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Summary 

 

Machado-Joseph disease (MJD) is a neurodegenerative disease caused by the 

expansion of a polyglutamine repeat in the ataxin-3 protein. There is currently no therapy 

available to prevent or modify disease progression. Since the manipulation of a 

neuromodulation system operated by adenosine A2A receptors (A2AR) demonstrated to be 

effective controlling and alleviating neurodegeneration in different brain diseases, we now 

tested its ability to also control MJD-associated neurodegeneration. For that purpose, we 

have used different mouse models of MJD, namely lentiviral-based and transgenic, and 

investigated whether A2AR antagonism, molecular and genetic inactivation were able to reduce 

the associated morphological and behavioral modifications.  

Our candidate strategy was the chronic administration of caffeine (per os), based on 

its ability to antagonize the adenosine receptors (ARs), especially of the A2AR (Fredholm et 

al., 1999), to cross the blood brain barrier, which together with its favorable safety profile 

suggest it may be a promising prophylactic candidate strategy to interfere with the inexorable 

evolution of MJD. 

In Chapter 2, MJD was modelled by transducing the striatum of male adult C57Bl6 

mice with lentiviral vectors encoding mutant ataxin-3 in one hemisphere and wild-type ataxin-

3 in the other hemisphere (as internal control). Caffeine (1 g/L) was administered through the 

drinking water. Neuropathological analysis provided evidence showing that synaptotoxicity 

and gliosis are precocious events in MJD and that caffeine and A2AR inactivation decrease 

MJD-associated striatal pathology, which paves the way to consider A2AR as novel 

therapeutic targets to manage MJD. 

In Chapter 3, MJD transgenic mice (TgMJD) were given caffeine (1 g/L, applied 

through the drinking water) and were tested using a panel of motor and non-motor 

paradigms. TgMJD animals displayed a constellation of motor and cognitive/emotional 

alterations, such as loss of gross and fine tuned movements, as well of learning disabilities 

and mood alterations. We provide evidence showing that caffeine prevents the progressive 

loss of motor functions, balance and grip strength, and the underlying cerebellar morphology 

modifications likely through a normalization of an imbalance in the dopaminergic circuitry.  

In Chapter 4, expression of mutant ataxin-3 in the striata of male adult C57Bl6 mice: i) 

was followed by treatment with KW6002, a selective antagonist of A2AR, or ii) coupled with 

silencing or overexpression of A2AR with lentiviral vectors. Mutant ataxin-3 expression in 

striata caused an extensive loss of DARPP-32 immunoreactivity accompanied by a clear 

condensation of the internal capsule. KW6002 reduced the loss of DARPP-32 and prevented 



 

VI 

striatal loss. On the contrary, A2AR knockdown in striatal GABAergic medium spiny neurons 

(MSNs) exerted no effect over MJD progression and A2AR over-expression resulted in a 

tendency for early neuroprotection. Our findings directly implicate A2AR in MJD progression 

and support a distinct role for A2AR localized at pre and post-synaptic striatal compartments, 

which should be carefully considered when conceiving therapeutic A2AR antagonistic 

approaches intended to reduce MJD-associated pathology. 

Overall, this thesis provides for the first time evidences that A2AR might be a novel 

therapeutic target to interfere with MJD evolution.  
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Resumo 

 

A doença de Machado-Joseph (DMJ) é uma doença neurodegenerativa causada por 

uma repetição excessiva do trinucleótido CAG no gene MJD1/ATXN3 que se traduz numa 

expansão de uma repetição de glutaminas na proteína ataxina-3. Não existe actualmente 

nenhuma terapêutica que previna ou modifique a progressão da doença. No entanto, como 

a manipulação do sistema neuromodulador da adenosina, em particular do seu receptor A2A, 

se tem revelado eficaz no controlo e alívio da neurodegenerescência em diferentes 

patologias cerebrais, testámos agora a sua capacidade de controlar a 

neurodegenerescência associada à DMJ. Com este propósito, utilizámos diferentes modelos 

roedores animais de DMJ, nomeadamente o modelo baseado na introdução intra-cerebral 

de vectores lentivirais e num modelo transgénico, e averiguámos a eficiência do 

antagonismo dos receptores A2A, bem como da sua deleção genética e molecular nas 

modificações neuropatológicas e comportamentais associadas. 

A administração crónica de cafeína (por via oral) foi a estratégia escolhida dada a 

sua capacidade para antagonizar os receptores de adenosina, em particular os receptores 

A2A (Fredholm et al., 1999), de atravessar a barreira hematoencefálica e, graças ao seu 

perfil de segurança, de poder tornar-se uma estratégia profilática promissora para modificar 

a progressão da DMJ. 

No capítulo 2, modulámos a DMJ transduzindo o estriado de animais murinos adultos 

da estirpe C57Bl6 com vectores lentivirais codificando para a ataxina-3 mutante num 

hemisfério e para a ataxina-3 normal no hemisfério contralateral (como controlo interno), e 

administrámos cafeína (1 g/L) solubilizando-a na água de beber. Os nossos resultados 

evidenciam dois fenómenos precoces na DMJ, a sinaptotoxicidade e a gliose, e demonstram 

que a cafeína e a deleção genética dos receptores A2A diminuem a patologia estriatal 

associada à doença o que nos leva a considerar os receptores A2A como um potencial novo 

alvo terapêutico para tratar a DMJ. 

No capítulo 3, administrámos cafeína (1 g/L, na água de beber) em murganhos 

transgénicos da DMJ (TgDMJ) e testámo-los em vários paradigmas motores e não motores. 

Os animais TgDMJ apresentaram uma série de modificações motoras e cognitivas/ 

emocionais, tais como défices na movimentação fina, e na capacidade de aprendizagem 

bem como alterações de humor. Os nossos resultados mostram que a cafeína previne a 

perda progressiva da função motora, do equilíbrio e da força muscular, acompanhado por 

uma preservação da morfologia cerebelar e da normalização de um possível desequilíbrio 

nos circuitos dopaminérgicos. 
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No capítulo 4, o modelo da DMJ murganho baseado na transdução estriatal de 

lentivírus codificando para a ataxina-3 mutante foi: i) seguido de tratamento por via oral com 

o composto KW6002, um antagonista selectivo dos receptores A2A; ou ii) paralelamente co-

transduzido com vectores lentivirais que promoveram o silenciamento ou a sobre-expressão 

dos receptores A2A. A expressão da ataxina-3 mutante no estriado de murganho induziu uma 

perda extensa de imunoreactividade à proteína DARPP-32 seguida de uma clara 

condensação da cápsula interna do corpo estriado. O composto KW6002 reduziu a perda de 

DARPP-32 e preveniu a redução do corpo estriado. Por sua vez, o silenciamento dos 

receptores A2A nos neurónios GABAérgicos estriatais do tipo espinhosos médios não 

exerceu qualquer efeito na progressão da DMJ conquanto a sua sobre-expressão resultou 

numa tendência para a neuroprotecção. Os nossos resultados suportam o envolvimento 

directo dos receptores A2A na progressão da DMJ e evidenciam a existência de um papel 

distinto dos receptores A2A localizados nos compartimentos pré- e pós-sináptico estriatais, 

devendo este facto constituir uma preocupação especial na concepção de terapêuticas 

baseadas no antagonismo dos receptores A2A direccionadas para reduzir a patologia da 

doença de Machado-Joseph. 

Por fim, esta dissertação apresenta um conjunto de evidências que demonstram pela 

primeira vez que os receptores A2A constituem um novo alvo terapêutico que permite 

interferir com a evolução da DMJ. 
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1.1 Neurodegenerative diseases 

Neurodegenerative diseases, such as Parkinson’s disease (PD), Alzheimer’s disease 

(AD), amyotrophic lateral sclerosis (ALS) and polyglutamine diseases that include 

Huntington’s disease (HD) and Machado-Joseph disease (MJD), as well other 

polyglutamine-associated spinocerebellar ataxias, arise from abnormal protein interactions in 

the central nervous system. In all of these diseases, there are characteristic deposits of 

protein aggregates in the brain, such as α-synuclein, amyloid-β (Aβ), mutant SOD1 and 

polyglutamine containing proteins (DiFiglia et al., 1997; Duyckaerts et al., 1995; Nussbaum 

and Polymeropoulos, 1997; Paulson et al., 1997b; Stieber et al., 2000), which frequently 

contain other material besides the disease protein. These abnormal deposits of misfolded 

proteins produce malfunctioning and degeneration of a distinctive set of neurons. 

Although protein aggregates have emerged as common pathological features of 

neurodegenerative disorders, there has been great controversy about the role of aggregation 

in the disease process. Actually, despite the many indirect evidences linking aggregation to 

toxicity (Bucciantini et al., 2002; Desai et al., 2006; Welch and Diamond, 2001), there are 

reports showing a weak correlation between the inclusion accumulation and the pathogenic 

process in human patient’s brain (Terry et al., 1991; Tompkins and Hill, 1997) and also that 

the number of such aggregates does not perfectly match with neuronal loss (Kuemmerle et 

al., 1999). These evidences indicate that protein aggregates might represent a cellular 

protective response, i.e., an end-stage manifestation of a multistep aggregation process 

(Arrasate et al., 2004; Saudou et al., 1998; Taylor et al., 2003). In keeping with this 

observation, increasing evidences have emerged showing that early events before the 

formation of large inclusion bodies may occur and cause toxicity. Possible culprits include 

abnormal monomers and small assemblies of the disease proteins (Haacke et al., 2006; 

Wellington et al., 2000) closely followed by the loss of synaptic markers (Chapman et al., 

1999; Li et al., 2001; Sawle et al., 1993) preceding or in parallel with oxidative and 

endoplasmic reticulum stress, proteosomal and mitochondrial dysfunction (Shastry, 2003) 

and inflammatory responses that ultimately lead to neuronal death. Thence, the molecular 

pathogenesis might involve several cellular compartments. Establishing whether a 

modification is pathogenic or beneficial is a question that has critical therapeutic relevance, 

especially since these are devastating and untreatable diseases, which slowly progress over 

years or decades with a reduction in quality of life. 
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1.1.1 Polyglutamine diseases 

Polyglutamine (PolyQ) diseases are a subset of neurodegenerative conditions each 

deriving from an unstable CAG triplet repeat expansion in a specific gene, which is translated 

as an expanded tract of repeated glutamines in the codified protein. The first CAG triplet 

repeat disease was described in 1991: a mutation in the androgen receptor (AR) gene that 

causes a progressive motor neuron disease named spinal bulbar muscular atrophy (SBMA) 

(La Spada et al., 1991). So far, several other mutations have been identified associated with 

this CAG codon becoming abnormally expanded above a certain threshold. There are 

currently nine dominantly-inherited polyglutamine disorders, namely Huntington’s disease 

(HD), dentatorubral-pallidoluysian atrophy (DRPLA) and spinocerebellar ataxia (SCA) types 

1, 2, 3, 6, 7 and 17, in addition to the first described, all commonly sharing a progressive and 

selective neuronal loss accompanied by a decline in physical and psychological functions 

(Gatchel and Zoghbi, 2005), although the proteins associated with each different disorder 

display no homology beyond the polyQ tract, being structurally and functionally unrelated 

(Table 1). 

 

Table 1. Overview of the current polyQ disorders. 

Disease Protein Known function Most affected brain regions 

SBMA Androgen Steroid-hormone receptor Anterior horn and bulbar neurons, dorsal root 

ganglia 

HD Huntingtin Signaling transport, transcription Striatum, cerebral cortex 

DRPLA Atrophin 1 Transcription Cerebellum, cerebral cortex, basal ganglia, 

Luys body 

SCA1 Ataxin-1 Transcription Cerebellar Purkinje cells, dentate nucleus, 

brainstem 

SCA2 Ataxin-2 RNA metabolism Cerebellar Purkinje cells, brainstem, 

frontotemporal lobes 

MJD/SCA3 Ataxin-3 Deubiquitination Cerebellar dentate nucleus, basal ganglia, 

brainstem, spinal cord 

SCA6 P/Q-type calcium-channel 

α1 subunit 

Voltage-sensitive calcium-channel 

subunit 

Cerebellar Purkinje cells, dentate nucleus, 

inferior olive 

SCA7 Ataxin-7 Transcription Cerebellum, brainstem, macula, visual cortex 

SCA17 TATA binding protein Transcription Cerebellar Purkinje cells, inferior olive 

SBMA, spinal and bulbar muscular atrophy; HD, Huntington’s disease; DRPLA, dentatorubral-pallidoluysian atrophy; SCA, 

spinocerebellar ataxia;  MJD, Machado-Joseph disease. Adapted from (Matos et al., 2011; Williams and Paulson, 2008; Zoghbi 

and Orr, 2000). 
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Notably, the age of onset inversely correlates with the size of the CAG stretch (Maciel 

et al., 1995); larger polyQ expansions markedly lead to earlier symptoms and increased 

severity of the phenotype, a phenomena called anticipation (Fleischer, 1918; Myers et al., 

1982). Although not proven definitively, a theoretical molecular model of repeat instability 

based on replication fork stalling and restart, provided a golden clue for the origin of triplet 

disorders wherein DNA unwinding or even complete strand separation processes trigger 

unusual DNA structures formed by expandable repeats in genomic DNA (Mirkin, 2006). This 

hypothesis was recently confirmed in a human cell model (Liu et al., 2013) whereupon 

irregular DNA hairpin formation was eliminated to some extent by oligodeoxynucleotides 

complementarity. These striking reports underpin the core of all processes and allow 

considering that these unusual DNA structures indeed bewilder the machinery for major 

genetic transactions, primarily DNA replication but also recombination and repair, ultimately 

leading to repeat instability, which is a hallmark of polyQ disorders. This consideration 

implies that all polyQ disorders share a common peculiar genomic profile highly difficult to 

circumvent. 

 

1.1.1.1 Pathogenesis 

The underlying mechanisms that trigger polyQ-associated pathology are yet to be 

fully elucidated, as well as the selective vulnerability in neurodegeneration. Nevertheless, a 

wide variety of scientific contributions especially in the last 10 to 15 years have been made 

fostering a plethora of information, which together allowed greater understanding of these 

diseases. 

 

1.1.1.1.1 Genetics 

The first prominent issue to consider is the propensity of a given expanded CAG, 

even outside of a particular gene, to induce neurodegeneration itself. Intriguingly, a 

neurodegenerative phenotype resembling the human translated CAG repeat disorders was 

observed upon viral delivery of polyQ tracts in the adult rat brain (Senut et al., 2000) and in 

transgenic mice ectopically expressing a CAG-expansion (Ordway et al., 1997), indicating 

that polyQ itself is indeed prone to induce neurodegeneration. Secondly, yet an under-

explored subject is polyQ RNA toxicity, which may involve defects in the overall RNA 

functional dynamics with profound implications for cellular physiology (reviewed in (Lukong et 

al., 2008)). In this regard, there have been episodic reports demonstrating that: i) the 

expression of an untranslated CAG repeat of pathogenic length conferred neuronal 

degeneration (Li et al., 2008); ii) CAG expansion constructs express homopolymeric 



Chapter 1 

6 

polyglutamine, polyalanine and polyserine proteins in the absence of an ATG start codon, a 

mechanism known as repeat-associated non-ATG translation (RAN translation) (Zu et al., 

2011); iii) there is an upregulation of a gene implicated in the RNA toxicity of CUG expansion 

diseases, namely myotonic dystrophy type 1 (DM1) and SCA8 in a MJD/SCA3-induced fly 

model (Koob et al., 1999; Wells et al., 1998); and iv) a CAG length dependent ribosomal 

frameshifting occur resulting in translational errors and toxicity mediated by polyalanine-

frameshifted peptides (Toulouse et al., 2005); these evidences indicate that there might be 

actually an RNA-mediated gain-of-function mechanism with a pathogenic role 

(Wojciechowska and Krzyzosiak, 2011). In accordance with this observation, a recent clinical 

report showed an interplay between MJD/SCA3-CAG repeats and DM1-CTG repeats in a 

single patient’s phenotype (Miura et al., 2009), which adds further dimension to this topic. 

And third, the epigenetic status, such as DNA methylation, chromatin remodeling (histone 

acetylation) and microRNAs (miRNAs) regulators of gene expression (Fig 1.1), still is an 

under-appreciated issue in polyQ disorders whose modified phenotypic plasticity in parallel 

with the aging process (reviewed in (Marques et al., 2011) might actually equally contribute 

to precipitate toxicity and degeneration (Bilen et al., 2006; Laffita-Mesa et al., 2012; Palhan 

et al., 2005; Ying et al., 2006; Zadori et al., 2009). 

 

Figure 1.1: Principal epigenetic mechanisms of 

gene expression regulation. DNA methylation, 

inhibits gene transcription if occurring in the gene 

promoter but it may also promote transcription 

when localized at gene exons sites (upper left 

panel). Epigenetic histone modifications are post-

translational changes that influence gene 

expression by controlling the dynamics of 

chromatin. Histone tail methylation and acetylation 

are reported as the main histone epigenetic 

phenomena as schematically shown in the upper 

right panel of the figure. In the lower panel is 

reported a simplified scheme of microRNAs (small non-coding RNA fragments) biogenesis. The 

biogenesis of microRNAs occurs across nucleus and cytoplasm of the cell, the latter cell environment 

being the place where mature microRNAs exert their down-regulating effect on gene transcription by 

leading to target mRNA degradation or by mRNA translation repression. Adapted from (Udali et al., 

2013). 
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1.1.1.1.2 Alteration of normal protein function 

PolyQ disorders might in part derive from perturbation of normal polyglutamine 

protein function. Accordingly, there are studies implying a loss-of-function of the involved 

protein in HD (Dragatsis et al., 2000; Leavitt et al., 2001), SCA1 (Bowman et al., 2007) and 

MJD/SCA3 (Warrick et al., 2005), based on polyQ gene inactivation and over-expression 

experiments of the respective wild-type form. However, several genetic studies have 

revealed that the absence of the polyQ-involved proteins (wild-type form) does not cause 

neurodegeneration both in humans (Ambrose et al., 1994; Davies et al., 1999) and mice 

(Lastres-Becker et al., 2008; Schmitt et al., 2007), strongly suggesting that the polyQ 

expanded protein causes disease mainly by a dominant gain-of-function mechanism 

whereby it confers toxic properties to the host proteins. Therefore, polyQ expanded proteins 

may aggregate into inclusion bodies (DiFiglia et al., 1997; Holmberg et al., 1998; Paulson et 

al., 1997b) or undergo proteolytic cleavage (Kim et al., 2001; Li et al., 2007; Simoes et al., 

2012; Wellington et al., 2002), and subsequent misfolding may lead to toxic effects in 

multiple targets (Nagai et al., 2007; Scherzinger et al., 1997; Welch and Diamond, 2001) 

including the quality control system, energy metabolism, transcriptional machinery and 

synaptic transmission. 

Taken together with genetics (the previous section), these hypotheses may in general 

represent the triggers of the observed alterations in the regular patterns of cell and brain 

functioning attributed to expanded polyQ proteins accomplishing ultimately useful information 

for the understanding of the inexorable progression of polyQ disorders. These issues, 

incidentally the most studied for polyQ disorders, will be further detailed in section 1.1.1.1.3. 

 

1.1.1.1.3 Induced alterations by expanded polyQ proteins 

Figure 1.2 summarizes the key pathogenic mechanisms induced by expanded polyQ 

proteins. 
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Figure 1.2: Key 

cellular pathogenic 

mechanisms 

induced by 

expanded-polyQ 

proteins. Multiple 

cellular pathways 

have been 

implicated in the 

pathogenesis of 

polyQ disorders. 

These mechanisms 

could be exclusive 

or, more likely, have 

a high degree of 

cross-talk. (A) The 

polyQ expansion causes a conformational change of the protein that leads to its partial unfolding or 

abnormal folding, which can be corrected by molecular chaperones. Full-length mutant protein is 

cleaved by proteases in the cytoplasm. In an attempt to eliminate the toxic polyQ-expanded proteins, 

fragments are ubiquitinated and targeted to the proteasome for degradation. However, due to the 

abnormal size of the polyQ fragments, proteasome becomes less efficient. Induction of the 

proteasome activity as well as of autophagy protects against the toxic insults of mutant proteins by 

enhancing its clearance. (B) Fragments containing the polyQ stretch accumulate in the cell cytoplasm 

and interact with several proteins causing impairment of calcium signaling and homeostasis (C) and 

metabolic deficits through mitochondrial dysfunction (D). (E) Toxic fragments may translocate to the 

nucleus where they impair gene transcription also forming intranuclear inclusions. (F) The mutation in 

polyQ proteins alters vesicular transport and recycling, which might modify synaptic transmission. 

Adapted from (Zuccato et al., 2010). 

 

1.1.1.1.3.1 Quality control system failure 

The pathogenic polyQ length predisposes polyQ proteins to misfolding and 

aggregation (Scherzinger et al., 1997), and the accumulation of misfolded proteins is a 

common feature of polyQ disorders. As the brain seems uniquely susceptible to protein 

misfolding, it thus appears to play a key role in pathogenesis. This suggests a critical link 

between polyQ disorders and protein quality control, a collection of cellular pathways that 

sense damage to proteins and facilitate their turnover. Consistently, cells are equipped with 
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systems that quickly attack unfolded proteins by either refolding or degrading them, thus in 

general the misfolded products are rapidly removed. 

The cellular machinery that operates protein refolding is the large family of chaperone 

proteins, which are distributed in all subcellular compartments even on synapses. The role of 

chaperones, mostly heat shock proteins, in polyQ diseases has been extensively studied and 

have shown the ability to be protective in multiple polyQ disease models, namely in SBMA 

(Adachi et al., 2007), HD (Miller et al., 2005), SCA1 (Al-Ramahi et al., 2006) and SCA3 (Jana 

et al., 2005). As chaperones display a very competent ability to modulate the toxicity of 

multiple polyQ disease proteins, they have even been dubbed as polyQ disease modifiers. 

If chaperones cannot refold abnormal proteins correctly, they then promote their 

subsequent ubiquitination, which ultimately directs them to degradation. The degradation 

system includes the ubiquitin-proteasome pathway (UPS) and the autophagic/ lysosomal 

pathway, which together are responsible for intracellular protein turnover and recycling of 

cellular components. Herein, proteasome malfunction has been implicated in several polyQ 

diseases including SBMA, HD, SCA1, MJD/SCA3 and SCA7 (Bence et al., 2001; Mandrusiak 

et al., 2003; Park et al., 2005; Schmidt et al., 2002; Wang et al., 2007; Wang et al., 2008) 

wherein either proteasome subunits are recruited into inclusion bodies (Ciechanover and 

Brundin, 2003) or proteasome fails to fully digest soluble expanded polyQ proteins 

(Venkatraman et al., 2004). Additionally, also impaired autophagy has been described in 

SBMA (Rusmini et al., 2010), HD (Heng et al., 2010; Ravikumar et al., 2004), SCA1 (Vig et 

al., 2009), MJD/SCA3 (Menzies et al., 2010; Nascimento-Ferreira et al., 2011) and SCA7 

(Duncan et al., 2010), whose activation reduces accumulated polyQ aggregates and 

subsequent cell degeneration. 

 

1.1.1.1.3.2 Metabolism and mitochondria dysfunction 

Evidences of metabolic defects correlating with neurological features and functional 

decline were first described in HD patients (Young et al., 1986). These defects include 

reduced glucose and mitochondrial oxidative metabolisms assessed by PET (positron 

emission tomography) and MRS (magnetic resonance spectroscopy) in HD patients (Feigin 

et al., 2007; Jenkins et al., 1993) as well as a general increase of oxidative stress (Browne et 

al., 1997; Browne et al., 1999), preceded by early mitochondrial calcium-handling defects 

(Oliveira et al., 2006; Panov et al., 2002). In addition, as protein quality control system is 

ATP-dependent, those defects may exacerbate putative difficulties in polyQ proteins 

refolding and degradation, essential to proteostasis and maintenance of neuronal cell 

survival (Gines et al., 2003). Such modifications have been also implicated in the 
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pathogenesis of SBMA, SCA1 and MJD/SCA3 (Beauchemin et al., 2001; Kim et al., 2003; 

Laco et al., 2012; Lodi et al., 2000; Tsai et al., 2004) thus underlying another common 

feature shared by polyQ diseases. 

 

1.1.1.1.3.3 Transcriptional dysregulation 

It is consensual that there is a general transcriptional disturbance by polyQ disease 

proteins. Interactions of expanded polyQ proteins with specific transcription factors may 

perturb and repress gene expression, and thus initiate neurodegeneration. Many of those 

interactions have been substantially described (Cui et al., 2006; McCampbell et al., 2000; 

Nucifora et al., 2001) and involve sequestration by polyQ protein monomers (Hoshino et al., 

2004) or recruitment into aggregates disrupting the normal regulation of target genes. 

Nevertheless, with exception for SCA7 whose transcriptional repression might possibly lead 

to a neuron-specific pathology (La Spada et al., 2001), it still cannot explain cell and brain 

regional specificity of degeneration for all polyQ disorders. 

 

1.1.1.1.4 Protein sub-cellular localization; susceptibility of neurons and synapses 

Inclusion formation happens when protein concentrations rise above critical levels. 

