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Abstract

Partial integro-differential equations of parabolic type arise naturally in the mod-
eling of many phenomena in various fields of physics, engineering, and economics. The
main aim of this thesis is to study finite element methods with numerical quadrature
for this class of equations. Both one- and two-dimensional problems are considered.
We investigate the stability and convergence properties of the schemes and obtain su-
perconvergence error estimates. It is important to note that these superconvergence
results hold also for the equivalent finite difference methods and, in this context, they
stand without restrictions on the spatial mesh. In the derivation of these results, we
introduce an approach to error analysis that deviates from the traditional one. The
significant advantage of this modified strategy is that less regularity for the solution of
the continuous problem is needed. The discretization in time using an implicit-explicit
method is also addressed, and stability and convergence estimates are derived.

The mathematical modeling and numerical simulation of non-reactive solute trans-
port in porous media is also in the scope of this thesis. Among many other applica-
tions, this fluid dynamic problem plays a major role in hydrology, medical science,
and the petroleum industry. Fick’s law is the underlying principle for obtaining the
traditional partial differential equation that describes the solute concentration profile;
however, several deviations from this law have been reported. With foundations in the
non-Fickian dispersion theory, an integro-differential model is proposed in this thesis.
The accuracy of the model is tested in one dimension, and the results indicate that
the model is much improved over the conventional one. In fact, even in laboratory-
scale homogeneous porous media, these transport processes may exhibit anomalous
non-Fickian behavior that only the alternative model correctly reproduces. A robust
numerical discretization is also presented and some numerical experiments are con-
ducted. These experiments illustrate the applicability and computational feasibility
of the proposed model to simulate two-dimensional problems.

A natural extension of our model would allow concentration-dependent viscos-
ity. In this thesis, we also study finite element methods with numerical quadrature
for coupled problems that include a simplified version of such a model as a partic-
ular case. Again, our numerical method allows the derivation of superconvergence
approximations for the variables involved.





Resumo

Equações parciais integro-diferenciais do tipo parabólico surgem na modelação de
vários fenómenos em diversas áreas da física, engenharia e economia. O objectivo
principal desta dissertação é o estudo, uni e bidimensional, de métodos de elemen-
tos finitos com quadratura numérica para esta classe de equações. A estabilidade
e a convergência de aproximações semi-discretas assim definidas são analisadas e
estimativas de erro superconvergentes são estabelecidas. Estes resultados de super-
convergência são igualmente válidos para métodos de diferenças finitas equivalentes,
sendo que, neste contexto, vigoram sem qualquer tipo de restrição sobre a malha
espacial. Na derivação destes resultados é introduzida uma forma de análise do erro
que difere daquela normalmente utilizada. Esta abordagem permite reduzir a regula-
ridade exigida à solução do problema contínuo. A estabilidade e a convergência de um
método de discretização completa do tipo implícito-explícito são também analisadas.

Nesta dissertação discutimos ainda a modelação e simulação numérica do trans-
porte de solutos não-reactivos em meios porosos. Entre outras aplicações, este pro-
blema de dinâmica de fluidos desempenha um papel de relevo na hidrologia, ciência
médica e industria petrolífera. Subjacente à tradicional equação de derivadas parci-
ais que descreve a evolução da concentração do soluto encontra-se a lei de Fick, um
princípio físico que tem sido amplamente questionado. Com base na teoria de disper-
são não-Fickiana propomos nesta dissertação um modelo do tipo integro-diferencial.
A acuidade da versão unidimensional do modelo é analisada recorrendo a um con-
junto de dados laboratoriais. Os resultados obtidos indicam que o modelo representa
uma melhoria significativa em relação ao modelo tradicional. Mesmo em laboratório,
verificamos que os processos de transporte em meios porosos podem exibir um com-
portamento anómalo não-Fickiano que apenas o modelo alternativo consegue repro-
duzir. Com o intuito de ilustrar a viabilidade computacional do modelo para simular
problemas bidimensionais é ainda apresentada uma discretização numérica eficiente
e são realizadas algumas experiências numéricas.

Uma extensão natural do modelo proposto passa por considerar a viscosidade
dependente da concentração. Nesta dissertação analisamos também métodos de ele-
mentos finitos com quadratura numérica para sistemas de equações diferenciais que
incluem como caso particular uma versão simplificada de tal modelo. Os métodos in-
troduzidos permitem a derivação de aproximações superconvergentes para as variáveis
envolvidas.





Acknowledgements

I would like to express gratitude to my advisor, Professor Doctor José Augusto
Ferreira, for his guidance and support. Without him, this thesis would not be
possible. Thanks are also due to FCT (Fundação Portuguesa para a Ciência e a
Tecnologia) and FSE (Fundo Social Europeu) for the financial support within the
scope of the QCA III (Quadro Comunitário de Apoio III) and under grant reference
SFRH/BD/33101/2007. Last, but not least, I would like to thank my parents.





Contents

Abstract vii

Acknowledgements xi

1 Introduction 1
1.1 Parabolic PIDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . 8

1.2 Non-Fickian Tracer Transport in Porous Media . . . . . . . . . . . . 9
1.2.1 An Integro-Differential Model . . . . . . . . . . . . . . . . . . 9
1.2.2 Contributions of this Work . . . . . . . . . . . . . . . . . . . . 13

1.3 A Parabolic-Elliptic Coupled Problem . . . . . . . . . . . . . . . . . . 13
1.3.1 Contributions of this Work . . . . . . . . . . . . . . . . . . . . 15

2 A FEM for Parabolic PIDEs in One Dimension 17
2.1 A Semi-Discrete Galerkin Method . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.3 Equivalence with a Finite Difference Method . . . . . . . . . . 29

2.2 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 A FEM for Parabolic PIDEs in Two Dimensions 33
3.1 A Semi-Discrete Galerkin Method . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 A Fully Discrete Method . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Stability and Convergence Analysis . . . . . . . . . . . . . . . 46
3.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



4 A Parabolic-Elliptic Coupled Problem 55
4.1 A Semi-Discrete Galerkin Method . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 A Fully Discrete Method . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.1 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . 70

4.3 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Applications: Non-Fickian Tracer Transport in Porous Media 75
5.1 Model Validation: Breakthrough curve analysis . . . . . . . . . . . . 75

5.1.1 Data Set 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.2 Data Set 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.1.3 Data Set 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.1.4 Scale-Dependent Prediction . . . . . . . . . . . . . . . . . . . 84

5.2 Numerical Experiments in Two Dimensions . . . . . . . . . . . . . . . 85
5.2.1 The Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . 99

6 Conclusions and Future Work 103

Bibliography 106

xiv



Chapter 1

Introduction

Numerical simulation is a valuable tool for solving challenging scientific and industrial
problems. Nowadays, more and more companies from a broad range of industries are
looking to computer simulation to improve their productivity. It can offer reliable
solutions to complex problems and is flexible and inexpensive. In order to enhance this
statement, we quote a report [146] from the NASA integrated technology roadmap.

"Modeling, simulation and decision-making are closely coupled and have become
core technologies in science and engineering. In the simplest sense, a model represents
the characteristics of something, while a simulation represents its behavior. Through
the combination of the two, we can make better decisions and communicate those de-
cisions early enough in the design and development process that changes are easy and
quick, as opposed to during production when they are extremely costly and practically
impossible."

A key aspect of the simulation process is the formulation of proper mathematical
models. The model must be able to emulate the physical phenomena under investi-
gation. Traditionally, partial differential equations (PDEs) play a major role in the
modeling of many processes. However, in many evolutionary problems, the history of
the phenomena under investigation is of relevance and must be incorporated in the
mathematical model. Classical PDEs models cannot reproduce this property, and it
is a well-known fact that they fail to provide a reliable description of such processes.
As a solution to overcome this drawback, PDEs have been replaced by partial integro-
differential equations (PIDEs). The theoretical and experimental research that has
been conducted in recent years shows that mathematical models based on PIDEs,
which take into account this memory effect, are more accurate than the traditional
PDE models.

As an example, consider the important problem of non-reactive solute (tracer)
transport in porous media. In classical Fickian dispersion theory, these processes are
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2 Chapter 1. Introduction

described by the equation

∂tc+∇ · (vc) = ∇ · (D∇c) in Ω× (0, T ], (1.1)

where c denotes the concentration of the tracer, v the velocity, and D a dispersion
tensor. This equation may give accurate results in a laboratory environment for per-
fectly homogeneous media; however, the same cannot be said for real-life situations,
where heterogeneities are expected. When the porous medium is heterogeneous, it
is believed that a memory effect is present in these processes. Therefore, this kind
of problem, the so-called non-Fickian transport, can be better understood if it is
modeled by PIDEs [52,57,68,93,155]. Here, in particular, we propose a PIDE of type

∂tc+∇ · (vc) +∇ · (D∇c) =
∫ t

0

B(s, t)c(s) ds in Ω× (0, T ],

where B(s, t) is a memory operator to be specified. Beyond tracer transport, PIDEs
arise also, for instance, in the modeling of immunology [24], financial processes [119],
and viscoelastic polymers [139].

Naturally, solving the equations involved is necessary to extract information from
the mathematical models. However, an analytical solution generally is unavailable
and a numerical approximation must be introduced. The numerical treatment of
these problems is a demanding mathematical and computational task. In fact, for
most problems of interest, the complexity and dimension of the models are such that
very efficient numerical methods are essential. Over the last few decades, advances
in numerical analysis and computer capabilities have led to the development of pow-
erful numerical tools. Nonetheless, solving the current problems can easily become
problematic. For this reason, the development of accurate, stable, and computation-
ally effective numerical methods for advanced mathematical models remains a high
priority.

As we mentioned before, PIDEs can be more effective than standard PDEs for
the modeling of some processes, and hence have attracted widespread attention of
scientists and engineers. Despite very active research in this field, the numerical and
analytical treatment of such equations present some serious difficulties and many
unresolved problems still remain.

Before proceeding, a short comment about notation must be made: the letter C,
with our without subscripts, will be used to denote a positive constant, independent
of mesh parameters, that may take different values in different places. Additionally,
we represent by ∇ the spatial derivative or the gradient operator, as appropriate;
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by ∇·, the divergence operator; by ∆, the Laplacian; and by ∂nt , the derivatives in
time of order n. Throughout this thesis, we use standard notation from the theory of
Sobolev spaces as can be found in [66] and many others.

1.1 Parabolic PIDEs

In this thesis, we are mainly concerned with parabolic PIDEs of the form

∂tc+ Ac =

∫ t

0

B(s, t)c(s) ds+ f in Ω× (0, T ], (1.2)

where A is a differential operator with coefficients independent of t,

Ac = −∇ · (A2∇c) +∇ · (A1c) + a0c, (1.3)

while B(s, t) is a similar operator, but with time dependent coefficients,

B(s, t)c = −∇ · (B2(s, t)∇c) +∇ · (B1(s, t)c) + b0(s, t)c. (1.4)

Equation (1.2) must be complemented with an initial condition,

c(0) = c0 in Ω (1.5)

and proper boundary conditions. Here we consider primarily Dirichlet homogeneous
boundary conditions,

c(t) = 0 on ∂Ω× (0, T ]. (1.6)

Assume for now that the coefficients of A and B(s, t) are smooth functions and
that Ω is a regular domain. For a discussion regarding the well-posedness of the
problem (1.2)-(1.6) we refer to [46, 116, 163, 169]. The aim of this thesis is to study
numerical methods for such a problem.

A large number of schemes are available in the literature for solving this kind of
PIDE. The most common solutions are based on approximations in space by finite
element methods (FEMs) or finite difference methods (FDMs) followed by finite dif-
ferences and quadrature rules in time [39, 61, 131, 133]. Other spatial discretization
methods include orthogonal spline collocation methods [130], mixed finite element
methods [76], finite volume methods [71], and discontinuous Galerkin methods [140].
Time integration methods based on Laplace transform [122], Runge-Kutta meth-
ods [166], and multistep methods [167, 168] have also been subject of study. A com-
mon difficulty in solving PIDEs is that the evaluation of the time integral term by
traditional quadrature rules requires a huge amount of storage, since all time step so-
lutions must be retained. In [133,149,169], special quadrature rules with less memory
demands were proposed.
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1.1.1 Error Estimates

Finite differences and quadrature rules were used in [61] to conduct the first numerical
analysis of parabolic PIDEs. In that work, a convergence study was performed and
error estimates in discrete Sobolev norms for a uniform partition in space and time
were provided. The approximation by finite elements was considered for the first
time in [163], and optimal-order error estimates in the L2-norm were obtained for an
equation similar to (1.2), in which B(s, t) is a non-linear operator that depends, at
most, on first-order derivatives in space of the function c.

Optimal error estimates for the problem (1.2)-(1.6) are presented in [38,39,112,154]
for the L2- and H1-norms and in [111] for the maximum L∞-norm. For instance,
in [112], the so-called Ritz-Volterra projection, introduced in [39], is used to show
that the results known for the equivalent parabolic PDE, i.e., when B(s, t) = 0, can
be extended to this case. Namely, it is established that if

‖c0 − ch,0‖L2 ≤ Ch2‖c0‖H2,

then the piecewise linear finite element approximations are second-order convergent
with respect to the L2-norm,

‖c(t)− ch(t)‖L2 ≤ Ch2
(
‖c0‖H2 +

∫ t

0

‖∂tc(s)‖H2 ds
)

and they are first-order convergent with respect to the H1-norm,

‖c(t)− ch(t)‖H1 ≤ Ch, (1.7)

where h is a mesh parameter, ch is the finite element approximation to c, and ch,0 is
a suitable approximation to c0.

Piecewise linear finite elements with quadrature were analyzed in [131, 132] and
optimal-order error estimates were established in discrete L2- and H1-norms. In
particular, for an appropriate approximation ch,0, it was proved that,

‖c(t)− ch(t)‖h ≤ Ch2
(
‖c(t)‖H2 +

(∫ t

0

‖c(s)‖2H2 + ‖∂tc(s)‖2H2 ds
)1/2)

.

where ‖ · ‖h denotes a discrete L2-norm.
Finite volume methods (FVMs) based on piecewise linear functions have been

analyzed in [70,71,148]. The one-dimensional case was considered in [70], and in [71],
the analysis was carried over to the two-dimensional case. In [70, 71], optimal-order
estimates with respect to the L2- andH1-norms were shown, provided that c0 ∈ H3(Ω)
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and c ∈ H1(0, T ;H3(Ω)). These smoothness assumptions were weakened in [148] for
the homogeneous case. Here, the authors established second-order convergence in the
L2-norm, assuming that c0 ∈ H2(Ω) and that

‖c(t)‖H2 and
∫ t

0

‖c(s)‖2H2 + s2‖∂tc(s)‖2H2 ds (1.8)

are finite. These FVMs, which can be seen as Petrov-Galerkin FEMs, have been
applied also to elliptic [74] and parabolic PDE problems [41, 42].

Integro-differential equations nearly identical to (1.2) can be rewritten equivalently
in the form

∂tc = ∇ · z − a0c+ f in Ω× (0, T ], (1.9)

z = Ãc+

∫ t

0

B̃(s, t)c(s) ds in Ω× (0, T ], (1.10)

where Ãc = A2∇c− A1c and B̃(s, t)c = −B2(s, t)∇c + B1(s, t)c. This approach was
used, for instance, in [75–77,129], where mixed finite element methods (MFEMs) were
studied. The results reported there are equivalent to those described in [43,104,128],
where MFEMs for parabolic PDE problems were discussed. In particular, for the
two-dimensional case, it was proved in [76] that the approximation of c and z by the
lowest-order Raviart-Thomas (RT0) elements satisfies

‖c(t)− ch(t)‖2L2 + ‖z(t)− zh(t)‖2L2 ≤ Ch2
(
‖c0‖2H1 + ‖z0‖2H1

+

∫ t

0

‖c(s)‖2H2 + ‖∂tc(s)‖2H1 ds
)

(1.11)

for convenient approximations of the initial functions c0 and z0.
The issue of time discretization is also addressed in many of the above cited papers.

For example, optimal second-order error estimates for the Crank-Nicolson method
and optimal first-order estimates for the implicit Euler method were established in
[133, 169]. In these works, the discretization in space was performed using FEMs.
More precisely, for piecewise linear finite elements in space and the implicit Euler
method combined with the rectangular rule in time holds the following [169]:

‖c(tn)− cnh‖L2 ≤ Ch2
(
‖c0‖H2 +

∫ tn

0

‖∂tc(s)‖H2 ds
)

+ C∆t
(
‖c0‖L2 +

∫ tn

0

‖∂tc(s)‖L2 + ‖∂2t c(s)‖L2 ds
)
.

Here, we represent by ∆t the uniform time step, ∆t = tn − tn−1, for n = 1, . . . , N ,
with t0 = 0 and tN = T , and by cnh the approximation of c(tn).
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An interesting subject in the study of the convergence of numerical methods is the
so-called superconvergence phenomena. The term superconvergence is widely used in
the literature and does not always carry the same meaning. Before proceeding, we
present some definitions and clarify our terminology. Let g be some function and
denote by gh an approximation of g computed by some numerical method. Assume
also that the convergence analysis reveals the following optimal error estimate,

‖g − gh‖ ≤ Chr,

where ‖ · ‖ represents some norm. We say that there is superconvergence if the error
measured in some discrete norm ‖ · ‖h satisfies

‖g − gh‖h ≤ Chs for s > r. (1.12)

That is, the convergence rate of the approximation at some points or regions is greater
than the optimal global convergence rate of the approximation. We also say that we
have superconvergence when

‖Phg − gh‖ ≤ Chs for s > r,

and we will call it supercloseness. Here, Ph : G −→ Gh is some interpolation operator
being Gh, the finite-dimensional space where gh resides, and G, the space of the
function g. Note that in the FDM context, (1.12) is known as supraconvergence [107].
Note also that we do not consider as superconvergence the results obtained after post-
processing of gh. From an application point of view, superconvergence can be used in
the construction of a posteriori error estimators, which is directly related to adaptive
methods, an important tool in numerical modeling. For more details about this
subject, see [6, 13, 14, 31, 32, 44].

Superconvergence has been the subject of intensive study since the first report of
this phenomena in [126], and by now the literature on this field is very extensive. For
an overview of some results on superconvergence in FEMs, we refer to [108, 157] and
the references therein. However, while there are many papers about superconvergence,
most of them are on numerical methods for PDEs, and it seems that only a few deal
with parabolic PIDEs of type (1.2); some exceptions are [110] for FEMs, [75, 77] for
MFEMs, and [70, 71] for FVMs. Next, we review these studies.

Consider the mixed formulation (1.9)-(1.10) and the mixed method that leads to
estimate (1.11). For rectangular elements and convenient initial approximations, the
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following error bound was established in [75]

‖c(t)− ch(t)‖h + ‖z(t)− zh(t)‖h∗ ≤ Ch2
(
‖c(t)‖H2 + ‖z(t)‖H2 +

(∫ t

0

‖c(s)‖H1

+ ‖z(s)‖H2 + ‖∂tc(s)‖H1 + ‖∂tz(s)‖H2 ds
)1/2)

, (1.13)

where ‖ · ‖h and ‖ · ‖h∗ are discrete L2-norms. When we compare this result with
the optimal estimate (1.11), we see that (1.13) is a superconvergence result. In [77],
the authors studied this same problem and obtained superconvergence L∞-error es-
timates. The superconvergence of mixed methods on rectangular elements is a well-
known fact for elliptic [9, 78] and parabolic PDEs [69].

Now we refer to the FVMs that were introduced in the discussion of the esti-
mate (1.8). Assuming an adequate approximation ch,0, it was proved in [70, 71] that

‖c(t)− ch(t)‖1,h ≤ Ch2
(
‖c0‖H3 + ‖c(t)‖H3 +

∫ t

0

‖c(s)‖H3 + ‖∂tc(s)‖H3 ds
)
. (1.14)

Since ‖ · ‖1,h is a discrete H1-norm, this estimate can be seen as a superconvergence
result for the gradient ∇c.

As the inequality (1.7) illustrates, the finite element approximation of the prob-
lem (1.2)-(1.6) has an optimal convergence rate of order one in the H1-norm, when
piecewise linear functions are used. In [110], for this method, the authors derived the
following supercloseness result

‖Phc(t)− ch(t)‖H1 ≤ Ch2
(∫ t

0

(
‖∂tc(s)‖H2 + ‖c(s)‖H4

+

∫ s

0

‖c(µ)‖H4 dµ
)2

ds
)1/2

, (1.15)

where Ph is the usual interpolation operator in H1(Ω).
We observe that, as usual, the superconvergence results (1.13)-(1.15) require regu-

larity assumptions on data that are higher than the ones necessary for the correspon-
dent optimal estimates. To obtain superconvergence results under less demanding
conditions, not only on data but also on the discretization of the domain, is a chal-
lenging problem. Note also that, for the one-dimensional case, the superconvergence
result (1.14) is in fact identical to the one we present in Chapter 2. It seems, however,
that the result of [70] is valid only for a simplified version of (1.2).

We finish this section with a comment: in the great majority of the above men-
tioned papers, the error estimates were obtained following the strategy introduced by
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Wheeler for the study of parabolic PDEs [160]. The idea is to write the error as

eh(t) = c(t)− Πhc(t) + Πhc(t)− ch(t)

= ρh(t) + θh(t), (1.16)

with Πh being a suitable projection operator. After that split, each part is estimated
separately.

1.1.2 Contributions of this Work

In Chapters 2 and 3 of this thesis, we deal with the numerical solution of the PIDE
problem (1.2)-(1.6). To this end, piecewise linear FEMs with special quadrature rules
are proposed. We study stability and convergence properties of the schemes and
obtain superconvergence error estimates.

In particular, the one-dimensional case is treated in Chapter 2, and assuming that

‖Phc0 − ch,0‖h ≤ Ch2,

we prove the following supercloseness estimate for the gradient
∫ t

0

‖Phc(s)− ch(s)‖2H1 ds ≤ Ch4
(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H3

)
. (1.17)

In order to establish the inequality (1.17), we require that

c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)),

∂tc ∈ L∞(0, T ;H3(Ω)), and ∂2t c ∈ L∞(0, T ;L1(Ω)). (1.18)

In Chapter 3, we consider the two-dimensional version of the same problem. A
supercloseness result similar to (1.17) is deduced for the semi-discrete approximation.
In the process, we introduce an approach to error analysis that deviates from the
traditional splitting strategy (1.16). The advantage is that less regularity for the
solution of the continuous problem is needed. The restriction (1.18) can be relaxed
to the weaker condition

c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)). (1.19)

By using the same strategy, we can derive condition (1.19) for the one-dimensional
case. The proof is straightforward and is not reported here.

It is important to notice that our supercloseness results can be seen as supra-
convergence results of equivalent FDMs. This is valid for both the one- and the
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two-dimensional problems. Moreover, these results hold with no mesh restrictions
at all. Note that in the two-dimensional case, this is only true for the FDM. These
theoretical results are the main achievement of this thesis and have been published
in [17, 86]. Note also that similar superconvergence results have been obtained for
elliptic [16, 82] and parabolic PDEs [15]. Therefore, our work can be considered an
extension of these studies.

1.2 Non-Fickian Tracer Transport in Porous Media

Real-world applications are also in the scope of this thesis. The application that
we explore here is transport in porous media. Among many other applications, the
numerical modeling of transport problems in porous media plays a major role in
hydrology, medical science, and the petroleum industry. The specific problem that
we address is tracer transport. As mentioned in Section 1, the classical model for
this problem relies on the PDE (1.1). However, tracer transport that is not ad-
equately described by this model has been observed both in field and laboratory
experiments [90, 109, 150]. The heterogeneity of the medium seems to be a common
factor in this so-called anomalous or non-Fickian behavior. Nevertheless, such phe-
nomena can also be found in homogeneous media [49]. In order to overcome this
limitation, different models have been proposed in the literature. An in-exhaustive
list includes the continuous time random walk model, the mobile/immobile model,
and the spatial fractional advection-dispersion equation. A detailed discussion of
these and other models, as well as non-Fickian transport in general, can be found
in [29, 88, 92, 123, 125] and the references therein.

1.2.1 An Integro-Differential Model

In this thesis, we present a non-Fickian model for tracer transport that is based on
the delayed dispersion theory [57]. To specify the problem considered, let Ω be a
bounded domain of R2 representing the porous medium, and let [0, T ] be the time
interval, for some T > 0. The classical PDE governing this fluid problem in porous
media can be written as

φ∂tc+∇ · (vc) = ∇ · (D∇c) + qc∗ in Ω× (0, T ], (1.20)

where φ represents the porosity of the medium, q sources and sinks terms, and c∗ a
prescribed concentration at sources or c at sinks. The dispersion tensor D is given
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by [23]

D = dmI + dt‖v‖I +
dl − dt
‖v‖ vvT, (1.21)

with ‖v‖2 = vTv and where I denotes the two by two identity matrix, dm the molec-
ular diffusion coefficient, and dl and dt the longitudinal and transverse dispersion
coefficients, respectively. Let us summarize the main steps in the construction of this
model. Express the total mass flux as

J = Jadv + Jdis, (1.22)

where

Jadv = vc, (1.23)

which represents the advection mass due to the fluid velocity, and assume that the
dispersive mass flux Jdis satisfies the Fick’s law

Jdis = −D∇c. (1.24)

Then, we can obtain equation (1.20) from (1.22)-(1.24) with the aid of the mass
conservation equation,

φ∂tc+∇ · J = qc∗. (1.25)

Now we derive the PIDE model. The underlying assumption behind this model is
that the history of the transport must be considered. One possible way to incorporate
this concept into the mathematical model is to introduce a memory dispersive flux.
In the words of Thompson [155]: "...dispersive flux... is influenced by weighted con-
tributions from all previous mass fraction gradients through a convolution or memory
integral". In this perspective, we split (1.24) in two components

Jdis = Jf
dis + Jnf

dis, (1.26)

where Jf
dis accounts for Fickian dispersion and naturally obeys the Fickian law

Jf
dis = −Df∇c, (1.27)

and Jnf
dis, which accounts for deviations from ideal Fickian behavior and satisfies the

non-Fickian relation

Jnf
dis(t+ τ) = −Dnf∇c(t), (1.28)
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where τ > 0 is a time delay parameter [57]. That is, the non-Fickian flux Jnf
dis, at

time t depends, in some fashion, on the history up to time t of the flux. As has
been stressed repeatedly, one key drawback of equation (1.24) is that it imposes a
instantaneous relation between the cause, concentration gradient, and the effect, mass
flux. This non-physical infinite speed of propagation is removed in (1.28), assuming
the existence of a time interval between the cause and the effect.

