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Resumo

O uso de equações diferenciais hiperbólicas de segunda ordem, na

modelação de problemas difusivos, tem-se revelado útil em muitos ramos

da ciência como a física, química, biologia e finanças. A condução de calor, a

difusão de massa e a dinâmica dos fluidos são alguns exemplos pertencentes

à vasta gama de temas abrangidos por este tipo de equações hiperbólicas.

Contudo, a inclusão de um potencial não tem sido estudada de forma

exaustiva, apesar da sua grande relevância em aplicações práticas como, por

exemplo, a distribuição da concentração de massa em problemas de difusão.

O objetivo principal desta tese consiste em desenvolver e estudar métodos

numéricos para problemas hiperbólicos de segunda ordem que tomam em

consideração a presença de um potencial. Em particular, pretende-se estu-

dar como a variação do coeficiente de relaxamento temporal e o potencial

afetam o comportamento da solução, nomeadamente quando se consideram

tempos longos. Para isso, iremos começar por analisar diferentes métodos

numéricos para o caso unidimensional, tais como um método de diferenças

finitas do tipo Crank-Nicolson e um algoritmo baseado na transformada de

Laplace combinado com diferentes estratégias de discretização espacial.

Todos os algoritmos considerados são estudados quanto à sua consistência

e estabilidade e são apresentados exemplos numéricos que, para além de

ilustrar os resultados teóricos obtidos, comparam a sua eficiência. Entre as

simulações numéricas realizadas, é de destacar uma aplicação interessante

que modela a dinâmica de uma partícula Browniana na presença de um

potencial periódico simétrico.

A investigação realizada revela as vantagens e desvantagens inerentes às
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ii Resumo

diferentes formulações. Em particular, quando há interesse no comporta-

mento da solução para tempos longos, os métodos baseados na transfor-

mada de Laplace, a qual é combinada com métodos de diferenças finitas ou a

formulação de volumes finitos, mostraram ser mais eficazes que o método de

Crank-Nicolson. Contudo, dependendo da discretização espacial usada em

problemas que contenham condições iniciais descontínuas, por vezes surgem

oscilações numéricas em alguns testes numéricos. Para suprimir essa

lacuna, procurou-se uma abordagem alternativa e usou-se a técnica de

linearização seccionada na discretização espacial que, combinada com a

transformada de Laplace, se revelou o método mais eficaz para os problemas

considerados no caso unidimensional.

Os métodos usados no caso unidimensional são generalizados para o caso

bidimensional. Contudo, o método que se revelou mais eficaz, pela sua

natureza particular, não pode ser considerado. Como forma de melhorar a

eficiência computacional do algoritmo de Crank-Nicolson desenvolvemos um

método implícito de direção alternada. Esta abordagem, apesar de clássica

para métodos de diferenças finitas, é uma inovação no contexto dos proble-

mas hiperbólicos com derivadas parciais de primeira e segunda ordem, tanto

no espaço como no tempo. Os resultados teóricos desenvolvidos na análise

deste método constituem um importante contributo desta tese e mostram o

grande potencial do algoritmo no tratamento numérico do problema que nos

propusemos estudar.



Abstract

The use of second order hyperbolic differential equations in modeling

diffusive problems, has shown to be useful in many branches of science such

as physics, chemistry, biology and finance. The heat conduction, the mass

diffusion and the fluid dynamics are some of the examples belonging to a

wide range of subjects covered by these hyperbolic equations. However, the

incorporation of a potential field has not been studied exhaustively, despite

its great relevance in practical applications such as, for instance, the mass

concentration distribution of diffusion problems.

The main purpose of this thesis is to develop and study numerical

methods for second order hyperbolic problems that take into account the

presence of a potential field. In particular, we intend to study how the coeffi-

cient of variation of the relaxation time and the potential affect the solution

behavior, namely when long times are considered. To accomplish this, we

will start to analyze different numerical methods for the one dimensional

case such as, a finite difference method of Crank-Nicolson type and an algo-

rithm based on Laplace transform combined with distinct spatial discretiza-

tion strategies. Consistency and stability are studied for all the considered

algorithms and numerical examples are presented to illustrate the theoreti-

cal results and, in addition, to compare their efficiency. Among the numerical

simulations performed, we highlight an interesting application that models

the dynamics of a Brownian particle in the presence of a symmetric periodic

potential.

The research carried out reveals the advantages and disadvantages

inherent in the different formulations. In particular, when there is an
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iv Abstract

interest in the behavior of solution for long times, the methods based on

the Laplace transform, which is combined with finite difference methods

or finite volume formulations, show to be more effective than the Crank-

Nicolson method. However, depending on the spatial discretization used in

problems that contain discontinuous initial conditions, sometimes numeri-

cal oscillations arise in numerical tests. To suppress this shortcoming, we

seek an alternative approach and used the piecewise linearized technique

in the spatial discretization which, combined with the Laplace transform,

turns out to be the most effective method for the problems considered in one

dimensional case.

The numerical methods applied in the one dimensional case are

generalized in two dimensions. However, the most effective method, due to

its specific nature, can not be considered. In order to improve the computa-

tional efficiency of the Crank-Nicolson algorithm, we develop an alternating

direction implicit method. This approach, although classical for the finite

difference methods, is an innovation in the context of hyperbolic problems,

with partial derivatives of first and second order, in both space and time. The

theoretical results developed in the analysis of the method are an important

contribution of this thesis and show the great potential of the algorithm in

the numerical treatment of the problem we proposed to study.
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Preface

The research developed in this work has the purpose to bring some new

features and contributions in the study of diffusion problems. It is organized

in five chapters and we describe below a short summary of each chapter.

Despite the large number of numerical methods implemented to solve

diffusion problems, only a few partial differential equations of hyperbolic

type incorporate a potential field. In Chapter 1 we derive our model problem,

which includes a potential field. Some fundamental concepts are defined to

support the theoretical analysis performed in the remaining chapters. Also,

a literature review is included, where the numerical approaches developed

and most commonly used in recent years for similar problems are described.

Chapters 2 and 3 are concerned with the one dimensional problem. In

Chapter 2 we present numerical solutions for the one dimensional second

order hyperbolic equation. We apply the Crank-Nicolson method based on

first order discretization in time and second order discretizations in space.

The need to obtain results for very long times led us to seek other numerical

methods presented in Chapter 3. They consist of first applying the Laplace

transform to remove the time dependent terms in the governing equation.

Three distinct schemes are considered for the spatial discretization: a finite

difference scheme, a finite volume formulation and a piecewise linearized

method. At last, the approximate solution is obtained by a numerical

inverse Laplace transform. The inverse Laplace transform algorithm used

in this work is based on a continued fraction approach described in the first

section of Chapter 3. In order to compare the computational efficiency, per-

formance and convergence of these three schemes, some numerical results

vii
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are obtained which provide interesting conclusions about all the methods.

They are also compared with the Crank-Nicolson method described in the

previous chapter. In addition to the numerical schemes implementation, a

theoretical analysis of such schemes is carried out. We devote the last section

of Chapter 3 to the numerical solution of the governing equation involving a

symmetric periodic potential.

The numerical methods applied in previous chapters are extended in

Chapter 4 for two spatial dimensions. These methods do not support the

computational effort needed to return the final solution, for a large number

of discretization points, due to the huge size of the systems obtained. Hence,

to overcome the difficulty of solving such systems with direct solutions, an

alternating direction implicit method is derived. The results obtained in

the end of Chapter 4 show the great efficiency and good performance of the

method.

Chapter 5 contains the main conclusions and comments of this work.

Also, we point out some possible ways to follow in future research.



Chapter 1

A second order hyperbolic

equation

Partial differential equations describing diffusive processes constitute the

basis of many models in several fields such as [18, 41, 44, 49, 72, 85, 87,

90, 95]. In this chapter we essentially model the problem that underpins

the work of the remaining chapters. In Section 1.1 we derive a second

order hyperbolic equation that describes a diffusion process in the presence

of a potential field. The variation of the parameters involved in the equation

of our study makes it more embracing, since it allows the application to a

wider range of diffusion problems. Among all the problems considered, we

focus our attention on the example studied in [4] which includes a periodic

potential field. To perform the theoretical analysis of the numerical methods

we define some fundamental concepts in Section 1.2.

Section 1.3 is a literature review where we present several studies for

similar equations, mainly in one and two dimensions. Many authors have

been proposed distinct numerical solutions for the resolution of such models

and we emphasize the particular techniques developed in each method.

In the end of the chapter, Section 1.4, we include the original contribution

of this thesis in the development of numerical methods to solve hyperbolic

diffusion problems.

1



2 A second order hyperbolic equation

1.1 Model problem

The hyperbolic equation of diffusive nature that we are going to study,

can be derived from the Kramers equation [23, 24, 34, 80], which describes

the Brownian motion in a potential, given by

∂𝑓

∂𝑡
+

𝑝

𝑚

∂𝑓

∂𝑥
− 𝑑𝑉

𝑑𝑥

∂𝑓

∂𝑝
= 𝛾

∂

∂𝑝
(𝑝𝑓) + 𝑚𝑘𝐵𝑇𝛾

∂2𝑓

∂𝑝2
, (1.1)

where 𝑥 is the space variable, 𝑡 is the time, 𝑉 (𝑥) is the potential field, 𝛾 is a

friction parameter, 𝑚 is the mass, 𝑓(𝑥, 𝑝, 𝑡) is the probability density function

for the position component 𝑥 and momentum component 𝑝 of a Brownian

particle, 𝑘𝐵 is the Boltzmann’s constant and 𝑇 is the temperature of the

fluid. We also assume the boundary conditions are

lim
𝑝→±∞ 𝑓(𝑥, 𝑝, 𝑡) = lim

𝑝→±∞
∂𝑓

∂𝑝
(𝑥, 𝑝, 𝑡) = 0.

We start to take moments of 𝑝 over equation (1.1). This procedure consists

of multiplying the equation by various powers of 𝑝 and then integrating over

𝑝. Taking the zeroth moment of momentum 𝑝 we get∫ +∞

−∞

∂𝑓

∂𝑡
𝑑𝑝 +

∫ +∞

−∞

𝑝

𝑚

∂𝑓

∂𝑥
𝑑𝑝 −

∫ +∞

−∞

𝑑𝑉

𝑑𝑥

∂𝑓

∂𝑝
𝑑𝑝

=

∫ +∞

−∞
𝛾

∂

∂𝑝
(𝑝𝑓) 𝑑𝑝 +

∫ +∞

−∞
𝑚𝑘𝐵𝑇𝛾

∂2𝑓

∂𝑝2
𝑑𝑝.

The number density of particles at position 𝑥 is given by∫ +∞

−∞
𝑓(𝑥, 𝑝, 𝑡) 𝑑𝑝 = 𝑢 (𝑥, 𝑡) .

Therefore, we can write the first term as

∂

∂𝑡

∫ +∞

−∞
𝑓 𝑑𝑝 =

∂𝑢

∂𝑡
(𝑥, 𝑡) .

Defining the current density by

𝑗 (𝑥, 𝑡) =

∫ +∞

−∞

𝑝

𝑚
𝑓(𝑥, 𝑝, 𝑡) 𝑑𝑝

the second term becomes

∂

∂𝑥

∫ +∞

−∞

𝑝

𝑚
𝑓 𝑑𝑝 =

∂𝑗

∂𝑥
(𝑥, 𝑡) .
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Also, for the third term we have∫ +∞

−∞

𝑑𝑉

𝑑𝑥

∂𝑓

∂𝑝
𝑑𝑝 =

𝑑𝑉

𝑑𝑥

∫ +∞

−∞

∂𝑓

∂𝑝
𝑑𝑝 =

𝑑𝑉

𝑑𝑥
[𝑓 ]+∞

−∞ = 0.

The first term of the second member is∫ +∞

−∞
𝛾

∂

∂𝑝
(𝑝𝑓) 𝑑𝑝 = 𝛾

(∫ +∞

−∞
𝑓 𝑑𝑝 +

∫ +∞

−∞
𝑝
∂𝑓

∂𝑝
𝑑𝑝

)
.

Integrating by parts we obtain

𝛾

(∫ +∞

−∞
𝑓 𝑑𝑝 + [𝑓𝑝]+∞

−∞ −
∫ +∞

−∞
𝑓 𝑑𝑝

)
= 0.

The last term of the equation is

𝑚𝑘𝐵𝑇𝛾

∫ +∞

−∞

∂

∂𝑝

(
∂𝑓

∂𝑝

)
𝑑𝑝 = 𝑚𝑘𝐵𝑇𝛾

[
∂𝑓

∂𝑝

]+∞

−∞
= 0

and, therefore, the zeroth moment equation becomes

∂𝑢

∂𝑡
(𝑥, 𝑡) +

∂𝑗

∂𝑥
(𝑥, 𝑡) = 0. (1.2)

Taking the first moment of equation (1.1) we can write∫ +∞

−∞
𝑝
∂𝑓

∂𝑡
𝑑𝑝 +

∫ +∞

−∞

𝑝2

𝑚

∂𝑓

∂𝑥
𝑑𝑝 −

∫ +∞

−∞

𝑑𝑉

𝑑𝑥
𝑝
∂𝑓

∂𝑝
𝑑𝑝

=

∫ +∞

−∞
𝛾𝑝

∂

∂𝑝
(𝑝𝑓) 𝑑𝑝 +

∫ +∞

−∞
𝑚𝑘𝐵𝑇𝛾𝑝

∂2𝑓

∂𝑝2
𝑑𝑝. (1.3)

The first term leads to

∂

∂𝑡

∫ +∞

−∞
𝑝𝑓 𝑑𝑝 = 𝑚

∂

∂𝑡

∫ +∞

−∞

𝑝

𝑚
𝑓 𝑑𝑝 = 𝑚

∂𝑗

∂𝑡
(𝑥, 𝑡) .

The second term is
∂

∂𝑥

∫ +∞

−∞

𝑝2

𝑚
𝑓 𝑑𝑝.

In order to obtain an equation for 𝑢 (𝑥, 𝑡), Das introduced in [23] the

approximation

𝑓 (𝑥, 𝑝, 𝑡) ≃ 𝑢 (𝑥, 𝑡)𝜙(𝑝),

where 𝜙(𝑝) is the Maxwellian distribution function for one component of

momentum for a particle [11], that is,

𝜙(𝑝) =

√
1

2𝜋𝑚𝐾𝐵𝑇
𝑒
− 𝑝2

2𝑚𝐾𝐵𝑇 .
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On the other hand,∫ +∞

−∞

𝑝2

𝑚
𝜙(𝑝) 𝑑𝑝 =

∫ +∞

−∞

𝑝2

𝑚

√
1

2𝜋𝑚𝐾𝐵𝑇
𝑒
− 𝑝2

2𝑚𝐾𝐵𝑇 𝑑𝑝

= − 1

𝑚

√
1

2𝜋𝑚𝐾𝐵𝑇
𝑚𝐾𝐵𝑇

∫ +∞

−∞
𝑝𝑒

− 𝑝2

2𝑚𝐾𝐵𝑇

(
− 𝑝

𝑚𝐾𝐵𝑇

)
𝑑𝑝.

Integrating by parts results in

−
√

1

2𝜋𝑚𝐾𝐵𝑇
𝐾𝐵𝑇

([
𝑝𝑒

− 𝑝2

2𝑚𝐾𝐵𝑇

]+∞

−∞
−
∫ +∞

−∞
𝑒
− 𝑝2

2𝑚𝐾𝐵𝑇 𝑑𝑝

)
.

Since

lim
𝑝→±∞𝑝𝑒

− 𝑝2

2𝑚𝐾𝐵𝑇 = 0,

we get √
1

2𝜋𝑚𝐾𝐵𝑇
𝐾𝐵𝑇

∫ +∞

−∞
𝑒
− 𝑝2

2𝑚𝐾𝐵𝑇 𝑑𝑝.

With the change of variable

𝜑 =

√
1

2𝑚𝐾𝐵𝑇
𝑝

and using the standard integral∫ +∞

−∞
𝑒−𝜑

2
𝑑𝜑 =

√
𝜋,

then √
1

2𝜋𝑚𝐾𝐵𝑇
𝐾𝐵𝑇

√
2𝑚𝐾𝐵𝑇

∫ +∞

−∞
𝑒−𝜑

2
𝑑𝜑 = 𝐾𝐵𝑇.

Therefore, the second term of equation (1.3) is

∂

∂𝑥

∫ +∞

−∞

𝑝2

𝑚
𝑓 𝑑𝑝 =

∂𝑢

∂𝑥

∫ +∞

−∞

𝑝2

𝑚
𝜙(𝑝) 𝑑𝑝 = 𝐾𝐵𝑇

∂𝑢

∂𝑥
(𝑥, 𝑡) .

Integrating by parts the third term gives

𝑑𝑉

𝑑𝑥

∫ +∞

−∞
𝑝
∂𝑓

∂𝑝
𝑑𝑝 =

𝑑𝑉

𝑑𝑥

(
[𝑓𝑝]+∞

−∞ −
∫ +∞

−∞
𝑓 𝑑𝑝

)
= −𝑑𝑉

𝑑𝑥
𝑢 (𝑥, 𝑡) .

The first term of the second member of equation (1.3) is

𝛾

∫ +∞

−∞
𝑝

(
𝑓 + 𝑝

∂𝑓

∂𝑝

)
𝑑𝑝 = 𝛾

∫ +∞

−∞
𝑝𝑓 𝑑𝑝 + 𝛾

∫ +∞

−∞
𝑝2

∂𝑓

∂𝑝
𝑑𝑝.
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After integrating by parts, this is the same as

𝛾

∫ +∞

−∞
𝑝𝑓 𝑑𝑝 + 𝛾

[
𝑓𝑝2
]+∞
−∞ − 𝛾

∫ +∞

−∞
2𝑝𝑓 𝑑𝑝

= −𝛾

∫ +∞

−∞
𝑝𝑓 𝑑𝑝 = −𝑚𝛾

∫ +∞

−∞

𝑝

𝑚
𝑓 𝑑𝑝 = −𝑚𝛾𝑗 (𝑥, 𝑡) .

The last term of equation (1.3) is

𝑚𝑘𝐵𝑇𝛾

∫ +∞

−∞
𝑝
∂2𝑓

∂𝑝2
𝑑𝑝 = 𝑚𝑘𝐵𝑇𝛾

([
𝑝
∂𝑓

∂𝑝

]+∞

−∞
−
∫ +∞

−∞

∂𝑓

∂𝑝
𝑑𝑝

)

= −𝑚𝑘𝐵𝑇𝛾 [𝑓 ]+∞
−∞ = 0.

Finally, the first moment equation becomes

𝑚
∂𝑗

∂𝑡
(𝑥, 𝑡) + 𝐾𝐵𝑇

∂𝑢

∂𝑥
(𝑥, 𝑡) +

𝑑𝑉

𝑑𝑥
𝑢 (𝑥, 𝑡) = −𝑚𝛾𝑗 (𝑥, 𝑡) . (1.4)

Defining the diffusion coefficient 𝐷 = 𝐾𝐵𝑇/𝑚𝛾, (1.4) turns into the following

equation

𝑗 (𝑥, 𝑡) = −
(

𝐷
∂𝑢

∂𝑥
(𝑥, 𝑡) +

1

𝑚𝛾

𝑑𝑉

𝑑𝑥
𝑢 (𝑥, 𝑡)

)
− 1

𝛾

∂𝑗

∂𝑡
(𝑥, 𝑡) . (1.5)

The derivation of the zeroth moment equation (1.2) with respect to 𝑡 gives

∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂2𝑗

∂𝑡∂𝑥
(𝑥, 𝑡) = 0

which implies that
∂2𝑗

∂𝑡∂𝑥
(𝑥, 𝑡) = −∂2𝑢

∂𝑡2
(𝑥, 𝑡) . (1.6)

The derivation of the first moment equation (1.5) with respect to 𝑥 leads

us to

∂𝑗

∂𝑥
(𝑥, 𝑡) = −𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡)− 1

𝑚𝛾

∂

∂𝑥

[
𝑑𝑉

𝑑𝑥
(𝑥)𝑢 (𝑥, 𝑡)

]
− 1

𝛾

∂2𝑗

∂𝑥∂𝑡
(𝑥, 𝑡) . (1.7)

From (1.2), (1.6) and (1.7) we have

−∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡)− 1

𝑚𝛾

∂

∂𝑥

[
𝑑𝑉

𝑑𝑥
(𝑥)𝑢 (𝑥, 𝑡)

]
+

1

𝛾

∂2𝑢

∂𝑡2
(𝑥, 𝑡)

which permit us to obtain equation

1

𝛾

∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡) +

1

𝑚𝛾

∂

∂𝑥

[
𝑑𝑉

𝑑𝑥
(𝑥)𝑢 (𝑥, 𝑡)

]
. (1.8)
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Quite recently, the instantaneous velocity of a Brownian particle has been

experimentally investigated [47, 54, 77], providing an additional motivation

for studying (1.8). There is also another paper [10] which models transport of

ions in insulating media through a hyperbolic diffusion equation of the type

(1.8). We can also write equation (1.8) as

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢 (𝑥, 𝑡)) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡) , (1.9)

where 𝑢 is the mass concentration, 𝜃 = 1/𝛾 ∈]0, 1] is the parameter that

measures the propagation speed of the mass wave and can be regarded as

the relaxation time of the mass flux; function 𝑃 is defined as

𝑃 = − 1

𝑚𝛾

𝑑𝑉

𝑑𝑥
(𝑥),

where 𝑉 (𝑥) is the potential field. Note that for 𝜃 = 0, equation (1.9) is the

classical parabolic convection diffusion equation.

The extension of equation (1.9) in two dimensions is the following

hyperbolic equation, which includes also diffusion and a potential field 𝑉 (𝑥, 𝑦),

defined in a rectangular domain Ω ⊂ R
2,

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑦, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑦, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡)) − ∂

∂𝑦
(𝑄(𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡))

+ 𝐷
∂2𝑢

∂𝑥2
(𝑥, 𝑦, 𝑡) + 𝐷

∂2𝑢

∂𝑦2
(𝑥, 𝑦, 𝑡), (1.10)

with (𝑥, 𝑦) ∈ Ω, 𝑡 > 0 and

(𝑃,𝑄) = − 1

𝑚𝛾

(
∂𝑉

∂𝑥
(𝑥, 𝑦),

∂𝑉

∂𝑦
(𝑥, 𝑦)

)
.

1.2 Fundamental concepts

In this section, we present some definitions that will be used in the re-

maining chapters of this thesis. We define consistency, stability and recall

the Lax equivalence theorem. The consistency role is to measure how well

a difference equation approximates the partial differential equation. On the

other hand, the main idea in analyzing the stability of a difference scheme
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is to bound the growth of errors caused by perturbations of the input data or

rounding errors introduced during the computation.

Following [81], let us consider a linear (initial-)boundary value problem

ℒ𝑢 = 𝑓 (1.11)

defined on some domain 𝐷 with boundary ∂𝐷, where ℒ is a linear operator

ℒ : 𝒰 −→ ℱ that has bounded inverse, ℒ−1 : ℱ −→ 𝒰 , with 𝒰 and ℱ
appropriate spaces, such as Banach spaces. In other words, we will assume

that (1.11) is uniquely solvable for every 𝑓 ∈ ℱ and well-posed. In order to

approximately compute the solution 𝑢 of (1.11) given the data 𝑓 , we need to

specify a set of points 𝐷Δ ⊂ 𝐷∪∂𝐷 that is called the grid (or mesh). Note that

we are assuming that the given data can be initial and/or boundary condi-

tions. Let us define a linear normed space 𝒰Δ of all discrete functions defined

on the grid 𝐷Δ and let 𝑢Δ be the restriction of the continuous solution 𝑢 on

the grid.

Since neither the continuous exact solution not its restriction on the grid

are known, we need to consider a numerical method to compute 𝑢Δ

approximately. For that purpose, let us consider a finite difference scheme

obtained by replacing the continuous derivatives in ℒ by appropriate diffe-

rences, given by the system of equations

ℒΔ𝑈Δ = 𝑓Δ (1.12)

with respect to the unknown function 𝑈Δ ∈ 𝒰Δ. This method should be such

that the approximate solution 𝑈Δ converges to the exact solution 𝑢Δ as the

grid is refined, according to the following definition.

Definition 1.2.1. Let 𝑢Δ be the restriction of the problem (1.11) on the grid

𝐷Δ and 𝑈Δ the approximate solution obtained by (1.12). The approximate

solution is convergent to the exact solution if and only if

∥𝑢Δ − 𝑈Δ∥𝒰Δ
−→ 0, as Δ −→ 0, (1.13)

where ∥ ⋅ ∥𝒰Δ
represents a norm on 𝒰Δ. If 𝑝 > 0 is the largest integer such that

∥𝑢Δ − 𝑈Δ∥𝒰Δ
≤ 𝑐Δ𝑝,
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with 𝑐 a constant independent of the grid parameter Δ, we say that the conver-

gence rate is 𝒪(Δ𝑝) or that the global error 𝑢Δ − 𝑈Δ has order 𝑝 with respect

to the grid parameter Δ in the chosen norm ∥ ⋅ ∥𝒰Δ
.

Remark 1.2.1. Note that the way we define the convergence for finite-difference

schemes differs from the traditional definition in vector spaces. When Δ −→ 0

the number of nodes in the grid 𝐷Δ will increase, and so the dimension

of the space 𝒰Δ. To overcome this drawback, 𝒰Δ shall be interpreted as a

sequence of spaces on increasing dimension parameterized by Δ and the limit

(1.13) as a limit of the sequence of norms in vector spaces that have increasing

dimensions.

The construction of a convergent scheme (1.12) is usually done in two

steps: first we obtain a scheme that is consistent with the problem; then we

must verify that the chosen scheme is stable. We will now define these two

concepts.

Let us start with consistency. To define this concept rigorously, we should

start by introducing a norm in the linear space ℱΔ that contains the right

hand side 𝑓Δ of (1.12). Similarly to 𝒰Δ, ℱΔ should be interpreted as a

sequence of spaces of increasing dimension parameterized by Δ.

Definition 1.2.2. The difference scheme (1.12) is said to be consistent with

the problem (1.11) if and only if for any sufficiently smooth 𝑢 ∈ 𝒰 we have

∥ℒ𝑢Δ − ℒΔ𝑢Δ∥ℱΔ
−→ 0, as Δ −→ 0, (1.14)

where ∥ ⋅ ∥ℱΔ
represents a norm on ℱΔ and

𝒯Δ = ℒ𝑢Δ − ℒΔ𝑢Δ

is called the local truncation error. If 𝑝 > 0 is the largest integer such that

∥𝒯Δ∥𝒰Δ
≤ 𝑐Δ𝑝,

with 𝑐 a constant independent of the grid parameter Δ, we say that the

consistency rate is 𝒪(Δ𝑝) or that scheme is accurate of order 𝑝 with respect

to the grid parameter Δ in the chosen norm ∥ ⋅ ∥ℱΔ
with respect to the given

problem.
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We now consider the definition of stability.