The situation at the synapse, with its tiny volume, highly crowded environment and harsh 

chemical conditions could be favorable for moving above this threshold, thus promoting the 

formation of protein aggregates. Also, synaptic junctions are often located at great distances 

from the cell soma, which poses some additional limits to the strength and the capacity of the 

recovery process (Malgaroli et al., 2006). Therefore, large aggregates could potentially 

disrupt the functional behavior of synapses impeding electrical and chemical signals to 

propagate acting as a sort of physical barrier, counteracting intracellular trafficking of 

organelles to and from the synapse (Li et al., 2003a). In fact, Wang and colleagues (Wang et 

al., 2008) have recently reported that mutant huntingtin decreased synaptic UPS activity in 

isolated synaptosomes of HD mouse brains, which adds further dimension to this 

perspective. On the other hand, oligomers have been also implicated as critical players in 

disrupting synaptic functions in many neurodegenerative diseases acting as pore forming 

toxins on membranes, thus altering the ion balance of neurons and synapses (Lashuel et al., 

2002; Walsh et al., 2002). In keeping with this scenario, the differential susceptibility of 

various cell types might then depend on the environmental context where polyQ proteins are 

located, wherein local compensatory mechanisms restoring physiological conditions and 

different lipid-membrane compositions have a determinative role, beyond the abnormal 

function and protein-protein interactions exerted by each specific polyQ proteins. 
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1.1.1.2 Machado-Joseph disease 

1.1.1.2.1 Historical overview: from clinical to molecular diagnosis. Epidemiology. 

Machado-Joseph disease, also known as spinocerebellar ataxia type 3 (MJD/SCA3), 

was initially described in Northern American families of Azorean ancestry. In 1972, Nakano 

and colleagues reported a family descendent from William Machado, a native from São 

Miguel in Azores, presenting progressive hereditary ataxia (Nakano et al., 1972). Four years 

later, Rosenberg and collaborators described another Azorean-ancestry family (from Flores) 

presenting a “new” hereditary ataxia different from the former one (Rosenberg et al., 1976), 

further called as “Joseph’s disease” (Rosenberg et al., 1978). Finally, the Portuguese 

clinicians and researchers, Paula Coutinho and Corino Andrade, unified the designation of 

the disease upon studying 15 families from the Azorean Islands proposing that the above 

mentioned diseases were indeed variations of the same clinical disorder, the “Machado-

Joseph disease” (MJD) (Coutinho and Andrade, 1978), although of marked clinical 

heterogeneity. Progressive cerebellar ataxia and pyramidal signs comprise the major clinical 

features with an age of onset ranging from the second to the fifth decade; other minor, but 

more specific, clinical signs such as progressive external ophtalmoplegia, dystonia, 

dysphagia and facial and lingual fasciculation-like movements were also found in MJD 

patients (D'Abreu et al., 2010; Lima and Coutinho, 1980) bringing complexity to MJD 

diagnosis. Importantly, the intellect is preserved in MJD. The preservation of the cognitive 

function is a key feature of MJD in its differential diagnosis among the large group of 

spinocerebellar ataxias (Coutinho and Andrade, 1978). 

Fifteen years later, a mutated gene showing an expanded CAG repeat was described 

in MJD patients (Higgins et al., 1996; Lindblad et al., 1996; Maciel et al., 1995; Sequeiros et 

al., 1994), mapped to chromosome 14q32.1 (Kawaguchi et al., 1994; Takiyama et al., 1993); 

the number of CAG repeats range from 61 to 87 in disease carriers while it varies between 

12 to 44 in healthy population (Maciel et al., 2001). This allowed establishing a molecular 

diagnostic for MJD, based on the determination of the CAG trinucleotide repeat length in the 

ATXN3 gene through targeted mutation analysis. Interestingly, it was also found an 

intergenerational instability (Igarashi et al., 1996), meaning that the repeat tracts presented 

different lengths in progenitors and offspring. This dynamic mutation explains the anticipation 

phenomena observed in MJD families. 

MJD is presently considered the most common dominantly inherited ataxia worldwide 

(Schols et al., 2004). The availability of molecular genetic testing has allowed a thorough 

identification of cases, changing the initial geographic distribution pattern of MJD, first related 

with the Portuguese discoveries and currently known to be present in many ethnic 
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backgrounds, with strong geographic variation (Fig 1.3). Among SCAs, the relative frequency 

of MJD is higher (above 50%) in countries such as Brazil, Portugal and China; and it is 

relatively less frequent (21-24%) in Canada and United States (Bettencourt and Lima, 2011). 

The highest worldwide prevalence occurs in Flores Island, Portugal (1/239) (Bettencourt et 

al., 2008). 

Figure 1.3: Worldwide 

distribution of SCA 

subtypes. Figure 

published courtesy of L 

Schöls, P Bauer, T 

Schmidt, T Schulte, O 

Reiss of University of 

Tübingen and Ruhr-

University Bochum, 

Germany. Adapted 

from Hereditary Ataxia 

Overview. In: Gene 

Reviews
TM

 [Internet] 

Pagon RA, Adam MP, 

Bird TD, et al., editors. 

 

1.1.1.2.2 MJD pathology 

ATXN3 mRNA is ubiquitously expressed in neuronal and non-neuronal human tissues 

(Ichikawa et al., 2001); ataxin-3 protein is present not only in the brain but also throughout 

the body, either in the cytoplasm or in the nucleus of various cell types, being predominantly 

cytoplasmic in neurons (Paulson et al., 1997a). The abnormal gene mutation in ATXN3 locus 

results in an expanded polyQ tract at the C-terminus of the ataxin-3 protein (Masino et al., 

2003) conferring protein propensity for aggregation (Paulson et al., 1997b) (Fig 1.4), an 

hallmark in the pathological characterization of MJD. 

 

Figure 1.4: Schematic representation 

of polyQ-expanded ataxin-3 misfolding 

and aggregation. The expanded 

polyglutamine tract adopts an incorrect 

folding conformation subsequently 

causing toxicity in many ways. 
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Indeed, the presence of ataxin-3 neuronal intranuclear inclusions (NIIs) has been 

argued to play a crucial role in MJD neurodegeneration involving neuronal loss in selective 

brain regions, such as the cerebellum (spinocerebellar pathways and dentate nucleus), 

brainstem (pons and medulla oblongata), basal ganglia (globus pallidus, caudate and 

putamen, substantia nigra) and spinal cord (Alves et al., 2008b; Durr et al., 1996; 

Klockgether et al., 1998; Rub et al., 2008; Sudarsky and Coutinho, 1995; Taniwaki et al., 

1997; Wullner et al., 2005), supporting also a sequestration model of pathogenesis where 

several crucial proteins, such as ubiquitin and proteosomal components, chaperones and 

transcription factors may be sequestered into aggregates impairing various cellular key 

pathways (Chai et al., 2002). Nonetheless, there is only a partial correlation between 

neuronal loss and NIIs (Munoz et al., 2002) which makes hardly to explain selective neuronal 

degeneration by aggregates in addition to the low mosaicism between regions with and 

without neuronal loss and the ubiquitous pattern and cellular expression of the disease gene, 

pointing out the existence of selective cellular vulnerabilities to the genetic defect involved in 

the restricted neuropathology observed in MJD. 

 

1.1.1.2.3 Neurobiology of MJD. Therapeutic targets 

The neurobiology of the disease is not fully elucidated. There have been great efforts 

in the last few years studying the affected cellular pathways in order to identify putative 

therapeutic targets to successfully slow or block disease progression. Several not mutually 

exclusive mechanistic hypotheses have emerged from numerous in vitro and in vivo studies 

exploiting cellular toxicity triggered by mutant ataxin-3 and its altered protein interactions. 

Among all, the follow stand out: i) dysregulation of ataxin-3 proteostasis, namely, ataxin-3 

biogenesis (Alves et al., 2008a; Hu et al., 2011), folding (Teixeira-Castro et al., 2011; Warrick 

et al., 1999), trafficking/localization (Mueller et al., 2009; Pastori et al., 2010) and degradation 

(Menzies et al., 2010; Nascimento-Ferreira et al., 2011; Simoes et al., 2012); ii) metabolic 

impairment, such as mitochondrial dysfunction and oxidative stress (Chang et al., 2009; Tsai 

et al., 2004); iii) transcriptional dysregulation (Chou et al., 2011; Chou et al., 2008); iv) 

abnormal neuronal signaling (Chen et al., 2008); and v) impairment of axonal transport 

(Burnett and Pittman, 2005; Rodrigues et al., 2010). These promising developments 

searching the affected molecular pathways in MJD have been closely followed by successful 

targeted approaches in different MJD animal models. The most effective and widely 

applicable therapies are likely to be those designed to eliminate production of the mutant 

protein upstream of the subsequent deleterious effects, though none has yet been advanced 

to clinical trials in MJD patients. 
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In summary, MJD is a slowly progressive chronic disease triggered by a mutation in 

the ATXN3 gene, which initiates and extends over decades a disturbance of the normal 

cellular homeostasis through a cascade of interrelated pathogenic events subsequently 

leading to a malfunction of the brain circuitries resulting in progressive ataxia, dysfunction of 

motor coordination and postural instability among several other clinical features (discussed in 

1.1.1.2.1). This thesis sought to pursuit the initial cascade of events triggered by polyQ-

expanded ataxin-3, in particular, the induced alterations in synaptic and glial functions, which 

have been under-explored and whose interplay and contribution to the inexorable evolution 

of the disease are still unknown. From there, this work focused in the effects of blocking the 

adenosine A2A receptors function whose ability to control synaptic transmission and glial-

mediated responses might be beneficial. 

 

1.1.1.2.4 MJD management. Treatment of manifestations. 

MJD management remains supportive as no medication has been proven to slow the 

course of disease (D'Abreu et al., 2010). Accordingly, some strategies have been used in an 

attempt to reduce symptomatology: i) extrapyramidal syndromes resembling parkinsonism 

and symptoms of restless legs syndrome may respond to levodopa or dopamine agonists 

(Buhmann et al., 2003; Nandagopal and Moorthy, 2004; Schols et al., 1998); ii) spasticity, 

drooling, and sleep problems also respond variably to appropriate agents, namely baclofen, 

atropine-like drugs, and hypnotic agents (Yun et al., 2005); iii) dystonia has been treated with 

botulinum toxin (Freeman and Wszolek, 2005); iv) excessive daytime fatigue may also 

respond to psychostimulants used in narcolepsy ; and v) accompanying depression might be 

treated with antidepressants (Cecchin et al., 2007). Non-pharmacological approaches, such 

as physiotherapy, physical aids, such as walkers and wheelchairs, regular speech therapy as 

well as occupational therapy help patients to cope with disability, dysphagia and dysarthria, 

and assist in their everyday activities (D'Abreu et al., 2010). 

 
 

1.2 Adenosine receptors in the context of neurodegenerative 

diseases 

The adenosine receptors (ARs) in the nervous system regulate the release of 

neurotransmitters and the action of neuromodulators, such as neuropeptides and 

neurotrophic factors. In fact, ARs are the effectors of adenosine, a ubiquitous homeostatic 

substance released from most cells including neurons and glia, which has been considered 

as a fine-tuning modulator of neuronal activity. In keeping with the fact that ARs (A1R and 
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A2AR) are located in all nervous system cells (neurons and glia) and adenosine is intensively 

released upon injuries, together they play a key role in the homeostatic coordination of the 

brain function controlling the efficiency and plasticity-regulated synaptic transmission. 

Whenever this homeostasis is disrupted, pathology may be installed and selective receptor 

antagonism or agonism required in a very short time window to handle the outcome of the 

insult. 

 

1.2.1 Distribution and role of ARs in central nervous system 

Neuromodulation by adenosine is mainly exerted through the activation of high-affinity 

A1 and A2A receptors, as A2B and A3 receptors are present at very low densities in the central 

nervous system (CNS) (Dixon et al., 1996), which are G protein-coupled receptors (GPCRs) 

belonging to the P1 class of purinoceptors (Burnstock, 1976). 

A1R is widely distributed in the brain, being highly expressed in cortex, cerebellum, 

hippocampus and dorsal horn of spinal cord (Dixon et al., 1996; Reppert et al., 1991), 

whereas A2AR is highly expressed in GABAergic medium spiny neurons (MSNs) of the 

indirect pathway and olfactory bulb (Jarvis and Williams, 1989; Parkinson and Fredholm, 

1990) and at lower levels in cerebellum, cortex and hippocampus (Cunha et al., 1995; 

Svenningsson et al., 1997), thus displaying different relative densities comparable to A1R in 

the same brain areas. Both ARs are similarly present in neurons, astrocytes (Biber et al., 

1997; Nishizaki et al., 2002) and microglia cells (Gebicke-Haerter et al., 1996; Kust et al., 

1999), and also exhibit distinct sub-cellular localizations which may be related to each 

particular receptor function. A1R is mostly found at the presynaptic active zone and also 

abundantly located in the postsynaptic density in rat hippocampus together with N-methyl-D-

aspartate (NMDA) receptor subunits and with N- and P/Q-type calcium channels (Rebola et 

al., 2003) where they inhibit synaptic transmission by reducing calcium transients and the 

evoked release of glutamate among other neurotransmitters (Dunwiddie and Masino, 2001). 

In turn, A2AR can be found in pre-synaptic nerve terminals from hippocampus and post-

synaptically in MSNs where they exhibit the highest density in the brain; a minority of striatal 

A2AR is also present pre-synaptically on the cortico-striatal glutamatergic afferents (Rebola et 

al., 2005a). As A2AR have different sub-cellular localizations, also operate distinct functions: 

while postsynaptic A2AR seems to control the signaling in MSNs (reviewed in (Fredholm and 

Svenningsson, 2003), pre-synaptic A2AR mediates facilitation of the release of 

neurotransmitters, such as glutamate (Lopes et al., 2002), GABA (Cunha and Ribeiro, 2000), 

acetylcholine (Rebola et al., 2002) and serotonin (Okada et al., 2001). The facilitation of 

glutamate release may play a role in noxious conditions, as several A2AR antagonists have 
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been shown to be protective by this mechanism (Melani et al., 2003; Orru et al., 2011; Popoli 

et al., 2002). 

The overall neuromodulatory role of adenosine in the CNS is thus a balance between 

A1R and A2AR functions as they can be located at the same synapse (Rebola et al., 2005c). 

Together they can modify cellular responses to conventional neurotransmitters or receptor 

agonists. A1R tend to suppress neuronal activity by a predominant pre-synaptic action, while 

A2AR are more likely to promote transmitter release and postsynaptic depolarization. 

Furthermore, adenosine receptors can also control astrogliosis (Brambilla et al., 2003), the 

release of neuroactive substances (Hindley et al., 1994) and inflammation (Minghetti et al., 

2007; Ohta and Sitkovsky, 2001). 

 

1.2.2 Role of ARs in neurodegenerative diseases 

Adenosine receptors modulate neuronal function and synaptic plasticity in a range of 

ways that places them in a central position within the occurrence, development and putative 

treatment of various neuropathological conditions. Based on their distribution and distinct 

roles, A1R and A2AR also oppositely contribute to cell damage in different brain areas in a 

wide range of degenerative paradigms, where they can also suffer an adaptational change in 

receptor number or properties. In parallel, several ARs ligands, either agonists or 

antagonists, have been used, acutely and chronically, as modifiers of brain damage 

intriguingly demonstrating significantly different and diverse effects on damage outcomes in 

diverse neurodegenerative brain disorders, namely Alzheimer’s, Parkinson’s and 

Huntington’s diseases, probably resulting from the nature of each pathogenesis at the 

corresponding brain areas. Furthermore, whether protection against damage mediated by 

adenosine itself and AR ligands depends mainly on controlling neurotransmitter release or 

activity than on modulation of the immune system, as neuroinflammation is a common event 

in neurodegenerative diseases, is still a matter of debate. Microglial activation is a faithful 

sensor of pathologic events in the brain (Kreutzberg, 1996) and a decrease in the extent of 

neuroinflammation is associated with a better prognosis in the progression of 

neurodegenerative diseases (Marchetti and Abbracchio, 2005). 

 

1.2.2.1 Glutamate excitotoxicity 

Glutamate is the major excitatory neurotransmitter of the CNS (for review see (Platt, 

2007) and also displays important roles in non-excitable cells within CNS, namely astrocytes 

(reviewed in (Nedergaard et al., 2002). Acting as a neurotransmitter, released glutamate 

activates a family of ligand-gated ion channels, designated ionotropic glutamate receptors 
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(iGluR), which includes NMDA, α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid 

(AMPA) and kainate (Traynelis et al., 2010). Under pathophysiological conditions, where 

glutamate reaches unusual higher levels in the synaptic cleft, brain damage might occur 

through over-activation of glutamate receptors, a phenomenon known as “excitotoxicity”. In 

fact, glutamate-mediated excitotoxicity has been implicated in acute injury to the CNS and in 

diverse chronic neurodegenerative disorders, namely AD (Gray and Patel, 1995), PD 

(Loschmann et al., 1994), ALS (Shaw and Ince, 1997) and HD (Sun et al., 2001). In AD, in 

addition to the Aβ and tau proteins, hallmarks of the disease, NMDA over-activation by 

glutamate is also a critical mediator of neuronal damage (Butterfield and Pocernich, 2003). 

Similarly, in PD, loss of nigro-striatal dopaminergic inputs disinhibit glutamatergic 

neurotransmission which, in turn, allows initiation of striatal glutamatergic over-excitation 

(Garcia et al., 2010; Vaarmann et al., 2013). In sporadic ALS, which accounts for > 90% of all 

cases, motor neurons in the spinal cord are unduly susceptible to calcium-mediated toxic 

events following glutamate receptor activation, as they present low expression of calcium 

binding proteins and GluR2 AMPA receptor subunit (Corona et al., 2007; Shaw and Ince, 

1997). Also in HD, cortico-striatal release of glutamate has been reported to induce 

apoptosis via NMDA receptors in the particularly vulnerable striatal cells (Fernandes et al., 

2007). 

In the last few years, episodic reports identified A2AR as key modulators of glutamate 

release based on the neuroprotective effects afforded by A2AR blockade over glutamate over-

excitation upon noxious situations (Melani et al., 2003; Orru et al., 2011; Popoli et al., 2002). 

In addition, A2AR can also control glutamate release and clearance from astrocytes (reviewed 

in (Cunha, 2005). Thus, A2AR blockade appears as a promising neuroprotective strategy by 

preventing glutamate excitotoxicity that is present in diverse neurodegenerative diseases. 

 

1.2.2.2 Neuroinflammation 

Neuroinflammation is a double-edged sword as it is present in different conditions of 

brain damage contributing either for damage or repair and regeneration of brain tissue 

(Elward and Gasque, 2003; Marchetti and Abbracchio, 2005; Schwartz, 2003; Weiner and 

Selkoe, 2002). Microglia cells within the CNS are rapidly up-regulated in response to 

infection or tissue injury (Kreutzberg, 1996; Streit et al., 1999); once activated they release 

pro-inflammatory cytokines, such as Il-1β and TNF-α, and anti-inflammatory cytokines, 

namely IL-10, TGF-β and IL-1Ra, which will contribute to initiate, propagate and regulate the 

inflammatory reactions in CNS, depending on their final balance and effects in the immune 

system (Benveniste, 1998; Chavarria and Alcocer-Varela, 2004; Dinarello, 2011). 
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Adenosine senses tissue damage and inflammation triggering a paradoxical 

modulation of peripheral inflammation and neuroinflammation by A2AR (Sitkovsky, 2003). The 

activation of A2AR prevents peripheral inflammation acting as an ‘OFF’ signal of immune 

responses upon tissue damage (Sitkovsky and Ohta, 2005), which is consistent with reports 

showing the exacerbation of peripheral tissue damage upon A2AR blockade (reviewed in 

(Sitkovsky et al., 2004). Conversely, A2AR blockade in CNS mediates neuroprotection by 

controlling neuroinflammation (Cunha et al., 2007). This has been shown in AD, PD, HD, 

epilepsy and ischemia models, among others (reviewed in (Gomes et al., 2011). 

This contradictory modulation by A2AR reflects the complexity of A2AR actions on 

neuronal, glial and vascular components, which may exert distinct effects in brain injury 

(Chen et al., 2007; Cunha et al., 2007). 

 

1.2.2.3 ARs in polyQ disorders. The case of Huntington’s disease 

Several reports support a cortico-striatal glutamatergic dysregulation in HD 

pathogeny. Indeed, mutated huntingtin induces glutamatergic dysfunctions through the 

increase of glutamate release (Guidetti et al., 2004) and decrease of astrocytic glutamate 

clearance (Behrens et al., 2002), and also by increasing expression and activation of NMDA 

receptors (revised in (Fan and Raymond, 2007)), among others. As stated above, A1R 

activation suppresses glutamate release from neurons. In line with this glutamate-induced 

excitotoxicity, Blum and colleagues (2002) have reported that an A1R agonist was able to 

prevent the neuronal degeneration and motor sequelae of mitochondrial toxin 3-

nitropropionic acid (3-NP) administration to mice (Blum et al., 2002). However, since there 

was no apparent protection in cell cultures, this was presumed as a pre-synaptic action 

where the release of glutamate could be inhibited. In addition to these observations, 

neuroprotective effects were found in different animals models of HD, namely 3-NP, 

quinolinic acid (QA) and R6/2 transgenic mice, attributable to A2AR antagonists and A2AR 

genetic inactivation (Domenici et al., 2007; Fink et al., 2004; Popoli et al., 2002), which is in 

accordance with the pre-synaptic localization of A2AR where they may operate a decrease of 

glutamate levels (Pintor et al., 2001) by prevention of its release (Popoli et al., 2002; Tebano 

et al., 2004) or decreasing its release and enhancing its uptake by glial cells (Nishizaki, 2004; 

Pintor et al., 2004). However, A2AR are mainly located post-synaptically in MSNs of 

glutamatergic synapses (Lei et al., 2004) where they also control the activation/expression of 

NMDA receptors (Ferrante et al., 2010; Wirkner et al., 2000) and subsequent plastic changes 

in cortical glutamatergic inputs (Schiffmann et al., 2007); and also present in non-neuronal 

compartments, such as endothelial and glial cells, where A2AR may control the blood-brain 
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barrier (BBB) structure and function, and glial responses to injury and inflammation (Coney 

and Marshall, 1998; Fields and Burnstock, 2006; Ngai et al., 2001). Together, the post-

synaptic and extra-synaptic effects of A2AR blockade have been speculative and most 

studies favor A2AR agonists rather than antagonists as protective agents in the particular 

case of the degeneration of MSNs, which is attributable to the ability of A2AR agonists to 

reduce NMDA currents in striatal MSNs whereas A2AR antagonists potentiated NMDA-

mediated toxicity (Norenberg et al., 1997; Popoli et al., 2007; Popoli et al., 2002; Tebano et 

al., 2004; Wirkner et al., 2000). 

In conclusion, the available data regarding the exploitation of A2AR ligands to treat 

HD, the most studied among polyQ disorders, still is controversial reflecting the complexity of 

A2AR regulation in this disease. Besides both A2AR agonists and antagonists have been 

shown to provide protection in animal models of HD, it remains to be defined whether it is the 

activation or the blockade of A2AR that can bring clinical benefits. The complexity of functions 

operated by AR, particularly by A2AR in specific cellular and regional locations within striatum, 

mediate detrimental or beneficial effects depending on the time-frame of the disease, and 

suggest that neither stimulation nor blockade are beneficial or that both can be 

advantageous. 

 

1.2.3 Neuroprotective mechanisms through central adenosinergic 

system 

Adenosine is released upon stressful situations (Fredholm et al., 2005). Thus, one 

candidate strategy to mediate neuroprotection might be the control of the adenosine levels. 

This can be achieved by manipulating the enzyme adenosine kinase (ADK) activity, a key 

sensor and regulator of adenosine, which plays a prominent role in determining the brain’s 

susceptibility to injury by integrating and fine-tuning glutamatergic and dopaminergic 

neurotransmission (Boison, 2008). In fact, several reports showed that increasing 

endogenous levels of adenosine, based on the inhibition of the ADK, effectively conferred 

neuroprotection in diverse conditions, such as epilepsy, ischemia and schizophrenia (Gouder 

et al., 2004; Lara et al., 2006; Pignataro et al., 2007), among others. Yet, others have 

demonstrated that this was not a suitable therapeutic target for successful clinical 

development as pharmacological manipulation of the adenosine kinase activity may cause 

severe side effects (Gouder et al., 2004; Ugarkar et al., 2000). Regardless, adenosine-

releasing cell transplants have recently emerged and may circumvent that situation (Boison, 

2007). 
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Another possibility to control the adenosine effects might be the manipulation of the 

adenosine receptors owing to its known role in pathological situations. Indeed, A1Rs 

activation play a role in neuroprotection by decreasing the metabolic rate, an attempt to 

hamper the detrimental effects caused by noxious stimulus, such as excitotoxicity induced by 

kainate and quinolinic acid or dopaminergic neurotoxicity (Delle Donne and Sonsalla, 1994; 

MacGregor et al., 1997). Additionally, it also mediates a decrease of glutamate release and 

hyperpolarizes neurons (Cunha, 2005). Yet, this neuroprotection conferred by A1R activation 

is limited in time due to desensitization that occurs in time frames of 12-24h upon chronic 

noxious brain conditions (Coelho et al., 2006; Cunha, 2005); the poor brain permeability of 

A1R agonists and the occurrence of prominent cardiovascular effects (Shryock and 

Belardinelli, 1997) are also disadvantages to add to the very short “window of opportunity” for 

their successful use as a neuroprotective strategy. 

