), except for the Mi approach (justified by the definition of the

Maintainability index, Mi, as explained above). In these experiments, a

more detailed analysis of the charts confirms that the best strategy is still

the Vg Desc, for errors up to 2%. For errors less than 0.5%, the Mi Desc

criterion is the best choice to select the subset of faults.

Considering both benchmark systems, these charts confirm that the

best strategies for higher errors (greater than 2%) are those that have a

worse performance considering lower errors (around 0.5%), and vice-versa.

On the other hand, considering the behavior similarities of all the

approaches, even with different types of SUBs (the WS, representing

relative large and complex systems, and MtQs, representing a much

smaller benchmark system) the charts and the data suggest that the Vg

criteria (Asc, for errors lower than 0.5%, and Desc for greater errors) is a

good global choice to answer our initial question: how to choose an

adequate fault injection target, and thus reduce the total software fault

injection experiments, without restricting the benchmark scope.

Despite the better performance of the Vg strategy, the LOC approach

(in machine code) still shows to be a good strategy (in Asc order, for errors

lower than 0.5%, and Desc for greater errors). The LOC approach is of

particular importance because it is easier to obtain than all the other

software measures (though always more complex than the random

selection) and it does not require the availability of the target source code.

Furthermore, unlike the other software metrics, the LOC strategy does not

require the use of any complementary tool in order to analyze the code, as

it can be obtained directly from the analysis of the OS kernel binary.

Experimental Evaluation of Faultload Reduction Strategies 173

(a)

(b)

Figure 6-16 - Deviations for each failure mode in the MtQs experiments,

considering the LOC strategy. (a) LOC Asc. (b) LOC Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

174 Experimental Evaluation of Faultload Reduction Strategies

(a)

(b)

Figure 6-17 - Deviations for each failure mode in the MtQs experiments,

considering the Vg strategy. (a) Vg Asc. (b) Vg Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

Experimental Evaluation of Faultload Reduction Strategies 175

(a)

(b)

Figure 6-18 - Deviations for each failure mode in the MtQs experiments,

considering the B strategy. (a) B Asc. (b) B Desc. The vertical blue line indicates

the percentage of injected faults needed to achieve a global deviation of 1%.

176 Experimental Evaluation of Faultload Reduction Strategies

(a)

(b)

Figure 6-19 - Deviations for each failure mode in the MtQs experiments,

considering the Mi strategy. (a) Mi Asc. (b) Mi Desc. The vertical blue line

indicates the percentage of injected faults needed to achieve a global deviation of

1%.

Experimental Evaluation of Faultload Reduction Strategies 177

(a)

(b)

Figure 6-20 - Deviations for each failure mode in the MtQs experiments,

considering the Fc strategy. (a) Fc Asc. (b) Fc Desc. The vertical blue line indicates

the percentage of injected faults needed to achieve a global deviation of 1%.

178 Experimental Evaluation of Faultload Reduction Strategies

The results show that if we choose to start the WS experiments by the

OS kernel functions with lower Vg (Vg Desc approach), after the injection

of 25.05% of the total faults (5,230 fault injections), we obtain a 𝑑𝑔 (Global

Dev) value less or equal than 1%. The same happens for each one of the 𝑑𝑓𝑖

(deviations of individual failure modes). In this way, we can reduce the

fault injection experiments by approximately 75%, representing an

enormous save of time in carrying out the benchmark experiments.

Considering the total time needed to inject all the 20,875 faults in the WS

experiments, we can estimate the reduction time of the total experiments in,

approximately, 5,020 hours.

6.4 Proposal strategy for faultload

reduction

Considering the results of the experimental evaluation carried out

(presented in previous sections), a generic approach can be followed in

order to solve the problem of the large size of the faultload, which arises in

benchmarking the dependability of large and complex systems.

The proposed approach consists in the generation of an accurate

faultload, specifically created for a given target system, and encompasses

the following steps:

1. Obtain the complete list of target functions that should be

considered as targets of the software fault injection (the OS kernel

functions were considered in the conducted experimentation

study).

2. Analyze all the functions listed in the previous step in order to

obtain the correspondent software metrics (Vg or LOC, according

to the results obtained in the experimental evaluation study). It is

worth pointing out that, despite the better global performance of

Experimental Evaluation of Faultload Reduction Strategies 179

the Vg strategy, the LOC approach also proved to be a good

strategy. Moreover, the LOC software metrics is a lot easier to

obtain than the Vg (even when compared with the other software

metrics), and it is does not require the availability of the source

code. The LOC metric can be directly obtained from the target

functions binary code, which make this software metric especially

adequate for COTS and COTS-based systems.

3. Sort the list of functions based on the selected software metric and

in the intended order. According to the results obtained in the

experimental study, for a greatest reduction on the size of the

faultload, the descending order should be used. On the other

hand, if it is accepted to have a faultload with a greater number of

faults, the ascending order should be chosen instead.

4. Generate the faultload using the G-SWFIT (Generic Software

Fault Injection) methodology [Durães et al. 2006] to determine the

set of software faults that can be injected in each of the functions

listed in the previous step (the presented research work used a

tool provided by the author of the G-SWFIT methodology). The

G-SWFIT technique consists in the scanning of the target code for

specific low-level instruction patterns (sequence of machine code

instructions) in order to emulate high-level software faults

through the modification of the ready-to-run binary code of the

target software component. It uses a set of operators for software

fault emulation through low-level code mutations based on an

extensive collection of real software faults, found in field.

5. Tailor the whole set of faults generated in order to obtain a

reduced size faultload containing a given number of faults. The

error imposed by the reduction of the number of faults can be

estimated, according to our research. In other words, the faultload

is calibrated for a given error bound. According to the conducted

experimental study, using the Vg Desc or the LOC Desc

180 Experimental Evaluation of Faultload Reduction Strategies

approaches, the complete faultload can be reduced to merely

4,000 software faults in order to obtain an expected maximum

error of 2% (which seems to be a reasonable error for

dependability benchmarks). Moreover, this faultload is adequate

for dependability benchmarks, regardless of the complexity of the

BT system (as evidenced by the values presented in Tables 6-3

and 6-4).

It should be noticed that the faultload generated using the proposed

approach is specifically generated for the selected target system. Different

targets systems should originate different faultloads.

As a result of the presented study, two ready-to-use calibrated

faultloads are made available in http://eden.dei.uc.pt/~pncosta/. They

were specifically generated for the target system used in the fault injection

campaign carried out on this research work – the Linux RedHat 7.3

operating system (kernel version 2.4.18-3). The faultloads were generated

according to the mentioned approach, using the Vg Desc and the LOC Asc

strategies and contain 4,000 and 13,000 software faults, respectively.

Concerning the errors induced by the use of the provided faultloads, our

research study suggests that it is lower than 2% for the faultload based on

the Vg Desc (the smaller faultload) and lower than 0.5% for the faultload

based on LOC Asc (the larger faultload).

The faultloads generated with the proposed approach are especially

useful for dependability benchmarks, as the error induced by the reduction

of the number of faults was estimated on the presented experimental

evaluation and measured against the results obtained with the complete

faultload.

Experimental Evaluation of Faultload Reduction Strategies 181

6.5 Summary

This chapter described the testbed used to evaluate different

strategies to guide the fault injection target selection of dependability

benchmarks and reduce the required fault injection experiments, without

restricting the benchmark scope and keeping accurate results. It presents

and analyzes the results obtained with an exhaustive set of fault injection

experiments using a comprehensive faultload, which includes all possible

software target locations of an operating system kernel (the complete set of

the kernel OS functions, referred in kernel symbols table), resulting in one

of the most extensive fault injection studies ever reported. More than 41

thousand of continuous fault injection experiments, carried out in more

than 2 years, show that the fault injection experiments of a dependability

benchmark can be reduced by more than 75%, maintaining the induced

error below 1%. The effectiveness of the innovative approach is

demonstrated with two real and different systems: a web-server

dependability benchmark and a large-scale integer vector sort application

extended with performance and quality measures.

The proposed methodology allows answering the problem of

extending the use of dependability benchmarks to large and complex

systems, making them feasible and practicably applied. It is worth pointing

out that such benchmarks usually take several months or even years due to

its large faultload size, which means that, in practice, it is not possible to

execute them.

183

Chapter 7

7 Conclusion

This is the last chapter of this thesis and it provides an overview of the

research work carried out in recent years, in the field of dependability

benchmarking, at the Software and Systems Engineering Group of the Center for

Informatics and Systems of the University of Coimbra.

7.1 Overview and future work

ependability benchmarks should provide generic, cost-effective

and reproducible ways for characterizing the behavior of

components and computer systems in the presence of faults,

allowing the quantification of dependability attributes or the

characterization of system into well-defined dependability classes.

