
Machine Learning for Adaptive
Multi-Core Machines

Noel de Jesus Mendonça Lopes

PhD thesis submitted to the Department of Informatics Engineering
of the Faculty of Sciences and Technology, University of Coimbra, Portugal

Coimbra, July 2013

Supervised by Prof. Dr. Bernardete Martins Ribeiro

Dedicated to my daughter and son

Sara and Pedro

Abstract

Today, the increasing complexity, performance requirements and cost of current
(and future) applications in society is transversal to a wide range of activities,
from science to industry. The scale of the data from Web growth and advances in
sensor data collection technology have been rapidly increasing the magnitude and
complexity of tasks that Machine Learning (ML) algorithms have to solve. This
growth is driving the need to extend the applicability of existing ML algorithms to
larger datasets and to devise parallel algorithms that scale well with the volume of
data or, in other words, can handle “Big Data”. In this Thesis, we partly contribute
to solving this problem, by making use of two complementary components: a body
of novel ML algorithms and a set of high-performance ML parallel implementations
for adaptive multi-core machines.

In the first component, a new adaptive step size technique that enhances
the convergence of Restricted Boltzmann Machines (RBMs), thereby effectively
decreasing the training time of Deep Belief Networks (DBNs), is presented. Also,
a novel Semi-Supervised Non-Negative Matrix Factorization (SSNMF) algorithm,
aiming at extracting the most discriminating characteristics of each class, while
reducing substantially the overall time required for generating the models, is
proposed. In addition, a novel Incremental Hypersphere Classifier (IHC) with built-
in multi-class support, which is able to accommodate memory and computational
restrictions while providing good classification performance, is presented. This
highly-scalable algorithm can update models and classify new data in real-time as
well as handle concept drift scenarios. Moreover, since it keeps the samples that are
near the decision frontier while removing noisy and less relevant ones, it can select
a representative subset of the data for applying more sophisticated algorithms in
a fraction of the time required for the complete dataset. A learning framework
(IHC-SVM), encompassing the IHC and Support Vector Machine (SVM) algorithms
is validated in a real-world case study of protein membership prediction. Overall the
resulting system proved to be able to excel the baseline SVM (with an F-measure
of 96.39%) using only a subset of the data (ca. 50%) and demonstrated its capacity
to deal with the everyday dynamic changes of real-world biological databases. In
another direction, and motivated by the need to deal with missing data often

i

Abstract

occurring in large-scale data, a novel solution, designated by Neural Selective Input
Model (NSIM), is proposed. The method empowers Neural Networks (NNs) with
the ability to handle Missing Values (MVs) and excels single imputation techniques
while offering better or similar classification performance than the state-of-the-art
multiple imputation methods. With the new methodology we have successfully
addressed a real-world case study of bankruptcy prediction in a large dataset of
French companies, with results (F-measure of 95.70%) that are superior to previous
approaches.

The backbone of the second component of this Thesis is a Graphics Processing
Unit (GPU) computational framework, named GPU Machine Learning Library
(GPUMLib), which aims at providing the building blocks for developing high-
performance GPU parallel ML software, promote cooperation within the field and
contribute to the development of innovative applications. The rationale consists of
taking advantage of the GPU high-throughput parallel architecture to expand the
scalability of supervised, semi-supervised and unsupervised ML algorithms. Since
its release, GPUMLib, now with over 2, 000 downloads, has benefited researchers
worldwide.

New GPU parallel implementations of the Back-Propagation (BP) and Multiple
Back-Propagation (MBP) supervised algorithms, integrating the NSIM, are
presented, providing significant speedups (up to 180×). In particular, these
implementations played an important role for the detection of Ventricular
Arrhythmias (VAs) (with a sensitivity of 98.07%) that improved previous work, by
reducing the computation time from weeks to hours. In this line, an Autonomous
Training System (ATS) is designed to automatically find GPU high-quality solutions.
In the unsupervised verge, a GPU parallel implementation of the CD–𝑘 algorithm,
which boosts considerably the RBMs and DBNs training speed, is presented,
achieving speedups up to 46×. Additionally, new GPU parallel implementations of
the Non-Negative Matrix Factorization (NMF) algorithm are presented, yielding
speedups up to 706×. Both unsupervised implementations are tested in benchmarks
and in real datasets.

Overall, this Thesis contributes with adaptive multi-core machines for exploring
“Big Data”, which – as we hope – will have a positive impact in solving otherwise
intractable ML problems.

ii

Resumo

Hoje-em-dia, o aumento da complexidade e dos requisitos de desempenho é
transversal às mais variadas atividades humanas, desde a ciência à indústria. Vários
fatores, tais como os avanços nas tecnologias de armazenamento e aquisição de
dados ou o crescimento da Internet contribuíram para a existência de um volume de
dados sem precedente, o que rapidamente aumentou a complexidade dos sistemas
de Aprendizagem Computacional (AC). Tal leva a uma necessidade crescente
da aplicabilidade dos algoritmos existentes a conjuntos de dados de dimensão
muito elevada e ao desenvolvimento de novos algoritmos que tenham em conta a
escalabilidade, isto é, que consigam lidar com Big Data. Esta tese contribui em
parte para solucionar este problema, através de dois componentes complementares:
um conjunto de algoritmos inovadores e uma série de implementações paralelas de
algoritmos de AC para máquinas multi-core adaptativas.

Relativamente ao primeiro componente é apresentada uma nova técnica (adaptive
step size) que melhora a convergência das Restricted Boltzmann Machines (RBMs),
reduzindo de forma efetiva o tempo de treino das Deep Belief Networks (DBNs).
Apresentamos ainda um novo algoritmo, Semi-Supervised Non-Negative Matrix
Factorization (SSNMF), capaz de reduzir efetivamente o tempo necessário para
gerar modelos, que visa extrair características únicas para cada classe. Para além
disso, apresentamos um algoritmo inovador, Incremental Hypersphere Classifier
(IHC), capaz de lidar com concept drifts e de acomodar restrições de memória e de
processamento, ao mesmo tempo que mantém um bom desempenho em termos de
classificação. Desta forma é possível atualizar modelos e classificar novos dados em
tempo real. Por outro lado, uma vez que o IHC retém as instâncias perto da fronteira
de decisão, removendo as menos relevantes, pode ser utilizado para escolher um
conjunto de dados representativo do original, permitindo utilizar algoritmos mais
sofisticados numa fração do tempo original. É também proposta uma framework
(IHC-SVM), que integra o IHC e as máquinas de vetores de suporte (SVM), para
aplicação num problema real de classificação de proteínas. Esta framework permitiu
obter melhores resultados (F-measure de 96.39%) do que o valor referência das
SVMs, utilizando apenas cerca de metade dos dados. Noutra direção, foi abordado
o problema da existência de Missing Values (MVs), que é bastante frequente quando

iii

Resumo

lidamos com grandes volumes de dados e neste contexto requer novas abordagens.
Assim, é proposto um algoritmo inovador, Neural Selective Input Model (NSIM),
que permite às redes neuronais lidarem diretamente com MVs. O desempenho
deste algoritmo é melhor do que o dos métodos de single imputation, apresentando
níveis de desempenho superiores ou similares aos métodos de multiple imputation.
Utilizando o NSIM foi possível obter resultados melhores (F-measure de 95.70%)
do que os conseguidos anteriormente num problema real de falência de empresas,
num universo de mais de 60000.

O segundo componente desta tese centra-se numa framework computacional
de programação paralela para Graphics Processing Unit (GPU), designada por
GPUMLib. A GPUMLib visa facilitar a construção de sistemas de AC com elevado
desempenho, promover a cooperação na área e contribuir para o desenvolvimento de
aplicações inovadoras. A ideia é tirar partido da arquitetura massivamente paralela
do GPU para expandir a escalabilidade dos algoritmos (de AC) supervisionados,
semi-supervisionados e não supervisionados. Desde o seu lançamento, a framework
que conta já com mais de 2000 downloads, tem sido amplamente usada por
investigadores em todo o mundo.

Foram criadas implementações paralelas dos algoritmos Back-Propagation (BP)
e Multiple Back-Propagation (MBP) para GPU, que integram o NSIM. Estas
apresentaram speedups consideráveis (até 180×), permitindo no caso concreto de
um problema real de deteção de arritmias ventriculares transformar semanas de
trabalho em horas, o que se traduziu em resultados melhores (sensitivity de 98.07%)
que os previamente obtidos. Ainda nesta linha foi criado um sistema de treino
autónomo (ATS), com base nas referidas implementações, que é capaz de encontrar
soluções de elevada qualidade de forma autónoma.

No âmbito dos algoritmos não supervisionados foi criada uma implementação
paralela para GPU do algoritmo CD–𝑘, que reduz consideravelmente o tempo
de treino das RBMs e DBNs, providenciando speedups até 46×. Foram ainda
criadas implementações paralelas para GPU do algoritmo Non-Negative Matrix
Factorization (NMF), com speedups até 706×. Estas abordagens foram testadas
em benchmarks e problemas reais.

Em geral e tirando partido das máquinas multi-core adaptativas, esta tese
contribui para explorar volumes de dados de grande dimensão, pelo que esperamos
que a mesma venha a ter um impacto tangível na resolução de problemas de AC
que de outra forma seriam intratáveis.

iv

Acknowledegments

First and foremost, I wish to express my deepest gratitude to my supervisor,
Professor Bernardete Martins Ribeiro who taught me the beauty of Machine
Learning and Pattern Recognition. This work would not have been possible
without her amazing efforts, availability, guidance, support and spirit of motivation.

I would like also to thank Professor Manuela Simões, Filipe Duarte and Paulo
Vieira and to all the other friends and colleagues for their comments that overall
helped to improve this Thesis manuscript.

I am also very grateful to Professor Samuel Walter Best for his friendship and
for proof correcting this Thesis.

I also acknowledge Professor John Owens, from the University of California,
Davis, USA, for the courtesy of Figure 2.11.

Finally, I am deeply indebted to my wife Emily, and family for their love, support
and inspiration.

I wish to gratefully acknowledge the Foundation for Science and Technology
(FCT) for funding the first two years of this work, under the scholarship
SFRH/BD/62479/2009. Additionally I would like to thank the Centre for
Informatics and Systems (CISUC) of the University of Coimbra and the Research
Unit for Inland Development (UDI) of the Polytechnic of Guarda (IPG) for funding.

“O caminho faz-se caminhando.”
António Machado

Coimbra, 2013

v

Table of Contents

Abstract i

Resumo iii

Acknowledgments vi

Table of Contents ix

List of Figures xv

List of Tables xviii

List of Algorithms xix

Code Listings xxi

List of Acronyms xxiii

List of Symbols xxvii

1 Introduction 1
1.1 Motivation . 2
1.2 Challenges and Research Questions 2
1.3 Problem Statement . 5
1.4 Thesis Contributions . 7
1.5 Outline of the Thesis . 11

2 GPU Machine Learning Library (GPUMLib) 13
2.1 Introduction . 14
2.2 A Review of GPU Parallel Implementations of ML Algorithms . . . 17

vii

Table of Contents

2.3 GPU Computing . 19
2.4 Compute Unified Device Architecture (CUDA) 20

2.4.1 CUDA Programming Model 20
2.4.2 CUDA architecture . 24

2.5 GPUMLib architecture . 28
2.6 Summary . 35

3 Experimental Setup and Performance Evaluation 37
3.1 Hardware and Software Configurations 37
3.2 Evaluation Metrics . 38
3.3 Validation . 41
3.4 Benchmarks . 43
3.5 Case Studies . 51
3.6 Data Preprocessing . 55
3.7 Summary . 57

4 Supervised algorithms 61
4.1 Multiple Back-Propagation (MBP) 62

4.1.1 Back-Propagation (BP) Algorithm 63
4.1.2 Multiple Back-Propagation (MBP) Algorithm 69
4.1.3 GPU Parallel Implementation 75
4.1.4 Autonomous Training System (ATS) 79
4.1.5 Results and Discussion . 79

4.2 Neural Selective Input Model (NSIM) 91
4.2.1 Missing Data Mechanisms 93
4.2.2 Methods for Handling Missing Values (MVs) in Machine

Learning . 94
4.2.3 Neural Selective Input Model (NSIM) Proposed Approach . 97
4.2.4 GPU Parallel Implementation 99
4.2.5 Results and Discussion . 99

4.3 Incremental Hypersphere Classifier (IHC) 104
4.3.1 Proposed Incremental Hypersphere Classifier Algorithm . . . 106
4.3.2 Results and Discussion . 110

4.4 Summary . 121

5 Unsupervised and Semi-supervised algorithms 125
5.1 Non-Negative Matrix Factorization (NMF) 127

5.1.1 NMF Algorithm . 128
5.1.2 Combining NMF with other ML Algorithms 131
5.1.3 Semi-Supervised NMF (SSNMF) 131
5.1.4 GPU Parallel Implementation 134
5.1.5 Results and Discussion . 139

5.2 Deep Belief Networks (DBNs) . 153
5.2.1 Restricted Boltzmann Machines (RBMs) 156

viii

Table of Contents

5.2.2 Deep Belief Networks Architecture 162
5.2.3 Adaptive Step Size Technique 163
5.2.4 GPU parallel implementation 163
5.2.5 Results and Discussion . 170

5.3 Summary . 182

6 Conclusions and Perspectives 189
6.1 Main Research Accomplishments and Conclusions 189
6.2 Future Work . 194

Bibliography XXII

Index XXVII

ix

List of Figures

1.1 Using Machine Learning (ML) algorithms to extract information
from data. 3

1.2 Machine Learning paradigms. 6
1.3 Combining supervised and unsupervised models. 7

2.1 Disparity between the Central Processing Unit (CPU) and the
Graphics Processing Unit (GPU) peak floating point performance,
over the years, in billions (109) of floating-point operations per
second (GFLOPS). 15

2.2 Chronology of Machine Learning (ML) software Graphics Processing
Unit (GPU) implementations. 18

2.3 Graphics hardware pipeline. 19
2.4 Example of a kernel grid. 22
2.5 Execution of the square kernel grid blocks (see Listings 2.1 and 2.2). 23
2.6 NVIDIA (GPU) device architecture. 25
2.7 Diagram of a Fermi Streaming Multiprocessor (SM). 26
2.8 Execution of a kernel grid on different devices (Graphics Processing

Units (GPUs)). 27
2.9 Warp divergence effects. Each rectangle with an arrow represents a

warp thread that is either active or idle depending on the execution
branch. 28

2.10 Coalesced versus non-coalesced memory access patterns. It is
assumed that the size of each data element does not prevent coalesced
memory accesses. 29

2.11 Main components of the GPUMLib. 30
2.12 Row-major versus column-major orders. 32
2.13 Example of a sum reduction. 32
2.14 Evolution of the number of downloads of GPUMLib. 34

xi

List of Figures

2.15 Number of GPUMLib downloads according to the operating system. 34
2.16 Number of GPUMLib downloads per country. Regions with a higher

number of downloads are represented with darker colors. 35

3.1 Experiments associated with a 4-fold cross-validation procedure. . . 42
3.2 Randomly selected examples from the AT&T (ORL) face images. . 45
3.3 Randomly selected examples of the face images contained in the

CBCL training dataset. 47
3.4 Examples of the HHreco multi-stroke images. Each column contains

a symbol while each row contains the images drawn by one of the
users. 48

3.5 Examples of the MNIST hand-written digits. Each column contains
a different digit, starting with 0 in the left-most column and ending
with 9 in the right-most column. 50

3.6 Sinus Cardinalis function. 51
3.7 Two spirals dataset. 51
3.8 Yale face images. Each row contains the images of a specific

individual and each column a different expression/ configuration. . . 52
3.9 Typical Electrocardiograph (ECG) diagram of a normal sinus rhythm

for a human heart. 55
3.10 AT&T face images after applying a histogram equalization to the

original images presented in Figure 3.2. 58
3.11 CBCL face images after applying a histogram equalization to the

original images presented in Figure 3.3. 59
3.12 Yale face images after applying a histogram equalization to the

original images presented in Figure 3.8. 60

4.1 Three-layer feed-forward network. 64
4.2 Connection between two neurons. 64
4.3 Neuron architecture. 65
4.4 Sigmoid function. 66
4.5 A neural network viewed as a black box system that maps 𝐷 inputs

into 𝐶 outputs. 69
4.6 Selective actuation neuron architecture. 71
4.7 Architecture of a selective actuation neuron, with linear activation

functions, which solves the XOR problem. 72
4.8 Example of a multiple feed-forward network. 73
4.9 Model of the kernels executed (in each epoch) to complete the

forward phase of an MBP network. 75
4.10 Model of the kernels executed (in each epoch) in the back-propagation

phase of an MBP network. 78
4.11 Two-spirals training time (MBP algorithm). 83

xii

List of Figures

4.12 Number of epochs per minute using the BP algorithm for the forest
cover problem. The GPU speedups are shown near the corresponding
lines. 84

4.13 Number of epochs per minute using the MBP algorithm for the forest
cover problem. The GPU speedups are shown near the corresponding
lines. 85

4.14 Number of epochs per minute using the BP algorithm for the poker
problem. The GPU speedups are shown near the corresponding lines. 86

4.15 Number of epochs per minute using the MBP algorithm for the poker
problem. The GPU speedups are shown near the corresponding lines. 86

4.16 Number of epochs per minute for the Ventricular Arrhythmias case
study, using the BP algorithm. 87

4.17 Number of epochs per minute for the Ventricular Arrhythmias case
study, using the MBP algorithm. 87

4.18 Speedup (×) obtained for the Ventricular Arrhythmias case study,
using an 8600 GT. 88

4.19 Speedup (×) obtained for the Ventricular Arrhythmias case study,
using a GTX 280. 88

4.20 Networks trained, according to the number of hidden neurons. . . . 90
4.21 Speedups (×) versus processing threads. 92
4.22 Overview of the types of techniques for handling Missing Values

(MVs) in Machine Learning (ML). 95
4.23 Physical and conceptual models of a network with a selective input

(𝑗 = 3). 98
4.24 GPU speedups obtained for the bankruptcy problem. 104
4.25 Application of the IHC algorithm to a toy problem. 107
4.26 Regions of influence and decision surfaces generated by IHC for a

toy problem (𝑔 = 1). 108
4.27 Average time required to update the IHC model (after presenting a

new sample) for the KDD Cup 1999 dataset. 114
4.28 Accuracy of the IHC model for the KDD Cup 1999 dataset. 114
4.29 Evolution of the F-Measure for the Internet usage dataset. 116
4.30 Evolution of the F-Measure for the electricity dataset. 116
4.31 IHC-SVM learning framework. 118
4.32 Average time required to update the IHC model (with a new sample)

for the protein membership prediction case study. 119
4.33 IHC and IHC-SVM macro-average F-measure performance for the

protein membership prediction case study. 119

5.1 NMF factorization. 129
5.2 Combining NMF with other learning algorithms. 132
5.3 Generation and combination of the individual class matrices. The

white areas of the Htrain matrix correspond to zero value elements. 133

xiii

List of Figures

5.4 Typical basis vectors (W columns) generated by NMF and SSNMF
for the Yale face database (using 𝑟𝑖 = 3 and 𝑟 = 45 (3× 15)). . . . 133

5.5 Interpretation of the same data, using either row-major or column-
major orders. 134

5.6 Processing carried out, for each element H𝑎𝜇, by the UpdateH_MD

kernel. 139
5.7 Time required to run the NMF algorithms on the CBCL face

database, during 1,000 iterations, using the multiplicative update
rules. The speedups (×) provided by the GPU are shown in the
respective lines. 141

5.8 Time required to run the NMF algorithms on the CBCL face
database, during 1,000 iterations, using the additive update rules.
The speedups (×) provided by the GPU are shown in the respective
lines. 142

5.9 NMF GPU Speedups for the Center for Biological and Computational
Learning (CBCL) face database. 143

5.10 Approximations and parts representation generated by the NMF
algorithms. 143

5.11 Parts-based faces representations, W, generated by NMF for the
Yale dataset. 144

5.12 Number of networks trained by the ATS, according to the number
of neurons. 145

5.13 Time to perform 10,000 NMF iterations on the Yale database. The
speedups (×) provided by the GPU are shown in the respective lines.146

5.14 Time to perform 10,000 NMF iterations on the AT&T (ORL)
database. The speedups (×) provided by the GPU are shown in the
respective lines. 147

5.15 Time required to compute the W and Htrain matrices. 149
5.16 Average accuracy yielded by the SVM algorithm for the Yale dataset.151
5.17 Average accuracy yielded by the SVM algorithm for the AT&T dataset.152
5.18 Deep architectures versus shallow ones. 154
5.19 Schematic representation of a Restricted Boltzmann Machine (RBM).156
5.20 Reconstruction of the MNIST digits made by a newly initialized

Restricted Boltzmann Machine (RBM) (𝑝𝑖 is the proportion of
training vectors in which the pixel 𝑖 is on). 157

5.21 Markov Chain Monte Carlo using alternating Gibbs sampling in a
Restricted Boltzmann Machine (RBM). The chain is initialized with
the data input vector, x. The blocks in yellow correspond to a Gibbs
step. 160

5.22 Training process of a Deep Belief Network (DBN) with one input
layer, x, and three hidden layers h1, h2, h3. From left to right,
purple color represents layers already trained, while cyan represents
the Restricted Boltzmann Machine (RBM) being trained. 162

xiv

List of Figures

5.23 Sequence of GPU kernel calls, per epoch, that implement the CD–𝑘
algorithm. 164

5.24 ComputeStatusHiddenUnits kernel grid and block structure. . . . 165
5.25 Implications of storing the connection weights using row-major order.166
5.26 Grid and block structure used by the first approach of the kernel

CorrectWeights. 167
5.27 Proportion of time spent, per epoch, in each kernel, as measured in

the computer System 2 (with a GTX 280). 168
5.28 Connections to the hidden unit 𝑗. 168
5.29 Connections to the visible unit 𝑖. 169
5.30 Block structure of the improved approach of the CorrectWeights

kernel. 169
5.31 MNIST average training time per epoch (GPU speedups are indicated).172
5.32 Average reconstruction error (RMSE) according to the learning

parameters, 𝜂 and 𝛼. 173
5.33 Impact of the step size technique on the convergence of a RBM

(𝛼 = 0.1). 174
5.34 Receptive fields of the best networks trained either with the adaptive

step size or with a fixed learning rate. 175
5.35 Receptive fields excitatory (red) and inhibitory (blue) response zones

for the best networks trained either with the adaptive step size or
with a fixed learning rate. 176

5.36 DBNs classification performance, according to the number of pre-
training layers. 178

5.37 DBNs classification performance, according to the number of neurons
in the first hidden layer. 181

5.38 DBNs classification performance, according to the topology of the
additional layers (added to the pre-trained networks). 183

5.39 DBNs classification performance, depending on whether or not an
additional hidden layer was added to the pre-trained networks. . . . 184

xv

List of Tables

2.1 Principal technical specifications according to the CUDA device
compute capability. 21

2.2 Built-in CUDA kernel variables. 22
2.3 Number of Scalar Processor (SP) cores per Streaming Multiprocessor

(SM), according to the compute capability of the device (GPU). . . 25
2.4 GPUMLib memory access framework classes. 30
2.5 GPU parallel algorithms implemented in version 0.2.0 of GPUMLib. 33

3.1 Hardware and Software system main characteristics. 38
3.2 Main characteristics of the NVIDIA GeForce devices used in this work. 38
3.3 Confusion matrix for a binary classification problem. 40
3.4 Main characteristics of the benchmark datasets. 44
3.5 Main characteristics of the real-world case studies. 51
3.6 Financial ratios selected to create a bankruptcy model. 54
3.7 Selected features from the ECG signal. 56

4.1 Main characteristics of the training datasets used in the MBP
experimental setup. 81

4.2 Speedups (×) for the sinus cardinalis problem. 82
4.3 Speedups (×) for the two-spirals problem. 82
4.4 Performance results (%) for the ventricular arrhythmias problem. . 89
4.5 Main characteristics, proportion and distribution of the Missing

Values (MVs) for the UCI database benchmark experiments (after
data preprocessing). Note that the average (avg.) and the standard
deviation (stdev.) of Missing Values (MVs) per feature does not
include features without Missing Values (MVs). 100

xvii

List of Tables

4.6 Macro-average F-Measure performance (%) according to the methods
used to handle the Missing Values (MVs) and the algorithms used
to train the Neural Networks (NNs). 101

4.7 Results of the NSIM for the bankruptcy problem. 103
4.8 IHC and 1-nn classification performance (macro-average F-measure

(%)) for the test datasets of the UCI benchmark experiments. . . . 112
4.9 Classification performance, macro-average F-measure (%), and

storage reduction (%) of the IHC and IB3 algorithms for the UCI
benchmark experiments. 113

4.10 IHC-SVM storage reduction and classification improvement over the
baseline (SVM). 120

5.1 Accuracy (%) results for the Yale dataset. 148
5.2 Accuracy (%) results for the AT&T (ORL) dataset. 148
5.3 Percentage of zero values present in the Htest matrix. 150
5.4 Grid search average accuracy on the test folds. 150
5.5 Accuracy (%) results for the Yale dataset. 150
5.6 Accuracy results for the AT&T (ORL) dataset. 153
5.7 Top 10 DBNs with the best classification performance for the MNIST

dataset. The topology column refers to the topology of the added
classification layers. 177

5.8 Top 10 DBNs with the best classification performance for the HHreco
dataset. The topology column refers to the topology of the added
classification layers. 179

5.9 Confusion matrix of the best MNIST DBN (trained with 60,000
samples). 180

xviii

List of Algorithms

1 Autonomous Training System. 80
2 Incremental Hypersphere Classifier (IHC) algorithm. 109
3 CD–𝑘 algorithm. 161

xix

Code Listings

2.1 Example of a CUDA kernel function. Compute Unified Device
Architecture (CUDA) specific keywords appear in blue. 23

2.2 Example for calling a CUDA kernel function. 24
2.3 Example for calling a CUDA kernel function using the GPUMLib

memory access framework classes. 31

4.1 FireLayer kernel. 77
4.2 FireSelectiveInputs kernel. 100

5.1 CUDA kernel used to implement the NMF algorithm for the
multiplicative update rules, considering the Euclidean distance. . . 135

5.2 NMF iteration code for the multiplicative update rules, considering
the Euclidean distance. 136

5.3 CUDA kernel used to implement the NMF algorithm for the additive
update rules, considering the Euclidean distance. 137

5.4 One of the CUDA kernels (SumW) used to implement the NMF
algorithm for the multiplicative update rules, considering the
Kullback-Leibler divergence. 138

xxi

List of Acronyms

API Application Programming Interface . 20
ATS Autonomous Training System . 9
BP Back-Propagation . 5
CBCL Center for Biological and Computational Learning xiv
CD Contrastive Divergence . 160
CMU Carnegie Mellon University . 49
CPU Central Processing Unit . 10
CUDA Compute Unified Device Architecture . 11
DBN Deep Belief Network . 8
DOS Denial Of Service . 46
ECG Electrocardiograph . 54
EM Expectation-Maximization . 70
ERM Empirical Risk Minimization . 5
FF Feed-Forward . 63
FPGA Field-Programmable Gate Array . 15
FPU Floating-Point Unit . 24
FRCM Face Recognition Committee Machine . 147
GPGPU General-Purpose computing on Graphics Processing Units19
GPU Graphics Processing Unit. .1
GPUMLib GPU Machine Learning Library . 9
HPC High-Performance Computing . 25
IB3 Instance Based learning . 108
ICA Independent Component Analysis . 129
IHC Incremental Hypersphere Classifier . 8

xxiii

List of Acronyms

KDD Knowledge Discovery and Data mining . 46
LIBSVM Library for Support Vector Machines . 111
MAR Missing At Random. .93
MBP Multiple Back-Propagation . 9
MCAR Missing Completely At Random. .93
MCMC Markov Chain Monte Carlo . 159
ME Mixture of Experts. .70
MFF Multiple Feed-Forward . 73
MIT Massachusetts Institute of Technology. .46
ML Machine Learning . 1
MLP Multi-Layer Perceptron . 63
MV Missing Value . 8
MVP Missing Values Problem . 9
NMAR Not Missing At Random . 93
NMF Non-Negative Matrix Factorization . 8
𝑘-nn 𝑘-nearest neighbor . 19
NN Neural Network . 8
NORM Multiple imputation of incomplete multivariate data under a

normal model . 101
NSIM Neural Selective Input Model. .8
NSW New South Wales . 46
OpenCL Open Computing Language . 16
PCA Principal Component Analysis . 19
PVC Premature Ventricular Contraction . 54
R2L unauthorized access from a remote machine . 46
RBF Radial Basis Function . 33
RBM Restricted Boltzmann Machine . 8
RMSE Root Mean Square Error . 39
SCOP Structural Classification Of Proteins . 53
SFU Special Function Unit . 25
SIMT Single-Instruction Multiple-Thread . 27
SM Streaming Multiprocessor . 24
SP Scalar Processor . 24

xxiv

SRM Structural Risk Minimization . 5
SSNMF Semi-Supervised NMF . 8
SVM Support Vector Machine . 5
U2R unauthorized access to local superuser privileges 46
UCI University of California, Irvine . 43
VA Ventricular Arrhythmia . 10
VC Vapnik-Chervonenkis .5
WVTool Word Vector Tool . 54

xxv

List of Symbols

𝑎𝑗 Activation of the neuron 𝑗.
a𝑖 Accuracy of sample 𝑖.
b Bias of the hidden units.
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 Accuracy.
𝐵𝑒 Bernoulli distribution.
c Bias of the visible units.
𝐶 Number of classes.
C Penalty parameter of the error term (soft margin).
𝑑 Adaptive step size decrement factor.
𝐷 Number of features (input dimensionality).
𝐸 Error.
𝑓 Mapping function.
𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 F-measure (𝐹1 score).
𝑓𝑛 False negatives.
𝑓𝑝 False positives.
𝑔 Gravity.
h Hidden units (outputs of a Restricted Boltzmann Machine).
H Extracted features matrix.
𝐼 Number of visible units.
𝐽 Number of hidden units.
K Response indicator matrix.
𝑙 Number of layers.
𝑚 Importance factor.
𝑛 Number of samples stored in the memory.
𝑁 Number of samples.
𝑁 ′ Number of test samples.
𝑝 Probability.
𝑃 Number of model parameters.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 Precision.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 Macro-average precision.
𝑟 Number of reduced features (rank).

xxvii

List of Symbols

𝑟 Robustness (reducing) factor.
𝑠 Number of shared parameters (between models).
𝑟𝑒𝑐𝑎𝑙𝑙 Recall.
𝑟𝑒𝑐𝑎𝑙𝑙𝑀 Macro-average Recall.
RMSE Root mean square error.
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 Sensitivity.
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 Specificity.
𝑠𝑝𝑒𝑒𝑑𝑢𝑝 Speedup.
𝑠𝑡𝑜𝑟𝑎𝑔𝑒 Storage reduction (space savings).
t Targets (desired values).
⊤ Transpose.
𝑡𝑖𝑚𝑒𝑃 (Algorithms) Parallel time.
𝑡𝑛 True negatives.
𝑡𝑝 True positives.
𝑡𝑖𝑚𝑒𝑆 (Algorithms) Sequential time.
𝑢 Adaptive step size increment factor.
v Visible units (inputs of a Restricted Boltzmann Machine).
V Input matrix with non-negative coefficients.
W Weights matrix.
x Input vector.
�̃�𝑖 Result of the input transformation, performed to the original

input 𝑥𝑖.
X Input matrix.
y Outputs.
𝑍 Energy partition function (of a Restricted Boltzmann

Machine).
𝛼 Momentum term.
𝛾 Width of the Gaussian RBF kernel.
𝛿 Local gradient.
Δ Change of a model parameter (e.g. Δ𝑊𝑖𝑗 is the weight

change).
𝜂 Learning rate.
𝜃 Model parameter.
𝜅 Response indicator vector.
𝜉 Missing data mechanism parameter.
𝜌𝑖 Radius of sample 𝑖.
𝜎 Sigmoid function.
𝜑 Neuron activation function.
IR Set of real numbers.

xxviii

CHAPTER 1

Introduction

1.1 Motivation . 2

1.2 Challenges and Research Questions 2

1.3 Problem Statement . 5

1.4 Thesis Contributions . 7

1.5 Outline of the Thesis . 11

Today, Machine Learning (ML) algorithms play a central role in science and
industry. The scale of the data from the Web growth and advances in sensor data
collection technology have been rapidly increasing the magnitude and complexity
of the tasks that ML algorithms have to solve. This growth is driving the need to
extend the applicability of existing ML algorithms to larger datasets and to devise
parallel algorithms that scale well with the volume of data, or in other words, can
handle “Big Data”. In this Thesis, we present several contributions to tackle this
problem. Specifically, we qualify these challenges and extend the applicability of
well-known ML methods by developing Graphics Processing Unit (GPU) scalable
parallel implementations of these algorithms. Then, we address new ML algorithms
that scale well in the presence of large amounts of data. Additionally, we tackle the
missing data problem, which often occurs in large databases. Finally, we present a
computational framework GPU Machine Learning Library (GPUMLib) (Graphics
Processor Units Machine Learning Library) for implementing these algorithms.

This Chapter is structured as follows. Section 1.1 presents the motivation of this
Thesis. Section 1.2 addresses the challenges and research questions. Section 1.3
formalizes the supervised and unsupervised ML problems. Section 1.4 presents the

1

1 Introduction

main contributions with corresponding relevant works. Finally, Section 1.5 outlines
the organization of this Thesis.

1.1 Motivation

The volume of data being produced is increasing at an exponential rate, vastly
exceeding our capacity to analyze it, and this trend is likely to endure. The
growth of the Web and the emergence and confluence of new technologies, such as
low-cost sensors, high-capacity storage devices, remote sensing, robotic systems,
high-bandwidth networks and commodity computing has augmented the diversity
of data sources, which resulted in an unprecedented capacity to generate, capture
and share vast amounts of high-dimensional data.

According to Lyman et al., between 1999 and 2002, the amount of new information
stored grew approximately 30% per year. In 2002 around 5 exabytes (1018 bytes) of
new information were produced in the form of optical storage media, magnetic, print
and film, whilst in 1999 only 2 exabytes had been produced [Lyman et al., 2003]. On
average, (in 2002) each person produced 800 MB of recorded information. Moreover,
92% percent of this new information was stored in magnetic media (mainly on
hard disks) [Lyman et al., 2003]. Furthermore, Lyman et al. estimate that, in
2002, nearly 18 exabytes of new information was flowing through several electronic
channels (e.g. Internet, phone, television and radio), with the (worldwide) telephone
calls representing 98% of these data streams [Lyman et al., 2003]. Additionally, the
deployment (already envisioned) of worldwide distributed ubiquitous sensor arrays
for long-term monitoring, will allow mankind to collect previously inaccessible
information in real-time, especially in remote and potentially dangerous areas such
as the ocean floor or the mountains’ top, bringing the dream of creating a “sensors
everywhere” infrastructure a step closer to reality. In turn this data will feed
computer models which will generate even more data [Hey et al., 2009].

Much of the accumulated data that we are generating and capturing will be made
permanently available for the purposes of continued analysis [Hey et al., 2009]. In
this context, data is an asset per se, from which useful and valuable information
can be extracted. Currently, ML algorithms and in particular supervised learning
approaches play the central role in this process [Moens, 2006], which is illustrated
in Figure 1.1.

1.2 Challenges and Research Questions

The need for gaining understanding of the information contained in large and
complex datasets is common to virtually all fields of business, science and
engineering. In particular, in the business world, the corporate and customer data
are already recognized as a strategic resource from which invaluable competitive

2

1.2 Challenges and Research Questions

Data sources Real Data

Data streams

Computer
Simulation Models Artificial Data

ML Algorithms

Extracted
information

Large
volumes
of data

Persistent
repositories of
(accumulated)

Data

Figure 1.1: Using ML algorithms to extract information from data.

knowledge can be obtained [Cherkassky and Mulier, 2007]. Moreover, science is
gradually moving towards being computational and data centric [Hey et al., 2009].

However, using computers in order to gain understanding from the continuous
streams and the increasingly large repositories of data is a daunting task that may
likely take decades, as we are at an early stage of a new “data-intensive” science
paradigm [Hey et al., 2009]. Although the empirical, analytical and simulation
paradigms still play their role in science, if we are to achieve major breakthroughs,
we need to embrace this new data-intensive paradigm where “data scientists” will
work side-by-side with disciplinary experts, inventing new techniques and algorithms
for analyzing and extracting information from the huge amassed volumes of digital
data [Hey et al., 2009].

Over the last few decades, ML algorithms have steadily been the source of
many innovative and successful applications in a wide range of areas (e.g. science,
engineering, business and medicine) [Alpaydin, 2010,Mjolsness and DeCoste, 2001].
According to these authors, ML encompasses the potential to amplify every aspect
of the scientific work, by providing the basis for the semi-automation of scientific
methods: from hypothesis generation to model construction and experimentation.
Indeed, in many situations, it is not possible to rely exclusively on human perception
to cope with the high data acquisition rates and the large volumes of data inherent
to scientific observations [Mjolsness and DeCoste, 2001].

In this context, we expect ML algorithms to continue playing a vital role in
providing new insights from the abundant streams and increasingly large repositories
of data. However, it is well known that the computational complexity of ML

3

1 Introduction

methodologies, often directly related with the amount of the training data, is a
limiting factor that can render the application of many algorithms to real-world
problems, involving large datasets, impractical [Bottou and Bousquet, 2008,García-
Pedrajas et al., 2010]. Thus, the challenge consists of processing large quantities
of data in a realistic time scale [Hey et al., 2009]. Therefore, new scalable and
high-performance implementations of ML methods are needed in order to handle
efficiently the large amounts of data encompassing complex and hard to discover
relationships [Hey et al., 2009]. Although new technologies, such as GPU parallel
computing, may not provide a complete solution for this problem, its effective
application may account for significant advances in dealing with problems that
would otherwise be impractical to solve [Hey et al., 2009].

Modern GPUs are highly parallel devices that can perform general-purpose
computations, providing significant speedups for many problems in a wide range of
areas [Owens et al., 2008,Schaa and Kaeli, 2009]. Consequently, the GPU, with its
many cores, represents a novel and compelling solution to tackle the aforementioned
problem, by providing the means to analyze and study larger datasets [Schaa and
Kaeli, 2009]. Notwithstanding, parallel computer programs are by far more difficult
to design, write, debug and fine-tune than their sequential counterparts [Hey et al.,
2009]. Moreover, the GPU programming model is significantly different from the
traditional models [Garland and Kirk, 2010, Owens et al., 2008]. As a result,
few ML algorithms have been implemented on the GPU and most of them are
not openly shared, posing difficulties for those aiming to take advantage of this
architecture. Thus, the development of an open-source GPU ML library could
mitigate this problem and promote cooperation within the area. The objective
is two-fold: (i) to reduce the effort of implementing new GPU ML software and
algorithms, therefore contributing to the development of innovative applications;
(ii) to provide functional GPU implementations of well-known ML algorithms that
can be used to reduce considerably the time needed to create useful models and
subsequently explore larger datasets.

Rationally, we can not view the GPU implementations of ML algorithms as a
universal solution for the “Big Data” challenges, but rather as part of the answer,
which may require the use of different strategies coupled together. For instance, the
careful design of semi-supervised algorithms may result not only in faster methods
but also in models with improved performance. Another strategy consists of using
instance selection methods to choose a representative subset of the original training
data, which can in turn be used to build models in a fraction of the time needed
to derive a model from the complete dataset. Nevertheless, large scale datasets
and data streams may require learning algorithms that scale roughly linearly with
the total amount of data [Bottou and Bousquet, 2008]. Hence, traditional batch
algorithms may not be up to the challenge and instead we must rely on incremental
learning algorithms [Jain et al., 2006] that continuously adjust their models with
upcoming new data. These embody the potential to handle the gradual concept
drifts inherent to data streams and non-stationary dynamic databases.

4

1.3 Problem Statement

Finally, in practical scenarios, the problematic of handling large quantities of data
is often exacerbated by the presence of incomplete data, which is an unavoidable
problem for most real-world databases [Kotsiantis et al., 2006b,Karhunen, 2011].
Therefore, it is important to devise strategies to deal with this ubiquitous
problem that does not affect significantly either the algorithms performance or the
preprocessing burden.

1.3 Problem Statement

Learning in the context of ML corresponds to the task of adjusting the parameters, 𝜃,
of an adaptive model, using the information contained in a so-called training
dataset [Bishop, 2006]. Typically, the goal of such models consists of extracting
useful information directly from the data or predicting some concept of interest.
Depending on the learning approach, ML algorithms can be classified into three
different paradigms (supervised, unsupervised and reinforcement learning) [Bishop,
2006], as depicted in Figure 1.2. However, the work presented here does not cover the
reinforcement learning paradigm. Instead, it is primarily focused on supervised and
unsupervised learning, which are traditionally considered to be the two fundamental
types of tasks in the ML area [Chapelle et al., 2006]. Nevertheless, we also present a
semi-supervised learning algorithm. Semi-supervised algorithms offer an in-between
approach to unsupervised and supervised algorithms. Essentially, in addition to
the unlabeled input data, the algorithm also receives some supervision knowledge,
which may include a subset of the targets or some constraint mechanism that guides
the learning process [Chapelle et al., 2006].

In this Thesis framework, we shall assume that the training dataset is comprised
by a set of 𝑁 samples (instances). Each sample is composed by an input vector,
x = [𝑥1, 𝑥2, . . . , 𝑥𝐷], containing the values of the 𝐷 features that are considered to
be relevant for the specific problem being tackled and in the case of the supervised
learning paradigm by the corresponding targets (desired values), t. Additionally,
we shall assume that all the features are represented by real numbers, i.e. x ∈ IRD.
Moreover, we are predominantly interested in classification problems in which
the model aims to distinguish between the objects of 𝐶 different classes, based
on its inputs. Hence, unless explicitly specified otherwise, we shall consider that
t = [𝑡1, 𝑡2, . . . , 𝑡𝐶] where 𝑡𝑖 ∈ {0, 1}.

Accordingly, the goal of supervised learning algorithms consists of creating a
dependency model that associates a specific output vector, y ∈ IRC, to each
input vector, x ∈ IRD. Typically, algorithms relying on the Empirical Risk
Minimization (ERM) principle, e.g. Back-Propagation (BP), adjust the model
parameters, such that the resulting mapping function, 𝑓 : IRD −→ IRC, fits the
training data. On the other hand, the Structural Risk Minimization (SRM), e.g.
Support Vector Machines (SVMs), attempts to find the models with low Vapnik-
Chervonenkis (VC) dimension [Osuna et al., 1997]. This is a core concept, which

5

1 Introduction

learning
algorithm

modelx
(inputs)

y
(outputs)

training dataset
(X, T)

X
(training data inputs)

T
(targets)

learning
algorithm

modelx
(inputs)

h
(extracted

features)

training dataset

X
(training data inputs)

learning
algorithm

modelx
(inputs)

y
(outputs)

reward function

training dataset

X
(training data inputs)

T
(targets)

su
pe

rv
ise

d
lea

rn
in

g

unsupervised
learning

reinforcement learning

Figure 1.2: Machine Learning paradigms.

relates to the interplay between how complex the model is and the capacity of
generalization it can achieve. Either way, the objective consists of exploiting the
observed data to build models that can make predictions about the output values
of unseen input vectors [Bishop, 2006].

Let us assume that the training dataset input vectors, {x1, x2, . . . , xN}, form
an input matrix, X ∈ IRN×D, where each row contains an input vector xi ∈ IRD

and similarly, the target vectors, {t1, t2, . . . , tN}, form a target matrix, T ∈ IRN×C,
where each row contains a target vector ti ∈ IRC. Solutions of learning problems
by ERM need to be consistent, so that they may be predictive. They also need
to be well-posed in the sense of being stable, so that they might be used robustly.
Within the empirical risk algorithms we minimize an error function 𝐸(Y, T, 𝜃) that
measures the discrepancy between the actual model outputs, Y, and the targets, T,
so that the model fits the training data. As before, we assume that the model output

6

1.4 Thesis Contributions

X ∈ IRN×D

training inputs

Unsupervised

algorithm

model for feature

extraction

H ∈ IRN×J

extracted features

Supervised

algorithm
T ∈ IRN×C

targets

classification

model

Y ∈ IRN×C

outputs (training)

x
(inputs)

h
(extracted features)

y
(outputs)

Figure 1.3: Combining supervised and unsupervised models.

vectors, {y1, y2, . . . , yN} form an output matrix, Y ∈ IRN×C, such that each row
contains an output vector yi ∈ IRC. Note that when referring to a generic output
vector, we use y = [𝑦1, 𝑦2, . . . , 𝑦𝐶] ∈ IRC. Although the targets, 𝑡𝑖, are binary {0, 1},
the actual model outputs, 𝑦𝑖, are usual in the real domain IR. Notwithstanding,
their values lie in the interval [0, 1], such that (for some algorithms) they can be
viewed as a probability (e.g. in a neural network model this value resorts to the
odds that the sample belongs to class 𝑖).

In the case of unsupervised learning, typically the goal of the algorithms consists
of producing a set of 𝐽 informative features, h = [ℎ1, ℎ2, . . . , ℎ𝐽] ∈ IRJ, for each
input vector, x ∈ IRD. By analogy, the extracted features’ vectors, {h1, h2, . . . , hN},
form a feature matrix, H ∈ IRN×J, where each row contains a feature vector hi ∈ IRJ.
Eventually, the extracted features can compose a basis for creating better supervised
models. This process is illustrated in Figure 1.3.

1.4 Thesis Contributions
This Thesis contributes by partly answering the challenges addressed in the previous
Sections. Specifically, it presents novel ways to extract relevant information from
large dynamic datasets using scalable supervised, unsupervised and semi-supervised
ML algorithms. Its primary objective consists of providing methods and instruments
for significantly reducing the amount of time necessary to build accurate ML models

7

1 Introduction

from sizable volumes of data, providing the means for handling “Big Data”. The
following summarizes the list of contributions:

• Main Scientific contributions

– A new adaptive step size technique that improves considerably the
training convergence of Restricted Boltzmann Machines (RBMs), thereby
significantly reducing the time necessary to achieve a good reconstruction
error. The proposed technique effectively decreases the training time of
RBMs and consequently of Deep Belief Networks (DBNs). Additionally,
at each iteration the technique seeks to find the near-optimal step sizes,
solving the problem of finding an adequate and suitable learning rate
for training the networks [Lopes and Ribeiro, 2013,Lopes and Ribeiro,
2012b,Lopes et al., 2012b] (see Section 5.2.3).

– A new Semi-Supervised Non-Negative Matrix Factorization (SSNMF)
algorithm that reduces the computational cost of the original Non-
Negative Matrix Factorization (NMF) method while improving the
accuracy of the resulting models. The proposed approach aims at
extracting the most unique and discriminating characteristics of each
class, increasing the models classification performance. Identifying
the particular characteristics of each individual class is manifestly
important when dealing with unbalanced datasets where the distinct
characteristics of minority classes may be considered noise by traditional
NMF approaches. Moreover, SSNMF creates sparser matrices, which
potentially results in reduced storage requirements and improved
interpretation of their factors [Lopes and Ribeiro, 2011b] (see
Section 5.1.3).

– A new incremental instance-based learning algorithm, Incremental
Hypersphere Classifier (IHC), which presents advantageous properties
in terms of multi-class support, scalability and interpretability, while
providing good classification results. The IHC is highly-scalable, since
it can accommodate memory and computational restrictions, creating
the best possible model according to the amount of resources given. A
key feature of this algorithm lies in its ability to update models and
classify new data in real-time. Moreover, IHC is prepared to deal with
concept-drift scenarios and can be used as an instance selection method,
since it tries to preserve the class boundary samples while removing
inaccurate/noisy samples [Lopes and Ribeiro, 2011d,Lopes and Ribeiro,
2011e,Lopes et al., 2012a] (see Section 4.3).

– A Neural Selective Input Model (NSIM) which provides a novel strategy
for directly handling Missing Values (MVs) in Neural Networks (NNs).
The proposed technique accounts for the creation of different transparent
and bound conceptual NN models instead of relying on tedious data

8

1.4 Thesis Contributions

preprocessing techniques, which may inadvertently inject outliers into the
data. The projected solution presents several advantages as compared to
traditional methods for handling MVs, making this a first-class method
for dealing with this crucial problem. Moreover, evidence suggests
that the NSIM performs better than the state-of-the-art imputation
techniques when considering datasets either with a high prevalence of
MVs in a large number of features or with a significant proportion
of MVs, while delivering competitive performance in the remaining
cases. The proposed method, positions NNs, traditionally considered
to be highly sensitive to MVs, among the restricted group of learning
algorithms that are capable of handling MVs directly, widening their
scope of application. Additionally, the NSIM is prepared to deal with
faulty sensors, increasing the attractiveness of this architecture [Lopes
and Ribeiro, 2012a,Lopes and Ribeiro, 2011f,Lopes and Ribeiro, 2010d]
(see Section 4.2).

• GPU Computational Framework

– An open-source GPU ML software library (GPUMLib – GPU Machine
Learning Library) that aims at providing the building blocks for the
development of high-performance ML software. GPUMLib contributes
for improving and widening the base of GPU ML source code that is
available for the scientific community and thus reduce the time and
effort devoted to the development of innovative ML applications [Lopes
and Ribeiro, 2011c,Lopes et al., 2010] (see Section 2).

– A GPU parallel implementation of the Back-Propagation (BP)
and Multiple Back-Propagation (MBP) algorithms, which reduces
considerably the long training times of these types of NNs [Lopes and
Ribeiro, 2011a,Lopes and Ribeiro, 2009b,Lopes and Ribeiro, 2010c,Lopes
and Ribeiro, 2009a,Lopes and Ribeiro, 2009c] (see Section 4.1.3).

– A GPU parallel implementation of the NSIM, which reduces greatly the
time spent in the learning phase, making the NSIM an excellent choice
for dealing with the Missing Values Problem (MVP) [Lopes and Ribeiro,
2011f] (see Section 4.2.4).

– An Autonomous Training System (ATS) that tries to mimic our
heuristics for model selection (see Section 4.1.4). The resulting system,
built on top of the BP and MBP GPU parallel implementations, actively
searches for better model solutions, by gradually adjusting the topology
of the NNs. In addition, it is capable of finding high-quality solutions
without human intervention, privileging topologies that are adequate
for the specific problems [Lopes and Ribeiro, 2011a] (see Sections 4.1.5,
4.2.5 and 5.1.5).

9

1 Introduction

– A total of four different GPU parallel implementations of the NMF
algorithm, featuring both the multiplicative and the additive update
rules and using either the Euclidean distance or the Kullback-Leibler
divergence metrics [Lopes and Ribeiro, 2012c,Lopes and Ribeiro, 2010b]
(see Section 5.1.4). The performance results of the GPU implementations
excel by far those of the Central Processing Unit (CPU), yielding
extremely high speedups [Lopes and Ribeiro, 2012c,Lopes and Ribeiro,
2010b,Lopes and Ribeiro, 2010a] (see Section 5.1.5).

– A GPU parallel implementation of the RBMs and DBNs, which
accelerates significantly the (time consuming and computationally
expensive) training process of these network architectures [Lopes and
Ribeiro, 2013, Lopes et al., 2012b] (see Section 5.2.4). The RBM
implementation incorporates a proposed adaptive step size procedure
for tuning the learning parameters [Lopes and Ribeiro, 2013,Lopes and
Ribeiro, 2012b,Lopes et al., 2012b] (see Section 5.2.3).

• Practical Application Perspective
– A new learning framework (IHC-SVM) for the protein membership

prediction. This is a particularly relevant real-world problem, because
proteins play a prominent role in understanding many biological systems
and the fast-growing databases in this area demand new scalable
approaches. The resulting two-step system uses the IHC for selecting a
reduced subset of the original data, which is subsequently used to build
an SVM model. Given the appropriate memory settings, the proposed
approach is able to improve the accuracy performance over the baseline
SVM model [Lopes et al., 2012a] (see Section 4.3.2).

– A new approach for the prediction of bankruptcy of French companies
(healthy and distressed). This is an actual and pertinent real-world
problem, because in recent years, due to the financial crisis, the rate
of insolvency has been globally aggravated. The resulting NSIM-based
systems yielded improved performance over previous approaches, which
relied on preprocessing techniques [Lopes and Ribeiro, 2011f] (see
Section 4.2.5).

– A new model for the detection of Ventricular Arrhythmias (VAs),
in which the GPU parallel implementations were crucial. This is a
particularly important real-world problem, because the prevalence of
VAs may result in cardiac arrest problems and ultimately lead to sudden
death [Lopes and Ribeiro, 2009a] (see Section 4.1.5).

– A hybrid face recognition approach that combines the NMF-based
methods with supervised learning algorithms [Lopes and Ribeiro,
2012c,Lopes and Ribeiro, 2010a] (see Sections 5.1.2 and 5.1.5). The NMF-
based methods are used to extract a set of parts-based characteristics,

10

1.5 Outline of the Thesis

thereby reducing the dimensionality of the data while preserving the
information of the most relevant image features. Subsequently, a
supervised method, such as the MBP or the SVM is used to build
a classifier. The proposed approach is tested on the Yale and AT&T
(ORL) facial images databases (see Section 3.4), demonstrating its
potential and usefulness, as well as evidencing robustness to different
lighting conditions [Lopes and Ribeiro, 2012c,Lopes and Ribeiro, 2010a].

– An extensive study for analyzing the factors that affect the quality
of DBNs, which was made possible thanks to the algorithms’ GPU
parallel implementations. The study involved training hundreds of
DBNs with different configurations on two distinct handwritten character
recognition databases (MNIST and HHreco) and contributes for a better
understanding of this deep learning system [Lopes and Ribeiro, 2013]
(see Section 5.2.5).

1.5 Outline of the Thesis

The present Thesis is organized into six Chapters.

Following the general introduction in this Chapter, Chapter 2 presents a new
open-source GPU ML library (GPUMLib) that aims at providing the building
blocks for the development of efficient GPU ML software. In this context, we
analyze the potential of the GPU in the ML area, covering its evolution. Moreover,
an overview of the existing ML GPU parallel implementations is presented and we
argue for the need of a GPU ML library. We then present the CUDA (Compute
Unified Device Architecture) programming model and architecture, which was used
to develop GPUMLib and we detail its architecture.

Chapter 3 describes the experimental setup configurations and the metrics
used for performance evaluation, concerning the experiments carried out within
this Thesis framework. Moreover, this Chapter also covers the benchmarks and
case studies (used throughout the remainder of the Thesis) as well as the data
preprocessing techniques applied to them.

Chapter 4 presents techniques and algorithms for reducing the amount of time
necessary to build supervised learning models. Accordingly, this Chapter covers
the following algorithms and tools: Back-Propagation (BP) and Multiple Back-
Propagation (MBP) GPU implementations; Autonomous Training System (ATS);
Neural Selective Input Model (NSIM) (including its GPU implementation) and
Incremental Hypersphere Classifier (IHC). Moreover, this Chapter also addresses
three different real-world case studies involving the detection of Ventricular
Arrhythmias (VAs), bankruptcy prediction and protein membership prediction.

11

1 Introduction

Chapter 5 deals with unsupervised and semi-supervised learning algorithms.
Basically, two different unsupervised learning approaches, Non-Negative Matrix
Factorization (NMF) and Deep Belief Networks (DBNs), and their corresponding
GPU parallel implementations are addressed. Moreover, a new semi-supervised
method, designated by Semi-Supervised NMF (SSNMF) is also presented. In
addition, this Chapter also covers a hybrid NMF-based face recognition approach.
Finally, an extensive experiment, involving the MNIST database of hand-written
digits and the HHreco multi-stroke symbol database is presented (in order to gain
a better understanding of the DBNs).

In Chapter 6, a general assessment of the research outcomes in face of the
challenges and research questions established in the first Chapter is performed,
followed by conclusions and possible directions of future work.

12

CHAPTER 2

GPU Machine Learning Library (GPUMLib)

2.1 Introduction . 14
2.2 A Review of GPU Parallel Implementations of ML

Algorithms . 17
2.3 GPU Computing . 19
2.4 Compute Unified Device Architecture (CUDA) 20

2.4.1 CUDA Programming Model 20
2.4.2 CUDA architecture . 24

2.5 GPUMLib architecture 28
2.6 Summary . 35

To cope with the increasingly large repositories of data, ML algorithms often
demand prohibitive computational resources. In this context, the GPU represents a
novel and compelling solution for this problem, due to its inherent high-parallelism.
Unfortunately, few ML algorithms have been implemented on the GPU and most
are not openly shared, posing difficulties for those aiming to take advantage of this
architecture. To mitigate this problem, this Chapter describes a new open-source
library (GPUMLib), developed as part of this Thesis, that aims to provide the
building blocks for the development of efficient GPU ML software.

This Chapter is structured as follows. Section 2.1 argues for the need of an open-
source GPU ML library. Section 2.2 presents an overview of the open-source and
proprietary ML algorithms implemented on the GPU, prior to the development of
GPUMLib. Section 2.3 focuses on the evolution of the GPU from a fixed-function
device, designed to accelerate specific tasks, into a general-purpose computing

13

2 GPU Machine Learning Library (GPUMLib)

device. Section 2.4 details the CUDA programming model and architecture, which
was used to develop GPUMLib. Finally, Section 2.5 describes the GPUMLib
architecture and Section 2.6 summarizes this Chapter.