On the other hand, chronic noxious brain conditions exhibit an A1R down-regulation in 

parallel with an A2AR up-regulation, typified by an increase in expression and density of A2AR 

found in diverse animal models, namely Parkinson’s disease (PD), epilepsy and restraint 

stress (Cunha et al., 2006; Pinna et al., 2002; Rebola et al., 2005b; Tomiyama et al., 2004). 

This prompts considering the manipulation of A2AR as a promising therapeutic target to 

manage adenosine signaling. In fact, there is now greater effort to dissect the putative role of 

global and regional and cell-type specific A2AR upon brain noxious stimulus. Accordingly, 

most of A2AR antagonists confer neuroprotection in several pathological conditions in adult 

animals, either upon ischemia (Chen et al., 1999; Gao and Phillis, 1994; Monopoli et al., 

1998), or excitotoxicity (Behan and Stone, 2002; Jones et al., 1998). Additionally, A2AR 

antagonists provided functional protection against dopaminergic neurotoxicity also displaying 

a reduction in degeneration of the dopaminergic system in the MPTP model of PD (Chen et 

al., 2001; Xu et al., 2002). Using forebrain neuronal-specific A2AR knockout mice, Chen and 

colleagues also reported that A2AR activity in forebrain neurons was critical for control of 

psychomotor activity, but not for neuroprotection against brain injury, which highlighted a 

putative role for glial A2AR (Yu et al., 2008). In line with this suggestion, selective A2AR 

antagonists were also shown to abrogate fibroblast growth factor (FGF)-induced formation of 

reactive astrocytes (Brambilla et al., 2003), a common feature among neurodegenerative 

diseases. Together, these data highlighted a novel compartment where the exploitation of 

the A2AR role should be performed to elucidate the neuroprotective effects mediated by A2AR 

antagonists upon diverse brain insults. 
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Figure 1.5 summarizes the 

aforementioned neuroprotective 

strategies based on adenosine 

neuromodulation. 

In conclusion, to date there 

are two leading not mutually 

exclusive mechanistic hypotheses 

through which A2AR blockade is 

argued to exert robust 

neuroprotection: the control of 

glutamate excitotoxicity and the 

control of neuroinflammation 

(discussed in (Cunha, 2005). 

Nevertheless, it is still critical to 

distinguish the contribution of 

A2ARs in distinct cell-types in 

modulating brain damage in 

noxious situations. 

 

 

 

 

 

Figure 1.5: All cell types and sub-

cellular compartments in the brain are 

endowed with adenosine A1 and A2A 

receptors (A1R, A2AR) that fulfil 

different roles according to their 

localization. In physiological 

conditions, extracellular adenosine 

activates inhibitory A1R (upper panel). 

Upon injury, extracellular adenosine rises in the synaptic cleft and preferentially activates facilitatory 

A2AR resulting in glutamatergic over-excitation, neuroinflammation and astrogliosis (center panel). 

Efficient neuroprotective strategies based on adenosine neuromodulation may rise from inhibition of 

adenosine kinase (ADK) (to burst A1R activation) together with A1R agonists and  

A2AR antagonists. 
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1.2.3.1 Caffeine and neuroprotection in neurodegenerative disorders 

Xanthines and their impact on biomedical research have been extensively studied, in 

particular the effects of caffeine, which is widely consumed by humans all over the world. 

The effects of caffeine, which is taken at low doses associated with common beverages 

during normal human consumption, are mostly due to AR antagonism, especially of the A2AR 

(Fredholm et al., 1999). Due to its ability to antagonize ARs, to cross the BBB, and also due 

to low risk of intake, caffeine has therapeutic potential in CNS dysfunctions (e.g., AD, PD). In 

fact, chronic caffeine intake, which increases plasma concentrations of adenosine (Conlay et 

al., 1997), modulates the relative levels of A1R and A2AR, and of receptors for 

neurotransmitters (Jacobson et al., 1996) promoting decreased neuronal excitability and has 

been shown to exert neuroprotective action in diverse experimental animal models mimicking 

AD (Arendash et al., 2006; Dall'Igna et al., 2007; Espinosa et al., 2013) and PD (Aguiar et al., 

2006; Chen et al., 2001; Sonsalla et al., 2012), and clinically by the observation of an 

inverted correlation between caffeine intake and the risk of developing cognitive and motor 

impairments in humans (Ritchie et al., 2007; Ross et al., 2000). However, special attention 

should accompanied the generalized use of caffeine since its consumption in large amounts, 

and in particular over extended periods of time, can cause a dependency called caffeinism, 

which combines caffeine dependency with a wide range of unpleasant physical and mental 

conditions including nervousness, irritability, anxiety, muscle twitching, hyperreflexia, 

insomnia and headaches, among others (Daly, 2007; Fredholm et al., 1999). 

In conclusion, increasing body of human and experimental studies revealed 

encouraging evidence that regular human consumption of caffeine in fact may have several 

beneficial effects on neurodegenerative disorders, namely, motor stimulation/improvement, 

cognitive enhancement and neuroprotection. The demonstration of a broad spectrum of 

neuroprotection by chronic treatment of caffeine and adenosine receptor ligands in animal 

models of neurodegenerative disorders also encouraged the development of several 

A2A receptor selective antagonists, which avoid caffeine undesirable effects due to its other 

biological actions (Daly, 2007), and are actually now in advanced clinical phase III trials for 

Parkinson’s disease. 

This thesis explores: i) the putative beneficial effects of chronic administration of 

caffeine on morphological and behavioral abnormalities displayed by two distinct genetic 

animal models of MJD, namely, lentiviral-based and transgenic mice; and ii) whether the 

effects are operated by A2AR blockade through selective A2AR antagonism and A2AR gene 

deleted animals. 
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1.3 Lentiviral-mediated gene transfer to CNS: disease modeling 

and therapeutic and research applications 

Neurodegeneration in CNS can be modeled in any mammalian species (rodents and 

primates) through stereotactic delivery of viral vectors into selected brain regions (Deglon 

and Hantraye, 2005), which offers several unique advantages over transgenic animal 

models. Lentiviral vectors (LVs) are one such tool allowing to generate diverse disease 

models of CNS pathologies through targeting specific brain regions known to be affected, 

and in a relatively short period of time compatible to the lifespan of rodents due to enabled 

high expression levels of the disease-causing proteins (Alves et al., 2008b; de Almeida et al., 

2002; Senut et al., 2000). Indeed, several morphological and behavioral features of motor 

system disorders have been replicated so far, namely, Huntington’s disease (de Almeida et 

al., 2002; Palfi et al., 2007), Machado-Joseph disease (Alves et al., 2008b; Nobrega et al., 

2012) and Parkinson’s disease (Lauwers et al., 2003; Lo Bianco et al., 2002). Lentiviral-

based approaches are also advantageous as they allow establishing the onset and follow-up 

of the time-course progression of degeneration. 

Beyond their successful application to replicate neurodegenerative diseases, LVs 

have proved promising to exploit the role and subsequent therapeutic potential of disease-

related and -modifier genes, for example through the manipulation of neurotrophic or 

antiapoptotic factors (Blomer et al., 1998; de Almeida et al., 2001; Kordower et al., 2000) and 

several key components of the cellular machinery known to be abnormally reduced or 

oppositively hyper-functioning (Nascimento-Ferreira et al., 2011; Simoes et al., 2012). 

Actually, one of the most promising applications of LVs which led to its current widespread 

use is the capability of mediating RNA interference (RNAi) (discussed in (Couto and High, 

2010) (Fig 1.6), i.e., the shutting-down of gene expression with high efficiency and specificity, 

a breakthrough methodology (Fire et al., 1998) that has proved to successfully delay the 

onset and development of autosomal dominant disorders, such as Huntington’s disease 

(DiFiglia et al., 2007; Franich et al., 2008; Harper et al., 2005), SCA1 (Xia et al., 2004), and 

SCA3/MJD (Alves et al., 2008a; Nobrega et al., 2013), which may reduce the preclinical 

development time if indicated as gene therapy candidate approaches. In the aforementioned 

studies, the use of short hairpin RNAs (shRNAs) reduced neuropathological abnormalities 

such as the size and number of neuronal inclusions, improved the behavioral phenotype and 

delayed the onset and progression of disease. 
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Figure 1.6: Viral-mediated introduction of RNAi inhibitory 

sequences into target cells. A viral vector encoding a 

shRNA infects the target cell, via a receptor-mediated 

endocytosis, releasing the viral genome that after reverse 

transcription enters the nucleus to be transcribed into a 

shRNA. After processing, the shRNA is transported to the 

nucleus, mediating gene silencing. Adapted from 

(Davidson and Paulson, 2004). 

 

Brain delivery of silencing constructs allows 

not only to develop therapeutic strategies, but also to 

create new genetic disease models (Hommel et al., 

2003) and adds further dimension in functional 

genomics by probing for specific roles of proteins in 

different brain regional compartments deepening our 

knowledge in the neurobiology of a wide range of 

pathologies (Johnson and Kenny, 2010; Lazarus et al., 2011). 

Together, the combined research applications of lentiviral vectors and RNAi allowed 

major advances in our understanding of the nervous system in health and disease, though 

novel powerful tools, such as the engineered nucleases for genome editing, namely, Zinc 

Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), 

have emerged as particularly attractive candidates to become effective therapies for polyQ 

diseases, which might completely change our current therapeutic perspectives once the 

drawbacks and technical difficulties of designing, engineering and delivering are successfully 

exceeded. 
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1.4 Objectives 

Our main goal was to investigate the potential of manipulating the adenosine 

neuromodulation system by blocking the adenosine A2A receptors as a disease modifying 

strategy in MJD.  

The specific aims of the project are as follows: 

- to investigate whether synaptotoxicity and neuroinflammation are early features of 

MJD, by studying the morphological modifications triggered by expressing pathogenic ataxin-

3 in mice injected with viral vectors encoding mutant ataxin-3, (Chapter 2); 

- to investigate whether A2A receptors antagonism and genetic elimination (knockout) in 

the lentiviral mouse model of MJD prevents mutant ataxin-3-induced neuronal dysfunction 

and degeneration, upon a) chronic caffeine consumption,  b) A2AR knockout mice (Chapter 

2), and c) administration of an A2AR selective antagonist (Chapter 4); 

- to study if chronic caffeine consumption alleviates the behavioral deficits of a 

transgenic mouse model of MJD (Chapter 3); 

- to investigate whether gene silencing of A2A receptors by lentiviral-mediated cell-

specific expression of short hairpin RNAs prevents mutant ataxin-3-induced 

neurodegeneration (Chapter 4). 
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Caffeine and adenosine A2A receptor inactivation decrease 

striatal neuropathology in a lentiviral-based model of 

Machado-Joseph disease 
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2.1 Abstract 

Machado-Joseph disease (MJD) is a neurodegenerative disorder associated with an 

abnormal CAG expansion, which translates into an expanded polyglutamine tract within 

ataxin-3. There is no therapy to prevent or modify disease progression. Since caffeine (a 

non-selective adenosine receptor antagonist) and selective adenosine A2A receptor (A2AR) 

blockade alleviate neurodegeneration in different brain diseases, namely at early stages of 

another polyglutamine-related disorders such as Huntington’s disease, we now tested their 

ability to control MJD-associated neurodegeneration. 

MJD was modelled by transducing the striatum of male adult C57Bl6 mice with 

lentiviral vectors encoding mutant ataxin-3 in one hemisphere and wild-type ataxin-3 in the 

other hemisphere (as internal control). Caffeine (1 g/L) was applied through the drinking 

water. Mice were killed at different time points (from 2-12 weeks) to probe for the appearance 

of different morphological changes using immunohistochemical analysis. 

Mutant ataxin-3 caused an evolving neuronal dysfunction (loss of DARPP-32 staining) 

leading to neurodegeneration (Cresyl violet and NeuN staining) associated with increased 

number of mutant ataxin-3 inclusions in the basal ganglia. Notably, mutant ataxin-3 triggered 

early synaptotoxicity (decreased synaptophysin and MAP-2 staining) and reactive gliosis 

(GFAP and CD11b staining), which predated neuronal dysfunction and damage. Caffeine 

reduced the appearance of all these morphological modifications, which were also abrogated 

in mice with a global A2AR inactivation (knockout). 

 Our findings provide a demonstration that synaptotoxicity and gliosis are precocious 

events in MJD and that caffeine and A2AR inactivation decrease MJD-associated striatal 

pathology, which paves the way to consider A2AR as novel therapeutic targets to manage 

MJD. 
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2.2 Introduction 

Various inherited neurodegenerative diseases result from an increase in the number of 

CAG codon repeats within the open reading frame of the responsible gene (Koshy and 

Zoghbi, 1997). Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, is one such 

dominantly-inherited polyglutamine neurodegenerative disease and the most common 

among ataxias (Ranum et al., 1995). It is characterised by an adult age of onset causing 

premature death associated with unstable expansion of a CAG stretch (over 55 repeats) in 

the ATXN3 gene that encodes a polyglutamine repeat in the corresponding ataxin-3 protein 

(Durr et al., 1996; Kawaguchi et al., 1994). The clinical hallmarks of MJD include progressive 

ataxia, dysfunction of motor coordination, postural instability and Parkinsonism among other 

symptoms (Gwinn-Hardy et al., 2001; Taroni and DiDonato, 2004). The neuropathology of 

MJD involves multiple systems such as cerebellar systems, substantia nigra and cranial 

nerve motor nuclei (Durr et al., 1996; Sudarsky and Coutinho, 1995), as well as the striatum 

(Alves et al., 2008b; Klockgether et al., 1998; Taniwaki et al., 1997; Wullner et al., 2005). 

Degeneration and loss of neuronal cells in MJD is accompanied by the presence of protein 

aggregates (Paulson et al., 1997b), designated as neuronal intranuclear inclusion bodies 

(NIIs). Although transgenic animal models closely mimicking the human pathology (Alves et 

al., 2008b; Bichelmeier et al., 2007; Cemal et al., 2002; Goti et al., 2004), have bolstered our 

understanding of MJD, the mechanisms accounting for neuronal degeneration are still largely 

unknown. Albeit not yet explored in MJD, studies in other polyQ disorders suggest that 

neuronal dysfunction and synaptotoxicity may precede degeneration and appearance of 

clinical symptoms (Andrews et al., 1999; Li et al., 2001), and that neuroinflammation 

(Bantubungi et al., 2005), may function as an amplificatory loop exacerbating neuronal 

damage (Aktas et al., 2005; Gao et al., 2008; Lee et al., 2008). 

There is currently no therapy to manage MJD. We posed that chronic caffeine 

consumption, which affords neuroprotection through the antagonism of adenosine A2A 

receptors (A2AR) (Cunha and Agostinho, 2010), might be a candidate strategy to manage 

MJD neurodegeneration. Caffeine and A2AR blockade afford robust neuroprotection in 

different neurodegenerative disorders, in accordance with the key role of A2ARs controlling 

synaptic viability, apoptotic neuronal death, astrocytic function and neuroinflammation (Chen 

et al., 2007; Gomes et al., 2011). In particular, in Huntington’s disease, another polyQ 

disorder, A2AR blockade at the prodrome or early stages of the disease seems to delay the 

appearance of clinical symptoms, mainly through a normalization of striatal glutamatergic 

transmission, which impedes the characteristic degeneration of striatal neurons (Popoli et al., 

2007). Importantly, it has recently been shown in induced pluripotent stem cells-derived 

neurons that glutamate overstimulation raises intracellular calcium levels activating the 
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cysteine proteases calpains and promoting the proteolysis and aggregation of ataxin-3 (Koch 

et al., 2011). Moreover, calpain-mediated proteolysis of ataxin-3 in a rodent model of MJD 

mediates translocation of ataxin-3 to the cell nucleus, aggregation and neurodegeneration, 

which can be prevented by calpain inhibition (Simoes et al., 2012).  

In view of this proposed key role of glutamate overstimulation in MJD, we now 

investigated the time course of neuropathological modifications in a genetic model of MJD 

and tested the novel hypothesis that the manipulation of A2AR function might also be 

beneficial in MJD. 
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2.3 Materials and Methods 

2.3.1 Animals 

Male C57BL/6 mice (Charles River, Barcelona, Spain) were housed and kept under a 

conventional 12-h light-dark cycle maintained on a temperature-controlled room with food 

and water provided ad libitum and used at 7 weeks of age. C57Bl/6-background A2AR 

knockout (A2AR KO) and age-matched wild type control mice were obtained from parallel 

breeding of our colony of A2AR KO mice, initially obtained from J.F.Chen (Boston 

University)(Chen et al., 1999). The experiments were carried out in accordance with the 

European Community directive (86/609/EEC) for the care and use of laboratory animals. 

 

2.3.2 Drug treatment 

We chose the dose of caffeine (1 g/L) administered through the drinking water, as a 

maximally effective and non-toxic dose, which we have previously shown to result in a 

plasma concentration of 50 µM (Duarte et al., 2012), and similar concentration in the brain 

parenchyma (Costenla et al., 2010), corresponding to a diary human consumption of circa 5 

cups of coffee. Treatment with caffeine was begun 3 weeks before viral delivery onwards, 

since we have previously reported that a minimum period of 2 weeks is required to allow a 

metabolic stabilization after beginning the free access to caffeine drinking (Duarte et al., 

2012; Duarte et al., 2009). 

 

2.3.3 Viral vectors production 

Lentiviral vectors encoding human wild-type ataxin-3 (atx3-27Q) or mutant ataxin-3 

(atx3-72Q) (Alves et al., 2008b), were produced in 293T cells with a four-plasmid system, as 

previously described (de Almeida et al., 2001). The lentiviral particles were resuspended in 

1% bovine serum albumin in phosphate-buffered saline (PBS). The viral particle content of 

batches was determined by assessing HIV-1 p24 antigen levels (RETROtek, Gentaur, Paris, 

France). Viral stocks were stored at -80ºC until use. 

 

2.3.4 In vivo injection into the striatum 

Concentrated viral stocks were thawed on ice. After anesthesia of the mice with avertin 

(12 μL/g, i.p.), lentiviral vectors encoding human wild-type (atx3-27Q) or mutant ataxin-3 

(atx3-72Q) were stereotaxically injected into the striatum in the following coordinates: antero-
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posterior: +0,6mm; lateral: ±1,8mm; ventral: -3,3mm; tooth bar: 0, which corresponds to the 

internal capsule, a large fiber tract passing through the middle of the striatum dividing both 

dorso-ventral and medial-lateral structures. Wild-type and A2AR KO mice received 2 μL 

injections of lentivirus (200’000 ng of p24/mL) in each hemisphere, administering mutated 

ataxin-3 (atx3-72Q) in the right hemisphere and control wild type ataxin-3 (atx3-27Q) in the 

left hemisphere. Different groups of mice were kept in their home cages for different periods 

ranging from 2, 4, 8 and 12 weeks, before being killed for immunohistochemical analysis of 

morphological and neurochemical changes in the striatum. 

 

2.3.5 Immunohistochemical procedure 

After an overdose of avertin (2.5x 12 μL/g, i.p.), transcardiac perfusion of the mice was 

performed with PBS followed by fixation with 4% paraformaldehyde. The brains were then 

removed and post-fixed in 4% paraformaldehyde for 24h and cryoprotected by incubation in 

25% sucrose/ phosphate buffer for 48h. The brains were frozen and 25 μm coronal sections 

were cut using a cryostat (LEICA CM3050 S, Heidelberg, Germany) at -21°C. Slices 

throughout the entire striatum were collected in anatomical series and stored in 48-well trays 

as free-floating sections in PBS supplemented with 0.05 μM sodium azide. The trays were 

stored at 4°C until immunohistochemical processing. 

Sections were processed overnight at 4ºC with the following primary antibodies: a 

mouse monoclonal anti-ataxin-3 antibody (1H9; 1:5000; Chemicon, Temecula, CA), a rabbit 

anti-DARPP-32 antibody (1:1000; Chemicon), or a mouse anti-NeuN antibody (1:1000; 

Chemicon) followed by 2h incubation at room temperature (RT) with the respective 

biotinylated secondary antibodies (1:200; Vector Laboratories, Burlingame, CA). Bound 

antibodies were visualized using the Vectastain ABC kit, with 3,3’-diaminobenzidine 

tetrahydrochloride (DAB metal concentrate; Pierce, Burlingame, CA) as substrate.  

Triple staining for synaptophysin (rabbit polyclonal, 1:300; Chemicon) and MAP2 

(mouse monoclonal AP20, 1:500; Santa Cruz Biotechnology, Santa Cruz, CA), GFAP (rabbit 

polyclonal, 1:1000; DAKO, Glostrup, Denmark) and CD11b (rat monoclonal 5C6, 1:500; AbD 

Serotec, Oxford, UK) together with DAPI (Sigma, St. Louis, MO) were performed. Free-

floating sections were kept at RT for 2h in PBS with 0.1% Triton X-100 containing 10% 

normal goat serum (Gibco-Invitrogen, Barcelona, Spain), then overnight at 4°C in blocking 

solution with the primary antibodies. Sections were washed three times and incubated for 2h 

at RT with the corresponding secondary antibodies coupled to fluorophores goat anti-mouse 

or goat anti-rabbit or goat anti-rat Alexa Fluor 488 or Alexa Fluor 594 (1:200; Molecular 
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Probes – Invitrogen, Eugene, OR) diluted in the blocking solution. The sections were washed 

three times and then mounted in mowiol Reagent (Sigma) on microscope slides. 

Definition and analysis of protein immunoreactivities were made from the striatal center 

(site of injection) to the medial-lateral and dorsal-ventral striatal periphery from the needle 

tract. This disease model is based on the intra-striatal injection of lentivirus, which triggers 

physiological alterations evolving over time radially. Therefore, comparable striatal sections 

between animals were defined from the site of injection in both rostral and caudal directions, 

using the needle tract due to the surgical procedure as reference-point. 

Staining was visualized using Zeiss Axioskop 2 plus, Zeiss Axiovert 200 or Zeiss LSM 

510 Meta imaging microscopes (Carl Zeiss Microimaging, Germany) equipped with AxioCam 

HR color digital cameras (Carl Zeiss Microimaging) and 5X, 20X, 40X and 63X Plan-Neofluar 

or a 63X Plan/Apochromat objectives and using the AxioVision 4.7 software package (Carl 

Zeiss Microimaging). Quantitative analysis of fluorescence was performed with a semi-

automated image-analysis software package (Image J software, NIH, USA). 

 

2.3.6 Cresyl violet staining 

Coronal sections were pre-mounted and stained with cresyl violet for 45 sec, 

differentiated in 70% ethanol, dehydrated by passing twice through 95% ethanol, 100% 

ethanol and xylene solutions, and mounted onto microscope slides with Eukitt® (Sigma). 

 

2.3.7 Evaluation of DARPP-32 

The extent of ataxin-3 lesions in the striatum was analyzed by photographing, with a 

x1.25 objective, 8 sections stained for DARPP-32 per animal (25 µm thick sections at 200 µm 

intervals), selected so as to obtain complete rostro-caudal sampling of the striatum, and by 

quantifying the area of the lesion with a semi-automated image-analysis software package 

(Image J software). The volume was then estimated with the following formula: volume = 

d(a1+a2+a3 …), where d is the distance between serial sections (200 µm) and a1+a2+a3 are 

DARPP-32-depleted areas for individual serial sections. The average grey value of all pixels 

measured in the lesioned area was recorded for each depleted area. Results are expressed 

as index of immunoreactivity of DARPP-32 considering the unlesioned striatal area as 100% 

immunoreactivity. 
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2.3.8 Cell counts of ataxin-3 inclusions 

Coronal sections showing complete rostro-caudal sampling (1 of 8 sections) of the 

striatum were scanned with a x20 objective. The analyzed areas of the striatum 

encompassed the entire region containing ataxin-3 inclusions, as revealed by staining with 

the anti-ataxin-3 antibody. All inclusions were manually counted using a semi-automated 

image-analysis software package (Image J software). 

 

2.3.9 Statistical analysis 

Statistical comparisons were performed using either an unpaired Student’s t test or 

one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison post hoc 

test. Results are expressed as mean ± standard error of the mean (SEM). Significance 

thresholds were set at p < 0.05, p < 0.01 or p < 0.001, as defined in the text. 
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2.4 Results 

2.4.1 Time course 

We took advantage of using a lentiviral model of MJD to perform a temporal analysis of 

the relative appearance of different features from early dysfunction to late neuronal loss. 

Thus, we carried out a time-course study from 2 to 12 weeks upon lentiviral-mediated 

expression of wild-type and mutant ataxin-3, and we analysed different neuropathological 

features such as markers of synaptic loss, neuronal dysfunction, neuronal loss, of 

astrogliosis and microgliosis as well as ataxin-3 inclusions. Figure 2.1 summarises the 

temporal evolution of each of these changes, which will be further detailed below. 

Figure 2.1: Summary of the time-course of appearance of different morphological features in a 

lentiviral-based model of Machado-Joseph disease. Loss of synaptic markers and astrogliosis were 

amongst the most precocious morphological alteration, closely followed by microgliosis and neuronal 

dysfunction as well as increases of the number of ataxin-3 inclusions, whereas overt neuronal damage 

occurred later in the development of the disease. Microgliosis would probably be found at later time-

points, however, that was not evaluated. 
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2.4.2 Neuronal degeneration and loss 

In order to directly test if caffeine and A2AR inactivation indeed mitigate 

neurodegeneration, we first analyzed photomicrographs under bright field and then upon 

cresyl violet staining. Lentiviral-mediated expression of mutant ataxin-3 (LV-atx3-72Q) 

caused a clear condensation of the internal capsule attributable to striatal tissue shrinkage, 

which was evident in water-drinking mice at 12 weeks, but absent on bright-field sections of 

both caffeine-drinking animals and global A2AR knockout (KO) mice, as well as in the 

contralateral striatum challenged with wild-type ataxin-3 (LV-atx3-27Q) (Fig 2.2A). Cresyl 

violet staining revealed a marked reduction (p < 0.05) of the number of degenerated 

shrunken hyperchromatic nuclei in caffeine-drinking mice even though it remained 

considerably high; the specificity of the effect over A2AR was confirmed in A2AR KO animals, 

which reproduced the alleviation of pathology observed in caffeine-treated animals (p < 0.05; 

Fig 2.2B and E). 

