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SUMMARY 

Cancer cells reprogram their metabolism to support efficient macromolecule synthesis and 

proliferate within disparate microenvironments, in particular hypoxia. It has been acknowledged for 

many years that cancer cells rewire their metabolism as if they were exposed to hypoxia. This 

metabolic reprogramming entails an increased glucose uptake, a high glycolytic flux and ample lactate 

production, which mitigates glucose catabolism in the Krebs cycle. During the last decade, cancer 

biologists have demonstrated that cancer cells harboring specific oncogenic alterations also rely on a 

glutamine-maintained Krebs cycle to support aberrant growth. These studies were primarily focused on 

the oncogene Myc, and the role of other oncogenes and tumor suppressors in regulating glutamine 

metabolism remained unexplored until recently. Indeed, cells must produce new DNA, lipids and 

proteins before division, and the Krebs cycle provides many of the precursors necessary for these 

anabolic processes, including acetyl-CoA (for fatty acid synthesis) and aspartate (for pyrimidine 

synthesis). Therefore, it is not entirely surprising that cancer cells strive to maintain a functional Krebs 

cycle. However, the knowledge on glutamine catabolism, its regulation and significance in hypoxic and 

cancer cells was limited. In this doctoral thesis, we sought to elucidate the biosynthetic role of 

glutamine so as to understand the metabolic plasticity of hypoxic and “pseudohypoxic” cancer cells. 

We identified reductive carboxylation (RC) from glutamine as a major pathway for lipid synthesis 

under hypoxia. Acetyl-CoA is the precursor for lipid synthesis and is generated from glucose-derived 

pyruvate in well-oxygenated cells. Cells exposed to hypoxia redirect glucose carbons away from the 

Krebs cycle and acetyl-CoA synthesis, making it unclear how hypoxic cells maintain de novo 
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lipogenesis. Using 13C isotopic tracers and mass spectrometry (MS) analyses, we showed that 

mammalian cells under hypoxia conditions rely on RC of α-ketoglutarate by isocitrate dehydrogenase 1 

(IDH1) to maintain de novo lipid synthesis. Renal cell carcinoma (RCC) cells deficient in the von 

Hippel–Lindau tumor suppressor (VHL) preferentially used RC for lipid synthesis even at normal 

oxygen levels. 

HIF- 1α/2α are transcription factors that mediate cellular adaptations to hypoxia, and VHL-deficient 

cells exhibit HIF-1α/2α expression regardless of oxygen supply. To investigate the role of HIF and the 

signaling underlying reductive carboxylation, we introduced into RCC cells a series of tumor-associated 

VHL mutations that differ in their ability to inactivate HIF, and showed that HIF is strictly necessary to 

promote RC for de novo lipogenesis. Expression of a HIF-2α mutant was sufficient to induce RC and 

lipogenesis from glutamine in VHL-reconstituted RCC cells. We also demonstrated in vivo RC activity in 

VHL-deficient tumors growing as xenografts in mice, and showed that VHL-deficient cells are 

selectively sensitive to glutamine deprivation in vitro and in vivo.  

RC is a NADPH-dependent reaction, wherein NADPH donates the hydride ion (H-) that reduces α-

ketoglutarate into isocitrate. In this context, the source(s) of NADPH contributing to RC have not been 

investigated. To this end, we evaluated the contribution of NADPH generated in mitochondria by the 

enzyme nicotinamide nucleotide transhydrogenase (NNT). NNT resides in the inner membrane of the 

mitochondrion and transhydrogenates NADH into NADPH. We showed that knockdown of NNT inhibits 

the contribution of RC to the Krebs cycle in SkMel5 and 786-O RCC cells, whereas overexpression of 

NNT was sufficient to stimulate this pathway. These observations were supported by an impairment of 

the NAD(P)H / NAD(P)+ ratios. 

Finally, we investigated the role of HIF expression in regulating pyrimidine biosynthesis from 

glutamine in RCC cells. Glutamine can also be used in the Krebs cycle to generate aspartate - the 

carbon source for pyrimidine synthesis. Using 13C tracers, we showed that VHL-deficient RCC cells rely 

on RC-derived aspartate to maintain de novo pyrimidine synthesis. Inhibiting glutaminase (GLS) 

depleted the levels of pyrimidine intermediates in VHL-deficient cells but not in VHL-reconstituted cells, 

which utilized glucose oxidation to fuel the aspartate pool. Inhibiting both the de novo and salvage 

pyrimidine synthesis pathways selectively inhibited the growth of VHL-deficient cells, whereas addition 

of nucleosides partially rescued the growth effect. 

In this doctoral thesis, we have elucidated the reprogramming of the Krebs cycle in hypoxic and 

VHL-deficient cancer cells. Ultimately, these findings classify reductive carboxylation as a survival 

mechanism to maintain biosynthesis, and suggest that targeting the pleiotropic glutamine-to-biomass 

signature of HIF expression with glutaminase inhibitors may be a viable therapeutic strategy for VHL-

deficient tumors. 
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RESUMO 

As células cancerígenas reprogramam o seu metabolismo para manterem a síntese de 

macromoléculas e proliferarem em ambientes díspares, em particular hipoxia. Há muitos anos que têm 

vindo a ser reconhecido que as células cancerígenas restruturam o seu metabolismo como se 

estivessem expostas a condições de hipoxia. Esta reprogramação metabólica envolve um aumento da 

captação de glucose, uma elevação do fluxo glicolítico e ampla produção de lactato, o que reduz o 

catabolismo de glucose no ciclo de Krebs. Durante a última década, biólogos do cancro têm 

demonstrado que células cancerígenas contendo mutações oncogénicas específicas também 

dependem de glutamina para manter a atividade do ciclo de Krebs, e suportar uma proliferação 

aberrante. Estes estudos foram principalmente focados no oncogene Myc, e o papel de outros 

oncogenes e supressores de tumor na regulação do metabolismo da glutamina tem permanecido 

inexplorado até recentemente. Efetivamente, as células têm de produzir novo DNA, lípidos e proteínas 

para que possam dividir-se, e o ciclo de Krebs produz muitos dos precursores necessários para estes 

processos anabólicos, incluindo acetyl-CoA (para a síntese de ácidos gordos) e aspartato (para a 

síntese de pirimidinas). Desta forma, não é totalmente surpreendente que as células cancerígenas se 

esforcem para manter um ciclo de Krebs funcional. Contudo, o conhecimento é limitado no que toca ao 

metabolismo da glutamina, da sua regulação e significância em células cancerígenas e hipóxicas. 

Nesta dissertação doutoral, nós procurámos elucidar o papel biossintético da glutamina de forma a 

compreender a plasticidade metabólica de células cancerígenas hipóxicas e pseudo-hipóxicas. 

Nós identificámos a carboxilação redutiva (CR), a partir de glutamina, com a via principal para a 

síntese de lípidos em condições de hipoxia. Acetyl-CoA é o precursor para a síntese de lípidos e, em 

condições normais de oxigénio, é gerado a partir de piruvato vindo da glucose. Contudo, as células 

expostas a hipoxia inibem o fluxo de carbonos da glucose para o ciclo de Krebs e acetyl-CoA, surgindo 

a questão de como a lipogénese de novo poderá ser mantida em células em hipoxia. Usando 

marcadores isotópicos de carbono 13 e análises de espectrometria de massa, nós mostrámos que 

linhas celulares humanas em condições de hipoxia dependem da conversão de α-cetoglutarato em 

isocitrato (carboxilação redutiva, CR), mediada pela isocitrato desidrogenase 1 (IDH1), para manter a 

lipogénese de novo. Além disso, as células de carcinoma renal (CCR) que são deficientes no 

supressor de tumor von Hippel-Lindau (VHL) também dependem da reação CR para a síntese de 

lípidos mesmo a condições normais de oxigénio.  

 Os HIF-1α/2α são fatores de transcrição que medeiam adaptações celular a hipoxia, e as células 

deficientes em VHL expressam HIF-1α/2α constitutivamente; isto é, independentemente da 
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disponibilidade de oxigénio. Para investigar o papel do HIF e da sinalização subjacente à carboxilação 

redutiva, nós introduzimos várias proteínas mutantes de VHL em células CCR (deficientes em VHL) 

que diferem na sua capacidade de inativar HIF, e mostrámos que HIF é estritamente necessário para 

estimular a reação CR para a lipogénese de novo. A expressão de uma proteína HIF-2α mutante foi 

suficiente para induzir CR em células CCR previamente reconstituídas com a proteína VHL funcional. 

Nós demonstrámos que a carboxilação redutiva está ativa in vivo em tumores deficientes em VHL 

crescidos como xenógrafos em ratinhos, e mostrámos que as células deficientes em VHL são 

seletivamente sensíveis à privação de glutamina em condições in vitro e in vivo. 

A carboxilação redutiva é uma reação que depende de NADPH, onde este doa o anião hidreto (H-) 

que reduz o α-cetoglutarato em isocitrato. Neste contexto, a(s) fonte(s) de NADPH que contribuem 

para a reação CR não for investigadas anteriormente. Para tal, nós avaliámos a contribuição de 

NADPH mitocondrial gerado pela enzima nicotinamida nucleótido transidrogenase (NNT). NNT reside 

na membrana interna da mitocôndria e converte NADH em NADPH. Nós mostrámos que a diminuição 

da expressão de NNT em células SkMel5 e 786-O inibe a contribuição da carboxilação redutiva para a 

atividade do ciclo de Krebs, enquanto a sobre-expressão de NNT foi suficiente para estimular esta via. 

Estas observações foram suportadas por alterações nos rácios de NAD(P)H / NAD(P)+. 

Finalmente, nós investigámos o papel do HIF em células CCR na regulação da biossíntese de 

pirimidinas a partir de glutamina. A glutamina pode ser usada no ciclo de Krebs para gerar aspartato – 

a fonte de carbono para a síntese de pirimidinas. Usando marcadores de carbono 13, nós mostrámos 

que células CCR deficientes em VHL dependem do aspartato produzido pela carboxilação redutiva 

para manter a síntese de pirimidinas de novo. A inibição da glutaminase (GLS) reduziu os níveis 

intermediários das pirimidinas em células deficientes em VHL mas não em células reconstituídas com 

VHL funcional, sendo que as últimas utilizaram a oxidação de glucose mais eficientemente para 

alimentar a produção de aspartato. A dupla inibição das vias de novo e de reciclagem da síntese de 

pirimidinas inibiu seletivamente o crescimento das células deficientes em VHL, enquanto a adição de 

nucleósidos ao meio de cultura resgatou este efeito no crescimento celular. 

Nesta dissertação doutoral, nós elucidámos a reprogramação do ciclo de Krebs em células 

cancerígenas deficientes em VHL e em hipoxia. Em última instância, estes resultados classificam a 

carboxilação redutiva como um mecanismo de sobrevivência celular para a manutenção de 

biossíntese, e sugerem que a utilização de inibidores da GLS para suprimir esta via pleiotrópica de 

glutamina-para-biomassa (dependente de HIF) poderá ser uma estratégia terapêutica viável para 

tumores deficientes em VHL. 

 



Paulo A. Gameiro, B.S. 
 

ix 

Keywords 

Cancer Metabolism, 

Glutaminase,  

Glutamine,  

Hypoxia-Inducible Factors (HIFs),  

Isocitrate Dehydrogenase,  

Isotopic Tracers, 

Kidney Cancer,  

Krebs Cycle,  

Lipogenesis,  

NADPH,  

Nicotinamide Nucleotide Transhydrogenase (NNT),  

Pyrimidine Biosynthesis,  

Reductive Carboxylation,  

VHL, 

Warburg Effect  

 

Palavras-Chave 

Biossíntese de Pirimidinas,  

Cancro do Rim,  

Carboxilação Redutiva,  

Ciclo de Krebs, 

Efeito Warburg, 

Fatores Induzíveis for Hipoxia (HIFs),  

Glutaminase,  

Glutamina,  

Isocitrato Desidrogenase,  

Lipogénese,  

Marcadores Isotópicos, 

Metabolismo do Cancro, 

NADPH,  

Nicotinamida Nucleótido Transidrogenase (NNT),  

VHL 

  



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

x 

 

This page was intentionally left blank 

 

  



Paulo A. Gameiro, B.S. 
 

xi 

 

 

 

 

 

To Marguerita  

and  

To my family 

  



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

xii 

 

This page was intentionally left blank 

  



Paulo A. Gameiro, B.S. 
 

xiii 

Acknowledgments 

This is probably the most important page of this PhD thesis and by far the most gratifying to write. 

A hard one too. It is axiomatic but I want to emphasize that all my acknowledgments are an accurate 

tribute to those who helped me scientifically throughout the last four years and six months of my 

doctoral training. Without their help, I am firmly sure that I would not have a PhD thesis, not one that I 

would write at the moment. Because I learned so much from others, it becomes hard to look at this PhD 

thesis as my accomplishment. My accomplishment is to share these doctoral results with my mentors, 

Marguerita and friends, and that there is biological significance to this work. 

I would like to thank Rui de Carvalho, my supervisor in Portugal, for accepting me as a PhD 

student, for helping me on my interests in metabolism, and for finding the best lab to pursue my naïve 

ideas – the Stephanopoulos Lab.  

I would like to thank Greg Stephanopoulos for being my supervisor and accepting me in his lab. I 

say accepting me in his lab because, as a Visiting Student at MIT, it took me a while to grasp the 

philosophy of the lab, and interacting with Greg taught me how to perform at MIT. I thank Greg for the 

scientific discussions – these helped me develop a quantitative reasoning and think properly about 

numbers. This did shape my understanding of things, and it will help me in the future. Greg is very 

operative with his words, and that also contributed to me being more efficient, an aspect that always 

has room for improvement. Greg is a great scientist.  

I want to mention that my appreciation to Othon’s guidance should not detract my other 

acknowledgments. The plain truth is that I don´t think we would have published the Cell Metabolism 

paper if it weren´t for Othon´s consistent support, and I would still be struggling in other things. I would 

not be in the US right now, and my PhD would have turned out differently. I thank Othon for helping me 

be a scientist. Thanks to Othon, I learned the concept of biological significance and how to design the 

experiment that will address the question. He is a great scientist and apparently even better doctor. I 



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

xiv 

could continue but I decided to have a two page acknowledgment section. Oh, I should just thank 

Othon for saving my relationship with Marguerita (Ana for most).  

I would like to thank Christian Metallo. He was crucial in the beginning of my PhD; he taught me 

metabolic flux analysis and many experimental approaches. We worked together on the reductive 

carboxylation and hypoxia journey (Chapter III), and we had great brainstorming sessions. Christian is 

now an assistant professor in the Bioengineering Department at University of California, in San Diego, 

and I wish him all the best. Joanne Kelleher is a great biochemist. She is the kind of scientist everyone 

would like to have around to discuss science; she just knows a lot about theory in biochemistry. Thanks 

Joanne for the scientific guidance, for giving me good papers to read, and for the book gift on metabolic 

regulation.  

I would like to thank Pilar López-Larrubia and Rocio Pérez-Carro. Pilar is our great collaborator in 

Spain, and performed NMR analysis for the work in Chapter IV. She is an outstanding NMR 

spectroscopist, and her work was absolutely critical for this PhD thesis. She was the first person seeing 

reductive carboxylation activity in our VHL-deficient tumors in vivo; how awesome is that? Thanks so 

much for collaborating with us Pilar. Thanks, Rocio. Without your mice skills, we would not have done it 

either. 

Last and far from least comes Marguerita. She knows me better than me. This ought not to be a 

love declaration. As you will see in a moment, Marguerita has to be in the acknowledgements big time. 

Marguerita, I must write about you because your patience with my anxieties is just so pleasingly 

reassuring! Without your magnificent social skills, I would not have been careful enough to carry on at 

specific moments of my PhD. Marguerita expresses her contribution to this PhD thesis even at the 

official level. She conducted the in vivo growth experiments of Chapter IV, and many others that I do 

not show here. She intellectually contributed to this work and, on top of that, she is the love of my life. 

  



Paulo A. Gameiro, B.S. 
 

xv 

 

Contents 
LIST OF FIGURES AND TABLES ..................................................................................................... XVII 

CHAPTER I ........................................................................................................................................ - 1 - 

I. INTRODUCTION - 1 - 

I.1. Motivation ....................................................................................................................... - 2 - 

I.2. The Warburg Effect ......................................................................................................... - 5 - 

I.3. Molecular Mechanisms Underlying the Warburg Effect .................................................. - 8 - 

I.4. Cancer Cell Growth and the Need for Glutamine Metabolism ...................................... - 13 - 

I.5. The Scientific Questions Addressed Herein.................................................................. - 15 - 

CHAPTER II ..................................................................................................................................... - 21 - 

II. EXPERIMENTAL PROCEDURES - 21 - 

II.1. Isotopic Methods ........................................................................................................... - 22 - 

II.2. Metabolite Analysis of Cellular Medium ........................................................................ - 34 - 

II.3. Polar Metabolites / Fatty-Acids Extraction and GC-MS Analysis .................................. - 34 - 

II.4. DNA Extraction and GC-MS Analysis ........................................................................... - 35 - 

II.5. Cell Culture and Metabolic Labeling ............................................................................. - 36 - 

II.6. Cell Viability Assays ...................................................................................................... - 37 - 

II.7. Plasmids, Transfections and Generation of Cell Lines ................................................. - 38 - 

II.8. Determination of NAD(P)+/NAD(P)H ratios ................................................................... - 39 - 

II.9. Western Blotting ........................................................................................................... - 40 - 

II.10. Animal Studies .............................................................................................................. - 41 - 

II.11. 13C NMR Spectroscopy ................................................................................................. - 42 - 

II.12. Statistical Analysis ........................................................................................................ - 42 - 

CHAPTER III .................................................................................................................................... - 45 - 

III. REDUCTIVE CARBOXYLATION BY IDH1 MEDIATES LIPOGENESIS UNDER HYPOXIA - 45 - 

III.1. ABSTRACT................................................................................................................... - 46 - 

III.2. RESULTS ..................................................................................................................... - 47 - 

III.3. DISCUSSION ............................................................................................................... - 59 - 



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

xvi 

CHAPTER IV .................................................................................................................................... - 65 - 

IV. IN VIVO HIF-MEDIATED REDUCTIVE CARBOXYLATION IS REGULATED BY CITRATE LEVELS AND 

SENSITIZES VHL-DEFICIENT CELLS TO GLUTAMINE DEPRIVATION - 65 - 

IV.1. ABSTRACT................................................................................................................... - 66 - 

IV.2. RESULTS ..................................................................................................................... - 67 - 

IV.3. DISCUSSION ............................................................................................................... - 89 - 

IV.4. Supplemental Information ............................................................................................. - 93 - 

 ................................................................................................................................................. - 93 - 

CHAPTER V ................................................................................................................................... - 103 - 

V. COFACTOR BALANCE BY NICOTINAMIDE NUCLEOTIDE TRANSHYDROGENASE (NNT) COORDINATES 

REDUCTIVE CARBOXYLATION AND GLUCOSE CATABOLISM IN THE KREBS CYCLE - 103 - 

V.1. ABSTRACT................................................................................................................. - 104 - 

V.2. RESULTS ................................................................................................................... - 106 - 

V.3. DISCUSSION ............................................................................................................. - 119 - 

CHAPTER VI .................................................................................................................................. - 125 - 

VI. LOSS OF VHL REPROGRAMS THE DE NOVO AND SALVAGE PATHWAYS OF PYRIMIDINE 

BIOSYNTHESIS IN RENAL CANCER CELLS - 125 - 

VI.1. ABSTRACT................................................................................................................. - 126 - 

VI.2. RESULTS ................................................................................................................... - 129 - 

VI.3. DISCUSSION ............................................................................................................. - 144 - 

VI.4. Supplemental Information ........................................................................................... - 148 - 

CONCLUDING REMARKS - 150 - 

REFERENCES - 157 - 

 

  

 

 



Paulo A. Gameiro, B.S. 
 

xvii 

 

List of Figures and Tables 

FIGURE I-1. THERAPEUTIC EFFICACY OF TARGETING A LINEAR VERSUS A BRANCHED PATHWAY ................... - 5 - 

FIGURE I-2. THE WARBURG EFFECT ........................................................................................................ - 7 - 

FIGURE I-3. THE ROLE OF THE KREBS CYCLE IN ANABOLISM ................................................................... - 14 - 

FIGURE II-1. MASS ISOTOPOMER DISTRIBUTION (MID) OF GLUTAMINE ..................................................... - 24 - 

FIGURE II-2. CARBON ATOM TRANSITION MAP FOR [U-13C6] GLUCOSE ..................................................... - 26 - 

FIGURE II-3. CARBON ATOM TRANSITION MAP FOR [U-13C5] GLUTAMINE .................................................. - 27 - 

FIGURE II-4. CARBON ATOM TRANSITION MAP FOR [1-13C1] GLUTAMINE AND [5-13C1] GLUTAMINE .............. - 29 - 

FIGURE II-5. TIME-COURSE LABELING OF UMRC2 CELL LINES FROM [U-13C5] GLUTAMINE ........................ - 31 - 

FIGURE II-6. THE ISOTOPOMER SPECTRAL ANALYSIS (ISA) METHOD ........................................................ - 33 - 

FIGURE III-1. REDUCTIVE CARBOXYLATION IS THE PRIMARY PATHWAY OF GLUTAMINE CONVERSION TO LIPIDS

 ............................................................................................................................................. ….- 51 - 

FIGURE III-2. HYPOXIA REPROGRAMS CELLS TO RELY ON REDUCTIVE CARBOXYLATION FOR DE NOVO 

LIPOGENESIS ............................................................................................................................... - 55 - 

FIGURE III.23. EVIDENCE FOR REGULATION OF REDUCTIVE CARBOXYLATION BY THE PDH FLUX UNDER HYPOXIA

 .................................................................................................................................................. - 56 - 

FIGURE III-4. EVIDENCE FOR THE REDUCTIVE CARBOXYLATION SWITCH IN RENAL CANCER CELLS EVEN UNDER 

NORMOXIA ................................................................................................................................... - 58 - 

FIGURE IV-1. HIF INACTIVATION IS NECESSARY FOR DOWNREGULATION OF REDUCTIVE CARBOXYLATION BY 

PVHL .......................................................................................................................................... - 71 - 

FIGURE IV-2. HIF INACTIVATION IS NECESSARY FOR DOWNREGULATION OF REDUCTIVE LIPOGENESIS BY PVHL  

 .................................................................................................................................................. - 73 - 

FIGURE IV-3. EXPRESSION OF HIF-2Α IS SUFFICIENT TO INDUCE REDUCTIVE CARBOXYLATION AND LIPOGENESIS 

FROM GLUTAMINE IN RCC CELLS .................................................................................................. - 75 - 

FIGURE IV-4. METABOLIC FLUX ANALYSIS OF VHL-DEFICIENT AND VHL-RECONSTITUTED RCC CELLS ...... - 78 - 

file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487932
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487933
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487934
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487935
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487936
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487937
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487938
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487939
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487940
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487941
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487941
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487942
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487942
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487943
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487943
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487944
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487945
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487946
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487946
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487947
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487947
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487948
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487948
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487949


On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

xviii 

TABLE IV-1. DETERMINED FLUXES AND THEIR 95% CONFIDENCE INTERVALS FOR PRC3/WT8 ESTIMATED FROM 

MFA MODEL USING [U-13C6] GLUCOSE AND [1-13C1] GLUTAMINE TRACER DATASETS ....................... - 79 - 

FIGURE IV-5. REGULATION OF HIF-MEDIATED REDUCTIVE CARBOXYLATION BY CITRATE LEVELS ............... - 85 - 

FIGURE IV-6. EVIDENCE FOR REDUCTIVE CARBOXYLATION ACTIVITY IN VIVO ............................................ - 86 - 

FIGURE IV-7. VHL-DEFICIENT CELLS AND TUMORS ARE SENSITIVE TO GLUTAMINE DEPRIVATION .............. - 89 - 

SUPPLEMENTARY FIGURE IV-S1. EVIDENCE FOR REGULATION OF GLUCOSE AND GLUTAMINE UTILIZATION BY 

PVHL IN RCC CELL, RELATED TO FIGURE IV-1 .............................................................................. - 93 - 

SUPPLEMENTARY FIGURE IV-S2. REGULATION OF REDUCTIVE LIPOGENESIS BY THE PVHL-HIF INTERACTION IN 

786-O CELLS, RELATED TO FIGURE IV-2 ....................................................................................... - 95 - 

SUPPLEMENTARY FIGURE IV-S3. EVIDENCE FOR REGULATION OF REDUCTIVE LIPOGENESIS BY PVHL AND HIF-

2Α P-A MUTANT IN RCC CELLS, RELATED TO FIGURE IV-3. ............................................................ - 97 - 

SUPPLEMENTARY FIGURE IV-S4. EVIDENCE FOR INDUCTION OF REDUCTIVE CARBOXYLATION BY CITRATE 

LEVELS IN HIF-EXPRESSING CELLS, RELATED TO FIGURE IV-5 ........................................................ - 99 - 

FIGURE V-1. EFFECT OF NNT KNOCKDOWN ON GLUTAMINE CATABOLISM .............................................. - 109 - 

FIGURE V-2. EFFECT OF NNT KNOCKDOWN ON GLUCOSE CATABOLISM ................................................. - 111 - 

FIGURE V-3. METABOLIC EFFECTS OF NNT OVEREXPRESSION IN SKMEL5 CELLS .................................. - 113 - 

FIGURE V-4. EFFECT OF NNT KNOCKDOWN ON CELL PROLIFERATION AND SENSITIVITY TO GLUCOSE CARBONS 

 ................................................................................................................................................ - 115 - 

FIGURE V-5. COFACTOR LEVELS IN THE PANEL OF SKMEL5 CELLS ........................................................ - 118 - 

FIGURE VI-1. BIOSYNTHESIS OF DNA PYRIMIDINES FROM GLUTAMINE-CARBONS IN RCC CELLS ............. - 133 - 

FIGURE VI-2. EFFECT OF GLUTAMINASE INHIBITION ON THE PRODUCTION OF PYRIMIDINES IN RCC CELLS - 137 - 

FIGURE VI-3. EVIDENCE FOR REGULATION OF GLUCOSE OXIDATION IN THE KREBS CYCLE BY BPTES ...... - 138 - 

FIGURE VI-4. EVIDENCE FOR UTILIZATION OF THE SALVAGE PATHWAY OF PYRIMIDINE BIOSYNTHESIS IN RCC 

CELLS ....................................................................................................................................... - 143 - 

SUPPLEMENTARY FIGURE VI-S1. BIOSYNTHESIS OF DNA-ISOLATED PYRIMIDINE BASES FROM GLUTAMINE-

NITROGENS IN RCC CELLS, RELATED TO FIGURE VI-1.................................................................. - 148 - 

SUPPLEMENTARY FIGURE VI-S2. EFFECT OF BPTES ON THE MASS ISOTOPOMER DISTRIBUTION OF IMP FROM 

[U-13C5] GLUTAMINE IN RCC CELLS, RELATED TO FIGURE VI-2 ..................................................... - 149 - 

  

 

 

 

file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487951
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487952
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487953
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487954
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487954
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487956
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487956
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487958
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487959
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487959
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487960
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487960
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487962
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487963
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487964
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487965
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487965
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487966
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487967
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487968
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487969
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487970
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487970
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487971
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487971
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487972
file:///C:/Users/Paulo%20Gameiro/Documents/Manuscripts/PhD%20Thesis/GameiroPA%20PhD%20Thesis%20-%20On%20the%20Reprogramming%20of%20the%20Krebs%20Cycle%20in%20Hypoxic%20and%20VHL-Deficient%20Cancer%20Cells.docx%23_Toc366487972


Paulo A. Gameiro, B.S. 
 

xix 

 

 

 

 

 

 

 

 

 “The greater danger for most of us is not that our aim is too high and we miss it,  

but that it is too low and we reach it.”  

 

Michelangelo 
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I.1. Motivation  

The metabolism of cancer cells reflects their function – unrestricted growth – which differs from 

normal counterpart cells. Every mammalian cell must consume nutrients to fulfill the following 

requirements of survival: i) production of adenosine 5´-triphosphate (ATP) to drive unfavorable 

reactions, ii) production of metabolic precursors for macromolecule turnover, and iii) maintenance of the 

redox state. Yet, a dividing cell needs to duplicate itself and, therefore, to produce an excess of 

macromolecules (biomass) while keeping pace with the aforementioned bioenergetic needs. As such, 

cancer cells undergo fundamental changes in their metabolism to support biomass synthesis, adapt to 

limited nutrient resources, and to compete (successfully) for these supplies with surrounding normal 

cells. Primed by the seminal work of the biochemist Otto Warburg in the 1920s, scientists have long 

observed that virtually all cancer cells exhibit an increased demand for glucose when compared to 

normal cells (Gatenby and Gillies, 2004). Importantly, the recognition that cancer cells exhibit an 

increased glucose uptake led to the implementation of the 18F – deoxyglucose positron-emission 

tomography (PET) imaging tool to diagnose tumors. The PET scan monitors glucose uptake by tissues 

in the body and is used in the clinic to detect cancers and predict response to treatment (Ben-Haim and 

Ell, 2009), being one example of how to exploit the glucose avidity of tumors. In addition, it is now 

established that cancer cells also increase their demand for other nutrients, in particular glutamine. 

Glutamine is an abundant extracellular nutrient, being traditionally viewed as a nitrogen transporter and 

a non-essential aminoacid (NEAA). The classical studies of Newsholme, Brand, Wagner and others 

challenged the aforementioned view reporting that fast proliferating and transformed cells exhibit a high 

rate of glutamine utilization when compared to slow proliferating and primary cells (Brand, 1985; 

Neermann and Wagner, 1996; Newsholme et al., 1985a, 1985b). Ultimately, mammalian cells must use 

glutamine-derived nitrogens for the synthesis of DNA bases but, as discussed herein, glutamine has 

also emerged as a tumor nutrient and significant carbon source for the proliferation of cancer cells. 
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The era of oncogenes/tumor suppressors and the cancer genome revolution taught us that cancer 

arises from mutational events that affect core signal transduction pathways regulating cell survival and 

growth (Vogelstein et al., 2013). However, it is becoming recognized that many of the oncogenic 

signals that confer growth advantage and malignancy ultimately affect metabolic pathways of cell 

growth (Levine and Puzio-Kuter, 2010; McKnight, 2010). This knowledge has shifted attention towards 

metabolic pathways, stimulating research on the metabolism of cancer cells and how it can be targeted 

therapeutically. Over the last 15 years, landmark studies have elucidated how growth signals, 

oncogenes/tumor suppressors and environmental cues (such as hypoxia) not only regulate glucose 

and glutamine uptake but also determine the intracellular fate of these nutrients in cancer cells (Cairns 

et al., 2011; DeBerardinis and Thompson, 2012). This means that, in addition to increasing the overall 

consumption of glucose and glutamine, cancer cells also reprogram their metabolism to catabolize 

these nutrients via specific pathways. It is in this sense that metabolic reprogramming of cancer cells is 

referred herein. As detailed below, the mechanistic connection between oncogenic signals and 

metabolism warrants a thorough study of metabolism that may lead to viable therapies. While targeting 

nutrient uptake to inhibit cancer cell growth may significantly affect the growth of normal cells, the 

concept of targeting intermediary metabolism (and more specifically, metabolic branch points) is more 

clinically appealing on the grounds that specific fluxes may be dispensable for normal cells. This was 

the resilient motivation of the present doctoral thesis; the aim was to identify metabolic vulnerabilities of 

cancer cells that can be targeted therapeutically.  

Figure I-1 illustrates the metabolic outcome of targeting a specific metabolic branch point versus 

nutrient uptake or, in general terms, a linear pathway. Let us assume a normal cell consumes 4 nutrient 

units to synthesize the products 1 and 2 via pathway A, whereas a cancer cell consumes 8 nutrient 

units to synthesize the same biomass products, and let us assume cell growth depends linearly on 

nutrient consumption. Hence, the cancer cell exhibits a two-fold higher flux through pathway A than the 

normal cell and, thereby, grows twice as fast. Downstream of pathway A, the normal cell catabolizes 
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the 4 nutrients units equally via pathways B and C, whereas a cancer cell preferentially relies on C. 