Expanding the left term of (1.28) into a Taylor’s series of order one, and integrating
the resulting equality with respect to t, we obtain the approximation

Jnf
dis(t) = −

∫ t

0

K(t− s)∇ · (Dnf∇c(s)) ds, (1.29)

with the memory term

K(t) =
1

τ
exp(−t/τ),

and assuming for simplicity that Jdis(0) = 0. Then, substituting (1.22), (1.23), (1.26),
(1.27) and (1.29) into (1.25) results in the following integro-differential equation for
the concentration

φ∂tc+ Ac =

∫ t

0

K(t− s)Bc(s) ds+ qc∗ in Ω× (0, T ], (1.30)

with A and B given by

Ac = ∇ · (vc)−∇ · (Df∇c) and Bc(s) = ∇ · (Dnf∇c(s)).

Here, Df and Dnf denote a Fickian and non-Fickian dispersion tensor, respectively.
We notice that if q is null, this equation is a particular case of the integro-differential
equation (1.2). Following a different approach, Thompson [155] has proposed a very
similar, but non-identical model. Equations similar to (1.30) were also obtained by
Cattaneo [40] and by Joseph and Preziosi [105] to model heat conduction. In this
context, one can view equation (1.30) as a type of Jeffrey’s equation with advection.

If the velocity field v is unknown, an additional equation is needed. For this, we
assume that v satisfies the incompressibility condition

∇ · v = q in Ω (1.31)

and obeys Darcy’s law, while depending only on the porous medium,

v = −K̄∇p in Ω. (1.32)
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Here p is the pressure of the fluid mixture and K̄ is the permeability tensor of the
medium, which is a measure of the medium’s ability to transmit the fluid. As usual,
we assume that K̄ is symmetric positive definite.

Therefore, the proposed mathematical model for describing flow and non-Fickian
transport in porous media is described by the uncoupled system (1.30)-(1.32). This
system also needs to be closed by an initial condition for the concentration,

c(0) = c0 in Ω, (1.33)

and the boundary conditions

p = pD on ∂ΩD, (1.34)

K̄∇p · η = v · η = g on ∂ΩN , (1.35)

c = cD on ∂ΩD × (0, T ], (1.36)
(
vc−Df∇c−

∫ t

0

K(t− s)Dnf∇c(s) ds
)
· η = f on ∂ΩN × (0, T ], (1.37)

where η is the unit outward normal vector to ∂Ω, and ∂ΩD and ∂ΩN are the Dirichlet
and Neumann parts of the boundary, respectively.

In these problems, where advection is the dominant process and the medium is
highly heterogeneous, we expect the equations (1.30)-(1.32) to have complex solutions
with moving steep fronts and rough velocity fields. Therefore, standard methods such
as finite differences and finite elements are not appropriate [67].

To conclude this section, we would like to mention that for many porous media
problems, Darcy’s law (1.32) depends also on the concentration through the expression

v = − K̄

µ(c)
∇p, (1.38)

where µ(c) is the viscosity of the fluid mixture. In this case, our mathematical model
would consist of a coupled integro-differential elliptic system.

This and other possible modifications create new challenging theoretical and nu-
merical issues that will certainly be topics of future work. In fact, coupled systems
resulting from the use of equation (1.38) are the subject of ongoing studies. At this
point, we are dealing with a simplified problem; however, we think that the prelimi-
nary theoretical results are quite interesting and novel. For this reason, we decided
to present them in this thesis. In Section 1.3, we specify the problem in more detail.
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1.2.2 Contributions of this Work

In this thesis, we introduce a PIDE model to describe non-Fickian tracer transport
in porous media. In Chapter 5, we test the accuracy of the one-dimensional model
and how it compares against the classical PDE model. A small set of experiments
are analyzed, and we can conclude that even in laboratory-scale homogeneous porous
media, transport processes may exhibit anomalous non-Fickian behavior that the
PIDE model can reproduce and that the classical PDE model fails to capture. Overall,
the results indicate that the PIDE model provides a substantial improvement over the
standard PDE model. However, further work is needed to test the proposed model
using much more experimental data. A more profound physical and mathematical
analysis of the model should also be carried out.

Also in Chapter 5, we propose an accurate and stable numerical method for the
discretization in two dimensions. In space, it is based on the combination of mixed
finite element and finite volume methods over an unstructured triangular mesh. For
the time integration, we use a multistep method combined with a numerical quadra-
ture rule for the integral term. As we will demonstrate, this time procedure can
be implement in a memory-efficient way as a three-time-level scheme. Therefore,
we overcome one of the intrinsic drawbacks usually associated with PIDE models,
namely, the memory requirements need to evaluate the time integral term. Some
results regarding this integro-differential model were published in [83].

1.3 A Parabolic-Elliptic Coupled Problem

Following the discussion at the end of Section 1.2.1, we introduce now a coupled
system formed by the elliptic equation

−∇ · (a(c)∇p) = q1 in Ω× (0, T ] (1.39)

and by the parabolic equation

∂tc+∇(b(c,∇p)c)−∇(d(c,∇p)∇c) = q2 in Ω× (0, T ], (1.40)

complemented with homogeneous Dirichlet boundary conditions

p = c = 0 on ∂Ω × (0, T ], (1.41)

and the initial conditions

p(0) = p0, c(0) = c0 in Ω. (1.42)
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Here the domain Ω is one-dimensional and a : R → R and b, d : R2 → R are given
functions.

In the absence of sources and sinks, and with a suitable choice of functions a,
b and d, it is easy to observe that the equations (1.39)-(1.42) can yield a classical
one-dimensional PDE model for the tracer transport problem. Note, however, that
here we allow a relation like (1.38) for the velocity, and therefore the resulting sys-
tem is coupled. This is more complex than we have assumed before for the PIDE
model (see equation (1.32)). With some modifications to account for sources and
sinks, the two-dimensional version of such a system with Dirichlet, Neumann, or
mixed Dirichlet-Neumann boundary conditions has been extensively analyzed in the
literature. Without being exhaustive, we refer to [67,73] for the numerical treatment
and to [45] for the question of existence and uniqueness of the solution. Convergence
studies and error estimates are available for some numerical methods. For instance,
in [81] the sub-optimal bound

‖p(t)− ph(t)‖H1 + ‖c(t)− ch(t)‖L2 ≤ Ch,

was obtained for piecewise linear FEMs. Assuming that the dispersion tensor D does
not depend on ∇p, the following optimal bound was also proved,

‖c(t)− ch(t)‖L2 ≤ Ch2.

As mentioned before, traditional FEMs are ineffective to solve these kind of prob-
lems; therefore other approaches were investigated. For example, in [117], FEMs were
used to calculate the pressure, but a proper post-processing technique was employed
to approximate the velocity, and a stabilized FEM was applied to the concentration
equation. The error of the semi-discrete approximation was analyzed, and a near
optimal rate of convergence for the piecewise case was obtained:

‖c(t)− ch(t)‖L2 ≤ Ch1.5.

Mixed finite elements are highly regarded methods to approximate p and v. The
combination of RT0 elements with piecewise linear FEMs for the concentration equa-
tion was proved [60, 79] to yield the estimate

‖c(t)− ch(t)‖L2 + ‖v(t)− vh(t)‖H(div) + ‖p(t)− ph(t)‖L2 ≤ Ch,

which can be improved to h2 if first-order Raviart-Thomas mixed elements are em-
ployed or the Darcy’s velocity is post-processed [59, 80]. On the other hand, optimal
convergence for the concentration of the form

‖c(t)− ch(t)‖H1 + ‖v(t)− vh(t)‖L2 ≤ Ch,
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was demonstrated in [151], by coupling RT0 elements with discontinuous FEMs.

1.3.1 Contributions of this Work

In this thesis, we develop a non-standard piecewise linear FEM to numerically solve
the problem (1.39)-(1.42). Our major contribution appears in Chapter 4, where we
prove supercloseness to the gradients ∇c and ∇p. The estimate is of the form

‖Php(t)− ph(t)‖2H1 +

∫ t

0

‖Phc(s)− ch(s)‖2H1 ds

≤ Ch4
∫ t

0

‖c(s)‖2H3 + ‖p(s)‖2H3 + ‖∂tc(s)‖2H2 ds,

with h associated with an arbitrary non-uniform mesh. To our knowledge, super-
closeness of the gradient ∇c has not been established before for this kind of problem.
However, we note that our problem is one-dimensional and a somewhat simplified ver-
sion of the usual one. We are assuming Dirichlet boundary conditions and that there
are no source or sink terms. The main contents of this chapter have been published
in [85]. Some additional results were published in [84].





Chapter 2

A FEM for Parabolic PIDEs in One
Dimension

In this chapter, we consider the one-dimensional version of our main equation

∂tc+ Ac =

∫ t

0

B(s, t)c(s) ds+ f in Ω× (0, T ], (2.1)

subject to homogeneous Dirichlet boundary conditions

c = 0 on ∂Ω × (0, T ], (2.2)

and with the initial condition

c(0) = c0 in Ω. (2.3)

The differential operators A and B(s, t) are defined as follows:

Ac = −∇(a2∇c) +∇(a1c) + a0c

and

B(s, t)c = −∇(b2(s, t)∇c) +∇(b1(s, t)c) + b0(s, t)c.

For the coefficient functions, we assume that a2 and b2(s, t) are in C(Ω̄) and a0, a1,
b0(s, t), and b1(s, t) belong to W 2,∞(Ω), for s, t ∈ (0, T ]. We also assume that c0 and
f are smooth enough and set, without loss of generality, Ω = (0, 1).

In the next sections, we study the numerical approximation in space of prob-
lem (2.1)-(2.3) using piecewise linear finite elements with special quadrature rules.
The stability and convergence of the semi-discrete method is discussed and super-
closeness in the H1-norm is proved without any smoothness assumptions on the mesh.

17
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2.1 A Semi-Discrete Galerkin Method

Let us denote by (·, ·) the standard inner product in L2(Ω). A variational formulation
of our problem is: find c : [0, T ] → H1

0 (Ω) such that, for all v ∈ H1
0 (Ω),





(∂tc, v) + a(c, v) =

∫ t

0

b(s, t, c(s), v) ds+ (f, v) for t ∈ (0, T ],

c(0) = c0,

(2.4)

where for w, v ∈ H1
0 (Ω),

a(w, v) = (a2∇w,∇v)− (a1w,∇v) + (a0w, v)

and

b(s, t, w, v) = (b2(s, t)∇w,∇v)− (b1(s, t)w,∇v) + (b0(s, t)w, v).

Next, we present the standard semi-discrete Galerkin FEM for (2.4) using piece-
wise linear functions. First, we introduce some useful notation. For a positive integer
N , let

Ωh =
{
xi : 0 = x0 < x1 < . . . < xN = 1

}

be an arbitrary spatial grid, and set hi = xi − xi−1 and xi−1/2 = xi − hi/2, for
i = 1, . . . , N . Denote by h the vector (h1, . . . , hN) and define hmax = max h, then,
represent by H a sequence of grid vectors h(k) with h

(k)
max → 0, if k → ∞. At last,

we denote by Sh ⊂ H1
0 (Ω) the space of continuous piecewise linear functions over the

grid Ωh that vanish at the end points.
Let ch,0 ∈ Sh be an appropriate approximation of c0. A standard semi-discrete

FEM consists in finding ch : [0, T ] → Sh such that, for all vh ∈ Sh,




(∂tch, vh) + a(ch, vh) =

∫ t

0

b(s, t, ch(s), vh) ds+ (f, vh) for t ∈ (0, T ],

ch(0) = ch,0,

(2.5)

with

a(wh, vh) = (a2∇wh,∇vh)− (a1wh,∇vh) + (a0wh, vh) (2.6)

and

b(s, t, wh, vh) = (b2(s, t)∇wh,∇vh)− (b1(s, t)wh,∇vh) + (b0(s, t)wh, vh), (2.7)
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for wh, vh ∈ Sh.
The semi-discrete FEM that we propose is obtained by using numerical quadrature

to evaluate the inner products appearing in (2.5)-(2.7). Before describing our method,
we need to introduce some definitions and notations. Let φi, for i = 1, . . . , N − 1, be
the standard hat functions associated with the nodes xi. Since this set of functions
is a basis for the space Sh, we write any function vh in Sh as

vh(x) =

N−1∑

i=1

vh(xi)φi(x) for x ∈ Ω.

Next, we define the inner product

(wh, vh)h =
N−1∑

i=1

hi+1/2wh(xi)vh(xi) for wh, vh ∈ Sh, (2.8)

where hi+1/2 = (hi + hi+1)/2. Observe that (2.8) corresponds to an approximation of
the L2-inner product in Sh by the composite trapezoidal rule. The norm associated
with the inner product (2.8) is denoted by ‖ · ‖h. It can be proved that this norm is
equivalent to the L2-norm on Sh. Finally, for a sufficiently smooth function g, we set

M(g(x)) = g(xi−1/2) and M∗(g(x)) = (g(xi−1) + g(xi))/2,

for x ∈ (xi−1, xi], and where i = 1, . . . , N , we define the grid approximation

(g(xi))h =





1

hi+1/2

∫ xi+1/2

xi−1/2

g(x) dx for i = 1, . . . , N − 1,

0 for i = 0, N,

and, with the additional condition that g is null on ∂Ω, we also define its interpolant
Phg in Sh by

Phg(x) =

N−1∑

i=1

g(xi)φi(x) for x ∈ Ω.

Then, our semi-discrete FEM reads as follows: find ch : [0, T ] → Sh such that, for
all vh ∈ Sh,




(∂tch, vh)h + ah(ch, vh) =

∫ t

0

bh(s, t, ch(s), vh) ds+ ((f)h, vh)h for t ∈ (0, T ],

ch(0) = ch,0,

(2.9)
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with

ah(wh, vh) = (M(a2)∇wh,∇vh)− (M∗(a1wh),∇vh) + (a0wh, vh)h (2.10)

and

bh(s, t, wh, vh) = (M(b2(s, t))∇wh,∇vh)
− (M∗(b1(s, t)wh),∇vh) + (b0(s, t)wh, vh)h, (2.11)

for wh, vh ∈ Sh. Observe that a solution ch can be expanded in the form

ch(x, t) =

N−1∑

i=1

ch(xi, t)φi(x) for x ∈ Ω, t ∈ [0, T ].

We point out that the first two terms arising on the right-hand side of (2.10) and
(2.11) are approximations by the composite midpoint and trapezoidal rule, respec-
tively, of the equivalent terms in (2.6) and (2.7). For later convenience, we assume
that ah(·, ·) is continuous

|ah(wh, vh)| ≤ Ca,c‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh (2.12)

and elliptic, in the sense that

ah(vh, vh) ≥ Ca,e‖vh‖2H1 for all vh ∈ Sh. (2.13)

We also suppose that bh(s, t, ·, ·) is bounded uniformly with respect to s and t, i.e.,

|bh(s, t, wh, vh)| ≤ Cb,c‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh, s, t ∈ [0, T ]. (2.14)

We close this section with some remarks. First, if f(t) is at least in H2(Ω),
the approximation (f(t))h in (2.9) can be replaced by Rhf(t), with Rh being the
restriction operator to the grid Ωh (see Remark 3.4 in [16]). Additionally, in the
following we write h ∈ H to indicate the convergence with respect to h running
through the sequence H.

2.1.1 Stability Analysis

We say that a function vh belongs to C1([0, T ];Sh) if vh and ∂tvh are continuous
functions from [0, T ] to Sh endowed with the norm ‖ · ‖h. The main result of this
section is given in Theorem 2.1, where we prove a stability result for a solution
ch of (2.9). From there, assuming that f = 0, the stability of ch, with respect to
perturbations of the initial condition ch,0 in the norm ‖ · ‖H1 , can easily be derived.
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Theorem 2.1 Let us suppose that ah(·, ·) and bh(s, t, ·, ·) satisfy (2.13) and (2.14),
respectively. If a solution ch of (2.9) is in C1([0, T ];Sh), then

‖ch(t)‖2h +
∫ t

0

‖ch(s)‖2H1 ds ≤ CeCt
(
‖ch,0‖2h +

∫ t

0

‖(f(s))h‖2h ds
)
, (2.15)

for t ∈ [0, T ], with

C =
max{1, C2

b,cT/2ǫ
2}

min{1, 2(Ca,e − ǫ2)} (2.16)

and for all ǫ 6= 0, such that

Ca,e − ǫ2 > 0. (2.17)

Proof: Taking in (2.9) vh = ch(t), we establish

1

2
∂t‖ch(t)‖2h + Ca,e‖ch(t)‖2H1 ≤ Cb,c

∫ t

0

‖ch(s)‖H1‖ch(t)‖H1 ds

+
1

2

(
‖(f(t))h‖2h + ‖ch(t)‖2h

)
.

Since we have
∫ t

0

‖ch(s)‖H1‖ch(t)‖H1 ds ≤ 1

4ǫ2

(∫ t

0

‖ch(s)‖H1 ds
)2

+ ǫ2‖ch(t)‖2H1 ,

for all ǫ 6= 0, we deduce

∂t‖ch(t)‖2h + 2(Ca,e − ǫ2)‖ch(t)‖2H1 ≤
C2

b,c

2ǫ2

(∫ t

0

‖ch(s)‖H1 ds
)2

+ ‖(f(t))h‖2h + ‖ch(t)‖2h. (2.18)

Using the inequality
(∫ t

0

‖ch(s)‖H1 ds
)2

≤ T

∫ t

0

‖ch(s)‖2H1 ds

in (2.18) and integrating from 0 to t, we obtain

‖ch(t)‖2h + 2(Ca,e − ǫ2)

∫ t

0

‖ch(s)‖2H1 ds ≤
∫ t

0

‖(f(s))h‖2h ds+ ‖ch,0‖2h

+
C2

b,cT

2ǫ2

∫ t

0

∫ s

0

‖ch(µ)‖2H1 dµ ds+

∫ t

0

‖ch(s)‖2h ds.

Choosing ǫ satisfying (2.17), we obtain

‖ch(t)‖2h +
∫ t

0

‖ch(s)‖2H1 ds ≤ C
( ∫ t

0

‖(f(s))h‖2h ds+ ‖ch,0‖2h
)

+ C

∫ t

0

(∫ s

0

‖ch(µ)‖2H1 dµ+ ‖ch(s)‖2h
)
ds
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with C defined by (2.16). Finally, applying the Gronwall’s lemma (see Lemma 2.1
in [46]), we get (2.15).

In the next theorem, we state a stability result for the temporal derivative of ch.

Theorem 2.2 Let us suppose that the inequalities (2.13) and (2.14) hold. Moreover,
assume that

bh(t, t, vh, vh) ≥ Cb,e‖vh‖2H1 for all vh ∈ Sh (2.19)

and

|∂tbh(s, t, wh, vh)| ≤ Cb,d‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh, s, t ∈ [0, T ]. (2.20)

If a solution ch of (2.9) is in C1([0, T ];Sh), then
∫ t

0

‖∂sch(s)‖2h ds+ ‖ch(t)‖2H1 +

∫ t

0

‖ch(s)‖2H1 ds

≤ C1e
C2t

(
Ca,c‖ch,0‖2H1 +

∫ t

0

‖(f(s))h‖2h ds
)

(2.21)

for t ∈ [0, T ], with ǫ and η such that

Ca,e − η2 > 0 and Cb,e − ǫ2 > 0, (2.22)

and where

C1 =
1

min{1, Ca,e − η2, 2(Cb,e − ǫ2)} , C2 = C1max{C2
b,cT/η

2, C2
b,dT/2ǫ

2}. (2.23)

Proof: Placing vh = ∂tch(t) in (2.9), we get

‖∂tch(t)‖2h + ah(ch(t), ∂tch(t)) =

∫ t

0

bh(s, t, ch(s), ∂tch(t)) ds

+ ((f(t))h, ∂tch(t))h. (2.24)

Since

∂tah(ch(t), ch(t)) = 2ah(ch(t), ∂tch(t))

and

∂t

∫ t

0

bh(s, t, ch(s), ch(t)) ds = bh(t, t, ch(t), ch(t)) +

∫ t

0

bh(s, t, ch(s), ∂tch(t)) ds

+

∫ t

0

∂tbh(s, t, ch(s), ch(t)) ds,
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from (2.24), we estimate

1

2
‖∂tch(t)‖2h +

1

2
∂tah(ch(t), ch(t)) ≤ ∂t

∫ t

0

bh(s, t, ch(s), ch(t)) ds

−
∫ t

0

∂tbh(s, t, ch(s), ch(t)) ds− bh(t, t, ch(t), ch(t)) +
1

2
‖(f(t))h‖2h. (2.25)

Using the inequalities (2.19) and (2.20) in (2.25), we find

1

2
‖∂tch(t)‖2h +

1

2
∂tah(ch(t), ch(t)) + Cb,e‖ch(t)‖2H1 ≤ ∂t

∫ t

0

bh(s, t, ch(s), ch(t)) ds

+ Cb,d

∫ t

0

‖ch(s)‖H1 ds‖ch(t)‖H1 +
1

2
‖(f(t))h‖2h.

Consequently, as

Cb,d

∫ t

0

‖ch(s)‖H1 ds‖ch(t)‖H1 ≤
C2

b,dT

4ǫ2

∫ t

0

‖ch(s)‖2H1 ds+ ǫ2‖ch(t)‖2H1

holds for any ǫ 6= 0, we have

‖∂tch(t)‖2h + ∂tah(ch(t), ch(t)) + 2(Cb,e − ǫ2)‖ch(t)‖2H1

≤ 2∂t

∫ t

0

bh(s, t, ch(s), ch(t)) ds+
C2

b,dT

2ǫ2

∫ t

0

‖ch(s)‖2H1 ds+ ‖(f(t))h‖2h,

and performing the integration from 0 to t leads to
∫ t

0

‖∂sch(s)‖2h ds+ ah(ch(t), ch(t)) + 2(Cb,e − ǫ2)

∫ t

0

‖ch(s)‖2H1 ds

≤ 2

∫ t

0

bh(s, t, ch(s), ch(t)) ds+
C2

b,dT

2ǫ2

∫ t

0

∫ s

0

‖ch(µ)‖2H1 dµ ds

+ ah(ch,0, ch,0) +

∫ t

0

‖(f(s))h‖2h ds.

According to (2.13) and (2.14), there follows
∫ t

0

‖∂sch(s)‖2h ds+ (Ca,e − η2)‖ch(t)‖2H1 + 2(Cb,e − ǫ2)

∫ t

0

‖ch(s)‖2H1 ds

≤
C2

b,cT

η2

∫ t

0

‖ch(s)‖2H1 ds+
C2

b,dT

2ǫ2

∫ t

0

∫ s

0

‖ch(µ)‖2H1 dµ ds

+ Ca,c‖ch,0‖2H1 +

∫ t

0

‖(f(s))h‖2h ds,

and so∫ t

0

‖∂sch(s)‖2h ds+ ‖ch(t)‖2H1 +

∫ t

0

‖ch(s)‖H1 ds ≤ C2

∫ t

0

(∫ s

0

‖ch(µ)‖2H1 dµ

+ ‖ch(s)‖2H1

)
ds+ C1

(
Ca,c‖ch,0‖2H1 +

∫ t

0

‖(f(s))h‖2h ds
)
,

for ǫ and η satisfying (2.22), and with C defined by (2.23).
Applying Gronwall’s lemma to the previous inequality, we conclude (2.21).
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2.1.2 Error Estimates

In this section, the convergence properties of our semi-discrete method are discussed
and a supercloseness estimate for the error

eh(t) = Phc(t)− ch(t) (2.26)

is provided. In the analysis, we follow the classical approach presented in [160] for
parabolic equations. First, we split the error (2.26) into two terms:

eh(t) = Phc(t)− c̃h(t) + c̃h(t)− ch(t)

= ρh(t) + θh(t), (2.27)

where c̃h(t) is a solution of the auxiliary variational problem

ah(c̃h(t), vh) = (gh(t), vh)h for all vh ∈ Sh, (2.28)

with

gh(t) =

∫ t

0

(B(s, t)c(s))h ds− (∂tc(t))h + (f(t))h.