To further investigate the neuroprotective effects of caffeine at a late time-point in this 

model of MJD, we evaluated the immunoreactivity of the neuronal nuclear marker NeuN. A 

clear loss of NeuN-stained neurons could be seen in the water-drinking group at 12 weeks 

after mutant ataxin-3 transduction, which was not detectable after wild-type ataxin-3 

transduction, and was nearly absent in mutant ataxin-3-expressing animals upon caffeine 

treatment (Fig 2.2C). 

These data suggest that there is a progression in the degeneration pattern in MJD-

associated striatal pathology leading to loss of neuronal markers, which is reduced by 

chronic caffeine consumption as well as genetically deleting the A2AR. 
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Figure 2.2: Caffeine treatment or A2AR genetic depletion decreased cell injury and striatal 

degeneration. Representative bright-field photomicrographs and immunohistochemical stainings from 

around the injection site area at 12 weeks post-injection of the viral vectors encoding wild-type or 

mutant ataxin-3. (A) Coalescence of the internal capsule of the striatum was neither seen in the 

caffeine-treated group nor in the A2AR KO animals. (B) Cresyl violet-stained sections showed a 

significant reduction of the number of striatal condensated nuclei upon mutant ataxin-3 transduction in 

the caffeine-treated group as well as in the A2AR KO group relative to their respective water-drinking 

groups, as quantified in panel E. (C) A nearly absent loss of neuronal nuclei (NeuN) staining 

immunoreactivity was seen in the caffeine-treated group as well as in the A2AR KO group. (D) GFAP 
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immunoreactivity showed an increased accumulation of astrocytes (green) replacing neurons after 

injection of mutant ataxin-3, which was prevented by caffeine consumption. No morphological 

modifications were detected upon LV-atx3-27Q injections. Statistical significance was evaluated with 

Student’s t test (*p < 0.05) comparing both caffeine-drinking and A2AR KO groups with their respective 

water-drinking wild-type groups upon LV-atx3-72Q injections. 

 

2.4.3 Neuronal functional modifications 

Previous reports have indicated that striatal neuronal dysfunction may precede 

degeneration and appearance of clinical symptoms in MJD (Yen et al., 2002). Additionally, 

DARPP-32 (dopamine and cAMP-regulated phosphoprotein) was previously shown to be a 

sensitive marker that allows immunohistochemical detection of this early neuronal 

dysfunction (Alves et al., 2008b; Cyr et al., 2003; de Almeida et al., 2002; Simoes et al., 

2012). Accordingly, DARPP-32 immunohistochemistry revealed a large depleted staining 

volume of 0.60 ± 0.12 mm3 (n=5) at 4 weeks post-injection of lentivirus encoding atx3-72Q in 

the water-drinking group whereas caffeine-treated animals exhibited significantly smaller 

dysfunctional volume (0.21 ± 0.06 mm3 (n=6); p < 0.05) at this time-point. No loss of DARPP-

32 immunoreactivity was detected upon LV-atx3-27Q injections (Fig 2.3A upper panel and 

B). 

Figure 2.3: Caffeine treatment or A2AR genetic depletion reduced neuronal dysfunction. (A, upper 

panel) A large DARPP-32 depleted volume was observed 4 weeks after injection of the viral vectors 

encoding mutant ataxin-3 in the water-drinking group whereas caffeine-drinking mice exhibited a much 

smaller lesion area at this time-point. This is quantified in panel B as depleted volume of DARPP-32 

staining. No loss of DARPP-32 staining was observed upon LV-atx3-27Q injections. (A, lower panel) 
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At higher magnification, 12 weeks exposure to mutated ataxin-3 revealed a clear condensation of the 

internal capsule, which joined together fiber patches (arrows). This fiber accumulation was not 

observed in the caffeine-treated animals or in A2AR KO mice. Statistical significance was evaluated 

with Student’s t test (*p < 0.05) comparing caffeine-treated (n=6) with water-drinking animals (n=5). 

 

At higher magnification, analysis of the striatal DARPP-32-depleted area of water-

drinking animals at 12 weeks after injection of lentiviral vectors encoding mutant ataxin-3 

revealed that the DARPP-32-stained cell bodies and the corresponding tissue (internal 

capsule) were no longer present, originating a collapse of the tissue, which joins together 

fiber patches (see arrows in Fig 2.3A lower panel). This fiber accumulation presumably 

results from neuronal degeneration, which was not observed in the caffeine-treated or in 

A2AR KO mice challenged with mutant ataxin-3. Density analysis of DARPP-32 

immunoreactivity (Table 2.1) showed a significant preservation of this marker in caffeine-

treated (p < 0.01) and A2AR KO groups (p < 0.05) at 12 weeks post-injection of lentivirus 

encoding atx3-72Q, as compared to the respective water-drinking groups. 

 

Table 2.1: DARPP-32 intensity index 

Density analysis of DARPP-32 immunoreactivity 12 

weeks after mutant ataxin-3 transduction. Caffeine 

treatment as well as genetic inactivation of A2AR 

significantly reduced the loss of this marker (**p < 

0.01; *p < 0.05, respectively). Data are expressed 

as indexes of immunoreactivity of the affected striatal regions relative to their corresponding peripheral 

non-affected striatum (100% IR; mean ± standard error of the mean). IR = immunoreactivity; WT = 

wild-type; A2AR = Adenosine A2A receptor; KO = knockout. 

 

These data suggest that both chronic caffeine consumption as well as the genetic 

deletion of A2AR is able to reduce neuronal dysfunction in MJD. 

  

100% IR 100.0 ± 3.5 100% IR 100.0 ± 4.1 

H2O 43.0 ± 4.1 WT 39.1 ± 3.1 

Caffeine 70.0 ± 2.2** A2AR KO 54.5 ± 2.2* 
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2.4.4 Astrogliosis and microgliosis 

Interestingly, the mutant ataxin-3-induced loss of NeuN immunoreactivity was 

accompanied by a local increase of GFAP immunoreactivity suggestive of astrocytic 

activation, which was nearly absent in caffeine-treated animals (Fig 2.2D). Since reactive 

gliosis is widely accepted to contribute to chronic neurodegenerative diseases, we further 

investigated if the blockade of A2AR was able to prevent the increase of gliosis associated 

with MJD pathogenesis at an early time-point. The injection of lentiviral vectors encoding 

mutant ataxin-3 (LV-atx3-72Q) triggered a robust increase of GFAP immunoreactivity at 4 

weeks when compared with the contralateral striatum challenged with wild-type ataxin-3 (LV-

atx3-27Q) (Fig 2.4A). Notably, this GFAP immunoreactivity triggered by expression of 

mutated ataxin-3 was observed as early as 2 weeks (Fig 2.4B). Additionally, strong 

immunoreactivity for the microglial protein, cluster of differentiation molecule B11 (CD11b), 

was found at 4 weeks revealing microglial recruitment (Fig 2.4C), which was significantly and 

robustly reduced in caffeine-treated animals. This clearly establishes the presence of 

reactive gliosis in the striatum in this genetic model of MJD. 

Figure 2.4: Caffeine treatment decreased MJD-associated astroglial activation and prevented 

microglia recruitment. (A) Quantification analysis of GFAP immunoreactivity at 4 weeks post-injection 

of the viral vectors encoding wild-type or mutant ataxin-3. Caffeine abrogated astrocytic activation (
##

p 

< 0.01) to the levels induced by wild-type ataxin-3 (internal control). (B) Caffeine consumption 

attenuated the mutant ataxin-3-induced activation of astrocytes, gauged by enhanced 

immunoreactivity of Glial Fibrillary Acidic Protein (GFAP, green) at an earlier time point: 2 weeks. (C) 

No immunoreactivity for activated microglia, CD11b (Ab 5C6, green), was observed 4 weeks after 
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insult in the caffeine-treated group whereas it was present in water-drinking mice. Statistical 

significance was evaluated with Student´s t test (**p < 0.01) comparing mutant ataxin-3 striatal 

hemisphere with the contralateral wild-type ataxin-3 hemisphere, and caffeine-drinking with water-

drinking groups. 

 

Importantly, treatment with caffeine (1 g/L), prevented both the astrogliosis (Fig 2.4A 

and B) and the putative microgliosis (Fig 2.4C) triggered by mutant ataxin-3 indicating that 

chronic caffeine consumption can prevent reactive gliosis associated with MJD. 

 

2.4.5 Nuclear inclusions of mutant ataxin-3 

Since microglia is well established to play a role in the seeding (through enhanced 

inflammatory status) and processing (through phagocytosis) of protein aggregates and the 

presence of ataxin-3 aggregates is one hallmark of MJD, we next tested the impact of 

caffeine and A2AR inactivation on the aggregation pattern of ataxin-3 by 

immunohistochemical staining. No aggregation was seen upon LV-atx3-27Q injection (Fig 

2.5A) while a significant increase in the total number of mutant ataxin-3 nuclear inclusions 

was observed at 8 weeks post-injection of lentiviral vectors encoding mutant ataxin-3 in both 

caffeine-drinking wild type mice (p < 0.05) as well as in A2AR KO animals (p < 0.05) when 

compared to the respective water-drinking groups (Fig 2.5B and C). Interestingly, we 

previously demonstrated that at 8 weeks after lentiviral transduction there were 4 times 

higher striatal levels of mutant ataxin-3 than those of endogenous ataxin-3 (Alves et al., 

2008b) although the levels were similar 4 weeks after lentiviral administration. This 

observation that caffeine or A2AR inactivation enhance even more the number of ataxin-3 

inclusions while decreasing neurodegeneration is in agreement with the scenario that these 

inclusions may be a way to sequester the soluble and noxious forms of ataxin-3. 
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Figure 2.5: Caffeine treatment or A2AR genetic depletion significantly increased the total number of 

mutant ataxin-3 inclusions. (A) Using anti-ataxin-3 antibody (Ab 1H9), no nuclear inclusions of ataxin-3 

were found on both wild-type and A2AR KO animals upon expression of wild-type ataxin-3. (B) A 

significant increase in the number of mutant ataxin-3 inclusions was observed 8 weeks post-injection 

of lentiviral vectors encoding mutant ataxin-3 either in caffeine-treated (n=5) or A2AR KO (n=5) mice 

compared to the respective water-drinking wild-type animals transduced with mutant ataxin-3 (B, n=7; 

E, n=4), as quantified in panel C. Statistical significance was evaluated with Student’s t test (*p < 0.05) 

comparing caffeine-treated and A2AR inactivated animals with their respective water-drinking control 

groups. 

 

2.4.6 Synaptotoxicity 

There is accumulating evidence that one of the earliest features of neurodegenerative 

diseases is the dysfunction and loss of synapses (Coleman et al., 2004; Gomes et al., 2011). 

Also, A2AR are synaptic receptors (Rebola et al., 2005a), and A2AR blockade efficiently 

normalizes synaptic function and prevents synaptotoxicity in different animal models of brain 

diseases (Cunha and Agostinho, 2010). Since synaptotoxicity has not been explored in 

models of MJD, we investigated whether synaptotoxicity was present in our lentiviral model 

of MJD and if this feature indeed preceded the appearance of ataxin-3 inclusions, neuronal 

dysfunction and overt neurodegeneration. This was carried out by immunohistochemical 

evaluation of two synaptic markers, synaptophysin (pre-synaptic protein) and microtubule-

associated protein 2 (MAP-2, dendritic protein). 

Density analysis of synaptophysin and MAP-2 immunoreactivities at 2 weeks post-

injection (Table 2.2 and Fig 2.6) clearly showed a significant loss of both markers (p < 0.001) 

upon mutant ataxin-3 expression. No such early loss of either markers was observed in 
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caffeine-drinking mice challenged with atx3-72Q, i.e. 2 weeks after insult or upon expression 

of wild-type ataxin-3 (data not shown). These data provide the first evidence that mutant 

ataxin-3 induces an early synaptotoxicity in the striatum, which is prevented by chronic 

caffeine consumption. 

 

Figure 2.6: Synaptotoxicity precedes the 

neurodegeneration process of MJD. Detection of nerve 

terminals with synaptic markers: synaptophysin (red) 

and microtubule-associated protein 2 – MAP-2 (Ab 

AP20, green). No loss of synapses is observed in the 

group that was given caffeine whereas loss of 

synaptophysin and MAP-2 immunoreactivity was 

observed in the non-treated group 2 weeks post-

injection of the lentiviral vectors encoding mutant 

ataxin-3. 

 

 

Table 2.2: Synaptophysin and MAP-2 intensity indexes 

 

Density analysis of synaptophysin and MAP-2 2 

weeks after mutant ataxin-3 transduction. A 

significant loss of both markers was observed in the 

water-drinking control group (***p < 0.001, one-way 

ANOVA followed by Dunnett’s post-hoc test). No loss 

of either marker was observed in the caffeine-treated group. Data are expressed as indexes of 

immunoreactivity of the affected striatal regions relative to their corresponding peripheral non-affected 

striatum (100% IR; mean ± standard error of the mean).  

 Synaptophysin MAP-2 

100% IR 100.0 ± 3.5 100.0 ± 2.6 

H2O 65.5 ± 4.6*** 74.6 ± 3.0*** 

Caffeine 89.5 ± 0.6 90.1 ± 2.5 
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2.5 Discussion 

In the present study, we carried out a temporal analysis of different features of brain 

dysfunction and damage in a genetic model of MJD and tested the impact of caffeine and 

adenosine A2AR (A2AR) blockade thereupon. We provide the first evidence showing that: i) 

synaptotoxicity and gliosis in the striatum are early events predating neurodegeneration; ii) 

pharmacological and genetic manipulation of adenosine A2AR can delay MJD-associated 

striatal pathology. 

Consistent with previous reports (Alves et al., 2008b; Bichelmeier et al., 2007; Goti et 

al., 2004), lentiviral-mediated overexpression of mutant ataxin-3 in the mouse brain induced 

a clear neuronal dysfunction typified by loss of DARPP-32 immunoreactivity, and overt 

neurodegeneration, accompanied by an increased number of ataxin-3 inclusions. The 

present study also revealed two novel morphological features in this model of MJD, namely 

the loss of synaptic markers (synaptotoxicity) and reactive gliosis. Synaptotoxicity is in line 

with suggestions of axonal degeneration assessed by MRI (D'Abreu et al., 2009), and loss of 

dopaminergic terminals assessed by PET in MJD patients (Wullner et al., 2005), and with the 

presence of axonal inclusions in the human patient’s brains (Seidel et al., 2010), as well as 

with the observed impact of mutant ataxin-3 on the cerebellar mRNA expression of proteins 

involved in synaptic transmission (Chou et al., 2011). Notably, the present time course study 

provides direct evidence that this synaptotoxicity might be an early, hitherto unrecognised, 

feature of MJD. This is in notable agreement with the observations that another 

polyglutamine-related disease, namely Huntington’s disease is characterized by early 

changes in synapses (DiProspero et al., 2004; Smith et al., 2007), to such an extent that it 

has been proposed that Huntington’s disease might actually be a synaptopathy (Li et al., 

2003b). Actually, it is worth noting that synaptotoxicity seems to be an early feature of 

different other neurodegenerative and neuropsychiatric diseases, strengthening the crucial 

role of synaptic impairment in the initiation of brain disorders (Coleman et al., 2004; Cunha 

and Agostinho, 2010; Wishart et al., 2006). Since there is evidence that ataxin-3 is also 

located in axons and dendrites (Trottier et al., 1998), the present observation that synaptic 

changes are an early feature of MJD opens a new area of research on the putative role of 

ataxin-3 in the control of synaptic function and damage. In this context, the recent report that 

excitatory synaptic transmission can control the aggregation of mutant ataxin-3 adds a 

further dimension to the relation between MJD and synaptic activity (Koch et al., 2011). 

The present time course study of striatal changes in this MJD model also revealed 

another under-appreciated morphological feature that predated neuronal dysfunction and 

damage, namely reactive gliosis. There have been episodic reports of astrogliosis and 



Chapter 2 

46 

microgliosis, typified by changes in astrocytes and microglia morphology both in patients 

(Horimoto et al., 2011), and in transgenic models of MJD (Silva-Fernandes et al., 2010), as 

well as increased expression of cytokines and proinflammatory chemokines, which are 

compatible with mutant ataxin 3-induced changes in brain inflammatory mediators (Evert et 

al., 2001). However, in keeping with the fact that our lentiviral-mouse model resulted in an 

overexpression of mutant ataxin-3 even in comparable levels to the endogenous form, the 

present report provides evidence that reactive astrogliosis might be an early feature in MJD, 

which is particularly relevant in view of the surge of interest in the role of non-neuronal brain 

cells in the aetiology of neurodegenerative disorders (Lobsiger and Cleveland, 2007). A 

putative role of glial cells in MJD is further heralded by evidence of the presence of ataxin-3 

in glial cells (Paulson et al., 1997b; Wang et al., 1997). Again, this observation should open a 

novel area of research fostering a better understanding of the role of ataxin-3 in astrocytes 

and on the consequences of astrocytic adaptation upon accumulation of mutated ataxin-3. 

Thus, the present time-course exploration of neuropathological features associated with 

this genetic model of MJD identifies synaptotoxicity and astrogliosis as precocious 

modifications followed by microgliosis and neuronal dysfunction, appearance of NIIs and 

overt neuronal damage. This time course is in general agreement with the recognition that 

synaptotoxicity and astrocytic-related metabolic imbalance are amongst the most precocious 

modifications in different neurodegenerative disorders and that neuroinflammation, 

previously implicated in MJD (Evert et al., 2001), may be a candidate process to mediate the 

spreading and amplification of damage until overt neuronal dysfunction and damage can be 

recorded (Coleman et al., 2004; Gomes et al., 2011; Lobsiger and Cleveland, 2007). 

The second prominent conclusion of this study is the demonstration that the chronic 

consumption of a reasonable dose of caffeine compatible to a significant blockade of 

adenosine effects on A2A (most potent) and A1 receptors (Fredholm et al., 1999) or the 

genetic elimination of A2AR mitigated the striatal neuropathological modifications caused by 

the expression of mutated ataxin-3. This is in agreement with the ability of A2AR, mainly 

targeted by chronic caffeine consumption (Cunha and Agostinho, 2010; Ferre, 2008), to 

afford neuroprotection against different neurodegenerative disorders, namely Alzheimer’s, 

Parkinson’s or Huntington’s disease (Cunha and Agostinho, 2010; Popoli et al., 2007; 

Schwarzschild et al., 2006). Notably, most of the compartments that we now showed to be 

affected in this genetic model of MJD are effectively normalized by A2AR blockade in chronic 

brain diseases: thus, A2AR blockade prevents synaptotoxicity (Canas et al., 2009; Silva et al., 

2007), in accordance with the enrichment of A2AR in synapses (Rebola et al., 2005a), and 

also controls astrogliosis (Brambilla et al., 2003; Minghetti et al., 2007; Yu et al., 2008), and 

microgliosis (Rebola et al., 2011), striatal neurodegeneration (Schiffmann et al., 2007), and 
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neuronal death (Chen et al., 2007; Cunha, 2005). Accordingly, in our genetic model of MJD, 

chronic caffeine consumption or genetic deletion of A2AR abrogated the loss of synaptic 

markers, prevented astrogliosis and microglia activation, reduced cell injury and striatal 

degeneration rescuing its normal cytoarchitecture. Therefore, this provides the first evidence 

that the manipulation of a neuromodulation system operated by A2AR is effective in 

controlling the initial cascade of events triggered by the pathogenic ataxin-3 protein 

(synaptotoxicity and gliosis) that culminate in a reduced neuronal degeneration.  

It is worth noting that this general neuroprotection afforded by caffeine and A2AR 

blockade is accompanied by an accumulation of ataxin-3 aggregates into intracellular nuclear 

inclusions. The inverse correlation between the impact of caffeine and A2AR blockade on 

mutant ataxin-3-induced NIIs and neuropathology strongly suggests that the aggregation of 

ataxin-3 could correspond to a cellular defensive mechanism against soluble, more toxic 

species (Arrasate et al., 2004; Saudou et al., 1998; Takahashi et al., 2008b; Taylor et al., 

2003), rather than being the main cause of degeneration. Therefore, although it cannot be 

excluded that this might result from a better neuronal survival in treated animals, we 

hypothesized that aggregates may be neuroprotective. Nevertheless, the neuroprotection 

conveyed by caffeine and A2AR blockade might be of limited duration since the number of 

pycnotic nuclei remained relatively high. 

The present exploration of the time course of MJD-associated neuropathological 

features and its modification by A2AR provides a novel insight into the neuropathology of MJD 

but does not explore the underlying mechanistic processes. Ataxin-3 is a polyubiquitin-

binding protein whose physiological function has been linked to de-ubiquitination (Burnett et 

al., 2003; Doss-Pepe et al., 2003; Kuhlbrodt et al., 2011; Warrick et al., 2005), and MJD is 

argued to result from a toxic gain of function of mutant ataxin-3. In keeping with our proposal 

that synaptotoxicity might be a precocious modification in MJD, several studies highlight the 

importance of the ubiquitin-proteosome system (UPS) in synapses (Cajigas et al., 2010; 

DiAntonio and Hicke, 2004), namely in presynaptic terminals (Jiang et al., 2010; Rinetti and 

Schweizer, 2010), where it is affected in other polyQ neurological diseases (Wang et al., 

2008); furthermore, there is preliminary evidence that A2ARs directly bind to UPS 

components (Milojevic et al., 2006), and control the UPS activity (Chiang et al., 2009), paving 

the way for a putative direct control by A2AR of synaptic UPS. The proposal that the ability of 

A2ARs to control another polyQ neurological disorder (Huntington’s disease) depends on the 

control of glutamatergic transmission prompts an alternative mechanism by which the A2AR-

mediated control of the initial event in MJD might be related to the ability of A2AR to control 

abnormal glutamatergic transmission through direct synaptic effects (Rebola et al., 2008), or 

indirectly through control of astrocytic glutamate uptake (Matos et al., 2012; Nishizaki et al., 
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2002). Thus, albeit the molecular mechanism of A2AR-mediated control of MJD remains to be 

determined, the present study provides new clues for particular compartments where such 

mechanisms should be explored. 

In conclusion, the present study provides a novel insight into the pathology of MJD 

bringing to the centre stage synaptotoxicity and gliosis as precocious events in MJD. 

Furthermore, it provides the first realistic and safe promising life style prophylactic strategy to 

delay the onset of this inherited disorder, based on the consumption of caffeine. Finally, it 

provides the first suggestion that A2AR might be a novel therapeutic target to interfere with 

the inexorable evolution of this neurodegenerative disease. 
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3.1 Abstract 

Machado-Joseph disease (MJD) is a dominantly-inherited neurodegenerative 

disorder associated with an expanded polyglutamine tract within ataxin-3 for which 

there is currently no available therapy. We previously showed that caffeine, a non-

selective adenosine receptor antagonist, reduced the neuropathological modifications 

triggered by lentiviral-mediated over-expression of mutant ataxin-3 in the mouse 

striatum; we now investigated its ability to also alleviate behavioral deficits in a genetic 

mouse model of MJD displaying a severe ataxia. 

For this purpose, MJD transgenic mice were given caffeine (1 g/L, applied 

through the drinking water) and were tested using a panel of locomotor behavioral 

paradigms, namely rotarod, beam balance and walking, pole and water maze cued-

platform version tests. Caffeine consumption prevented progressive loss of general and 

fine-tuned motor functions, balance and grip strength, in parallel with cerebellar 

morphology preservation. Importantly, caffeine also rescued the putative striatal-

dependent executive and cognitive deficiencies affected in this genetic mouse model of 

MJD. 

Our findings provide the first in vivo demonstration that caffeine intake alleviates 

motor disabilities in a severely impaired animal model of MJD. 
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3.2 Introduction 

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, is a dominantly-

inherited polyglutamine neurodegenerative disease and the most common among 

ataxias (Ranum et al., 1995). It is characterized by an adult age of onset associated 

with an unstable expansion of a CAG stretch (over 61 repeats) in the ATXN3 gene, 

which encodes a polyglutamine repeat in the corresponding ataxin-3 protein (Durr et 

al., 1996; Kawaguchi et al., 1994), and causes premature death. The clinical hallmarks 

of MJD include progressive ataxia, dysfunction of motor coordination, postural 

instability and Parkinsonism among other symptoms (Gwinn-Hardy et al., 2001; Taroni 

and DiDonato, 2004). The neuropathology involves multiple systems such as cerebellar 

systems, substantia nigra and cranial nerve motor nuclei (Durr et al., 1996; Sudarsky 

and Coutinho, 1995), as well the striatum (Alves et al., 2008b; Klockgether et al., 

1998). There is currently no available therapy. Several animal models closely 

mimicking the human pathology (Alves et al., 2008b; Bichelmeier et al., 2007; Cemal et 

al., 2002; Goti et al., 2004; Nobrega et al., 2012; Silva-Fernandes et al., 2010) have 

been widely used to deepen our knowledge on the mechanisms leading to the neuronal 

degeneration. In fact, taking advantage of those animal models in parallel with human 

tissue analysis we have recently shown different cellular compartments particularly 

affected in MJD brains, namely impaired autophagy (Nascimento-Ferreira et al., 2013; 

Nascimento-Ferreira et al., 2011) and proteolysis (Simoes et al., 2012), preceded by 

synaptic loss and gliosis (Goncalves et al., 2013) providing new targets for therapy.  