A key element in dependability benchmarks is the existence of a

suitable fault injection tool to support the experiments. Dependability

benchmarks must include fault injectors with very specific features: (i) they

should be very easy to install and use, without the need for any complex

setup or installation procedure; (ii) have high level of portability; (iii) have

very low intrusiveness; (iv) be capable of injecting faults in both user and

D

184 Conclusion

system spaces; (v) and in code and data segments of any process,

irrespective of their complexity; (vi) be independent of the availability of

any source code of any system component or user process, (vii) be

dynamically linked into a target system; and (viii) be compatible with the

latest and most advanced software fault models.

Despite all the developments, none of the existing fault injection tools

(presented in section 2.4.3) satisfied these requirements. In order to fulfill

this gap, this work presents a pioneering SWIFI tool, named DBench-FI

(Dependability Benchmarking Fault Injector), specially developed for

dependability benchmarking. It has a unique set of features, required by

that type of application: very low intrusiveness, capable of injecting both in

user and system space, does not require application source code to be

available, can be dynamically loaded into a system, and can inject even on

applications that are already running when it is installed.

The methodology used in its design, based on the OS kernel schedule

upgrading algorithm, together with a carefully crafted integration with the

scheduler and memory management functions, constitutes the main

innovation of this SWIFI tool, and is responsible for the unique

characteristics presented by the fault injector. The DBench-FI enables a

breakthrough in the areas of fault injection and dependability

benchmarking, opening new perspectives hardly achievable with existing

methods and making it one of the most versatile fault injectors available.

The current version of DBench-FI is adequate for the injection of

hardware faults (intermittent and transient faults) in the systems memory,

as well as for software faults, according to the G-SWFIT model - the

state-of-the-art in software faults model. It is a central tool for the

experimental evaluation presented in this thesis (chapter 6). Future

versions of DBench-FI can be easily extended to include the majority of the

existing fault models of Xception fault injector [Carreira et al. 1998b], such

as spatial fault triggers and the capability to inject faults in processor

resources.

Conclusion 185

Another major challenge in the design of dependability benchmarks

is the definition of the faultload. Concerning software faultloads, that

difficulty is further increased because of the known difficulties in assuring

fault representativeness and the need of complex fault emulation methods.

Faultloads based on software faults had already been proposed.

However, in order to assure the necessary representativeness, they require

a large number of fault injection locations and, consequently, a huge

number of experiments. That problem is even more dramatic in large and

complex systems, where the execution time of those dependability

benchmarks can take months or years due the mentioned faultload size.

This thesis presents the results of comprehensive fault injection

experiments performed during more than two years of continuous fault

injection runs in two completely different applications: a real web-server

dependability benchmark and a large-scale integer vector sort client-server

application extended with performance and quality metrics. The goal was

to define the best strategy to reduce the number of faults while keeping

accurate dependability benchmark results.

The reduction of the number of faults is achieved by an approach to

guide the fault injection target selection in the code of the target systems.

The goal is to identify the software fault target locations that assure good

accuracy in the dependability benchmarks experiments while reducing

dramatically the time needed to run the benchmark (because the number of

faults is highly reduced).

The fault reduction strategy is based on measures of the target code,

namely, Lines Of Code (LOC), the Extended Cyclomatic Complexity (Vg),

Halstead’s Delivery Bugs (B), Maintainability Index (Mi) and Functional

Complexity (Fc). A randomly chosen subset of targets among the full set of

injection targets, following a uniform distribution, is also studied (RandSF).

In this case, for each subset, percentage of the full set, 2000 experiences

have been carried out.

186 Conclusion

The results presented in this thesis extends our initial experimental

study [Costa et al. 2009] (presented in section 5.3.1- Preliminary assessment

study), as we consider the whole operating system kernel of the SUB

(referred by the exported kernel symbols table) as the set of targets to

establish the benchmark reference results instead of just the OS system calls

used by the benchmark.

A study of the quality and usefulness of the dependability

benchmark results for each approach is presented, and we can conclude

that, in what concerns software fault injection, using the Vg criteria to

choose the target functions for fault injection, allow a faster achieving of

identically results, with respect to failure modes, globally and individually

considered. The results show that we can reduce the fault injection

experiments by approximately 75%, maintaining the induced error (global

deviation) below 1%. This represents an enormous save of time in carrying

out the benchmark experiments, especially in large and complex systems.

Despite this choice, the LOC approach (in machine code) also proved

to be a valid and interesting strategy, especially if we consider that it is

easier to obtain than all the other measures. Moreover, it is highly suitable

for systems where the source code is not available for analysis or whether

the tool for the software metrics analysis is unavailable. Furthermore,

without being the best approach, random subsets of the software fault

injection targets have also showed to be a valid strategy.

Besides these conclusions, some other relevant observations should

be taken into account:

 In order to guide the target selection and reduce the number of

faults, the best strategies for higher errors (within the range of 1%

to 4%) are the worst ones when errors are intended to be smaller

(lower than 0.5%), and vice- versa.

 The experiments performed with either a complex and large

workload or a smaller and simpler one show that, regardless of

Conclusion 187

the strategy used, the ascending order (Asc) is the best one for

very low errors (lower or equal to 0.5%). It can be stated that the

descending orders (Desc) are the best for errors between 1% and

4%. The Mi criteria is an exception to this rule, since, contrariwise

to what happens with the other metrics, Mi is greater for smaller

and less complex functions.

 In order to keep the error lower than 0.5%, the number of injected

faults is identical in both benchmark systems, despite the great

differences in their workloads. This reveals independence

between the number of faults and the complexity of the

benchmark target, for very low errors.

It should be noticed that the complete workload-faultload space is in

fact huge and testing the complete space is truly impossible. Thus, as

performing a large set of experiments covering many points in the space

workload-faultload is unfeasible, this study uses a worst case example,

which is a completely different workload, concerning the workload

complexity and the required computer resources. In fact, the integer vector

sort application is very different from the real web-server dependability

benchmark. The similarity of the obtained results in these two completely

different systems seems to indicate that is reasonable to assume that the

reduced fault set is a good approximation of the comprehensive fault set. It

is worth mentioning that the faults are applied to the operating system and

the different workloads represent different points in the workload space.

Future implementations of dependability benchmarks may

encompass compact and representative faultloads generated according the

approach presented in this research study. The presented methodology can

be used in the future with new fault injection targets in order to generate

accurate and specific faultloads. New applications can also be used as

benchmark targets in order to evaluate the impact of the injected faults.

188 Conclusion

7.2 Contributions

Taken as a whole, the main contributions of this work can be

summed up in the following items:

 To provide a software fault injector compatible with the

demanding requirements of dependability benchmarks. Namely,

it should be very easy to install and use, have very low

intrusiveness, be capable of injecting faults in both user and

system spaces, and in code and data segments of any process,

irrespective of their complexity, be independent of the availability

of any source code of any system component or user process, be

dynamically linked into a target system and be compatible with

the latest and most advanced software fault models. Concerning

this last requirement, it was considered essential the compatibility

of the fault injector with the Generic Software Fault Injection

Technique (G-SWFIT) [Durães et al. 2006] – the state-of-the-art in

software faults model. G-SWFIT is based on a set of operators for

software fault emulation through low-level code changes in the

target executable code, mimicking the most common types of real

software faults. These operators resulted from a field study based

on the analysis and classification of more than 600 software faults

found in real software applications. The developed tool consists

in one of the most versatile software fault injectors currently

available.

 To define and evaluate different hypothesis for the reduction of

the number of software fault injection experiments. The

evaluation is based on the analysis of the error obtained in

consequence of the reduction of the fault injection experiments.

This study uses the results obtained with a comprehensive

faultload that includes all possible software target locations (the

complete set of the kernel OS functions, referred in kernel

Conclusion 189

symbols table), resulting in one of the most extensive fault

injection studies ever reported.

 To present a strategy to guide the fault injection target selection of

dependability benchmarks and to reduce the required number of

software faults, thus decreasing the execution time of the

benchmark, maintaining, simultaneously, their usefulness and

representativeness. The proposed methodology is especially

useful in large and complex systems, where the experimentation

time can be severely reduced without compromising the

dependability benchmark results. Conducted experiments

showed that the fault injection experiments can be reduced by

more than 75%, maintaining the induced error below 1%. This

method will open the possibility to extend the dependability

benchmarks to large and complex systems, making them feasible

and practicably applied (such benchmarks usually take several

months or even years due to its large faultload size).

 To provide accurate and ready-to-use faultloads, compatible with

a given target system. These faultloads can be used as the

faultload component of dependability benchmarks, as the error

introduced by the reduction of the number of faults was

measured against the results obtained with the complete

faultload. This strategy allows us to provide reduced sized

faultloads that assure an error lower than a given limit.