Inhibiting 50% of the flux through pathway A will decrease the overall consumption of 2 nutrient units in 

the normal cell and 4 nutrient units in the cancer cell. While the two-fold difference is a win for inhibiting 

nutrient consumption in the cancer cell, both the normal and the cancer cell are affected by 50% in their 

overall nutrient consumption (ΔN) and growth. Therefore, the therapeutic effect is 1. In contrast, 

inhibiting 50% of pathway C will decrease the consumption of 1 nutrient unit in the normal cell and 3 

nutrient units in the cancer cell. While this represents a three-fold effect in nutrient consumption, it also 

translates into a therapeutic effect of 1.5, since the normal cell does not rely on pathway C to the same 

extent as the cancer cell. Varying the conditions of this example will lead to different outcomes, but the 

principle holds in that targeting specific metabolic alterations of cancer cells bears theoretical 

advantages. As described in Chapter 2, studying cellular metabolism requires the use of stable 

isotopes to identify what metabolic reactions are activated or inhibited in cancer cells. 
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Figure I-1. Therapeutic Efficacy of Targeting a Linear Versus a Branched Pathway 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The left diagram illustrates a simple metabolic network for the production of biomass from metabolic precursors 

or nutrients. Products 1 and 2 are synthesized from four nutrient units (black squares) in the normal cell and 

eight nutrient units (red squares) in the cancer cell. The metabolic network is comprised by pathways A, B and 

C. The right diagrams show the effect on nutrient consumption (ΔN) and the therapeutic effect by inhibiting 50% 

of activity in pathway A (top) or pathway C (bottom). 

 

 

I.2. The Warburg Effect 

One of the metabolic hallmarks of cancer cells is the activation of glycolysis and lactate production 

even in the presence of adequate oxygen. This seminal discovery was made by Otto Warburg in the 

1920s. Warburg and co-workers used a homemade reaction vessel to measure CO2 production (as 

readout of lactate production from bicarbonate-containing buffer) and O2 consumption (as readout of 
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respiration) in tumor and normal tissue slices. Surprisingly, he observed that respiration rates were 

similar between tumor and normal tissues, but that tumor tissues exhibited high lactate production even 

in the presence of adequate oxygen; that is, oxygen availability was unable to prevent lactate 

production (a reverse Pasteur effect). Later in 1927, Warburg directly measured arterial and venous 

plasma levels of glucose and lactate in Jensen’s sarcomas implanted in rats and compared these 

levels with those of healthy organs. The difference between venous and arterial levels was an 

indication of glucose consumption and lactate production, and Warburg observed that tumors 

consumed, on average, 70 mg of glucose and secreted 46 mg of lactic acid whereas healthy organs 

consumed about 7 times less glucose and did not exhibit net lactate secretion into the blood (Warburg 

et al., 1927). These findings set the aerobic glycolysis paradigm that cancer cells convert most of the 

glucose (at least 66%) to lactic acid even under the presence of oxygen – the Warburg effect [for a 

review on the work of Otto Warburg, see (Koppenol et al., 2011)]. 

The conversion of glucose to pyruvate – glycolysis – is a universal metabolic pathway that occurs in 

all kingdoms of life, from microorganisms to superior eukaryotes (Boiteux and Hess, 1981; Dandekar et 

al., 1999). Glucose-derived pyruvate has two major fates in the cell – conversion to lactate in the 

cytosol (via lactate dehydrogenase, LDH) or to acetyl-Coenzyme A (AcCoA) in the mitochondrion (via 

pyruvate dehydrogenase, PDH). Under aerobic conditions, a normal mammalian cell converts most of 

the pyruvate to AcCoA and catabolizes it through the tri-carboxylic acid (TCA) or Krebs cycle, 

transferring reducing equivalents (the hydride ion H-) from the Krebs cycle intermediates to 

nicotinamide adenine dinucleotide (NAD+) via NADH-linked dehydrogenases. In turn, the reduced 

NAD+ (i.e., NADH) donates the electrons to the respiratory electron transport chain (ETC), which 

transfers the electrons to molecular oxygen through oxidation-reduction reactions that are coupled to 

ATP synthesis, under the energy conservation rules of the chemiosmotic model (Brand and Murphy, 

1987; Mitchell, 1979). Upon a switch to low oxygen conditions (hypoxia), ETC-mediated ATP synthesis 

is inhibited and cells switch to anaerobic glycolysis, reducing pyruvate to lactate to recycle the NAD+ 
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Figure I-2. The Warburg Effect 

 

necessary for the subsequent glycolytic cycles (Brand and Murphy, 1987; Hardie, 2000). In contrast, 

cancer cells heavily rely on glycolysis and divert most of the pyruvate to lactate production both in 

normoxia and hypoxia. Hence, the Warburg effect was the first evidence that cancer cells reprogram 

their metabolism to rely on specific metabolic fluxes (Figure I-2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Left: Under normal oxygen conditions, a normal cell catabolizes most of the pyruvate through pyruvate 

dehydrogenase (PDH), producing acetyl-CoA (AcCoA) for the Krebs cycle (left). A cancer cell diverts most of 

the pyruvate to lactate through lactate dehydrogenase A (LDH-A), even under normal oxygen conditions (right). 

The lines thickness is proportional to the activity of the correspondent reactions. CS, citrate synthase. 
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I.3. Molecular Mechanisms Underlying the Warburg Effect 

3.1. Hypoxia-inducible Factors (HIFs)  

Low oxygen (<3-4%), or hypoxia,  is a hallmark of most solid tumors and it selects for cancer cells 

that can adapt their metabolism to nutrient-limited conditions (Gatenby and Gillies, 2004; Pouysségur et 

al., 2006). Typically, mammalian cells respond and adapt to changes in O2 availability by regulating the 

activity of hypoxia-inducible factors (HIFs). The transcription factors hypoxia-inducible factors 1α and 

2α  (HIF-1α, HIF-2α) are master regulators of the hypoxic program, stimulating anaerobic glycolysis 

and angiogenesis when oxygen becomes limited (Gordan and Simon, 2007; Semenza, 2010). In well-

oxygenated cells, the HIF-α subunit (1α or 2α) is rapidly hydroxylated by O2-dependent prolyl 

hydroxylases (PHDs) and recognized by the Von Hippel-Lindau protein (pVHL), a component of the E3-

ubiquitin ligase complex that targets HIF-α for degradation in the proteasome (Ivan et al., 2001; 

Jaakkola et al., 2001). Upon hypoxia, the PHDs activity is inhibited and the HIF-1α (or HIF-2α) subunit 

becomes stabilized, it translocates to the nucleus and dimerizes with the HIF-1β partner to induce a 

transcriptional program that mitigates O2 consumption [for a review, see (Kim et al., 2003)]. The HIF 

transcriptional program inhibits the rate of oxidative phosphorylation (OXPHOS) and increases the 

expression of glucose transporters, glycolytic enzymes, lactate dehydrogenase A (LDH-A) and 

pyruvate dehydrogrenase kinase 1 (PDK1), which inhibits PDH and reroutes pyruvate away from the 

mitochondria towards lactate production (Ebert et al., 1996; Firth et al., 1994; Kim et al., 2006; 

Papandreou et al., 2006). As a result, HIF expression enforces anaerobic glucose metabolism, and this 

metabolic reprogramming is necessary for the survival and growth of hypoxic cells (Lum et al., 2007; 

Pouysségur et al., 2006). In addition to HIF stabilization, the hypoxia signaling also impinges on mRNA 

translation, protein turnover, microRNAs and chromatin modifications, and some of these processes 

are regulated in a HIF-independent manner (Kulshreshtha et al., 2007; Melvin and Rocha, 2012; 

Wouters and Koritzinsky, 2008). Together, these evidences illustrate the pleiotropic effects of hypoxia 



Paulo A. Gameiro, B.S. 
 

- 9 - 

and the critical role of HIF on the metabolic response to low oxygen conditions. But HIF should be 

inactive in normoxia. 

Otto Warburg was criticized over many years for hypothesizing later in his career that mitochondrial 

respiration was damaged in cancer cells, because O2 availability was unable to prevent lactate 

production in cancer cells (Warburg, 1956). The criticism was largely due to lack of evidence of 

mitochondrial defects/mutations associated with bioenergetics defects [for a review on mitochondria 

and cancer, see (Wallace, 2012)]. Today, we know that germline, loss of function mutations in the 

Krebs cycle enzyme fumarate hydratase (FH) predisposes individuals to leiomyomas and renal cell 

cancer (RCC), whereas mutations in succinate dehydrogenase (SDH) cause hereditary 

paragangliomas and phaeochromocytomas, strongly suggesting that these enzymes act as tumor 

suppressors (Baysal et al., 2000; Guzy et al., 2008; Kaelin Jr., 2009; Semenza, 2010). Conversely, 

gain of function mutations in the isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) have also been found 

in a subset of gliomas, acute myeloid leukemia (AML) and other malignancies and can lead to the 

production of the putative oncometabolite R(-)-2-hydroxyglutarate (2HG) (Dang et al., 2010; Ward et 

al., 2010; Yan et al., 2009). Importantly, mutations in FH and SDH lead to the accumulation of fumarate 

and succinate, respectively, which can inhibit PHDs and stabilize HIF-1α subunits even under normoxia 

conditions –pseudohypoxia – thereby providing a mechanistic link between mitochondrial dysfunction, 

HIF and cancer metabolism (Isaacs et al., 2005; Pollard et al., 2005; Selak et al., 2005). A more 

prominent example of cancer-associated mutations linked to HIF stabilization in normoxia is the 

disruption of the pVHL-HIF interaction. The pVHL protein is an established tumor suppressor because 

of its ability to degrade HIF (Iliopoulos et al., 1995; Kondo et al., 2002), being inactivated in the majority 

(approximately 60-70%) of sporadic clear-cell renal cell carcinomas (RCC)  (Iliopoulos, 2006). Thus, 

VHL-deficient RCC cells are the sine qua non of a Warburg-like system, exhibiting constitutive HIF-1α 

and/or HIF-2α activity irrespective of oxygen availability (Kim et al., 2003). Indeed, HIF-1α is necessary 

and sufficient to promote glycolysis and lactate production in VHL-deficient RCC cells (Hu et al., 2003), 
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demonstrating the definite role of HIF transcription factors in contributing to the Warburg effect 

(Semenza, 2007). Of note, Warburg observed that cancer and normal cells exhibit similar OXPHOS 

rates, but HIF expression should rather decrease OXPHOS activity and O2 consumption. In this regard, 

Warburg performed his manometer experiments in the presence of ample oxygen, excess glucose, and 

with the thickness of the tissue slices being limited to <400µm (to prevent hypoxia). On one hand, it is 

possible that HIF was active in the original tumor setting, but the experimental conditions of Warburg’s 

(which were optimized to prevent hypoxia) could have led to HIF degradation and offset putative 

differences on oxygen consumption between tumor and normal tissues. Conversely, Warburg’s 

observations also raise the hypothesis that additional oncogenic alterations may contribute to the 

aerobic glycolysis phenotype in a HIF-independent manner. Indeed, additional genetic abnormalities 

can independently stimulate aerobic glycolysis, as described below. Yet, some of these oncogenic 

signals also intersect HIF signaling, promoting a glycolytic program that is required for unrestricted 

proliferation.  

 

3.2. The Oncogenes Myc, Akt and the PKM2 Switch  

During the last 20 years, efforts in cancer biology have revealed many of the molecular mechanisms 

underlying the Warburg effect in cancer cells [for two reviews on regulation of cancer metabolism, see 

(Cairns et al., 2011; Koppenol et al., 2011)]. One of the first evidences that oncogenes can affect 

energy metabolism was the report that the oncogene Ras stimulates glucose transport and that Scr 

phosphorylates glycolytic enzymes and lactate dehydrogenase in transformed fibroblasts (Cooper et 

al., 1984; Flier et al., 1987). Later, Chi Dang and colleagues demonstrated the first mechanistic 

connection between an oncogene and aerobic glycolysis, showing that the oncogenic transcription 

factor Myc trans-activates the promoter of lactate dehydrogenase  A (LDHA), increasing its expression 

and lactate production under normal oxygen conditions (Shim et al., 1997).  The authors also showed 

that the induction of LDHA expression was necessary for MYC-mediated transformation, and later 
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studies extended these findings showing that Myc activates most of the glycolytic enzymes including 

glucose transporters [see the mini review (Gordan et al., 2007). Myc and HIF share many of the 

glycolytic targets, but their role on glucose metabolism differs in that Myc expression can stimulate 

glycolysis under normoxia, whereas HIF requires hypoxia or “abnormal” stabilization under normoxia. 

There is evidence of cross-talk between HIF and Myc function (Gordan et al., 2007), and this interplay 

will come into context later in this thesis. 

The Ras and phosphatidylinositide 3-kinase (PI3K) pathway is one of the most commonly altered 

signaling pathways in cancer (Shaw and Cantley, 2006). Mutations in receptor tyrosine kinases (RTKs), 

in the Ras oncogene, in the PI3K complex or in the tumor suppressor PTEN can lead the constitutive 

activation of the Akt kinase, which phosphorylates downstream targets that activate the expression of 

glucose transporters (GLUTs), hexokinase 2, phosphofructokinase 1 (PFK1) and 2 (PFK2). Activation 

of the PI3K-Akt pathway is sufficient to stimulate aerobic glycolysis and renders Akt-expressing cells 

sensitive to glucose withdrawal (Elstrom et al., 2004). In addition, Akt phosphorylates and inhibits the 

tuberous sclerosis 2 (TSC2), thereby activating the mammalian target of rapamycin (mTOR). The 

mTOR kinase is a key sensor of nutrient availability, integrating growth signals and environmental cues 

so as to mediate biosynthesis when nutrients are abundant. When activated, the mTOR signaling 

increases mRNA translation, ribosomal biogenesis; it stimulates lipid synthesis and the pentose 

phosphate pathway (PPP). Moreover, mTOR can stimulate the glycolytic flux by activating the 

translation of HIF-1α. Although mTOR is inhibited under hypoxic conditions (Brugarolas et al., 2004), 

there is evidence that constitutive activation of mTOR signaling in tumors and mouse embryo 

fibroblasts (MEF) leads to the accumulation of HIF under normoxia (Brugarolas et al., 2003; 

Shackelford et al., 2009). For an overview of mTOR and growth control and metabolism, see Figure 3 

in (Laplante and Sabatini, 2012). 

The explanation for the Warburg effect was to a certain extent rekindled by the discovery that 

metabolic enzymes themselves can be isoform selected to support aerobic glycolysis. The pyruvate 
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kinase (PK) enzyme converts phosphoenolpyruvate (PEP) to pyruvate and it has two splice variants, 

PKM1 (expressed in most adult tissues) and PKM2 (expressed during embryonic development) (Sybille 

Mazurek et al., 2005). Christofk et al. reported that cancer cells selectively express the pyruvate kinase 

isoform M2 (PKM2) whereas normal cells express the isoform M1 (PKM1), and demonstrated that the 

PKM1-PKM2 switch was necessary for the Warburg effect and tumor growth (Christofk et al., 2008b). 

The oncogene Myc induces the splicing factors that produce M2, further supporting its role in mediating 

aerobic glycolysis(David et al., 2010). Furthermore, PKM2 is regulated by protein kinase signaling, 

wherein it is directly phosphorylated and inhibited by growth factor receptors (Hitosugi et al., 2009) and 

its activity is also decreased upon binding to phosphotyrosine residues (Christofk et al., 2008a). 

Paradoxically, phosphotyrosine -mediated inhibition of PKM2 is required for cell growth. Moreover, 

PKM2 has a lower activity than PKM1, but PKM2-expressing cells exhibit higher lactate production than 

PKM1-expressing cells.  In light of this conundrum, strong evidences now suggest that low PKM2 

activity promotes the accumulation of upstream glycolytic intermediates to fuel serine synthesis in 

cancer cells (Chaneton et al., 2012; Ye et al., 2012). In fact, the serine and glycine synthesis pathways 

have been shown to be necessary for the rapid, aggressive growth of cancer cells (Jain et al., 2012; 

Possemato et al., 2011; Zhang et al., 2012). Conversely, other studies have deciphered the lactate 

paradox in PKM2 expressing cells. It was reported that PEP can serve as a phosphate donor to 

phosphorylate phosphoglycerate mutase (PGAM1), in which case PEP is converted to pyruvate in a 

PKM2 and ATP-independent manner (Vander Heiden et al., 2010). Here, the authors proposed that the 

combined action of PKM2 and phosphorylated PGAM1 allow high rates of PEP-to-pyruvate conversion 

in PKM2-expressing cells. Importantly, Luo et al. later showed that HIF-1 directly binds to the promoter 

of PKM2, which in turn interacts with HIF-1α subunits and increase its transcriptional activity (Luo et al., 

2011). This positive feedback loop underlines the cooperation between PKM2 and HIF to stimulate both 

glycolysis and lactate production under normoxia. The role of lactate in cancer also goes beyond its 

action in NAD+ recycling. Compelling evidences suggest that the lactate produced in hypoxic and HIF-
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expressing cells can fuel oxidative metabolism in oxygenated tumor cells, while others have 

hypothesized that lactate production may serve as a selective pressure in the tumor microenvironment 

to promote tumor invasion (Gatenby and Gillies, 2004; Sonveaux et al., 2008) . Together, these studies 

established that oncogenic alterations – activation of Myc, Akt and the switch to PKM2 – are intertwined 

with HIF signaling to support a glycolytic program necessary for cancer cell growth. 

 

I.4. Cancer Cell Growth and the Need for Glutamine Metabolism 

The classical studies of Newsholme, Brand, Wagner and others initially showed that activated 

lymphocytes and cancer cells exhibit a high rate of glutamine utilization when compared to slow 

proliferating and primary cells (Brand, 1985; Neermann and Wagner, 1996; Newsholme et al., 1985a, 

1985b). Ultimately, glutamine is required for progression through the cell cycle and proliferation, as 

glutamine-derived nitrogens are strictly necessary for purine and pyrimidine synthesis (Colombo et al., 

2011; Gaglio et al., 2009). However, recent studies in cancer biology have shown that cancer cells 

require glutamine-derived carbons to fuel the Krebs cycle and sustain rapid proliferation in response to 

growth signals, oncogene activation and loss of tumor suppressors (Ben-Sahra et al., 2013; 

DeBerardinis et al., 2007; Le et al., 2012; Mitsuishi et al., 2012; Robitaille et al., 2013; Son et al., 2013; 

Wang et al., 2010a; Wise et al., 2008; Yang et al., 2009). In retrospect, mammalian cells must produce 

new DNA, lipids and proteins before division, and the Krebs cycle provides many of the precursors 

necessary for these biosynthetic processes (figure I-3) (DeBerardinis et al., 2008). Therefore, the 

switch to a glutamine-maintained Krebs cycle in glycolytic cancer cells supports an efficient carbon flux 

for nucleotide, lipids and non-essential amino acid biosynthesis, as well as NADPH production for 

redox maintenance [see the following reviews on glutamine metabolism in cancer cells (Dang, 2009a; 

DeBerardinis and Cheng, 2009; Kaelin et al., 2010; Wise and Thompson, 2010)]. One of the major 

oncogenic mechanisms of glutamine addiction is the activation of Myc in cancer cells. As an 

established oncogene, Myc stimulates mitochondrial biogenesis, and increases the expression of 
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Figure I-3. The Role of the Krebs Cycle in Anabolism 

glutaminase 1 (GLS1) through the repression of the micro RNA miR-23a/b (Dang, 2009b). A 

consequence of the Myc-mediated transcriptional program is the activation of glutamine oxidation in the 

Krebs cycle – the glutaminolysis pathway, which renders glioblastoma cells highly dependent on 

glutamine to proliferate (Wise et al., 2008). The requirement for a functional Krebs cycle can be also 

evidenced by the essential role of pyruvate carboxylase in supporting the growth of glioblastoma cells 

in the absence of glutamine (Cheng et al., 2011). This notion also calls for the mechanisms that rewire 

cancer cells to depend either on glucose- and/or glutamine-derived carbons to fuel specific metabolic 

pathways. In fact, it has been shown that glucose uptake and glutamine uptake are coupled through the 

hexosamine biosynthetic pathway and the Mondo-A transcriptional program (Kaadige et al., 2009; 

Wellen et al., 2010), which suggests that cancer cells must coordinate glucose and glutamine utilization 

in central carbon metabolism to support proliferation.  

 

 

 

 

 

 

 

 

 

The diagram shows the biosynthetic fate of the Krebs cycle intermediates. The anabolic products studied in this 

doctoral thesis are shown in red. 
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AcCoA is a major precursor for lipid synthesis and protein acetylation, being generated from 

glucose-derived pyruvate through mitochondrial metabolism and the ATP-dependent citrate lyase 

(ACLY) reaction in the cytosol. In 2005, the team of Craig Thompson reported that inhibition of ACLY 

impairs lipid synthesis and tumor growth (Hatzivassiliou et al., 2005). The authors hypothesized that 

cancer cells rely on a truncated version of the Krebs cycle, wherein the glucose-derived citrate in the 

mitochondria is exported to the cytosol and converted to AcCoA and oxaloacetate (via ACLY) for lipid 

synthesis. The cytosolic oxaloacetate is reduced to malate and recycled back to the mitochondrion, 

completing the cycle. Later, it was shown that the significance of ACLY in cancer cells extends the 

biosynthetic fate of AcCoA, as evidenced by the role of ACLY-derived AcCoA in maintaining histone 

acetylation in response to growth factors (Wellen et al., 2009). For clarity, these findings may seem 

incompatible with the Warburg effect, but the conventional understanding was that the remaining 

glucose-derived pyruvate (not converted to lactate) was critical to maintain de novo lipogenesis through 

the action of ACLY. However, this hypothesis implies that enough pyruvate is allowed to be diverted 

towards mitochondrial citrate for lipid synthesis in cancer cells.  As we shall see herein, this does not 

hold for true Warburg-like or hypoxic cells.  

 

I.5. The Scientific Questions Addressed Herein 

Hypoxic cells and, by extension, true Warburg-like cells convert glucose to lactate at near-

maximum theoretical levels, which raises the question of how the Krebs cycle is supplied with AcCoA to 

support lipogenesis. In this context, the catabolism of glutamine under hypoxia or “pseudohypoxic” 

conditions is not understood, and this was a fundamental question of this doctoral thesis. Here, we 

show that cells under hypoxic conditions primarily utilize glutamine to generate citrate and lipids 

through reductive carboxylation of α-ketoglutarate by isocitrate dehydrogenase (IDH1).  Glutamine can 

contribute to lipogenic AcCoA through two distinct pathways. Glutamine-derived α-ketoglutarate can be 

oxidatively metabolized in the Krebs cycle and generate pyruvate from malic enzyme (glutaminolysis), 
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which in turn can be converted to AcCoA. Alternatively, cells can reductively carboxylate α-

ketoglutarate to generate isocitrate/citrate (reductive carboxylation, RC). Here, we labeled cancer and 

non-transformed human-derived cell lines with 13C isotopic tracers which specifically trace the 

contribution of glutaminolysis, RC and glucose oxidation to lipogenic AcCoA. We show that hypoxic 

cells almost exclusively reply on glutamine-derived RC to produce de novo fatty acids (Metallo et al., 

2012). In parallel, other groups also showed that cells under hypoxic conditions or defective 

mitochondria primarily utilize glutamine to generate citrate and lipids through RC by IDH1 or IDH2 

(Mullen et al., 2011; Scott et al., 2011; Wise et al., 2011), corroborating our findings that glutamine is a 

major substrate for de novo lipogenesis upon hypoxia. 

Given the role of HIF-1α/2α in the cellular response to hypoxia, we hypothesized that HIF is the 

critical regulator of RC. HIF can be directly activated by loss of the VHL tumor suppressor, and VHL-

deficient RCC cells exhibit constitutive HIF expression even under normal oxygen conditions (a 

pseudohypoxia state). We show that VHL-deficient cells also rely on RC for lipid synthesis even under 

normoxia, and metabolic profiling of two isogenic clones that differ in pVHL expression (WT8 and 

PRC3) suggest that reintroduction of wild-type VHL can restore glucose utilization for lipogenesis 

(Metallo et al., 2012). The VHL tumor suppressor protein (pVHL) has been reported to have several 

functions other than the well-studied targeting of HIF. Specifically, it has been reported that pVHL 

regulates the large subunit of RNA polymerase (Pol) II (Mikhaylova et al., 2008), p53  (Roe et al., 

2006), and the Wnt signaling regulator Jade-1. VHL has also been implicated in regulation of NF-kB 

signaling, tubulin polymerization, cilia biogenesis, and proper assembly of extracellular fibronectin 

(Chitalia et al., 2008; Kim et al., 2003; Ohh et al., 1998; Thoma et al., 2007; Yang et al., 2007). Hypoxia 

inactivates the α-ketoglutarate-dependent HIF prolyl hydroxylases (PHDs), leading to stabilization of 

HIF. In addition to this well-established function, oxygen availability regulates other signaling processes 

including mTOR signaling, the unfolded protein response (Wouters and Koritzinsky, 2008), the 

expression of microRNAs that regulate mRNA translation (Chan et al., 2009; Kulshreshtha et al., 2007), 
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and the activity of a larger family of α-ketoglutarate dependent cellular oxygenases that lead to 

posttranslational modification of chromatin modifiers (Melvin and Rocha, 2012). It is therefore 

conceivable that the effect of hypoxia on RC that we report may be mediated by signaling mechanisms 

independent of the disruption of the pVHL-HIF interaction. Thus, we sought to elucidate the signaling 

mechanisms underlying RC induction by hypoxia and loss-of-VHL. We (1) demonstrate that HIF is 

necessary and sufficient to promote RC, (2) provide insights into the molecular mechanisms that link 

HIF to RC, (3) detect RC activity in human VHL-deficient RCC cells growing as tumors in nude mice, 

(4) provide evidence that the reductive phenotype of VHL-deficient cells renders them sensitive to 

glutamine restriction in vitro, and (5) show that inhibition of glutaminase suppresses the growth of VHL-

deficient xenograft tumors (Gameiro et al., 2013a).  

Reductive carboxylation by IDH enzymes is a NADPH-dependent reaction, wherein NADPH 

donates the hydride ion (H-) that reduces α-ketoglutarate into isocitrate (Dalziel and Londesborough, 

1968; Leonardi et al., 2012; Siebert et al., 1957). However, we observe that HIF expression does not 

increase NADPH levels, which raises the question of how IDH1 and IDH2 are supplied with NADPH to 

catalyze the reverse reaction. In particular, the source(s) of NADPH for RC in the mitochondrion (by 

IDH2) have not been investigated. The enzyme nicotinamide nucleotide transhydrogenase (NNT), 

residing in the inner membrane of the mitochondrion, catalyzes the transfer of hydride ion equivalents 

(H-) from NADH to NADPH using the proton gradient: (xHout → xHin) as follows: NADH + NADP+ + 

xH(out) → NAD+ + NADPH + xH(in). NNT is regarded as a major source of NADPH in the mitochondrion 

and reduced glutathione (Rydström, 2006; Sheeran et al., 2010; Yin et al., 2012). It is therefore 

conceivable that NNT activity generates the NADPH necessary for the RC reaction in the 

mitochondrion, a hypothesis that has been speculated before (Sazanov and Jackson, 1994), but has 

never been experimentally tested. Using 13C isotopic tracers, we show that NNT contributes to RC in 

the mitochondrion and regulates glucose and glutamine utilization in the Krebs cycle (Gameiro et al., 

2013b). 
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In addition to being a source of lipogenic AcCoA, glutamine can also be used in the Krebs cycle to 

generate aspartate, which is the carbon source for pyrimidine synthesis. Given the role of HIF-1α/2α in 

regulating glutamine metabolism, we hypothesized that loss of VHL would affect pyrimidine synthesis in 

RCC cells. Using 13C and 15N glutamine tracers, we show that VHL-deficient RCC cells utilize RC-

derived aspartate to maintain de novo pyrimidine synthesis. Inhibiting the utilization of glutamine-

carbons compromises de novo pyrimidine synthesis in VHL-deficient cells but not in VHL-reconstituted 

cells, which can utilize glucose oxidation to maintain aspartate synthesis. We also provide evidences 

that the contribution of the salvage pathway for pyrimidine synthesis is altered upon loss of VHL, and 

that this phenotype can be targeted to selectively inhibit the growth of VHL-deficient cells (in 

preparation).  

In my doctoral work, I also participated in studies investigating how other oncogenes and tumor 

suppressors affect glutamine metabolism. Specifically, we observe that oncogenic K-Ras also 

increases glutamine utilization in the Krebs cycle of transformed fibroblasts (Gaglio et al., 2011), 

whereas loss of the tumor suppressor Rb changes nucleotide levels and reprograms glutamine 

metabolism to maintain glutathione synthesis in flies and human cancer cells (Nicolay et al., 2013).  

In this thesis, we i) identify reductive carboxylation (RC) as the main pathway of lipid synthesis in 

hypoxic and VHL-deficient RCC cells, ii) elucidate the role of HIF in promoting RC and the biological 

significance of the reductive phenotype in VHL-deficient RCC cells, iii) determine the contribution of 

NNT-derived NADPH for the RC reaction, iv) demonstrate the regulation of pyrimidine synthesis by HIF 

in RCC cells, and iv) explore the role of other oncogenic signals in regulating glutamine utilization in the 

Krebs cycle. Taken together, these observations lay the ground for metabolism-based therapeutic 

strategies for targeting glutamine catabolism in HIF-driven tumors (such as RCC) and possibly the 

hypoxic compartment of solid tumors in general.  
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“The first key to success is the ability to apply your physical and  

mental energies to one problem without growing weary.” 

 

Thomas Edison 

 

 

  



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 20 - 

 

This page was intentionally left blank



  

 

 

 

 

Chapter II 

 

II. Experimental Procedures 
 

 

 

 

 

 

 

 

 

 

Chapter II describes Isotopic Methods partially reviewed in the book chapter: 

Gameiro PA, Metallo CM, Stephanopoulos G. (2012). Systems-level analysis of cancer metabolism. In 
Systems Metabolic Engineering (Chapter 11), (Springer) 
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II.1. Isotopic Methods 

1.1. Stable isotopes, Mass spectrometry and Technical terminology 

Heavy stable isotopes are the most practical means of tracing and quantifying intracellular 

metabolism, wherein isotope-labeled substrates (i.e., tracers) are catabolized through enzyme-

mediated reactions in the metabolic network. Provided that knowledge of atom transitions is available, 

the metabolic fate of these tracers can be exploited to quantify the activity of metabolic reactions. 

Specifically, the degree of isotopic enrichment in metabolic intermediates and products will inform on 

the contribution (or relative flux) of different reactions (that catabolize the tracer) to the formation of 

metabolites of interest. In conjugation with substrate uptake and product secretion rates, the isotopic 

enrichment of metabolites can be further used to estimate absolute fluxes (in mol per cell per time unit) 

using Metabolic Flux Analysis (MFA), as described below. A metabolic flux captures multiple levels of 

cellular regulation, including protein expression, metabolite concentrations, posttranslational 

modifications and allosteric regulation; hence, it represents a powerful metric to evaluate cellular 

activity. Herein, we used 13C-labeled glucose and glutamine tracers and mass spectrometry (MS) to 

study intermediary metabolism in the Krebs cycle, and macromolecule biosynthesis. 

Mass spectrometry–based studies are carried out by coupling a separation technique to a mass 

analyzer through different ionization interfaces. Here, we primarily used gas chromatography – mass 

spectrometry (GC-MS), in which metabolites in a complex mixture (cellular extract) are separated in a 

column coupled to a MS detection system that generates ions through electron impact (EI). A 

fragmentation pattern specific to the metabolite structure is produced, and a mass spectrum is recorded 

where fragments are sorted based on their mass-to-charge ratio (m/z). GC-MS offers high 

chromatographic resolution and sensitivity for amino and organic acids, which comprise a significant 

part of the molecules in central carbon metabolism. GC-MS analysis requires that the metabolites are 

either volatile or rendered volatile by derivatization. Here, we performed silylation via tert-

butyldimethylsilylation (TBDMS), which is an established method to reduce the polarity of amino and 
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organic acids through an anhydrous reaction that forms ester derivatives. For information on MS 

approaches, protocols, chemical derivatization and 13C isotopic tracers for the metabolic profiling of 

cancer cells, please see (Griffin and Shockcor, 2004; Halket et al., 2005; Walther et al., 2012; Yuan et 

al., 2012). 