As A2AR blockade through chronic caffeine consumption proved protective 

towards diverse neurodegenerative paradigms, namely Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis (Chen et al., 

2001; Cunha and Agostinho, 2010; Popoli et al., 2007; Potenza et al., 2013) as well in 

striatal-induced MJD neuropathology (Goncalves et al., 2013), we now investigated the 

ability of chronic caffeine administration to rescue severe sensorimotor behavioral 

impairments displayed by a MJD transgenic mouse model expressing a truncated form 

of mutated ataxin-3 in cerebellum (Torashima et al., 2008). 
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3.3 Materials and Methods 

3.3.1 Animals 

All experiments were performed with approval of the Coimbra University Authority 

for Animal Welfare in accordance with the European Community directive 

(86/609/EEC) for the care and use of laboratory animals. C57Bl/6-background 

truncated-atx3-69Q/ transgenic MJD (TgMJD) mice were obtained from parallel 

breeding at CNC, University of Coimbra, of a colony of TgMJD mice initially obtained 

from Gunma University Graduate School of Medicine (Torashima et al., 2008). Mice 

were housed and kept under a conventional 12-h light-dark cycle maintained on a 

temperature-controlled room with food and water provided ad libitum and used at 7 

weeks of age. Gender- and age-matched TgMJD and wild type littermates (WT) were 

used in this study. 

 

3.3.2 Drug treatment 

We chose the dose of caffeine (1 g/L) administered through the drinking water, as 

a maximally effective and non-toxic dose, which we have previously shown to result in 

a plasma concentration of 50 µM (Duarte et al., 2012) and similar concentration in the 

brain parenchyma (Costenla et al., 2010). Treatment with caffeine was initiated at 7 

weeks of age. 

 

3.3.3 Behavioural assessments 

All animals were submitted to a battery of locomotor, exploratory and cognitive 

tests starting at 7 weeks of age. Animals were habituated for 1h to a quite room with 

controlled temperature and ventilation, dimmed lighting, and handled prior to 

behavioural testing to overcome the animals’ natural fear and anxiety responses, which 

could have a major effect on performance. All devices were wiped clean with a damp 

cloth of a 10% ethanol solution and dried before evaluating the next mouse. 

 

3.3.3.1 Rotarod 

Motor coordinative abilities and balance was assessed using rotarod apparatus. Mice 

were tested on an accelerating rotarod (Letica model LE 8200, Panlab, Barcelona, 

Spain) starting at 4 rpm and accelerating to 40 rpm over a period of 5 min. The time 

during which mice remain walking in the rotation drum was recorded. Sessions 
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consisting of 2 trials per day with a 20-min inter-trial interval were carried out and the 

mean of the trials were averaged. Animals were repeatedly tested every 4 weeks, 

beginning on the day before treatment. 

 

3.3.3.2 Pen test 

In the pen test, a mouse suspended by its tail was slowly lowered from above to 

a pen (diameter, 9-mm) horizontally fixed approximately 20-cm above the ground. 

Usually, the mouse grabs to the pen and starts walking on it without difficulties. Any 

deviation from this normal behaviour was recorded in a 60 s test trial. 

 

3.3.3.3 Beam balance/walking 

Motor coordination and balance of mice were assessed by measuring the ability 

of the mice to traverse a graded series of narrow beams to reach an enclosed safety 

platform (Carter et al., 1999). The beams consisted of long strips of wood (1-m) with an 

18- or 9-mm square wide and a 9- or 6-mm round diameter cross-sections. The beams 

were placed horizontally, 25-cm above the bench surface, with one end mounted on a 

narrow support and the other end attached to an enclosed box (20-cm square) into 

which the mouse could escape. A 60-W desk lamp was positioned above and to one 

side of the start of the beam to create an aversive stimulus (bright light) to induce mice 

to cross it. During training, mice were placed at the start of the 9-mm square beam and 

trained over 3 d (4 trials per day) to traverse the beam to the enclosed box. Once the 

mice were trained (traversed the 9-mm square beam) they received two consecutive 

trials on each of the square beams and each of the round beams, in each case 

progressing from the widest to the narrowest beam. Mice were allowed up to 60 sec to 

traverse each beam. As mice became progressively impaired, they clung tightly onto 

the beam to prevent themselves from falling. This increased latency to cross; any 

animal that did not cross within the full 60-sec trial was allocated a maximum value of 

60 sec for analysis. 

 

3.3.3.4 Grip strength 

Since motor function can be differentially affected depending on experimental 

parameters, the mouse limb strength was measured as an indicator of neuromuscular 

function. The setup consisted of a 300-g metal grid, which was on a scale. The animal 

was hung with its forepaws to the central position of the grid. Its strength was 
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determined as the weight pushed (g) from the scale. The grip test was performed 3 

times and the mean taken to analysis. 

 

3.3.3.5 Pole test 

The pole test was performed as previously described (Matsuura et al., 1997) 

with minor modifications (Fernagut et al., 2004). The mouse was placed head-upward 

on the top of a vertical rough-surfaced pole (diameter 1.0-cm; height 52 cm) and the 

time to orient downward (t-turn) and to reach the floor (t-descend) was recorded; the 

maximum observation time was 120 s. Animals were submitted to 5 consecutive trials 

with an inter-trial interval of 60 s. The best 3 scores for each parameter were 

considered to analyse. 

 

3.3.3.6 Water-maze cued-version test 

Tests were performed in a circular swimming pool made of gray acrylic, 140-cm 

in diameter and 60-cm in height (the animals’ hind-paws did not touch the cylinder’s 

bottom). For the tests, the tank was filled with water until 45 cm of height and 

maintained at 23 ± 2ºC. The target platform (10x10 cm2) was made of transparent 

acrylic and it was submerged 1 to 1.5-cm beneath the surface of the water and a yellow 

rubber ball (5-cm in diameter) was attached to the top of the submerged platform and 

protruded above the water surface. Mice were submitted to a working memory version 

of the water maze using a protocol described previously (Prediger et al., 2010). The 

swimming sessions consisted of 4 training days, four consecutive trials per day, during 

which the animals were left in the tank facing the wall, then being allowed to swim 

freely to the submerged platform. If a mouse did not find the platform during a period of 

60 s, it was gently guided to it. After each session mice were removed from water, 

dried with a towel, and placed in a warmed enclosure, and the cylinders were cleaned 

and refilled. The scores for latency of escape from the starting point to the platform 

were collected. 

 

3.3.3.7 Object location recognition test 

Short-term memory was assessed by using an acrylic made open-field box (30-

cm wide × 30-cm deep × 30-cm high). Identical plastic columns (4-cm in height × 5-cm 

in diameter) were used as objects. This test consisted of an acquisition trial and a test 

trial with an inter-trial interval of 3 h. On the acquisition trial, each mouse was allowed 5 
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min to explore two identical objects positioned in two adjacent corners, 7-cm from the 

walls. On the test trial, one of the objects was moved to a different location while the 

other retained in the same position as in the acquisition trial, the mouse was 

reintroduced into the experimental apparatus for 5-min, and its behaviour recorded 

(Murai et al., 2007). The time spent exploring each object was recorded. Exploration of 

an object was defined as pointing the nose towards the object at a distance of <1-cm 

and/or touching it with the nose. Turning around or sitting on an object was not 

considered exploration. To analyze cognitive performance, a location index was 

calculated as follows: (Tnovel × 100)/ (Tnovel + Tfamiliar), where Tnovel is the time 

spent exploring the displaced object and Tfamiliar is the time spent exploring the non-

displaced object. 

 

3.3.3.8 Modified Y-maze 

Testing was carried out in a Plexiglas apparatus composed of 2 arms 

connected to a runway, separated by equal angles. The 2 arms (available for 

exploration) and runway were 30-cm long and 5-cm wide surrounded by black acrylic 

walls 20-cm high. Each arm met at a central platform equipped with black removable 

partitions, enabling arms to be opened and closed as desired. The area surrounding 

the Y-maze did not contain optical cues. The test consisted of an acquisition trial and a 

test trial with an inter-trial interval of 2 h. On the acquisition trial, each mouse was 

placed at the end of the runway and was allowed 8 min to access to one of the 

exploration arms by forced choice (i.e., the other arm was closed). On the test trial, the 

mouse was allowed to explore both the runway and familiar and the novel unfamiliar 

exploration arms for a period of 8 min. The time spent in each arm and the number of 

entries was recorded. To analyze cognitive performance, an index was calculated 

[Enovel/ (Enovel + Erunway-familiar) x 100], where Enovel is the number of entries on 

the novel/ unfamiliar arm and Erunway-familiar is the number of entries on both runway 

and familiar arms. 

 

3.3.3.9 Open field locomotor activity 

To assess mice spontaneous explorative behaviour, activity was recorded on an 

open-field apparatus (Letica model LE 8811, Panlab, Barcelona, Spain). The device 

contained a 45 x 45-cm arena made of black acrylic and 35-cm high transparent acrylic 

walls and record ambulatory movements as well as rears. Animals were repeatedly 

tested every 4 weeks, beginning on the day before treatment. Both vertical (rearing 
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frequency) and horizontal (distance travelled, in cm) activity on the whole arena, and 

the maximum reached velocities (in cm/s) were collected using Acti-Track Software 

(Panlab, Barcelona, Spain). The mice were placed in the center of the arena in a single 

15-min session (Boy et al., 2009). 

 

3.3.3.10 Elevated plus maze test 

The device consisted of four black acrylic cross-shaped arms of equal 

dimensions (40-cm x 5-cm) raised 50-cm above the floor, radiating from a central 

square measuring 6-cm x 6-cm. Two arms were enclosed on three sides by 30-cm high 

opaque Plexiglas walls and the other two were only surrounded by 0.5-cm high to avoid 

falls. The enclosed arms and the open arms faced each other on opposite sides. 

Entries (four-paw criterion) and time spent in enclosed and open arms were measured, 

together with open/total arm entry and duration ratios [(seconds in each arm/ total time 

exploring arms) × 100]. An entry occurred whenever the mice crossed from one arm to 

another with four paws. Mice were gently placed in the central square facing one of the 

closed arms. It was allowed to explore freely and undisturbed during a single 5-min 

session. 

 

3.3.3.11 Tail suspension test 

The mouse is securely fastened by the distal end of the tail to a flat metallic surface 

and suspended in a visually isolated area. The presence or absence of immobility, 

defined as the absence of limb movement, was recorded. 

 

3.3.4 Histological assessments 

After an overdose of avertin (2.5x 12 μl/g, i.p.), transcardial perfusion of the mice 

was performed with phosphate-buffered saline (PBS) followed by fixation with 4% 

paraformaldehyde (PFA). The brains were then removed and post-fixed in 4% PFA for 

24 h and cryoprotected by incubation in 25% sucrose/ phosphate buffer for 48h. The 

brains were frozen and 25 μm coronal sections were cut using a cryostat (Leica 

CM3050 S, Heidelberg, Germany) at -21°C. Sagittal slices throughout the brain were 

collected in anatomical series and stored in 24-well trays as free-floating sections in 

PBS supplemented with 0.05 μM sodium azide. The trays were stored at 4°C until 

immunohistochemical processing. 



Chapter 3 

58 

Staining for Calbindin (rabbit polyclonal, Chemicon) together with DAPI (Sigma, 

St. Louis, MO) was performed. Free-floating sections were kept at room temperature 

(RT) for 2h in PBS with 0.1% Triton X-100 containing 10% normal goat serum (Gibco-

Invitrogen, Barcelona, Spain), then twice overnight at 4°C in blocking solution with the 

primary antibody. Sections were washed three times and incubated for 2h at RT with 

the corresponding secondary antibody coupled to fluorophore (goat anti-rabbit Alexa 

Fluor 488, 1:200; Molecular Probes – Invitrogen, Eugene, OR) diluted in the blocking 

solution. The sections were washed three times and then mounted in mowiol reagent 

(Sigma) on microscope slides. 

For cresyl violet staining, coronal sections were premounted and stained with 

cresyl violet for 45 sec, differentiated in 70% ethanol, dehydrated by passing twice 

through 95% ethanol, 100% ethanol and xylene solutions, and mounted onto 

microscope slides with Eukitt® (Sigma). Cresyl violet-stained cross-sectional areas of 

cerebellar hemisphere were used for volume extrapolation and measures of the 

molecular layer width. 

Staining was visualized using Zeiss Axioskop 2 plus or Zeiss Axiovert 200 

imaging microscopes (Carl Zeiss Microimaging, Germany) and equipped with AxioCam 

HR color digital cameras (Carl Zeiss Microimaging) using 5X, 20X and 40X Plan-

Neofluar objectives and the AxioVision 4.8 software package (Carl Zeiss 

Microimaging). Quantitative analysis was performed with a semi-automated image-

analysis software package (Image J software, NIH, USA). 

 

3.3.5 Statistical analysis 

Statistical comparisons were performed by unpaired Student’s t test, and one-way 

or two-way analysis of variance of multiple experimental groups followed by Dunnett’s 

multiple comparison or Bonferroni comparison post hoc tests, respectively. Results are 

expressed as mean ± standard deviation (SEM). Significance thresholds were set at 

p<0.05, p<0.01 or p<0.001, as defined in the text. 
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3.4 Results 

3.4.1 Caffeine prevents loss of balance and progression of gait 

disturbance 

The permanent expression of a truncated form of human ataxin-3, the protein 

responsible for Machado-Joseph disease (MJD), with 69 glutamine repeats in the 

mouse cerebella induces a severe ataxic phenotype, associated with cerebellar defects 

(Torashima et al., 2008). Motor function is mediated by several structures, starting in 

the cortex, brain stem and spinal cord, and terminating in skeletal muscle. The rotating 

rod is widely used as a reliable test to study motor function and balance, and it is 

especially sensitive in detecting cerebellar dysfunction (Caston et al., 1995; Lalonde et 

al., 1995) allowing quantification of progressive sensorimotor impairments. Therefore, 

as a first tool for our studies, we scored the performance of wild-type and MJD 

transgenic mice (TgMJD) on the accelerating rotarod and determined whether caffeine 

was able to modify their motor function. TgMJD revealed a severe phenotype (Fig 

3.1A) as early as 7 weeks of age (n=20, p < 0.001) and a progressive decline with age, 

whereas wild-type (WT) littermate animals (n=18) performed well during all the 

experiment. Chronic caffeine consumption completely abrogated (p < 0.05) the 

progressive loss of performance of TgMJD animals on the rotating rod, while it did not 

modify WT littermates’ performance. 

Figure 3.1: Rotarod motor function assessment. (A) Machado-Joseph Disease transgenic 

(TgMJD) animals performed poorly (***p < 0.001, two-way ANOVA) and worsen with age (p = 

0.07) on an accelerating rotating rod when compared to wild-type littermates (WT), which was 
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significantly (*p < 0.05, student’s t test) prevented by caffeine treatment. (B) Female animals 

preserved their performance on the accelerated rotarod while male animals worsened with age 

(*P < 0.05, two-way ANOVA); caffeine significantly (
#
P < 0.05, student’s t test) prevented male 

progressive loss of performance. 

 

As caffeine effects may vary between gender due to pharmacokinetics 

(Fredholm et al., 1999), we separately analyzed the gender effect of TgMJD animals in 

rotarod performance and therein investigated the effects of chronic caffeine 

consumption. Interestingly, both male and female TgMJD animals displayed low 

performance in rotarod task as early as 7 weeks-old, but only male TgMJD worsened 

with age (Fig 3.1B). Chronic caffeine consumption rescued (p < 0.05) male 

performance from worsening and did not change female phenotype. 

Unexpectedly, TgMJD animals displayed sustained increased spontaneous 

locomotion with age, both distance traveled (8 weeks, p < 0.01; 20 weeks, p < 0.05) 

and number of rearings (8 weeks, p < 0.01) when subjected to an open field, although 

accompanied by a significant decrease in the maximum velocity of running (Time 0, p < 

0.001; 8 weeks, p < 0.05) when compared to its WT littermates (Table 3.1). Most of 

these effects were normalized by 8 weeks of caffeine consumption (number of rearings 

and maximum velocity, p < 0.05). 

 

Table 3.1: Spontaneous locomotion assessment in an open field apparatus. 

 
Distance traveled 

(cm/ 15min) 
No. rears 

Maximum velocity (cm/ 
s) 

Group 
Time 
(wks) 

0 8 20 0 8 20 0 8 20 

Wild-
type 

H2O 
3143.7 
± 134.5 

2086.1 
± 150.3 

932.0 ± 
222.0 165.4 

±  
12.2 

111.8 ±  
19.4 

45.4 ± 
23.2 

15.9 
± 0.5 

14.5 
± 0.4 

12.7 
± 0.9 

Caffeine 
1950.6 ± 

297.5 
933.5 ± 
155.4 

91.8 ± 22.2 36.3 ± 8.3 
14.7 
± 0.8 

13.8 
± 0.7 

TgMJD 

H2O 
3006.8 
± 184.7 

3071.2 
± 

230.3** 

1773.7 
± 

355.6* 
181.7 

±  
16.6 

239.2 ± 
40.9** 

50.5 ± 
20.1 13.0 

± 
0.5*** 

12.7 
± 0.5* 

11.2 
± 0.9 

Caffeine 
2544.7 ± 

555.9 
1283.6 ± 

622.3 
104.0 ± 
37.2

#
 

36.5 ± 18.5 
14.9 

± 0.8
#
 

11.9 
± 2.3 

Analysis of the total distance travelled, number of rears and maximum running velocities during 

15 minutes test in an open field. Data are expressed as mean ± standard error of the mean. 

Statistical evaluation of the genotype was made by two-way ANOVA (*p < 0.05, **p < 0.01, ***p 

< 0.001). Caffeine effects were evaluated by student’s t test (
#
p < 0.05). 
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Moreover, as the phenotype on the rotating rod seemed to differ between 

genders, we then considered data separately and further detailed: i) the effects of 

cerebellar expression of truncated ataxin-3 with age; and ii) whether caffeine 

consumption differently modifies motor performance. In fact, male TgMJD performed 

even worse than females (n=3-4, p < 0.05), which preserved their performance with 

age (Fig 3.1B). Chronic caffeine consumption displayed a gender-dependent effect as 

it rescued male TgMJD mice from progressive loss of motor performance in the rotating 

rod while it did not alter female TgMJD phenotype. No changes in performance were 

observed in both sexes of WT littermates consuming water or caffeine (data not 

shown). 

Since the rotarod paradigm depends intrinsically on muscle strength, 

coordination or balance, we further characterized the nature of the rotarod impairment 

by subjecting mice to the pen test and monitoring the time the animals could withstand 

on the beam. TgMJD animals displayed increasing difficulties to stay equilibrated over 

the beam, which were aggravated with age (p < 0.05; Fig 3.2). Interestingly, chronic 

caffeine consumption completely prevented the imbalance (p < 0.05) throughout the 

study, as caffeine-drinking mice performed as well as WT littermates (data not shown). 

 

 

 

 

 

Figure 3.2: Balance assessment TgMJD mice. 

In a pen test, TgMJD mice displayed increasing 

(*p < 0.05, student’s t test with Welch’s 

correction) balance impairment with age, which 

was significantly prevented by caffeine 

treatment (
#
p < 0.05, student’s t test with 

Welch’s correction). 
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3.4.2 Caffeine improves fine-tuned motor function 

While the rotarod is useful for determining gross motor deficits in rodents, the 

detection of more subtle motor effects requires a different approach. Fine motor 

coordination, can be assessed using a beam walking task, which essentially examines 

the ability of the animal to remain upright and to walk on an elevated and relatively 

narrow beam without falling. Therefore, we have now used multiple beams (especially 

narrow ones) for fine tuned motor characterization of TgMJD animals, and probed for 

subtle effects that chronic caffeine consumption may operate in their motor function; we 

evaluated the time animals spent to walk across four progressively difficult beams of 

square and round cross-section in order to reach an enclosed safety platform. TgMJD 

mice displayed significantly (*p < 0.05) impaired performance on the narrowest square 

and round beams as early as 7 weeks-old (Fig 3.3A), which significantly worsened with 

age both in the narrowest and wider square (**p < 0.01) and round (***p < 0.001) 

beams. 15 weeks-old TgMJD animals (8 weeks post-initiation of caffeine 

administration) hardly performed the task on rounded beams (Fig 3.3B and C) and 

started to exhibit a subtle (p > 0.05) impairment on the narrowest square beam when at 

27 weeks of age (Fig 3.3D). 

Notably, caffeine administration displayed a time-dependent prevention of the 

inability of TgMJD animals to perform both the widest (#p < 0.05) and the narrowest (#p 

< 0.05) rounded beams, as the alleviation of the phenotype observed at 15 weeks of 

age (8 weeks time-point) was no longer observed at 27 weeks of age (20 weeks time-

point, Fig 3.3B and C). Additionally, caffeine-treated TgMJD animals also did not 

exhibit the mild worsening of motor performance on the narrowest square beam at 27 

weeks of age (Fig 3.3D). These data indicates that caffeine is capable of preventing 

loss of MJD transgenic mice performance when executing very challenging and 

physical demanding motor coordination tests although with a limited duration. 
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Figure 3.3: Balance and motor coordination on the raised beams. Wild-type (n=22) and TgMJD 

(n=23) mice were trained to walk across a 9-mm squared beam during 3 consecutive days. In 

the 4
th
 day, mice were progressively subjected to a series of more difficult beams of square and 

round cross-section to reach an enclosed safety platform. The latency to cross was recorded on 

each trial (A to D). All animals were given two trials on each of the graded square and round 

beams, in each case progressing from the widest to the narrowest. (A) TgMJD mice exhibited a 

decline in beam-walking ability with increasing beam difficulty and age (*p < 0.05, **p < 0.01, 

***p < 0.001; student’s t test with Welch’s correction). (B and C) TgMJD animals displayed a 

progressive beam-walking disability with age (*p < 0.05, **p < 0.01, ***p < 0.001; one-way 

ANOVA). 8 weeks caffeine treatment significantly (#p < 0.05, student’s t test) improved their 
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performance in the challenging rounded beams. (D) At 27 weeks of age, TgMJD mice 

demonstrated a subtle impairment in the narrowest square beam, which was not seen in 

caffeine treated animals (p > 0.05, student’s t test). 

 

Clinical symptoms of peripheral neuropathy have long been recognized in MJD 

patients as a result of axonal neuropathy of both motor and sensory fibers (C. Franca 

M et al., 2009; Klockgether et al., 1999). Therefore, in addition to the motor function 

assessment, the endurance of the animal was also taken into account since it may 

influence motor performance on several motor tests. We thus subjected mice to a grip 

strength test to further explore whether a modulation of the neuromuscular 

transmission was also operated by caffeine. At 7 weeks of age (corresponding to Time 

0 in Table 3.2), TgMJD mice displayed equal muscle strength as WT littermates (data 

not shown), but within the following 8 weeks had a dramatic loss (p < 0.05) of grip 

strength. Importantly, caffeine administration was able to prevent (8 weeks, p < 0.05) 

this effect, although to some extent as long-term treatment (20 weeks) was unable to 

sustain TgMJD mice initial endurance (Table 3.2). 

 

Table 3.2: Analysis of TgMJD neuromuscular function using a grip strength test. 

 

Grip strength is expressed as 

weight pushed (g) from the 

scale [mean ± standard error 

of the mean]. *Difference from the initial value (p < 0.05; one-way ANOVA). 
#
Difference from 

control water-drinking group (p < 0.05; student’s t test). 

 

Interestingly, this loss of endurance 

displayed by TgMJD with age was not correlated 

with a loss of weight, as those values were 

similar to WT animals at any time point (Fig 3.4), 

and also not modified upon caffeine treatment. 

 

Figure 3.4: Mice weight. No significant differences 

were observed between TgMJD and WT littermate 

animals (P > 0.05, two-way ANOVA). 
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Taken together, both fine-tuned motor function and early grip force loss are 

indicative of a putative neuromuscular dysfunction in this animal model of MJD. 

Caffeine administration prevented those effects to some extent but was unable to 

prevent aggravation of the phenotype at late stages. 

 

3.4.3 Caffeine rescues striatal-dependent abnormal circuitries 

3.4.3.1 Motor system 

The present MJD transgenic animals display a robust ataxia associated with the 

expression of mutant ataxin-3 in cerebella (Torashima et al., 2008). However, other 

brain circuitries may be altered being partially responsible for this particular phenotype. 

Therefore, we evaluated the animals in a vertical pole, a task on which decreased 

performance has been associated with nigrostriatal circuitry impairments in different 

animal models of striatal degeneration (Fernagut et al., 2004; Gomez-Sintes et al., 

2007; Luchtman et al., 2012). Overall, the time required to orient downward (T-turn) 

was longer in aged TgMJD than in WT littermate animals (p < 0.01, Fig 3.5) and the 

time to descend from the top of the pole to the ground (T-descend) was also longer at 

both younger (p < 0.01) and older ages (p < 0.05). Chronic caffeine administration 

prevented the increased time displayed by TgMJD animals to orient downward (p < 

0.05), and promoted complete recovery (p < 0.01) of their performance to descend, as 

animals climbed down faster than initially (at younger age) and also similarly to WT 

animals. 