Definition 1.2.3. The finite-difference scheme (1.12) is called stable if there

is an Δ0 such that for any Δ < Δ0 and 𝑓Δ ∈ ℱΔ it is unique solvable and the

solution 𝑈Δ satisfies

∥𝑈Δ∥𝒰Δ
≤ 𝑐∥𝑓Δ∥ℱΔ

, (1.15)

with 𝑐 a constant independent of the grid parameter Δ and of 𝑓Δ.

A similar definition of stability is the following: there is an Δ0 such that

for any Δ < Δ0, the inverse operators ℒ−1
Δ exist and are bounded uniformly,

that is,

∥ℒ−1
Δ ∥ ≤ 𝑐,

where ∥.∥ is the norm in the space of linear operators ℒ−1
Δ : ℱΔ −→ 𝒰Δ, with

𝑐 a constant independent of the grid parameter Δ.

According to the previous definition, stability is an intrinsic property of

the scheme. The formulation of this property does not involve any direct

relation to the original problem.

Remark 1.2.2. Note that, if we consider in the problem (1.11) homogeneous

Dirichlet boundary conditions, the term ∥𝑓Δ∥ℱΔ
only involves the initial

condition.

The property of stability is formulated independently of either consis-

tency or convergence. The following theorem establishes a fundamental

relation between consistency, stability and convergence [81].

Theorem 1.2.1. [Lax Equivalence Theorem] A consistent finite difference

scheme (1.12) for the well-posed problem in (1.11) is convergent if and only if

it is stable. Moreover, the converging rate coincides with the consistency rate

of the scheme.
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1.3 Literature review

In this section we present some of the numerical methods developed in

recent years to solve linear second order hyperbolic equations, in one and

two dimensions, similar to equations (1.9) and (1.10).

Standard finite difference methods are known to be one of the first

techniques applied for solving these partial differential equations. They are

still used extensively in many practical computations due to their inherent

simplicity. Even though these methods are very effective for solving various

kinds of partial differential equations, the conditional stability of explicit

finite difference procedures and the need for a big computational effort in

implicit finite difference schemes to obtain an accurate numerical solution,

require further research. Therefore, new difference schemes are constantly

being presented, some of them featuring high order accuracy.

The design of higher order accurate finite difference methods for the

second order hyperbolic equations is challenging. When we employ higher

order standard schemes, which need a large number of mesh points near the

boundaries, some of the difficulties arise in treating the approximations of

the discrete points, requiring many times the introduction of fictitious points.

Therefore, the second order methods that do not require the use of fictitious

points are common methods to solve these equations [28, 67, 71]. Another

difficulty associated with the numerical methods of hyperbolic problems is

the observation of numerical oscillations that appear in the vicinity of sharp

discontinuities [14, 15, 82].

In what follows, we present an overview of the different approaches that

have been appearing recently.

1.3.1 One dimensional linear hyperbolic equation

We start to review some of the numerical methods presented in the

literature to solve problems involving equations similar to equation (1.9).

Among the numerical methods implemented to solve second order linear

hyperbolic equations, different strategies have been developed for the
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solution of the telegraph equation [25, 27, 29, 35, 39, 42, 59, 66, 68, 71, 76].

The telegraph equation does not include a potential field and it has an

additional reaction term or source term. This equation can represent a

damped wave equation and models many reaction-diffusion problems such

as, the electrical voltage, the propagation of electrical signals in a cable of

transmission line and wave phenomena, mentioned in [25, 68, 76] . Also,

the pulsate blood flow in arteries and the one dimensional random motion of

bugs along a hedge [25, 68], the propagation of acoustic waves in Darcy-type

porous media and the parallel flows of viscous Maxwell fluids [25, 68, 64] are

some of the phenomena governed by the telegraph equation.

Let us now describe some of the approaches known to find a numeri-

cal solution for the telegraph equation. To solve an initial boundary value

problem involving a damped wave equation that models heat conduction, a

finite difference scheme was constructed in [65]. It consists of applying the

standard centered difference approximation to the second order derivative

in time while the first order time derivative is approximated by a combina-

tion of forward Euler and centered difference quotients. For the second order

spatial derivative a Dufort-Frankel approximation was considered, that is,

∂2𝑢

∂𝑥2
(𝑥, 𝑡) ≈ 𝑈𝑛

𝑖−1 − (𝑈𝑛+1
𝑖 + 𝑈𝑛−1

𝑖 ) + 𝑈𝑛
𝑖+1

Δ𝑥2
,

where the mesh points are given by 𝑥𝑖 = 𝑖Δ𝑥, 𝑖 = 0, . . . , 𝑁 , with Δ𝑥 = 1/𝑁 ,

𝑁 is a positive integer, 𝑡𝑛 = 𝑛Δ𝑡 with Δ𝑡 being the time increment and 𝑈𝑛
𝑖

denotes the approximate solution to 𝑢(𝑥𝑖, 𝑡𝑛). The numerical method has

accuracy of order 𝒪(Δ𝑡 + Δ𝑥2). A von Neumann stability analysis was

carried out to conclude this scheme is conditionally stable. The method

involves three levels in time and depends on the parameter 𝜃. We note that

the authors developed an earlier scheme [64] that only required two levels,

𝑡𝑛 and 𝑡𝑛+1, because they assumed 𝜃 ≪ Δ𝑡 which caused the loss of one time

level and the method became independent of the parameter 𝜃.

To solve the telegraph equation we can find in [39] the alternating group

explicit method, which is second order accurate in time and space and also

conditionally stable. First, a three level implicit formula was constructed by
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using centered differences to approximate the first order and second order

derivatives in time and, for the second order spatial derivative, centered

differences combined with a weighting factor were considered. Secondly, the

implicit equations derived from the finite difference discretization were split

into explicit equations using an intermediate time level.

Another implicit three level difference scheme of order 𝒪(Δ𝑡2 +Δ𝑥2) was

implemented in [66] and, in this case, we obtain an unconditionally stable

difference scheme by a von Neumann stability analysis. To accomplish this,

two terms were added to the final discrete equation, which did not affect the

second order accuracy of the scheme. Then, the Gauss-elimination method

was used to solve the resulting linear system of equations. In [67] the same

author developed a similar numerical method for the telegraph equation,

with the same properties, but for some variable coefficients in the diffusive

and reactive terms.

A quite different method was applied in [42] for the telegraph equation

with a source term. A semi-discretization technique was implemented,

where the second order derivative in space was approximated by centered

differences. The matrix form of the difference scheme obtained involves an

exponential function in 𝑡. The need to approximate this exponential function

led the author to use Padé approximations of order [1,1] and [2,2] to get

the numerical solution. The Padé approximation of order [m,n] consists of

approximating a given function 𝑓 by the rational function

𝑅(𝑥) =
𝑎0 + 𝑎1𝑥 + 𝑎2𝑥

2 + ⋅ ⋅ ⋅ + 𝑎𝑚𝑥𝑚

1 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋅ ⋅ ⋅ + 𝑏𝑛𝑥𝑛
(1.16)

that satisfies 𝑓(0) = 𝑅(0), 𝑓 ′(0) = 𝑅′(0), . . . , 𝑓 (𝑚+𝑛)(0) = 𝑅(𝑚+𝑛)(0). Two

explicit difference schemes were obtained with different accuracy orders of

𝒪(Δ𝑡3+Δ𝑥2) and 𝒪(Δ𝑡5+Δ𝑥2), associated with the approximations of order

[1,1] and [2,2], respectively. The unconditional stability was concluded in

both methods by analyzing the eigenvalues of the matrices.

An alternative numerical method introduced in [29] to solve the one

dimensional hyperbolic telegraph equation involves a collocation method.

After the discretization of time derivatives with finite differences, the



1.3. Literature review 13

collocation method was considered by using thin plate splines radial basis

functions: assuming there are a total of 𝑁 − 2 interpolation points, 𝑢(𝑥, 𝑡𝑛)

can be approximated by

𝑢𝑛(𝑥) ≃
𝑁−2∑
𝑗=1

𝜆𝑛𝑗 𝜑(𝑟𝑗) + 𝜆𝑛𝑁−1𝑥 + 𝜆𝑛𝑁 , (1.17)

where the radial basis function is defined by 𝜑(𝑟𝑗) = 𝑟4𝑗 log(𝑟𝑗) with

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) and 𝑟𝑗 = ∥𝑥 − 𝑥𝑗∥ the Euclidean norm. To determine the

interpolation coefficients (𝜆1, 𝜆2, . . . , 𝜆𝑁 ) the collocation method was used by

applying (1.17) at every point 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑁 − 2. The method was then

completed by joining the additional conditions
𝑁−2∑
𝑗=1

𝜆𝑛𝑗 =
𝑁−2∑
𝑗=1

𝜆𝑛𝑗 𝑥𝑗 = 0

and was written in a matrix form in order to use the LU factorization. The

scheme works similarly to the finite difference methods, although it is a

meshless method. A mesh free method does not require a mesh to discretize

the domain of the problem under consideration, that is, the approximate

solution is constructed entirely based on a set of scattered nodes. Later

on, this technique of employing the collocation method and approximating

directly the solution using thin plate splines radial basis functions was

extended by the authors in [30], in the two dimensional telegraph equation

with variable diffusive and reactive coefficients.

In [27] a method that has Chebyshev cardinal functions is presented for

the solution of telegraph equation. The Chebyshev cardinal functions of

order 𝑁 in [−1, 1] are defined by

𝐶𝑗(𝑡) =
𝑃𝑁+1(𝑡)

𝑃 ′
𝑁+1(𝑡𝑗)(𝑡 − 𝑡𝑗)

, 𝑗 = 1, 2, . . . , 𝑁 + 1,

where 𝑃𝑁+1(𝑡) = cos ((𝑁 + 1) arccos(𝑡)), and 𝑡𝑗 are the zeros of 𝑃𝑁+1(𝑡). The

method used the shifted Chebyshev cardinal functions on interval [0, 1] after

a change of variable. Then, function 𝑢 (𝑥, 𝑡) was expanded in terms of double

Chebyshev cardinal functions on interval [0, 1] × [0, 1], that is,

𝑢 (𝑥, 𝑡) =
𝑁+1∑
𝑖=1

𝑁+1∑
𝑗=1

𝑢 (𝑥𝑖, 𝑡𝑗)𝐶𝑖(𝑡)𝐶𝑗(𝑥) = Φ𝑇
𝑁 (𝑡)𝑈Φ𝑁 (𝑥), (1.18)
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for Φ𝑁 (.) = [𝐶1(.), 𝐶2(.), . . . , 𝐶𝑁+1(.)]
𝑇 and 𝑈 = [𝑢(𝑥𝑖, 𝑡𝑗)], 𝑖, 𝑗 = 1, 2, . . . , 𝑁 + 1

the unknown matrix to be determined. The numerical method was obtained

after differentiating Φ𝑁 (.), substituting in the main equation the function

𝑢(𝑥, 𝑡) by (1.18) and manipulating some algebraic equations.

Another approach is presented in [25] based on the boundary integral

equation technique and the dual reciprocity method (DRM). The DRM method

uses a technique where the domain integral is converted to an equivalent

boundary integral by using suitable approximation functions [51]. First, the

telegraph equation was restated as an integral equation by the following

identity ∫ 𝑏

𝑎

[
𝑢𝑡𝑡 + 2𝒜𝑢𝑡 + ℬ2𝑢 − 𝑢𝑥𝑥 − 𝑓(𝑥, 𝑡)

]
𝜔 𝑑𝑥 = 0, (1.19)

where the weight function 𝜔 was chosen to be

𝜔(𝑥, 𝜉) =
1

2
∣𝑥 − 𝜉∣ and 𝜔𝑥(𝑥, 𝜉) =

1

2
𝑠𝑔𝑛(𝑥 − 𝜉),

𝑥 is a field point, 𝜉 is a source point and 𝑠𝑔𝑛 denotes the signum function

defined by

𝑠𝑔𝑛 (𝑥) =

⎧⎨⎩
−1, if 𝑥 < 0

0, if 𝑥 = 0

1, if 𝑥 > 0

.

The interval [𝑎, 𝑏] was partitioned in 𝑁−1 subintervals with 𝑁 source points:

𝑎 = 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏. Then, the dual reciprocity method

was implemented: the time derivatives and the inhomogeneous terms were

interpolated by radial basis functions. Three different types of radial basis

functions were used for interpolation: linear, cubic and thin plate spline

radial basis functions. This gave rise to a system with linear differential

equations containing the unknown functions of time 𝑢(𝑥𝑖, 𝑡) and ∂𝑢
∂𝑥(𝑥𝑖, 𝑡),

𝑖 = 2, 3 . . . , 𝑁 − 1, after applying the Dirichlet boundary conditions. The

system was solved by considering backward and centered differences to

approximate the first derivative and second derivative in time, respectively.

In the end, the Crank-Nicolson method [19] was applied to obtain the

approximations to the unknown variables. The main advantage of the method

is that, since the telegraph equation was integrated over the boundary of the
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domain, the discretization and computation of the solution only took place on

the boundary. As an application of the telegraph equation an example that

involves dispersive wave propagation was included.

A differential quadrature method was employed in both time and space

directions in the work presented in [76]. Compared with methods such as

the finite difference and finite element methods, the differential quadrature

method requires less computer time and storage. The essence of this new

differential quadrature method is that a partial derivative of a function at a

grid point is approximated by a weighted linear sum of the function values

at all given discrete points. The weighting coefficients are determined using

the Lagrange interpolation polynomial, which leads to the polynomial-based

differential quadrature method (PDQ). For a specific function 𝑓 , the first and

the second order derivatives can be approximated at a grid point 𝑥𝑖 by PDQ

approach as

𝑓𝑥(𝑥𝑖) =

𝑁∑
𝑗=1

𝜔
(1)
𝑗 (𝑥𝑖)𝑓(𝑥𝑗) and 𝑓𝑥𝑥(𝑥𝑖) =

𝑁∑
𝑗=1

𝜔
(2)
𝑗 (𝑥𝑖)𝑓(𝑥𝑗),

where 𝑖, 𝑗 = 1, 2, . . . , 𝑁 , 𝑁 is the number of grid points in the whole domain.

The weighting coefficients 𝜔
(1)
𝑗 (𝑥𝑖), 𝜔

(2)
𝑗 (𝑥𝑖) are defined as

𝜔
(1)
𝑗 (𝑥𝑖) =

𝑀 (1)(𝑥𝑖)

(𝑥𝑖 − 𝑥𝑗)𝑀 (1)(𝑥𝑗)
, 𝑖 ∕= 𝑗, 𝜔

(1)
𝑖 (𝑥𝑖) = −

𝑁∑
𝑗=1,𝑗 ∕=𝑖

𝜔
(1)
𝑗 (𝑥𝑖),

𝜔
(2)
𝑗 (𝑥𝑖) = 2𝜔

(1)
𝑗 (𝑥𝑖)

(
𝜔
(1)
𝑖 (𝑥𝑖)− 1

𝑥𝑖 − 𝑥𝑗

)
, 𝑖 ∕= 𝑗, 𝜔

(2)
𝑖 (𝑥𝑖) = −

𝑁∑
𝑗=1,𝑗 ∕=𝑖

𝜔
(2)
𝑗 (𝑥𝑖),

where

𝑀 (1)(𝑥𝑗) =
𝑁∏

𝑘=1,𝑘 ∕=𝑗
(𝑥𝑗 − 𝑥𝑘).

When the function 𝑓 is approximated by a Fourier series expansion, the

weighting coefficients 𝜔
(1)
𝑗 (𝑥𝑖), 𝜔

(2)
𝑗 (𝑥𝑖) are different yielding the Fourier-based

differential quadrature method (FDQ). The weighting coefficients depend

only on the grid spacing. A Gauss-Chebyshev-Lobatto grid points in space

direction was considered, whereas equally spaced and also Gauss-Chebyshev-

Lobatto grid points were used in time direction. The resulting system of
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algebraic equations was solved by the least square method. The use of

differential quadrature method in time direction, which also discretizes the

given initial condition ∂𝑢
∂𝑡 (𝑥, 0), provides the solution at any time level

without an iteration between two time levels. This numerical procedure

requires very small number of grid points in space directions and appro-

priate number of time grid points for reaching a certain time level.

With the purpose to achieve higher accuracy methods to solve telegraph

equation, higher order compact (HOC) difference methods were developed in

different works [21, 35, 59, 71, 93].

It is known that

∂2𝑢𝑖
∂𝑥2

= 𝛿2𝑥𝑢𝑖 +𝒪(Δ𝑥2) =
𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1

Δ𝑥2
+𝒪(Δ𝑥2),

where 𝛿2𝑥 is the second order centered difference operator with respect to

𝑥, gives a second order approximation to the second order derivative. On

the other hand, making a Taylor series expansion over 𝑢𝑖+1 and 𝑢𝑖−1 the

following relation holds

𝛿2𝑥𝑢𝑖 =
∂2𝑢𝑖
∂𝑥2

+
Δ𝑥2

12

∂4𝑢𝑖
∂𝑥4

+𝒪(Δ𝑥4),

yielding the compact finite difference operator defined by

∂2𝑢𝑖
∂𝑥2

=
𝛿2𝑥

1 + Δ𝑥2

12 𝛿2𝑥
𝑢𝑖 +𝒪(Δ𝑥4), (1.20)

which has fourth order accuracy and it is used to approximate the second

order derivative term in space. The application of this compact difference

operator generates fourth order compact finite difference schemes. These

schemes have the advantage of high accuracy to approximate the second

order derivatives and keeping the desirable tridiagonal nature of the finite

difference equations. As they also consume less memory space, this is one

more reason that justifies the renewed interest, in recent years, in the

development and application of these high order compact finite difference

methods for the numerical solution of partial differential equations. They

have been extensively applied in different fields such as fluid dynamics,
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quantum mechanics and heat transfer. We describe some of these methods

below.

For solving the telegraph equation the method introduced in [71] was

based on a collocation approach for the time component. First, the second

order spatial derivative was discretized by a fourth order compact difference

scheme. Then, at each spatial grid point, the solution was approximated by a

polynomial in time. The collocation points were used to obtain the unknown

coefficients of the polynomial. The linear system obtained by applying this

procedure for each grid point was solved by Gauss elimination method with

partial pivoting. The numerical tests showed that for low values of final time

low values of the polynomial degree are suitable. For large values of final

time it is efficient to increase the polynomial degree in collocation approach

to obtain higher accurate results. Besides the fourth order accuracy in space,

the method is also unconditionally stable. The same procedure was used by

the authors for the two dimensional hyperbolic equation. A compact finite

difference approximation of fourth order for discretizing spatial derivatives

and a collocation method for the time component were combined in [28].

Another high order and unconditionally stable method can be found in

[35], where a three level compact difference scheme of 𝒪(Δ𝑡2 + Δ𝑥4) was

proposed for solving telegraph equation. At first, two fourth order difference

formulas were derived by Taylor series expansions for the first and second

order derivatives in time. A fourth order compact finite difference operator

was used to approximate the second order derivative in space. An additional

term was added in order to obtain the unconditional stability.

A numerical method which is also unconditionally stable, second order

accurate in time and fourth order accurate in space, can be found in [59]

for the numerical solution of telegraph equation. The method developed is a

three level implicit difference scheme based on quartic spline interpolation

in space direction and finite difference discretization, by using Taylor series

expansion, in time direction. A von Neumann analysis was used to prove the

unconditional stability of the scheme.

Instead of the standard centered difference scheme obtained by using



18 A second order hyperbolic equation

second order centered difference approximations to the derivatives [35, 59,

71, 93], a scheme using three grid points each at zeroth, first and second time

level was applied for telegraphic equation in [68]. Two terms were added

in the resulting equation in order to get an unconditionally stable scheme,

confirmed by the von Neumann method. Furthermore, the difference scheme

has order 𝒪(Δ𝑡2 +Δ𝑥4).

Let us now describe what has been done for another equation, the sine-

Gordon equation. The sine-Gordon equation is also a special case of our

equation (1.9), with 𝑃 = 0 and a source term 𝑓(𝑥, 𝑡, 𝑢). A compact finite

difference scheme was considered in [21]. After approximating the second

order derivative in space by the compact finite difference operator (1.20), the

sine-Gordon equation was transformed in an ordinary differential equation

of second order. Then Padé approximant (1.16) was used to approximate

the time derivatives and we get a three level implicit compact difference

scheme with the local truncation error being 𝒪(Δ𝑡2 + Δ𝑥4). The resulting

fully discrete nonlinear finite difference equation was solved by a predictor-

corrector scheme. Convergence of the method was obtained by the energy

method.

The numerical methods described above are applied in problems which

do not assume the presence of a potential field, that is, do not include the

first order spatial derivative in equation (1.9). Next, we present some of

the numerical schemes developed to solve these problems which contain the

more general equation (1.9).

For a one dimensional diffusive problem given by equation (1.9) with

𝜃 = 1, a hybrid numerical scheme in [14] was derived: the method consists in

using the Laplace transform technique to remove the time dependent terms

and a finite volume formulation for the spatial discretization that uses

hyperbolic shape functions. For numerical inversion of Laplace transform

the authors refer to [46]. In works such as [15, 57, 58] we can observe other

applications for the same finite volume formulation presented in [14]. This

method was applied to solve many different problems: for instance, in [15]

the numerical method was used in order to analyze diffusive problems in
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a two-layered composite medium; the thermal wave propagation caused by

pulsed surface disturbance in an infinite cylinder and also in a sphere was

investigated in [57], where hyperbolic heat conduction problems were solved

for pulsed surface heat flux in a finite slab, a solid cylinder and a solid sphere;

in [58] the behavior of bio-heat transfer in multi-layer living tissues was

studied during magnetic tumor hyperthermia treatment.

A piecewise linearized method can be found in [79] to solve equation (1.9)

with 𝜃 = 1: this numerical method was presented as an alternative to the

finite volume formulation in cases where the 𝑃 value is large, since the finite

volume formulation yields oscillatory solutions in these cases. The results of

the method have been compared with those obtained with the finite volume

formulation presented in [15].

In this thesis, the finite volume formulation and the piecewise linearized

method are described in detail and applied to our model problem considering

non-trivial initial conditions and different values of the parameter 𝑃 , for

both parabolic (𝜃 = 0) and hyperbolic (𝜃 ∕= 0) equations.

Another hybrid numerical method that combines the Laplace transform,

a weighting function scheme and a hyperbolic shape function for solving a

time dependent hyperbolic heat conduction equation, with a conservation

term, can be found in [16]. In the end, the application of the numerical

inversion algorithm for the Laplace transform presented in [46] was used. To

investigate the effect of the surface curvature of a solid body on hyperbolic

heat conduction, equation (1.9) was considered with 𝜃 = 0.5 and for constant

values of 𝑃 and 𝐷.

In a more recent paper [17] the same author analyzed the hyperbolic heat

conduction problems in the cylindrical coordinate system using a slightly

different approach. The method combines again the Laplace transform for

the time domain and Green’s function for the space domain. The efficiency

of the method was analyzed with one, two and three dimensional numerical

examples. Study of the heat conduction problems in cylindrical coordinate

systems has received considerable interest, because of its wide industrial

applicability, such as rocket wall, oil reservoirs and boilers. Furthermore,
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problems of hyperbolic heat conduction are considered in situations involving

energy sources such as laser and microwave with extremely short duration

or very high frequency and very high temperature gradients.

1.3.2 Two dimensional linear hyperbolic equation

As mentioned in the last section, some of the numerical methods applied

in one dimensional problem were also extended to the corresponding problem

in two dimensions [17, 28, 30]. In this section, we focus our attention in

models arising in the context of equations similar to equation (1.10). We also

start with a review of the numerical methods for the telegraph equation,

obtained from equation (1.10) with no potential field and a reactive term or

source term.

One of the difficulties that appears in two dimensions is that the system

to be solved becomes larger as the lengths of the variables increase. This

causes more memory usage and therefore a big computational effort. We

note that, from the application of some finite difference schemes, a sparse

linear system arising from the implicit spatial discretization must be solved

at each time step. Direct methods, based on Gaussian elimination, are not

usually practical since they need excessive memory and computational effort

for solving the matrix equations associated with difference schemes in two

dimensions [90]. A strategy to overcome the computational inefficiency of an

implicit scheme in two dimensions, is to use an alternating direction implicit

(ADI) scheme after discretization. The ADI methods, which are based on

reducing a multidimensional problem in several space variables to a set of

independent one dimensional problems and only requiring to solve systems

with tridiagonal matrices, are highly efficient procedures for the solutions of

parabolic and hyperbolic multidimensional initial-boundary value problems.

The underlying idea of the ADI in two dimensional problems is to split the

computations in two steps. In the first step we evaluate the spatial variable

𝑥 implicitly and variable 𝑦 explicitly, producing an intermediate solution for

time. In the second step an implicit method is applied in the 𝑦-direction and
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an explicit method in the 𝑥-direction. Taking into account some important

aspects as the dimension considered, the discretization methods that were

first applied to approximate the solution of the differential equation and the

splitting techniques used afterwards, triggered the appearance of some ADI

methods such as the Peaceman-Rachford scheme, the D’Yakonov scheme,

the Douglas-Rachford scheme and the Douglas-Gunn scheme [90]. The ADI

method was first proposed by Peaceman and Rachford in 1955 [75] for the

implicit solution of heat flow (a parabolic partial differential equation) in

two geometric dimensions. It has been popular since then due to the gain

of computational cost effectiveness. The ADI methods are used in a great

variety of applications: from astrophysical and bioengineering applications

to tsunami modeling and Black-Scholes option pricing. Once implicit schemes

are necessary the ADI approaches are needed in two and higher dimensional

problems.

Some of the ADI methods have been used for solving two dimensional

linear hyperbolic equations [22, 31, 36, 50, 60, 69, 89, 93], although very few

take in consideration the presence of a potential field.