Mass spectrometry detects molecules that differ in mass, as determined by mass isotopomers. The 

measured mass isotopomers may comprise molecules that differ in their isotopic composition. For 

example, glutamine labeled with either one 15N or 13C atom are detected by MS as the same mass 

isotopomer. The mass spectrum of a heavy isotope-enriched molecule is comprised by a set of mass 

isotopomer distributions (MIDs) (each one corresponding to a single molecular fragment), which 

distinguish populations of molecules that have a different number of neutrons. Although no positional 

enrichment is directly measured by MS, it is often possible to retrieve such information via analysis of 

the molecular fragmentation (Christensen and Nielsen, 1999; Dauner and Sauer, 2000). Mass 

isotopomers of a molecular fragment are generally represented by the mass m plus the number of non-

abundant isotopes. The fraction mass 0 (or M0, notation used in this work) denotes the mass of 

molecules comprised by atoms of the most common isotope present naturally. The increase in mass 

(M1, M2, M3, etc) refers to molecules enriched with the correspondent number of heavy isotopes from 

the tracer or from natural abundance (e.g., 1.1% for 13C). The MID pattern of a metabolite readily 

indicates the abundance of each mass isotopomer relative to the total, representing a readout of 

activity of the different reactions metabolizing the tracer. 

A complication associated with MID patterns is the natural abundance of 13C, 2H, 17O, 18O, 15N and 

29Si atoms, among others. In isotopic studies using TBDMS, the natural abundance of atoms in the 

derivatization group significantly contributes to the isotopic enrichment of the analyte, so measured 

MIDs need to be corrected for the naturally labeled atoms that are not derived from the tracer. 

Glutamine labeled with 13C in the five carbons ([U-13C5] glutamine, in which “U” denotes uniformly) was 

used in this work and will be used as example. When A549 cells (a human lung carcinoma line) are 
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Figure II-1. Mass Isotopomer Distribution (MID) of Glutamine  

labeled with 99% [U-13C5] glutamine, prior to correction MID depicts a percent enrichment of M5 

glutamine of approximately 60% which is a consequence of abundant M6 and M7 fractions in the 

population of molecules. Here, we used a correction method executed within Matlab (Mathworks), 

which is adapted from Fernandez’ et al. (Fernandez et al., 1996). As seen in figure II-1, the corrected 

MID closely resembles that expected of the original tracer, with M5 comprising approximately 90% of 

the intracellular glutamine. 

 

 

 

 

 

 

 

 

 

Mass isotopomer distribution (MID) of intracellular glutamine in A549 cells cultured with [U-13C5] (99%) 

glutamine. The glutamine MID was obtained by GC-MS analysis of the cell extract. Metabolites were 

derivatized with TBDMS, which generates a glutamine fragment of 431 m/z (M0). An in-house algorithm 

corrected for the natural abundance of C, H, O, N, P, Si, S and F atoms.  

 

1.2. Choice of 13C isotopic tracers  

The experimental design is critical to obtain the desired metabolic information from isotopic labeling 

studies. In particular, the choice of tracer limits the range of possible measured MIDs and therefore 

strongly influences the quality of the data. A wide collection of stable isotopes is now available, and 
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several studies have been conducted to test the effectiveness of different 13C tracers to determine 

specific fluxes in mammalian cells (Metallo et al., 2009; Walther et al., 2012). Here, we used different 

13C-labeled glucose and glutamine tracers to probe the activity of specific reactions in central carbon 

metabolism, as described below.  

To trace glucose catabolism, we used uniformly 13C labeled glucose ([U-13C6] glucose), glucose 

labeled with 13C in carbon 3 ([3-13C1] glucose), and glucose simultaneously labeled with 13C in carbons 

1 and 2 ([1,2-13C2] glucose). The [U-13C6] glucose tracer transfers two 13C atoms to Krebs cycle 

metabolites via pyruvate dehydrogenase (PDH), whereas pyruvate carboxylase (PC) activity 

incorporates three 13C atoms in oxaloacetate, which then propagate to other Krebs cycle metabolites. 

Therefore, the formation of M2 and M3 mass isotopomers are associated with PDH and PC activity, 

respectively, whereas M5 citrate, M4 α-ketoglutarate, and M4 glutamate isotopomers reflect the overall 

contribution of glucose carbons via PDH, PC and/or continued Krebs cycle (Figure II-2). AcCoA 

molecules originating from [U-13C6] glucose are fully labeled, and the labeled fatty acids (we used 

palmitate as a readout) are represented by M2, M4, M6, M8, M10, M12, M14, and M16 mass 

isotopomers. The [3-13C1] glucose isotope was used to trace the specific contribution of glucose-derived 

anaplerosis, in which the 13C in carbon 1 (C1) of pyruvate is either retained in oxaloacetate via PC or 

lost as CO2 through PDH. The [1,2-13C2] glucose tracer was used in Chapter V to probe flux split ratios 

into the pentose phosphate pathway (PPP) versus anaerobic glycolysis; the oxidative decarboxylation 

of 6-phosphogluconate into D-ribulose 5-phosphate (oxidative PPP) ultimately produces singly 13C-

labeled glyceraldehyde 3-phosphate (GAP), while glycolysis forms M2 GAP. Therefore, the relative 

activity of these two pathways can be ascertained by the MIDs of the downstream metabolites pyruvate 

and lactate, in specific through analysis of the M2 to M1 ratio (Vizan et al., 2005). 
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Figure II-2. Carbon Atom Transition Map for [U-13C6] Glucose 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

The map illustrates the fate of [U-13C6] glucose in the Krebs cycle and palmitate (carbon atoms are represented 

by circles). The [U-13C6] glucose-derived isotopic label (blue circles) are retained in the Krebs cycle, transferring 

two 13C atoms to citrate (M2 Cit), α-ketoglutarate (M2 α-kg), succinate (M2 Suc), fumarate (M2 Fum), and 

malate (M2 Mal) via pyruvate dehydrogenase, or three 13C atoms to oxaloacetate (M3 Oac) via pyruvate 

carboxylase (PC). The condensation of PC-derived Oac with fully labeled acetyl-CoA (M2 AcCoA) forms M5 

Cit, M4 α-kg, M4 Suc, M4 Fum and M4 Mal. Other possible combinations between labeled/unlabeled Oac and 

acetyl-CoA are not shown. Labeling patterns arising from molecular symmetry, some unlabeled intermediates 

and cellular compartments are omitted for simplicity. The first round of the Krebs cycle is illustrated, and 

positional labeling is depicted for relevant metabolites. 

 

To trace glutamine catabolism in the Krebs cycle, we used uniformly 13C labeled glutamine ([U-

13C5] glutamine) and [1-13C1] glutamine. The [U-13C5] glutamine tracer transfers four 13C atoms to the 

Krebs cycle intermediates through oxidation (forward Krebs cycle) whereas it incorporates five 13C 
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Figure II-3. Carbon Atom Transition Map for [U-13C5] Glutamine 

atoms in citrate through reductive carboxylation (RC), generating M5 citrate, M3 oxaloacetate, M3 

aspartate, M3 malate and M3 fumarate. AcCoA molecules originating from [U-13C5] glutamine are fully 

labeled. Therefore, [U-13C5] glutamine traces the overall contribution of glutamine (via RC and 

glutaminolysis) to lipid synthesis (Figure II-3). Of note, since the glutaminolytic pathway generates M3 

pyruvate from [U-13C5] glutamine (via mitochondrial malic enzyme), M5 citrate can in principle be 

formed via condensation of glutaminolysis-derived AcCoA (M2 AcCoA) with M3 oxaloacetate (not 

depicted in Figure II-3). Thus, the M5 citrate from [U-13C5] glutamine can be an ambiguous readout of 

RC activity in cells that heavily rely on complete glutaminolysis (glutamine-to-pyruvate conversion).  

 

 

 

 

 

 

 

 

 

 

 

  

 
 
 

The map illustrates the fate of [U-13C5] glutamine in the Krebs cycle and palmitate (carbon atoms are 

represented by circles). Mass isotopomers generated by reductive carboxylation (RC) include M5 citrate (Cit), 

M3 oxaloacetate (Oac), M3 aspartate (Asp), M3 malate (Mal), and M3 fumarate (Fum). Mass isotopomers 

generated by oxidative metabolism include M4 Cit, M4 succinate (Suc), M4 Fum and M4 Oac. Both RC and 

complete glutaminolysis (not shown) generate fully labeled acetyl-CoA (M2 AcCoA). For simplicity, labeling 

patterns arising from molecular symmetry and cellular compartments are not shown. The first round of the 

Krebs cycle is illustrated, and positional labeling is depicted for relevant metabolites. 
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To specifically trace the contribution of RC to the Krebs cycle, we used [1-13C1] glutamine, in which 

the 13C labeled carbon is lost during oxidation of α-ketoglutarate, but it is retained in citrate through RC 

activity and transferred to metabolites downstream of the ACLY reaction (Figure II-4). To trace the 

contribution of RC to lipid synthesis, we used [5-13C1] glutamine because the [1-13C1] glutamine-derived 

isotopic label cannot be incorporated in AcCoA through RC. [5-13C1] glutamine transfers one 13C atom 

to AcCoA and fatty acids through RC only. Although the [5-13C1] glutamine-derived isotopic label is 

transferred to Krebs cycle metabolites oxidatively, it cannot be incorporated into citrate as carbons 5 or 

6 (which comprise the AcCoA carbon skeleton of citrate – see the AcCoA moiety highlighted by dashed 

circles in Figure II-4). Consequently, [5-13C1] glutamine is specific to trace the RC-to-lipid flux. 
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Figure II-4. Carbon Atom Transition Map for [1-13C1] Glutamine and [5-13C1] Glutamine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The map illustrates the fate of [1-13C1] and [5-13C1] glutamine used to trace the reductive Krebs cycle in this 

work (carbon atoms are represented by circles). The [1-13C1] glutamine-derived isotopic label (green circle) is 

lost during oxidation of α-ketoglutarate, but it is retained during the reductive Krebs cycle and transferred to 

citrate and downstream metabolites. [5-13C1] glutamine-derived isotopic label (red) is incorporated into acetyl-

CoA (AcCoA) and fatty acids through reductive carboxylation only; isotopic label from [5-13C1] glutamine cannot 

be transferred to fatty acids through oxidative Krebs cycle. Metabolites containing the AcCoA carbon skeleton 

are highlighted by dashed circles. For simplicity, labeling patterns arising from molecular symmetry and cellular 

compartments are not shown. Positional labeling is depicted for relevant metabolites only. 
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1.3. Metabolic Flux Analysis (MFA)  

Computational estimation of fluxes and their associated 95% confidence intervals was 

accomplished using the metabolic elementary unit (EMU) framework – based software Metran 

executed in Matlab (Mathworks) as previously described  (Antoniewicz et al., 2007, 2006). Briefly, mass 

isotopomer distributions (MIDs) for each metabolite are simulated using initial “guess” flux vectors, the 

substrate labeling information (in this case, [1-13C1] glutamine and [U-13C6] glucose datasets) and a 

stoichiometric matrix outlined by the reaction network and atom transitions. The simulated MIDs are 

compared with measured MIDs (obtained by GC-MS analysis) and the flux vector is iteratively adjusted 

by minimizing the residuals between simulated and measured MIDs. Upon obtaining an accepted fit, 

the sensitivities of the simulated MIDs are extracted to determine 95% confidence intervals associated 

with each flux estimate. The flux estimations and confidence intervals were subject to the following 

assumptions:   

1. Cellular metabolism and isotopic labeling are at steady-state.  Cells were labeled for 24 hours 

with either 13C glutamine or 13C glucose tracers. We confirmed that the metabolite labeling from 

glutamine does not change significantly after approximately 12-18 hours, allowing for an acceptable 

assumption of pseudo steady-state. This is exemplified in Figure II-5 for vector-only (pBABE) and VHL-

reconstituted UMRC2 cells, cultured in the presence of [U-13C5] glutamine for different periods of time.  

2.  Dissolved CO2 exchanges freely with gaseous CO2 such that unlabeled CO2 is available for use 

in carboxylation reactions. Thus, we did not balance the CO2 production and consumption in our MFA. 

3.  Fatty acid oxidation and protein turnover are negligible relative to glucose and glutamine 

consumption. Thus, we did not consider these fluxes in our MFA. 

4.  Two separate compartments of pyruvate are assumed to exist, with cytosolic pyruvate (primarily 

glucose-derived) used to generate lactate and mitochondrial pyruvate (derived from Krebs cycle 

metabolites) used for alanine synthesis.  These compartments are exchangeable and required to fit the 

differential labeling observed in lactate and alanine.   
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Figure II-5. Time-Course Labeling of UMRC2 Cell Lines from [U-13C5] Glutamine 

5.  Fumarate and succinate are symmetric metabolites, and a dilution pool of unlabeled succinate 

is assumed to exist.  Isotopic enrichment of succinate pools from tracers is often observed to be 

decreased when compared to other Krebs cycle metabolites. Inclusion of a “dilution flux” to succinate 

pool was required to fit the differential labeling observed in succinate when compared to other Krebs 

cycle metabolites. The measured succinate is comprised of both pools (metabolically active and dilution 

compartment). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector-only (pBABE) and VHL-reconstituted cells were cultured in the presence of [U-13C5] glutamine for 

different periods of time. The percent 13C enrichment of (A) glutamate, (B) citrate, (C) aspartate, and (D) malate 

is shown for isotopomer readouts of glutamine incorporation (M5 glutamate), reductive carboxylation (M5 

citrate, M3, aspartate and M3 malate) and oxidative Krebs cycle (M4 citrate, M4 aspartate and M4 malate). 
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The principle of ISA was initially developed by Joanne Kelleher and colleagues to quantify de novo 

synthesis of fatty acids using 13C acetate tracers (Kelleher and Masterson, 1992; Kharroubi et al., 

1992). ISA provides a general framework to measure the contribution of different sources to the 

precursor pool (e.g., acetyl-CoA) of a given product (e.g., palmitate); it requires the biochemistry to 

follow the polymerization principle, with monomeric subunits (the precursors) condensing into a 

polymer (the product). There are two dimensionless parameters that are determined by the ISA 

approach: D is the fractional contribution of 13C-enriched atoms of the tracer versus endogenous 

pathways (1-D) as sources of the precursor (lipogenic AcCoA); g(t) indicates the fraction of newly 

synthesized product in the sample (e.g. palmitate) (Figure II-6). The ISA assumes that the precursor 

mixture rapidly achieves metabolic and isotopic steady-state during the incubation with the tracer. A 

key component of the ISA model is that the sampled product is not required to attain isotopic steady-

state. The ISA model uses equations to calculate the probability of the appearance of each mass 

isotopomer (M0, M1, M2, etc) in palmitate, based on test values for D and g(t) (Kelleher and 

Masterson, 1992; Yoo et al., 2004). These probabilities are compared with the actual fractional 

abundance obtained for each palmitate mass isotopomer (the MID obtained by GC-MS) and a fitting 

procedure outputs a best estimate for D and g(t). Here, we performed ISA using the software Metran 

and estimated the percent contribution to lipogenic AcCoA (D value) and the percent de novo 

lipogenesis (g(t) value), together with their associated confidence intervals. 

For calculation of the absolute de novo lipogenic flux (in pmol of palmitate per cell per hour), the 

quantity of newly synthesized palmitate was determined by multiplying the percentage of de novo 

lipogenesis (g(t) value) by the total cellular palmitate.  Palmitate was quantitated by GC/MS using a tri-

heptadecanoin (C17) internal standard.  The absolute flux of a given substrate (e.g. glutamine) to 

palmitate was calculated by multiplying the percent contribution to lipogenic AcCoA (the D value) by the 

amount of newly synthesized palmitate and dividing by the integral viable cell density over the course of 

the experiment (this absolute flux quantification was used in Chapter III). 

1.4.  Isotopomer Spectral Analysis (ISA)  
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Figure II-6. The Isotopomer Spectral Analysis (ISA) Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 13C-labeled glucose tracer is used to trace the glucose-to-lipid flux. The glucose-derived 13C atoms and 

endogenous sources (e.g. acetate, glutamine) contribute to the pool of lipogenic acetyl-CoA (AcCoA). The D 

parameter indicates the unknown fractional contribution (or relative flux) of the glucose tracer to lipogenic 

AcCoA. During the incubation with the tracer, palmitate is synthesized from 8 molecules of AcCoA. The newly 

synthesized palmitate mixes with an existing pool of palmitate (prior to tracer addition) and the fraction of de 

novo palmitate synthesis after a period t is g(t). Each bar graph represents the palmitate mass isotopomer 

distribution (MID). Pre-existing palmitate has a significant M1 enrichment due to natural abundance. The 

parameters D and g(t) are estimated by fitting the predicted to the measured MID in the sampled palmitate. 
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II.2. Metabolite Analysis of Cellular Medium 

For MFA, absolute flux estimates in pmol/cell/hour were obtained using glucose/glutamine uptake 

and lactate/glutamate secretion rates. Cells were seeded in 6 well plates at low density in basal DMEM 

(Sigma), spent medium collected at the end of a 72 hours growth period (in triplicate) and glucose, 

lactate, glutamine, and glutamate concentrations were measured using a Yellow Springs Instruments 

(YSI) 7100. Cell number was determined using a hemocytometer. The specific growth rate (μ) was 

estimated through regression of equation 1. The uptake/secretion rates were calculated using the 

normalized consumption/secretion coefficient (Δn/ΔX) which is multiplied by the estimated specific 

growth rate (μ), according to equation 2, in which Δn is the measured finite difference of moles 

consumed/produced, ΔX is the difference in cell density (cells/cm2), and ν is the specific 

uptake/secretion flux.  

 

   ( )      (  )      (1) 

     
  

  
   (2) 

 

 

II.3.  Polar Metabolites / Fatty-Acids Extraction and GC-MS Analysis 

At the conclusion of labeling, metabolic activity was quenched with 0.4ml -80ºC methanol. An equal 

volume of distilled H2O was added, cells were detached by pipette-scraping the plate and extracts were 

obtained by adding 0.8ml of -20ºC chloroform.  Samples were centrifuged at 12,000rpm for10 min at 

4ºC. For polar metabolite analysis, the aqueous phase (top) was collected and evaporated under 

airflow or using a vacuum centrifuge. Dried metabolites were dissolved in 30µl of 2% methoxyamine 

hydrochloride (Mox) in pyridine (Pierce), at 37°C for 1.5 hours, and derivatized by adding 45μl of N-

methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MBTSTFA) + 1% tert-butyldimethylchlorosilane 

(TBDMCS; Pierce) at 55-60°C for 1 hour. For ISA experiments, the chloroform phase containing the 
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non-polar metabolites (bottom) was collected and evaporated. Fatty acid methyl esters (FAMEs) were 

obtained by dissolving and reacting the dried chloroform fractions in either 50–100 µl of Methyl-8 

reagent (Pierce) and incubating at 60ºC for 1hour, or in 500μl of 2% (v/v) H2SO4:methanol at 55-60ºC 

for 2 hours. After transesterification using method ii), FAMEs were isolated by adding 400μl of hexane 

and 100μl of saturated NaCl. The hexane phase was transferred to a new tube for evaporation under 

airflow. Dried FAMEs were dissolved in 50μl of hexane prior to injection on the GC-MS. GC-MS 

analysis was performed using an Agilent 6890 GC equipped with a 30m DB-35MS capillary column 

interfaced to an Agilent 5975B MS operating under electron impact (EI) ionization at 70 eV.  One μl of 

sample was injected in splitless mode at 270°C, using helium as the carrier gas at a flow rate of 1 

ml.min-1. For measurement of polar metabolites, the GC oven temperature was held at 100°C for 3 min 

and increased to 300°C at 3.5°C.min-1.  For analysis of FAMEs, the initial GC oven temperature was 

100ºC, then increased to 200ºC at 20°C.min-1, to 230°C at 5°C.min-1, and finally to 300C at 20°C.min-1, 

at which held for 2.5min.  The MS source and quadrupole were held at 230°C and 150°C, respectively, 

and the detector was operated in scanning mode, recording mass-to-charge-ratio spectra in the range 

of 100 – 605 m/z.   

 

II.4. DNA Extraction and GC-MS Analysis 

At the conclusion of the labeling period, cells were detached by trypsinization and centrifuged at 

1,200 RPM for 5min. The supernatant was aspirated and the DNA isolated from the cell pellet using a 

DNeasy Blood & Tissue column (Qiagen). Column elution was performed with 100µl of DNAse-free 

water and the DNA concentration determined using a Nanodrop instrument (Thermo scientific). To 

hydrolyze the DNA into individual free bases, 200µl of 88% formic acid were added to the DNA-

containing tubes, the solution (formic acid: H2O, 2:1) transferred to a vacuum hydrolysis tubes (Thermo 

scientific) for hydrolysis at 140ºC for 1hr. Optimization experiments showed that no significant gain of 

GM-MS signal was obtained by extending the hydrolysis time. The hydrolyzed DNA was evaporated 
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under air-flow. Similarly to the polar metabolites, the free bases were derivatized using Mox and 

MBTSTFA + 1% TBDMCS, as previously described for the GC-MS analysis of nucleotide bases 

(O’Donoghue et al., 1994). The derivatization volume was adjusted so as to obtain a final DNA 

concentration of either 50ng/µl or 100ng/µl, based on the previous Nanodrop quantification. For the 

GC-MS analysis, either 1μl (of 100ng/µl) or 2μl (of 50ng/µl) sample was injected in splitless mode at 

270°C, using helium as the carrier gas at a flow rate of 1 ml.min-1. The GC-MS parameters were as 

described above for the polar metabolites; the GC oven temperature ramp was slightly modified to 

allow a better separation of late elution free bases, in particular adenine and guanine.  

 

II.5. Cell Culture and Metabolic Labeling 

  All cell lines were obtained from ATCC, tested for mycoplasma, cultured in 5% CO2 incubators 

and maintained in DMEM (GIBCO BRL) containing 10% FBS (Hyclone) supplemented with penicillin-

streptomycin (Invitrogen). PRC3 and WT8 were described before (Iliopoulos et al., 1995). The VC3 

glioma cell line was provided by T. Lautenschlaeger, MDA-MB-231 and HCT116 cell lines were 

provided by F. Chiaradonna, MRC5 cells were provided by S. Lippard, SN12C, ACHN and 786-O cells 

were provided by K. Courtney and L. Cantley, MCF10A cells were provided by J. Brugge. Neonatal 

epithelial kidney (NEK) cells were derived from transgenic mice engineered to harbor UBCcreER; Rosa 

26 lox-stop-lox HIF1dPA or UBCcreER; Rosa 26 lox-stop-lox HIF2dPA or UBCcreER as control. NEK 

cell were cultured in DMEM/F12 medium supplemented with insulin-transferrin-selenium (Invitrogen 

41400-045) and EGF (Gemini Bio300-110). Hypoxic culture was conducted by either i) feeding a 

custom mixture of 1% O2, 5% CO2 and 94% N2 to a standard incubator controlled at 5% CO2, or ii) 

using an hypoxia incubator (ESPEC, BNP-210). In some experiments, HEPES (Mediatech) was added 

to the culture medium at 20mM to maintain pH between normoxic and hypoxic cultures. The internal 

gas content was monitored using Fyrite gas analysers (Bacharach) for CO2 and O2. O2 levels were 

confirmed at 1–3% during hypoxic culture. For isotopic labeling experiments, cells were seeded in 6 
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well plates and cultured with glucose- and glutamine-free DMEM (basal DMEM, Sigma, D5030), 

containing 10% dialyzed FBS (Hyclone), supplemented with 25mM naturally labeled glucose and the 

appropriate 13C glutamine tracer, or with the appropriate 13C glucose tracer (25mM) and 4mM naturally 

labeled glutamine, except in Chapter VI. In Chapter VI, all experiments were conducted using the basal 

DMEM supplemented with 10mM glucose and 2mM glutamine. We confirmed that these concentrations 

do not affect the growth rate of our cell lines and better reflect physiological conditions. [U-13C5] 

glutamine, [5-13C1] glutamine, [1-13C1] glutamine, [U-13C6] glucose, [3-13C1] glucose and [1,2-13C2] 

glucose were obtained from Cambridge Isotope Labs. For polar metabolite analyses, metabolic labeling 

was conducted for 24 hours. Labelling of fatty acids for ISA was conducted over 3–5 days of culture in 

an excess of tracer medium (3ml per well in a six-well plate) to prevent nutrient depletion. Labeling of 

biomass DNA was conducted for 8 days, wherein cell culture splitting was necessary to allow 

continuous labeling of growing cells during the entire time course. 

 

II.6.  Cell Viability Assays 

Cells were cultured in basal DMEM supplemented with 25mM glucose, 1mM glutamine and 10% 

dialyzed FBS except in Chapter VI, in which the basal DMEM was supplemented with 10mM glucose, 

2mM glutamine and 10% dialyzed FBS. Cells were cultured in either six- or twelve-well plates over 3 

days with the appropriate medium, until confluence was reached in the control wells.  In Chapter IV, cell 

number was determined manually and viability by trypan blue exclusion. In Chapters V and VI, cell 

viability was assayed by crystal violet staining. In brief, the medium was aspirated, and cells were fixed 

with a 6.25% glutaraldehyde solution for 10min. The fixating solution was aspirated and the wells rinsed 

twice with distillated H20, stained with a 0.1% crystal violet solution for 40min and thoroughly rinsed 

with H2O. Quantification of cell viability was determined by the absorbance of crystal violet-retaining 

cells at 595 nm. 
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II.7.  Plasmids, Transfections and Generation of Cell Lines 

In Chapter III, stable polyclonal cell populations with decreased IDH1 and IDH2 expression were 

generated by lentiviral-mediated shRNA expression. pLKO.1 lentiviral vectors targeting IDH1 had 

shRNA sequences of 

CCGGGCTGCTTGCATTAAAGGTTTACTCGAGTAAACCTTTAATGCAAGCAGCTTTTT (IDH1a; 

TRCN0000027298) and 

CCGGCGAATCATTTGGGAATTGATTCTCGAGAATCAATTCCCAAATGATTCGTTTTT (IDH1b; 

TRCN0000027289); IDH2 had shRNA sequence 

CCGGGTGGACATCCAGCTAAAGTATCTCGAGATACTTTAGCTGGATGTCCACTTTTT 

(TRCN0000027225). For controls, either non-targeting control shRNA (SHC002; Sigma) or pLKO.1 

scrambled control vector34 (Addgene) were used.  Cells were selected with 2 µg.ml-1 puromycin. In 

Chapter IV, pBABE puro plasmids expressing HA-VHL mutants Y98H, Y98N, Y112H, Y112N, L188V 

and pBABE hygro plasmid expressing HA-HIF2α p-a were purchased from Addgene. EE-VHL were 

constructed by PCR amplification of wild type VHL with oligos  forward 5’- 

GCGCGGATCCGCCACCATGGAATACATGCCCATGGAAATGCCCCGGAGGGCGGAG-3’ and 

reverse 5’-GCGCGAATTCAATCTCCCATCCGTTGATGTGCAATG-3’. PCR product was restricted with 

BamHI and EcoRI and ligated into pBABE puro vector. Plasmids encoding shRNA targeting PDK1 

(CCAGGGTGTGATTGAATACAA and GATCAGTGAATGCTTGTGAAA), ACLY 

(CGAGGACTTGTACTTCACCTA, GCCTCAAGATACTATACATTT and 

GCCTAAGTACTCTTGCCAGTT) and luciferase as control were obtained from the Broad TRC library 

available at Massachusets General Hospital (MGH). In Chapter V, stable polyclonal cell populations of 

Sk-Mel5 and 786-O cells with decreased NNT expression were generated by infection with lentiviral 

particles containing NNT-targeting pLKO.1 lentiviral vectors that had shRNA sequences of 5’-

CCGGCCCTATGGTTAATCCAACATTCTCGAGAATGTTGGATTAACCATAGGGTTTTT-3’ (NNTA; 

TRCN0000028541, Sigma) and 5’-
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CCGGCGAGAAGCTAATAGCATTATTCTCGAGAATAATGCTATTAGCTTCTCGTTTTT-3’ (NNTD; 

TRCN0000028507, Sigma). We used a non-targeting control shRNA sequence of 

CCGGCAACAAGATGAAGAGCACCAACTCGAGTTGGTGCTCTTCATCTTGTTGTTTTT (scramble 

control; SHC002, Sigma) as control. Cells were selected with 2 µg.ml-1 puromycin. For the exogenous 

expression of NNT, Sk-Mel5 cells were transfected with a pCMV6-Entry vector containing a full length 

cDNA clone of NNT (RC224002; OriGene) together with TurboFectin 8 transfection reagent (OriGene). 

A polyclonal population was generated by selecting the SkMel5 cells with 0.75 mg.ml-1 neomycin 

(G418) for 2–3 weeks. For all experiments with genetically-engineering cell lines, cells were selected 

for at least two passages before initiating tracer and flux experiments. Suitable lentiviral or retroviral-

packaging plasmids were co-transfected with each of the targeting or control vectors into HEK293T 

cells, and supernatants containing lentiviruses or retroviruses were collected after 48-72hrs, filtered, 

and used for infection. 

 

II.8.  Determination of NAD(P)+/NAD(P)H ratios 

Cellular NAD(P)+/NAD(P)H levels were assayed using a fluorescence-based assay kit, according to 

the manufacturer’s instructions (Cell Technology). Standard deviations of mean (SEM) of ratios were 

calculated using a first-order Taylor approximation of averaged ratios obtained from triplicate 

measurements. One representative experiment was shown. In Chapter IV, the NADP+/NADPH ratio 

was also determined employing the method developed in Krebs lab, as described therein (Veech et al., 

1969). In brief, the isocitrate dehydrogenase (IDH) equilibrium (equation 3) was used to determine the 

ratio of NADP+/NADPH. The equilibrium concentrations of the oxidized (α-ketoglutarate) and reduced 

(isocitrate/citrate) metabolites of the associated NAD(P)-linked dehydrogenase were measured to 

determine the correspondent ratios of free dinucleotides. Cells were rinsed twice with 2ml PBS before 

extraction to eliminate the contribution of extracellular metabolites. Ratios were obtained from 

individualized metabolite measurements in the same GC-MS injection. In Chapter V, Cellular 
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NAD(P)H/NAD(P)+ ratios were also measured by LC-MS, employing a methanol extraction, as 

described previously (Yuan et al., 2012). 