Figure 3.5: Motor performance in a vertical pole. Aged TgMJD mice showed significantly (**p < 

0.01, student’s t test with Welch correction) increased time to orient downward when compared 

to WT animals. This effect was prevented (
#
p < 0.05, student’s t test with Welch’s correction) by 

caffeine treatment. TgMJD mice also displayed significantly (*p < 0.05, **p < 0.01; student’s t 
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test with Welch’s correction) increased time to descend to the floor, compared to WT animals. 

Caffeine administration completely reverted (
††

p < 0.01, student’s t test relative to TgMJD at 0 

weeks of treatment) the time to descend to the floor spent by TgMJD animals, to control WT 

levels. 

 

This data is highly suggestive of a striatal dopaminergic impaired circuitry 

affecting motor functions of MJD transgenic animals and occurring right from an early 

age. Importantly, this impairment is normalized by caffeine treatment. 

 

3.4.3.2 Cognitive system 

As the striatum is apparently dysfunctional in this MJD animal model, as shown 

in other MJD genetic models (Alves et al., 2008b; Simoes et al., 2012) as well in 

human patients (Alves et al., 2008b; Reetz et al., 2013; Yen et al., 2002), and the 

striatum targets both motor and cognitive action systems, which positions it as a 

particularly relevant brain compartment controlling learning of motor skills, we further 

evaluated whether striatal functions were altered as a whole subjecting TgMJD animals 

to striatal-dependent procedural learning and memory tasks. Although evaluating motor 

learning in a motor challenging raised-narrow-beam task during 4 training days would 

hardly allow ascertaining learning disabilities, we found a mild learning impairment in 

15 weeks-old TgMJD animals when performing beam-walking task (8 weeks, day 2, Fig 

3.6A), which was prevented (p < 0.05) by caffeine treatment; learning impairment in the 

older TgMJD animals could not be ruled out since animals already displayed motor 

deficiencies in performing the task. 

We also took advantage of the water maze cued-platform acquisition trials, 

where escape latency was scored. Herein, 13 weeks-old TgMJD mice displayed a 

starting difficulty (**p < 0.01) to reach the safety platform at day 1, the day of first 

contact with the test (Fig 3.6B), while WT littermates performed well. In the following 

trial days all the animals performed well albeit motor incoordination of TgMJD animals, 

which might be explained through the survival instinct inducing rapid search for the 

safety platform. This fact did not allow us to confirm the putative impairment of striatal 

based stimulus-response form of learning and memory displayed by TgMJD animals 

challenged in the beam-walking task (Fig 3.6A). Nonetheless, caffeine administration 

was again able to prevent (##p < 0.01) the increased time to initiate movement such as 

that observed in the vertical pole (Fig 3.5). 
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Figure 3.6: Motor skill learning tests. (A) Beam-walking test of 15 weeks-old TgMJD mice (8 

weeks of caffeine treatment) revealed learning impairment at day 2 when performing the 

narrowest 9-mm square beam, which was not observed  in caffeine-treated animals (*p < 0.05, 

student’s t test). Older TgMJD animals already displayed motor deficiencies, which do not allow 

learning evaluation. (B) In a freely swimming task using a similar training protocol, 13 weeks-old 

TgMJD (6 weeks of treatment) animals already demonstrated a significant (**p < 0.01, two-way 

ANOVA) initial akinesia, which was prevented by caffeine treatment (
##

p < 0.01, two-way 

ANOVA). 

 

We further subjected the animals to another striatal-dependent learning task, 

namely object location test (OLT), to evaluate whether TgMJD animals displayed 

impairment in procedural spatial memory. The OLT is based on the spontaneous 

tendency for rodents to explore novel stimuli. Animals were introduced to two identical 

objects in the experimental apparatus, and after a 3 h delay, exposed again to the 

same two objects, one of which had been displaced to a new location (Fig 3.7A). 

Furthermore, animals that remember the previous exposure spontaneously spend 

more time exploring the object in the new position (Murai et al., 2007). 
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Figure 3.7: Cognitive function - short memory - 

assessment by object location test (OLT). (A) 

Schematic representation of the experimental 

procedure. (B) Wild-type mice spent more time 

exploring the displaced object from the object placed in 

the same position in the acquisition trial while TgMJD animals poorly discriminate the displaced 

object. Caffeine-treatment rescued the ability of TgMJD animals to explore novelty. *p < 0.05 vs. 

chance level (50%) and 
#
p < 0.05 vs. normal condition. 

 

On the acquisition trial, all animals spent an equal amount of time exploiting 

each of the two identical objects (p > 0.05) (Table 3.3). On the test trial, WT animals 

displayed a location index different from the chance level (*p < 0.05, Fig 3.7B) whereas 

TgMJD mice demonstrated a reduced location index (¨#p < 0.05) meaning they poorly 

discriminate the displaced object from the object placed in the same position in the 

acquisition trial. Additionally, WT animals also decreased their exploitation time in the 

test trial (Table 3.3), which can be translated by their ability to recognize the 

environment and the objects while TgMJD animals spent the same time (p > 0.05) 

exploring the objects. 

 

Table 3.3: Total object exploitation time in OLT at both acquisition and test trials. 

The total time spent 

exploring the two objects 

was expressed as mean 

(seconds) ± standard 

error of the mean. N*: 

number of animals. 
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This data supports the interpretation of TgMJD animals exhibiting an object 

location recognition difficulty. Importantly, chronic caffeine consumption rescued the 

inability of TgMJD animals to learn and thus to explore novelty. 

Together, these data demonstrates that: i) striatal functions are also affected in 

this MJD transgenic mouse model; and ii) caffeine normalizes the associated 

behavioral alterations. 

 

3.4.4 Caffeine abrogates neuropathological deficit progression 

To determine whether TgMJD animals’ phenotype was directly associated with 

neuropathological features, we compared TgMJD animals’ brains with those of WT 

littermates in different aspects, such as the size and histological parameters, and 

further evaluated the effects therein by chronic caffeine consumption. As mutant ataxin-

3 was expressed mainly in cerebellum inducing gross morphological defects, namely in 

Purkinje cells (Torashima et al., 2008), we further evaluated cerebellar hemisphere 

sizes and dissected folia morphology. TgMJD mice displayed a clearly visible reduction 

(p < 0.001) in cerebellar volume, as shown in mice brain photomicrographs (Fig 3.8A, 

quantified in B), and also exhibited indistinguishable lateral cerebellar region (the 

neocerebellum) comprising the hemispheric extensions of lobules VI and VII of the 

posterior lobe, as early as 7 weeks of age. Cerebellar volume of TgMJD animals 

continued to decline with age (Fig 3.8C, black bar) exhibiting a general reduction of the 

anterior lobe (lobules I-V), posterior lobe (lobules VI-IX) and of the flocculonodular lobe 

(lobule X) (Fig 3.8D, top, see arrows). Impressively, chronic caffeine consumption 

rescued (p < 0.05) TgMJD mice cerebella from shrinkage, which might be related to a 

better neuronal survival. 
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Figure 3.8: Hemicerebellar volume of MJD transgenic and wild-type littermate animals. (A) 

Representative brains of TgMJD animals and WT littermates. Cerebella anatomical regions are 

outlined; lobules VI and VII are indistinguishable in TgMJD mice. Scale bar: 1 mm. (B) TgMJD 

mice showed a robust (***p < 0.001, student’s t test) reduction in the cerebellar volume as early 

as 7 weeks of age when compared to wild-type animals. (C) Quantification analysis of the 

extrapolated hemicerebellar volume of young and older water- and caffeine-drinking TgMJD 

animals. There is a noticeable reduction in the overall cross-sectional cerebellar area of the 

water-drinking animals, which was rescued (
#
p < 0.01, student’s t test) by caffeine treatment.(C) 

Midsagittal cresyl violet-stained sections from 15 weeks-old water-drinking (top) and caffeine-

drinking (bottom) TgMJD animals. Arrows indicate foliation size reduction: decreased anterior, 

posterior and flocculonodular lobes. Scale bar: 200 μm. 

 

In order to associate the overall cerebellar reduction with morphological defects 

in specific cellular layers, cresyl violet-stained sections were used to measure the 

molecular layer thickness. In fact, TgMJD mice cerebella exhibited a significant 

decrease (p < 0.001) of the molecular layer (ML) thickness as early as 7 weeks of age 

confirmed in different folia (lob-V: 68±6-μm; and lob-IX: 67±5-μm), comparing to WT 

littermates (lob-V: 137±4-μm; and lob-IX: 155±3-μm) (Fig 3.9A and B). At 27 weeks of 

age, the molecular layer thickness of TgMJD animals thinned to 51±3-μm and 48±2-μm 

in lob-V and lob-IX, respectively (Fig 3.9C and D). Additionally, also an evolving 

disorganization of the Purkinje cell layer (PCL) was observed with age, which is 

consistent with the molecular layer thinning suggestive of Purkinje cell atrophy. 

Remarkably, caffeine administration preserved the molecular layer thickness. 
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Figure 3.9: Midsagittal sections of both TgMJD animals and wild-type littermates. (A and C) 

Cresyl violet immunostaining. Scale bar: 50 μm (B and D) Quantification analysis of the 

molecular thickness of lobules V and IX. A and B. 7 weeks-old TgMJD mice displayed a 

significantly thinner (***p < 0.001, student’s t test) molecular layer (ML) when compared to WT 

animals, irrespective of lobule. C and D. A significant progression on ML thickness reduction 

(lobule V, *p < 0.05; lobule IX, **p < 0.01; student’s t test) concurrently with an increase of PC 

somata (PCL) disorganization were observed with aging. 20 weeks of caffeine administration 

slowed (
#
P < 0.05, student’s t test) the progressive reduction of the ML thickness in TgMJD 

animals. 

 

Furthermore, to correlate the molecular layer loss with the state/ presence of 

Purkinje cells, we further used calbindin immunofluorescence to visualize and count 
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Purkinje cells. WT animals showed well defined cerebella cellular layers, namely 

Purkinje cell and molecular layers, which were immune-positive for calbindin (Fig 

3.10A), whereas young adult TgMJD mice displayed a clear disorganization and 

reduction in the number of Purkinje cells, both in lobules V (p < 0.001) and IX (p < 0.05) 

(Fig 3.10B and C, left), which progressively worsened with age (lob-V: p < 0.01; lob-IX: 

p > 0.05) (Fig 3.10D). Notably, chronic caffeine consumption displayed a remarkable 

protection of Purkinje cells from degeneration. 

 

Figure 3.10: Purkinje cell population of both TgMJD and wild-type littermate animals. (A and C) 

Immunostaining of cerebellar Purkinje cells with an anti-calbindin antibody. (A) Both molecular 

and Purkinje cell layers appear evenly stained in WT animals and in 7 weeks-old TgMJD mice. 

Scale bar: 100 μm. (C) An obvious reduction of calbindin immunoreactivity and topographical 

repartition of the cell loss was seen in 27 weeks-old water-drinking TgMJD animals, which did 

not happen upon 20 weeks of caffeine treatment. Scale bar: 20 μm. (B) Quantification of the 

Purkinje cell number of anterior and posterior lobules, V and IX, respectively. TgMJD mice 

displayed a significant reduction of Purkinje cell number (lobule V, ***p < 0.001; lobule IX, *p < 

0.05; student’s t test). (D) 20 weeks caffeine treatment completely abolished Purkinje cell loss in 

both lobules V (
##

p < 0.01, student’s t test) and IX (
#
p < 0.05, student’s t test). 
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Together, these data show a correlation between MJD transgenic phenotype 

and modified cerebellar features, namely size reduction and disorganized morphology 

typified by a reduction of the molecular layer and a continuous loss of Purkinje cells. 

Notably, chronic caffeine administration prevented the worsening of the dramatic 

phenotype displayed by MJD transgenic mice through the overall preservation of 

cerebella structure. 
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3.5 Discussion 

 In the present study, we investigated the impact of caffeine, a non-selective 

antagonist of the adenosine A2A receptors (A2AR), on a transgenic mouse model of 

MJD exhibiting pronounced motor and cognitive deficits. In this model, a truncated 

human form of ataxin-3 with 69 CAG repeats is expressed in cerebella (Torashima et 

al., 2008), the region widely accepted as the most important contributor for the 

phenotype presented by MJD patients. Here, we provide the first evidence that 

pharmacological manipulation of A2AR through caffeine administration rescues the 

progression of cerebellar morphological damages limiting the worsening of the 

phenotype. 

In the early stages of cerebellar degenerative disorders, the motor dysfunction 

typified by impaired gait (ataxia) and extremity incoordination (dysmetria), which is 

consistent with the role of cerebellum in skills requiring coordination and fine motor 

control (Mishkin and Appenzeller, 1987), is preceded by poor balance and inability to 

walk in a straight line, and is also commonly accompanied by impaired force of 

contraction (Schmahmann, 2004). In addition, impairment of the fine motor 

coordination required for walking is characterized by widened base as the condition 

progresses; turning is problematic and can result in falls. Subjecting rodents to a beam 

walking task with graded levels of difficulty, allows to observe aggravation of walking 

impairment at a given level of task difficulty, and the age at which a deficit is first 

observed decreases as the level of task difficulty increases (Carter et al., 1999). 

The present time-course study of behavioral changes in this genetic model of 

MJD (see Fig 3.11) revealed a progressive sensorimotor impairment in rotarod and pen 

tests accompanied by walking difficulties and an early loss of muscle strength, a sign 

formerly thought to be the pathophysiologic basis of the motor disability, without weight 

alterations. Additionally, TgMJD mice also displayed hypokinesia (both akinesia and 

bradykinesia) on a vertical pole. Regarding walking disabilities, TgMJD mice displayed 

greater difficulties when challenged on the narrowest rounded beams while comparing 

to the widened squared beams, and aging resulted in emerging difficulties while 

performing the narrowest square beam. Post-mortem analysis of TgMJD brains also 

revealed: i) reduced cerebella as early as 7 weeks of age; ii) indistinguishable 

neocerebellum, a region functionally associated to higher level cognitive/ emotional 

tasks  such as planning, initiation and timing of movements; and iii) age-dependent 

reduction of anterior and posterior lobes (lobules I-V and VIII-IX) as well of 

flocculonodular lobe (lobule X) associated with sensorimotor functions connected to the 

cerebral cortex and spinal cord, therefore related to fine tune body and limb 
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movements as well as muscle tone, balance and postural stability (Schmahmann, 

2004; Stoodley and Schmahmann, 2010). This is in notable agreement with 

neuroimaging studies showing smaller cerebellums of Attention deficit hyperactivity 

disorder (ADHD) children (Berquin et al., 1998; Castellanos et al., 1996) and the 

association of motor impairments with cerebellar dysfunction (Diamond, 2000). 

Figure 3.11: Summary of the time-course of behavioral modifications in the transgenic mouse 

model of MJD expressing a truncated ATXN3 gene. 

 

Beyond coordination and fine motor control, the cerebellum also plays a role in 

strategy formation and procedural learning, the memory for motor skills (Mishkin and 

Appenzeller, 1987; Shiotsuki et al., 2010), which have been recently established to be 

closely linked to non-motor regions of the cerebral cortex involved in executive 

functions and cognitive planning, and were reported to be impaired upon cerebellar 

degeneration, based on clinical neuropsychological tests (Pascual-Leone et al., 1993; 

Zawacki et al., 2002). Consistently, there have been episodic reports showing 

cognitive, executive and emotional dysfunctions in MJD patients (Maruff et al., 1996; 

Roeske et al., 2013; Zawacki et al., 2002). It is worth mentioning that expression of 

atx3-69Q under the control of the L7 promoter leads to expression in several brain 

areas (Yoshihara, 2002), which might implicate the overall brain functioning. The 

exploitation of novel environmental stimuli, which is dependent on the integrity of limbic 

and non-limbic pathways, and includes basal forebrain, hippocampus, thalamus, 

prefrontal cortex, and dorsal striatum, as well the vestibular system and cerebellum 

(Lalonde, 2002) might be likewise impaired in this MJD transgenic model. We therefore 

investigated whether a dysfunctional frontocorticostriatocerebellar circuitry was also 

present and played a critical role in the dramatic phenotype presented by TgMJD mice. 

In fact, TgMJD animals exhibited an early mild learning difficulty on both beam-walking 

task and Morris water maze acquisition trials, a reduction in object displacement 

recognition, and also mood alterations, such as impulsivity, aggressive behavior, broad 
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hyperactivity and disinhibition typified by increased spontaneous locomotion in an 

open-field, increased open-arm exploitation in an elevated-plus maze, and decreased 

immobility time in the tail suspension test (unpublished data). This constellation of non-

motor behavioral abnormalities presented by TgMJD animals adds further dimension to 

the putative general dysfunction of frontocorticostriatocerebellar circuitries.  

The most prominent conclusion of the present study is the demonstration that 

the chronic consumption of caffeine rescued motor and cognitive alterations as well of 

cerebellar morphological defects caused by the expression of mutant ataxin-3 in mice 

cerebella. Caffeine showed: i) a prevention of the progressive loss of motor 

performance on both mild (rotarod and pen test) and high-level difficulty tasks (beam 

walking) as well as a recovery to control levels in a vertical pole; ii) a prevention of the 

progressive cerebellar retraction and of morphological defects accompanying the 

degeneration of Purkinje cells; and iii) a rescue of early mild learning impairments. This 

is in agreement with the ability of A2AR, mainly targeted by chronic caffeine 

consumption (Cunha and Agostinho, 2010; Ferre, 2008; Fredholm et al., 1999), to 

afford neuroprotection against different neurodegenerative disorders, namely 

Alzheimer’s, Parkinson’s or Huntington’s disease (Cunha and Agostinho, 2010; Popoli 

et al., 2007; Schwarzschild et al., 2006). Notably, we now demonstrated another brain 

compartment, the cerebellum, which is mainly affected in this genetic model of MJD, 

wherein A2AR blockade effectively rescued neuronal loss and subsequent progression 

of morphological defects, which is consistent with the widely distribution of A2AR in the 

brain beyond striatum (Cunha et al., 1996) and the ability of caffeine and A2AR 

antagonists to confer neuronal protection against induced-toxicity in primary cultures of 

cerebellar granule neurons (Dall'Igna et al., 2003). This observation is of particular 

interest at the point we might consider the consumption of caffeine as a prophylactic 

strategy to rescue cerebella neurodegeneration of other inherited spinocerebellar 

ataxias displaying considerable atrophy of the cerebellum (reviewed in (Rub et al., 

2013)). 

The second prominent conclusion of this study is the ability of caffeine to 

restore procedural learning amongst other peculiar behaviors displayed by this MJD 

genetic model with confined cerebellar degeneration, such as increased inattention and 

hyperactivity resembling ADHD, a psychiatric disorder also related to dysfunction of the 

cerebellum. Altogether, such behaviors are presumed to be linked to dysfunction of 

frontocorticostriatocerebellar circuits (revised in  (Krain and Castellanos, 2006)), 

strongly suggested to be underlined by dopamine (DA)-dependent frontocorticostriatal 

plasticity (Kheirbek et al., 2009; Reynolds and Wickens, 2002). Since both adenosine 
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and dopamine modulation systems are tightly intertwined, and A2AR are located in 

striatal dopamine-rich region of the brain, revealed by autoradiographic studies (Jarvis 

and Williams, 1989; Parkinson and Fredholm, 1990), as well in frontocortical nerve 

terminals (Pandolfo et al., 2013), they can modulate dopamine release (Borycz et al., 

2007; Gomes et al., 2009). In fact, long-term administration of caffeine has been shown 

to elicit changes in tolerance or sensitization of dopamine-mediated responses (Fenu 

et al., 2000). A recent report has also demonstrated that adenosine receptors 

functionally antagonize dopaminergic responses, namely through A2A-D2 receptor 

heteromers, counteracting D2R-mediated inhibitory modulation of the effects of NMDA 

receptor stimulation in the striatopallidal neuron normalizing behavioral responses such 

as locomotor deficits associated with Parkinson’s disease (Schiffmann et al., 2007). 

Interestingly, we provide data consistent with DA depletion in these circuitries 

(Matsuura et al., 1997; Pickrell et al., 2011), and we hypothesize that caffeine might 

have a prominent role increasing the release of DA, which in turn acts on DA receptors 

normalizing the dysfunctional dopaminergic neurotransmission putatively present in this 

MJD model. Also consistent with this normalization of dopamine-mediated responses, 

is the maintenance of female TgMJD animals’ performance in rotarod task that might 

result from estrogen-induced desensitization of serotonin 5-HT1A receptor (Dluzen et 

al., 1996; Lu and Bethea, 2002), which, in turn, may increase pre-synaptic 5-HT 

receptor-mediated release of DA (Bantick et al., 2005). This is also in agreement with 

the observation of serotonergic agonists to effectively improve cerebellar ataxia in MJD 

patients (Takei et al., 2005; Takei et al., 2002).  

In conclusion, these observations strongly support caffeine as an effective 

treatment to prevent worsening of Machado Joseph disease, a very severe ataxic 

illness, with both motor and cognitive dysfunctions by rescuing the cerebellum from 

neurodegeneration and preserving the overall brain functioning through the recovery of 

the dopaminergic system. Nevertheless, more detailed studies should be performed to 

elucidate these findings. 
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4.1 Abstract 

Machado-Joseph disease (MJD) is a neurodegenerative disease caused by the 

expansion of a polyglutamine repeat in the ataxin-3 protein. There is currently no 

therapy available to prevent or modify disease progression. We have recently shown 

that caffeine, a non-selective adenosine receptor antagonist, and adenosine A2A 

receptor (A2AR) genetic inactivation reduced MJD-associated neuronal dysfunction and 

consequently degeneration. We now directly targeted A2AR through pharmacological 

selective antagonism and explored its ability to afford neuroprotection in a lentiviral-

based model of MJD. We also determined whether A2AR-mediated neuroprotection was 

centrally mediated by testing lentivirus that allowed regio-specific A2AR manipulation 

(knockdown and over-expression). 

Striatum of male adult C57Bl6 mice were transduced with lentiviral vectors 

encoding mutant ataxin-3 and were: i) followed by treatment with KW6002, a selective 

antagonist of A2AR, or ii) co-transduced with lentiviral vectors either encoding short 

hairpin RNAs for A2AR and for red fluorescent protein (as internal control), or carrying 

the mouse A2AR gene and enhanced green fluorescent protein (as internal control). 

Mice were killed at different time points (from 2-12 weeks) to probe for the appearance 

of different morphological changes using immunohistochemical analysis.  

Mutant ataxin-3 caused neuronal dysfunction (loss of DARPP-32 staining) 

which evolved to cell damage and consequently cell loss culminating with later tissue 

shrinkage (bright field). KW6002 reduced the loss of DARPP-32 and prevented striatal 

loss. A2AR knockdown in striatal GABAergic medium spiny neurons (MSNs) exerted no 

effect over MJD progression. Notably, A2AR over-expression in MSNs displayed an 

apparent early neuroprotection. 

Our findings directly implicate A2AR in MJD progression and support a distinct 

role for A2AR localized at different striatal compartments, which might be carefully 

considered when conceiving therapeutic A2AR antagonistic approaches intended to 

reduce MJD-associated pathology. 
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4.2 Introduction 

Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3, is the most 

common polyglutamine neurodegenerative disorder among ataxias (Ranum et al., 

1995) and is characterized by an adult age of onset resulting in premature death. MJD 

is caused by an abnormal expansion of a polyglutamine repeat within ataxin-3 protein 

(Kawaguchi et al., 1994) and affects selective brain regions, such as cerebellum, 

brainstem, substantia nigra (Durr et al., 1996; Sudarsky and Coutinho, 1995) and 

striatum (Alves et al., 2008b; Klockgether et al., 1998; Reetz et al., 2013) resulting 

ultimately in diverse symptoms evolving from progressive ataxia to motor 

uncoordination and postural instability as well as Parkinsonism (Gwinn-Hardy et al., 

2001; Taroni and DiDonato, 2004). Unfortunately, there is currently no available 

therapy. 

We have recently demonstrated that caffeine, an adenosine receptor 

antagonist, effectively controlled the initial cascade of events, namely synaptotoxicity 

and gliosis, in a genetic mouse model of MJD resulting in a reduction of degeneration 

(Chapter 2; (Goncalves et al., 2013) and of progressive motor and learning disabilities 

(chapter 3). Using a global genetic knockout of A2AR, in which the receptor is deleted 

from the entire animal, we demonstrated that the effect of caffeine was operated mainly 

through the adenosine A2A receptors (A2AR). However, it remains to be determined 

whether a selective blockage of the A2AR, such as administering the pharmacological 

A2AR selective antagonist KW6002, in an animal model of MJD is able to produce such 

beneficial effects. 

Furthermore, A2ARs are particularly abundant in the striatum displaying a key 

role in the control of locomotion as well as motivational and learning activities 

(Schiffmann et al., 2007), and notably exhibited a remarkable cell-type specific-

mediated motor and neuroprotective responses when blocked (Yu et al., 2008). 

Nevertheless, the specific striatal neuronal compartment where A2AR blockade has 

mainly contributed to the observed neuroprotective effects in MJD has yet to be 

identified. One candidate strategy to dissect the striatal regional selectivity of A2ARs 

controlling MJD is the use of lentiviral vectors as gene delivery tools allowing a site-

specific and focal manipulation of A2AR within the striatum of our genetic model of MJD. 