2.1 Introduction
The rate at which new information is produced has been and continues to grow
with an unprecedented magnitude. New devices and sensors allow humans and
machines to readily gather, store and share vast amounts of information worldwide.
Projects such as the Australian Square Kilometre Array of radio telescopes, the
CERN’s Large Hadron Collider and astronomy’s Pan-STARRS array of celestial
telescopes can generate several petabytes of data per day on their own [Hey et al.,
2009]. However, availability does not necessarily imply usefulness and humans
facing the innumerable requests, imposed by modern life, need help to cope and
take advantage of the high-volume of data generated and accumulated by our
society [Lopes and Ribeiro, 2011c]. Usually obtaining the information represents
only a fraction of the time and effort needed to analyze it [Hey et al., 2009].
This brings the need for intelligent systems that can extract relevant and useful
information from today’s large repositories of data, and subsequently the issues
posed by more challenging and demanding ML algorithms, often computationally
expensive [Lopes et al., 2010].

Although at present there are plentiful excellent toolkits which provide support for
developing ML software in several environments (e.g. Python, R, Lua, Matlab) [King,
2009], these fail to meet the expectations in terms of computational performance,
when dealing with many of today’s real-world problems. Typically, ML algorithms
are computationally expensive and their complexity is often directly related with
the amount of data being processed. Rationally, as the volume of data increases,
the trend is to have more challenging and computationally demanding problems
that can become intractable for traditional CPU architectures. Therefore, the
pressure to shift development toward parallel architectures with high-throughput
has been accentuated. In this context, the GPU represents a compelling solution
to address the increasing needs of computational performance, in particular in the
ML field [Lopes and Ribeiro, 2011c].

Over the last decade the performance and capabilities of the GPUs have been
significantly augmented and today’s GPUs, included in mainstream computing
systems, are powerful, highly parallel and programmable devices that can be
used for general-purpose computing applications [Owens et al., 2008]. Since
GPUs are designed for high-performance rendering where repeated operations
are common, they are much more effective in utilizing parallelism and pipelining
than CPUs [Jang et al., 2008]. Hence, they can provide remarkable performance
gains for computationally-intensive applications involving data-parallelizable tasks.

Current GPUs offer an unprecedented peak performance that is over one order
of magnitude larger than those of modern CPUs and this gap is likely to increase

14

2.1 Introduction

● ● ● ●
●

● ●

●

●

●

●

● ● ●●● ● ● ● ● ● ● ● ● ● ●
●

●● ●
● ●● ●

●

●

●

●

0

1000

2000

3000

4000

2002 2004 2006 2008 2010 2012
Date

G
F

LO
P

S

Precision

● SP

DP

Vendor

●

●

●

●

AMD (GPU)

NVIDIA (GPU)

Intel (CPU)

Intel Xeon Phi

Historical Single−/Double−Precision Peak Compute Rates

Figure 2.1: Disparity between the CPU and the GPU peak floating point
performance, over the years, in billions (109) of floating-point
operations per second (GFLOPS).

in the future. This aspect is depicted in Figure 2.1, updated from Owens et
al. [Owens et al., 2007], which shows that the GPU peak performance is growing
at a much faster pace than the corresponding CPU performance1. Typically, the
GPU performance is doubled every 12 months while the CPU performance doubles
every 18 months [Zhongwen et al., 2005].

It is not uncommon for GPU implementations to achieve significant time
reductions, as compared with CPU counterparts (e.g. weeks of processing on
the CPU may be transformed into hours on the GPU [Lopes and Ribeiro, 2009a]).
Such characteristics trigger the interest of the scientific community who successfully
mapped a broad range of computationally demanding problems to the GPU [Owens
et al., 2008]. As a result, the GPU represents a credible alternative to traditional
microprocessors in the high-performance computer systems of the future [Owens
et al., 2008].

To successfully take advantage of the GPU, applications and algorithms should
present a high-degree of parallelism, large computational requirements and favor
data throughput in detriment of the latency of individual operations [Owens et al.,
2008]. Since most ML algorithms and techniques fall under these guidelines, GPUs
represent a hardware framework that provides the means for the realization of
high-performance implementations of ML algorithms. Hence, they are an attractive
alternative to the use of dedicated hardware, such as Field-Programmable Gate
Arrays (FPGAs). In our view, the GPU represents the most compelling option,

1 Figure 2.1 is a courtesy of Professor John Owens, from the University of California, Davis,
USA.

15

2 GPU Machine Learning Library (GPUMLib)

concerning these two types of accelerators, since dedicated hardware usually fails to
meet expectations, as it is typically expensive, unreliable, poorly documented,
with reduced flexibility, and obsolete within a few years [Steinkraus et al.,
2005,Brandstetter and Artusi, 2008]. Although FPGAs are highly customizable
hardware devices, they are much harder to program. Typically, adapting and
changing algorithms requires hardware modifications, while the same process can be
accomplished on the GPU simply by rewriting and recompiling the code [Che et al.,
2008b]. Moreover, although FPGAs can potentially yield the best performance
results [Che et al., 2008b], recently several studies have concluded that GPUs are
not only easier to program, but they also tend to outperform FPGAs in scientific
computation tasks [Zhang et al., 2009]. In addition, the flexibility of the GPU
allows software to run on a wide range of devices without any changes, while the
software developed for FPGAs is highly dependent on the specific type of chip
for which it was conceived and therefore has a very limited portability [Abramov
et al., 2010]. Furthermore, the resulting implementations cannot be shared and
validated by others, who probably do not have access to the hardware. GPUs
on the other hand are used in the ubiquitous gaming industry, and thus mass
produced and regularly replaced by a new generation with increasing computational
power and additional levels of programmability. Consequently, unlike many of the
earlier throughput-oriented architectures, they are widely available and relatively
inexpensive [Garland and Kirk, 2010,Steinkraus et al., 2005,Catanzaro et al., 2008].

Naturally, the programming model used to develop applications for the GPU
plays a fundamental role in its success as a general-purpose computing device.
In this context, the Compute Unified Device Architecture (CUDA) represented a
major step toward the simplification of the GPU programming model by providing
support for accessible programming interfaces and industry-standard languages,
such as C and C++. CUDA was released by NVIDIA in the end of 2006 and since
then numerous GPU implementations, spanning a wide range of applications, have
been developed using this technology. While there are alternative options, such as
the Open Computing Language (OpenCL), the Microsoft Directcompute or the
AMD Stream, so far CUDA is the only technology that has achieved wide adoption
and usage [Stamatopoulos et al., 2012].

Using GPUs for general purpose scientific computing allowed a wide range
of challenging problems to be solved more rapidly, providing the mechanisms
to study larger datasets [Schaa and Kaeli, 2009]. GPUs are responsible for
impressive speedups for many problems in a wide range of areas. Thus it is
not surprising that they have become the platform of choice in the scientific
computing community [Schaa and Kaeli, 2009].

The scientific breakthroughs of the future will undoubtedly be powered by
advanced computing capabilities that will allow to manipulate and explore massive
datasets [Hey et al., 2009]. However, cooperation among researchers also plays
a fundamental role and the speed at which a given scientific field advances will
depend on how well they collaborate with one another [Hey et al., 2009].

16

2.2 A Review of GPU Parallel Implementations of ML Algorithms

Overtime, a large body of powerful algorithms, suitable for a wide range of
applications, has been developed in the field of ML. Unfortunately, the true
potential of these methods has not been fully capitalized on, since existing
implementations are not openly shared, resulting in software with low usability
and weak interoperability [Sonnenburg et al., 2007].

Moreover, the lack of openly available implementations is a serious obstacle to
algorithm replication and application to new tasks and therefore poses a barrier
to the progress of the ML field. Sonnenburg et al. argue that these problems
could be significantly amended by giving incentives to the publication of software
under an open source model [Sonnenburg et al., 2007]. This model presents many
advantages that ultimately lead to: better reproducibility of experimental results
and fair comparison of algorithms; quicker detection of errors; faster adoption
of algorithms; innovative applications and easier combination of advances, by
fomenting cooperation: it is possible to build on top of existing resources (rather
than re-implementing them); faster adoption of ML methods in other disciplines
and in industry [Sonnenburg et al., 2007].

Recognizing the importance of publishing ML software under the open source
model, Sonnenburg et al. even propose a method for formal publication of ML
software, similar to those that the ACM Transactions on Mathematical Software
provide for Numerical Analysis. They also argue that supporting software and
data should be distributed under a suitable open source license along with
scientific papers, pointing out that this is a common practice in some bio-medical
research, where protocols and biological samples are frequently made publicly
available [Sonnenburg et al., 2007].

2.2 A Review of GPU Parallel Implementations
of ML Algorithms

We conducted an in-depth analysis of several papers dealing with GPU ML
implementations. To illustrate the overwhelming throughput of current research, we
represent in Figure 2.2 the chronology of ML software GPU implementations, until
late 2010, based on the data scrutiny from several papers [Bohn, 1998,Oh and Jung,
2004,Campbell et al., 2005,Luo et al., 2005,Steinkraus et al., 2005,Wong et al.,
2005,Yu et al., 2005,Zhongwen et al., 2005,Bernhard and Keriven, 2006,Brunton
et al., 2006, Chellapilla et al., 2006, Yang et al., 2006, Harding and Banzhaf,
2007, Martínez-Zarzuela et al., 2007, Brandstetter and Artusi, 2008, Catanzaro
et al., 2008,Do et al., 2008,Garcia et al., 2008,Grauer-Gray et al., 2008,Jang et al.,
2008,Lahabar et al., 2008,Langdon and Banzhaf, 2008,Shalom et al., 2008,Sharp,
2008,Trebatický and Pospíchal, 2008,Čerňanský, 2009,Guzhva et al., 2009,Lopes
and Ribeiro, 2009b,Nageswaran et al., 2009,Raina et al., 2009,Robilliard et al.,
2009,Xu et al., 2009,Lopes and Ribeiro, 2010b].

17

2 GPU Machine Learning Library (GPUMLib)

C
lo

se
d

So
ur

ce
O

pe
n

So
ur

ce

2004 2005 2006 2007 2008 2009 2010 2011

Multilayer Perceptrons (forward-phase)
Oh and Jung

Self-Organizing Maps
Campbell et al.
Luo et al.

Genetic Algorithms
Wong et al.
Yu et al.

Back-Propagation (two layers)
Steinkrau et al.

Convolutional Neural Networks
Chellapilla et al.

Spiking Neural Networks
Bernhard and Keriven

Belief Propagation
Brunton et al.
Yang et al.

Fuzzy ART neural networks
Martínez-Zarzuela et al.

K-Means Clustering
Shalom et al.

Recurrent networks
Trebatický and Pospíchal

Decision Trees and Forests
Sharp

Neural Network based text detection
Jang et al.

Linear Radial Basis Functions
Brandstetter and Artusi

Deep Belief Networks Sparse Coding
Raina et al.

Back-Propagation (three layers)
Guzhva et al.

Support Vector Machines
Catanzaro et al.

Genetic Algorithms
Langdon and Banzhaf

K-Nearest Neighbor
Garcia et al.

Spiking Neural Networks
Nageswaran et al.

Multiple Back-Propagation
Back-Propagation
Lopes and Ribeiro

Non-negative Matrix
Factorization
Lopes and Ribeiro

Figure 2.2: Chronology of ML software GPU implementations.

The number of GPU implementations of ML algorithms has increased
substantially over the last few years. However, within the period analyzed, only a
few of those were released under open source. Aside from our own implementations,
we were able to find only four more open source GPU implementations of ML
algorithms. This is an obstacle to the progress of the ML field, as it may force
those facing problems where the computational requirements are prohibitive, to
build from scratch GPU ML algorithms that were not yet released under open
source. Moreover, being an excellent ML researcher does not necessary imply
being an excellent programmer [Sonnenburg et al., 2007]. Additionally, the GPU
programming model is significantly different from the traditional models [Garland
and Kirk, 2010,Owens et al., 2008] and to fully take advantage of this architecture
one must first become versed on the specificities of this new programming paradigm.
Thus, many researchers may not have the skills or the time required to implement
algorithms from scratch. To alleviate this problem and promote cooperation, we
have developed a new GPU ML library, designated GPUMLib, as part of this
Thesis framework. GPUMLib aims at reducing the effort of implementing new
ML algorithms for the GPU and contribute to the development of innovative

18

2.3 GPU Computing

Vertex
Transformation

Primitive
Assembly and
Rasterization

Fragment
Texturing

and Coloring

Raster
Operations

Vertices Transformed
Vertices

Fragments
Colored

Fragments

Pixel
UpdatesPixel Positions

Vertex Connectivity

Figure 2.3: Graphics hardware pipeline.

applications in the area. The library, described in more detail in Section 2.5, is
developed mainly in C++, using the CUDA architecture.

Recently, other GPU implementations have been released for SVMs [Li et al.,
2013, Giannesini and Saux, 2012, Langdon, 2011, Herrero-Lopez, 2011], genetic
algorithms [Cavuoti et al., 2014, Cavuoti et al., 2013, Cano et al., 2012, Chitty,
2012], belief propagation [Xiang et al., 2012], 𝑘-means clustering and 𝑘-nearest
neighbor (𝑘-nn) [Jian et al., 2013], particle swarm optimization [Hung and Wang,
2012], ant colony optimization [Cecilia et al., 2013], random forest classifiers [Essen
et al., 2012] and sparse Principal Component Analysis (PCA) [Richtárik et al.,
2012]. However, only a few have their source code publicly available.

2.3 GPU Computing

All of today’s commodity GPUs structure their computation in a graphics pipeline,
designed to maintain high computation rates through parallel execution [Owens
et al., 2007]. The graphics pipeline typically receives as input a representation
of a three-dimensional (3D) scene and produces a two-dimensional (2D) raster
image as output. The pipeline is divided into several stages, as illustrated in
Figure 2.3 [Fernando and Kilgard, 2003]. Originally, it was simply a fixed-function
pipeline, with a limited number of predefined operations (in each stage) hard-wired
for specific tasks. Even though these hard-wired graphics algorithms could be
configured in a variety of ways, applications could not reprogram the hardware to do
tasks unanticipated by its designers [Owens et al., 2007]. Fortunately, this situation
has changed over the last decade. The fixed-function pipeline has gradually been
transformed into a more flexible and increasingly programmable one. The vital step
for enabling General-Purpose computing on Graphics Processing Units (GPGPU)
was given with the introduction of fully programmable hardware and an assembly
language for specifying programs to run on each vertex or fragment [Owens et al.,
2007].

19

2 GPU Machine Learning Library (GPUMLib)

Recognizing the potential of GPUs for general-purpose computing, vendors
added driver and hardware support to use the highly parallel hardware of the
GPU without the need for computation to proceed through the entire graphics
pipeline and without the need to use 3D Application Programming Interfaces (APIs)
at all [Che et al., 2008a]. NVIDIA CUDA general purpose parallel computing
architecture is an example of the efforts made in order to embrace the promising
new market of GPGPU. Instead of using graphics APIs, we can use the industry-
standard C and C++ languages together with CUDA extensions to target a general
purpose, massively parallel processor (GPU). To differentiate this new model of
programming for the GPU, and clearly separate it from traditional GPGPU, the
term GPU Computing was coined [NVIDIA, 2009]. Another example of commitment
of the hardware industry consists of the emergence of GPUs, such as the Tesla,
whose sole purpose is to allow high-performance general-purpose computing. This
boosted the deployment of economic personal desktop supercomputers, which can
achieve a performance far superior to standard personal computers.

Owens et al. provided a very exhaustive survey on GPGPU, identifying many
of the algorithms, techniques and applications implemented on graphics hardware
[Owens et al., 2007].

2.4 Compute Unified Device
Architecture (CUDA)

The CUDA architecture exposes the GPU as a massive-parallel device that operates
as a co-processor to the host (CPU). The GPU can significantly reduce the
computation time for data parallel workloads, where analogous operations are
executed in large quantities of data. Once data parallel workloads are identified,
portions of the application can be retargeted to take advantage of the GPU parallel
characteristics. To this end, programs must be able to break down the original
workload tasks into independent processing blocks [Lopes and Ribeiro, 2011a].

2.4.1 CUDA Programming Model
The CUDA programming model extends the C and C++ languages, allowing
us to explicitly denote data parallel computations by defining special functions,
designated by kernels. Kernel functions are executed in parallel by different threads,
on a physically separate device (GPU) that operates as a co-processor to the
host (CPU) running the program. These functions define the sequence of work
to be carried out individually by each thread mapped over a domain (the set of
threads to be invoked) [Che et al., 2008a]. Threads must be organized/grouped
into blocks, which in turn form a grid. In recent GPUs, grids may have up to three
dimensions, while on older devices the limit is two dimensions. This information is
contained in Table 2.1 which presents the main technical specifications according

20

2.4 Compute Unified Device Architecture (CUDA)

Table 2.1: Principal technical specifications according to the CUDA device
compute capability.

Compute Capability
Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0
Maximum grid dimensionality 2 (x, y) 3 (x, y, z)
Maximum x-dimension of a grid 65535 231 − 1
Maximum y or z-dimension of a grid 65535
Maximum block dimensionality 3 (x, y, z)
Maximum x or y-dimension of a block 512 1024
Maximum z-dimension of a block 64
Maximum number of threads per block 512 1024
Warp size (see Section 2.4.2, page 27) 32
Maximum resident blocks per multiprocessor 24 32 48 64
Maximum resident threads per multiprocessor 768 1024 1536 2048
Number of 32-bit registers per multiprocessor 8 K 16 K 32 K 64 K
Maximum shared memory per multiprocessor 16 KB 48 KB
Local memory per thread 16 KB 512 KB
Maximum number of instructions per kernel 2 million 512 million

to the CUDA device compute capability. A complete list of the specifications
can be found in the NVIDA CUDA C programming guide [NVIDIA, 2012b].
Moreover, a list of the devices supporting each compute capability can be found at
http://developer.nvidia.com/cuda-gpus.

For convenience, blocks can organize threads in up to three dimensions. Figure 2.4
presents an example of a two-dimensional grid containing two-dimensional thread
blocks. The actual structure of the blocks and the grid depends on the problem
being tackled and in most cases is directly related to the structure of the data
being processed. For example, if the data is contained in a single array, then it
makes sense to use a one-dimensional grid with single dimensional blocks, each
processing a specific region of the array. On the other hand, if the data is contained
in a matrix then it could make more sense to use a bi-dimensional grid in which
one dimension is used for the column and another one for the row. In this specific
scenario the blocks could also be organized using two dimensions, such that each
block would process a distinct rectangular area of the matrix.

Choosing the adequate block size and structure is fundamental to maximize the
kernels’ performance. Unfortunately, it is not always possible to anticipate which
block structure is the best and changing it may require rewriting kernels from
scratch. Threads within a block can cooperate among themselves by sharing data
and synchronizing their execution to coordinate memory accesses. However, the
number of threads comprising a block can not exceed 512 or 1024 depending on the
GPU compute capability (see Table 2.1). This limits the scope of synchronization
and communication within the computations defined in the kernel. Nevertheless,

21

http://developer.nvidia.com/cuda-gpus

2 GPU Machine Learning Library (GPUMLib)

Grid
Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

Block(3,0)
Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Figure 2.4: Example of a kernel grid.

Table 2.2: Built-in CUDA kernel variables.

Variable Description
gridDim Dimensions of the kernel grid.
blockDim Dimensions of the block.
blockIdx Index of the block, being processed, within the grid.
threadIdx Thread index within the block.
warpSize Warp size in threads (see Section 2.4.2, page 27).

this limit is necessary in order to leverage the GPU high-core count by allowing
threads to be distributed across all the available cores.

Blocks are required to execute independently: it must be possible to execute
them in any arbitrary order, either in parallel or in series. This requirement allows
the set of thread blocks which compose the grid to be scheduled in any order across
any number of cores, enabling applications that scale well with the number of cores
present on the device.

Scalability is a fundamental issue, since the key to performance in this platform
relies on using massive multi-threading to exploit the large number of device cores
and hide global memory latency. To achieve this, we face the challenge of finding
the adequate trade-off between the resources used by each thread and the number
of simultaneously active threads. The resources to manage include the number of
registers, the amount of shared (on-chip) memory used per thread, the number of
threads per multiprocessor and the global memory bandwidth [Ryoo et al., 2008].

CUDA provides a set of intrinsic variables that kernels can use to identify the
actual thread location in the domain, allowing each thread to work on separate parts
of a dataset [Che et al., 2008a]. Table 2.2 identifies those built-in variables [NVIDIA,
2012b].

Listing 2.1 presents a simple kernel that computes the square of each element of
vector x, placing the result in vector y. Kernel functions are declared by using the

22

2.4 Compute Unified Device Architecture (CUDA)

Listing 2.1: Example of a CUDA kernel function. CUDA specific keywords appear
in blue.

__global__ void square(float * x, float * y, int size) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < size) y[idx] = x[idx] * x[idx];

}

x

grid

y

0

0

1

1

2

2

255

255

256

256

257

257

258

258

511

511

size-2

size-2

size-1

size-1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

b
lo

ck
0

· · ·

b
lo

ck
1

· · ·

b
lo

ck
n

-1

· · ·

idle threads⏞ ⏟

Figure 2.5: Execution of the square kernel grid blocks (see Listings 2.1 and 2.2).

qualifier __global__ and can not return any value (i.e. its return type must be
void).

The actual number of threads is only defined when the kernel function is called.
To this end, we must specify both the grid and the block size by using the new
CUDA execution configuration syntax (<<< · · · >>>). Listing 2.2 demonstrates
the steps necessary to call the square kernel previously defined in Listing 2.1. These
usually involve allocating memory on the device, transfer the input data from the
host to the device, define the number of blocks and the number of threads per
block for each kernel, call the appropriate kernel functions, copy the results back
to the host and finally release the device memory.

In the code presented (see Listings 2.1 and 2.2), each thread will process a
single element of the array. Since the block size exerts a profound impact on the
kernel performance, usually this is one of the most important aspects taken into
consideration when choosing the block size and consequently the number of blocks.
Hence, the actual number of threads (number of blocks × block size) will most
likely be greater than the size of the array being processed. As a result, it is
frequent to have some idle threads, within the grid blocks, as depicted in Figure 2.5.

23

2 GPU Machine Learning Library (GPUMLib)

Listing 2.2: Example for calling a CUDA kernel function.
//...

float x[SIZE];
float y[SIZE];

int memsize= SIZE * sizeof(float);

// Fill vector x
// ...

// Allocate memory on the device for the vectors x and y
float * d_x;
float * d_y;
cudaMalloc((void**) &d_x, memsize);
cudaMalloc((void**) &d_y, memsize);

// Transfer the array x to the device
cudaMemcpy(d_x, x, memsize, cudaMemcpyHostToDevice);

// Call the square kernel function using blocks of 256 threads
const int blockSize = 256;
int nBlocks = SIZE / blockSize;
if (SIZE % blockSize > 0) nBlocks++;
square<<<nBlocks, blockSize>>>(d_x, d_y, SIZE);

// Transfer the result vector y to the host
cudaMemcpy(y, d_y, memsize, cudaMemcpyDeviceToHost);

//release device memory
cudaFree(d_x);
cudaFree(d_y);

//...

2.4.2 CUDA architecture

The CUDA programming model is supported by an architecture built around a
scalable array of multi-threaded Streaming Multiprocessors (SMs), as depicted in
Figure 2.6. Each SM contains several Scalar Processor (SP) cores (also referred to
as CUDA cores), according to the compute capability of the devices as shown in
Table 2.3.

Figure 2.7 shows a detailed diagram of an SM [Halfhill, 2009]. Although an SP
core resembles a general-purpose processor, similar to those found in a x86 core, it
is in fact much simpler, reflecting its heritage as a pixel shader processor. Each core
contains a pipelined Floating-Point Unit (FPU), a pipelined integer unit, some logic
for dispatching instructions and operands to these units, and a queue for holding the
results [Halfhill, 2009]. The cores lack their own general-purpose register files, L1

24

2.4 Compute Unified Device Architecture (CUDA)

Streaming
Multiprocessor

SIMT control

Processing
units (cores)

Shared memory

Streaming
Multiprocessor

SIMT control

Processing
units (cores)

Shared memory

Streaming
Multiprocessor

SIMT control

Processing
units (cores)

Shared memory

· · ·

T
hr

ea
d

sc
he

du
lin

g
H

os
t

in
te

rf
ac

e

M
em

or
y

in
te

rf
ac

e

Off-chip memory

DRAM

DRAM

DRAM

· · ·

Figure 2.6: NVIDIA (GPU) device architecture.

Table 2.3: Number of Scalar Processor (SP) cores per Streaming Multiprocessor
(SM), according to the compute capability of the device (GPU).

Compute Capability 1.x 2.0 2.1 3.0
Number of cores per multiprocessor 8 32 48 192

caches, multiple function units for each data type and load/store units for retrieving
and storing data. Instead those resources are shared between all the cores of the
SM. The latter also contains Special Function Units (SFUs) to handle complex
math operations (e.g. square roots, reciprocals, Sines and Cosines) [Halfhill, 2009].

The SMs are optimized for single-precision floating point, since this is enough
for traditional 3D graphics applications. In fact, the support for double-precision
floating point, on NVIDIA GPUs, was only recently added in order to address the
needs of scientific and High-Performance Computing (HPC) applications [NVIDIA,
2009]. Currently double-precision instructions are only supported on devices with
compute capability 1.3 or above [NVIDIA, 2012b].

Implementing a 64-bit FPU in each core would roughly double the amount
of floating-point computational logic and wiring, making GPUs larger, costlier
and more power demanding, without bringing any real-benefits for its primary
market (consumer 3D graphics) [Halfhill, 2009]. Hence, there is still a significant
disparity between single-precision and double-precision computations. For example,
in devices based on the Fermi architecture (released in 2010), single-precision
computations are twice as fast as double-precision computations [Halfhill, 2009].

When a program on the host invokes a kernel grid, its blocks are enumerated and
distributed to the SMs with available execution capacity. Each block runs entirely
on a single SM and when its execution is complete, new blocks are launched on
the vacated SMs (see Figure 2.8). The underlying idea consists of distributing
the workload across all the SMs, which depending on the resources (e.g. shared
memory, registers) required by each block, may be able to handle several blocks

25

2 GPU Machine Learning Library (GPUMLib)

Streaming Multiprocessor (SM)

Intruction Cache

Register File (32, 768 × 32-bit)

Warp Scheduler

Dispatch Unit

Warp Scheduler

Dispatch Unit

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

SP
core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

SFU

SFU

SFU

SFU

Interconnect Network

64 KB Shared Memory / L1 Cache

Uniform Cache

Scalar Processor (SP) core

Dispatch Port
Operand Collector

floating-point
unit

integer
unit

Result Queue

Figure 2.7: Diagram of a Fermi Streaming Multiprocessor (SM).

26

2.4 Compute Unified Device Architecture (CUDA)

Grid
Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

execution

Device with 2 SMs

SM 0 SM 1

Block(0,0) Block(1,0)

Block(2,0) Block(3,0)

Block(0,1) Block(1,1)

Block(2,1) Block(3,1)

Device with 4 SMs

SM 0 SM 1 SM 2 SM 3

Block(0,0) Block(1,0) Block(2,0) Block(3,0)

Block(0,1) Block(1,1) Block(2,1) Block(3,1)

Block(3,0)
Thread(0,0) Thread(1,0) Thread(2,0) Thread(3,0)

Thread(0,1) Thread(1,1) Thread(2,1) Thread(3,1)

Thread(0,2) Thread(1,2) Thread(2,2) Thread(3,2)

Device

Device Memory

Streaming Multiprocessor N
· · ·

Streaming Multiprocessor 2
Streaming Multiprocessor 1

Shared Memory

· · ·Processor
1

Processor
2

Processor
M

Instruction
Unit

Figure 2.8: Execution of a kernel grid on different devices (GPUs).

simultaneously. Hence, the number of blocks running simultaneously depends not
only on the number of SMs of the device but also on the amount of resources
allocated for each block.

While a typical x86 processor has only a few cores, each usually running two
threads, a CUDA GPU is able to run thousands of threads, fast-switching among
them at every clock cycle [Halfhill, 2009]. To this end, the SMs employ a new
architectural model: Single-Instruction Multiple-Thread (SIMT) (see Figure 2.6).
The multiprocessor SIMT unit creates, manages, schedules, and executes groups of
32 parallel threads called warps. Thus it is advantageous to use a block size that is
a multiple of 32, since the blocks are divided into warps.

Conditional branches cause warps to be serially executed for each path taken,
disabling the threads that do not belong to that specific path, as illustrated in
Figure 2.9. Thus, full efficiency is obtained when all the warp threads agree on
their execution path [NVIDIA, 2012b].

Additionally, it is important to arrange the data so that coherence in the memory
accesses, carried out by adjacent warp threads, is achieved in order to maximize
the kernels’ performance. Structuring the data appropriately is fundamental to
create global memory access patterns that may allow the hardware to coalesce
groups of reads or writes of multiple data items into a single operation [NVIDIA,
2012a]. The requirements for obtaining coalesced memory accesses vary according
to the device compute capability. Devices with lower computing capabilities impose

27

2 GPU Machine Learning Library (GPUMLib)

__global__ void divergent(float * x, float * y) {

float res = 0.0f;

if (threadIdx.x < 16) {

res += 3 * threadIdx.x;

} else {

res += 2 * threadIdx.x;
}

// ...

y[threadIdx.x] = res;

}

execution flow

idle threads⏞ ⏟

idle threads⏞ ⏟

Figure 2.9: Warp divergence effects. Each rectangle with an arrow represents a
warp thread that is either active or idle depending on the execution
branch.

tighter restrictions than more recent ones. Nevertheless, it is usually possible
to enforce coalesced memory accesses by guaranteeing that the threads access
the memory in a sequential manner. Figure 2.10 illustrates both coalesced and
non-coalesced memory access patterns. Non-coalesced patterns require additional
memory transactions that ultimately reduce the instruction throughput [NVIDIA,
2012b].

In Ryoo et al. [Ryoo et al., 2008] the major principles for identifying which
data parallel algorithms can benefit from a CUDA implementation are highlighted.
Namely, a much larger number of threads (thousands or even millions, depending
on the problem) than those required by traditional multi-core systems are needed
to hide the global memory latency. Thus, we need to define threads at a finer
granularity. Moreover, grouping threads appropriately in order to avoid memory
conflicts, non-sequential memory accesses (within warps) and divergent control
flow decisions (within warps), may have a significant impact in the performance.
Additionally, the adequate use of the shared memory to reduce bandwidth usage
and redundant execution is also an important factor.

2.5 GPUMLib architecture
The GPUMLib framework was developed in the context of this Thesis. Its main
components are presented in Figure 2.11. At its core, the library contains a set of

28

2.5 GPUMLib architecture

· · · · · ·

· · ·

· · ·

warp

global
memory

⏞
 ⏟

coalesced

m
em

ory
accesses

· · · · · ·

· · ·

· · ·

warp

global
memory

⏞
 ⏟

non-coalesced

m
em

ory
accesses

Figure 2.10: Coalesced versus non-coalesced memory access patterns. It is
assumed that the size of each data element does not prevent coalesced
memory accesses.

CUDA kernels that support the execution of ML algorithms on the GPU. Usually,
in order to implement an ML algorithm on the GPU, several kernels are required.
However, the same kernel might be used to implement different algorithms. For
example, the Back-Propagation (BP) and the Multiple Back-Propagation (MBP)
algorithms share the same kernels (see Section 4.1.3).

Each ML algorithm has its own C++ class that is responsible for: transferring
the information (inputs) needed by the algorithm to the device (GPU); calling the
algorithm kernels in the proper order; and transferring the algorithm outputs and
intermediate values back to the host. This model allows non-GPU developers to
take advantage of GPUMLib, without requiring them to understand the specific
details of CUDA programming.

GPUMLib provides a standard memory access framework to support the tasks of
memory allocation and data transfer between the host and device (and vice-versa) in
an effortless and seemly manner. Table 2.4 describes the classes currently supported
by the GPUMLib memory access framework. To illustrate the advantages of using
this framework, Listing 2.3 rewrites the code of Listing 2.2 (see page 24), using
the CudaArray class. Notice that the new code is much more intuitive and less
error-prone than the original one.

Among the classes of the memory access framework, a class is included to represent
GPU matrices (DeviceMatrix), which provides a straightforward and efficient way
of performing GPU matrix computations (multiplication and transpose). Its
implementation takes advantage of the CUBLAS library (CUDA Basic Linear
Algebra Subprograms (BLAS)), which is part of CUDA, to perform matrix
multiplications, due to its high-performance.

Moreover, since the order in which the elements of the matrix are stored has a
considerable effect on the kernels performance, the DeviceMatrix class supports
both row-major and column-major orders, fitting the needs of the users. In row-

29

2 GPU Machine Learning Library (GPUMLib)

Host (CPU) and device (GPU) memory access framework

HostArray HostMatrix CudaArray

DeviceArray DeviceMatrix · · ·

C++ classes (algorithms)

Back-
Propagation

Radial Basis
Functions

Deep Belief
Networks

Restricted
Boltzmann
Machines

Multiple
Back-

Propagation

Support
Vector

Machines

Non-Negative
Matrix

Factorization
· · ·

Common
Host (CPU)

Classes

Common
CUDA
Kernels

CUDA (GPU) Kernels

Multiple
Back-

Propagation

Support
Vector

Machines

Non-Negative
Matrix

Factorization

Nonlinear
Dimension
Reduction

Radial Basis
Functions

Restricted
Boltzmann
Machines

Genetic
Algorithms · · ·

Common
Device
(GPU)

Functions

Figure 2.11: Main components of the GPUMLib.

Table 2.4: GPUMLib memory access framework classes.

Class Description
HostArray Array contained in the host memory.
HostMatrix Matrix contained in the host memory.
DeviceArray Array contained in the device memory.
DeviceMatrix Matrix contained in the device memory.
CudaArray Array contained both in the host and in the device.
CudaMatrix Matrix contained both in the host and in the

device.
DeviceAccessibleVariable Variable contained in the host memory, which is

page-locked and accessible by the device.

30

2.5 GPUMLib architecture

Listing 2.3: Example for calling a CUDA kernel function using the GPUMLib
memory access framework classes.

//...

// No need to explicitly allocate and release memory
CudaArray<float> x(SIZE);
CudaArray<float> y(SIZE);

// Fill vector x in the host as usual
// ...

// Transfer the array x to the device
x.UpdateDevice();

// Call the square kernel function using blocks of 256 threads
const int blockSize = 256;
int nBlocks = SIZE / blockSize;
if (SIZE % blockSize > 0) nBlocks++;
square<<<nBlocks, blockSize>>>(x.DevicePointer(), y.DevicePointer(), SIZE);

// Transfer the result vector y to the host
y.UpdateHost();

//...

major, the elements of each row are placed together in sequential memory locations
while the elements of each column are stored in non-sequential addresses. This
implies that kernels can access the elements of each row in a coalesced manner, but
they will be unable to do the same for the elements in each column. On the other
hand, if the matrix is stored in column-major then the elements of each column are
stored in sequential memory locations while the elements of each row are stored
in non-sequential addresses. In this case the elements of each column can now be
accessed in a coalesced manner, but the elements of each row may only be accessed
in a non-coalesced manner. Figure 2.12 depicts the organization of elements of a
matrix in the memory, according to the selected order.

In terms of common classes, currently GPUMLib implements a class (Reduction)
as well as a set of GPU kernels for performing common reduction tasks, such as
finding the minimum, maximum, sum or average of a set of elements. Reduction
is a process in which we gradually perform the intended operation in parallel on
two elements at a time, thus effectively reducing the number of elements to be
processed to a half in each iteration, until a single element is found. Figure 2.13
illustrates this process for a sum operation in coalesced manner.

Additionally GPUMLib also implements a class (Random) for simplifying the
task of generating random numbers on the GPU that uses the CURAND library,
which is part of the CUDA toolkit.

31

2 GPU Machine Learning Library (GPUMLib)

1 2 3 4
5 6 7 8
9 10 11 12

⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

row-major column-major

1 2 3 4 5 6 7 8 9 10 11 12 1 5 9 2 6 10 3 7 11 4 8 12⏟ ⏞
1𝑡ℎ row

⏟ ⏞
2𝑛𝑑 row

⏟ ⏞
3𝑟𝑑 row

⏟ ⏞
1𝑡ℎ column

⏟ ⏞
2𝑛𝑑 column

⏟ ⏞
3𝑟𝑑 column

⏟ ⏞
4𝑡ℎ column

Figure 2.12: Row-major versus column-major orders.

10 6 7 2 4 7 8 5 4 3 2 1 7 3 0 8

+

14

+

9

+

9

+

3

+

11

+

10

+

8

+

13

+

25

+

19

+

17

+

16

+

42

+

35

+

77

Figure 2.13: Example of a sum reduction.

32

2.5 GPUMLib architecture

Table 2.5: GPU parallel algorithms implemented in version 0.2.0 of GPUMLib.

Algorithm/Architecture
Back-Propagation (BP)
Deep Belief Networks (DBNs)
Multiple Back-Propagation (MBP)
Non-Negative Matrix Factorization (NMF)
Radial Basis Function (RBF) networks
Restricted Boltzmann Machines (RBMs)
Support Vector Machines (SVMs)
Autonomous Training System (ATS)
Neural Selective Input Model (NSIM)

The latest version of GPUMLib implements the ML algorithms listed in Table 2.5.
The core of the library as well as the BP, MBP, NSIM, ATS, NMF, RBMs
and DBNs were developed in this Thesis framework. Additionally, as part of
this endeavor, the Radial Basis Function (RBF) networks were developed by
Ricardo Quintas [Quintas, 2010] and the SVMs were developed by João Gonçalves
[Gonçalves, 2012] as part of their Master’s Thesis which was supervised by Professor
Bernardete Ribeiro and co-supervised by this Thesis author.

Since good documentation plays a major role in the success of any software
library, GPUMLib provides extensive quality documentation and examples to
ease its usage and development. Moreover, the library is practical, easy to
use and extend, and does not require full understanding of the details inherent
to GPU computing. The library is released under the GNU General Public
License and its source code, documentation and examples can be obtained at
http://gpumlib.sourceforge.net/.

GPUMLib does not intend to replace existing ML libraries such as WEKA
(http://www.cs.waikato.ac.nz/ml/weka/) or KEEL (http://www.keel.es/)
duplicating the work that has already been done, but rather to complement them.
In this sense we envision the integration of GPUMLib in other ML libraries and
we expect to provide the tools necessary for its integration with other ML software
at a later phase.

Since its release, GPUMLib has attracted the interest of numerous people (see
Figure 2.14), using a wide-range of platforms (see Figure 2.15), benefiting researchers
all over the world (see Figure 2.16). Moreover, GPUMLib has received a 5 star
award from the soft82.com editors, which according to them is given to products
that are considered to be excellent and above average in their category.

33

http://gpumlib.sourceforge.net/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.keel.es/

2 GPU Machine Learning Library (GPUMLib)

20

40

60

80

100

120

Fev 2010 Jul 2010 Jan 2011 Jul 2011 Jan 2012 Jul 2012 Jan 2013 Jun 2013

D
ow

nl
oa

ds

Figure 2.14: Evolution of the number of downloads of GPUMLib.

Windows (1541)

67%

Linux (493)

21% Other / unknown (155)
7%

Machintoch (112)
5%

Total (2301)

Figure 2.15: Number of GPUMLib downloads according to the operating system.

34

2.6 Summary

19.6%
11.7%

5.6%

Figure 2.16: Number of GPUMLib downloads per country. Regions with a higher
number of downloads are represented with darker colors.

2.6 Summary
As problems grow increasingly complex and demanding, parallel implementations of
ML algorithms become crucial for developing real-world applications. In conformity
with this scenario, the GPU is particularly well positioned to fulfill this need,
given its availability, high-performance and relative low-cost [Lopes and Ribeiro,
2011c]. However, developing programs for the GPU is significantly much harder
than for traditional architectures. Hence, researchers may not have the skills or the
time required to implement algorithms from scratch on this platform. To alleviate
this problem, we have developed a new open-source GPU ML library (GPUMLib)
that can efficiently take advantage of the GPU parallel architecture and provide
considerable speedups, allowing to easily select the building blocks necessary to
create ML software [Lopes et al., 2010,Lopes and Ribeiro, 2011c].

Chapters 4 and 5 detail the GPUMLib parallel implementations of the algorithms
developed as part of this Thesis and compare and analyze its results with the
(corresponding results of the) standalone counterpart versions.

35

CHAPTER 3

Experimental Setup and Performance Evaluation

3.1 Hardware and Software Configurations 37
3.2 Evaluation Metrics . 38
3.3 Validation . 41
3.4 Benchmarks . 43
3.5 Case Studies . 51
3.6 Data Preprocessing . 55
3.7 Summary . 57

This Chapter describes the experimental setup configurations and the metrics used
for performance evaluation, concerning the experiments carried out within this
Thesis framework. It is structured as follows. Section 3.1 details the hardware and
software configurations that were used to conduct the experiments. Section 3.2
provides the metrics for evaluating the experiments’ results. Section 3.3 discusses
the methodologies for validating a model. Sections 3.4 and 3.5 receptively detail
the benchmarks and the case studies that were used for conducting the experiments.
Section 3.6 describes the data preprocessing techniques that were applied to the
datasets. Finally Section 3.7 summarizes the Chapter.

3.1 Hardware and Software Configurations
In order to conduct the experiments, three different computer systems were
used. Table 3.1 presents their main characteristics and Table 3.2 the principal
characteristics of the systems’ GPU devices. Since the systems are heterogeneous,

37

3 Experimental Setup and Performance Evaluation

Table 3.1: Hardware and Software system main characteristics.

Main Characteristics
System 1 (8600 GT) Intel Core 2 6600 (2.4GHz)

NVIDIA GeForce 8600 GT
Windows Vista (x64)
4GB memory

System 2 (GTX 280) Intel Core 2 Quad Q 9300 (2.5GHz)
NVIDIA GeForce GTX 280
Windows 7 (x64)
4GB memory

System 3 (GTX 460) Intel Dual-Core i5-2410M (2.7GHz)
NVIDIA GeForce GTX 460
Windows 7 (x64)
8GB memory

Table 3.2: Main characteristics of the NVIDIA GeForce devices used in this work.

8600 GT GTX 280 GTX 460
Compute capability 1.1 1.3 2.1
SMs 4 30 7
Number of cores 32 240 336
Peak performance (GFLOPS) 113.28 933.12 940.8
Device memory 512MB 1GB 1GB
Shared Memory per block 16KB 16KB 48KB
Maximum threads per block 512 512 1024
Memory bandwidth (GB/sec) 22.4 141.7 112.5
Shading clock speed (GHz) 1.2 1.3 1.4

containing different CPUs and GPUs, in some cases we use the GPU name when
referring to a specific system.

3.2 Evaluation Metrics

In this Section, we define metrics for evaluating several aspects related with the
algorithms and the resulting models performance. In particular, we provide metrics

38

3.2 Evaluation Metrics

for evaluating the: GPU parallel implementations, training progress, instance
selection methods and the models classification performance.

GPU Parallel Performance

In order to compare the performance of the GPU parallel implementations with
the corresponding CPU sequential ones, we use the speedup (×), defined as (3.1):

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑡𝑖𝑚𝑒𝑆

𝑡𝑖𝑚𝑒𝑃

. (3.1)

where 𝑡𝑖𝑚𝑒𝑆 is the time needed to execute the algorithm using a CPU
sequential implementation and 𝑡𝑖𝑚𝑒𝑃 the corresponding time of the GPU parallel
implementation. Accordingly, the speedup measures how many times faster
the GPU parallel implementation is relative to the CPU baseline sequential
implementation. Note that the time for accessing input and output devices is
not included in the speedup computation. Moreover, the time for transferring
information to the GPU is also excluded.

Training progress

For measuring the NNs training progress, we use the Root Mean Square Error
(RMSE), which is given by (3.2):

RMSE =

⎯⎸⎸⎸⎷ 1
𝑁𝐶

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

(𝑌𝑖𝑗 − 𝑇𝑖𝑗)2 . (3.2)

Instance Selection Performance

When considering instance selection models, it is important to measure the storage
reduction or space savings, which is given by (3.3):

𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 1− 𝑛

𝑁
. (3.3)

where 𝑛 is the number of samples stored.

Models Performance

For evaluating the performance of the classifier models and asserting its quality, we
use the accuracy, precision, recall (sensitivity), specificity and F-measure (𝐹1 score)
metrics, expressed as percentages. These metrics are based on a confusion matrix,
containing the number of correctly and incorrectly classified examples for each
class, in the form of true positives (𝑡𝑝), true negatives (𝑡𝑛), false positives (𝑓𝑝)
and false negatives (𝑓𝑛). Table 3.3 presents the confusion matrix for a two class
(binary) problem. A perfect classifier should only present non-zero values in the

39

3 Experimental Setup and Performance Evaluation

Table 3.3: Confusion matrix for a binary classification problem.

Class predicted Actual class
Positive Negative

Positive 𝑡𝑝 𝑓𝑝

Negative 𝑓𝑛 𝑡𝑛

confusion matrix main diagonal, as these correspond to correct classifications, while
the remaining “cell” values represent mis-classified samples.

The accuracy is the most commonly used ML performance measure [Sokolova
and Lapalme, 2009]. It represents the proportion of the predictions that are correct
as given by (3.4):

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛 + 𝑡𝑛
. (3.4)

Although the accuracy gives an overall estimate of the performance of a classifier,
it can be misleading, in particular for unbalanced datasets (with a big discrepancy
in the number of samples belonging to each class) where a classifier may never
predict correctly a class of interest and still obtain high-accuracy values. To solve
this problem two other metrics, precision and recall (sensitivity), respectively given
by (3.5) and (3.6) for a binary classification problem, are commonly used:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
, (3.5)

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑝

𝑡𝑝 + 𝑓𝑛
. (3.6)

A classifier presenting a high precision rate is rarely wrong when it predicts that
a sample belongs to the class of interest (positive). On the other hand, a classifier
exhibiting a high recall rate rarely mis-classifies a sample that belongs to the class
of interest. Usually there is a trade-off between the precision and the recall, and
although there are cases where it is important to favor one in detriment of the other,
generally it is important to balance and maximize both. This can be accomplished
by using the F-measure, which is given by (3.7) for a binary classification problem:

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. (3.7)

Concerning binary classification problems, the precision, recall and F-measure
metrics neglect the classification of negative examples [Sokolova and Lapalme,
2009]. Hence, depending on the problem, other measures such as the sensitivity
(true positive rate), see (3.6), and specificity (true negative rate) may be more
appropriate. The latter is given by (3.8):

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛

𝑓𝑝 + 𝑡𝑛
. (3.8)

40

3.3 Validation

When considering multi-class problems, the aforementioned metrics need to be
replaced by others that take into account the performance of all the classes. For
this purpose, we can use the macro-average precision and recall, which are given
respectively by (3.9) and (3.10).

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑀 =

𝐶∑︀
𝑐=1

𝑡𝑝𝑐

𝑡𝑝𝑐+𝑓𝑝𝑐

𝐶
, (3.9)

𝑟𝑒𝑐𝑎𝑙𝑙𝑀 =

𝐶∑︀
𝑐=1

𝑡𝑝𝑐

𝑡𝑝𝑐+𝑓𝑛𝑐

𝐶
, (3.10)

where 𝑡𝑝𝑐, 𝑡𝑛𝑐, 𝑓𝑝𝑐 and 𝑓𝑛𝑐 are respectively the number of true positives, true
negatives, false positives and false negatives when considering the class 𝑐 samples
as positive examples and the remainder as negative examples. Note that the
macro-average F-measure is computed as in (3.7), but using the macro-average
precision and recall.

Throughout this Thesis, we rely mainly on the macro-average F-measure to
evaluate the models classification performance, even when considering binary
problems, so that all the classes have the same importance. However, due to the
specific nature of some problems and for comparability purposes with previous
work, other metrics are also used whenever appropriate.

3.3 Validation
A model can predict accurately the training data and still have a poor performance
when classifying new (unseen) data. In particular, this is the case of overfitting
models. Therefore, when building a model, we are predominantly interested in its
ability for correctly classifying unseen data. The degree of success in doing so is
called generalization [Alpaydin, 2010,Bishop, 2006]. In this context, cross-validation
techniques assume particular relevance for estimating the models generalization
performance.

Cross-validation is a statistical method for evaluating the models performance
that divides the available data into two types of partitions: (i) training data
partitions that are used for creating the models and (ii) testing data partitions
that are used for validating the resulting models [Refaeilzadeh et al., 2009]. In the
remainder of this Section we summarize the main cross-validation strategies.

Hold-Out Validation

This is perhaps the simplest strategy, which consists of splitting the data into two
disjoint datasets: a train dataset that is used for building a model and a test dataset
that is used to estimate the models generalization performance (using the metrics
specified in the previous Section). We use this method mainly when the objective

41

3 Experimental Setup and Performance Evaluation

Experiment 4

Experiment 3

Experiment 2

Experiment 1

train dataset test dataset

train datasettest dataset

Figure 3.1: Experiments associated with a 4-fold cross-validation procedure.

consists of solving a particular problem (for which in many cases previous work
exists and the data has already been divided into training and testing datasets).

𝑘–Fold Cross-Validation

In this strategy data is partitioned into 𝑘 (nearly) equally sized parts, called folds.
Subsequently 𝑘 different models are built using a distinct fold for validation and
the remainder 𝑘− 1 folds for building the models. The models performance is then
averaged over all the experiments. Figure 3.1 shows the experiments associated
with a 4-fold cross-validation procedure.

In order to compare the performance of different algorithms, we use 5–fold or
10–fold cross-validation, instead of the hold-out, to avoid undesirable bias that may
arise from a particular training/test split. Moreover, the data is stratified so that
each fold contains a representative subset of the original data, i.e. all the folds will
contain (approximately) the same number of samples per class [Refaeilzadeh et al.,
2009].

Repeated 𝑘-Fold Cross-Validation

This strategy is used to increase the number of estimates, by running the 𝑘-fold cross-
validation multiple times. The rationale consists of obtaining a more trustworthy
performance estimate. At each run, data is randomized and new 𝑘-folds, containing
different samples, are obtained [Refaeilzadeh et al., 2009]. This strategy is used
to validate the performance of the Incremental Hypersphere Classifier (IHC) in
Section 4.3.

Leave-one-out Cross-Validation

This strategy corresponds to the 𝑁–fold cross-validation, i.e. each fold contains
a single sample. This method is appropriate when the available data is scarce,
however due to its high-variance it can lead to unreliable estimates [Refaeilzadeh
et al., 2009].

42

3.4 Benchmarks

Leave-one-out-per-class Cross-Validation

This strategy corresponds to the stratified 𝑘–fold cross-validation, for 𝑘 = 𝑁
𝐶

, and
it is adequate for comparing the performance of different algorithms in balanced
datasets that contain only a small number of samples per class. Note that this
strategy is different from the leave-one-out cross-validation, since each fold will
contain 𝐶 samples (one per class). We use this strategy to validate the performance
of Non-Negative Matrix Factorization (NMF) based methods in Section 5.1.

Repeated random sub-sampling validation

The rationale of this strategy is the same as the repeated 𝑘-fold cross-validation, i.e.
increasing the number of estimates to obtain a more reliable performance estimate.
As in the case of the repeated 𝑘-fold cross-validation, the process of splitting the
data is repeated several times. However in this case it consists of randomly dividing
data through the training and test datasets. The advantage of this method is that
the proportion of training and testing subsets is independent of the number of
experiments. However, some data samples may never be used for validation while
others may be chosen more than once, thereby causing undesirable bias.

3.4 Benchmarks

Several benchmarks including face and character recognition databases are used to
validate the algorithms and their respective models. Table 3.4 presents the main
characteristics of the benchmark datasets, after preprocessing (see Section 3.6 for
details about the preprocessing techniques used).

Since most of the benchmarks were obtained at the University of California,
Irvine (UCI) Machine Learning Repository [Bache and Lichman, 2013] and therefore
are well known and documented, we describe only the remaining datasets.

AT&T Face Database

The AT&T face database, formerly known as the ORL Database is available
at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
and includes the images of 40 different individuals. For each individual there
are 10 distinct images. Hence, the database is composed of 400 images with
112 × 92 pixels. The images were taken at different times, varying the lighting
conditions, facial expressions and details (open / closed eyes, smiling / not smiling,
glasses / no glasses). Figure 3.2 presents randomly selected images from this
database.

43

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

3 Experimental Setup and Performance Evaluation

Table 3.4: Main characteristics of the benchmark datasets.

Dataset (Benchmark) Samples (𝑁) Features (𝐷) Classes (𝐶)
Annealing 898 47 5
AT&T (ORL) 400 10, 304 40
Audiology 226 93 24
Breast cancer Wisconsin (Diagnostic) 569 30 2
Breast cancer Wisconsin (Original) 699 9 2
CBCL face database #1 2, 429 361 –
Congressional 435 16 2
Ecoli 336 7 8
Forest cover type 11, 340 54 7
Electricity demand (elec2) 45, 312 4 2
German credit data 1, 000 59 2
Glass identification 214 9 6
Haberman’s survival 306 3 2
Heart - Statlog 270 20 2
Hepatitis 155 19 2
HHreco 7, 791 784 13
Horse colic 368 92 2
Ionosphere 351 34 2
Iris 150 4 3
Japanese credit 690 42 2
KDD Cup 1999 4, 898, 431 40 5
Luxembourg Internet usage 1, 901 31 2
Mammographic 961 5 2
MNIST 70, 000 784 10
Mushroom 8, 124 110 2
Pima Indian diabetes 768 8 2
Poker hand 25, 010 85 10
Sinus cardinalis 101 1 –
Sonar 208 60 2
Soybean 683 77 19
Tic-Tac-Toe 958 9 2
Two-spirals 194 2 2
Vehicle 946 18 4
Wine 178 13 3
Yale face database 165 4, 096 15
Yeast 1, 484 8 10

44

3.4 Benchmarks

Figure 3.2: Randomly selected examples from the AT&T (ORL) face images.

45

3 Experimental Setup and Performance Evaluation

CBCL face database #1

The CBCL face database #1 of the Massachusetts Institute of Technology (MIT) is
available at http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html.
This database contains both facial and non-facial gray-scale images of 19×19 = 361
pixels. The training dataset includes a total of 2, 429 facial and 4, 548 non-facial
images, while the test dataset contains a total of 472 facial and 23, 573 non-facial
images. However, we have only used the 2, 429 faces of the training dataset, from
which randomly selected images are presented in Figure 3.3.

Electricity Demand (Elec2)

The Electricity Demand is a real-world problem that was obtained at http:
//www.liaad.up.pt/area/jgama/ales/ales_5.html. It contains data from the
Australian New South Wales (NSW) Electricity Market, where the prices depend
both on the demand and supply. The goal is to predict if the price will drop or
increase [Gama et al., 2004].

HHreco multi-stroke symbol database

The HHreco multi-stroke symbol database, available at http://embedded.eecs.
berkeley.edu/research/hhreco/, contains a total of 7, 791 samples generated by
19 different persons. Overall, the database contains a total of 13 different symbol
classes: ellipse, heart, trapezoid, pentagon, arch, hexagon, square, triangle, cube,
cylinder, parallelogram, moon and callout [Hse and Newton, 2004]. Each user
created at least 30 multi-stroke images per class, which means that for each symbol
there are at least 19× 30 = 570 samples. We converted the original HHreco vector
strokes into a 28× 28 = 784 raster pixel image, maintaining the aspect ratio of the
original shapes. Moreover, the resulting images were binarized. Note that both
the number of strokes and the time span information were discarded, since this
particular dataset is used to evaluate the capacity of Deep Belief Networks (DBNs)
to extract information from the original (images) raw data (see 5.2.5). Figure 3.4
presents examples of the HHreco images.

KDD Cup 1999 database

The Knowledge Discovery and Data mining (KDD) cup 1999 database, available
at http://www.kdd.org/kddcup/index.php, contains approximately 5 million
samples. The objective consists of building a computer network intrusion detector
capable of distinguishing between normal connections and four different types of
attacks: Denial Of Service (DOS), unauthorized access from a remote machine
(R2L), unauthorized access to local superuser privileges (U2R) and probing.

46

http://cbcl.mit.edu/cbcl/software-datasets/FaceData2.html
http://www.liaad.up.pt/area/jgama/ales/ales_5.html
http://www.liaad.up.pt/area/jgama/ales/ales_5.html
http://embedded.eecs.berkeley.edu/research/hhreco/
http://embedded.eecs.berkeley.edu/research/hhreco/
http://www.kdd.org/kddcup/index.php

3.4 Benchmarks

Figure 3.3: Randomly selected examples of the face images contained in the
CBCL training dataset.

47

3 Experimental Setup and Performance Evaluation

Figure 3.4: Examples of the HHreco multi-stroke images. Each column contains
a symbol while each row contains the images drawn by one of the
users.

48

3.4 Benchmarks

Luxembourg Internet Usage

The Luxembourg Internet usage is a real-world problem that was obtained
at https://sites.google.com/site/zliobaite/resources-1. It contains the
answers given by several individuals in a survey questionnaire. The objective
consists of classifying each individual with respect to its Internet usage (high
or low) [Jowell and the Central Coordinating Team, 2007,Žliobaitė, 2009]. The
questionnaires were collected over a period of 5 years, thus it is expected that the
concept will change over time.

MNIST hand-written digits database

The MNIST database of hand-written digits is available at http://yann.lecun.
com/exdb/mnist/ and contains a total of 70,000 samples (60,000 train samples
and 10,000 test samples). Each sample consists of a 28× 28 = 784 pixels image of
a hand-written digit. Figure 3.5 presents examples of the MNIST images. Note
that all the images were binarized.

Sinus Cardinalis

The Sinus Cardinalis benchmark is a regression problem, that consists of
approximating the following function:

𝑠𝑖𝑛𝑐(𝑥) = sin(𝑥)
𝑥

. (3.11)

In order to build the training dataset we collected a total of 101 samples from
the referred function, uniformly distributed in the interval [−10, 10]. Note that for
𝑥 = 0 𝑠𝑖𝑛𝑐(𝑥) is considered to be 1. Figure 3.6 presents a graphical plot of this
function.