 

[               ] [   ] [     ]

[          ][     ]
   (   )          (3) 

II.9. Western Blotting 

Proteins were extracted and immune-blotted as described before (Zimmer et al., 2008). Cells were 

rinsed twice with ice-cold PBS and lysed for 30min using RIPA buffer supplemented with protease 

inhibitors. Cell were scraped, clarified by centrifugation at 12,000rpm for 10min, and the proteins were 

resolved in SDS-PAGE gels, transferred to PVDF membrane (Bio-Rad), and detected using the 

following antibodies: anti-IDH1 (Santa Cruz Biotechnology or Cell Signaling), anti-IDH2 (Abcam or 

Novus Biologicals), rabbit polyclonal anti-HIF-1α (BD Biosciences), rabbit polyclonal anti-HIF-2α 

(Novus NB100-122), anti-VHL (IG32), anti-GLUT1 (Alpha Diagnostics), anti-GLS (Abnova), anti-GLUD1 

(Novus Biologicals), anti-ACLY (Cell Signaling), anti-PDK1 (Cell Signaling), anti-NNT (Invitrogen), anti-

Actin (Neo-markers, or Novus Biologicals), and anti-tubulin (Sigma). For some immune-blotting 

experiments (Chapter V), proteins were extracted with a 2-5% SDS solution to maximize lysis of 

mitochondrial proteins (e.g., NNT). Cells were then scraped, and proteins denatured at 95 °C for 10 

min. Cell lysates were clarified by centrifugation. Proteins were detected using the appropriate 

horseradish-peroxidase-conjugated secondary antibodies (anti-mouse, anti-rabbit or anti-goat) and 

chemiluminescence. 
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II.10. Animal Studies 

All protocols conformed to institutional regulation. We tested VHL-deficient RCC 786-O, UMRC2 

and UMRC3 cells and chose the latter as xenograft models based on the growth aggressiveness in 

vivo. 5 x 106 UMRC3 cells were injected subcutaneously into the right flank of nu/nu mice. When 

tumors reached 100 mm3, BPTES (12.5mg/kg) or vehicle control (1.5 % DMSO in 1M Tris, pH 8) was 

administered intraperitoneally (Chapter IV). 5 x 106 knockdown and control SkMel5 cells were injected 

subcutaneously in the left and right flank of nu/nu mice, respectively. At day 20, animals were sacrificed 

by cervical dislocation, and tumors were collected and weighed (Chapter V). The tumor volumes were 

calculated as length [mm] x width2 [mm2] x 0.5.  For in vivo 13C labeling studies (Chapter IV), UMRC3 

cells were injected in both flanks of nu/nu mice. 13C labeling infusions were begun when tumors 

reached an external diameter of 1-1.5 cm. Animals (n=3) were infused with [1-13C1] glutamine, as 

previously described(Marin-Valencia et al., 2012). In brief, a bolus of 0.28 mg.g-1 bodyweight (300 µl) 

was administrated over 1 min and followed by a continuous infusion of 0.005mg.g-1.min-1 at 450 µl.h-1 

during 0.5, 1, 2 or 6 hours. Non-infused animals were used as controls for further analysis. At the end 

of indicated infusion times, blood was collected from the heart and animals sacrificed by cervical 

dislocation. Tumors and kidneys were quickly dissected, weighted, frozen in liquid nitrogen and stored 

at -80 ºC. Tumors weighted between 1.124 ± 0.136 g (mean ± SEM). Tumors from one flank were 

used for NMR analysis and extracted as previously described (Cerdan et al., 1990). Tumors and 

kidneys from the other flank were used for GC-MS analysis and metabolites extracted as previously 

described (Wu et al., 2008). 
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II.11. 13C NMR Spectroscopy 

High-resolution proton-decoupled 13C NMR spectra of tumor extracts were obtained at 11.7 T 

(125.13 Hz, 25ºC, pH = 7.2) in a Bruker AVANCE 500WB NMR spectrometer using a commercial (5 

mm) triple-resonance probe (1H, 13C, 2H) optimized for direct 13C detection. The acquisition conditions 

were: 30º flip angle, 30 kHz spectral width, 3s relaxation delay, and 1.09s acquisition time. Proton 

decoupling was gated during all acquisition using a broad-band composite pulse decoupling sequence, 

and chemical shifts were calibrated with dioxane (0.1 % vol/vol, 67.4 ppm). Resonance assignments 

were based on literature values and internal standards. Spectra deconvolution was performed using the 

software MestRec-C 4.8.6.0. (Mestrelab Research S.L.). 13C NMR resonance areas were normalized 

relative to the dioxane resonance area used as internal reference. 

 

II.12. Statistical Analysis 

For MFA and ISA results, error bars represent 95% confidence intervals. In all other experiments, 

error bars represent SEM unless otherwise noted. Statistical significance was determined using two-

tailed Student’s t test, unless otherwise noted. *p < 0.05, **p < 0.001. 
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“Science progresses funeral by funeral.” 

Max Planck 
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Chapter III presents doctoral work published in a peer-reviewed scientific journal: 

Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, 
Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O*, Stephanopoulos G*. (2012). Reductive 
glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-4. 
 
*Corresponding authors.  
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III.1. ABSTRACT 

Mammalian cells must consume glucose and glutamine to support biosynthetic processes 

necessary for growth. Acetyl coenzyme A (AcCoA) is a major precursor for lipid synthesis and is, 

conventionally, generated from glucose-derived pyruvate through the citrate shuttle and ATP citrate 

lyase (ACLY) in the cytosol. However, cancer cells and, more pronouncedly, those exposed to hypoxia 

convert most of the glucose to lactate, directing glucose carbons away from the Krebs cycle and lipid 

synthesis. Although it is recognized that cancer cells rely on glutamine-dependent anaplerosis to 

maintain a functional Krebs cycle, the regulation of glutamine utilization in hypoxic conditions is not 

understood. Specifically, it is unclear how hypoxic cells can maintain de novo lipogenesis, since 

glutamine oxidation in the Krebs cycle can replenish the four-carbon intermediates but not AcCoA. 

Alternatively, glutamine-derived α-ketoglutarate can be reductively carboxylated by isocitrate 

dehydrogenase 1 (IDH1) or 2 (IDH2) to generate citrate (reductive carboxylation), and recent studies 

have indicated that the IDH reaction is highly reversible. Here we show that human cells exposed to 

hypoxia conditions rely almost exclusively on reductive carboxylation by IDH1 to support de novo 

lipogenesis. Furthermore, renal cell lines deficient in the von Hippel–Lindau tumor suppressor protein 

(pVHL) that constitutively express the hypoxia-inducible factors (HIFs) preferentially use reductive 

carboxylation for lipid biosynthesis even at normal oxygen levels. These results identify RC as the 

major pathway lipid synthesis under hypoxia, and warrant further investigation on the HIF signaling and 

molecular mechanisms underlying the reductive phenotype under hypoxia. 

 

While cancer cells shift towards a glycolytic metabolism (Semenza, 2010), glutamine-derived 

carbons are required for a functional Krebs cycle, cell cycle progression and proliferation (Wise and 

Thompson, 2010). More pronouncedly, low oxygen conditions (hypoxia) lead to the stabilization of the 

hypoxia-inducible factors (HIF-1α and/or HIF-2α), shunting most of the pyruvate away from the Krebs 

cycle and Acetyl-CoA (AcCoA) synthesis (Denko, 2008; Gordan and Simon, 2007). This prompted us to 
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understand how hypoxic and perhaps true Warburg-like cells reprogram their glutamine utilization to 

maintain macromolecule synthesis, in specific lipogenesis. Glutamine is catabolized into glutamate, 

which can be converted to α-ketoglutarate (α-kg) either in the cytosol or mitochondria. Glutamine-

derived α-kg can contribute carbon to lipogenic AcCoA through two distinct pathways: i) α-kg can be 

oxidized in the Krebs cycle and generate pyruvate (via malic enzyme) (DeBerardinis et al., 2007), 

which can be converted to lipogenic AcCoA by the mitochondrial pyruvate dehydrogenase (PDH), or ii) 

α-kg can be reductively carboxylated by the NADPH-dependent isocitrate dehydrogenase enzyme 1 

(IDH1) or 2 (IDH2) to generate isocitrate – the reductive carboxylation (RC) pathway. 13C isotopic 

studies have reported that RC contributes to de novo lipogenesis in brown adipocytes (Yoo et al., 2004, 

2008), and it has been shown that the IDH reaction is highly reversible in cancer cells (Metallo et al., 

2009; Ward et al., 2010). Here, we sought to elucidate the biosynthetic role of glutamine under hypoxia 

conditions, and show that hypoxia renders mammalian cells reliant on glutamine-derived RC to produce 

approximately 70-80% of de novo fatty-acids. 

 

III.2. RESULTS 

Reductive Carboxylation Is Active in Cancer Cell Lines and the Major Route of Glutamine-

Derived Lipids  

We observed that the A549 lung carcinoma cell line exhibited an increased glutamine uptake at 

approximately 1% oxygen (hypoxia) when compared to 21% oxygen (normoxia), while glutamate 

secretion remained unchanged (Figure III-1A). This suggested that hypoxic cells may exhibit an 

increased demand for glutamine-carbons to support biosynthesis. Glucose consumption and lactate 

secretion rates were also elevated in hypoxia when compared to normoxia conditions, as expected 

upon a HIF-mediated switch to anaerobic metabolism. First, to investigate the biosynthetic role of 

glutamine under normoxia, we cultured several human-derived cancer cell lines in the presence  of 13C 

glutamine tracers for several days and compared their contribution to the formation of fatty-acids by gas 

chromatography-mass spectrometry (GC-MS). To trace which pathway cells use to metabolize 
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glutamine carbon into lipids we used either [5-13C1] glutamine or [U-13C5] glutamine which transfers 13C 

atoms to fatty-acids via RC or all pathways (glutaminolysis and RC), respectively [see Chapter II for 

atom transition map].  As shown in Figure III-1B, Sk-Mel5 melanoma cells incorporate the 13C isotopic 

label from both [5-13C1] glutamine and [U-13C5] glutamine into palmitate, with little difference observed 

between the two tracers. To quantify the specific contribution of glutamine to lipid synthesis through RC 

or all pathways, we performed isotopomer spectral analysis (ISA), as described in Chapter II. In all cell 

lines tested, including those derived from lung, mammary, colon and squamous cell carcinoma as well 

as melanoma, glioblastoma and leukemia, [5-13C1] glutamine and [U-13C5] glutamine labeled 

approximately 15-25% of the de novo synthesized lipids and little difference was observed between the 

two tracers (Figure III-1C). This indicates that RC is the major pathway for glutamine-derived lipids, and 

that glutaminolysis is negligible in contributing to de novo lipogenesis. To confirm the RC activity in the 

Krebs cycle, we cultured some of the cell lines in the presence of [1-13C1] glutamine for 24 hours under 

normoxia, wherein one 13C atom is transferred to Krebs cycle metabolites through RC but not through 

glutamine oxidation (glutaminolysis) [See Chapter II]. The cell lines tested significantly incorporated 

label from [1-13C1] glutamine in citrate and metabolites downstream of the irreversible ACLY thereby 

showing active RC activity in the Krebs cycle, as determined by the percent M1 enrichment in the 

metabolite pools (Figure III-1D). The glutaminolysis pathway is also an important means of glutamine 

catabolism and can be characterized by quantifying the contribution of glutamine carbon to lactate. 

Consistent with the literature (DeBerardinis et al., 2007), glutamine-derived 13C label from [U-

13C5]glutamine was also detected in lactate, and the percentage of M3 lactate was higher in glioma 

cells (Figure III-1E). These observations show that RC is active in several cancer cell lines and is the 

major route of glutamine utilization for lipid synthesis (over glutamine oxidation) in cultured cells. 

Next, we sought to test which isoenzyme(s) are responsible for the RC activity. Mammalian cells 

express three IDH enzymes encoded by separate genes: IDH1 (cytosolic, NADP+-dependent), IDH2 

(mitochondrial, NADP+-dependent) and the multi-subunit enzyme IDH3 (mitochondrial, NAD+-
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dependent). IDH3 is allosterically regulated and is thought to operate in the oxidative direction. The 

NADP+-dependent isozymes are capable of catalyzing the RC reaction; however, the specific enzyme 

responsible for this flux is not definitively known (Dalziel and Londesborough, 1968; Siebert et al., 

1957). As measurements of metabolite pools in subcellular compartments and labeling therein cannot 

yet be reliably obtained, we used RNA interference to knockdown expression of IDH1 and IDH2 

selectively in A549 cells (Figure III 1-F). Using the percent M1 labeling from of [1-13C1] glutamine as a 

readout, we measured a significant and robust decrease in RC activity when IDH1 messenger RNA 

(mRNA) was targeted using short hairpin RNAs (shRNAs) (Figure III-1G). These changes were 

consistent with results using [U-13C5] glutamine and reproduced using several cell lines (data not 

shown). Finally, we employed 13C metabolic flux analysis (MFA) to determine absolute fluxes in control 

and IDH1-knocked down A549 cells, using [U-13C5] glutamine (MFA is described in Chapter II). The 

fitted data showed that reductive IDH flux is significantly decreased in IDH1-knocked down when 

compared to control cells (Figure III-1H), and this change was the primary alteration observed in the 

network (data not shown). These results suggest that IDH1 contributes to the RC flux observed in A549 

cells. We confirmed that IDH1 is indeed capable of converting NADPH, α-kg and CO2 to isocitrate and 

NADP+ by enzymatic analysis using a recombinant IDH1 protein (data not shown). The proliferation 

rate of A549 and other cell lines with IDH1 knockdown was impaired (Figure III-1I and data not shown), 

indicating that reductive metabolism of glutamine in the cytosol may be necessary for robust growth. In 

contrast to our results with IDH1 shRNAs, we detected no significant change in reductive flux when 

targeting IDH2 mRNA in A549, MDA-MB-231 and HCT116 cells (data not shown). Although IDH2 may 

promote RC in some tissues or conditions, these results are consistent with the proposed role of IDH2 

as an oxidative Krebs cycle enzyme (Hartong et al., 2008). Together, these findings show that i) 

several cancer cell lines exhibit active RC by IDH1 in vitro, ii) reductive glutamine metabolism (via RC) 

is the primary pathway through which glutamine carbons are converted to lipids in cultured cells iii) the 

RC pathway contributes to approximately 20% of de novo lipogenesis under normoxia. 
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Figure III-1. Reductive Carboxylation Is the Primary Pathway of Glutamine Conversion to Lipids 
 

(A) Cell-specific uptake and secretion of glucose/glutamine and lactate/glutamate.  Metabolite levels were 

measured at the start and end of culture and normalized to the integral viable cell density to calculate fluxes.  

(B) Mass Isotopomer Distribution (MID) of biomass-extracted palmitate in SkMel5 cells cultured for 3 days in 

the presence of either [U-13C5] glutamine or [5-13C1] glutamine. (C) Specific contribution of [U-13C5] glutamine or 

[5-13C1] glutamine to lipogenic AcCoA in the indicated cell lines, determined by isotopomer spectral analysis 

(ISA). (D) Evidence for reductive carboxylation activity in A549, H460 and T47D cells using [1-13C1] glutamine, 

determined by the % M1 label in metabolite pools. (E) Glutaminolysis activity in the indicated cancer cell lines. 

(F) Expression levels of IDH1 in A549-derived cell lines, as indicated. (G) Relative contribution of reductive 

carboxylation in the panel of A549 cell lines, using the [1-13C1] glutamine tracer. (H) IDH flux estimates from 13C 

metabolic flux analysis (MFA) model in control or IDH1-knocked down A549 cells cultured with [U-13C5] 

glutamine. (I) Cell proliferation of the panel of A549 cell lines. Statistical significance compares hypoxia to 

normoxia conditions in (A), [5-13C1] glutamine to [U-13C5] glutamine in (C), and IDH1-knocked down to control 

cells in (G), (H). Error bars represent 95% confidence intervals in panels (C), (H). Cit, citrate; Asp, aspartate; 

Mal, malate; Fum, fumarate; Suc, succinate; IDH, isocitrate dehydrogenase; Scr, scramble. 

 

Reductive Carboxylation Is the Primary Pathway for De Novo Lipogenesis under Hypoxia 

Conditions 

To test the contribution of RC activity in hypoxia, we cultured A549 in the presence of [1-13C1] 

glutamine for 24 hours and measured the percent of 13C enrichment in the pools of Krebs cycle 

metabolites. We observed a significant increase in the contribution of RC to the Krebs cycle in A549 

cells cultured under hypoxia, and the IDH1 knockdown decreased its activity in both normoxia and 

hypoxia (Figure III-2A). Because glucose is typically the primary carbon source for lipid synthesis, we 

sought to test the effect of hypoxia on the contribution of glucose oxidation versus RC (from glutamine) 

to fatty-acid synthesis. To this end, we cultured A549 cells for several days in the presence of either [U-

13C6] glucose or [5-13C1] glutamine under normoxia or hypoxia conditions. Strikingly, we observed a 

marked change in the fatty-acid labeling patterns from both substrates (Figure III-2B, 2C). A549 cells 

preferentially used glucose for palmitate synthesis under normoxic conditions. In contrast, palmitate 

produced under hypoxia was primarily synthesized from glutamine through the reductive pathway. In 

fact, RC accounted for approximately 80% of the carbon used for de novo lipogenesis in A549 cells 
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growing under hypoxia whereas the contribution of [U-13C6] glucose to fatty-acid synthesis was 

dramatically decreased in this condition, as quantified by isotopomer spectral analysis (ISA) (Figure III-

2D). Although proliferation rates and relative de novo lipogenesis were lower under hypoxia (data not 

shown and Figure III-2E), the absolute flux of reductive glutamine metabolism to palmitate synthesis 

was significantly increased in hypoxic cultures (Figure III-2F). Knocking down IDH1 also mitigated the 

use of RC for lipogenesis under hypoxia (Figure III-2G). Together, these findings show that hypoxia 

switches the substrate preference from glucose to glutamine-derived carbons to support approximately 

70-80% of de novo lipogenesis. We therefore hypothesized that hypoxia increases the glutamine 

dependency to support proliferation. Indeed, we found that hypoxic cells were more sensitive to 

glutamine withdrawal than cells grown under normoxia conditions (Figure III-2H). Of note, the reductive 

carboxylation switch under hypoxia is not a cell line specific phenomenon, and a similar reductive 

phenotype was observed in all cancer cell lines from different tissues, including lung carcinoma 

(H1299), osteosarcoma (143B), colorectal carcinoma (HCT116), breast adenocarcinoma (MDA MB-

231), melanoma (SkMel5) and also non-transformed cells such as MRC5 cells and T lymphocytes 

(Figure III-I and data not shown). 

 

Hypoxia Promotes Reductive Carboxylation by Inhibiting the Pyruvate Dehydrogenase Flux  

To gain insight into the mechanisms controlling this switch to reductive glutamine metabolism, we 

analyzed changes in the labeling and abundances of Krebs cycle metabolites in cells grown under 

hypoxia. Hypoxia leads to the stabilization of HIF-1α, which activates glycolytic enzymes, lactate 

dehydrogenase A (LDH-A) and pyruvate dehydrogenase kinase 1 (PDK1). Thus, HIF activation 

promotes a glycolytic program that shunts pyruvate away from the mitochondrion and towards lactate 

production. We observed a significant decrease in relative contribution of pyruvate dehydrogenase 

(PDH) complex in the lung carcinoma A549 cell line and non-transformed lung MRC5 cells grown under 

hypoxia, as determined by the percent M2 enrichment in Krebs cycle metabolites from [U-13C6] glucose 
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(Figure III-3A). In addition, we observed that the citrate pool became depleted in hypoxic when 

compared to normoxic cells (Figure III-3B). Conversely, using the [1-13C1] glutamine tracer, we 

observed a dramatic increase in the contribution of RC to the Krebs cycle in hypoxic MRC5 cells 

(Figure III-3C), consistent with our previous results showing the lipogenic switch to RC under hypoxia. 

Given the marked reduction in the PDH activity observed in hypoxia, we hypothesized that the RC 

switch in hypoxia is driven by a low PDH flux in the Krebs cycle. We tested the ability of dichloroacetate 

(DCA) to restore PDH activity and mitigate the contribution of reductive metabolism to lipogenesis. DCA 

inhibits pyruvate dehydrogenase kinase (PDK1) (Bonnet et al., 2007), which is a known HIF-1α target 

that phosphorylates and inhibits PDH. Although DCA treatment had no observable effect on glucose 

and glutamine utilization under normoxia, it restored glucose oxidation in the Krebs cycle (Figure III-3D) 

and inhibited the contribution of RC to lipogenic AcCoA in hypoxic A549 cells (Figure III-3E). These 

observations show that hypoxia coordinates glucose oxidation (inhibiting it) and RC (activating it) to 

maintain de novo lipogenesis, and raise the hypothesis that hypoxic-mediated low PDH flux may 

stimulate the RC flux through a mass action effect. However, further studies are warranted in 

understanding whether modulation of the PDH flux and citrate levels by hypoxia or “pseudo-hypoxia” 

promote the RC flux through mass-action kinetics. 
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(A) Effect of hypoxia on the relative contribution of reductive carboxylation (RC) in control and IDH1-knocked 

down A549 cells.  (B and C) 13C Labeling of palmitate extracts from A549 cells cultured under normoxia or 

hypoxia with [5-13C1] glutamine (B) or [U-13C6] glucose (C). Similar results were observed in myristate, oleate 

and stearate pools (not shown). (D) Specific contribution of glucose oxidation ([U-13C6] glucose) or glutamine 

reduction ([5-13C1] glutamine) to lipogenic AcCoA in A549 cells under normoxia and hypoxia, determined by 

isotopomer spectral analysis (ISA). (E) Specific rates of de novo lipogenesis determined via ISA modeling as 

described in the experimental procedures. g(t) values were normalized to those of normoxic culture and 

normalized by palmitate abundances in order to account for differences in cell growth/number. (F) Absolute 

contribution (flux) of [U-13C6] glucose and [5-13C1] glutamine to palmitate in A549 cells, determined by 

multiplying the specific contribution determined in (D) by the palmitate abundance in normoxia/hypoxia. (G) 

Effect of IDH1 knockdown on the relative contribution of glucose oxidation and glutamine reduction to palmitate 

in A549 cells cultured under hypoxia conditions.  (H) Huh7 cell proliferation after 4 days in the presence or 

absence of glutamine. Statistical significance compares hypoxia to normoxia conditions in (D), (E), (F), (H), 

IDH1-knocked down to control cells in (G) (asterisk in parenthesis in (A) indicates comparison between control 

and IDH1-knocked down cells). (I) ISA analysis to determine the contribution of glucose oxidation and 

glutamine reduction to lipogenic AcCoA in different cell lines Note that MCF10A cells were cultured in 

DMEM/F12 basal medium with 5% horse serum that was not dialyzed.  Therefore unlabeled glutamine, 

glutamate, and proline were present an potentially dilute the contribution of [5-13C1] glutamine to lipids.  Error 

bars represent 95% confidence intervals in panels (D), (E), (F), (G), (I). IDH, isocitrate dehydrogenase; Scr, 

scramble.  

 

 

 

 

 

 

 

Figure III-2. Hypoxia Reprograms Cells to Rely on Reductive Carboxylation for De Novo Lipogenesis 
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Figure III.23. Evidence for Regulation of Reductive Carboxylation by the PDH Flux under Hypoxia 

 

 

 

 

 

 

 

 

 

 

 

MRC5 and A549 cells were cultured under normoxia or hypoxia for 3 days in the presence of either [U-13C6] 

glucose or [1-13C1] glutamine (A) Relative contribution of glucose oxidation in the Krebs cycle in MRC5 cells, as 

determined by the percent M2 enrichment from [U-13C6] glucose (see experimental procedures for atom 

transition map). (B) Relative abundance of citrate and α-ketoglutarate pools in normoxic and hypoxic MRC5 

cells (C) Relative contribution of reductive carboxylation to the formation of Krebs cycle metabolites in normoxic 

and hypoxic MRC5 cells, determined by percent M1 enrichment from [1-13C1] glutamine. (D) Relative 

contribution of glucose oxidation in the Krebs cycle in A549 cells cultured with or without dichloroacetate (DCA) 

(5mM) under normoxia and hypoxia. (E) Specific contribution of glucose oxidation and glutamine reduction to 

lipogenic AcCoA in A549 cells cultured with or without 5mM DCA, determined by isotopomer spectral analysis 

(ISA). Statistical significance compares hypoxia to normoxia conditions in (A), (B), (C), DCA-treated to 

untreated cells under hypoxia in (D), (E) (asterisk in parenthesis in (E) indicates comparison between hypoxia 

and normoxia). Error bars represent 95% confidence intervals in panels (E). Cit, citrate; α-kg, α-ketoglutarate; 

Glu, glutamate; Suc, succinate; Fum, fumarate; Mal, malate; Asp, aspartate. 
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Loss of VHL Renders Renal Cancer Cells Reliant on RC for De Novo Lipogenesis Even 

Under Normoxia  

The von Hippel–Lindau tumor suppressor protein (pVHL) is frequently lost in renal cell carcinoma 

(RCC) and results in a state of “pseudohypoxia”, in which HIF signaling is activated even at normal 

oxygen levels (Figure III-4A) (Kim et al., 2003). To investigate the role of the VHL-HIF pathway in 

promoting the lipogenic switch to reductive carboxylation (RC), we labeled VHL-deficient RCC cells with 

either [U-13C6] glucose or [5-13C1] glutamine and performed ISA. Remarkably, VHL-deficient RCC cell 

lines preferentially used glutamine-derived RC for lipogenesis even under normal oxygen conditions, 

whereas those expressing wild-type (WT) VHL behaved similarly to other carcinoma cell lines (Figure 

III-4B). To test if pVHL expression is necessary to suppress RC, we metabolically labeled two isogenic 

clones that differ in pVHL expression (WT8 and PRC3 cells), derived from the 786-O RCC cell line 

(Iliopoulos et al., 1995).  Indeed, expression of wild-type VHL (WT8 cells) resulted in a switch back to 

oxidative glucose metabolism as the source of carbon for lipid synthesis under normoxia (Figure III-4C). 

Furthermore, knocking down HIF-2α (Figure III-4D, 4E) partially inhibited RC and restored the 

contribution of glucose oxidation for lipid synthesis in VHL-deficient 786-O cells. These observations 

suggest that HIF is necessary to mediate RC under hypoxic or “pseudo-hypoxic” (VHL loss) conditions. 
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Figure III-4. Evidence for the Reductive Carboxylation Switch in Renal Cancer Cells Even under  

Normoxia 

  

 

 

 

 

 

 

 

 

 

 

 

 (A) Schematic of stabilized HIF-2α expression under normoxia conditions. (B-D). Specific contribution of 

glucose oxidation ([U-13C6] glucose) and glutamine reduction ([5-13C1] glutamine) to lipogenesis in renal cell 

carcinoma (RCC) lines (B), PRC3 (VHL-/-) and WT8 (VHL+/+) isogenic cells derived from the 786-O RCC line 

(C) and vector control (pTV) or HIF-2α knocked down (pTR) cells derived from 786-O RCC line (D), determined 

by the isotopomer spectral analysis (ISA) model. (E) Expression levels of HIF-2α in the panel of RCC cell lines 

used. Statistical significance compares VHL-positive to VHL-negative cells in (B), VHL-reconstituted to VHL-

negative cells in (C), and HIF-2α knockdown to control 786-O cells. Error bars represent 95% confidence 

intervals in (B), (C), (D). 
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III.3. DISCUSSION 

Here, we sought to investigate how hypoxia regulates central carbon metabolism. One on hand, 

the HIF-mediated glycolytic switch ensures that glucose-derived pyruvate is diverted towards lactate 

production; on the other, this must be reconcilable with a functional Krebs cycle and availability of 

AcCoA for lipid synthesis. Our 13C isotopic studies showed that reductive carboxylation (RC) is a major 

pathway for de novo lipid synthesis under hypoxia, which represents a bona-fide switch in central 

carbon metabolism. 

Theoretically, IDH1 and IDH2 are the NADPH-dependent isoenzymes capable of catalyzing the 

reductive conversion of α-kg into isocitrate. Our data provided evidence that RC in A549 and 143B cells 

involves IDH1-mediated catalysis in the cytoplasm. However, given the almost exclusive use of RC for 

lipogenesis under hypoxia, a redundant or contributing role of mitochondrial IDH2 in this pathway is 

probable. In fact, parallel studies reporting the RC switch under hypoxia show that IDH2 can contribute 

to the RC activity in glioma cells, RCC cells deficient in fumarate hydratase (FH) and cells with deficient 

mitochondria (Mullen et al., 2011; Wise et al., 2011). Thus, it is possible that the IDH isoenzyme 

responsible for RC depends on the cellular context or redox state.  

Our 13C isotopic studies showed that the RC-to-lipid switch also occurs in normal, non-transformed 

cells under hypoxia, suggesting that the reductive phenotype is specific to hypoxia and HIF. However, 

oxygen availability regulates a large family of α-ketoglutarate (α-kg) dependent cellular oxygenases, 

that regulate histone and DNA modifications (Melvin and Rocha, 2012). Although our observations 

suggested that HIF is required, at least in part, for the activation of RC, it is conceivable that additional 

hypoxia-associated changes may also promote RC in a HIF-independent manner. In this context, it is 

also unclear whether HIF is sufficient per se to promote RC, and we wished to further investigate the 

molecular mechanisms underlying the RC activation under hypoxia. 

Our data showed that renal cancer carcinoma (RCC) cell lines deficient in the VHL tumor 

suppressor also rely on RC to produce approximately 80% of de novo fatty-acids even under normoxia. 
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This suggests that reductive glutamine utilization may be, not only associated with hypoxia, but also 

linked to specific cancer cells, in this case VHL-deficient RCC cells that exhibit constitute HIF 

expression. Indeed, the metabolic profiling of PRC3/WT8 cells suggested that wild-type VHL can 

restore glucose utilization for lipid synthesis. Also, knocking-down HIF-2α led to a partial suppression of 

RC in VHL-deficient RCC cells (Figure III-4D). However, since the VHL tumor suppressor protein 

(pVHL) has HIF-independent functions [see Chapter I], further studies are necessary to test whether 

the VHL-HIF interaction is strictly required to modulate the RC activity in RCC cells. Our findings also 

raised the possibility that VHL-deficient cells may be sensitive to glutamine deprivation, which may 

have therapeutic implications. 

Myc has an established role in regulating glutamine catabolism, in particular glutaminolysis (Wise 

et al., 2008). This metabolic reprogramming provides an effective, glucose-independent means of 

fueling the Krebs cycle (Le et al., 2012) and potentially generating AcCoA for biosynthesis. This brings 

attention to signaling mechanisms by which cells divert α-kg to either oxidative Krebs cycle or RC. In 

this regard, there is evidence of differential cross-talk between HIF isoforms and myc function. 

Stabilization of HIF1α in hypoxia inhibits the interaction of myc with its transcriptional cofactors, 

whereas HIF-2α promotes cell cycle progression by enhancing myc function (Gordan et al., 2007). In 

this work, we did not investigate the specific role of HIF-1α and/or HIF-2α in activating RC, and myc 

amplifications may add to this complexity and promote glutaminolysis or RC, depending on their 

partnering with HIF-1α or HIF-2α correspondingly. 

Hypoxia can be viewed as a hallmark of the tumor microenvironment, which leads to a HIF-

dependent glycolytic program (Denko, 2008). Since glucose is delivered to cells through the 

vasculature, it may be limited in microenvironments with decreased oxygen availability (Gatenby and 

Gillies, 2004). The reductive metabolism of amino acids for lipid synthesis may therefore allow cells to 

conserve glucose for production of ribose and other biosynthetic precursors (for example, one carbon 

pool, hexosamines) that are not typically generated from other nutrients. Thus, activation of RC may 
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allow cells to distribute available nutrients more efficiently in poorly vascularized microenvironments. 

Our results added to the understanding of cellular plasticity in hypoxic environments. 
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"To guarantee success, act as if it were impossible to fail." 

Dorothea Brande 
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Chapter IV 

 

IV. In Vivo HIF-Mediated Reductive Carboxylation Is 

Regulated by Citrate Levels and Sensitizes VHL-Deficient 

Cells to Glutamine Deprivation 
 

 

 

 

 

 

Chapter IV presents doctoral work published in a peer-reviewed scientific journal: 

Gameiro PA, Yang J, Metelo AM, Pérez-Carro R, Baker R, Wang Z, Arreola A, Rathmell WK, Olumi A, 
López-Larrubia P, Stephanopoulos G, Iliopoulos O. (2013). In Vivo HIF-Mediated Reductive 
Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine 
Deprivation*. Cell Metabolism 17, 372-85.   

 
*This article was commented in Nature Reviews Cancer [Metabolism: Glutamine connections] and 
Cancer Discovery [Research Watch: Metabolism]. 
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IV.1.  ABSTRACT 

We previously showed that hypoxic and VHL-deficient renal cell carcinoma (RCC) cells rely on 

glutamine to generate citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate. 

Hypoxia Inducible Factors 1α/2α (HIF-1α / 2α) are stabilized and mediate critical cellular responses to 

hypoxia, with VHL-deficient cells exhibiting constitute HIF-1α/2α expression regardless of oxygen 

availability. To provide insights into the role of HIF and the molecular mechanisms underlying RC, we 

introduced into VHL-deficient RCC cells a series of tumor-associated VHL mutations that differ in their 

ability to inactivate HIF. Here, we show that reintroduction of either wild type or HIF-inactivating VHL 

mutants inhibits RC and lipogenesis from glutamine.  In contrast, reintroduction of VHL mutants with 

attenuated or lost HIF inactivating properties failed to inhibit this pathway. Expression of a HIF-2α 

mutant was sufficient to induce RC and lipogenesis from glutamine in VHL-reconstituted RCC cells. 