191

8 Bibliography

[Aidemark et al. 2001] Aidemark, J., Vinter, J., Folkesson, P., Karlsson, J.,

“GOOFI: Generic Object-Oriented Fault Injection Tool”,

IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN 2001, pp. 83-88, 2001.

[Albinet et al. 2004] Albinet, A., Arlat, J., Fabre, J.-C., “Characterization of

the Impact of Faulty Drivers on the Robustness of the Linux

Kernel”, Proc. of the IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN 2004, pp. 867-876,

2004.

[Almeida et al. 2010] Almeida, R., Poess, M., Nambiar, R., Patil, I., Vieira,

M., “How to Advance TPC Benchmarks with Dependability

Aspects”, Proc. of the Second TPC Technology Conference on

Performance Evaluation, Measurement and Characterization of

Complex Systems, TPCTC 2010, pp. 57-75, Sep. 2010.

 [Andrews et al. 2005] Andrews, J.H., Briand, L.C., Labiche, Y., ”Is Mutation

an Appropriate Tool for Testing Experiments?”, Proc. 27th Int.

Conference on Software Engineering, ICSE 2005, pp. 402-411,

May 2005.

[Arlat et al. 1990a] Arlat J., Crouzet, Y., Laprie, J.-C., “Fault Injection for the

Experimental Validation of Fault Tolerance”, LAAS Report

90415, 1990.

[Arlat et al. 1990b] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C.,

Laprie, J.-C., Martins, E., Powell, D., “Fault Injection for the

Dependability Validation: A Methodology and Some

192 Bibliography

Applications”, IEEE Transactions on Software Engineering, Vol.

16, No. 2, pp. 166-182, Feb, 1990.

[Arlat et al. 1993] Arlat, J., Costes, A., Crouzet, Y., Laprie, J.-C., Powell, D.,

“Fault Injection and Dependability Evaluation of Fault-Tolerant

Systems”, IEEE Transaction on Computers, Vol. 42, No. 9, pp.

913-923, Aug. 1993.

[Arlat 2002] Arlat, J., “From Experimental Assessment of Fault-Tolerant

Systems to Dependability Benchmarking”, Workshop on Fault-

Tolerant Parallel and Distributed Systems, FTPDS’02, joint

organized with the International Parallel and Distributed

Processing Symposium, IPDPS’02, April 2002.

[Arlat et al. 2002] Arlat, J., Fabre, J.-C., Rodríguez, M., Sales, F.,

“Dependability of COTS Microkernel-Based Systems”, IEEE

Transactions on Computers, Vol. 51, No. 2, pp. 138-163, Feb,

2002.

[Avizienis 1985] Avizienis, A., “The N-Version Approach to Fault-Tolerant

Software”, IEEE Trans. on Software Engineering, Vol. SE-11,

No. 12, pp. 1491-1501, Dec. 1985.

[Avizienis et al. 2000] Avizienis, A., Laprie, J.-C., Randell, B., “Fundamental

Concepts of Dependability”, Proc. 3rd Information

Survivability Workshop, ISW, pp. 7-12, Oct. 2000.

[Avizienis et al. 2004] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.,

“Basic Concepts and Taxonomy of Dependable and Secure

Computing”, IEEE Trans. on Dependable and Secure

Computing, Vol. 1, No. 1, pp. 11-33, 2004.

[Avresky et al. 1996] Avresky, D., Arlat, J., Laprie, J.-C., Crouzet, Y., “Fault

Injection for Formal Testing of Fault Tolerance”, IEEE

Bibliography 193

Transactions on Reliability, Vol. 45, No. 3, pp. 443-455, Sept.

1996.

[Barbosa et al. 2001] Barbosa, E.F., Maldonado, J.C., Vincenzi, A.M.R.,

“Toward the Determination of Sufficient Mutant Operators for

C”, Software Testing, Verification and Reliability, vol. 11, no. 2,

pp. 113-136, May 2001.

[Barbosa et al. 2011] Barbosa, R., Karlsson, J., Yu, Q., Mao, X., “Toward

Dependability Benchmarking of Partitioning Operating

Systems”, Proc. of the IEEE/IFIP 41st Int. Conf. on Dependable

Systems and Networks, DSN 2011, pp. 422-429, June 2011.

[Basso et al. 2009] Basso, T., Moraes, R., Sanches, B., Jino, M., “An

Investigation of Java Faults Operators Derived from a Field

Data Study on Java Software Faults”, Workshop de Testes e

Tolerância a Falhas, pp. 1-13, 2009.

 [Blair et al. 1992] Blair, M., Obenski, S., and Bridickas, P., “Patriot Missile

Defense: Software Problem Led to System Failure at Dhahran,

Saudi Arabia”, Tech. Report GAO/IMTEC-92-26, U.S. General

Accounting Office, Feb. 1992.

[Bovet et al. 2005] Bovet, D.P., Cesati, M., Understanding the Linux Kernel,

3rd Ed., O'Reilly Media, Nov. 2005.

 [Brown et al. 2000] Brown, A., Patterson, D.A., “Towards Availability

Benchmark: A Case Study of Software RAID Systems,” Proc.

USENIX Ann. Technical Conf., pp. 263-276, June 2000.

[Brown et al. 2001] Brown, A., Patterson, D.A., “To Err is Human”, First

Workshop on Evaluating and Architecting System

Dependability, EASY 2001, 2001.

[Brown et al. 2002] Brown, A., Chung, L.C., Patterson, D.A., “Including

Human Factor in Dependability Benchmarks”, International

194 Bibliography

Conference on Dependable Systems and Networks, DSN 2002,

2002.

[Brown et al. 2004a] Brown, A., Chung, L., Kakes, W., Ling, C., Patterson,

D.A., “Dependability Benchmarking of Human-Assisted

Recovery Processes”, IEEE/IFIP Int. Conf. Dependable Systems

and Networks, DSN 2004, Florence, Italy, pp. 405-410, June

2004.

[Brown et al. 2004b] Brown, A., Hellerstein, J., Hogstrom, M., Lau, T.,

Lightstone, S., Shum, P., Yost, M. P., ”Benchmarking

Autonomic Capabilities: Promises and Pitfalls”, Proc. Int. Conf.

on Autonomic Computing (ICAC’04), 2004.

[Brown et al. 2004c] Brown, A., Hellerstein, J., ”An Approach to

Benchmarking Configuration Complexity”, Proc. of the

11thACM SIGOPS European Workshop, Leuven, Belgium,

September 2004.

[Brown et al. 2005] Brown, A., Redlin, C., ”Measuring the Effectiveness of

Self-Healing Autonomic Systems”, Proc. 2nd Int. Conf. on

Autonomic Computing (ICAC’05), 2005.

[Buchacker et al. 2003] Buchacker, K., Tschaeche, O., “TPC Benchmark-C

Version 5.2 Dependability Benchmark Extensions”,

http://www.faumachine.org/papers/tpcc-depend.pdf, 2003.

[Budd 1981] Budd, T., “Mutation Analysis: Ideas, Examples, Problems, and

Prospects”, Computer Program Testing, (Eds., Chandrasekaran,

B., Radicchi, S.), pp. 129-134. North Holland, 1981.

[Budd et al. 1982] Budd, T., Angluin, D., “Two Notions of Correctness and

Their Relation to Testing”, Acta Informatica, vol. 18, no. 1,

pp. 31-45, Mar. 1982.

Bibliography 195

[Carey et al. 1993] Carey, M., Witt, D., Naughton, J., “The OO7 Benchmark”,

Proceedings of the 1993 ACM SIGMOD international

conference on Management of data, SIGMOD 1993, pp. 12-21,

May 1993.

 [Carreira et al. 1995] Carreira, J., Madeira, H., Silva, J. G., “Xception:

Software Fault Injection and Monitoring in Processor

Functional Units”, 5th IFIP Working Conference on Dependable

Computing for Critical Applications (DCCA-5), Sep. 1995.

[Carreira et al. 1998a] Carreira, J., Silva, J.G., “Why do Some (weird) People

Inject Faults?”, ACM Software Engineering Notes, pp. 42-43,

Jan. 1998.

[Carreira et al. 1998b] Carreira, J., Madeira, H., Silva, J.G., “Xception: A

technique for the Experimental Evaluation Dependability in

Modern Computers”, IEEE Trans. Software Eng., Vol. 24, Nº2,

pp. 125-136, Feb. 1998.

[Carreira et al. 1999] Carreira, J., Costa, D., Silva, J.G., “Fault injection spot-

checks computer system dependability”, IEEE Spectrum, vol.

36, no. 8, pp. 50-55, Aug. 1999.

[Carter 2006] Carter, P.A., PC Assembly Language,

http://www.drpaulcarter.com/pcasm/, July 2006.

[CASDCST 1992] Committee to Assess the Scope and Direction of

Computer Science and Technology of the National Research

Council, “Computing the Future”, Communications of ACM,

vol. 35, no. 11, pp. 30-40, Nov. 1992.