An implicit and unconditionally stable difference scheme was developed

in [69] for the solution of telegraph equation which is second order accurate

in time and fourth order accurate in space. The equation was discretized by

an explicit scheme, constructed with second order centered and averaging

difference approximations for the derivatives in both space and time. A

conditionally stable numerical method is obtained. In order to get an

unconditionally stable difference scheme, the explicit scheme was rewritten

as an implicit one by adding two additional terms of higher order that do

not affect the second order accuracy of the method. Then, it was applied an

alternating direction implicit (ADI) method and the equation was separated

in two steps. This ADI method requires solution of tridiagonal systems, first

along the 𝑦-direction and then along the 𝑥-direction. The unconditionally

stability was studied applying the von Neumann method. It can be found in

[70] the same technique for telegraph equation with variable coefficients in

the diffusive and reactive terms.
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To achieve higher spatial accuracy and computational cost effectiveness,

there has been a continuous interest in the implementation of high order

compact ADI (HOC-ADI) methods. The HOC-ADI scheme retains the high

efficiency and tridiagonal algorithm of ADI methods, and at the same time

achieves fourth order accuracy in space, preserving the high accuracy of HOC

schemes. More recently, HOC-ADI methods have been successfully applied

to solve hyperbolic problems [22, 31, 36, 60, 68, 93].

The unconditionally stable implicit difference scheme presented in [68]

and already described in the last section, was extended to two and three

dimensional telegraphic equations. To solve the two dimensional problem,

in order to facilitate the computation, the obtained scheme was rewritten in

two step ADI form which only requires the solution of tridiagonal systems.

A three level compact difference scheme which is second order accurate

in time and fourth order accurate in space was proposed in [36]. The method

is stable and follows the ideas presented in [35] for the one dimensional case,

described in Section 1.3.1.

In [60], a three level ADI compact scheme which is second order accurate

in time and fourth order accurate in space was formulated for the telegraph

equation. The method is unconditionally stable which was proved by a von

Neumann analysis. In order to give the comparative results with the high

order scheme given in [68], the same problems were tested in the numerical

results. In one example the numerical errors are less than half of the ones of

[68] and in another example the method has the same accuracy order but it

only needs half of the computational time.

A HOC-ADI difference scheme was derived in [93] to solve telegraph

equations. A Taylor series expansion was used in second order derivatives

in space and a three time level discretization was made for the derivatives

in time. The result was a three time level difference scheme which, with

the introduction of an auxiliary variable, allowed the authors to obtain an

equivalent two level compact difference scheme. Three and two level ADI

compact difference schemes were constructed. The method was shown to be

unconditionally stable by the energy method and is second order accurate in
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time and fourth order accurate in space for both time levels.

Another type of HOC-ADI scheme was employed in [22] for solving the

generalized sine-Gordon equation similar to (1.10). First, the compact finite

difference operator (1.20) was used for both second order space derivatives

and the derivatives in time were approximated by first and second order

centered difference operators, respectively. Then, a three time level HOC-

ADI difference scheme was developed and its convergence was proved by the

energy method. This method is second order accurate in time and fourth

order accurate in space.

In the work presented in [50], the computational efficiency of the ADI

approach and high order accuracy of the HOC scheme were combined to

solve the two dimensional convection diffusion equation. This equation plays

an important role in computational hydraulics and fluid dynamics to model

convection diffusion of quantities such as mass, heat, energy and vorticity.

A fourth order polynomial compact difference formula was used in the

approximation of the spatial derivatives and the Crank-Nicolson method

was used for time discretization resulting in a method which is second order

accurate in time and fourth order accurate in space. It was shown through

the von Neumann analysis that the method is unconditionally stable. It

seems the present HOC-ADI method provides a more accurate solution than

the standard Peaceman-Rachford ADI method.

An exponential high order compact (EHOC) alternating direction implicit

(ADI) method was presented in [89] for the solution of unsteady convection

diffusion problems in two dimensions. The Crank-Nicolson scheme was then

used for the time discretization and an exponential fourth order compact

difference formula for the steady-state one dimensional convection diffusion

problem was used for the spatial discretization. The method is second order

accurate in time and fourth order accurate in space. The unconditionally

character of the method was verified by a von Neumann analysis. The main

difference between the HOC-ADI and the EHOC-ADI schemes is that, for

the spatial approximation, the first uses a polynomial compact difference

discretization while the second one uses an exponential compact difference
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discretization. In each step of the ADI method the EHOC scheme produces

a strictly diagonally dominant tridiagonal matrix equation, which can be

inverted by simple tridiagonal Gaussian decomposition with a considerable

saving in computation time. Numerical experiments were performed to

illustrate the performance of the method proposed and to compare it mostly

with the HOC-ADI method proposed in [50].

These HOC-ADI and EHOC-ADI methods have fourth order accuracy in

space, but only second order accuracy in time. To improve the accuracy

in temporal dimension and raise computational efficiency, it was used a

Richardson extrapolation. The idea of Richardson extrapolation is to use

combinations of numerical approximations obtained previously by the same

numerical method with different grid parameters [31, 32, 33, 55].

Motivated by the work of [22], a three level HOC-ADI difference method

with a Richardson extrapolation algorithm was used to solve a non-linear

wave equation in [31], which includes a nonlinear forcing term 𝑓(𝑢, 𝑥, 𝑦, 𝑡).

Varying the parameters and terms involved, the equation may represents a

telegraph equation, a damped sine-Gordon equation or even a Klein-Gordon

equation. First, a three level HOC-ADI difference scheme was derived. The

use of energy method showed the conditionally convergence of the numerical

solution with accuracy order of 𝒪(Δ𝑡2 + Δ𝑥4 + Δ𝑦4). Then, a Richardson

extrapolation algorithm based on three time grid parameters was designed

and combined with HOC-ADI method to achieve numerical solution of fourth

order accuracy in both time and space. The same combination was used in

[33], although the spatial discretizations are different from those in [22]. In

fact, two auxiliary functions and a constant parameter were introduced and

a Taylor series expansion was performed. An approximate factorization of

finite difference operators was carried out to obtain a family of three level

compact ADI schemes. The application of energy method proved that this

numerical method can attain fourth order accuracy in both time and space.

The computational cost that comes from the application of Richardson

extrapolation algorithms is reduced since the resulting high order accuracy

methods allow the use of much larger time steps in the computation. The
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main advantage is that they preserve the stability of lower order methods

used initially.

The differential quadrature method developed in [76] and described in

Section 1.3.1 was also applied in the two dimensional problem. In this case,

to overcome the problem of the big computational effort required in two

dimensions, the following procedure is done: the discretized system is

reduced by removing the entries in the coefficient matrix, which correspond

to known initial and Dirichlet boundary conditions, and the right hand side

of the reduced system is modified taking into account the removed known

entries. All required time level values are present in the solution.

1.4 Original contributions

The study of hyperbolic diffusive equations have been appearing in many

other works such as [3, 43, 52, 56, 61, 78, 83, 84, 94, 96]. They deserved

our attention for their innovation in theoretical analysis and/or interesting

applications. However, in this literature review we have mainly described

numerical methods for equations more similar to equations (1.9) and (1.10)

and that have more closely inspired our original work.

Our original contributions concerns the development of numerical

methods, in one and two dimensions, to solve equations (1.9) and (1.10),

respectively. The particular features of those contributions can be summa-

rized as the following:

(i) Development of an implicit numerical method taking into account a

potential field, as well as its convergence analysis, implemented in

Chapter 2 for the one dimensional case.

(ii) Convergence of an inverse Laplace transform algorithm and the

convergence of methods presented in Chapter 3. The introduction of

a symmetric periodic potential field, which is a practical application of

equation (1.9). Some of this work is published in papers:
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C. Neves, A. Araújo, E. Sousa, Numerical approximation of a transport

equation with a time-dependent dispersion flux, AIP Conference

Proceedings 1048: 403–406, 2008,

A. Araújo, C. Neves, E. Sousa, A Laplace transform piecewise linearized

method for a second order hyperbolic equation, AIP Conference

Proceedings, 1479: 2187-2190, 2012

and

A. Araújo, A. K. Das, C. Neves, E. Sousa, Numerical solution for a non-

Fickian diffusion in a periodic potential, Communications in Computa-

tional Physics, 13(2): 502–525, 2013.

(iii) Implementation of an ADI numerical method to solve the hyperbolic

two dimensional equation (1.10). The presence of functions 𝑃 and 𝑄

makes the proof of stability by the energy method more challenging.

The numerical method, its convergence analysis and some numerical

results contained in Chapter 4 are submitted for publication:

A. Araújo, C. Neves, E. Sousa, An alternating direction implicit method

for a two-dimensional hyperbolic diffusion equation, submitted for

publication, 2013.



Chapter 2

The Crank-Nicolson method

The main purpose of this chapter is to find approximate solutions of an

initial boundary value problem for equation (1.9). We start to implement an

implicit finite difference method which is a Crank-Nicolson method [19] with

first order discretization in time and second order discretizations in space.

The second order accuracy of the method as well as its stability are proved.

Finally, in Section 2.3 we illustrate the performance of the numerical method

with some numerical results.

2.1 Numerical method

We consider the problem

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢 (𝑥, 𝑡)) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡) , (2.1)

with initial conditions

𝑢 (𝑥, 0) = 𝑢0(𝑥), 𝜃
∂𝑢

∂𝑡
(𝑥, 0) = 𝑢1(𝑥), 𝑥 ∈ [𝑎, 𝑏] , (2.2)

and Dirichlet boundary conditions

𝑢 (𝑎, 𝑡) = 𝑓(𝑡), 𝑢 (𝑏, 𝑡) = 𝑔(𝑡), 𝑡 > 0. (2.3)

A finite difference scheme based on the Crank-Nicolson method is developed.

Due to the second derivative in time, direct discretization of (2.1) leads to a

27
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finite difference scheme that is three-level in time. To avoid a three-level

discretization scheme we introduce an auxiliary function, following the idea

in [98]:

𝑤 = 𝜃
∂𝑢

∂𝑡
+ 𝑢 (2.4)

and change the differential equation (2.1) into

∂𝑤

∂𝑡
= − ∂

∂𝑥
(𝑃𝑢) + 𝐷

∂2𝑢

∂𝑥2
= −𝑃 ′𝑢 − 𝑃

∂𝑢

∂𝑥
+ 𝐷

∂2𝑢

∂𝑥2
, (2.5)

where 𝑃 ′ denotes the derivative of 𝑃 (𝑥). We consider the mesh points in

Ω = [𝑎, 𝑏] given by

𝑥𝑖 = 𝑎 + 𝑖Δ𝑥, 𝑖 = 0, . . . , 𝑁,

with Δ𝑥 = (𝑏 − 𝑎)/𝑁 , where 𝑁 is a positive integer. For 0 ≤ 𝑡 ≤ 𝑇𝑓 , let

𝑡𝑛 = 𝑛Δ𝑡, with Δ𝑡 being the time increment and 𝑛Δ𝑡 ≤ 𝑇𝑓 . We denote the

approximate solutions to 𝑢(𝑥𝑖, 𝑡𝑛) and 𝑤(𝑥𝑖, 𝑡𝑛) by 𝑈𝑛
𝑖 and 𝑊 𝑛

𝑖 , respectively,

𝑃 (𝑥𝑖) by 𝑃𝑖 and 𝑃 ′(𝑥𝑖) by 𝑃 ′
𝑖 . The discretization of equations (2.4) and (2.5) is

made using the Crank-Nicolson method:

𝑊 𝑛+1
𝑖 + 𝑊 𝑛

𝑖 = 𝑈𝑛+1
𝑖 + 𝑈𝑛

𝑖 +
2𝜃

Δ𝑡

(
𝑈𝑛+1
𝑖 − 𝑈𝑛

𝑖

)
(2.6)

and

𝑊 𝑛+1
𝑖 − 𝑊 𝑛

𝑖

Δ𝑡
= − 1

2
𝑃 ′
𝑖 (𝑈

𝑛+1
𝑖 + 𝑈𝑛

𝑖 )−
𝑃𝑖
2

[
𝑈𝑛+1
𝑖+1 − 𝑈𝑛+1

𝑖−1

2Δ𝑥
+

𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖−1

2Δ𝑥

]

+
𝐷

2

[
𝑈𝑛+1
𝑖−1 − 2𝑈𝑛+1

𝑖 + 𝑈𝑛+1
𝑖+1

Δ𝑥2
+

𝑈𝑛
𝑖−1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖+1

Δ𝑥2

]
. (2.7)

To write the scheme (2.6)-(2.7) in matrix form we solve equation (2.6) for

𝑊 𝑛+1
𝑖 and get

𝑊 𝑛+1
𝑖 =

(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1
𝑖 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛
𝑖 − 𝑊 𝑛

𝑖 . (2.8)

Substituting (2.8) into (2.7) gives
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1

Δ𝑡

[(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1
𝑖 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛
𝑖 − 2𝑊 𝑛

𝑖

]
= −𝑃 ′

𝑖

2
(𝑈𝑛+1

𝑖 + 𝑈𝑛
𝑖 )−

𝑃𝑖
4Δ𝑥

(
𝑈𝑛+1
𝑖+1 − 𝑈𝑛+1

𝑖−1 + 𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖−1

)
+

𝐷

2Δ𝑥2

[(
𝑈𝑛+1
𝑖−1 − 2𝑈𝑛+1

𝑖 + 𝑈𝑛+1
𝑖+1

)
+
(
𝑈𝑛
𝑖−1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖+1

)]
.

After simplification we have(
− 1

4Δ𝑥
𝑃𝑖 − 𝐷

2Δ𝑥2

)
𝑈𝑛+1
𝑖−1 +

[
1

Δ𝑡

(
1 +

2𝜃

Δ𝑡

)
+

𝑃 ′
𝑖

2
+

𝐷

Δ𝑥2

]
𝑈𝑛+1
𝑖

+

(
1

4Δ𝑥
𝑃𝑖 − 𝐷

2Δ𝑥2

)
𝑈𝑛+1
𝑖+1

=

(
1

4Δ𝑥
𝑃𝑖 +

𝐷

2Δ𝑥2

)
𝑈𝑛
𝑖−1 +

[
− 1

Δ𝑡

(
1− 2𝜃

Δ𝑡

)
− 𝑃 ′

𝑖

2
− 𝐷

Δ𝑥2

]
𝑈𝑛
𝑖

+

(
− 1

4Δ𝑥
𝑃𝑖 +

𝐷

2Δ𝑥2

)
𝑈𝑛
𝑖+1 +

2

Δ𝑡
𝑊 𝑛

𝑖 𝑖 = 1, . . . , 𝑁 − 1, (2.9)

which will be used to compute 𝑈𝑛+1
𝑖 . After that, 𝑈𝑛+1

𝑖 is substituted into (2.8)

to compute 𝑊 𝑛+1
𝑖 .

From (2.8) and (2.9) we obtain the system

⎧⎨⎩
𝐴𝑈𝑛+1 = 𝐵𝑈𝑛 +

2

Δ𝑡
𝑊 𝑛 + 𝑑

𝑊 𝑛+1 =

(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛 − 𝑊 𝑛

, (2.10)

where 𝐴 and 𝐵 are band matrixes of size (𝑁 − 1) × (𝑁 − 1) with bandwidth

three,

𝑈𝑛+1 =
[
𝑈𝑛+1
1 , . . . , 𝑈𝑛+1

𝑁−1

]𝑇
, 𝑈𝑛 =

[
𝑈𝑛
1 , . . . , 𝑈𝑛

𝑁−1

]𝑇
,

𝑊 𝑛+1 =
[
𝑊 𝑛+1

1 , . . . ,𝑊 𝑛+1
𝑁−1

]𝑇
, 𝑊 𝑛 =

[
𝑊 𝑛

1 , . . . ,𝑊 𝑛
𝑁−1

]𝑇
,

and 𝑑 contains boundary conditions. Therefore,
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𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴21 𝐴31

𝐴12 𝐴22 𝐴32

. . . . . . . . .

𝐴1𝑁−2 𝐴2𝑁−2 𝐴3𝑁−2

𝐴1𝑁−1 𝐴2𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵21 𝐵31

𝐵12 𝐵22 𝐵32

. . . . . . . . .

𝐵1𝑁−2 𝐵2𝑁−2 𝐵3𝑁−2

𝐵1𝑁−1 𝐵2𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝑑 =
[−𝐴11𝑈

𝑛+1
0 + 𝐵11𝑈

𝑛
0 , 0, . . . , 0,−𝐴3𝑁−1𝑈

𝑛+1
𝑁 + 𝐵3𝑁−1𝑈

𝑛
𝑁

]𝑇
,

where
𝐴1𝑖 = − 1

4Δ𝑥
𝑃𝑖 − 𝐷

2Δ𝑥2
, 𝐵1𝑖 =

1

4Δ𝑥
𝑃𝑖 +

𝐷

2Δ𝑥2
,

𝐴2𝑖 =
1

Δ𝑡

(
1 +

2𝜃

Δ𝑡

)
+

𝑃 ′
𝑖

2
+

𝐷

Δ𝑥2
, 𝐵2𝑖 = − 1

Δ𝑡

(
1− 2𝜃

Δ𝑡

)
− 𝑃 ′

𝑖

2
− 𝐷

Δ𝑥2
,

𝐴3𝑖 =
1

4Δ𝑥
𝑃𝑖 − 𝐷

2Δ𝑥2
, 𝐵3𝑖 = − 1

4Δ𝑥
𝑃𝑖 +

𝐷

2Δ𝑥2
,

for 𝑖 = 1, . . . , 𝑁 − 1.

In order to simplify the notation of this numerical method, we define the

following difference operators. The first order forward and the backward

difference operators are given by

𝛿+𝑥 𝑈𝑛
𝑖 =

𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖

Δ𝑥
and 𝛿−𝑥 𝑈𝑛

𝑖 =
𝑈𝑛
𝑖 − 𝑈𝑛

𝑖−1

Δ𝑥
. (2.11)

The first order centered difference operator is defined by

𝛿𝑥𝑈
𝑛
𝑖 =

1

2
[𝛿+𝑥 + 𝛿−𝑥 ]𝑈

𝑛
𝑖 =

𝑈𝑛
𝑖+1 − 𝑈𝑛

𝑖−1

2Δ𝑥
(2.12)

and the second order centered difference operator is defined by

𝛿2𝑥𝑈
𝑛
𝑖 =

𝑈𝑛
𝑖−1 − 2𝑈𝑛

𝑖 + 𝑈𝑛
𝑖+1

Δ𝑥2
. (2.13)
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Using the discretization operators defined in (2.12)-(2.13) and by denoting

the set of discretization points 𝑈𝑛 = {𝑈𝑛
𝑖 }, 𝑃𝑈𝑛 = {𝑃𝑖𝑈𝑛

𝑖 }, 𝑃 ′𝑈𝑛 = {𝑃 ′
𝑖𝑈

𝑛
𝑖 }

and 𝑊 𝑛 = {𝑊 𝑛
𝑖 }, the numerical method (2.6)-(2.7) can be written in the form

𝑊 𝑛+1 + 𝑊 𝑛 = 𝑈𝑛+1 + 𝑈𝑛 +
2𝜃

Δ𝑡

(
𝑈𝑛+1 − 𝑈𝑛

)
(2.14)

and

𝑊 𝑛+1−𝑊 𝑛 = −Δ𝑡

2
𝑃 ′(𝑈𝑛+1+𝑈𝑛)−Δ𝑡

2
𝑃𝛿𝑥
(
𝑈𝑛+1 + 𝑈𝑛

)
+

𝐷Δ𝑡

2
𝛿2𝑥
(
𝑈𝑛+1 + 𝑈𝑛

)
.

(2.15)

2.2 Consistency and stability analysis

This section is concerned with the conditions that must be satisfied to

ensure the convergence of the numerical method. We start to discuss the

consistency, which measures how well the difference equation (2.9) approxi-

mates the partial differential equation (2.5) and then, we analyze the stabil-

ity of the difference scheme.

In the next proposition we prove the second order accuracy of the Crank-

Nicolson method.

Proposition 2.2.1. For the Crank-Nicolson discretization (2.8)-(2.9) we have,

for a sufficiently smooth 𝑢,

𝐴1𝑖𝑢
𝑛+1
𝑖−1 + 𝐴2𝑖𝑢

𝑛+1
𝑖 + 𝐴3𝑖𝑢

𝑛+1
𝑖+1 − 𝐵1𝑖𝑢

𝑛
𝑖−1 − 𝐵2𝑖𝑢

𝑛
𝑖 − 𝐵3𝑖𝑢

𝑛
𝑖+1 −

2

Δ𝑡
𝑤𝑛
𝑖

=

(
𝜃
∂2𝑢

∂𝑡2
+

∂𝑢

∂𝑡
+ 𝑃 ′

𝑖𝑢 + 𝑃𝑖
∂𝑢

∂𝑥
− 𝐷

∂2𝑢

∂𝑥2

)𝑛+1/2

𝑖

+𝒪(Δ𝑥2 +Δ𝑡2). (2.16)

Proof: Let us substitute the exact solution 𝑢(𝑥, 𝑡) in the numerical method

(2.9), that is,

𝐴1𝑖𝑢
𝑛+1
𝑖−1 + 𝐴2𝑖𝑢

𝑛+1
𝑖 + 𝐴3𝑖𝑢

𝑛+1
𝑖+1 − 𝐵1𝑖𝑢

𝑛
𝑖−1 − 𝐵2𝑖𝑢

𝑛
𝑖 − 𝐵3𝑖𝑢

𝑛
𝑖+1 −

2

Δ𝑡
𝑤𝑛
𝑖 = 0.

In order to estimate the size of the truncation error, we expand the

functions 𝑢𝑛+1
𝑖−1 , 𝑢𝑛+1

𝑖 , 𝑢𝑛+1
𝑖+1 , 𝑢𝑛𝑖−1, 𝑢

𝑛
𝑖 and 𝑢𝑛𝑖+1 into a Taylor series around the

point
(
𝑥𝑖, 𝑡𝑛+1/2

)
. Therefore, we have



32 The Crank-Nicolson method

𝐴1𝑖𝑢
𝑛+1
𝑖−1 + 𝐴2𝑖𝑢

𝑛+1
𝑖 + 𝐴3𝑖𝑢

𝑛+1
𝑖+1 − 𝐵1𝑖𝑢

𝑛
𝑖−1 − 𝐵2𝑖𝑢

𝑛
𝑖 − 𝐵3𝑖𝑢

𝑛
𝑖+1

=

[(
2

Δ𝑡
+ 𝑃 ′

𝑖

)
𝑢 +

2𝜃

Δ𝑡

∂𝑢

∂𝑡
+

(
Δ𝑡

4
+

Δ𝑡2

8
𝑃 ′
𝑖

)
∂2𝑢

∂𝑡2
+

𝜃Δ𝑡

12

∂3𝑢

∂𝑡3

]𝑛+1/2

𝑖

+

[
𝑃𝑖

∂𝑢

∂𝑥
+

Δ𝑡2

8
𝑃𝑖

∂3𝑢

∂𝑡2∂𝑥
− 𝐷

∂2𝑢

∂𝑥2
+

Δ𝑥2

6
𝑃𝑖

∂3𝑢

∂𝑥3

]𝑛+1/2

𝑖

+ ⋅ ⋅ ⋅ . (2.17)

On the other hand, expanding the equality (2.8)

𝑤𝑛+1
𝑖 =

(
1 +

2𝜃

Δ𝑡

)
𝑢𝑛+1
𝑖 +

(
1− 2𝜃

Δ𝑡

)
𝑢𝑛𝑖 − 𝑤𝑛

𝑖

around the point (𝑥𝑖, 𝑡𝑛+1/2) we reach to(
𝑤 +

Δ𝑡

2

∂𝑤

∂𝑡
+

Δ𝑡2

8

∂2𝑤

∂𝑡2
+

Δ𝑡3

48

∂3𝑤

∂𝑡3

)𝑛+1/2

𝑖

=

(
1 +

2𝜃

Δ𝑡

)(
𝑢 +

Δ𝑡

2

∂𝑢

∂𝑡
+

Δ𝑡2

8

∂2𝑢

∂𝑡2
+

Δ𝑡3

48

∂3𝑢

∂𝑡3

)𝑛+1/2

𝑖

+

(
1− 2𝜃

Δ𝑡

)(
𝑢 − Δ𝑡

2

∂𝑢

∂𝑡
+

Δ𝑡2

8

∂2𝑢

∂𝑡2
− Δ𝑡3

48

∂3𝑢

∂𝑡3

)𝑛+1/2

𝑖

−
(

𝑤 − Δ𝑡

2

∂𝑤

∂𝑡
+

Δ𝑡2

8

∂2𝑤

∂𝑡2
− Δ𝑡3

48

∂3𝑤

∂𝑡3

)𝑛+1/2

𝑖

+ ⋅ ⋅ ⋅ ,

that is,

𝑤
𝑛+1/2
𝑖 =

(
𝑢 + 𝜃

∂𝑢

∂𝑡
+

Δ𝑡2

8

∂2𝑢

∂𝑡2
+ 𝜃

Δ𝑡2

24

∂3𝑢

∂𝑡3
− Δ𝑡2

8

∂2𝑤

∂𝑡2
+ ⋅ ⋅ ⋅

)𝑛+1/2

𝑖

.(2.18)

Since

𝑤𝑛
𝑖 =

(
𝑤 − Δ𝑡

2

∂𝑤

∂𝑡
+

Δ𝑡2

8

∂2𝑤

∂𝑡2
− Δ𝑡3

48

∂3𝑤

∂𝑡3
+ ⋅ ⋅ ⋅

)𝑛+1/2

𝑖

,

substituting 𝑤
𝑛+1/2
𝑖 from (2.18) gives

𝑤𝑛
𝑖 =

(
𝑢 + 𝜃

∂𝑢

∂𝑡
+

Δ𝑡2

8

∂2𝑢

∂𝑡2
+ 𝜃

Δ𝑡2

24

∂3𝑢

∂𝑡3
− Δ𝑡

2

∂𝑤

∂𝑡
− Δ𝑡3

48

∂3𝑤

∂𝑡3

)𝑛+1/2

𝑖

+ ⋅ ⋅ ⋅ .