Two-Spirals

The two-spirals benchmark, obtained from the Carnegie Mellon University (CMU)
learning benchmark archive, which is available at http://www.cs.cmu.edu/afs/
cs/project/ai-repository/ai/areas/neural/bench/cmu/, is considered to be
an extremely hard problem to solve for algorithms of the BP family [Fahlman and
Lebiere, 1990]. It consists of discriminating between the points of two distinct
spirals which coil three times around one another and around the x–y plane origin
as depicted in Figure 3.7.

Yale Face Database

The Yale face database, available at http://cvc.yale.edu/projects/yalefaces/
yalefaces.html), is comprised of 165 gray-scale images encompassing 15
individuals. Each individual appears in 11 images, each representing a different

49

https://sites.google.com/site/zliobaite/resources-1
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/neural/bench/cmu/
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

3 Experimental Setup and Performance Evaluation

Figure 3.5: Examples of the MNIST hand-written digits. Each column contains
a different digit, starting with 0 in the left-most column and ending
with 9 in the right-most column.

50

3.5 Case Studies

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10

𝑠𝑖
𝑛

𝑐(
𝑥
)

𝑥

Figure 3.6: Sinus Cardinalis function.

-6

-4

-2

0

2

4

6

-8 -6 -4 -2 0 2 4 6 8

𝑦

x

Figure 3.7: Two spirals dataset.

facial expression (happy, normal, sad, sleepy, surprised, winking) or configuration
(center-light, left-light, right-light, with glasses, without glasses). The images were
cropped to the size of 64 × 64 pixels. Figure 3.8 shows the Yale face database
images.

3.5 Case Studies
To complement the benchmarks, we address real-world problems within the fields
of biomedical, finance and business, and bio-informatics for practical validation of
our computational experiments. Table 3.5 presents their main characteristics.

Table 3.5: Main characteristics of the real-world case studies.

Dataset (Benchmark) Samples (𝑁) Features (𝐷) Classes (𝐶)
Bankruptcy 3, 048 89 2
Peptidases 20, 778 3, 875 2
Ventricular arrhythmias 19, 391 18 2

51

3 Experimental Setup and Performance Evaluation

Figure 3.8: Yale face images. Each row contains the images of a specific individual
and each column a different expression/ configuration.

52

3.5 Case Studies

Financial Distress Prediction

In recent years, due to the global financial crisis (triggered by the sub-prime
mortgage crisis), the rate of insolvency has been aggravated globally. As a result
investors are now more careful about entrusting their money. Moreover, determining
whether or not firms are healthy is of major importance, not only to investors and
stakeholders but also to everyone else that has a relationship with the analyzed
companies (e.g. suppliers, workers, banks, insurance firms). Although this is a
widely studied topic, estimating the real healthy conditions of firms is becoming a
much harder task, as companies become more complex and develop sophisticated
schemes to conceal their real situation. In this context, automated ML systems
that can accurately predict the risk of insolvency and warn, in advance, all those
who may be affected by a bankruptcy process are of major importance [Lopes and
Ribeiro, 2011f].

The datasets of this problem were obtained from a large database of French
companies, containing information of an ample set of financial ratios spawning over
a period of several years. The referred database contains information about 107, 932
companies, out of which 1, 653 became insolvent in 2006. The objective consists of
discriminating between healthy and distressed companies based on the record of
the financial indicators from previous years. For this purpose, we considered 29
financial ratios over the immediate previous three years (see Table 3.6) as well as
two more features: the number of employees and the turnover. Thus, altogether a
total of 89 features were considered [Lopes and Ribeiro, 2011f]. Additional details
on the construction of the dataset are given later in Section 4.2.5 (page 102).

Protein Membership Prediction

The study of proteins plays a prominent role in understanding many biological
systems. In particular, the classification of protein sequences into functional and
structural groups based on sequence similarity is a contemporary and relevant
task, in the bio-informatics domain, for which huge amounts of data already exist.
However, despite all the energy spent into deciphering the proteomes, the available
knowledge is still limited [Morgado et al., 2011].

Peptidases are a class of proteolytic enzymes that catalyze chemical reactions,
allowing the decomposition of protein substances into smaller molecules. They
are involved in several processes that are crucial for the correct functioning of
organisms. Their importance is proved by the fact that approximately 2% of the
genes in all kinds of organisms encode peptidases and their homologues [Rawlings
et al., 2010]. Hence, its detection is central to a better understand of their role in
a biological system [Lopes et al., 2012a].

For the purpose of peptidase detection, a dataset constructed from the MEROPS
[Rawlings et al., 2010] and the Structural Classification Of Proteins (SCOP) [Murzin
et al., 1995] databases was used. A total of 20, 778 proteins sequences were randomly
selected from both databases: 18, 068 positive samples from MEROPS 9.4 and

53

3 Experimental Setup and Performance Evaluation

Table 3.6: Financial ratios selected to create a bankruptcy model.

Financial ratios
Financial Debt / Capital Employed (%) Working Capital / Turnover (days)
Capital Employed / Fixed Assets Net Current Assets / Turnover (days)
Depreciation of Tangible Assets (%) Working Capital Needs / Turnover (%)
Working Capital / Current Assets Export (%)
Current Ratio Value Added per Employee
Liquidity Ratio Total Assets / Turnover
Stock Turnover days Operating Profit Margin (%)
Collection Period Net Profit Margin (%)
Credit Period Added Value Margin (%)
Turnover per Employee Part of Employees (%)
Interest / Turnover Return on Capital Employed (%)
Debt Period (days) Return on Total Assets (%)
Financial Debt / Equity (%) EBIT Margin (%)
Financial Debt / Cashflow EBITDA Margin (%)
Cashflow / Turnover (%)

2, 710 sequences of non-peptidases from SCOP 1.75. The dataset was then divided
into two groups, 17, 164 sequences for training (15, 358 positive and 1, 806 negative
examples) and 3, 614 sequences for testing purposes (2, 710 positive examples and
904 negative) [Pereira et al., 2011].

The features of the protein primary structure were extracted using text mining
techniques [Cheng et al., 2005]. The idea consists of splitting the continuous flow
of amino acids into substrings (𝑛-grams) of length 𝑛. The 𝑛-grams are formed by 𝑛
consecutive characters and each corresponds to a feature in a particular sequence.
For example, considering the partial sequence ‘PKIYGY’, the trigrams are ‘PKI’,
‘KIY’, ‘IYG’ and ‘YGY’. The Word Vector Tool (WVTool) library [Wurst, 2007]
was used in order to obtain the unigrams, bigrams, trigrams and the combinations
of 𝑛-grams. The dataset was then built by taking into account the relevance of
each feature (𝑛-gram) [Correia et al., 2011].

Ventricular Arrhythmias

In the Ventricular Arrhythmias (VAs) problem, the objective consists of detecting
Premature Ventricular Contractions (PVCs), based on the time and frequency
domain features that were extracted in Marques [Marques, 2007] directly from the
bio-signal Electrocardiographs (ECGs) data, available at the MIT-BIH Arrhythmia
Database (http://www.physionet.org/physiobank/).

54

http://www.physionet.org/physiobank/

3.6 Data Preprocessing

P

Q

R

S

T

PR interval

QT interval

PR segment

QRS complex

ST segment

Figure 3.9: Typical ECG diagram of a normal sinus rhythm for a human heart.

This problem is particularly important, because nowadays most countries face
high and increasing rates of cardiovascular diseases. In Portugal there is a 42%
probability of dying of these diseases and worldwide they are accountable by
16.7 million deaths per year [WolframAlpha, 2013]. In this context, VAs assume
a significant role, since their prevalence can lead to life threatening conditions,
which may result in cardiac arrest and sudden death. VAs evolve from simple
PVCs, which are usually benign, to ventricular tachycardia and finally to critical
ventricular fibrillation episodes which are potentially fatal and the main cause of
sudden cardiac death. Hence, the detection of PVCs from an ECG is of major
importance, since they are associated with an increased risk of adverse cardiac
events [Ribeiro et al., 2007].

A typical ECG tracing of an ordinary heartbeat consists of a P wave, a QRS
complex and a T wave (observe Figure 3.9). PVCs result from an ectopic
depolarization on the ventricles, which causes a wider and abnormally shaped
QRS complex. Typically, these complexes are not preceded by a P wave, and the T
wave is large and with an opposite direction to the major QRS deflection [Ribeiro
et al., 2007].

Table 3.7 identifies the selected features from the ECG signal. For comparison
purposes, we used the same training, test and validation datasets (each one with
19391 samples) that were used in Marques [Marques, 2007] and in Ribeiro et
al. [Ribeiro et al., 2007].

3.6 Data Preprocessing
Datasets are often disturbed by problems of noise, bias and large variations
in variables dynamic range [Lopes and Ribeiro, 1999]. Accordingly, the data
preprocessing task assumes particular relevance for designing good generalization
performance models [Kotsiantis et al., 2006a]. Typically, in the preprocessing

55

3 Experimental Setup and Performance Evaluation

Table 3.7: Selected features from the ECG signal.

Feature Description
RRav RR mean interval
RR0 Last RR interval
SN Signal/Noise estimation
Ql Q-wave length
(Qcx, Qcy) Q-wave mass center (x,y) coordinates
(Qpx, Qpy) Q-wave peak (x,y) coordinates
Rl R-wave length
(Rcx, Rcy) R-wave mass center (x,y) coordinates
(Rpx, Rpy) R-wave peak (x,y) coordinates
Sl S-wave length
(Scx, Scy) S-wave mass center (x,y) coordinates
(Spx, Spy) S-wave peak (x,y) coordinates

phase, the original input vectors are projected into a new space of variables where
(hopefully) better solutions can be found. Note that the same preprocessing
techniques must be applied for both training and test data [Bishop, 2006].

In terms of preprocessing, we typically perform the following operations, in the
specified order:

1. Remove outliers;
2. Replace qualitative variables by quantitative variables;
3. Rescale the variables.

However other operations may be required, depending on the problem.
Regarding the qualitative variables, those containing only two possible values

(e.g. ‘yes’, ‘no’; ‘true’, ‘false’; ‘success’, ‘failure’) are replaced by a single binary
variable. Otherwise, if there is an explicit order between values that makes sense,
then the (qualitative) variable is replaced by a single quantitative variable using
non-negative integers numbers and preserving the order of the original values. In
case none of the previous apply, the original variable is replaced by 𝑘 different
binary variables, such that each one of the 𝑘 domain values has its own associated
variable that is 1 when the original variable presents that specific value and 0 in
the remaining cases [Cherkassky and Mulier, 2007].

Rescaling the variables is important to avoid different (magnitude) scales between
the variables that may adversely impose a bias on the algorithms. For this purpose,
we use the min-max rescaling, which is given by (3.12):

𝑥 = 𝑥′ −𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
(𝑛𝑚𝑎𝑥− 𝑛𝑚𝑖𝑛) + 𝑛𝑚𝑖𝑛 , (3.12)

56

3.7 Summary

where 𝑥′ is the original feature value, 𝑥 the new value, 𝑚𝑖𝑛 and 𝑚𝑎𝑥 respectively
the old minimum and maximum values, and 𝑛𝑚𝑖𝑛 and 𝑛𝑚𝑎𝑥 respectively the new
minimum and maximum values for the variable [Kotsiantis et al., 2006a]. All input
variables are rescaled between −1 and 1, except for the Restricted Boltzmann
Machines (RBMs) and Deep Belief Networks (DBNs) which require binary inputs
and for the Non-Negative Matrix Factorization (NMF) algorithms that require
non-negative input data. Thus, in the latter, the variables are rescaled between 0
and 1.

Histogram Equalization

Concerning the face recognition datasets (AT&T, CBCL and Yale), a histogram
equalization was applied to the face images, to reduce the influence of the
surrounding illumination. This method improves the contrast of the images by
changing its gray levels [Zilu and Guoyi, 2009]. Figures 3.10, 3.11 and 3.12 show
the histogram equalization results respectively for the AT&T, CBCL and Yale face
images that are depicted in Figures 3.2, 3.3 and 3.8.

3.7 Summary
In this Chapter, we have presented the main hardware and software experimental
setup configurations. We have defined a set of metrics for evaluating the algorithms,
their parallel implementations, and the resulting models. Moreover, we have
specified the validation methodologies as well as the benchmarks and real-world
case studies that are used throughout this Thesis to conduct the experiments. In
addition, the data preprocessing techniques that are applied to the datasets were
also specified.

57

3 Experimental Setup and Performance Evaluation

Figure 3.10: AT&T face images after applying a histogram equalization to the
original images presented in Figure 3.2.

58

3.7 Summary

Figure 3.11: CBCL face images after applying a histogram equalization to the
original images presented in Figure 3.3.

59

3 Experimental Setup and Performance Evaluation

Figure 3.12: Yale face images after applying a histogram equalization to the
original images presented in Figure 3.8.

60

CHAPTER 4

Supervised algorithms

4.1 Multiple Back-Propagation (MBP) 62
4.1.1 Back-Propagation (BP) Algorithm 63
4.1.2 Multiple Back-Propagation (MBP) Algorithm 69
4.1.3 GPU Parallel Implementation 75
4.1.4 Autonomous Training System (ATS) 79
4.1.5 Results and Discussion 79

4.2 Neural Selective Input Model (NSIM) 91
4.2.1 Missing Data Mechanisms 93
4.2.2 Methods for Handling MVs in Machine Learning 94
4.2.3 NSIM Proposed Approach 97
4.2.4 GPU Parallel Implementation 99
4.2.5 Results and Discussion 99

4.3 Incremental Hypersphere Classifier (IHC) 104
4.3.1 Proposed Incremental Hypersphere Classifier Algorithm 106
4.3.2 Results and Discussion 110

4.4 Summary . 121

Supervised learning is by far the most extensively used ML learning paradigm
[Murphy, 2012]. Algorithms belonging to this category attempt to estimate an
unknown mapping function by creating models that fit the training data samples,
which include a set of previously observed inputs, x, and their corresponding

61

4 Supervised algorithms

targets, t [Cherkassky and Mulier, 2007]. In other words, the algorithms generate a
dependency model between the input, x ∈ IRD, and the output, y ∈ IRC, variables,
using a set of associative correspondences, x ↦→ t, that the resulting model is
expected to map.

Within the supervised framework, two different learning approaches can be
considered: batch and incremental. In batch learning, the algorithms have full access
to the complete training dataset, whenever they need. Conversely, incremental
algorithms must update their models with each new observation and thus are
suitable for handling non-stationary data streams [Drugowitsch, 2008]. In this
context, the order in which the samples are presented to the algorithms becomes
relevant, imposing a bias and making the learning task more complex and difficult.
Notwithstanding this, the potential for extracting real-time information from
large and dynamic data repositories (and the inherent competitive advantages)
outweighs the drawback of obtaining models with lower generalization performance
(as compared to state-of-the-art batch models).

Considering the goal of handling large volumes of data, in this Chapter we
address both a batch and incremental supervised learning algorithms. Accordingly,
Section 4.1 presents a GPU implementation of the Back-Propagation (BP) and
Multiple Back-Propagation (MBP) algorithms. Moreover, an Autonomous Training
System (ATS) that takes advantage of the aforementioned GPU implementations to
find high-quality NN-based solutions, without human intervention, is also presented.
In addition, Section 4.2 presents a novel Neural Selective Input Model (NSIM)
that empowers NNs with the ability to handle directly Missing Values (MVs),
which are common in large datasets. Section 4.3 presents a new incremental
algorithm (Incremental Hypersphere Classifier (IHC)) that can also be used to
select a representative subset of the original dataset. Finally, Section 4.4 concludes
this Chapter and addresses directions for future work.

4.1 Multiple Back-Propagation (MBP)
Despite being motivated by the parallel processing capabilities of the human brain,
artificial NNs (referred in this Thesis simply by NNs) have little in common
with their biological counterparts [Piȩkniewski and Rybicki, 2004, Duch and
Jankowski, 1999]. Nevertheless, over time, they have proven to be able to
solve complex problems in many different domains (e.g. medical diagnosis, speech
recognition, economics, business, image processing, intelligent control, time series
prediction, chemical industry, computing, engineering, environmental science and
nanotechnology) and new applications are continuously being found [Kumar et al.,
2013,Hui, 2011,Tang et al., 2007,Samarasinghe, 2007,Vonk et al., 1995,Widrow
et al., 1994]. Unfortunately, building an NN solution is a computationally expensive
task, which often requires a substantial amount of time and effort. In particular,
in relation to BP and MBP algorithms, depending on the complexity of the
problem, in most cases several NNs, with different configurations, must be trained

62

4.1 Multiple Back-Propagation (MBP)

before achieving a good solution. This is a drawback, especially for challenging
and computationally demanding problems involving large datasets, where the long
training times alone may prevent high quality solutions from being found [Lopes and
Ribeiro, 2011a,Lopes and Ribeiro, 2009a]. Hence, creating GPU implementations
of these algorithms is highly desirable.

4.1.1 Back-Propagation (BP) Algorithm
The BP is one of the most well-known and extensively used ML algorithms. In fact,
it is so successful that over 90% of the real-world commercial and industrial NN
applications use this algorithm [Munakata, 2008,Yuming and Yuanyuan, 2012].

Feed-Forward (FF) networks

The BP is a supervised learning algorithm for training Feed-Forward (FF) NNs.
These networks, also called Multi-Layer Perceptrons (MLPs), or BP networks
(when trained with the BP algorithm), are comprised of several interconnected
processing units (neurons) organized in layers, such that the information flows
exclusively in a forward direction (from the input layer to the output layer). In
other words, there are no connections between any two neurons within the same
layer or from the units of any layer to the units of previous layers. Commonly,
these networks present two or three layers of processing units, in which the neurons
of each layer are fully-connected to the neurons of the posterior layer. Figure 4.1
presents the typical architecture of a three-layer FF network. Note that since the
sole purpose of the units within the input layer consists of transferring/distributing
the input data to the neurons in the next layer (no processing is carried out by
these units), this particular layer is not considered when determining the number
of layers, 𝑙, of a network.

Each connection defines the direction and flow of information between two
neurons, 𝑖 and 𝑗, as illustrated in Figure 4.2. From the point of view of neuron 𝑖
this is an output connection while from the point of view of neuron 𝑗 this is an
input connection. Each connection has an associated weight, 𝑊𝑖𝑗 , which defines its
strength, allowing the original input signals to be amplified or shrink according
to its value. Typically, the input signals, which correspond to the previous layer
neuron outputs (i.e. 𝑥𝑖 = 𝑦𝑖), are multiplied by the connection weight, before being
further processed. Therefore, since the connections model the effect of the original
signal in the neurons, connections are said to be excitatory for positive weight
values and inhibitory for negative values. Moreover, when a connection is zero, it
becomes irrelevant in the context of the network, since no information will actually
flow between the two neurons.

Each neuron, 𝑗, starts by gathering the information signals, fed by the previous
neurons, through its input connections, which is then summed together with a bias,
𝑏𝑗, in order to compute its activation, 𝑎𝑗. The bias can be considered to be the
weight of an extra connection, whose input signal remains constantly set to 1. This

63

4 Supervised algorithms

𝑥1

𝑥2

𝑥3

𝑥𝐷

...
... ...

𝑦1

𝑦2

𝑦𝐶

...

bias

Input
layer

1𝑠𝑡

hidden
layer

2𝑠𝑡

hidden
layer

Output
layer

Figure 4.1: Three-layer feed-forward network.

i

j

𝑊𝑖𝑗

Figure 4.2: Connection between two neurons.

allows the BP algorithm to adjust the bias weight together with the remaining
weights [Bishop, 2006,Piȩkniewski and Rybicki, 2004]. Accordingly, assuming that
the neuron 𝑗 contains 𝐼 input connections, its activation, 𝑎𝑗, is given by (4.1):

𝑎𝑗 =
𝐼∑︁

𝑖=0
𝑊𝑖𝑗𝑦𝑖 . (4.1)

The activation is then used to compute a single neuron output value, 𝑦𝑗,
by applying a typically non-linear activation/transfer function to the computed
activation, 𝑎𝑗, and the result is sent to the subsequent units through the output
connections. Figure 4.3 illustrates this process.

64

4.1 Multiple Back-Propagation (MBP)

𝑗

𝑥2
𝑊2𝑗

𝑥𝐼
𝑊𝐼𝑗

𝑥1
𝑊1𝑗

+1

𝑏𝑗 = 𝑊0𝑗

...

∑︀
𝑎𝑗=

𝑦𝑗

...
output

connectionsin
pu

t
co

nn
ec

tio
ns

bias connection

Figure 4.3: Neuron architecture.

Accordingly, the output, 𝑦𝑗, of neuron 𝑗 is given by (4.2):

𝑦𝑗 = 𝜑(𝑎𝑗) = 𝜑(
𝐼∑︁

𝑖=0
𝑊𝑖𝑗𝑦𝑖) , (4.2)

where 𝜑(𝑥) is the neuron activation function. Typically, the (logistic) sigmoid
function, given by (4.3), is used for this purpose:

𝜎(𝑥) = 1
(1 + 𝑒−𝑥) . (4.3)

The sigmoid is a non-linear and non-decreasing function, whose output is clamped
between 0 and -1. Figure 4.4 presents a graphical plot of this function. Note
that we can actually use any other activation function, provided that it has
a first derivative. Nevertheless, the activation function has a huge impact on
the complexity and performance of both the BP algorithm and the resulting
models [Shenouda, 2006,Piȩkniewski and Rybicki, 2004,Duch and Jankowski, 1999]
as it reshapes the geometry of the transformations generated by the networks with
implications in the training speed and generalization capabilities [Piȩkniewski and
Rybicki, 2004]. Moreover, the activation function is strongly correlated with the
number of adaptive parameters required to model complex decision borders [Duch
and Jankowski, 1999]. Therefore its choice must be careful pondered. In this context,
the sigmoid is the most interesting and commonly used activation function because:
(i) it significantly outperforms other functions providing better generalization
models; (ii) it requires less training time than most functions; and (iii) computing
its derivate is a very fast and straightforward process [Shenouda, 2006]. In addition,

65

4 Supervised algorithms

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-6 -4 -2 0 2 4 6

𝜎
(𝑥

)

𝑥

Figure 4.4: Sigmoid function.

it is generally believed that the activity of biological neurons is regulated by a
sigmoidal transfer function [Duch and Jankowski, 1999].

An FF network with a single hidden layer of units with continuous non-linear
sigmoidal activation functions is a universal approximator, i.e. it can learn any
arbitrary measurable function with the desired degree of accuracy, provided
that a sufficient number of neurons is specified [Hornik et al., 1989, Cybenko,
1989,Funahashi, 1989].

Back-Propagation learning

Two phases may be distinguished when training a network with the BP algorithm:
a forward and a backward phase. In the forward phase, also called forward-
propagation [Bishop, 2006], the input layer distributes the incoming signals to the
next layer, which in turn computes its outputs and sends the resulting signals to
the subsequent layer, and so on until the results of the output layer corresponding
to the model outputs are finally produced. At this point the error, 𝐸, between the
targets (desired outputs), t, and the actual network outputs, y, can be computed.
Usually this is accomplished with the quadratic error function1:

𝐸 = 1
2

𝐶∑︁
𝑜=1

(𝑡𝑜 − 𝑦𝑜)2 , (4.4)

In the backward (back-propagation) phase, the errors of the network are
propagated backwards, layer by layer, starting at the output layer, so that the
weights of the input connections of each layer are adjusted to minimize the error
between the network outputs and the corresponding targets. The weights are
adjusted in an iterative process, according to the gradient descent rule, i.e. in the
opposite direction of the gradient of the error function with respect to the network
weights. Hence, using 𝜂 as a learning rate factor, the weight change, Δ𝑊𝑖𝑗 , is given

1Online training mode is considered.

66

4.1 Multiple Back-Propagation (MBP)

by (4.5):
Δ𝑊𝑖𝑗 = −𝜂

𝜕𝐸

𝜕𝑊𝑖𝑗

. (4.5)

Since the error, 𝐸, depends indirectly on 𝑊𝑖𝑗 through the neuron activation, 𝑎𝑗,
we can apply the chain rule for the partial derivatives in order to obtain (4.6):

Δ𝑊𝑖𝑗 = −𝜂
𝜕𝐸

𝜕𝑎𝑗

𝜕𝑎𝑗

𝜕𝑊𝑖𝑗

= −𝜂
𝜕𝐸

𝜕𝑎𝑗

𝑦𝑖 .

(4.6)

By defining the local gradient 𝛿𝑗 as in (4.7):

𝛿𝑗 = −𝜕𝐸

𝜕𝑎𝑗

, (4.7)

we can write (4.6) as (4.8):
Δ𝑊𝑖𝑗 = 𝜂𝛿𝑗𝑦𝑖 . (4.8)

Using the chain rule once again, (4.7) becomes (4.9):

𝛿𝑗 = −𝜕𝐸

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑎𝑗

= −𝜕𝐸

𝜕𝑦𝑗

𝜑′(𝑎𝑗) .

(4.9)

Thus, for an output neuron, 𝑗 = 𝑜, the local gradient is given by (4.10):

𝛿𝑜 = (𝑡𝑜 − 𝑦𝑜)𝜑′(𝑎𝑜) . (4.10)

In the case of a hidden neuron, 𝑗 = ℎ, its output is actually contributing to the
errors of all the neurons, in the next layers, that share the same (input) connections
as the neuron ℎ output connections. Therefore, considering a hidden neuron, 𝑗 = ℎ,
and assuming the next layer is the output layer, the local gradient, 𝛿ℎ, can be
obtained by applying the chain rule [Bishop, 2006]:

𝛿ℎ = −𝜑′(𝑎ℎ) 𝜕𝐸

𝜕𝑦ℎ

= −𝜑′(𝑎ℎ)
𝐶∑︁

𝑜=1

𝜕𝐸

𝜕𝑎𝑜

𝜕𝑎𝑜

𝜕𝑦ℎ

= −𝜑′(𝑎ℎ)
𝐶∑︁

𝑜=1

𝜕𝐸

𝜕𝑎𝑜

𝜕

𝜕𝑦ℎ

𝐼∑︁
𝑖=0

𝑊𝑖𝑜𝑦𝑖

= −𝜑′(𝑎ℎ)
𝐶∑︁

𝑜=1

𝜕𝐸

𝜕𝑎𝑜

𝑊ℎ𝑜 .

(4.11)

67

4 Supervised algorithms

and using (4.7) we can finally write (4.11) as (4.12):

𝛿ℎ = 𝜑′(𝑎ℎ)
𝐶∑︁

𝑜=1
𝛿𝑜𝑊ℎ𝑜 . (4.12)

Together (4.8), (4.10) and (4.12) allow to recursively update all the weights in the
network. In practice, however, a momentum term, 0 ≤ 𝛼 < 1, is usually included
in (4.8) in order to improve the algorithm’s convergence. Accordingly, instead of
(4.8) we can use (4.13):

Δ𝑊𝑖𝑗 = 𝜂𝛿𝑗𝑦𝑖 + 𝛼Δ𝑊𝑖𝑗
(old) . (4.13)

The momentum has a stabilizing effect when the gradient component, 𝜕𝐸
𝜕𝑊𝑖𝑗

,
oscillates in consecutive updates and an accelerating effect when it presents the same
sign, see (4.5). Overall, this simple modification (to the weight update equation)
not only accelerates the training process but also prevents the learning procedure
from getting trapped in a shallow local minimum of the error manifold [Haykin,
1998].

Another simple acceleration technique, although memory consuming, is the
adaptive step size technique, which consists of using an individual learning rate
(step size) parameter, 𝜂𝑖𝑗, for each weight connection, 𝑊𝑖𝑗, instead of a global
learning rate. At each iteration, the step sizes 𝜂𝑖𝑗 are adjusted according to the
successive signs of the gradient components, using (4.14) [Almeida, 1997]:

𝜂𝑖𝑗 =
⎧⎨⎩ 𝑢𝜂

(old)
𝑖𝑗 if (𝜕𝐸

𝜕𝑊𝑖𝑗
)(𝜕𝐸

𝜕𝑊𝑖𝑗
)(old) > 0

𝑑𝜂
(old)
𝑖𝑗 if (𝜕𝐸

𝜕𝑊𝑖𝑗
)(𝜕𝐸

𝜕𝑊𝑖𝑗
)(old) < 0

(4.14)

where 𝑢 > 1 (up) represents the increment factor for the step size and 𝑑 < 1 (down)
the decrement factor. When two consecutive updates have the same direction the
step size of that particular weight is increased. For updates with opposite directions
the step size is decreased, thus avoiding oscillations in the training process due to
excessive learning rates. The underlying idea of this procedure consists of finding
near-optimal step sizes that would allow bypassing ravines on the error surface.
This technique is especially effective for ravines that are (almost) parallel to some
axis [Almeida, 1997].

Even though the step sizes are reduced in the presence of oscillations (gradient
components with opposite directions), it is possible, under certain circumstances,
for the step sizes to become excessively large. This results in the increase of the
error cost function, from one epoch to another. A similar increase may also occur
in a curved ravine when too much momentum is acquired [Almeida, 1997]. To
avoid both situations, it is possible to implement a robustness method that is
triggered when the error grows behind a predefined threshold (e.g. 0.1%). The
above-mentioned method basically consists of [Almeida, 1997]: (i) setting the
weights back to the values they had in the epoch with the lowest error achieved so

68

4.1 Multiple Back-Propagation (MBP)

𝑓 : IRD −→ IRC

𝑥1

𝑥2

𝑥𝐷

...... ...

𝑦1

𝑦2

𝑦𝐶

... ...

Black Box

Figure 4.5: A neural network viewed as a black box system that maps 𝐷 inputs
into 𝐶 outputs.

far; (ii) reducing the step size parameters by a pre-defined factor, 0 < 𝑟 < 1, (e.g.
0.5) and (iii) set the momentum memory to zero.

The combined procedure (adaptive step size, robustness method and momentum)
results in a very effective training algorithm that works well in practice [Almeida,
1997].

4.1.2 Multiple Back-Propagation (MBP) Algorithm
An NN can be viewed as an adaptive black box model whose parameters (weights)
are adjusted by the training procedure, so that the network as a whole acts as a
mapping function, 𝑓 : IRD −→ IRC, that attempts to fit the observed (training)
data (see Figure 4.5).

Rationally, we want the resulting NN model to resemble as close as possible
the subjacent model that governs the real data distribution. Hence, having a
single model that covers all the input space might not be the best solution. In
particular, for complex problems a divide and conquer strategy may be more
appropriate. Thus, it might be preferable to create several localized models that
can take advantage of the specific characteristics of their operating domain and
that when combined together could mimic better the model governing the true data
distribution. In other words, it may be possible to obtain a better fitting model
with improved generalization by using different mapping functions, each covering a
specific region of the input space. A similar principle is used by ensemble methods
(also referred to as committees of classifiers), which combine several sub-models in
order to create classifiers that often present better generalization performance than
their constituent models, provided that the integrated classifiers are diverse and
accurate [Džeroski et al., 2009,Wang, 2008,Tahir and Smith, 2010]. In particular, in

69

4 Supervised algorithms

the Mixture of Experts (ME) architecture, the outputs of a set of experts (models)
are combined in a hierarchical modular structure, by using a gating network that
divides the input space into a set of nested regions [Yuksel et al., 2012,Džeroski
et al., 2009]. Both the gate and the expert parameters are estimated separately,
typically using the Expectation-Maximization (EM) algorithm, such that the gate
will create a soft division of the input space in which each expert is assigned to a
specific partition region [Yuksel et al., 2012].

Given enough information about the problem being tackled, it is possible to
divide the input space into several regions of interest (e.g. different operating model
regimes) and associate to each one a specific tailored model. This can be viewed
as if we decompose 𝑓 in several simpler sub-functions. However, for the majority
of the cases, such knowledge is not available and manually partitioning the input
space becomes impractical.

Nevertheless, it is possible to partition the input space without the proviso of
explicit information. For example, the RBF networks perform an implicit partition
of the input space by assigning localized neurons that respond only to the samples
that are in the vicinity of its center. From the point of view of a specific sample
(pattern) it is as if all the other neurons, whose center is further away, did not exist.
This can be viewed as if different groups of similar patterns (in the same space
partition) have associated their own network.

Biological arguments also favor this idea. The human brain contains highly-
specialized regions, responsible for dealing specifically with certain cognitive aspects.
In particular, there are cortical regions specialized not only for basic sensory and
motor processes but also for the high-level perceptual analysis that will selectively
react to single categories of visually presented objects (e.g. faces, places, bodies,
words) [Kanwisher, 2010].

Neurons with Selective Actuation

In the same manner that the brain engages distinct areas (neurons) to respond to
different stimuli, it would be useful for (artificial) NNs to activate distinct neurons
in response to different stimuli. This would allow neurons to become specialized
in certain patterns, reacting only when confronted with them, while ignoring the
rest. The idea consists of activating a different set of neurons for each similar set
of patterns, allowing the input space to be divided into several parts, thus creating
and associating different virtual network models (for each group of similar stimuli)
that share the same infra-structure.

In order to specify the contribution of a given neuron, 𝑗, to the network output,
we incorporate an importance factor, 𝑚𝑗, in the neuron equation that defines its
relevance for the sample (stimulus) being presented to the network. Such neurons
are designated by neurons with selective actuation [Lopes and Ribeiro, 2003,Lopes

70

4.1 Multiple Back-Propagation (MBP)

∑︀
×

𝑎𝑗 𝜑(𝑎𝑗)

𝑚𝑗

𝑦𝑗

× 𝑦𝑗

𝑚𝑗

standard
neuron

multiplier

Figure 4.6: Selective actuation neuron architecture.

and Ribeiro, 2001] and the equation governing its output is given by (4.15):

𝑦𝑗 = 𝑚𝑗𝜑(𝑎𝑗) = 𝑚𝑗𝜑(
𝐼∑︁

𝑖=0
𝑊𝑖𝑗𝑦𝑖) . (4.15)

The farther from zero 𝑚𝑗 is, the more important the neuron (contribution)
becomes. On the other hand, when 𝑚𝑗 is zero the neuron becomes completely
irrelevant and one can interpret such a value as if the neuron is not present in the
network [Lopes and Ribeiro, 2003,Lopes and Ribeiro, 2001].

Notice that if we consider all the importance factors 𝑚𝑗 to be constant and equal
to one, i.e., if all neurons are equally important to the network regardless of the
pattern being presented, then (4.15) becomes identical to the standard neuron
output equation (4.2).

Figure 4.6 shows two alternative representations of a neuron with selective
actuation. As we shall see, the actual contribution of these neurons to the network
outputs is fine-tuned according to the space localization of the samples presented
to the network. Therefore, they can become specialized in a specific set of samples
belonging to space regions in which they present high-importance values, while
ignoring the remaining samples localized in other (low-importance) regions.

A neuron with selective actuation is inherently a non-linear device that is capable
of solving the XOR problem, even when its constituent neurons use a linear
activation function (see Figure 4.7).

Multiple Feed-Forward (MFF) Networks

The importance factors, 𝑚𝑗, are determined by a so-called space network that
receives the same inputs as the network with selective actuation neurons (main
network). The latter can only calculate its outputs after the space network outputs,
𝑚𝑗 , are evaluated. Thus the two networks must function in a collaborative manner,
as a whole, and therefore must be trained together. Note that both selective
actuation neurons and standard neurons can coexist in the main network [Lopes
and Ribeiro, 2003,Lopes and Ribeiro, 2001].

71

4 Supervised algorithms

0.00𝑥1

1.00

𝑥2
0.00

𝑥2 × 𝑦-𝑥1𝑥2

𝑚

−𝑥1

0.00

−1.00

0.00

𝑥1 𝑥2 𝑚 𝑦
-1 -1 -1 -1
-1 1 1 1
1 -1 -1 1
1 1 1 -1

𝑦

0.00𝑥1

1.00
𝑥2

0.00

𝑦

0.00𝑥1

−1.00
𝑥2

0.00

−1 1𝑥1

1

−1

𝑥2

Partition space virtual models

Phisical model

Model Outputs

Figure 4.7: Architecture of a selective actuation neuron, with linear activation
functions, which solves the XOR problem.

72

4.1 Multiple Back-Propagation (MBP)

𝑥1
×

𝑥2 ×
𝑥3

×

𝑦1×

𝑦2×

Space Network

Main Network with
selective actuation neurons

bias

Figure 4.8: Example of a multiple feed-forward network.

The resulting network is called a Multiple Feed-Forward (MFF) or an MBP
network. Figure 4.8 illustrates the relationship between the two networks that
integrate an MFF network.

By computing the importance factors of the main network, the space network is
implicitly dividing the input space, creating seamless partitions that have associated
different models. Hence, from the point of view of a neuron with selective actuation
integrating those models, some data points can be interpreted as being more
important than others [Lopes and Ribeiro, 2003,Lopes and Ribeiro, 2001].

Multiple Back-Propagation (MBP) Algorithm

MFF networks have two contributions for their output errors: (i) the weights of
the main network; and (ii) the weights of the space network (or in other words the
importance given to each neuron with selective actuation). Therefore, minimizing
the error 𝐸 between the target outputs and the MFF outputs implies adjusting
the weights of both networks. To this end, an algorithm named Multiple Back-
Propagation (MBP) was devised [Lopes and Ribeiro, 2003, Lopes and Ribeiro,
2001].

In the MBP algorithm, the main network weights are adjusted according to the
gradient descent method, using (4.8) as in the BP algorithm. However, due to the
introduction of the importance factor, the local gradients for the output neurons
𝛿𝑜 and for the hidden neurons 𝛿ℎ are now respectively given by (4.16) and (4.17):

𝛿𝑜 = (𝑡𝑜 − 𝑦𝑜)𝑚𝑜𝜑
′(𝑎𝑜) , (4.16)

73

4 Supervised algorithms

𝛿ℎ = 𝑚ℎ𝜑′(𝑎ℎ)
𝐶∑︁

𝑜=1
𝛿𝑜𝑊ℎ𝑜 . (4.17)

Jointly, (4.8), (4.16) and (4.17) recursively allow to adjust the main network
weights. Note that, once again, if 𝑚𝑗 is constant and equal to one, these equations
are identical to the corresponding BP equations (see (4.10) and (4.12)). Thus,
MBP can be considered as a generalization of the BP algorithm [Lopes and Ribeiro,
2003,Lopes and Ribeiro, 2001].

As said before, in order to minimize the errors it is necessary to adjust the
weights of the space network as well. By doing so, we are changing the soft division
of the input space, seeking a more suitable and proper partition.

In order to adjust space network weights, the variation of the importance factors
can be computed by using the gradient descent method as well, as stated in (4.18):

Δ𝑚𝑗 = − 𝜕𝐸

𝜕𝑚𝑗

. (4.18)

Considering the importance factor of an output neuron 𝑜 = 𝑗 (of the main
network), (4.18) becomes (4.19):

Δ𝑚𝑜 = (𝑡𝑜 − 𝑦𝑜)𝜑(𝑎𝑜) , (4.19)
Regarding the importance factor of a hidden neuron ℎ = 𝑗 (of the main network),

(4.18) can be written as (4.20):

Δ𝑚ℎ = −
𝐶∑︁

𝑜=1

𝜕𝐸

𝜕𝑎𝑜

𝜕𝑎𝑜

𝜕𝑚ℎ

=
𝐶∑︁

𝑜=1
𝛿𝑜

𝜕

𝜕𝑚ℎ

𝐼∑︁
𝑖=0

𝑊𝑖𝑜𝑦𝑖

=
𝐶∑︁

𝑜=1
𝛿𝑜

𝜕

𝜕𝑚ℎ

𝐼∑︁
𝑖=0

𝑊𝑖𝑜𝑚𝑖𝜑(𝑎𝑖)

,

(4.20)

and finally we obtain (4.21):

Δ𝑚ℎ =
𝐶∑︁

𝑜=1
𝛿𝑜𝑊ℎ𝑜𝜑(𝑎ℎ) . (4.21)

Employing (4.19) and (4.21), we can compute the desired values of the space
network, using 𝑚𝑗 + Δ𝑚𝑗 , and then apply the BP algorithm to correct the weights
of the space network.

Collectively, the MFF networks and the MBP algorithm compose an architecture
that is in most cases preferable to the use of standard BP networks [Lopes and
Ribeiro, 2003, Lopes and Ribeiro, 2001] and has yielded good results in several
applications, such as financial data analysis [Bucur and Florea, 2011], electricity
consumption forecasting [Granmo, 2012], analysis of market orientation [Silva et al.,
2009] and character recognition [Chacko et al., 2010].

74

4.1 Multiple Back-Propagation (MBP)

X ∈ IRN×D

network inputs

FireLayer

space network layer

Ws ∈ IRJ×(D+1)

space layer weights

M ∈ IRN×J

importance factors

FireLayer

hidden layer

Wh ∈ IRJ×(D+1)

hidden layer weights

T ∈ IRN×C

desired outputs

Yh ∈ IRN×J

hidden layer outputs

Wo ∈ IRC×(J+1)

output layer weights

FireOutputLayer

output layer

𝛿o ∈ IRN×C

local gradients

Y ∈ IRN×C

network outputs

𝜀 ∈ IRN×C

errors

Figure 4.9: Model of the kernels executed (in each epoch) to complete the forward
phase of an MBP network.

4.1.3 GPU Parallel Implementation
The CUDA implementation of the BP and MBP algorithms features both the
adaptive step size and the robustness techniques described earlier (see pages 68
and 69), which overall improve the algorithm’s stability and training speed.
Accordingly, the training process can be decomposed in three sequential phases
(per epoch): forward, robust learning and back-propagation.

Forward Phase

The forward phase is implemented by two kernels (FireLayer and FireOutputLayer)
whose objective consists of calculating the outputs of a given layer. This phase
proceeds as follows: If a space network exists, FireLayer is called for each one
of its layers, until the space network outputs are determined. Then FireLayer is
called, once again, for each one of the hidden layers of the main network and finally,
FireOutputLayer is called to determine the main network outputs. Figure 4.9
illustrates the sequence (from left to right) in which the host calls these kernels,
considering an MBP network encompassing a hidden layer with 𝐽 selective actuation
neurons and an output layer with 𝐶 standard neurons. A single layer is considered
for the space network.

Regarding the batch training mode, there are two sources of parallelism: First
the outputs of the neurons can be computed in parallel; and second, the training
samples can be processed independently. Accordingly, the kernels were designed to
operate on a generic network layer with 𝐽 neurons, calculating their outputs for all
the 𝑁 samples. Thus, considering the neuron as the smallest processing element of
an NN, we would end up with 𝑁𝐽 processing threads. However, for many problems
this number is insufficient because as we said before, CUDA requires a large number
of threads, running simultaneously, in order to hide memory latency efficiently.
Moreover, there are many situations where the output layer consists of a single
neuron, in which case we would execute only 𝑁 threads when processing that layer.
Thus, one needs to define threads at a much finer granularity to take full advantage
of the GPU high number of cores [Ryoo et al., 2008] (see Section 2.4.2, page 28).

75

4 Supervised algorithms

Although conceptually the neuron is the smallest processing element of an NN,
in order to increase the number of threads we need to use a different approach.
Namely, it is actually possible to perform a simple computation at the connections
level: each connection can multiply its weight by the incoming input (𝑊𝑖𝑗𝑦𝑖). By
doing so, we manage to increase the number of threads by a factor of (𝐼 + 1), where
𝐼 is the number of inputs of the layer. Moreover, we can take advantage of the fast
shared memory to sum up the values computed by each thread (connection) within
the block (neuron), using a reduction process and then computing the output of
the neuron for the active sample.

Listing 4.1 shows the version of the FireLayer kernel that is used when the number
of connections (including the bias) does not exceed 512 (due to performance reasons,
there are two versions for each one of the FireLayer and FireOutputLayer kernels).
All the matrices are in row-major order, to keep the kernel memory accesses
coalesced.

Note that the forward phase could be implemented without the FireOutputLayer
kernel. However, we noticed that part of the data needed to calculate the local
gradients (of the output layer) and the RMSE of the network was already in the SM
registries and shared memory (see Figure 4.9 and listing 4.1) which are significantly
faster than the global (device) memory. Thus, this kernel was created to increase
the performance of the resulting implementation by taking advantage of the data
already present in the SMs. Besides calculating the layer outputs, Y ∈ IRN×C, this
kernel also computes the local gradients of the output layer, 𝛿o ∈ IRN×C, the local
gradients of the space network neurons, 𝛿s ∈ IRN×C (associated with the selective
actuation neurons in the output layer) and the (square of the) neurons’ errors,
𝜀 ∈ IRN×C, where each element (corresponding to sample 𝑛 and output 𝑜) is given
by 𝜀𝑛𝑜 = (𝑇𝑛𝑜 − 𝑌𝑛𝑜)2.

Robust Learning Phase

In this phase, we start by calculating the RMSE, using the CalculateRMS

kernel which receives the network errors, 𝜀 ∈ IRN×C, previously produced by
the FireOutputLayer kernel.

The host will then decide whether or not to stop the training process. However,
transferring information between the device and the host (and vice-versa) is
particularly time-consuming. Thus, the training process can not be put on hold
while waiting for the host to receive the error. Depending on the size of the dataset
and the particular device being used, several training epochs might occur (with
tens of kernels being called) during the interval of time necessary for the host to
obtain the RMSE. Hence, the host will actually base its decision on an estimate
(old value) that is periodically obtained by asynchronously querying the RMSE,
instead of relying on the actual RMSE value.

If the host decides to continue the training, the RobustLearning kernel is then
called, to improve the stability and convergence of the algorithm. This kernel

76

4.1 Multiple Back-Propagation (MBP)

Listing 4.1: FireLayer kernel.
#define INPUT threadIdx.x
#define N_INPUTS_INCL_BIAS blockDim.x
#define N INPUTS (N_INPUTS_INCL_BIAS - 1)
#define BIAS 0
#define NEURON threadIdx.y
#define N_NEURONS blockDim.y
#define PATTERN blockIdx.x

__device__ void sumInputWeight(int c, float * x, float * w) {
extern __shared__ float xw[];

xw[c] = w[c];
if (INPUT > BIAS) {

xw[c] *= x[PATTERN * N INPUTS + (INPUT - 1)];
}
__syncthreads();

int es = N_INPUTS_INCL_BIAS;
for(int s = (es >> 1); es > 1; s = (es >> 1)) {

int nextNumberElemSum = s;
if (es & 1) nextNumberElemSum++;
if (INPUT < s) xw[c] += xw[c + nextNumberElemSum];
es = nextNumberElemSum;
__syncthreads();

}
}

__global__ void FireLayer(float * x, float * w, float * m, int moffset, int
selNeurons, float * y) {

extern __shared__ float xw[];

int conn = NEURON * N INPUTS INCL BIAS + INPUT;
sumInputWeight(conn, x, w);

if (INPUT == 0) {
int n = PATTERN * N NEURONS + NEURON;
float o = CUDA SIGMOID(xw[conn]);
if (m != NULL) {

o *= m[PATTERN * selNeurons + NEURON + moffset];
}
y[n] = o;

}
}

77

4 Supervised algorithms

M ∈ IRN×J

importance factors

𝛿o ∈ IRN×C

output gradients

𝜂o ∈ IRN×C

step sizes (output)

CalcLocalGradients

hidden layer

Wo ∈ IRC×(J+1)

output layer weights

CorrectWeights

output layer

𝛿h ∈ IRN×J

hidden gradients

Yh ∈ IRN×J

hidden layer outputs

Wh ∈ IRJ×(D+1)

hidden layer weights

CorrectWeights

hidden layer

𝛿s ∈ IRN×J

space gradients

X ∈ IRN×D

network inputs

𝜂h ∈ IRJ×(D+1)

step sizes (hidden)

Ws ∈ IRJ×(D+1)

space layer weights

CorrectWeights

space network

𝜂s ∈ IRJ×(D+1)

step sizes (space)

Figure 4.10: Model of the kernels executed (in each epoch) in the back-
propagation phase of an MBP network.

compares the current (device) RMSE with the best error found so far. If the current
error is smaller then (i) the best RMSE is updated and (ii) the NN weights are
stored. Otherwise, if the error exceeds a given threshold: (i) the best weights are
restored, (ii) the step sizes multiplied (reduced) by the robustness factor, 𝑟, and
(iii) the momentum memories are set to zero.

Back-Propagation Phase

The back-propagation phase is supported mainly by two kernels: CorrectWeights

and CalcLocalGradients. The latter determines the local gradient of the neurons
of a hidden layer, 𝛿h ∈ IRN×J. If there are neurons with selective actuation,
the corresponding local gradients, 𝛿s ∈ IRN×J, of the space network are also
calculated. The task of the CorrectWeights kernel consists of adjusting the weights,
Wh ∈ IRJ×(D+1), and the corresponding step sizes, 𝜂h ∈ IRJ×(D+1), of a given layer.

Essentially the back-propagation phase proceeds as follows: First, the kernel
CalcLocalGradients is repeatedly called in order to determine the local gradients of
each hidden layer, starting in the last hidden layer and proceeding backwards until
the local gradients of the first hidden layer are known (note that the local gradients
of the output layer were already determined by the FireOutputLayer kernel). To
complete the training process, for the current epoch, the CorrectWeights kernel
must be called for each layer (of both the main and space networks) in order to
adjust its weights. It is important to notice that these will only execute their code
if the RMSE has not surpassed a pre-defined threshold (see the, previous, robust
learning phase Section). This is necessary, because, as we state before, the host
has no direct access to the information on the device and transferring it would
heavily downgrade the performance of the algorithm. Thus, the host will always
call those kernels and they will abort execution if needed. Figure 4.10 illustrates
the sequence (from left to right, top to bottom) in which the kernels are called by
the host, in order to perform the back-propagation phase, for the same network
considered in Figure 4.9.

78

4.1 Multiple Back-Propagation (MBP)

4.1.4 Autonomous Training System (ATS)

Although the GPU can reduce significantly the time required for training NNs,
building high-quality solutions still requires a large amount of effort and time.
Finding an adequate network topology can be a tedious and difficult process.
Typically, several NNs, with different configurations, must be trained before
achieving a good solution. Thus, the quality of the resulting system depends
largely on the effort spent on training. In this context, an Autonomous Training
System (ATS) that actively searches for better solutions, adjusting the topology as
needed, can be a very important tool for improving the quality of the resulting NN
systems.

The proposed ATS is specifically designed for classification problems. However,
it can easily be adjusted for regression problems. The ATS makes use of the
GPU parallel implementation, described in the previous Section. It trains several
NNs while adjusting their topology to improve the quality of the solutions found.
The system starts by training an NN using the initial set up configuration and
topology. Thereafter, the ATS evaluates the resulting (NN) model and adjusts
conveniently the number of hidden neurons. A new NN is subsequently trained
and its performance is compared with the best NN found so far. These results are
in turn used to determine the number of hidden neurons of the next NN and the
process is repeated until the stopping criteria is met.

Algorithm 1 presents the ATS algorithm for pattern recognition, which uses
the sum between the number of false positives (𝑓𝑝) and false negatives (𝑓𝑛) to
assert the quality of the networks. Note that we can easily replace this metric
by another one that is more adequate (e.g. sensitivity, RMSE), according to the
particularities of the problem being tackled. Each time the ATS trains an NN the
resulting information is logged and if the trained NN turns out to be better than
the previous ones, it will be saved.

The proposed approach tries to mimic the heuristics that we use for model
selection. Although far from perfect, it has proven to yield good results (see
Section 4.1.5) and constitutes a working basis on top of which new improvements
can be build.

4.1.5 Results and Discussion

Experimental Setup

The experimental setup was conducted using the CUDA implementation, described
earlier in Section 4.1.3, and the Multiple Back-Propagation software: a highly
optimized application, developed in C++, for training NNs [Lopes and Ribeiro,
2009c]. This software has been extensively tested and widely used by neural networks
researchers and practitioners. Its latest version and source code, featuring our
CUDA implementation, can be freely obtained at http://mbp.sourceforge.net/.

79

http://mbp.sourceforge.net/

4 Supervised algorithms

Algorithm 1 Autonomous Training System.
1: Input: 𝑑𝑡𝑟𝑎𝑖𝑛 ◁ Training dataset.
2: Input: 𝑑𝑡𝑒𝑠𝑡 ◁ Test dataset.
3: Input: 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛 ◁ Number of networks to train.
4: Input: ℎ𝑖𝑛𝑖 ◁ Initial number of hidden neurons.
5: 𝑓𝑝𝑛𝑏𝑒𝑠𝑡 ←∞
6: 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ← 0
7: 𝑖𝑛𝑐← 0
8: ℎ← ℎ𝑖𝑛𝑖

9: ℎ𝑏𝑒𝑠𝑡 ← ℎ
10: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑑𝑜𝑤𝑛
11: repeat
12: 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 ← new network with ℎ hidden neurons
13: Train(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑑𝑡𝑟𝑎𝑖𝑛)
14: 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ← 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 + 1
15: 𝑓𝑝← FalsePositives(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑑𝑡𝑒𝑠𝑡)
16: 𝑓𝑛← FalseNegatives(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑑𝑡𝑒𝑠𝑡)
17: 𝑓𝑝𝑛← 𝑓𝑝 + 𝑓𝑛
18: Log 𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑓𝑝, 𝑓𝑛, RMSE(𝑛𝑒𝑡𝑤𝑜𝑟𝑘, 𝑑𝑡𝑒𝑠𝑡)
19: if 𝑓𝑝𝑛 ≤ 𝑓𝑝𝑛𝑏𝑒𝑠𝑡 then
20: 𝑓𝑝𝑛𝑏𝑒𝑠𝑡 ← 𝑓𝑝𝑛
21: ℎ𝑏𝑒𝑠𝑡 ← ℎ
22: 𝑖𝑛𝑐← 𝑖𝑛𝑐 + 1
23: SaveNetwork(𝑛𝑒𝑡𝑤𝑜𝑟𝑘)
24: end if
25: if ℎ < ℎ𝑏𝑒𝑠𝑡 then
26: if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑜𝑤𝑛 then
27: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑢𝑝
28: if 𝑖𝑛𝑐 > 1 then 𝑖𝑛𝑐← 𝑖𝑛𝑐− 1
29: end if
30: else if ℎ > ℎ𝑏𝑒𝑠𝑡 then
31: if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑢𝑝 then
32: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑑𝑜𝑤𝑛
33: if 𝑖𝑛𝑐 > 1 then 𝑖𝑛𝑐← 𝑖𝑛𝑐− 1
34: end if
35: end if
36: if 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑢𝑝 then
37: ℎ← ℎ + 𝑖𝑛𝑐
38: else if ℎ > 1 then
39: ℎ← ℎ− 𝑖𝑛𝑐
40: else
41: 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛← 𝑢𝑝
42: end if
43: until 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 ≥ 𝑛𝑒𝑡𝑠𝑡𝑟𝑎𝑖𝑛

80

4.1 Multiple Back-Propagation (MBP)

Table 4.1: Main characteristics of the training datasets used in the MBP
experimental setup.

Dataset (Benchmark) Samples (𝑁) Features (𝐷) Classes (𝐶)
Sinus cardinalis 101 1 1
Two-spirals 194 2 1
Sonar 104 60 1
Forest cover type 11,340 54 7
Poker hand 25,010 85 10
Ventricular arrhythmias 19,391 18 1

The CPU version was benchmarked using the computer system 1 with an Intel
Core 2 running at 2.4 GHz and the GPU version on the computer systems 1 and 2,
respectively with an 8600 GT and a GTX 280 devices (see Tables 3.1 and 3.2, on
page 38, for more information on the systems and devices).

In our testbed experiments we compare the CPU and GPU versions of the
algorithms on well-known benchmarks, as well as on a real-world case study,
regarding the detection of Ventricular Arrhythmias (VAs). These are described
in more detail in Section 3.4, but we reproduce here, in Table 4.1, the main
characteristics of their training datasets. Note that unlike in Table 3.4, which
shows the overall number of samples, the number presented here corresponds only
to the training samples, which are the ones effectively used to train the networks.

For a fair comparison of the algorithms, the initial weights of the NNs, trained
with the CPU and the GPU, were set to identical random values. Furthermore, all
the data was transferred to the GPU prior to the training.

With the exception of the two-spirals benchmark, all the networks presented
in this study had a single hidden layer with 𝐽 neurons. Moreover, in the case
of the sinus cardinalis and two-spirals benchmarks we use the same topology
configurations that we have used in Lopes and Ribeiro [Lopes and Ribeiro, 2003].
Hence, in the latter benchmark, the networks had also a second hidden layer with
10 neurons.

In addition, only the first hidden layer of the main network (of the MBP networks)
contained neurons with selective actuation. Finally, the step sizes, 𝜂, and the
momentum terms, 𝛼, were initialized to 0.7; and whenever the robust learning
technique was used, a reducing factor of 0.5 and a tolerance of 0.1% were chosen.

Benchmark Results

Concerning both the sinus cardinalis and the two-spirals benchmarks, we have
trained 10 networks (for each configuration), until the RMSE was less than 0.01.
Moreover, we have used the adaptive step size technique with an increment 𝑢 of 1.05

81

4 Supervised algorithms

Table 4.2: Speedups (×) for the sinus cardinalis problem.

Hidden System 1 System 2
Topology units (𝐽) (8600 GT) (GTX 280)

BP
7 3.98± 0.19 5.48± 0.21
9 4.66± 0.16 7.15± 0.13
11 5.44± 0.13 8.43± 0.15

MBP
5 4.37± 0.10 6.08± 0.13
7 5.73± 0.07 7.99± 0.10
9 6.77± 0.09 10.24± 0.12

Table 4.3: Speedups (×) for the two-spirals problem.