[Chidamdber et al. 1991] Chidamber, S., Kemerer, C., “Towards a Metrics

Suite for Object Oriented Design”, 6th Annual ACM Conference

on Object Oriented Programming Systems, Languages and

Applications, OOPSLA’91, Oct. 1991.

196 Bibliography

 [Chillarege et al. 1991] Chillarege, R., Kao, W., Condit, R., “Defect Type and

its Impact on the Growth Curve”, Proc. 13th Intl. Conf. on

Software Engineering, pp- 246–255, 1991.

[Chillarege et al. 1992] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M.,

Moebus, D., Ray, B., Wong, M., “Orthogonal Defect

Classification – A Concept for In-Process Measurements”, IEEE

Transactions on Software Engineering, Vol. 18, No. 11, pp. 943-

956, Nov. 1992.

[Chillarege et al. 1995] Chillarege, R., Biyani, S., Rosenthal, J.,

“Measurement of failure rate in widely distributed software”,

Proc. 25th IEEE Int. Symposium on Fault Tolerant Computing,

FCTS-25, pp. 424-433, 1995.

[Chillarege 1996] Chillarege, R., “Orthogonal Defect Classification”,

Handbook of Software Reliability Engineering, (Ed., Lyu, M.),

IEEE Computer Society Press, McGraw-Hill, Chapter 9, 1996.

[Choi et al. 1992] Choi, G., Iyer, R., “Focus: An Experimental Environment

foo Fault Sensitivity Analysis”, IEEE Transactions on

Computers, Vol. 41, No. 12, pp. 1515-1526, Dec. 1992.

[Chou 1997] Chou, T., “Beyond Fault Tolerance”, IEEE Computer, Vol. 30,

No. 4, pp. 47-49, April 1997.

[Chrissis et al. 2003] Chrissis, M., Konrad, M., Shrum, S., CMMI: Guidelines

for process integration and product improvement, Addison-

Wesley Professional, 2003.

[Christmansson et al. 1996a] Christmansson, J., Chillarege, R., “Generation

of an Error Set that Emulates Software Faults Based on Field

Data”, Proc. 26th IEEE Fault Tolerant Computing Symp. (FTCS-

26), pp. 304-313, June 1996.

Bibliography 197

[Christmansson et al. 1996b] Christmansson, J., Santhanam, P., “Error

Injection Aimed at Fault Removal in Fault Tolerance

Mechanisms – Criteria for Error Selection Using Field Data on

Software Faults”, Proc. 7th IEEE Int. Symposium on Software

Reliability Engineering, ISSRE’96, Nov. 1996.

[Clark et al. 1995] Clark, J., Pradhan, D., “Fault Injection: A Method For

Validating Computer-System Dependability”, IEEE Computer,

vol. 28, no. 6, pp. 47-56, June 1995.

[CMT] Testwell Oy Ltd, CMT++ Tool, Version 5.0, http://www.testwell.fi/

cmtdesc.html, 2011.

 [Constantinescu 2005a] Constantinescu, C., “Neutron SER characterization

of Microprocessors”, IEEE Conferecnce on Dependable Systems

and Networks, DSN 2005, pp. 754-759, 2005.

[Constantinescu 2005b] Constantinescu, C., “Dependability Benchmarking

using Environmental Tools”, IEEE Annual Reliability and

Maintainability Symposium, pp. 567-571, 2005.

[Costa et al. 2003] Costa, P., Vieira, M., Madeira, H., Silva, J.G., “Plug and

Play Fault Injector for Dependability Benchmarking”, Proc. of

First Latin-American Symposium on Dependable Computing,

LADC 2003, pp. 8-22, Oct. 2003.

[Costa et al. 2009] Costa, P., Silva, J.G., Madeira, H., “Dependability

Benchmarking Using Software Faults: How to Create Practical

and Representative Faultloads”, Proc. 15th IEEE Pacific Rim

International Symp. on Dependable Computing, PRDC-15,

Shanghai, China, pp. 289-294, 2009.

[Cristian 1982] Cristian, F., "Exception Handling and Software Fault

Tolerance", IEEE Trans. on Computers, Vol. c-31, No. 6, June

1982.

198 Bibliography

[Cukier et al. 1999] Cukier, M., Powell, D., Arlat, J., “Coverage Estimation

Methods for Stratified Fault-Injection”, IEEE Trans. on

Computers, Vol. 48, No. 7, pp. 707-723, July 1999.

[Daran et al. 1996] Daran ,M., Thévenod-Fosse, P.: Software Error Analysis:

A Real Case Study Involving Real Faults and Mutations, Proc.

3rd Symp. on Software Testing and Analysis, ISSTA-3, San

Diego, USA, January, pp. 158-171, 1996.

[DBENCH] DBench – Dependability Benchmarking Project, Information

Society Technology, IST-2000-25425,

http://www.laas.fr/DBench/.

[DBENCH 2004] DBench - Dependability Benchmarking Project, European

IST Program, IST-2000-25425, Final Report, May 2004.

[Delamaro et al. 1996] Delamaro, M.E., Maldonado, J.C., “Proteum-A Tool

for the Assessment of Test Adequacy for C Programs,” Proc.

Conf. Performability in Computer Systems, pp. 79-95, July 1996.

[DeMillo et al. 1978] DeMillo, R., Lipton, R.J., Sayward, F.G., “Hints on Test

Data Selection: Help for the Practicing Programmer”,

Computer, vol. 11, no. 4, pp. 34-41, Apr. 1978.

[DeMillo et al. 1979] DeMillo, R., Lipton, R.J., Perlis, A., “Social Processes

and Proofs of Theorems and Programs”, Communications of

the ACM, vol. 22, no. 5, pp. 271-280, May 1979.

[DeMillo et al. 1988] DeMillo, R., Guindi, D., McCracken, W., Offut, A.,

King, K., “An Extended Overview of the Mothra Software

Testing Environment”, Proc. ACM SIGSOFT/IEEE Second

Workshop on Software Testing, Verification, and Analysis, pp.

142-151, July 1988.

[Dijkstra 1972] Dijkstra, E., “The Humble Programmer”, Communications

of the ACM, vol. 15, no. 10, pp. 859-866, 1972.

Bibliography 199

[]Dimov et al. 2010] Dimov, A., Chandran, S., Punnekkat, S., Nasir, A.,

Azam, N., “Mutation Testing Framework for Software

Reliability Model Analysis and Reliability Estimation”, Proc. Of

the 6th Central and Eastern European Software Engineering

Conference (CEE-SECR), Moscow, Russia, pp. 163-169. Oct.

2010.

[Do et al. 2006] Do, H., Rothermel, G., “On the Use of Mutation Faults in

Empirical Assessments of Test Case Prioritization Techniques,”

IEEE Trans. on Software Engineering., vol. 32, no. 9, pp. 733-

752, Sept. 2006.

[Dowson 1997] Dowson, M., “The Ariane 5 Software Failure”. ACM

SIGSOFT Software Engineering Notes, vol. 22, no. 2, pp. 84,

Mar. 1997.

[Durães et al. 2002a] Durães, J., Madeira, H., “Characterization of Operating

Systems Behavior in the Presence of Faulty Device Drivers

Through Software Fault Emulation”, Proc. 2002 Pacific Rim Int.

Symp. on Dependable Computing (PRDC-02), Tsukuba, Japan,

pp. 201-209, 2002.

[Durães et al. 2002b] Durães, J., Madeira, H., “Emulation of Software Faults

by Educated Mutations at Machine-Code Level”, Proc. of the

13th IEEE Int. Symposium on Software Reliability Engineering,

ISSRE’02, pp. 329-340, Nov. 2002.

[Durães et al. 2003a] Durães, J., Madeira, H.: “Multidimensional

Characterization of the Impact of Faulty Drivers on the

Operating Systems Behavior”, IEICE (Institute of the

Electronics, Information and Communication Engineers)

Transactions on Information and Systems, vol. 86, part 12, pp.

2563-2570, 2003.

200 Bibliography

 [Durães et al. 2003b] Durães, J., Madeira, H.: “A Definition of Software

Fault Emulation Operators: A Field Data Study”, Proc. Int.

Conf. Dependable Systems and Networks, DSN 2003, San

Francisco, USA, 2003 (W. Carter Award).

[Durães et al. 2004a] Durães, J., Madeira, H., “Generic Faultloads Based on

Software Faults for Dependability Benchmarking”, Proc. Int.

Conf. on Dependable Systems and Networks, DSN2004,

Florence, Italy, IEEE CS Press, 2004.

[Durães et al. 2004b] Durães, J., Vieira, M., Madeira, H., “Dependability

Benchmarking of Web-Servers”, 23rd Int. Conf. on Computer

Safety, Reliability and Security, SAFECOMP 2004, Potsdam,

Germany, 2004.