Now, we proceed by estimating the terms ρh(t) and θh(t). We begin with the term
ρh(t). We successively have

Ca,e‖ρh(t)‖2H1 ≤ ah(ρh(t), ρh(t))

= ah(Phc(t), ρh(t))− (gh(t), ρh(t))h

= ah(Phc(t), ρh(t))− ((Ac(t))h, ρh(t))h

= ah(Phc(t), ρh(t))−
N−1∑

i=1

∫ xi+1/2

xi−1/2

Ac(x, t) dxρh(xi, t)

= τ
(a)
h (ρh(t)),

from which we can conclude

‖ρh(t))‖2H1 ≤ 1

Ca,e
τ
(a)
h (ρh(t)). (2.29)

A bound for ρh(t) is obtained using Lemma 2.1 and (2.29). The proof of this lemma,
as well as the proofs of Lemmas 2.2, 2.3, and 2.4, is essentially identical to the proof
of Theorem 3.1 in [16].
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Lemma 2.1 Assume that ah(·, ·) satisfies the inequalities (2.12) and (2.13). If c(t) ∈
H1+r(Ω) ∩ H1

0 (Ω), for r ∈ {1, 2}, and ∂tc(t) ∈ L2(Ω), then, for the functional τ (a)h ,
the following is held:

|τ (a)h (vh)| ≤ C
( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

‖vh‖H1 for vh ∈ Sh, h ∈ H.

Proposition 2.1 Under the assumptions of Lemma 2.1, the term ρh(t) satisfies the
estimate

‖ρh(t)‖H1 ≤ C
( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

for r ∈ {1, 2}.

For later use, we need to bound the quantity ‖∂tρh(t)‖H1 . Proceeding as in the
estimation of ‖ρh(t)‖H1 , we get

Ca,e‖∂tρh(t)‖2H1 ≤ ah(∂tPhc(t)− ∂tc̃h(t), ∂tρh(t))

= ah(∂tPhc(t), ∂tρh(t))− (

∫ t

0

(∂tB(s, t)c(s))h ds, ∂tρh(t))h

− ((B(t, t)c(t))h, ∂tρh(t))h + ((∂2t c(t) + ∂tf(t))h, ∂tρh(t))h

= ah(∂tPhc(t), ∂tρh(t))− ((A∂tc(t))h, ∂tρh(t))h

= ah(∂tPhc(t), ∂tρh(t))−
N−1∑

i=1

∫ xi+1/2

xi−1/2

A∂tc(x, t) dx∂tρh(xi, t)

= τ
(d)
h (∂tρh(t)),

that is:

Ca,e‖∂tρh(t)‖2H1 ≤ τ
(d)
h (∂tρh(t)). (2.30)

Here, it is important to remark that, in the above derivation, we need to impose
some regularity conditions on ∂2t c(t). This is made clear in the next lemma.

Lemma 2.2 Assume that ah(·, ·) satisfies the inequalities (2.12) and (2.13). If ∂2t c(t) ∈
L1(Ω) and ∂tc(t) ∈ H1+r(Ω), for r ∈ {1, 2}, then, for the functional τ (d)h , the following
is held:

|τ (d)h (vh)| ≤ C
( N∑

i=1

h2ri ‖∂tc(t)‖2H1+r(xi−1,xi)

)1/2

‖vh‖H1 for vh ∈ Sh, h ∈ H.

From Lemma 2.2 and the inequality (2.30) we obtain the next proposition.
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Proposition 2.2 Under the assumptions of Lemma 2.2, the term ∂tρh(t) satisfies
the estimate

‖∂tρh(t)‖H1 ≤ C
( N∑

i=1

h2ri ‖∂tc(t)‖2H1+r(xi−1,xi)

)1/2

for r ∈ {1, 2}.

Lemma 2.3 The functional τ (b)h defined by

τ
(b)
h (t, vh) =

∫ t

0

bh(s, t, Phc(s), vh)− (B(s, t)c(s), vh)h ds for vh ∈ Sh,

satisfies

|τ (b)h (t, vh)| ≤ C

∫ t

0

( N∑

i=1

h2ri ‖c(s)‖2H1+r(xi−1,xi)

)1/2

ds‖vh‖H1 for r ∈ {1, 2}, h ∈ H,

provided that c ∈ L∞(0, T ;H1+r(Ω) ∩H1
0 (Ω)).

Lemma 2.4 If ∂tc(t) ∈ H1+r(Ω), for r ∈ {1, 2}, then, for

τ
(c)
h (t, vh) = (∂tPhc(t), vh)h − ((∂tc(t))h, vh)h,

with vh ∈ Sh, we have

|τ (c)h (t, vh)| ≤ C
( N∑

i=1

h2ri ‖∂tc(t)‖2H1+r(xi−1,xi)

)1/2

‖vh‖H1 for h ∈ H.

Now, we deal with the term θh(t). We define

τ
(b)
h,r(t) = C

∫ t

0

( N∑

i=1

h2ri ‖c(s)‖2H1+r(xi−1,xi)

)1/2

ds

and

τ
(c)
h,r(t) = C

( N∑

i=1

h2ri ‖∂tc(t)‖2H1+r(xi−1,xi)

)1/2

.

The following lemma plays a central role in the proof of the main theorem.

Lemma 2.5 Let us suppose that ah(·, ·) and bh(s, t, ·, ·) satisfy (2.13) and (2.14),
respectively. If c ∈ L∞(0, T ;H1+r(Ω) ∩ H1

0 (Ω)), ∂tc ∈ L∞(0, T ;H1+r(Ω)), for r ∈
{1, 2}, and ∂2t c ∈ L∞(0, T ;L1(Ω)), then the following holds

‖θh(t)‖2h + 2(Ca,e − 3ǫ2)

∫ t

0

‖θh(s)‖2H1 ds ≤
C2

b,cT

2ǫ2

∫ t

0

∫ s

0

‖eh(µ)‖2H1 dµ ds

+ ‖θ(0)‖2h +
1

2ǫ2

∫ t

0

‖∂sρh(s)‖2h + τh,r(s)
2 ds, (2.31)

for t ∈ [0, T ], with τh,r(s) = τ
(b)
h,r(s) + τ

(c)
h,r(s) and for any ǫ 6= 0.
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Proof: It is easy to show that ∂tθh(t) is a solution of the variational problem

(∂tθh(t), vh)h = (∂tc̃h(t), vh)h + ah(ch(t), vh)−
∫ t

0

bh(s, t, ch(s), vh) ds− ((f(t))h, vh)h,

for all vh ∈ Sh and t ∈ (0, T ]. According to this, and by the definition (2.27) of θh(t)
and (2.28), we obtain

(∂tθh(t), vh)h = (∂tc̃h(t), vh)h − ah(θh(t), vh)−
∫ t

0

bh(s, t, ch(s), vh) ds

− ((∂tc(t))h, vh)h + (

∫ t

0

(B(s, t)c(s))h ds, vh)h,

which is equivalent to

(∂tθh(t), vh)h + ah(θh(t), vh) =

∫ t

0

bh(s, t, eh(s), vh) ds− (∂tρh(t), vh)h + τh(t, vh),

for vh ∈ Sh and with τh(t, vh) = τ
(c)
h (t, vh)− τ

(b)
h (t, vh).

Setting vh = θh(t), since τh(t, θh) ≤ τh,r(t)‖θh(t)‖H1, using the same type of argu-
ments as in the stability analysis, we find

1

2
∂t‖θh(t)‖2h + Ca,e‖θh(t)‖2H1 ≤

C2
b,cT

4η2

∫ t

0

‖eh(s)‖2H1 ds+ η2‖θh(t)‖2H1

+
1

4ǫ2
‖∂tρh(t)‖2h + ǫ2‖θh(t)‖2H1 +

1

4σ2
τh,r(t)

2 + σ2‖θh(t)‖2H1 ,

for ǫ 6= 0, σ 6= 0 and for t ∈ [0, T ]. Hence, setting ǫ = η = σ we arrive at

∂t‖θh(t)‖2h + 2(Ca,e − 3ǫ2)‖θh(t)‖2H1 ≤
C2

b,cT

2ǫ2

∫ t

0

‖eh(s)‖2H1 ds

+
1

2ǫ2

(
‖∂tρh(t)‖2h + τh,r(t)

2
)
. (2.32)

We conclude the proof by integrating (2.32).

Now, we are able to establish the main result of this chapter.

Theorem 2.3 Let c be a solution of the variational problem (2.4) and ch its approxi-
mation defined by (2.9). Then, under the assumptions of Lemma 2.5, the error eh(t),
for t ∈ [0, T ], satisfies the estimate

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ds ≤ eC2t
(∫ t

0

2‖ρh(s)‖2H1 ds+ 2‖ρh(t)‖2h

+ C1

(
‖θ(0)‖2h +

1

2ǫ2

∫ t

0

‖∂sρh(s)‖2h + τh,r(s)
2 ds

)
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for r ∈ {1, 2}, where C1 and C2 are defined by

C1 =
2

min{1, 2(Ca,e − 3ǫ2)} , C2 = C1

C2
b,cT

2ǫ2

and ǫ is non-zero, such that

Ca,e − 3ǫ2 > 0. (2.33)

Proof: Since

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ds ≤ 2
(
‖ρh(t)‖2h +

∫ t

0

‖ρh(s)‖2H1 ds

+ ‖θh(t)‖2h +
∫ t

0

‖θh(s)‖2H1 ds
)
,

from (2.31) and with ǫ 6= 0 under the condition (2.33), it follows that

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ds ≤ C2

∫ t

0

∫ s

0

‖eh(µ)‖2H1 dµ ds+

∫ t

0

2‖ρh(s)‖2H1 ds

+ 2‖ρh(t)‖2h + C1

(
‖θ(0)‖2h +

1

2ǫ2

∫ t

0

‖∂sρh(s)‖2h + τh,r(s)
2 ds

)
.

An application of Gronwall’s lemma completes the proof.

Combining Theorem 2.3 with Propositions 2.1 and 2.2, and by the definitions of
τ
(b)
h (t) and τ (c)h (t), we conclude the following result.

Corollary 2.1 Let c be a solution of the variational problem (2.4) and ch its ap-
proximation defined by (2.9). If ah(·, ·) and bh(s, t, ·, ·) satisfy (2.13) and (2.14),
respectively, then, for r ∈ {1, 2},

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ≤ C
( N∑

i=1

h2ri

(∫ t

0

‖c(s)‖2H1+r(xi−1,xi
) ds+ ‖c(t)‖2H1+r(xi−1,xi

)

+ ‖∂tc(t)‖2H1+r(xi−1,xi
)

)
+ ‖Phc0 − ch,0‖2h

)
,

for t ∈ [0, T ] and h ∈ H, provided that c ∈ L∞(0, T ;H1+r(Ω) ∩ H1
0 (Ω)), ∂tc ∈

L∞(0, T ;H1+r(Ω)), ∂2t c ∈ L∞(0, T ;L1(Ω)), and ‖θ(0)‖2h ≤ Ch2rmax.

Thus, our supercloseness result follows as a particular case of Corollary 2.1, by
taking r = 2 and defining ch,0, such that

‖Phc0 − ch,0‖h ≤ Ch2max. (2.34)

We state this in the corollary below.
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Corollary 2.2 Assume that (2.34) and the assumptions of Corollary 2.1 hold. Then,
∫ t

0

‖Phc(s)− ch(s)‖2H1 ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H3

)
,

for t ∈ [0, T ], provided that c ∈ L∞(0, T ;H3(Ω) ∩ H1
0 (Ω)), ∂tc ∈ L∞(0, T ;H3(Ω)),

and ∂2t c ∈ L∞(0, T ;L1(Ω)).

In the following section, we establish the equivalence between the semi-discrete
FEM (2.9) and a finite difference semi-discretization of (2.1)-(2.3).

2.1.3 Equivalence with a Finite Difference Method

Let Wh be the space of grid functions vFh defined on Ωh that are null on ∂Ω. In Wh

we introduce the following finite difference operators

Dcv
F
h (xi) =

vFh (xi+1)− vFh (xi−1)

hi+1 + hi
, DvFh (xi) =

vFh (xi+1/2)− vFh (xi−1/2)

hi+1/2

and

DvFh (xi+1/2) =
vFh (xi+1)− vFh (xi)

hi+1
,

where vFh (xi+1/2) is used as appropriate.
Now, we successively replace vh in (2.9) by the basis functions φj, for j = 1, . . . , N−

1. After a straightforward calculation, we obtain for cFh : [0, T ] → Wh the following
ordinary differential problem





∂tc
F
h + Ahc

F
h =

∫ t

0

Bh(s, t)c
F
h (s) ds+ (f)h for t ∈ (0, T ],

cFh (0) = cFh,0,

(2.35)

where, for vFh ∈ Wh,

Ahv
F
h = −D(a2Dv

F
h ) +Dc(a1v

F
h ) + a0v

F
h

and

Bh(s, t)v
F
h = −D(b2(s, t)Dv

F
h ) +Dc(b1(s, t)v

F
h ) + b0(s, t)v

F
h .

We remark that ch, defined by

ch(x, t) =

N−1∑

i=1

cFh (xi, t)φi(x) for x ∈ Ω, t ∈ [0, T ],
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furnishes a solution to the problem (2.9) whenever cFh is a solution of the prob-
lem (2.35). From this relation, and from observing that the discrete norm

‖vFh ‖21,h = ‖vFh ‖2h + ‖vFh ‖2h∗,

with

‖vFh ‖2h∗ =
N∑

i=1

hiDv
F
h (xi−1/2)

2,

is equivalent to the H1-norm on Sh, we can see our supercloseness result as a supra-
convergence result for the FDM (2.35). In fact, the estimate

∫ t

0

‖c(s)− cFh (s)‖21,h ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H3

)
,

holds under the assumptions of Corollary 2.2.

2.2 Numerical Experiments

In this section, we illustrate the convergence result of Corollary 2.1 by applying the
proposed method to one simple problem with a known exact solution.

In the temporal domain [0, T ], let us introduce the uniform time grid tn = n∆t,
for n = 0, . . . , N , with tN = T , and where ∆t is a fixed time step. We define the error
as

Error =
(
‖c(tN)− cNh ‖2h +∆t

N∑

n=1

‖c(tn)− cnh‖21,h
)1/2

where cnh is a numerical solution at time level tn, and where the summation is an
approximation to the integral appearing on the left-hand side of Corollary 2.1.

Example 2.1 Consider the integro-differential problem (2.1)-(2.3) with T = 0.1 and
the coefficient functions

a2(x) = a1(x) = x+ 1, a0 = b0(s, t) = b1(s, t) = 0, and b2(s, t) = e−t+s.

Choose f and c0, such that the problem has the solution

c(x, t) = tx(x− 1)|x− 0.5|α for α ∈ R.
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Starting with a random spatial grid, we repeatedly solve Example 2.1, each time
doubling the size of the grid vector h by taking hi = hi/2. We repeat this procedure
twice, first by considering α = 2.1, and then by considering α = 3.1. Observe that

hmax Nx Error Rate

9.6988× 10−2 19 1.5092× 10−4 1.0337
4.8494× 10−2 39 7.3717× 10−5 1.1120
2.4247× 10−2 79 3.4106× 10−5 1.0688
1.2124× 10−2 159 1.6259× 10−5 1.0876
6.0618× 10−3 319 7.6503× 10−6 1.0924
3.0309× 10−3 639 3.5880× 10−6 1.0924
1.5154× 10−3 1279 1.6827× 10−6 -

Table 2.1: Discrete norm error and convergence rate for Example 2.1, with α = 2.1.

the solution of the Example 2.1 belongs to H2
0 (Ω) if α > 2 and to H3

0 (Ω) if α > 3.
Therefore, according to Corollary 2.1, we expect convergence rates of order one and
order two for each case, respectively. The numerical results presented in Tables 2.1
and 2.2 confirm this expectation. Here we denote by Nx the number of interior nodes.

hmax Nx Error Rate

9.4732× 10−2 19 5.7534× 10−5 1.6960
4.7366× 10−2 39 1.7758× 10−5 1.9413
2.3683× 10−2 79 4.6237× 10−6 2.0876
1.1841× 10−2 159 1.0878× 10−6 2.0579
5.9207× 10−3 319 2.6126× 10−7 2.0270
2.9604× 10−3 639 6.4103× 10−8 2.0071
1.4802× 10−3 1279 1.5947× 10−8 -

Table 2.2: Discrete norm error and convergence rate for Example 2.1, with α = 3.1.

In the numerical computations of this section, we have applied the implicit Euler
method for the time discretization and the rectangular rule to compute the integral
term. The time step used, ∆t = 10−6, is lower than the minimum of all values h2max.
This is small enough to avoid significant errors due to time discretization.





Chapter 3

A FEM for Parabolic PIDEs in Two
Dimensions

In this chapter, we deal with the two-dimensional version of the integro-differential
problem that we are discussing. Unless otherwise stated, the notation used here
should be interpreted as previously defined.

Let Ω be a simple polygonal domain of R2, i.e., an open connected set with piece-
wise linear boundary. We consider discretizations of the integro-differential problem





∂tc+ Ac =

∫ t

0

B(s, t)c(s) ds+ f in Ω× (0, T ],

c(0) = c0 in Ω,

(3.1)

completed with homogeneous Dirichlet boundary conditions. The differential opera-
tors A and B(s, t) are given by

Ac = −∇ · (A2∇c) +∇ · (A1c) + a0c (3.2)

and

B(s, t)c = −∇ · (B2(s, t)∇c) +∇ · (B1(s, t)c) + b0(s, t)c, (3.3)

where A2 = [aij ] and B2(s, t) = [bij(s, t)] for i, j = 1, 2 are symmetric matrices, and
where A1 = [ai] and B1(s, t) = [bi(s, t)] for i = 1, 2 are vectors. Moreover, we assume
that the coefficient functions of A and B(s, t) are in W 2,∞(Ω), for s, t ∈ (0, T ], and
that c0 and f are regular enough.

In the following sections, we propose and analyze a semi-discrete FEM that can be
seen as a natural extension of the one-dimensional scheme presented in the previous
chapter. As before, we are able to prove supercloseness in the H1-norm. However,
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here we introduce an error analysis framework that allows us to reduce the smoothness
assumptions on the analytical solution. The discretization in time using an implicit-
explicit (IMEX) method is also considered, and stability and convergence results are
derived.

3.1 A Semi-Discrete Galerkin Method

We start this section with the variational formulation of the problem. This is followed
by the presentation of our semi-discrete method, first in the absence of mixed deriva-
tives, and then for the full problem. As we will see, the presence of mixed derivatives
requires extra effort. Here, we skip the derivation of a standard FEM, since it is
essentially identical to that appearing in Section 2.1.

A variational formulation of problem (3.1)-(3.3) is: find c : [0, T ] → H1
0 (Ω) such

that, for all v ∈ H1
0 (Ω),





(∂tc, v) + a(c, v) =

∫ t

0

b(s, t, c(s), v) ds+ (f, v) for t ∈ (0, T ],

c(0) = c0,

(3.4)

where for w, v ∈ H1
0 (Ω),

a(w, v) = (A2∇w,∇v)− (A1w,∇v) + (a0w, v) (3.5)

and

b(s, t, w, v) = (B2(s, t)∇w,∇v)− (B1(s, t)w,∇v) + (b0(s, t)w, v). (3.6)

To formulate our finite element approximation in space, some notations and def-
initions are required. Let Th = {Ti : i = 1, . . . , NT} be an admissible triangulation
(see Definition 8.3.7 in [91]) of the domain Ω with rectangular triangles. Denote the
nodes of the triangulation by zjl, for j, l ∈ Z, and index them in such a way that the
grid of points is obtained:

Ω̄h =
{
(xj, yl) : xj = xj−1 + hxj , yl = yl−1 + hyl , for j, l ∈ Z

}
,

where (xj , yl) are the coordinates of the node zjl. In addition, we introduce

hmax = max h with h =
{
hxj , h

y
l : j, l ∈ Z

}
,
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and the set Ωh = Ω̄h∩Ω of all the interior points of Ω̄h. For every triangle T ∈ Th, we
define hT as the diameter of T and, as shown in Figure 3.1, we denote the rectangular
vertex of T by v1T , the vertex having the same x-coordinate as the rectangular vertex
by v2T , and the remaining vertex of the triangle by v3T . Take also m12

T as the midpoint
of the edge between v1T and v2T , and define m13

T analogously.

v1T

v2T

v3T

m12
T

m13
T

Figure 3.1: A generic triangle T and the notation.

Let the space Sh consist of the continuous piecewise linear functions over the
triangulation Th that vanish on ∂Ω. Representing by φjl the usual basis functions of
Sh, we have, for every function vh ∈ Sh,

vh(x, y) =
∑

zjl∈Ωh

v(xj, yl)φjl(x, y) for (x, y) ∈ Ω.

In the space Sh, we define the inner product

(wh, vh)h =
∑

zjl∈Ωh

hxj+1/2h
y
l+1/2wh(xj , yl)vh(xj , yl) for wh, vh ∈ Sh, (3.7)

which may be looked upon as an approximation to the L2-inner product on Sh. By
‖ · ‖h, we denote the norm determined by (3.7). At last, for a sufficiently smooth
function g, we set

M1j
T (g(x, y)) = (g(v1T ) + g(vjT ))/2 for j = 2, 3,

and the grid approximation

(g(xj, yl))h =





1

|Rjl|

∫

Rjl

g(x, y) dxdy for zjl ∈ Ωh,

0 for zjl ∈ ∂Ω,

where |Rjl| is the measure of the rectangle

Rjl = [xj−1/2, xj+1/2]× [yl−1/2, yl+1/2].
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Suppose for now that the problem (3.4)-(3.6) contains no mixed derivatives. There-
fore, with ch,0 ∈ Sh, a suitable approximation of c0, our semi-discrete FEM is formu-
lated as follows: find ch : [0, T ] → Sh such that, for all vh ∈ Sh,





(∂tch, vh)h + ah(ch, vh) =

∫ t

0

bh(s, t, ch(s), vh) ds+ ((f)h, vh)h for t ∈ (0, T ],

ch(0) = ch,0,

with

ah(wh, vh) =
2∑

i=1

aiih (wh, vh)−
2∑

i=1

aih(wh, vh) + a0h(wh, vh),

and

bh(s, t, wh, vh) =
2∑

i=1

biih (s, t, wh, vh)−
2∑

i=1

bih(s, t, wh, vh) + b0h(s, t, wh, vh),

for wh, vh ∈ Sh, and where aiih(·, ·), aih(·, ·), and a0h(·, ·) represent the discrete bilin-
ear forms associated with the coefficient functions aii, ai, and a0, respectively. In
particular, we have

a0h(wh, vh) = (a0wh, vh)h, (3.8)

a1h(wh, vh) =
∑

T∈Th
M13

T (a1wh)

∫

T

∇xvh dxdy, (3.9)

a2h(wh, vh) =
∑

T∈Th
M12

T (a2wh)

∫

T

∇yvh dxdy, (3.10)

with ∇x and ∇y the partial derivatives in x and y, respectively, as well as

a11h (wh, vh) =
∑

T∈Th
a11(m

13
T )

∫

T

∇xwh∇xvh dxdy, (3.11)

a22h (wh, vh) =
∑

T∈Th
a22(m

12
T )

∫

T

∇ywh∇yvh dxdy. (3.12)

In an analogous way, we define bh(s, t, ·, ·).
Next, we discuss our FEM for the case of mixed derivatives. The definition of the

bilinear forms associated with those derivatives is more technical and complex. In
fact, two special rectangular triangulations that we call T 1

h and T 2
h must be designed.

We proceed as follows: take a non-uniform grid Ω̄h, defined as before, and consider
the disjoint decomposition

Ω̄h = Ω1
h ∪̇ Ω2

h,
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where the sum j+l of the indices of the points (xj , yl) in Ω1
h and in Ω2

h is even and odd,
respectively. In order to simplify the following definitions, we introduce also Ω3

h = Ω1
h.

To each point (xj , yl) ∈ Ω̄h, we associate the four rectangular triangles T i
jl, i =

1, 2, 3, 4, which have the angle π/2 at (xj , yl), and two of the four horizontal/vertical
neighbor grid points of (xj , yl) as further vertices. We then define the triangulations

T k
h = T k

h,1 ∪ T k
h,2 for k = 1, 2,

with

T k
h,1 =

{
T i
jl ⊂ Ω : (xj , yl) ∈ Ωk

h, i = 1, 2, 3, 4
}
,

and

T k
h,2 =

{
T i
jl ⊂ (Ω \ ∪ {T : T ∈ T k

h,1}) : (xj, yl) ∈ Ωk+1
h , i = 1, 2, 3, 4

}
.

For better understanding, an example of such triangulations is displayed in Figure 3.2.

(a) Grid Ω̄h = Ω1
h ∪̇ Ω2

h.

Th,2

(b) Triangulation T 1
h .

Th,2

(c) Triangulation T 2
h .