Hidden System 1 System 2
Topology units (𝐽) (8600 GT) (GTX 280)

BP
25 7.68± 1.01 32.84± 4.78
30 7.96± 0.68 39.22± 3.36
35 7.55± 0.42 39.61± 2.49

MBP
15 9.89± 0.76 32.85± 2.59
20 9.75± 0.16 38.10± 0.70
25 10.01± 0.31 42.98± 1.27

and a decrement 𝑑 of 0.95 (the robust training technique was not used). Tables 4.2
and 4.3 present the average GPU speedups and the corresponding standard
deviations respectively for the sinus cardinalis and for two-spirals benchmarks.

The results obtained show that the GPU implementation of the BP and MBP
algorithms can in fact deliver enormous speedups over the corresponding CPU
implementation.

In the two-spirals benchmark, the GTX 280 device can be over 40 times faster
than the CPU. Results that took only 20 seconds on the GPU, required almost 15
minutes on the CPU. Figure 4.11 visually shows the performance improvements of
the GPU over the CPU.

In the sinus cardinalis benchmark, the results are not so impressive, because the
reduced number of neurons and samples makes it less parallelizable. Consequently,
many of the cores of the GTX 280 were idle during the training process and it was
not possible to take complete advantage of this GPU. Thus, the difference between
the analyzed devices is not so remarkable as in the two-spirals benchmark. On the
other hand, this test confirms that, even for small problems, the GPU can provide

82

4.1 Multiple Back-Propagation (MBP)

10

100

1000

15 20 25

T
im

e
(s

)

First Hidden Layer Neurons (𝐽)

10s

1m40s

16m40s

GTX 280
8600 GT

Core 2 6600

Figure 4.11: Two-spirals training time (MBP algorithm).

a significant speedup (up to 10× in this case). Moreover, even when using an old
model device (8600 GT), it is possible to obtain significant speedups (almost 7× in
the sinus cardinalis and up to 10× in the two-spirals problems).

Although the training process starts at the same point of the error surface
(identical weights were used for the CPU and GPUs), we will most likely end up on
different (or slightly different) points of the error surface, according to the hardware
used. There are two factors accountable for this situation. First, as we said before,
transferring data from the GPU to the CPU is time consuming. Therefore, we use
an estimate of the RMSE to avoid stopping the training process while the error is
being transferred. As a result (on the GPU) the NNs will most likely be trained
for a few more epochs after the desired error has been reached. Second, there are
discrepancies between the floating-point results given by the CPU and those given
by the GPUs. Therefore, slightly different paths on the error surface might be
taken depending on the gradient computation results. As a result, the number of
epochs required to train an NN will (most likely) differ, depending on the hardware
platform used.

Even though the GPU networks will be trained for more epochs than those needed
to reach the desired error, our tests demonstrate that training the networks on
the CPU does not always require less epochs. For example, in the sinus cardinalis
benchmark the 8600 GT required less epochs than the CPU in 51.67% of the cases,
whilst the GTX 280 required less epochs in 58.33% of the cases. In practice, for
the vast majority of networks, the discrepancy of epochs is very small and only
residually affects the speedups. Therefore, for the subsequent tests, we decided

83

4 Supervised algorithms

1

10

100

1000

10000

0 50 100 150 200 250 300

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

8.33 ± 0.24

8.27 ± 0.78

7.51 ± 0.07

8.62 ± 0.04

9.00 ± 0.38
10.40 ± 0.12

18.18 ± 0.11

59.67 ± 0.50

56.37 ± 0.53

57.87 ± 0.53

57.92 ± 0.26
58.40 ± 2.74

62.88 ± 0.53
112.56 ± 0.69

GTX 280
8600 GT

Core 2 6600

Figure 4.12: Number of epochs per minute using the BP algorithm for the forest
cover problem. The GPU speedups are shown near the corresponding
lines.

to use the number of epochs trained per minute, instead of the time required to
reach a predefined RMSE. Moreover, in the remaining tests, 30 networks for each
configuration were trained to establish confidence bounds and ensure statistical
significance using standard deviation.

In the forest cover benchmark, we selected 7 out of the 14 different hidden
neurons configurations, chosen in Blackard and Dean [Blackard and Dean, 1999].
The robust learning technique and adaptive step size (with an increment 𝑢 of 1.1
and a decrement 𝑑 of 0.9) were used. Figures 4.12 and 4.13 show the number of
epochs trained per minute for the forest cover problem, using respectively the BP
and MBP algorithms.

Since this problem has a much larger training dataset than the previous
benchmarks, the speedups attained are significantly higher. This occurs because
having a larger number of samples and/or connections to process results in additional
operations that can be performed in parallel. Thus, the more complex the problem
is, the greater is the benefit of a GPU implementation. This also explains why the
speedups for the MBP are usually greater than the corresponding speedups for the
BP algorithm, since the MBP networks have an additional (space) layer that can
be processed in parallel.

Figures 4.14 and 4.15 present the number of epochs trained per minute for the
poker hand problem, using respectively the BP and MBP algorithms. The settings

84

4.1 Multiple Back-Propagation (MBP)

1

10

100

1000

10000

0 50 100 150 200 250 300

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

8.63 ± 0.16

8.20 ± 0.09

8.09 ± 0.32

8.92 ± 0.09
19.21 ± 0.15

23.85 ± 0.11
25.35 ± 0.37

64.59 ± 0.87

59.63 ± 0.74

60.08 ± 2.41

59.00 ± 0.57
121.95 ± 0.75

141.83 ± 0.52
153.23 ± 2.22

GTX 280
8600 GT

Core 2 6600

Figure 4.13: Number of epochs per minute using the MBP algorithm for the forest
cover problem. The GPU speedups are shown near the corresponding
lines.

were the same as in the forest cover problem. Comparatively to the former, the
poker hand benchmark has more connections (per layer), which translate into a
larger number of CUDA threads and higher speedups (up to 30× on a 8600 GT and
178× on a GTX 280 device). Moreover, training a single epoch for an MBP network
with 300 hidden neurons, requires more than 5 minutes on the CPU. However, the
GTX 280 performed 34 epochs per minute, whist the 8600 GT allow for 11 epochs
per minute.

Case study: Ventricular Arrhythmias (VAs)

Concerning the real-world, VAs problem (see page 54), Figures 4.16 and 4.17
show the number of epochs trained per minute according to the hardware used
respectively for the BP and MBP algorithms.

Figures 4.18 and 4.19 show the corresponding speedups, respectively for an 8600
GT (computer system 1) and a GTX 280 device (computer system 2). Note that
the GTX 280 can account for a reduction on the training time of over 50× for the
MBP algorithm.

Since currently our implementation does not support using a validation set,
preliminary tests were conducted in order to determine when to stop training.
Subsequently, using the information collected, we have trained several networks,
during one million epochs, varying the number of hidden neurons. It is worth

85

4 Supervised algorithms

0.1

1

10

100

1000

0 50 100 150 200 250 300

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

8.35 ± 0.07

8.05 ± 2.15

8.73 ± 0.05

8.98 ± 0.08

17.80 ± 0.20
27.41 ± 0.50

29.03 ± 1.58

57.49 ± 0.35

54.79 ± 0.40

59.51 ± 0.44

57.55 ± 0.35
111.30 ± 0.36

159.03 ± 2.71
174.91 ± 9.50

GTX 280
8600 GT

Core 2 6600

Figure 4.14: Number of epochs per minute using the BP algorithm for the poker
problem. The GPU speedups are shown near the corresponding
lines.

0.1

1

10

100

1000

0 50 100 150 200 250 300

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

8.61 ± 0.07

8.13 ± 0.05

8.68 ± 0.05

21.02 ± 0.16

27.85 ± 1.31
30.29 ± 0.22

30.12 ± 1.15

61.50 ± 0.44

58.42 ± 0.31

58.61 ± 0.33

132.67 ± 0.91

171.73 ± 8.44
174.45 ± 0.60

178.64 ± 6.86

GTX 280
8600 GT

Core 2 6600

Figure 4.15: Number of epochs per minute using the MBP algorithm for the poker
problem. The GPU speedups are shown near the corresponding lines.

86

4.1 Multiple Back-Propagation (MBP)

100

1000

10000

0 2 4 6 8 10 12 14

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

GTX 280
8600 GT

Core 2 6600

Figure 4.16: Number of epochs per minute for the Ventricular Arrhythmias case
study, using the BP algorithm.

100

1000

10000

0 2 4 6 8 10 12 14

Ep
oc

hs
pe

r
m

in
ut

e

Hidden Layer Neurons (𝐽)

GTX 280
8600 GT

Core 2 6600

Figure 4.17: Number of epochs per minute for the Ventricular Arrhythmias case
study, using the MBP algorithm.

87

4 Supervised algorithms

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0 2 4 6 8 10 12 14

Sp
ee

du
p

(×
)

Hidden Layer Neurons (𝐽)

BP
MBP

Figure 4.18: Speedup (×) obtained for the Ventricular Arrhythmias case study,
using an 8600 GT.

25

30

35

40

45

50

55

0 2 4 6 8 10 12 14

Sp
ee

du
p

(×
)

Hidden Layer Neurons (𝐽)

BP
MBP

Figure 4.19: Speedup (×) obtained for the Ventricular Arrhythmias case study,
using a GTX 280.

88

4.1 Multiple Back-Propagation (MBP)

Table 4.4: Performance results (%) for the ventricular arrhythmias problem.

BP (𝐽 = 14) MBP (𝐽 = 13)
Metrics Train Test Validation Train Test Validation
Sensitivity 98.07 95.94 94.67 97.42 95.54 94.47
Specificity 99.84 99.62 99.61 99.87 99.68 99.70
Accuracy 99.70 99.33 99.23 99.68 99.36 99.30

mentioning that during the preliminary tests a few NNs were trained up to 3
million epochs, requiring almost 9 hours of training with a GTX 280 (computer
system 2). We estimate that the CPU would require almost three weeks to train a
single network (of these) [Lopes and Ribeiro, 2009a].

Table 4.4 shows the results of the best models (sensitivity, specificity and accuracy)
for both algorithms. Note that considering the human costs involved, it is preferable
to diagnose healthy people with ventricular arrhythmias (false positives), rather
than missing a faulty heart condition (false negatives). Therefore a classifier with
high-sensitivity is preferable.

The best network trained with the BP algorithm has 14 hidden neurons (𝐽 = 14)
and the best trained with the MBP has 13 hidden neurons with selective actuation
(𝐽 = 13). It is important to note that the results, which improve those published in
Ribeiro et al. [Ribeiro et al., 2007] and in Marques [Marques, 2007], would not be
obtained without the speedups provided by the GPU [Lopes and Ribeiro, 2009a].

ATS Results

In order to validate the ATS, we intentionally choose a small problem (the sonar
benchmark) to conduct more exhaustive tests. The system described in Algorithm 1
was tested using 1, 10 and 20 initial hidden neurons to analyze its capacity of
adjusting the number of neurons. For each one of the six tests (both for BP and
MBP networks), a total of 10, 000 NNs were trained. In the case of MBP networks,
we started with a single hidden neuron (with selective actuation), monitored the
evolution of 𝐽 and found out that it rapidly converges to five, corresponding to
the best network found. Figure 4.20 empirically shows that almost half of the
networks trained by the ATS had 5 hidden neurons and the vast majority of the
networks (more than 99%) had between 4 and 6 neurons. Thus, the ATS system
clearly privileges the topologies with better chances of finding high-quality solutions.
Altogether, a total of 10 networks (out of 10, 000) were saved by the ATS. Moreover,
we checked that the best NN excels the results obtained in Lopes and Ribeiro [Lopes
and Ribeiro, 2001]. Additionally, it is worth mentioning that the best network
found in Lopes and Ribeiro [Lopes and Ribeiro, 2001] was also an MBP network
with 5 hidden neurons.

89

4 Supervised algorithms

0

1000

2000

3000

4000

5000

1 2 3 4 5 6 7 8

N
um

be
r

of
N

et
wo

rk
s

Tr
ai

ne
d

Number of Hidden Neurons (𝐽)

10 7 5

2445

4930

2545

57 1

Figure 4.20: Networks trained, according to the number of hidden neurons.

When the initial number of the hidden neurons was changed to 10, the best NN
found with 𝐽 = 6 had the same number of false negatives (𝑓𝑛) and false positives
(𝑓𝑝) as the previous one. However, when the initial number of hidden neurons
was set to 20 the best NN found (with 20 neurons) presented worst results. This
seems to indicate that although the initial number of neurons is not a crucial
parameter, setting it to low values might increase the chances of finding better
solutions. The number of hidden neurons is one of the most crucial parameters
in an NN model. Basically, increasing the number of hidden units, increases the
probability of avoiding local minima. This, however, is accomplished by reducing
the generalization capabilities of the network, leading to the bias-variance dilemma.
By varying the number of hidden neurons, two extreme solutions, both leading
to poor generalization cases, can be obtained: (i) a solution whereby the network
model has many free parameters that accommodate both the underlying mapping
function and the noise inherent to the training data (over-fitting) and (ii) a solution
where the local characteristics of the true mapping function are “ignored” (under-
fitting), due to an insufficient number of hidden neurons. Increasing the number of
free parameters (weights) leads to more flexible models with low bias and a high
variance. On the other hand, reducing the number of free parameters results in
more rigid models having high bias and low variance. Hence, we aim at finding
an adequate number of parameters (i.e. hidden neurons) that correspond to the
optimal balance between the bias and the variance and results in models that
present the best predictive capabilities [Bishop, 2006]. If the ATS starts with a
small number of hidden neurons, corresponding to an under-fitting solution, it

90

4.2 Neural Selective Input Model (NSIM)

will most likely increase the number of free parameters (hidden units), such that
we gradually move toward optimal models with the ideal balance between the
bias and the variance. On the other hand, when starting with a large number of
neurons, corresponding to an over-fitting solution, there is no guarantee that we
will actually move towards optimal models, because even when the ATS reduces
the number of neurons the resulting models may still present an excessive number
of parameters (especially for small datasets) and therefore will not necessarily yield
better solutions.

Finally, in the tests performed for the BP networks, as expected, none of the
30, 000 networks trained yielded a solution as good as the one obtained for the
MBP networks.

Overall, the results obtained demonstrate that the ATS is capable of finding
high-quality solutions without human-intervention. To further validate this system,
Section 5.1.5 presents an additional experiment, in which the ATS is used on the
Yale face database (see page 144). The results obtained corroborate the ones
already presented here, demonstrating that the ATS is a very promising and
powerful system.

Discussion

The previous benchmarks demonstrate that the GPU (and more specifically our
implementation) can have a significant impact on the design of NN solutions,
by significantly reducing the amount of time spent in the learning phase. This
alleviates one of the major drawbacks of NNs, making their use more attractive
even in circumstances where they would typically be disregarded. Nevertheless, a
real world problem, such as the VAs, can better exemplify how the GPU can make
the difference.

We found that there is a strong correlation (88%) between the speedups and the
average number of threads per layer. Figure 4.21 reports the computer system 2
(GTX 280) speedups (based on the data collected in the experiments), according
to the average number of threads per layer. Clearly, more samples (𝑁), neurons
(𝐽) and inputs (𝐼) will result in more threads to process (𝑁𝐽(𝐼 + 1)) in a given
layer, which will in turn translate into greater GPU speedups. This confirms that
the GPU scales better than the CPU when handling large-datasets and complex
problems.

4.2 Neural Selective Input Model (NSIM)
Incomplete data is an unavoidable problem for most real-world databases, which
often contain missing data [Kotsiantis et al., 2006b,Karhunen, 2011]. In particular,
in domains such as gene expression microarray experiments or clinical medicine,
databases routinely miss pieces of information [Tuikkala et al., 2008,Markey et al.,
2006]. Missing Values (MVs) can exist either by design (e.g. a survey questionnaire

91

4 Supervised algorithms

0
20
40
60
80

100
120
140
160
180
200

100 1000 10000 100000 1e+006 1e+007 1e+008 1e+009

Sp
ee

du
p

(×
)

Average number of threads per layer

Figure 4.21: Speedups (×) versus processing threads.

may allow people to leave unanswered questions) or by a combination of several
other factors which prevent the data from being collected and/or stored.

The reasons for the prevalence of MVs include among others, sensors failure,
malfunction of the equipment used to record the data, data transmission problems,
different patients performing different medical diagnosis tests according to their
doctor and insurance coverage, merging two or more databases with a different set
of attributes [García-Laencina et al., 2010,Bramer, 2007,Nelwamondo et al., 2007].

Independently of the causes associated to the existence of MVs, the fact is
that most scientific data procedures are not designed to handle them [Schafer
and Graham, 2002]. In particular in the ML area, many of the most prominent
algorithms (e.g. SVMs, NNs) fail to consider MVs at all. Nevertheless, handling
them in a properly manner has become a fundamental requirement for building
accurate models and failure to do so usually results in models with large errors
[García-Laencina et al., 2010].

To circumvent the Missing Values Problem (MVP), ML algorithms usually rely
on data preprocessing techniques such as imputation for estimating the missing data.
Hence, in this case, estimated data will have the same relevance and credibility of
real-data. Thus, wrong estimates of crucial variables can substantially weaken the
capacity of generalization of the resulting models and originate in unpredicted and
potentially dramatic outcomes [Lopes and Ribeiro, 2011f]. Moreover, estimation
methods such as imputation were conventionally developed and validated under the

92

4.2 Neural Selective Input Model (NSIM)

assumption that MVs occur in a random manner. Nevertheless, this assumption
does not always hold in practice [Tuikkala et al., 2008].

4.2.1 Missing Data Mechanisms
The presence of MVs in data observations is one of the most frequent problems that
must be faced when building ML systems [López-Molina et al., 2008]. Hence, given
an input matrix X, we can build a binary response indicator matrix, K ∈ {0, 1}𝑁×𝐷

such that:
𝐾𝑖𝑗 =

{︃
1 if 𝑋𝑖𝑗 is observed
0 if 𝑋𝑖𝑗 is missing . (4.22)

Assuming that we sort the rows (input vectors) of X by their number missing of
variables (features). Then we can divide X into the observed input matrix, Xobs,
containing the samples for which all the variables (features) values are known, and
into the unknown input matrix, Xmiss containing the samples that have variables
with MVs:

X ≡
[︃

Xobs
Xmiss

]︃
, (4.23)

we can define the conditional distribution for the missing data as:

𝑝(K | X, 𝜉) = 𝑝(K | Xobs, Xmiss, 𝜉) , (4.24)

where 𝜉 denotes the unknown parameters which define the missing data
mechanism [García-Laencina et al., 2010,Mockus, 2008].

Little and Rubin [Little and Rubin, 2002] define three types of missing data
mechanisms according to their causes: Missing At Random (MAR), Missing
Completely At Random (MCAR) and Not Missing At Random (NMAR).

Missing At Random (MAR)

The data is said to be MAR if the causes for the missingness are independent of the
missing variables, but traceable or predictable from other observed variables [García-
Laencina et al., 2010]. In such cases we can define the conditional distribution for
the missing data as (4.25):

𝑝(K | Xobs, Xmiss, 𝜉) = 𝑝(K | Xobs, 𝜉) . (4.25)

Examples of data MAR occur in the following cases: while answering questions
in a survey, project managers may skip those related to small projects more often
than those related to larger projects, because they may remember less details about
smaller projects [Mockus, 2008]; a sensor occasionally fails due to power outages,
preventing the data acquisition process from taking place [García-Laencina et al.,
2010]. In both cases, the cause for the missingness is not directly tied to the
variables containing the MVs but rather to other external influences. In the first

93

4 Supervised algorithms

case the MAR assumption can apply, because the predictor “project size” explains
the likelihood of the value to be missing [Mockus, 2008]. Similarly, the power
outages in the second case explain why the sensor data is missing.

Missing Completely At Random (MCAR)

Data is said to be MCAR when the probability that a given variable is missing is
independent of the variable itself and of any other external influences of interest,
i.e. the reason for the MVs is completely random. This condition can be expressed
as (4.26):

𝑝(K | Xobs, Xmiss, 𝜉) = 𝑝(K | 𝜉) . (4.26)

Examples of this mechanism include the following [García-Laencina et al., 2010]:
a biological sample is accidentally contaminated by the researcher collecting the
data; a page from a questionnaire is unintentionally lost.

Not Missing At Random (NMAR)

The alternative for data MAR or MCAR is to consider that the data is NMAR. This
is the case when the pattern of data missingness depends on the missing variables
themselves. A typical example of data NMAR is in the case of a personal survey
involving private questions, whose nature will most likely leave them unanswered.
In this scenario, unless the survey can reliably measure variables that are strongly
related to those containing MVs, the MAR and MCAR assumptions are violated
and we must consider that data is NMAR [Mockus, 2008].

When data is NMAR valuable information is lost and there is no general method
for handling MVs properly. Otherwise, the missing data mechanism is termed
ignorable and its cause can simply be ignored, allowing the simplification of the
methods for handling MVs [García-Laencina et al., 2010].

4.2.2 Methods for Handling MVs in Machine Learning
According to Laencina et al. [García-Laencina et al., 2010], there are four types of
methods for handling MVs: case deletion, missing data imputation, model-based
procedures and ML methods for handling missing data. Our view is that the latter
can be further classified into preprocessing techniques and algorithms with built-in
support for MVs. Figure 4.22 presents an overview of ML procedures to handle
MVs.

Since many algorithms cannot directly handle MVs, a common practice is to
rely on data preprocessing techniques. Usually, this is accomplished by using
imputation or simply by removing instances (case deletion) and/or features
containing MVs [García-Laencina et al., 2010,Tuikkala et al., 2008,López-Molina
et al., 2008,Mockus, 2008,Lim and Zainuddin, 2008,Ayuyev et al., 2009,Kotsiantis
et al., 2006b]. A review of the methods and techniques to deal with this problem,

94

4.2 Neural Selective Input Model (NSIM)

Methods for handling
MVs in machine learning

algorithms with built-in
support for MVspreprocessing

data deletion imputation model based

case deletion,
feature removal

single imputation
multiple imputation

hot deck imputation,
mean imputation, . . .

maximum likelihood
(EM algorithm), . . .

back-propagation
with NSIM

decision trees,
ensembles, . . .

Figure 4.22: Overview of the types of techniques for handling MVs in ML.

including a comparison of some well-known approaches, can be found in Laencina
et al. [García-Laencina et al., 2010].

Removing features or instances containing a large fraction of MVs is a common
(and appealing) approach for dealing with the MVP, because it is a simple process
and reduces the dimensionality of the data (therefore potentially reducing the
complexity of the problem). This is a very conservative strategy which guarantees
that errors are not introduced in the dataset [Bramer, 2007]. However, it is not
applicable when the MVs cover a large fraction of the instances, or when their
presence in essential attributes is large [Ayuyev et al., 2009, Bramer, 2007]. In
some cases, MVs represent only a small fraction of the data but they spread
throughout a large number of instances, rendering the option of case deletion
inviable. Such a scenario usually happens for datasets containing a large number
of features with MVs [López-Molina et al., 2008]. Moreover, for some problems
the number of samples available is reduced and removing instances with MVs is
simply not affordable. Furthermore, discarding data may damage the reliability
of the derived models [Bramer, 2007]: if the eliminated instances are dissimilar to
the remaining ones, the resulting models may not be able to properly capture the
underlying data distribution and consequently will suffer from poor generalization
performance [López-Molina et al., 2008]. Likewise, by removing features it is
assumed that their information is either irrelevant or it can be compensated by
other variables. However, this is not always the case and features containing MVs
may have critical information which cannot be compensated for by the information
embedded in the remaining features.

An alternative for deleting data containing MVs consists of estimating their values.
Naturally, this process can introduce noise into the dataset and if a variable value
is not meaningful for a given set of instances any attempt to substitute the MVs

95

4 Supervised algorithms

by an estimate is likely to lead to invalid results [Bramer, 2007]. Many algorithms
have been developed for this purpose (e.g. mean imputation, regression imputation,
hot deck imputation, weighted k-nearest neighbor approach, Bayesian principle
component analysis, local least squares) [García-Laencina et al., 2010, Tuikkala
et al., 2008,Lim and Zainuddin, 2008,Little and Rubin, 2002]. In the NN domain, an
example of such an approach consists of using an Hopfield network, whose neurons
are considered both inputs and outputs, as a auto-associative memory [Serpen,
2005, Alavala, 2008]. Basically, when the Hopfield network receives a noisy or
incomplete pattern, it will iterate to a stable state that best matches the unknown
input pattern [Alavala, 2008,Wang, 2005]. Independently of the method chosen,
wrong estimates of crucial variables can substantially weaken the capacity of
generalization of the resulting models. Moreover, models based on imputed
(estimated) data consider MVs as if they are the real ones (albeit their value
is not known) and therefore, the resulting conclusions do not show the uncertainty
produced by the absence of such values [López-Molina et al., 2008]. Furthermore,
statistically, the variability or correlation estimations can be strongly biased [López-
Molina et al., 2008].

Multiple imputation techniques (e.g. metric matching, bayesian bootstrap)
take into account the variability produced by the absence of MVs, by replacing
each MV with two or more acceptable values, representing a distribution of
possibilities [López-Molina et al., 2008]. However, although the variability is taken
into account, MVs will still be treated as if they are real. Furthermore, estimation
methods were conventionally developed and validated under the assumption that
data is MAR. However, this assumption does not always hold in practice. In the
particular case of microarray experiments the distribution of missing data is highly
non-random due to technical and/or experimental conditions [Tuikkala et al., 2008].

Preprocessing methods have the advantage of allowing the same data to be used
by different algorithms. Nevertheless, the burden of preprocessing data, which
already accounts for a significant part of the time that is spent in order to build
an ML system, is further increased. Moreover, additional knowledge is required
to provide a better foundation for making decisions on choosing strategic options,
namely, methods and tools available to handle MVs [Lopes and Ribeiro, 2012a].

Finally, these methods result in the loss of information when the missingness
is by itself informative. This is the case when the MVs distribution provides
valuable information for the classification task, that is lost when the MVs are
replaced by their respective estimates [García-Laencina et al., 2010]. For example,
in the real-world bankruptcy problem, presented later in Section 4.2.5, distressed
companies tend to omit much more financial information than healthy ones [Lopes
and Ribeiro, 2011f]. A simple explanation for this behavior is that in general
companies in the process of insolvency try to conceal their true financial situation
from its stakeholders (suppliers, customers, employees, creditors, investors, etc.).
Thus, in this particular case, the specialized knowledge that a particular set of

96

4.2 Neural Selective Input Model (NSIM)

data variables is missing can play an important role in the construction of better
models [Lopes and Ribeiro, 2011f,Lopes and Ribeiro, 2012a].

Algorithms with built-in support for handling MVs offer numerous advantages
over (more) conventional ones: (i) the amount of time spent in the preprocessing
phase is reduced; (ii) their performance is consistent and does not depend on the
knowledge of proper methods and tools for handling MVs (e.g. some practitioners
may rely on ad-hoc solutions and obtain less reliable models than those built with
better skilled techniques); (iii) noise and outliers are not inadvertently injected in
the data and the uncertainty associated to the missing data is preserved; (iv) it can
be decided whether the missing information is informative (or not), resulting in
better models. Despite these advantages, most algorithms are incapable of handling
MVs, mostly because in many cases that would complicate their methods to the
point that they could become impractical and in many situations there would not
be any real gains. Fortunately, this is not always the case and, in the next Section,
we present an elegant and simple solution that empowers NNs with the ability of
dealing directly with the ubiquitous MVP [Lopes and Ribeiro, 2012a].

4.2.3 NSIM Proposed Approach
The building blocks of the proposed NSIM are the selective actuation neurons,
described earlier in Section 4.1.2 (see page 70).

Let us consider that each row of the response matrix, K, contains the response
indicator vector of a specific sample, 𝜅i ∈ {0, 1}𝐷. Furthermore, to simplify the
notation, let 𝜅 = [𝜅1, 𝜅2, . . . , 𝜅𝐷] denote the response indicator vector of a generic
sample where 𝜅𝑖 is a random variable with Bernoulli distribution representing the
act of obtaining the value of 𝑥𝑖 (𝜅𝑖 ∼ 𝐵𝑒(𝑝𝑖)). In order to deal with the missing
data values, we propose transforming the values of 𝑥𝑖 by taking into consideration
𝜅𝑖 as shown in (4.27):

�̃�𝑖 = 𝑓(𝑥𝑖, 𝜅𝑖) . (4.27)
This transformation can be carried out by a selective actuation neuron, 𝑗,

designated by selective input, which receives a single input, 𝑥𝑖, and has an
importance factor 𝑚𝑗 identical to 𝜅𝑖. Consequently, (4.27) can be replaced with
(4.28), by taking advantage of (4.15):

�̃�𝑖 = 𝜅𝑖𝜑(𝑊𝑖𝑗𝑥𝑖 + 𝑏𝑗) . (4.28)

If the value 𝑥𝑖 can not be obtained then the selective input associated to it
will behave as if it did not exist, since 𝜅𝑖 will be zero. On the other hand, if the
value of 𝑥𝑖 is available (𝜅𝑖 = 1), the selective input will actively participate on
the computation of the network outputs. This can be viewed as if there are two
different models, bound to each other, sharing information. One model for the
case where the value of 𝑥𝑖 is known and another one for the case where it can
not be obtained (is missing). Figure 4.23 shows the physical model (NSIM) of a
network containing a selective input and the two conceptual models inherent to

97

4 Supervised algorithms

𝑥1

𝑥2

𝑥3

𝜅3

𝑥𝑖

𝑦1

𝑦2

𝑤𝑖𝑗

𝑏𝑗

×
multiplier

𝜅𝑖

�̃�𝑖

selective input neuron

Physical model

Model 1 when 𝑥3 is missing: 𝜅3 = 0

𝑥1

𝑥2

Conceptual models

𝑦1

𝑦2

Model 2 when the value of 𝑥3 is known: 𝜅3 = 1

𝑥1

𝑥2

𝑥3

𝑦1

𝑦2

Figure 4.23: Physical and conceptual models of a network with a selective input
(𝑗 = 3).

it. A network with 𝐼 selective inputs will have 2𝐼 different models bonded to each
other and constrained in order to share information (network weights) [Lopes and
Ribeiro, 2012a].

As we said before, an NN acts as an adaptive non-linear mapping function,
𝑓 : IRD −→ IRC. Consequently, the goal of the training procedure consists of
adjusting the free parameters (weights) of the network (𝑊1, 𝑊2, . . . , 𝑊𝑃), so that
the resulting model fits adequately the observed (training) data. Hence, we can
view the aforementioned strategy as if we decompose 𝑓 into sub-functions that
share information (parameters) among each other. For the simpler case of a
network having a single selective input, 𝑓 could be decomposed into two different
functions, 𝑓1(𝑊1, 𝑊2, . . . , 𝑊𝑠) and 𝑓2(𝑊1, 𝑊2, . . . , 𝑊𝑠, 𝑊𝑠+1, . . . , 𝑊𝑃), that share 𝑠
parameters. For the network presented in Figure 4.23, 𝑠 corresponds to the number
of weights of model 1 and 𝑃 to the number of weights of model 2. It is guaranteed
that all the models share at least 𝑠 parameters, corresponding to the number of
weights that the network would have if the inputs with MVs were not considered
at all [Lopes and Ribeiro, 2010d].

Although conceptually there are multiple models, from the point of view of the
training procedure there is a single model (NSIM), 𝑓 with 𝑃 adjustable parameters
(weights). When a pattern is presented to the network, only the parameters
directly or indirectly related to the inputs with known values are adjusted (observe
equations (4.8), (4.16) and (4.17)). Thus, only the relevant (conceptual) models
will be adjusted [Lopes and Ribeiro, 2010d].

98

4.2 Neural Selective Input Model (NSIM)

The NSIM presents a high degree of robustness, since it is prepared to deal with
faulty sensors. If the system which integrates the NSIM realizes a given sensor has
stopped working, it can easily deactivate (discard) all the models inherent to that
specific sensor, by setting 𝜅𝑖 = 0. Thus, consequently the best model available for
the remaining sensors working properly will be considered. In addition, the NSIM
does not require MAR or MCAR assumptions to hold, since only the known data
is used actively to build the model [Lopes and Ribeiro, 2012a].

4.2.4 GPU Parallel Implementation
The GPU implementation of the NSIM extends the BP and MBP CUDA parallel
implementation previously presented in Section 4.1.3 (see page 75). Altogether, a
total of three new kernels were added to the referred implementation.

In order to calculate the outputs of the selective input neurons, �̃�𝑖, a kernel,
named FireSelectiveInputs, was created. This kernel, whose code is show in
Listing 4.2, assumes that standard inputs may coexist with selective inputs. Thus,
it should be launched with one thread per input and sample (regardless of the type
of the inputs – selective or standard). Moreover, since our implementation considers
the batch training mode, the �̃�𝑖 variables will be calculated simultaneously for
all the training patterns (samples) and the threads should be grouped in blocks
containing all the inputs of a given sample. Of course, for standard inputs the
value of �̃�𝑖 must match to the original input (�̃�𝑖 = 𝑥𝑖). Therefore, to differentiate
standard inputs from the selective ones, the value of the weights and bias of the
standard inputs is set to zero – the kernel checks this condition to determine which
type of input is being handled. Therefore, thread divergence is avoided when all
the inputs are selective inputs. Thus, the maximum performance of this kernel is
obtained when we treat all the inputs as selective inputs.

For the back-propagation phase two additional kernels were created:
CalcLocalGradSelectiveInputs and CorrectWeightsSelectiveInputs. The first
one calculates the local gradients of the selective input neurons for all the samples
and the latter is responsible for adjusting the weights of the selective input neurons.
As in the case of the FireSelectiveInputs kernel, maximum performance is achieved
when all the inputs are considered to be selective inputs. A complete and functional
implementation of this method was integrated also in the Multiple Back-Propagation
software (previously mentioned in page 79).

4.2.5 Results and Discussion

Experimental Setup

To evaluate the performance of the NSIM, we carried out extensive experiments
on several datasets with different distributions and proportion of MVs. Table 4.5
presents the main characteristics of the databases and an overview of the proportion

99

4 Supervised algorithms

Listing 4.2: FireSelectiveInputs kernel.
#define NEURON threadIdx.x
#define NUM_NEURONS blockDim.x
#define PATTERN blockIdx.x

__global__ void FireSelectiveInputs(float * inputs, float * weights, float *
bias, float * outputs) {

int idx = PATTERN * NUM_NEURONS + NEURON;

float o = inputs[idx];

if (isnan(o) || isinf(o)) { // missing value
o = 0.0;

} else {
float w = weights[NEURON];
float b = bias[NEURON];

if (w != 0.0 || b != 0.0) o = tanh(o * w + b);
}

outputs[idx] = o;
}

Table 4.5: Main characteristics, proportion and distribution of the MVs for the
UCI database benchmark experiments (after data preprocessing). Note
that the average (avg.) and the standard deviation (stdev.) of MVs
per feature does not include features without MVs.

Proportion Features MVs per feature
Database 𝑁 𝐷 𝐶 of MVs (%) with MVs (avg. %) (stdev. %)
Annealing 898 47 5 49.22 37 (78.72%) 62.52 37.04
Audiology 226 93 24 2.85 23 (24.73%) 11.54 22.43
Breast cancer 699 9 2 0.25 1 (11.11%) 2.29 0.00
Congressional 435 16 2 5.63 16 (100.00%) 5.63 5.41
hepatitis 155 19 2 5.67 15 (78.95%) 7.18 11.05
Horse colic 368 92 2 15.26 59 (64.13%) 23.79 16.01
Japanese credit 690 42 2 0.97 32 (76.19%) 1.27 0.24
Mammographic 961 5 2 3.37 5 (100.00%) 3.37 3.22
Mushroom 8124 110 2 1.11 4 (3.64%) 30.53 0.00
Soybean 683 77 19 8.73 76 (98.70%) 8.85 6.03

and distribution of the MVs in each database, after preprocessing. Additional
details on the datasets can be found in Section 3.4.

100

4.2 Neural Selective Input Model (NSIM)

Table 4.6: Macro-average F-Measure performance (%) according to the methods
used to handle the MVs and the algorithms used to train the NNs.

NSIM Single Imputation Multiple Imputation
Database BP MBP BP MBP BP MBP
Annealing 97.13± 02.69 97.77± 02.55 91.93± 06.79 93.22± 06.65 93.04± 07.40 93.16± 06.53
Audiology 56.46± 14.16 58.64± 13.08 53.73± 14.56 55.33± 13.25 56.76± 14.16 61.07± 14.72
Breast cancer 95.05± 01.59 95.42± 01.69 95.38± 01.21 95.53± 01.67 95.01± 01.53 95.37± 01.66
Congressional 93.20± 02.07 94.30± 01.58 93.84± 01.86 94.12± 02.24 94.83± 01.79 94.70± 01.46
hepatitis 70.10± 06.23 73.55± 05.99 72.63± 07.96 72.20± 07.53 75.89± 10.35 75.44± 09.98
Horse colic 84.31± 02.56 84.86± 02.44 83.29± 02.80 83.11± 02.78 87.30± 02.06 87.37± 02.30
Japanese credit 81.98± 02.45 81.50± 02.81 81.43± 02.53 81.07± 02.25 81.27± 01.93 81.59± 02.45
Mammographic 81.62± 01.74 81.07± 01.97 79.78± 02.28 78.23± 02.56 79.93± 02.00 79.45± 02.36
Mushroom 99.97± 00.02 99.96± 00.02 99.98± 00.02 99.98± 00.01 99.97± 00.02 99.98± 00.01
Soybean 93.43± 00.68 94.34± 00.94 91.63± 01.26 92.87± 00.85 92.54± 00.68 93.48± 00.66

In the experiments we use 5-fold stratified cross-validation partitions. For
statistical significance 30 different NNs were trained in each partition and algorithm.

The results of the NSIM were compared with single imputation and multiple
imputation methods. Multiple imputation is considered one of the most powerful
approaches for estimating MVs [Ayuyev et al., 2009]. For single imputation the
version 3.7.5 of the Weka software package was used [Hall et al., 2009]. For
multiple imputation, the NORM (Multiple imputation of incomplete multivariate
data under a normal model) software was used [Schafer, 1999]. NORM uses the
Expectation-Maximization algorithm either with the maximum-likelihood or the
posterior mode estimates. Since the maximum-likelihood estimate fails for many
of the databases in Table 4.5, the posterior mode was used. In this context, the
EM algorithm is used for fitting models to incomplete data, by capitalizing on the
relationship between the unknown parameters associated to the data model and
the missing data itself [Nelwamondo et al., 2007].

Benchmark Results

Table 4.6 presents the macro-average F-Measure performance (%) according to the
algorithms used to train the NNs and the methods chosen for handling the MVs.

As expected, the MBP algorithm performs better than BP regardless of the
method used to handle MVs. On average the F-Measure performance of MBP
excels the one of BP by 0.20%, 0.50% and 0.82% respectively for single imputation,
multiple imputation and NSIM methods. Using the Wilcoxon signed rank test,
for the case of the NSIM, the null hypothesis of BP having an equal or better
F-Measure than the MBP algorithm is rejected at a significance level of 0.05.

Comparing our method with the use of single imputation, we can verify that
our method outperforms single imputation both for the BP and MBP algorithms,
respectively by 0.96% and 1.58% on average. This considerable gain in terms of

101

4 Supervised algorithms

F-Measure performance, especially in the case of the MBP algorithm, is validated
by Wilcoxon signed rank test: the null hypothesis of the MBP models created using
single imputation having an equal or better F-Measure than those with the NSIM
is rejected at a significance level of 0.01.

In contrast with single imputation, multiple imputation yields better results
than the NSIM, concerning the BP algorithm (+0.33% on average). However, if
we make use of the statistical evidence and adopt the MBP networks, then both
approaches will perform similarly (on average multiple imputation performs better
than NSIM by less than 0.02%).

Note however that if we consider only the datasets for which the proportion of
MVs represents at least 5% of the whole data (annealing, congressional, hepatitis,
horse colic and soybean), then concerning the MBP algorithm, our method excels
the multiple imputation on average by 0.14%. These results seem intuitive since in
principle multiple imputation works better when the proportion of MVs is smaller,
in which case more data is available for validating the estimates inferred. These
results assume particular relevance, if we consider that the appropriate choice of
the method for handling MVs is especially important when the fraction of MVs is
large [Ayuyev et al., 2009].

Another important consideration is the impact that the proportion of features
with MVs has in each method. If we look at the datasets containing a high-
proportion of features with MVs, then the F-Measure performance of the NSIM
is once again superior to the corresponding performance of multiple imputation.
Considering only the datasets for which at least 3/4 of the features contain MVs
(annealing, congressional, hepatitis, Japanese credit, mammographic and soybean)
we can verify that, for the MBP algorithm, on average the NSIM improves the
F-Measure performance by 0.79% relative to the multiple imputation method. This
shows that our model tends to perform better than multiple imputation when the
MVs spread throughout a large proportion of the features.

Additionally, the NSIM presents the best solution in terms of system integration,
in particular for hardware realization. Multiple imputation requires the system
to include not only the multiple imputation algorithm itself, but also all the data
needed for computing the adequate estimates. While tools such as the MBP
software can generate code for any NN, to our knowledge there are no such tools
or open source code (in general purpose languages) which would allow to easily
embed multiple imputation in their NN systems. Moreover, the time and memory
constraints necessary for the imputation process to take place would in many cases
render such systems useless.

Case study: Financial Distress Prediction

This study involves the bankruptcy problem described earlier in Section 3.5 (see
page 53). The original French companies database, contained on average over 4%
of MVs for each financial ratio in each year. However, some ratios had almost a

102

4.2 Neural Selective Input Model (NSIM)

Table 4.7: Results of the NSIM for the bankruptcy problem.

Metric Results (%)
Accuracy 95.70± 1.42
Sensitivity 95.60± 1.61
Specificity 95.80± 1.83
Precision 95.82± 1.77
Recall 95.60± 1.61
F-measure 95.70± 1.35

third of the data missing. What is more interesting is that if we consider only
the data from distressed companies, then the average of MVs for the financial
ratios increases to 42.35%. In fact, it is observed that there are many features that
contain less than one quarter of the data. We are unsure why this happens, but one
possible explanation is that the affected firms could be trying to hide information
from the markets. Nevertheless, this highlights the fact that knowing that some
information is missing could be as important as having access to the information
itself. Thus, in this respect our model is advantageous, since it preserves the missing
information (unlike imputation methods). As expected, when looking at the data
of each company (sample) we found similar results: overall, on average only 3 or
4 ratios are missing; however when considering only the distressed firms, roughly
37 ratios per sample are missing. Moreover, there are companies for which all the
ratios are unknown.

To create a workable and balanced dataset, we started by selecting all the
instances of the database associated to the distressed companies, whose number
of unknown ratios did not exceed 70 (we considered that at least approximately
20% of the 87 ratios should contain information). Thus, a total of 1, 524 samples
associated to distressed companies were chosen. Subsequently, we selected the same
number of samples associated to healthy companies, in order to obtain a balanced
dataset. The samples were chosen so that the MVs were uniformly distributed
by all the ratios. The resulting dataset contains 3, 048 instances – a number over
5 times greater than the number of samples that could be obtained in previous
work [Vieira et al., 2009, Ribeiro et al., 2010], using imputation methods. The
resulting dataset contains on average 27.66% of missing values per ratio. Moreover,
on average 24 ratios per sample are missing.

Table 4.7 presents the results of the NSIM, with the MBP algorithm, using a 10-
fold cross-validation. These excel by far the results previously obtained [Vieira et al.,
2009,Ribeiro et al., 2010] when imputation techniques were used and demonstrated
the validity and usefulness of the NSIM in a real-world setting.

For each fold, the ATS was used to train 100 MBP networks containing a single
hidden layer. On average the NNs had 43.75 selective actuation neurons. Figure

103

4 Supervised algorithms

80

100

120

140

160

180

20 30 40 50 60 70 80 90 100

Sp
ee

du
p

(×
)

Hidden Layer Neurons (𝐽)

Figure 4.24: GPU speedups obtained for the bankruptcy problem.

4.24 presents an estimate of the speedups, for the bankruptcy problem, using the
computer system 2 (GTX 280). Once again, the GPU implementation proved to
be crucial for obtaining quality NN models.

One of the strengths of the NSIM relies on the possibility of using data with
a large number of missing values. This is important because better (and more
accurate) models can be built by incorporating and taking advantage of extra
information. Moreover, instead of injecting inaccurate values into the system, as
imputation methods do, the NSIM preserves the uncertainty caused by unknown
values increasing the model utility when relevant information is missing.

4.3 Incremental Hypersphere Classifier (IHC)

Learning from data streams is a pervasive area of increasing importance. Typically,
stream learning algorithms run in resource-aware environments, constructing
decision models that are continuously evolving and tracking changes in the
environment generating the data [Gama et al., 2009]. This contrasts with traditional
ML algorithms that are commonly designed with the emphasis set on effectiveness
(e.g. classification performance) rather than on efficiency (e.g. time required to
produce a classifier) [Zhou, 2003] and predominantly focus on one-shot data analysis
from homogeneous and stationary data [Gama et al., 2009]. Generally, it is assumed
that data is static and finite and that its volume is “small” and manageable enough
for the algorithms to be successfully applied in a timely manner. However, these

104

4.3 Incremental Hypersphere Classifier (IHC)

two premises rarely hold true for modern databases and although (as we have seen)
the GPU implementations can reduce considerably the time necessary to build the
models, there are many real-world scenarios for which traditional batch algorithms
are inapplicable [García-Pedrajas et al., 2010].

Rationally, when dealing with large amounts of data it is conceivable that the
memory capacity will be insufficient to store every piece of relevant information
during the whole learning process [Jain et al., 2006]. Moreover, even if the required
memory is available, the computational requirements to process such amounts of
data in a timely manner can be prohibitive, even when GPU implementations are
considered. Additionally, modern databases are dynamic by nature. They are
incessantly being fed with new information and it is not uncommon for the original
concepts to drift [Lopes and Ribeiro, 2011d,Lopes and Ribeiro, 2011e].

Therefore, both real-time model adaptation and classification are crucial tasks
to extract valuable and up-to-date information from the original data, playing a
vital role in many industry segments (e.g. financial sectors, telecommunications)
that rely on knowledge discovery in databases and data mining tasks to stay
competitive [Reinartz, 2002].

Reducing both the memory and the computational requirements inherent to ML
algorithms can be accomplished by using instance selection methods that select
a representative subset of the data. The idea is to identify the relevant instances
for the learning process while discarding the superfluous ones. These methods can
be divided into two groups (wrapper and filter) according to the strategy used for
choosing the instances [Olvera-López et al., 2010,Kotsiantis et al., 2006a]. Unlike
filter methods, wrapper methods use a selection criterion that is based on the
accuracy obtained by a classifier (instances that do not contribute to improve the
accuracy are discarded). A review of both wrapper and filter methods can be found
in López et al. [Olvera-López et al., 2010].

Although instance selection methods can effectively reduce the volume of data to
be processed, their application may be time consuming (in particular for wrapper
methods) and in some situations we may find that we are simply transferring the
complexity from the learning methods to the instance selection methods. Usually,
instance selection methods present scaling problems: for very large datasets the
run-times may grow to the point where they become inapplicable [Olvera-López
et al., 2010].

A more desirable approach to deal with the memory and computational
limitations consists of using incremental learning algorithms. In this approach,
the learner gradually adjusts its model as it receives new data. At each step the
algorithm can only access a limited number of new samples (instances) from which
a new hypothesis is built upon [Jain et al., 2006].

Another important consideration when extracting information from data
repositories is the interpretability of the resulting models. In some application
domains, the comprehensibility of the decisions is as valuable as having accurate

105

4 Supervised algorithms

models. Moreover, understanding the predictions of the models can improve the
users’ confidence on them [Pappa and Freitas, 2010,Bibi and Stamelos, 2006].

4.3.1 Proposed Incremental Hypersphere Classifier
Algorithm

The IHC is a relatively simple algorithm. Its main task consists of assigning a
region (zone) of influence to each sample, by which classification is achieved. The
region of influence of a given sample 𝑖 is then defined by an hypersphere of radius
𝜌𝑖, given by (4.29):

𝜌𝑖 = min(||xi − xj||)
2 , for all 𝑗 where 𝑦𝑗 ̸= 𝑦𝑖 (4.29)

Note that unlike the NNs models, the IHC produces a single discrete output
value, 𝑦 ∈ {1, ..., 𝐶} that differentiates 𝐶 classes, i.e. 𝑓 : IRD −→ {1, ..., C}.

The radius is defined so that hypersphere’s belonging to different classes do not
overlap each other. However, regions of influence belonging to the same class may
overlap one another. Given any two samples 𝑖 and 𝑗 of different classes (𝑦𝑖 ̸= 𝑦𝑗),
the radiuses (𝜌𝑖 and 𝜌𝑗) will be at most half of the distance between the two input
vectors (xi and xj), which is the maximum value that 𝜌𝑖 and 𝜌𝑗 can have without
overlapping their hypersphere’s. Figure 4.25(a) shows the regions of influence for a
chosen toy problem.

New data points are classified according to the class of the nearest region of
influence (not the nearest sample). Let xk represent an input vector whose class 𝑦𝑘

is unknown. Then, sample 𝑘 belongs to class 𝑦𝑖 (𝑦𝑘 = 𝑦𝑖) provided that:

||xi − xk|| − 𝑔a𝑖𝜌𝑖 ≤ ||xj − xk|| − 𝑔a𝑗𝜌𝑗, for all 𝑗 ̸= 𝑖 (4.30)

where 𝑔 (gravity) controls the extension of the zones of influence, increasing or
shrinking them and a𝑖 is the accuracy of sample 𝑖 when classifying itself and the
forgotten training samples for which 𝑖 was the nearest sample in memory. A
forgotten sample is one that either has been removed from memory or did not
qualify to enter the memory in the first place. Hence, the accuracy is only updated
when the memory is full. In such a scenario, at each iteration, the accuracy of a
single (nearest) sample is updated, while the accuracy of all the others remains
unmodified.

The accuracy is the first mechanism of defense against outliers. As it decreases so
does the influence of the associated hypersphere. This effectively reduces the damage
caused by outliers and by samples with zones of influence that are excessively large.

Figures 4.25(b), 4.25(c) and 4.25(d) show the decision surface generated by the
IHC algorithm for a toy problem, considering different gravity, 𝑔, values. Note
that for 𝑔 = 0 the decision rule of the IHC is exactly the same as the one of the
1-nearest neighbor (see (4.30)). A detailed description of the 𝑘-nn can be found in
Clarke et al. [Clarke et al., 2009]. It is interesting to point out that (for 𝑔 > 0) the

106

4.3 Incremental Hypersphere Classifier (IHC)

(a) Regions of influence. (b) Decision surface (𝑔 = 0).

(c) Decision surface (𝑔 = 1). (d) Decision surface (𝑔 = 2).

Figure 4.25: Application of the IHC algorithm to a toy problem.

IHC algorithm generates smoother decision surfaces (see Figures 4.25(b), 4.25(c)
and 4.25(d)).

Note that the farthest from the decision border an hypersphere is, the larger its
radius will be (see Figure 4.25(a)). This provides a simple method for determining
the relevance of a given sample: samples with smaller radius (𝜌) are more important
to the classification task than those with bigger radius. Therefore, when the memory
is full, the radius of a new sample is compared with the radius of the nearest sample
of the same class and the one with the smallest radius is kept in the memory while
the other is discarded. By doing so, we are keeping the samples that play the
most significant role in the construction of the decision surface (given the available
memory) while removing those that have less or no impact in the model. The
radius of a new sample is only compared with the one of its nearest sample to
prevent the concentration of the memory samples in the same space region.

107

4 Supervised algorithms

x2x1 x2x1

xk

(a) Before adding a new sample. (b) After adding a new sample, 𝑘.

Figure 4.26: Regions of influence and decision surfaces generated by IHC for a
toy problem (𝑔 = 1).

Unfortunately, outliers will most likely have a small radius and end-up occupying
our limited memory resources. Thus, although their impact is diminished by the
use of the accuracy in (4.30), it is still important to identify and remove them
from memory. To address this problem we mimic the process used by the Instance
Based learning (IB3) algorithm, which consists of removing all samples that are
believed to be noisy by employing a significance test. A detailed description of the
IB3 algorithm can be found in Wilson and Martinez [Wilson and Martinez, 2000]
or alternatively in Aha et al. [Aha et al., 1991].

Accordingly, as in the IB3 algorithm, confidence intervals are determined both
for the instance accuracy, not including its own classification, unlike in (4.30), and
for the relative frequency of the classes. The instances whose maximum (interval)
accuracy is less than the minimum class frequency (for the desired confidence level
– typically 70%) are considered outliers and consequently dropped off [Wilson and
Martinez, 2000,Aha et al., 1991].

A major advantage of the IHC algorithm relies on the possibility of building
models incrementally on a sample by sample basis. Figure 4.26 shows the regions
of influence and the corresponding decision surfaces generated by IHC for a chosen
toy problem, before and after the addition of a new sample, 𝑘. Notice that adding
a new sample might affect the radius of the samples already in the model (in this
particular case the ones with the input vectors x1 and x2).

Algorithm 2 describes the main steps required to incorporate a new sample,
𝑘, on the IHC model. To cope with unbalanced datasets and avoid storing a
disproportionate number of samples for each class, the algorithm assumes that the
memory is divided into 𝐶 groups. Considering that the available memory can hold
up to 𝑛 samples, the complexity of this algorithm is 𝑂(2𝐷𝑛).

108

4.3 Incremental Hypersphere Classifier (IHC)

Algorithm 2 Incremental Hypersphere Classifier (IHC) algorithm.
1: Input: xk ◁ Input vector of the new sample 𝑘.
2: Input: 𝑦𝑘 ◁ Class of the new sample 𝑘.
3: 𝜌𝑘 ←∞ ◁ Radius of sample 𝑘
4: 𝑑←∞ ◁ Distance to the nearest sample (using ||xi − xk|| − 𝑔a𝑖𝜌𝑖)
5: 𝑛← null ◁ Nearest sample (using ||xi − xk|| − 𝑔a𝑖𝜌𝑖)
6: 𝑡𝑝𝑘 ← 1 ◁ True positives (classified by sample 𝑘)
7: 𝑓𝑝𝑘 ← 0 ◁ False positives (a𝑘 = 𝑡𝑝𝑘

𝑡𝑝𝑘+𝑓𝑝𝑘
)

8: for 𝑐𝑙𝑎𝑠𝑠← 1, . . . , 𝐶 do
9: for all sample 𝑖 ⊂ 𝑚𝑒𝑚𝑜𝑟𝑦[𝑐𝑙𝑎𝑠𝑠] do

10: if ||xi − xk|| − 𝑔a𝑖𝜌𝑖 < 𝑑 then
11: 𝑑← ||xi − xk|| − 𝑔a𝑖𝜌𝑖

12: 𝑛← 𝑖
13: end if
14: if 𝑐𝑙𝑎𝑠𝑠 ̸= 𝑦𝑘 then
15: if ||xi−xk||

2 < 𝜌𝑘 then 𝜌𝑘 ← ||xi−xk||
2

16: if ||xi−xk||
2 < 𝜌𝑘 then 𝜌𝑖 ← ||xi−xk||

2
17: end if
18: end for
19: end for
20: if 𝑚𝑒𝑚𝑜𝑟𝑦[𝑦𝑘] is full and 𝑛 ̸= null then
21: if 𝜌𝑛 > 𝜌𝑘 then
22: Remove sample 𝑛 from 𝑚𝑒𝑚𝑜𝑟𝑦[𝑦𝑘]
23: 𝑑←∞
24: 𝑗 ← null ◁ Nearest sample of sample 𝑛
25: for 𝑐𝑙𝑎𝑠𝑠← 1, . . . , 𝐶 do
26: for all sample 𝑖 ⊂ 𝑚𝑒𝑚𝑜𝑟𝑦[𝑐𝑙𝑎𝑠𝑠] do
27: if ||xi − xn|| − 𝑔a𝑖𝜌𝑖 < 𝑑 then
28: 𝑑← ||xi − xn|| − 𝑔a𝑖𝜌𝑖

29: 𝑗 ← 𝑖
30: end if
31: end for
32: end for
33: if 𝑗 ̸= null then
34: if 𝑦𝑛 = 𝑦𝑗 then 𝑡𝑝𝑗 ← 𝑡𝑝𝑗 + 1 else 𝑓𝑝𝑗 ← 𝑓𝑝𝑗 + 1
35: end if
36: else
37: if 𝑦𝑛 = 𝑦𝑘 then 𝑡𝑝𝑛 ← 𝑡𝑝𝑛 + 1 else 𝑓𝑝𝑛 ← 𝑓𝑝𝑛 + 1
38: end if
39: end if
40: if 𝑚𝑒𝑚𝑜𝑟𝑦[𝑦𝑘] is not full then Add sample 𝑘 to 𝑚𝑒𝑚𝑜𝑟𝑦[𝑦𝑘]

109

4 Supervised algorithms

Another advantage of the algorithm is that it can accommodate the restrictions
in terms of memory and computational power, creating the best model possible
for the amount of resources given, instead of requiring systems to comply with its
own requirements. Since we can control the amount of memory and computational
power required by the algorithm (by changing the value of 𝑛) and due to its
scalability (memory and computational requirements grow linearly with the number
of samples stored), it is feasible to create up-to-date models in real-time to extract
meaningful information from data.

Moreover, if we limit the number of samples stored, such that 𝑛 < 𝑁 , then
the IHC algorithm can be viewed as an instance selection method, which retains
the samples that play the most significant role in the construction of the decision
surface while removing those that have less or no impact in the model. In this
context, IHC efficiently selects a representative and reduced dataset that can be
used to create models using more sophisticated algorithms (e.g. NNs, SVMs), whose
application to the original dataset could be impractical.