Furthermore, HIF expression drastically reduced intracellular citrate levels under normoxia. Feeding 

VHL-deficient RCC cells with acetate or citrate or knocking down PDK-1 and ACLY restored citrate 

levels and suppressed RC. These data suggest that HIF-induced low intracellular citrate levels promote 

the reductive flux by mass action kinetics on the IDH reaction. Using [1-13C1] glutamine, we 

demonstrated in vivo RC activity in VHL-deficient tumors growing as xenografts in mice. Lastly, HIF 

rendered VHL-deficient cells sensitive to glutamine deprivation in vitro, and systemic administration of 

glutaminase inhibitors suppressed the growth of RCC cells as mice xenografts. 

 

As introduced in Chapter I, “Warburg-like” or hypoxic cells mitigate glucose catabolism in the Krebs 

cycle. We and others demonstrated that cells under hypoxic conditions utilize glutamine to generate 

citrate and lipids through reductive carboxylation (RC) of α-ketoglutarate by isocitrate dehydrogenase 1 

(IDH1) or 2 (IDH2) [See Chapter III and (Metallo et al., 2012; Mullen et al., 2011; Scott et al., 2011; 

Wise et al., 2011)].  
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Thus far, the mechanisms by which hypoxia promotes RC are under debate. As detailed in Chapter 

I, the VHL tumor suppressor protein (pVHL) exhibits several functions that are HIF-independent. In 

addition, while hypoxia inhibits the α-ketoglutarate (α-kg) dependent HIF prolyl hydroxylases (PHDs) 

and leads to HIF stabilization, oxygen availability also regulates other α-ketoglutarate dependent 

cellular oxygenases that mediate posttranslational modification of several substrates [See Chapter I]. 

Thus, it is conceivable that the effect of hypoxia or loss of VHL on RC activity that we reported in 

Chapter III may be mediated by signaling mechanisms independent of HIF. In addition, it is unclear 

whether HIF is sufficient to promote RC under normoxia conditions. Here, we demonstrate that the 

pVHL-HIF interaction is strictly necessary to modulate RC activity and that HIF is sufficient to promote 

the reductive pathway through a mass-action effect on citrate levels. Furthermore, we provide 

evidences for the biological significance of RC. 

 

IV.2.  RESULTS 

  Functional Interaction between pVHL and HIF Is Necessary to Inhibit RC 

To test whether the inhibition of reductive carboxylation (RC) by pVHL requires its ability to bind 

and inactivate the alpha regulatory subunit of HIF, we tested a panel of VHL germline mutations that 

are linked to different clinical phenotypes of the VHL disease and differ in their affinity to bind HIF. 

Missense germline type 2A VHL mutations confer a low risk for RCC to their carrier individuals and 

retain an attenuated HIF binding and regulatory activity. In contrast, type 2B mutations, which are 

defective in HIF binding and regulation, confer a high risk for RCC. On the other hand, type 2C VHL 

germline mutations are associated with an increased risk of pheochromocytomas, but not RCC, and 

they retain the ability to bind and inactivate HIF in a manner similar to wild-type protein, an observation 

that suggests that type 2C mutations inactivate HIF-independent function(s) of pVHL (Li et al., 2007).  

We infected VHL-deficient human UMRC2 renal carcinoma cells with retroviruses and generated 

polyclonal cell populations expressing wild-type pVHL or type 2A (Y112H), type 2B (Y98N, Y112N), 



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 68 - 

and type 2C (L188V) pVHL mutants. First, we confirmed that expression of HIF-1α/HIF-2α and their 

downstream target GLUT1 were downregulated in cells expressing wild-type pVHL or type 2C mutant 

protein (Figure IV-1A). The effect of type 2A pVHL mutations appeared intermediate between wild-type 

and type 2B mutations regarding GLUT1 (Figure IV-1A, GLUT1 lane).  

To profile the metabolic phenotype of the engineered cell lines, we labeled the cells with either [U-

13C6] glucose or [1-13C1] glutamine and determined the incorporation of each tracer in Krebs cycle 

metabolites using gas chromatography-mass spectrometry (GC-MS) (Figure IV-1B, see also Chapter II 

for complete atom transition map). Reintroduction of wild-type pVHL or type 2C pVHL mutant 

suppressed the contribution of RC from glutamine (Figure IV-1C), as determined by the degree of 

labeled carbon (M1 enrichment) of the indicated metabolites (Figure IV-1B, green circles).  Conversely, 

type 2B mutants (Y112N/Y98N, which are defective in HIF inactivation) exhibited active RC to a level 

comparable to VHL-deficient control cells. We observed a concurrent regulation in glucose metabolism 

in the different VHL mutants. Reintroduction of wild-type or type 2C pVHL mutant, which can meditate 

HIF-α destruction, stimulated glucose oxidation via pyruvate dehydrogenase (PDH), as determined by 

the degree of 13C-labeled Krebs cycle metabolites (M2 enrichment) (Figures IV-1D and IV-1E). In 

contrast, reintroduction of an HIF nonbinding Type 2B pVHL mutant failed to stimulate glucose 

oxidation, resembling the phenotype observed in VHL-deficient cells (Figures IV-1D and IV-1E). 

Additional evidence for the overall glucose utilization was obtained from the enrichment of M3 

isotopomers using [U-13C6] glucose (Supplemental Figure S1A), which shows a lower contribution of 

glucose-derived carbons to the Krebs cycle in VHL-deficient RCC cells (via pyruvate carboxylase 

and/or continued Krebs cycling). 

To test the effect of HIF activation on the overall glutamine incorporation in the Krebs cycle, we 

labeled an isogenic pair of VHL-deficient and VHL-reconstituted UMRC2 cells with [U-13C5] glutamine, 

which generates M4 fumarate, M4 malate, M4 aspartate, and M4 citrate mass isotopomers through 

glutamine oxidation (see Chapter II). As seen in Supplemental figure S1B, VHL-deficient/VHL-positive 
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UMRC2 cells exhibited a similar enrichment of M4 fumarate, M4 malate, and M4 asparate (but not 

citrate) showing that VHL-deficient cells up-regulate RC without compromising oxidative metabolism 

from glutamine. Next, we tested whether HIF inactivation by pVHL is necessary to regulate the 

reductive utilization of glutamine for lipogenesis. To this end, we traced the relative incorporation of [U-

13C6] glucose or [5-13C1] glutamine into palmitate. Labeled carbon derived from [5-13C1] glutamine can 

be incorporated into fatty acids exclusively through RC, and the labeled carbon cannot be transferred to 

palmitate through the oxidative Krebs cycle (Figure IV-1B, red carbons). Tracer incorporation from [5-

13C1] glutamine occurs in the one carbon (C1) of AcCoA, which results in labeling of palmitate at M1, 

M2, M3, M4, M5, M6, M7, and M8 mass isotopomers. In contrast, lipogenic AcCoA molecules 

originating from [U-13C6] glucose are fully labeled, and the labeled palmitate is represented by M2, M4, 

M6, M8, M10, M12, M14, and M16 mass isotopomers. VHL-deficient control cells and cells expressing 

pVHL type 2B mutants exhibited high palmitate labeling from the [5-13C1] glutamine; conversely, 

reintroduction of wild-type or type 2C pVHL mutant (L188V) resulted in high labeling from [U-13C6] 

glucose (Figures IV-2A and IV-2B, box inserts highlight the heavier mass isotopomers).  
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(A) Expression of HIF-1α, HIF-2α, and their target protein GLUT1 in UMRC2-derived cell lines, as indicated. (B) 

Carbon atom transition map: the fate of [1-13C1] and [5-13C1] glutamine used to trace reductive carboxylation in 

this work (carbon atoms are represented by circles). The [1-13C1] (green circle) and [5-13C1] (red circle) 

glutamine-derived isotopic labels are retained during the reductive Krebs cycle (bold red pathway). Metabolites 

containing the AcCoA carbon skeleton are highlighted by dashed circles. (C) Relative contribution of reductive 

carboxylation. (D and E) Relative contribution of glucose oxidation to the carbons of indicated metabolites (D) 

and citrate (E). Student’s t test compared VHL-reconstituted to vector-only or to VHL mutants (Y98N/Y112N). 

Pyr, pyruvate; Lac, lactate; AcCoA, acetyl-CoA, Cit, citrate; IsoCit, isocitrate; α-kg, α-ketoglutarate; Suc, 

succinate; Fum, fumarate; Mal, malate; OAA, oxaloacetate; Asp, aspartate; Glu, glutamate; PDH, pyruvate 

dehydrogenase; ME, malic enzyme; IDH, isocitrate dehydrogenase enzymes; ACO, aconitase enzymes; ACLY, 

ATP-citrate lyase; GLS, glutaminase. 

 

Next, to determine the specific contribution from glucose oxidation or glutamine reduction to 

lipogenic AcCoA, we performed isotopomer spectral analysis (ISA) of palmitate labeling patterns. ISA 

indicates that wild-type pVHL or pVHL L188V mutant-reconstituted UMRC2 cells relied mainly on 

glucose oxidation to produce lipogenic AcCoA, while UMRC2 cells reconstituted with a pVHL mutant 

defective in HIF inactivation (Y112N or Y98N) primarily employed RC. Upon disruption of the pVHL-HIF 

interaction, glutamine becomes the preferred substrate for lipogenesis, supplying 70%–80% of the 

lipogenic AcCoA (Figure IV-2C). This is not a cell-line-specific phenomenon, but it applies to VHL-

deficient human RCC cells in general; the same changes are observed in 786-O cells reconstituted with 

wild-type pVHL or mutant pVHL or infected with vector only as control (Supplemental Figure S2). Type 

2A pVHL mutants (Y112H, which retain partial HIF binding) confer an intermediate reductive phenotype 

between wild-type VHL (which inactivates HIF) and type 2B pVHL mutants (which are totally defective 

in HIF regulation) as seen in Figures IV-1 and IV-2. Taken together, these data demonstrate that the 

ability of pVHL to regulate reductive carboxylation and lipogenesis from glutamine tracks genetically 

with its ability to bind and degrade HIF, at least in RCC cells. 

 

Figure IV-1. HIF Inactivation Is Necessary for Downregulation of Reductive Carboxylation by pVHL 
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HIF Is Sufficient to Induce RC from Glutamine in RCC Cells 

To test the hypothesis that HIF-2α is sufficient to promote RC from glutamine, we expressed a 

pVHL-insensitive HIF-2α mutant (HIF-2α P405A/P531A, marked as HIF-2α P-A) in VHL-reconstituted 

786-O cells (Figure IV-3). HIF-2α P-A is constitutively expressed in this polyclonal cell population, 

despite the reintroduction of wild-type VHL, reflecting a pseudohypoxia condition (Figure IV-3A). We 

confirmed that this mutant is transcriptionally active by assaying for the expression of its targets genes 

GLUT1, LDHA, HK1, EGLN, HIG2, and VEGF (Figures IV-3B and S3A). As shown in Figure IV-3C, 

reintroduction of wild-type VHL into 786-O cells suppressed RC, whereas the expression of the 

constitutively active HIF-2α mutant was sufficient to stimulate this reaction, restoring the M1 enrichment 

of Krebs cycle metabolites observed in VHL-deficient 786-O cells. Expression of HIF-2α P-A also led to 

a concomitant decrease in glucose oxidation, corroborating the metabolic alterations observed in 

glutamine metabolism (Figures IV-3D and IV-3E). Additional evidence of the HIF-2α regulation on the 

reductive phenotype was obtained with [U-13C5] glutamine, which generates M5 citrate, M3 fumarate, 

M3 malate, and M3 aspartate through RC (Figure IV-3F). 
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Figure IV-2. HIF Inactivation Is Necessary for Downregulation of Reductive Lipogenesis by pVHL  

 

 

 

 

 

 

 

 

 

 

 

 

 

(A and B) VHL-deficient UMRC2 cells were cultured for 3 days in the presence of either [U-13C6] glucose or [5-

13C1] glutamine. Mass isotopomer distributions (MIDs) of biomass-extracted palmitate in parental cells 

reconstituted with empty vector control (vector), wild-type EE-VHL, or HA-VHL mutants and labeled with [5-

13C1] glutamine (A) or [U-13C6] glucose (B). Note: M0 equals 70%–80%; scale shown up to 20%. (C) Specific 

contribution to lipogenic acetyl-CoA as estimated by the ISA method. Statistical significance compared VHL-

reconstituted to vector-only or to VHL mutants (Y98N/Y112N). Error bars represent 95% confidence intervals in 

(C). 
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(A) Schematic of stabilized HIF-2α expression under normoxia conditions. (B) Expression of pVHL, HIF-2α, and 

its target protein GLUT1 in 786-O-derived cells, as indicated. (C) Relative contributions of reductive 

carboxylation. (D and E) Relative contribution of glucose oxidation to the carbons of indicated metabolites (D) 

and citrate (E). (F) Evidence for induction of reductive carboxylation by HIF-2α P-A using [U-13C5] glutamine. 

Student’s t test compared VHL-reconstituted or mutant HIF-2α-expressing cells to corresponding controls. (G) 

ISA results showing the specific contribution of glucose oxidation and glutamine reduction to lipogenic acetyl-

CoA. (H) Regulation of reductive carboxylation in neonatal epithelial kidney cells (NEK) by mouse HIF1α p-a 

and HIF2α p-a paralogues, induced for 72 hours. Student’s t-test compared wild type EE-VHL, mutant HIF2α 

pa, or inducible HIF-1α/2α expressing cells to corresponding control cells in (C), (D), (E), (F), (H), and statistical 

significance in (G) indicates comparison between VHL-reconstituted to vector-only or to VHL mutants 

(Y98N/Y112N). Error bars denote 95% confidence intervals in (G). Suc, succinate; Fum, fumarate; α-kg, α-

ketoglutarate; Mal, malate; Asp, aspartate; Glu, glutamate; Cit, citrate.  

 

 

Next, we tested whether VHL-independent HIF-2α expression was sufficient not only to stimulate RC in the 

Krebs cycle but also to switch the substrate preference for lipogenesis from glucose to glutamine. Expression of 

HIF-2α P-A in 786-O cells phenocopied the loss-of-VHL with regards to glutamine reduction for lipogenesis 

(Figure IV-3G), suggesting that HIF-2α can induce the glutamine-to-lipid pathway in RCC cells per se. Although 

reintroduction of wild-type VHL restored glucose oxidation in UMRC2 and UMRC3 cells, HIF-2α P-A expression 

did not measurably affect the contribution of each substrate to the Krebs cycle or lipid synthesis in these RCC 

cells (Figure S3B-S3I). UMRC2 and UMRC3 cells endogenously express both HIF-1α and HIF-2α, whereas 

786-O cells exclusively express HIF-2α. There is compelling evidence suggesting, at least in RCC cells, that 

HIF-α isoforms have overlapping –but also distinct – functions and their roles in regulating bioenergetics 

processes remain an area of active investigation. Overall, HIF-1α has an antiproliferative effect, and its 

expression in vitro leads to rapid death of RCC cells while HIF-2α promotes tumor growth (Keith et al., 2012; 

Raval et al., 2005). Because of this, we were not able to stably express the HIF-1α P-A mutant in cells that 

endogenously express HIF-2α only. To get insights into the role of HIF-α paralogs in promoting RC, we used 

Figure IV-3. Expression of HIF-2α Is Sufficient to Induce Reductive Carboxylation and Lipogenesis from 

Glutamine in RCC Cells 
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mouse neonatal epithelial kidney (NEK) cells and selectively induced the expression of mouse HIF-1α or HIF-

2α P-A in normoxia. Expressing HIF-1α P-A activated RC, consistent with our observation in cancer cell lines. 

In this model, HIF-2α P-A did not affect the contribution of this reaction to any of the Krebs cycle metabolites, at 

least in the condition studied (Figure IV-3H). Thus, it is possible that the induction of RC by HIF-1α or HIF-2α is 

species- or cell type-specific. Alternatively, there may be a redundant role of the paralogs, and/or one may 

adapt the control of the metabolic program in the absence of the other paralog. 

 

Metabolic Flux Analysis Show Net Reversion of the IDH Flux upon HIF Activation  

To determine absolute fluxes in RCC cells, we employed 13C metabolic flux analysis (MFA), as 

described in Chapter II. Herein, we performed MFA using a combined model of [U-13C6] glucose and [1-

13C1] glutamine tracer data sets from the 786-O derived isogenic clones PRC3 (VHL-/-) / WT8 (VHL+) 

cells, which show a robust metabolic regulation by reintroduction of pVHL. To this end, we first 

determined specific glucose/glutamine consumption and lactate/glutamate secretion rates. As 

expected, PRC3 exhibited increased glucose consumption and lactate production when compared to 

WT8 counterparts (Figure IV-4A). While PRC3 exhibited both higher glutamine consumption and 

glutamate production rates than WT8 (Figure IV-4A), the net carbon influx was higher in PRC3 cells 

(Figure IV-4B). Importantly, the fitted data show that the flux of citrate to α-ketoglutarate was negative 

in PRC3 cells (Figure IV-4C). This indicates that the net (forward plus reverse) flux of isocitrate 

dehydrogenase and aconitase (IDH + ACO) is toward citrate production. The exchange flux was also 

higher in PRC3 than WT8 cells, whereas the PDH flux was lower in PRC3 cells. In agreement with the 

tracer data, these MFA results strongly suggest that the reverse IDH + ACO fluxes surpass the forward 

flux in VHL-deficient cells. The estimated ATP citrate lyase (ACLY) flux was also lower in PRC3 than in 

WT8 cells. Furthermore, the malate dehydrogenase (MDH) flux was negative, reflecting a net 

conversion of oxaloacetate into malate in VHL-deficient cells (Figure IV-4C). This indicates an 

increased flux through the reductive pathway downstream of IDH, ACO, and ACLY. Additionally, some 
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Krebs cycle flux estimates downstream of α-ketoglutarate were not significantly different between 

PRC3 and WT8 (Table IV-1). This shows that VHL-deficient cells maintain glutamine oxidation while 

upregulating reductive carboxylation (see also Figure S1B). This finding is in agreement with the higher 

glutamine uptake observed in VHL-deficient cells. Table IV-1 shows the metabolic network and 

complete MFA estimates. Similar MFA results were obtained in VHL-deficient vector versus VHL-

reconstituted UMRC2 cells (data not shown). Together, the MFA data show that HIF expression 

reverses the net IDH flux, perhaps to compensate for a deficient citrate production due to inhibition of 

PDH. 

  



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 78 - 

Figure IV-4. Metabolic Flux Analysis of VHL-Deficient and VHL-Reconstituted RCC Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Extracellular fluxes (Glucose and Glutamine uptake, Glutamate and Lactate secretion) in PRC3 (VHL-/-) 

and WT8 (VHL+) isogenic cells. (B) Net influx of glutamine-derived carbons determined by the difference 

between glutamine uptake and glutamate secretion. (C) Flux estimates from combined [U-13C6] glucose / [1-

13C1] glutamine MFA model. Student’s t test compared WT8 to PRC3 cells in (A), (B). Error bars denote 95% 

confidence intervals in (C). GDH, glutamate dehydrogenase; AAT, aspartate aminotransferase; PDH, pyruvate 

dehydrogenase; CS, citrate synthase; IDH, isocitrate dehydrogenase; ACO, aconitase; MDH, malate 

dehydrogenase; ACLY, ATP-citrate lyase; Pyr transp, pyruvate transport between cytosol and mitochondria.  
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Table IV-1. Determined Fluxes and their 95% Confidence Intervals for PRC3/WT8 Estimated from 

MFA Model Using [U-13C6] Glucose and [1-13C1] Glutamine Tracer Datasets 

Reaction PRC3 (VHL-) WT8 (VHL+) 

 Flux 
pmol/cell/hour 

95% Confidence  
Intervals 

Flux 
pmol/cell/hour 

95% Confidence 
Intervals  

   
Lower 

 
Upper 

  
Lower 

 
Upper     

Glycolysis 0.79 0.78 0.81 0.72 0.71 0.73 
Glc.x → G6P 0.79 0.43 0.81 -0.59 -0.67 0.33 
G6P →  F6P 0.00 0.00 Inf 0.04 0.00 Inf 
G6P ↔ F6P 0.79 0.67 0.81 0.28 0.26 0.32 
F6P→DHAP + GAP 0.79 0.67 0.81 0.28 0.26 0.32 
DHAP→ GAP 0.47 0.00 Inf 0.00 0.00 Inf 
DHAP ↔ GAP 1.58 1.46 1.62 1.01 0.98 1.02 
GAP→3PG 0.00 0.00 Inf 0.37 0.00 Inf 
GAP ↔ 3PG 1.58 1.46 1.62 1.01 0.98 1.02 
3PG → Pyr.c 1.37 1.33 1.41 0.95 0.93 0.97 
Pyr.c ↔ Lac 0.87 0.00 Inf 0.21 0.00 Inf 
Lac → Lac.x 1.37 1.33 1.41 0.95 0.93 0.97 
Pentose Phosphate Pathway       
G6P → P5P + CO2 0.00 0.00 0.36 1.31 0.39 1.40 
P5P + P5P → S7P + GAP 0.00 0.00 0.12 0.44 0.13 0.47 
P5P + P5P ↔ S7P + GAP 2.55 0.00 Inf 1.10E+04 0.00E+00 Inf 
S7P + GAP → F6P + E4P 0.00 0.00 0.12 0.44 0.13 0.47 
S7P + GAP ↔ F6P + E4P 0.28 0.00 Inf 0.70 0.00 Inf 
P5P + E4P → F6P + GAP 0.00 0.00 0.12 0.44 0.13 0.47 
P5P + E4P ↔ F6P + GAP 1.97 0.00 Inf 2.28 0.00 Inf 
Anaplerotic reactions       
Pyr.m + CO2 → Oac 0.02 0.00 0.16 0.00 0.00 0.02 
Mal → Pyr.m + CO2 0.16 0.13 0.32 0.12 0.12 0.12 
Mal ↔ Pyr.m + CO2 0.05 0.00 0.16 0.01 0.01 0.02 
Glu → α-kg 0.14 0.13 0.16 0.12 0.12 0.12 
Glu ↔ α-kg 10.62 0.63 Inf 1.43E+05 3.07E+00 Inf 
Oac → Asp 0.00 0.00 0.00 0.00 0.00 0.00 
Oac ↔ Asp 0.32 0.00 Inf 0.47 0.00 Inf 
Krebs cycle        
Pyr.m →AcCoA.m + CO2 0.03 0.02 0.05 0.17 0.15 0.19 
AcCoA.m + Oac → Cit 0.03 0.02 0.05 0.17 0.15 0.19 
Cit → α-kg + CO2 -0.02 -0.03 -0.01 0.01 0.01 0.01 
Cit ↔ α-kg + CO2 0.07 0.04 0.15 0.02 0.02 0.03 
α-kg → Suc + CO2 0.12 0.11 0.13 0.13 0.12 0.13 
Suc → Fum 0.12 0.11 0.13 0.13 0.12 0.13 
Suc ↔ Fum 0.01 0.00 0.03 0.00 0.00 0.03 
Fum → Mal 0.12 0.11 0.13 0.13 0.12 0.13 
Fum ↔ Mal 2.08 0.68 Inf 1.07 0.38 Inf 
Mal → Oac -0.04 -0.20 -0.01 0.01 0.01 0.01 
Mal ↔ Oac 1.63E+02 9.54E-

01 

Inf 2.21E+04 8.77E-01 Inf 
Cit → AcCoA.c + Oac 0.05 0.03 0.08 0.17 0.14 0.19 
AcCoA.c → Palm 0.05 0.03 0.08 0.17 0.14 0.19 
Glutamine metabolism       
Pyr.c → Ala 0.00 0.00 0.00 0.00 0.00 0.00 
Pyr.c ↔ Ala 4.23 0.00 Inf 0.96 0.00 Inf 
Gln.x → Gln 0.19 0.18 0.21 0.14 0.14 0.14 
Gln → Glu 0.19 0.18 0.21 0.14 0.14 0.14 
Glu →Glu.x 0.05 0.05 0.06 0.02 0.02 0.02 
Mixing/Dilution       
Pyr.c → Pyr.m -0.11 -0.13 -0.11 0.05 0.03 0.07 
Pyr.c ↔ Pyr.m 0.04 0.02 0.06 0.22 0.20 0.33 
Pyr.c → Pyr.mnt 0.33 0.19 0.38 0.00 0.00 0.35 
Pyr.m → Pyr.mnt 0.00 0.00 0.00 0.00 0.00 0.00 
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HIF Activation Promotes RC by Lowering Citrate Levels  

In support of the existing literature, our MFA data showed that HIF inhibits the absolute pyruvate 

dehydrogenase (PDH) flux (Kim et al., 2006; Papandreou et al., 2006). We observed that citrate levels 

were depleted in VHL-deficient UMRC2 cells (Figure IV-5A), with the citrate-to-α-kg ratio being equally 

decreased in the VHL-deficient and HIF-2α P-A-expressing RCC cell lines (Figure IV-5B and S4A). We 

hypothesized that low citrate levels are key in promoting reductive carboxylation (RC) through mass 

action. To test if the mechanism by which HIF promotes RC lies in its ability to reduce citrate levels, we 

restored the intracellular pools of citrate, hoping to suppress RC in the Krebs cycle. First, we knocked 

down the HIF target PDK-1 (Figure IV-5C) and observed a decreased contribution of RC to the Krebs 

cycle in VHL-deficient PRC3 cells (Figure IV-5D). Similarly, knocking down the ATP citrate lyase 

enzyme (Figure IV-5E) inhibited RC in PRC3 cells (relative contribution of RC in Figure IV-5F, total 

contribution of RC in Figure S4B). Next, we labeled VHL-deficient and VHL-reconstituted UMRC2 cells 

with [1-13C1] glutamine and supplemented the medium with 1 mM and 4 mM acetate. Addition of 

acetate decreased the relative (Figure IV-5G) and total contribution (Figure IV-5H) of RC in VHL-

deficient cells, with minimal effects observed in the VHL-reconstituted counterparts. The M1 enrichment 

informs on RC for the formation of Krebs cycle metabolites. The absence of a major effect of acetate on 

the minimal RC of VHL-reconstituted cells is consistent with the observation that addition of acetate to 

these cells did not increase the intracellular citrate levels significantly (Figures IV-5I and S4C). In 

contrast, addition of acetate to VHL-deficient cells led to a significant increase in their citrate levels 

(Figures IV-5I and S4C) (to a level similar to the one observed in VHL-positive cells) as well as 

significant inhibition of RC. To pinpoint the metabolic route of the acetate-to-citrate flux, we labeled the 

control and ACLY knockdown PRC3 cells with [U-13C2] acetate and observed an increased percentage 

of M2 citrate under ACLY knockdown conditions (Supplemental Figure S4D), suggesting that the 

acetate rescue of citrate levels in VHL-deficient cells probably occurs through condensation with 
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oxaloacetate via citrate synthase rather than through the reversibility of ACLY. We confirmed that 

acetate can serve as a lipogenic source in the pair of PRC3/WT8 cells (Supplemental Figure S4E). We 

also cultured PRC3/WT8 cells with [5-13C1] glutamine in the presence of acetate at natural abundance 

enrichment levels. In line with the previous observations, the contribution of glutamine reduction to 

lipogenic acetyl-CoA was decreased under the presence of acetate (Supplemental Figure S4F). Next, 

we directly supplemented the medium with citrate and rinsed the cells thoroughly with PBS before 

extraction to ensure measurement of the intracellular metabolite. Addition of 8 mM citrate decreased 

the M1 enrichment of citrate in VHL-deficient UMRC2 cells to half but, in contrast to acetate, did have a 

moderate effect on the minimal RC observed in VHL-reconstituted cells (Figure IV-5J). Interestingly the 

level of M1 fumarate, M1 aspartate, and M1 malate were unaffected. One could expect the addition of 

unlabeled citrate to decrease, by definition, the percent enrichment of M1 citrate, regardless of its 

putative effect on RC. To control for this effect of exogenous citrate on the total formation of RC-derived 

citrate, we labeled the cells with [1-13C1] glutamine and [U-13C6] citrate and subtracted the total M6 

citrate ions (which are exogenous and not metabolically generated by the cell) from the total citrate ions 

and calculated the total contribution of RC using the formula % M1 x (total ions – % M6 x total ions). 

Likewise, exogenous citrate significantly decreased the total contribution of RC in the VHL-deficient 

UMRC2 cells but also had a moderate effect in the RC observed in VHL-reconstituted cells (Figure IV-

5K). This differential effect between acetate and citrate on RC is consistent with and supports our 

hypothesis that endogenous citrate levels regulate RC by mass action. Addition of citrate in the 

medium, in contrast to acetate, led to an increase in the citrate-to-α-ketoglutarate ratio (Figure IV-5L) 

and absolute citrate levels (Supplemental Figure S4H) not only in VHL-deficient but also VHL-

reconstituted cells. The ability of exogenous citrate, but not acetate, to also affect RC in VHL-

reconstituted cells may be explained by compartmentalization differences or by allosteric inhibition of 

citrate synthase (Williamson and Cooper, 1980); that is, the ability of acetate to raise the intracellular 

levels of citrate may be limited in (VHL-reconstituted) cells that exhibit high endogenous levels of 



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 82 - 

citrate. Whatever the mechanism, the results imply that increasing the pools of intracellular citrate has a 

direct biochemical effect in cells with regards to their reliance on RC. Finally, we assayed the transcript 

and protein levels of enzymes involved in the reductive utilization of glutamine and did not observe 

significant differences between VHL-deficient and VHL-reconstituted UMRC2 cells (Supplemental 

Figures S4I and S4J), suggesting that HIF does not promote RC by direct transactivation of these 

enzymes. The IDH1/IDH2 equilibrium is defined as follows: 

 

[               ] [     ] [   ]

[          ][     ]
    (   ) 

Therefore, we sought to investigate whether HIF could affect the driving force of the IDH reaction 

by also enhancing NADPH production. We did not observe a significant alteration of the 

NADP+/NADPH ratio between VHL-deficient and VHL-positive cells in the cell lysate (Supplemental 

Figure S4K). Yet, we determined the ratio of the free dinucleotides using the measured ratios of 

suitable oxidized (α-ketoglutarate) and reduced (isocitrate/citrate) metabolites that are linked to the 

NADP-dependent IDH enzymes. The determined ratios (Supplemental Figure S4L) are in close 

agreement with the values initially reported by the Krebs lab (Veech et al., 1969) and showed that HIF-

expressing UMRC2 cells exhibit a higher NADP+/NADPH ratio. Collectively, these data strongly 

suggest that HIF-regulated citrate levels modulate the reductive flux to maintain adequate lipogenesis. 

 

 Reductive Carboxylation from Glutamine is Detectable in vivo  

VHL-deficient RCC cells rely on reductive carboxylation (RC) for lipid synthesis, potentially 

suggesting that this reaction can contribute to tumor growth. RC is known to occur in bacteria and in 

the brown adipose tissue (Yoo et al., 2004, 2008) and more recently described in cancer cell lines (see 

Chapter III and references therein), but whether it occurs in vivo in other tissues of vertebrates or in 

actual tumors is not known. We sought to determine the activity of RC in tumors derived from VHL-
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deficient UMRC3 cells growing as subcutaneous xenografts in nude mice. We infused several tumor-

bearing mice with [1-13C1] glutamine (see Experimental Procedures in Chapter II) and analyzed the 

citrate enrichment in tumor extracts by high-resolution 13C Nuclear Magnetic Resonance (NMR) 

spectroscopy and GC-MS (Figure IV-6). [1-13C1] glutamine will transfer carbon to citrate only through 

RC, so the mere detection of 13C enrichment in citrate will indicate that this reaction is active in vivo. In 

order to attain maximal 13C enrichment of citrate, we carried out a time course infusion of [1-13C1] 

glutamine and attained an isotopic-steady state of 13C glutamine enrichment in the tumor (Figure IV-

6A). We also analyzed the 13C glutamine enrichment in the plasma at the earliest and latest infusion 

points and observed similar 13C enrichment after 6 hr. As seen in Figure IV-6B, we detected 13C 

enriched citrate in the tumor within 30 min, with RC accounting for 4% of citrate production after 6hr of 

infusion (Figure IV-6B). Notably, the steady-state 13C glutamine enrichment in the tumor was 30% 

(Figure IV-6A), indicating that the reductive flux accounts for at least 12% of citrate production in VHL-

deficient tumors under these experimental conditions. The kidney cortex is reported to be relatively 

hypoxic (Zhong et al., 1998).Thus, we analyzed the 13C citrate enrichment in kidney extracts in parallel 

and showed that RC is also active in this organ (Figure IV-6B). The steady-state 13C enrichment of 

glutamine was also established in the normal kidney, but it was higher (Figure IV-6B), indicating an 

overall lower contribution of RC in the kidney when compared to the tumor. Despite the steady-state 

13C enrichment of the glutamine precursor, the percentage of M1 citrate appeared to increase overtime 

in the tumor, whereas it reached a plateau in the normal kidneys and plasma. Importantly, there was no 

evidence that RC appears in the tumor in a delayed fashion compared to plasma or kidney, strongly 

suggesting that RC occurs in the tumor xenografts. Concordant results were obtained by 13C NMR 

spectroscopy (Figures IV-6C and IV-6D) in which 13C enrichment was observed in tumor extracts after 

6hr of infusion, and no signal was detected in the carboxyl group region in control mice (Figure IV-6C). 