Figure 3.2: In (a) • represents a node of Ω1
h and ◦ represents a node of Ω2

h. In (b)
and (c) Th,2 indicates a triangle of T k

h,2, for k = 1, 2.
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On each triangulation T k
h , we define, in a natural way, the space Sk

h , and for every
element vh ∈ Sh, we associate v1h ∈ S1

h and v2h ∈ S2
h, as defined by

vkh(x, y) =
∑

zjl∈Ωh

v(xj , yl)φ
k
jl(x, y) for (x, y) ∈ Ω, k = 1, 2, (3.13)

with φk
jl the standard basis of Sk

h and v(xj, yl) the coordinates of vh in the space Sh.
Assume that ch,0 ∈ Sh is an adequate approximation for c0. Hence, our spatially

discrete FEM for the full problem is: find ch : [0, T ] → Sh such that for all vh ∈ Sh,




(∂tch, vh)h + ah(ch, vh) =

∫ t

0

bh(s, t, ch(s), vh) ds+ ((f)h, vh)h for t ∈ (0, T ],

ch(0) = ch,0,

(3.14)

where for wh, vh ∈ Sh,

ah(wh, vh) =
2∑

i,j=1

aijh (wh, vh)−
2∑

i=1

aih(wh, vh) + a0h(wh, vh), (3.15)

and

bh(s, t, wh, vh) =
2∑

i,j=1

bijh (s, t, wh, vh)−
2∑

i=1

bih(s, t, wh, vh) + b0h(s, t, wh, vh). (3.16)

The discrete bilinear forms a0h(·, ·), aih(·, ·) and aiih(·, ·), for i = 1, 2, are as given in
(3.8)-(3.12), so only those associated with the mixed derivatives, a12h (·, ·) and a21h (·, ·),
require definition.

Remember that a12 = a21, and use amix to represent both functions. With the
notation of Figure 3.1, we define

V △(amix) =




amix(v

1
T ) if T ∈ T k

h,1,

amix(v
2
T ) if T ∈ T k

h,2,
V ⊲(amix) =




amix(v

1
T ) if T ∈ T k

h,1,

amix(v
3
T ) if T ∈ T k

h,2.

Then, using the notation of (3.13), we write

a12h (wh, vh) =
1

2

2∑

k=1

∑

T∈T k
h

∫

T

V ⊲(amix)∇xwk
h∇yvkh dxdy

and

a21h (wh, vh) =
1

2

2∑

k=1

∑

T∈T k
h

∫

T

V △(amix)∇ywk
h∇xvkh dxdy.
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Analogously, we can easily determine the expression of the discrete bilinear form
bh(s, t, ·, ·) given by (3.16).

For later purposes, we assume that ah(·, ·) is Sh-coercive, i.e., positive constants
Ca,c, Ca,e, and Ca,λ ∈ R exist such that

|ah(wh, vh)| ≤ Ca,c‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh

and

ah(vh, vh) ≥ Ca,e‖vh‖2H1 − Ca,λ‖vh‖2h for all vh ∈ Sh. (3.17)

We also assume that bh(s, t, ·, ·) is bounded uniformly with respect to s and t, i.e., a
positive constant Cb,c exists such that

|bh(s, t, wh, vh)| ≤ Cb,c‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh, s, t ∈ [0, T ]. (3.18)

Now, it is important to observe that this FEM can be numerically implemented
as a simple FDM. The formulation given by (3.14)-(3.16) was introduced mainly for
theoretical reasons, since the convergence theorems investigated in the next sections
are based on this finite element approach. In the remainder of this section, we present
the equivalent finite difference scheme.

Let Ωh be the non-uniform grid previously defined over the domain Ω. Note that
this grid does not require any special construction. Denote by Wh the space of grid
functions vanishing on the boundary. For vFh ∈ Wh, take

Dx
c v

F
h (xj , yl) =

vFh (xj+1, yl)− vFh (xj−1, yl)

hxj+1 + hxj
,

DxvFh (xj , yl) =
vFh (xj+1/2, yl)− vFh (xj−1/2, yl)

hxj+1/2

,

DxvFh (xj+1/2, yl) =
vFh (xj+1, yl)− vFh (xj , yl)

hxj+1

,

and define similar operators in the y-direction. Observe that when the domain is not
rectangular, the operators Dx

c and Dy
c may refer to values of grid functions on nodes

outside the grid Ωh. As in [82], we make a kind of antisymmetric extension, taking
the negative value of the function evaluated at the closest interior node.

We equip the space Wh with the discrete norm

‖vFh ‖21,h = ‖vFh ‖2h + ‖vFh ‖2h∗, (3.19)
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with ‖ · ‖h given by (3.7) and where

‖vFh ‖2h∗ =
∑

zj∗l∈Ωh

hyl+1/2h
x
jD

xvFh (xj−1/2, yl)
2

+
∑

zjl∗∈Ωh

hxj+1/2h
y
lD

yvFh (xj , yl−1/2)
2.

Here, we have used the subscript to indicate that the index abuts the boundary nodes.
It can be shown that the norm (3.19) is equivalent to the H1-norm restricted to Sh.

Set cFh,0 ∈ Wh as an approximation of c0. The FDM is then to find cFh : [0, T ] →Wh,
such that 




∂tc
F
h + Ahc

F
h =

∫ t

0

Bh(s, t)c
F
h (s) ds+ (f)h for t ∈ (0, T ],

cFh (0) = cFh,0,

(3.20)

where, for vFh ∈ Wh,

Ahv
F
h = −Dx(a11D

xvFh )−Dy(a22D
yvFh )−Dx

c (a12D
y
cv

F
h )

−Dy
c (a21D

x
c v

F
h ) +Dx(a1v

F
h ) +Dy(a2v

F
h ) + a0v

F
h ,

and Bh(s, t)v
F
h as Ahv

F
h , with the obvious adjustments. Suppose now that cFh is a

solution of problem (3.20); hence, it can be proved that

ch(x, y, t) =
∑

zjl∈Ωh

cFh (xj , yl, t)φjl(x, y) for (x, y) ∈ Ω, t ∈ [0, T ]

is a solution of the finite element formulation (3.14)-(3.16).
We finish this section with a comment on the stability of the FEM (3.14)-(3.16),

or equivalently, of the FDM (3.20). The same kind of study as given for the one-
dimensional method can be carried out for the present case. It will yield results that
are identical to those given by Theorems 2.1 and 2.2 of Section 2.1.1. We note that
to prove the equivalent to Theorem 2.2, we require that the bilinear form ah(·, ·)
satisfies (3.17) with Ca,λ = 0, i.e., it must be elliptic.

3.1.1 Error Estimates

Let c be a solution of the variational problem (3.4)-(3.6) and let ch be the numerical
approximation obtained by the FEM (3.14)-(3.16). We define the error of the method
by

eh(t) = Phc(t)− ch(t). (3.21)
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Assume for now that the domain Ω is rectangular and ah(·, ·) is elliptic. Following
the standard splitting approach [160] and proceeding just as described in the one-
dimensional case, we find out that, if

c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)),

∂tc ∈ L∞(0, T ;H3(Ω)), and ∂2t c ∈ L∞(0, T ;L1(Ω)), (3.22)

then
∫ t

0

‖eh(s)‖2H1 ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖3H3 + ‖∂tc(t)‖2H3

)
, (3.23)

for t ∈ [0, T ]. In fact, this is the same supercloseness bound as that of Corollary 2.2
for the one-dimensional problem.

In this section, we provide a different approach to study the error (3.21). This
will allow us to lessen the assumptions (3.22) while still preserving the supercloseness
result (3.23). Besides, the complexity of this strategy is lesser than that of the
conventional method. Our approach is as follows.

We start by noting that eh(t) satisfies the equality

1

2
∂t‖eh(t)‖2h = (∂tPhc(t), eh(t))h + ah(ch(t), eh(t))

−
∫ t

0

bh(s, t, ch(s), eh(t)) ds− ((f(t))h, eh(t))h. (3.24)

Note also that by (3.1)

((f(t))h, eh(t))h = ((∂tc(t))h, eh(t))h + ((Ac(t)−
∫ t

0

B(s, t)c(s) ds)h, eh(t))h. (3.25)

Hence, using the above expression in (3.24), we obtain

1

2
∂t‖eh(t)‖2h + ah(eh(t), eh(t)) =

∫ t

0

bh(s, t, eh(s), eh(t)) ds+ τ(eh(t)), (3.26)

with

τ(eh(t)) = τd(eh(t)) + τA(eh(t)) + τint(eh(t)) (3.27)

and where

τd(eh(t)) = (∂tPhc(t), eh(t))h − ((∂tc(t))h, eh(t))h,

τint(eh(t)) =

∫ t

0

((B(s, t)c(s))h, eh(t))h − bh(s, t, Phc(s), eh(t)) ds,

τA(eh(t)) = ah(Phc(t), eh(t))− ((Ac(t))h, eh(t))h.
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Now we proceed to estimate (3.27). Let T obl
h be the set of triangles that have one

edge on the oblique part of ∂Ω, and define Ωobl
h as the region of the domain formed

by those triangles. By Cobl
mix, we denote an indicator function that is equal to zero if

Ωobl
h = ∅ or amix = bmix = 0, and is equal to one if Ωobl

h 6= ∅ and amix 6= 0 or bmix 6= 0.
The following proposition is a direct consequence of Lemmas 5.1, 5.2, 5.4, 5.5, and
5.7 of [82].

Proposition 3.1 Suppose that the coefficients of the differential operators A and
B(s, t) are in W r,∞(Ω), for s, t ∈ [0, T ], and let r ∈ {1, 2} and h ∈ H. Then,

|τ(vh)| ≤ τ (r)(t)‖vh‖H1 for vh ∈ Sh,

with

τ (1)(t) ≤ C
(( ∑

T∈Th
h2T ‖c(t)‖2H2(T )

)1/2

+
( ∑

T∈Th
h4T ‖∂tc(t)‖2H2(T )

)1/2

+

∫ t

0

( ∑

T∈Th
h2T‖c(s)‖2H2(T )

)1/2

ds
)

≤ Chmax

(
‖c(t)‖H2 + ‖∂tc(t)‖H2 +

∫ t

0

‖c(s)‖H2 ds
)
, (3.28)

provided that c ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)), and

τ (2)(t) ≤ C
(( ∑

T∈Th
h4T ‖c(t)‖2H3(T )

)1/2

+
( ∑

T∈Th
h4T ‖∂tc(t)‖2H2(T )

)1/2

+

∫ t

0

( ∑

T∈Th
h4T‖c(s)‖2H3(T )

)1/2

ds+ Cobl
mix

(( ∑

T∈T obl
h

h
4(1−1/p)
T |c(t)|2W 2,p(T )

)1/2

+

∫ t

0

( ∑

T∈T obl
h

h
4(1−1/p)
T |c(s)|2W 2,p(T )

)1/2

ds
)

≤ Ch2max

(
‖c(t)‖H3 + ‖∂tc(t)‖H2 +

∫ t

0

‖c(s)‖H3 ds
)

+ Cobl
mixCh

3/2−1/p
max

(
|c(t)|W 2,p(Ωobl

h ) +

∫ t

0

|c(s)|W 2,p(Ωobl
h ) ds

)
, (3.29)

provided that c ∈ L∞(0, T ;H3(Ω)∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)), for p ∈ [2,∞).

With the aid of Proposition 3.1 and equation (3.26), we can establish one of our
main results for the error eh(t).
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Theorem 3.1 Assume that ah(·, ·) and bh(s, t, ·, ·) satisfy (3.17) and (3.18), respec-
tively. Then, for r ∈ {1, 2}, and under the hypothesis of Proposition 3.1, it holds

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ds ≤ C1e
C2t

(
‖eh(0)‖2h +

1

2η2

∫ t

0

τ (r)(s)2 ds
)
,

with ǫ and η non-zero constants such that

Ca,e − ǫ2 − η2 > 0, (3.30)

and where

C1 =
1

min{1, 2(Ca,e − ǫ2 − η2)} , C2 = C1max{2Ca,λ, C
2
b,cT/2ǫ

2}. (3.31)

Moreover, one has

τ (1)(t)2 ≤ Ch2max

(
‖c(t)‖2H2 + ‖∂tc(t)‖2H2 +

∫ t

0

‖c(s)‖2H2 ds
)
, (3.32)

provided that c ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)), and

τ (2)(t)2 ≤ Ch4max

(
‖c(t)‖2H3 + ‖∂tc(t)‖2H2 +

∫ t

0

‖c(s)‖2H3 ds
)

+ Cobl
mixCh

3−2/p
max

(
|c(t)|2W 2,p(Ωobl

h ) +

∫ t

0

|c(s)|2W 2,p(Ωobl
h ) ds

)
, (3.33)

provided that c ∈ L∞(0, T ;H3(Ω)∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)), for p ∈ [2,∞).

Proof: Using the bounds (3.17) and (3.18) in (3.26), we obtain

∂t‖eh(t)‖2h + 2(Ca,e − ǫ2 − η2)‖eh(t)‖2H1 ≤
C2

b,cT

2ǫ2

∫ t

0

‖eh(s)‖2H1 ds

+ 2Ca,λ‖eh(t)‖2h +
1

2η2
τ (r)(t)2.

Integrating over [0, t] we find that under the conditions (3.30) and (3.31)

‖eh(t)‖2h +
∫ t

0

‖eh(s)‖2H1 ds ≤ C2

∫ t

0

∫ s

0

‖eh(µ)‖2H1 dµ+ ‖eh(s)‖2h ds

+ C1

( 1

2η2

∫ t

0

τ (r)(s)2 ds+ ‖eh(0)‖2h
)
.

Then, by the Gronwall’s lemma and the inequalities (3.28) and (3.29), we prove the
theorem.
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The previous theorem shows that when Cobl
mix is not zero, the order of convergence is

lower. This loss of accuracy is due to the approximation used for the mixed derivatives
near the oblique part of the boundary. In the next corollary, we assume that Cobl

mix

is zero, i.e., the domain is rectangular or the coefficients of the mixed derivatives are
equal to zero.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold. Assume that Cobl
mix = 0 and

that ch,0 satisfies an estimate of type (2.34). Then, for t ∈ [0, T ],
∫ t

0

‖Phc(s)− ch(s)‖2H1 ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H2

)
,

provided that c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L∞(0, T ;H2(Ω)).

The supercloseness estimate above is equivalent to the one obtained with the
classical error analysis (see (3.23)). However, the regularity conditions imposed in
Corollary 3.1 are more relaxed than (3.22). We remark that a similar result to Corol-
lary 3.1 can be proved for the one-dimensional problem.

The following Corollary 3.2 is a consequence of Theorem 3.1 and Corollary 6.2
of [82]. It establishes, under some more restrictive assumptions on a solution c, that
at least a convergence rate of 3/2 is attained for the more general problem Cobl

mix 6= 0.
We note that this is also a supercloseness result.

Corollary 3.2 Let Ωobl be a neighborhood of the oblique part of ∂Ω and, in addition
to the assumptions of Theorem 3.1, take c ∈ L∞(0, T ;C2(Ω̄ ∪ Ωobl)). Then,
∫ t

0

‖Phc(s)− ch(s)‖2H1 ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H2

)

+ Ch3max

(
‖c(t)‖2C2(Ωobl

h ) +

∫ t

0

‖c(s)‖2C2(Ωobl
h ) ds

)
,

for t ∈ [0, T ], assuming also that
∑

T∈T obl
h
hT ≤ C.

It is clear that the results of this section can be carried over to the equivalent
FDM. For instance, in the conditions of Corollary 3.1 we have the supraconvergence
estimate,

∫ t

0

‖c(s)− cFh (s)‖21,h ds ≤ Ch4max

(∫ t

0

‖c(s)‖2H3 ds+ ‖c(t)‖2H3 + ‖∂tc(t)‖2H2

)
,

where cFh is the approximation given by (3.20) and ‖ · ‖1,h is the norm (3.19).
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3.2 A Fully Discrete Method

The aim of this section is to present a time integration method of the IMEX type for
the differential system (3.14)-(3.16). In this way, we get a fully discrete scheme to
approximate the integro-differential problem (3.1)-(3.3). The corresponding stability
and convergence analysis is also provided. We remark that similar results can easily
be obtained for the one-dimensional problem.

For a given fixed time step ∆t on the interval [0, T ], we define the uniform grid
tn = n∆t, for n = 0, . . . , N , with tN = T . Further, we consider the operator

D−tv
n+1
h =

vn+1
h − vnh
∆t

for vnh ∈ Sh.

The discretization in time is obtained by applying the implicit Euler method to the
semi-discrete system (3.14)-(3.16) and the rectangular rule to the resulting integral
term. Therefore, our fully discrete FEM for the integro-differential problem (3.1)-(3.3)
reads as follows: for n = 0, . . . , N − 1, find cnh ∈ Sh such that, for all vh ∈ Sh,





(D−tc
n+1
h , vh)h + ah(c

n+1
h , vh) = ∆t

n∑

l=0

bh(tl, tn+1, c
l
h, vh) + ((f)n+1

h , vh)h,

c0h = ch,0,

(3.34)

where (f)n+1
h = (f(tn+1))h. Using the same time integration scheme on (3.20) we get

the equivalent fully discrete finite difference formulation: for n = 0, . . . , N − 1, find
cF,nh ∈ Wh such that





D−tc
F,n+1
h + Ahc

F,n+1
h = ∆t

n∑

l=0

Bh(tl, tn+1)c
F,l
h + (f)n+1

h ,

cF,0h = cFh,0.

(3.35)

A solution of the problem (3.34) or (3.35) is then an approximation to a solution
of (3.1)-(3.3) on the given time and spatial grids.

We now make some computational remarks. For our discussion, we consider the
formulation (3.35), since it is the one used in practice. We first notice that this scheme
is very memory-demanding, since we need all the values of cF,lh , for l = 0, . . . , n, to
compute cF,n+1

h . However, in certain special cases, the method (3.35) can be rewritten
as a three-time-level method. This means that at time level n + 1 we only need two
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previous time step solutions, cF,nh and cF,n−1
h , which is a drastic reduction of the

memory storage. This reformulation is as follows. Taking n ≥ 1, then we have

D−tc
F,n+1
h + Ahc

F,n+1
h = ∆tBh(tn, tn+1)c

F,n
h +∆t

n−1∑

l=0

Bh(tl, tn+1)c
F,l
h + (f)n+1

h

and

D−tc
F,n
h + Ahc

F,n
h = ∆t

n−1∑

l=0

Bh(tl, tn)c
F,l
h + (f)nh.

Moreover, if

Bh(tl, tn+1)c
F,l
h = g(∆t)Bh(tl, tn)c

F,l
h , (3.36)

where g is some function, we obtain the three-time-level method

(I +∆tAh)c
F,n+1
h = cF,nh +∆t2Bh(tn, tn+1)c

F,n
h +∆t(f)n+1

h

+ g(∆t)(cF,nh − cF,n−1
h +∆tAhc

F,n
h −∆t(f)nh),

for n = 1, . . . , N − 1, with I the identity matrix and Ah and Bh(·, ·) sparse non-
symmetric matrices with a bandwidth of four. Here we need a starting value, cF,1h , that
may be obtained directly from (3.35). Note that the assumption (3.36) is satisfied, for
instance, when B(s, t)c(t) = K(t− s)Bc(t) and K(α+ λ) = K(α)K(λ), for α, λ ∈ R.

3.2.1 Stability and Convergence Analysis

We begin this section with a version of the discrete Gronwall’s inequality (see Lemma 4.3
in [46]) that will be an essential tool to all subsequent analysis.

Lemma 3.1 (Discrete Gronwall’s inequality) Let {ηn} be a sequence of non-negative
real numbers satisfying

ηn ≤
n−1∑

j=0

ωjηj + βn for n ≥ 1,

where ωj ≥ 0 and {βn} is a non-decreasing sequence of non-negative numbers. Then

ηn ≤ βnexp
( n−1∑

j=0

ωj

)
for n ≥ 1.

We now give a general stability theorem for problem (3.34).
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Theorem 3.2 Let us suppose that ah(·, ·) and bh(s, t, ·, ·) satisfy (3.17) and (3.18),
respectively. Then, for cnh defined in (3.34), it holds that

‖cnh‖2h +∆t
n∑

m=0

‖cmh ‖2H1 ≤ C1e
C2T

(
‖c0h‖2h + 2∆t(Ca,e − ǫ2)‖c0h‖2H1 +

∆t

2η2

n∑

m=1

‖(f)mh ‖2h
)
,

where

C1 =
1

min{1− 2∆t(Ca,λ + η2), 2(Ca,e − ǫ2)} , C2 = C1max{2(Ca,λ + η2), C2
b,cT/2ǫ

2},

the time step satisfies

1− 2∆t(Ca,λ + η2) > 0 for η 6= 0, (3.37)

and ǫ 6= 0 is such that

Ca,e − ǫ2 > 0. (3.38)

Proof: Substituting n = m and vh = cm+1
h in (3.34) and taking into account

(3.17) and (3.18), we establish

(D−tc
m+1
h , cm+1

h )h + Ca,e‖cm+1
h ‖2H1 − Ca,λ‖cm+1

h ‖2h ≤ Cb,c∆t

m∑

j=0

‖cjh‖H1‖cm+1
h ‖H1

+ ((f)m+1
h , cm+1

h )h. (3.39)

Since

Cb,c∆t

m∑

j=0

‖cjh‖H1‖cm+1
h ‖H1 ≤

C2
b,cT∆t

4ǫ2

m∑

j=0

‖cjh‖2H1 + ǫ2‖cm+1
h ‖2H1

and

((f)m+1
h , cm+1

h )h ≤ 1

4η2
‖(f)m+1

h ‖2h + η2‖cm+1
h ‖2h,

for all ǫ 6= 0 and η 6= 0, from (3.39), we estimate

‖cm+1
h ‖2h − ‖cmh ‖2h + 2∆t(Ca,e − ǫ2)‖cm+1

h ‖2H1 ≤
C2

b,cT∆t
2

2ǫ2

m∑

j=0

‖cjh‖2H1

+
∆t

2η2
‖(f)m+1

h ‖2h + 2∆t(Ca,λ + η2)‖cm+1
h ‖2h. (3.40)
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Summing (3.40) over m = 0, . . . , n− 1, we get

‖cnh‖2h − ‖c0h‖2h + 2∆t(Ca,e − ǫ2)
n−1∑

m=0

‖cm+1
h ‖2H1 ≤

C2
b,cT∆t

2

2ǫ2

n−1∑

m=0

m∑

j=0

‖cjh‖2H1

+
∆t

2η2

n−1∑

m=0

‖(f)m+1
h ‖2h + 2∆t(Ca,λ + η2)

n−1∑

m=0

‖cm+1
h ‖2h,

and consequently

(1− 2∆t(Ca,λ + η2))‖cnh‖2h + 2∆t(Ca,e − ǫ2)
n∑

m=0

‖cmh ‖2H1 ≤
n−1∑

m=0

C2
b,cT∆t

2

2ǫ2

m∑

j=0

‖cjh‖2H1

+ 2∆t(Ca,λ + η2)
n−1∑

m=1

‖cmh ‖2h + ‖c0h‖2h + 2∆t(Ca,e − ǫ2)‖c0h‖2H1 +
∆t

2η2

n∑

m=1

‖(f)mh ‖2h.

Choosing ǫ satisfying (3.38), and ∆t and η satisfying (3.37), we obtain

‖cnh‖2h +∆t
n∑

m=0

‖cmh ‖2H1 ≤ ∆tC2

n−1∑

m=0

(
‖cmh ‖2h +∆t

m∑

j=0

‖cjh‖2H1

)

+ C1

(
‖c0h‖2h + 2∆t(Ca,e − ǫ2)‖c0h‖2H1 +

∆t

2η2

n∑

m=1

‖(f)mh ‖2h
)
.

Finally, an application of the discrete Gronwall’s inequality, completes the proof.

The next corollary follows from Theorem 3.2, and establishes the stability of the
fully discrete method (3.34) under perturbations in the initial condition. It states
that the scheme is unconditionally stable with respect to the H1-norm, provided that
Ca,λ ≤ 0. Otherwise, when Ca,λ is positive, the stability condition for the time step
∆t must be respected (see (3.41)). We notice that we can draw the same conclusion
for the scheme (3.35) with respect to the discrete norm (3.19).

Corollary 3.3 Let cnh be a solution of (3.34), with (f)n+1
h equal to zero. Under the

assumptions of Theorem 3.2,

‖cnh‖2h +∆t

n∑

m=0

‖cmh ‖2H1 ≤ C1e
C2T

(
‖c0h‖2h + 2∆t(Ca,e − ǫ2)‖c0h‖2H1

)
,

for ǫ 6= 0 satisfying (3.38), with

C1 =
1

min{1− 2∆t0Ca,λ, 2(Ca,e − ǫ2)} , C2 = max{2Ca,λ, C
2
b,cT

2/2ǫ2}

and ∆t ∈ (0,∆t0), where ∆t0 is such that

1− 2∆t0Ca,λ > 0. (3.41)
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Now we turn our attention to the convergence problem. Again, let c be a solution
of (3.4)-(3.6) and cnh the numerical approximation determined by (3.34). Denote by
enh the error

enh = Phc(tn)− cnh.

We prove the following H1-norm error estimate.

Theorem 3.3 Assume the hypotheses of Theorem 3.2. If additionally ∂sbh(s, t, ·, ·)
is uniformly continuous, i.e.,

|∂sbh(s, t, wh, vh)| ≤ Cb,d‖wh‖H1‖vh‖H1 for all wh, vh ∈ Sh, s, t ∈ [0, T ], (3.42)

then, we have

‖enh‖2h +∆t
n∑

m=0

‖emh ‖2H1 ≤ C2e
C3T

(
∆tC1‖e0h‖2H1 + ‖e0h‖2h +∆t

n∑

m=1

1

2γ23
τ (r)(tm)

2

+ C∆t2
( 1

2γ21
‖Phc‖2H2(0,T ;Sh)

+
C2

bT

2γ22
‖Phc‖2H1(0,T ;H1)

))
, (3.43)

where ∆t ∈ (0,∆t0), with ∆t0 fixed by

1− 2∆t0(Ca,λ + γ21) > 0,

the constants ǫ and γi 6= 0, for i = 1, 2, 3, are such that

C1 = 2(Ca,e − ǫ2 − γ22 − γ23) > 0,

and where

C2 =
1

min{1− 2∆t0(Ca,λ + γ21), C1}
,

C3 = C2max{2(Ca,λ + γ21), C
2
bT/2ǫ

2}, Cb = max{Cb,c, Cb,d}.