From (2.4) we can write(
∂𝑤

∂𝑡

)𝑛+1/2

𝑖

=

(
∂𝑢

∂𝑡
+ 𝜃

∂2𝑢

∂𝑡2

)𝑛+1/2

𝑖

and
(

∂3𝑤

∂𝑡3

)𝑛+1/2

𝑖

=

(
∂3𝑢

∂𝑡3
+ 𝜃

∂4𝑢

∂𝑡4

)𝑛+1/2

𝑖

.
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Therefore,

𝑤𝑛
𝑖 =

(
𝑢 +

(
𝜃 − Δ𝑡

2

)
∂𝑢

∂𝑡
+

(
Δ𝑡2

8
− 𝜃

Δ𝑡

2

)
∂2𝑢

∂𝑡2

)𝑛+1/2

𝑖

+

(
𝜃
Δ𝑡2

24
− Δ𝑡3

48

)(
∂3𝑢

∂𝑡3

)𝑛+1/2

𝑖

+ ⋅ ⋅ ⋅ . (2.19)

Finally, rearranging the terms in (2.17) and (2.19),

𝐴1𝑖𝑢
𝑛+1
𝑖−1 + 𝐴2𝑖𝑢

𝑛+1
𝑖 + 𝐴3𝑖𝑢

𝑛+1
𝑖+1 − 𝐵1𝑖𝑢

𝑛
𝑖−1 − 𝐵2𝑖𝑢

𝑛
𝑖 − 𝐵3𝑖𝑢

𝑛
𝑖+1 −

2

Δ𝑡
𝑤𝑛
𝑖

=

(
𝜃 ∂

2𝑢
∂𝑡2 +

∂𝑢

∂𝑡
+ 𝑃 ′

𝑖𝑢 + 𝑃𝑖
∂𝑢
∂𝑥 − 𝐷 ∂2𝑢

∂𝑥2

)𝑛+1/2

𝑖

+

(
Δ𝑡2

8
𝑃 ′
𝑖

∂2𝑢

∂𝑡2
+

Δ𝑡2

24

∂3𝑢

∂𝑡3
+

Δ𝑡2

8
𝑃𝑖

∂3𝑢

∂𝑡2∂𝑥
+

Δ𝑥2

6
𝑃𝑖

∂3𝑢

∂𝑥3

)𝑛+1/2

𝑖

+ ⋅ ⋅ ⋅

=

(
𝜃
∂2𝑢

∂𝑡2
+

∂𝑢

∂𝑡
+ 𝑃 ′

𝑖𝑢 + 𝑃𝑖
∂𝑢

∂𝑥
− 𝐷

∂2𝑢

∂𝑥2

)𝑛+1/2

𝑖

+𝒪(Δ𝑥2 +Δ𝑡2).

■

According to this result, we can conclude that the truncation error is

𝒪(Δ𝑥2 + Δ𝑡2) which confirms the difference scheme is consistent and

second order accurate.

Now, to prove the stability of the method we use the discrete energy

method [53, 98]. Let us start to define the set of discrete values with

homogeneous boundary conditions. Assume that

𝒢 = {𝑈 ∣𝑈 = {𝑈𝑖}, 𝑈0 = 𝑈𝑁 = 0}.

For 𝑈, 𝑉 ∈ 𝒢, we define the inner product and norm respectively as

(𝑈, 𝑉 ) = Δ𝑥

𝑁−1∑
𝑖=1

𝑈𝑖𝑉𝑖, ∥𝑈∥2 = (𝑈,𝑈) = Δ𝑥

𝑁−1∑
𝑖=1

𝑈2
𝑖 . (2.20)

We also define the following inner products that involve the first order

discretization operators of 𝑈, 𝑉 ∈ 𝒢:

(
𝛿+𝑥 𝑈, 𝛿+𝑥 𝑉

)
∗ = Δ𝑥

𝑁−1∑
𝑖=0

𝛿+𝑥 𝑈𝑖𝛿
+
𝑥 𝑉𝑖 and ∥𝛿+𝑥 𝑈∥2∗ =

(
𝛿+𝑥 𝑈, 𝛿+𝑥 𝑈

)
∗ .

Next, we introduce some lemmas to prove the main result.
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Lemma 2.2.1. For any 𝑊 ∈ 𝒢,

∥𝛿𝑥𝑊∥ ≤ ∥𝛿+𝑥 𝑊∥∗.

Proof: We have

∥𝛿𝑥𝑊∥2 = Δ𝑥

𝑁−1∑
𝑖=1

(𝛿𝑥𝑊𝑖)
2 = Δ𝑥

𝑁−1∑
𝑖=1

(
1

2
(𝛿+𝑥 𝑊𝑖 + 𝛿−𝑥 𝑊𝑖))

2.

Using the inequality (𝑎+ 𝑏)2 ≤ 2𝑎2+2𝑏2 and then shifting the index 𝑖 in both

summations yields

∥𝛿𝑥𝑊∥2 ≤ 1

2
Δ𝑥

𝑁−1∑
𝑖=1

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

+
1

2
Δ𝑥

𝑁−1∑
𝑖=1

(
𝑊𝑖 − 𝑊𝑖−1

Δ𝑥

)2

=
1

2
Δ𝑥

𝑁−1∑
𝑖=0

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

− 1

2
Δ𝑥

(
𝑊1 − 𝑊0

Δ𝑥

)2

+
1

2
Δ𝑥

𝑁−2∑
𝑖=0

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

≤ 1

2
Δ𝑥

𝑁−1∑
𝑖=0

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

+
1

2
Δ𝑥

𝑁−1∑
𝑖=0

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

− 1

2
Δ𝑥

(
𝑊𝑁 − 𝑊𝑁−1

Δ𝑥

)2

≤ Δ𝑥

𝑁−1∑
𝑖=0

(
𝑊𝑖+1 − 𝑊𝑖

Δ𝑥

)2

= Δ𝑥
𝑁−1∑
𝑖=0

(𝛿+𝑥 𝑊𝑖)
2 = ∥𝛿+𝑥 𝑊∥2∗.

■

The following lemma is the well known property of summation by parts

[53, 98].

Lemma 2.2.2. For any 𝑈, 𝑉 ∈ 𝒢,

(
𝛿2𝑥𝑈, 𝑉

)
= − (𝛿+𝑥 𝑈, 𝛿+𝑥 𝑉

)
∗ .
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Proof: We have

(𝛿2𝑥𝑈, 𝑉 ) = Δ𝑥
𝑁−1∑
𝑖=1

𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1

Δ𝑥2
𝑉𝑖

= Δ𝑥

𝑁−1∑
𝑖=1

𝑈𝑖+1 − 𝑈𝑖

Δ𝑥2
𝑉𝑖 −Δ𝑥

𝑁−1∑
𝑖=1

𝑈𝑖 − 𝑈𝑖−1

Δ𝑥2
𝑉𝑖

= Δ𝑥

𝑁−1∑
𝑖=0

𝑈𝑖+1 − 𝑈𝑖

Δ𝑥2
𝑉𝑖 −Δ𝑥

𝑁−1∑
𝑖=0

𝑈𝑖+1 − 𝑈𝑖

Δ𝑥2
𝑉𝑖+1

= −Δ𝑥

𝑁−1∑
𝑖=0

𝑈𝑖+1 − 𝑈𝑖

Δ𝑥

𝑉𝑖+1 − 𝑉𝑖
Δ𝑥

= −(𝛿+𝑥 𝑈, 𝛿+𝑥 𝑉 )∗.

In the third line we shifted the indices in both summations and use the fact

that 𝑉0 = 𝑉𝑁 = 0.

■

Let us suppose that 𝑃 (𝑥) has non-negative derivative 𝑃 ′(𝑥). We define

∥𝑈𝑛∥2𝑃 ′ = Δ𝑥
𝑁−1∑
𝑖=1

𝑃 ′
𝑖 (𝑈

𝑛
𝑖 )

2 and ∥𝑃∥2 =
𝑁−1∑
𝑖=1

(𝑃𝑖)
2.

Theorem 2.2.1. Suppose that {𝑈𝑛
𝑖 ,𝑊 𝑛

𝑖 } and {𝑉 𝑛
𝑖 , 𝑌 𝑛

𝑖 } are solutions of the

finite difference scheme (2.14)-(2.15) which satisfy the boundary conditions

(2.3), and have different initial values {𝑈0
𝑖 ,𝑊 0

𝑖 } and {𝑉 0
𝑖 , 𝑌 0

𝑖 } respectively.

Let 𝜔𝑛
𝑖 = 𝑊 𝑛

𝑖 − 𝑌 𝑛
𝑖 , 𝜖𝑛𝑖 = 𝑈𝑛

𝑖 − 𝑉 𝑛
𝑖 . For Δ𝑡 ≤ 2𝐷

∥𝑃∥2 , then {𝜔𝑛
𝑖 , 𝜖𝑛𝑖 } satisfy

∥𝜔𝑛+1∥2 + 𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗
≤ (1 + 𝐶Δ𝑡)

(∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗
)
, (2.21)

where 𝐶 denotes a constant independent of Δ𝑥,Δ𝑡.

Proof: For 𝜔𝑛 = {𝜔𝑛
𝑖 } and 𝜖𝑛 = {𝜖𝑛𝑖 }, from (2.15) we have

𝜔𝑛+1 − 𝜔𝑛 = −Δ𝑡

2
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛)− Δ𝑡

2
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
+

𝐷Δ𝑡

2
𝛿2𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
.

(2.22)
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Multiplying both sides of (2.22) by 𝜔𝑛+1+𝜔𝑛 with respect to the inner product

(2.20) we obtain

(𝜔𝑛+1 − 𝜔𝑛, 𝜔𝑛+1 + 𝜔𝑛) = − Δ𝑡

2
(𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛)

− Δ𝑡

2
(𝑃𝛿𝑥

(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛)

+
𝐷Δ𝑡

2
(𝛿2𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛). (2.23)

Considering (2.14) and the norm definitions we have(
𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝛿+𝑥
(
𝜔𝑛+1 + 𝜔𝑛

))
∗

=
(
𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

))
∗ +

2𝜃

Δ𝑡

(
𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝛿+𝑥
(
𝜖𝑛+1 − 𝜖𝑛

))
∗

= ∥𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

) ∥2∗ + 2𝜃

Δ𝑡

(∥𝛿+𝑥 𝜖𝑛+1∥2∗ − ∥𝛿+𝑥 𝜖𝑛∥2∗
)
. (2.24)

Using summation by parts we can rewrite (2.23) as

∥𝜔𝑛+1∥2 − ∥𝜔𝑛∥2

= −Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛

)− Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
−𝐷Δ𝑡

2

(
𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝛿+𝑥
(
𝜔𝑛+1 + 𝜔𝑛

))
∗

which gives, from (2.24)

∥𝜔𝑛+1∥2 − ∥𝜔𝑛∥2

= −Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛

)− Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
−𝐷Δ𝑡

2
∥𝛿+𝑥
(
𝜖𝑛+1 + 𝜖𝑛

) ∥2∗ − 𝐷𝜃
(∥𝛿+𝑥 𝜖𝑛+1∥2∗ − ∥𝛿+𝑥 𝜖𝑛∥2∗

)
. (2.25)

Let us now discuss the terms with 𝑃 . We first consider the term

−Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛

)
which is, by (2.14),

−Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜖𝑛+1 + 𝜖𝑛

)− 𝜃
(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜖𝑛+1 − 𝜖𝑛

)
= −Δ𝑡Δ𝑥

2

𝑁−1∑
𝑖=1

𝑃 ′
𝑖

(
𝜖𝑛+1
𝑖 + 𝜖𝑛𝑖

)2 − 𝜃Δ𝑥

𝑁−1∑
𝑖=1

𝑃 ′
𝑖

(
𝜖𝑛+1
𝑖

)2
+ 𝜃Δ𝑥

𝑁−1∑
𝑖=1

𝑃 ′
𝑖 (𝜖

𝑛
𝑖 )

2

≤ −𝜃Δ𝑥
𝑁−1∑
𝑖=1

𝑃 ′
𝑖

(
𝜖𝑛+1
𝑖

)2
+ 𝜃Δ𝑥

𝑁−1∑
𝑖=1

𝑃 ′
𝑖 (𝜖

𝑛
𝑖 )

2 ,
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with the assumption that 𝑃 ′(𝑥) is non-negative. Then,

−Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛

) ≤ −𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝜃∥𝜖𝑛∥2𝑃 ′ . (2.26)

Let us know consider the term

−Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
.

Using the Cauchy-Schwarz inequality, Lemma 2.2.1 and also the inequality

𝑎𝑏 ≤ 𝜂𝑎2 + 𝑏2/4𝜂, for 𝜂 > 0, we have

−Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
≤ Δ𝑡

2
∥𝑃𝛿𝑥(𝜖

𝑛+1 + 𝜖𝑛)∥∥𝜔𝑛+1 + 𝜔𝑛∥

≤ Δ𝑡

2
𝜂∥𝑃𝛿𝑥(𝜖

𝑛+1 + 𝜖𝑛)∥2 + Δ𝑡

2

1

4𝜂
∥𝜔𝑛+1 + 𝜔𝑛∥2

≤ Δ𝑡

2
𝜂∥𝑃∥2∥𝛿𝑥(𝜖𝑛+1 + 𝜖𝑛)∥2 + Δ𝑡

8𝜂
∥𝜔𝑛+1 + 𝜔𝑛∥2

≤ Δ𝑡

2
𝜂∥𝑃∥2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗ +

Δ𝑡

8𝜂
∥𝜔𝑛+1 + 𝜔𝑛∥2.

Since (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, we can conclude that

−Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
≤ Δ𝑡

2
𝜂∥𝑃∥2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗ +

Δ𝑡

4𝜂

(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2) . (2.27)

From (2.25) and the inequalities (2.26)-(2.27), we obtain

∥𝜔𝑛+1∥2
(
1− Δ𝑡

4𝜂

)
+ 𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗

≤ ∥𝜔𝑛∥2
(
1 +

Δ𝑡

4𝜂

)
+ 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗

+

(
Δ𝑡

2
𝜂∥𝑃∥2 − 𝐷

Δ𝑡

2

)
∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗.

Let us choose 𝜂 ≤ 𝐷
∥𝑃∥2 . Then, Δ𝑡

2 𝜂∥𝑃∥2 − 𝐷Δ𝑡
2 ≤ 0 and we can drop the last

term of the previous inequality. This means that we can write

∥𝜔𝑛+1∥2
(
1− Δ𝑡

4𝜂

)
+ 𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗

≤ ∥𝜔𝑛∥2
(
1 +

Δ𝑡

4𝜂

)
+ 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗.
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Let Δ𝑡 ≤ 2𝜂. Therefore, 1− Δ𝑡
4𝜂 > 0 and it follows

(
1− Δ𝑡

4𝜂

)(∥𝜔𝑛+1∥2 + 𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗
)

≤
(
1 +

Δ𝑡

4𝜂

)(∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗
)

which implies

∥𝜔𝑛+1∥2+ 𝜃∥𝜖𝑛+1∥2𝑃 ′ +𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗ ≤
1 + Δ𝑡

4𝜂

1− Δ𝑡
4𝜂

(∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗
)
.

Finally, by noting that

1 + Δ𝑡
4𝜂

1− Δ𝑡
4𝜂

= 1 +

Δ𝑡
2𝜂

1− Δ𝑡
4𝜂

= 1 +

1
2𝜂

1− Δ𝑡
4𝜂

Δ𝑡 = 1 +
1/2

𝜂 − Δ𝑡
4

Δ𝑡

≤ 1 +
1/2

𝜂 − 𝜂
2

Δ𝑡 = 1 +
1

𝜂
Δ𝑡

and defining 𝐶 = 1
𝜂 we obtain

∥𝜔𝑛+1∥2 + 𝜃∥𝜖𝑛+1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛+1∥2∗
≤ (1 + 𝐶Δ𝑡)

(∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗
)
.

■

From the previous theorem we get the following result.

Corollary 2.2.1. Suppose that {𝑈𝑛
𝑖 ,𝑊 𝑛

𝑖 } and {𝑉 𝑛
𝑖 , 𝑌 𝑛

𝑖 } are solutions of the

finite difference scheme (2.14)-(2.15) which satisfy the boundary conditions

(2.3), and have different initial values {𝑈0
𝑖 ,𝑊 0

𝑖 } and {𝑉 0
𝑖 , 𝑌 0

𝑖 } respectively.

Let 𝜔𝑛
𝑖 = 𝑊 𝑛

𝑖 − 𝑌 𝑛
𝑖 , 𝜖𝑛𝑖 = 𝑈𝑛

𝑖 − 𝑉 𝑛
𝑖 . For Δ𝑡 ≤ 2𝐷

∥𝑃∥2 , then {𝜔𝑛
𝑖 , 𝜖𝑛𝑖 } satisfy

∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗ ≤ 𝐾
(∥𝜔0∥2 + 𝜃∥𝜖0∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖0∥2∗

)
, (2.28)

where 𝐾 denotes a constant independent of Δ𝑥,Δ𝑡.
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Proof: The result follows from Theorem 2.2.1 by making recursion with

respect to 𝑛. In fact, for a constant 𝐶 independent of Δ𝑥 and Δ𝑡, we have

∥𝜔𝑛∥2 + 𝜃∥𝜖𝑛∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛∥2∗
≤ (1 + 𝐶Δ𝑡)

(∥𝜔𝑛−1∥2 + 𝜃∥𝜖𝑛−1∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖𝑛−1∥2∗
)

≤ (1 + 𝐶Δ𝑡)𝑛
(∥𝜔0∥2 + 𝜃∥𝜖0∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖0∥2∗

)
≤ e𝐶𝑛Δ𝑡

(∥𝜔0∥2 + 𝜃∥𝜖0∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖0∥2∗
)

≤ e𝐶𝑇𝑓
(∥𝜔0∥2 + 𝜃∥𝜖0∥2𝑃 ′ + 𝐷𝜃∥𝛿+𝑥 𝜖0∥2∗

)
,

that proves the result with 𝐾 = e𝐶𝑇𝑓 .

■

Thus, we can conclude that the difference scheme is stable.

Remark 2.2.1. For 𝑃 = 0 it follows that the difference scheme (2.14)-(2.15) is

unconditionally stable.

Therefore, since we already proved that the Crank-Nicolson scheme is

consistent and stable, we can conclude that it is a convergent numerical

method by the Lax equivalence theorem.

2.3 Numerical results

In this section we present numerical results to test the performance of

the Crank-Nicolson method. We compare the numerical results with exact

solutions and we also illustrate the behavior of some solutions. We present

two problems for which we are able to determine the exact solution in order

to compute the errors and the convergence rate. In three other problems we

show how the solution behaves, for parabolic and hyperbolic cases with 𝑃

constant and 𝑃 non-constant. In this last case, we highlight an application

involving a periodic potential.

Let

𝜖𝑖 = 𝑢𝑖 − 𝑈𝑖, 𝜔𝑖 = 𝑤𝑖 − 𝑊𝑖, (2.29)

where 𝑢 is the exact solution, 𝑤 is defined by (2.4) and 𝑈 and 𝑊 are the

approximate solutions, respectively. To measure the error we consider the
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maximum norm, or ℓ∞ norm,

∥𝜖∥∞ = max ∣𝑢𝑖 − 𝑈𝑖∣ , ∥𝜔∥∞ = max ∣𝑤𝑖 − 𝑊𝑖∣, (2.30)

for 1 ≤ 𝑖 ≤ 𝑁 − 1, and the energy norm, or ℓ2,Δ𝑥 norm,

∥𝜖∥ =

(
Δ𝑥

𝑁−1∑
𝑖=1

𝜖2𝑖

)1/2

, ∥𝜔∥ =

(
Δ𝑥

𝑁−1∑
𝑖=1

𝜔2
𝑖

)1/2

. (2.31)

We consider the ℓ2,Δ𝑥 norm to measure the errors because it has been used

in the theoretical results of the last section. It is a variation of the Euclidean

norm ℓ2 and it is commonly used to measure the errors defined in (2.29)

since, as Δ𝑥 approaches zero, the ℓ2 norm of these functions goes to infinity

[90]. The maximum norm ℓ∞ measures the maximum of the error over the

interval [𝑎, 𝑏] and is also a natural choice whenever convergence is discussed.

Example 2.3.1. We start with the parabolic problem

∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝑃

∂𝑢

∂𝑥
(𝑥, 𝑡) +

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ]−∞,∞[ , 𝑡 > 0,

which initial condition is 𝑢(𝑥, 0) = e−𝑥2 and the boundary conditions are

lim
𝑥→−∞𝑢(𝑥, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑡) = 0.

The analytical solution is given by

𝑢 (𝑥, 𝑡) =
1√

1 + 4𝑡
e−

(𝑥−𝑃𝑡)2

1+4𝑡 .

In Table 2.1 we present the errors defined by norms ℓ∞ and ℓ2,Δ𝑥, at the

instant of time 𝑡 = 1. We consider Δ𝑡 = Δ𝑥 and observe the convergence rate

is second order as expected. The norm ℓ∞ provides slightly smaller errors.

Example 2.3.2. We consider now a more general problem with 𝜃 ∕= 0:

∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝑃

∂𝑢

∂𝑥
(𝑥, 𝑡) +

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ (0, 1), 𝑡 > 0,

with initial conditions

𝑢(𝑥, 0) = e𝑃𝑥/2 sinh(𝑥
√

(2 + 𝑃 2)/2),



2.3. Numerical results 41

Δ𝑥 Error ∥𝜖∥∞ Rate Error ∥𝜖∥ Rate
20/128 0.1438 × 10−2 0.2138 × 10−2

20/256 0.3591 × 10−3 2.0 0.5306 × 10−3 2.0
20/512 0.8502 × 10−4 2.1 0.1274 × 10−3 2.1
20/1024 0.2071 × 10−4 2.0 0.3125 × 10−4 2.0
20/2048 0.5177 × 10−5 2.0 0.7813 × 10−5 2.0

Table 2.1: Errors and rates obtained for Example 2.3.1 for 𝜃 = 0, 𝑡 = 1,
−10 ≤ 𝑥 ≤ 10, 𝑃 = 1 and Δ𝑡 = Δ𝑥, computed with the norms ℓ∞ and ℓ2,Δ𝑥.

∂𝑢

∂𝑡
(𝑥, 0) = −1 +

√
5 + 𝑃 2

2
e𝑃𝑥/2 sinh(𝑥

√
(2 + 𝑃 2)/2),

and boundary conditions

𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = e−(1+
√
5+𝑃 2)𝑡/2e𝑃/2 sinh(

√
(2 + 𝑃 2)/2).

The exact solution is given by

𝑢(𝑥, 𝑡) = e−(1+
√
5+𝑃 2)𝑡/2e𝑃𝑥/2 sinh(𝑥

√
(2 + 𝑃 2)/2).

The errors and convergence rate are presented in Table 2.2 and Table 2.3

for 𝑃 = 1, 𝑡 = 1 and different space steps. In this case, the norms defined by

ℓ2,Δ𝑥 show slightly smaller errors. We observe the method provides second

order accurate solutions when different norms are considered, as predicted

by Proposition 2.2.1.

Δ𝑥 Error ∥𝜖∥∞ Rate Error ∥𝜔∥∞ Rate
1/128 0.3781 × 10−5 0.2966 × 10−4

1/256 0.9433 × 10−6 2.0 0.7533 × 10−5 2.0
1/512 0.2357 × 10−6 2.0 0.1904 × 10−5 2.0
1/1024 0.5890 × 10−7 2.0 0.4800 × 10−6 2.0
1/2048 0.1477 × 10−7 2.0 0.1204 × 10−6 2.0

Table 2.2: Errors and rates obtained for Example 2.3.2 for 𝜃 = 1, 𝑃 = 1, 𝑡 = 1,
0 ≤ 𝑥 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ∞.

Example 2.3.3. To observe the behavior of the solution performed by the

numerical method we first consider the problem

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝑃

∂𝑢

∂𝑥
(𝑥, 𝑡) +

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,
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Δ𝑥 Error ∥𝜖∥ Rate Error ∥𝜔∥ Rate
1/128 0.2765 × 10−5 0.1596 × 10−4

1/256 0.6914 × 10−6 2.0 0.4005 × 10−5 2.0
1/512 0.1729 × 10−6 2.0 0.1004 × 10−5 2.0
1/1024 0.4321 × 10−7 2.0 0.2513 × 10−6 2.0
1/2048 0.1083 × 10−7 2.0 0.6287 × 10−7 2.0

Table 2.3: Errors and rates obtained for Example 2.3.2 for 𝜃 = 1, 𝑃 = 1, 𝑡 = 1,
0 ≤ 𝑥 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ2,Δ𝑥.

for 𝑃 constant, with initial conditions

𝑢(𝑥, 0) =
1

2
e−𝑥

2
, 𝜃

∂𝑢

∂𝑡
(𝑥, 0) = 𝑥e−𝑥

2

and boundary conditions

lim
𝑥→−∞𝑢(𝑥, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑡) = 0.

In Figure 2.1 we present the parabolic case, 𝜃 = 0, and in Figure 2.2 we

consider the hyperbolic case with 𝜃 ∕= 0. We can observe how the solution

changes with the direction of 𝑃 and also the evolution of the solution as

we travel in time. The solution 𝑢(𝑥, 𝑡) moves to the left and to the right,

depending on the sign of 𝑃 . It also dissipates as 𝑡 increases.
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Figure 2.1: Approximate solution obtained for Example 2.3.3 for 𝜃 = 0 and
Δ𝑡 = Δ𝑥 = 0.2. Left: 𝑃 = −2. Right: 𝑃 = 2.

Example 2.3.4. Let us consider now the problem with 𝑃 non-constant

∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢(𝑥, 𝑡)) +

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,
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Figure 2.2: Approximate solution obtained for Example 2.3.3 for 𝜃 = 0.2,
Δ𝑥 = 0.2, Δ𝑡 = 0.002. Left: 𝑃 = −2. Right: 𝑃 = 2.

with

𝑉 (𝑥;𝛼) =
1

𝐽0(i𝛼)
e𝛼 cos(𝑥) − 1

and

𝑃 (𝑥) = −𝑑𝑉

𝑑𝑥
= 𝛼 sin(𝑥)

1

𝐽0(i𝛼)
e𝛼 cos(𝑥),

where i is the imaginary unit and 𝐽0 is the Bessel function of the first kind

of zero order given by the series [95]

𝐽0(𝑥) =

∞∑
𝑚=0

(−1)𝑚

(𝑚!)2

(𝑥

2

)2𝑚
.

We consider the initial conditions

𝑢(𝑥, 0) =
1

𝐿
√

𝜋
e−𝑥

2/𝐿2
,

∂𝑢

∂𝑡
(𝑥, 0) = 0

and the boundary conditions

lim
𝑥→−∞𝑢(𝑥, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑡) = 0.

To see how the potential field 𝑉 (𝑥) affects the solution and also the

performance of the numerical method, we consider the same problem for

𝛼 = 1 and for 𝛼 = 16. To simulate the results for 𝛼 = 1 we can use the

Crank-Nicolson method, as shown in Figure 2.3, but to deal with the type of

solution that comes out for 𝛼 = 16 this numerical method can not be used

since it presents oscillations, as we can see in Figure 2.4. The oscillations
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Figure 2.3: Approximate solution obtained for Example 2.3.4 with 𝛼 = 1,
Δ𝑡 = Δ𝑥 = 0.06. Left: 𝑡 = 1. Right: 𝑡 = 3.
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Figure 2.4: Approximate solution obtained for Example 2.3.4 with 𝛼 = 16,
Δ𝑡 = Δ𝑥 = 0.06. Left: 𝑡 = 1. Right: 𝑡 = 3.

remain even for small values of the time step. With the need to solve this

problem, since it is very interesting in the physical point of view [4], a new

numerical strategy is required. To also avoid discretization in time, allowing

performances for long times, we introduce in the next chapter some alterna-

tive numerical methods. All of them are constructed based on the Laplace

transform which means that, in the end, an inversion has to be made to

obtain the approximate solution.