These results indicate that RC occurs in vivo, at least in VHL-deficient tumors. 
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(A and B) Citrate ion counts (A) and citrate-to-α-ketoglutarate ratio (B) in RCC cells. (C) Validation of PDK-1 

knockdown in VHL-deficient PRC3 cells. (D) Relative contribution of reductive carboxylation to the Krebs cycle 

under PDK-1 knockdown conditions. (E) Validation of ACLY knockdown in PRC3 cells. (F) Effect of ACLY 

knockdown on the relative contribution of reductive carboxylation. (G and H) Effect of acetate and citrate on the 

activity of reductive carboxylation in VHL-deficient/VHL-reconstituted UMRC2 cells. Acetate suppresses the 

relative (G) and total (H) contribution of reductive carboxylation in VHL-deficient UMRC2 cells (I) Rescue of 

citrate-to-α-ketoglutarate ratio by acetate addition. (J and K) Exogenous citrate suppresses the relative (J) and 

total (K) contribution of reductive carboxylation in VHL-deficient UMRC2 cells. (L) Rescue of citrate-to-α-

ketoglutarate ratio by exogenous citrate in (K). Student’s t-test compared VHL-reconstituted to VHL-deficient 

cells (for A and B), and acetate/citrate-treated, or ACLY/PDK-1 knocked-down cells to correspondent controls. 

ACLY, ATP-citrate lyase; PDK-1, pyruvate dehydrogenase kinase.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV-5. Regulation of HIF-Mediated Reductive Carboxylation by Citrate Levels 
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Figure IV-6. Evidence for Reductive Carboxylation Activity In Vivo 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Time course of 13C enrichment (%) of glutamine in tumor, normal kidney, and plasma extracts during 

infusion with [1-13C1] glutamine (n = 3 per time point). 13C enrichment at time zero was determined using control 

non-infused mice. (B) Percent M1 citrate in the different tissues as determined by GC-MS analysis. (C) High-

resolution 13C NMR spectra showing 13C enrichment of carboxylic groups in tumor extracts of a [1-13C1] 

glutamine-infused mouse when compared to a control mouse. (D) NMR analysis of 13C enrichment in tumor 

citrate during the time course of infusion determined by deconvolution of the carboxyl group signals. The area 

of the citrate signal was divided by tumor weight and normalized to the dioxane signal. 
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Loss of VHL Renders RCC Cells Sensitive to Glutamine Deprivation 

Renal cell carcinoma (RCC) cells engaged in reductive carboxylation (RC) from glutamine to 

produce citrate, and this reaction was active in VHL-deficient RCC xenograft tumors. We therefore 

hypothesized that VHL deficiency results in cell addiction to glutamine for proliferation. We treated the 

isogenic clones PRC3 (VHL-deficient cells) and WT8 (VHL-reconstituted cells) with the glutaminase 

inhibitor 968 (Wang et al., 2010a). VHL-deficient PRC3 cells were more sensitive to treatment with 968, 

compared to the VHL-reconstituted WT8 cells (Figure IV-7A). To confirm that this is not only a cell-line-

specific phenomenon, we also cultured UMRC2 cells in the presence of 968 or diluent control and 

showed selective sensitivity of VHL-deficient cells (Figure IV-7B). To test if the selective sensitivity of 

VHL-deficient cells to glutaminase inhibitors is linked, at least in part, to defective carbon supply, we 

asked whether cell proliferation could be rescued by anaplerotic substrates. Supplementing the 

cultured medium with a cell-permeable form of the substrate α-ketoglutarate or acetate, we rescued 

VHL-deficient cells from treatment with 968 (Figure IV-7C). The selective sensitivity and rescue by 

anaplerotic and lipogenic substrates was also corroborated in 786-O cells (Figure IV-7D). We observed 

a similar growth-inhibitory phenotype in VHL-deficient UMRC2 cells using a different glutaminase 

inhibitor (BPTES), confirming the sensitivity to glutamine deprivation under VHL-deficient conditions 

(Figure IV-7E). Glutamine addiction of VHL-deficient cells is not an in vitro-only phenomenon. Systemic 

administration of the glutaminase inhibitor BPTES suppressed the growth of VHL-deficient UMRC3 

cells as tumors in nude mice (Figure IV-7F). In summary, our findings show that HIF is necessary and 

sufficient to promote RC from glutamine. By inhibiting glucose oxidation in the Krebs cycle and 

reducing citrate levels, HIF shifts the IDH reaction toward RC to support citrate production and 

lipogenesis. The reductive flux is active in vivo, fuels tumor growth, and can potentially be targeted 

pharmacologically (Figure IV-7G).  
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(A–E) Cell proliferation is normalized to the corresponding cell type grown in 1 mM glutamine-containing 

medium. Effect of treatment with glutaminase (GLS) inhibitor 968 in PRC3/WT8 (A) and UMRC2 cells (B). 

Rescue of GLS inhibition with dimethyl α-ketoglutarate (DM-α-kg; 4 mM) or acetate (4 mM) in PRC3/WT8 

clonal cells (C) and polyclonal 786-O cells (D). Effect of GLS inhibitor BPTES in UMRC2 cells (E). (F) GLS 

inhibitor BPTES suppresses growth of human UMRC3 RCC cells as xenografts in nu/nu mice. When the 

tumors reached 100mm3, injections with BPTES or vehicle control were carried out daily for 14 days (n = 12). 

BPTES treatment decreases tumor size and mass (see insert). Student’s t test compares VHL-reconstituted 

cells to control cells in (A), (B), and (E) and DM-α-kg or acetate-rescued cells to correspondent control cells 

treated with 968 only in (C) and (D) (asterisk in parenthesis indicates comparison between VHL-reconstituted to 

control cells). Student’s t test compares control to BPTES-treated mice in (F). (G) Summary of the regulation of 

reductive carboxylation by HIF and its biological significance in vivo. GLS, glutaminase. 

 

IV.3. DISCUSSION 

Here, we provided mechanistic insights that link HIF to RC. First, we demonstrated that polyclonal 

reconstitution of VHL in several human VHL-deficient RCC cell lines inhibited RC and restored glucose 

oxidation. Second, the VHL mutational analysis demonstrated that the ability of pVHL to mitigate 

reductive lipogenesis is mediated by HIF and is not the outcome of previously reported, HIF-

independent pVHL function(s). Third, to prove our hypothesis we showed that constitutive expression of 

a VHL-independent HIF mutant was sufficient to phenocopy the reductive phenotype observed in VHL-

deficient cells. In addition, we showed that RC is not a mere in vitro phenomenon, but it can be 

detected in vivo in human tumors growing as mouse xenografts. Lastly, treatment of VHL-deficient 

human xenografts with glutaminase inhibitors led to suppression of their growth as tumors.  

In this work, we also examined the mechanism(s) by which HIF promotes RC. It is established that 

hypoxic induction of HIF transactivates several enzymes involved in glucose uptake and glycolysis, 

including GLUT1, hexokinase, phosphofructokinase, and aldolase (Iyer et al., 1998). In addition, HIF 

directly binds to the promoter of, and transactivates, PKM2, pyruvate dehydrogenase kinase 1 (PDK1) 

and lactate dehydrogenase A (LDHA) (Ebert et al., 1996; Firth et al., 1994; Kim et al., 2006; Luo et al., 

Figure IV-7. VHL-Deficient Cells and Tumors Are Sensitive to Glutamine Deprivation  
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2011; Papandreou et al., 2006). This orchestrated upregulation of several enzymes ensures the 

diversion of pyruvate to lactate production. This raised the hypothesis that RC may be triggered by a 

deficient pyruvate oxidation in the mitochondrion and the subsequent reduction in citrate levels. Our 

MFA analysis indicated a significantly lower absolute pyruvate dehydrogenase (PDH) flux and net 

conversion of α-ketoglutarate into citrate upon HIF activation. The ATP citrate lyase flux was lower in 

VHL-deficient cells when compared to the VHL-positive counterparts, which supports our previous 

observations that de novo 

lipogenesis is decreased under hypoxia conditions (Metallo et al., 2012). Indeed, HIF expression, either 

by loss of VHL or normoxic induction of HIF-2α P-A, reduced citrate levels. Conversely, administration 

of exogenous citrate or acetate in VHL-deficient cells restored the low citrate levels to the levels 

encountered in VHL-replete cells and inhibited RC. Exogenous administration of acetate or citrate had 

a mild effect in VHL-positive cells. In the case of either cell type, the magnitude of changes in RC 

reflected the degree of changes in intracellular citrate levels. These observations show that fluctuations 

in citrate levels by HIF modulate, at least in part, the flux of the reverse IDH reaction. This finding 

underlines the compensatory role of RC in maintaining an adequate flux for lipogenesis under HIF-

activated conditions. 

In addition to the role of HIF in regulating RC through citrate, we examined whether HIF directly 

regulates enzymes along the reductive Krebs cycle pathway (see Figure IV-1B). We did not observe 

changes in the transcript or protein levels of GLS, GDH, IDH1, IDH2, ACO1, or ATP citrate lyase 

between VHL-deficient and VHL-reconstituted UMRC2 cells. This is in line with previous studies that 

did not identify any of these enzymes as transcriptional targets of HIF-1α or HIF-2α (Mole et al., 2009; 

Ortiz-Barahona et al., 2010; Schödel et al., 2011; Wenger et al., 2005). Nevertheless, it is conceivable 

that HIF may affect the activity of these enzymes through regulation of cofactor availability or 

posttranslational modification of the enzymes. For example, the reverse IDH reaction requires NADPH, 

as allosteric cofactor (Dalziel and Londesborough, 1968; Leonardi et al., 2012) and HIF-mediated 
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changes in NADPH levels may indirectly influence IDH activity. In our studies we did not observe 

increased NADPH levels in VHL-deficient cells when compared to the VHL-positive counterparts, which 

is in agreement with existing literature showing that HIF-1α activates NADPH oxidase and hypoxia 

limits NADPH production (Diebold et al., 2010; Tribble and Jones, 1990). These data suggest that the 

mass-action effect of HIF toward RC is not accounted for by an increase in NADPH production. Other 

signaling pathways may regulate RC through NADPH availability, and the source(s) of NADPH 

contributing to RC in the cytosol/mitochondrion are under investigation. For example, the mitochondrial 

enzyme nicotinamide nucleotide transhydrogenase (NNT) transfers reducing equivalents from NADH to 

NADPH and has been hypothesized to contribute to RC by IDH2 (Sazanov and Jackson, 1994).This 

hypothesis raises the possibility that NADPH-producing reactions may regulate the RC flux in a HIF-

independent manner. This topic will be the focus of Chapter V. 

In addition, posttranslational modifications of the enzymes involved in RC may be influenced by 

hypoxia and/or HIF expression indirectly. For example, aconitase (ACO1) activity is reportedly 

regulated by hypoxia through iron-sulfur cluster modifications and phosphorylation (Chan et al., 2009; 

Rouault, 2006), and AcCoA is a required substrate for protein acetylation,  which regulates major 

cellular functions including central carbon metabolism (Wang et al., 2010b; Zhao et al., 2010). Thus, it 

is conceivable that HIF contributes to these modifications and therefore influences the activity of 

glutamine-metabolizing enzymes at the posttranslational level. 

Our current work showed that HIF-2α is sufficient to induce the reductive program in RCC cells that 

express only the HIF-2α paralog, while mouse NEK cells appeared to use HIF-1α preferentially to 

promote RC. Together with the evidence that HIF-1α and HIF-2α may have opposite roles in tumor 

growth (Keith et al., 2012; Maranchie et al., 2002; Raval et al., 2005), it is possible that the cellular 

context dictates which paralog activates RC. It is also possible that HIF-2α adopts the RC regulatory 

function of HIF-1α upon deletion of the latter in RCC cells. Further studies are warranted in 

understanding the relative role of HIF-α paralogs in regulating RC in different cell types. 
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Finally, the selective sensitivity to glutaminase inhibitors exhibited by VHL-deficient cells, together 

with the observed RC activity in vivo, strongly suggests that reductive glutamine metabolism may fuel 

tumor growth. Investigating whether the reductive flux correlates with tumor hypoxia and/or contributes 

to the actual cell survival under low oxygen conditions is warranted. Together, our findings underscore 

the biological significance of reductive carboxylation in VHL-deficient RCC cells.  
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Supplementary Figure IV-S1. Evidence for Regulation of Glucose and Glutamine Utilization by pVHL  

in RCC Cells, Related to Figure IV-1. 

IV.4. Supplemental Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Contribution of pyruvate carboxylation and (B) glutamine oxidation to the Krebs cycle in RCC cells. 

Student’s t-test compared VHL-reconstituted to vector-only RCC cells.   
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Supplementary Figure IV-S2. Regulation of Reductive Lipogenesis by the pVHL-HIF Interaction in  

786-O Cells, Related to Figure IV-2. 

 

 

The panel of mutant 786-O cells was cultured for 2-3 days with [5-13C1] glutamine or [U-13C6] glucose. (A-B) 

Mass isotopomer distributions (MIDs) of palmitate in 786-O cells labeled with [5-13C1] glutamine (A) or [U-13C6] 

glucose (B). (C) Specific contribution from glucose oxidation and glutamine reduction to lipogenic AcCoA in a 

panel of 786-O-derived cell lines, using the ISA method (D) HIF-2α, VHL and GLUT1 protein levels in vector-

only, VHL-reconstituted and VHL mutant 786-O cells. Statistical significance compared VHL-reconstituted to 

vector-only or to VHL mutants (Y98N/Y98H). Error bars represent 95% confidence intervals in (C). 
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Supplementary Figure IV-S3. Evidence for Regulation of Reductive Lipogenesis by pVHL and  

HIF-2α P-A Mutant in RCC Cells, Related to Figure IV-3. 

 

 

(A) mRNA expression level of HIF-2α target genes, normalized that of the beta2-microglobulin. (B) HIF-2α, 

pVHL and GLUT1 protein levels in VHL-deficient/VHL-reconstituted UMRC2 cells. (C-E) Regulation of glucose 

oxidation (C, D) and reductive carboxylation (E) by reintroduction of pVHL in VHL-deficient UMRC2 cells. (F-G) 

Mass isotopomer distributions  (MIDs) of palmitate in UMRC2 (F) and UMRC3 cells (G) labeled with [5-13C1] 

glutamine or [U-13C6] glucose. (H-I) Specific contribution from glucose oxidation and glutamine reduction to 

lipogenic AcCoA in UMRC2 (H) and UMRC3 (I) cells, determined by the ISA method. Student’s t-test compared 

wild type EE-VHL, mutant HIF-2α pa, or inducible HIF-1α/2α expressing cells to corresponding control cells. 

Error bars represent 95% confidence intervals in (H), (I). 
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Supplementary Figure IV-S4. Evidence for Induction of Reductive Carboxylation by Citrate Levels in HIF- 

-Expressing Cells, Related to Figure IV-5.  

 

 

(A) Citrate to α-ketoglutarate ratio observed in PRC3/WT8 cells and in the panel of 786-O cell lines used in our 

isotopic studies. (B) Total contribution of reductive carboxylation in vector control/ACLY knocked-down PRC3 

cells, determined by the total M1 counts of Krebs cycle metabolites. (C) Rescue of citrate levels by acetate 

addition in the panel of UMRC2 cells. (D) Contribution of [U-13C2] acetate to citrate production in vector 

control/ACLY knocked-down PRC3 cells. (E) Specific contribution of [U-13C2] acetate to lipid carbon and (F) the 

effect of naturally labeled acetate on the contribution of glutamine reduction to lipogenesis in PRC3/WT8 cells. 

(G) Rescue of citrate levels by acetate addition in control/ACLY knocked-down PRC3 cells. (H) Rescue of 

citrate levels by acetate addition in the panel of UMRC2 cells. (I)  Immunoblot for glutaminase (GLS), glutamate 

dehydrogenase 1 (GLUD1), isocitrate dehydrogenase 2 (IDH2), isocitrate dehydrogenase 1 (IDH1), 

aconitase/IRP1 (Aco1), and ATPcitrate lyase (ACLY) in UMRC2 cells reconstituted with empty vector control 

(lane 1) or wild type EE-VHL (lane 2). (J) mRNA levels of pyruvate dehydrogeanse kinase 1 (PDK1), PDK2,  

PDK3, PDK4 and glutamine-metabolizing enzymes in the panel of UMRC2 cells. (K-L) NADP+/NADPH ratios in 

VHL-deficient/VHL-reconstituted UMRC2 cells assayed in the cell extract (K) and determined using the ratios of 

the oxidized and reduced metabolites of the NADPH-linked IDH equilibrium (L). tert-Butyl hydroperoxide 

(TBHP) was used as an oxidant control. Student’s t-test compared: 1) VHL-reconstituted or mutant HIF-2α p-a 

to corresponding control cells (for panels A, J and L), 2) ACLY knocked-down to control PRC3 cells (for panels 

B and D), and 3) acetate or citrate-rescued cells to correspondent controls (for panels C, G and H).   
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“Life is like riding a bicycle. To keep your balance you must keep moving”. 

Albert Einstein 
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Chapter V 

 

V. Cofactor Balance by Nicotinamide Nucleotide 

Transhydrogenase (NNT) Coordinates Reductive 

Carboxylation and Glucose Catabolism in the Krebs 

Cycle 
 

 

 

 

 

 

Chapter V presents doctoral work published in a peer-reviewed scientific journal: 

Gameiro, P.A., Laviolette, L. a., Kelleher, J.K., Iliopoulos, O., and Stephanopoulos, G. (2013b). 
Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive 
carboxylation and glucose catabolism in the TCA cycle*. The Journal of Biological Chemistry 288, 
12967–12977. 

* This article was selected as a Paper of the Week.  



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 104 - 

V.1. ABSTRACT 

Cancer and proliferating cells exhibit an increased demand for glutamine-derived carbons to 

support anabolic processes. In addition, we have shown that reductive carboxylation (RC) of α-

ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2 is a major source of citrate synthesis 

from glutamine. The role of NAD(P)H/NAD(P)+ cofactors in coordinating glucose and glutamine 

utilization in the Krebs cycle is not well understood, with the source(s) of NADPH for the RC reaction 

remaining unexplored. Nicotinamide nucleotide transhydrogenase (NNT) is a mitochondrial enzyme 

that transfers reducing equivalents from NADH to NADPH. Here, we show that knockdown of NNT 

inhibits the contribution of glutamine to the Krebs cycle and activates glucose catabolism in SkMel5 

melanoma cells. The increase in glucose oxidation partially occurs through pyruvate carboxylase and 

renders NNT knockdown cells more sensitive to glucose deprivation. Importantly, knocking down NNT 

inhibits RC in SkMel5 and 786-O renal carcinoma cells. Overexpression of NNT is sufficient to stimulate 

glutamine oxidation and RC, whereas it inhibits glucose catabolism in the Krebs cycle. These 

observations are supported by an impairment of the NAD(P)H / NAD(P)+ ratios. Our findings 

underscore the role of NNT in regulating central carbon metabolism via redox balance, calling for other 

mechanisms that coordinate substrate preference to maintain a functional Krebs cycle. 

 

Cancer and proliferating cells largely depend on glycolysis but also switch to a glutamine-

maintained Krebs cycle to meet the needs of accelerated growth and proliferation. Such metabolic 

reprogramming maximizes the utilization of glucose for glucose-specific anabolic processes, while 

ensuring a functional Krebs cycle for macromolecule synthesis (Dang, 2010; Wise and Thompson, 

2010). As such, elucidating the signaling pathways and allosteric mechanisms that coordinate glucose 

and glutamine utilization is key to identify metabolic dependencies of cancer cells. In the previous 

chapters, we described the metabolic reprogramming of glutamine that occurs in hypoxia and VHL-

deficient renal cell carcinoma (RCC) cells. Upon hypoxia, the reductive carboxylation (RC) of α-
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ketoglutarate by isocitrate dehydrogenase 1 (IDH1) and/or 2 (IDH2) becomes the primary pathway of 

citrate and lipid synthesis. In Chapter IV, we showed that hypoxia inducible factors (HIFs) are 

necessary and sufficient to promote RC through a mass-action effect on citrate levels. In this context, 

the IDH1/IDH2 equilibrium is as follows: 

[               ] [     ] [   ]

[          ][     ]
    (   ) 

Therefore, the reverse IDH reaction (reductive carboxylation) is NADPH-dependent, whereby 

NADPH donates the hydride ion (H-) that reduces α-ketoglutarate into isocitrate (Dalziel and 

Londesborough, 1968; Leonardi et al., 2012; Siebert et al., 1957). We observed that HIF expression did 

not increase NADPH levels, and the sources of this cofactor for the reverse reaction of IDH enzymes 

remain unexplored thus far.  

In addition, it is recognized that the Krebs cycle is inherently an oxygen-dependent pathway that 

oxidizes metabolic intermediates to produce NADH, the reducing equivalents necessary for ATP 

production. Thus, the mitochondrial NADH/NAD+ ratio is an allosteric regulator of the Krebs cycle 

activity via coupling to oxidative phosphorylation (Moreno-Sanchez et al., 1990), but its role in 

coordinating glucose and glutamine entry in the Krebs cycle is not well understood from a carbon flux 

distribution point of view. Given the requirement of a functional Krebs cycle for a cell to proliferate, it is 

possible that shifting the NADH/NAD+ to a more oxidized or reduced state may differently affect 

glucose and glutamine utilization in the Krebs cycle. 

Here, we investigate the role of cofactor balance by nicotinamide nucleotide transhydrogenase 

(NNT) in central carbon metabolism. Using 13C isotopic tracers, we elucidate the function of NNT in 

regulating the Krebs cycle activity, in particular its contribution to glutamine-derived RC and glucose 

catabolism. 
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V.2. RESULTS 

Knockdown of NNT Decreases the Contribution of Glutamine into the Krebs cycle 

We hypothesized that disturbances in the mitochondrial NAD(P)H/NAD(P)+ balance due to 

knockdown of NNT would affect glucose and glutamine utilization in the Krebs cycle. To investigate the 

role of NNT in intermediary central carbon metabolism, we knocked down its translation and employed 

different [13C] glucose and [13C] glutamine isotopic tracers to determine the enrichment of Krebs cycle 

metabolites by GC-MS analysis. We infected SkMel5 melanoma cell lines with lentiviruses containing 

NNT-targeting shRNA sequences and generated NNT knockdown polyclonal cell populations (Figure 

V-1A). The SkMel5 cell line highly expresses NNT at the RNA level, along with other melanomas, 

leukemia, and some renal cell carcinoma cells, according to the NCI-60 panel 

(dtp.nci.nih.gov/mtargets/mt_search.html). To trace the contribution of glutamine to the Krebs cycle, we 

cultured the SkMel5 cells in the presence of the [U-13C5] glutamine tracer. Knockdown of NNT 

decreased the contribution of glutamine oxidation to the Krebs cycle, as determined by the level of M4 

enrichment of Krebs cycle metabolites (Figure V-1B, see Chapter II for atom transition map). We 

observed that the enrichment of M5 citrate, M3 fumarate, M3 malate, and M3 aspartate was also 

significantly decreased in NNT knockdown SkMel5 cells when compared with control cells infected with 

scramble vector shRNA (Figure V-1C), which indicates a decreased contribution of reductive 

carboxylation (RC) to the Krebs cycle. We also tested the effect of NNT knockdown on RC by culturing 

the cells with the [1-13C1] glutamine tracer, which specifically transfers the 13Clabeled carbon to the 

Krebs cycle metabolites only through RC. 

Knocking down NNT decreased the percentage of M1 Krebs cycle metabolites in SkMel5 cells (Figure 

V-1D). We observed that the anaplerotic contribution from glutamine was also reduced in NNT 

knockdown SkMel5 cells (Figure V-1E), suggesting a switch in substrate preference (from glutamine to 

glucose) for the production of α-ketoglutarate/glutamate. Nevertheless, we observed a specific 

inhibition of RC in SkMel5 cells under NNT knockdown conditions when accounting for the anaplerotic 
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contribution from glutamine (Figure V-1F). We also tested the role of NNT on RC activity in a VHL-

deficient renal cell carcinoma cell line, which relies heavily on this reductive pathway (Gameiro et al., 

2013a). To this end, we knocked down NNT in VHL-deficient 786-O cells (Figure V-1G) and cultured 

them in the presence of [1-13C1] glutamine. Scramble vector-infected 786O cells exhibited a high RC 

activity when compared with Sk-Mel5 cells (Figure V-1H). Knockdown of NNT decreased the 

enrichment of M1 citrate (Figure V-1H), whereas it only modestly affected glutamine-derived 

anaplerosis in 786-O cells (Figure V-1I), as determined by comparing the M1 enrichment between α-

ketoglutarate and glutamate. This difference in the anaplerotic response to NNT knockdown may be 

due to the specific allosteric effects of NAD(P) on glutamate dehydrogenase (see “Discussion”). 

Interestingly, we did not observe changes in the M1 enrichment of fumarate, malate, and aspartate, 

downstream metabolites of the IDH2 reaction that are formed in the cytosol. Therefore, we cannot rule 

out a compensatory role of the cytosolic IDH1 reaction in cells that largely rely on this pathway and may 

require a constant supply of NADPH. Taken together, these data show that NNT, strictly involved in 

cofactor balance, contributes to glutamine oxidation and RC in the mitochondrion.  
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Figure V-1. Effect of NNT Knockdown on Glutamine Catabolism  

 (A) Validation of NNT knockdown in SkMel5 cells. (B–F) Effect of NNT knockdown on glutamine metabolism in 

SkMel5 cells. (B and C) Contribution of glutamine oxidation (B) and reductive carboxylation (C) to the Krebs 

cycle, from [U-13C5] glutamine. (D) Contribution of reductive carboxylation to the Krebs cycle using the [1-13C1] 

glutamine tracer. (E) Contribution of glutamine anaplerosis to α-ketoglutarate (α-kg) formation. (F) Normalized 

contribution of reductive carboxylation in the panel of SkMel5 cells, from [U-13C5] glutamine. (G) Validation of 

NNT knockdown in 786-O cells. (H) Contribution of reductive carboxylation to the Krebs cycle in NNT 

knockdown 786-O cells. (I) Contribution of glutamine anaplerosis to α-ketoglutarate (α-kg) formation in 786-O 

cells. Student’s t test compares NNT knockdown cells to Scr control cells. Scr control, scramble control; Suc, 

succinate; Fum, fumarate; Mal, malate; Asp, aspartate; Cit, citrate. 

 

 Knockdown of NNT Stimulates Glucose Catabolism in the Krebs Cycle 

To study the role of NNT in glucose metabolism, we labeled the SkMel5 cells with [U-13C6] glucose 

for 24hr and determined its contribution to the formation of Krebs cycle metabolites by GC-MS analysis. 

The [U-13C6] glucose tracer transfers two 13C units to Krebs cycle metabolites via pyruvate 

dehydrogenase (PDH), whereas pyruvate carboxylase (PC) activity incorporates three 13C atoms in 

oxaloacetate, which then propagate to other Krebs cycle metabolites (See atom transition map in 

Chapter II). As such, M3 mass isotopomers of Krebs cycle metabolites are associated with PC activity, 

whereas M5 citrate, M4 α-ketoglutarate, and M4 glutamate reflect the overall contribution of glucose 

carbons via pyruvate dehydrogenase and PC. Although knockdown of NNT decreased glutamine 

oxidation in SkMel5 cells, it concurrently activated glucose catabolism in the Krebs cycle, as seen by 

the level of enriched Krebs cycle metabolites from [U-13C6] glucose (Figure V-2A and V-2B), suggesting 

that knockdown of NNT switches substrate preference to a glucose-derived Krebs cycle. We did not 

observe changes in the M2 isotopomers of these metabolites, indicating that the specific contribution of 

PDH (relative to PC-derived anaplerosis) was not significantly affected under NNT knockdown 

conditions (data not shown). Because M3 mass isotopomers can also be formed by continued Krebs 

cycling, we cultured the SkMel5 cells with [3-13C1] glucose to trace the specific contribution of glucose-

derived anaplerosis to the Krebs cycle, in which the labeled carbon in pyruvate is either retained in 
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oxaloacetate via PC or lost as CO2 through PDH. PC activity was stimulated in NNT knockdown 

SkMel5 (Figure V-2C). Of note, the increase in the M1 enrichment of Krebs cycle metabolites in NNT 

knockdown cells was not as pronounced as that observed in the M3 and M5 isotopomers from [U-13C6] 

glucose. Because the M1 oxaloacetate (in the one-carbon form) from [3-13C1] glucose leads to M1 

citrate (in the six-carbon form), the 13C label is partially lost during oxidative Krebs cycle, possibly 

diluting the propagation of the PC-derived 13C label during subsequent Krebs cycling. Similar results 

were obtained in 786-O cells (Figure V-2D and V-2E), although the effect was not as pronounced as 

that observed in SkMel5 cells. These observations support our results using [U-13C5] glutamine, which 

show that glutamine oxidation is decreased in SkMel5 cells but is not significantly affected in 786-O 

cells upon NNT knockdown. 
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Figure V-2. Effect of NNT Knockdown on Glucose Catabolism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A and B) Contribution of glucose oxidation to the Krebs cycle in the panel of SkMel5 cells, determined by the 

enrichment of M3 (A) and M4/M5 (B) Krebs cycle metabolites, from [U-13C6] glucose. (C) Specific contribution of 

pyruvate carboxylase to the formation of Krebs cycle metabolites in NNT knockdown and control SkMel5 cells, 

using the [3-13C1] glucose tracer. (D and E) Contribution of glucose oxidation to the Krebs cycle in the panel of 

786-O cells, from [U-13C6] glucose (D) and [3-13C1] glucose (E). Student’s t test compares NNT knockdown cells 

to Scr control cells. Scr control, scramble control; Suc, succinate; Fum, fumarate; α-kg, α-ketoglutarate; Mal, 

malate; Asp, aspartate; Glu, glutamate; Cit, citrate. 
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Figure V-3. Metabolic Effects of NNT Overexpression in SkMel5 Cells  

(A) NNT protein levels in the panel of SkMel5 cells (Ex-NNT, lane 4). (B–D) Effect of NNT overexpression on 

glutamine catabolism. (B and C) Contribution of glutamine oxidation (B) and reductive carboxylation (C) from 

[U-13C5] glutamine. (D) Effect of NNT overexpression on reductive carboxylation, using the [1-13C1] glutamine 

tracer. (E and F) Contribution of glucose oxidation to the Krebs cycle in the panel of SkMel5 cells, from [U-13C6] 

glucose (E) and [3-13C1] glucose (F). Student’s t test compares NNT knockdown or NNT-overexpressing cells to 

Scr control cells. Scr control, scramble control; Suc, succinate; Fum, fumarate; Mal, malate; Asp, aspartate; Cit, 

citrate; α-kg, α-ketoglutarate.  

 

 NNT Is Sufficient to Stimulate RC and Suppress Glucose Catabolism in the Krebs Cycle 

Because knockdown of NNT affected glucose and glutamine utilization in the Krebs cycle, we 

investigated whether overexpression of NNT could be sufficient to induce a complementary metabolic 

response, in particular in the contribution of reductive carboxylation (RC). To this end, we stably 

transfected SkMel5 cells with an NNT-coding cDNA plasmid and generated a polyclonal cell population 

that overexpressed NNT (Ex-NNT) when compared with their scramble vector counterparts (Figure V-

3A). Overexpressing NNT simulated the contribution of glutamine oxidation (Figure V-3B) and RC 

(Figure V-3C and V-3D) to the Krebs cycle. Conversely, PC-derived anaplerosis was inhibited in NNT-

overexpressing cells when compared with the scramble vector cells (Fig. 3, E and F). These data 

suggest that NNT is sufficient to coordinate glutamine and glucose utilization in the Krebs cycle. 