In (3.43), τ (r)(tm)2, for r = 1 and r = 2, respectively, satisfy the inequalities (3.32)
and (3.33), with t = tm.

Proof: In view of (3.34) and the definition of the error enh, we find

(D−te
m+1
h , em+1

h )h = (D−tPhc(tm+1), e
m+1
h )h + ah(c

m+1
h , em+1

h )

−∆t

m∑

j=0

bh(tj , tm+1, c
j
h, e

m+1
h )− ((f)m+1

h , em+1
h )h.
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By virtue of (3.25), which holds with t = tm+1, we deduce

(D−te
m+1
h , em+1

h )h + ah(e
m+1
h , em+1

h )

= ∆t
m∑

j=0

bh(tj, tm+1, e
j
h, e

m+1
h ) + τcd(e

m+1
h ), (3.44)

where

τcd(e
m+1
h ) = τ(em+1

h ) + τn(e
m+1
h ).

Here, τ(em+1
h ) is defined by (3.27) with eh(t) replaced by em+1

h and

τn(e
m+1
h ) = τn,1(e

m+1
h ) + τn,2(e

m+1
h ),

with

τn,1(e
m+1
h ) = (D−tPhc(tm+1)− ∂tPhc(tm+1), e

m+1
h )h,

τn,2(e
m+1
h ) =

∫ tm+1

0

bh(s, tm+1, Phc(s), e
m+1
h ) ds−∆t

m∑

j=0

bh(tj , tm+1, Phc(tj), e
m+1
h ).

Now we estimate these terms. By using the Taylor’s expansion we easily obtain

|τn,1(em+1
h )| ≤ C

∫ tm+1

tm

‖∂2t Phc(s)‖h ds‖em+1
h ‖h

≤ C∆t
1

4γ21
‖Phc‖2H2(tm,tm+1;Sh)

+ γ21‖em+1
h ‖2h, (3.45)

where γ1 6= 0 is an arbitrary constant. For τn,2(em+1
h ), we can use the Bramble-Hilbert

lemma (see Theorem 4.1.3 in [47]) to get

|τn,2(em+1
h )| ≤ C∆t

m∑

j=0

∫ tj+1

tj

|∂sbh(s, tm+1, Phc(s), e
m+1
h )|

+ |bh(s, tm+1, ∂tPhc(s), e
m+1
h )| ds,

and the assumptions (3.42) and (3.18) to find

|τn,2(em+1
h )| ≤ C∆tCb

m∑

j=0

∫ tj+1

tj

‖Phc(s)‖H1 + ‖∂tPhc(s)‖H1 ds‖em+1
h ‖H1

≤ 1

4γ22
C∆t2C2

b ‖Phc‖2H1(0,T ;H1) + γ22‖em+1
h ‖2H1 , (3.46)

where γ2 6= 0 is an arbitrary constant.



Chapter 3. A FEM for Parabolic PIDEs in Two Dimensions 51

Combining (3.45) and (3.46) with the estimates for τ(em+1
h ) established in Propo-

sition 3.1 yields

τcd(e
m+1
h ) ≤ 1

4γ23
τ (r)(tm+1)

2 + (γ23 + γ22)‖em+1
h ‖2H1 + γ21‖em+1

h ‖2h

+ C
( 1

4γ21
∆t‖Phc‖2H2(tm,tm+1;Sh)

+
1

4γ22
C2

b∆t
2‖Phc‖2H1(0,T ;H1)

)
. (3.47)

Returning to (3.44), using the inequality (3.47) and proceeding like in the proof
of Theorem 3.2, we verify that

‖em+1
h ‖2h − ‖emh ‖2h + 2∆t(Ca,e − ǫ2 − γ22 − γ23)‖em+1

h ‖2H1 ≤ ∆t

2γ23
τ (r)(tm+1)

2

+ C∆t
( 1

2γ21
∆t‖Phc‖2H2(tm,tm+1;Sh)

+
C2

b

2γ22
∆t2‖Phc‖2H1(0,T ;H1)

)

+ 2∆t(Ca,λ + γ21)‖em+1
h ‖2h +∆t2

C2
bT

2ǫ2

m∑

j=0

‖Phe
j
h‖2H1 .

Following again the proof of Theorem 3.2, we get the desired result.

We remark that the assumption (3.42) holds, e.g., for B(s, t)c(s) = K(t−s)Bc(s),
whenever the kernel K satisfies |∂tK(t− s)| ≤ C, for s, t ∈ [0, T ], and B is a second-
order differential operator such that b(·, ·) is continuous.

The next corollary, a direct consequence of Theorem 3.3, states that the fully
discrete FEM (3.34) is first-order accurate in time. This is an expected result, since
our scheme is based on two first-order methods in time, the implicit Euler and the
rectangular rule. Here, for brevity of presentation, we only consider the case when
r = 2 and Cobl

mix is null.

Corollary 3.4 Let the assumptions of Theorem 3.3 be verified, and assume that ch,0
satisfies an estimate of type (2.34). Then, the upper bound

‖enh‖2h +∆t

n∑

m=1

‖emh ‖2H1 ≤ C
(
h4max

(
‖c‖2W 1,∞(0,T ;H2) + ‖c‖2L2(0,T ;H3)

+ ‖c‖2L∞(0,T ;H3)

)
+∆t2

(
‖Phc‖2H2(0,T ;Sh)

+ ‖Phc‖2H1(0,T ;H1)

))
, (3.48)

is attained, provided that c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)), ∂tc ∈ L∞(0, T ;H2(Ω)), and

∂2t c ∈ L2(0, T ;C(Ω)).

A estimate like (3.48) holds true for the approximation cF,nh defined by (3.35) as
well, with the error function enh given by enh = c(tn)− cF,nh and substituting ‖ · ‖1,h for
‖ · ‖H1.
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3.3 Numerical Experiments

The purpose of this section is to illustrate the theoretical convergence rates proved
for the semi-discrete approximation. For that, we consider two problems, one a with
rectangular domain, the other with a polygonal domain and mixed derivatives.

Example 3.1 Consider the integro-differential problem (3.1)-(3.3) with Ω = (0, 1)2,

A2(x, y) =

[
1 y − x

y − x 1

]
, A1(x, y) =

[
−x
−y

]
, a0 = 0,

B2(s, t) = e−(t−s)

[
−1 0
0 −1

]
, B1(s, t) = 0, b0(s, t) = 0,

and initial condition and f chosen so that

c(x, y, t) = etxy(x− 1)(y − 1)

is the exact solution.

Example 3.2 Let Ω be the polygonal domain in Figure 3.3. In this domain, we

1

0.4

0.4 11

Figure 3.3: Polygonal domain Ω.

consider the integro-differential problem (3.1)-(3.3) with

A2(x, y) =

[
1 xy
xy 1

]
, A1 = 0, a0 = 0,

B2(x, y, s, t) = e−(t−s)

[
0 −xy

−xy 0

]
, B1(s, t) = 0, b0(s, t) = 0,

and initial condition and f chosen so that

c(x, y, t) = etxy(x− 1)(y − 1)(−x+ 7/5− y)

is the exact solution.
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Using the FDM (3.35) we solved each problem on a sequence of grids, starting
with a random grid that is successively refined by taking hxi = hxi /2 and hyl = hyl /2.
The results are presented in Tables 3.1 and 3.2, where

Error =
(
‖eNh ‖2h +∆t

N∑

n=1

‖enh‖21,h
)1/2

,

and Nx and Ny denote the number of nodes in the x and y direction, respectively. We

hmax Nx Ny Error Rate

1.2998× 10−1 9 8 4.9148× 10−4 1.9065
6.4989× 10−2 18 16 1.3110× 10−4 1.9425
3.2494× 10−2 36 32 3.4107× 10−5 1.9781
1.6247× 10−2 72 64 8.6572× 10−6 1.9932
8.1236× 10−3 144 128 2.1745× 10−6 2.0031
4.0618× 10−3 288 256 5.4248× 10−7 2.0254
2.0309× 10−3 576 512 1.3325× 10−7 -

Table 3.1: Discrete norm errors and convergence rates for Example 3.1.

observe that the estimated convergence rates for both examples is approximately 2

for Example 3.1 and 3/2 for Example 3.2. This behavior is exactly as predicted by
Corollaries 3.1 and 3.2.

hmax Nx Ny Error Rate

1.3466× 10−1 9 8 2.9878× 10−4 1.5541
6.7329× 10−2 18 16 1.0175× 10−4 1.5597
3.3665× 10−2 36 32 3.4513× 10−5 1.5390
1.6832× 10−2 72 64 1.1876× 10−5 1.5219
8.4162× 10−3 144 128 4.1358× 10−6 1.5114
4.2081× 10−3 288 256 1.4507× 10−6 1.5059
2.1040× 10−3 576 512 5.1081× 10−7 -

Table 3.2: Discrete norm errors and convergence rates for Example 3.2.

In the experiments, we have taken T = 0.1 and ∆t = 10−6, a very small time step
to minimize the error due to the time discretization.





Chapter 4

A Parabolic-Elliptic Coupled Problem

In this chapter, we extend the analysis of FEMs with quadrature to systems of
equations. However, as explained in the introduction, we move away from integro-
differential equations and turn our attention to coupled problems consisting of an
elliptic equation of the form

−∇(a(c)∇p) = q1 in Ω× (0, T ], (4.1)

and a parabolic PDE of the form

∂tc+∇(b(c,∇p)c)−∇(d(c,∇p)∇c) = q2 in Ω× (0, T ]. (4.2)

This quasilinear system of equations is complemented with the initial conditions,

p(0) = p0, c(0) = c0 in Ω, (4.3)

and with homogeneous Dirichlet boundary conditions

p = 0, c = 0 on ∂Ω × (0, T ]. (4.4)

We assume that a ∈ W 1,∞(R), b ∈ W 2,∞(R2) and d ∈ W 1,∞(R2), and all with
codomain lying in R. Additionally, we assume that the initial conditions and q1 and
q2 are regular enough and, without loss of generality, that the domain Ω is the open
interval (0, 1).

The organization of this chapter is straightforward and very similar to previous
chapters. The fundamental result is the supercloseness of the gradient of a finite
element approximation. The proof of this is given in Section 4.1, together with the
description of the numerical method. In Section 4.2, we study a fully discrete scheme
and we finish in Section 4.3 with a numerical test that illustrates the theory developed.
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4.1 A Semi-Discrete Galerkin Method

To obtain our semi-discrete FEM for (4.1)-(4.4), we start with a variational formu-
lation of the problem which is given by: find p, c : [0, T ] → H1

0 (Ω) such that the
conditions (4.3) are fulfilled and





(a(c)∇p,∇v) = (q1, v),

(∂tc, w) + (d(c,∇p)∇c,∇w)− (b(c,∇p)c,∇w) = (q2, w),

(4.5)

for all v, w ∈ H1
0 (Ω) and t ∈ (0, T ]. A standard finite element approximation problem

is the following: find p, c : [0, T ] → Sh satisfying the conditions (4.3) and such that





(a(ch)∇ph,∇vh) = (q1, vh),

(∂tch, wh) + (d(ch,∇ph)∇ch,∇wh)− (b(ch,∇ph)ch,∇wh) = (q2, wh),

(4.6)

for all vh, wh ∈ Sh and t ∈ (0, T ]. The FEM that we study in this chapter is based
on the numerical integration of the equations (4.6). We notice that many of the
numerical tools to be used here are identical to the ones employed in Chapter 2, and
we refer to that chapter for notation and definitions.

Thus, our semi-discrete approximation to the weak solution of (4.1)-(4.4), defined
by (4.5), is a solution of the following problem: find

ph, ch : [0, T ] → Sh,

satisfying the initial conditions

ph(0) = ph,0, ch(0) = ch,0, (4.7)

and moreover, that for all vh, wh ∈ Sh and t ∈ (0, T ],





(ah∇ph,∇vh) = ((q1)h, vh)h,

(∂tch, wh)h + (dh∇ch,∇wh)− (M∗(bhch),∇wh) = ((q2)h, wh)h.

(4.8)

(4.9)

Here, we have denoted

ah(x, t) = a(M∗(ch(x, t))),

dh(x, t) = d(M∗(ch(x, t)),∇ph(xi−1/2, t)),
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for x ∈ (xi−1, xi], and

bh(xi, t) =





b(ch(x0, t),∇ph(x1−1/2, t)) for i = 0,

b(ch(xi, t), Dhph(xi, t)) for i = 1, . . . , N − 1,

b(ch(xN , t),∇ph(xN−1/2, t)) for i = N,

with

Dhph(xi, t) = (hi∇ph(xi+1/2, t) + hi+1∇ph(xi−1/2, t))/(hi + hi+1).

Once again, it can be proved that the FEM (4.7)-(4.9) is equivalent, in the same
sense as Chapter 2, to a FDM. The approximations given by this method, represented
by pFh , cFh : [0, T ] →Wh, are solutions of the following ordinary differential problem





−D(ahDp
F
h ) = (q1)h,

∂tc
F
h −D(dhDp

F
h ) +Dc(bhc

F
h ) = (q2)h,

(4.10)

for t ∈ (0, T ], together with suitable initial conditions in accordance with (4.3).
In order to simplify our presentation, we have considered here that ah(xi±1/2, t) =

ah(xi±1, t) and dh(xi±1/2, t) = dh(xi±1, t).
As we mention in the introduction, the system (4.1)-(4.4) is closely related to

some porous media problems. Therefore, for the remainder of this chapter, we will
sometimes refer to p as pressure and c as concentration.

4.1.1 Stability Analysis

This section presents two theorems that together prove energy stability of a solution
of the variational problem (4.7)-(4.9). We start with the pressure.

Theorem 4.1 If Ca ≤ a, then

‖ph(t)‖H1 ≤ Cp‖(q1(t))h‖h for t ∈ [0, T ]. (4.11)

Proof: Taking in (4.8) vh = ph(t), and using the Poincaré-Friedrichs’ inequality
‖vh‖h ≤ ‖∇vh‖2L2 , for vh ∈ Sh, we easily get (4.11).

The next corollary is obvious.
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Corollary 4.1 In the conditions of Theorem 4.1, if

‖q1(t)‖L2 ≤ Cq1 for t ∈ [0, T ], (4.12)

then

‖ph(t)‖H1 ≤ Cp for t ∈ [0, T ]. (4.13)

Moreover, the inequality (4.13) implies that

‖ph(t)‖L∞ ≤ Cp for t ∈ [0, T ].

In the following theorem we consider the concentration equation.

Theorem 4.2 Suppose that ch ∈ C1([0, T ];Sh) and that

max
i=1,...,N

|∇ph(xi−1/2, t)| ≤ Cp. (4.14)

Suppose also that Ca ≤ a, Cd ≤ d and

|b(α, λ)| ≤ Cb|λ| for (α, λ) ∈ R2. (4.15)

Then, there holds

‖ch(t)‖2h +
∫ t

0

‖ch(s)‖2H1 ds ≤ C1e
C2t

(
‖ch,0‖2h +

1

2η2

∫ t

0

‖(q2(s))h‖2h ds
)
,

for t ∈ [0, T ], with

C1 =
1

min{1, 2(Cd − ǫ2)} , C2 =
1

2ǫ2
C2

bC
2
p + 2η2,

ǫ 6= 0 such that Cd − ǫ2 > 0 and η 6= 0 an arbitrary constant.

Proof: On replacing wh in (4.9) by ch(t), we estimate

1

2
∂t‖ch(t)‖2h + Cd‖ch(t)‖2H1 − (M∗(bh(t)ch(t)),∇ch(t)) ≤

1

4η2
‖(q2(t))h‖2h + η2‖ch(t)‖2h,

for arbitrary η 6= 0. As obtained from (4.14) and (4.15)

|(M∗(bh(t)ch(t)),∇ch(t))| ≤ CbCp‖ch(t)‖h‖∇ch(t)‖L2 , (4.16)

it follows that

∂t‖ch(t)‖2h + 2(Cd − ǫ2)‖ch(t)‖2H1 ≤ C2‖ch(t)‖2h +
1

2η2
‖(q2(t))h‖2h,
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where ǫ is a non-zero constant. This inequality leads to

‖ch(t)‖2h + 2(Cd − ǫ2)

∫ t

0

‖ch(s)‖2H1 ds ≤ C2

∫ t

0

‖ch(s)‖2h ds+ ‖ch,0‖2h

+
1

2η2

∫ t

0

‖(q2(s))h‖2h ds,

and the desired result follows by Gronwall’s lemma.

A comment about condition (4.14) is in order here. Observe that

ah(xi+1, t)∇ph(xi+1/2, t) =

i∑

j=1

hj+1/2D(ah(t)∇ph(t))(xj) + ah(x1, t)∇ph(x1−1/2, t)

= −
i∑

j=1

hj+1/2(q1(xj , t))h + ah(x1, t)∇ph(x1−1/2, t),

for i = 1, . . . , N − 1, and by (4.12) we get

max
i=2,...,N

|ah(xi, t)∇ph(xi−1/2, t)| ≤ Cq1 + |ah(x1, t)∇ph(x1−1/2, t)|,

provided that q1 ∈ L∞(0, T ;L2(Ω)). It is then plausible to assume that (4.14) holds.

4.1.2 Error Estimates

In the first part of this section we introduce and study two auxiliary problems. The
results derived for these problems are essential for the forthcoming analysis.

Let p̃h(t), c̃h(t) ∈ Sh be solutions of the variational problems

(ãh(t)∇p̃h(t),∇wh) = ((q1(t))h, wh)h for wh ∈ Sh (4.17)

and

(d̃h(t)∇c̃h(t),∇wh)− (M∗(b̃h(t)c̃h(t)),∇wh)h = ((q̃2(t))h, wh)h for wh ∈ Sh, (4.18)

where q̃2(t) = q2(t)− ∂tc(t) and where the other coefficient functions are defined by

ãh(x, t) = a(M(c(x, t))),

d̃h(x, t) = d(M(c(x, t)),∇p(xi−1/2, t)),

for x ∈ (xi−1, xi], and

b̃h(xi, t)c̃h(xi, t) =





b(c(xi, t),∇p(xi, t))c̃h(xi, t) for i = 1, . . . , N − 1,

0 for i = 0, N.
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It can be shown that p̃h(t) and c̃h(t) are solutions of a coupled finite difference
problem analogous to system (4.10).

The following proposition can be established by Theorem 3.1 of [16].

Proposition 4.1 If Ca ≤ a, then for p̃h(t) defined by (4.17) the following estimate
holds:

‖Php(t)− p̃h(t)‖2H1 ≤ Cp̃

N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)
, (4.19)

provided that h ∈ H and p(t) ∈ H1+r(Ω) ∩H1
0 (Ω), for r ∈ {1, 2}.

As a consequence of this result, we prove that

max
i=1,...,N

|∇p̃h(xi−1/2, t)| ≤ Cp̃. (4.20)

In fact, from (4.19) we have

|∇(Php(xi−1/2, t)− p̃h(xi−1/2, t))| ≤ Chr−1/2
max ,

and so, using Taylor’s expansion, we obtain

|∇p̃h(xi−1/2, t)| ≤ |∇(Php(xi−1/2, t)− p̃h(xi−1/2, t))|+
1

hi

∫ xi

xi−1

|∇p(x, t)| dx

≤ Chr−1/2
max + ‖∇p(t)‖L∞ ,

which means that (4.20) is valid, provided that p ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)).

We now proceed to establish an estimate like (4.19) for c̃h(t). We follow again the
proof of Theorem 3.1 in [16], but we need a more precise result here. First we must
guarantee the stability of the bilinear form

ac̃h(vh, wh) = (d̃h(t)∇vh,∇wh)− (M∗(b̃h(t)vh),∇wh)h for vh, wh ∈ Sh.

The next proposition states this result and the conditions under which it occurs (see
Proposition 3.1 in [16]).

Proposition 4.2 Define d̃(t) = d(c(t),∇p(t)) and b̃(t) = b(c(t),∇p(t)), where p and
c are solutions of the variational problem (4.5). If the variational problem: find
v ∈ H1

0 (Ω) such that (d̃(t)∇v,∇w)− (b̃(t)v,∇w) = 0, for w ∈ H1
0 (Ω), has only a null

solution, then, for h ∈ H, it holds the following stability inequality

‖vh‖H1 ≤ Ce,c sup
06=wh∈Sh

|ac̃h(vh, wh)|
‖wh‖H1

for vh ∈ Sh.
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Now, by virtue of Theorem 3.1 in [16], to estimate the error Phc(t) − c̃h(t), it
suffices to estimate

Td =
N∑

i=1

hid(xi−1/2, t)
(
∇Phc(xi−1/2, t)−∇c(xi−1/2, t)

)
∇wh(xi−1/2) (4.21)

and

Tb =

N∑

i=1

hi

(
b(xi−1/2, t)−

b(xi−1, t) + b(xi, t)

2

)
∇wh(xi−1/2), (4.22)

where

d(x, t) = d(c(x, t),∇p(x, t)) and b(x, t) = b(c(x, t),∇p(x, t)).

To obtain bounds for (4.21) and (4.22), we apply the Bramble-Hilbert lemma. This
gives

|Td| ≤ C‖d(c(t),∇p(t))‖L∞

( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

‖wh‖H1 ,

and

|Tb| ≤ C
( N∑

i=1

h2ri |b(c(t),∇p(t))c(t)|2Hr(xi−1,xi)

)1/2

‖wh‖H1 . (4.23)

Denote by Cr
B(Ω) the set of functions on Ω having bounded, continuous deriva-

tives up to order r. As the imbedding of H1+r(Ω) into Cr
B(Ω) is continuous (see

Theorem 4.12 in [5]), we get from (4.23)

|Tb| ≤ C
( N∑

i=1

h2i ‖c(t)‖2L∞

(
‖c(t)‖2H1(xi−1,xi)

+ ‖p(t)‖2H2(xi−1,xi)

))1/2

‖wh‖H1,

for r = 1, and for r = 2

|Tb| ≤ C
( N∑

i=1

h4j

(
‖c(t)‖2W 1,∞

(
‖c(t)‖2L∞ + 1

)(
‖c(t)‖2H1(xi−1,xi)

+ ‖p(t)‖2H2(xi−1,xi)

)

+ ‖c(t)‖2L∞

(
‖p(t)‖2W 2,∞‖p(t)‖2H2(xi−1,xi)

+ ‖p(t)‖2H3(xi−1,xi)

)

+ ‖c(t)‖2H2(xi−1,xi)

))1/2

‖wh‖H1.

We summarize the previous results in the following proposition.
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Proposition 4.3 Let the assumptions of Proposition 4.2 be valid. Then for c̃h(t)
defined by (4.18) there holds the following

‖Phc(t)− c̃h(t)‖2H1 ≤ Cc̃

N∑

i=1

h2ri

(
‖c(t)‖2H1+r(xi−1,xi)

+ ‖p(t)‖2H1+r(xi−1,xi)

)
,

provided that p(t), c(t) ∈ H1+r(Ω) ∩H1
0 (Ω), for r ∈ {1, 2}.

Before proceeding, we point out that Proposition 4.3 implies that ‖c̃h(t)‖H1 ≤ Cc̃,
from which we can conclude

‖c̃h(t)‖L∞ ≤ Cc̃. (4.24)

Also, as for (4.20), from Proposition 4.3 we still have

max
i=1,...,N

|∇c̃h(xi−1/2, t)| ≤ Cc̃, (4.25)

provided that p, c ∈ L∞(0, T ;H2(Ω) ∩H1
0 (Ω)).

In the next proposition, we establish an upper bound for the error ph(t)− p̃h(t).

Proposition 4.4 Suppose Ca ≤ a. Then, for h ∈ H,

‖ph(t)− p̃h(t)‖H1 ≤ Cp,p̃

(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2)
,

provided that p ∈ L∞(0, T ;H2(Ω)∩H1
0 (Ω)) and c(t) ∈ Hr(Ω)∩H1

0 (Ω), for r ∈ {1, 2}.

Proof: From (4.8) and (4.17), it can be shown that

(ah(t)∇(ph(t)− p̃h(t)),∇wh) = ((ãh(t)− a∗h(t))∇p̃h(t),∇wh)

+ ((a∗h(t)− ah(t))∇p̃h(t),∇wh), (4.26)

for wh ∈ Sh, where a∗h(t) is defined as ah(t), but with ch(t) replaced by Phc(t).

By (4.20), we have for the second term of the second member of (4.26) that

|((a∗h(t)− ah(t))∇p̃h(t),∇wh)| ≤ C‖Phc(t)− ch(t)‖h‖wh‖H1 , (4.27)

while for the first term, by the Bramble-Hilbert lemma, we deduce

|((ãh(t)− a∗h(t))∇p̃h(t),∇wh)| ≤ C
( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2

‖wh‖H1. (4.28)

We can conclude the proof taking wh = ph(t) − p̃h(t) in (4.26) and using the
inequalities (4.27) and (4.28).

One important result is stated in the following corollary.