[Durães et al. 2006] Durães, J., Madeira, H., “Emulation of Software Faults:

A Field Data Study and a Practical Approach”, IEEE

Transactions on Software Engineering, vol. 32, no. 11, pp. 849-

867, November 2006.

[Elling et al. 2008] Elling, R., Pramanick, I., Mauro, J., Bryson, W., Tang, D.,

“Analytical Reliability, Availability and Serviceability

Benchmarks”, Dependability Benchmarking for Computer

Systems, (Eds. Kanoun, K., Spainhower, L.), Wiley-IEEE

Computer Society Press, 2008.

[Folkesson et al. 1998] Folkesson, P., Svensson, S., Karlsson, J., “A

Comparison of Simulation Based and Scan Chain Implemented

Fault Injection”, Proc. 28th Int. Symposium on Fault-Tolerant

Computing, FCTS-28, pp. 284-293, June 1998.

[Friginal et al. 2011] Friginal, J, Andrés, D., Ruiz, J.-C., Moraes, R., “Using

Dependability Benchmarks to Support ISO/IEC SQuaRE”, 17th

IEEE Pacific Rim International Symposium on Dependable

Computing, PRDC 2011, pp. 28-37, Dec 2011.

Bibliography 201

[Fujita et al. 2012] Fujita, H., Matsuno, Y., Hanawa, T., Sato, M., kato, S.,

Ishikawa, Y., “DS-Bench Toolset: Tools for Dependability

Benchmarking with Simulation and Assurance”, Proc. of 42nd

IEEE/IFIP Int. Conf. on Dependable Systems and Networks,

DSN 2012, pp. 1-8 , June 2012.

[Ganek et al. 2003] Ganek, A.G., Corbi, T.A., “The dawning of the

autonomic computing era”, IBM Systems Journal, Vol. 42, Issue

1, pp. 5-18, January 2003.

[Garber 1996] Garber, L., “AOL Blackout Indicates Need for Reliable on-

Line Systems”, IEEE Computer, vol. 19, no. 9, pp. 16-18,

September 1996.

[Geist et al. 1992] Geist, R., Offutt, A., Harris Jr., F., “Estimation and

Enhancement of Real-Time Software Reliability through

Mutation Analysis,” IEEE Trans. on Computers, vol. 41, no. 5,

pp. 550-558, May 1992.

[Goswami et al. 1997] Goswami, K., Iyer, R., Young, L. “DEPEND: A

Simulation-Based Environment for System Level Dependability

Analysis”, IEEE Transactions on Computers, Vol. 46, No. 1,

pp. 60-74, Jan. 1997.

[Guerra et al. 2004] Guerra, P., Rubira, C., Romanovsky, A., Lemos, R., “A

Dependable Architecture for COTS-Based Software Systems

using Protective Wrappers”, Architecting Dependable Systems

II, volume 3069 of Lecture Notes in Computer Science,

Springer-Verlag, Berlin, Germany, pp. 144-166, 2004.

[Gray 1985] Gray, J., “Why Do Computers Stop and What Can Be Done

About It?”, Tandem Technical Report 85.7, June 1985.

202 Bibliography

[Gray 1990] Gray, J., “A Census of Tandem Systems Availability between

1985 and 1990,” IEEE Trans. Reliability, vol. 39, no. 4,

pp. 409-418, Oct. 1990.

[Gray et al. 1991] Gray, J., Siewiorek, D., “High-Availability Computer

Systems”, Computer, vol. 24, no. 9, pp. 39-48, Sept. 1991.

[Grottke et al. 2007] Grottke, M., Trivedi, K.S., “Fighting Bugs: Remove,

Retry, Replicate, and Rejuvenate”, IEEE Computer, vol. 40,

no. 2, pp. 107-109, Feb. 2007.

 [Halstead 1977] Halstead, M., “Elements of Software Science”, Operating

and Programming Systems Series, Volume 7. New York,

Elsevier, 1977.

[Hamlet 1977] Hamlet, R., “Testing Programs with the Aid of a Compiler”,

IEEE Transactions on Software Engineering, Vol. SE-3, No.4,

pp. 279-290, July 1977.

[Han et al. 1993] Han, S., Rosenberg, H., Shin, K., “DOCTOR: An Integrated

Software Fault Injection Environment”, Technical Report,

University of Michigan, 1993.

[Henry et al. 1981] Henry, S., Kafura, D., “Software Structure Metrics Based

on Information Flow”, IEEE Transactions on Software

Engineering, vol. SE-7, no. 5, pp. 510-518, Sept. 1981.

[Hosmer et al. 1989] Hosmer, D., Lemeshow, S., Applied Logistic

Regression, John Wiley & Sons, 1989.

[Hsueh et al. 1997] Hsueh, M.-C., Tsai, T.K., Iyer, R.K., “Fault Injection

Techniques and Tools”, IEEE Computer, Vol. 30, No. 4, pp. 75-

82, 1997.

[Hutchins et al. 1994] Hutchins, M., Foster, H., Goradia, T., Ostrand, T.,

“Experiments on the Effectiveness of Dataflow- and

Bibliography 203

Controlflow-Based Test Adequacy Criteria,” Proc. Int. Conf. on

Software Engineering, pp. 191-200, May 1994.

[IEEE 1994] IEEE Standard Classification for Software Anomalies, IEEE Std

1044-1993, 1994.

[IEEE 2010] IEEE Standard Classification for Software Anomalies, IEEE Std

1044-2009, Revision of the IEEE Std 1044-1993, 2010.

[IBMACI] IBM Autonomic Computing Initiative,

http://www.research.ibm.com/autonomic, 2012.

[ISODIS 2009] International Organization for Standardization, “Product

development: software level”, ISO/DIS 26262-6, 2009.

[ISOIEC 2005] International Organization for Standardization, “ISO/IEC

25000: Software engineering-Software product Quality

Requirements and Evaluation (SQuaRE) - Guide to SQuaRE”,

2005.

 [ISOIEC 2010] International Organization for Standardization, “ISO/IEC

25045: Systems and software engineering – Systems and

software Quality Requirements and Evaluation

(SQuaRE) - Evaluation module for recoverability”, 2010.

 [Iyer 1995] Iyer, R., “Experimental Evaluation”, 25th IEEE Int. Symposium

on Fault Tolerant Computing, FCTS-25, Special Issue Silver

Jubilee, pp. 115-132, Jun1 1995.

[Jalote 1994] Jalote, P., Fault Tolerance in Distributed Systems, Prentice

Hall, 1994.

[Jarboui et al. 2002] Jarboui, T., Arlat, J., Crouzet, Y., Kanoun,K.,

“Experimental Analysis of the Errors Induced into Linux by

Three Fault Injection Techniques”, International Conference on

204 Bibliography

Dependable Systems and Networks, DSN 2002, pp. 331-336,

June 2002.

[Jarboui et al. 2003] Jarboui, T., Arlat, J., Crouzet, Y., Kanoun, K., Marteau,

T., “Impact of Internal and External Software Faults on the

Linux Kernel,” IEICE (Institute of the Electronics, Information

and Communication Engineers) Transactions on Information

and Systems, Special Issue on Dependable Computing, vol.

E86-D, no. 12, pp. 2571-2578, December 2003.

[Jenn et al. 1995] Jenn, E., Arlat, J., Rimén, M., Ohlsson, J., Karlsson, J.,

“Fault Injection into VHDL Models: The MEFISTO Tool”,

Predictably Dependable Computing Systems, (Eds. Randell, B.,

Laprie, J.-C., Kopetz, H., Littlewood, B.), Springer-Verlag, pp.

329-346, 1995.

[Jia et al. 2011] Jia, Y., Harman, M, “An Analysis and Survey of the

Development of Mutation Testing”, IEEE Trans. on Software

Engineering, vol. 37, no. 5, Sep./Oct. 2011.

 [Johnson 1989] Jonhson, B. W., Design and Analysis of Fault-Tolerant

Digital Systems, Addison Wesley, 1989.

[Kalakech et al. 2004] Kalakech, A., Kanoun, K., Crouzet, Y., Arlat, J.,

“Benchmarking The Dependability of Windows NT4, 2000 and

XP”, Proc. Int. Conf on De-pendable Systems and Networks,

DSN 2004, Florence, Italy, IEEE CS Press, 2004.

[Kalyanakrishnam et al. 1999] Kalyanakrishnam, M., Kalbarczyk, Z., and

Iyer, R., “Failure Data Analysis of a LAN of Windows NT Based

Computers,” Proc. Symp. Reliable Distributed Database

Systems (SRDS-18), pp. 178-187, 1999.