 

Knockdown of NNT Decreases Cell Proliferation and Sensitizes SkMel5 Melanoma Cells to 

Glucose Deprivation 

Because knockdown of NNT switched the substrate preference in the Krebs cycle from glutamine 

to glucose carbons, we hypothesized that NNT knockdown cells would be more dependent on glucose 

for proliferation. To test this, we first measured the specific glucose uptake and lactate secretion rates 

in the panel of SkMel5 cells over a period of 72hr. NNT knockdown SkMel5 cells exhibited higher 

glucose uptake and lactate secretion when compared with control cells (Figure V-4A). The net intake of 
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glucose was also higher in NNT knockdown cells when compared with control cells (Figure V-4B), 

compatible with an overall higher demand of glucose carbons to fuel the Krebs cycle. We did not 

observe significant differences in glutamine consumption and glutamate production rates in the panel of 

SkMel5 cells (data not shown). Next, to exploit the dependence on glucose carbons, we cultured the 

panel of SkMel5 cell lines for 24hr in low glucose medium. Loss of viability was more pronounced in 

NNT knockdown cells, with NNT-overexpressing cells being almost insensitive to low glucose 

concentrations (Figure V-4C). Conversely, NNT-overexpressing cells were more sensitive to glutamine 

deprivation when cultured in low glutamine-containing medium (Figure V-4D). We also observed that 

NNT knockdown SkMel5 cells exhibited decreased proliferation when compared with the control cells 

(Figure V-4E), with knockdown of 

NNT partially suppressing the growth of SkMel5 cells growing as xenograft tumors in nu/nu mice 

(Figure V-4F). In agreement with the isotopic studies, these findings show that low expression of NNT 

partially rewires glucose and glutamine catabolism in the Krebs cycle, rendering cells sensitive to 

glucose deprivation. 
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Figure V-4. Effect of NNT Knockdown on Cell Proliferation and Sensitivity to Glucose Carbons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Glucose uptake and lactate secretion rates in the panel of SkMel5 cells used. (B) Net intake of glucose 

carbons as determined by the difference between twice the glucose consumption and lactate production rates. 

(C and D) Cell proliferation under low glucose (C) and low glutamine (D) conditions. Cell proliferation is 

normalized to the corresponding control cell type grown in 5mM glucose- and 1mM glutamine-containing 

medium. (E) Effect of NNT knockdown on the proliferation of SkMel5 cells. (F) Effect of NNT knockdown of the 

proliferation of SkMel5 cells growing as xenograft tumors in nu/nu mice. Student’s t test compares NNT 

knockdown or NNT-overexpressing cells to Scr control cells in panels (A),(B), and the proliferation under low 

glucose- or glutamine-containing medium to correspondent controls in panels (C), (D). Statistical significance 

was determined using one-tailed Student’s t test in (F). n=5 or more. Scr control, scramble control.   
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Effect of NNT Knockdown on Glucose and Glutamine Catabolism Is Mediated by a 

Distributed NAD(P)H/NAD(P)+ Balance 

Knockdown of NNT decreased the contribution of reductive carboxylation (RC) in the Krebs cycle, 

whereas NNT overexpression stimulated this pathway. To test whether the contribution of NNT to RC is 

related to its ability to produce NADPH, we quantified the cellular ratios of the NADP couple using a 

fluorescent enzymatic assay and LC-MS. As shown in Figure V-5A and V-5B, the cellular ratio of 

NADPH/NADP+ was lower in NNT knockdown than in scramble control SkMel5 cells, whereas NNT-

overexpressing cells exhibited a higher ratio (Figure V-5A). The NADPH and NADP+ levels and the 

effect of each NNT knockdown construct on this ratio varied based on the quantification method, 

possibly reflecting the different extraction procedures. To examine the compensatory role of glucose in 

providing cytosolic NADPH, we assessed the activity of the pentose phosphate pathway (PPP) under 

NNT knockdown conditions. To this end, we labeled the panel of SkMel5 cells with [1,2-13C2] glucose, 

which transfers one labeled carbon to CO2 through oxidative PPP but conserves both 13C atoms via 

glycolysis (Vizan et al., 2005). Knocking down NNT mildly increased the PPP activity relative to 

glycolysis in SKMel5 cells, as determined by the ratio of labeled carbon (M1) to dually labeled (M2) 

carbons of pyruvate and lactate (Figure V-5C). This result indicates that the observed changes in the 

NADPH/NADP+ ratio and RC in NNT knockdown cells are marginally compensated by PPP activity in 

the cytosol. The ratio of the mixed pool of isocitrate/citrate to α-ketoglutarate was not significantly 

affected in NNT knockdown cells (data not shown). This suggests that the IDH2 reaction may be at non 

equilibrium under NNT knockdown conditions, wherein changes in the NADPH/NADP+ ratio are not 

accompanied by an altered ratio of the correspondent reduced (isocitrate/citrate) and oxidized (α-

ketoglutarate) metabolites (Veech et al., 1969). Nevertheless, the citrate and isocitrate levels were 

elevated in NNT knockdown cells (Figure V-5D), suggesting that knockdown of NNT may indirectly 

affect the mass action kinetics of the IDH2 reaction by modulation of citrate levels. We observed a 

decreased cellular NADH/NAD+ ratio in NNT knockdown cells (Figure V-5E and V-5F), in agreement 
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with the findings of Yin et al. (Yin et al., 2012), which showed that knockdown of NNT decreased the 

cellular NADH/NAD+ ratio in PC12 cells. Nevertheless, this result is opposite to what would be expected 

based on the enzymatic reaction catalyzed by NNT. It is known that knockdown of NNT induces 

mitochondrial uncoupling and decreases the mitochondrial membrane potential (Freeman et al., 2006; 

Yin et al., 2012), which leads to a decreased mitochondrial NADH/NAD+ ratio. Conversely, because the 

majority of mitochondrial NADH is in the bound form (Blinova et al., 2005) and mitochondria comprise 

up to 20% of the cellular volume (Alberts et al. 2002), the observed NADH/NAD+ ratio represents 

mostly the ratio of the cytosolic compartment. To further examine the effect of NNT knockdown on the 

NADH/NAD+ balance, we determined the levels of pyruvate and lactate, which reflect changes in the 

cytosolic NADH/NAD+ ratio (Veech et al., 1969). NNT knockdown cells exhibited a higher pyruvate/ 

lactate ratio than control cells (Figure V-5G), which indicates a lower cytosolic NADH/NAD+ ratio. The 

NADH/NAD+ cofactor measurements support the model that knockdown of NNT stimulates the 

contribution of glucose oxidation to the Krebs cycle as a response to a lower NADH/NAD+ ratio. 

Conversely, the NADPH/NADP+ measurements corroborate our 13C-labeled glutamine studies, showing 

that the role of NNT in contributing to RC lies in its ability to produce NADPH in the mitochondrion 

(Figure V-5H). 
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Figure V-5. Cofactor Levels in the Panel of SkMel5 Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) NADPH/NADP+ levels, assayed using an enzymatic kit according to the manufacturer’s instructions. (B) 

NADPH/NADP+ levels, determined by LC-MS. (C) Contribution of PPP to pyruvate and lactate production,  

relative to glycolysis. (D) Citrate and isocitrate levels, determined by GC-MS analysis. (E) NADH/NAD+ levels 

assayed using an enzymatic kit according to the manufacturer’s instructions. (F) NADH/NAD+ levels, 

determined by LC-MS. (G) Cellular pyruvate-to-lactate ratio, determined by GC-MS analysis. (H) Proposed 

model for the role of NNT in regulating the Krebs cycle activity. Left diagram, NNT catalysis contributes to 

reductive carboxylation (RC) in the mitochondrion via production of NADPH. Under NNT activated conditions, 

cells exhibit an adequate balance between the contribution of glucose (blue)- and glutamine (red)- derived 

carbons to the oxidative Krebs cycle. Right diagram, NNT loss of function decreases the NADPH/NADP+ ratio, 
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Figure V-5 (Cont.) which inhibits the formation of RC-derived citrate and increases reactive oxygen species 

(ROS) levels and mitochondrial uncoupling (Mit. uncoupling). This decreases the NADH/NAD+ ratio thereby 

stimulating the contribution of glucose catabolism into the Krebs cycle, depicted as an increased percentage of 

the blue color in the oxidative Krebs cycle. Statistical significance compares NNT knockdown or NNT-

overexpressing cells to Scr control cells. Error bars represent 95% confidence intervals in panels (A) and (E). 

Scr control, scramble control; AU, arbitrary units; α-kg, α-ketoglutarate. 

 

V.3.   DISCUSSION 

NNT is recognized as a main generator of mitochondrial NADPH (Rydström, 2006). NNT has also 

been speculated to regulate insulin secretion and glucose homeostasis, and some studies show that 

NNT mutant C57BL/6J mice exhibit glucose intolerance and impaired insulin secretion (Freeman et al., 

2006; Parker et al., 2009), whereas other studies have challenged this hypothesis (Nicholson et al., 

2010; Wong et al., 2010). Being involved in NADPH production and proton translocation, NNT has 

been viewed mostly through the lens of reactive oxygen species detoxification and stress response 

(Rydström, 2006)(24), with mutations in NNT being reported in individuals with familial glucocorticoid 

deficiency (Meimaridou et al., 2012). NNT was also shown to modulate the inflammatory response of 

macrophages (Ripoll et al., 2012), again underscoring its role as a free radical detoxifier in the 

mitochondrion. NNT is strictly a cofactor-modulating enzyme, transferring the reducing equivalents (the 

hydride ion) from NADH to NADP+, which produces the NADPH necessary to drive some anabolic 

reactions. In line with this perspective, the function of NNT in regard to central carbon metabolism has 

not been studied before. Our 13C isotopic studies elucidated the outcome of a disturbed cofactor 

balance on the Krebs cycle activity. 

Our work showed that RC by IDH2 can be modulated at the mass action level through the supply of 

NADPH. Knockdown of NNT inhibited the contribution of RC to the Krebs cycle in SkMel5 and 786-O 

cells, whereas overexpressing NNT was sufficient to stimulate this reaction. There are other candidate 

enzymes that may contribute to mitochondrial NADPH production. The malic enzyme 3 (ME3) is 
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localized in the mitochondrion and couples the production of pyruvate to reduction of NADP+ (Sauer et 

al., 1980). We did not assess the expression levels of ME3 in SkMel5 cells or 786-O cells or its 

contribution to RC. However, ME3 is a carbon-metabolizing enzyme, and genetic approaches such as 

shRNA-mediated knockdown of overexpression will perturb not only cofactor balance but also carbon 

distribution. Thus, the delineation of the role of NADPH supply from that of carbon redistribution 

requires strategies to rule out metabolic effects that are NADPH-independent. The knockdown of NNT 

also inhibited glutamine oxidation in SkMel5 cells, which can be partially accounted for by a decreased 

anaplerosis from glutamine. Nevertheless, the contribution of RC was decreased in NNT knockdown 

SkMel5 cells when normalized to the anaplerotic contribution from glutamine. Conversely, the [U-13C5] 

glutamine and [1-13C1] glutamine studies in 786-O cells showed only a modest effect of NNT 

knockdown at the level of glutamine-derived anaplerosis. The conversion of glutamate into α-

ketoglutarate (anaplerosis) can be mediated by glutamate dehydrogenase 1 (GLUD1) or aspartate 

transaminase (GOT1 and GOT2). In addition, the GLUD1 reaction can be NADP+- or NAD+-dependent 

toward the deamination of glutamate (Williamson et al., 1967). As such, it is conceivable that the 

different anaplerotic response of SkMel5 and 786-O cells to NNT knockdown may relate to the different 

activities of GLUD1 and GOT1/2 and/or specific requirements of GLUD1 for NADP+ and NAD+ in the 

different cell lines. Together, our findings highlight the role of NNT in contributing to RC via NADPH 

production.  

We showed that knockdown of NNT concomitantly increases glucose catabolism in the Krebs 

cycle. The increase in glucose oxidation partially occurred via PC. This brings attention to the role of 

cofactors in coordinating glucose and glutamine utilization in the Krebs cycle and supports existing 

literature showing that PC activity is required for the growth of tumor cells in the absence of glutamine 

(Cheng et al., 2011). NNT knockdown SkMel5 cells exhibited a higher glucose uptake and appeared 

more sensitive to glucose deprivation than control cells, whereas NNT-overexpressing cells failed to do 

so and proliferated less under low glutamine conditions. Although the increased contribution of PC to 
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the Krebs cycle under NNT knockdown conditions was not as pronounced as that reported in 

“glutamine-independent cells” (Cheng et al., 2011), these observations shed light into the metabolic 

plasticity of cancer cells in response to a disturbed cofactor balance. Of note, although NNTD resulted 

in a better knockdown at the protein level and Krebs cycle response, we observed significant 

differences in the net intake of glucose, response to glucose deprivation, and in vivo proliferation only 

for NNTA (Figures V-4B, V-4C, and V-4F). This discrepancy may reflect the metabolic burden of NNTA 

knockdown SkMel5 cells that, even though they do not rewire their intracellular metabolism to the same 

extent as NNTD cells, are forced to increase their net glucose uptake to maintain an adequate flux of 

glucose carbons into the Krebs cycle. 

It is of particular interest to discuss the observed changes in the NADH/NAD+ ratio and the 

expected outcome in intermediary metabolism. The knowledge on the enzymatic reaction of NNT 

predicts that the mitochondrial NADH/NAD+ ratio should be elevated under NNT knockdown conditions. 

We observed a decreased cellular NADH/NAD+ ratio in NNT knockdown cells, which is in agreement 

with the findings of Yin et al. (Yin et al., 2012) and opposite to the predicted trend. In this context, it is 

reported that knockdown of NNT leads to mitochondrial uncoupling, low ATP levels, and decreased 

mitochondrial membrane potential (Rydström, 2006; Yin et al., 2012), which is mechanistically 

associated with a lower mitochondrial NADH/NAD+ ratio. Therefore, the expected initial increase in 

mitochondrial NADH/NAD+ ratio upon NNT knockdown is most likely offset by the indirect effect on 

mitochondrial coupling and activity of the electron transport chain. In fact, Yin et al. (Yin et al., 2012) 

noted that knockdown of NNT led to an initial increase in the cellular NADH/NAD+ ratio followed by a 

decrease in this ratio. In addition, from the allosteric standpoint, a more reduced mitochondrion (higher 

NADH/NAD+ ratio) should inhibit the Krebs cycle, which would be hard to reconcile with the increased 

glucose oxidation observed in NNT knockdown cells. However, because PC is an ATP-dependent 

enzyme, it is still conceivable that a higher mitochondrial NADH/NAD+ may equally activate this 

reaction to maintain a functional Krebs cycle. The contribution of PC to the Krebs cycle in more 
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reduced or oxidized mitochondria is an open question. Overall, our isotopic studies showed that 

knockdown of NNT increased the contribution of glucose catabolism to the Krebs cycle partially through 

PC, as a response to a lower NADH/NAD+ ratio. 

Similarly to the study of Yin et al. (Yin et al., 2012), we measured the cellular NADH/NAD+ ratio, 

which represents mostly the ratio of the cytosolic compartment. Indeed, the pyruvate/lactate ratio and 

pyruvate levels were higher in NNT knockdown cells when compared with control cells. In this context, 

the malate-aspartate shuttle (MAS) transfers reducing equivalents from the cytosol to the 

mitochondrion. The MAS activity is regulated by the mitochondrial redox state (Eto et al., 1999) and can 

be assessed by the pyruvate/lactate ratio (Cederbaum et al., 1973; Greenhouse and Lehninger, 1976; 

Kauppinen et al., 1987). Because MAS is expected to be activated by mitochondrial NADH oxidation, 

this raises the possibility that NNT knockdown may activate the MAS in response to a lower 

mitochondrial NADH/NAD+ ratio. Conversely, MAS depends on the mitochondrial energetic state, with 

the addition of mitochondrial uncouplers inhibiting its activity (Cederbaum et al., 1973). Because NNT 

knockdown is known to increase mitochondrial uncoupling, it is unclear how NNT knockdown may 

impact on the MAS activity. The effect of NNT knockdown on the kinetics of reducing equivalents 

transport between cytosol and mitochondrion is open to debate and will require direct measurement of 

the compartmentalized pools of these cofactors. 

Collectively, our results show the implications of a disturbed NAD(P)H/NAD(P)+ balance in central 

carbon metabolism,  highlighting the unexplored role of NNT in coordinating glucose and glutamine 

utilization in the Krebs cycle. These findings underline the need for cancer biologists to consider 

cofactors and allosterism when studying the metabolic outcomes of growth signals and transduction 

pathways. 
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"Unless you try to do something beyond what you have already mastered, you will never grow." 

Ronald E. Osborn 
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VI. Loss of VHL Reprograms the De Novo and Salvage 
Pathways of Pyrimidine Biosynthesis in Renal Cancer 

Cells 
 

 

 

 

 

 

 

 

Chapter VI presents doctoral work in preparation for publication in a peer-reviewed scientific journal: 

Gameiro PA, Stephanopoulos G, Iliopoulos O. (2013). Loss of VHL Reprograms the De Novo and 
Salvage Pathways of Pyrimidine Biosynthesis Renal Cancer Cells. (in preparation)  
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VI.1. ABSTRACT 

Hypoxia is a hallmark of solid tumors, and cancer cells adapt their metabolism for survival even 

under oxygen-limited conditions. The metabolic response to hypoxia largely relies on the transcriptional 

activity of hypoxia-inducible factors (HIFs), which stimulate glycolysis, lactate production, and 

biosynthesis from glutamine – via reductive carboxylation (RC) – to maintain de novo lipogenesis. The 

HIF-mediated metabolic program is necessary for cell survival under hypoxia, but how cancer cells 

regulate other anabolic processes under hypoxic or pseudohypoxic conditions is not characterized. 

Given the need of nucleotides for cellular growth, we sought to investigate how VHL-deficient RCC 

cells that constitutively express HIF utilize glucose and glutamine for DNA biosynthesis. In addition to 

being a source of lipogenic acetyl-CoA, glutamine can be used in the Krebs cycle to generate aspartate 

- the carbon source for pyrimidine synthesis. Here, using 13C tracers, we showed that VHL-deficient 

RCC cells rely on RC-derived aspartate to maintain de novo pyrimidine synthesis. Pharmacological 

inhibition of glutaminase (GLS) depleted the levels of pyrimidine intermediates in VHL-deficient cells 

but not in VHL-reconstituted cells, which utilized glucose oxidation to fuel the aspartate pool. Moreover, 

VHL-deficient cells also required the salvage pathway to maintain adequate nucleotide biosynthesis. 

Inhibiting both the de novo and salvage pathways of pyrimidine synthesis selectively impaired the 

growth of VHL-deficient cells, whereas addition of nucleosides partially rescued the growth effect. 

Collectively, these findings add to the role of HIF in promoting metabolic adaptation to maintain 

macromolecule biosynthesis and viability in pseudohypoxic RCC cells. 

 

Nucleotide availability plays a critical role in the regulation of cell-cycle and proliferation. Classical 

studies have shown the strong coupling of purine and pyrimidine nucleotide biosynthesis and their 

requirement for cell-cycle progression in normal cells (Burns, 1966; Cohen et al., 1983; Sigoillot et al., 

2003). Importantly, it has been shown that de novo nucleotide biosynthesis is activated by oncogenes 

and growth signals in cancer cells (Ben-Sahra et al., 2013; Mannava et al., 2008; Robitaille et al., 
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2013). Furthermore, recent studies have demonstrated that cellular nucleotide levels impinge on DNA 

repair and senescence (Aird et al., 2013; Hu et al., 2012; Pontarin et al., 2011). In particular, Aird et al., 

showed that oncogene-induced repression of ribonucleotide redutase, a rate-limiting enzyme in 

deoxyribnonucleotide synthesis, triggers aberrant DNA replication, DNA damage and ultimately leads 

to senescence. The authors showed that exogenous deoxynucleosides were necessary and sufficient 

to suppress oncogene-induced senescence in established senescent cells, which promoted cell 

proliferation (Aird et al., 2013). Nucleotide insufficiency has also been implicated upon aberrant 

activation of the Rb-E2F pathway, which leads to genomic instability in newly transformed cells (Bester 

et al., 2011). Upon activation of the Rb-E2F pathway, the authors showed that expression of c-myc, a 

known transcriptional activator of nucleotide biosynthetic genes (Liu et al., 2008), rescues nucleotide 

levels and suppresses genomic instability. These studies demonstrate that importance of nucleotide 

availability for the proliferation of oncogene-activated cancer cells, and also suggest that nucleotide 

abundance or depletion may play cell-specific roles in cancer development.  

Hypoxia is prevalent in many solid tumors and leads to a limited supply of nutrients to the tumor 

microenvironment. As a result, it selects for the survival of cells that can adapt their metabolism to 

oxygen- and nutrient-limited conditions, being associated with tumor chemoresistance, invasiveness, 

metastasis, and resistance to cell death (Gatenby and Gillies, 2004; Pouysségur et al., 2006; Wilson 

and Hay, 2011). As discussed in the previous chapters, hypoxia-inducible factors (HIFs) play a critical 

role in the cellular response to hypoxia, and mediate a transcriptional program that enforces anaerobic 

glucose metabolism, lactate production, and biosynthesis from glutamine (via reductive carboxylation). 

In addition, HIF-1α inhibits senescence (Welford et al., 2006) and, in somewhat contrast to its growth-

promoting role (see Chapter I), it can also induce cell-cycle arrest at the G-1 phase, inhibition of DNA 

replication and reduced cell proliferation in normal and cancer cells (Goda et al., 2003; Hubbi et al., 

2013; Koshiji et al., 2004a). In this context, there are evidences for a cell-specific and opposite role of 

the HIF-1α and HIF-2α paralogues in tumor growth (see Chapter IV - Discussion). Altogether, these 
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evidences underline the pleiotropic and complex role of HIF in cellular physiology, and suggest that HIF 

expression adapts cellular metabolism for survival under hypoxia, not only (aberrant) growth. Indeed, 

there is a growing interest to target hypoxia, HIF signaling and the hypoxic compartment of solid tumors 

(Moyer, 2012; Semenza, 2009; Wilson and Hay, 2011), but the knowledge on how HIF activation 

affects anabolic processes is limited. Given the role of HIF in suppressing senescence and promoting 

cell survival, there is an interest to investigate how oncogenic HIF activation, i.e., loss of VHL, redirects 

nutrients to maintain cell viability and growth. 

Glutamine can be catabolized to aspartate in the Krebs cycle and therefore be used as carbon 

source for de novo pyrimidine synthesis (Tong et al., 2009). As introduced in chapter I, there is specific 

requirement for glutamine to progress through the S-phase of the cell cycle (Colombo et al., 2011; 

Gaglio et al., 2009). Give the role of HIF in regulating glutamine utilization in the Krebs cycle and that 

aspartate-carbons are necessary for de novo pyrimidine biosynthesis (Tong et al., 2009), we sought to 

investigate how VHL loss-of-function affects pyrimidine biosynthesis in RCC cells. Here, using 13C 

tracers and employing a glutaminase (GLS) inhibitor as a tool compound, we show that VHL-deficient 

RCC cells depend on RC-derived aspartate to maintain de novo pyrimidine synthesis in a HIF-

dependent manner. We provide evidences that HIF expression decreases the de novo flux of 

pyrimidines synthesis, rendering VHL-deficient cells more reliant on the salvage pathway to sustain 

nucleotide biosynthesis.  
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VI.2. RESULTS 

Reductive Carboxylation Contributes to DNA Synthesis via Production of Aspartate in a HIF- 

Dependent Manner 

In mammalian cells, uridine monophosphate (UMP) is the common precursor for pyrimidine-

containing nucleotides, being synthesized de novo from 5-phosphoribosyl pyrophosphate (PRPP, 

produced from ribose 5-phosphate), glutamine-derived nitrogens, and aspartate. The pathway consists 

of six enzymatic steps; i.e., carbamoyl phosphate synthetase II (CPSII), aspartate transcarbamoylase 

(ACTase), dihydroorotase, dihydroorotate dehydrogenase, orotate phosphoribosyltransferase, and 

orotidine monophosphate decarboxylase (Shambaugh, 1979). CAD is the tri-functional enzyme that 

comprises the CPSII, ACTase and dehydroorotase steps of UMP synthesis, and its activity is 

allosterically regulated at multiple levels to mediate de novo pyrimidine biosynthesis in a cell cycle-

dependent manner (Carrey, 1993; Rao and Church, 1988; Sigoillot et al., 2003). During the de novo 

pathway of pyrimidine synthesis in mammalian cells, glutamine donates the amide nitrogen to 

bicarbonate forming N-carbamoyl-phosphate via CPSII. In turn, N-carbamoyl-phosphate combines with 

aspartate to form N-carbamoyl-L-aspartate through ACTase, which is further modified and combined 

with PRPP to produce orotidine monophosphate and, after a decarboxylation step (which releases the 

one carbon of aspartate), uridine monophosphate (UMP) (Figure VI-1A). Therefore, aspartate 

contributes with three carbons for the synthesis of UMP and to the other pyrimidine nucleotides. 

Aspartate is produced from transaminated oxaloacetate, which can be generated from three distinct 

sources: i) glutamine-derived carbons only (through glutamine oxidation in the first round of the Krebs 

cycle), ii) reductive carboxylation, in which case it is also composed exclusively by glutamine-derived 

carbons, or iii) through several rounds of the Krebs cycle via the combined action of pyruvate 

dehydrogenase (PDH) and glutamine –anaplerosis, being formed from both glucose- and glutamine-

carbons. We will refer to pathway iii) as glucose oxidation, since it requires the continuous supply of 

two glucose-carbons. To study pyrimidine synthesis in RCC cells, we utilized a system of isogenic RCC 
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UMRC2 cells that are VHL-deficient (HIF-expressing) and reconstituted with either a pBABE control 

vector (termed VHL -/-) or with wild-type VHL (termed VHL +/+), as previously described (Chapter IV). 

We cultured the pair of VHL -/- and VHL +/+ cells in the presence of 13C glucose and glutamine tracers 

and measured the 13C isotopic enrichment of aspartate, intermediates in the pyrimidine synthesis 

pathway, and DNA. First, to quantify the contribution of the different pathways to aspartate synthesis in 

RCC cells, we cultured the pair of RCC cells with 13C tracers that specifically trace the contribution of 

the aforementioned three routes, and observed that the contribution of these pathways is different 

between VHL -/- and VHL +/+ UMRC2 cells (Figure VI-1B). While we acknowledge that most of the 

aspartate is formed from glutamine oxidation in both cell types (determined by the degree of M4 

enrichment from [U-13C5] glutamine), there was a significant difference between the contribution of 

glucose oxidation (determined by the degree of M2 enrichment from [U-13C6] glucose), and reductive 

carboxylation (determined by the degree of M1 enrichment from [1-13C1] glutamine) between VHL -/- and 

VHL +/+ UMRC2 cells (Figure VI-1B) – see Chapter II for atom transitions for these 13C tracers. This 

observation primed us to hypothesize that HIF expression affects the substrate preference for de novo 

pyrimidine synthesis, and that this metabolic phenotype may be exploited to selectively inhibit 

pyrimidine synthesis in VHL -/- cells. To confirm the contribution of glutamine-carbons to DNA synthesis, 

we cultured the pair of UMRC2 cells in the presence of [U-13C5] glutamine for several days and 

monitored the 13C label incorporation in thymine and cytosine using gas chromatography – mass 

spectrometry (GC-MS); the free bases were obtained from isolated and hydrolyzed DNA (see Chapter 

II for experimental procedures). [U-13C5] glutamine can contribute with three carbons to pyrimidine 

synthesis through the Krebs cycle (Figure VI-1A, either via glutamine oxidation or RC). As seen in 

Figures VI-1C, 1D, both VHL -/- and VHL +/+ cells heavily rely on glutamine carbons to produce DNA 

bases with little difference observed between the two cell types, although VHL +/+ cells appear to 

incorporate the 13C tracer at a higher rate during the first 48hours. This is consistent with the notion that 

de novo DNA synthesis is a readout of cell proliferation rates (Macallan et al., 1998; Neese et al., 2002) 



Paulo A. Gameiro, B.S. 
 

- 131 - 

and, in actuality, VHL +/+ UMRC2 cells grow slightly faster than their VHL -/- counterparts in vitro 

(although they do not form tumors in vivo). This indicates that glutamine oxidation is a major pathway 

for pyrimidine biosynthesis in both RCC cell, but this experiment does not distinguish the utilization of 

glutamine carbons via glutamine oxidation or RC. Furthermore, the fact that the 13C incorporation is not 

higher in VHL -/- cells is not incompatible with the observed different contribution of glutamine-carbons 

for aspartate synthesis (Figure VI-1B), but rather raise the possibility that the VHL +/+ counterparts may 

exhibit an overall higher flux of de novo pyrimidine synthesis (see later results and Discussion). Using a 

[15N-amide] glutamine tracer, we observed a similar kinetic behavior of de novo DNA synthesis 

between VHL -/- and VHL +/+ UMRC2 cells (Supplementary Figure VI-S1A, S1B), further supporting the 

positive correlation between DNA synthesis and cell proliferation rates. We also detected a similar 13C 

labeling pattern in uracil albeit the lower signal (data not shown), possibly reflecting spontaneous 

deamination of cytosine during the experimental procedure (Duncan and Miller, 1980). 

Next, to determine the contribution of RC for DNA synthesis, we labeled the pair of UMRC2 cells 

with [1-13C1] glutamine, which transfers the label to aspartate and pyrimidines specifically through RC. 

We observed that the 13C enrichment of thymine and cytosine was higher in VHL -/- than VHL +/+ 

UMRC2 cells, indicating that at least 10% of DNA was synthesized through RC during the course of 

eight days. Of note, the one carbon (C1) of aspartate is lost during de novo pyrimidine synthesis, but 

RC transfers the 13C label to aspartate in the four carbon (C4). However, due to molecular symmetry of 

fumarate (Bernhard and Tompa, 1990) and reversibility of the malate dehydrogenase and fumarate 

hydratase reactions, C1 and C4 can interchange and lead to partial loss of 13C incorporation in 

pyrimidines. Thus, the observed 13C enrichment of DNA is an underestimation of the actual RC 

contribution to DNA synthesis due to the isotopic scrambling. Overall, these results indicate that 

reductive carboxylation can contribute to DNA synthesis in RCC cells in a HIF-dependent manner. 
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Figure VI-1. Biosynthesis of DNA Pyrimidines from Glutamine-Carbons in RCC Cells 
 

(A) De novo pathway of pyrimidine biosynthesis in mammalian cells and the involved atom transitions. Green 

circles depict carbons, whereas orange circles depict nitrogens. For simplicity, only the linearized form of some 

intermediates is shown. (B) Contribution of the different source pathways for the formation of aspartate. One 

representative experiment in shown, in which the pair of UMRC2 cells was labeled with [U-13C6] glucose, [U-

13C5] glutamine, or [1-13C1] glutamine for 24 hours; the M0 obtained using the [U-13C5] glutamine tracer was 

used to depict the “unlabeled” fraction of aspartate. (C-D) Using [U-13C5] glutamine, the time course (8 days) 

shows the 13C enrichment of thymine (C), and cytosine (D), determined from column-purified and formic acid-

hydrolyzed DNA. (E-F). Using [1-13C1] glutamine, the time course (8 days) shows the incorporation of the 13C 

label on DNA-derived thymine (E) and cytosine (F). Student’s t test compared VHL-/- to VHL +/+ cells in (E) and 

(F). GLS, glutaminase; CPS-II, carbamoyl-phosphate synthetase II; ACTase, aspartate transcarbamoylase; 

OMP, orotidine monophosphate; UMP, uridine monophosphate; PRPP, 5-phosphoribosyl pyrophosphate. 