Chapter 4. A Parabolic-Elliptic Coupled Problem 63

Corollary 4.2 If Ca ≤ a, then for ph and ch defined by (4.7)-(4.9) it holds that for
h ∈ H and r ∈ {1, 2}

‖Php(t)− ph(t)‖H1 ≤ C
(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
,

provided that c(t) ∈ Hr(Ω) ∩H1
0 (Ω) and p ∈ L∞(0, T ;H1+r(Ω) ∩H1

0 (Ω)).

The next three lemmas will play a fundamental role in the sequel.

Lemma 4.1 Assume p, c ∈ L∞(0, T ;H1+r(Ω) ∩H1
0 (Ω)), for r ∈ {1, 2}. Let c̃h(t) be

defined by (4.18) and let the conditions of Proposition 4.2 and Corollary 4.2 hold.
Then, for the functional defined on Sh by

τd(t, wh) = (d̃h(t)∇c̃h(t),∇wh)− (dh(t)∇ch(t),∇wh),

we have

τd(t, wh) = (dh(t)∇(Phc(t)− ch(t)),∇wh) + τd,h(t, wh), (4.29)

where for wh ∈ Sh

|τd,h(t, wh)| ≤ Cd

(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1 . (4.30)

Proof: The representation (4.29) holds with

τd,h(t, wh) = τ
(1)
d,h(t, wh) + τ

(2)
d,h(t, wh) + τ

(3)
d,h(t, wh),

where

τ
(1)
d,h(t, wh) = ((d̃h(t)− d∗h(t))∇c̃h(t),∇wh),

τ
(2)
d,h(t, wh) = ((d∗h(t)− dh(t))∇c̃h(t),∇wh),

τ
(3)
d,h(t, wh) = (dh(t)∇(c̃h(t)− Phc(t)),∇wh),
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and d∗h(t) is defined as dh(t) replacing ch(t) and ph(t) by Phc(t) and Php(t), respec-
tively. Let us estimate each term separately (recall (4.25)). First, using the Bramble-
Hilbert lemma, it can be shown that

|τ (1)d,h(t, wh)| ≤ C
(( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1 for wh ∈ Sh.

Next, we find

|τ (2)d,h(t, wh)| ≤ C(‖Phc(t)− ch(t)‖h + ‖∇(Php(t)− ph(t))‖L2)‖wh‖H1

from which, by Corollary 4.2,

|τ (2)d,h(t, wh)| ≤ C
(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1 for wh ∈ Sh.

For the last term, by Proposition 4.3, we have

|τ (3)d,h(t, wh)| ≤ C
(( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1 for wh ∈ Sh.

The inequality (4.30) follows from the previous estimates.

Lemma 4.2 Assume p, c ∈ L∞(0, T ;H1+r(Ω) ∩ H1
0 (Ω)), for r ∈ {1, 2}. Let c̃h(t)

be defined by (4.18) and let the conditions of Proposition 4.2 hold. If Ca ≤ a, the
assumption (4.14) holds and the coefficient function b satisfies (4.15) then, for the
functional defined on Sh by

τb(t, wh) = (M∗(bh(t)ch(t)),∇wh)− (M∗(b̃h(t)c̃h(t)),∇wh),

we have

τb(t, wh) = (M∗(bh(t)(ch(t)− Phc(t))),∇wh) + τb,h(t, wh), (4.31)
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where for wh ∈ Sh

|τb,h(t, wh)| ≤ Cb,2

(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1 . (4.32)

Proof: The representation (4.31) holds with

τb,h(t, wh) = τ
(1)
b,h (t, wh) + τ

(2)
b,h (t, wh) + τ

(3)
b,h (t, wh),

where

τ
(1)
b,h (t, wh) = (M∗(bh(t)(Phc(t)− c̃h(t))),∇wh),

τ
(2)
b,h (t, wh) = (M∗((bh(t)− b∗h(t))c̃h(t)),∇wh),

τ
(3)
b,h (t, wh) = (M∗((b∗h(t)− b̃h(t))c̃h(t)),∇wh),

being b∗h(t) defined as bh(t) replacing ch(t) and ph(t) by Phc(t) and Php(t), respectively.
Consider the first term. By (4.14), (4.15), and Proposition 4.3, we estimate

|τ (1)b,h (t, wh)| ≤C
(( N∑

i=1

h2ri ‖c(t)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1.

As for the second term, since c̃h(t) satisfies (4.24), we find

|τ (2)b,h (t, wh)| ≤ C(‖Phc(t)− ch(t)‖h + ‖∇(Php(t)− ph(t))‖L2)‖wh‖H1 .

Furthermore, from Corollary 4.2, one concludes that

|τ (2)b,h (t, wh)| ≤ C
(
‖Phc(t)− ch(t)‖h +

( N∑

i=1

h2ri ‖c(t)‖2Hr(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1. (4.33)

To obtain the bound for the last term, we first notice that

∇p(xi, t)−Dhp(xi, t) =
1

hi + hi+1

λ(v),
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with

λ(v) = ∇v(ρ)− ρ̂(v(1)− v(ρ)) +
1

ρ̂
(v(ρ)− v(0)),

and

v(ξ) = p(xi−1 + ξ(hi + hi+1), t), ρ =
hi

hi + hi+1

, ρ̂ =
hi
hi+1

.

Applying the Bramble-Hilbert lemma to λ(v) we obtain

|λ(v)| ≤ C

∫ 1

0

|∇rv(ξ)| dξ

≤ C(hi + hi+1)
r−1

∫ xi+1/2

xi−1/2

|∇rp(x, t)| dx for r ∈ {1, 2}, (4.34)

with ∇r the derivative of order r. Therefore, the last term can be estimated as follows

|τ (3)b,h (t, wh)| ≤ C
( N∑

i=1

h2ri ‖p(t)‖2H1+r(xi−1,xi)

)1/2

‖wh‖H1. (4.35)

The proof now follows from (4.33)-(4.35).

The next lemma is given without proof. It can be found as Remark 3.4 to Theo-
rem 3.1 in [16].

Lemma 4.3 Let g(t) be a function in the space H2(Ω). Then, for h ∈ H, it holds

|(Phg(t)− (g(t))h, wh)h| ≤ Cin

( N∑

i=1

h4i ‖g(t)‖2H2(xi−1,xi)

)1/2

‖wh‖H1 for wh ∈ Sh.

For the semi-discretization (4.7)-(4.9) define the errors

ec,h(t) = Phc(t)− ch(t) and ep,h(t) = Php(t)− ph(t).

We are now in position to establish the main results of this chapter, namely the
supercloseness of the approximations. We start with the concentration.

Theorem 4.3 Let p and c be solutions of the coupled quasi-linear problem (4.5) and
let ph and ch be the approximations defined by (4.7)-(4.9). Assume that the variational
problem: find v ∈ H1

0 (Ω) such that (d̃(t)∇v,∇w)− (b̃(t)v,∇w) = 0, for w ∈ H1
0 (Ω),

has only the null solution, where d̃(t) = d(c(t),∇p(t)) and b̃(t) = b(c(t),∇p(t)).
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Moreover, assume that Ca ≤ a, Cd ≤ d, b satisfies (4.15) and that the assumption
(4.14) holds. Then, for r ∈ {1, 2} and h ∈ H, we have

‖ec,h(t)‖2h +
∫ t

0

‖ec,h(s)‖2H1 ds ≤ C1e
C2t

(
Ce

N∑

i=1

∫ t

0

h2ri

(
‖p(s)‖2H1+r(xi−1,xi)

+ ‖c(s)‖2H1+r(xi−1,xi)

)
+ h4i ‖∂tc(s)‖2H2(xi−1,xi)

ds+ ‖ec,h(0)‖2h
)
,

where ǫ is a non-zero constant satisfying Cd − 4ǫ2 > 0,

C1 =
1

min{1, 2(Cd − 4ǫ2)} , C2 =
1

ǫ2

(
C2

d + C2
b,2 +

1

2
C2

bC
2
p

)
+ 2ǫ2

and provided that p, c ∈ L∞(0, T ;H1+r(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L2(0, T ;H2(Ω)).

Proof: It is easy to show that ec,h(t) is a solution of the variational problem

(∂tec,h(t), wh)h = (dh(t)∇ch(t),∇wh)− (M∗(bh(t)ch(t)),∇wh)

− ((q2(t))h, wh)h + (∂tPhc(t), wh)h

and, as c̃h(t) satisfies (4.18), we obtain

(∂tec,h(t), wh)h = −(d̃h(t)∇c̃h(t),∇wh) + (dh(t)∇ch(t),∇wh)

− (M∗(bh(t)ch(t)),∇wh) + (M∗(b̃h(t)c̃h(t)),∇wh)

− (∂t(ch(t))h, wh)h + (∂tPhc(t), wh)h. (4.36)

By setting wh = ec,h(t) in (4.36) and taking into account Lemmas 4.1 and 4.2, we get

(∂tec,h(t), ec,h(t))h = −(dh(t)∇ec,h(t),∇ec,h(t)) + (M∗(bh(t)ec,h(t)),∇ec,h(t))
+ (∂tPhc(t)− ∂t(ch(t))h, ec,h(t))h − τd,h(t, ec,h(t))− τb,h(t, ec,h(t)). (4.37)

For (∂tPhc(t)− ∂t(ch(t))h, ec,h(t))h, it follows from Lemma 4.3 that

|(∂tPhc(t)− ∂t(ch(t))h, ec,h(t))h| ≤
C2

in

4σ2

N∑

i=1

h4i ‖∂tc(t)‖2H2(xi−1,xi)

+ σ2‖ec,h(t)‖2H1, (4.38)

provided that ∂tc(t) ∈ H2(Ω). Here, σ 6= 0 is an arbitrary constant.
For τd,h(t, ec,h(t)) and τb,h(t, ec,h(t)), we use the estimates (4.30) and (4.32), re-

spectively, to obtain

|τd,h(t, ec,h(t))| ≤
1

2ǫ2
C2

d‖ec,h(t)‖2h + ǫ2‖ec,h(t)‖2H1

+
1

2ǫ2
C2

d

N∑

i=1

h2ri

(
‖p(t)‖2H1+r(xi−1,xi)

+ ‖c(t)‖2H1+r(xi−1,xi)

)
, (4.39)
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and

|τb,h(t, ec,h(t))| ≤
1

2η2
C2

b,2‖ec,h(t)‖2h + η2‖ec,h(t)‖2H1

+
1

2η2
C2

b,2

N∑

i=1

h2ri

(
‖p(t)‖2H1+r(xi−1,xi)

+ ‖c(t)‖2H1+r(xi−1,xi)

)
, (4.40)

where ǫ 6= 0 and η 6= 0 are arbitrary constants.
Hence, by (4.38)-(4.40), from (4.37) we find

1

2
∂t‖ec,h(t)‖2h + (dh(t)∇ec,h(t),∇ec,h(t)) ≤ (ǫ2 + η2 + σ2)‖ec,h(t)‖2H1

+ (M∗(bh(t)ec,h(t)),∇ec,h(t)) +
( 1

2ǫ2
C2

d +
1

2η2
C2

b,2 + σ2
)
‖ec,h(t)‖2h + τh(t)

2, (4.41)

where

τh(t)
2 ≤

( 1

2ǫ2
C2

d +
1

2η2
C2

b,2

)( N∑

i=1

h2ri

(
‖p(t)‖2H1+r(xi−1,xi)

+ ‖c(t)‖2H1+r(xi−1,xi)

))

+
1

4σ2
C2

in

N∑

i=1

h4i ‖∂tc(t)‖2H2(xi−1,xi)
.

Now, we have

(dh(t)∇ec,h(t),∇ec,h(t)) ≥ Cd‖ec,h(t)‖2H1 , (4.42)

and, since (4.16) holds with ch(t) replaced by ec,h(t), we can write

|(M∗(bh(t)ec,h(t)),∇ec,h(t))| ≤
1

4γ2
C2

bC
2
p‖ec,h(t)‖2h + γ2‖ec,h(t)‖2H1 , (4.43)

with γ 6= 0 an arbitrary constant.
Joining estimates (4.41)-(4.43) and setting ǫ = η = γ = σ, one obtains

∂t‖ec,h(t)‖2h + 2(Cd − 4ǫ2)‖ec,h(t)‖2H1 ≤ C2‖ec,h(t)‖2h + τh(t)
2.

Therefore, we have

‖ec,h(t)‖2h + 2(Cd − 4ǫ2)

∫ t

0

‖ec,h(s)‖2H1 ds ≤ ‖ec,h(0)‖2h

+ C2

∫ t

0

‖ec,h(s)‖2h ds+
∫ t

0

τh(s)
2 ds,

which yields the desired result using Gronwall’s lemma.

The Corollary 4.3 below gives the supercloseness of the pressure. It is a conse-
quence of Corollary 4.2 and Theorem 4.3.
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Corollary 4.3 Under the assumptions of Theorem 4.3, it holds

‖ep,h(t)‖2H1 ≤ Cp,n

(
‖Phc0 − ch,0‖2h + Ce

N∑

i=1

∫ t

0

(
h2ri

(
‖p(s)‖2H1+r(xi−1,xi)

+ ‖c(s)‖2H1+r(xi−1,xi)

)
+ h4i ‖∂tc(s)‖2H2(xi−1,xi)

)
ds
)
.

The following corollary summarizes our main findings.

Corollary 4.4 Let the assumptions of Theorem 4.3 hold, and assume that ch,0 satis-
fies an estimate of type (2.34). Then, for t ∈ [0, T ],

‖ep,h(t)‖2H1 +

∫ t

0

‖ec,h(s)‖2H1 ds ≤ Ch4max

∫ t

0

‖c(s)‖2H3 + ‖p(s)‖2H3 + ‖∂tc(s)‖2H2 ds,

provided that p, c ∈ L∞(0, T ;H3(Ω) ∩H1
0 (Ω)) and ∂tc ∈ L2(0, T ;H2(Ω)).

The analogue of Corollary 4.4 for the FDM (4.10) can be established as in the
previous chapters. It is important to enhance the fact that the supercloseness re-
sult, Corollary 4.4, or the equivalent supraconvergence result, are valid without any
assumption on the mesh. We also observe that the error analysis introduced in Chap-
ter 3 was used to study the error of the finite element approximation. Again, this
permits us to relax the smoothness requirements on a solution of (4.5).

4.2 A Fully Discrete Method

We are going to discuss in this section the full discretization of the coupled prob-
lem (4.1)-(4.4). First a scheme is presented, then a convergence result is provided.

We consider full discretizations by applying a time integration method to the
finite element differential system (4.7)-(4.9). On [0, T ], let us introduce the uniform
grid tn = tn−1 + ∆t, for n = 1, . . . , N , with t0 = 0, tN = T and fixed step size
∆t. Let pn+1

h , cn+1
h ∈ Sh be the numerical approximations for ph(tn+1) and ch(tn+1),

respectively. Then, for wh ∈ Sh, our fully discrete FEM is described by




(anh∇pn+1
h ,∇wh) = ((q1)

n+1
h , wh)h,

(D−tc
n+1
h , wh)h + (dn,n+1

h ∇cn+1
h ,∇wh)

− (M∗(bn,n+1
h cn+1

h ),∇wh) = ((q2)
n+1
h , wh)h,

(4.44)

for n = 0, . . . , N − 1, and with the initial conditions

p0h = ph,0, c0h = ch,0. (4.45)
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Recall that the function ah depends only on the concentration ch, while dh and bh
depend also on the pressure ph. Here, anh, d

n,n+1
h , and bn,n+1

h mean that we are evaluat-
ing the concentration at time level n and the pressure at time level n+1. Therefore,
the time integration method is of IMEX type. In the porous media context, this kind
of method is known as IMPES (implicit pressure, explicit saturation/concentration).

4.2.1 Convergence Analysis

In this section, we prove linear convergence in time of the IMEX method (4.44)-(4.45).
Most of the analysis is similar to Section 4.1.2, so we merely outline the main steps.

Let p̃n+1
h and c̃n+1

h be solutions of the auxiliary problems (4.17)-(4.18) where the
source terms and the coefficient functions are defined using t = tn+1. As in the
semi-discrete case, we consider that

max
i=1,...,N

|∇p̃nh(xi−1/2)| ≤ Cp̃, (4.46)

max
i=1,...,N

|∇c̃nh(xi−1/2)| ≤ Cc̃, (4.47)

max
i=1,...,N

|∇pnh(xi−1/2)| ≤ Cp. (4.48)

Under the conditions of Proposition 4.4 and assuming (4.46) we can prove that

‖pn+1
h − p̃n+1

h ‖H1 ≤ C
(
‖Phc(tn)− cnh‖h +

( N∑

i=1

h2ri ‖c(tn+1)‖2Hr(xi−1,xi)

)1/2

+
(
∆t2‖∂tPhc(tn)‖2h +∆t3‖Phc‖2H2(tn,tn+1;Sh)

)1/2)
.

for r ∈ {1, 2}. Hence, since (4.19) holds with t = tn+1, we get

‖en+1
p,h ‖H1 ≤ C

(
‖enc,h‖h +∆t

(
‖∂tPhc(tn)‖2h +∆t‖Phc‖2H2(tn,tn+1;Sh)

)1/2

+
( N∑

i=1

h2ri ‖c(tn+1)‖2Hr(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(tn+1)‖2H1+r(xi−1,xi)

)1/2)
, (4.49)

where

en+1
c,h = Phc(tn+1)− cn+1

h and en+1
p,h = Php(tn+1)− pn+1

h .

Now, proceeding as in Theorem 4.3 and assuming that (4.47) and (4.48) are sat-
isfied, we obtain

(D−te
m+1
c,h , wh)h = (M∗(bm,m+1

h em+1
c,h ),∇wh)

− (dm,m+1
h ∇em+1

c,h ,∇wh)− τm+1
h (wh), (4.50)
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with

τm+1
h (wh) = τm+1

d,h (wh) + τm+1
b,h (wh) + τm+1

c,h (wh).

Moreover, we have the bounds

|τm+1
d,h (wh)| ≤ Cd,d

(
‖emc,h‖h +∆t

(
‖∂tPhc(tm)‖2h +∆t‖Phc‖2H2(tm,tm+1;Sh)

)1/2

+
( N∑

i=1

h2ri ‖p(tm+1)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖c(tm+1)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1

and

|τm+1
b,h (wh)| ≤ Cb,d

(
‖emc,h‖h +∆t

(
‖∂tPhc(tm)‖2h +∆t‖Phc‖2H2(tm,t1+r ;Sh)

)1/2

+
( N∑

i=1

h2ri ‖c(tm+1)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(tm+1)‖2H1+r(xi−1,xi)

)1/2)
‖wh‖H1

and

|τm+1
c,h (wh)| ≤ Cin,d

(
∆t‖Phc‖W 2,∞(tm,tm+1;Sh)

+
( N∑

i=1

h4i ‖∂tc(tm+1)‖2H2(xi−1,xi)

)1/2)
‖wh‖H1.

Taking wh = em+1
c,h in equation (4.50), we find

‖em+1
c,h ‖2h + 2∆t(Cd − 4ǫ2)‖em+1

c,h ‖2H1 ≤ (1 + θ2∆t)‖emc,h‖2h
+ θ1∆t‖em+1

c,h ‖2h +∆t(τm+1
s )2, (4.51)

with ǫ a non-zero constant,

θ1 =
1

2ǫ2
C2

pC
2
b , θ2 =

1

2ǫ2
(C2

d,d + C2
b,d + C2

in,d)

and

(τm+1
s )2 ≤ 1

2ǫ2

(
C2

d,d + C2
b,d

)(
∆t‖∂tPhc(tm)‖h +∆t‖Phc‖2H2(tm,tm+1;Sh)

+
( N∑

i=1

h2ri ‖c(tm+1)‖2H1+r(xi−1,xi)

)1/2

+
( N∑

i=1

h2ri ‖p(tm+1)‖2H1+r(xi−1,xi)

)1/2)2

+
1

2ǫ2
C2

in,d

(
∆t‖Phc‖W 2,∞(tm,tm+1;Sh) +

( N∑

i=1

h4i ‖∂tc(tm+1)‖2H2(xi−1,xi)

)1/2)2

.
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By summing in (4.51) over the index m from 0 to n− 1, we deduce that

(1− θ1∆t)‖enc,h‖2h + 2∆t(Cd − 4ǫ2)

n∑

m=0

‖emc,h‖2H1 ≤ (1− θ1∆t)‖e0c,h‖2h

+ 2∆t(Cd − 4ǫ2)‖e0c,h‖2H1 + (θ1 + θ2)∆t

n−1∑

m=0

‖emc,h‖2h +∆t

n∑

m=1

(τms )2,

which implies

‖enc,h‖2h +∆t
n∑

m=0

‖emc,h‖2H1 ≤ C1((1− θ1∆t)‖e0c,h‖2h + 2∆t(Cd − 4ǫ2)‖e0c,h‖2H1)

+ C2∆t
n−1∑

m=0

‖emc,h‖2h +∆t
n∑

m=1

(τms )2, (4.52)

with

C1 =
1

min{1− θ1∆t, 2(Cd − 4ǫ2)} , C2 = C1(θ1 + θ2)

and provided that Cd − 4ǫ2 > 0 and

1− θ1∆t > 0. (4.53)

Applying the discrete Gronwall’s inequality to (4.52) gives

‖enc,h‖2h +∆t

n∑

m=0

‖emc,h‖2H1 ≤ C1e
C2n∆t

(
(1− θ1∆t)‖e0c,h‖2h

+ 2(Cd − 4ǫ2)∆t‖e0c,h‖2H1 +∆t
n∑

m=1

(τms )2
)
. (4.54)

Moreover, if p and c are smooth enough, we have

∆t

n∑

m=1

(τms )2 ≤ C
( N∑

i=1

(
h2ri

(
‖c‖2L∞(0,T ;H1+r(xi−1,xi))

+ ‖p‖2L∞(0,T ;H1+r(xi−1,xi))

)

+ h4i ‖∂tc‖2L∞(0,T ;H2(xi−1,xi))

)
+∆t2

(
‖∂tPhc‖2L∞(0,T ;Sh)

+ ‖Phc‖2W 2,∞(0,T ;Sh)

))
.

In Theorem 4.4 below, we present our convergence result. It is a direct consequence
of the previous estimate and (4.49) and (4.54). We remark that a similar result can
be obtained applying the same time integration procedure to the semi-discrete finite
difference scheme (4.10).
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Theorem 4.4 Let ch,0 satisfy condition (2.34) with respect to ‖·‖H1 and let ∆t verify
(4.53). For r ∈ {1, 2}, there holds

‖en+1
p,h ‖2H1 + ‖enc,h‖2h +∆t

n∑

m=1

‖emc,h‖2H1 ≤ C
(
∆t2‖Phc‖2W 2,∞(0,T ;Sh)

+ h2rmax

(
‖c‖2L∞(0,T ;H1+r) + ‖p‖2L∞(0,T ;H1+r)

)
+ h4max‖∂tc‖2L∞(0,T ;H2)

)
,

provided that p, c ∈ L∞(0, T ;H1+r(Ω) ∩ H1
0 (Ω)), ∂tc ∈ L∞(0, T ;H2(Ω)), and ∂2t c ∈

L∞(0, T ;C(Ω)).

4.3 Numerical Experiments

In this section we illustrate our convergence result by one example.

Example 4.1 Consider the coupled problem (4.1)-(4.4) with

a(c) = 1 + c, b(c,∇p) = (c∇p)2, and d(c,∇p) = c+∇p + 2.

We choose q1, q2, and the initial conditions so that the exact solution is

p(x, t) = etx(x− 1) and c(x, t) = et(1− cos(2πx))sin(x).

The pressure and concentration errors are measured by

Errorp = ‖eNp,h‖1,h and Errorc =
(
‖eNc,h‖2h +∆t

N∑

n=1

‖enc,h‖21,h
)1/2

.

The numerical results are presented in Table 4.1, and they confirm the theoretically
predicted convergence rates.

hmax Errorc Rate Errorp Rate

1.3174× 10−1 5.5435× 10−2 1.9492 1.1099× 10−2 1.5048
6.5869× 10−2 1.4355× 10−2 2.0010 3.9113× 10−3 1.5808
3.2934× 10−2 3.5863× 10−3 2.0024 1.3075× 10−3 1.8337
1.6467× 10−2 8.9511× 10−4 2.0008 3.6682× 10−4 1.9296
8.2336× 10−3 2.2366× 10−4 2.0029 9.6288× 10−5 1.9671
4.1168× 10−3 5.5804× 10−5 2.0109 2.4628× 10−5 1.9866
2.0584× 10−3 1.3846× 10−5 2.0301 6.2144× 10−6 2.0015
1.0292× 10−3 3.3899× 10−6 - 1.5520× 10−6 -

Table 4.1: Discrete norm errors and estimated convergence rates for Example 4.1.

For the computations, we have chosen T = 0.1 and a very small time step to
reduce the buildup of time integration errors.





Chapter 5

Applications: Non-Fickian Tracer
Transport in Porous Media

This chapter is totally dedicated to our mathematical model for non-Fickian tracer
transport in porous media. In the first section, considering the one-dimensional ver-
sion, we test and validate the model by fitting breakthrough curves (BTCs) resulting
from laboratory tracer tests. Comparisons with the traditional PDE model are also
presented and, as we will see, the proposed model allows a better fitting of the ob-
servations. In fact, the BTCs presented here exhibit some non-Fickian features, such
as asymmetric profiles and long tails, that are not captured by the traditional model.
For completeness, we also compare our model to the continuous time random walk
(CTRW) model, which has been shown to be very effective in describing non-Fickian
transport. In the second and last section, we develop an efficient discretization scheme
in two dimensions for the solution of the concentration PIDE equation and the veloc-
ity system. Some numerical experiments illustrate the applicability and the feasibility
of our approach.