Chapter 3

Laplace transform numerical

methods

Taking in consideration that we are interested in the long time behavior

of solutions of equation (2.1), the idea of using the Laplace transform in time

arises naturally. Application of the Laplace transform is suitable in many

problems but implies its inversion to recover the final approximate solution

in time. To this end, we describe a numerical inverse Laplace transform

algorithm based on continued fractions [45]. The spatial discretization is

implemented with three different schemes. First, we present a scheme that

uses centered difference approximations after the application of the Laplace

transform; we call it the Laplace transform finite difference method.

However, there are problems where the Laplace transform finite difference

scheme presents oscillations, namely in the presence of discontinuous initial

conditions. Some of these oscillations disappear when we use a very small

space step but, in some cases, they still remain in the numerical solution.

Therefore, to overcome this disadvantage, we present another method for

the spatial discretization that uses a finite volume formulation [14]. Despite

the good results obtained with this method, it also presents oscillations when

one need to deal with large values of the ∣𝑃 ∣ parameter. Hence, a third

spatial discretization is used to suppress this handicap: a piecewise

linearized method [79]. Numerical tests are presented to compare the

45
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performance of these three different spatial discretizations. The rate of

convergence and the computational cost of methods based on the Laplace

transform are compared with the Crank-Nicolson method. Finally, the end

of the chapter describes a problem that contains a symmetric periodic poten-

tial field.

3.1 The Laplace transform inversion

The Laplace transform has been used in several works, such as [14]-

[17], to remove the time dependent terms and obtain an ordinary differential

equation in space variable. Using this technique and combining it with an

appropriate spatial discretization method has some advantages. First, we

can compute the approximate solution for long times accurately and quickly

and we do not need to do computations in the time domain using time

iterations. Secondly, it also avoids undesirable numerical oscillations that

are related with the bad choices of time steps. Any iterative numerical

method would take too long to compute the solution for similar times, due

to the increased computational effort for discretizing in time, even when

we consider an unconditionally implicit numerical method which will allow

large time steps. To solve problem (2.1)-(2.3) we apply also this technique

that can be separated in three steps. First, we apply the Laplace transform

to the partial differential equation and boundary conditions, in order to

remove the time dependent terms, yielding an ordinary differential equation

in the space variable that depends on the Laplace parameter. Secondly, we

solve the ordinary differential equation by an appropriate discretization in

space. Depending on the purposes and the specifications of problem (2.1)-

(2.3), we use different numerical methods for the spatial discretization. At

last, a numerical inverse Laplace transform algorithm is used to obtain the

final approximate solution in time and space.

The Laplace transform of the real valued function 𝑢(𝑥, 𝑡) is defined by

𝑢 (𝑥, 𝑠) =

∫ +∞

0
e−𝑠𝑡𝑢 (𝑥, 𝑡) 𝑑𝑡, (3.1)
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where 𝑠 is a complex variable. If we apply the Laplace transform (3.1) to

equation (2.1) we obtain

∫ +∞

0

(
𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡)

)
e−𝑠𝑡 𝑑𝑡 = (𝜃𝑠2 + 𝑠)𝑢(𝑥, 𝑠)− (1 + 𝜃𝑠)𝑢0(𝑥)− 𝑢1(𝑥)

and

∫ +∞

0

(
− ∂

∂𝑥
(𝑃 (𝑥)𝑢 (𝑥, 𝑡)) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡)

)
e−𝑠𝑡 𝑑𝑡 = − 𝑑

𝑑𝑥
(𝑃 (𝑥)𝑢(𝑥, 𝑠))+𝐷

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠).

Thus, we obtain the ordinary differential equation

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝜆2

𝑠𝑢(𝑥, 𝑠)− 𝑑

𝑑𝑥

(
𝑃 (𝑥)

𝐷
𝑢(𝑥, 𝑠)

)
= −𝑢0(𝑥)

𝐷
(1 + 𝜃𝑠)− 𝑢1(𝑥)

𝐷
, (3.2)

where 𝜆𝑠 =
(
(𝜃𝑠2 + 𝑠)/𝐷

)1/2. In the particular case where 𝑃 is a constant,

we do not need a spatial discretization and can directly apply the inverse

Laplace transform algorithm. In fact, if 𝑃 is a constant the exact solution of

(3.2) can be written in the form

𝑢 (𝑥, 𝑠) = 𝐴e𝜈
+
𝑠 𝑥 + 𝐵e𝜈

−

𝑠 𝑥 + �̃�𝑝(𝑥, 𝑠)

for

𝜈±
𝑠 =

𝑃

2𝐷
±
√(

𝑃

2𝐷

)2

+ 𝜆2
𝑠 (3.3)

and �̃�𝑝(𝑥, 𝑠) is a particular solution. The constants 𝐴,𝐵 are to be determined

from the following boundary conditions, derived from (2.3), 𝑢(𝑎, 𝑠) = 𝑓(𝑠)

and 𝑢(𝑏, 𝑠) = 𝑔(𝑠). The procedure for inverting 𝑢 (𝑥, 𝑠) is described in detail

in the next section. In some cases we need a spatial discretization to solve

(3.2). Figure 3.1 is a schematic explanation that clarifies when we need to

discretize in space in order to obtain the solution 𝑢(𝑥, 𝑠). The numerical

methods used for that purpose are described in Section 3.2.

3.1.1 The inverse Laplace transform algorithm

The principal difficulty in using Laplace transforms is to find their

inverses. Although there exist extensive tables of Laplace transforms and
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Figure 3.1: Schematic explanation.
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their inverses, it is highly desirable to have numerical methods to obtain

an approximation of the inversion solution. Based on a different approach

from some conventional inverse transform algorithms [20, 46], a numerical

inverse Laplace transform algorithm was developed in [2]. This algorithm

serves the purpose of the present study and, therefore, a computer code has

been written following it to invert the solution numerically into the time

domain. Based on the Fourier series expansion and the continued fractional

approaches, this algorithm is described in [4].

Let 𝑈𝑖(𝑠), 𝑖 = 0, . . . , 𝑁 , represent the approximation of 𝑢(𝑥𝑖, 𝑠) in the

Laplace transform domain. In this section, we determine an approximate

solution 𝑈𝑖(𝑡) from 𝑈𝑖(𝑠) by using a Laplace inversion numerical method.

For the sake of clarity we omit the index 𝑖, denoting 𝑈𝑖(𝑠) by 𝑈(𝑠). An exact

inverse Laplace transform of 𝑈 (𝑠) into 𝑈 (𝑡) is given through the Bromwich

integral [63]

𝑈 (𝑡) =
1

2𝜋i

∫ 𝛽+i∞

𝛽−i∞
e𝑠𝑡𝑈 (𝑠) 𝑑𝑠, (3.4)

where i is the imaginary unit and 𝛽 is such that the contour of integration is

to the right hand side of any singularity of 𝑈 (𝑠). If we consider 𝑠 = 𝛽 + i𝜔

[1, 4, 63] and 𝑑𝑠 = i𝑑𝜔 we can write

𝑈 (𝑡) =
1

2𝜋i

∫ +∞

−∞
e𝛽𝑡+i𝜔𝑡𝑈 (𝑠) i𝑑𝜔 =

1

2𝜋
e𝛽𝑡
∫ +∞

−∞
ei𝜔𝑡𝑈 (𝑠) 𝑑𝜔

=
1

2𝜋
e𝛽𝑡
∫ +∞

−∞
(cos𝜔𝑡 + i sin𝜔𝑡)𝑈 (𝑠) 𝑑𝜔

=
1

2𝜋
e𝛽𝑡
∫ +∞

−∞
Re
{
𝑈 (𝑠)

}
cos𝜔𝑡 − Im

{
𝑈 (𝑠)

}
sin𝜔𝑡𝑑𝜔

+
1

2𝜋
e𝛽𝑡i
∫ +∞

−∞
Im
{
𝑈 (𝑠)

}
cos𝜔𝑡 + Re

{
𝑈 (𝑠)

}
sin𝜔𝑡𝑑𝜔. (3.5)

Since

𝑈 (𝑠) =

∫ +∞

0
e−𝑠𝑡𝑈 (𝑡) 𝑑𝑡 =

∫ +∞

0
e−(𝛽+i𝜔)𝑡𝑈 (𝑡) 𝑑𝑡

=

∫ +∞

0
e−𝛽𝑡𝑈 (𝑡) (cos𝜔𝑡 − i sin𝜔𝑡)𝑑𝑡,

we have

Re
{
𝑈 (𝑠)

}
=

∫ +∞

0
e−𝛽𝑡𝑈 (𝑡) cos𝜔𝑡𝑑𝑡 (3.6)
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and

Im
{
𝑈 (𝑠)

}
= −

∫ +∞

0
e−𝛽𝑡𝑈 (𝑡) sin𝜔𝑡𝑑𝑡. (3.7)

From (3.6) and (3.7) the second integral of (3.5) vanishes and we get

𝑈 (𝑡) =
1

2𝜋
e𝛽𝑡
∫ +∞

−∞
Re
{
𝑈 (𝑠)

}
cos𝜔𝑡 − Im

{
𝑈 (𝑠)

}
sin𝜔𝑡𝑑𝜔. (3.8)

It is easy to see from (3.6) that Re
{
𝑈 (𝑠)

}
is an even function. Therefore,

Re
{
𝑈 (𝑠)

}
cos𝜔𝑡 is also an even function. Furthermore, from (3.7) we see

that the function Im
{
𝑈 (𝑠)

}
is odd and the product Im

{
𝑈 (𝑠)

}
sin𝜔𝑡 is an

even function. This means that the function of the integral (3.8) is even and

we can write

𝑈 (𝑡) =
1

𝜋
e𝛽𝑡
∫ +∞

0
Re
{
𝑈 (𝑠)

}
cos𝜔𝑡 − Im

{
𝑈 (𝑠)

}
sin𝜔𝑡𝑑𝜔

=
1

𝜋
e𝛽𝑡
∫ +∞

0
Re
{
𝑈 (𝑠) (cos𝜔𝑡 + i sin𝜔𝑡)

}
𝑑𝜔.

Finally,

𝑈 (𝑡) =
1

𝜋
e𝛽𝑡
∫ +∞

0
Re
{
𝑈 (𝑠) ei𝜔𝑡

}
𝑑𝜔.

The integral is now evaluated through the trapezoidal rule, with step size

𝜋/𝑇 , and we obtain

𝑈(𝑡) =
1

𝑇
e𝛽𝑡
[

𝑈 (𝛽)

2
+

∞∑
𝑘=1

Re
{

𝑈

(
𝛽 +

i𝑘𝜋

𝑇

)
e

i𝑘𝜋𝑡
𝑇

}]
− 𝐸𝑇 , (3.9)

for 0 < 𝑡 < 2𝑇 and where 𝐸𝑇 is the discretization error. It is known that

the infinite series in this equation converges very slowly. To accelerate the

convergence, we apply the quotient-difference algorithm, proposed in [2], and

also used in [4, 73], to calculate the series obtained in (3.9) by the rational

approximation in the form of a continued fraction. With the purpose of

applying this scheme to (3.9), set

∞∑
𝑘=0

𝑈𝑘𝑧
𝑘 =

𝑈 (𝛽)

2
+

∞∑
𝑘=1

𝑈

(
𝛽 +

i𝑘𝜋

𝑇

)
e

i𝑘𝜋𝑡
𝑇 , (3.10)

where 𝑈0 =
𝑈(𝛽)
2 , 𝑈𝑘 = 𝑈

(
𝛽 + i𝑘𝜋

𝑇

)
, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , and 𝑧 = ei𝜋𝑡/𝑇 .



3.1. The Laplace transform inversion 51

Under some conditions we can always associate a continued fraction to a

given power series [45]. We denote 𝑣 (𝑧) the continued fraction

𝑣 (𝑧) = 𝑑0/ (1 + 𝑑1𝑧/ (1 + 𝑑2𝑧/ (1 + ⋅ ⋅ ⋅ ))) (3.11)

associated to the power series in (3.10) and write

𝑣 (𝑧) =
𝑈 (𝛽)

2
+

∞∑
𝑘=1

𝑈

(
𝛽 +

i𝑘𝜋

𝑇

)
e

i𝑘𝜋𝑡
𝑇 . (3.12)

The coefficients 𝑑𝑝’s of (3.11) are obtained by recurrence relations from the

coefficients 𝑈
(
𝛽 + i𝑘𝜋

𝑇

)
, that is, let

𝑒
(𝑘)
0 = 0, 𝑞

(𝑘)
1 = 𝑈𝑘+1/𝑈𝑘, 𝑘 = 0, 1, . . . .

From the recurrence relations

𝑒(𝑘)𝑝 + 𝑞(𝑘)𝑝 = 𝑒
(𝑘+1)
𝑝−1 + 𝑞(𝑘+1)

𝑝 , 𝑘 = 0, 1, . . . , 𝑝 = 1, 2, . . . ,

𝑞
(𝑘)
𝑝+1𝑒

(𝑘)
𝑝 = 𝑞(𝑘+1)

𝑝 𝑒(𝑘+1)
𝑝 , 𝑘 = 0, 1, . . . , 𝑝 = 1, 2, . . . ,

we obtain the coefficients 𝑑𝑝’s,

𝑑0 = 𝑈0, 𝑑2𝑝−1 = −𝑞(0)𝑝 , 𝑑2𝑝 = −𝑒(0)𝑝 , 𝑝 = 1, 2, . . . .

This way, the algorithm computes the coefficients of the continued fraction

needed for the inversion process. Let the 𝑀 -th partial fraction 𝑣(𝑧,𝑀) be

𝑣(𝑧,𝑀) = 𝑑0/ (1 + 𝑑1𝑧/ (1 + ⋅ ⋅ ⋅ + 𝑑𝑀𝑧)) .

We obtain 𝑣(𝑧,𝑀) = 𝐴𝑀/𝐵𝑀 using the following recurrence relations

𝐴𝑝 = 𝐴𝑝−1 + 𝑑𝑝𝑧𝐴𝑝−2

𝐵𝑝 = 𝐵𝑝−1 + 𝑑𝑝𝑧𝐵𝑝−2, 𝑝 = 1, 2, . . . ,

with 𝐴−1 = 0, 𝐵−1 = 1, 𝐴0 = 𝑑0, 𝐵0 = 1. Therefore

𝑣 (𝑧) = 𝑣 (𝑧,𝑀) + 𝐸𝑀
𝐹 ,
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where 𝐸𝑀
𝐹 is the truncation error. Then

𝑈 (𝑡) =
1

𝑇
e𝛽𝑡Re

{
𝑣 (𝑧,𝑀) + 𝐸𝑀

𝐹

}− 𝐸𝑇 .

In the next section an error analysis is made to see how we can control these

errors. The approximation for 𝑈 (𝑡) is denoted by 𝑈(𝑡) and given by

𝑈 (𝑡) =
1

𝑇
e𝛽𝑡Re {𝑣 (𝑧,𝑀)} .

3.1.2 Convergence of the inverse Laplace transform

algorithm

We discuss in this section some convergence aspects of the inverse Laplace

transform algorithm. Let 𝑈𝑖(𝑠), 𝑖 = 0, . . . , 𝑁 represent the approximation of

𝑢 (𝑥𝑖, 𝑠) in the Laplace transform domain and denote by 𝐸𝑆 the error that is

associated to the spatial discretization,

𝑢(𝑥𝑖, 𝑠) = 𝑈𝑖(𝑠) + 𝐸𝑆(𝑥𝑖, 𝑠). (3.13)

The Laplace inverse transform of 𝑈𝑖(𝑠), as described in the previous section,

is the solution

𝑈 𝑖 (𝑡) =
1

𝑇
e𝛽𝑡Re

{
𝑣 (𝑧,𝑀𝑖) + 𝐸𝑀

𝐹 (𝑥𝑖, 𝑡)
}− 𝐸𝑇 (𝑥𝑖, 𝑡), (3.14)

where 𝐸𝑇 is the error associated with the trapezoidal approximation and

𝐸𝑀
𝐹 is the truncation error associated to the continued fraction. Note that

for each 𝑥𝑖 the algorithm chooses an 𝑀𝑖 and therefore for each 𝑥𝑖 we have

a different value of the approximation of the continued fraction, 𝑣 (𝑧,𝑀𝑖).

Therefore, from (3.13)-(3.14) we have

𝑢(𝑥𝑖, 𝑡) =
1

𝑇
e𝛽𝑡Re

{
𝑣 (𝑧,𝑀𝑖) + 𝐸𝑀

𝐹 (𝑥𝑖, 𝑡)
}− 𝐸𝑇 (𝑥𝑖, 𝑡) + 𝐸𝑆(𝑥𝑖, 𝑡),

where 𝐸𝑆(𝑥𝑖, 𝑡) is the inverse Laplace transform of the error 𝐸𝑆(𝑥𝑖, 𝑠).

Leaving for now the spatial discretization error, we have two errors which

controll the discretization obtained from the Laplace transform inversion.

The first error, 𝐸𝑇 , that comes from the integral approximation using the

trapezoidal rule, according to Crump [20], is

𝐸𝑇 =
∞∑
𝑛=1

e−2𝑛𝛽𝑇𝑢(𝑥𝑖, 2𝑛𝑇 + 𝑡).
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Assume that our function is bounded such as ∣𝑢(𝑥𝑖, 𝑡)∣ ≤ e𝜎𝑡, for all 𝑥𝑖. In this

case the Laplace transform 𝑢(𝑠) is defined for Re(𝑠) > 𝜎 which means that 𝛽

on (3.4) must be 𝛽 > 𝜎. Thus, the error can be bounded by

𝐸𝑇 ≤ e𝜎𝑡
∞∑
𝑛=1

e−2𝑛𝑇 (𝛽−𝜎) =
e𝜎𝑡

e2𝑇 (𝛽−𝜎) − 1
, 0 < 𝑡 < 2𝑇.

It follows that by choosing 𝛽 sufficiently larger than 𝜎, we can make 𝐸𝑇 as

small as desired. For practical purposes and in order to choose a convenient

𝛽 we replace the previous inequality by

𝐸𝑇 ≤ e𝜎𝑡−2𝑇 (𝛽−𝜎), 0 < 𝑡 < 2𝑇.

If we want to have the bound 𝐸𝑇 ≤ 𝑏𝑇 then by applying the logarithm in both

sides of the previous inequality we have

𝛽 ≥ 𝜎
2𝑇 + 𝑡

2𝑇
− 1

2𝑇
ln (𝑏𝑇 ) .

Assuming 𝜎 ≥ 0 we can write

𝛽 ≥ 𝜎 − ln (𝑏𝑇 )

2𝑇
.

We will consider 𝜎 = 0. In practice the trapezoidal error 𝐸𝑇 is controlled by

the parameter 𝛽 we choose.

The second error, 𝐸𝑀
𝐹 , comes from the approximation of the continued

fraction given by (3.12). This error is controlled by imposing a tolerance

𝑇𝑂𝐿 such as

∣𝑣 (𝑧,𝑀) − 𝑣 (𝑧,𝑀 − 1)∣ < 𝑇𝑂𝐿,

in order to get the approximation 𝑈𝑖(𝑡) given by

𝑈𝑖(𝑡) =
1

𝑇
e𝛽𝑡Re{𝑣 (𝑧,𝑀𝑖)},

where 𝑀𝑖 changes according to which 𝑥𝑖 we are considering.

In order to understand better how to control the trapezoidal error with

the parameter 𝛽 and how the tolerance 𝑇𝑂𝐿 affects the error, we present a

test example which is an analytically exactly solvable model.
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Example 3.1.1. We assume 𝑃 constant and 𝜃 = 0:

∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝑃

∂𝑢

∂𝑥
(𝑥, 𝑡) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ]0,∞[ , 𝑡 > 0. (3.15)

The initial condition is 𝑢(𝑥, 0) = 0 and the boundary conditions are

𝑢(0, 𝑡) = 𝑢0, lim
𝑥→+∞𝑢(𝑥, 𝑡) = 0. (3.16)

We choose this test example for two reasons: firstly, equation (3.15) can

be analytically exactly solved by first applying the time Laplace transform

and then through the inverse Laplace transform. Secondly, this example is

chosen to analyze the convergence aspects of the Laplace inversion algorithm

without spatial discretization. If we apply the Laplace transform to this

problem we obtain the ordinary differential equation

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝑃

𝐷

𝑑𝑢

𝑑𝑥
(𝑥, 𝑠)− 𝑠

𝐷
𝑢(𝑥, 𝑠) = 0,

where 𝑠 is a complex variable. Since 𝑃 is constant, by using the boundary

conditions we obtain the solution of this equation as

𝑢(𝑥, 𝑠) = 𝑢0
1

𝑠
e
[
𝑃/2𝐷−

√
(𝑃/2𝐷)2+𝑠/𝐷

]
𝑥
. (3.17)

The analytical solution is given by [2]

𝑢 (𝑥, 𝑡) =
𝑢0

2

(
erfc

[
𝑥 − 𝑃𝑡

2
√

𝐷𝑡

]
+ e𝑃𝑥/𝐷erfc

[
𝑥 + 𝑃𝑡

2
√

𝐷𝑡

])
, (3.18)

where erfc(x) is the error function complement [18], erfc(𝑥) = 1−erf(𝑥), being

erf(𝑥) the error function defined by

erf(𝑥) =
2√
𝜋

∫ 𝑥

0
e−𝜌

2
𝑑𝜌.

In Figures 3.2 and 3.3, for 𝑢0 = 1, 𝑃 = 2, 𝑡 = 1 and 0 ≤ 𝑥 ≤ 12, we plot the

following errors,

𝐸𝐹 = max
1≤𝑖≤𝑁−1

∣𝑣(𝑧,𝑀𝑖)− 𝑣(𝑧,𝑀𝑖 − 1)∣ and 𝐸𝐺 = max
1≤𝑖≤𝑁−1

∣𝑢(𝑥𝑖, 𝑡)− 𝑈𝑖(𝑡)∣.

We choose the interval 0 ≤ 𝑥 ≤ 12 in order to avoid the influence of the right

numerical boundary condition in the numerical computations, that in this

case is 𝑢(12, 𝑡) = 0.
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Figure 3.2: Error 𝐸𝐹 and 𝐸𝐺 for Example 3.1.1 for 𝑢0 = 1, 𝑃 = 2, 𝑡 = 1,
0 ≤ 𝑥 ≤ 12 and 𝛽 = − ln(10−6)/2𝑇 with 𝑇 = 20 and different values of 𝑇𝑂𝐿.
The global error is controlled by the parameter 𝛽.
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Figure 3.3: Error 𝐸𝐹 and 𝐸𝐺 for Example 3.1.1 for 𝑢0 = 1, 𝑃 = 2, 𝑡 = 1,
0 ≤ 𝑥 ≤ 12 and 𝛽 = − ln(10−10)/2𝑇 with 𝑇 = 20 and different values of 𝑇𝑂𝐿.
The parameter 𝛽 is chosen such that the global error is not affected.

The error 𝐸𝐹 is related with the error 𝐸𝑀
𝐹 since we can control 𝐸𝑀

𝐹 by

controlling 𝐸𝐹 with the tolerance 𝑇𝑂𝐿. Figure 3.2 and Figure 3.3 illustrate

how the parameter 𝛽, defined by 𝛽 = − ln(10−6)/2𝑇 in Figure 3.2 and

𝛽 = − ln(10−10)/2𝑇 in Figure 3.3, affects the global convergence. Note that

in Figure 3.2 the precision does not go further than 10−6. The global error

of Figure 3.2 and Figure 3.3 is not affected by the spatial error 𝐸𝑆 since we

apply the Laplace inversion algorithm directly in (3.17).
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3.2 Spatial discretization methods

In this section we will deal with the time derivatives through time Laplace

transform. We use three different approaches for the spatial discretization

described in Sections 3.2.1, 3.2.2 and 3.2.3. After spatial discretization we

obtain the linear system

𝐾 (𝑠)𝑈 (𝑠) = �̃� (𝑠) , (3.19)

where 𝐾(𝑠) = [𝐾𝑖,𝑗(𝑠)] is a band matrix of size (𝑁 − 1) × (𝑁 − 1), the

unknown vector is 𝑈 (𝑠) = [𝑈1 (𝑠) , . . . , 𝑈𝑁−1 (𝑠)]
𝑇 and �̃� (𝑠) contains source

terms and boundary conditions. In this study we obtain a matrix 𝐾 with

bandwidth three. We provide the three spatial discretizations by giving the

entries of the matrix 𝐾 and the vector �̃�. At last, the algorithm described

in Section 3.1.1 is used to perform the Laplace inversion and get the final

approximate solution 𝑢(𝑥, 𝑡).

The errors that come from the numerical inversion of Laplace transform

were already described in Section 3.1.2. We will prove further on that the

spatial discretization error 𝐸𝑆(𝑥𝑖, 𝑠), defined in (3.13), has a truncation error

of second order for the three spatial discretizations.

3.2.1 A Laplace transform finite difference method

The Laplace transform finite difference method (Laplace-FD) consists of

applying first the Laplace transform to remove the time dependent terms

from equation (2.1) and boundary conditions (2.3). We obtain an ordinary

differential equation which is discretized using a finite difference method.

We consider centered differences to approximate the first derivative and the

second derivative of equation (3.2). For a fixed 𝑠, the finite difference scheme

is given by

𝑈𝑖−1(𝑠)− 2𝑈𝑖(𝑠) + 𝑈𝑖+1(𝑠)

Δ𝑥2
− 𝜆2

𝑠𝑈𝑖(𝑠)− 1

𝐷

𝑃𝑖+1𝑈𝑖+1(𝑠)− 𝑃𝑖−1𝑈𝑖−1(𝑠)

2Δ𝑥

= − 1

𝐷
(𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)) , (3.20)

for 𝑖 = 1, . . . , 𝑁 − 1, where 𝑃𝑖 = 𝑃 (𝑥𝑖).
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The matrix 𝐾(𝑠) has entries of the form

𝐾𝑖,𝑖−1(𝑠) =
1

Δ𝑥2
+

𝑃𝑖−1

2𝐷Δ𝑥
,

𝐾𝑖,𝑖(𝑠) = − 2

Δ𝑥2
− 𝜆2

𝑠,

𝐾𝑖,𝑖+1(𝑠) =
1

Δ𝑥2
− 𝑃𝑖+1

2𝐷Δ𝑥
, (3.21)

and �̃� (𝑠) contains boundary conditions being represented by

�̃� (𝑠) =
1

𝐷

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑢0(𝑥1)(1 + 𝜃𝑠)− 𝑢1(𝑥1)

−𝑢0(𝑥2)(1 + 𝜃𝑠)− 𝑢1(𝑥2)
...