4.3.2 Results and Discussion

Experimental Setup

Since the IHC is an instance based classifier, we chose to perform a first comparison
of this algorithm with the well-known 1-nn (another instance based classifier), which
has demonstrated good classification performance in a wide range of real-world
problems [Tahir and Smith, 2010]. This experiment is important not only to
validate the proposed method but also because as we said before, for 𝑔 = 0 (and
assuming sufficient memory to store all the samples) the IHC generates exactly the
same decision borders as the 1-nn. Hence, the resulting information will allow us
to determine if it is advantageous to use different values of 𝑔 in order to create
smoother decision surfaces. Accordingly, we have carried out experiments on 14
datasets with different characteristics (number of samples, features and classes).

Moreover, we have also conducted further tests, using the same datasets, in order
to determine the performance of the algorithm when confronted with memory and
computational constraints. To this end, we have compared the IHC algorithm with
the IB3, which is also an incremental instance selection algorithm.

For statistical significance, in both cases, each experiment was run using repeated
5-fold stratified cross-validation. Altogether 30 different random cross-validation
partitions were created, accounting for a total of 150 runs per benchmark.

The remaining experiments analyze the capacity of the algorithm to deal with
large datasets and data streams involving concept drifts. First, we examine the
performance of the algorithm on a large dataset (KDD Cup 1999) while varying
the amount of memory provided to the algorithm. In this case, the samples are
presented to the algorithm in the same order as they appear in the dataset, thus
simulating a data stream.

110

4.3 Incremental Hypersphere Classifier (IHC)

Second, in order to analyze the applicability of the IHC to data streams
involving concept drifts, we have conducted experiments on two real-world datasets
(Luxembourg Internet usage and Electricity demand) known to contain concept
drifts. To this end, each experiment was run 30 times, varying the order in which
the samples were presented. The performance of the IHC was compared with the
corresponding one of IB3.

Finally, a real-world case study (Protein membership prediction), in which we
combine the IHC and SVM algorithms, is addressed. Note that for this experiment,
we specifically chose a relatively small dataset, so that we could optimize the baseline
SVM algorithm parameters in order to guarantee the validity of the comparisons
between the proposed approach and the baseline.

The SVM [Vapnik, 1995] is an algorithm that obtains sparse solutions in the
sense that the models’ decision surface is defined by a subset of the training
data points (support vectors). The training data is projected into a higher-
dimensional space by means of a kernel where the optimal hyperplane obtained
linearly separates the classes with the largest margin. This methodology has
been highly successful in solving both classification and regression problems,
building discriminative models that combine high-accuracy with good generalization
properties [Bishop, 2006]. In particular, SVMs have been widely applied in
classification of biological data including sub-sequence cellular prediction and
protein sequence classification [Hua and Sun, 2001,Rätsch et al., 2006,She et al.,
2003]. The SVM models are implemented successfully in the well-known Library
for Support Vector Machines (LIBSVM) software [Chang and Lin, 2011].

All the experiments were performed using computer system 2 (see Table 3.1,
page 38).

Benchmark Results

Table 4.8 reports the macro-average F-measure performance for both the baseline
1-nn and for the IHC using parameters 𝑔 = 1 and 𝑔 = 2 (no memory restrictions
were imposed). The IHC algorithm excels the 1-nn in all the experiments except in
the German credit data (where the 1-nn presents slightly better results). Moreover,
in the case of the tic-tac-toe the IHC performs considerably better (with an F-
Measure discrepancy of 31.74% for 𝑔 = 2). To validate the referred improvements,
we conducted the Wilcoxon signed rank test. The null hypothesis of the 1-nn having
an equal or better F-Measure than the IHC algorithm is rejected at a significance
level of 0.005 (both for 𝑔 = 1 and 𝑔 = 2). Thus, there is strong evidence that
the IHC significantly outperforms the 1-nn. Given the good results obtained, a
particular area in which the IHC algorithm may be useful is on the development of
ensembles of classifiers.

While the aforementioned results demonstrate the usefulness of the proposed
algorithm, we are particularly interested in its behavior against limited memory
and processing power resources. In such scenarios it is up to the algorithm to decide

111

4 Supervised algorithms

Table 4.8: IHC and 1-nn classification performance (macro-average F-measure
(%)) for the test datasets of the UCI benchmark experiments.

Dataset 𝑁 𝐷 𝐶 1-nn IHC (𝑔 = 1) IHC (𝑔 = 2)
Breast cancer 569 30 2 95.15± 0.41 96.07± 0.30 96.45± 0.36
Ecoli 336 7 8 66.04± 0.82 67.51± 0.72 68.03± 0.78
German credit data 1000 59 2 64.38± 0.96 63.98± 0.95 63.55± 0.95
Glass identification 214 9 6 68.77± 1.63 70.30± 2.20 69.81± 2.23
Haberman’s survival 306 3 2 55.53± 2.04 55.26± 2.35 56.36± 1.92
Heart - Statlog 270 20 2 75.30± 1.60 75.92± 1.28 76.19± 1.27
Ionosphere 351 34 2 85.90± 0.69 90.98± 0.54 92.55± 0.47
Iris 150 4 3 95.70± 0.69 95.71± 0.61 96.04± 0.64
Pima diabetes 768 8 2 66.95± 1.06 68.41± 1.00 70.09± 0.97
Sonar 208 60 2 85.60± 1.76 85.63± 1.79 87.03± 1.50
Tic-Tac-Toe 958 9 2 49.47± 0.47 73.43± 0.54 81.21± 0.83
Vehicle 946 18 4 69.35± 0.76 69.46± 0.71 68.78± 0.93
Wine 178 13 3 95.90± 0.51 96.80± 0.44 96.93± 0.64
Yeast 1484 8 10 56.32± 1.04 57.73± 1.12 58.75± 0.86

what is relevant and what is accessory (or less relevant). Clearly, there is a trade-off
between the amount of information stored and the performance of the resulting
models. To exacerbate this problem, the order in which samples are presented
may exert a profound impact on the algorithms decisions. Different orders impose
distinct biases, affecting the algorithm results.

Table 4.9 compares the performance of the IHC algorithm (for 𝑔 = 1) with
the IB3 algorithm. The latter is one of the most successful instance selection
and instance-based learning standard algorithms [García-Pedrajas et al., 2010],
presenting low storage requirements and high accuracy results [Wilson and Martinez,
2000]. Moreover, IB3 is an incremental algorithm, making it the ideal candidate
for comparison purposes. For fairness and unbiased comparison, the order in which
samples were presented was the same for both algorithms. It is not possible to
anticipate the amount of memory that IB3 will require for a given problem. In this
aspect the IHC algorithm is advantageous since it respects the memory bounds
imposed. Hence, we configured the memory requirements to match (as closely as
possible) those of the IB3 algorithm. On average IB3 presents a storage reduction
of 89.69% while the IHC presents a storage reduction of 89.78%. In terms of
performance on the test datasets the IHC excels the IB3 in 9 of the 14 benchmarks.
On average the IHC algorithm improves the F-Measure by 3.45% relative to the IB3.
The performance gap is specially appreciable in the glass identification, Haberman’s

112

4.3 Incremental Hypersphere Classifier (IHC)

Table 4.9: Classification performance, macro-average F-measure (%), and storage
reduction (%) of the IHC and IB3 algorithms for the UCI benchmark
experiments.

Storage reduction F-Measure (test) F-Measure (overall)
Dataset IB3 IHC IB3 IHC IB3 IHC
Breast cancer 93.80± 1.18 93.89± 0.07 93.47± 1.02 93.64± 0.97 94.35± 0.66 94.66± 0.70
Ecoli 78.98± 2.23 78.73± 0.22 63.80± 3.41 65.30± 1.88 60.96± 3.28 83.06± 1.58
German credit data 95.30± 1.29 95.38± 0.12 55.91± 2.20 56.33± 2.05 60.17± 1.78 61.49± 0.84
Glass identification 86.57± 2.40 86.04± 0.22 35.63± 2.19 51.43± 3.04 41.50± 3.19 62.05± 1.68
Haberman’s survival 97.45± 1.13 97.12± 0.30 44.85± 2.96 54.10± 3.84 46.21± 3.62 57.33± 2.14
Heart - Statlog 92.44± 1.64 92.76± 0.24 79.53± 1.58 76.68± 2.39 80.72± 0.82 79.60± 1.62
Ionosphere 93.41± 2.37 93.64± 0.08 75.21± 4.48 81.04± 2.77 77.30± 3.81 82.87± 2.59
Iris 81.44± 3.28 82.50± 0.00 93.87± 1.68 93.60± 1.78 94.55± 1.10 95.92± 1.20
Pima diabetes 94.04± 1.41 94.03± 0.15 66.60± 2.33 64.68± 1.81 69.22± 1.78 68.01± 1.10
Sonar 97.63± 1.44 97.62± 0.07 48.26± 7.37 60.62± 4.83 49.71± 7.26 62.05± 3.39
Tic-Tac-Toe 93.99± 2.25 93.88± 0.11 61.56± 3.80 61.99± 1.57 63.81± 4.00 66.67± 0.85
Vehicle 85.48± 1.39 85.23± 0.05 62.26± 1.13 60.90± 1.74 68.15± 0.94 68.20± 1.05
Wine 82.48± 1.99 83.15± 0.16 94.03± 1.28 93.22± 1.43 94.93± 0.88 95.59± 0.84
Yeast 82.68± 1.38 82.90± 0.09 37.52± 3.68 47.21± 1.25 45.00± 4.51 61.70± 0.90

survival, sonar and yeast benchmarks where the F-Measure is improved respectively
by 15.80%, 9.25%, 12.36% and 9.69%.

Real-world databases often present a high-degree of redundancy. In some
situations similar (or identical) records may be frequent. Therefore it is important
to determine the performance of the algorithms on the forgotten data. To this end,
Table 4.9 includes the overall performance (train and test data). With respect to the
aforementioned, using the Wilcoxon signed rank test, we reject the null hypothesis
of IB3 having an equal or better expected F-measure at a significance level of 0.005.
Hence, there is strong statistical evidence that the IHC algorithm preserves more
(better) information of the forgotten samples than the IB3 algorithm, thus yielding
superior results. This is accomplished by using the information of each sample that
was ever presented to update the model (i.e. the radius of the samples of different
classes in the memory). On average the IHC algorithm improves the F-Measure
by 6.62%. Moreover, in the ecoli, glass identification and yeast benchmarks the
performance gap is particularly evident with a respective improvement of 22.10%,
20.55%, 16.70%. It is worth mentioning that the IHC results could be enhanced by
fine-tuning the value of 𝑔.

In order to analyze the behavior of the IHC algorithm on a large database, we
have applied it to the KDD Cup 1999 dataset, described earlier in Section 3.4 (see
page 46). In real-world scenarios we cannot control the order in which samples
appear, thus they were presented to the algorithm in the same order as they appear
on the dataset. Figures 4.27 and 4.28 show respectively the time required to update
the model and the accuracy according to the memory used by the algorithm.

113

4 Supervised algorithms

0.001

0.01

0.1

1

10

50 500 5000 50000

T
im

e
(m

ill
ise

co
nd

s)

Maximum number of samples hold in the memory (𝑛)

0.0049 ± 0.0007

0.043 ± 0.006

0.37 ± 0.06

3.97 ± 0.41

Figure 4.27: Average time required to update the IHC model (after presenting a
new sample) for the KDD Cup 1999 dataset.

95.0
95.5
96.0
96.5
97.0
97.5
98.0
98.5
99.0
99.5

100.0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
cc

ur
ac

y
(%

)

Samples 𝑁 (in millions)

𝑛 = 50
𝑛 = 500

𝑛 = 5, 000
𝑛 = 50, 000

Figure 4.28: Accuracy of the IHC model for the KDD Cup 1999 dataset.

114

4.3 Incremental Hypersphere Classifier (IHC)

As expected the time necessary to update the model grows linearly with the
amount of memory used, making the IHC a highly scalable algorithm. Updating
the model requires approximately 4 milliseconds for 𝑛 = 50, 000, using the referred
system. This demonstrates real-time model adaptability and knowledge extraction
are feasible.

The accuracy depends substantially on the amount of memory supplied to the
algorithm. Lower memory bounds imply larger oscillations on the accuracy (see
Figure 4.28). These occur when samples conveying information that is not yet
covered by the model concepts are presented to the algorithm. In this problem,
the first 7, 448 samples belong to the normal class and within the first 75, 985 only
4 samples belong to another class (U2R). At this point the model concepts do
not account for any other classes and samples belonging to them will therefore be
misclassified. As a result a sudden decrease in the models accuracy is experienced.
Eventually, when the new concepts are integrated in the model, the accuracy
recovers. Rationally, if the memory footprint is too small we may find ourselves in
a position where there is not enough information to separate useful from accessory
information. For example, for 𝑛 = 50 only 10 samples per class can be stored.
Given that the first 7, 448 samples belong to the same class, there is no way for the
algorithm to make the correct (informed) decision of which samples to retain in
the memory. Of course the larger the number of samples the algorithm is allowed
to store, the greater the chances it has to preserve those lying near the decision
border. Therefore, lower memory bounds result in accentuated oscillations and in a
reduced overall accuracy (as depicted in Figure 4.28). Nevertheless, the algorithm
presents a good classification performance even with as little memory as necessary
to store 50 samples.

To analyze the performance of the IHC algorithm on data streams, two real-
world datasets (Luxembourg Internet usage and Electricity demand) containing
concept drifts were chosen. These are described in Section 3.4 (see pages 46
and 49). Figures 4.29 and 4.30 show the F-Measure evolution, respectively for
the (Luxembourg) Internet usage and electricity (elec2) datasets, both for the
IHC and IB3 algorithms (based on 30 runs). Again, for fairness of comparison,
the memory settings defined for the IHC algorithm were similar to those used
by the IB3. Notice that despite IB3 being an incremental algorithm capable of
handling gradual concept drifts [Beringer and Hüllermeier, 2007], in both cases
the performance of the IHC excels the performance of IB3 right away from the
early phases of the learning process. Moreover, unlike the IHC algorithm the IB3
algorithm presents some degree of randomness (in particular in the early phases of
learning when there are no acceptable samples), which leads to a higher variability
in the results obtained. This is specially evident in the Internet usage dataset (see
Figure 4.29). On the other hand, the variability of IHC is a consequence of using
different memory settings. Overall, these results indicate that IHC is more robust
than IB3 excelling the latter both in the ability to handle concept drifts and in
classification performance.

115

4 Supervised algorithms

45

50

55

60

65

70

75

80

85

90

0 200 400 600 800 1000 1200 1400 1600 1800 2000

F-
M

ea
su

re
(%

)

Samples presented

IB3
IHC

Figure 4.29: Evolution of the F-Measure for the Internet usage dataset.

55

60

65

70

75

80

85

90

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

F-
m

ea
su

re
(%

)

Samples presented

IB3
IHC

Figure 4.30: Evolution of the F-Measure for the electricity dataset.

116

4.3 Incremental Hypersphere Classifier (IHC)

Case study: Protein Membership Prediction

Due to the ever increasing biological databases, a fast response for protein
classification prompts the need to expedite models’ adaptation. In this context,
two main approaches can be considered [Masud et al., 2010]. One approach consists
of using a single model that is dynamically updated as new data becomes available
(incremental learning). The other is a hybrid batch-incremental approach, that
relies on several models built using batch learning techniques. New models are
continuously being created by using only a small subset of the data. As more
reliable models become available they replace the older and obsolete ones. Some
of the hybrid approaches rely on a single model while others use an ensemble of
models [Masud et al., 2010].

Concerning the protein membership prediction case study, described earlier in
Section 3.5, (see page 53), a two-step learning approach, bridging incremental and
batch algorithms, is implemented. First IHC is used to select a reduced dataset
(and also for immediate prediction); second the SVM algorithm is applied to the
resulting dataset in order to build the protein detection model. Figure 4.31 presents
the combined learning framework, which works as follows: As new data becomes
available, the IHC is used to create a new model or to update an existing one. As
mentioned before, this can be accomplished incrementally on a sample by sample
basis. Thus, we can periodically check if the IHC model has changed significantly
and use the samples that it encompasses to create more robust models, using
state-of-the-art batch algorithms (in this case the SVM) whose application would
otherwise be impractical due to processing power and memory constraints.

By combining incremental and batch algorithms in the same framework, we expect
to obtain the benefits of both approaches while minimizing their disadvantages.
Namely, we expect the proposed framework to be able to cope with extremely large,
fast changing datasets while retaining state-of-the-art classification performance.

Figure 4.32 shows the time required to update the IHC model, after the number
of samples in the memory is stabilized. Prior to that, the time required is much
smaller. Note that the number of samples actually stored is inferior to 𝑛 because the
training dataset is strongly unbalanced. Since IHC divides the available memory by
the 𝐶 classes, the number of samples stored in memory for the non-peptidase class
will be at most 1, 806. Thus, for 𝑛 = 20, 000 the actual number of samples stored
will never exceed 11, 806. Once again, the time necessary to update the model
grows linearly with the amount of memory used, demonstrating that real-time
model adaptability and knowledge extraction are feasible.

To define a baseline of comparison, we started by computing the performance
of the SVM algorithm. For this purpose, several kernels and parameters (using
grid search) were tried using 5-fold cross-validation on the training dataset in order
to determine the best possible configuration. Specifically we found that the best
configuration to use was a RBF (Gaussian) kernel with parameters 𝛾 = 0.4 and
C = 100. Adopting the specified configuration, we have obtained an macro-average

117

4 Supervised algorithms

Original
dataset

𝑁 samples

IHC

incremental new data

IHC model

create/update

Reduced
Dataset

𝑛 samples
instance
selection

SVM

batch data (intractable)

manageable

IHC-SVM model

IHC-SVM vs. Baseline SVM

Figure 4.31: IHC-SVM learning framework.

F-measure for the test dataset of 95.91%. The same configurations were used to
train the SVMs in the proposed (IHC-SVM) approach.

We tested both the IHC and the IHC-SVM approach for the concerned problem,
using parameters 𝑔 = 1 and 𝑔 = 2 which have demonstrated to yield good results in
Lopes and Ribeiro [Lopes and Ribeiro, 2011d]. Based on the information collected,
we have set 𝑔 = 2. Figure 4.33 shows the macro-average F-measure for both the
IHC algorithm and for IHC-SVM approach, using the specified parameter.

Incremental algorithms, such as the IHC, have no access to previously discarded
data and no control on the order in which the data is presented. With
these constraints, we cannot expect their performance to match those of batch
algorithms. Despite that, the IHC is able to achieve an F-measure of 93.73%. A
working version of the IHC algorithm for peptidase detection can be found in
http://193.137.78.18/ihc/.

Notice that when the number of samples stored (tied directly to 𝑛) is too small,
the resulting models will be unable to capture the underlying distribution of the

118

http://193.137.78.18/ihc/

4.3 Incremental Hypersphere Classifier (IHC)

0

20

40

60

80

100

120

140

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

T
im

e
(m

ill
ise

co
nd

s)

Maximum number of samples hold in the memory (𝑛)

Figure 4.32: Average time required to update the IHC model (with a new sample)
for the protein membership prediction case study.

80

85

90

95

100

0 2000 4000 6000 8000 10000 12000

F-
m

ea
su

re
(%

)

Number of samples selected by IHC

82.98

83.29

90.61

93.06

93.36

93.20

93.70 93.73 93.44
92.47

92.07
91.28

90.83

78.77

79.73

85.87

89.18
90.78

93.47

94.84
95.42

95.52 96.15 96.29 96.28 96.39

IHC
IHC–SVM

Figure 4.33: IHC and IHC-SVM macro-average F-measure performance for the
protein membership prediction case study.

119

4 Supervised algorithms

Table 4.10: IHC-SVM storage reduction and classification improvement over the
baseline (SVM).

Number of samples Storage F-Measure
selected by IHC reduction (%) improvement (%)

500 97.09 ↓ 17.14
1,000 94.17 ↓ 16.18
2,000 88.35 ↓ 10.04
3,000 82.52 ↓ 6.73
3,806 77.83 ↓ 5.13
4,806 72.00 ↓ 2.44
5,806 66.17 ↓ 1.07
6,806 60.35 ↓ 0.49
7,806 54.52 ↓ 0.39
8,806 48.69 ↑ 0.24
9,806 42.87 ↑ 0.37

10,806 37.04 ↑ 0.37
11,806 31.22 ↑ 0.48

data (under-fitting), since we will only be able to store a fraction of the samples
that define the decision frontier (see Figure 4.33). In such a situation the IHC
algorithm performs better than the IHC-SVM approach. This might seem strange
at first, however the explanation is quite simple: while the SVM algorithm only has
access to the instances selected by IHC, the latter had access to the whole dataset
(although in a sample by sample basis and not in the desired (optimal) order) and
thus it is able to use the additional information to construct better models. As
𝑛 grows, the number of stored samples gets larger and as a result, the number of
forgotten samples declines. Since these are essential to reduce the damage caused
by outliers and by samples with zones of influence excessively large, we will end-up
with over-fitting models, concerning the IHC algorithm. However, the IHC-SVM
approach is not affected in the same manner, since the SVM algorithm is able to
create better models with the additional data supplied by IHC. In fact, in this
situation the proposed approach (IHC-SVM) even works better than the baseline
batch SVM. This provides evidence that the process used by IHC to determine
the relevance of each sample, and decide which ones to retain and which ones to
discard, is efficient.

Table 4.10 shows the gains of the proposed incremental-batch approach (IHC-
SVM) over the baseline batch approach (SVM).

Note that the IHC-SVM approach is able to excel the baseline (SVM) approach
using only a subset of the data. With roughly 50% of the original data (8,806

120

4.4 Summary

samples out of 17,164) it is possible to create improved models. Moreover, it is
possible to compact the data even further and still obtain models that match closely
the performance of the baseline model.

4.4 Summary
In this Chapter, we have addressed two different strategies for handling
large volumes of data. More specifically, we have shown that GPU parallel
implementations of traditional batch algorithms can reduce considerably the time
necessary to create models, therefore providing the means to convert otherwise
intractable problems into manageable ones. Moreover, a new incremental learning
algorithm (IHC) supporting real-time models’ adaptation is also presented.

While NNs have proven to be suitable for solving many challenging problems,
their long training times prevent them from being used in applications involving
large datasets. In this context, we have proposed a GPU parallel implementation
of the BP and MBP algorithms using the CUDA programming model. The
experiments conducted demonstrate that the training time is considerably reduced
(see Figures 4.11 to 4.19), thus allowing the deployment of computationally
demanding NN applications.

A very important component of this work resides on the well-designed kernels built
specifically to optimize the occupancy and maximize throughput on the deployed
platforms. Our results relate both to classification performance and processing time
and were achieved using five benchmarks and one real-world problem. This can
be verified by comparing the GPU and CPU runs on the datasets, which uphold a
considerable reduction in the NNs training time (see Figures 4.11 to 4.19).

The speedups obtained, ranging from 5× to 180× on computer system 2, are
related to the complexity of the problem (see Tables 4.2 and 4.3 and Figures 4.12
to 4.15, 4.18, 4.19 and 4.21). Typically, the more complex the problem is (i.e.
the more inputs, neurons and samples to process) the greater the speedups (over
sequential approaches) obtained (see Figure 4.21). Moreover, we provide evidence
that old model devices, such as the 8600 GT, can still provide significant speedups
even when facing small problems (see Tables 4.2 and 4.3). This has a profound
impact on real-world problems, as is the case of the VAs problem where we were
able to reduce the work of weeks to a matter of hours and obtain improved quality
models.

Although the GPU reduces significantly the drawback of the long training times
of NNs, making their use more attractive, building a viable NN solution still
requires a great deal of effort. Thus, we have also presented an ATS that is capable
of automatically finding high-quality NNs-based solutions. The proposed system
takes full advantage of the GPU potential, searching actively for better solutions
without human intervention.

We have also presented a solution which integrates an NSIM into the NNs models,
empowering them with the capacity to handle MVs. To our best knowledge this is

121

4 Supervised algorithms

the first method that allows NNs, otherwise considered to be highly sensitive to
MVs [Ye, 2003], to cope directly with this ubiquitous problem without requiring
data to be preprocessed. Thus, NNs turn out to be positioned as an excellent
alternative to other algorithms capable of dealing directly with the MVP, e.g.
decision trees.

Through the use of selective inputs, the proposed approach accounts for the
creation of different conceptual models, while maintaining a single physical model.
The NSIM works as if we divide the original training dataset into several subsets
of data containing all the combinations of complete features, one for each set of
maximal independent data without MVs, in order to create an ensemble of NNs.
However, by using a single physical model, the training time of the NSIM is that
of a single model (a fraction of the time that would be required to create the
ensemble).

The proposed solution presents several advantages as compared to traditional
methods for handling MVs, making this a first-class method for dealing with this
crucial problem: (i) it reduces the burden and the amount of time associated
to the preprocessing task by avoiding the estimation of MVs; (ii) it preserves
the uncertainty inherently associated to the MVP, allowing the algorithms to
differentiate between missing and real data; (iii) it does not require MAR or
MCAR assumptions to hold, since only the known data is used actively to build
the models; (iv) unlike preprocessing methods which may inject outliers into
the data and cause undesirable bias, the NSIM uses the best conceptual model
depending exclusively on the available data; (v) the NSIM may allow to infer and
take advantage of any informative knowledge associated with the MVs; (vi) it
presents the best solution in terms of system integration, in particular for hardware
realization as it does not require the inclusion of additional and most likely complex
systems; (vii) NSIM shows a high degree of robustness, since it is prepared to
deal with faulty sensors; (viii) its classification performance, considering the MBP
algorithm, is similar to state-of-the-art multiple imputation methods and the tests
conducted show that the NSIM performs better than multiple imputation methods
when the proportion of MVs is significant (more than 5% in our tests) or the
prevalence of MVs affects a large number of features. This is validated in a real-
world problem of bankruptcy prediction that attests to the quality and usefulness
of the proposed method.

In a different line of work, we have presented a new incremental and highly-
scalable algorithm (IHC) with multi-class support that can accommodate memory
and computational restrictions, creating the best model possible for the amount of
resources given, instead of requiring systems to comply with its own requirements.
Since we can control the amount of memory and computational power required by
the algorithm and due to its scalability (memory and computational requirements
grow linearly with the number of samples stored) it is feasible to create up-to-date
models in real-time to extract meaningful information from data streams (see
Figures 4.27 and 4.32). Furthermore, the experiments demonstrate its ability to

122

4.4 Summary

update the models incrementally and handle concept drifts, while maintaining
superior classification performance (see Figures 4.28 to 4.30). Additionally, the
resulting models are interpretable, in the sense that we can provide the “nearest”
sample that was used to reach the decision, making this algorithm useful even
in domains where interpretability is a key factor. This is important because
humans are reluctant to base their decisions on complex (black box) systems,
preferring models that can provide some degree of information to support their
findings [Cherkassky and Mulier, 2007].

Moreover, due to its capacity to minimize the impact of noisy samples, eventually
removing them from memory, the algorithm can handle concept drift scenarios.
Finally, since it keeps the instances (that are believed to be lying) on the decision
frontier, it can also be an optimal choice for selecting a representative subset of
the data for more sophisticated algorithms. In this context, we have presented a
learning framework approach (IHC-SVM) for predicting protein membership which
is able to deal with the dynamic everyday changes of real-world biological databases.
It has been demonstrated that under certain conditions the IHC-SVM presents a
better performance than the baseline SVM, using sequences of proteins built from
well-known peptidase repositories (see Table 4.10). Moreover, there is evidence
that using IHC as the first step to determine the relevance of each sample and
deciding which ones to retain and which ones to discard, is an efficient procedure
for the incremental learning framework. The SVM training on the reduced data set
builds a model that yields high accuracy which is desirable to handle the dynamic
(and pervasive) biological databases.

Future Work

Future work will concentrate on enhancing the ATS, by using topology-modifying
algorithms (e.g. constructive and pruning methods [Nicoletti et al., 2009,Zapranis
and Refenes, 1999]). Moreover, the GPU implementation of other supervised
algorithms and their eventual inclusion in the ATS is also envisioned.

In addition, we will exploit the possibility of adapting the NSIM to other types
of NNs and ML algorithms.

Concerning the IHC, we will extend this study to further experiments involving
larger dynamic datasets. Moreover, another line of work consists of evaluating the
impact of using different values of 𝑔 for distinct classes as well as adjusting them
automatically.

123

CHAPTER 5

Unsupervised and Semi-supervised algorithms

5.1 Non-Negative Matrix Factorization (NMF) 127
5.1.1 NMF Algorithm . 128
5.1.2 Combining NMF with other ML Algorithms 131
5.1.3 Semi-Supervised NMF (SSNMF) 131
5.1.4 GPU Parallel Implementation 134
5.1.5 Results and Discussion 139

5.2 Deep Belief Networks (DBNs) 153
5.2.1 Restricted Boltzmann Machines (RBMs) 156
5.2.2 Deep Belief Networks Architecture 162
5.2.3 Adaptive Step Size Technique 163
5.2.4 GPU parallel implementation 163
5.2.5 Results and Discussion 170

5.3 Summary . 182

Unlike supervised learning algorithms, which learn a mapping model from a given
set of inputs to a predefined set of outputs, depending on their corresponding
target values, unsupervised algorithms cannot use any error criterion that is based
on targets or in any other external information [Alpaydin, 2010,Marsland, 2009].
Instead, they must rely exclusively on the information encompassed within the
(observed) input data, X. Rationally, for a given problem, the input space is
shaped (structured) in such a way than certain patterns are more likely to occur
than others [Marsland, 2009]. For example, in the MNIST problem (see Section

125

5 Unsupervised and Semi-supervised algorithms

3.4, page 49) we can expect the dataset images (input features) to present an
innate set of characteristics that are inherently different from the ones found in
other problems (e.g. face recognition). Therefore, unsupervised algorithms can
exploit the regularities found within the training dataset, grouping together samples
that present some degree of similarity among them [Marsland, 2009]. Ideally, the
resulting models would be able to capture the latent variables for concepts of
interest, directly from the unlabeled raw input data.

In a complementary perspective, we may view unsupervised learning algorithms
as a tool to uncover the hidden structure of the data in order to learn representations
that are potentially more discriminative than the original input data and thus more
suitable for supervised ML algorithms [Ranzato et al., 2007].

Many unsupervised methods create a representation of the data that is
constrained in order to have specific and desirable properties (e.g. distributed
representation, low-dimensionality, sparsity), from which the original input data
can be reconstructed [Ranzato et al., 2007]. Other methods focus on approximating
the data density by stochastically reconstructing the input data from the created
representation [Ranzato et al., 2007]. Typically good representations preserve the
information that is useful for the desired task (e.g. detection, recognition, prediction,
visualization) while discarding noise and other irrelevant data variabilities [Ranzato
et al., 2007].

In this Chapter we present two different unsupervised learning approaches and
their corresponding GPU parallel implementations. First, in Section 5.1 we address
the work related with the NMF algorithm, which includes a new semi-supervised
method, designated by SSNMF. The NMF unsupervised learning approach consists
of projecting the input data into a lower dimensional manifold, thus reducing the
number of features of a dataset, while retaining the essential information in order
to reconstruct the original data. Section 5.1 is structured as follows. Section 5.1.1
describes the NMF algorithm. Section 5.1.2 explains how to combine NMF with
other ML algorithms. Section 5.1.3 describes the SSNMF algorithm, which reduces
the computational cost while improving the accuracy of NMF-based models. Section
5.1.4 details the GPU parallel implementation of the NMF algorithm. Finally,
Section 5.1.5 presents and analyzes the results obtained in several experiments,
concerning the face recognition domain, both for the NMF GPU implementation
and for the SSNMF method.

Second, Section 5.2 addresses the work related with the DBNs, which includes
an adaptive step size technique for accelerating the training convergence. A DBN
is an energy-based deep architecture generative model, which aims to maximize
the likelihood of the training data. By contrast with the NMF approach, the
building blocks (RBMs) of a DBN allow for overcomplete representations. Section
5.2 is organized as follows. Sections 5.2.1 and 5.2.2 detail respectively the RBMs
and the DBNs. Section 5.2.3 presents the proposed adaptive step size technique.
Section 5.2.4 focuses on the GPU parallel implementation of the RBMs and DBNs.
Lastly, Section 5.2.5 asserts the validity of both approaches (the adaptive step

126

5.1 Non-Negative Matrix Factorization (NMF)

size technique and the GPU implementation) to speedup the training process and
analyzes the effects of varying the number of layers and neurons in a DBN. To this
end, the MNIST database of hand-written digits (see Section 3.4, page 49) and the
HHreco multi-stroke symbol database (see Section 3.4, page 46) were used.

Finally, Section 5.3 concludes this Chapter and points out directions for future
lines of work.

5.1 Non-Negative Matrix Factorization (NMF)
With the means to gather an unprecedented volume of high-dimensional data from
a wide diversity of data sources, we tend to collect and store as much information
as we can, thus increasing the number of features (𝐷) simultaneously measured in
each observation (sample) [Verleysen et al., 2009]. The rationale is that by doing
so, we improve the chances of collecting data that encompasses the appropriate
latent variables needed to extract valuable information. Moreover, usually there is
no a priori information regarding the usefulness of each variable (feature), thus we
are tempted to collect as many as possible [Verleysen et al., 2009].

Increasing the number of features places at our disposal additional data for
further analysis, out of which relevant and useful information can be extracted,
thus adding value to the original data. Furthermore, in general, the features present
interdependencies, thus erroneous and noisy values (of certain features) can be
compensated by the values of other features. However, despite these beneficial
aspects, learning algorithms often present difficulties dealing with high-dimensional
data [Verleysen, 2003].

The number of data samples (𝑁) required to estimate a function of several
variables grows exponentially with the number of dimensions (𝐷) [Verleysen
et al., 2009]. Since, in practice, the number of observations available is limited,
high-dimensional spaces are inherently sparse. This fact is responsible for
the so-called curse of dimensionality and is often known as the empty space
phenomenon [Verleysen et al., 2009]. Although most real-world problems involve
observations composed of several (many) variables, usually they do not suffer
severely from this problem because data is located near a manifold of dimension 𝑟
smaller than 𝐷 [Verleysen, 2003]. Therefore, according to Verleysen, any learning
task should begin by an attempt to reduce the dimension of the data, since this
is a key issue in high-dimensional learning [Verleysen, 2003]. The rationale is
to take advantage of the data redundancies in order to circumvent the curse of
dimensionality problem (or at least to attenuate the problems inherent to high-
dimensions) [Verleysen et al., 2009, Verleysen, 2003]. In this context, the NMF
algorithm can be used to reduce the data dimensionality, while preserving the
information of the most relevant features in order to rebuild accurate approximations
of the original data.

NMF is a non-linear unsupervised technique for discovering a parts-based
representation of objects [Zilu and Guoyi, 2009, Lee and Seung, 1999], with

127

5 Unsupervised and Semi-supervised algorithms

applications in image processing, text mining, document clustering, multimedia data,
bioinformatics, micro-array data analysis, molecular pattern discovery, physics, air
emission control, collaborative filtering and financial analysis among others [Gillis
and Glineur, 2010, Li et al., 2010, Ribeiro et al., 2009, Zilu and Guoyi, 2009].
Essentially, it decomposes a matrix, containing only non-negative coefficients, into
the product of two other matrices (also composed of non-negative coefficients):
a parts-based matrix and a matrix containing the fractional combinations of the
parts that approximate the original data.

Since the factorized matrices are usually created with reduced ranks, NMF can
be perceived as a method for reducing the number of features, while preserving the
relevant information that allows for the reconstruction of the original data.

Reducing the dimensionality of data poses several advantages: First, since noise is
usually a random parameter, NMF cannot afford to represent it in lower dimensions
of the space. Hence, noise disturbances are simply discarded, because there is no
room to represent them. Moreover, redundant (highly correlated) data will be
compacted for the same reason. Second, it allows for the circumvention of the
curse of dimensionality and the empty space phenomenon problems [Verleysen,
2003], therefore allowing for the improvement of the accuracy of the models. Third,
the computational cost associated with the problem is usually reduced [Garg and
Murty, 2009] (since less data needs to be processed) and intractable problems may
be handled. Moreover, learning methods (including NNs), often present difficulties
handling high-dimensional feature vectors [Verleysen, 2003]. Thus, reducing the
data dimensionality assumes particular relevance when dealing with data vectors
in high-dimensional spaces and may be crucial in domains such as face recognition
or text categorization where the number of available features is typically high.

5.1.1 NMF Algorithm

Given a matrix V ∈ IRD×N
+ containing only non-negative coefficients (𝑉𝑖𝑗 ≥ 0) and

a pre-specified positive integer, 0 < 𝑟 < min(𝐷, 𝑁), NMF produces two matrices
W ∈ IRD×r

+ and H ∈ IRr×N
+ , also with non-negative coefficients, whose product

approximates V (as closely as possible):

V ≈WH . (5.1)

Generally, the value of 𝑟 is chosen to satisfy (𝐷 + 𝑁)𝑟 < 𝐷𝑁 , so that the
approximation, WH, can be viewed as a compressed form of the original data [Xu
et al., 2003].

Assuming that each column of V contains a sample with 𝐷 features, then we
can consider NMF as a method for extracting a new set of 𝑟 features from the
original data. In this case, the parts-based matrix, W, will contain the basis vectors
(one per column), which define a new set of features as an additive function of
the original ones. Moreover, H will contain the fractional combination of basis
vectors that is used to create an approximation of the original samples in V [Li

128

5.1 Non-Negative Matrix Factorization (NMF)

H
W≈V

𝑟𝑁 samples

𝐷
fe

at
ur

es

𝑟
fe

at
ur

es

𝑁 samples

sample with 𝐷
original features

sample with 𝑟
new features

basis
vector

Figure 5.1: NMF factorization.

et al., 2010]. In other words, each column of H will contain a sample (mapped
to a new 𝑟-dimensional space), which results from superposing the (fractional)
contribution of each individual basis vector that approximates the original sample
data. Figure 5.1 illustrates this idea.

Since NMF does not allow negative information to be included in the projected
spaces, cancellation effects cannot be obtained when combining data. Therefore, the
encoding of the data becomes easier to interpret as compared with other methods,
such as the PCA or the Independent Component Analysis (ICA) [Li et al., 2010].
Moreover, the localized nature of the extracted features is compatible with the
intuitive notion of combining parts to form a whole [Zilu and Guoyi, 2009]. In
other words, the original data is reconstructed through additive combinations of the
parts-based factorized matrix representation. This is consistent with psychological
and physiological evidence for parts-based representations in the brain [Lee and
Seung, 1999]. For example, if each column of V represents a human face, then the
basis elements of W, generated by NMF, can be facial features, such as eyes, noses
and lips [Gillis and Glineur, 2010].

Despite the requirement of V not containing negative elements, it is possible
to apply NMF to any dataset, by first rescaling it between any two predefined
non-negative numbers (typically between 0 and 1). Hence, we can set V = X⊤,
provided that the values of X have been rescaled such that X ∈ IRN×D

+ .

Cost Functions

In order to measure the quality of the approximation defined in (5.1) it is necessary
to define cost functions, by using proximity metrics, between the original matrix,
V, and the resulting approximation, WH. Two common metrics are the Euclidean
distance, given by (5.2) and the (generalized) Kullback-Leibler divergence, given
by (5.3):

‖V−WH‖2 =
∑︁
𝑖𝑗

((V)𝑖𝑗 − (WH)𝑖𝑗)2 . (5.2)

129

5 Unsupervised and Semi-supervised algorithms

𝐷(V‖WH) =
∑︁
𝑖𝑗

(︃
(V)𝑖𝑗 log (V)𝑖𝑗

(WH)𝑖𝑗

− (V)𝑖𝑗 + (WH)𝑖𝑗

)︃
. (5.3)

Analogously to the Euclidean distance, the divergence is also lower bounded by
zero and vanishes only when V = WH. However it cannot be called a “distance”,
since it is not symmetric in V and WH. Minimizing (5.2) and (5.3) subject to the
constraints 𝑊𝑖𝑗 ≥ 0 and 𝐻𝑖𝑗 ≥ 0 leads to two different optimization problems that
can be solved using either multiplicative or additive update rules [Lee and Seung,
2000].

Multiplicative Update Rules

Considering the multiplicative rules and the Euclidean distance metric, the updates
specified in (5.4) and (5.5) can be used iteratively, until a good approximation of
V is found:

(H)𝑎𝜇 ← (H)𝑎𝜇
(W⊤V)𝑎𝜇

(W⊤WH)𝑎𝜇

, (5.4)

(W)𝑖𝑎 ← (W)𝑖𝑎
(VH⊤)𝑖𝑎

(WHH⊤)𝑖𝑎

. (5.5)

Similarly, (5.6) and (5.7) can be used for the divergence metric and the multiplicative
update rules:

(H)𝑎𝜇 ← (H)𝑎𝜇

∑︀
𝑖 (W)𝑖𝑎(V)𝑖𝜇/(WH)𝑖𝜇∑︀

𝑘 (W)𝑘𝑎

, (5.6)

(W)𝑖𝑎 ← (W)𝑖𝑎

∑︀
𝜇 (H)𝑎𝜇(V)𝑖𝜇/(WH)𝑖𝜇∑︀

𝑣 (H)𝑎𝑣

. (5.7)

Additive Update Rules

An alternative to the multiplicative update rules can be obtained by using the
gradient descent technique. In such a case (5.8) and (5.9) can be applied iteratively,
for the Euclidean distance, until a good approximation of V is found:

(H)𝑎𝜇 ← max(0, (H)𝑎𝜇 + 𝜂𝑎𝑢

[︁
(W⊤V)𝑎𝑢 − (W⊤WH)𝑎𝑢

]︁
) , 𝜂𝑎𝑢 = (H)𝑎𝜇

(W⊤WH)𝑎𝑢

,

(5.8)

(W)𝑖𝑎 ← max(0, (W)𝑖𝑎 + 𝛾𝑖𝑎

[︁
(VH⊤)𝑖𝑎 − (WHH⊤)𝑖𝑎

]︁
) , 𝛾𝑖𝑎 = (W)𝑖𝑎

(WHH⊤)𝑖𝑎

.

(5.9)
Similarly (5.10) and (5.11) can be used for the divergence:

(H)𝑎𝜇 ← max(0, (H)𝑎𝜇 + 𝜂𝑎𝑢

[︃∑︁
𝑖

(W)𝑖𝑎
(V)𝑖𝜇

(WH)𝑖𝜇

−
∑︁

𝑖

(W)𝑖𝑎

]︃
) , 𝜂𝑎𝑢 = (H)𝑎𝜇∑︀

𝑖 (W)𝑖𝑎

,

(5.10)

130

5.1 Non-Negative Matrix Factorization (NMF)

(W)𝑖𝑎 ← max(0, (W)𝑖𝑎 + 𝛾𝑖𝑎

⎡⎣∑︁
𝑗

(H)𝑎𝑗
(V)𝑖𝑗

(WH)𝑖𝑗

−
∑︁

𝑗

(H)𝑎𝑗

⎤⎦) , 𝛾𝑖𝑎 = (W)𝑖𝑎∑︀
𝑗 (H)𝑎𝑗

.

(5.11)

5.1.2 Combining NMF with other ML Algorithms
In order to combine NMF with other algorithms we use the procedure described
in Ribeiro et al. [Ribeiro et al., 2009]. Accordingly, Figure 5.2 illustrates the
process to combine NMF with other ML (supervised) algorithms. First, the NMF
algorithm is applied to the training dataset, with the purpose of reducing the
data dimensionality, while obtaining the main discriminative characteristics of the
data. By doing so, matrix W ∈ IRD×r

+ will hold the 𝑟 main features extracted
from the original training dataset and matrix Htrain ∈ IRr×N

+ the codification of
the parts-based characteristics (incorporated in W) that when added will result in
the appropriate approximation of the original data. The data contained in Htrain
(encompassing 𝑟 inputs instead of the original 𝐷 inputs) is then used to build a
model (with the desired learning algorithm). Finally, the quality of the resulting
model can be asserted by using Htest ∈ IRr×N′

+ , which is also computed by NMF,
using the same basis features, W, as those obtained for the training data. Hence, in
this case, only the Htest matrix gets updated while the W matrix remains constant.
Eventually, the previous steps can be repeated with different configurations, until
a classifier that meets the goals expectations is found.

Note that each time new data is gathered to be used by the resulting classifier, a
brand-new H matrix (containing the codification of the parts-based characteristics
that approximate the new data) needs to be computed, using the aforementioned
process. Although the parts-based matrix W remains invariant, computing H is
still a time consuming process that can prevent this method from being used in real-
world applications. In this context, the GPU parallel implementation, presented
later in Section 5.1.4, is a fundamental step towards softening this problem.

5.1.3 Semi-Supervised NMF (SSNMF)
Since NMF is an unsupervised algorithm, the extracted features can comprise
a combination of characteristics present in objects (samples) of different classes.
For some problems, this is not desirable and characteristics of different classes
should not be intermixed. In particular for classification tasks, we are interested
in the most unique and discriminating characteristics of each class. For example,
in the face recognition domain, although some individuals may look alike it is
desirable to extract their unique and peculiar characteristics rather than the ones
that reflect similar aspects of different individuals. However, by directly applying
NMF to the training data, the extracted features, W, will most likely be shared
by objects of all the classes. To overcome this problem, we propose to partition

131

5 Unsupervised and Semi-supervised algorithms

training
database

𝑁 samples

NMF W

Htrain

NMF

Htest

test
database

𝑁 ′ samples

Learning
algorithm model

train test

Data
reduction

Classification

parts-based features

𝐷 features

𝑟 features

Figure 5.2: Combining NMF with other learning algorithms.

the matrix, V, containing the original inputs (features) of the training data into
sub-matrices, V1, V2, . . . , VC, each containing the samples’ inputs of one of the
𝐶 different classes. The NMF algorithm is then independently applied to each
one of the sub-matrices, using a smaller number of basis vectors 𝑟1, 𝑟2, . . . , 𝑟𝐶 such
that 𝑟 = ∑︀𝐶

𝑖=1 𝑟𝑖. This results in the creation of 𝐶 parts-based feature matrices,
W1, W2, . . . , WC, and 𝐶 codification matrices, H1, H2, . . . , HC, which are then
combined to create a global W matrix and a global Htrain matrix. Figure 5.3
represents this process, where the white areas of the Htrain matrix correspond to
zero value elements [Lopes and Ribeiro, 2011b].

Although the resulting method, designated by SSNMF, does not prevent similar
characteristics to arise independently for the different classes, it increases the
probability of extracting unique class features. This assumes particular relevance
for unbalanced datasets, where the particular and representative characteristics
of the objects belonging to minority classes may be perceived as noise, whenever
NMF is applied directly to all the data. Figure 5.4 shows the typical basis vectors
generated by the NMF and SSNMF methods for the Yale face database (described
earlier in Section 3.4, page 49). Note that as expected, it is easier to recognize the
individuals from the base features generated by the SSNMF approach (compare
the resulting basis vectors with the original faces in Figure 3.8, page 52). Finally,
it is worth mentioning that the SSNMF method applies only to the computation of

132

5.1 Non-Negative Matrix Factorization (NMF)

V W Htrain

≈𝐷

𝑁 𝑟

𝑁

𝑟

V1 V2 · · · VC W1 W2 · · · WC

𝑟1 𝑟2 𝑟𝐶 H1

H2

· · ·

HC

𝑟1

𝑟2

𝑟𝐶

Figure 5.3: Generation and combination of the individual class matrices. The
white areas of the Htrain matrix correspond to zero value elements.

NMF SSNMF

Figure 5.4: Typical basis vectors (W columns) generated by NMF and SSNMF
for the Yale face database (using 𝑟𝑖 = 3 and 𝑟 = 45 (3× 15)).

W and Htrain. The Htest matrix is calculated in the same manner (unsupervised)
as described in Section 5.1.2 [Lopes and Ribeiro, 2011b].

For many real-world problems, obtaining labeled data is a relatively expensive
process [Chapelle et al., 2006]. Hence, in some situations we may have at our
disposal a relatively small number of labeled samples, while having an enormous
amount of unlabeled samples. Although, only the data samples for which the class
is known can be used by a supervised algorithm in order to create a classifier model

133

5 Unsupervised and Semi-supervised algorithms

1

1 1

2

2
2

3

3

3

4

4

4

data
row-major column-major

5

5
5

6

6 6

7

7
7

8

8

8

data
row-major column-major

9

9

9

10

10
10

11

11 11

12

12
12

data
row-major column-major

3 × 4 matrix

4 × 3 matrix

transpose

Figure 5.5: Interpretation of the same data, using either row-major or column-
major orders.

(see Figure 5.2), we can still use all the data (labeled and unlabeled) for the data
reduction phase, in order to extract characteristics that will in principle reflect
better the actual data distribution. In this case we could still apply the SSNMF
algorithm, using the labeled data in order to extract unique class characteristics
that could be then fine-tuned by applying NMF to all the data, while using the W
matrix computed by SSNMF as a starting point. Note that it is also possible to
use the H matrix computed by SSNMF as a starting point, if we add additional
columns (equal to the number of unlabeled samples) to it. To prevent the original
(SSNMF) extracted characteristics from being completely overwritten, matrix W
can remain fixed during a predefined number of iterations or until there is no
significant gain in updating H alone.

5.1.4 GPU Parallel Implementation
Our GPU implementation, features both the multiplicative and additive versions
of NMF and supports the Euclidean distance and the Kullback-Leibler divergence
metrics [Lopes and Ribeiro, 2012c,Lopes and Ribeiro, 2010a].

Euclidean Distance Implementation

The implementation of the NMF algorithm for the Euclidean distance, relies mainly
on matrix multiplications, regardless of the update rules chosen (multiplicative or
additive). Hence, we rely on the functionalities provided by the class DeviceMatrix,
described earlier in Section 2.5 (page 29). Notice however that we avoid the
computation of the transpose matrices (see (5.4), (5.5), (5.8) and (5.9)), by changing
the order in which the matrices are stored, from column-major to row-major (or
vice-versa). This procedure, which reduces significantly the amount of memory and
processing required, is depicted in Figure 5.5.

134

5.1 Non-Negative Matrix Factorization (NMF)

Listing 5.1: CUDA kernel used to implement the NMF algorithm for the
multiplicative update rules, considering the Euclidean distance.

__global__ void UpdateMatrix_ME(
cudafloat * A,
cudafloat * B,
cudafloat * X,
int elements

) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < elements) {

X[idx] *= A[idx] / (B[idx] + SMALL_VALUE_TO_ADD_DENOMINATOR);
}

}

Furthermore, we realize that the order in which we multiply the matrices affects
the performance of the resulting implementation (e.g. calculating W(HH⊤) is
faster than calculating (WH)H⊤). Naturally this was taken into consideration and
is reflected in the resulting implementations.

Considering the multiplicative update rule implementation, an additional kernel
(UpdateMatrix_ME) is required. This kernel, presented in Listing 5.1, updates
each element of a given matrix X according to (5.12):

𝑋𝑖𝑗 ← 𝑋𝑖𝑗
𝐴𝑖𝑗

𝐵𝑖𝑗

, (5.12)

where A and B are matrices of the same size as X (see (5.4) and (5.5)).
Listing 5.2 shows the code that implements one iteration of the multiplicative

update rule for the Euclidean distance, in which the order of matrix multiplications
was optimized for maximizing the computational performance.

Similarly to the multiplicative rules, the additive update rules also require an
additional kernel (UpdateMatrix_AE), reproduced in Listing 5.3, which updates
all the elements of a given matrix X according to (5.13):

𝑋𝑖𝑗 ← max(0, 𝑋𝑖𝑗 + 𝑋𝑖𝑗

𝐵𝑖𝑗

(𝐴𝑖𝑗 −𝐵𝑖𝑗)) , (5.13)

where once again A and B are matrices of the same size as X (see (5.8) and (5.9)).

Kullback-Leibler Divergence Implementation

Unlike the Euclidean distance, the divergence update rules do not depend so heavily
on matrix multiplications. Thus, in the case of the multiplicative rules, four kernels
are required (SumW, SumH, UpdateH_MD and UpdateW_MD).

The SumW kernel calculates ∑︀𝑘 𝑊𝑘𝑎 for each column 𝑎 of W and puts the result
in a vector of dimension 𝑟, see (5.6). Similarly, SumH calculates ∑︀𝑣 𝐻𝑎𝑣 for each

135

5 Unsupervised and Semi-supervised algorithms

Listing 5.2: NMF iteration code for the multiplicative update rules, considering
the Euclidean distance.

void NMF_MultiplicativeEuclidianDistance::DoIteration(bool updateW) {
DetermineQualityImprovement(true);

// Calculate W⊤

W.ReplaceByTranspose();
DeviceMatrix<cudafloat> & Wt = W;

// Calculate W⊤V
DeviceMatrix<cudafloat>::Multiply(Wt, V, WtV);

// Calculate W⊤W
Wt.MultiplyBySelfTranspose(WtW);

// Calculate W⊤WH
DeviceMatrix<cudafloat>::Multiply(WtW, H, WtWH);

// Update H
UpdateMatrix_ME<<<blocksH, SIZE_BLOCKS_NMF>>>
(WtV.Pointer(), WtWH.Pointer(), H.Pointer(), H.Elements());

Wt.ReplaceByTranspose();

if (!updateW) return;

// Calculate H⊤

H.ReplaceByTranspose();
DeviceMatrix<cudafloat> & Ht = H;

// Calculate VH⊤

DeviceMatrix<cudafloat>::Multiply(V, Ht, VHt);

// Calculate HH⊤

DeviceMatrix<cudafloat> & HHt = WtW;
Ht.ReplaceByTranspose();
H.MultiplyBySelfTranspose(HHt);

// Calculate WHH⊤

DeviceMatrix<cudafloat>::Multiply(W, HHt, WHHt);

// Update W
UpdateMatrix_ME<<<blocksW, SIZE_BLOCKS_NMF>>>
(VHt.Pointer(), WHHt.Pointer(), W.Pointer(), W.Elements());

}

136

5.1 Non-Negative Matrix Factorization (NMF)

Listing 5.3: CUDA kernel used to implement the NMF algorithm for the additive
update rules, considering the Euclidean distance.

__global__ void UpdateMatrix_AE(
cudafloat * X,
cudafloat * A,
cudafloat * B,
int elements

) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < elements) {

cudafloat v = X[idx] + (X[idx] / B[idx]) * (A[idx] - B[idx]);
if (v < CUDA_VALUE(0.0)) v = CUDA_VALUE(0.0);
X[idx] = v;

}
}

row 𝑎 of H, placing the result in a vector also with dimension 𝑟, see (5.7). Listing 5.4
presents the code of the SumW kernel, which uses the reduction process, described
earlier in Section 2.5 (page 31). Note that for simplification, the code presented
here, assumes that W is stored in column-major order. However, the GPUMLib
code available for download can be configured to support both row-major and
column-major orders.

The kernels UpdateH_MD and UpdateW_MD respectively update all the
elements of H and W. Both kernels work in a similar manner, thus we will focus
on the inner-working of the UpdateH_MD kernel.

In order to update a given element 𝐻𝑎𝜇, we need to access all the elements in the
column 𝑎 of W and all elements in the column 𝜇 of both V and WH, as shown in
Figure 5.6. Hence, the CUDA thread assigned to update a given matrix element
𝐻𝑎𝜇 needs to access the same elements of V and WH than the threads assigned to
process the elements 𝐻𝑖𝜇 (𝑖 ̸= 𝑎). Similarly it needs to access the same elements of
W as those required by the threads processing the elements 𝐻𝑎𝑗 (𝑗 ̸= 𝜇).

The rationale behind organizing the threads into blocks is to share as much
information as possible among the threads within a block. This substantially
improves the kernel performance, since (as we said before) accessing the shared
memory is significantly faster than accessing the global device memory. Given
the amount of shared memory available per block in our devices (see Table 3.2,
page 38), we found that we were able to store at least 32× 32 pieces of the matrices
W and (V)𝑖𝑗/(WH)𝑖𝑗. Thus, ideally our kernel should be executed in blocks of
32× 32 = 1024 threads. However, the devices available at the time (a GeForce 8600
GT and a GeForce GTX 280), supported a maximum of 512 threads per block (see
Tables 3.2 (page 38) and 2.1 (page 21)). To solve this problem and create a kernel
that is able to run on any device, while maximizing the amount of information
shared, each block contains 32× 16 = 512 (blockDim.x = 32, blockDim.y = 16)
threads. However, each thread gathers two elements of W, V and WH instead

137

5 Unsupervised and Semi-supervised algorithms

Listing 5.4: One of the CUDA kernels (SumW) used to implement the NMF
algorithm for the multiplicative update rules, considering the
Kullback-Leibler divergence.

template <int blockSize>
__global__ void SumW(cudafloat * W, int d, cudafloat * sumW) {

extern __shared__ cudafloat w[];

w[threadIdx.x] = CUDA_VALUE(0.0);
for(int k = threadIdx.x; k < d; k += blockSize) {

w[threadIdx.x] += W[d * blockIdx.x + k];
}
__syncthreads();

if (blockSize >= 1024) {
if (threadIdx.x < 512) w[threadIdx.x] += w[threadIdx.x + 512];
__syncthreads();

}

if (blockSize >= 512) {
if (threadIdx.x < 256) w[threadIdx.x] += w[threadIdx.x + 256];
__syncthreads();

}

if (blockSize >= 256) {
if (threadIdx.x < 128) w[threadIdx.x] += w[threadIdx.x + 128];
__syncthreads();

}

if (blockSize >= 128) {
if (threadIdx.x < 64) w[threadIdx.x] += w[threadIdx.x + 64];
__syncthreads();

}

if (threadIdx.x < 32) {
volatile cudafloat * _w = w;

if (blockSize >= 64) _w[threadIdx.x] += _w[threadIdx.x + 32];
if (blockSize >= 32) _w[threadIdx.x] += _w[threadIdx.x + 16];
if (blockSize >= 16) _w[threadIdx.x] += _w[threadIdx.x + 8];
if (blockSize >= 8) _w[threadIdx.x] += _w[threadIdx.x + 4];
if (blockSize >= 4) _w[threadIdx.x] += _w[threadIdx.x + 2];
if (blockSize >= 2) _w[threadIdx.x] += _w[threadIdx.x + 1];

if (threadIdx.x == 0) {
cudafloat sum = w[0];
if (sum < SMALL_VALUE_TO_ADD_DENOMINATOR) {

sum = SMALL_VALUE_TO_ADD_DENOMINATOR;
}
sumW[blockIdx.x] = sum;

}
}

}

138

5.1 Non-Negative Matrix Factorization (NMF)

𝑟

𝑁

𝑟

𝐷

𝐷

WH

(V)𝑖𝑗/(WH)𝑖𝑗

H𝑎𝜇

𝜇 𝑎

blockDim.x

2
b
lo
c
k
D
im

.y

Figure 5.6: Processing carried out, for each element H𝑎𝜇, by the UpdateH_MD

kernel.

of one, and updates two elements of H (observe Figure 5.6). Therefore, although
each block contains only 512 threads, 1024 elements are updated. This strategy
improves the speedup gains.