Bibliography 205

[Kanawati et al. 1995] Kanawati, G., Kanawati, N., Abraham, J., “FERRARI:

A Flexible Software-Based Fault and Error Injection System”,

IEEE Trans. Computers, Vol. 44, Nº 2, Feb. 1995.

[Kanoun et al. 1996] Kanoun, K., Borrel, M., “Dependability of

Fault-Tolerant Systems - Explicit Modeling of the Interactions

between Hardware and Software Components”, IEEE Int.

Computer Performance & Dependability Symposium, IPDS’96,

pp. 252-261, 1996.

[Kanoun et al. 1997] Kanoun, K., Kaâniche, M., Laprie, J.-C., “Qualitative

and Quantitative Reliability Assessment”, IEEE Software, Vol.

14, Nº 2, pp. 77-87, March 1997.

[Kanoun et al. 2001] Kanoun, K., Arlat, J., Costa, D., Cin, M.D., Gil, P.,

Laprie, J.-C., Madeira, H., and Suri, N., “DBench: Dependability

Benchmarking,” Proc. Supplement of the IEEE/IFIP Int’l Conf.

Dependable Systems and Networks, DSN 2001, 2001.

[Kanoun et al. 2002] Kanoun, K, Madeira, H., Arlar, J., “A Framework for

Dependability Benchmarking”, DSN Workshop on

Dependability Benchmarking, jointly organized with DSN-2002,

June 2002.

[Kanoun et al. 2005] Kanoun, K., Crouzet, Y., Kalakech, A., Rugina, A.-E.,

Rumeau, P., “Benchmarking the Dependability of Windows

and Linux using PostMark Workloads”, Proc. International

Symposium on Fault-Tolerant Computing, pp. 11-20, IEEE

Computer Society, 2005.

[Kanoun et al. 2006] Kanoun, K., Crouzet, Y., “Dependability Benchmarks

for Operating Systems”, International Journal of Performance

Engineering, 2(3), pp. 275-287, 2006.

206 Bibliography

[Kanoun et al. 2008] Kanoun, K., Spainhower, L., Dependability

Benchmarking for Computer Systems, Wiley-IEEE Computer

Society Press, 2008.

[Kao et al. 1993] Kao, W., Iyer, R., Tand, D., “FINE: A Fault Injection and

Monitoring Environment for Tracing UNIX System Behavior

Under Faults”, IEEE Trans. Software Eng., Vol. 19, No. 11, pp.

125-136, Nov. 1993.

 [Kao et al. 1994] Kao, W., Iyer, R., “DEFINE: A Distributed Fault Injection

and Monitoring Environment”, Proc. Workshop Fault-Tolerant

Parallel and Distributed Systems, June 1994.

[Katcher 1997] Katcher, J., “PostMark: A New File System Benchmark”,

Technical Report TR-3022, Network Appliance Inc., October

1997.

[Kerrisk 2010] Kerrisk, M., The Linux Programming Interface: A Linux and

UNIX System Programming Handbook, No Starch Press; Oct.

2010.

[King et al. 1991] King, K., Offutt, A., “A Fortran Language System for

Mutation-Based Software Testing”, Software - Practice and

Experience, vol. 21, no. 7, pp. 685-718, July 1991.

[Knight 2002] Knight, J.C., “Safety Critical Systems: Challenges and

Directions”, Proc. 24th International Conference on Software

Engineering, pp. 547-550, 2002.

[Koopman et al. 1999a] Koopman, P., Madeira, H., “Dependability

Benchmarking & Prediction: A Grand Challenge Technology

Problem”, 1st IEEE Int. Workshop on Real-Time Mission-

Critical Systems: Grand Challenge Problems, Phoenix, Arizona,

USA, November 30, 1999.

Bibliography 207

[Koopman et al. 1999b] Koopman, P., DeVale, J., “Comparing the

Robustness of POSIX Operating Systems”, 29th Intl. Symp. on

Fault-Tolerant Computing, pp. 30-37, 1999.

[Koren el al. 2007] Koren, I., Krishna, C. M., Fault Tolerant Systems, Morgan

Kaufmann, 2007.

[Krebs 2008] Krebs, B., “Cyber Incident Blamed for Nuclear Power Plant

Shutdown”, Washington Post, June 5, 2008.

[Laprie 1985] Laprie, J.-C., “Dependable Computing and Fault Tolerance:

Concepts and Terminology”, Proc. 15-th IEEE Int’l Symp. on

Fault-Tolerant Computing, FCTS-15, pp. 2-11, 1985.

[Laprie 1995] Laprie, J.-C., “Dependable computing: Concepts, limits,

Challenges”, Invited paper IEEE 25th International Symposium

on Fault-Tolerant Computing, FTCS-25, Pasadena, California,

USA, pp. 42–54, June 1995.

[Laprie 1998] Laprie, J.-C., “Dependability of Computer Systems: from

Concepts to Limits”, IFIP International Workshop on

Dependable Computing and its Applications, Johannesburg,

pp. 108-126, Jan. 1998.

 [Lee et al. 1995] Lee, I., and Iyer, R.K., “Software Dependability in the

Tandem GUARDIAN System,” IEEE Trans. Software Eng., vol.

21, no. 5, pp. 455-467, May 1995.

 [Leveson et al. 1995] Leveson, N., Safeware: System Safety and computers,

Addison-Wesley, 1995.

[Li et al. 2006] Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., and Zhai, C., “Have

Things Changed Now?: An Empirical Study of Bug

Characteristics in Modern Open Source Software”, Proc. 1st

workshop on Architectural and System Support for Improving

Software Dependability, pp. 25-33, Oct 2006.

208 Bibliography

 [Lightstone et al. 2003] Lightstone, S., Hellerstein, J., Tetzlaff, W.,

Janson, P., Lassettre, E., Norton, C., Rajaraman, B., and

Spainhower, L., “Towards Benchmarking Autonomic

Computing Maturity,” Proc. First IEEE Conf. Industrial

Automatics (INDIN ’03), Aug. 2003.

[Lions 1996] Lions, J.L., “Ariane 5: Flight 501 Failure – Report by the

Inquiry Board”, ESA, July 1996.

[Love 2010] Love, R., Linux Kernel Development, Addison-Wesley

Professional, 3rd ed., July 2010.

[Lyu 1995] Lyu, M., Software Fault Tolerance, John Wiley & Sons, 1995.

[Lyu 1996] Lyu, M., Handbook of Software Reliability Engineering. IEEE

Computer Society Press, McGraw-Hill, 1996.

[Lyu et al. 2003] Lyu, M., Huang, Z., Sze, S., Cai, X., “An Empirical Study on

Testing and Fault Tolerance for Software Reliability

Engineering”, Proc. of 14th Int. Symposium on Software

Reliability Engineering 2003, ISREE 2003, pp. 119-130, Nov.

2003.

[Madeira et al. 2000] Madeira, H., Costa, D., Vieira, M., “On the Emulation

of Software Faults by Software Fault Injection”, Proc. Int.

Conference on Dependable Systems and Networks, NY, USA,

pp. 417-426, 2000.

[Madeira et al. 2001] Madeira, H., Koopman, P., “Dependability

Benchmarking: making choices in an n-dimensional problem

space”, Proc. of the First Workshop on Evaluating and

Architecting System dependabilitY, EASY’01, July 2001.

[Madeira et al. 2002] Madeira, H., Kanoun, K., Arlat, J., Costa, D., Crouzet,

Y., Cin, M. D., Gil, P., Suri, N., “Towards a Framework for

Bibliography 209

Dependability Benchmarking”, Proc. of the 4th European

Dependable Computing Conference, EDCC 2002, Oct. 2002.

[Madeira et al. 2003] Madeira, H., Durães, J., Vieira, M., “Emulation of

Software Faults: Representativeness and Usefulness”, Proc. of

First Latin-American Symposium on Dependable Computing,

LADC 2003, pp. 137-159, Oct. 2003.

[Masters et al. 2012] Masters, B., Moore, E., Pickard, J., “The upgrade that

downed Royal Bank of Scotland”, Financial Times, June 25,

2012.

[Mathur 1991] Mathur, A.P., “Performance, Effectiveness, and Reliability

Issues in Software Testing”, Proc. of the 15th Annual

International Computer Software and Applications Conf., pp.

604-605, Sept. 1991.

[Mauerer 2008] Mauerer, W., Professional Linux Kernel Architecture, Wrox,

Oct. 2008.

[Mauro et al. 2004] Mauro, J., Zhu, J., and Pramanick, I., “The System

Recovery Benchmark”, Proc of the 2004 Pacific Rim Int.

Symposium on Dependable Computing (PRDC’04), Papeete,

Tahiti, 2004.

[Maxwell 2002] Maxwell, S., Linux Core Kernel Commentary: In-Depth

Code Annotation, 2nd Ed., Coriolis, 2002.