−𝑢0(𝑥𝑁−2)(1 + 𝜃𝑠)− 𝑢1(𝑥𝑁−2)

−𝑢0(𝑥𝑁−1)(1 + 𝜃𝑠)− 𝑢1(𝑥𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾1,0(𝑠)𝑈0(𝑠)

0
...

0

𝐾𝑁−1,𝑁 (𝑠)𝑈𝑁 (𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We now prove the Laplace-FD method is second order accurate for the

spatial discretization and, for simplicity, we assume 𝐷 = 1.

Proposition 3.2.1. For the finite difference discretization we have

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝜆2
𝑠𝑢𝑖(𝑠)−

𝑑

𝑑𝑥
(𝑃𝑢)𝑖(𝑠) +𝒪(Δ𝑥2), (3.22)

where the 𝐾 ′𝑠 are defined by (3.21).

Proof: Let us substitute the exact solution 𝑢(𝑥, 𝑠) in the numerical method

(3.20),

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖) = 0.

Now, for a fixed 𝑠, we do Taylor expansions of the functions 𝑢𝑖−1, 𝑢𝑖+1,

𝑃𝑖−1 and 𝑃𝑖+1, around the point 𝑥𝑖. We have
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𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝜆2
𝑠𝑢(𝑠)−

𝑑

𝑑𝑥
(𝑃𝑢)𝑖(𝑠)

+

[
−1

6
𝑃 ′′′
𝑖 𝑢𝑖(𝑠)− 1

2
𝑃 ′′
𝑖

𝑑𝑢𝑖
𝑑𝑥

(𝑠)− 1

2
𝑃 ′
𝑖

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 1

6
𝑃𝑖

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

]
Δ𝑥2

+𝒪(Δ𝑥3),

where 𝑃 ′, 𝑃 ′′ and 𝑃 ′′′ denote the derivatives of 𝑃 .

■

From this result we can conclude the Laplace-FD method is second order

accurate in space since the truncation error is of order 𝒪(Δ𝑥2).

3.2.2 A Laplace transform finite volume method

Although the Laplace transform finite difference method described in the

previous section has second order accuracy, it presents numerical oscillations

for some initial conditions as we will see in some numerical tests. Therefore,

we introduce in this section a finite volume method, presented in [14], for the

spatial discretization to suppress those oscillations from the vicinity of sharp

discontinuities. We will apply it to our model problem (2.1)-(2.3) considering

non-trivial initial conditions and different values of the parameter 𝑃 , for

both parabolic (𝜃 = 0) and hyperbolic (𝜃 ∕= 0) equations. The combination of

Laplace transform with the finite volumes generates the Laplace transform

finite volume method (Laplace-FV).

The discretization consists of using the finite volume formulation by

integrating in 𝑥 the ordinary differential equation (3.2) in the 𝑖-th control

volume [𝑥𝑖 −Δ𝑥/2, 𝑥𝑖 +Δ𝑥/2],

∫ 𝑥𝑖+
Δ𝑥
2

𝑥𝑖−Δ𝑥
2

[
𝑑2𝑢 (𝑥, 𝑠)

𝑑𝑥2
− 𝜆2

𝑠𝑢 (𝑥, 𝑠)− 𝑑

𝑑𝑥

(
𝑃 (𝑥)

𝐷
𝑢 (𝑥, 𝑠)

)]
𝑑𝑥

= − 1

𝐷

∫ 𝑥𝑖+
Δ𝑥
2

𝑥𝑖−Δ𝑥
2

((1 + 𝜃𝑠)𝑢0(𝑥) + 𝑢1(𝑥))𝑑𝑥. (3.23)
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We compute the integral on the right hand side by the midpoint rule, that is,

∫ 𝑥𝑖+
Δ𝑥
2

𝑥𝑖−Δ𝑥
2

((1 + 𝜃𝑠)𝑢0(𝑥) + 𝑢1(𝑥))𝑑𝑥 ≃ Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)] .

We can write the integral on the left hand side as

[
𝑑

𝑑𝑥
𝑈 (𝑥, 𝑠)

]𝑥𝑖+Δ𝑥
2

𝑥𝑖−Δ𝑥
2

− 𝜆2
𝑠

[∫ 𝑥𝑖

𝑥𝑖−Δ𝑥
2

𝑈 (𝑥, 𝑠) 𝑑𝑥 +

∫ 𝑥𝑖+
Δ𝑥
2

𝑥𝑖

𝑈 (𝑥, 𝑠) 𝑑𝑥

]

−𝑃 (𝑥𝑖 +Δ𝑥/2)

𝐷
𝑈 (𝑥𝑖 +Δ𝑥/2, 𝑠) +

𝑃 (𝑥𝑖 −Δ𝑥/2)

𝐷
𝑈 (𝑥𝑖 −Δ𝑥/2, 𝑠) . (3.24)

As suggested in [14], for 𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1], 𝑖 = 0, . . . , 𝑁−1, we approximate 𝑈 (𝑥, 𝑠)

by the following combination of hyperbolic functions,

𝑈 (𝑥, 𝑠) =
sinh (𝜆𝑠 (𝑥𝑖+1 − 𝑥))

sinh (𝜆𝑠Δ𝑥)
𝑈𝑖(𝑠) +

sinh (𝜆𝑠 (𝑥 − 𝑥𝑖))

sinh (𝜆𝑠Δ𝑥)
𝑈𝑖+1(𝑠),

where 𝑈𝑖(𝑠), 𝑖 = 0, . . . , 𝑁 , represents the approximation of 𝑈(𝑥𝑖, 𝑠) in the

Laplace transform domain. Substituting this approximation in (3.24) yields

𝜆𝑠
sinh(𝜆𝑠Δ𝑥)

[
𝑈𝑖−1(𝑠)− 2 cosh(𝜆𝑠Δ𝑥)𝑈𝑖(𝑠) + 𝑈𝑖+1(𝑠)

]

− 𝑃 (𝑥𝑖 +Δ𝑥/2)

𝐷

sinh(𝜆𝑠Δ𝑥/2)

sinh(𝜆𝑠Δ𝑥)

(
𝑈𝑖(𝑠) + 𝑈𝑖+1(𝑠)

)

+
𝑃 (𝑥𝑖 −Δ𝑥/2)

𝐷

sinh(𝜆𝑠Δ𝑥/2)

sinh(𝜆𝑠Δ𝑥)

(
𝑈𝑖−1(𝑠) + 𝑈𝑖(𝑠)

)
.

Finally, the evaluation of (3.23) produces the following discretized equations,

for 𝑖 = 1, . . . , 𝑁 − 1,

𝐾𝑖,𝑖−1(𝑠)𝑈𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑈𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑈𝑖+1(𝑠)

= −sinh(𝜆𝑠Δ𝑥)

𝐷𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)] , (3.25)



60 Laplace transform numerical methods

for

𝐾𝑖,𝑖−1(𝑠) = 1 + 𝑃𝑖−1/2
sinh (𝜆𝑠Δ𝑥/2)

𝐷𝜆𝑠
,

𝐾𝑖,𝑖(𝑠) = −2 cosh (𝜆𝑠Δ𝑥)− (𝑃𝑖+1/2 − 𝑃𝑖−1/2

) sinh (𝜆𝑠Δ𝑥/2)

𝐷𝜆𝑠
,

𝐾𝑖,𝑖+1(𝑠) = 1− 𝑃𝑖+1/2
sinh (𝜆𝑠Δ𝑥/2)

𝐷𝜆𝑠
, (3.26)

where 𝑃𝑖±1/2 = 𝑃 (𝑥𝑖 ±Δ𝑥/2). The vector that contains boundary terms is

given by

�̃� (𝑠) = 𝑅𝑥,𝑠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 𝜃𝑠)𝑢0(𝑥1) + 𝑢1(𝑥1)

(1 + 𝜃𝑠)𝑢0(𝑥2) + 𝑢1(𝑥2)
...

(1 + 𝜃𝑠)𝑢0(𝑥𝑁−2) + 𝑢1(𝑥𝑁−2)

(1 + 𝜃𝑠)𝑢0(𝑥𝑁−1) + 𝑢1(𝑥𝑁−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾1,0(𝑠)𝑈0(𝑠)

0
...

0

𝐾𝑁−1,𝑁 (𝑠)𝑈𝑁 (𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝑅𝑥,𝑠 = −Δ𝑥 sinh(𝜆𝑠Δ𝑥)
𝐷𝜆𝑠

. Thus, equation (3.25) can be written in the

matrix form (3.19) where matrix 𝐾 and vector �̃� are defined by the entries

given above.

We will assume the diffusion coefficient 𝐷 = 1 to show the Laplace-FV

method has a local truncation error of second order for the spatial discretiza-

tion.

Proposition 3.2.2. For the finite volume discretization (3.25) we have

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

+
sinh(𝜆𝑠Δ𝑥)

𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)−𝜆2
𝑠𝑢𝑖(𝑠)−

𝑑

𝑑𝑥
(𝑃𝑢)𝑖(𝑠)+𝑢0(𝑥𝑖)(1+𝜃𝑠)+𝑢1(𝑥𝑖)+𝒪(Δ𝑥2), (3.27)

where the 𝐾 ′𝑠 are defined by (3.26).

Proof: Let us substitute the exact solution 𝑢(𝑥, 𝑠) in the numerical method

(3.25), that is,

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)
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+
sinh(𝜆𝑠Δ𝑥)

𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)] = 0. (3.28)

Making Taylor expansions of the hyperbolic functions,

sinh (𝜆𝑠Δ𝑥/2) =
1

2

(
𝜆𝑠Δ𝑥 +

𝜆3
𝑠Δ𝑥3

24
+𝒪(Δ𝑥5)

)
and

cosh (𝜆𝑠Δ𝑥) = 1 +
𝜆2
𝑠Δ𝑥2

2
+

𝜆4
𝑠Δ𝑥4

24
+𝒪(Δ𝑥5),

then the first three terms in the equation (3.28) turn into

𝑢𝑖−1(𝑠)
(
1 +

𝑃𝑖−1/2

2𝜆𝑠

(
𝜆𝑠Δ𝑥 + 𝜆3𝑠Δ𝑥3

24 +𝒪(Δ𝑥5)
))

+𝑢𝑖(𝑠)
(
−2− 𝜆2

𝑠Δ𝑥2 − 𝜆4𝑠Δ𝑥4

12

)
−𝑢𝑖(𝑠)

(𝑃𝑖+1/2−𝑃𝑖−1/2)

2𝜆𝑠

(
𝜆𝑠Δ𝑥 + 𝜆3𝑠Δ𝑥3

24 +𝒪(Δ𝑥5)
)

+𝑢𝑖+1(𝑠)

(
1− 𝑃𝑖+1/2

2𝜆𝑠

(
𝜆𝑠Δ𝑥 +

𝜆3
𝑠Δ𝑥3

24
+𝒪(Δ𝑥5)

))
. (3.29)

For a fixed 𝑠, we do also Taylor expansions of the functions 𝑢𝑖−1(𝑠), 𝑢𝑖+1(𝑠),

𝑃𝑖−1/2 and 𝑃𝑖+1/2 around the point 𝑥𝑖 obtaining

𝑃𝑖+1/2 = 𝑃 (𝑥𝑖 +Δ𝑥/2) = 𝑃𝑖+
Δ𝑥

2
𝑃 ′
𝑖+

Δ𝑥2

8
𝑃 ′′
𝑖 +

Δ𝑥3

48
𝑃 ′′′
𝑖 +

Δ𝑥4

16× 24
𝑃 ′′′′
𝑖 +𝒪(Δ𝑥5),

𝑃𝑖−1/2 = 𝑃 (𝑥𝑖 −Δ𝑥/2) = 𝑃𝑖−Δ𝑥

2
𝑃 ′
𝑖+

Δ𝑥2

8
𝑃 ′′
𝑖 −

Δ𝑥3

48
𝑃 ′′′
𝑖 +

Δ𝑥4

16× 24
𝑃 ′′′′
𝑖 +𝒪(Δ𝑥5),

𝑢𝑖−1(𝑠) = 𝑢𝑖(𝑠)−Δ𝑥
𝑑𝑢𝑖
𝑑𝑥

(𝑠)+
Δ𝑥2

2

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)−Δ𝑥3

6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠)+
Δ𝑥4

24

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)+𝒪(Δ𝑥5),

𝑢𝑖+1(𝑠) = 𝑢𝑖(𝑠)+Δ𝑥
𝑑𝑢𝑖
𝑑𝑥

(𝑠)+
Δ𝑥2

2

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)+
Δ𝑥3

6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠)+
Δ𝑥4

24

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)+𝒪(Δ𝑥5),

where 𝑃 ′, 𝑃 ′′, 𝑃 ′′′ and 𝑃 ′′′′ denote the derivatives of 𝑃 . Using these equalities

in (3.29) we obtain, after some algebraic manipulations

𝑢𝑖(𝑠)

(
−𝜆2

𝑠Δ𝑥2 − 𝜆4
𝑠

12
Δ𝑥4 − 𝑃 ′

𝑖Δ𝑥2 − 𝜆2
𝑠

24
𝑃 ′
𝑖Δ𝑥4 − 1

24
𝑃 ′′′
𝑖 Δ𝑥4

)

+
𝑑𝑢𝑖
𝑑𝑥

(𝑠)

(
−𝑃𝑖Δ𝑥2 − 𝜆2

𝑠

24
𝑃𝑖Δ𝑥4 − 1

8
𝑃 ′′
𝑖 Δ𝑥4

)
+

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)

(
Δ𝑥2 − 1

4
𝑃 ′
𝑖Δ𝑥4

)

−1

6
𝑃𝑖Δ𝑥4𝑑3𝑢𝑖

𝑑𝑥3
(𝑠) +

1

12
Δ𝑥4 𝑑4𝑢𝑖

𝑑𝑥4
(𝑠) +𝒪(Δ𝑥5)
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which is the same as(
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝜆2
𝑠 − 𝑃𝑖

𝑑𝑢𝑖
𝑑𝑥

(𝑠)− 𝑃 ′
𝑖𝑢𝑖(𝑠)

)
Δ𝑥2

+

((
−𝜆4

𝑠

12
− 𝜆2

𝑠

24
𝑃 ′
𝑖 −

𝑃 ′′′
𝑖

24

)
𝑢𝑖(𝑠)−

(
𝜆2
𝑠

24
𝑃𝑖 +

𝑃 ′′
𝑖

8

)
𝑑𝑢𝑖
𝑑𝑥

(𝑠)

)
Δ𝑥4

+

(
−𝑃 ′

𝑖

4

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

)
Δ𝑥4 +𝒪(Δ𝑥5). (3.30)

The last term of equation (3.28), using Taylor’s formula of the hyperbolic

function, becomes

sinh(𝜆𝑠Δ𝑥)

𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]

=
Δ𝑥

𝜆𝑠
(𝜆𝑠Δ𝑥 +

𝜆3
𝑠Δ𝑥3

6
+𝒪(Δ𝑥5))[(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]

= [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]Δ𝑥2 +
𝜆2
𝑠

6
[(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]Δ𝑥4

+𝒪(Δ𝑥5). (3.31)

From (3.30) and (3.31), and after dividing by Δ𝑥2, we obtain

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

+
sinh(𝜆𝑠Δ𝑥)

𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝜆2
𝑠𝑢𝑖(𝑠)−

𝑑

𝑑𝑥
(𝑃𝑢𝑖)(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

+

((
−𝜆4

𝑠

12
− 𝜆2

𝑠

24
𝑃 ′
𝑖 −

𝑃 ′′′
𝑖

24

)
𝑢𝑖(𝑠)−

(
𝜆2
𝑠

24
𝑃𝑖 +

𝑃 ′′
𝑖

8

)
𝑑𝑢𝑖
𝑑𝑥

(𝑠)

)
Δ𝑥2

+

(
−𝑃 ′

𝑖

4

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

)
Δ𝑥2

+
𝜆2
𝑠

6
[(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]Δ𝑥2 +𝒪(Δ𝑥3).

Finally, since

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− (𝜆2
𝑠 + 𝑃 ′

𝑖 )𝑢𝑖(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠) = −(1 + 𝜃𝑠)𝑢0(𝑥𝑖)− 𝑢1(𝑥𝑖),

then
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𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

+
sinh(𝜆𝑠Δ𝑥)

𝜆𝑠
Δ𝑥 [(1 + 𝜃𝑠)𝑢0(𝑥𝑖) + 𝑢1(𝑥𝑖)]

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝜆2
𝑠𝑢𝑖(𝑠)−

𝑑

𝑑𝑥
(𝑃𝑢)𝑖(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

+

((
𝜆4
𝑠

12
+

𝜆2
𝑠

8
𝑃 ′
𝑖 −

𝑃 ′′′
𝑖

24

)
𝑢𝑖(𝑠) +

(
𝜆2
𝑠

8
𝑃𝑖 − 𝑃 ′′

𝑖

8

)
𝑑𝑢𝑖
𝑑𝑥

(𝑠)

)
Δ𝑥2

+

(
−
(

𝑃 ′
𝑖

4
+

𝜆2
𝑠

6

)
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

)
Δ𝑥2 +𝒪(Δ𝑥3),

which confirms the second order accuracy in space of Laplace-FV method.

■

3.2.3 A Laplace transform piecewise linearized method

In this section we present the Laplace transform piecewise linearized

method (Laplace-PL) which is obtained from the application of the Laplace

transform in conjunction with the piecewise linearized method used for the

spatial discretization. This method was first proposed in [79]. It was also

applied to our model problem in [5], where we present some numerical tests

to show the convergence and efficiency of the numerical method. In fact,

we shall see this method performs better than the Laplace transform finite

volume method, since the latter presents oscillations for large values of the

parameter ∣𝑃 ∣.
Following the suggestions applied in [79] for a slightly different problem,

we can rewrite the ordinary differential equation (3.2) in the form

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝑃

𝐷

𝑑𝑢

𝑑𝑥
(𝑥, 𝑠)−

(
𝑃 ′

𝐷
+ 𝜆2

𝑠

)
𝑢(𝑥, 𝑠) = −𝑢0(𝑥)

𝐷
(1 + 𝜃𝑠)− 𝑢1(𝑥)

𝐷
, (3.32)

where 𝑃 ′ represents the 𝑥 derivative of 𝑃 . In each interval [𝑥𝑖−1, 𝑥𝑖+1], for

𝑖 = 1, . . . , 𝑁 − 1, the equation can be approximated by

𝑑2𝑈

𝑑𝑥2
(𝑥, 𝑠)−𝑃𝑖

𝐷

𝑑𝑈

𝑑𝑥
(𝑥, 𝑠)−

(
𝑃 ′
𝑖

𝐷
+ 𝜆2

𝑠

)
𝑈(𝑥, 𝑠) = −𝑢0(𝑥𝑖)

𝐷
(1+𝜃𝑠)− 𝑢1(𝑥𝑖)

𝐷
, (3.33)

where 𝑈(𝑥, 𝑠) is an approximation of 𝑢(𝑥, 𝑠), 𝑃𝑖 = 𝑃 (𝑥𝑖) and 𝑃
′

𝑖 = 𝑃 ′(𝑥𝑖). This

equation is obtained from (3.32) by freezing the coefficients at the mid-point
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of the interval 𝑥𝑖−1 ≤ 𝑥 ≤ 𝑥𝑖+1. The solution of (3.33) in [𝑥𝑖−1, 𝑥𝑖+1] is

𝑈(𝑥, 𝑠) = 𝐴𝑖e𝜈
+
𝑠,𝑖(𝑥−𝑥𝑖) + 𝐵𝑖e𝜈

−

𝑠,𝑖(𝑥−𝑥𝑖) + 𝑈𝑝 (𝑥𝑖, 𝑠) , (3.34)

with 𝜈±
𝑠,𝑖 = 𝑃𝑖

2𝐷 ±
√(

𝑃𝑖
2𝐷

)2
+ (

𝑃
′

𝑖
𝐷 + 𝜆2

𝑠) and 𝑈𝑝 (𝑥𝑖, 𝑠) is a particular solution

given by

𝑈𝑝 (𝑥𝑖, 𝑠) =
𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

𝑃 ′
𝑖 + 𝑠(1 + 𝜃𝑠)

.

The values 𝐴𝑖 and 𝐵𝑖 can be directly determined from the solution (3.34)

as

𝐵𝑖 = 𝑈𝑖(𝑠)− 𝐴𝑖 − 𝑈𝑝𝑖 , (3.35)

𝑈𝑖−1(𝑠) = 𝐴𝑖e−𝜈
+
𝑠,𝑖Δ𝑥 + (𝑈𝑖(𝑠)− 𝐴𝑖 − 𝑈𝑝𝑖)e

−𝜈−𝑠,𝑖Δ𝑥 + 𝑈𝑝𝑖 , (3.36)

𝑈𝑖+1(𝑠) = 𝐴𝑖e𝜈
+
𝑠,𝑖Δ𝑥 + (𝑈𝑖(𝑠)− 𝐴𝑖 − 𝑈𝑝𝑖)e

𝜈−𝑠,𝑖Δ𝑥 + 𝑈𝑝𝑖 , (3.37)

where 𝑈𝑖(𝑠), 𝑖 = 0, . . . , 𝑁 , represents the approximation of 𝑈(𝑥𝑖, 𝑠) in the

Laplace transform domain and 𝑈𝑝𝑖 denotes 𝑈𝑝(𝑥𝑖, 𝑠) . From (3.36)-(3.37), we

have

𝐴𝑖 =
𝑈𝑖−1(𝑠)− 𝑈𝑖(𝑠)e

−𝜈−𝑠,𝑖Δ𝑥 + 𝑈𝑝𝑖e
−𝜈−𝑠,𝑖Δ𝑥 − 𝑈𝑝𝑖

e−𝜈
+
𝑠,𝑖Δ𝑥 − e−𝜈

−

𝑠,𝑖Δ𝑥

=
[−𝑈𝑖−1(𝑠) + 𝑈𝑖(𝑠)e−𝜈

−

𝑠,𝑖Δ𝑥 − 𝑈𝑝𝑖e
−𝜈−𝑠,𝑖Δ𝑥 + 𝑈𝑝𝑖 ]e

(𝜈+𝑠,𝑖+𝜈
−

𝑠,𝑖)Δ𝑥

e𝜈
+
𝑠,𝑖Δ𝑥 − e𝜈

−

𝑠,𝑖Δ𝑥

and

𝐴𝑖 =
𝑈𝑖+1(𝑠)− 𝑈𝑖(𝑠)e𝜈

−

𝑠,𝑖Δ𝑥 + 𝑈𝑝𝑖e
𝜈−𝑠,𝑖Δ𝑥 − 𝑈𝑝𝑖

e𝜈
+
𝑠,𝑖Δ𝑥 − e𝜈

−

𝑠,𝑖Δ𝑥
.

By equaling the values of 𝐴𝑖, we obtain the following three-point finite

difference equations, for 𝑖 = 1, . . . , 𝑁 − 1,

𝐾𝑖,𝑖−1(𝑠)𝑈𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑈𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑈𝑖+1(𝑠)

= 𝑈𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)) , (3.38)

where

𝐾𝑖,𝑖−1(𝑠) = e(𝜈
+
𝑠,𝑖+𝜈

−

𝑠,𝑖)Δ𝑥,

𝐾𝑖,𝑖(𝑠) = −e𝜈
+
𝑠,𝑖Δ𝑥 − e𝜈

−

𝑠,𝑖Δ𝑥,

𝐾𝑖,𝑖+1(𝑠) = 1. (3.39)
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The vector �̃� (𝑠) containing the boundary conditions and source terms is

represented by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈𝑝1(𝐾1,0 + 𝐾1,1 + 𝐾1,2)

𝑈𝑝2(𝐾2,1 + 𝐾2,2 + 𝐾2,3)
...

𝑈𝑝𝑁−2
(𝐾𝑁−2,𝑁−3 + 𝐾𝑁−2,𝑁−2 + 𝐾𝑁−2,𝑁−1)

𝑈𝑝𝑁−1
(𝐾𝑁−1,𝑁−2 + 𝐾𝑁−1,𝑁−1 + 𝐾𝑁−1,𝑁 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐾1,0𝑈0(𝑠)

0
...

0

𝐾𝑁−1,𝑁𝑈𝑁 (𝑠)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where 𝐾𝑖,𝑖−1 = 𝐾𝑖,𝑖−1(𝑠), 𝐾𝑖,𝑖 = 𝐾𝑖,𝑖(𝑠) and 𝐾𝑖,𝑖+1 = 𝐾𝑖,𝑖+1(𝑠), 𝑖 = 1, . . . , 𝑁 −1.

Once again, we can write equation (3.38) in the matrix form (3.19). The next

step is to determine an approximate solution 𝑈(𝑥𝑖, 𝑡) from 𝑈(𝑥𝑖, 𝑠) by using

the Laplace inversion numerical method described in Section 3.1.1.

At last, we will confirm the second order accuracy of the Laplace-PL

method, for the spatial discretization, when 𝐷 = 1.

Proposition 3.2.3. For the piecewise linearized method we have

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

−𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠)− (𝑃 ′
𝑖 + 𝜆2

𝑠

)
𝑢𝑖(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

+𝒪(Δ𝑥2), (3.40)

where the 𝐾 ′𝑠 are defined by (3.39).