 

 

Inhibition of Glutaminase Compromises De Novo Pyrimidine Biosynthesis in VHL-Deficient 

RCC Cells 

N-carbamoyl-aspartate is formed via condensation of N-carbamoyl-phosphate with aspartate, the 

latter being produced from either glucose or glutamine (Figure VI-2A). Since glutamine-derived carbons 

contributed to a higher steady-state production of aspartate in VHL -/- than VHL +/+ UMRC2 cells, we 

hypothesized that glutamine deprivation would impair pyrimidine synthesis selectively in HIF-

expressing cells. To test this hypothesis, we cultured the pair of UMRC2 cells with the glutaminase 

(GLS) inhibitor BPTES for 48 hours and measured the levels of the pyrimidine intermediates using 

liquid-chromatography (LC) tandem mass spectrometry (MS/MS). Treatment with the BPTES 

significantly decreased the levels of N-carbamoyl-aspartate and UMP in VHL -/- UMRC2 cells (Figure 

VI-2B). Importantly, the levels of aspartate and N-carbamoyl-phopshate were also decreased and 

increased in VHL -/- cells, respectively, consistent with network topology and suggesting that loss of 

VHL limits RCC cells for the ability to produce aspartate under GLS-inhibited conditions, which leads to 

the accumulation of N-carbamoyl-phosphate (see Figure VI-2A). In contrast, the effect induced by 
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BPTES on metabolite pool sizes was overall less pronounced in VHL +/+ cells (Figure VI-2B). The 

BPTES treatment increased the levels of glutamine and it did reduce glutamate levels in both UMRC2 

cell types (Figure VI-2C), confirming the expected metabolic outcome of GLS-inhibition. Indeed, the 

effect was still less pronounced in VHL +/+ UMRC2 cells at the level of glutamate, corroborating our 

previous observations that the expression of the wild-type pVHL protein in VHL-deficient RCC cells 

stimulates glucose oxidation in the Krebs cycle and enhances the production of glutamate from 

glucose-carbons (Chapter IV).  

To test if the effect on pyrimidine synthesis induced by GLS inhibition is due to an impaired carbon 

flux to pyrimidine synthesis, we labeled the pair of UMRC2 cells with [U-13C5] glutamine for 48 hours, 

and measured the isotopic enrichment of N-carbamoyl-aspartate by LC-MS/MS under the presence of 

BPTES. The [U-13C5] glutamine tracer transfers 13C label to N-carbamoyl-aspartate through both 

glutamine oxidation and RC. As expected, the 13C enrichment of UMP and CMP was decreased in both 

VHL -/- and VHL +/+ UMRC2 cells (Figure VI-2D, 2E). Interestingly, the BPTES effect on the 13C 

enrichment of UMP and CMP was less pronounced in VHL +/+ cells (See discussion). Of note, there 

was no 13C incorporation in inosine monophosphate (IMP) – the precursor nucleotide for purines, 

whose synthesis does not require glutamine-carbons (Supplementary Figure VI-S2); the observed 

minimal M1 abundance (~5%) is most likely due to 13C natural abundance (we did not correct for the 

natural abundance of isotopomer enrichments in our LC-MS/MS experiments). We also observed that 

levels of glutaminase are similar between VHL -/- and VHL +/+ UMRC2 cells, as observed in Chapter IV 

(Supplementary Figure IV-S4E). These findings show that GLS inhibition compromises de novo 

pyrimidine biosynthesis selectively in VHL -/- cells because it limits aspartate production from glutamine-

carbons. 
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VHL +/+ RCC Cells Adapt to GLS Inhibition by Stimulating Glucose Oxidation in the Krebs 

Cycle 

To investigate the metabolic mechanism by which VHL +/+ RCC cells can tolerate GLS inhibition, we 

labeled the pair of UMRC2 RCC cells with [U-13C6] glucose and measured the 13C enrichment of Krebs 

cycle intermediates by GS-MS, with and without BPTES. The BPTES treatment increased the 

enrichment of M2 and M3 intermediates in the Krebs cycle intermediates in VHL +/+ and to a lesser 

extent in VHL -/- UMRC2 cells (Figures VI-3A, 3B, 3C), showing that GLS inhibition stimulates glucose 

oxidation in the Krebs cycle. Although VHL -/- UMRC2 cells responded to BPTES treatment, they 

exhibited increased glucose oxidation to a level which was, in most cases, lower or similar to that 

observed in BPTES-untreated VHL +/+ cells, potentially underlying the depletion of pyrimidine 

intermediates observed in VHL -/- cells. This result was also corroborated in a pair of VHL-deficient / 

VHL-reconstituted UMRC3 cells (Figures VI-3D, 3E, 3F), indicating that the stimulation of glucose 

oxidation is not a cell line-specific phenomenon and reflects a metabolic response to GLS inhibition. 

These findings suggest that VHL +/+ cells can adapt to GLS inhibition by upregulating glucose oxidation 

in the Krebs cycle more effectively than VHL -/- cells. 
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Figure VI-2. Effect of Glutaminase Inhibition on the Production of Pyrimidines in RCC Cells  

(A) Diagram depicting the contribution of glutamine and glucose to the formation of aspartate and downstream 

intermediates, and the inhibition of GLS by BPTES. (B-D) VHL -/- and VHL +/+ UMRC2 cells were cultured in the 

absence or presence of BPTES for 48hours at 1.5µM and the metabolites analyzed by LC-MS/MS. (B) Effect of 

BPTES on the levels of pyrimidine/purine nucleotides and their intermediates. (C) Effect of BPTES on the levels 

of glutamine and glutamate in the pair of UMRC2 cells. Metabolite levels were normalized by the sum of 288 

metabolites obtained from extracts in the corresponding cell type. (D-E) The pair of UMRC2 cells was labeled 

with [U-13C5] glutamine under the absence or presence of BPTES at 2µM (for 48 hours) and the metabolite 

enrichment measured by LC-MS/MS. Effect of BPTES on the 13C enrichment of UMP (D) and CMP (E) is 

shown. Student’s t test compared BPTES-treated to corresponding control cells in (B-E). GLS, glutaminase; 

CPS-II, carbamoyl-phosphate synthetase II; ACTase, aspartate transcarbamoylase. 
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Figure VI-3. Evidence for Regulation of Glucose Oxidation in the Krebs cycle by BPTES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pairs of UMRC2 and UMRC3 cells were labeled with [U-13C6] glucose with or without BPTES at the 

indicated concentrations (for 48 hours) and the metabolite enrichment measured by LC-MS/MS. (A-C) Effect of 

BPTES on the contribution of glucose oxidation, determined by the level of M2 (A) and M3 (B) enriched Krebs 

cycle intermediates, and of citrate enrichment (C) in UMRC2 cells. (D-F) Effect of BPTES on the contribution of 

glucose oxidation, determined by the level of M2 (A) and M3 (B) enriched Krebs cycle intermediates, and of 

citrate enrichment (C) in UMRC3 cells. Student’s t test compared BPTES-treated to corresponding control cells. 

Suc, succinate; Fum, fumarate; α-kg, α-ketoglutarate; Mal, malate; Asp, aspartate; Glut, glutamate. 
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VHL-Deficient RCC Cells Utilize the Salvage Pathway to Maintain Pyrimidine Biosynthesis  

Notwithstanding the glutamine addiction phenotype of VHL -/- RCC cells, some evidences 

suggested that VHL -/- RCC cells may rely on the salvage pathway to sustain nucleotide biosynthesis. 

First, we observed that both RCC cell types exhibited an overall similar incorporation of 13C in DNA 

bases from [U-13C5] glutamine (Figure VI-1C, 1D), which is reconcilable with the dependence of VHL -/- 

cells on RC should the expression of wild-type VHL increase the de novo flux of pyrimidine 

biosynthesis. Second, we observed that the ratio of N-carbamoyl-aspartate to N-carbamoyl-phosphate 

is higher in VHL -/- than VHL +/+ cells (Figure VI-4A, compare first and third bars). Since CAD is a major 

regulatory point of de novo pyrimidine synthesis (Carrey, 1993), this observation suggests from the 

thermodynamic standpoint that VHL-/- UMRC2 cells exhibit a lower driving force for de novo pyrimidine 

biosynthesis than their isogenic controls. The N-carbamoyl-aspartate to N-carbamoyl phosphate ratio 

was greatly reduced upon BPTES treatment (Figure VI-4A, compare second and fourth bars), 

indicating that GLS inhibition indirectly affects the kinetics of CAD. The effect on this ratio further 

suggests that differences in CAD activity may underlie the HIF-mediated regulation of pyrimidine 

biosynthesis in RCC cells. To this end, we measured the expression level of CAD in the pair of UMRC2 

cells. Since CAD is reported to be regulated in a cell-cycle dependent manner (Rao and Church, 1988), 

we measured its levels in either unsynchronized or G1/S-phase synchronized RCC cells. While no 

difference was observed in the unsynchronized cultures, VHL-/- UMRC2 exhibited a slightly lower 

expression of CAD than VHL+/+ cells (Figure VI-4D), which would be in agreement with the report 

showing that HIF-1α decreases the expression of CAD (Chen et al., 2005) (see Discussion). These 

evidences raise the possibility that VHL-/- RCC cells, albeit the requirement for glutamine-carbons to 

produce aspartate via RC, may exhibit an overall lower flux of de novo pyrimidine synthesis. We 

therefore hypothesized that VHL-/- RCC cells may require the salvage pathway to maintain nucleotide 

availability. 
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To test the hypothesis that the salvage pathway is utilized by VHL-deficient cells, we measured the 

ability of UMRC2 cells to uptake exogenous nucleosides. First, we cultured the pair of UMRC2 cells 

under the presence of [U-13C5] glutamine and different concentrations of exogenous deoxyadenosine 

(dA), deoxyguanosine (dG), deoxycytidine (dC), thymidine (T) and uridine (U), and determined the 13C 

enrichment of pyrimidine nucleotides by LC-MS/MS. In mammalian cells, the uptake of extracellular 

nucleosides is mediated by the equilibrative nucleoside transporter (ENT) family (Baldwin et al., 2004). 

In turn, intracellular deoxyribonucleosides can be irreversibly phosphorylated to deoxyribonucleoside 

monophosphates (dAMP, dGMP, dCMP, TMP, and UMP) by four deoxyribonucleoside kinases (NKs): 

thymidine kinase 1, thymidine kinase 2, deoxycytidine kinase (dCK) and deoxyguanosine kinase 

(Johansson and Eriksson, 1996). Thus, the activity of ENT and NKs contribute to the salvage pathway 

of nucleotide synthesis. In our experiments, we observed that the 13C enrichment of UMP and CMP 

from [U-13C5] glutamine was preferentially diluted in VHL -/- UMRC2 cells by the presence of unlabeled 

nucleosides in a dose-dependent manner (Figure VI-4B, 4C). To directly probe the salvage flux of 

pyrimidine synthesis and the effect of GLS inhibition on this pathway, we cultured the pair of UMRC2 

cells under the presence of uniformly 13C-labeled dC and 13C-labeled dA at 5µM (together with 

unlabeled dG, and T) and determined the 13C enrichment of intracellular nucleoside monophosphates. 

The 13C-labeled dC and dA substrates will trace the salvage pathway of pyrimidine and purine 

nucleotides, respectively. Although not statistically significant for dCMP, we observed a trend increase 

in the 13C enrichment of AMP in VHL -/- when compared to VHL +/+ UMRC2 cells (Figures VI-4E, 4F). 

The 13C enrichment of adenine monophosphate was shown for AMP (and not for dAMP) due to the low 

spectral intensity obtained for the deoxygenated version. Surprisingly, in these experimental setting, the 

BPTES appeared to increase the contribution of 13C-labeled dA to AMP only, and one would expect it 

to be the case for dCMP from 13C-labeled dC as well. Further experiments are necessary to determine 

putative differences in the basal utilization rate of the salvage pathway in RCC cells and the effect of 

GLS inhibition. Nevertheless, these isotopic studies show that VHL -/- RCC cells can utilize the salvage 
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pathway from exogenous nucleosides to produce pyrimidine nucleotides, and are suggestive that this 

pathway may be more active in VHL -/- cells. In support of our overall findings, addition of nucleosides 

at 5uM led to a partial rescue of cell proliferation by the BPTES treatment (Figure VI-4G). To exploit this 

HIF-dependent metabolic phenotype, we set out to block both the salvage and the de novo pathways of 

pyrimidine biosynthesis in RCC cells. To this end, we cultured the pair of UMRC2 cells in the presence 

of BPTES and a toxic nucleoside analog – 2-chlorodeoxyadenosine (or cladribine) – which is converted 

to cladribine-monophosphate by dCK and thereby contributes to the nucleotide pool through the 

salvage pathway. Combining both the GLS inhibitor and cladribine significantly decreased the 

proliferation of VHL -/- cells when compared to the VHL +/+ controls (Figure VI-4H). Although not as 

pronounced, the pair of UMRC3 cells also exhibited a response to BPTES and cladribine treatments 

towards the selective killing of VHL -/- cells (Figure VI-4I). If the effect of GLS inhibition in RCC cells is 

due to a depletion of pyrimidine precursors, then the selective growth inhibition of VHL -/- cells when 

compared to VHL +/+ cells should be abrogated by the inhibition of enzymes involved in the de novo 

pathway of pyrimidine biosynthesis. Thus, to further test our hypothesis, we treated the pair of UMRC2 

cells with N-phosphonacetyl-L-aspartic acid (PALA), an inhibitor of aspartate transcarbamoylase 

(ACTase), alone or in combination with BPTES. As observed in Figure VI-4J, PALA inhibited the growth 

of both UMRC2 cell types. Importantly, we observed a strong growth inhibition of both UMRC2 cell 

types by the presence of PALA and BPTES (as expected), but there was no significant difference 

between VHL -/- and VHL +/+ UMRC cells (Figure VI-4J). This result suggests that the selective growth 

phenotype of BPTES in VHL -/- cells is, at least in part, due to its ability to inhibit de novo pyrimidine 

biosynthesis. Interestingly, the PALA treatment inhibited the growth of VHL +/+ cells to a slightly greater 

extent than the VHL -/- cells (Figure VI-4J), further suggesting that loss of VHL may decrease the rate of 

de novo pyrimidine biosynthesis. Collectively, these data indicate that RCC cells utilize the salvage 

pathway to maintain nucleotide biosynthesis, and that blocking both the glutamine-derived de novo and 

the salvage pathways selectively impairs the growth of VHL -/- cells.  
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Figure VI-4. Evidence for Utilization of the Salvage Pathway of Pyrimidine Biosynthesis in RCC Cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) Levels of N-carbamoyl-aspartate relative to its precursor N-carbamoyl-phosphate in control or BPTES-

treated UMRC2 cells. (B-C) Effect of exogenous nucleosides on the contribution of [U-13C5] glutamine to UMP 

(B) and CMP (C) synthesis in UMRC2 cells. (D) UMRC2 cells were synchronized in S-phase by Thymidine 

double-block. CAD expression levels in unsynchronized (“Unsych.”) and synchronized (“T-blocked”) UMRC2 

cells. (E-F) UMRC2 cells were cultured for 48hours in the presence of 13C-labeled deoxyadenosine (13C-dA), 

13C-labeled deoxycytidine (13C-dA), unlabeled guanosine and unlabeled thymidine, at 5µM. Percent 

contribution of the salvage pathway from exogenous 13C-dA and 13C-dC to dCMP (E) and AMP (F) synthesis. 

(G) Effect of exogenous nucleosides on the proliferation of BPTES-treated VHL -/- and VHL +/+ UMRC2 cells (H-

I) Cell proliferation effect of targeting the de novo (using BPTES) and the salvage (using cladribine) pathways of 

pyrimidine biosynthesis in the pair of UMRC2 (H) and UMRC3 (I) cells. Cell proliferation effect of PTES and 

PALA (the de novo pyrimidines inhibitor) in UMRC2 cells. Student’s t test compared BPTES-treated to 

corresponding control cells in (A) and (E-F) VHL-reconstituted to VHL-deficient cells in (B-C) and (H-J), and 

nucleosides-rescued cells to correspondent controls in (G).  Asterisk in parenthesis indicates comparison 

between VHL -/- and VHL +/+ cells in (A), (F), (G). 
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VI.3. DISCUSSION 

Here, we showed that oncogenic activation of HIF through loss of VHL changes nucleotide 

metabolism in renal carcinoma cancer (RCC) cells. By tracing the fate of glucose and glutamine in 

central carbon metabolism, we demonstrated that loss of VHL redirects glutamine carbons for 

pyrimidine biosynthesis in RCC cells, via reductive carboxylation (RC). Inhibition of glutaminase (GLS) 

decreased the levels of aspartate and pyrimidine intermediates preferentially in VHL -/- cells, suggesting 

that RC-derived aspartate is required to maintain pyrimidine biosynthesis in RCC cells. By 

synchronizing the pair of isogenic RCC cells at the G1/S-phase of the cell-cycle, we revealed that VHL -

/- cells appear to exhibit a lower expression level of the CAD enzyme, raising the possibility that HIF 

expression decreases de novo pyrimidine biosynthesis. Concordantly, we observed that RCC cells 

utilize exogenous nucleosides to fuel the nucleotide pool, and this salvage pathway appeared to be 

more active in VHL -/- cells. These results underline the importance of cellular nucleotide levels for cell 

viability. This was supported by the experiment in which inhibiting both the de novo and the salvage 

pathways of pyrimidine biosynthesis led to a selective growth inhibition of VHL -/- RCC cells. In the next 

paragraphs, I will interpret our findings under the light of the HIF literature and taking into consideration 

the concepts of cell survival versus cell growth. I will also discuss experiments that shall be conducted 

to support the present conclusion of this chapter.  

Our metabolomics studies showed that GLS inhibition depleted the levels of aspartate and 

pyrimidine intermediates selectively in VHL -/- UMRC2 cells. In addition, we showed that the rate-

limiting enzyme CAD was expressed at lower levels in G1/S-phase - synchronized VHL -/- UMRC2 cells 

when compared to their isogenic controls. Although this is in agreement with the report showing that 

HIF-1α decreases CAD expression (Chen et al., 2005), there was no difference in the unsynchronized 

cultures, as it would be expected if CAD is transcriptionally repressed by HIF. We did not access the 

transcript levels of CAD in unsynchronized/synchronized RCC cells, and this experiment is warranted. 

Nevertheless, we showed that the ratio of the N-carbamoyl-aspartate (the enzymatic product of CAD) 
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relative to N-carbamoyl-phosphate (the CAD substrate) is elevated in VHL -/- when compared to VHL +/+ 

cells. These two observations suggest that HIF activation may decrease the de novo flux of pyrimidine 

biosynthesis, but it simultaneously renders RCC cells dependent on glutamine-carbons to maintain this 

anabolic flux. The observation of a similar incorporation from [U-13C5] glutamine into the DNA between 

VHL -/- and VHL +/+ RCC cells (Figure VI-1A) furthers suggests that loss of VHL decreases the de novo 

flux of DNA biosynthesis, which is a readout of cell proliferation (Macallan et al., 1998). Although this 

interpretation would support the reported role of HIF-1α in inhibiting DNA replication and cell 

proliferation (Hubbi et al., 2013; Koshiji et al., 2004b), we did not provide direct evidences that the de 

novo flux of pyrimidine biosynthesis is affected in RCC cells. To directly measure DNA synthesis, one 

can monitor the incorporation of bromodeoxyuridine (BrdU) in the newly synthesized DNA of replicating 

cells. However, since BrdU is a nucleoside, it probes the salvage pathway and this experiment would 

not be suitable to determine the total the flux of the novo nucleotide biosynthesis in VHL -/- versus VHL 

+/+ cells. Therefore, to investigate the role of glutamine and CAD activity during the cell cycle, it is a key 

experiment to determine the contribution of 13C glutamine tracers (tracing RC or oxidative Krebs cycle) 

to pyrimidine biosynthesis in S-phase - synchronized and unsynchronized RCC cells. By combining 

such tracer data with extracellular flux measurements and employing MFA (see Chapter II), one can 

determine whether the total de novo flux is different between VHL-deficient and VHL-reconstituted 

cells. 

Our 13C tracer studies using [U-13C5] glutamine showed that glutaminase inhibition decreased the 

formation of 13C-labeled UMP and CMP in both VHL -/- and VHL +/+ UMRC2 cells (Figure VI-2D, 2E), but 

the effect was more pronounced in the VHL -/- negative background.  One may expect the BPTES 

treatment to inhibit the 13C enrichment of pyrimidines to the same degree in both RCC cell types, as 

GLS inhibition should equally decrease the conversion of glutamine into glutamate. However, the 

transfer of the glutamine amide nitrogen to N-carbamoyl-phosphate via CAD releases glutamate as by-

product in the cytosol (Figure VI-1A). The CAD-derived glutamate can be potentially used as carbon 
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source for pyrimidine synthesis even under the presence of BPTES. On one hand, GLS inhibition did 

result in increased glutamine and decreased glutamate levels in both cell types (Figure VI-2C), ruling 

out the possibility that the BPTES does not act in VHL +/+ cells. The observation that the BPTES 

treatment inhibited the contribution of [U-13C5] glutamine to pyrimidines preferentially in the VHL -/- 

background suggest these cells cannot reroute glutamine towards cytosolic the CAD reaction as 

efficiently. To further investigate the effect of GLS inhibition on the kinetics of CAD and glutamine-to-

pyrimidine flux, one can label the pair of RCC cells with [15N-Amide] glutamine and evaluate the effect 

of BPTES. The contribution of glutamine-derived nitrogens to N-carbamoyl-aspartate is independent 

from GLS inhibition (see Figure VI-1A), unless the production of aspartate is compromised, as one 

would expect in BPTES-treated VHL-/- cells. Thus, to perform the 15N labeling experiments will be 

crucial to dissect the flux of glutamine-carbons from that of glutamine-nitrogens to pyrimidines. This 

experiment will also be important to better interpret the different BPTES-induced effect on the 

production of UMP and CMP from [U-13C5] glutamine in each RCC cell type.  

It is relevant to discuss the role of the pentose phosphate pathway (PPP) in the production of 

ribose 5-phosphate, the sugar precursor used in the de novo synthesis of purine and pyrimidine 

nucleotides (Tong et al., 2009). As reviewed in (Tong et al., 2009), HIF appears to reduce activity of 

oxidative PPP but, in contrast, it induces the expression of transketolase, thereby maintaining the levels 

of ribose 5-phosphate through the non-oxidative arm of PPP. In our RCC cell lines, we did not observe 

significant changes in the oxidative PPP activity, as determined using the [1, 2 - 13C2] glucose tracer 

(data not shown). Although the network topology of de novo pyrimidine biosynthesis does require the 

condensation of 5-phosphoribosyl-phosphate with orotate, we assessed the effect of BPTES at the 

level of N-carbamoyl-aspartate and N-carbamoyl-phosphate, which lie upstream of this reaction. Yet, 

we cannot rule out the possibility that indirect effects on the PPP activity by HIF expression do not 

indirectly affect the observed metabolic phenotype upon GLS inhibition. This may actually explain the 

modest changes observed in the levels of UMP and downstream nucleotides under GLS inhibition. 
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Further experiments are necessary to test the role of HIF in regulating PPP and the effect of 

glutaminase inhibition on the contribution of PPP to de novo pathway of pyrimidine biosynthesis in RCC 

cells. 

An additional limitation of the experimental approach in this study was the use of a GLS inhibitor to 

evaluate the role of glutamine metabolism in pyrimidine biosynthesis. As mentioned in previous 

chapters, GLS inhibition blocks both glutamine oxidation and RC in the Krebs cycle. Since the 

contribution of glutamine oxidation to aspartate synthesis is similar between VHL -/- and VHL +/+ cells, it 

will be critical to interrogate the metabolic outcomes of inhibiting one pathway versus the other. Thus, 

to directly study the role of reductive carboxylation, it would be informative to induce a genetic deletion 

or a knockdown of IDH1 and/or IDH2 in our RCC cell lines. Supplying IDH knocked-down or knockout 

RCC cell lines with glutamate or a cell-permeable version of α-ketoglutarate can in principle 

compensate for the inhibition of the forward IDH reaction and allow one to specifically assess the 

contribution of reductive carboxylation to pyrimidine biosynthesis. 

Finally, we did not address the biological mechanism by which GLS inhibition affects the 

proliferation of VHL-deficient cells. Whether GLS inhibition slows down cell growth due to reduced 

macromolecule biosynthesis, or it instead promotes cell-cycle arrest and/or cell death was not 

investigated. Understanding how the proliferation of VHL-deficient cells is affected under glutamine 

deprivation will shed light into the metabolic adaptation of HIF signaling and how it may suppress 

senescence.  

A recent study analyzing the genomic alterations, DNA methylation and RNA expression profiles of 

a comprehensive cohort of clear cell renal cell carcinomas (ccRCC) indicated a significant correlation 

between a worsened prognosis in cc RCC patients and increased glutamine transporters (Creighton et 

al., 2013). This recent advance indeed correlates avid glutamine metabolism with kidney cancer, and 

the biosynthetic fates of glutamine must be revealed to fully understand the necessity for this nutrient 

by RCC tumors. In keeping with the established role of HIF and the findings of the previous chapters, 
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Supplementary Figure VI-S1. Biosynthesis of DNA-Isolated Pyrimidine Bases from Glutamine-Nitrogens 

in RCC Cells, Related to Figure VI-1 

we conclude that reductive carboxylation in the Krebs cycle is a maintenance mechanism to avoid lipid 

and nucleotide insufficiency in hypoxic and VHL-deficient cancer cells. 

 

 

VI.4. Supplemental Information 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) VHL -/- and VHL +/+ UMRC2 cells were labeled with [15N-amide] glutamine for eight days. The time course 

shows the enrichment of M1 thymine (A), and M2 cytosine (B) from [15N-amide] glutamine, determined from 

column-purified and formic acid-hydrolyzed DNA.  
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Supplementary Figure VI-S2. Effect of BPTES on the Mass Isotopomer Distribution of IMP from [U-13C5] 

Glutamine in RCC Cells, Related to Figure VI-2 
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The pair of UMRC2 cells was labeled with [U-13C5] glutamine under the absence or presence of BPTES at 2µM 

(for 48 hours) and the enrichment of the purine precursor inosine monophosphate (IMP) was determined by LC-

MS/MS.   
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CONCLUDING REMARKS 
 

There has been an astonishing reawakening of the role of metabolism and its alterations in cancer. 

Appreciating that cellular metabolism can be regulated by oncogenes/tumor suppressors to promote i) 

macromolecule biosynthesis and ii) adaptation to nutrient-limited conditions has been a great progress 

towards understanding the behavior of cancer cells. Such efforts in understanding cancer cell 

metabolism have led to the identification of new metabolic targets for cancer therapy, and some of 

them are being tested in pre-clinical and clinical trials (Locasale, 2013; Zhao et al., 2013). From the 

biological standpoint, this thesis identified metabolic vulnerabilities of hypoxic and pseudohypoxic 

cancer cells. Using isotopic tracing and mass spectrometry analyses, this work studied the hypoxia-

induced alterations in the Krebs cycle and elucidated the role of reductive carboxylation in supporting 

lipid and pyrimidine biosynthesis in VHL-deficient RCC cells. We propose that targeting reductive 

glutamine utilization may be effective to treat HIF-expressing tumors. 

Targeting cancer cell metabolism is not a new idea. In actuality, one of oldest anti-cancer strategies 

is the targeting of one-carbon metabolism using folate antagonists that block DNA synthesis [reviewed 

in (Vander Heiden, 2011; Locasale, 2013)]. One example of an anti-folate drug is 5-fluoroacil (5-FU), 

which is clinically used to treat many cancers and acts by inhibiting thymidylate synthase, an enzyme 

required for the synthesis of deoxythymidine monophosphate (dTMP) for DNA synthesis (Locasale, 

2013). Although successful for the treatment of certain malignancies, anti-folate drugs may not be an 

ideal anti-cancer strategy because their mechanism of action appears to be the inhibition of rapidly 

proliferating cells, not cancer cells in specific.  The apparent non-selective and growth-coupled nature 

of 5-FU and similar anti-metabolites underlies the toxicity of many conventional chemotherapies, and it 

is one of arguments against targeting the metabolism of cancer cells. The argument – metabolic 

pathways promoting growth of cancer cells are also required for the growth of normal cells – is true to 

the extent that some metabolic pathways are essential and cannot be bypassed or replaced. However, 



On the Reprogramming of the Krebs Cycle in Hypoxic and VHL-Deficient Cancer Cells 
 

- 152 - 

this being said, the clinical success of old-standing anti-metabolite drugs such as 5-FU, methotrexate, 

hydroxyurea and others signifies that a therapeutic window exists for these apparent non-selective 

chemotherapies. This window cannot be entirely explained based on differences in growth rate 

between normal and cancer proliferating cells (Vander Heiden, 2011), and rather suggests that 

unknown metabolic dependences underlie the therapeutic effect of these drugs. Elucidating these 

cancer-specific metabolic alterations is a challenge that will better tailor current anti-metabolites and aid 

in novel drug design against cancer.  

There is a second argument that distrusts the idea of targeting cancer cell metabolism and this one 

is more thoughtful - causality. It has been often argued that altered metabolism accompanies 

carcinogenesis, but it does not drive the transformation of normal cell into cancer cells. The causality 

argument has been supported by the first efforts in cancer genome sequencing, which showed a 

repertoire of genetic mutations that affected core signaling pathways of cell growth and survival but not 

in metabolic enzymes (Vogelstein et al., 2013). However, recent advances have shown that genetic 

lesions in metabolic enzymes such as IDH1, IDH2, fumarate hydratase and succinate dehydrogenase 

are frequent in different types of cancer (see Chapter I). In addition, there are functional evidences 

showing necessity and/or sufficiency of specific enzyme isoforms, fluxes or metabolites to support the 

malignancy of specific tumors (See Chapter I). These discoveries support the paradigm of a metabolic 

reprogramming as essential for tumor growth and malignancy, and are fostering pharmaceutical 

endeavors to target recently identified metabolic targets in cancer ([No authors Listed], 2010).  

There is an emerging link between metabolism and cancer that circles the causality discussion into 

a chicken and egg problem. Growing evidences have demonstrated how metabolic signals can affect 

chromatin structure and epigenetic programs [see the following reviews (Kaelin and McKnight, 2013; Lu 

and Thompson, 2012)]. Some of these recent studies have implied metabolites themselves as proto-

oncogenes, showing that modulations of metabolite levels cause chemical modifications of histones 

and DNA, which in turn affect gene expression and may contribute to cancer development [See 
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comments by (Kim and DeBerardinis, 2013; Sassone-Corsi, 2013)]. Given the established role of 

epigenetic changes in carcinogenesis (Dawson and Kouzarides, 2012), the molecular connection 

between metabolites and gene expression is indeed a strong evidence for the critical role of 

metabolism in cell physiology and cancer development. The large-scale understanding of changes in 

gene expression in response to environmental inputs will certainly uncover mechanisms of cell 

plasticity, survival and growth. In turn, elucidating how genetic lesions and environmental insults 

cooperate with metabolism to hijack gene expression in favor of malignancy will lead to a new era of 

cancer biology. But before, we are yet to satisfactorily characterize the metabolic alterations that affect 

energy and biomass production in cancer cells. 

In this thesis, we revisited the role of the Krebs cycle in central carbon metabolism and investigated 

its biological significance in hypoxic and VHL-deficient cancer cells. These results illustrated that the 

metabolic plasticity and substrate preference can be remarkably different in cancer cells. I hope this 

work be actively kept in reasoning for future studies, and that it be a step closer towards targeting the 

metabolic abnormalities of renal cell carcinomas, perhaps with glutaminase inhibitors. That 

understanding of cellular bioenergetics and the regulation of Krebs cycle will help us solve clinical 

problems is evident, and this conclusion would most likely not be a surprise if Krebs himself witnessed 

the recent discoveries on cancer metabolism: 

“The research I have been doing - studying how foodstuffs yield energy in living cells - does not 

lead to the kind of knowledge that can be expected to give immediate practical benefits to mankind. If I 

have chosen this field of study, it was because I believed in its importance in spite of its theoretical 

character. My reason for this belief was that all living things must be continuously fed with energy and I 

am convinced that an understanding of the process of energy production will eventually help us in 

solving some of the practical problems of medicine.” – Hans Krebs, Banquet Speech at the Nobel Prize 

Ceremony, 1953. 
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