The additive update rules, for the divergence, require only two kernels
(UpdateH_AD and UpdateW_AD) which are similar to UpdateH_MD.

5.1.5 Results and Discussion

Experimental Setup

We have conducted all the NMF related experiments in the face recognition
domain. Face recognition has many potential applications in various distinct
areas, such as military, law-enforcement, anti-terrorism, commercial and human-
computer interaction [Wang et al., 2010]. Over the past decades, face recognition
has become an increasingly important area, attracting researchers from pattern
recognition, neural networks, image processing, computer vision, machine learning
and psychology among others [Wang et al., 2010,Zhao et al., 2003]. However, this is
still a very challenging and complex problem, because the appearance of individuals
is affected by numerous factors (e.g. illumination conditions, facial expressions,
usage of glasses) and current systems are still no match for the human perception

139

5 Unsupervised and Semi-supervised algorithms

system [Zhao et al., 2003]. A detailed survey on existing techniques and methods
for face recognition can be found in [Zhao et al., 2003]. Typically, solving this
problem involves several phases: (i) segmentation of the faces, (ii) extraction of
relevant features from the face regions, (iii) recognition and (iv) verification [Zhao
et al., 2003]. However, in this work, we concentrate on the last phases, leaving out
the segmentation phase. Accordingly, instead of relying on handcrafted features,
we use the NMF algorithm to (ii) extract features directly from the raw images’
data. These are then used to (iii) create and (iv) validate a face recognition model,
using the process described in Section 5.1.2.

Altogether, in our testbed experiments we have used three different databases:
the CBCL, Yale and AT&T databases. These were described in Section 3.4 (see
pages 43, 46 and 49).

The CBCL face database #1 was used specifically to test and validate the GPU
parallel implementations of the NMF algorithm. The tests were conducted using
the 2, 429 face images of the training dataset. The matrix containing the face
images was created by placing one image per column. Thus, in this case, matrix V
is composed by 361 rows (19× 19 pixels) and 2, 429 columns (samples).

Aside from testing and validating the GPU parallel implementations of the NMF
algorithm, the remaining two databases (the Yale and AT&T) were also used to
evaluate the effectiveness of the classification method presented in Section 5.1.2 as
well as the performance of the SSNMF method described earlier (see Section 5.1.3).
To this end, the leave-one-out-per-class cross-validation method was used. Thus, in
the case of the Yale database, the training matrix, Vtrain, is composed of 4, 096
rows (64× 64 pixels) and 150 columns (face images), while the test matrix, Vtest,
is composed of 4, 096 rows and 15 columns. Similarly, in the case of the AT&T
(ORL) database, Vtrain is composed of 10, 304 (112× 92) rows and 360 columns
and Vtest is composed of 10, 304 rows and 40 columns.

In addition, the Yale face database was also used to further test and validate
the ATS (described in Section 4.1.4). Accordingly, we have also used the process,
described in Section 5.1.2, to combine the NMF algorithm with the MBP algorithm.
Moreover, in this particular experiment, we decided to use the hold-out validation
instead of the leave-one-out-per-class cross-validation method, so that we could train
more networks using the ATS. Hence, in order to build the training dataset, we
randomly select 8 images of each person (corresponding to approximately 3/4 of the
database images). Consequently, the remaining 3 images per person, encompassing
approximately 1/4 of the images, were used to create the test dataset. Thus, in
this case the training matrix, Vtrain, is composed of 4, 096 rows and 120 columns,
while the test matrix, Vtest, is composed of 4, 096 rows and 45 columns.

With the exception of the experiments conducted in order to determine the
GPU implementations’ speedups, the Euclidean distance implementation with the
multiplicative update rules of the NMF algorithm was used, since as we shall see
in the next Section this is the fastest implementation.

140

5.1 Non-Negative Matrix Factorization (NMF)

1

10

100

1000

10000

50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

𝑟

10s

1m40s

16m40s

3h46m40s

137.6×
188.3× 277.5×

273.5×
273.2× 311.9×

178.6×
191.7× 238.2×

233.0× 239.3× 259.0×

Euclidean (CPU)
Divergence (CPU)
Euclidean (GPU)

Divergence (GPU)

Figure 5.7: Time required to run the NMF algorithms on the CBCL face database,
during 1,000 iterations, using the multiplicative update rules. The
speedups (×) provided by the GPU are shown in the respective lines.

Before running the experiments, a histogram equalization was applied to the
datasets’ images, in order to reduce the influence of the surrounding illumination
(see Section 3.6). Moreover, all the tests were performed using the computer system
2 (see Table 3.1, page 38).

Benchmarks Results

Concerning the CBCL face database, we have carried out several tests, in order
to determine the speedups provided by the GPU implementations relative to the
CPU. The tests were performed for 1,000 iterations of the algorithm, using different
values of 𝑟. Figures 5.7 and 5.8 present the time required to run the NMF method
using respectively the multiplicative and the additive update rules.

These results, clearly show that the GPU is able to reduce significantly the
amount of time required by the NMF algorithms. Moreover, the Euclidean distance
is faster than the Kullback-Leibler divergence and typically the multiplicative rules
perform slightly faster than the additive rules.

In addition, the GPU parallel implementations have proven to scale better when
facing larger volumes of data, due to the high number of cores present in the GPU.
For example, considering the multiplicative update rules and the Euclidean cost
function, when 𝑟 is set to 50, the GPU needs approximately 2.5 seconds to run the
iterations while the CPU requires approximately 6 minutes, which is translated into

141

5 Unsupervised and Semi-supervised algorithms

1

10

100

1000

10000

50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

𝑟

10s

1m40s

16m40s

3h46m40s

137.7×
188.0× 278.9×

268.0×
286.4× 319.1×177.3×

192.2× 265.7×
235.2× 244.8× 271.5×

Euclidean (CPU)
Divergence (CPU)
Euclidean (GPU)

Divergence (GPU)

Figure 5.8: Time required to run the NMF algorithms on the CBCL face database,
during 1,000 iterations, using the additive update rules. The speedups
(×) provided by the GPU are shown in the respective lines.

a speedup of 137.55×. However when 𝑟 is set to 300, the GPU now requires about
12 seconds while the CPU needs over an hour, which corresponds to a speedup
of 311.86×. This is better emphasized in Figure 5.9 which exhibits the speedups
provided by the GPU over the CPU.

Figure 5.10 shows (a) five of the original CBCL face images, (b) the face images
after applying the histogram equalization technique, (c)(d)(e)(f) the approximations
generated by NMF after 1,000 iterations and (c’)(d’)(e’)(f’) some of the resulting
parts. In this case, 𝑟 was set to 49, which corresponds to using approximately one
part image per 50 images in the original dataset. The results obtained, demonstrate
that the GPU parallel implementations of the NMF algorithm are working as
intended.

To further validate the GPU parallel implementation of the NMF algorithm
as well as the approach (described in Section 5.1.2) to combine NMF with other
algorithms, we have integrated this method with the MBP algorithm. Moreover,
in order to train the networks, we have used the ATS (described in Section 4.1.4).
This allowed us to perform an additional test on the capabilities of the ATS, to
find the adequate topology of the networks, in a practical situation. Therefore, we
started by applying the NMF algorithm to the Yale training dataset (containing
120 samples), in order to determine the parts-based matrix, W, representation
of the faces and the matrix Htrain that will later be used to create (train) the

142

5.1 Non-Negative Matrix Factorization (NMF)

120
140
160
180
200
220
240
260
280
300
320

50 100 150 200 250 300

Sp
ee

du
p

(×
)

𝑟

Multiplicative (Euclidean)
Multiplicative (divergence)

Additive (Euclidean)
Additive (divergence)

Figure 5.9: NMF GPU Speedups for the CBCL face database.

(a) (b) (c) (d) (e) (f) (c’) (d’) (e’) (f’)
Images Approximations Parts representation (W)

(a) Original images
(b) Images after the histogram equalization
(c) Multiplicative rules (Euclidean distance)

(d) Multiplicative rules (divergence)
(e) Additive rules (Euclidean distance)
(f) Additive rules (divergence)

Figure 5.10: Approximations and parts representation generated by the NMF
algorithms.

143

5 Unsupervised and Semi-supervised algorithms

Figure 5.11: Parts-based faces representations, W, generated by NMF for the
Yale dataset.

classifiers. The number of parts-based images (𝑟) was chosen to be 45, so that each
individual could potentially have three part-based images. In practice, because
NMF is an unsupervised algorithm there is no guarantee that each individual will
have three parts-based images associated or that the parts-based images will not
end up being sharing by several individuals. Figure 5.11 shows the first 40 images
of W, obtained with the specified configuration.

Following the computation of W and Htrain, we use the NMF algorithm again,
this time on the test dataset (containing 45 samples) in order to obtain the Htest
matrix, necessary to assert the quality of the resulting NN classifiers (see Figure 5.2).

The Htrain and Htest matrices containing the codification of the new features
extracted from the original data by NMF (in an unsupervised manner) were then
used by the ATS to build a suitable classification model. To this end, the ATS
actively searches for better network topology configurations in order to improve
the classification models (see Section 4.1.4). For the problem at hand, the ATS
took less than 16 hours to train a total of 100, 000 networks. Figure 5.12 shows the
number of networks trained by the ATS according to number of hidden neurons.
The best network (with 12 hidden neurons) presents an accuracy of 93.33% on
the test dataset and of 100% on the training dataset. Only three images (of
different persons) on the test dataset were misclassified and among those one
had 46.11% probability of belonging to the correct individual. Thus, the results
obtained demonstrate once again the potential of the ATS, which was able to
find high-quality solutions without any human-intervention (aside from the initial
configuration). Moreover, most of the networks trained have identical or similar
topologies to the best found (over 95% of the networks trained had between 11 and
14 hidden neurons).

144

5.1 Non-Negative Matrix Factorization (NMF)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

9 10 11 12 13 14 15 16 17 18

N
um

be
r

of
N

et
wo

rk
s

Tr
ai

ne
d

Number of Hidden Neurons (𝐽)

1 3

16269

38319

29945

10546

3486
1131 297 3

Figure 5.12: Number of networks trained by the ATS, according to the number
of neurons.

In the remaining experiments, the leave-one-out-per-class cross-validation method
was used. Moreover, as before, in order to build the classification models, we have
chosen a value of 𝑟, so that each individual could potentially have three part-based
images. Thus in the Yale dataset, 𝑟 was set to 45 (3 × 15), while in the AT&T
dataset, 𝑟 was set to 120 (3× 40).

Figure 5.13 shows the time required to perform 10, 000 iterations of the NMF
algorithm on the training and test datasets of the Yale database, depending on the
hardware used. In the case of the test dataset only the Htest matrix gets updated.
Once again, it is evident that the GPU scales better than the CPU as the volume
of data to process increases (increasing values of 𝑟 correspond to bigger speedups).

Computing the W and Htrain matrices (for 𝑟 = 45) with the desired accuracy,
requires from 10, 000 to 20, 000 iterations, taking between 30 to 60 seconds on the
GPU and from 40 to 80 minutes on the CPU. As for the Htest matrix, roughly
10, 000 iterations are required. Those can be carried out in around 20 seconds
by the GPU, but take almost 5 minutes on the CPU (posing a bottleneck to the
scalability of such models).

Since the matrix, V, generated for the AT&T (ORL) database has larger
dimensions, it is expected that for this problem these aspects turn out to be
more relevant. Figure 5.14 shows the time required to perform 10, 000 iterations
of the NMF algorithm on the training and test datasets of the AT&T database
for both platforms. As before, it is observed that the GPU scales better than the

145

5 Unsupervised and Semi-supervised algorithms

10

100

1000

10000

20 40 60 80 100 120

T
im

e
(s

ec
on

ds
)

𝑟

Vtrain (CPU)

Vtest (CPU)

Vtrain (GPU)

Vtest (GPU)
10s

1m40s

16m40s

3h46m40s

55.6× 82.5× 110.9× 182.3× 251.7×

6.6× 12.9× 21.5× 44.1× 74.1×

Figure 5.13: Time to perform 10,000 NMF iterations on the Yale database. The
speedups (×) provided by the GPU are shown in the respective lines.

CPU with larger processing requirements. The GPU can yield a speedup of over
700 times (for 𝑟 = 300) which means that each minute of processing on the GPU is
roughly equivalent to 12 hours of processing on the CPU.

For the problem at hand, computing the W and Htrain matrices (for 𝑟 = 120)
with the desired accuracy, requires around 20, 000 iterations. The GPU takes
approximately 5 minutes to perform this task, while the CPU requires over 40
hours to do the same job. Likewise, computing Htest requires roughly 10, 000
iterations (for 𝑟 = 120) which can be performed by the GPU in approximately
1 minute but would take approximately 1 hour and 25 minutes on the CPU.
Clearly, the GPU accounts for an exceptional boost in the performance of the
NMF algorithm and is undoubtedly connected to the success of an NMF-based
classification method. Moreover, while the time required to compute the matrix
on the GPU remains mostly the same, regardless of the number of parts-based
images (𝑟), the time on the CPU escalates as the value of 𝑟 increases. In fact, for
𝑟 = 300, the CPU requires approximately 28 minutes to compute Htest, making
the resulting model useless in many application scenarios.

After computing Htrain and Htest with the NMF algorithm we can use the former
to create a classifier and the latter to assert the quality of the resulting model.
In this context, we have combined the NMF and MBP algorithms (NMF-MBP),
using the ATS to create the NNs models.

For the Yale problem, we have trained 100 networks per fold and selected the
one that presented the best results. The NNs had a single hidden layer, on average

146

5.1 Non-Negative Matrix Factorization (NMF)

10

100

1000

10000

100000

300000

50 100 150 200 250 300

T
im

e
(s

ec
on

ds
)

𝑟

Vtrain (CPU)

Vtest (CPU)

Vtrain (GPU)

Vtest (GPU)

1m40s

16m40s

3h46m40s

27h46m40s

83h20m00s

277.3×
393.0× 563.9×

533.0× 553.7×
706.8×

18.5× 58.8× 119.7×
134.7× 153.5× 173.6×

Figure 5.14: Time to perform 10,000 NMF iterations on the AT&T (ORL)
database. The speedups (×) provided by the GPU are shown in the
respective lines.

with 8 selective input neurons. Each network took (on average) less than 1 second
to train on the GPU and we estimate that the GPU provided a speedup of 68.5
times (relatively to the CPU).

In the case of the AT&T problem, we have trained 50 networks per fold. Again,
the network that presented the best results was chosen. Moreover, the NNs had
a single hidden layer, on average with 11 selective input neurons. In this case,
each network took on average approximately 2 minutes to train on the GPU.
Furthermore, we estimate that the GPU provided a speedup of 120 times, which
means that those networks would take around 4 hours to train on the CPU.

Table 5.1 exhibits the results of the NMF-MBP method as compared with other
methods (Eigenface, Fisherface, Elastic Graph Matching (EGM), SVMs, NNs
(BP with the Fisher projection used as the feature vector) and Face Recognition
Committee Machine (FRCM)) reported in Tang et al. [Tang et al., 2003]. The
results show that our method (NMF-MBP) performs considerably better than the
others for two of the image sets (left-light and right-light), demonstrating a greater
robustness when dealing with different lighting conditions. Overall, on average the
proposed approach excels all the others and even if we exclude the left-light and
the right-light image sets (see the no light row of Table 5.1) it still yields excellent
results being only surpassed by the FRCM.

The results for the AT&T database are presented in Table 5.2. In this case, three
of the methods (Fisherface, SVM and FRCM) perform better than the NMF-MBP

147

5 Unsupervised and Semi-supervised algorithms

Table 5.1: Accuracy (%) results for the Yale dataset.

Image Set NMF-MBP Eigenface Fisherface EGM EGM-SVM NN FRCM
center-light 93.3 53.3 93.3 66.7 86.7 73.3 93.3
glasses 100.0 80.0 100.0 53.3 86.7 86.7 100.0
happy 93.3 93.3 100.0 80.0 100.0 93.3 100.0
left-light 60.0 26.7 26.7 33.3 26.7 26.7 33.3
no glasses 100.0 100.0 100.0 80.0 100.0 100.0 100.0
normal 100.0 86.7 100.0 86.7 100.0 93.3 100.0
right-light 53.3 26.7 40.0 40.0 13.3 26.7 33.3
sad 100.0 86.7 93.3 93.3 100.0 93.3 100.0
sleepy 100.0 86.7 100.0 73.3 100.0 100.0 100.0
surprised 93.3 86.7 66.7 33.3 73.3 66.7 86.7
wink 93.3 100.0 100.0 66.7 93.3 93.3 100.0
No light 97.0 85.9 94.8 70.4 93.3 88.9 97.8
Average 89.7 75.2 83.6 64.2 80.0 77.6 86.1

Table 5.2: Accuracy (%) results for the AT&T (ORL) dataset.

Image Set NMF-MBP Eigenface Fisherface EGM EGM-SVM NN FRCM
1 95.0 92.5 100.0 90.0 95.0 92.5 95.0
2 95.0 85.0 100.0 72.5 100.0 95.0 100.0
3 97.5 87.5 100.0 85.0 100.0 95.0 100.0
4 92.5 90.0 97.5 70.0 100.0 92.5 100.0
5 97.5 85.0 100.0 82.5 100.0 95.0 100.0
6 95.0 87.5 97.5 70.0 97.5 92.5 97.5
7 92.5 82.5 95.0 75.0 95.0 95.0 100.0
8 92.5 92.5 95.0 80.0 97.5 90.0 97.5
9 87.5 90.0 100.0 72.5 97.5 90.0 100.0
10 87.5 85.0 97.5 80.0 95.0 92.5 97.5

Average 93.3 87.8 98.3 77.8 97.8 93.0 98.8

approach. Nevertheless, our method presents competitive results and it would be
a valuable asset in the design of systems such as the FRCM, especially due to its
robustness to different illumination conditions. The idea behind this particular
committee machine (FRCM) consists of combining the results of several individual
classifiers, using an ensemble of mixture of experts. The rationale is to take
advantage of the specific nature of each algorithm (expert), which may present
distinct performance rates for different input regions, in order to build a system
with improved performance [Tang et al., 2003].

The last experiment focused on comparing the NMF with the SSNMF algorithm.
To this end, we have combined those methods with the SVM algorithm.

148

5.1 Non-Negative Matrix Factorization (NMF)

0

100

200

300

400

500

600

Yale ORL

T
im

e
(s

ec
on

ds
)

47.97 ± 24.76

7.73 ± 2.37

423.73 ± 104.07

69.56 ± 15.93

0

100

200

300

400

500

600

Yale ORL

T
im

e
(s

ec
on

ds
)

47.97 ± 24.76

7.73 ± 2.37

423.73 ± 104.07

69.56 ± 15.93

NMF
SSNMF

Figure 5.15: Time required to compute the W and Htrain matrices.

Naturally, since the semi-supervised method works with smaller matrices it can
compute and combine all the individual matrices, significantly faster than the
time required for the NMF method to obtain the corresponding matrices (W and
Htrain). Figure 5.15 presents the time required to compute the matrices using our
GPU parallel implementation of the NMF algorithm. On average SSNMF was over
6 times faster than NMF. However, the speedups yielded by the semi-supervised
method should be greater in the CPU because the GPU scales better than the CPU
when dealing with larger volumes of data (bigger matrices) [Lopes and Ribeiro,
2010b].

In terms of sparsity, it is obvious that the Htrain matrices generated by the
SSNMF method will be sparser (by design) than the corresponding matrices
produced by the unsupervised method. As for the Htest matrices (generated in
the same manner regardless of the method), the matrices associated to the semi-
supervised method are significantly sparser than the matrices associated to NMF
(observe Table 5.3). This is important because in addition to reducing the storage
memory requirements, sparsity improves the interpretation of the factors, especially
when dealing with classification and clustering problems in domains like text mining
and computational biology [Gillis and Glineur, 2010].

For the SVM algorithm the RBF (Gaussian) kernel was used and the C and 𝛾
parameters were chosen by cross-validation (using grid search). Figures 5.16 and 5.17
show the average accuracy respectively for the Yale and for the AT&T datasets.
Clearly, the chances of selecting a good set of parameters (C and 𝛾) are greater
for the SSNMF method. This is better quantified in Table 5.4, which presents

149

5 Unsupervised and Semi-supervised algorithms

Table 5.3: Percentage of zero values present in the Htest matrix.

Benchmark NMF SSNMF
Yale 36.70± 8.39 63.70± 4.35

AT&T 45.20± 2.14 72.25± 7.48

Table 5.4: Grid search average accuracy on the test folds.

NMF SSNMF
Dataset Mean Median Mean Median
Yale 82.74% 80.61% 83.34% 84.24%
AT&T 81.92% 75.00% 92.65% 93.00%

the average accuracy of the grid search test folds. While model selection by cross-
validation is a good practice, the best performance may not always be obtained
on unseen data. Therefore, the SSNMF method reduces the risk of creating
unfitted/inadequate models.

Tables 5.5 and 5.6 show the accuracy obtained by the NMF-SVM and the SSNMF-
SVM approaches as compared with the NMF-MBP and the aforementioned methods
reported in Tang et al. [Tang et al., 2003], respectively for the Yale and for the
AT&T databases.

Considering the Yale database, the NMF based approaches (NMF-SVM, SSNMF-
SVM and MBP-SVM) excel all the other methods in terms of accuracy. Overall, the
best results were obtained by the NMF-MBP approach. As in the case of the NMF-

Table 5.5: Accuracy (%) results for the Yale dataset.

Image Set NMF-SVM SSNMF-SVM NMF-MBP Eigenface Fisherface EGM EGM-SVM NN FRCM

center-light 93.3 93.3 93.3 53.3 93.3 66.7 86.7 73.3 93.3
glasses 100.0 93.3 100.0 80.0 100.0 53.3 86.7 86.7 100.0
happy 100.0 93.3 93.3 93.3 100.0 80.0 100.0 93.3 100.0
left-light 60.0 60.0 60.0 26.7 26.7 33.3 26.7 26.7 33.3
no glasses 93.3 100.0 100.0 100.0 100.0 80.0 100.0 100.0 100.0
normal 93.3 100.0 100.0 86.7 100.0 86.7 100.0 93.3 100.0
right-light 46.7 53.3 53.3 26.7 40.0 40.0 13.3 26.7 33.3
sad 100.0 100.0 100.0 86.7 93.3 93.3 100.0 93.3 100.0
sleepy 93.3 93.3 100.0 86.7 100.0 73.3 100.0 100.0 100.0
surprised 93.3 86.7 93.3 86.7 66.7 33.3 73.3 66.7 86.7
wink 93.3 86.7 93.3 100.0 100.0 66.7 93.3 93.3 100.0
Nolight 95.5 94.1 97.0 85.9 94.8 70.4 93.3 88.9 97.8
Average 87.9 87.3 89.7 75.2 83.6 64.2 80.0 77.6 86.1

150

5.1 Non-Negative Matrix Factorization (NMF)

Unsupervised

2−4 2−2 20 22 24 26 28 210 212 214

𝐶

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

22

𝛾

65

70

75

80

85

90

Semi-supervised

2−4 2−2 20 22 24 26 28 210 212 214

𝐶

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

22

𝛾

65

70

75

80

85

90

Figure 5.16: Average accuracy yielded by the SVM algorithm for the Yale dataset.

151

5 Unsupervised and Semi-supervised algorithms

Unsupervised

2−4 2−2 20 22 24 26 28 210 212 214

𝐶

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

22

𝛾

75

80

85

90

95

Semi-supervised

2−4 2−2 20 22 24 26 28 210 212 214

𝐶

2−14

2−12

2−10

2−8

2−6

2−4

2−2

20

22

𝛾

75

80

85

90

95

Figure 5.17: Average accuracy yielded by the SVM algorithm for the AT&T
dataset.

152

5.2 Deep Belief Networks (DBNs)

Table 5.6: Accuracy results for the AT&T (ORL) dataset.

Image Set NMF-SVM SSNMF-SVM NMF-MBP Eigenface Fisherface EGM EGM-SVM NN FRCM

1 97.5 97.5 95.0 92.5 100.0 90.0 95.0 92.5 95.0
2 97.5 92.5 95.0 85.0 100.0 72.5 100.0 95.0 100.0
3 97.5 100.0 97.5 87.5 100.0 85.0 100.0 95.0 100.0
4 97.5 95.0 92.5 90.0 97.5 70.0 100.0 92.5 100.0
5 95.0 100.0 97.5 85.0 100.0 82.5 100.0 95.0 100.0
6 97.5 97.5 95.0 87.5 97.5 70.0 97.5 92.5 97.5
7 90.0 95.0 92.5 82.5 95.0 75.0 95.0 95.0 100.0
8 90.0 95.0 92.5 92.5 95.0 80.0 97.5 90.0 97.5
9 92.5 90.0 87.5 90.0 100.0 72.5 97.5 90.0 100.0
10 92.5 87.5 87.5 85.0 97.5 80.0 95.0 92.5 97.5
Average 94.8 95.0 93.3 87.8 98.3 77.8 97.8 93.0 98.8

MBP, the NMF-SVM and SSNMF-SVM methods perform considerably better than
the others for two of the image sets (left-light and right-light), demonstrating higher
robustness when dealing with different lighting conditions. This is consistent with
the idea that parts-based representations can naturally deal with partial occlusion
and some illumination problems and therefore are considered to perform better for
facial image processing [Zhi et al., 2011]. Moreover, although on average the NMF-
SVM performs better than the SSNMF-SVM method, the SSNMF-SVM approach
presents better results on the two aforementioned (left-light and right-light) image
sets.

Concerning the AT&T database, the SSNMF-SVM method outperforms the
other NMF approaches (NMF-SVM and MBP-SVM). However, for this dataset
there are other methods that yield higher accuracies. Still, the proposed approach
demonstrates competitive results and as before, there is no doubt that it would be
a valuable asset in the design of systems such as the FRCM.

5.2 Deep Belief Networks (DBNs)
Recent empirical and theoretical advances in deep learning methods have led
to a widespread enthusiasm in the pattern recognition and ML areas [Markoff,
2012,Larochelle et al., 2007]. Inspired by the depth structure of the brain, deep
learning architectures encompass the promise of revolutionizing and widening the
range of tasks performed by computers [Markoff, 2012]. In recent months deep
learning applications have been growing both in number and accuracy [Markoff,
2012]. State-of-the-art technologies such as the Apple’s Siri personal assistant
or Google’s Street View already integrate deep NNs into their systems, asserting
their potential to increase the specter of automated systems capable of performing
tasks that would otherwise require humans [Markoff, 2012]. Moreover, just a few
months ago, a team of graduate students of Geoffrey E. Hinton won the top prize
in a contest aimed at finding molecules that might lead to new drugs. This was

153

5 Unsupervised and Semi-supervised algorithms

model inputs (x)

level 1

low-order
features

level 2

· · ·

high-order
features

level 𝑑

model outputs (y)

deep architecture

model inputs (x)

non-linear operations

model outputs (y)

shallow architecture

Figure 5.18: Deep architectures versus shallow ones.

a particularly impressive achievement because never before had a deep learning
architecture based-system won a similar competition and the software was designed
with no prior knowledge on how the molecules bind to their targets, using only a
relatively small dataset [Markoff, 2012].

Deep architecture models reflect the results of many levels of composition of
non-linear operations in their outputs [Larochelle et al., 2007,Roux and Bengio,
2008,Bengio, 2009]. The idea is to have feature detector units at each layer (level)
that gradually extract and refine more sophisticated and invariant features from the
original raw input signals. Lower layers aim at extracting simple features that are
then clamped into higher layers, which in turn detect more complex features [Lee
et al., 2009]. In contrast, shallow models (e.g. linear models, one hidden layer NNs,
SVMs) present very few layers of composition that basically map the original input
features into a problem-specific feature space [Larochelle et al., 2007,Yu and Deng,
2011]. Figure 5.18 illustrates the main architectural differences between deep and
shallow models.

154

5.2 Deep Belief Networks (DBNs)

Deep architectures can be exponentially more efficient than shallow ones [Roux
and Bengio, 2010]. For example, some functions can be compactly represented
with an NN of depth 𝑙, while requiring an exponential number of computational
elements and parameters for a network with depth 𝑙 − 1 [Bengio, 2009]. Shallow
architectures may require a huge number of elements and, consequently, of training
samples to represent highly varying functions [Roux and Bengio, 2008,Larochelle
et al., 2007,Bengio, 2009]. A function is highly varying when a large number of
pieces are required in order to create its piecewise approximation [Bengio, 2009].
On the other hand deep architectures can represent these functions efficiently, in
particular when their Kolmogorov complexity is small [Larochelle et al., 2007].

Moreover, since each element of the architecture is learned using examples,
the number of computational elements one can afford is limited by the number
of training samples available [Bengio, 2009]. Thus, the depth of architecture
can be very important from the point of view of statistical efficiency and using
shallow architectures may result in poor generalization models [Bengio, 2009]. As
a result, deep models tend to outperform shallow models such as SVMs [Larochelle
et al., 2007]. Additionally, theoretical results suggest that deep architectures
are fundamental to learn the kind of complex functions that can represent high-
level abstractions (e.g. vision, language) [Bengio, 2009], characterized by many
factors of variation that interact in non-linear ways, making the learning process
difficult [Larochelle et al., 2007].

However, the challenge of training deep multi-layer NNs remained elusive for a
long time [Bengio, 2009], since traditional gradient-based optimization strategies are
ineffective when propagated across multiple levels of non-linearities [Larochelle et al.,
2007]. This changed with the development of DBNs [Hinton et al., 2006], which
were subsequently successfully applied to several domains including classification,
regression, dimensionality reduction, object segmentation, information retrieval,
language processing, robotics, speech, audio, and collaborative filtering [Bengio,
2009, Roux and Bengio, 2008, Larochelle et al., 2007, Swersky et al., 2010, Yu
and Deng, 2011], thus demonstrating its ability to outperform state-of-the-art
algorithms [Bengio, 2009].

The DBNs infrastructure is supported by several layers of RBMs that are stacked
on top of each other, thus forming a network that is able to capture the underlying
regularities and invariances directly from the original raw data. Each RBM, within
a given layer, receives the inputs of the previous layer and feeds the RBM in the
next layer, thereby allowing the network as a whole to progressively extract and
refine higher-level dependencies [Ranzato et al., 2007].

Building a DBN consists of independently training each RBM that encompasses
it, starting by the lower-level layer and progressively moving up in the hierarchy,
until the top layer RBM is trained.

155

5 Unsupervised and Semi-supervised algorithms

ℎ1 ℎ2 ℎ3 · · · ℎ𝑗 · · · ℎ𝐽 1

bias

𝑣1 𝑣2 · · · 𝑣𝑖 · · · 𝑣𝐼 1

biasvisible units

hidden units

de
co

de
r

en
co

de
r

Figure 5.19: Schematic representation of a Restricted Boltzmann Machine
(RBM).

5.2.1 Restricted Boltzmann Machines (RBMs)
An RBM is an energy-based generative model that consists of a layer of 𝐼 binary
visible units (observed variables), v = [𝑣1, 𝑣2, . . . , 𝑣𝐼] where 𝑣𝑖 ∈ {0, 1}, and a
layer of 𝐽 binary hidden units (explanatory factors), h = [ℎ1, ℎ2, . . . , ℎ𝐽] where
ℎ𝑗 ∈ {0, 1}, with bidirectional weighted connections [Hinton, 2010], as depicted
in Figure 5.19. RBMs follow the encoder-decoder paradigm. In this paradigm
an encoder transforms the input into a feature vector representation from which
a decoder can reconstruct the original input [Ranzato et al., 2007]. In the case
of RBMs both the encoded representation and the (decoded) reconstruction are
stochastic by nature. The encoder-decoder architecture is appealing because: (i)
after training, the feature vector can be computed in an expedited manner and
(ii) by reconstructing the input we can assess how well the model captured the
relevant information from the data [Ranzato et al., 2007].

Given an observed state, the energy of the joint configuration of the visible and
hidden units (v, h) is given by (5.14):

𝐸(v, h) = −cv⊤ − bh⊤ − hWv⊤

= −
𝐼∑︁

𝑖=1
𝑐𝑖𝑣𝑖 −

𝐽∑︁
𝑗=1

𝑏𝑗ℎ𝑗 −
𝐽∑︁

𝑗=1

𝐼∑︁
𝑖=1

𝑊𝑗𝑖𝑣𝑖ℎ𝑗 ,
(5.14)

where W ∈ IRJ×I is a matrix containing the RBM connection weights, c =
[𝑐1, 𝑐2, . . . , 𝑐𝐼] ∈ IRI is the bias of the visible units and b = [𝑏1, 𝑏2, . . . , 𝑏𝐽] ∈ IRJ

the bias of the hidden units. In order to break symmetry, typically the weights
are initialized with small random values (e.g. between −0.01 and 0.01) [Hinton,
2010]. The hidden bias, 𝑏𝑗, can be initialized with a large negative value (e.g. −4)
in order to encourage sparsity and the visible units bias, 𝑐𝑖, to log(𝑝𝑖

1−𝑝𝑖
), where 𝑝𝑖

is the proportion of training vectors in which 𝑣𝑖 = 1 [Hinton, 2010]. Failure to do

156

5.2 Deep Belief Networks (DBNs)

Original
training images

Initialization of
𝑐𝑖 = log(𝑝𝑖

1−𝑝𝑖
)

Initialization of
𝑐𝑖 at random

Figure 5.20: Reconstruction of the MNIST digits made by a newly initialized
Restricted Boltzmann Machine (RBM) (𝑝𝑖 is the proportion of
training vectors in which the pixel 𝑖 is on).

so will require the learning procedure to adjust (in the early training stages) the
probability of a given visible unit 𝑖 being turned on, so that it gradually converges
to 𝑝𝑖 [Hinton, 2010]. Figure 5.20 shows the advantages of initializing 𝑐𝑖 in this
manner, as compared to initializing the visible bias in a random manner (between
−0.01 and 0.01). Note that this simple initialization technique allows the model
to capture the main characteristics of the training data and avoids unnecessary
learning steps.

The RBM assigns a probability for each configuration (v, h), using (5.15):

𝑝(v, h) = 𝑒−𝐸(v,h)

𝑍
, (5.15)

where 𝑍 is a normalization constant called partition function by analogy with
physical systems, which is obtained by summing up the energy of all possible (v, h)
configurations [Bengio, 2009,Hinton, 2010,Carreira-Perpiñán and Hinton, 2005]:

𝑍 =
∑︁
v,h

𝑒−𝐸(v,h) . (5.16)

Since there are no connections between any two units within the same layer, given
a particular random input configuration, v, all the hidden units are independent of
each other and the probability of h given v becomes:

𝑝(h | v) =
∏︁
𝑗

𝑝(ℎ𝑗 = 1 | v) , (5.17)

where
𝑝(ℎ𝑗 = 1 | v) = 𝜎(𝑏𝑗 +

𝐼∑︁
𝑖=1

𝑣𝑖𝑊𝑗𝑖) . (5.18)

For implementation purposes, ℎ𝑗 is set to 1 when 𝑝(ℎ𝑗 = 1 | v) is greater than a
given random number (uniformly distributed between 0 and 1) and 0 otherwise.

157

5 Unsupervised and Semi-supervised algorithms

Similarly given a specific hidden state, h, the probability of v given h is obtained
by (5.19):

𝑝(v | h) =
∏︁

𝑖

𝑝(𝑣𝑖 = 1 | h) , (5.19)

where:

𝑝(𝑣𝑖 = 1 | h) = 𝜎(𝑐𝑖 +
𝐽∑︁

𝑗=1
ℎ𝑗𝑊𝑗𝑖) . (5.20)

When using (5.20) in order to reconstruct the input vector, it is vital to force the
hidden states to be binary. Using the actual probabilities would seriously violate
the information bottleneck, which acts as a strong regularizer and is imposed by
forcing the hidden units to convey at most one bit of information [Hinton, 2010].

The marginal probability assigned to a visible vector, v, is given by (5.21):

𝑝(v) =
∑︁

h
𝑝(v, h) = 1

𝑍

∑︁
h

𝑒−𝐸(v,h) . (5.21)

Hence, given a specific training vector v its probability can be raised by adjusting
(optimizing) the weights and the biases of the network in order to lower the energy
of that particular vector while raising the energy of all the others. To this end, we
can perform a stochastic gradient ascent on the log-likelihood manifold obtained
from the training data vectors1, by computing the derivative of the log probability
with respect to the network parameters 𝜃 ∈ {𝑏𝑗, 𝑐𝑖, 𝑊𝑗𝑖}, which is given by (5.22):

𝜕 log 𝑝(v)
𝜕𝜃

=
𝜕 log

(︁
1
𝑍

∑︀
h 𝑒−𝐸(v,h)

)︁
𝜕𝜃

=

positive phase⏞ ⏟
𝜕 log

(︁∑︀
h 𝑒−𝐸(v,h)

)︁
𝜕𝜃

negative phase⏞ ⏟
− 𝜕 log 𝑍

𝜕𝜃

=
𝜕 log

(︁∑︀
h 𝑒−𝐸(v,h)

)︁
𝜕𝜃

−
𝜕 log

(︁∑︀
v,h 𝑒−𝐸(v,h)

)︁
𝜕𝜃

= −
∑︀

h 𝑒−𝐸(v,h) 𝜕𝐸(v,h)
𝜕𝜃∑︀

h 𝑒−𝐸(v,h) +
∑︀

v,h 𝑒−𝐸(v,h)𝜕 𝐸(v,h)
𝜕𝜃∑︀

v,h 𝑒−𝐸(v,h)

(5.22)

1 Maximizing the logarithm of a function is equivalent to maximizing the function itself, since
the logarithm is a monotonically increasing function of its argument. However, the former
provides two advantages: (i) it simplifies the subsequent mathematical analysis and (ii) it
helps numerically since the product of many small probabilities can cause the processor to
underflow due to numerical precision issues and this is avoided when the sum of the log
probabilities is used instead [Bishop, 2006].

158

5.2 Deep Belief Networks (DBNs)

Using (5.15) we can write 𝑝(h | v) as (5.23):

𝑝(h | v) = 𝑝(h, v)
𝑝(v)

= 𝑝(h, v)∑︀
h 𝑝(h, v)

= 1∑︀
h

𝑒−𝐸(v,h)

𝑍

𝑒−𝐸(v,h)

𝑍

= 𝑒−𝐸(v,h)∑︀
h 𝑒−𝐸(v,h)

. (5.23)

Hence, we can rewrite (5.22) as (5.24):

𝜕 log 𝑝(v)
𝜕𝜃

= −
∑︁

h
𝑝(h | v)𝜕 𝐸(v, h)

𝜕𝜃⏟ ⏞
positive phase

+
∑︁
v,h

𝑝(v, h)𝜕𝐸(v, h)
𝜕𝜃⏟ ⏞

negative phase

(5.24)

As in the maximum likelihood learning procedure, we aim at finding the set of
network parameters for which the probability of the (observed) training dataset
is maximized. Computing 𝜕 𝐸(v,h)

𝜕𝜃
is straightforward. Thus, in order to obtain an

unbiased stochastic estimator of the log-likelihood gradient, we need a procedure
to sample from 𝑝(h | v) and another to sample from 𝑝(v, h) [Bengio, 2009]. In
the so-called positive phase, v is clamped to the observed input vector, x, and h
is sampled from v, while in the negative phase, both v and h are sampled ideally
from the model [Bengio, 2009].

Sampling can be accomplished by setting up a Markov Chain Monte Carlo
(MCMC) using alternating Gibbs sampling [Hinton, 2010, Bengio, 2009]. Each
iteration of Gibbs sampling consists of updating all of the hidden units in parallel
using (5.18) followed by updating all of the visible units in parallel using (5.20)
[Hinton, 2010]. This process is represented in Figure 5.21.

Using this procedure we can rewrite (5.24) as (5.25):

𝜕 log 𝑝(v)
𝜕𝜃

= −
⟨

𝜕
𝐸(v, h)

𝜕𝜃

⟩
0⏟ ⏞

positive phase

+
⟨

𝜕
𝐸(v, h)

𝜕𝜃

⟩
∞⏟ ⏞

negative phase

(5.25)

where ⟨·⟩0 denotes the expectations for the data distribution (𝑝0 = 𝑝(h | v) =
𝑝(h | x)) and ⟨·⟩∞ denotes the expectations under the model distribution
(𝑝∞(v, h) = 𝑝(v, h)) [Roux and Bengio, 2008,Carreira-Perpiñán and Hinton, 2005].
It makes sense to start the chain with a training sample, x, because eventually
the model distribution, 𝑝∞, and the data distribution, 𝑝0, will become similar as
the model gradually captures the statistical structure embedded in the training
data [Bengio, 2009].

159

5 Unsupervised and Semi-supervised algorithms

v(0) = x

𝑖 · · ·

h(0)

· · · 𝑗

⟨𝑣𝑖ℎ𝑗⟩0

v(1)

𝑖 · · ·

⏟ ⏞
Gibbs step

h(1)

· · · 𝑗

v(2)

𝑖 · · ·

h(2)

· · · 𝑗

v(∞)

𝑖 · · ·

h(∞)

· · · 𝑗

⟨𝑣𝑖ℎ𝑗⟩∞

Figure 5.21: Markov Chain Monte Carlo using alternating Gibbs sampling in
a Restricted Boltzmann Machine (RBM). The chain is initialized
with the data input vector, x. The blocks in yellow correspond to a
Gibbs step.

Unfortunately, computing ⟨𝑣𝑖ℎ𝑗⟩∞ is intractable as it requires performing
alternating Gibbs sampling for a very long time [Hinton, 2010, Bengio, 2009]
in order to draw unbiased samples from the model distribution to generate a good
gradient approximation [Swersky et al., 2010]. This was a fundamental issue that
caused the BP algorithm to replace the Boltzmann machines as the dominant
learning approach for training multi-layer NNs, in the late 1980s [Bengio, 2009].

To solve this problem, Hinton proposed a much faster learning procedure: the
Contrastive Divergence (CD–𝑘) algorithm [Hinton, 2002,Hinton, 2010], whereby
⟨.⟩∞ is replaced by ⟨·⟩𝑘 for small values of 𝑘 [Roux and Bengio, 2008]. This
is a simple and effective alternative to the maximum likelihood algorithm that
eliminates most of the computation required to obtain samples from the equilibrium
distribution and significantly reduces the variance (which results from the sampling
noise) that masks the gradient signal [Hinton, 2002,Carreira-Perpiñán and Hinton,
2005]. Changing (5.25) accordingly, we obtain the following update rule for the
weights of the network:

Δ𝑊𝑗𝑖 = 𝜂(
positive phase⏞ ⏟
⟨𝑣𝑖ℎ𝑗⟩0−⟨𝑣𝑖ℎ𝑗⟩𝑘⏟ ⏞

negative phase

) (5.26)

where 𝜂 represents the learning rate. Similarly, the following rules allow us to
update the bias of the network:

Δ𝑏𝑗 = 𝜂(⟨ℎ𝑗⟩0 − ⟨ℎ𝑗⟩𝑘) (5.27)
Δ𝑐𝑖 = 𝜂(⟨𝑣𝑖⟩0 − ⟨𝑣𝑖⟩𝑘) (5.28)

Algorithm 3 describes the main steps of the CD–𝑘 algorithm. Note that in the
last Gibbs step, it is preferable to use the probabilities associated to the visible

160

5.2 Deep Belief Networks (DBNs)

units (see (5.19)) for computing the state of the hidden units, instead of using the
corresponding stochastic binary states which would cause unnecessary sampling
noise [Hinton, 2010].

Algorithm 3 CD–𝑘 algorithm.
1: v(0) ← x ◁ x is an input vector of the training dataset.
2: Compute the binary states of the hidden units, h(0), using v(0) and eq. 5.18
3: for 𝑛← 1 to 𝑘 do
4: Compute the “reconstruction” states for the visible units, v(n),

using h(n−1) and eq. 5.20
5: Compute the binary features (states) for the hidden units, h(n),

using v(n) and eq. 5.18
6: end for
7: Update the weights and biases, using eq. 5.26, 5.27 and 5.28

CD–𝑘 provides a rough approximation of the log-likelihood gradient for the
training data, nevertheless it has been successfully applied to many significant
applications, demonstrating its ability to create good generative models from the
training dataset [Hinton, 2010]. In fact, its learning rule is actually (approximately)
following an objective function which is called Contrastive Divergence and is given
by the difference of two Kullback-Liebler divergences [Hinton, 2010,Hinton, 2002].
Nevertheless, although the magnitude of the CD–𝑘 gradient estimate may not be
correct, its direction tends to be accurate and there is empirical evidence that the
model parameters are still moved in the same quadrant as in the log-likelihood
gradient [Tieleman, 2008,Bengio, 2009]. In particular, CD–1 provides a low variance,
fast and reasonable approximation of the log-likelihood gradient [Tieleman, 2008],
which has been empirically demonstrated to yield good results [Bengio, 2009].

Although CD–1 does not provide a very good estimate of the maximum-likelihood,
this is not a issue when the features learned by the RBM will serve as inputs to
another higher-level RBM [Hinton, 2010]. In fact, for RBMs that integrate a
DBN, it is not necessarily a good idea to use another form of CD–𝑘 that may
provide closer approximations to the maximum-likelihood, but does not ensure
that the hidden features retain most of the information contained in the input data
vectors [Hinton, 2010]. This is consistent with the results obtained by Swersky et
al. for the experiments performed on the MNIST dataset, where the best DBN
results were obtained for CD–1 [Swersky et al., 2010].

An RBM by itself is limited in what it can represent and its true potential
emerges when several RBMs are stacked together to form a DBN [Lee et al., 2009].

161

5 Unsupervised and Semi-supervised algorithms

x· · ·

h1· · ·

𝑝(x|h1)𝑝(h1|x)

x· · ·

h1· · ·

h2· · ·

𝑝(x|h1)𝑝(h1|x)

𝑝(h1|h2)𝑝(h2|h1)

x· · ·

h1· · ·

h2· · ·

h3· · ·

𝑝(x|h1)𝑝(h1|x)

𝑝(h1|h2)𝑝(h2|h1)

𝑝(h2|h3)𝑝(h3|h2)

Figure 5.22: Training process of a Deep Belief Network (DBN) with one input
layer, x, and three hidden layers h1, h2, h3. From left to right,
purple color represents layers already trained, while cyan represents
the Restricted Boltzmann Machine (RBM) being trained.

5.2.2 Deep Belief Networks Architecture
DBNs were recently proposed by Hinton et al., along with an unsupervised greedy
learning algorithm for constructing the network one layer at a time [Hinton et al.,
2006]. As described earlier, the subjacent idea consists of using a RBM for each
layer, which is trained independently to encode the statistical dependencies of the
units within the previous layer [Lee et al., 2009].

Since a DBN aims to maximize the likelihood of the training data, the
training process starts by the lower-level RBM that receives the DBN inputs,
and progressively moves up in the hierarchy, until finally the RBM in top layer,
containing the DBN outputs, is trained. This approach represents an efficient way
of learning (an otherwise complicated model) by combining multiple and simpler
(RBM) models, learned sequentially [Hinton et al., 2006]. Figure 5.22 represents
this process.

The number of layers of a DBN can be increased in a greedy manner [Larochelle
et al., 2007]. Each new layer that is stacked on top of the DBN will model the output
of the previous layer [Larochelle et al., 2007] and aims at extracting higher-level
dependencies between the original inputs variables, thereby improving the ability
of the network to capture the underlying regularities in the data [Ranzato et al.,
2007, Swersky et al., 2010]. The bottom layers are intended to extract low-level
features from the input data, while the upper layers are expected to gradually
refine previously learned concepts, therefore producing more abstract concepts that
explain the original input observations [Roux and Bengio, 2008, Swersky et al.,
2010,Roux and Bengio, 2010].

The training process, also called pre-training [Larochelle et al., 2007], is
unsupervised by nature, allowing the system to learn non-linear complex mapping
functions directly from data, without depending on human-crafted features [Bengio,

162

5.2 Deep Belief Networks (DBNs)

2009]. However, the output of the top layer can easily be fed to a conventional
supervised classifier [Hinton, 2010,Ranzato et al., 2007]. Alternatively, it is also
possible to create a classification model, by adding an additional layer to the
unsupervised pre-trained DBN upon which the resulting network is fine-tuned
using the BP algorithm. In this scenario the resulting network is also called a
DBN [Swersky et al., 2010]. Moreover, it has been shown that the BP algorithm
will barely change the weights learned in the greedy stage and therefore most of
the performance gains are actually obtained during the unsupervised pre-training
phase [Swersky et al., 2010].

5.2.3 Adaptive Step Size Technique
The proper choice of the learning parameters is a fundamental aspect of the
training procedure that affects considerably the networks convergence [Lopes and
Ribeiro, 2012b]. In particular the learning rate is highly correlated with the
training speed and convergence [Schulz et al., 2010]. However, finding an adequate
set of parameters is not always an easy task and usually involves a trial and
error methodology, thus increasing the time and effort associated with the already
expensive process of creating an effective model.

In order to mitigate this problem and improve the convergence of the networks,
we adapted the adaptive step size technique, described earlier in Section 4.1.1 (see
page 68), to the RBM networks. Hence, at each CD–𝑘 iteration, the step sizes are
adjusted according to the sign changes:

𝜂𝑗𝑖 =
{︃

𝑢𝜂
(old)
𝑗𝑖 if (⟨𝑣𝑖ℎ𝑗⟩0 − ⟨𝑣𝑖ℎ𝑗⟩𝑘)(⟨𝑣𝑖ℎ𝑗⟩(old)

0 − ⟨𝑣𝑖ℎ𝑗⟩(old)
𝑘) > 0

𝑑𝜂
(old)
𝑗𝑖 if (⟨𝑣𝑖ℎ𝑗⟩0 − ⟨𝑣𝑖ℎ𝑗⟩𝑘)(⟨𝑣𝑖ℎ𝑗⟩(old)

0 − ⟨𝑣𝑖ℎ𝑗⟩(old)
𝑘) < 0

(5.29)

where, as before, 𝑢 > 1 (up) represents the increment factor for the step size and
𝑑 < 1 (down) the decrement factor. When two consecutive updates have the same
direction the step size of that particular weight is increased. For updates with
opposite directions the step size is decreased, thus avoiding oscillations in the
learning process due to excessive learning rates [Lopes and Ribeiro, 2012b]. The
underlying idea of this procedure consists of finding near-optimal step sizes that
would allow bypassing ravines on the error surface. This technique is especially
effective for ravines that are parallel (or almost parallel) to some axis [Almeida,
1997].

In addition, it makes sense to use a different momentum term for each connection,
𝛼𝑗𝑖 = 𝜂𝑗𝑖𝛼, proportional to a global momentum configuration, 𝛼, and to the step
sizes, in order to decrease further the oscillations in the training process. According
to our tests, it is advantageous to clamp 𝛼𝑗𝑖, such that 0.1 ≤ 𝛼𝑗𝑖 ≤ 0.9.

5.2.4 GPU parallel implementation
The RBM weights are not updated after each sample is presented, but rather
in a batch or mini-batch process. Hence, we shall assume that the visible units

163

5 Unsupervised and Semi-supervised algorithms

V(0) ∈ IRN×I

RBM inputs

ComputeStatusHiddenUnits

Step 2. Compute H(0)

H(0) ∈ IRN×J

RBM outputs (data)

ComputeStatusVisibleUnits

Step 4. Compute V(n)

V(n) ∈ IRN×I

reconstructed inputs

ComputeStatusHiddenUnits

Step 5. Compute H(n)

H(n) ∈ IRN×J

reconstructed outputs

W ∈ IRJ×I

weights

c ∈ IRI

visible units bias

b ∈ IRJ

hidden units bias

CorrectWeights

Step 7. Correct weights

𝑛← 1

𝑛
←

𝑛
+

1

Figure 5.23: Sequence of GPU kernel calls, per epoch, that implement the CD–𝑘
algorithm.

vectors, {v1, v2, . . . , vN}, form a matrix V ∈ IRN×I, where each row contains a
visible units vector, vi. Similarly, we shall assume that the hidden units vectors,
{h1, h2, . . . , hN}, form a matrix H ∈ IRN×J, where each row contains a hidden
units vector, hi. Hence, for the bottom most RBM within a DBN, V will be equal
to X and 𝐼 equal to 𝐷 (assuming that X has been binarized).

In order to implement the Algorithm 3 (CD–𝑘) we devised three CUDA
kernels: a kernel to compute the binary states of the hidden units, named
ComputeStatusHiddenUnits, which is used to implement steps 2 and 5; a
kernel to compute the “reconstruction” states for the visible units, named
ComputeStatusVisibleUnits, which is used to implement step 4; and finally a
kernel to update the weights and biases, named CorrectWeights, which is used to
implement step 7 of the referred algorithm. The latter also adjusts the step sizes of
each connection. Figure 5.23 shows the sequence of kernel calls (per epoch) needed
to implement the CD–𝑘 algorithm.

164

5.2 Deep Belief Networks (DBNs)

Block (Neuron, Sample)

Connection 1 Connection 2 Connection 3
. . .

Connection 𝐼

Grid
Block(0,0) Block(1,0) Block(𝐽,0)

Block(0,1) Block(1,1) Block(𝐽,1)

Block(0,𝑁) Block(1,𝑁) Block(𝐽,𝑁)

· · ·

· · ·

· · ·

· · ·· · · · · · · · ·

gridDim.x (hidden unit ℎ𝑗)

g
ri
d
D
im

.y
(s

am
pl

e)

Figure 5.24: ComputeStatusHiddenUnits kernel grid and block structure.

As in the GPU parallel implementation of the MBP algorithm, we have opted
to use a connection between two (one visible and one hidden) neurons instead
of using a neuron as the smallest unit of computation (see Section 4.1.3, page
76). This decision, which applies both for the ComputeStatusHiddenUnits and
ComputeStatusVisibleUnits kernels, allows to consider a much larger number
of threads and blocks, thereby improving the scalability of the resulting kernels,
allowing them to take full advantage of the GPU high number of cores. Once
again, the rationale is to think of a connection as performing a simple function
that multiplies the clamped input by its weight. As before, each block represents
a neuron and we can take advantage of the fast shared memory to sum up the
values computed by each thread, using a reduction process and then computing the
output of the neuron for the active sample (defined by its position within the grid).
Naturally, each block will compute the neuron output for a single specific sample.
The resulting kernel grid and block structure are shown in Figure 5.24. Due to the
limits imposed for each dimension of the grid, for datasets with more than 65535
samples, the kernel must be called multiple times, processing a maximum of 65535
samples per call.

In practice, the number of connections of each neuron (defined either by the
number of inputs or by the number of hidden units of a RBM, respectively for
the ComputeStatusHiddenUnits and ComputeStatusVisibleUnits kernels) can
easily surpass the limits of the maximum number of threads per block imposed
by CUDA. As a consequence each thread may actually need to compute the
output of several connections [Lopes et al., 2012b]. Thus, the actual number of

165

5 Unsupervised and Semi-supervised algorithms

𝑊11 𝑊12 𝑊13 𝑊14 𝑊15 · · · 𝑊1𝐼

𝑊21 𝑊22 𝑊23 𝑊24 𝑊25 · · · 𝑊2𝐼

𝑊31 𝑊32 𝑊33 𝑊34 𝑊35 · · · 𝑊3𝐼

𝑊41 𝑊42 𝑊43 𝑊44 𝑊45 · · · 𝑊4𝐼

𝑊51 𝑊52 𝑊53 𝑊54 𝑊55 · · · 𝑊5𝐼

· ·

𝑊𝐽1 𝑊𝐽2 𝑊𝐽3 𝑊𝐽4 𝑊𝐽5 · · · 𝑊𝐽𝐼

𝑊13

𝑊23

𝑊33

𝑊43

𝑊53

· · ·

𝑊𝐽3

𝑊31 𝑊32 𝑊33 𝑊34 𝑊35 · · · 𝑊3𝐼

ComputeStatusHiddenUnits

coalesced
accesses

ComputeStatusVisibleUnits

non-coalesced
accesses

Figure 5.25: Implications of storing the connection weights using row-major order.

threads being executed in each call of ComputeStatusHiddenUnits will be equal
to max(𝑁, 65535)× 𝐽 ×max(𝐼, 1024), for devices with a compute capability of 2.x
or higher. Similarly, the actual number of threads being executed in each call of
ComputeStatusVisibleUnits will be equal to max(𝑁, 65535)× 𝐼 ×max(𝐽, 1024).
To better understand the impact of the decision of creating a thread per connection,
instead of a thread per neuron, let us consider the following example: suppose
that the training dataset is composed of 1, 000 images (𝑁 = 1, 000) of 28 × 28
pixels (𝐼 = 784) and that the RBM being trained contains 1, 000 hidden units
(𝐽 = 1, 000), using our approach, both kernels (ComputeStatusHiddenUnits and
ComputeStatusVisibleUnits) will execute 784, 000, 000 threads. If alternatively,
we had used a neuron per thread, in the same scenario, we would have at most 1
million threads.