[McCabe 1976] McCabe, T., “A Complexity Measure”, IEEE Transactions

on Software Engineering, Vol. SE-2, No. 4, pp. 308-320,

November 1976.

[Moraes et al. 2004] Moraes, R., Martins, E., “An Architecture-based

Strategy for Interface Fault Injection”, in Workshop on

Architecting Dependable Systems, IEEE/IFIP Int. Conf. on

Dependable Systems and Networks, DSN 2004, Italy, 2004.

210 Bibliography

 [Moraes et al. 2005a] Moraes, R., Martins, E., Mendes, N., “Fault Injection

Approach based on Dependence Analysis”, Proc. 1st Workshop

on Testing and Quality Assurance for Component-Based

Systems, TQACBS 2005, pp. 181-188, July 2005.

[Moraes et al. 2005b] Moraes, R., Martins, E., Poleti, E., Mendes, N., “Using

Stratified Sampling for fault injection”, Proc. 2nd Latin-

American Symp., LADC 2005, Salvador, Brazil, pp. 9-19,

October 2005.

[Moraes et al. 2006a] Moraes, R., Durães, J., Martins, E., Madeira, H., “A

field data study on the use of software metrics to define

representative fault distribution”, Proc. IEEE/IFIP Int. Conf. on

Dependable Systems and Networks, DSN 2006, Workshop on

Empirical Evaluation of Dependability and Security (WEEDS),

Philadelphia, USA, June, 2006.

[Moraes et al. 2006b] Moraes, R., Barbosa, R., Duraes, J., Mendes, N.,

Martins, E., Madeira, H., “Injection of Faults at Component

Interfaces and Inside the Component Code: Are They

Equivalent?”, Proc. 6th European Dependable Computing

Conf., pp. 53-64, Oct. 2006.

[Moraes et al. 2007] Moraes, R., Durães, J., Barbosa, R., Martins, E., Madeira,

H., “Experimental risk assessment and comparison using

software fault injection”, Proc. 37th Annual IEEE/IFIP Int.

Conf. on Dependable Systems and Networks, Dependable

Computing and Communications Symp., DCCS, Edinburgh,

UK, June, 2007.

[Moreira et al. 2003] Moreira, F., Maia, R., Costa, D., Duro, N., Rodríguez-

Dapena, P., Hjortnaes, K., “Static and Dynamic Verification of

Critical Software for Space Applications”, Data Systems In

Aerospace, DASIA 2003, 2003.

Bibliography 211

[Mresa et al. 1999] Mresa, E.S., Bottaci, L., “Efficiency of mutation operators

and selective mutation strategies: An empirical study”,

Software Testing, Verification and Reliability, vol. 9, no. 4, pp.

205-232, Dec. 1999.

[Musa 1996] Musa, J., Software Reliability Engineering, McGraw-Hill, 1996.

[MySQL] MySQL Market Share, http://www.mysql.com/why-

mysql/marketshare/, 2012.

[Namin et al. 2006] Namin, A.S., Andrews, H., “Finding Sufficient Mutation

Operators via Variable Reduction”, p. 5, Nov. 2006.

[Namin et al. 2007] Namin, A.S., Andrews, H., “On Sufficiency of Mutants”,

Proc. Second Workshop on Mutation Analysis, 29th Int.

Conference on Software Engineering, ICSE 2007, pp. 73-74, May

2007.

[Namin et al. 2008] Namin, A.S., Andrews, H., Murdoch, D., “Sufficient

Mutation Operators for Measuring Test Effectiveness”, Int.

Conference on Software Engineering, ICSE 2008, pp. 351-360,

May 2008.

[Nasa 2004] NASA Software Safety Guidebook, Nasa Technical Standard,

NASA-GB-8719.13, March 2004.

[Natella et al. 2013] Natella, R., Cotroneo, D., Durães, J., Madeira, H., , “On

Fault Representativeness of Software Fault Injection”, IEEE

Transactions on Software Engineering, vol. 39, no. 1, pp. 80-96,

Jan. 2013.

[Ng et al. 1996] Ng, W., Aycock, C., Rajamani, G., Chen, P., “Comparing

Disk and Memory’s Resistance to Operating System Crashes”,

Proc. 7th IEEE Symp. on Software Reliability Engineering,

ISSRE 96, New York, USA, October, 1996.

212 Bibliography

[Ng et al. 1999] Ng, W., Chen, P., “Systematic improvement of the Fault

Tolerance in the RIO file cache”, Proc. 29th IEEE Fault Tolerant

Computing Symp., FCTS-29, Madison, USA, 1999.

[Ng et al. 2001] Ng, W., Chen, P., “The Design and Verification of the Rio

File Cache”, IEEE Trans. on Computers, vol. 50, no. 4, April

2001.

[Oman et al. 1992] Oman, P., Hagemeister, J., "Metrics for Assessing a

Software System's Maintainability," Conference on Software

Maintenance, IEEE Computer Society Press, Los Alamitos, CA,

pp. 337-344, 1992.

[Offutt et al. 1993] Offutt, A.J., Rothermel, G., Zapf, C., “An Experimental

Evaluation of Selective Mutation”, Proc. of the 15th Int. Conf.

on Software Engineering, pp. 100-107, May 1993.

[Offutt et al. 1996] Offutt, A.J., Rothermel, G., “An Experimental Evaluation

of Selective Mutat ion”, ACM Trans. Software Engineering and

Methodology, vol. 5, no. 2, pp. 99-118, Apr. 1996.

 [Ozone] Ozone – Object Oriented Database Management System,

http://www.ozone-db.org/, 2004.

[Podgurski et al. 1993] Podgurski, A., Yang, C., Masri, W., “Partition

Testing, Stratified Sampling and Cluster Analysis”, Proc. Of 1st

ACM SIGSOFT Symposium on Foundations of Software

Engineering, USA, Los Angeles, pp. 169-181, 1993.

[PostgreSQL 2012] Worldwide Customers by Application Type/Workload,

EntrepriseDB PostgreSQL, http://www.enterprisedb.com/

customer-success/customers-by-application-workload, 2012.

[Powell et al. 1995] Powell , D., Martins, E., Arlat, J., Crouzet, Y.,

“Estimators for Fault Tolerance Coverage Evaluation”, IEEE

Trans. on Computers, Vol. 44, No. 2, pp. 261-274, Feb. 1995.

Bibliography 213

[Rela et al. 1996] Rela, M.Z., Madeira, H., Silva, J.G., “Experimental

Evaluation of the Fail-Silent Behavior in Programs with

Consistency Checks”, Proc. of the 1996 Symposium on Fault-

Tolerant Computing, FTCS-26, pp. 394-403, June 1996.

 [Rimén et al. 1993] Rimén, M., Ohlsson, J., Karlsson, J., Jenn, E., Arlat, J.,

"Design Guidelines of a VHDL based Simulation Tool for the

Validation of Fault Tolerance", Proc. 1st ESPRIT Basic Research

Project PDCS-2 Open Workshop, LAAS-CNRS, Toulouse,

France, pp. 461-483, September 1993.

[Rodríguez et al. 1999] Rodríguez, M., Salles, F., Fabre, J.-C., Arlat, J.,

“MAFALDA: Microkernel Assessment by fault injection and

design aid”, 3rd European Dependable Computing Conference,

EDCC-3, pp. 143-160, Sep. 1999.

[Rosenberg et al. 2000] Rosemberg, L., Stapko, R., Gallo, A., “Risk-based

Object Oriented Testing”, Proc. 13th International

Software/Internet Quality Week, QW2000, San Francisco,

California, USA, 2000.

[RSM] Resource Standard Metrics (RSM), Version 7.75,

http://msquaredtechnologies.com/, 2011.

[RTEMS] RTEMS Real Time Operating System, http://www.rtems.org/,

2012.

[Rufino et al. 2007] Rufino, J., Filipe, S., Coutinho, M., Santos, S., Windsor,

J., “ARINC 653 INTERFACE IN RTEMS”, Proc. Data Systems in

Aerospace Conference, DASIA 2007, Italy, June 2007.

[Ruiz et al. 2004] Ruiz, J.-C., Yuste, P., Gil, P., Lemus, L., “On Benchmarking

the Dependability of Automotive Engine Control

Applications”, Int’l Conf. Dependable Systems and Networks

(DSN’04), pp. 857-866, 2004.

214 Bibliography

[SAFE] SAFE: A Software Fault Emulation Tool,

http://www.mobilab.unina.it/SFI.htm, 2012.

[Sahinoglu et al. 1990] Sahinoglu, M, Spafford, E.H., “A Bayes Sequential

Statistical Procedure for Approving Software Products”, Proc.

of the IFIP Conference on Approving Software Products, ASP

1990, pp. 43-56, Sept. 1990.