5.1 Model Validation: Breakthrough curve analysis

The objective of this section is to test the proposed integro-differential model, des-
ignated as the PIDE model, against real data and to compare its effectiveness with
the usual PDE model. We restrict attention to the one-dimensional case. Additional
simplifications included the absence of source or sink terms. In this manner, the
PIDE model (1.30) reduces to

∂tc +∇ · (vc)− df∆c = dnf

∫ t

0

K(t− s)∆c(s) ds in Ω× (0, T ], (5.1)

75
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while the PDE model (1.20) takes the form

∂tc+∇ · (vc) = d∆c in Ω× (0, T ]. (5.2)

Here, we have written v = v/φ as the average velocity, d as a dispersion coefficient
and df and dnf as Fickian and non-Fickian dispersion coefficients, respectively. We
emphasize that the parameters df and d have a different physical meaning in each of
the above models.

In order to better illustrate the performance of the PIDE model, we also compare
it against the CTRW model in the truncated power law (TPL) form. Such a model,
designated TPL, is based on the CTRW theory and has been proved quite accurate
for modeling tracer transport [49,88,109]. In the CTRW perspective, tracer transport
can be seen as a series of particle jumps in space and time that can be characterized
by a probability density function (pdf) ψ(x, t). For a given initial position x0 at
time t0, this function gives the probability that the particle is at position x at time
t, i.e., the probability of making a jump of length h = x − x0 after a time ∆t =

t − t0. Assuming that this process is uncorrelated in space and time, we can write
ψ(x, t) = ψx(x)ψt(t), where ψx denotes the jump length pdf and ψt the waiting time
pdf. Assuming moreover that ψx is Gaussian, the general one-dimensional version of
such CTRW models is given in the Laplace domain by

pc̃(p)− c0 = M̃(p)(d∆c̃(p)−∇ · (vc̃(p))), (5.3)

where M̃(p) is the memory function defined by

M̃(p) = t̃p
ψ̃t(p)

1− ψ̃t(p)

with t̃ some characteristic time. The particular case of the TPL model is obtained,
assuming that ψt follows a TPL distribution function

ψt(t) =
rβ(1 + t/t1)

−1−β

t1Γ(−β, r)
exp(−r − t/t2), r =

t1
t2
, 0 ≤ β ≤ 2,

where Γ is the incomplete Gamma function and t1 = t̃. Although, for simplicity, we
have used the same notation as in (5.2) it should be noted that the parameters d and
v have a different physical meaning in this approach. For a detail discussion on this
model we refer to [29, 56].

We observe that the proposed PIDE model can also be interpreted in the language
of CTRWs. For that, we first note that considering the Poissonian waiting time pdf

ψt(t) = λ exp(−λt),
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taking t̃ = λ−1 and writing (5.3) in the time domain, we get an equation that is
formally identical to the classical PDE model (5.2). On the other hand, if we take
the waiting time pdf of the Gamma family defined by

ψt(t) =
t

4τ 2
exp(−t/2τ), τ > 0,

and considering also t̃ = 4τ , we obtain the equation

∂tc =

∫ t

0

K(t− s)(d∆c(s) +∇ · (vc)) ds, (5.4)

where K is precisely the memory function of the PIDE model (5.1). Therefore the
PIDE model can be regarded as a compromise between the Gamma model (5.4) and
the PDE model.

Now we specify the boundary and initial conditions for the PIDE model. In the
following simulations, the outlet boundary condition is open, while at the inlet we
adopt the Dirichlet condition,

c(0, t) = cI(t) for t ≤ tI ≤ T. (5.5)

Furthermore, the initial condition c(0) = 0 is used, i.e., the initial concentration is
assumed to be zero. There is a lot of discussion about the correct type of boundary
conditions to be used in these problems and also on the closely related notation of
flux-averaged concentration. For that, we refer to [106, 135, 145], where this is more
deeply explored. Here, we do not address this question.

As mentioned before, we test the models by comparing simulated and measured
BTCs. The quality of the fitting is quantified using the root mean square error
(RMSE), which is defined by

RMSE =
( 1

N

N∑

n=1

(cn − cnh)
2
)1/2

,

with N the number of observations, cn the measured concentration at time tn, and
cnh the estimated concentration at time tn. The best-fit BTCs based on the PDE and
TPL models are generated using the publicly available CTRW toolbox [50]. For the
PIDE model, the minimization procedure was carried out using built-in routines of
Matlab [1].
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5.1.1 Data Set 1

In an already classical experiment, Scheidegger [144] used homogeneous Berea sand-
stone core columns to investigate the accuracy of the PDE model in simulating tracer
transport in porous media. During the experiment, columns of different lengths were
first fully saturated with tracer and subsequently flushed with clean liquid. The re-
sulting tracer BTCs at the outflow boundary were measured and compared with the
ones predicted by the PDE model. Scheidegger concluded that the PDE model was
inadequate for describing the BTCs, in his own words: "The deviations are systematic
which appears to point towards an additional, hitherto unknown effect".
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Figure 5.1: Experimental data set 1 and the best-fit BTCs.

We test the models using typical data from one of these experiments. In this case,
the column was 7.62×10−1 meters (m) long and 5.08×10−2 m in diameter, the clean
liquid was injected at a rate equal to 1.73 cubic centimeters per minute (cm3/min), and
the porosity of the core was 0.204. This gives an average velocity of 4.18×10−3 m/min.
Observe that in order to simulate this experiment we solve equations (5.1) and (5.2) for
the liquid concentration, and so the appropriate boundary condition at the inlet (5.5)
is of step type, i.e., cI = 1, for t ∈ (0, T ]. In Figure 5.1 (a), we show the experimental
data and the best-fit curves obtained with the PIDE and the PDE models. A quick
observation of Figure 5.1 (a) indicates that the PIDE model captures the transport
dynamics quite well. The PDE model, however, fails to describe the data, especially
at late times, since it can not reproduce the long tail, a typical indication of non-
Fickian transport. This result for the PDE model is in line with the findings of
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Scheidegger. The values of the two models constants and the RMSE are listed in
Table 5.1. As indicated by the given results, the application of the proposed model
leads to a reduction of about 79% in the RMSE.

PDE PIDE TPL

v (m/min) v (m/min) df (m2/min) v (m/min)
4.65× 10−3 4.27× 10−3 1.08× 10−5 7.23× 10−3

d (m2/min) dnf (m2/min) τ (min) d (m2/min) β
1.35× 10−5 1.76× 10−5 25.52 7.86× 10−6 1.58

RMSE RMSE RMSE
1.72× 10−2 3.66× 10−3 5.11× 10−3

Table 5.1: Fitting parameters for the models plotted in Figure 5.1 and the corre-
sponding RMSE values.

Now we compare the results obtained for the PIDE model with the results for the
TPL model. As shown in Figure 5.1 (b), there is only a small discrepancy between
them. The RMSE values, 3.66× 10−3 and 5.11× 10−3, respectively, suggest that the
PIDE model fits the data slightly better. This same data have been analyzed in [49]
using the PDE and TPL models, with similar conclusions. Here and in the following,
we omitted the values of t1 and t2 in the TPL model. They are consistently very
small, and very large, respectively, when compared to the time scale; therefore, its
exact value is not relevant.

5.1.2 Data Set 2

The second group of data is the result of tracer displacement experiments through
homogeneous sand columns reported in [36]. Next, we briefly describe the setup
and we refer to that paper for all other experimental details. The columns were
incrementally packed with sand particles of different sizes. The diameter of most of
the sand particles lie in the range of 0.1 − 0.71 millimeters. We consider the results
for two columns: Column 1, 11 cm in diameter and 10 cm long; and Column 2, also
11 cm in diameter but 40 cm long. The transport experiment was conducted under
initially unsaturated conditions, with the water content of 0.24 for Column 1 and
of 0.18 for Column 2. A pulse tracer at the flow rate of 4.20 × 10−2 cm/min was
applied at the top of both columns within the time period of 140 seconds (s) for the
smaller column and of 107 s for the longer one. The respective average velocities were



80 Chapter 5. Applications: Non-Fickian Tracer Transport in Porous Media

1.86× 10−1 cm/min and 2.28× 10−1 cm/min. After the pulse, water was injected at
the same rate.
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(a) PIDE (solid line) and PDE (dash line).
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(c) PIDE (solid line) and PDE (dash line).
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(d) PIDE (solid line) and TPL (dash line).

Figure 5.2: Experimental data set 2 and the best-fit BTCs for Column 1 in (a) and
(b) and for Column 2 in (c) and (d).

To simulate this scenario, we set at the inlet boundary cI = 4.16 × 10−2 and
tI = 2.33 min for Column 1, and cI = 5.77 × 10−2 and tI = 1.78 min for Column 2.
These values of cI correct the small mass imbalance. The observed and fitted BTCs
for the models are plotted in Figure 5.2. In particular, Figures 5.2 (a) and (c) show
that the agreement for the PDE model is very poor. This is especially true at later
times, where the BTC possesses a heavy tail. On the other hand, the PIDE model
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captures the BTC behavior much better. The RMSEs presented in Tables 5.2 and 5.3
prove this conclusion. Using the PIDE model results in a reduction in the RMSE of

PDE PIDE TPL

v (cm/min) v (cm/min) df (cm2/min) v (cm/min)
1.88× 10−1 1.69× 10−1 2.59× 10−2 1.10

d (cm2/min) dnf (cm2/min) τ (min) d (cm2/min) β
3.69× 10−2 1.00× 10−1 15.95 2.92× 10−2 1.10

RMSE RMSE RMSE
2.50× 10−3 9.57× 10−4 9.77× 10−4

Table 5.2: Fitting parameters for the models plotted in Figures 5.2 (a) and (b) and
the corresponding RMSE values (Column 1).

about 62% for Column 1 and 80% for Column 2. The difference between the RMSE of
the PIDE model and that of the TPL model is not significant for Column 1, but it is
more pronounced for Column 2. In this case the PIDE model presents a smaller error.

PDE PIDE TPL

v (cm/min) v (cm/min) df (cm2/min) v (cm/min)
1.90× 10−1 1.74× 10−1 1.16× 10−1 2.88

d (cm2/min) dnf (cm2/min) τ (min) d (cm2/min) β
2.37× 10−1 4.25× 10−1 42.14 1.88× 10−1 0.97

RMSE RMSE RMSE
9.64× 10−4 1.91× 10−4 3.43× 10−4

Table 5.3: Fitting parameters for the models plotted in Figures 5.2 (c) and (d) and
the corresponding RMSE values (Column 2).

These two models are compared in Figures 5.2 (b) and (d). In [36], the PDE and TPL
models, among others, were tested against these data, and the authors considered the
TPL one of two best-fitting models.

5.1.3 Data Set 3

In this section, we confront the models with tracer data from a laboratory experiment
described in [96]. This was a large-scale experiment, using soil columns with a length
of 1250 cm and a cross section of 10×10 cm2. The tracer tests were conducted under



82 Chapter 5. Applications: Non-Fickian Tracer Transport in Porous Media

homogeneous and heterogeneous conditions. Here, we only analyze the data obtained
in the heterogeneous column. This column was randomly packed with various soil
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(a) PIDE (solid line) and PDE (dash line).
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(d) PIDE (solid line) and TPL (dash line).

Figure 5.3: Best-fit BTCs for the data set 3 at the distances of 400 and 600 cm away
from the inlet in (a) and (b) and in (c) and (d), respectively.

materials with different shapes and sizes. The study was conducted under saturated
conditions and at the constant flow rate of 2.39 × 10−1 cm/min. The estimated
porosity was 0.37, leading to an average velocity of 6.45× 10−1 cm/min. The tracer
was injected as a step input and the concentration along the column was measured by
installing 12 electrical conductivity probes that were 100 cm apart. The collected data
and a detailed analysis of the experiment are given in [96]. Note that because of the
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difference between the length and diameter of the column, the use of one-dimensional
models is justified.

PDE PIDE TPL

v (cm/min) v (cm/min) df (cm2/min) v (cm/min)
9.39× 10−1 9.30× 10−1 1.15 26.61

d (cm2/min) dnf (cm2/min) τ (min) d (cm2/min) β
19.82 31.43 67.71 40.34 0.95

RMSE RMSE RMSE
5.63× 10−2 2.97× 10−2 3.96× 10−2

Table 5.4: Fitting parameters for the models plotted in Figures 5.3 (a) and (b) and
the corresponding RMSE values (400 cm).

For our study, we consider the BTCs measured at the distances of 400 and 600 cm.
Because of the normalization used in [96] to report the results, we set cI = 1 at
the inlet boundary (5.5). The best-fit BTCs by the models and the experimental
observations are given in Figure 5.3. We observe that the measured BTCs are highly
asymmetric with long tails, and it is clear (Figures 5.3 (a) and (c)) that these non-
Fickian features are better captured by the PIDE model than the PDE model. The

PDE PIDE TPL

v (cm/min) v (cm/min) df (cm2/min) v (cm/min)
9.43× 10−1 8.25× 10−1 20.67 29.27

d (cm2/min) dnf (cm2/min) τ (min) d (cm2/min) β
50.32 187.65 383.09 79.08 0.93

RMSE RMSE RMSE
5.23× 10−2 1.51× 10−2 2.30× 10−2

Table 5.5: Fitting parameters for the models plotted in Figures 5.3 (c) and (d) and
the corresponding RMSE values (600 cm).

modeling parameters and the RMSEs are shown in Tables 5.4 and 5.5. The proposed
model provided a reduction in the RMSE of 43% at distance 400 cm and of 71%

at distance 600 cm. In Figures 5.3 (b) and (d), we compare again the PIDE model
with the TPL model. As before, they have a similar performance, but the PIDE
model appears to have smaller RMSE values. This is corroborated by other results
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not shown here. The same data was used used in [88, 95] to test various transport
models including the PDE model. In [88], the TPL model provided the best results
among all five models considered.

5.1.4 Scale-Dependent Prediction

An important aspect that we have not explored so far is the prediction capacity
of the PIDE model. Our results show that the average velocity is always in good
agreement with experiments, suggesting that the mean velocity of the tracer can
be correctly predicted. Unfortunately, the other parameters of the model seem to
be scale-dependent. For instance, for data set 2, the values of dnf and df clearly
increase with distance. A possible solution to mitigate this problem is to insert scale-
dependent coefficients in the PIDE model, similar to those proposed for the PDE
model [115, 124, 164, 170].
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Figure 5.4: Predicted BTCs for Column 3 in (a) and for Column 2 in (b).

Keeping the discussion in the data set 2, we note that the values of d, df , and dnf
in the PDE and PIDE models seem to vary linearly with the distance L, while the
value of τ seem to vary linearly with time T . Using the data displayed in Tables 5.2
and 5.3, we establish the power-law approximations

df = 2.14× 10−3L1.08, dnf = 9.11× 10−3L1.04,

τ = 1.72× 10−1T 0.90, d = 2.06× 10−3L1.28.
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From these relations and the parameters obtained for Column 1, we attempted to
predict the BTC for Column 2 and also for another column with a 20 cm length,
designated Column 3. As it is shown in Figure 5.4, a good agreement was obtained
for the PIDE model. The results presented in [36, 88] suggest that the TPL model
is less scale-dependent, but we recall that in the PIDE model, we only have four
parameters, as opposed to the TPL model, which has five.

5.2 Numerical Experiments in Two Dimensions

It should be noted that whether and how the previous one-dimensional results can
translate to two or three dimensions needs further study. The intent of this section
is to illustrate the applicability and computational feasibility of the proposed model
to simulate two-dimensional transport problems. On the other hand, this type of
equation arises in many problems, and so, the following discussion may also be useful
in a different context. We begin with a brief explanation of the numerical procedure
used to discretize the model equations. Then, we validate the code by comparing it
with analytical solutions for a number of simple problems, and we close with a few
realistic examples.

5.2.1 The Numerical Scheme

As we have already discussed, our two-dimensional model for flow and tracer transport
in porous media is governed by a PIDE for the concentration

φ∂tc +∇ · (vc)−∇ · (Df∇c) =
∫ t

0

K(t− s)∇ · (Dnf∇c(s)) ds+ qc∗ (5.6)

and an elliptic system for the velocity and pressure

∇ · v = q, (5.7)

v = −K̄∇p. (5.8)

The system of equations (5.6)-(5.8) is complemented with initial and Dirichlet or
Neumann boundary conditions as given by (1.33)-(1.37).

The numerical strategy adopted to discretize this uncoupled problem pays special
attention to the flow system (5.7)-(5.8). In fact, the equation (5.6) is usually advec-
tion dominated and, therefore, an accurate approximation of v is required. Due to
the presence of the full tensor K̄ in (5.8) this can be a challenging task, especially
when the medium is highly heterogeneous. We address this issue by using MFEMs,
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a method that has proved very effective for this kind of problems [7, 10, 27, 73, 114].
In particular, we employed the RT0 elements [35, 60, 137]. The mixed formulation is
natural for this kind of problem, since it approximates both variables p and v simulta-
neous. This is not the case, e.g., for FEMs, where the variable v is obtained from p by
some kind of numerical approximation. The advantages of the RT0 mixed approach
over the traditional piecewise linear FEMs is well documented in [136]. We note that
some post-processing techniques can be applied to enhance the finite element solu-
tion [118]. One of the keys behind the success of the mixed method is the continuity
of the numerical fluxes between two adjacent elements. This ensures the local con-
servation of mass, a property that is shared with the exact solution of (5.7)-(5.8).
Another key property is the discontinuous tangential component of the approximate
velocities. This feature is well-suited for this problem since when K̄ is discontinuous
the tangential component of v is also discontinuous. The relevance of this aspect
is discussed in [98]. Noteworthy among alternative methods are the multipoint flux
MFEM [3, 161, 162], the mixed method with divergence-free RT0 elements [48, 143],
and mimetic FDMs [34, 113].

Now, we discuss the numerical procedure for the solution of the PIDE (5.6). This
equation describes the spatial and temporal development of the concentration. Thus,
obtaining an accurate and stable solution is of crucial interest for our purpose. For
the approximation in space, a higher-order Godunov FVM is applied to handle the
dominant advective term. More precisely, we use the second-order MUSCL scheme
described by Barth and Jespersen in [19]. Other suitable alternatives can be found
in [21, 37, 97, 134]. This method combines naturally with the RT0 mixed method
that is also used for approximating the dispersion terms. These schemes, called
Godunov-mixed methods, have been successfully applied in the simulation of Fickian
transport in porous media [7, 27, 53, 54, 121, 127]. At last, we would like to mention
that, recently, discontinuous Galerkin methods have gained great popularity in this
field [22, 65, 138, 141, 147, 152].

In the time integration, we use a second-order multistep BDF method [51] com-
bined with a numerical quadrature rule for the integral term. This scheme is applied
in a natural IMEX fashion where the non-stiff advective term is treated explicitly and
the remaining stiff terms are treated implicitly. One attractive aspect of this approach
is that the computationally expensive advective term only needs to be evaluated once
every time step. The reliability of this kind of IMEX method has been proved for the
solution of advection-dominated PDE problems [58, 99, 100, 156].
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The proposed scheme is implemented over triangular elements, as they provide the
greater geometric flexibility, a crucial aspect in porous media simulation, allied with
good stability and convergence properties. Moreover, while not yet available, our im-
plementation can be easily modified to support adaptive mesh refinement procedures.
In the following, we describe in more detail the numerical approach presented above.

The Concentration Equation: Time Discretization

In order to simplify the presentation the PIDE (5.6) is discretized first in time.
Notice that it would be equivalent to go the other way around, i.e., first discretize in
space and then in time. Let ∆t be a fixed time step with tn = n∆t, for n = 0, . . . , N ,
and such that tN = T . Denote by cn the numerical approximation at time level tn
and by c̄n the linear extrapolation for cn+1 defined by c̄n = 2cn − cn−1. The IMEX
method yields the following approximation

φ

2∆t

(
3cn+1 − 4cn + cn−1

)
+∇ · (vc̄n)

−∇ · (Df∇cn+1) =

∫ tn+1

0

K(tn+1, s)∇ · (Dnf∇c(s)) ds,

for n ≥ 1 and where, for simplicity of exposition, we consider no source or sink
terms. Applying the composite trapezoidal rule to the integral term, and using the
same strategy as outlined at the beginning of Section 3.2, we can obtain the following
three-time-level solution scheme

3τφ

∆t2
cn+1 − 2τ

∆t
∇ · (Df∇cn+1)−∇ · (Dnf∇cn+1) = Gn for n ≥ 2, (5.9)

with

∆t2Gn = τφ(4cn − cn−1)− 2τ∆t∇ · (vc̄n + exp(−∆t/τ)vc̄n−1)

+ τφ(3cn − 4cn−1 + cn−2) + ∆t2∇ · (Dnf∇cn − 2τ∆tDf∇cn). (5.10)

Here we have assumed, again for simplicity of exposition, that c(0) = 0.
One of the shortcomings of multistep methods is that they are not self-starting.

In this work, the starting value c1 is computed by the one-step IMEX Euler method
combined with the rectangular rule,

τφ

∆t2
c1 − τ

∆t
∇ · (Df∇c1)−∇ · (Dnf∇c1) = − τ

∆t
∇ · (vc0). (5.11)
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Ideally, this should be done using a higher-order method or variable step sizes [101,
158]. Note that c2 can be obtained from the equation

3τφ

∆t2
c2 − 2τ

∆t
∇ · (Df∇c2)−∇ · (Dnf∇c2) = exp(−2∆t/τ)∇ · (Dnf∇c0)

+ exp(−∆t/τ)∇ · (Dnf∇c1) +
4τφ

∆t2
c1 − 2τ

∆t
∇ · (vc̄1). (5.12)

This is nothing more than a direct application of the proposed method, i.e., without
using the formulation (5.9)-(5.10).

One major drawback of the method is the stability restriction that limits the time
step, since we expect this to be determined by the CFL restriction coming from the
explicit treatment of advection. It is given by

∆t ≤ C
1

3

φTmin

||v||L∞
, (5.13)

with C = 5/8 and where Tmin represents the minimum ratio between the measure
and the perimeter of the triangles in the triangulation [21,102]. A possible solution to
mitigate this restrictive condition would be to use variable step sizes in the domain, as
done for PDEs in [55]. Also worth mentioning are the characteristic methods, which
allow for large time steps and that have shown promising results in the simulation of
Fickian transport in porous media [11, 62, 64, 159, 165].

The Concentration Equation: Spatial Discretization

Now we proceed to the discretization in space. Defining, for n ≥ 2, the variables

z̃n+1 = −Df∇cn+1 and zn+1 = −Dnf∇cn+1,

we rewrite the equation (5.9) in the mixed form

βcn+1 + α∇ · z̃n+1 +∇ · zn+1 = Gn, (5.14)

zn+1 +Dnf∇cn+1 = 0, (5.15)

z̃n+1 +Df∇cn+1 = 0, (5.16)

with β = 3τφ/∆t2 and α = 2τ/∆t. Consider the Sobolev space

H(div; Ω) =
{
u ∈ (L2(Ω))2 : ∇ · u ∈ L2(Ω)

}
,

with the norm

‖u‖2H(div) = ‖u‖2L2 + ‖∇ · u‖L2,
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and the subspace

H0(div; Ω) =
{
u ∈ H(div; Ω) : u · η = 0 on ∂ΩN

}
.

Assuming, for simplicity, homogeneous boundary conditions, the system (5.14)-(5.16)
has the mixed variational formulation: find zn+1, z̃n+1 ∈ H0(div; Ω) and cn+1 ∈ L2(Ω),
such that, for n ≥ 2,

β(cn+1, w) + α(∇ · z̃n+1, w) + (∇ · zn+1, w) = (Gn, w), (5.17)

(D−1
nf z

n+1, u)− (cn+1,∇ · u) = 0, (5.18)

(D−1
f z̃n+1, u)− (cn+1,∇ · u) = 0, (5.19)

for all u ∈ H0(div; Ω) and w ∈ L2(Ω).
Let Th = {Ti : i = 1, . . . , NT} be an admissible triangulation of the domain

Ω and Eh = {Ei : Ei ∈ Ω ∪ ∂Ω, i = 1, . . . ,ME}, the set of edges associated with
the triangulation. In order to discretize the variational problem (5.17)-(5.19) with
respect to the space variables we introduce the elements RT0 = Wh × Vh. The space
Wh ⊂ L2(Ω) is used to approximate the concentration and consists of scalar functions
that are constant in each triangle T . For approximating the flux variables, we use
the space Vh ⊂ H(div; Ω). This means that the flux is represented by piecewise linear
functions with continuous normal components across the interior boundaries in Th.
Therefore, the fully-discrete variational formulation for problem (5.17)-(5.19) reads:
find zn+1

h , z̃n+1 ∈ Vh and cn+1
h ∈ Wh, such that, for n ≥ 2 and for all uh ∈ Vh and

wh ∈ Wh,

β(cn+1
h , wh) + α(∇ · z̃n+1

h , wh) + (∇ · zn+1
h , wh) = (Gn

h, wh), (5.20)

(D−1
nf z

n+1
h , uh)− (cn+1

h ,∇ · uh) = 0, (5.21)

(D−1
f z̃n+1

h , uh)− (cn+1
h ,∇ · uh) = 0. (5.22)

Denote by φm, for m = 1, . . . , NT , and ψj , for j = 1, . . . ,ME , the usual basis
functions of the spaces Wh and Vh, respectively [35]. Hence, any function wh ∈ Wh

can be expressed via the equality

wh(x, y) =

NT∑

m=1

wmφm(x, y) for (x, y) ∈ Ω, (5.23)

where wm is value of wh at the centroid of each triangle. While any function uh ∈ Vh

can be written as

uh(x, y) =

ME∑

j=1

ujψj(x, y) for (x, y) ∈ Ω ∪ ∂Ω, (5.24)
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with uj being the value of the normal component of the flux at the midpoint of the
corresponding edge. Using the representations (5.23) and (5.24) we can transform
the variational problem (5.20)-(5.22) into the equivalent linear system




B 0 −C
0 B̃ −C
CT αCT E





zn+1
h

z̃n+1
h

cn+1
h


 =




0
0
b


 for n ≥ 2, (5.25)

where zn+1
h , z̃n+1

h and cn+1
h are the vectors of unknown coefficients in the basis, with

the diagonal matrix

[Emm] = β|Tm| for m = 1, . . . , NT ,

the matrices B, B̃, and C defined by

[Bij] =

∫

Tm

D−1
nf ψi · ψj dxdy for i, j = 1, . . . ,ME , (5.26)

[B̃ij] =

∫

Tm

D−1
f ψi · ψj dxdy for i, j = 1, . . . ,ME , (5.27)

[Cim] =

∫

Tm

∇ · ψi dxdy for i = 1, . . . ,ME, (5.28)

for m = 1, . . . , NT , and with the vector

bm =

∫

Tm

Gn dxdy for m = 1, . . . , NT . (5.29)

Proceeding just as above, an analogous linear system can be found from the equations
(5.11) and (5.12). We also mention that the calculation of the integrals (5.26)-(5.28),
which is not shown here, was obtained using the reference element approach.