The order in which the weights of matrix W are stored in the memory
(row-major or column-major) affects both the ComputeStatusHiddenUnits and
ComputeStatusVisibleUnits kernels. Essentially, one of the kernels will be able
to access the weights in a coalesced manner, thus speeding up its execution,
while the other will not. Since the kernel ComputeStatusHiddenUnits needs
to be called more times (see Figure 5.23 and/or Algorithm 3), we decided to
store W in a row-major order, thus improving its performance in detriment of
the ComputeStatusVisibleUnits kernel [Lopes et al., 2012b]. Figure 5.25 shows
the effects of this decision. When storing the weights in row-major order, the
ComputeStatusHiddenUnits kernel will be able to access the weights in a coalesced
manner, but the ComputeStatusVisibleUnits kernel must access them in a non-
coalesced manner. On the other hand, if the weights are stored in column-major
order then the ComputeStatusVisibleUnits kernel will be able to access them in

166

5.2 Deep Belief Networks (DBNs)

Block (Connection (𝑗, 𝑖))
Sample 1 Sample 2 Sample 3

. . .
Sample 𝑁

Grid
Block(0,0) Block(0,1) Block(0,𝐼)

Block(1,0) Block(1,1) Block(1,𝐼)

Block(𝐽,0) Block(𝐽,1) Block(𝐽,𝐼)

· · ·

· · ·

· · ·

· · ·· · · · · · · · ·

gridDim.x (𝑖 = 1 . . . 𝐼)

gr
id

Di
m.

y
(𝑗

=
1.

..
𝐽

)

Figure 5.26: Grid and block structure used by the first approach of the kernel
CorrectWeights.

a coalesced manner, however the ComputeStatusHiddenUnits must access the
weights in a non-coalesced manner.

The bulk work to be carried out by the CorrectWeights kernel consists of
aggregating the values for Δ𝑊𝑗𝑖, Δ𝑏𝑗 and Δ𝑐𝑖 (see respectively (5.26), (5.27) and
(5.28)), needed to update the weights. Our first approach to implement this kernel
consisted of creating a block for each connection, in which each thread will gather
and sum the values of one or more samples, depending on the actual number of
samples (𝑁). Then a reduction process takes place in order to calculate the deltas
upon which the weights and bias are updated. Figure 5.26 illustrates the resulting
grid and block structure.

In order to evaluate this first GPU implementation, we conducted preliminary
tests using the MNIST dataset (described earlier in Section 3.4, page 49). The
left column of Figure 5.27 shows the proportion of time spent in each kernel
for 𝐼 = 784, 𝐽 = 400 and 𝑁 = 1, 000 (these values correspond to the worst
GPU speedup, according to the test results presented later in Section 5.2.5).
Note that despite ComputeStatusHiddenUnits being called twice (see Figure 5.23
and/or Algorithm 3) the overall time consumed by this kernel is still inferior
to the time consumed by the ComputeStatusVisibleUnits kernel. This is due
to the advantage of accessing the memory in a coalesced manner. Moreover,
in this approach, the CorrectWeights kernel consumes almost 3/4 of the total
training time. Nevertheless, the preliminary tests show that overall, the GPU
implementation presented speedups of one order of magnitude relative to the CPU
version.

167

5 Unsupervised and Semi-supervised algorithms

ComputeStatusHiddenUnits kernel
ComputeStatusVisibleUnits kernel
CorrectWeights kernel

10.75%
101.47ms

14.94%

242.48ms

74.25%

943.51ms

701.03ms

36.14% 101.47ms

50.22% 141.01ms

13.43% 37.7ms280.18ms

First
approach

Improved
approach

Figure 5.27: Proportion of time spent, per epoch, in each kernel, as measured in
the computer System 2 (with a GTX 280).

ℎ1 ℎ2 ℎ3 · · · ℎ𝑗 · · · ℎ𝐽 1

𝑣1 𝑣2 · · · 𝑣𝑖 · · · 𝑣𝐼 1

Figure 5.28: Connections to the hidden unit 𝑗.

We identify two main problems in the first approach of the kernel CorrectWeights,
both related to memory accesses to the V(0), H(0), V(n) and H(n) matrices: first
the accesses were not being done in a coalesced manner and secondly many blocks
were trying to access the same memory addresses, which could potentially lead to
memory conflicts [Lopes et al., 2012b]. Figure 5.28 illustrates the latter problem:
for any given hidden unit, ℎ𝑗 , there are 𝐼 + 1 connections, which need to access the
ℎ𝑗 value in order to update their weights. Hence, they all need to access the same
elements of H(0) and H(n). Similarly, for any given visible unit, 𝑣𝑖, there are 𝐽 + 1
connections that need to access the 𝑣𝑖 value in order to update their weights (see
Figure 5.29). Thus, they all need to access the same elements of V(0) and V(n).

To avoid these problems we decided to use a different approach and rewrite the
referred kernel from scratch. The rationale consists of avoiding memory conflicts
and uncoalesced accesses, while taking advantage of the shared memory to reduce
global memory accesses. To this end, in our new and improved approach, each

168

5.2 Deep Belief Networks (DBNs)

ℎ1 ℎ2 ℎ3 · · · ℎ𝑗 · · · ℎ𝐽 1

𝑣1 𝑣2 · · · 𝑣𝑖 · · · 𝑣𝐼 1

Figure 5.29: Connections to the visible unit 𝑖.

Block 0 (16×16 connections)
Connection (0,0) Connection (0,1) Connection (0,2)

. . .
Connection (0, 15)

Connection (1,0) Connection (1,1) Connection (1,2)
. . .

Connection (1, 15)

Connection (2,0) Connection (2,1) Connection (2,2)
. . .

Connection (2, 15)

· · · · · · · · · · · · · · ·

Connection (15,0) Connection (15,1) Connection (15,2)
. . .

Connection (15, 15)

blockDim.x (visible unit 𝑖)

b
lo
c
k
D
im

.y
(h

id
de

n
un

it
𝑗)

Figure 5.30: Block structure of the improved approach of the CorrectWeights

kernel.

block processes several adjacent connections that require, to some degree, accessing
the same elements of V(0), H(0), V(n) and H(n). Figure 5.30 shows the new block
structure of the kernel CorrectWeights. The number of threads per block was
defined to be 16× 16 = 256, since it consistently yielded the best results among
several configurations tested in the MNIST dataset, using different values of 𝐽 and
𝑁 . Each thread within a block must now process all the samples. For each sample,
the block starts by copying the portions of V(0), H(0), V(n) and H(n), required by
all the threads within the block, to the shared memory which is much faster than
the global memory and can be used simultaneously by several threads within the
block. Note that for threads with the same index 𝑖 there will be 16 threads (each
with a different 𝑗) that use the same values of V(0) and V(n). Similarly, for threads
with the same index of 𝑗 there will be 16 threads (each with a different 𝑖) that
use the same values of H(0) and H(n). Moreover, since the required portions of the
matrices V(0), H(0), V(n) and H(n) are gathered for the same sample, the global
memory accesses are now coalesced.

169

5 Unsupervised and Semi-supervised algorithms

Although the new approach has a much smaller number of blocks and threads,
due to the coalesced memory accesses and the improved use of the shared memory
it is over 18 times faster than the original one (see Figure 5.27). Note that the
discrepancy is even bigger for greater values of 𝑁 and 𝐽 . Moreover, with this
change, correcting the weights and bias is now the fastest task of the training
process.

In terms of computation accuracy, the differences between the GPU and the
CPU are irrelevant due to the stochastic nature of the CD–𝑘 algorithm.

5.2.5 Results and Discussion

Experimental Setup

In our testbed experiments we have used two datasets: the MNIST database of
hand-written digits (see Section 3.4, page 49) and the HHreco multi-stroke symbol
database (see Section 3.4, page 46). Altogether, three different experiments were
conducted.

First, an experiment for evaluating the performance of the multi-core GPU
parallel implementation was carried out. Considering that both the resulting
datasets have an equal number of inputs, the tests for evaluating the multi-core
GPU parallel implementation were carried out exclusively for the MNIST dataset.
Moreover, since DBNs are composed by stacked RBMs, which are individually
trained, we concentrate our efforts on testing the algorithms’ performance for
training RBMs. To this end, we have trained several RBMs, varying the number
of training samples, 𝑁 , and the number of hidden neurons, 𝐽 , using both the GPU
and CPU versions of the CD–𝑘 algorithm. Furthermore, the performance of the
CUDA parallel implementation was benchmarked against the counterpart CPU
version, using the computer system 3 (see Table 3.1, page 38).

Second, we have conducted an experiment to evaluate the convergence
performance of the adaptive step size method. To this end, the proposed method
was compared against several typical fixed learning rate and momentum settings.
In this case, the experiment was carried out using the computer system 2 (see
Table 3.1, page 38). Moreover, the study was also confined to the MNIST dataset.

Finally, in the last experiment, the main objective consisted of analyzing the
effects of varying the number of layers and neurons of a DBN in terms of classification
performance. To this end, we have trained hundreds of networks on both datasets,
varying both the number of layers and the number of neurons in each hidden
layer. As in the previous experiment, this study was carried out using the computer
system 2 (see Table 3.1, page 38). Moreover, the final training step of the DBNs was
made using the GPU implementation of the BP and MBP algorithms, described
earlier in Section 4.1.3, page 75).

170

5.2 Deep Belief Networks (DBNs)

Benchmarks Results

With the purpose of comparing the RBM GPU implementation with the
corresponding CPU implementation, we have varied the number of hidden units,
𝐽 , and the number of training samples, 𝑁 . For statistical significance we have
performed 30 tests per configuration. Figure 5.31 presents the average time required
to train a RBM for one epoch, as well as the GPU speedups, depending on the
hardware and according to the two aforementioned factors.

The GPU speedups obtained range from approximately 22 to 46 times. With
such speedups we can transform a day of work into an hour or less and an hour of
work into two or three minutes of work. It is noteworthy to say that for 𝑁 = 60, 000
and 𝐽 = 800 the CPU version takes over 40 minutes to train a single epoch, while
the GPU version takes approximately 53 seconds [Lopes et al., 2012b]. Moreover,
there seems to be a direct correlation between the speedup and the number of
samples. This was anticipated since, as we said before, the GPU scales better than
the CPU when facing large-volumes of data that can be processed in parallel, due
to its high-number of cores. Although not so pronounced, we can observe a similar
trend correlating the speedup and the number of hidden units.

In order to evaluate the impact of the adaptive step size technique, we have
compared it with three different fixed learning rate settings (𝜂 = 0.1, 𝜂 = 0.4
and 𝜂 = 0.7), while using three distinct momentum terms (𝛼 = 0.1, 𝛼 = 0.4 and
𝛼 = 0.7). For the adaptive step size technique we have set the initial step sizes to
0.1. Moreover, the increment, 𝑢, and decrement, 𝑑, factors were set respectively
to 1.2 and 0.8. Altogether, twelve configuration settings (three adaptive step size
and nine fixed learning rate) were used. For statistical significance, we conducted
30 tests per configuration, using a RBM with 784 inputs and 100 outputs. Each
test starts with a different set of weights, but for fairness all the configurations
use the same weight settings, according to the test being performed. Due to the
high number of tests, we decided to limit the size of the training dataset to 1,000
samples. Hence, only the first 1,000 samples of the MNIST database were used to
train the networks.

Figure 5.32 shows the evolution of the RMSE of the reconstruction, according to
the learning rate, 𝜂, and momentum, 𝛼, settings. Independently of the learning
rate used, the best results were obtained for a momentum 𝛼 = 0.1, while the worst
solutions were obtained for 𝛼 = 0.7. As expected the adaptive step size technique
excels all the fixed learning rate configurations, regardless of the momentum term
used. The discrepancy is quite significant (2.51%, 9.39% and 14.20% relative to
the best fixed learning rate solution, respectively for 𝛼 = 0.1, 𝛼 = 0.4 and 𝛼 = 0.7)
and demonstrates the usefulness of the proposed technique and its robustness to
an inadequate choice of the momentum [Lopes and Ribeiro, 2012b]. Moreover,
in order to achieve better results than those obtained after 1,000 epochs, using a
fixed learning rate, we would only require 207, 68 and 48 epochs, respectively for
𝛼 = 0.1, 𝛼 = 0.4 and 𝛼 = 0.7 [Lopes and Ribeiro, 2012b]. Figure 5.33 shows the
quality of the reconstruction of the original images in the database, for both the

171

5 Unsupervised and Semi-supervised algorithms

0.01

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900

T
im

e
(s

)

Hidden units

𝑁 = 1, 000

23.26×
23.13×

21.86×
24.46× 29.79×

GTX 460 (GPU)
dual-core i5 (CPU)

0.1

1

10

100

1000

0 100 200 300 400 500 600 700 800 900

T
im

e
(s

)

Hidden units

𝑁 = 10, 000

32.83×
30.29×

28.59× 29.47× 38.16×

GTX 460 (GPU)
dual-core i5 (CPU)

1

10

100

1000

10000

0 100 200 300 400 500 600 700 800 900

T
im

e
(s

)

Hidden units

𝑁 = 60, 000

42.73×
43.46×

38.64×
41.83× 46.07×

GTX 460 (GPU)
dual-core i5 (CPU)

Figure 5.31: MNIST average training time per epoch (GPU speedups are
indicated).

172

5.2 Deep Belief Networks (DBNs)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 100 200 300 400 500 600 700 800 900 1000

R
M

SE
(r

ec
on

st
ru

ct
io

n)

Epoch

𝛼 = 0.1

adaptive
𝜂 = 0.1
𝜂 = 0.4
𝜂 = 0.7

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 100 200 300 400 500 600 700 800 900 1000

R
M

SE
(r

ec
on

st
ru

ct
io

n)

Epoch

𝛼 = 0.4

adaptive
𝜂 = 0.1
𝜂 = 0.4
𝜂 = 0.7

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 100 200 300 400 500 600 700 800 900 1000

R
M

SE
(r

ec
on

st
ru

ct
io

n)

Epoch

𝛼 = 0.7

adaptive
𝜂 = 0.1
𝜂 = 0.4
𝜂 = 0.7

Figure 5.32: Average reconstruction error (RMSE) according to the learning
parameters, 𝜂 and 𝛼.

173

5 Unsupervised and Semi-supervised algorithms

Training images

Reconstruction
after 50 epochs
Reconstruction

after 100 epochs
Reconstruction

after 250 epochs
Reconstruction

after 500 epochs
Reconstruction

after 750 epochs
Reconstruction

after 1000 epochs

Adaptive Step Size Fixed (optimized) learning rate 𝜂 = 0.4

Figure 5.33: Impact of the step size technique on the convergence of a RBM
(𝛼 = 0.1).

best network trained with a fixed learning rate (𝜂 = 0.4, 𝛼 = 0.1) and the best
network trained with the step size technique. Furthermore, Figure 5.34 shows the
receptive fields of the aforementioned networks and Figure 5.35 their excitatory
and inhibitory response zones.

Training a network for 1,000 epochs using the adaptive step size took on average
76.63±0.09 seconds, while training the same network with a fixed learning rate took
on average 76.12±0.05 seconds. Thus, the overhead of this method is not significant,
while the convergence of the network is considerably enhanced. Additionally, the
adaptive step size technique solves the difficulty of searching and choosing an
adequate learning rate, 𝜂, and momentum, 𝛼 terms. Moreover, the step size
method can easily recover from a bad choice of the initial learning rate [Almeida,
1997] and the parameters 𝑢 and 𝑑 are easily tuned (the values chosen for this
problem will most likely yield good results for other problems) [Lopes and Ribeiro,
2012b].

In order to analyze the effects of varying the number of layers and neurons, we
have pre-trained several three-layer DBNs using combinations of 100, 500 and 1,000
neurons in each layer. Hence, for each dataset (MNIST and HHreco) a total of
33 = 27 DBNs were trained. Since the DBNs have a modular architecture, i.e.
they are built by stacking RBMs on top of each other, we have also included the
networks obtained by considering only the first and the first two hidden layers.
Thus, we end up with a total of 27× 3 = 81 networks per dataset.

Furthermore, we have decided to test not only the “traditional” approach of
adding an additional layer to the unsupervised pre-trained DBN, but also to test the
effects of adding two-layers (one hidden layer with 30 neurons and one output layer).

174

5.2 Deep Belief Networks (DBNs)

Adaptive step size

Fixed (optimized) learning rate 𝜂 = 0.4

Figure 5.34: Receptive fields of the best networks trained either with the adaptive
step size or with a fixed learning rate.

175

5 Unsupervised and Semi-supervised algorithms

Adaptive step size

Fixed (optimized) learning rate 𝜂 = 0.4

Figure 5.35: Receptive fields excitatory (red) and inhibitory (blue) response zones
for the best networks trained either with the adaptive step size or
with a fixed learning rate.

176

5.2 Deep Belief Networks (DBNs)

Table 5.7: Top 10 DBNs with the best classification performance for the MNIST
dataset. The topology column refers to the topology of the added
classification layers.

Topology Pre-trained DBN layers DBN Layers F-Measure
MBP 784-1000-1000 784-1000-1000-30-10 82.92
MBP 784-500 784-500-30-10 82.77
MBP 784-500-1000 784-500-1000-30-10 82.72
MBP 784-500 784-500-30-10 82.49
MBP 784-500-1000 784-500-1000-30-10 82.38
MBP 784-500 784-500-30-10 82.37
MBP 784-1000-1000 784-1000-1000-30-10 82.36
MBP 784-1000-500 784-1000-500-30-10 82.19
MBP 784-500-100 784-500-100-30-10 82.11
MBP 784-500-1000 784-500-1000-30-10 82.04

Moreover, we have also tested the effects of adding MBP layers (see Section 4.1),
instead of the standard BP ones.

Overall, for each one of the original pre-trained DBNs four different classifier
models were constructed. Thus, a total of 81× 4 = 324 networks were trained for
each dataset. Given the large number of networks to be trained and since that, as
we said before, the BP algorithm hardly changes the weights learned in the greedy
stage, we have decided to freeze the weights of the pre-trained networks, changing
only the weights of the appended classification layers. Additionally, we have also
decided to use a small number of training samples for each dataset. Hence, in the
case of the MNIST database, we have used 1,000 samples (100 of each digit) for the
training dataset and the remaining 69,000 samples for the test dataset. Similarly,
for the HHreco database, we have used 650 samples (50 per symbol) for the training
dataset and the remaining 7,141 for the test dataset.

During the pre-training phase, the RBMs encompassing the DBNs were trained
for a maximum of 1,000 epochs. Moreover, in the discriminative phase the resulting
networks were trained for a maximum of 100,000 epochs.

Figure 5.36 shows the classification performance of the resulting models, according
to the number of layers of the pre-trained DBNs. Moreover, Tables 5.7 and 5.8
present the top 10 best networks achieved respectively for the MNIST and HHreco
datasets. Surprisingly, the average F-Measure is inversely proportional to the
number of layers (see Figure 5.36). Nevertheless, in the case of the MNIST dataset,
most of the best DBNs contain four layers, not including the input layer (see Table
5.7). However, in the case of HHreco dataset, six networks out of ten contain only
two layers while the remaining four contain three layers (see Table 5.8).

177

5 Unsupervised and Semi-supervised algorithms

50

55

60

65

70

75

80

85

1 2 3

F-
M

ea
su

re
(%

)

Number of layers

MNIST dataset

45

50

55

60

65

70

75

80

85

1 2 3

F-
M

ea
su

re
(%

)

Number of layers

HHreco dataset

Figure 5.36: DBNs classification performance, according to the number of pre-
training layers.

178

5.2 Deep Belief Networks (DBNs)

Table 5.8: Top 10 DBNs with the best classification performance for the HHreco
dataset. The topology column refers to the topology of the added
classification layers.

Topology Pre-trained DBN layers DBN Layers F-Measure
BP 784-1000 784-1000-13 80.37

MBP 784-1000-500 784-1000-500-13 80.25
MBP 784-500-500 784-500-500-13 80.13
MBP 784-1000-500 784-1000-500-13 80.04
MBP 784-1000-500 784-1000-500-13 79.95
MBP 784-1000 784-1000-13 79.79
MBP 784-1000 784-1000-13 79.78
MBP 784-1000 784-1000-13 79.63
BP 784-500 784-500-13 79.61
BP 784-500 784-500-13 79.44

Although these results could probably be improved by fine-tuning all the weights
of the network, we believe that the reduced number of samples that were used
prevents the higher-order layers of the DBNs from extracting useful features
providing real discriminative gains, even though they may present reduced error
rates. Intuitively, for these layers to be able to capture the underlying regularities
of the data, the universe of training samples need to contain evidence of such
regularities [Lopes and Ribeiro, 2013]. Naturally, the more samples we have the
more likely (probable) it is for the training data to exhibit evidences of more and
more complex regularities. Hence, in order to create models that can actually
extract complex and useful features from the raw data, the depth of the network
must take into consideration not only the number of training samples but also their
diversity. In practice, however, since a DBN is a modular system, it is possible to
add new layers, increasing the network depth and test whether the new features
improve the overall system [Lopes and Ribeiro, 2013]. To corroborate this idea
we have performed some preliminary tests, using all the 60,000 training samples
of the MNIST database. The amount of time required for training a DBN model
using such volume of samples is substantially large, involving several hours of
training for both the pre-training and the training phases, thus making it difficult
to carry out more exhaustive tests. Nevertheless, we were able to achieve far better
results than the ones presented in Table 5.7 for all of the DBN models constructed.
The best DBN, which presented an F-Measure of 95.01%, is a four layer network
(784-600-400-20-10). The pre-training of the original 784-600-400 DBN (each RBM
was trained for 300 epochs) took approximately 3:34 hours. Then two MBP layers
were added to the network and the resulting network was trained during 10,000

179

5 Unsupervised and Semi-supervised algorithms

Table 5.9: Confusion matrix of the best MNIST DBN (trained with 60,000
samples).

Predicted class
actual 0 1 2 3 4 5 6 7 8 9

0 959 0 1 2 1 3 6 2 3 3
1 0 1120 5 3 0 2 1 2 2 0
2 6 2 979 9 7 1 8 10 9 1
3 1 1 10 947 2 18 2 9 12 8
4 2 4 6 0 927 1 8 8 6 20
5 4 2 0 23 6 830 10 1 13 3
6 8 4 3 0 7 5 926 1 3 1
7 0 5 18 10 4 0 1 964 3 23
8 5 3 7 12 10 7 3 4 918 5
9 6 4 0 7 20 6 1 13 16 936

epochs for approximately 3:41 hours. Note that the pre-trained weights were frozen.
Table 5.9 presents the confusion matrix of this network.

It is important to point out that the classification performance of the networks
presented in Table 5.7 (measured over the 69,000 samples in the test dataset) is
actually better than the corresponding performance measured over the standard
test dataset (with 10,000 samples), making the results obtained with the full 60,000
training samples even better. Nevertheless, we are confident that these can be
improved, namely through the fine-tuning of all the network weights and through
the execution of additional experiments with different model configurations.

Figure 5.37 shows the classification performance of the resulting models, according
to the number of neurons in the first layer of the pre-trained DBNs. Note that
in this case, the average classification performance of the networks improves as
the number of units in the hidden layer grows. Moreover, all of the best networks,
presented in Tables 5.7 and 5.8, have at least 500 neurons in the first hidden layer.
Note also that there is an expressive discrepancy, in both datasets, between the
best networks containing 100 neurons in the first hidden layer (which presents an
F-Measure of 81.01% and 76.74% respectively for the MNIST and HHreco datasets)
and the remaining networks presented in Tables 5.7 and 5.8. Overall, these results
indicate that it is fundamental to extract a significant number of characteristics
from the original data right away in the lower-level layer, because these are the
key for the next layers to extract additional refined features. The results obtained
suggest that the more features (neurons) the first hidden layer comprises the better,
although we would need additional tests with more hidden units to confirm this
trend [Lopes and Ribeiro, 2013].

180

5.2 Deep Belief Networks (DBNs)

50

55

60

65

70

75

80

85

100 500 1000

F-
M

ea
su

re
(%

)

Hidden neurons (first layer)

MNIST dataset

45

50

55

60

65

70

75

80

85

100 500 1000

F-
M

ea
su

re
(%

)

Hidden neurons (first layer)

HHreco dataset

Figure 5.37: DBNs classification performance, according to the number of neurons
in the first hidden layer.

181

5 Unsupervised and Semi-supervised algorithms

Figure 5.38 presents the DBNs classification performance depending on the
topology (BP or MBP) of the additional layers. On average, in the case of the
MNIST dataset both topologies perform similarly, with slightly advantage to the
BP topology. However, it is important to point out that all of the top 10 best
networks, with no exception, have the MBP topology. In the case of the HHreco
dataset, on average the MBP networks perform much better than the BP ones
and most of the networks presented in Table 5.8 have the MBP topology. Overall,
these results confirm that it is possible to enhance the performance of DBNs by
including MBP layers in their architecture [Lopes and Ribeiro, 2013].

Figure 5.39 exhibits DBN classification performance, depending on whether an
additional hidden layer with 30 neurons was added to the pre-trained networks.
On average, in the HHreco dataset, having such an additional layer with randomly
initialized weights turns out to be beneficial, since the classification performance
is greatly enhanced. However, in the case of the MNIST dataset, the networks
with the additional layer yielded slightly worse results. Nevertheless, as weird
as it may seem, all of the top 10 best networks in the MNIST dataset have this
additional layer and none of the HHreco have it. These results show that the DBNs
performance can be improved by adding additional hidden layers with randomly
initialized weights to the pre-training DBNs [Lopes and Ribeiro, 2013].

5.3 Summary
In this Chapter, we have addressed two state-of-the-art of the art unsupervised
learning architectures. These (NMF and DBN) represent two different and powerful
approaches for extracting discriminative features directly from raw-data, thus
creating useful representations that can be fed into a supervised algorithm in order
to create improved models (by comparison with those derived from the original
data representations).

Typically, NMF is used to reduce the data dimensionality, while preserving the
information of the most relevant features in order to rebuild accurate approximations
of the original data, through additive combinations of a factorized parts-based
matrix. The rationale is to take advantage of the data redundancies in order to
extract the essential knowledge embedded within the data while discarding the
random noise that it may contain.

DBNs take a different approach by using a generative deep architecture model
in which more complex and sophisticated features are progressively extracted from
the original raw input signals (as we move deeper through the model layers). DBNs
are built by stacking several RBMs on top of each other and therefore allow for
overcomplete representations.

Despite their attractiveness, building either one of the aforementioned models
(NMF and DBN) is a computationally expensive and time consuming task, especially
when large volumes of data are considered. Accordingly, we have explored several
strategies to speedup the process of creating these models. In this context, we

182

5.3 Summary

50

55

60

65

70

75

80

85

BP MBP

F-
M

ea
su

re
(%

)

Topology (classification layers)

MNIST dataset

45

50

55

60

65

70

75

80

85

BP MBP

F-
M

ea
su

re
(%

)

Topology (classification layers)

HHreco dataset

Figure 5.38: DBNs classification performance, according to the topology of the
additional layers (added to the pre-trained networks).

183

5 Unsupervised and Semi-supervised algorithms

50

55

60

65

70

75

80

85

No Yes

F-
M

ea
su

re
(%

)

Additional hidden layer added to the pre-trained DBNs

MNIST dataset

45

50

55

60

65

70

75

80

85

No Yes

F-
M

ea
su

re
(%

)

Additional hidden layer added to the pre-trained DBNs

HHreco dataset

Figure 5.39: DBNs classification performance, depending on whether or not an
additional hidden layer was added to the pre-trained networks.

184

5.3 Summary

have successfully mapped both the NMF and the DBNs (or more precisely of the
CD–𝑘) algorithms to the GPU. The resulting parallel implementations provide
remarkable performance gains relatively to the corresponding standalone CPU
baseline implementations. Hence, they are of considerable value as they make
possible the development of useful ML applications that could be disregarded
otherwise, due to temporal constraints.

In addition, we have also contemplated approaches to improve the classification
performance of systems integrating NMF and DBNs models. This has resulted in
the development of a new semi-supervised algorithm (SSNMF) which attempts to
extract unique class features (instead of characteristics that are shared by several
classes) and in an in-depth analysis of the effects of varying the number of layers
and neurons in a DBN as well as the effects of adding MBP layers to this type of
network.

Concerning the NMF algorithm, we have performed several experiments using
three different face recognition benchmarks (CBCL, Yale and AT&T). In terms
of classification performance the experiments demonstrate that the NMF-based
systems present competitive results as compared with other meritorious face
recognition algorithms, while evidencing superior robustness when dealing with
different lighting conditions (see Tables 5.1, 5.2, 5.5 and 5.6). In particular, the
SSNMF is highly desirable for unbalanced datasets due to its inherent aptitude
to extract class specific features. The experimental results concerning the SSNMF
proposed algorithm show that it reduces considerably the risk of creating inadequate
models as compared to the original NMF method (see Figures 5.16, 5.17 and Table
5.4). This is also patent in Tables 5.5 and 5.6, which confirm that in many cases
the individual class features extracted by SSNMF provide a better foundation for
building a classification model than the typical NMF characteristics (compare the
NMF-SVM and SSNMF-SVM columns).

In addition SSNMF presents other advantages relative to the baseline NMF
algorithm. First, it reduces significantly the computational cost inherent to the
factorization of the matrices (see Figure 5.15). Second, it creates sparser matrices
(see Table 5.3 and Figure 5.3).

Concerning the GPU parallel implementations of the NMF algorithm, we
have obtained speedups of two-orders of magnitude for several face recognition
benchmarks (see Figures 5.7, 5.8, 5.9, 5.13 and 5.14). Naturally, the associated time
savings will exert a profound impact in the development of NMF-based systems. In
particular, in real-world scenarios these high-performance GPU implementations
may very well be the key factor for the success of many applications, since in order
to present new data to the classifier, first it is necessary to calculate the matrix
containing the codification of the parts-based images, H, that approximates the
new data (see Figure 5.2).

Regarding the DBNs, we have presented two complementary approaches that
result in a significant reduction of the amount of time spent in pre-training phase.
First we have designed an adaptive step size technique to enhance the convergence

185

5 Unsupervised and Semi-supervised algorithms

of the CD–𝑘 algorithm, thereby reducing the number of epochs necessary to train
the RBMs that support the DBN infrastructure. Second, we have implemented a
highly-scalable GPU parallel implementation of the CD–𝑘 algorithm, which boosts
notably the algorithms’ training speed. The experiments performed using the
MNIST dataset, demonstrate the efficiency of both approaches as shown in Figures
5.31, 5.32 and 5.33. The careful design of the CUDA kernels supporting the GPU
parallel implementation was vital to obtain speedups up to 46 times. In addition,
the proposed adaptive step size technique further reduces the training time by
decreasing the number of epochs needed for the networks to converge.

The resulting tool was used to analyze the effects of varying the number of layers
and neurons as well as the effects of adding new layers with randomly initialized
weights to the pre-trained networks. The influence of MBP layers with selective
actuation neurons was also studied. To this end, hundreds of DBNs were trained
in both the MNIST and the HHreco datasets. Due to the large number of networks
to be trained as part of these particular experiments, we have decided to use only a
small number of training samples for each dataset. This seems to be a disadvantage,
however, the large number of networks trained backup and endorse the conclusions
found. Moreover, according to preliminary tests our conclusions appear to be valid
even for larger training datasets.

One of the findings of this study is that the number and diversity of
training samples is highly correlated to the quality of the resulting DBN models.
Nevertheless, it is possible to build quality models even with few training samples
(see Tables 5.7 and 5.8). By increasing the number of training samples we can
build better models that are able to capture the underlying regularities of the data,
thereby improving the overall system discriminative capacity. Moreover, based on
the results, we believe that there is a relation between the number and diversity
of training samples and the maximum useful depth (in the sense of improving the
classification performance) of a DBN. The rationale is that a DBN can only find
the regularities that are actually present on the observed data and increasing the
depth of a DBN serves no purpose when the data itself does not exhibit the type
of complex regularities that would require additional layers. Therefore increasing
the number of samples increases the probability of the data samples to present the
same regularities of its true distribution.

Another finding is that the lower-level layer plays a fundamental role within a
DBN structure. It is vital to extract a significant number of characteristics from the
original data right away in this layer. Failure to do so may compromise the ability
of the network to extract more complex and useful features in the next layers. In
fact, the results obtained (see Figure 5.37) suggest that the more features (neurons)
the first hidden layer comprises the better, although additional experiments are
required to confirm this trend.

We also find that unlike the pre-conceived idea that all the layers within the DBN
should be pre-trained, adding an additional hidden layer with randomly initialized
weights to the top hidden layer of a DBN can actually improve its classification

186

5.3 Summary

performance by allowing the resulting network to further refine its discriminative
capacity (see Figure 5.39).

Finally, we have shown that by adding MBP layers with selective actuation
neurons to a DBN we could also improve its classification performance, since these
neurons provide the means for better generalization by seamless partition of the
feature input space (see Figure 5.38).

Future Work

Future work will cover the design and execution of additional experiments concerning
both unsupervised approaches (NMF and DBNs). With respect to the NMF
algorithm, a line of work consists of determining the impact of the number of
parts-based images, 𝑟, in the quality of the resulting solutions. Another line of
work consists of assessing the performance of the SSNMF algorithm on unbalanced
datasets.

Concerning the DBNs, we aim to study further the relation between the networks
architecture (e.g. number of layers, neurons per layer) and the corresponding
performance in order to gain a deeper understanding regarding the adequate
topology selection. In particular, experiments involving a larger number of samples
are desirable to further support and validate our findings.

187

CHAPTER 6

Conclusions and Perspectives

6.1 Main Research Accomplishments and Conclusions . . 189

6.2 Future Work . 194

This Thesis aims at the development of novel ML algorithms and high-performance
implementations of existing ones with data scalability in mind. The rationale
consists of increasing the practical applicability of ML solutions. Incidentally,
large-scale data problems (“Big Data”) require new approaches for the concomitant
problem of missing data and therefore this contingency was also considered.

In this Chapter, we provide an overview of the outcomes of this research work
as well as suggestions for future work. Accordingly, Section 6.1 presents the main
outcomes of this work and Section 6.2 addresses future lines of research.

6.1 Main Research Accomplishments and
Conclusions

A new adaptive step size technique that enhances the convergence of Restricted
Boltzmann Machines (RBMs), thereby effectively decreasing the training time of
Deep Belief Networks (DBNs), was presented in Section 5.2.3. The results obtained
for the MNIST database of handwritten digits demonstrate that the proposed
technique is capable of decreasing substantially the number of epochs necessary to
train the RBMs that support the DBN infrastructure. In addition, the technique
solves the problem of finding an adequate set of learning parameters.

189

6 Conclusions and Perspectives

A novel semi-supervised algorithm, based on the Non-Negative Matrix
Factorization (NMF), was presented in Section 5.1.3. The algorithm, designated
by Semi-Supervised NMF (SSNMF), attempts to extract unique class features
(instead of “global” characteristics that are shared by several classes), assuming
particular relevance for unbalanced datasets where the distinct characteristics of
minority classes may be interpreted as noise by traditional NMF approaches. The
experimental results demonstrate that the SSNMF reduces considerably the risk of
creating inadequate models when compared to the original NMF method, providing
a better foundation for building classification models. Additionally, the SSNMF
generates sparser matrices and is over 6 times faster than the original method.

A novel incremental (instance-based) supervised learning algorithm with built-
in multi-class support was presented in Section 4.3. This algorithm, designated
by Incremental Hypersphere Classifier (IHC), is extremely versatile and highly-
scalable, being able to accommodate memory and computational restrictions, while
creating the best possible model with the amount of given resources. Since the
algorithms execution time grows linearly with the amount of samples stored in
the memory (which we can control), creating adaptive models and extracting
information in real-time from large-scale datasets and data streams is practicable.
Moreover, the experiments results, using well-known datasets (KDD Cup 1999 ,
Luxembourg Internet usage and Electricity demand), demonstrated that the IHC is
able to handle concept drifts scenarios, while maintaining superior classification
performance. Additionally, the resulting models are interpretable, making this
algorithm useful even in domains where interpretability is a key factor. Finally,
since the IHC keeps the samples that are (believed to be) lying on the decision
frontier while removing the noisy and less relevant ones, it represents a good choice
for selecting a representative subset of the data for applying more sophisticated
algorithms in a fraction of the time required for the complete dataset.

A learning framework (IHC-SVM), encompassing the IHC and SVM algorithms,
was devised for application in a protein membership prediction real-world case
study. The resulting system uses the IHC for immediate prediction and selection
of a subset of the training samples, which is subsequently used to build a model
using the SVM algorithm. Moreover, the incremental nature of IHC permits ready
detection of significant changes, which require updating the SVM model. Using
the IHC we were able to obtain a test F-Measure of 93.73%, while storing less than
40% of the original samples. Naturally, this value is smaller than the one yielded
by the baseline SVM model (95.91%), which was created using all the training
samples. However, the IHC-SVM approach is able to excel the baseline SVM using
only a subset of the data. Using roughly 50% of the original data, it is possible to
create improved models (with an F-measure up to 96.39%) and we can compact
the data even further and still obtain models that match closely the performance
of the baseline model. Thus, there is strong evidence that the process used by the
IHC to decide which samples to keep and which to discard is efficient. Overall

190

6.1 Main Research Accomplishments and Conclusions

the proposed IHC-SVM approach demonstrated that it is able to deal with the
everyday dynamic changes of real-world biological databases.

A novel solution, designated by Neural Selective Input Model (NSIM), which
empowers Neural Networks (NNs) with the ability to handle Missing Values (MVs),
was proposed in Section 4.2. To our best knowledge this is the first method that
allows Back-Propagation (BP) and Multiple Back-Propagation (MBP) networks
to cope directly with this ubiquitous problem without requiring data to be
preprocessed, thereby positioning these networks as an excellent alternative to other
algorithms, such as decision trees, capable of dealing directly with the Missing
Values Problem (MVP). Through the use of selective inputs the proposed approach
accounts for the creation of different conceptual models, while maintaining a unique
physical model. The NSIM excels single imputation methods while offering better or
similar classification performance than state-of-the-art multiple imputation methods,
especially when the proportion of MVs is significant (more than 5% in our tests)
or the prevalence of MVs affects a large number of features. Moreover, multiple
imputation methods are computationally demanding and therefore impractical
for large-scale datasets. In addition, the NSIM solution presents several other
advantages as compared to traditional methods for handling MVs: (i) it reduces the
burden and the amount of time associated with the preprocessing task by avoiding
the estimation of MVs; (ii) it preserves the uncertainty inherently associated to
the MVP, allowing the algorithms to differentiate between missing and real data;
(iii) it does not require Missing At Random (MAR) or Missing Completely At
Random (MCAR) assumptions to hold, since only the known data is used actively
to adjust the models; (iv) unlike preprocessing methods which may inject outliers
into the data, causing undesirable bias, the NSIM uses the best conceptual model
depending exclusively on the available data; (v) the NSIM can take advantage of
any informative knowledge associated with the MVs; (vi) it embodies the best
solution in terms of system integration, in particular for hardware realization as it
does not require the inclusion of additional and most likely complex systems; (vii)
NSIM shows a high degree of robustness, since it is prepared to deal with faulty
sensors.

The NSIM was successfully applied to a case study involving the prediction of
French bankruptcy companies. The results obtained (with an F-measure of 95.70%)
excel by far those previously obtained using imputation techniques and demonstrate
the validity and usefulness of the proposed approach in a real-world setting.

A new open-source GPU ML library, designated by GPUMLib, was presented in
Chapter 2. GPUMLib aims at providing the building blocks for the development of
high-performance GPU parallel ML software, promote cooperation within the field
and contribute to the development of innovative applications. Currently, GPUMLib
includes several GPU parallel implementations of relevant ML algorithms, upholding
considerable speedups. Since its release, GPUMLib (now with over 2, 000
downloads) has attracted the interest of numerous people, benefiting researchers
worldwide. Moreover, due to its quality and stringent documentation, GPUMLib

191

6 Conclusions and Perspectives

has received a 5 star award from the soft82.com editors, which is given to products
that are considered to be above average or excellent in their category.

The GPU parallel implementations of the Back-Propagation (BP) and Multiple
Back-Propagation (MBP) algorithms were presented in Section 4.1.3. These
integrate the NSIM for handling MVs. The experiments conducted demonstrate
that the GPU scales better than the CPU, reducing considerably the networks
training time. The speedups obtained, ranging from 5× to 180× (on a GTX 280
device), are directly correlated to the complexity of the problem.

Using the aforementioned GPU parallel implementations, a real-world case study
involving the detection of Ventricular Arrhythmias (VAs) was successfully addressed.
The results obtained (presenting a sensitivity of 98.07%) that improve previous
work, would not have been possible without the GPU speedups, which accounts
for reducing the work of weeks to a matter of hours.

An Autonomous Training System (ATS) that is capable of automatically finding
high-quality NNs-based solutions was presented in Section 4.1.4. The proposed
system takes full advantage of the GPU power, searching actively for better solutions
without human intervention (aside from the initial configuration). The experiments
demonstrate that the ATS privileges topologies with improved classification
performance, saving researchers time and effort.

A total of four distinct GPU parallel implementations of the NMF algorithm
were presented in Section 5.1.4. These yielded speedups ranging from 55× to 706×
(on a GTX 280 device) and assume particular relevance in real-world scenarios,
where they may hold the key for the success of many applications.

A hybrid NMF-based face recognition approach was delineated. The rationale
consists of using NMF (or SSNMF) to extract a set of parts-based features from
the original images, which are subsequently used to build a classification model
using a supervised learning algorithm. The proposed approach was tested on the
Yale and AT&T (ORL) facial images databases, yielding competitive accuracy
and evidencing superior robustness regarding different lighting conditions, thereby
demonstrating its usefulness. Specifically, in the Yale dataset an average accuracy
of 89.7% was obtained by the NMF-MBP approach, while for the AT&T dataset
an average accuracy of 95.0% was obtained using the SSNMF-SVM approach.

A GPU parallel implementation of the CD–𝑘 algorithm, which boosts
considerably the RBMs training speed was presented in Section 5.2.4. The
implementation includes the aforementioned adaptive step size technique to further
decrease the RBMs and DBNs training time. In experiments performed on MNIST
database, the GPU parallel implementation yielded speedups between 23× and 46×
(on a GTX 280 device), depending on the complexity of the problem. Moreover,
these demonstrate the effectiveness of coupling both approaches, which results in
significant time savings.

The resulting tool was used to carry out an extensive study for analyzing the
factors that affect the quality of the DBN models. The study involved training
hundreds of DBNs with different configurations on two distinct handwritten

192

6.1 Main Research Accomplishments and Conclusions

character recognition databases (MNIST and HHreco). It was found that the
number and diversity of training samples is highly correlated to the quality of
the resulting models. Moreover, the results empirically support that these two
factors have a significant impact on the maximum useful depth (in the sense of
improving the classification performance) of a DBN. The results also suggest that
the lower-level layer plays a fundamental role within the networks structure. In this
context, extracting a significant number of characteristics from the original data
right away in this layer is crucial in order to obtain quality models. In fact, the
results suggest that we can improve the overall models by adding additional units to
the first layer (although probably there should be an upper bound from which the
gain is residual or even negative). Nevertheless, further experiments are required
to confirm this trend. Additionally, we found that (unlike the pre-conceived idea
that all the layers within the DBN should be pre-trained) adding an additional
hidden layer with randomly initialized weights to the top hidden layer of a DBN can
actually improve its classification performance by allowing the resulting network
to further refine its discriminative capacity. Finally, the results show that we
can improve the classification performance of DBNs by adding MBP layers (with
selective actuation neurons) to their architecture.

Overall, in this Thesis we have presented several methods and strategies that
(from the perspective of ML algorithms) successfully address the scalability issues
inherent to “Big Data”. Specifically, the GPU parallel implementations of ML
algorithms (included in GPUMLib) extend the applicability of these methods
to much larger datasets. To this end, a very important component resides on
the well-designed kernels, which allows the devices to adaptively balance the
workload across its many cores, thereby maximizing the occupancy and throughput.
Moreover, we have proposed novel methods (the SSNMF and the CD–𝑘 adaptive
step size technique) that further enhance the scalability (relatively of the original
algorithms), making the combined approach (with the GPU implementation) even
more attractive. Furthermore, using a different but also successful approach, we
presented an algorithm (IHC) that scales linearly with an amount of pre-defined
memory, independently of the volume of data to process, which makes it suitable
not only for handling large-scale datasets but also data streams.

Finally, in this Thesis we have also successfully addressed the complementary
problem of handling missing data in large datasets. In this context, the NSIM
proposed approach proved to be a viable and efficient solution for this problem and
highlights the path for the application of similar strategies in other ML methods.

It is worth mentioning that all the proposed methods and tools were validated by
extensive experiments and statistical evidence, using both well-known benchmarks
and real-world case studies.

193

6 Conclusions and Perspectives

6.2 Future Work
The work developed in this Thesis is valuable for the scientific community presenting
several relevant aspects in machine learning for adaptive multi-core machines. As
pointed out in the previous Chapters, and reiterated here, it provides many possible
directions for future work.

Strikingly by stacking RBMs in deep architectures – as the DBNs – one can
learn features from features in the hope of arriving at a high-level representation,
closer to the latent variables. One possible way to explore this aspect is to
further study the interplay between the networks architecture and its generalization
performance. In particular, experiments involving a larger number of (more
complex) samples are needed to gain a deeper insight of its topology to match
higher levels of representation. In this line, by implementing the parallel tampering
technique, which is credited for producing a quicker mix of the Markov Chain
Monte Carlo (MCMC) a less biased gradient approximation could be explored.
Ultimately parallel tampering may lead to better learning with a significantly
higher likelihood values [Fischer and Igel, 2013,Desjardins et al., 2010].

Given the demonstrated potential of NMF decomposition in image processing,
a natural direction of future work will be their extension to other conditions
which might involve the impact of the number of parts-based images, 𝑟, in the
quality of the resulting solutions. On the other hand, conducting experiments on
unbalanced datasets to compare the performance of the SSNMF with the baseline
NMF algorithm could also be of interest to explore further.

Another possible direction for future research is the design of more efficient ways to
automatically fine-tune the gravity, 𝑔, parameter for each class, thereby attributing
a distinct importance to each feature in IHC. Additionally, investigating the
impact of different distance metrics [Somorjai et al., 2011,Bonet et al., 2008,Skala,
2008,Bao et al., 2004] is worthwhile for fine-grained capturing of the dynamic drift
concepts with the developed algorithm. In this line, the integration of Incremental
Hypersphere Classifier [Bao et al., 2004] to handle dynamic number and length of
high-dimensional data streams would possibly help to better handle concept drift
at an instance level.

Following a recent trend towards GPU parallel implementations of ML algorithms,
other algorithms could be considered such as complex-valued neural networks, which
have recently gained momentum due to their aptitude to deal with specific types
of data (e.g. wave phenomena), would also be interesting to accomplish [Hirose,
2013, Nitta, 2013, Alexandre, 2011]. The application field of these networks is
expected to be wider, since they can represent more information (e.g. phase and
amplitude) [Nitta, 2013].

A final note on the extension of GPUMLib is given. It is important to continue
the development of this framework – by filling the dots in Figure 2.11 – in order to
augment its attractiveness to researchers worldwide.

194

Bibliography

[Abramov et al., 2010] Abramov, A., Kulvicius, T., Wörgötter, F., and Dellen,
B. (2010). Real-time image segmentation on a GPU. In Facing the multicore-
challenge, LNCS 6310, pages 131–142. [cited at page 16]

[Aha et al., 1991] Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-based
learning algorithms. Machine Learning, 6(1):37–66. [cited at page 108]

[Alavala, 2008] Alavala, C. R. (2008). Fuzzy Logic and Neural Networks: Basic
Concepts & Applications. New Age International Pushishers. [cited at page 96]

[Alexandre, 2011] Alexandre, L. A. (2011). Single layer complex valued neural
network with entropic cost function. In Proceedings of the 21st International
Conference on Artificial Neural Networks (ICANN 2011), LCNS 6791, pages
331–338. Springer-Verlag. [cited at page 194]

[Almeida, 1997] Almeida, L. B. (1997). Handbook of Neural Computation, chapter
C1.2 Multilayer perceptrons, pages C1.2:1–C1.2:30. IOP Publishing Ltd and
Oxford University Press. [cited at page 68, 69, 163, 174]

[Alpaydin, 2010] Alpaydin, E. (2010). Introduction to Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2nd edition. [cited at page
3, 41, 125]

[Ayuyev et al., 2009] Ayuyev, V. V., Joseph Jupin, P. W. H., and Obradovic, Z.
(2009). Dynamic clustering-based estimation of missing values in mixed type
data. In Proceedings of the 11th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 2009), LNCS 5691, pages 366–377. Springer-
Verlag. [cited at page 94, 95, 101, 102]

[Bache and Lichman, 2013] Bache, K. and Lichman, M. (2013). UCI machine
learning repository. http://archive.ics.uci.edu/ml. [cited at page 43]

I

http://archive.ics.uci.edu/ml

Bibliography

[Bao et al., 2004] Bao, Y., Ishii, N., and Du, X. (2004). Combining multiple k-
nearest neighbor classifiers using different distance functions. In Proceedings of
the 5th International Conference on Intelligent Data Engineering and Automated
Learning (IDEAL 2004), LNCS 3177, pages 634–641. Springer. [cited at page
194]

[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI. Foundations
and Trends in Machine Learning, 2(1):1–127. [cited at page 154, 155, 157, 159,
160, 161, 162]

[Beringer and Hüllermeier, 2007] Beringer, J. and Hüllermeier, E. (2007). Efficient
instance-based learning on data streams. Intelligent Data Analysis, 11(6):627–650.
[cited at page 115]

[Bernhard and Keriven, 2006] Bernhard, F. and Keriven, R. (2006). Spiking
neurons on GPUs. In Proceedings of the 2006 International Conference on
Computational Science (ICCS 2006), LNCS 3994, pages 236–243. Springer. [cited
at page 17]

[Bibi and Stamelos, 2006] Bibi, S. and Stamelos, I. (2006). Selecting the
appropriate machine learning techniques for the prediction of software
development costs. In Proceedings of Artificial Intelligence Applications and
Innovations, pages 533–540. [cited at page 106]

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning.
Springer. [cited at page 5, 6, 41, 56, 64, 66, 67, 90, 111, 158]

[Blackard and Dean, 1999] Blackard, J. A. and Dean, D. J. (1999). Comparative
accuracies of artificial neural networks and discriminant analysis in predicting
forest cover types from cartographic variables. Computers and Electronics in
Agriculture, 24:131–151. [cited at page 84]

[Bohn, 1998] Bohn, C.-A. (1998). Kohonen feature mapping through graphics
hardware. In Proceedings of the 1998 International Conference on Computational
Intelligence and Neurosciences (ICCIN 1998), pages 64–67. [cited at page 17]

[Bonet et al., 2008] Bonet, I., Rodríguez, A., Grau, R., García, M. M., Saeys, Y.,
and Nowé, A. (2008). Comparing distance measures with visual methods. In
Proceedings of the 7th Mexican International Conference on Artificial Intelligence:
Advances in Artificial Intelligence (MICAI 2008), LNCS 5317, pages 90–99.
Springer. [cited at page 194]

[Bottou and Bousquet, 2008] Bottou, L. and Bousquet, O. (2008). Learning using
large datasets. In Mining Massive DataSets for Security, NATO ASI Workshop
Series. IOS Press. [cited at page 4]

II

Bibliography

[Bramer, 2007] Bramer, M. A. (2007). Principles of data mining. Springer-Verlag.
[cited at page 92, 95, 96]

[Brandstetter and Artusi, 2008] Brandstetter, A. and Artusi, A. (2008). Radial
basis function networks GPU-based implementation. IEEE Transactions on
Neural Networks, 19(12):2150–2154. [cited at page 16, 17]

[Brunton et al., 2006] Brunton, A., Shu, C., and Roth, G. (2006). Belief
propagation on the GPU for stereo vision. In Proceedings of the 3rd Canadian
Conference on Computer and Robot Vision (CRV 2006), pages 76–81. IEEE
Computer Society. [cited at page 17]

[Bucur and Florea, 2011] Bucur, L. and Florea, A. (2011). Techniques for
prediction in chaos: A comparative study on financial data. U.P.B. Scientific
Bulletin, Series C, 73(3):17–32. [cited at page 74]

[Campbell et al., 2005] Campbell, A., Berglund, E., and Streit, A. (2005). Graphics
hardware implementation of the parameter-less self-organising map. In
Proceedings of the 2005 Intelligent Data Engineering and Automated Learning
(IDEAL), LNCS 3578, pages 343–350. Springer. [cited at page 17]

[Cano et al., 2012] Cano, A., Zafra, A., and Ventura, S. (2012). Speeding up the
evaluation phase of GP classification algorithms on GPUs. Soft Computing,
16(2):187–202. [cited at page 19]

[Carreira-Perpiñán and Hinton, 2005] Carreira-Perpiñán, M. A. and Hinton, G. E.
(2005). On contrastive divergence learning. In Proceedings of the 10th

International Workshop on Artificial Intelligence and Statistics (AISTATS 2005),
pages 33–40. [cited at page 157, 159, 160]

[Catanzaro et al., 2008] Catanzaro, B., Sundaram, N., and Keutzer, K. (2008).
Fast support vector machine training and classification on graphics processors.
In Proceedings of the 25th International Conference on Machine Learning (ICML
2008), volume 307, pages 104–111. ACM. [cited at page 16, 17]

[Cavuoti et al., 2014] Cavuoti, S., Garofalo, M., Brescia, M., Paolillo, M., Pescape’,
A., Longo, G., and Ventre, G. (2014). Astrophysical data mining with GPU. a
case study: Genetic classification of globular clusters. New Astronomy, 26:12–22.
[cited at page 19]

[Cavuoti et al., 2013] Cavuoti, S., Garofalo, M., Brescia, M., Pescape’, A., Longo,
G., and Ventre, G. (2013). Genetic algorithm modeling with GPU parallel
computing technology. In Apolloni, B., Bassis, S., Esposito, A., and Morabito,
F. C., editors, Neural Nets and Surroundings, volume 19 of Smart Innovation,
Systems and Technologies, pages 29–39. Springer Berlin Heidelberg. [cited at
page 19]

III

Bibliography

[Cecilia et al., 2013] Cecilia, J. M., Nisbet, A., Amos, M., García, J. M., and
Ujaldón, M. (2013). Enhancing GPU parallelism in nature-inspired algorithms.
The Journal of Supercomputing, 63(3):773–789. [cited at page 19]

[Chacko et al., 2010] Chacko, B. P., Krishnan, V. R. V., and Anto, P. B. (2010).
Character recognition using multiple back propagation algorithm. In Proceedings
of the National Conference on Image Processing. [cited at page 74]

[Chang and Lin, 2011] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library
for support vector machines. ACM Transactions on Intelligent Systems and
Technology, 2(3):1–27. [cited at page 111]

[Chapelle et al., 2006] Chapelle, O., Schölkopf, B., and Zien, A. (2006).
Introduction to semi-supervised learning. In Semi-Supervised Learning, chapter 1,
pages 1–14. The MIT Press. [cited at page 5, 133]

[Che et al., 2008a] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., and
Skadron, K. (2008a). A performance study of general-purpose applications on
graphics processors using CUDA. Journal of Parallel and Distributed Computing,
68(10):1370–1380. [cited at page 20, 22]

[Che et al., 2008b] Che, S., Li, J., Sheaffer, J. W., Skadron, K., and Lach, J.
(2008b). Accelerating compute-intensive applications with GPUs and FPGAs.
In Symposium on Application Specific Processors (SASP 2008), pages 101–107.
[cited at page 16]

[Chellapilla et al., 2006] Chellapilla, K., Puri, S., and Simard, P. (2006). High
performance convolutional neural networks for document processing. In
Proceedings of the 10th International Workshop on Frontiers in Handwriting
Recognition. [cited at page 17]

[Cheng et al., 2005] Cheng, B. Y. M., Carbonell, J. G., and Klein-Seetharaman, J.
(2005). Protein classification based on text document classification techniques.
Proteins: Structure, Function, and Bioinformatics, 58(4):955–970. [cited at page
54]

[Cherkassky and Mulier, 2007] Cherkassky, V. and Mulier, F. (2007). Learning
From Data: Concepts, Theory, and Methods. John Wiley & Sons, 2nd edition.
[cited at page 3, 56, 62, 123]

[Chitty, 2012] Chitty, D. M. (2012). Fast parallel genetic programming: multi-core
CPU versus many-core GPU. Soft Computing, 16(10):1795–1814. [cited at page
19]

[Clarke et al., 2009] Clarke, B., Fokoué, E., and Zhang, H. H. (2009). Principles
and Theory for Data Mining and Machine Learning. Springer. [cited at page
106]

IV

Bibliography

[Correia et al., 2011] Correia, D., Pereira, C., Verissimo, P., and Dourado, A.
(2011). A platform for peptidase detection based on text mining techniques. In
International Symposium on Computational Intelligence for Engineering Systems.
[cited at page 54]

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals, and Systems (MCSS),
2(4):303–314. [cited at page 66]

[Desjardins et al., 2010] Desjardins, G., Courville, A., Bengio, Y., Vincent, P.,
and Delalleau, O. (2010). Tempered Markov Chain Monte Carlo for training
of restricted Boltzmann machines. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, pages 145–152. [cited at page
194]