 Therefore, we designed and validated constructs to over-express or to 

suppress A2AR, aiming at investigating the A2AR role in MJD and also at clarifying 

whether and which specific striatal A2AR are the major mediators of MJD 

neuropathology.  
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4.3 Materials and Methods 

4.3.1 Generation of lentiviral vectors 

 cDNA encoding the mouse A2A receptor (GenBank BC110692) from 

IRAKp961N06232Q plasmid (imaGenes, Germany) was transferred, with the Gateway 

BP Clonase and LR Clonase recombination systems, into the lentivector SIN-cPPT-

PGK-RFA-WHV. 

Four small hairpin RNA were engineered to target the mouse adenosine A2A 

receptor. A shRNA targeting the Red Fluorescent Protein (RFP) was used as a control. 

The sequences of the shRNA oligos were as follows:  

shA2AR.1: 5’CTAGTTTCCAAAAAGAACAACTGCAGTCAGAAATCTCTTGAATTTCTGACTGCAGTTGTT 
CGGGGATCTGTGGTCTCATACAGAAC-3’;   
shA2AR.2:  5’-CTAGTTTCCAAAAACCGTGTGGATCAACAGCAAT CTCTTGAATTGCTGTTGATCCACAC 
GGGGGGATCTGTGGTCTC ATACAGAAC-3’;   
shA2AR.3:  5’-CTAGTTTCCAAAAAACGTGGTACCCATGAATTATCTCTTGAATAATTCAT GGGTACCACG 
TGGGGATCTGTGGTCTCATACAGAAC-3’;   
shA2AR.4:  5’-CTAGTTTCCAAAAACTATTGCCATCGACAGATATCTCTTGAATATCTGTCGATGGCAATAG 
GGGGATCTGTGGTCTCATACAGAAC-3’;  
and shRFP (shCTR):  5’-CTAGTTTCCAAAAATCAAGGAGT TCATGCGCTTTCTCTTGAAAAGCGCATG 
AACTCCTTGAGGGGATCTGTGGTCTCATACAGAAC-3’.  

Each of these oligomers and the H1 forward primer 5’-

CACCGAACGCTGACGTCATCAACCCG-3’ were used for PCR with the pBC-H1 

plasmid (pBC plasmid; Stratagene, Amsterdam, The Netherlands) containing the H1 

promoter (GenBank: X16612, nucleotides 146-366) as a template. The silencing H1-

shRNA cassettes were then inserted and transferred into the lentivector plasmid SIN-

cPPT-PGK-EGFP-WHV-LTR-TRE-RFA, as previously described (Alves et al., 2008a). 

An EGFP reporter gene was inserted into these constructs to facilitate the identification 

of transduced neurons. 

 Lentiviral vectors carrying the mouse A2A receptor (A2AR) gene and shRNAs for 

A2AR were produced in HEK 293T cells, with a four-plasmid system, as previously 

described (de Almeida et al., 2001). The lentiviral particles were resuspended in 1% 

bovine serum albumin (BSA) in phosphate-buffered saline (PBS). The viral particle 

content of batches was determined by assessing HIV-1 p24 antigen levels (Gentaur, 

Spain). Viral stocks were stored at -80ºC until use. 
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4.3.2 Cell culture and transient transfection 

 Human Embryonic Kidney 293T and Mouse neuroblastoma-2a (N2a) cell lines 

were cultured in DMEM-Hi glucose (Gibco-Invitrogen, Alfagene, Carcavelos, Portugal) 

supplemented with 10% fetal bovine serum (FBS) (Gibco-Invitrogen) and 1% penicillin-

streptomycin (PS, 100 U/ml, 100 μg/ml) (Gibco-Invitrogen) at 37ºC in a 5% CO2/ 95% 

air atmosphere. 293T cells were plated in 6-well and 12-well tissue culture dishes 

(Frilabo, Maia, Portugal) at densities of 6x105cells/well and 2x105cells/well for Western 

blot analysis and immunocytochemistry assays, respectively. Cells were co-transfected 

24h after plating by the standard calcium-phosphate method, with the A2AR lentivector 

plasmid (5 and 10 μg for western blot analysis; 1 μg for immunocytochemistry) or 

EGFP (enhanced Green Fluorescent Protein) lentivector plasmid (5 µg) as a control. 

For the silencing experiments, 293T cells were co-transfected with the A2AR (2 µg) and 

shA2AR (2, 4 and 10 µg) or shCTR (4 and 10 µg) lentivector plasmids. N2a cells were 

plated in 6-well dishes at a density of 3x105cells/well, and 24h later lipofectamine-

transfected (Alfagene) with the A2AR (2 and 4 µg) or EGFP (2 μg) lentivector plasmids. 

Both cell lines were harvested for western blot processing or immunocytochemistry 

analysis 48h after transfection. 

 

4.3.3 Primary cultures of cerebellar granule neurons and infection 

 Primary cultures of rat cerebellar granule neurons were prepared from P7 post-

natal Wistar rat pups. Cerebella were dissected and 15 minutes dissociated at 37ºC 

with trypsin (0.01%) (Sigma) and DNase (45 μg/mL) (Sigma) in Ca2+ - and Mg2+ - free 

Krebs buffer (120 mM NaCl, 5 mM KCl, 1.2 mM KH2PO4, 13 mM glucose, 15 mM 

HEPES, 0.3% BSA, pH 7.4). Cerebella were then washed with Krebs buffer containing 

trypsin inhibitor (0.3 mg/mL) (Sigma), centrifuged at RT for 5 min at 1000 rpm and 

resuspended in Basal Medium Eagle supplemented with 25 mM KCl (Fluka-Sigma), 30 

mM glucose (Sigma), 26 mM NaHCO3 (Sigma), 10% FBS (Gibco-Invitrogen) and 1% 

penicillin-streptomycin (PS, 100 U/ml, 100 μg/ml) (Gibco-Invitrogen). Cells were plated 

on 12-well dishes coated with poly-D-lysine (Sigma) at densities of 7x105cells/well and 

3x105cells/well for western blot analysis and immunocytochemistry assays, 

respectively, and maintained in a humid incubator at 37ºC in a 5% CO2/ 95% air 

atmosphere. 

The cell cultures were infected with lentiviral vectors at ratio of 10 ng of p24 

antigen/ 105 cells 1 day after plating (1DIV) (Zala et al., 2005). At 2 DIV and then every 
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three days later, medium was replaced with freshly prepared culture medium. Cultures 

were kept up to 11 days post-infection (11DIV). 

 

4.3.4 Western blot analysis 

 Cells were lysed and sonicated in RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM 

NaCl, 2 mM EDTA, 1% NP-40, 0.1% SDS, 10 μg/mL DTT, 1 mM PMSF, protease 

inhibitors cocktail; Roche). Protein concentration was determined with the Bradford 

protein assay (BioRad, Amadora, Portugal). Equal amounts (30 μg of protein) were 

resolved on 10% SDS-polyacrylamide gels and transferred onto PVDF membranes. 

Immunobloting was performed using mouse monoclonal anti-A2AR antibodies (clone 

7F6-G5-A2, 1:1000, Santa Cruz Biotechnology, Heidelberg, Germany; 1:2000, 

Millipore, Porto, Portugal), rabbit polyclonal anti-Erk-1/2 (ab9102, 1:1000, Cell 

Signaling) and anti-P-Erk-1/2 (clone 197G2, 1:1000, Cell Signaling), and mouse 

monoclonal anti-β-Tubulin (clone SAP.4G5, 1:15000, Sigma). Membranes were then 

analysed with VersaDoc 3000 (BioRad) after incubation with ECF (Amersham, 

Buckinghamshire, UK). 

 

4.3.5 Imunocytochemistry 

Either 293T cells transfected with A2AR lentivector plasmid (1 μg) or cerebellar 

granule neurons infected with A2AR lentiviral vector alone (at a ratio of 10 ng of p24 

antigen/ 105 cells) or in association with shA2AR or shCTR lentiviral vectors, each at a 

ratio of 10 ng of p24 antigen/ 105 cells, were processed 20 min in 4% 

paraformaldehyde (PFA) fixation and 5 min in 1% Triton permeabilization, each 

followed by twice 5 min PBS washing, proceeded by 3% (w/v) BSA (Sigma) blocking 

and immunostained overnight at 4ºC with the mouse monoclonal anti-A2AR antibody 

(clone 7F6-G5-A2, 1:200, Millipore) followed by 2h incubation at room temperature 

(RT) with the corresponding secondary antibodies coupled to fluorophores goat anti-

mouse Alexa Fluor 488 or Alexa Fluor 594 (1:200, Molecular Probes – Invitrogen, 

Eugene, OR) together with DAPI (1:5000, Sigma, St. Louis, MO), diluted in the blocking 

solution (3% (w/v) BSA in PBS, pH 7.4). 
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4.3.6 In vivo infection and experiments 

Concentrated viral stocks were thawed on ice. Mice were anaesthetised with 

avertin (240 μg/ g, i.p.). To test the in vivo capability of infection by the new designed 

lentiviral vectors, lentivirus encoding A2AR (400’000 ng of p24 antigen/ mL) or shA2AR.3 

(286’000 ng of p24 antigen/ mL) were unilaterally injected into the mouse striatum; 

mice received 1 μL (A2AR) or 1.4 μL (shA2AR.3) injections. To test the effect of A2AR 

over-expression or silencing in the striatal MJD-lentiviral mouse model (Simoes et al., 

2012), lentivirus encoding mutated ataxin-3 (atx3-72Q) (1 μL; 400’000 ng of p24 

antigen/ mL) were stereotaxically co-injected into the left and right striatal hemispheres 

either with EGFP and A2AR (1 μL; 400’000 ng of p24 antigen/ mL) or shRFP and 

shA2AR.3 (1.4 μL; 286’000 ng of p24 antigen/ mL) lentiviral vectors. To test the 

pharmacological blockade of the A2A receptors in the MJD-striatal lentiviral mouse 

model, mice received 1 μL injections of lentivirus (400’000 ng of p24 antigen/ mL) in 

each hemisphere, administering atx3-72Q in the right hemisphere and control wild-type 

ataxin-3 (atx3-27Q) in the left hemisphere. The viral suspensions were injected at 0.2 

µL/ min by means of an automatic injector (Stoelting Co., Wood Dale, USA) in the 

following coordinates: antero-posterior: +0,6mm; lateral: ±1,8mm; ventral: -3,3mm; 

tooth bar: 0. Different groups of mice were kept in their home cages for different 

periods ranging from 2 to 12 weeks, before being killed for immunohistochemical 

analysis of morphological and neurochemical changes in the striatum. 

 

4.3.7 KW6002 treatment 

KW6002 was developed as a selective A2A receptor antagonist to be used in in 

vivo studies (Yang et al., 2007). KW6002 ([(E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-

methyl-3,7-dihydro-1H-purine-2,6,dione]), kindly provided by Prof. Dr. Christa E. Müller 

(Bonn University, Germany), was prepared daily in a vehicle solution (0.4% 

methylcellulose (Sigma) and 0.9% NaCl. For complete colloidal dispersion, the 

KW6002 sol was subjected to ultra sounds for 20 min. Mice were daily exposed to 3 

mg/ kg of compound added to 5 mL of vehicle starting 3 days before surgeries onwards 

until the corresponding day of sacrifice. After total consumption of the drug, water was 

given during the rest of the day. 

  



Distinct striatal neuronal compartments of adenosine A2A receptors differently modulate Machado-

Joseph disease 

87 

4.3.8 Immunohistochemical procedure 

After an overdose of avertin (2.5x 240 μg/ g, i.p.), transcardiac perfusion of the 

mice was performed with PBS followed by fixation with 4% paraformaldehyde. The 

brains were then removed and post-fixed in 4% paraformaldehyde for 24h and 

cryoprotected by incubation in 25% sucrose/ phosphate buffer for 48h. The brains were 

frozen and 25 μm coronal sections were cut using a cryostat (LEICA CM3050 S, 

Heidelberg, Germany) at -21°C. Slices throughout the entire striatum were collected in 

anatomical series and stored in 48-well trays as free-floating sections in PBS 

supplemented with 0.05 μM sodium azide. The trays were stored at 4°C until 

immunohistochemical processing. 

Sections were processed overnight at 4ºC with the following primary antibody: a 

rabbit anti-DARPP-32 antibody (1:1000; Chemicon) followed by 2h incubation at room 

temperature (RT) with the respective biotinylated secondary antibody (1:200; Vector 

Laboratories, Burlingame, CA). Bound antibodies were visualized using the Vectastain 

ABC kit, with 3,3’-diaminobenzidine tetrahydrochloride (DAB metal concentrate; Pierce, 

Burlingame, CA) as substrate. 

 Double staining for A2AR (1:200; Millipore) together with DAPI were performed. 

Free-floating sections were kept at RT for 2h in PBS with 0.1% Triton X-100 containing 

10% normal goat serum (Gibco-Invitrogen, Barcelona, Spain), then overnight at 4°C in 

blocking solution with the primary antibody. Sections were washed three times and 

incubated for 2h at RT with the corresponding secondary antibody coupled to 

fluorophores goat anti-mouse Alexa Fluor 488 (1:200; Molecular Probes – Invitrogen) 

diluted in the blocking solution. The sections were washed three times and then 

mounted in mowiol Reagent (Sigma) on microscope slides. 

Staining was visualized using Zeiss Axioskop 2 plus imaging microscope (Carl 

Zeiss Microimaging, Germany) equipped with an AxioCam HR color digital camera 

(Carl Zeiss Microimaging) and 5X, 20X, 40X and 63X Plan-Neofluar objectives and 

using the AxioVision 4.8 software package (Carl Zeiss Microimaging). 

 

4.3.9 Evaluation of the volume of the DARPP-32 depleted region and of 

DARPP-32 immunoreactivity indexes 

The extent of ataxin-3 lesions in the striatum was analyzed by photographing, 

with a x1.25 objective, 8 sections stained with DARPP-32 per animal (25 µm thick 

sections at 200 µm intervals), selected so as to obtain complete rostro-caudal sampling 
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of the striatum, and by quantifying the area of the lesion with a semi-automated image-

analysis software package (Image J software, NIH, USA). The volume was then 

estimated with the following formula: volume = d(a1+a2+a3 …), where d is the distance 

between serial sections (200 µm) and a1+a2+a3 are DARPP-32-depleted areas for 

individual serial sections. The immunoreactivity indexes were measured through optic 

density analysis of the affected striatal regions relative to their corresponding peripheral 

non-affected striatum (defined as 100% immunoreactivity (IR)). 

 

4.3.10 Statistical analysis 

Statistical comparisons were performed using unpaired student’s t test. Results 

are expressed as mean ± standard error of the mean (SEM). Significance thresholds 

were set at p < 0.05 and p < 0.01, as defined in the text. 
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4.4 Results 

4.4.1 Selective pharmacological blockade of A2AR reduces MJD-

associated neuropathology 

We have previously demonstrated that caffeine, an adenosine receptor 

antagonist, reduced MJD neuropathology as well as progressive motor and learning 

disabilities in two distinct animal models of MJD, namely the MJD lentiviral-based 

mouse model (Chapter 2; (Gonçalves et al., 2013) and MJD transgenic mice (Chapter 

3; Gonçalves et al., in preparation). Using a global genetic knockout of A2AR, we 

demonstrated that the effect of caffeine was operated mainly through the adenosine 

A2A receptors (A2AR). However, it has yet to be directly confirmed if A2ARs are indeed 

the main effectors of the observed neuroprotection through antagonism. For this 

purpose, we daily administered KW6002, a selective antagonist of A2AR, in our genetic 

mouse model of MJD (Fig 4.1A) and further analysed the appearance of MJD features, 

such as brain dysfunction (DARPP-32) and degeneration (bright field), we have 

previously described (Gonçalves et al., 2013). Accordingly, 12 weeks after lentiviral 

transduction of mutant ataxin-3 (LV-atx3-72Q), the corresponding LV-atx3-72Q-

challenged striatal hemisphere of control animals administered with vehicle (n=5) 

displayed an extensive loss of DARPP-32 immunoreactivity (Fig 4.1B, top; Table 4.1), 

which was accompanied by a clear condensation of the internal capsule, as observed 

under bright field (Fig 4.1B, bottom), 

attributable to striatal tissue shrinkage. 

Notably, animals chronically treated with 

KW6002 (n=5) displayed a significant (Table 

4.1; p < 0.01) reduction of DARPP-32 loss as 

well as no evident striatal tissue shrinkage. 

Neither DARPP-32 loss nor alterations on 

bright field pattern were observed upon LV-

atx3-27Q transduction (data not shown). 

 

Figure 4.1: Pharmacological A2AR blockade in a 

MJD-lentiviral based model through consumption 

of KW6002, a selective antagonist of A2AR. (A) 

Schematic representation of striatal lentivirus 

delivery, namely lentivirus encoding mutant 

ataxin-3 (LV-atx3-72Q) in one hemisphere and 
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wild-type ataxin-3 (LV-atx3-27Q) in the other hemisphere (as internal control). (B) 

Representative immunohistochemical DARPP-32 staining and bright field photomicrographs 

from around the injection site area at 12 weeks post-injection of LV-atx3-72Q. Animals treated 

with vehicle displayed a considerable loss of DARPP-32 immunoreactivity (quantified in Table 1) 

and coalescence of the internal capsule of the striatum. KW6002 treatment reduced DARPP-32 

loss and also displayed a negligible striatal tissue loss. Bar, 20 µm. 

 

Table 4.1: DARPP-32 intensity index. 

 

Density analysis of DARPP-32 immunoreactivity 12 weeks 

after mutant ataxin-3 transduction. KW6002 treatment 

significantly reduced the loss of DARPP-32 (**p < 0.01). 

 

These data show that A2AR selective antagonism is able to reduce dysfunction 

and degeneration in MJD and also support the crucial role of striatal A2AR for MJD 

progression. 

 

4.4.2 Strategies used to molecularly manipulate the mouse A2A receptors 

 We previously demonstrated the usefulness of viral vectors to generate genetic 

models of Machado-Joseph disease (MJD) (Alves et al., 2008b; Nobrega et al., 2012). 

Another potential use for viral vectors is gene therapy. Indeed, we have recently shown 

successful applications for viral vectors as gene therapy tools modulating the putative 

intracellular mechanisms accounting for MJD neuropathology (Alves et al., 2008a; 

Nascimento-Ferreira et al., 2011; Simoes et al., 2012). 

Since A2AR selective and non-selective blockade mediate neuroprotective 

effects modifying MJD progression, we now developed lentivectors encoding for four 

different shRNAs targeting the mouse A2AR (shA2AR) (Fig 4.2, top) to provide stable in 

vivo A2AR knockdown as a candidate strategy to control MJD. Additionally, a lentivector 

carrying the mouse A2AR gene (Fig 4.2, bottom) was also developed to allow over-

expression of A2AR and further provide full comprehension of the A2AR role in MJD. The 

A2AR silencing constructs were inserted downstream from the human Pol III promoter 

H1 and target different A2AR nucleotides: shA2AR.1 – 416 to 434; shA2AR.2 – 79 to 97; 

shA2AR.3 – 493 to 511; shA2AR.4 – 280 to 298; the enhanced green fluorescent protein 

(EGFP) gene was also inserted in the shRNA lentivectors under the control of the 

internal mouse phosphoglycerate kinase 1 (PGK) promoter, to allow transduced cells to 

100% IR 100.0 ± 2.9 

Vehicle 42.8 ± 1.7 

KW6002 51.2 ± 1.8** 
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be identifiable. Lentivectors encoding a shRNA targeting the red fluorescence protein 

(shCTR) or EGFP only, similar to those encoding shA2AR or A2AR gene, respectively, 

were designed and used to ensure the use of the appropriate experimental controls. 

Figure 4.2: Schematic representation of the lentiviral constructs used to down- and up-regulate 

A2AR. Diagram of the shRNAs designed to knockdown A2AR: shRNA cassete under control of 

the H1 promoter (pol III) and a separate cassette containing the enhanced green fluorescent 

protein (EGFP) reporter gene under control of the phosphoglycerate kinase-1 (PGK) promoter 

(top), and the construct encoding the mouse A2AR to convey over-expression (bottom). 

 

 To test whether short hairpin A2AR constructs were able to knockdown the A2AR 

mRNA, we first tested in vitro the ability of the construct encoding the A2AR cDNA to 

increase A2AR density. Both 293T and N2a cell lines were transiently transfected with 

different concentrations of the expression vector construct encoding the A2AR or EGFP 

(as a transfection control). No detectable A2AR protein was observed on 293T cells 

while a small amount was constitutively present on N2a cells (Fig 4.3A). Increasing 

quantities of transfected-A2AR construct resulted in higher densities of A2AR protein in 

both cell lines. By means of immunocytochemistry upon 293T transfection with the 

A2AR construct, we also visualized A2AR over-expression and confirmed their somato-

branch localization in positively transfected cells (Fig 4.3B). 

Next, we co-transfected 293T cells with the A2AR and shA2ARs expression 

vector constructs at different ratios and tested their silencing efficiencies, using the 

shCTR as a mistargeted non-silencing control. A2AR co-transfection with control shRNA 

resulted in a robust A2AR protein density, while cells transfected with the four shA2AR 

constructs exhibited different degrees of A2AR silencing (Fig 4.3C). The shA2AR.1 and 

shA2AR.3 constructs mediated the most efficient gene silencing; thenceforth we have 

only used the shA2AR.3 for further experiments. 
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Figure 4.3: In vitro up-regulation and suppression of A2AR. (A-D) Western-blot and 

immunocytochemical analysis of 293T and N2a cells 48h post-transfected either with the 

plasmid construct encoding A2AR alone or in association with shRNAs encoding A2AR (shA2AR) 

or the mistargeted control (shCTR). (A) 293T cells transfected with the control EGFP plasmid 

displayed no detectable A2AR densities whereas N2a cells presented low levels of A2AR. 

Increasing concentration of transfected A2AR plasmid increased the A2AR densities in both cell 

lines. (B) Immunocytochemical analysis of 293T cell line transfected with EGFP plasmid 

exhibited no A2AR immunoreactivity, while it was clearly present upon A2AR plasmid transfection 

also showing somato-branch localization (arrows) as observed in parallel under bright field 

microscopy. (C) 293T cells co-transfected with A2AR and shCTR plasmids (1:2 and 1:5 ratios) 

displayed increased densities of A2AR, whereas co-transfection with A2AR and shA2AR plasmids 

(1:1, 1:2 and 1:5 ratios) resulted, in general, in lower A2AR densities. shA2AR.1 and shA2AR.3 

plasmids displayed the highest silencing efficiencies independently of A2AR:shA2AR transfection 

ratio. β-Tubulin is shown as a loading control. Bar, 20 µm. 

 

 To evaluate the transduction efficiencies of the lentiviral vectors encoding the 

shA2AR (LV-shA2AR.3) or the A2AR cDNA (LV-A2AR), P7 rat cerebellar granule neurons, 

which express A2AR (Cunha et al., 1994; Dall'Igna et al., 2003), were cultured and 

transduced with LV-A2AR alone or in association with LV-shRNA (1:1 ratio). The A2AR 

density increased in direct proportion to the concentration of lentiviral vectors used to 

transduce cells (Fig 4.4A). Immunocytochemical analysis of cerebellar primary cultures 

co-transduced with LV-A2AR and LV-shCTR demonstrated no differences on A2AR 

immunoreactivity while compared to the LV-A2AR transduction alone (Fig 4.4B) despite 

the apparent decrease on A2AR density displayed in the western blot (Fig 4.4C), which 
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might be explained by the double amount of lentivirus used that may have divided the 

cellular machinery to produce both A2AR mRNA and shRNA. Finally, co-transduction of 

cerebellar granule neurons with LV-A2AR and LV-shA2AR resulted in complete silencing 

of A2AR (Fig 4.4B and C). 

Together, these data validate and support a successful application of these two 

lentiviral vectors to over-express and silence A2AR. 

Figure 4.4: Lentiviral-mediated A2AR over-expression and knockdown in cerebellar primary 

cultures. (A) Infection of cerebellar primary cultures mediated by lentiviral vectors encoding 

A2AR. Control cells treated with vehicle (PBS/BSA 1%) displayed no A2AR density. Transduction 

with 50 and 100 ng (p24 antigen/ mL) of A2AR plasmid mediated increasing A2AR densities. (B 

and C) Co-transduction with LV-A2AR and LV-shCTR displayed either no modifications (B) or a 

minor decrease (C) on A2AR immunoreactivity when compared to LV-A2AR transduction alone, 

whereas co-transduction with LV-A2AR and LV-shA2AR showed complete absence of A2AR 

immunoreactivity. A2AR (red), DAPI staining (blue). β-Tubulin is shown as a loading control. Bar, 

40 µm. 

 

4.4.3 In vivo lentiviral manipulation of A2AR 

To foresee the ability of the vectors to manipulate the A2AR density in vivo, 

unilateral striatal injections with LV-shA2AR or LV-A2AR alone were made on wild-type 

mice. Similar experiments were performed in global knockout mice for the A2AR (gb-

KO-A2AR) by injecting LV-A2AR in one striatal hemisphere and the vehicle used to 
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suspend viral particles (PBS/BSA1%) in another hemisphere (as control). 4 weeks 

post-injection, striata of wild-type animals challenged with LV-shA2AR displayed a large 

although not significant decrease in A2AR density (100.0±43.2% versus 68.8±12.0% in 

control, n=3, p=0.51); in turn, either wild-type (n=3) or gl-KO-A2AR (n=2) animals 

transduced with LV-A2AR displayed an increase in A2AR density (100.0±15.0% on WT 

injected versus 109.8±6.1% in control, n=3, p=0.58) (Fig 4.5A and B, left). Interestingly, 

LV-A2AR transduction in gl-KO-A2AR animals resulted along to the transduced area in a 

comparable slightly stronger immunoreactivity as to that observed in non-injected wild-

type striatum (Fig 4.5B, right). 