[Sanches et al. 2011] Sanches, B., Basso, T., Moraes, R., "J-SWFIT: A Java

Software Fault Injection Tool”, Proc. 5th Latin American Symp.

on Dependable Computing, LADC, April 2011.

[Scott 2012] Scott, J., “RBS enters fifth day of software failures”,

ComputerWeekly.com, June 25, 2012.

[Segall et al. 1988] Segall, Z., Vrsalovic, D., Siewiorek, D., Yaskin, D.,

Kownacki, Barton, J., Dancey, R., Robinson, A., Lin, T., “FIAT –

Fault Injection Based Automated Testing Environment”, Proc.

18th Int. Symp. on Fault Tolerant Computing, FCTS-18, pp. 102-

107, June 1988.

[Siewiorek et al. 1992] Siewiorek, D.P., Swarz, R.S., Reliable Computer

Systems - Design and Evaluation, Digital Press, 1992.

[Silva et al. 2005] Silva, J.G., Madeira, H., Dependable Computing Systems:

Paradigms, Performance Issues, chapter 12: Experimental

Dependability Evaluation, Wiley-Interscience, 2005.

[Skarin et al. 2010] Skarin, D., Barbosa, R., Karlsson, J., “GOOFI-2: A Tool

for Experimental Dependability Assessment”, Proc. of the 40th

IEEE/IFIP Int. Conf. on Dependable Systems and Networks,

DSN 2010, pp. 557-562, June/Jul. 2010.

[SPEC] SPEC – Standard Performance Evaluation Corporation,

“SPECweb99 benchmark”, http://www.spec.org/web99.

Bibliography 215

[Sridharan et al. 2010] Sridharan, M., Namin, A.S., “Prioritizing Mutation

Operators based on Importance Sampling”, Proc. 21st Int.

Symposium on Software Reliability Engineering, pp. 378-387,

Nov. 2010.

[Stafford et al. 1997] Stafford, J., Richardson, D., Wolf, A., “Chaining: A

Software Architecture Dependence Analysis Technique”,

Technical Report CU-CS845-97, Department of Computer

Science, University of Colorado, Sep. 1997.

[Stott et al. 2000] Stott, D., Floering, B., Burke, D., Kalbarczyk, Z., Iyer, R.,

“NFTAPE: A Framework for Assessing Dependability in

Distributed Systems with Lightweight Fault Injectors”, Proc.

IEEE International Computer Performance and Dependability

Symposium, pp. 91-100, March 2000.

 [Sullivan et al. 1991] Sullivan, M., and Chillarege, R., “Software defects and

their impact on systems availability – A Study of field failures

on operating systems”, Proc. of the 21st IEEE Fault Tolerant

Computing Symposium, FTCS-21, pp. 2-9, June 1991.

[Sullivan et al. 1992] Sullivan, M., and Chillarege, R., “Comparison of

Software Defects in Database Management Systems and

Operating Systems,” Proc. 22nd IEEE Fault Tolerant Computing

Symp. (FTCS 22), pp. 475-484, July 1992.

 [Torres 2000] Torres-Pomales, W., “Software fault tolerance: A tutorial,”

NASA Technical Report NASA/TM-2000-210616, Langley

Research Center, Hampton, Virginia, Oct. 2000.

[TPC] TPC – Transaction Processing Performance Evaluation Corporation,

http://www.tpc.org/.

[TPCC] TPC Benchmark C (TPC-C), Transaction Processing Performance

Council, http://www.tpc.org/tpcc/, 2012.

216 Bibliography

[Treanor 2012] Treanor, J., “RBS computer failure to cost bank £100m”, the

Guardian, August 2, 2012.

[TRHA 1993] Thames Regional Health Authority, “Report of the Inquiry

into The London Ambulance Service”, The Communications

Directorate, South West Thames Regional Health Authority.

ISBN No: 0 905133 706, February 1993.

[Trivedi et al. 1994] Trivedi, K.S., Haverkort, B.R., Rindos, A., Mainkar, V.,

“Methods and Tools for Reliability and Performability:

Problems and Perspectives”, 7th Intl. Conf. on Techniques and

Tools for Computer Performance Evaluation, Lecture Notes in

Computer Science, Vol. 794, pp. 1-24, Springer, Vienna, Austria,

1994.

[Tsai et al. 1996] Tsai, T., Iyer, R., “An approach towards Benchmarking of

Fault Tolerant Comercial Systems”, Proc. 26th Int. Symp. on

Fault-Tolerant Computing, FCTS-26, pp.314-323, June 1996.

[PSOTF 2004] U.S.-Canada Power System Outage Task Force, “Final Report

on the August 14, 2003 Blackout in the United States and

Canada: Causes and Recommendations“, U.S. Energy

Department, April 2004.

[Vieira et al. 2003] Vieira, M., and Madeira, H., “A Dependability

Benchmark for OLTP Application Environments,” Proc. 29th

Int’l Conf. Very Large Databases, VLDB 2003, Sept. 2003.

[Vieira et al. 2009] Vieira, M., Madeira, H., “From Performance to

Dependability Benchmarking: A Mandatory Path”, TPC

Technology Conference, TPCTC 2009, pp. 67-83, 2009.

[Voas et al. 1997a] Voas, J., McGraw, G., Kassab, L., Voas, L.,“A ‘Crystal

Ball’ for Software Liability”, IEEE Computer, pp. 29-36, June

2007.

Bibliography 217

[Voas et al. 1997b] Voas, J., Charron, F., McGraw, G., Miller, K., Friedman,

F., "Predicting How Badly ‘Good’ Software can Behave", IEEE

Software, Vol. 14, No. 4, pp. 73-83, Jul/Ago 1997.

[Voas et al. 1998] Voas, J, McGraw, G., Software Fault Injection: Inoculating

Programs Against Errors, John Wiley & Sons, 1998.

[Weinstock et al. 1997] Weinstock, C., Gluch, D., “A Perspective on the State

of Research in Fault-Tolerant Systems”, Software Engineering

Institute, Carnegie Mellon University, Special Report

CMU/SEI-97-SR-008, June 1997.

[Weyuker 1982] Weyuker, E., “On Testing Non-Testable Programs”, The

Computer Journal, vol. 25, no 4, pp. 456-470, 1982.

[Weyuker 1998] Weyuker, E., “Testing Component-Based Software: A

Cautionary Tale”, IEEE Software, Vol. 15, No. 5, pp. 54-59,

Sep./Oct. 1998.

[Wilson et al. 2002] Wilson, D., Murphy, B., Spainhower, L., “Progress on

Defining Standardized Classes for Computing the

Dependability of Computer Systems”, Proc. Int’l Conf.

Dependable Systems and Networks (DSN’02), pp. F1-5, 2002.

[Wong et al. 1995] Wong, W.E., Mathur, A.P., “Reducing the cost of

mutation testing: an empirical study”, Journal of Systems and

Software, vol. 31, no. 3, pp. 185-196, Dec. 1995.

[Wong et al. 2010] Wong, W.E., Debroy, V., Surampudi, A., HyeonJeong, K.,

Siok, M.F., “Recent Catastrophic Accidents: Investigating How

Software was Responsible”, Proc. of the 2010 4th International

Conference on Secure Software Integration and Reliability

Improvement, SSIRI 2010, pp. 14-22., June 2010.

218 Bibliography

[Xu et al. 2002] Xu, J., Kalbarczyk, Z., Iyer, R., “HiPerFI: A High

Performance Fault Injector”, Fast Abstract in Proc. IEEE Int.

Conf. on Dependable Systems and Networks, June 2002.

[Zhu et al. 2003a] Zhu, J., Mauro, J., and Pramanick, I., “R3—A Framework

for Availability Benchmarking,” Proc. Int’l Conf. Dependable

Systems and Networks (DSN ’03), San Francisco, pp. B-86-B87,

2003.

[Zhu et al. 2003b] Zhu, J., Mauro, J., and Pramanick, I., “Robusteness

Benchmarking for Hardware Maintenance Events”, Proc. Int’l.

Conf. on Dependable Systems and Networks (DSN’03), San

Francisco, pp. 115-122, 2003.

[Zyl et al. 2006] Zyl, P., Kourie, D., Boake, A., “Comparing the Performance

of Object Databases and ORM Tools”, Proceedings of the 2006

annual research Conference of the South African institute of

Computer Scientists and information technologists on IT

research in developing countries, SAICSIT 2006, pp. 1-11, South

Africa, 2006.

 HistoryItem_V1
 PageSizes

 Action: Make all pages the same size
 Scale: No scaling (crop or pad)
 Rotate: Never
 Size: 8.268 x 11.693 inches / 210.0 x 297.0 mm

 AllSame
 1

 D:20131216100752
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 1
 747
 269

 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 None
 None

 64
 AllDoc
 74

 CurrentAVDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 0
 240
 239
 240

 1

 HistoryList_V1
 qi2base