[Do et al., 2008] Do, T.-N., Nguyen, V.-H., and Poulet, F. (2008). Speed up SVM
algorithm for massive classification tasks. In Proceedings of the 4th International
Conference on Advanced Data Mining and Applications (ADMA 2008), LNCS
5139, pages 147–157. Springer. [cited at page 17]

[Drugowitsch, 2008] Drugowitsch, J. (2008). A learning classifier systems model.
In Design and Analysis of Learning Classifier Systems, volume 139 of Studies in
Computational Intelligence, pages 29–44. Springer. [cited at page 62]

[Duch and Jankowski, 1999] Duch, W. and Jankowski, N. (1999). Survey of neural
transfer functions. Neural Computing Surveys, 2:163–213. [cited at page 62, 65,
66]

[Džeroski et al., 2009] Džeroski, S., Panov, P., and Ženko, B. (2009). Machine
learning, ensemble methods in. In Encyclopedia of Complexity and Systems
Science, pages 5317–5325. Springer. [cited at page 69, 70]

[Essen et al., 2012] Essen, B. V., Macaraeg, C., Gokhale, M., and Prenger, R.
(2012). Accelerating a random forest classifier: Multi-core, GP-GPU, or FPGA?
In IEEE 20th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM 2012), pages 232–239. [cited at page 19]

[Fahlman and Lebiere, 1990] Fahlman, S. E. and Lebiere, C. (1990). The cascade-
correlation learning architecture. In Advances in Neural Information Processing
Systems, volume 2, pages 524–532. [cited at page 49]

[Fernando and Kilgard, 2003] Fernando, R. and Kilgard, M. J. (2003). The Cg
Tutorial: The Definitive Guide to Programmable Real-Time Graphics. Addison-
Wesley Professional. [cited at page 19]

V

Bibliography

[Fischer and Igel, 2013] Fischer, A. and Igel, C. (2013). Training restricted
Boltzmann machines: An introduction. Pattern Recognition. [cited at page
194]

[Funahashi, 1989] Funahashi, K. (1989). On the approximate realization of
continuous mappings by neural networks. Neural Networks, 2(3):183–192. [cited
at page 66]

[Gama et al., 2004] Gama, J., Medas, P., and Rodrigues, P. (2004). Concept
drift in decision trees learning from data streams. In European Symposium on
Intelligent Technologies Hybrid Systems and their implementation on Smart
Adaptive Systems Eunite 2004, pages 218–225. [cited at page 46]

[Gama et al., 2009] Gama, J., Sebastião, R., and Rodrigues, P. (2009). Issues
in evaluation of stream learning algorithms. In Proceedings of the 15th ACM
SIGKDD International Conference on KnowledgeDiscovery and Data Mining
(KDD 2009), pages 329–338. [cited at page 104]

[Garcia et al., 2008] Garcia, V., Debreuve, E., and Barlaud, M. (2008). Fast k
nearest neighbor search using GPU. In Proceedings of the 2008 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW 2008), pages 1–6. [cited at page 17]

[García-Laencina et al., 2010] García-Laencina, P. J., Sancho-Gómez, J.-L., and
Figueiras-Vidal, A. R. (2010). Pattern classification with missing data: a review.
Neural Computing and Applications, 19(2):263–282. [cited at page 92, 93, 94, 95,
96]

[García-Pedrajas et al., 2010] García-Pedrajas, N., Castillo, J. A. R. D., and Ortiz-
Boyer, D. (2010). A cooperative coevolutionary algorithm for instance selection
for instance-based learning. Machine Learning, 78(3):381–420. [cited at page 4,
105, 112]

[Garg and Murty, 2009] Garg, V. K. and Murty, M. (2009). Feature subspace SVMs
(FS-SVMs) for high dimensional handwritten digit recognition. International
Journal of Data Mining, Modelling and Management (IJDMMM), 1(4):411–436.
[cited at page 128]

[Garland and Kirk, 2010] Garland, M. and Kirk, D. B. (2010). Understanding
throughput-oriented architectures. Communications of the ACM, 53(11):58–66.
[cited at page 4, 16, 18]

[Giannesini and Saux, 2012] Giannesini, F. and Saux, L. B. (2012). GPU-
accelerated one-class SVM for exploration of remote sensing data. In IEEE
International Geoscience and Remote Sensing Symposium (IGARSS 2012), pages
7349–7352. [cited at page 19]

VI

Bibliography

[Gillis and Glineur, 2010] Gillis, N. and Glineur, F. (2010). Using under-
approximations for sparse nonnegative matrix factorization. Pattern Recogntion,
43(4):1676–1687. [cited at page 128, 129, 149]

[Gonçalves, 2012] Gonçalves, J. (2012). Development of support vector machines
(SVMs) in graphics processing units for object recognition. Master’s thesis,
University of Coimbra. [cited at page 33]

[Granmo, 2012] Granmo, O.-C. (2012). Short-term forecasting of electricity
consumption using gaussian processes. Master’s thesis, University of Agder.
[cited at page 74]

[Grauer-Gray et al., 2008] Grauer-Gray, S., Kambhamettu, C., and Palaniappan,
K. (2008). GPU implementation of belief propagation using CUDA for cloud
tracking and reconstruction. In Proceedings of the 5th IAPR Workshop on Pattern
Recognition in Remote Sensing (PRRS 2008), pages 1–4. [cited at page 17]

[Guzhva et al., 2009] Guzhva, A., Dolenko, S., and Persiantsev, I. (2009). Multifold
acceleration of neural network computations using GPU. In Proceedings of the
19th International Conference on Artificial Neural Networks (ICANN 2009),
LNCS 5768, pages 373–380. Springer. [cited at page 17]

[Halfhill, 2009] Halfhill, T. R. (2009). Looking beyond graphics. Technical report,
In-Stat. [cited at page 24, 25, 27]

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The WEKA data mining software: an update.
SIGKDD Explorations Newsletter, 11(1):10–18. [cited at page 101]

[Harding and Banzhaf, 2007] Harding, S. and Banzhaf, W. (2007). Fast genetic
programming on GPUs. In Proceedings of the 10th European Conference on
Genetic Programming (EuroGP 2007), LNCS 4445, pages 90–101. Springer.
[cited at page 17]

[Haykin, 1998] Haykin, S. (1998). Neural Networks: A Comprehensive Foundation.
Prentice Hall, 2nd edition. [cited at page 68]

[Herrero-Lopez, 2011] Herrero-Lopez, S. (2011). Accelerating SVMs by integrating
GPUs into mapreduce clusters. In IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 1298–1305. [cited at page 19]

[Hey et al., 2009] Hey, T., Tansley, S., and Tolle, K., editors (2009). The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft Research. [cited at
page 2, 3, 4, 14, 16]

[Hinton, 2002] Hinton, G. E. (2002). Training products of experts by minimizing
contrastive divergence. Neural Computation, 14(8):1771–1800. [cited at page
160, 161]

VII

Bibliography

[Hinton, 2010] Hinton, G. E. (2010). A practical guide to training restricted
Boltzmann machines. Technical report, Department of Computer Science,
University of Toronto. [cited at page 156, 157, 158, 159, 160, 161, 163]

[Hinton et al., 2006] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast
learning algorithm for deep belief nets. Neural Computation, 18(7):1527–1554.
[cited at page 155, 162]

[Hirose, 2013] Hirose, A., editor (2013). Complex-Valued Neural Networks:
Advances and Applications. John Wiley & Sons. [cited at page 194]

[Hornik et al., 1989] Hornik, K., Stinchcombe, M., and White, H. (1989).
Multilayer feedforward networks are universal approximators. Neural Networks,
2(5):359–366. [cited at page 66]

[Hse and Newton, 2004] Hse, H. and Newton, A. R. (2004). Sketched symbol
recognition using Zernike moments. In Proceedings of the 17th International
Conference on Pattern Recognition, volume 1, pages 367–370. [cited at page 46]

[Hua and Sun, 2001] Hua, S. and Sun, Z. (2001). Support vector machine approach
for protein subcellular localization prediction. Bioinformatics, 17(8):721–728.
[cited at page 111]

[Hui, 2011] Hui, C.-L., editor (2011). Artificial Neural Networks - Application.
InTech. [cited at page 62]

[Hung and Wang, 2012] Hung, Y. and Wang, W. (2012). Accelerating parallel
particle swarm optimization via GPU. Optimization Methods and Software,
27(1):33–51. [cited at page 19]

[Jain et al., 2006] Jain, S., Lange, S., and Zilles, S. (2006). Towards a better
understanding of incremental learning. In Proc. of the 17th International
Conference on Algorithmic Learning Theory, LNAI 4264, pages 169–183. [cited
at page 4, 105]

[Jang et al., 2008] Jang, H., Park, A., and Jung, K. (2008). Neural network
implementation using CUDA and OpenMP. In Proceedings of the 2008 Digital
Image Computing: Techniques and Applications (DICTA 2008), pages 155–161.
[cited at page 14, 17]

[Jian et al., 2013] Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., and Shi, Y. (2013).
Parallel data mining techniques on graphics processing unit with compute unified
device architecture (CUDA). The Journal of Supercomputing, 64(3):942–967.
[cited at page 19]

[Jowell and the Central Coordinating Team, 2007] Jowell, R. and the Central
Coordinating Team (2003, 2005, 2007). European social survey 2002/2003;
2004/2005; 2006/2007. [cited at page 49]

VIII

Bibliography

[Kanwisher, 2010] Kanwisher, N. (2010). Functional specificity in the human brain:
a window into the functional architecture of the mind. Proceedings of the National
Academy of Sciences of the United States of America, 107(25):11163–11170. [cited
at page 70]

[Karhunen, 2011] Karhunen, J. (2011). Robust PCA methods for complete and
missing data. Neural Network World, 21(5):357–392. [cited at page 5, 91]

[King, 2009] King, D. E. (2009). Dlib-ml: A machine learning toolkit. Journal of
Machine Learning Research, 10:1755–1758. [cited at page 14]

[Kotsiantis et al., 2006a] Kotsiantis, S., Kanellopoulos, D., and Pintelas, P. (2006a).
Data preprocessing for supervised leaning. International Journal of Computer
Science, 1(2):111–117. [cited at page 55, 57, 105]

[Kotsiantis et al., 2006b] Kotsiantis, S. B., Zaharakis, I. D., and Pintelas, P. E.
(2006b). Machine learning: a review of classification and combining techniques.
Artificial Intelligence Review, 26(3):159–190. [cited at page 5, 91, 94]

[Kumar et al., 2013] Kumar, S., Kumawat, T., kumar Marwal, N., and Singh, B. K.
(2013). Artificial neural network and its applications. International Journal of
Computer Science and Management Research, 2(2):1621–1626. [cited at page 62]

[Lahabar et al., 2008] Lahabar, S., Agrawal, P., and Narayanan, P. J. (2008). High
performance pattern recognition on GPU. In Proceedings of the 2008 National
Conference on Computer Vision Pattern Recognition Image Processing and
Graphics, pages 154–159. [cited at page 17]

[Langdon, 2011] Langdon, W. B. (2011). Graphics processing units and genetic
programming: an overview. Soft Computing, 15(8):1657–1669. [cited at page 19]

[Langdon and Banzhaf, 2008] Langdon, W. B. and Banzhaf, W. (2008). A SIMD
interpreter for genetic programming on GPU graphics cards. In Proceedings of
the 11th European Conference on Genetic Programming (EuroGP 2008), LNCS
4971, pages 73–85. Springer. [cited at page 17]

[Larochelle et al., 2007] Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and
Bengio, Y. (2007). An empirical evaluation of deep architectures on problems
with many factors of variation. In Proceedings of the 24th international conference
on Machine learning (ICML 2007), pages 473–480. ACM. [cited at page 153,
154, 155, 162]

[Lee and Seung, 1999] Lee, D. D. and Seung, H. S. (1999). Learning the parts of
objects by non-negative matrix factorization. Nature, 401:788–791. [cited at
page 127, 129]

IX

Bibliography

[Lee and Seung, 2000] Lee, D. D. and Seung, H. S. (2000). Algorithms for non-
negative matrix factorization. In Advances in Neural Information Processing
Systems (NIPS 2000), pages 556–562. MIT Press. [cited at page 130]

[Lee et al., 2009] Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009).
Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations. In Proceedings of the 26th Annual International
Conference on Machine Learning (ICML 2009), pages 609–616. ACM. [cited at
page 154, 161, 162]

[Li et al., 2013] Li, Q., Salman, R., Test, E., Strack, R., and Kecman, V. (2013).
Parallel multitask cross validation for support vector machine using GPU. Journal
of Parallel and Distributed Computing, 73(3):293–302. [cited at page 19]

[Li et al., 2010] Li, Z., Wu, X., and Peng, H. (2010). Nonnegative matrix
factorization on orthogonal subspace. Pattern Recogntion Letters, 31(9):905–911.
[cited at page 128, 129]

[Lim and Zainuddin, 2008] Lim, E. A. and Zainuddin, Z. (2008). A comparative
study of missing value estimation methods: Which method performs better? In
Proceedings of the International Conference on Electronic Design (ICED 2008),
pages 1–5. [cited at page 94, 96]

[Little and Rubin, 2002] Little, R. J. A. and Rubin, D. B. (2002). Statistical
analysis with missing data. Wiley, 2nd edition. [cited at page 93, 96]

[Lopes et al., 2012a] Lopes, N., Correia, D., Pereira, C., Ribeiro, B., and Dourado,
A. (2012a). An incremental hypersphere learning framework for protein
membership prediction. In 7th International Conference on Hybrid Artificial
Intelligent Systems (HAIS 2012), LNCS 7208, pages 429–439. [cited at page 8,
10, 53]

[Lopes and Ribeiro, 1999] Lopes, N. and Ribeiro, B. (1999). A data pre-processing
tool for neural networks (DTPNN) use in a moulding injection machine. In
Second World Manufacturing Congress (WMC 1999). [cited at page 55]

[Lopes and Ribeiro, 2001] Lopes, N. and Ribeiro, B. (2001). Hybrid learning in a
multi-neural network architecture. In INNS-IEEE International Joint Conference
on Neural Networks (IJCNN 2001), volume 4, pages 2788–2793. [cited at page
70, 71, 73, 74, 89]

[Lopes and Ribeiro, 2003] Lopes, N. and Ribeiro, B. (2003). An efficient gradient-
based learning algorithm applied to neural networks with selective actuation
neurons. Neural, Parallel and Scientific Computations, 11:253–272. [cited at
page 70, 71, 73, 74, 81]

X

Bibliography

[Lopes and Ribeiro, 2009a] Lopes, N. and Ribeiro, B. (2009a). Fast pattern
classification of ventricular arrhythmias using graphics processing units. In
Proceedings of the 14th Iberoamerican Congress on Pattern Recognition (CIARP
2009), LNCS 5856, pages 603–610. Springer. [cited at page 9, 10, 15, 63, 89]

[Lopes and Ribeiro, 2009b] Lopes, N. and Ribeiro, B. (2009b). GPU
implementation of the multiple back-propagation algorithm. In Proceedings
of the 2009 Intelligent Data Engineering and Automated Learning (IDEAL 2009),
LNCS 5788, pages 449–456. Springer. [cited at page 9, 17]

[Lopes and Ribeiro, 2009c] Lopes, N. and Ribeiro, B. (2009c). MBPGPU: A
supervised pattern classifier for graphical processing units. In 15th edition
of the Portuguese Conference on Pattern Recognition (RECPAD 2009). [cited at
page 9, 79]

[Lopes and Ribeiro, 2010a] Lopes, N. and Ribeiro, B. (2010a). A hybrid face
recognition approach using GPUMLib. In 15th Iberoamerican Congress on
Pattern Recognition (CIARP 2010), LNCS 6419, pages 96–103. [cited at page
10, 11, 134]

[Lopes and Ribeiro, 2010b] Lopes, N. and Ribeiro, B. (2010b). Non-negative
matrix factorization implementation using graphic processing units. In
Proceedings of the 11th International Conference on Intelligent Data Engineering
and Automated Learning (IDEAL 2010), LNCS 6283, pages 275–283. Springer
Berlin Heidelberg. [cited at page 10, 17, 149]

[Lopes and Ribeiro, 2010c] Lopes, N. and Ribeiro, B. (2010c). Stochastic GPU-
based multithread implementation of multiple back-propagation. In Second
International Conference on Agents and Artificial Intelligence (ICAART 2010),
pages 271–276. [cited at page 9]

[Lopes and Ribeiro, 2010d] Lopes, N. and Ribeiro, B. (2010d). A strategy for
dealing with missing values by using selective activation neurons in a multi-
topology framework. In IEEE International Joint Conference on Neural Networks
(IJCNN 2010). [cited at page 9, 98]

[Lopes and Ribeiro, 2011a] Lopes, N. and Ribeiro, B. (2011a). An evaluation
of multiple feed-forward networks on GPUs. International Journal of Neural
Systems (IJNS), 21(1):31–47. [cited at page 9, 20, 63]

[Lopes and Ribeiro, 2011b] Lopes, N. and Ribeiro, B. (2011b). A fast optimized
semi-supervised non-negative matrix factorization algorithm. In IEEE
International Joint Conference on Neural Networks (IJCNN 2011), pages 2495–
2500. [cited at page 8, 132, 133]

XI

Bibliography

[Lopes and Ribeiro, 2011c] Lopes, N. and Ribeiro, B. (2011c). GPUMLib: An
efficient open-source GPU machine learning library. International Journal of
Computer Information Systems and Industrial Management Applications, 3:355–
362. [cited at page 9, 14, 35]

[Lopes and Ribeiro, 2011d] Lopes, N. and Ribeiro, B. (2011d). An incremental
class boundary preserving hypersphere classifier. In International Conference
on Neural Information Processing (ICONIP 2011), Part II, LNCS 7063, pages
690–699. [cited at page 8, 105, 118]

[Lopes and Ribeiro, 2011e] Lopes, N. and Ribeiro, B. (2011e). Incremental learning
for non-stationary patterns. In 17th edition of the Portuguese Conference on
Pattern Recognition (RECPAD 2011). [cited at page 8, 105]

[Lopes and Ribeiro, 2011f] Lopes, N. and Ribeiro, B. (2011f). A robust learning
model for dealing with missing values in many-core architectures. In 10th

International Conference on Adaptive and Natural Computing Algorithms
(ICANNGA 2011), Part II, LNCS 6594, pages 108–117. Springer Berlin
Heidelberg. [cited at page 9, 10, 53, 92, 96, 97]

[Lopes and Ribeiro, 2012a] Lopes, N. and Ribeiro, B. (2012a). Handling missing
values via a neural selective input model. Neural Network World, 22(4):357–370.
[cited at page 9, 96, 97, 98, 99]

[Lopes and Ribeiro, 2012b] Lopes, N. and Ribeiro, B. (2012b). Improving
convergence of restricted Boltzmann machines via a learning adaptive step
size. In Progress in Pattern Recognition, Image Analysis, Computer Vision, and
Applications, LNCS 7441, pages 511–518. Springer Berlin / Heidelberg. [cited at
page 8, 10, 163, 171, 174]

[Lopes and Ribeiro, 2012c] Lopes, N. and Ribeiro, B. (2012c). Towards a hybrid
NMF-based neural approach for face recognition on GPUs. International Journal
of Data Mining, Modelling and Management (IJDMMM), 4(2):138–155. [cited
at page 10, 11, 134]

[Lopes and Ribeiro, 2013] Lopes, N. and Ribeiro, B. (2013). Towards adaptive
learning with improved convergence of deep belief networks on graphics processing
units. Pattern Recognition. [cited at page 8, 10, 11, 179, 180, 182]

[Lopes et al., 2012b] Lopes, N., Ribeiro, B., and Gonçalves, J. (2012b). Restricted
Boltzmann machines and deep belief networks on multi-core processors. In IEEE
International Joint Conference on Neural Networks (IJCNN 2012). [cited at
page 8, 10, 165, 166, 168, 171]

[Lopes et al., 2010] Lopes, N., Ribeiro, B., and Quintas, R. (2010). GPUMLib: A
new library to combine machine learning algorithms with graphics processing

XII

Bibliography

units. In 10th International Conference on Hybrid Intelligent Systems (HIS 2010),
pages 229–232. [cited at page 9, 14, 35]

[López-Molina et al., 2008] López-Molina, T., Pérez-Méndez, A., and Rivas-
Echeverría, F. (2008). Missing values imputation techniques for neural networks
patterns. In Proceedings of the 12th WSEAS international conference on Systems
(ICS 2008), pages 290–295. [cited at page 93, 94, 95, 96]

[Luo et al., 2005] Luo, Z., Liu, H., and Wu, X. (2005). Artificial neural network
computation on graphic process unit. In Proceedings of the 2005 IEEE
International Joint Conference on Neural Networks (IJCNN 2005), volume 1,
pages 622–626. [cited at page 17]

[Lyman et al., 2003] Lyman, P., Varian, H. R., Swearingen, K., Charles, P.,
Good, N., Jordan, L. L., and Pal, J. (2003). How much information?
http://www.sims.berkeley.edu/how-much-info-2003. [cited at page 2]

[Markey et al., 2006] Markey, M. K., Tourassi, G. D., Margolis, M., and DeLong,
D. M. (2006). Impact of missing data in evaluating artificial neural networks
trained on complete data. Computers in Biology and Medicine, 36(5):516–525.
[cited at page 91]

[Markoff, 2012] Markoff, J. (2012). Giant steps in teaching computers to think
like us: ‘neural nets’ mimic the ways human minds listen, see and execute.
International Herald Tribune,, November, 24-25:1,8. [cited at page 153, 154]

[Marques, 2007] Marques, A. (2007). Feature extraction and PVC detection using
neural networks and support vector machines. Master’s thesis, University of
Coimbra. [cited at page 54, 55, 89]

[Marsland, 2009] Marsland, S. (2009). Machine Learning: An Algorithmic
Perspective. Chapman & Hall / CRC. [cited at page 125, 126]

[Martínez-Zarzuela et al., 2007] Martínez-Zarzuela, M., Pernas, F. J. D., Higuera,
J. F. D., and Rodríguez, M. A. (2007). Fuzzy ART neural network parallel
computing on the GPU. In Proceedings of the 9th International Work-Conference
on Artificial Neural Networks (IWANN 2007), LNCS 4507, pages 463–470.
Springer. [cited at page 17]

[Masud et al., 2010] Masud, M. M., Chen, Q., Khan, L., Aggarwal, C. C., Gao,
J., Han, J., and Thuraisingham, B. M. (2010). Addressing concept-evolution in
concept-drifting data streams. In Proceedings of the 10th IEEE International
Conference on Data Mining (ICDM 2010), pages 929–934. [cited at page 117]

[Mjolsness and DeCoste, 2001] Mjolsness, E. and DeCoste, D. (2001). Machine
learning for science: State of the art and future prospects. Science,
293(5537):2051–2055. [cited at page 3]

XIII

http://www.sims.berkeley.edu/how-much-info-2003

Bibliography

[Mockus, 2008] Mockus, A. (2008). Guide to Advanced Empirical Software
Engineering, chapter 7 – Missing Data in Software Engineering, pages 185–200.
Springer-Verlag. [cited at page 93, 94]

[Moens, 2006] Moens, M.-F. (2006). Information Extraction: Algorithms and
Prospects in a Retrieval Context. The Information Retrieval Series. Springer-
Verlag. [cited at page 2]

[Morgado et al., 2011] Morgado, L., Pereira, C., Veríssimo, P., and Dourado, A.
(2011). A support vector machine based framework for protein membership
prediction. In Computational Intelligence for Engineering Systems, volume 46 of
Intelligent Systems, Control and Automation: Science and Engineering, pages
90–103. Springer. [cited at page 53]

[Munakata, 2008] Munakata, T. (2008). Fundamentals of the New Artificial
Intelligence: Neural, Evolutionary, Fuzzy and More (Texts in Computer Science).
Springer-Verlag, 2nd edition. [cited at page 63]

[Murphy, 2012] Murphy, K. P. (2012). Machine Learning: A Probabilistic
Perspective. The MIT Press. [cited at page 61]

[Murzin et al., 1995] Murzin, A. G., Brenner, S. E., Hubbard, T., and Chothia, C.
(1995). SCOP: a structural classification of proteins database for the investigation
of sequences and structures. Journal of Molecular Biology, 247(4):536–540. [cited
at page 53]

[Nageswaran et al., 2009] Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau,
A., and Veidenbaum, A. V. (2009). A configurable simulation environment for the
efficient simulation of large-scale spiking neural networks on graphics processors.
Neural Networks, 22(5–6):791–800. [cited at page 17]

[Nelwamondo et al., 2007] Nelwamondo, F. V., Mohamed, S., and Marwala, T.
(2007). Missing data: A comparison of neural network and expectation
maximization techniques. Current Science, 93(11):1514–1521. [cited at page 92,
101]

[Nicoletti et al., 2009] Nicoletti, M. C., Bertini Jr., J. R., Elizondo, D., Franco, L.,
and Jerez, J. M. (2009). Constructive neural network algorithms for feedforward
architectures suitable for classification tasks. In Constructive Neural Networks,
volume 258 of Studies in Computational Intelligence, pages 1–23. Springer. [cited
at page 123]

[Nitta, 2013] Nitta, T. (2013). Local minima in hierarchical structures of complex-
valued neural networks. Neural Networks, 43:1–7. [cited at page 194]

[NVIDIA, 2009] NVIDIA (2009). NVIDIA’s next generation CUDA compute
architecture: Fermi. [cited at page 20, 25]

XIV

Bibliography

[NVIDIA, 2012a] NVIDIA (2012a). CUDA C best practices guide: Design guide.
[cited at page 27]

[NVIDIA, 2012b] NVIDIA (2012b). NVIDIA CUDA C programming guide:
Version 4.2. [cited at page 21, 22, 25, 27, 28]

[Oh and Jung, 2004] Oh, K.-S. and Jung, K. (2004). GPU implementation of
neural networks. Pattern Recognition, 37(6):1311–1314. [cited at page 17]

[Olvera-López et al., 2010] Olvera-López, J. A., Carrasco-Ochoa, J. A., Martínez-
Trinidad, J. F., and Kittler, J. (2010). A review of instance selection methods.
Artificial Intelligence Review, 34(2):133–143. [cited at page 105]

[Osuna et al., 1997] Osuna, E. E., Freund, R., and Girosi, F. (1997). Support
vector machines: Training and applications. Technical report, Massachusetts
Institute of Technology. [cited at page 5]

[Owens et al., 2008] Owens, J. D., Houston, M., Luebke, D., Green, S., Stone,
J. E., and Phillips, J. C. (2008). GPU computing. Proceedings of the IEEE,
96(5):879–899. [cited at page 4, 14, 15, 18]

[Owens et al., 2007] Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger,
J., Lefohn, A., and Purcell, T. J. (2007). A survey of general-purpose computation
on graphics hardware. Computer Graphics Forum, 26(1):80–113. [cited at page
15, 19, 20]

[Pappa and Freitas, 2010] Pappa, G. L. and Freitas, A. (2010). Automating the
Design of Data Mining Algorithms: An Evolutionary Computation Approach.
Natural Computing Series. Springer. [cited at page 106]

[Pereira et al., 2011] Pereira, C., Morgado, L., Correia, D., Verissimo, P., and
Dourado, A. (2011). Kernel machines for proteomics data analysis: Algorithms
and tools. presented at the European Network for Business and Industrial
Statistics, Coimbra, Portugal. [cited at page 54]

[Piȩkniewski and Rybicki, 2004] Piȩkniewski, F. and Rybicki, L. (2004). Visual
comparison of performance for different activation functions in MLP networks.
In IEEE International Joint Conference on Neural Networks (IJCNN 2004),
volume 4, pages 2947–2952. [cited at page 62, 64, 65]

[Quintas, 2010] Quintas, R. (2010). GPU implementation of RBF neural networks
in audio steganalysis. Master’s thesis, University of Coimbra. [cited at page 33]

[Raina et al., 2009] Raina, R., Madhavan, A., and Ng, A. Y. (2009). Large-scale
deep unsupervised learning using graphics processors. In Proceedings of the 26th

Annual International Conference on Machine Learning (ICML 2009), volume
382, pages 873–880. ACM. [cited at page 17]

XV

Bibliography

[Ranzato et al., 2007] Ranzato, M., Boureau, Y., and LeCun, Y. (2007). Sparse
feature learning for deep belief networks. In Advances in Neural Information
Processing Systems (NIPS 2007), volume 20, pages 1185–1192. [cited at page
126, 155, 156, 162, 163]

[Rätsch et al., 2006] Rätsch, G., Sonnenburg, S., and Schäfer, C. (2006). Learning
interpretable SVMs for biological sequence classification. BMC Bioinformatics,
7(S-1). [cited at page 111]

[Rawlings et al., 2010] Rawlings, N. D., Barrett, A. J., and Bateman, A. (2010).
MEROPS: the peptidase database. Nucleic Acids Research, 38:227–233. [cited
at page 53]

[Refaeilzadeh et al., 2009] Refaeilzadeh, P., Tang, L., and Liu, H. (2009). Cross-
validation. In Encyclopedia of Database Systems, pages 532–538. Springer. [cited
at page 41, 42]

[Reinartz, 2002] Reinartz, T. (2002). A unifying view on instance selection. Data
Mining and Knowledge Discovery, 6(2):191–210. [cited at page 105]

[Ribeiro et al., 2010] Ribeiro, B., Lopes, N., and Silva, C. (2010). High-performance
bankruptcy prediction model using graphics processing units. In IEEE World
Congress on Computational Intelligence (WCCI 2010). [cited at page 103]

[Ribeiro et al., 2007] Ribeiro, B., Marques, A., Henriques, J., and Antunes, M.
(2007). Choosing real-time predictors for ventricular arrhythmia detection.
International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI),
21(8):1249–1263. [cited at page 55, 89]

[Ribeiro et al., 2009] Ribeiro, B., Silva, C., Vieira, A., and ao Neves, J. (2009).
Extracting discriminative features using non-negative matrix factorization in
financial distress data. In 9th International Conference on Adaptive and Natural
Computing Algorithms (ICANNGA 2009), LNCS 5495, pages 537–547. Springer
Berlin Heidelberg. [cited at page 128, 131]

[Richtárik et al., 2012] Richtárik, P., Takác, M., and Ahipasaoglu, S. D. (2012).
Alternating maximization: Unifying framework for 8 sparse PCA formulations
and efficient parallel codes. Cornell Universty Library. [cited at page 19]

[Robilliard et al., 2009] Robilliard, D., Marion-Poty, V., and Fonlupt, C. (2009).
Genetic programming on graphics processing units. Genetic Programming and
Evolvable Machines, 10(4):447–471. [cited at page 17]

[Roux and Bengio, 2008] Roux, N. L. and Bengio, Y. (2008). Representational
power of restricted Boltzmann machines and deep belief networks. Neural
Computation, 20(6):1631–1649. [cited at page 154, 155, 159, 160, 162]

XVI

Bibliography

[Roux and Bengio, 2010] Roux, N. L. and Bengio, Y. (2010). Deep belief networks
are compact universal approximators. Neural Computation, 22(8):2192–2207.
[cited at page 155, 162]

[Ryoo et al., 2008] Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S.,
Kirk, D. B., and Hwu, W. W. (2008). Optimization principles and application
performance evaluation of a multithreaded GPU using CUDA. In Proceedings
of the 13th ACM Symposium on Principles and practice of parallel programming
(PPoPP 2008), pages 73–82. [cited at page 22, 28, 75]

[Samarasinghe, 2007] Samarasinghe, S. (2007). Neural Networks for Applied
Sciences and Engineering: From Fundamentals to Complex Pattern Recognition.
Auerbach Publications. [cited at page 62]

[Schaa and Kaeli, 2009] Schaa, D. and Kaeli, D. (2009). Exploring the multiple-
GPU design space. In Proceedings of the 2009 IEEE International Symposium
on Parallel & Distributed Processing (IPDPS 2009), pages 1–12. IEEE Computer
Society. [cited at page 4, 16]

[Schafer, 1999] Schafer, J. L. (1999). Norm: Multiple imputation of incomplete
multivariate data under a normal model, version 2. http://www.stat.psu.edu/
~jls/misoftwa.html. [cited at page 101]

[Schafer and Graham, 2002] Schafer, J. L. and Graham, J. W. (2002). Missing
data: our view of the state of the art. Psychological Methods, 7(2):147–177. [cited
at page 92]

[Schulz et al., 2010] Schulz, H., Müller, A., and Behnke, S. (2010). Investigating
convergence of restricted boltzmann machine learning. In NIPS 2010 Workshop
on Deep Learning and Unsupervised Feature Learning, Whistler, Canada. [cited
at page 163]

[Serpen, 2005] Serpen, G. (2005). A heuristic and its mathematical analogue
within artificial neural network adaptation context. Neural Network World,
15(2):129–136. [cited at page 96]

[Shalom et al., 2008] Shalom, S. A., Dash, M., and Tue, M. (2008). Efficient k-
means clustering using accelerated graphics processors. In Proceedings of the
10th International Conference on Data Warehousing and Knowledge Discovery
(DaWaK 2008), LNCS 5182, pages 166–175. Springer. [cited at page 17]

[Sharp, 2008] Sharp, T. (2008). Implementing decision trees and forests on a GPU.
In Proceedings of the 10th European Conference on Computer Vision (ECCV
2008), LNCS 5305, pages 595–608. Springer. [cited at page 17]

XVII

http://www.stat.psu.edu/~jls/misoftwa.html
http://www.stat.psu.edu/~jls/misoftwa.html

Bibliography

[She et al., 2003] She, R., Chen, F., Wang, K., Ester, M., Gardy, J. L., and
Brinkman, F. S. L. (2003). Frequent-subsequence-based prediction of outer
membrane proteins. In Proceedings of the 9th ACM SIGKDD international
conference on Knowledge Discovery and Data Mining (KDD 2003), pages 436–
445. [cited at page 111]

[Shenouda, 2006] Shenouda, E. A. M. A. (2006). A quantitative comparison of
different MLP activation functions in classification. In Proceedings of the 3rd

international conference on Advances in Neural Networks, LNCS 3971, pages
849–857. Springer-Verlag. [cited at page 65]

[Silva et al., 2009] Silva, M., Moutinho, L., Coelho, A., and Marques, A. (2009).
Market orientation and performance: modelling a neural network. European
Journal of Marketing, 43(3/4):421–437. [cited at page 74]

[Skala, 2008] Skala, M. A. (2008). Aspects of metric spaces in computation. PhD
thesis, University of Waterloo. [cited at page 194]

[Sokolova and Lapalme, 2009] Sokolova, M. and Lapalme, G. (2009). A systematic
analysis of performance measures for classification tasks. Information Processing
& Management, 45(4):427–437. [cited at page 40]

[Somorjai et al., 2011] Somorjai, R. L., Dolenko, B., Nikulin, A., Roberson, W., and
Thiessen, N. (2011). Class proximity measures – dissimilarity-based classification
and display of high-dimensional data. Journal of Biomedical Informatics,
44(5):775–788. [cited at page 194]

[Sonnenburg et al., 2007] Sonnenburg, S., Braun, M. L., Ong, C. S., Bengio, S.,
Bottou, L., Holmes, G., LeCun, Y., Müller, K.-R., Pereira, F., Rasmussen, C. E.,
Rätsch, G., Schölkopf, B., Smola, A., Vincent, P., Weston, J., and Williamson,
R. C. (2007). The need for open source software in machine learning. Journal of
Machine Learning Research, 8:2443–2466. [cited at page 17, 18]

[Stamatopoulos et al., 2012] Stamatopoulos, C., Chuang, T. Y., Fraser, C. S., and
Lu, Y. Y. (2012). Fully automated image orientation in the absence of targets.
In International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences (XXII ISPRS Congress), volume Volume XXXIX-B5, pages
303–308. [cited at page 16]

[Steinkraus et al., 2005] Steinkraus, D., Buck, I., and Simard, P. Y. (2005). Using
GPUs for machine learning algorithms. In Proceedings of the 2005 Eight
International Conference on Document Analysis and Recognition (ICDAR 2005),
volume 2, pages 1115–1120. [cited at page 16, 17]

[Swersky et al., 2010] Swersky, K., Chen, B., Marlin, B., and de Freitas, N.
(2010). A tutorial on stochastic approximation algorithms for training restricted

XVIII

Bibliography

Boltzmann machines and deep belief nets. In Information Theory and
Applications Workshop, pages 1–10. [cited at page 155, 160, 161, 162, 163]

[Tahir and Smith, 2010] Tahir, M. A. and Smith, J. (2010). Creating diverse
nearest-neighbour ensembles using simultaneous metaheuristic feature selection.
Pattern Recognition Letters, 31(11):1470–1480. [cited at page 69, 110]

[Tang et al., 2007] Tang, H., Tan, K. C., and Yi, Z. (2007). Neural Networks:
Computational Models and Applications (Studies in Computational Intelligence),
volume 53. Springer-Verlag. [cited at page 62]

[Tang et al., 2003] Tang, H.-M., Lyu, M. R., and King, I. (2003). Face recognition
committee machine. In Proceedings of the 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP 2003), volume 2, pages
837–840. [cited at page 147, 148, 150]

[Tieleman, 2008] Tieleman, T. (2008). Training restricted Boltzmann machines
using approximations to the likelihood gradient. In Proceedings of the 25th

international conference on Machine learning (ICML 2008), pages 1064–1071.
[cited at page 161]

[Trebatický and Pospíchal, 2008] Trebatický, P. and Pospíchal, J. (2008). Neural
network training with extended kalman filter using graphics processing unit. In
Proceedings of the 18th International Conference on Artificial Neural Networks
(ICANN 2008), LNCS 5164, pages 198–207. Springer. [cited at page 17]

[Tuikkala et al., 2008] Tuikkala, J., Elo, L. L., Nevalainen, O. S., and Aittokallio,
T. (2008). Missing value imputation improves clustering and interpretation of
gene expression microarray data. BMC bioinformatics, 9(202):1–14. [cited at
page 91, 93, 94, 96]

[Vapnik, 1995] Vapnik, V. N. (1995). The nature of statistical learning theory.
Springer-Verlag. [cited at page 111]

[Čerňanský, 2009] Čerňanský, M. (2009). Training recurrent neural network using
multistream extended kalman filter on multicore processor and CUDA enabled
graphic processor unit. In Proceedings of the 19th International Conference on
Artificial Neural Networks (ICANN 2009), LNCS 5768, pages 381–390. Springer.
[cited at page 17]

[Verleysen, 2003] Verleysen, M. (2003). Learning high-dimensional data. In
Ablameyko, S., Gori, M., Goras, L., and Piuri, V., editors, Limitations and
Future Trends in Neural Computation, volume 186 of NATO Science Series:
Computer and Systems Sciences, pages 141–162. IOS Press. [cited at page 127,
128]

XIX

Bibliography

[Verleysen et al., 2009] Verleysen, M., Rossi, F., and François, D. (2009). Advances
in feature selection with mutual information. In Similarity-Based Clustering:
Recent Developments and Biomedical Applications, Lecture Notes in Artificial
Intelligence 5400, pages 52–69. Springer-Verlag. [cited at page 127]

[Vieira et al., 2009] Vieira, A. S., ao Duarte, J., Ribeiro, B., and ao C. Neves,
J. (2009). Accurate prediction of financial distress of companies with machine
learning algorithms. In Proceedings of the 9th international conference on Adaptive
and natural computing algorithms (ICANNGA 2009), LNCS 5495, pages 569–576.
[cited at page 103]

[Vonk et al., 1995] Vonk, E., Jain, L. C., and Veelenturf, L. P. J. (1995). Neural
network applications. In Electronic Technology Directions, pages 63–67. [cited at
page 62]

[Žliobaitė, 2009] Žliobaitė, I. (2009). Combining time and space similarity for small
size learning under concept drift. In of the 18th International Symposium on
Foundations of Intelligent Systems, LNCS 5722, pages 412–421. [cited at page
49]

[Wang et al., 2010] Wang, J., Zhang, B., Wang, S., Qi, M., and Kong, J. (2010). An
adaptively weighted sub-pattern locality preserving projection for face recognition.
Journal of Network and Computer Applications, 33(3):323–332. [cited at page
139]

[Wang, 2005] Wang, S. (2005). Classification with incomplete survey data:
a hopfield neural network approach. Computers & Operations Research,
32(10):2583–2594. [cited at page 96]

[Wang, 2008] Wang, W. (2008). Some fundamental issues in ensemble methods.
In International Joint Conference on Neural Networks (IJCNN 2008), pages
2243–2250. [cited at page 69]

[Widrow et al., 1994] Widrow, B., Rumelhart, D. E., and Lehr, M. A. (1994).
Neural networks: applications in industry, business and science. Communications
of the ACM, 37(3):93–105. [cited at page 62]

[Wilson and Martinez, 2000] Wilson, D. R. and Martinez, T. R. (2000). Reduction
techniques for instance-based learning algorithms. Machine Learning, 38(3):257–
286. [cited at page 108, 112]

[WolframAlpha, 2013] WolframAlpha (2013). WolframAlpha – computational
knowledge engine. http://www.wolframalpha.com. [cited at page 55]

[Wong et al., 2005] Wong, M., Wong, T., and Fok, K. (2005). Parallel evolutionary
algorithms on graphics processing unit. In Proceedings of the 2005 IEEE Congress
on Evolutionary Computation, volume 3, pages 2286–2293. [cited at page 17]

XX

http://www.wolframalpha.com

Bibliography

[Wurst, 2007] Wurst, M. (2007). The word vector tool user guide operator reference
developer tutorial. [cited at page 54]

[Xiang et al., 2012] Xiang, X., Zhang, M., Li, G., He, Y., and Pan, Z. (2012).
Real-time stereo matching based on fast belief propagation. Machine Vision and
Applications, 23(6):1219–1227. [cited at page 19]

[Xu et al., 2003] Xu, B., Lu, J., and Huang, G. (2003). A constrained non-negative
matrix factorization in information retrieval. In IEEE International Conference
on Information Reuse and Integration (IRI 2003), pages 273–277. [cited at page
128]

[Xu et al., 2009] Xu, Y., Chen, H., Klette, R., Liu, J., and Vaudrey, T. (2009).
Belief propagation implementation using CUDA on an NVIDIA GTX 280. In
Proceedings of the 22nd Australasian Joint Conference on Advances in Artificial
Intelligence (AI 2009), LNCS 5866, pages 180–189. Springer. [cited at page 17]

[Yang et al., 2006] Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., and Nistér,
D. (2006). Real-time global stereo matching using hierarchical belief propagation.
In Proceedings of the 2006 British Machine Vision Conference (BMVC 2006),
volume 3, pages 989–998. [cited at page 17]

[Ye, 2003] Ye, N., editor (2003). The handbook of data mining. Lawrence Erlbaum
Associates. [cited at page 122]

[Yu and Deng, 2011] Yu, D. and Deng, L. (2011). Deep learning and its applications
to signal and information processing. IEEE Signal Processing Magazine, 28(1):145–
154. [cited at page 154, 155]

[Yu et al., 2005] Yu, Q., Chen, C., and Pan, Z. (2005). Parallel genetic algorithms
on programmable graphics hardware. In Proceedings of the 1st International
Conference on Advances in Natural Computation (ICNC 2005), LNCS 3612,
pages 1051–1059. Springer. [cited at page 17]

[Yuksel et al., 2012] Yuksel, S. E., Wilson, J. N., and Gader, P. D. (2012). Twenty
years of mixture of experts. IEEE Transactions on Neural Networks and Learning
Systems, 23(8):1177–1193. [cited at page 70]

[Yuming and Yuanyuan, 2012] Yuming, M. and Yuanyuan, Z. (2012). Research
on method of double-layers BP neural network in bicycle flow prediction. In
International Conference on Industrial Control and Electronics Engineering
(ICICEE 2012), pages 86–88. [cited at page 63]

[Zapranis and Refenes, 1999] Zapranis, A. D. and Refenes, A.-P. (1999). Principles
of Neural Model Identification, Selection and Adequacy: With Applications to
Financial Econometrics. Perspectives in Neural Computing. Springer Verlag.
[cited at page 123]

XXI

Bibliography

[Zhang et al., 2009] Zhang, Y., Shalabi, Y. H., Jain, R., Nagar, K. K., and Bakos,
J. D. (2009). FPGA vs. GPU for sparse matrix vector multiply. In International
Conference on Field-Programmable Technology (FPT 2009), pages 255–262. [cited
at page 16]

[Zhao et al., 2003] Zhao, W., Chellappa, R., Phillips, P. J., and Rosenfeld, A.
(2003). Face recognition: A literature survey. ACM Computing Surveys (CSUR),
35(4):399–458. [cited at page 139, 140]

[Zhi et al., 2011] Zhi, R., Flierl, M., Ruan, Q., and Kleijn, W. B. (2011). Graph-
preserving sparse nonnegative matrix factorization with application to facial
expression recognition. IEEE Transactions on Systems, Man, and Cybernetics –
Part B: Cybernetics, 41(1):38–52. [cited at page 153]

[Zhongwen et al., 2005] Zhongwen, L., hongzhi, L., Zhengping, Y., and Xincai, W.
(2005). Self-organizing maps computing on graphic process unit. In Proceedings
of the 13th European Symposium on Artificial Neural Networks, pages 557–562.
[cited at page 15, 17]

[Zhou, 2003] Zhou, Z.-H. (2003). Three perspectives of data mining. Artificial
Intelligence, 143(1):139–146. [cited at page 104]

[Zilu and Guoyi, 2009] Zilu, Y. and Guoyi, Z. (2009). Facial expression recognition
based on NMF and SVM. In Proceedings of the 2009 International Forum on
Information Technology and Applications (IFITA 2009), volume 3, pages 612–615.
IEEE Computer Society. [cited at page 57, 127, 128, 129]

XXII

Index

Accuracy, 39, 40
Activation function, 64–66
Adaptive step size, 8, 10, 68, 126, 127,

163, 170, 171, 174, 189, 192,
193

ATS, 9, 11, 33, 62, 79, 80, 89–91, 103,
121, 123, 140, 146, 192

Experimental results, 89–91, 142–
145

Autonomous Training System, see
ATS

Back-Propagation, see BP
Batch learning, 62, 105, 117, 121
Benchmarks, see Datasets
Bias-variance dilemma, 90
Big Data, 1–4, 7, 8, 14, 16, 121, 189,

193
BP, 5, 9, 11, 29, 33, 49, 62–69, 73, 74,

91, 99, 101, 102, 121, 147, 160,
163, 170, 177, 179, 182, 191,
192

Experimental results, 79–91
GPU Parallel Implementation, 75–

78

Case study
Financial distress, see Datasets -

Financial distress

Protein membership, see Datasets
- Protein membership

Ventricular
arrhythmias, see Datasets -
Ventricular arrhythmias

CD-k, 160, 161, 163, 164, 170, 185,
186, 192, 193

Classification problem, 5
Compute Unified Device Architecture,

see CUDA
Concept drifts, 4, 105, 115, 123, 190
Confusion matrix, 39, 40
Contrastive divergence, see CD-k
CPU, 14, 15, 141, 145–147, 149, 185
Cross-validation, see Validation
CUDA, 11, 16, 18–29, 31, 137, 186

architecture, 20, 24–28
blocks, 20–23, 25, 27
built-in variables, 22
coalesced accesses, 27–29, 31
compute capability, 21, 24, 25, 27
grid (kernel), 20–23, 25, 27
kernels, 20–25, 31
programming model, 16, 18, 20–24
warp, 21, 22, 26–29

Curse of dimensionality, 127

Datasets
Annealing, 44, 100–102

XXIII

Index

AT&T, see Datasets - ORL face
database

Audiology, 44, 100, 101
Bankruptcy, see Datasets -

Financial distress
Breast cancer, 44, 100, 101, 112,

113
CBCL face database, 44, 46, 47,

57, 59, 140–143, 185
Congressional, 44, 100–102
Ecoli, 44, 112, 113
elec2, see Datasets - electricity

demand
Electricity demand, 44, 46, 111,

115, 116, 190
Financial distress, 10, 51, 53, 54,

96, 102–104, 122, 191
Forest cover type, 44, 81, 84, 85
German credit data, 44, 111–113
Glass identification, 44, 112, 113
Haberman’s survival, 44, 112, 113
Heart - Statlog, 44, 112, 113
Hepatitis, 44, 100–102
HHreco multi-stroke symbol, 11,

12, 44, 46, 48, 127, 170, 174,
177–184, 186, 193

Horse colic, 44, 100–102
Ionosphere, 44, 112, 113
Iris, 44, 112, 113
Japanese credit, 44, 100–102
KDD Cup 1999, 44, 46, 110, 113,

114, 190
Luxembourg Internet usage, 44,

49, 111, 115, 116, 190
Mammographic, 44, 100–102
MNIST hand-written digits, 11,

12, 44, 49, 50, 125, 127, 157,
161, 167, 170–184, 186, 189,
192, 193

Mushroom, 44, 100, 101
ORL face database, 11, 43–45, 57,

58, 140, 145, 147–150, 152,
153, 185, 192

Peptidases, see Datasets - Protein
membership

Pima Indian diabetes, 44, 112, 113
Poker hand, 44, 81, 84–86
Protein membership, 10, 51, 53,

54, 111, 117, 119, 123, 190
Sinus cardinalis, 44, 49, 51, 81, 82
Sonar, 44, 81, 89, 112, 113
Soybean, 44, 100–102
Tic-Tac-Toe, 44, 111–113
Two-spirals, 44, 49, 51, 81, 82
Vehicle, 44, 112, 113
Ventricular arrhythmias, 10, 11,

51, 54, 55, 81, 85, 87–89, 91,
121, 192

Wine, 44, 112, 113
Yale face database, 11, 44, 49, 51,

52, 57, 60, 132, 140, 142, 144–
146, 149, 151, 153, 185, 192

Yeast, 44, 112, 113
DBN, 8, 10–12, 33, 46, 57, 126, 127,

155–164, 170, 174, 177, 179,
180, 182, 185–187, 189, 192–
194

Experimental results, 170–182
GPU parallel implementation, 163–

170
Deep belief networks, see DBN
Deep learning, see also DBN, 153–155

Empirical risk minimization, 5, 6

F1 score, see F-Measure
F-measure, 39–41
Face recognition, 10–12, 43, 57, 126,

128, 131, 139, 140, 182
Feature extraction, 7, 128, 182, 193
Feed-forward network, 63, 64, 66
Field-Programmable Gate Array, see

FPGA
FPGA, 15, 16

General-Purpose computing on GPUs,
see GPGPU

XXIV

Index

Generalization, 41, 55, 56, 69, 90, 95,
96

Gibbs sampling, 159, 160
GPGPU, 14, 16, 19, 20
GPU, 4, 9–22, 24–29, 35, 126, 127,

131, 134, 140–142, 145–147,
149, 165, 167, 170, 185, 186

Pipeline, 19
GPU computing, see also GPGPU, 4,

14, 16, 20, 33
GPUMLib, 9, 11, 13, 14, 18, 19, 28–35,

191, 193, 194
Graphics Processing Units, see GPU

Histogram Equalization, 57, 141

IB3, 108, 110–113, 115
IHC, 8, 10, 11, 42, 62, 106–110, 121–

123, 190, 193, 194
Experimental results, 110–121
IHC-SVM, 10, 117–121, 123, 190,

191
Imputation, 92, 94–96, 191
Incremental Hypersphere Classifier,

see IHC
Incremental learning, 4, 62, 105, 117,

118, 121, 123
Instance selection, 4, 39, 105
Interpretability, 105, 123

k-nearest neighbor, see k-nn
k-nn, 106, 110–112

Machine Learning, 1–5, 7, 9, 11, 13–15,
17–19, 29, 30, 33, 35, 40, 53,
61, 92–94, 96, 104, 105, 123,
126, 131, 153, 185, 189, 191,
193, 194

Macro-average
F-Measure, 41
Precision, 41
Recall, 41

MAR, 93, 94, 96, 99, 122, 191
Markov Chain Monte Carlo, 159, 194

MBP, 9, 11, 29, 33, 62, 69–75, 79,
91, 99, 101–103, 121, 122, 140,
142, 146, 165, 170, 177, 179,
182, 185–187, 191–193

Experimental results, 79–91
GPU Parallel Implementation, 75–

78
MCAR, 93, 94, 99, 122, 191
MCMC, see Markov Chain Monte

Carlo, 160
MFF, 71–74
min-max rescaling, see Rescaling
Missing data, 5, 8, 9, 62, 91–103, 121,

122, 191, 192
mechanisms, 93–94
methods, 94–97

Missing values, see Missing data
Missing values problem, see Missing

data
MLP, see Feed-forward network
Multi-layer perceptron, see Feed-

forward network
Multiple Back-Propagation, see MBP
Multiple back-propagation software,

79, 99
Multiple feed-forward network, see

MFF

Neural networks, 8, 9, 39, 62–104, 106,
121–123, 128, 144, 146, 147,
153–182, 191, 192

Neural Selective Input Model, see
NSIM

Neuron, 63–65
selective actuation, 70–73, 97
selective input, 97, 98, 122

NMAR, 93, 94
NMF, 8, 10, 12, 33, 43, 57, 126–132,

134, 139–142, 146, 148–150,
153, 182, 185, 187, 190, 192,
194

Combining with other algorithms,
131

Experimental results, 139–153

XXV

Index

GPU parallel implementation, 134–
139

Non-Negative Matrix Factorization,
see NMF

semi-supervised, see SSNMF
NSIM, 8–11, 33, 62, 97–99, 121–123,

191–193
experimental results, 99–104
GPU Parallel Implementation, 99

Open source, 17, 18

Precision, 39–41
Preprocessing, 55–57, 94, 97

RBF, 33, 70, 117
RBM, 8, 10, 33, 57, 126, 155–166, 170,

171, 174, 177, 179, 182, 185,
186, 189, 192–194

Experimental results, see DBN -
Experimental results

GPU parallel implementation,
see DBN - GPU parallel
implementation

Recall, 39–41
Reinforcement learning, 5, 6
Rescaling, 56, 57
Restricted Boltzmann machines, see

RBM
RMSE, 39, 76, 78, 83
Root mean square error, see RMSE

Scalar Processor, 24–27
Semi-supervised learning, 5
Sensitivity, 39, 40, 89
SIMT, 27
Single-instruction multiple-thread, see

SIMT
Space savings, see Storage reduction
Specificity, 39, 40
Speedup, 39
SSNMF, 8, 12, 126, 131–134, 140, 148–

150, 185, 187, 190, 192–194
Experimental results, 140, 148–

153

Storage reduction, 39
Stratification (data), 42, 43
Streaming Multiprocessor, 24–27
Structural risk minimization, 5
Supervised learning, 2, 5–7, 61, 63,

125, 126, 182
SVM, 5, 10, 11, 33, 92, 111, 117, 118,

120, 123, 147–149, 154, 155,
185, 190

Test dataset, 41, 56
Train dataset, 5, 6, 41, 56
True negative rate, see Specificity
True positive rate, see Sensitivity

Unsupervised learning, 5–7, 125, 126,
182

Validation
hold-out, 41
k-fold cross-validation, 42
leave-one-out cross-validation, 42,

43
leave-one-out-per-class

cross-validation, 43
repeated k-fold cross-validation,

42
repeated random sub-sampling

validation, 43

XXVI

Index

XXVII

	Abstract
	Resumo
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Code Listings
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Motivation
	1.2 Challenges and Research Questions
	1.3 Problem Statement
	1.4 Thesis Contributions
	1.5 Outline of the Thesis

	2 GPU Machine Learning Library (GPUMLib)
	2.1 Introduction
	2.2 A Review of GPU Parallel Implementations of ML Algorithms
	2.3 GPU Computing
	2.4 Compute Unified Device Architecture (CUDA)
	2.4.1 CUDA Programming Model
	2.4.2 CUDA architecture

	2.5 GPUMLib architecture
	2.6 Summary

	3 Experimental Setup and Performance Evaluation
	3.1 Hardware and Software Configurations
	3.2 Evaluation Metrics
	3.3 Validation
	3.4 Benchmarks
	3.5 Case Studies
	3.6 Data Preprocessing
	3.7 Summary

	4 Supervised algorithms
	4.1 Multiple Back-Propagation (MBP)
	4.1.1 Back-Propagation (BP) Algorithm
	4.1.2 Multiple Back-Propagation (MBP) Algorithm
	4.1.3 GPU Parallel Implementation
	4.1.4 Autonomous Training System (ATS)
	4.1.5 Results and Discussion

	4.2 Neural Selective Input Model (NSIM)
	4.2.1 Missing Data Mechanisms
	4.2.2 Methods for Handling MVs in Machine Learning
	4.2.3 NSIM Proposed Approach
	4.2.4 GPU Parallel Implementation
	4.2.5 Results and Discussion

	4.3 Incremental Hypersphere Classifier (IHC)
	4.3.1 Proposed Incremental Hypersphere Classifier Algorithm
	4.3.2 Results and Discussion

	4.4 Summary

	5 Unsupervised and Semi-supervised algorithms
	5.1 Non-Negative Matrix Factorization (NMF)
	5.1.1 NMF Algorithm
	5.1.2 Combining NMF with other ML Algorithms
	5.1.3 Semi-Supervised NMF (SSNMF)
	5.1.4 GPU Parallel Implementation
	5.1.5 Results and Discussion

	5.2 Deep Belief Networks (DBNs)
	5.2.1 Restricted Boltzmann Machines (RBMs)
	5.2.2 Deep Belief Networks Architecture
	5.2.3 Adaptive Step Size Technique
	5.2.4 GPU parallel implementation
	5.2.5 Results and Discussion

	5.3 Summary

	6 Conclusions and Perspectives
	6.1 Main Research Accomplishments and Conclusions
	6.2 Future Work

	Bibliography
	Index