To finish the spatial discretization, we must only apply the MUSCL scheme to the
advective term

F =

∫

Tm

∇ · (vc̄nm) dxdy. (5.30)

Note that this term is now included in the expression (5.29). For a detailed description
of this scheme, we refer to [18, 19]; here we give only the basic steps. In the sequel,
we write for brevity cm instead of c̄nm.

Applying the divergence theorem to (5.30), we get

F =

3∑

j=1

∫

Ej

cmv · ηEj
dS,
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where Ej is the edge j of the triangle Tm and ηEj
is the exterior normal to Ej . Assume

now that Tm is an interior triangle, i.e., Tm ⊂ Ω. Assume also that the triangle Tm
is adjacent with the triangles Tp, Tq and Tr as represented in Figure 5.5. Denote by
cm1 and cp1 an approximation of cm and cp, respectively, at the midpoint of edge E1

and define with an analogous meaning the elements cq2, cr3, cm2, and cm3.

Tm

cm

E1

E2

E3

cm1

cp1

Tp
cp

Tq
cq

Tr

cr

cm3

cr3

cm2

cq2

Figure 5.5: The MUSCL scheme and the notation.

Noting that we also restrict v to the space Vh, we can write the used scheme as
follows,

F ≈
3∑

j=1

|Ej |f(cmj, cnj) for n ∈ {p, q, r},

with |Ej | the measure of the edge and f the Godunov numerical flux function,

f(cmj, cnj) =





cmj if vj > 0,

cnj if vj ≤ 0.

The main question now is how to calculate the approximations cmj and cnj. In
the classical first-order upwind scheme, we simply use the values cm and cn. This
method is very stable; however, it is a well-known fact that is not very accurate
and introduces excessive numerical diffusion. The main idea behind the MUSCL
technique is to improve the accuracy of the upwind scheme by using higher-order
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approximations. Here, we use a second-order linear reconstruction method. With
this procedure cmj , for instance, is given by

cmj = cm + θm∇cTm(xEj
− xTm), θm ∈ [0, 1]. (5.31)

where xEj
and xTm are the middle point of the edge Ej and the centroid of the triangle

Tm, respectively, and where ∇cTm is an approximate gradient of c on the triangle Tm.
In this case, we differ from the method proposed by Barth and Jespersen, where the
gradient is given by the plane through the three nearby centroids, cq, cp, and cr, in
the notation of Figure 5.5. Instead, we use the least-squares technique, which is more
robust because it is less sensitive to the triangulation [120]. By θ, we represent the
so-called slope limiter. These limiting functions are essential to avoid the introduction
of non-physical oscillations during this reconstruction step. Here we implemented the
Barth-Jespersen limiter; it is defined by

θm = min(θmj) for j = 1, 2, 3,

with

θmj =





min
(
1,
cmax
m − cm
c∗mj − cm

)
if c∗mj − cm > 0,

min
(
1,
cmin
m − cm
c∗mj − cm

)
if c∗mj − cm < 0,

1 if c∗mj − cm = 0.

(5.32)

where c∗mj represents the value obtained using the unconstrained version of (5.31),
i.e., fixing θm = 1, and where cmax

m = max(cm, cp, cq, cr) and cmin
m = min(cm, cp, cq, cr).

For other options, we refer to [18, 97] and also to [20], where an improved version
of (5.32) is presented.

The Flow System: Numerical Discretization

As we mention before, the RT0 space is also employed in the approximation of the
flow system (5.7)-(5.8). In the space variables, this system can be seen as a particular
case of (5.14)-(5.16). Considering homogeneous boundary conditions, and proceeding
in a similar way as before, one obtains

[
B̂ −C

−CT 0

] [
vh
ph

]
=

[
0
−d

]
, (5.33)
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where B̂ is as defined in (5.26) (or (5.27)) with the permeability tensor K̄ in the place
of the tensor Dnf , and where d is the vector with components

dm =

∫

Tm

q(x, y) dxdy for m = 1, . . . , NT .

These integrals are evaluated by numerical integration. Next, we briefly discuss the
numerical techniques used to solve the linear systems (5.25) and (5.33).

The Linear Systems

First, we turn our attention to the linear system (5.25). To solve this system we
use the following decomposition,

Acn+1 = b, (A = E + CTB−1C + αCTB̃−1C) (5.34)

B̃z̃n+1 = Ccn+1, (5.35)

Bzn+1 = Ccn+1. (5.36)

The advantages of this approach are evident; namely, it largely reduces the dimension
of the problem, and only symmetric and positive definite matrices are involved in the
solution process. Furthermore, the matrices B̃ and B are well-conditioned, in the
sense that the spectral condition number is independent of the mesh size when the
triangulation is regular [142], and if the entries of the diagonal matrix E are very
big, like in our case, we expect the matrix A to be also well-conditioned. For this
class of matrices, the conjugate gradient method (CGM) should converge rapidly and
is the one adopted. Simple diagonal preconditioning is used in (5.35) and (5.36) to
speed up the convergence. One may notice in (5.34) that B̃−1 is required, and B̃ is
not easily invertible. Moreover, B̃−1 is not a sparse matrix. However, since the CGM
only need to calculate the action of B̃−1, we tackle this problem by solving a system
of the form Br = p. This is realized using the CGM with diagonal preconditioning
and a small stopping tolerance. This same observation holds for B−1.

Now, we discuss the linear system (5.33). The matrix involved in this system
is strongly indefinite [35] and it is well-known that iterative methods for indefinite
systems are not so efficient as those for problems with positive definite matrices.
On the other hand, because of the dimension of real problems, direct solvers are
computationally prohibitive. This challenging problem is actually one of the major
drawbacks to MFEMs. Many different approaches have been proposed to address this
issue. Without being exhaustive, we refer to [8, 9, 30, 33, 73] and also to the survey
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article [26], where the focus is on numerical methods for solving this kind of linear
system.

Here, we solve the system (5.33) using again a decoupling method and obtaining
in this way the following system of equations,

Ap = q, (A = CTB̂−1C) (5.37)

B̂v = Cp̄. (5.38)

Now, since B̂ holds the properties of B, we can efficiently solve (5.38) using the same
strategy adopted for (5.35). As for (5.37), the CGM is again employed. This choice
is justified by the fact that A is symmetric and positive definite. Unfortunately,
the spectral condition number of A increases quadratically when the triangulation
is refined [142]. The matrix A is then very ill-conditioned and so the efficiency of
the CGM is strongly dependent on a suitable preconditioning matrix. One option
is to use the matrix M = CTD−1

B̂
C, where DB̂ is the main diagonal of B̂, a choice

that is optimal from a spectral point of view. Identical or similar diagonalization
procedures for the approximation of B−1 have been suggested in the literature [2,
28, 72]. However, with this approach, we obtain a matrix that is also ill-conditioned;
therefore, preconditioning is again of high importance. The CGM with diagonal
preconditioning will be used, but the convergence is often very slow, especially when
the medium is very heterogeneous. For a comprehensive survey on preconditioning
techniques, we refer to [25]. Lastly, it should be noted that decoupled strategies, as
the ones presented here, and also the type of decoupling, can decrease the accuracy
of the numerical solution [103].

We finish this section with some more observations. In order to avoid the indefinite
linear system, MFEMs are usually implemented using the so-called mixed-hybrid
method [35]. This formulation reduces to a matrix analogue to B̂ that is easy to
invert and consequently to a symmetric and positive definite system of equations; but,
generally, the dimension of the system increases, the system is still ill-conditioned and
the accuracy can deteriorate. In fact, it has been observed that in the presence of an
irregular triangulation or a high heterogeneity, this formulation is not as accurate as
the one presented here [94].

5.2.2 Code Validation

In this section we present some numerical results to validate the code. First, we test
its accuracy using problems with known analytical solutions. All analytical problems
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are set on the unit square Ω = (0, 1)2. The tolerance on the relative error for the
CGM was taken to be 10−15 for the actions of B, B̃, and B̂, 10−3 for the actions of M ,
and 10−10 elsewhere. The numerical error and the convergence rates were obtained
on a sequence of five mesh refinements. The initial mesh, shown in Figure 5.6, was
generated by a conformed Delaunay triangulation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.6: Initial Delaunay mesh.

The concentration and pressure errors are measured by the L2(Ω) discrete norm

‖w − wh‖2h =

NT∑

n=1

|Tn|(w(xTn)− wh(xTn))
2, (5.39)

while the flux error is calculated with the H(div; Ω) discrete norm

‖u− uh‖2div,h = ‖u− uh‖20,h + ‖u− uh‖21,h

where

‖u− uh‖20,h =

NT∑

n=1

|Tn|
3∑

i=1

((u(xEi
)− uh(xEi

)) · ηEi
)2, (5.40)

‖u− uh‖21,h =

NT∑

n=1

3∑

i=1

|Ei|((u(xEi
)− uh(xEi

)) · ηEi
)2, (5.41)

with Ei ∈ Tn, for i = 1, 2, 3.
With the first two examples, we pretend to analyze the error of the spatial dis-

cretization of the PIDE (5.6). In Example 5.1, we present a problem that involves
only dispersion, while Example 5.2 is pure advection.
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Example 5.1 In this example we consider τ = 1, T = 0.5 and the fixed time step
∆t = 5× 10−4. The parameters for the integro-differential equation (5.6) are

v = 0, Df =

[
0.25 0.1
0.1 0.2

]
, and Dnf =

[
0.5 0.1
0.1 0.4

]
.

The remaining undefined terms are such that it has the solution

c(x, y, t) = e2txy(x− 1)(y − 1) sin(xy).

In Example 5.1, where advection is not present, the convergence rate should be
governed by the mixed method. Therefore, we predict a convergence rate equal to
two for the scalar variable in the norm (5.39) and a convergence rate equal to one for
the flux variable in the norms (5.40) and (5.41). Convergence of, at most, two in the

‖c− ch‖h Rate ‖z − zh‖div,h Rate ‖z̃ − z̃h‖div,h Rate

1.2358×10−3 1.6878 3.1111×10−2 1.1254 1.9625×10−2 9.2069
3.8358×10−4 1.8436 1.4260×10−2 1.1326 1.0367×10−2 1.1035
1.0688×10−4 1.9323 6.5040×10−3 1.1193 4.8247×10−3 1.2490
2.8002×10−5 1.9736 2.9939×10−3 1.0778 2.0300×10−3 1.2949
7.1296×10−6 - 1.4183×10−3 - 8.2735×10−4 -

Table 5.6: Discrete norm errors and numerical convergence rates for Example 5.1.

norm (5.40) can also be expected in some situations. This expectations are based on
known results for second-order elliptic problems [4, 8, 31, 63, 89, 137]. We observe in
Table 5.6 that the numerical convergence rates are in agreement with our predictions.

Example 5.2 In this example, we consider equation (5.6), with

v = (1, 1) and Df = Dnf = q = 0.

The initial condition is defined as

c0(x, y) = sin(2πx)sin(2πy)

and periodic boundary conditions are imposed. The solution for this problem is then
given by

c(x, y, t) = sin(2π(x− T ))sin(2π(y − T )).

The time step is the maximum allowed by the CFL condition (5.13), and the results
for T = 0.1 are shown in Table 5.7. For comparison, we also present the results
obtained with the upwind method, which we identify with the subscript up.
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In Example 5.2, dispersion is null; therefore, the error is dominated by the MUSCL
method. Depending on the problem, we could expect this numerical scheme to have an
order of accuracy between one and two. However, it is a well-known fact that second-

‖c− ch‖h Rate ‖c− ch,up‖h Rate

1.2997×10−1 1.0328 1.9471×10−1 0.65960
6.3523×10−2 1.4492 1.2326×10−1 0.77846
2.3264×10−2 1.4861 7.1861×10−2 0.86229
8.3047×10−3 1.5206 3.9529×10−2 0.90935
2.8946×10−3 - 2.1046×10−2 -

Table 5.7: Discrete norm errors and numerical convergence rates for Example 5.2.

order MUSCL schemes like the one proposed here rarely, if ever, achieve second-order
convergence rate. Nevertheless, the option for higher-order MUSCL methods over
first-order upwind scheme is justified since they present less numerical dispersion,
smaller error and higher-order of accuracy [37,97,134]. The results exhibit in Table 5.7
confirm these predictions.

‖p− ph‖h Rate ‖v − vh‖div,h Rate ‖v − vh‖0,h Rate

4.0019×10−3 1.9822 1.6759×10−1 1.2358 4.7619×10−2 1.7009
1.0129×10−3 1.9915 7.1160×10−2 1.2850 1.4647×10−2 1.7703
2.5473×10−4 1.9966 2.9203×10−2 1.3443 4.2939×10−3 1.8367
6.3832×10−5 1.9989 1.1502×10−2 1.3752 1.2021×10−3 1.8713
1.5971×10−5 - 4.4340×10−3 - 3.2858×10−4 -

Table 5.8: Discrete norm errors and numerical convergence rates for Example 5.3.

In the next example, we test the numerical method for solving the flow prob-
lem (5.7)-(5.8). The numerical results are given in Table 5.8, and they are as expected
(see the discussion following Example 5.1).

Example 5.3 In this example we analyze the flow system (5.7)-(5.8) with a full
tensor, defined by

K̄ =

[
(x+ 1)2 + y sin(xy)
sin(xy) 2

]

and where q is such that it admits the solution

p(x, y) = x+ y + sin(xy)cos(y).

The boundary conditions are of Neumann type on x = 1 and y = 1 and of Dirichlet
type on x = 0 and y = 0.
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Next, to illustrate the discussion of the resolution of the linear systems (5.25) and
(5.33), respectively, we present in Table 5.9 the maximum number of iterations of the
CGM observed in the resolution of Examples 5.1 and 5.3. As predicted, the results
show that the numerical strategy is effective except for the matrix M of the flow
system. In fact, the CGM performs well with a low number of iterations in the mesh
refinement for all the other cases. However, for the matrix M , diagonal precondi-
tioning is clearly inefficient, since the number of iterations is high and approximately
doubled when the value of hmax is halved. We also observe an increase in the number

Concentration Flow

IterA IterB IterB̃ IterA IterB̂ IterM
5 19 22 17 18 23
7 21 24 19 20 45
11 21 25 22 21 89
20 21 25 24 23 164
38 20 25 26 23 311

Table 5.9: Number of CGM iterations in Example 5.1 and Example 5.3.

of iterations for the matrix A of the concentration system. The explanation is that,
because of the constant α, the ill-conditioning of the matrix CTB̃−1C can influence
the condition number of A, particularly when the coefficients ofDf are relatively high,
and in those situations, preconditioning can also be required. In the interpretation of
these results, we should take into account that, in this case, the tensors K̄, Df , and
Dnf are smooth and the triangulation is regular.

∆t ‖c− ch‖h Rate

5.0000×10−1 2.7460×10−1 1.2872
2.5000×10−1 1.1251×10−1 1.6416
1.2500×10−1 3.6062×10−2 1.8555
6.2500×10−2 9.9650×10−3 2.0259
3.1250×10−2 2.4470×10−3 -

Table 5.10: Discrete norm error and estimated order of accuracy in time.

Finally, we examine the rate of convergence in time. In order to do that, we
consider the problem of Example 5.1, but with v = (1, 0.5) and T = 3. We succes-
sively solve this problem, for different time steps, in the last refinement level. The
results present in Table 5.10 indicate that the time integration scheme is second-order
accurate.
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5.2.3 Numerical Simulation

To further assess the performance of our method, we conclude the chapter with some
more realistic examples of tracer transport in porous media. A typical porous medium
is characterized by rapid changes in the permeability. Therefore, in the following ex-
amples, we attempted to replicate this situation. In all of the simulations, the compu-
tational domain Ω = (0, 1)2 is discretized using a conforming Delaunay triangulation
with 3200 elements, and the time step is taken in accordance with the CFL restriction
(5.13). Let us note, that physical units are omitted since we are mostly interested in
the numerical behavior of the scheme.

Figure 5.7: Computed velocity (left) and concentration profile (right).

For the first example, we consider the permeability field shown in Figure 5.7.
The structure of the heterogeneity consists of two zones that differ in six orders of
magnitude. The white zone has a high permeability, K̄ = I, while the green zone has
a very low permeability, K̄ = 10−6I. No flow conditions are imposed at the horizontal
boundaries, while in the vertical boundaries the pressure is set p = 1 and p = 0.1 at
the left and right boundaries, respectively. The resulting velocity field is also shown
in Figure 5.7 and it seems to represent very well the heterogeneities pattern.

We also consider a tracer transport process that obeys the PIDE (5.6). We define
the tensors Df = Dnf as in (1.21), with the molecular diffusion dm = 0 and the
dispersivities dl = 5 × 10−4 and dt = 2 × 10−5. We take the porosity φ = 0.3,
the parameter τ = 10, and no source or sink terms q = 0. We impose zero initial
condition for concentration, c = 1 on the left boundary, c = 0 on the right boundary,
and impermeable conditions on the remaining ones. In Figure 5.7, we observe that
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the concentration profile is in good agreement with that expected from the proposed
permeability field. Note that the low permeability zones are not invaded by the tracer.

(a) The log-permeability field. (b) Vectors and Euclidean norm of the velocity
field.

(c) The concentration at T = 30. (d) The concentration at T = 60.

Figure 5.8: Surf plots obtained by interpolation of the simulation results.

For the final simulation (Figure 5.8), we consider a transport problem with a
source and a sink term. The source covers one triangle near the lower-left corner with
a rate of q = 6.4. The injected tracer concentration c∗ is equal to one. The sink
also covers one triangle and is located near the upper-right corner with an opposite
rate to the source. No flow boundary conditions are assumed both for velocity and
concentration. Also, we take τ = 50, φ = 0.3, and Df = Dnf/10 defined as in (1.21)
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with dm = 10−6, dl = 4 × 10−3, and dt = 2 × 10−3. The random permeability field
is shown in Figure 5.8 (a), and was generated using a Gaussian distribution. As we
can see, there are jumps of about four orders of magnitude throughout the domain.
The computed velocity field and the estimated tracer concentration at T = 30 and
T = 60 are also presented in Figure 5.8. Again, the numerical results seem consistent
with respect to the permeability field. Finally, with the aim of testing the effect of
the parameter τ , we solved the same problem but with τ = 0.1. In Figure 5.9, we
display the concentration profiles at T = 30 for the two different scenarios. For the

Figure 5.9: Concentration at T = 30 for τ = 50 (left) and τ = 0.1 (right).

lower value of τ , the transport seems to be more dispersive, the plume of tracer is
less compressed and more widespread.

We remark that the vast majority of the computer code used in this chapter was
written by the author in the programming language Matlab.





Chapter 6

Conclusions and Future Work

In this thesis we mainly focus on parabolic partial integro-differential equations of
the form

∂tc+ Ac =

∫ t

0

B(s, t)c(s) ds+ f in Ω× (0, T ], (6.1)

where A and B(s, t) represents elliptic operators. Semi-discrete approximations by
FEMs were studied and new superconvergence results were established. Real-life
applications were also considered with the introduction of a model to describe non-
Fickian tracer transport in porous media. Below, we give a brief summary and dis-
cussion of our findings and some future work direction.

In Chapter 2, a space discretization of the one-dimensional version of (6.1) by a
piecewise linear FEM with numerical quadrature was presented and analyzed. The
crucial result of this chapter is the supercloseness of the approximation in the H1-
norm with respect to the usual interpolation operator,

∫ t

0

‖Phc(s)− ch(s)‖2H1 ds ≤ Ch4. (6.2)

Moreover, this supercloseness estimate naturally leads to the supraconvergence of the
equivalent FDM in a discrete H1-norm,

∫ t

0

‖c(s)− ch(s)‖21,h ds ≤ Ch4. (6.3)

These results hold with no restrictions of any kind on the mesh.
In Chapter 3, we extended our spatially discrete method to the two-dimensional

case, and we were able to establish superconvergence results identical to (6.2)-(6.3).
However, in the convergence analysis we introduced a different approach from the
one that is usually followed in the literature. Such a strategy enabled us to assume
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lower regularity on the continuous solution. For polygonal domains, we provided an
error estimate with half-order loss of accuracy due to the interpolation in the oblique
boundary. It would be interesting to try to overcome this defect. We note that in
the two-dimensional case no mesh restrictions are imposed for the supraconvergence
estimate (6.3). In this chapter, we also introduced a fully discrete scheme based on
the method of lines approach, combining the FEM with a first-order time integrator.
The stability and the convergence of method was also discussed. We point out that
the analysis presented here can be followed if we use in the time integration methods
of higher-order such as the Crank-Nicolson method. This remark holds if we replace
the rectangular rule, considered in the approximation of the time integral, by one of
higher-order.

It is important to note that, in these chapters, the results concerning the stability
and convergence of the numerical schemes depend on an exponential that can be
unbounded in time. This means that the results hold only in bounded time intervals.
For particular classes of integro-differential problems, long time stability with respect
to the L2-norm was established, for instance, in [12,153]. Another challenging question
is whether the results presented can be generalized to problems involving non-linear
or other type of integro-differential equations.

In Chapter 4, we presented preliminary results of ongoing work. There, a simplified
version of equation (6.1) was coupled with a elliptic equation. The resulting system,
defined by

∇(a(c)∇p) = q1 in Ω× (0, T ], (6.4)

and

∂tc+∇(b(c,∇p)c)−∇(d(c,∇p)∇c) = q2 in Ω× (0, T ], (6.5)

can model, e.g., classical Fickian tracer transport in one-dimensional porous media
in the absence of source and sink terms. A piecewise linear FEM with numerical
quadrature for the discretization of (6.4)-(6.5) was proposed. In the error analysis that
followed, we proved superconvergence results like (6.2)-(6.3) for both variables c and p.
These estimates were established for arbitrary non-uniform meshes. The convergence
study for a full discretization with an IMEX scheme was also included. Natural future
work will be to replace the parabolic PDE in (6.4)-(6.5) by a parabolic PIDE of
type (6.1). Some preliminary results on this topic have been published in [83]. Other
directions include the replacement of the Dirichlet boundary conditions by Neumann
boundary conditions, the inclusion of source and sink terms and the generalization to
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other dimensions. Another possible direction for future research would be the study
of stabilized FEMs [87]. The goal would be to extended the superconvergence results
presented in Chapters 2 through 4 to this class of methods. As it is known, these
methods have a wider range of applicability.

In Chapter 5, we proposed and tested an integro-differential model to describe
non-Fickian tracer movement. The results presented for the one-dimensional ver-
sion suggest that this model can overcome the limitations of the traditional Fick-
ian PDE-based model. A numerical scheme for the two-dimensional model, using a
Godunov-mixed method in space and a second-order IMEX integrator in time, was
also developed. Allowing an efficient implementation as a three-time-level scheme, the
numerical procedure avoids a typical problem in the numerical solution of integro-
differential models, namely, the storage required by the quadrature formula. To vali-
date the code, we performed some numerical experiments, including comparisons with
analytical solutions. We saw that the method is accurate and generates numerical
solutions that are stable and physically reasonable. These results prove the com-
putational feasibility of the proposed non-Fickian model. However, the theoretical
analysis of this numerical scheme was left open.

In order to address more complex fluid problems, we plan to further modify the
model and to improve the performance of the numerical method. Future modifica-
tions include reactive and multiphase tracer transport, compressible porous media,
efficient preconditioning of the linear systems, adaptive mesh refinement and time
stepping, higher-order numerical schemes and three-dimensional simulations. An-
other enhancement would be provided by a time marching method, for which the
time step is not severely restricted by a CFL condition, as in (5.13). However, one of
the largest problems regarding the applicability of our model is related to the model
parameters. A better understanding of the physical meaning of τ , Df , and Dnf , and
the development of an automatic estimation of their values are crucial directions of
investigation.
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