Proof: We first substitute the exact solution 𝑢(𝑥, 𝑠) in the numerical method

(3.38), that is,

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

−𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)) = 0. (3.41)

Let 𝑅2 =
𝑃 2
𝑖
4 + (𝑃 ′

𝑖 + 𝜆2
𝑠). Using the definition of the 𝐾 ′𝑠 coefficients we have

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

= e𝑃𝑖Δ𝑥𝑢𝑖−1(𝑠)−
(
e(𝑃𝑖/2+𝑅)Δ𝑥 + e(𝑃𝑖/2−𝑅)Δ𝑥

)
𝑢𝑖(𝑠) + 𝑢𝑖+1(𝑠)
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= e(𝑃𝑖/2)Δ𝑥
(

e(𝑃𝑖/2)Δ𝑥𝑢𝑖−1(𝑠)− (e𝑅Δ𝑥 + e−𝑅Δ𝑥)𝑢𝑖(𝑠) + e−(𝑃𝑖/2)Δ𝑥𝑢𝑖+1(𝑠)
)

(3.42)

and

𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

= 𝑢𝑝𝑖
(
e𝑃𝑖Δ𝑥 − (e(𝑃𝑖/2+𝑅)Δ𝑥 + e(𝑃𝑖/2−𝑅)Δ𝑥) + 1

)
= e(𝑃𝑖/2)Δ𝑥𝑢𝑝𝑖

(
e(𝑃𝑖/2)Δ𝑥 − (e𝑅Δ𝑥 + e−𝑅Δ𝑥) + e(−𝑃𝑖/2)Δ𝑥

)
. (3.43)

For convenience, we multiply equation (3.41) by e−(𝑃𝑖/2)Δ𝑥. Next, by doing

Taylor expansions of the exponential functions in (3.42) and (3.43) results in

e−(𝑃𝑖/2)Δ𝑥(𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠))

= 𝑢𝑖−1(𝑠)

(
1 +

𝑃𝑖
2
Δ𝑥 +

𝑃 2
𝑖

8
Δ𝑥2 +

𝑃 3
𝑖

48
Δ𝑥3 +

𝑃 4
𝑖

4!16
Δ𝑥4 +𝒪(Δ𝑥5)

)
−𝑢𝑖(𝑠)

(
2 + 𝑅2Δ𝑥2 +

𝑅4

12
Δ𝑥4 +𝒪(Δ𝑥5)

)
+𝑢𝑖+1(𝑠)

(
1− 𝑃𝑖

2
Δ𝑥+

𝑃 2
𝑖

8
Δ𝑥2 − 𝑃 3

𝑖

48
Δ𝑥3 +

𝑃 4
𝑖

4!16
Δ𝑥4 +𝒪(Δ𝑥5)

)
(3.44)

and

e−(𝑃𝑖/2)Δ𝑥𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

= 𝑢𝑝𝑖

(
𝑃 2
𝑖

4
Δ𝑥2 +

𝑃 4
𝑖

4!8
Δ𝑥4 − 𝑅2Δ𝑥2 − 𝑅4

12
Δ𝑥4 +𝒪(Δ𝑥5)

)
= 𝑢𝑝𝑖

(
−(𝑃 ′

𝑖 + 𝜆2
𝑠)Δ𝑥2 − (𝑃 ′

𝑖 + 𝜆2
𝑠)

2

12
Δ𝑥4 − 𝑃 2

𝑖

24
(𝑃 ′

𝑖 + 𝜆2
𝑠)Δ𝑥4 +𝒪(Δ𝑥5)

)
,

as 𝑅2 =
𝑃 2
𝑖
4 + (𝑃 ′

𝑖 + 𝜆2
𝑠). Furthermore, since

𝑢𝑝𝑖 =
𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

𝑃 ′
𝑖 + 𝜆2

𝑠

we can simplify the last expression and get

e−(𝑃𝑖/2)Δ𝑥𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

= (−𝑢0(𝑥𝑖)(1 + 𝜃𝑠)− 𝑢1(𝑥𝑖))Δ𝑥2

+(−𝑢0(𝑥𝑖)(1 + 𝜃𝑠)− 𝑢1(𝑥𝑖))

(
𝑃 2
𝑖

24
+

(𝑃 ′
𝑖 + 𝜆2

𝑠)

12

)
Δ𝑥4 +𝒪(Δ𝑥5).

(3.45)
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Next, we do Taylor expansions of the functions 𝑢𝑖−1(𝑠) and 𝑢𝑖+1(𝑠) around

the point 𝑥𝑖. After some algebraic manipulations we can write (3.44) in the

form

e−(𝑃𝑖/2)Δ𝑥(𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠))

=

(
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠)− (𝑃 ′
𝑖 + 𝜆2

𝑠)𝑢𝑖(𝑠)

)
Δ𝑥2

+

((
− 1

12
(𝑃 ′

𝑖 + 𝜆2
𝑠)

2 − 𝑃 2
𝑖

24
(𝑃 ′

𝑖 + 𝜆2
𝑠)

)
𝑢𝑖(𝑠)− 𝑃 3

𝑖

24

𝑑𝑢𝑖
𝑑𝑥

(𝑠)

)
Δ𝑥4

+

(
𝑃 2
𝑖

8

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

)
Δ𝑥4 +𝒪(Δ𝑥5). (3.46)

After dividing (3.45) and (3.46) by Δ𝑥2, we obtain

(𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

−𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠)− (𝑃 ′
𝑖 + 𝜆2

𝑠)𝑢𝑖(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

+

((
− 1

12
(𝑃 ′

𝑖 + 𝜆2
𝑠)

2 − 𝑃 2
𝑖

24
(𝑃 ′

𝑖 + 𝜆2
𝑠)

)
𝑢𝑖(𝑠)− 𝑃 3

𝑖

24
𝑑𝑢𝑖
𝑑𝑥 (𝑠)

)
Δ𝑥2

+

(
𝑃 2
𝑖

8

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠) +
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)

)
Δ𝑥2

+(𝑢0(𝑥𝑖)(1 + 𝜃𝑠)𝑢1(𝑥𝑖))

(
𝑃 2
𝑖

24
+

(𝑃 ′
𝑖 + 𝜆2

𝑠)

12

)
Δ𝑥2.

Finally, since

𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− (𝜆2
𝑠 + 𝑃 ′

𝑖 )𝑢𝑖(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠) = −(1 + 𝜃𝑠)𝑢0(𝑥𝑖)− 𝑢1(𝑥𝑖),

we obtain the desired result

𝐾𝑖,𝑖−1(𝑠)𝑢𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠)𝑢𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠)𝑢𝑖+1(𝑠)

−𝑢𝑝𝑖 (𝐾𝑖,𝑖−1(𝑠) + 𝐾𝑖,𝑖(𝑠) + 𝐾𝑖,𝑖+1(𝑠))

=
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
𝑑𝑢𝑖
𝑑𝑥

(𝑠)− (𝑃 ′
𝑖 + 𝜆2

𝑠)𝑢𝑖(𝑠) + 𝑢0(𝑥𝑖)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖)

+

(
𝑃𝑖
12

(𝑃 ′
𝑖 + 𝜆2

𝑠)
𝑑𝑢𝑖
𝑑𝑥

(𝑠) +
1

12
(𝑃 2

𝑖 − 𝑃 ′
𝑖 − 𝜆2

𝑠)
𝑑2𝑢𝑖
𝑑𝑥2

(𝑠)− 𝑃𝑖
6

𝑑3𝑢𝑖
𝑑𝑥3

(𝑠)

)
Δ𝑥2

+
1

12

𝑑4𝑢𝑖
𝑑𝑥4

(𝑠)Δ𝑥2.

■
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We can conclude that the truncation error has order 𝒪(Δ𝑥2), that is, the

Laplace-PL method is consistent and second order accurate in space.

3.2.4 Some remarks on stability

In order to extend the study of the convergence of methods, we will now

discuss some properties of matrix 𝐾(𝑠) of the system (3.19), to draw some

conclusions about the stability of the numerical methods. By denoting

𝐸𝑖 = 𝐸𝑆(𝑥𝑖, 𝑠), 𝑖 = 1, . . . , 𝑁 − 1 we have

ℒΔ𝐸𝑖 = 𝒯Δ(𝑥𝑖, 𝑠),

that is,

𝐾(𝑠)𝐸(𝑠) = 𝒯Δ(𝑠),

with 𝒯Δ(𝑥𝑖, 𝑠) the truncation error for the Laplace-FD method. If, for some

constant 𝑐 > 0, ∥𝐾−1(𝑠)∥∞ ≤ 𝑐 then we would have ∣𝐸𝑖∣ ≤ 𝑐∥𝒯Δ∥∞. Regard-

less of the method, the matrix 𝐾(𝑠) contains the parameter 𝜆2
𝑠, given by

𝜆2
𝑠 = (𝜃𝑠2 + 𝑠)/𝐷 = (𝜃𝛽2 + 𝛽 − 𝜃𝜔2 + i𝜔(2𝜃𝛽 + 1))/𝐷, 𝜔 =

𝑘𝜋

𝑇
, 𝑘 = 1, . . . ,𝑀,

with 𝑠 = 𝛽 + i𝜔, 𝑀 defines the set of values in the Laplace domain given by

𝑀 = max𝑖 𝑀𝑖, where 𝑀𝑖 is the iteration for each 𝑥𝑖 and 𝑇 defines the stepsize

of the trapezoidal rule applied in (3.9). For 𝜃𝜔2 > 𝜃𝛽2 + 𝛽 the complex 𝜆2
𝑠 has

negative real part. Hence, it is not easy to prove analytically the inverse of

𝐾(𝑠) is bounded, since the matrix 𝐾(𝑠) is not an 𝑀 -matrix [91, 92]. Despite

this, we will analyze 𝐾(𝑠) to get some conclusions. For this study we consider

the example

Example 3.2.1. Problem (2.1)-(2.3) for

𝑃 (𝑥) = 𝛼 sin(𝑥)
1

𝐽0(i𝛼)
e𝛼 cos 𝑥,

with −15 ≤ 𝑥 ≤ 15, 𝑡 = 1, 𝜃 = 1, 𝐷 = 1, with initial conditions

𝑢0(𝑥) =
1

𝐿
√

𝜋
e−𝑥

2/𝐿2
, 𝑢1(𝑥) = 0,

and boundary conditions 𝑓(𝑡) = 𝑔(𝑡) = 0.
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Figure 3.4: Infinity norm for matrix 𝐾−1(𝑠) for 𝑇 = 30 and different values
of 𝑁 . We have considered Example 3.2.1 for 𝑃 (𝑥) with 𝛼 = 1.
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Figure 3.5: Infinity norm for matrix 𝐾−1(𝑠) for 𝑁 = 250 and different values
of 𝑇 . We have considered Example 3.2.1 for 𝑃 (𝑥) with 𝛼 = 1.

It is easy to see numerically that for a fixed 𝑇 , as we refine the space step,

the value ∥𝐾−1(𝑠)∥∞ does not change significantly as illustrated in Figure

3.4. We also notice that ∥𝐾−1(𝑠)∥∞ is larger for values of ∣𝑠∣ close to zero,

indicating that the convergence can be lower for these values. The same

features are also evident when we consider different values of T, as can be

observed in Figure 3.5.

Regarding the accuracy of the numerical methods, additionally to the



70 Laplace transform numerical methods

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

|s|

c
o

n
d

(K
)

N= 50
N= 250
N= 500

Figure 3.6: Condition number for the matrix 𝐾(𝑠) for 𝑇 = 30 and different
values of 𝑁 . We have considered Example 3.2.1 for 𝑃 (𝑥) with 𝛼 = 1.

truncation errors, let us look at the condition number of the matrix 𝐾(𝑠),

cond(𝐾), that determines how accurately we can solve the system (3.19).

The condition number of the matrix 𝐾(𝑠) is affected by the values of 𝑁 and

𝑇 . Although the matrix 𝐾 is different for the three spatial discretizations,

the numerical tests performed exhibited the same behavior (same curve) of

the condition number for all the three methods. Therefore, we only present

the results for the Laplace-FD method. We can infer from Figures 3.6 and

3.7 that the condition number of the matrix 𝐾(𝑠) increases if we increase 𝑁

or 𝑇 and decays with ∣𝑠∣.
Usually one must always expect to loose log10(cond(𝐾)) digits of precision

in computing the solution, except under very special circumstances. Since we

work with double precision numbers, about 16 decimal digits of accuracy,

caution is advised when the condition number is much greater than 1/
√
10−16,

which in general does not happen for our problem. The condition number of

order 106 is reached for very large values of 𝑇 and 𝑁 , such as, both larger

than 105. We plotted the results for 𝛼 = 1, although for different values of 𝛼

we have similar results. The same conclusions are valid for problems with

different functions 𝑃 and different initial and boundary conditions. We also

notice that the Laplace-FV and Laplace-PL methods perform similarly.
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Figure 3.7: Condition number for the matrix 𝐾(𝑠) for 𝑁 = 250 and different
values of 𝑇 . We have considered Example 3.2.1 for 𝑃 (𝑥) with 𝛼 = 1.

Additionally we observe that we have a similar phenomenon to the so

called pollution effect [8] observed for the Helmholtz equation and for high

wavenumbers, where the discretization space step has to be sufficiently

refined to avoid numerical dispersion. Also in this context, it is observed

that if we have a complex number as a coefficient in the equation, which is

our case with 𝜆𝑠, the imaginary part acts as an absorption parameter, which

seems to allow us to better control the solution by decreasing the solution

magnitude [40]. Following what is reported in literature [8, 9, 74], a useful

rule observed for an adjustment of the space step is to force some relation

between 𝑇 and the Δ𝑥. For our problem a similar condition is

𝜔Δ𝑥 ≤ 2𝜋

10
.

This leads to (𝑀/𝑇 )Δ𝑥 ≤ 2/10.

3.2.5 Convergence of the numerical methods

We have seen in previous sections three different approaches for the

spatial discretization after the application of the Laplace transform: the

Laplace transform finite difference (Laplace-FD), the Laplace transform

finite volume (Laplace-FV) and the Laplace transform piecewise linearized
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Δ𝑥 Laplace-FD Rate Laplace-FV Rate Laplace-PL Rate
10/128 0.2549 × 10−3 0.1815 × 10−3 0.6307 × 10−4

10/256 0.6601 × 10−4 2.0 0.4238 × 10−4 2.0 0.7612 × 10−5 3.1
10/512 0.1615 × 10−4 2.0 0.1093 × 10−4 2.0 0.9513 × 10−6 3.0
10/1024 0.4063 × 10−5 2.0 0.2681 × 10−5 2.0 0.1392 × 10−6 2.8
10/2048 0.1018 × 10−5 2.0 0.6670 × 10−6 2.0 0.1733 × 10−7 3.0

Table 3.1: Global error 𝐸𝐺1 for 𝜃 = 0, 𝑃 = 2, 𝑡 = 1, 0 ≤ 𝑥 ≤ 10, 𝑇𝑂𝐿 = 1/𝑁3,
𝑇 = 3, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm ℓ∞.

Δ𝑥 Laplace-FD Rate Laplace-FV Rate Laplace-PL Rate
10/128 0.7229 × 10−3 0.7199 × 10−3 0.3034 × 10−4

10/256 0.1800 × 10−3 2.0 0.1792 × 10−3 2.0 0.3575 × 10−5 3.1
10/512 0.4529 × 10−4 2.0 0.4511 × 10−4 2.0 0.7431 × 10−6 2.3
10/1024 0.1128 × 10−4 2.0 0.1123 × 10−4 2.0 0.5582 × 10−7 3.7
10/2048 0.2824 × 10−5 2.0 0.2817 × 10−5 2.0 0.9191 × 10−8 2.6

Table 3.2: Global error 𝐸𝐺1 for 𝜃 = 0, 𝑃 = −2, 𝑡 = 1, 0 ≤ 𝑥 ≤ 10, 𝑇𝑂𝐿 = 1/𝑁3,
𝑇 = 3, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm ℓ∞.

(Laplace-PL) methods. Even though the second order accuracy of the spatial

discretization was proved theoretically for the three schemes, we illustrate

this property with some numerical tests.

In order to compare the approximate solution 𝑈𝑖(𝑡) = 𝑈𝑖 with the exact

solution 𝑢(𝑥𝑖, 𝑡) = 𝑢𝑖, 𝑖 = 1, . . . , 𝑁 − 1, we consider two problems. The first

problem has 𝜃 = 0 and 𝑃 is constant, that is, the problem (3.15)-(3.16) for

𝑢0 = 1, from Example 3.1.1, with exact solution (3.18). To have information

about the spatial discretization errors we define the global errors as

𝐸𝐺1 = ∥𝑢 − 𝑈∥∞ = max
1≤𝑖≤𝑁−1

∣𝑢𝑖 − 𝑈𝑖∣, (3.47)

and

𝐸𝐺2 = ∥𝑢 − 𝑈∥ =

(
Δ𝑥

𝑁−1∑
𝑖=1

∣𝑢𝑖 − 𝑈𝑖∣2
)1/2

, (3.48)

where these two norms, ℓ∞ and ℓ2,Δ𝑥, are the same defined in Section 2.3. We

show the results in Table 3.1, Table 3.2 and Figure 3.8 for the three schemes,

computed with the norm ℓ∞ (3.47).
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Figure 3.8: Global error 𝐸𝐺1. Left: 𝑃 = 2 (Table 3.1). Right: 𝑃 = −2 (Table
3.2).

Δ𝑥 Laplace-FD Rate Laplace-FV Rate Laplace-PL Rate
10/128 0.4319 × 10−3 0.2314 × 10−3 0.4466 × 10−4

10/256 0.1070 × 10−3 2.0 0.5659 × 10−4 2.0 0.5036 × 10−5 3.1
10/512 0.2669 × 10−4 2.0 0.1411 × 10−4 2.0 0.8055 × 10−6 2.6
10/1024 0.6686 × 10−5 2.0 0.3553 × 10−5 2.0 0.1031 × 10−6 3.0
10/2048 0.1670 × 10−5 2.0 0.8800 × 10−6 2.0 0.1578 × 10−7 2.7

Table 3.3: Global error 𝐸𝐺2 for 𝜃 = 0, 𝑃 = 2, 𝑡 = 1, 0 ≤ 𝑥 ≤ 10, 𝑇𝑂𝐿 = 1/𝑁3,
𝑇 = 3, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm ℓ2,Δ𝑥.

We observe the Laplace-PL method has a smaller error than the other

two schemes. From Table 3.1 (𝑃 = 2) and Table 3.2 (𝑃 = −2), it is evident

that the Laplace-PL has a significant higher convergence rate in comparison

with the Laplace-FD and the Laplace-FV methods. For 𝑃 = 2 the Laplace-

FV method is slightly more accurate than the Laplace-FD method, although

both methods perform similarly for 𝑃 = −2. We obtain the same conclusions

for 𝐸𝐺2 defined by (3.48). However, the contrast is even greater between the

Laplace-PL method and the other two methods when 𝑃 = 2, as illustrated

in Table 3.3 and Figure 3.9. In fact, the Laplace-PL method has smaller

errors when we use the norm ℓ2,Δ𝑥 while the Laplace-FD and the Laplace-FV

methods have better global errors when defined by the norm ℓ∞. For 𝑃 = −2

the errors are smaller when the norm ℓ2,Δ𝑥 is applied in all the methods as

shown in Table 3.4.

We also notice that for large values of 𝑃 positive the Laplace-FD method
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Δ𝑥 Laplace-FD Rate Laplace-FV Rate Laplace-PL Rate
10/128 0.6663 × 10−3 0.6682 × 10−3 0.2718 × 10−4

10/256 0.1673 × 10−3 2.0 0.1678 × 10−3 2.0 0.3456 × 10−5 3.0
10/512 0.4170 × 10−4 2.0 0.4181 × 10−4 2.0 0.4828 × 10−6 2.8
10/1024 0.1043 × 10−4 2.0 0.1046 × 10−4 2.0 0.4586 × 10−7 3.4
10/2048 0.2606 × 10−5 2.0 0.2616 × 10−5 2.0 0.9324 × 10−8 2.3

Table 3.4: Global error 𝐸𝐺2 for 𝜃 = 0, 𝑃 = −2, 𝑡 = 1, 0 ≤ 𝑥 ≤ 10, 𝑇𝑂𝐿 = 1/𝑁3,
𝑇 = 3, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm ℓ2,Δ𝑥.
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Figure 3.9: Global error 𝐸𝐺2. Left: 𝑃 = 2 (Table 3.3). Right: 𝑃 = −2 (Table
3.4).

has a smaller global error than the Laplace-FV method, has shown in Figure

3.10.

For our experiments the Laplace-PL method is more accurate, although

theoretically we have proved the truncation errors of the numerical methods

have the same order.

Example 3.2.2. Another example is considered for a problem with 𝜃 = 1 and

𝑃 = 0:
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) =

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ]0, 2𝜋[ , 𝑡 > 0. (3.49)

The initial conditions are

𝑢(𝑥, 0) = sin(
𝑥

2
),

∂𝑢

∂𝑡
(𝑥, 0) = −1

2
sin(

𝑥

2
), (3.50)

and the boundary conditions are

𝑢(0, 𝑡) = 0, 𝑢(2𝜋, 𝑡) = 0. (3.51)
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Figure 3.10: Global error 𝐸𝐺1 for 𝑡 = 1, 𝑇𝑂𝐿 = 1/𝑁3, 𝛽 = − ln(10−16)/2𝑇 ,
𝑇 = 3, computed with the norm ℓ∞. Left: 𝑃 = 5, 0 ≤ 𝑥 ≤ 20. Right: 𝑃 = 15,
0 ≤ 𝑥 ≤ 25.

Δ𝑥 Laplace-FD Rate Laplace-FV Rate Laplace-PL Rate
2𝜋/128 0.4860 × 10−5 0.1215 × 10−5 0.3151 × 10−4

2𝜋/256 0.8596 × 10−6 2.5 0.1733 × 10−6 2.8 0.7555 × 10−5 2.1
2𝜋/512 0.2338 × 10−6 1.9 0.8236 × 10−7 1.1 0.1892 × 10−5 2.0
2𝜋/1024 0.6272 × 10−7 1.9 0.1070 × 10−7 2.9 0.4847 × 10−6 2.0
2𝜋/2048 0.1813 × 10−7 1.8 0.2094 × 10−8 2.4 0.1220 × 10−6 2.0

Table 3.5: Global error 𝐸𝐺1 for Example 3.2.2 for 𝜃 = 1, 𝑃 = 0, 𝑡 = 1, 0 ≤ 𝑥 ≤
2𝜋, 𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 5, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm ℓ∞.

The analytical solution is easily obtained as

𝑢 (𝑥, 𝑡) = 𝑒−
𝑡
2 sin(

𝑥

2
). (3.52)

We note that, for this problem, the conclusions obtained when comparing

the three methods are the same whether we use the norm ℓ∞ or ℓ2,Δ𝑥. We

present only the norm ℓ∞, since it provides smaller errors for all the methods.

Since the exact solution is very smooth, it can be seen in Table 3.5 and Figure

3.11 that the Laplace-FD and the Laplace-FV methods perform better in this

particular case. In fact, the Laplace-FV method has a smaller error than the

other two schemes.
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Figure 3.11: Global error 𝐸𝐺1 for Example 3.2.2 for 𝑃 = 0 (Table 3.5).

3.2.6 Behavior of the solution and comparison of

performance

It is our purpose to show in this section the different performances of

the numerical methods based on the Laplace transform, considering several

numerical tests, to analyze different aspects of the spatial discretizations.

Taking into account the initial and boundary conditions, different values of

the parameters 𝜃 and 𝑃 and the value of the space step, in some specific

situations it will be clear what method should or not should be used to obtain

the numerical solution of our problem. Numerical tests are presented to

focus their advantages and disadvantages. In all of our examples we consider

𝐷 = 1.

First, we choose a problem with a discontinuous initial condition to see

how the numerical methods handle discontinuities. In the second and third

examples we consider problems with non-zero initial conditions leading to

a non-homogeneous ordinary differential equation for 𝑢(𝑥, 𝑠), obtained from

the application of the Laplace transform.

Example 3.2.3. Let us consider the problem

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢(𝑥, 𝑡)) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ]0,∞[ , 𝑡 > 0,

(3.53)
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with initial conditions

𝑢(𝑥, 0) = 0,
∂𝑢

∂𝑡
(𝑥, 0) = 0

and boundary conditions

𝑢(0, 𝑡) = 1, lim
𝑥→+∞𝑢(𝑥, 𝑡) = 0.

For this case we have a homogeneous differential equation in 𝑢(𝑥, 𝑠) to

solve, that is,

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝜆2

𝑠𝑢(𝑥, 𝑠)− 𝑑

𝑑𝑥

(
𝑃 (𝑥)

𝐷
𝑢(𝑥, 𝑠)

)
= 0. (3.54)

In what follows, we consider different values of 𝑃 . First, we assume 𝑃

constant and secondly, we consider 𝑃 non-constant. These examples show

how the numerical methods perform in the presence of discontinuities.

We display in Figure 3.12 and Figure 3.13 the results for 𝑃 constant and

for 𝜃 = 0 and 𝜃 = 1. For 𝑃 constant, the solution of the homogeneous ordinary

differential equation (3.54) is given by

𝑢 (𝑥, 𝑠) =
1

𝑠
e𝜈

−

𝑠 𝑥,

where 𝜈−
𝑠 is defined in (3.3).
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Figure 3.12: Approximate solution of Example 3.2.3 using different space
discretizations, for different values of 𝑃 , 𝜃 = 0, 𝑡 = 1 and Δ𝑥 = 0.1.

In Figure 3.12 we consider the parabolic case, 𝜃 = 0, and in Figure 3.13

we consider the hyperbolic case, 𝜃 = 1. The Laplace-FD formulation, the

Laplace-FV method and the Laplace-PL method are compared.
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Figure 3.13: Approximate solution of Example 3.2.3 using different space
discretizations, for different values of 𝑃 , 𝜃 = 1, 𝑡 = 1 and Δ𝑥 = 0.05.

For the parabolic case, 𝜃 = 0, all the three methods perform similarly.

The Laplace-FD method performs worse than the other two methods in the

hyperbolic case, 𝜃 = 1, since oscillations are not avoided for small space steps

near the discontinuity.

However, these oscillations are easily removed for smaller values of the

space step, as can be seen in Figure 3.14.
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Figure 3.14: Approximate solution of Example 3.2.3 using the Laplace-FD
discretization, for 𝜃 = 1, 𝑡 = 1 and Δ𝑥 = 0.005. The oscillations are removed
for small values of Δ𝑥.

Since for 𝜃 ∕= 0 the equation is hyperbolic, the discontinuity of the initial

condition at 𝑥 = 0 is transported along the characteristics. The characteristic
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equation associated to equation (3.53) is

𝜃

(
𝑑𝑥

𝑑𝑡

)2

− 𝐷 = 0.

The characteristic curves are defined by 𝑥 = 𝑡
√

𝐷
𝜃 + 𝜉 and the waves are

transmitted with finite velocity 𝑣 =
√

𝐷/𝜃. At 𝜉 = 0 we have 𝑥 = 𝑡
√

𝐷
𝜃 . For

𝜃 = 1 and 𝐷 = 1, the discontinuity at 𝑡 = 1 appears at 𝑥 = 1 as shown in

Figure 3.13. The jump discontinuity at a specific time is the same for differ-

ent values of 𝑃 . When 𝜃 increases, the hyperbolic effects start to appear in a

lower point 𝑥, that is, the velocity decreases with 𝜃 as the jump discontinuity

peak increases.