 

Figure 4.5: In vivo lentiviral-mediated A2AR knockdown and over-expression 4 weeks post-

injection. (A) Striatal hemisphere injected with LV-shA2AR displayed a reduction on A2AR density 

(left) while challenging striatum with LV-A2AR demonstrated an increase in A2AR density (right) 

when compared to the respective contra-lateral non-injected hemispheres. (B) A2AR 

immunohistochemical analysis of gl-KO-A2AR mice injected with vehicle or LV-A2AR. No 

immunoreactivity for A2AR was observed upon vehicle injection. LV-A2AR injection triggered a 

robust A2AR immunoreactivity along the injection site (center), which is higher than the A2AR 

immunoreactivity displayed by non-injected wild-type animals (right). 

 

In conclusion, LV-shA2AR transduction resulted in a considerable reduction in 

A2AR density under physiological conditions. This effect is expected to be higher in 

pathophysiological conditions where an up-regulation of A2AR is triggered (Cunha et al., 

2006; Rebola et al., 2005b; Tomiyama et al., 2004). Additionally, these data also show 

that the vector encoding the A2AR ensures its efficient expression. 

 

4.4.4 Effect of lentiviral-mediated A2AR knockdown in MJD mice 

We have highlighted A2AR as a novel target to interfere with the progression of 

MJD (Goncalves et al., 2013). We now tested the ability of long-term knockdown of 

A2AR as a promising gene therapy tool to manage MJD, and simultaneously defined the 

sub-regional compartment where A2AR mediated pharmacological blockade exerted 

MJD neuroprotection. For this purpose, we performed intra-striatal injections of the 
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lentiviral vectors and co-transduced striatal hemispheres with LV-atx3-72Q either with 

LV-shA2AR or LV-shCTR (as internal control) (Fig 4.6A). A  time-course was established 

by sacrificing the animals from 2 to 12 weeks post-transduction (n=3-4/ experimental 

group), which is within the time-frame of appearance of morphological modifications 

previously described for this genetic model of MJD (Goncalves et al., 2013). 

Neuropathological analysis involved: i) striatal lentiviral-mediated transduction pattern; 

ii) dopamine and cAMP-regulated phosphoprotein (DARPP-32) -depleted volume and 

immunoreactivity indexes; and iii) evaluation of tissue shrinkage and collapsing of 

internal capsule in bright field photomicrographs. 

Both striatal hemispheres injected with lentiviral vectors displayed extensive 

transduced areas (Fig 4.6B, top), as shown by fluorescence of the EGFP reporter 

carried by LV-shRNA. Immunohistochemical analysis of DARPP-32, 4 weeks after co-

injection of LV-atx3-72Q and LV-shCTR, exposed a large depleted staining volume of 

0.52 ± 0.12 mm2 (n=3; Fig 4.6B center), as quantified in Figure 4.6C. No evident tissue 

shrinkage was observed on bright field photomicrographs, at the later stage of 12 

weeks post-transduction. Silencing A2AR with LV-shA2AR neither modified DARPP-32-

depleted volume 4 weeks post-transduction (0.59 ± 0.13 mm2, n=3, p > 0.05, Fig 4.6C), 

nor DARPP-32 immunoreactivity indexes 12 weeks post-transduction (Table 4.2), as 

well as it did not change striatal morphology under bright field photomicrographs (Fig 

4.6B, bottom). 
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Figure 4.6: Effect of A2AR knockdown over striatal MJD-induced pathology. (A) Schematic 

representation of striatal lentivirus delivery. (B) Transduced (EGFP reporter-positive) striatum 8 

weeks after lentivirus injections (green, top). Co-transduced striatum with LV-atx3-72Q and LV-

shA2AR displayed no significant differences neither on DARPP-32-depleted volume 4 weeks 

upon lentiviral delivery, nor on bright field photomicrographs 12 weeks post-transduction, 

compared to striatal delivery of LV-atx3-72Q and LV-shCTR. 

 

Table 4.2: DARPP-32 intensity index. 

Density analysis of DARPP-32 immunoreactivity 12 weeks after 

mutant ataxin-3 co-transduction with either lentivirus encoding 

short hairpin for A2AR (LV-shA2AR) or control (LV-shCTR). A2AR 

knockdown displayed no modifications on DARPP-32 

immunoreactivity loss relative to control. 

 

In keeping with the fact that our lentiviral vectors are pseudotyped with the 

vesiculo-stomatitis G protein (VSV-G) which confers neurotropism (de Almeida et al., 

2001) and thus upon striatal injection transduce mostly GABAergic medium spiny 

neurons (MSNs), these data suggest that A2AR located post-synaptically are not the 

main striatal neuronal compartment of A2AR contributing to the success of the 

previously shown pharmacological and genetic A2AR inactivation. 

100% IR 100.0 ± 4.3 

LV-shCTR 42.0 ± 3.4 

LV-shA2AR 42.1 ± 1.6 
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4.4.5 Lentiviral-mediated A2AR over-expression exerted an early beneficial 

effect on MJD-striatal pathology 

We previously demonstrated that A2AR blockade or genetic inactivation mitigated 

MJD-striatal pathology (Gonçalves et al., 2013). Nevertheless, long-term silencing of 

striatal A2AR mRNA levels did not alleviate neuropathology suggesting that post-

synaptic A2AR might not be involved in the neuroprotective effects. To test whether A2AR 

located in MSNs could have a different role, even potentially beneficial, to the striatal 

MJD neuropathology, we applied lentiviral vectors to up-regulate A2ARs therein. We 

essentially followed the same experimental design as described above for the A2AR 

knockdown, and transduced the striatum of the lentiviral MJD-based model either with 

LV-A2AR or LV-EGFP (as internal control) (Fig 4.7A). 

Immunohistochemical analysis of DARPP-32 as early as 2 weeks post-

transduction displayed a large depleted staining volume of 0.45 ± 0.10 mm3 (n=4) on 

the control hemisphere (LV-atx3-72Q and LV-EGFP), whereas the contralateral 

hemisphere (co-transduction of the LV-Atx3-72Q and LV-A2AR) exhibited a one third 

reduction of DARPP-32 volume loss (0.30 ± 0.06 mm3, n=4, p = 0.27; Fig 4.7B, top; 

and C). DARPP-32 loss in the control hemisphere remained unchanged until 8 weeks 

post-transduction, but it progressively increased until a 2 fold larger volume loss upon 

A2AR over-expression (data not shown). Nevertheless, at the later time-point of 12 

weeks post-injection, mutant ataxin-3 expression resulted in clear tissue shrinkage 

presumably due to neuronal loss while no evident tissue shrinkage was observed upon 

A2AR over-expression (Fig 4.7B, bottom). 

Figure 4.7: Effect of A2AR over-expression over striatal MJD-induced pathology. (A) Schematic 

representation of striatal lentiviral vectors delivery. (B and C) A reduction of DARPP-32 depleted 

volume in striatum was observed as early as 2 weeks upon lentiviral co-transduction with LV-

atx3-72Q and LV-A2AR when compared to control LV-atx3-72Q and LV-EGFP co-injection (as 

internal control) (B, top), as quantified in C. 12 weeks LV-atx3-72Q and LV-EGFP co-
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transduction mediated a large striatal tissue contraction which was not observed in LV-atx3-72Q 

and LV-A2AR co-transduced striatum (B, bottom). 

 

These data suggest that A2AR over-expression in MSNs might even have higher 

beneficial than detrimental effect on MJD striatal dysfunctional phenotype, starting as 

early as 2 weeks after insult to a lasting amplified effect on neuronal damage. 
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4.5 Discussion 

In the present study, we investigated if manipulation of A2ARs would modify the 

progression of neuropathology in a genetic viral-induced mouse model of MJD upon i) 

administration of the pharmacological A2AR selective antagonist KW6002 ; and ii) upon 

localized striatal manipulation of A2AR using lentiviral vectors as gene delivery tools to 

silence or over-express A2ARs. 

We have demonstrated: i) that A2AR are indeed the adenosine receptors whose 

antagonism mediated MJD neuroprotection, based on selective pharmacological 

blockade of the A2AR; ii) lentiviral vectors allow efficient manipulation of A2AR both in 

vitro and in vivo helping defining the particular A2AR role in well defined compartments ; 

and iii) silencing of postsynaptic A2ARs in the striatum does not afford neuroprotection 

and instead that its up-regulation may even be beneficial, suggesting that these are not 

the targets of neuroprotection through antagonism. 

We have previously reported the ability of caffeine, a non-selective antagonist of 

adenosine receptors, to yield a neuroprotective effect against neuronal dysfunction and 

cell damage in genetic models of MJD (Chapters 2 and 3; (Goncalves et al., 2013). 

Challenging A2AR gene-deficient mice with mutant ataxin-3 allowed clarification that 

caffeine mediated MJD neuroprotection through A2AR antagonism, which is in 

agreement with the ability of A2AR, mainly targeted by chronic caffeine consumption, to 

afford neuroprotection against different neurodegenerative disorders, such as 

Alzheimer’s, Parkinson’s and Huntington’s disease (Cunha and Agostinho, 2010; 

Popoli et al., 2007; Schwarzschild et al., 2006). 

In the present study, we directly confirmed whether A2AR blockade indeed 

mediated neuroprotection in MJD by testing the ability of KW6002, a selective 

antagonist of A2AR, to prevent MJD progression. Notably, chronic treatment with 

KW6002 prevented neuronal dysfunction, at levels comparable to A2AR genetic 

inactivation (Gonçalves et al., 2013), and preserved striatum from mutant ataxin-3-

induced damage and consequent cell loss and tissue shrinkage. This key experiment 

definitely establishes A2AR as a promising target to manage MJD evolution. 

Therefore, we next used RNAi technology to mediate long-term efficient and 

stable A2AR knockdown and probed for its success as a therapeutic approach to handle 

MJD neuropathology. The emergence of RNA interference (RNAi), a highly specific 

mechanism of post-translational gene silencing, has opened a huge biological 

application ranging from reversion of genetic disorders (Alves et al., 2008a; Nobrega et 
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al., 2013) to therapeutic or modifier schemes, which enabled the study of selected 

genes within particular compartments differently involved in physiology (Lazarus et al., 

2011) and in pathophysiology (Ferres-Coy et al., 2013). Additionally, we took advantage 

of lentiviral vectors (LVs) to mediate A2AR suppression, which also allowed dissecting 

cell-type specific compartments where A2AR critically modulated MJD. Actually, LVs are 

in a privileged position to model CNS neurodegeneration either by recapitulating 

genetic neurodegenerative disorders by over-expressing disease-causing proteins 

(Alves et al., 2008b; de Almeida et al., 2002), or by over-expressing disease-related or 

-modifier genes (Blomer et al., 1998; de Almeida et al., 2001; Nascimento-Ferreira et 

al., 2011; Simoes et al., 2012), which makes them the ideal tools to deliver therapeutic 

genes to over-express or suppress relevant targets in specific cell types. LVs also 

exhibit several advantages, such as: i) the ability to accommodate medium size 

transgenes (8Kb); ii) high transduction efficiency; iii) stable transgene expression; iv) 

low immunogenicity (for review, see (de Lima et al., 2005)); and v) different cell-type-

specific tropism (reviewed in (Waehler et al., 2007)). 

Thus, we designed, cloned into lentiviral backbones and validated A2AR silencing 

constructs, and applied these into the striatum of a genetic MJD model to dissect the 

striatal neuronal elements where A2AR contributed most to MJD degeneration and that 

were targeted by caffeine as well as the selective inhibitor. The observation that A2AR 

knockdown in MSNs did not control MJD-associated striatal neuropathology was not 

completely surprising. Striatal A2AR arise from two distinct sources, located post-

synaptically in the dendritic spines of MSNs of the indirect pathway, and pre-

synaptically in glutamatergic terminals contacting the MSNs of the direct pathway 

(Ciruela et al., 2006). Lentiviral vectors encoding for shA2AR transduced merely MSNs 

therein promoting only post-synaptic A2AR silencing, leaving out both pre-synaptic 

neuronal A2ARs as well as A2ARs in glia, whose transduction by lentiviral vectors is 

rather limited. 

It is also worth noting that the impact of mutant ataxin-3 in A2AR mRNA 

expression and protein density still has to be fully elucidated. Consistent with previous 

reports heralding an A2AR up-regulation upon noxious stimulation (Cunha, 2005; 

Fredholm et al., 2005), also a transgenic mouse model of MJD with a permanent 

expression of a truncated form of the human ataxin-3 with 69 glutamine repeats in the 

mouse cerebella (Torashima et al., 2008) displayed increased expression of A2AR 

within the cerebellum (unpublished data). Hence, it remains to be confirmed whether 

striatal challenge with lentiviral vectors encoding mutant ataxin-3 induce an increase in 
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the A2AR mRNA levels and consequently de novo production of A2AR protein, which 

might partly explain the lack of effect displayed by striatal A2AR silencing. 

Importantly, the present study revealed that MJD control through A2AR blockade 

did not result from post-synaptic A2AR antagonism, but rather from other striatal 

compartments than MSNs, strengthening even more our previous hypothesis heralding 

pre-synaptic and glial A2AR as the main elements mediating MJD progression and 

hence neuroprotection through antagonism, which is consistent with the A2AR 

localization in glutamatergic synapses (Rebola et al., 2005) where they control the 

release of glutamate (Ciruela et al., 2006; Rodrigues et al., 2005) and the activation of 

NMDA receptors (Azdad et al., 2009; Rebola et al., 2008; Tebano et al., 2005), as well 

as in astrocytes operating glutamate uptake (Matos et al., 2012; Nishizaki et al., 2002), 

and in agreement with a recent report showing increased aggregation of ataxin-3 upon 

glutamate overstimulation in induced pluripotent stem cells-derived neurons (Koch et 

al., 2011), which consequently leads to neurodegeneration (Simoes et al., 2012). 

Notably, the present study also showed that striatal A2AR over-expression 

decreased neuronal dysfunction as early as the pathology establishes, which was later 

accompanied by a better neuronal survival. These results actually pointed out an early 

beneficial effect of post-synaptic A2AR in MJD progression. Such interpretation is in 

accordance to previous reports in another polyglutamine disorder, namely Huntington’s 

disease (HD), where Glass and colleagues (2000) have shown that the earliest 

neurochemical feature was indeed a reduction of striatal A2AR binding sites, which 

might result on decreased neurotrophic factors release (Gomes et al., 2013; Gomes et 

al., 2006; Minghetti et al., 2007) evolving to an earlier development of cell dysfunction 

and damage. Moreover, Blum and colleagues (2003) showed that A2AR antagonists 

exhibited undesirable biphasic neuroprotective-neurotoxic effects in HD, displaying a 

dual and opposite role for pre- and post-synaptic A2AR upon striatal injury (Blum et al., 

2003). In keeping with this scenario, other reports have showed cell type-specific A2AR-

mediated distinct effects upon cell injury (Tebano et al., 2004; Yu et al., 2008), and 

even diverse pharmacological selective A2AR antagonists were shown to display 

distinct pre- and postsynaptic profiles based on their affinity to A2AR, A1R-A2AR 

heteromers or A2AR-D2R heteromers (Orru et al., 2011). 

In conclusion, our data bring a new insight to the A2AR role in MJD, particularly 

demonstrating that the presence of striatal post-synaptic A2AR in the initial stages of the 

disease may even have a neuroprotective effect; it also indirectly supports the 

mechanisms through which A2AR blockade mediated control of MJD, namely pre-
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synaptic and glial A2AR. Nevertheless, further studies should be performed to directly 

explore and fully confirm these hypotheses. Our study also extols a new methodology 

allowing both in vitro and in vivo A2AR manipulations, which might be effectively applied 

to other neurological disorders either to improve mechanistic comprehension or to 

attempt gene therapy approaches. 
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5. Final conclusions and future prospects 

 

 This thesis sought to investigate whether the manipulation of a neuromodulation 

system operated by A2AR was effective in controlling the inexorable cascade of events 

triggered by pathogenic ataxin-3 protein involved in the aetiology of Machado-Joseph 

disease, the most frequent among dominantly-inherited spinocerebellar ataxias. Our 

findings demonstrated for the first time that A2AR might be a novel therapeutic target to 

interfere with MJD evolution. Additionally, our observations open novel areas of 

research to foster a better understanding of the role of ataxin-3 in the control of 

synaptic function and damage, and of non-neuronal brain cells contribution to the 

progression of neurodegenerative diseases. 

We first characterized the time course of morphological and behavioral 

modifications triggered by mutant ataxin-3 over-expression in different genetic models 

of MJD with distinct brain regions affected, namely the striatum (lentiviral-based model) 

and cerebellum (MJD transgenic mouse model), and then explored the impact of 

pharmacological selective and non-selective antagonism of the adenosine A2A 

receptors, as well as of A2AR genetic and molecular inactivation. 

 The present thesis provides direct evidence that synaptotoxicity and reactive 

gliosis are amongst the most precocious modifications, so far under-appreciated, in 

MJD. This is in line and strengths even more the crucial role of synaptic impairment 

and astrocytic-related metabolic imbalance in the initiation of neurodegenerative and 

neuropsychiatric disorders (Coleman et al., 2004; Cunha and Agostinho, 2010; Wishart 

et al., 2006) closely followed by a neuroinflammation process, previously implicated in 

MJD (Evert et al., 2001) mediating the spreading and amplification of damage until 

overt neuronal dysfunction and damage (Coleman et al., 2004; Gomes et al., 2011; 

Lobsiger and Cleveland, 2007). Notably, this study shows that the blockade of A2AR, 

mainly targeted by chronic caffeine consumption, abrogated synaptotoxicity and 

prevented astrogliosis and microglia activation triggered by mutant ataxin-3 expression 

in the mouse striatum. This is in agreement with A2AR synaptic and non-neuronal 

localization (Gebicke-Haerter et al., 1996; Nishizaki et al., 2002; Rebola et al., 2005a) 

and the ability of A2AR blockade to yield robust neuroprotection in different animal 

models of brain degeneration (Cunha and Agostinho, 2010) through efficient 

normalization of synaptic function, thus preventing synaptotoxicity (Canas et al., 2009), 

and controlling astrogliosis (Yu et al., 2008) and microgliosis (Rebola et al., 2011). 
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 Additionally, this thesis also shows a plethora of behavioral modifications 

induced by the expression of mutant ataxin-3 in cerebella, such as: i) gross motor 

disturbances, namely akinesia and bradikinesia (in a vertical pole and MWM); ii) fine 

tune body and limb movement disabilities (rotarod and beam walking); iii) muscle tone, 

balance and postural instability (grip strength and balance beam); and iv) cognitive 

impairments typified by motor learning difficulties (beam walking acquisition) and 

decreased object recognition; all of which resembling the human situation and directly 

or indirectly correlated with cerebella degeneration (Braga-Neto et al., 2012a; Braga-

Neto et al., 2012b; D'Abreu et al., 2010; Kawai et al., 2004). These behavioral 

alterations also led us to propose that this animal model of MJD presented a broad 

dopaminergic dysfunction, which is in accordance with the presence of an 

intracerebellar dopaminergic innervation (Giompres and Delis, 2005), and in agreement 

with neuroimaging studies heralding a generalized impairment of the dopaminergic 

system in MJD patient’s brains (Taniwaki et al., 1997; Wullner et al., 2005). 

We demonstrate that chronic caffeine consumption by MJD transgenic animals 

afforded a remarkable normalization of such gross motor and cognitive impairments, 

which is consistent with the ability of caffeine to restore motor function (Ferre, 2008; 

Schiffmann et al., 2007) and memory deficits (Cunha and Agostinho, 2010; Takahashi 

et al., 2008a). Herein, we posed that those effects may result from 2 distinct synergistic 

mechanisms: i) normalization of the dopaminergic system (cerebral and cerebellar); 

and ii) cerebella rescue of progressive degeneration. The first hypothesis is in 

accordance with the ability of caffeine to restore a normal density and function of the 

dopamine transporter (DAT) as well as of dopamine uptake in the frontal cortex and in 

the striatum (Pandolfo et al., 2013) compatible to the antagonism of A2AR, mainly 

targeted by caffeine (Fredholm et al., 2005). It is worth noting that the present thesis 

also provides the first in vivo demonstration of caffeine-mediated cerebella 

neuroprotection, which is in line with an episodic report showing the ability of caffeine 

and A2AR antagonists to confer neuronal protection against induced-toxicity in primary 

cultures of cerebellar granule neurons (Dall'Igna et al., 2003). This strongly supports a 

promising therapeutic approach to other spinocerebellar ataxias showing considerable 

cerebella loss, based on the consumption of caffeine. 

 It is worth noting that retrospective studies showed that caffeine consumption 

decreased incidence of neurodegenerative diseases in humans, such as Alzheimer’s 

and Parkinson’s diseases (Maia and de Mendonca, 2002; Ross et al., 2000). In turn, a 

recent retrospective study assessing caffeine consumption in HD patients showed 

greater caffeine consumption associated with an earlier age of onset (Simonin et al., 
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2013). Those controversial actions of caffeine in different neurodegeneration patterns 

in humans together with the present findings are suggestive that it might be of greater 

interest to run retrospective and prospective studies also in MJD. 

This thesis also shows a new and validated methodology allowing both in vitro 

and in vivo A2AR manipulations based on molecular tools designed to suppress and up-

regulate the A2AR. These tools might be effectively applied to several neurological 

disorders beyond Machado-Joseph disease, either to improve mechanistic 

comprehension or to attempt gene therapy approaches. For our study, as it remained 

to be elucidated whether neuroprotection mediated by caffeine was operated directly 

through pre- or post-synaptic sites or even glial A2AR antagonism, we took advantage 

of lentiviral vectors to in vivo site-specific manipulate A2AR and dissect cell-type specific 

and subcellular compartments where A2AR critically modulated MJD and mediated 

neuroprotection through its antagonism. We first targeted the post-synaptic site by 

introducing LVs expressing A2AR silencing constructs and A2AR mouse gene into 

striatum, and we have demonstrated that striatal post-synaptic A2AR are not relevant to 

caffeine-mediated MJD neuroprotection although, in turn, A2AR up-regulation was able 

to exert a beneficial effect in the early progression of the disease, which proved 

relevant reducing the late neuronal damage and degeneration triggered by mutant 

ataxin-3. These observations demonstrated that post-synaptic A2AR may actually have 

a neuroprotective role in the initial stages of the disease prompting to consider that the 

striatal outcome of mutant ataxin-3 expression depends on the balance between the 

deleterious activity of pre-synaptic and glial A2AR and the protective activity of post-

synaptic A2AR. This effect was previously reported in another polyglutamine disorder, 

Huntington’s disease (HD) (Blum et al., 2003) adding special concerns when 

considering the blockade of A2AR to treat striatal neurodegeneration due to its putative 

neuroprotective-neurotoxic effects depending on its ability to modulate pre-synaptic 

over postsynaptic receptor activity. 

Nevertheless, additional studies are needed to directly dissect the role of pre-

synaptic and glial A2AR relative contributions for MJD progression and hence caffeine-

mediated neuroprotection. One possibility to address the pre-synaptic A2AR control of 

MJD is the intra-striatal delivery of mutant ataxin-3 gene concomitantly with A2AR 

silencing constructs mediated again by viral vectors, now allowing axonal retrograde 

transport and thus elimination of A2AR from glutamatergic afferents. This can be 

achieved by using: i) lentivirus either pseudotyped with ravies virus glycoprotein (RV-G) 

(Mazarakis et al., 2001), or RV-G/ VSV-G chimeric envelope (Carpentier et al., 2012) 

or a fusion envelope glycoprotein (FuG-B) (Kato et al., 2011); and ii) adeno-associated 
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viral vectors of specific serotypes such as type 1 or 5 (AAV) (Lazarus et al., 2011). 

Another possibility is taking advantage of forebrain A2AR KO mice with A2AR deletion in 

the neurons of striatum as well as cerebral cortex and hippocampus (Shen et al., 2008) 

and perform either: i) intra-striatal delivery of lentivirus encoding mutant ataxin-3; or ii) 

crossbreeding with MJD transgenic mice. On the other hand, striatal transduction of 

GFAP gene promoter-driven A2AR conditional knockout mice (GFAP-A2AR-KO) (Xu et 

al., in preparation) with lentivirus encoding mutant ataxin-3 would be of particular 

interest to dissect the putative role of A2AR in the glial compartment. In conclusion, the 

outcome of all those manipulations in morphological and behavioral modifications 

triggered by mutant ataxin-3 will certainly clarify the relative contribution of distinctly 

located A2AR providing sufficient detailed information to allow designing effective gene 

therapy interventions to handle with MJD, based on A2AR suppression or up-regulation. 

 Finally, albeit the molecular mechanism of A2AR-mediated control of MJD 

remains to be determined, the present thesis provides new clues for particular 

compartments where such mechanisms should be explored. It also provides the first 

suggestion that A2AR might be a novel therapeutic target to interfere with MJD 

progression and that neuroprotective strategies based on A2AR antagonism are ideal 

candidates to manage MJD. 
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