Additionally, if we change the values of 𝑃 the behavior of the Laplace-FV

method is quite different from the Laplace-PL method and this one performs

better. The Laplace-FV method in certain situations oscillates as shown in

Figure 3.15. We can observe two examples for 𝜃 = 1, with 𝑃 = −20 and

𝑃 = −1000. For 𝑃 = −20 we have a space step of Δ𝑥 = 0.2 and for 𝑃 = −1000

we consider a smaller space step, Δ𝑥 = 0.02. Therefore, for large values of

∣𝑃 ∣, the oscillations are not avoided as we refine the mesh.
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Figure 3.15: Approximate solution of Example 3.2.3 using the Laplace-FV
and the Laplace-PL methods for 𝜃 = 1 at 𝑡 = 1. Left: Δ𝑥 = 0.2. Right:
Δ𝑥 = 0.02.

Next, we consider the case for non-constant 𝑃 . In Figure 3.16 we show

the behavior of the solution for 𝑃 (𝑥) = −2𝑥 and 𝑃 (𝑥) = 2e−𝑥, for 𝜃 = 0.5. The

Laplace-FV method has oscillations for 𝑃 (𝑥) = −2𝑥, while the Laplace-FD
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Figure 3.16: Approximate solution of Example 3.2.3 for 𝜃 = 0.5, Δ𝑥 = 0.05 at
𝑡 = 1. Left figure: 𝑃 (𝑥) = −2𝑥. Right figure: 𝑃 (𝑥) = 2e−𝑥.

method shows oscillations in both cases for Δ𝑥 = 0.05. These oscillations can

be removed if we consider smaller values of the space step. For this reason,

the next numerical tests are performed using only the Laplace-PL method,

since we want to focus on the dependence of the solution taking account the

variation of the parameters 𝜃, 𝑃 and 𝑡.

Figure 3.17 illustrates the behavior of the solution as we change the

parameter 𝜃. When 𝜃 increases, the hyperbolic effects start to appear in a

lower point 𝑥, that is, the velocity decreases with 𝜃 as the jump discontinuity

peak increases.

The effect of the parameter 𝑃 in the solution is shown in Figure 3.18.

The peak increases with ∣𝑃 ∣ for positive 𝑃 and decreases for negative 𝑃 .

Once again, the location of the jump discontinuity is the same for different

values of 𝑃 .

In Figures 3.19 and 3.20 we can observe the evolution of the solution 𝑢

as we travel in time. As stated before, when 𝜃 ∕= 0, the jump discontinuity

does not depend on 𝑃 and quickly dissipates with time. For constant 𝑃 the

hyperbolic solution tends to the parabolic solution as 𝑡 increases.

In the next two problems we consider non-zero initial conditions. Thus,

application of the Laplace transform yields a non-homogeneous differential

equation in 𝑢(𝑥, 𝑠).
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Figure 3.17: Approximate solution of Example 3.2.3 for 𝑃 = 0 and Δ𝑥 = 0.12.

Example 3.2.4. Let us consider the first problem given by

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢(𝑥, 𝑡)) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ]0,∞[ , 𝑡 > 0,

for non-constant 𝑃 , with non-zero initial conditions

𝑢(𝑥, 0) = e−𝑥, 𝜃
∂𝑢

∂𝑡
(𝑥, 0) = −e−𝑥

and boundary conditions

𝑢(0, 𝑡) = 1, lim
𝑥→+∞𝑢(𝑥, 𝑡) = 0.

For this case we have a non-homogeneous differential equation in 𝑢(𝑥, 𝑠)

to solve, that is

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝑃

𝐷

𝑑𝑢

𝑑𝑥
(𝑥, 𝑠)−

(
𝑃 ′

𝐷
+ 𝜆2

𝑠

)
𝑢(𝑥, 𝑠) = −e−𝑥

𝐷
𝜃𝑠. (3.55)
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Figure 3.18: Approximate solution of Example 3.2.3 for 𝜃 = 1, Δ𝑥 = 0.0375
at 𝑡 = 1.
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Figure 3.19: Approximate solution of Example 3.2.3 for 𝑃 constant and Δ𝑥 =
0.04.

We are able to compute a particular solution for this equation only for 𝑃

constant, which is

𝑢𝑝(𝑥, 𝑠) = − 𝜃𝑠

𝐷 + 𝑃 − 𝑠(1 + 𝜃𝑠)
e−𝑥.

Applying the boundary conditions we obtain the solution in the Laplace

transform domain as

𝑢(𝑥, 𝑠) =

(
1

𝑠
− 𝑐

)
e𝜈

−

𝑠 𝑥 + 𝑐e−𝑥,

with 𝑐 = − 𝜃𝑠
𝐷+𝑃−𝑠(1+𝜃𝑠) . In Figure 3.21, we display the three numerical

methods for 𝜃 = 0.25, 𝑃 = 2e−𝑥 at 𝑡 = 1. The behavior of the solution is

similar for all the methods.
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Figure 3.20: Approximate solution of Example 3.2.3 for 𝜃 = 1, Δ𝑥 = 0.05 and
𝑃 non-constant.
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Figure 3.21: Approximate solution of Example 3.2.4 for 𝜃 = 0.25, 𝑃 = 2e−𝑥

and Δ𝑥 = 0.08 at 𝑡 = 1.

Our last problem has also non-zero initial conditions, but in this case a

particular solution of the non-homogeneous ordinary differential equation is

not available.

Example 3.2.5. We consider the problem

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = −𝑃

∂𝑢

∂𝑥
(𝑥, 𝑡) + 𝐷

∂2𝑢

∂𝑥2
(𝑥, 𝑡), 𝑥 ∈ ℝ, 𝑡 > 0,

for 𝑃 constant, with initial conditions

𝑢(𝑥, 0) =
1

2
e−𝑥

2
, 𝜃

∂𝑢

∂𝑡
(𝑥, 0) = 𝑥e−𝑥

2
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and boundary conditions

lim
𝑥→−∞𝑢(𝑥, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑡) = 0.

The corresponding non-homogeneous differential equation in 𝑢(𝑥, 𝑠) is

𝑑2𝑢

𝑑𝑥2
(𝑥, 𝑠)− 𝜆2

𝑠𝑢(𝑥, 𝑠)− 𝑃

𝐷

𝑑𝑢

𝑑𝑥
(𝑥, 𝑠) = −e−𝑥2

2𝐷
(1 + 𝜃𝑠)− 𝑥e−𝑥2

𝐷
. (3.56)
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Figure 3.22: Approximate solution of Example 3.2.5 for 𝜃 = 0.5, 𝑃 = −2 at
𝑡 = 1. Left figure: Δ𝑥 = 0.4. Right figure: Δ𝑥 = 0.2.

In this example the solution is smooth, with no discontinuities, and we

observe in Figure 3.22 that for large space steps, such as Δ𝑥 = 0.4, the

Laplace-PL method performs more successfully. As we refine the mesh, by

doing Δ𝑥 = 0.2, the Laplace-FD method and the Laplace-FV method become

similar to the Laplace-PL method.

3.3 Crank-Nicolson vs Laplace transform methods

The computational efficiency of a numerical method gives the relation

between the computational cost of the method and the precision of the results

obtained by the method.

In what follows, two test problems are considered in order to compare

the performance of the Crank-Nicolson method with the Laplace transform

finite difference method, described in Sections 2.1 and 3.2.1, respectively. We

want to highlight the advantages of using the Laplace transform technique
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in some specific problems instead of iterative methods in time. As mentioned

before in Section 3.1, numerical methods that use the Laplace transform in

time have the advantage of not iterating in time. This means that it is the

same to compute the solution for short times or long times, while iterative

methods in time, including methods such as the Crank-Nicolson, usually

takes too long to compute the solution. We will show that the convergence

order of both numerical methods is second order as evidenced by previous

theoretical analysis. However, the computational efficiency is higher by

applying the Laplace transform finite difference scheme. The computational

cost of the algorithm [2] for the Laplace inversion process is 𝒪
(∑𝑁

𝑖=1 𝑀2
𝑖

)
,

where 𝑀𝑖 is the number of iterations performed by the algorithm for each 𝑥𝑖,

𝑖 = 1, . . . , 𝑁 with 𝑁 the length of the domain in 𝑥. On the other hand, the

computational cost for solving the linear system of equations (3.19) resulting

from the finite difference discretization is approximately 𝒪(𝑀𝑁), where we

define 𝑀 as the average of 𝑀𝑖, 𝑖 = 1, . . . , 𝑁 . Therefore, the total cost of the

Laplace transform finite difference method (Laplace-FD) is approximately

𝒪
(

𝑁∑
𝑖=1

𝑀2
𝑖 + 𝑀𝑁

)
≈ 𝒪

(
(𝑀

2
+ 𝑀)𝑁

)
.

We will use only the Laplace-FD method although we obtain similar re-

sults for the Laplace-FV and Laplace-PL methods.

For each step of the Crank-Nicolson (CN) method, we need to solve a

linear system with a tridiagonal matrix. This can be done efficiently in 𝒪(𝑁)

operations. If we consider 0 ≤ 𝑡 ≤ 𝑇𝑓 and 𝐿 =
𝑇𝑓
Δ𝑡 the number of timesteps,

then the computational cost of CN method is 𝒪(𝑁𝐿). Thus, since we expect

𝒪(𝑀) to be smaller than 𝒪(𝑁), it is expectable the computational cost of

Laplace-FD scheme to be less than the computational cost of CN method. In

order to measure the gain in efficiency, we consider the variable Gain given

by

Gain =
# operations CN −# operations Laplace-FD

max{# operations CN , # operations Laplace-FD} .

We remark that, in this section, the conclusions obtained are the same
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Δ𝑥 CN Rate Laplace-FD Rate 𝑀 𝑀 Gain
10/128 0.2567 × 10−3 0.2549 × 10−3 14 9 29.7%
10/256 0.6427 × 10−4 2.0 0.6601 × 10−4 2.0 16 11 48.4%
10/512 0.1608 × 10−4 2.0 0.1615 × 10−4 2.0 18 13 64.5%
10/1024 0.4019 × 10−5 2.0 0.4063 × 10−5 2.0 20 15 76.6%
10/2048 0.1005 × 10−5 2.0 0.1018 × 10−5 2.0 22 17 85.1%

Table 3.6: Global error 𝐸𝐺 of Example 3.1.1 for 𝑃 = 2, 𝑡 = 1, 0 ≤ 𝑥 ≤ 10,
𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 3, 𝛽 = − ln(10−16)/2𝑇 , Δ𝑡 = Δ𝑥/10, computed with the
norm ℓ∞.

whether we use the norm ℓ∞ or norm ℓ2,Δ𝑥. We present only the norm ℓ∞,

𝐸𝐺 = max ∣𝑢𝑖 − 𝑈𝑖∣, 𝑖 = 1, . . . , 𝑁 − 1, since it provides more precise results for

both methods.

First, we consider the problem (3.15)-(3.16) from Example 3.1.1 which has

the exact solution (3.18). In Table 3.6 and Figure 3.23 we show the rate of

convergence and the global error for 𝑢0 = 1, 𝑃 = 2, 𝑡 = 1 and different values

of the space step. For the Laplace-FD method we also present the number

of iterations 𝑀 = max𝑖 𝑀𝑖 and 𝑀 . As we can see, the Laplace-FD method

is more efficient than the CN method. Furthermore, the advantage of the

Laplace-FD method in the computational cost becomes clear as 𝑁 increases,

that is, as Δ𝑥 decreases. In Table 3.7 and Figure 3.24 we increase the time to

𝑡 = 20 and for the CN method we consider the same timestep Δ𝑡 considered

previously in Table 3.6. As expected, the efficiency of Laplace-FD method

is more evident as shown by the values of the variable Gain. We also note

that the computational cost of the inverse Laplace transform algorithm is

reduced since the values of 𝑀 and 𝑀 decreased in comparison with Table

3.6. In Table 3.8 we also consider 𝑡 = 20 but we increase the time step Δ𝑡.

The Laplace-FD method is now slightly more accurate and is still with less

computational effort than the CN method as shown in Figure 3.25.

For the second problem we consider an hyperbolic equation with 𝜃 = 1

and 𝑃 = 0: the problem (3.49)-(3.51) from Example 3.2.2 already discussed

in Section 3.2.5. The rate of convergence and the global error are present

in Table 3.9 for 𝑡 = 1 and different space steps. Note that the solution of
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Δ𝑥 CN Rate Laplace-FD Rate 𝑀 𝑀 Gain
70/128 0.3116 × 10−2 0.3210 × 10−2 12 8 97.2%
70/256 0.7788 × 10−3 2.0 0.8620 × 10−3 1.9 13 10 97.9%
70/512 0.1949 × 10−3 2.0 0.1886 × 10−3 2.2 14 12 98.5%
70/1024 0.4871 × 10−4 2.0 0.4675 × 10−4 2.0 16 13 99.1%
70/2048 0.1218 × 10−4 2.0 0.1229 × 10−4 1.9 17 15 99.4%

Table 3.7: Global error 𝐸𝐺 of Example 3.1.1 for 𝑃 = 2, 𝑡 = 20, 0 ≤ 𝑥 ≤ 70,
𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 30, 𝛽 = − ln(10−16)/2𝑇 , Δ𝑡 = Δ𝑥/70, computed with the
norm ℓ∞.

Δ𝑥 CN Rate Laplace-FD Rate 𝑀 𝑀 Gain
70/128 0.3589 × 10−2 0.3210 × 10−2 12 8 43.8%
70/256 0.8991 × 10−3 2.0 0.8620 × 10−3 1.9 13 10 57.0%
70/512 0.2249 × 10−3 2.0 0.1886 × 10−3 2.2 14 12 69.5%
70/1024 0.5622 × 10−4 2.0 0.4675 × 10−4 2.0 16 13 82.2%
70/2048 0.1406 × 10−4 2.0 0.1229 × 10−4 1.9 17 15 88.3%

Table 3.8: Global error 𝐸𝐺 of Example 3.1.1 for 𝑃 = 2, 𝑡 = 20, 0 ≤ 𝑥 ≤ 70,
𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 30, 𝛽 = − ln(10−16)/2𝑇 , Δ𝑡 = 20Δ𝑥/70, computed with the
norm ℓ∞.

0 500 1000 1500 2000 2500
10

−6

10
−5

10
−4

10
−3

N

L
o
g
−

s
c
a
le

d
 e

rr
o
r

CN
Laplace FD

0 500 1000 1500 2000 2500
10

4

10
5

10
6

10
7

N

L
o
g
−

s
c
a
le

d
 m

u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s

CN
Laplace FD

Figure 3.23: CN method vs Laplace-FD for 𝑡 = 1. Left: global error. Right:
total cost. (Table 3.6)

this problem is smoother than the solution of the previous problem which

has an initial discontinuity in the corner (𝑥, 𝑡) = (0, 0). In this case the CN

method behaves better than previously. However, the Laplace-FD method is

still more efficient. In fact, for 𝑡 = 1 the variable Gain gives an advantage to

the CN method in some space steps, but then the superiority of the Laplace-
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Figure 3.24: CN method vs Laplace-FD for 𝑡 = 20. Left: global error. Right:
total cost. (Table 3.7)
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Figure 3.25: CN method vs Laplace-FD for 𝑡 = 20. Left: global error. Right:
total cost. (Table 3.8)

FD method becomes evident in Table 3.10 and Figure 3.27 where we increase

the time to 𝑡 = 3. Our conclusion is that the CN method performs well for

short times.

We observe from the previous results the second order convergence of

the numerical methods as predicted by the theoretical analysis for the main

problem.

3.4 Numerical solution for a periodic potential

Based on the results published in [4], we now present the numerical

solutions of a diffusion equation that involves the symmetric and periodic
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Δ𝑥 CN Rate Laplace-FD Rate 𝑀 𝑀 Gain
2𝜋/128 0.3420 × 10−5 0.4860 × 10−5 19 18 −62.6%
2𝜋/256 0.8551 × 10−6 2.0 0.8596 × 10−6 2.5 21 20 −39.1%
2𝜋/512 0.2138 × 10−6 2.0 0.2338 × 10−6 1.9 26 24 −14.7%
2𝜋/1024 0.5357 × 10−7 2.0 0.6272 × 10−7 1.9 31 28 20.7%
2𝜋/2048 0.1339 × 10−7 2.0 0.1813 × 10−7 1.8 37 33 45.2%

Table 3.9: Global error 𝐸𝐺 of Example 3.2.2 for 𝑡 = 1, 𝑇 = 5, 0 ≤ 𝑥 ≤ 2𝜋,
𝑇𝑂𝐿 = 1/𝑁3, 𝛽 = − ln(10−16)/2𝑇 , Δ𝑡 = Δ𝑥/(2𝜋), computed with the norm
ℓ∞.

Δ𝑥 CN Rate Laplace-FD Rate 𝑀 𝑀 Gain
2𝜋/128 0.1218 × 10−4 0.1045 × 10−4 16 15 37.5%
2𝜋/256 0.3044 × 10−5 2.0 0.3368 × 10−5 1.6 18 17 60.2%
2𝜋/512 0.7610 × 10−6 2.0 0.7792 × 10−6 2.1 20 19 75.3%
2𝜋/1024 0.1907 × 10−6 2.0 0.1892 × 10−6 2.0 23 22 83.5%
2𝜋/2048 0.4767 × 10−7 2.0 0.5016 × 10−7 1.9 29 26 88.6%

Table 3.10: Global error 𝐸𝐺 of Example 3.2.2 for 𝑡 = 3, 𝑇 = 10, 0 ≤ 𝑥 ≤ 2𝜋,
𝑇𝑂𝐿 = 1/𝑁3, 𝛽 = − ln(10−16)/2𝑇 , Δ𝑡 = Δ𝑥/(2𝜋), computed with the norm
ℓ∞.
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Figure 3.26: CN method vs Laplace-FD for 𝑡 = 1. Left: global error. Right:
total cost. (Table 3.9)

potential field, as previously studied in [12] and [62], given by

𝑉 (𝑥;𝛼) =
1

𝐽0(i𝛼)
𝑒𝛼 cos(𝑥) − 1,

where i is the imaginary unit and 𝐽0(i𝛼) is the Bessel function of the first

kind of zero order. The parameter 𝛼 controls the shape and height of the
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Figure 3.27: CN method vs Laplace-FD for 𝑡 = 3. Left: global error. Right:
total cost. (Table 3.10)

potential barrier which affects the diffusion behavior.

Example 3.4.1. We consider the following equation

∂2𝑢

∂𝑡2
(𝑥, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥)𝑢(𝑥, 𝑡)) +

∂2𝑢

∂𝑥2
(𝑥, 𝑡),

with 𝑃 (𝑥) = −𝑑𝑉
𝑑𝑥 . The initial conditions are

𝑢 (𝑥, 0) =
1

𝐿
√

𝜋
𝑒−𝑥

2/𝐿2
,

∂𝑢

∂𝑡
(𝑥, 0) = 0,

and the boundary conditions are given by

lim
𝑥→−∞𝑢(𝑥, 𝑡) = 0 and lim

𝑥→+∞𝑢(𝑥, 𝑡) = 0.

We illustrate the flexible form of 𝑃 (𝑥) in Figure 3.28 for two values of the

parameter 𝛼, 𝛼 = 1 and 𝛼 = 16. We observe that 𝑃 (𝑥) for 𝛼 = 1 changes

between -1 and 1, whereas for 𝛼 = 16 changes between -20 and 20 and the

change is not smooth. As already seen in Section 2.3 the CN method does not

give good results for 𝛼 = 16. The Laplace-FD can deal very well with both

cases.

For 𝛼 = 1 the behavior of the solution can be observed in Figures 3.29 and

3.30 as we increase time from 𝑡 = 1 until 𝑡 = 500. The peak starts to split into

two and then into several waves forming, that goes to the right and left. The

domain where the function is not zero becomes larger as we travel in time.

For that reason the computational domain increases considerably which
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Figure 3.28: 𝑃 (𝑥) from Example 3.4.1. Left: 𝛼 = 1. Right: 𝛼 = 16.

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

x

u

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

x

u

Figure 3.29: Approximate solution 𝑢(𝑥, 𝑡) of Example 3.4.1 for 𝛼 = 1. Left:
curve for instant of time 𝑡 = 1. Right: curve for instant of time 𝑡 = 3.

requires more computational effort regarding the discretization in space. For

an iterative method where we need to consider a discretization in time, it

would require more computational effort for long times. This is the reason

why the Laplace-FD is applied in this example.

For 𝛼 = 16 the evolution of the solution is considered in Figure 3.31 in the

first instants of time. We observe the solution presents very steep gradients

and the Laplace-FD is able to give accurate solutions. In Figure 3.32 the

behavior of the solution is presented for long times. Since the method uses

the Laplace transform technique, it is able to give very quickly and accurate

solutions for very large times. Once again, this is evident in Figure 3.33,

where 𝑡 = 5000 and 𝑡 = 10000.
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Figure 3.30: Approximate solution 𝑢(𝑥, 𝑡) of Example 3.4.1 for 𝛼 = 1. Left:
curve for instant of time 𝑡 = 100. Right: curve for instant of time 𝑡 = 500.
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Figure 3.31: Approximate solution 𝑢(𝑥, 𝑡) of Example 3.4.1 for 𝛼 = 16. Left:
curve for instant of time 𝑡 = 1. Right: curve for instant of time 𝑡 = 2.
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Figure 3.32: Approximate solution 𝑢(𝑥, 𝑡) of Example 3.4.1 for 𝛼 = 16. Left:
curve for instant of time 𝑡 = 500. Right: curve for instant of time 𝑡 = 1000.
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Figure 3.33: Approximate solution 𝑢(𝑥, 𝑡) of Example 3.4.1 for 𝛼 = 16. Left:
curve for instant of time 𝑡 = 5000. Right: curve for instant of time 𝑡 = 10000.





Chapter 4

A two dimensional

hyperbolic diffusion equation

In this chapter we extend to two dimensional problems the numerical

methods presented in the previous chapters. The generalization of the

Laplace-PL method is not straightforward because the solution (3.34) is not

easily attainable in two dimensions. Hereby, we turn our attention to the

CN, Laplace-FD and Laplace-FV methods described in Section 4.1. However,

the methods obtained are computational inefficient for a large number of the

discretization points of the spatial variables. The need to find a computa-

tionally efficient method led us to develop an alternating direction implicit

(ADI) method based on Crank-Nicolson scheme. As already explained in Sec-

tion 1.3.2, this technique has been used to solve problems in two dimensions

although we did not find in the literature a numerical method suitable for

our equation (1.10). Deduction, theoretical analysis and performance of this

numerical method described in Section 4.2 are all new contributions.

4.1 Extension of the numerical methods to two

dimensions

The numerical methods described for problems in one dimension are

extended in this section to solve the two dimensional hyperbolic diffusion

95
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equation (1.10), defined in a rectangular domain Ω ⊂ R
2,

𝜃
∂2𝑢

∂𝑡2
(𝑥, 𝑦, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑦, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡)) − ∂

∂𝑦
(𝑄(𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡))

+ 𝐷
∂2𝑢

∂𝑥2
(𝑥, 𝑦, 𝑡) + 𝐷

∂2𝑢

∂𝑦2
(𝑥, 𝑦, 𝑡), (4.1)

(𝑥, 𝑦) ∈ Ω, 𝑡 > 0. We consider the initial conditions given by

𝑢 (𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, (4.2)

𝜃
∂𝑢

∂𝑡
(𝑥, 𝑦, 0) = 𝑢1(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, (4.3)

and Dirichlet boundary conditions

𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ ∂Ω, 𝑡 > 0. (4.4)

4.1.1 The Crank-Nicolson method

Similarly to what was done in the one dimensional case, Section 2.1, we

introduce the auxiliary function

𝑤 = 𝜃
∂𝑢

∂𝑡
+ 𝑢 (4.5)

and change (4.1) into

∂𝑤

∂𝑡
= − ∂

∂𝑥
(𝑃𝑢)− ∂

∂𝑦
(𝑄𝑢) + 𝐷

∂2𝑢

∂𝑥2
+ 𝐷

∂2𝑢

∂𝑦2

= −𝑃𝑥𝑢 − 𝑃
∂𝑢

∂𝑥
− 𝑄𝑦𝑢 − 𝑄

∂𝑢

∂𝑦
+ 𝐷

∂2𝑢

∂𝑥2
+ 𝐷

∂2𝑢

∂𝑦2
, (4.6)

where 𝑃𝑥 denotes the derivative of 𝑃 (𝑥, 𝑦) in the variable 𝑥 and 𝑄𝑦 denotes

the derivative of 𝑄(𝑥, 𝑦) in the variable 𝑦. We consider the mesh points

in Ω = [𝑎, 𝑏] × [𝑐, 𝑑] given by 𝑥𝑖 = 𝑎 + 𝑖Δ𝑥, 𝑖 = 0, . . . , 𝑁𝑥, 𝑦𝑗 = 𝑐 + 𝑗Δ𝑦,

𝑗 = 0, . . . , 𝑁𝑦, with Δ𝑥 = (𝑏 − 𝑎)/𝑁𝑥 and Δ𝑦 = (𝑑 − 𝑐)/𝑁𝑦 , where 𝑁𝑥 and 𝑁𝑦

are positive integers. For 0 ≤ 𝑡 ≤ 𝑇𝑓 , let 𝑡𝑛 = 𝑛Δ𝑡, with Δ𝑡 being the time

increment and 𝑛Δ𝑡 ≤ 𝑇𝑓 . We denote the approximate solutions to 𝑢(𝑥𝑖, 𝑦𝑗, 𝑡𝑛)

and 𝑤(𝑥𝑖, 𝑦𝑗 , 𝑡𝑛) by 𝑈𝑛
𝑖,𝑗 and 𝑊 𝑛

𝑖,𝑗 respectively. We also denote 𝑃 (𝑥𝑖, 𝑦𝑗) by 𝑃𝑖,𝑗,

𝑃𝑥(𝑥𝑖, 𝑦𝑗) by (𝑃𝑥)𝑖,𝑗, 𝑄(𝑥𝑖, 𝑦𝑗) by 𝑄𝑖,𝑗 and 𝑄𝑦(𝑥𝑖, 𝑦𝑗) by (𝑄𝑦)𝑖,𝑗. We discretize

equations (4.5) and (4.6) using the Crank-Nicolson method:

𝑊 𝑛+1
𝑖,𝑗 + 𝑊 𝑛

𝑖,𝑗 = 𝑈𝑛+1
𝑖,𝑗 + 𝑈𝑛

𝑖,𝑗 +
2𝜃

Δ𝑡

(
𝑈𝑛+1
𝑖,𝑗 − 𝑈𝑛

𝑖,𝑗

)
(4.7)
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and
𝑊 𝑛+1

𝑖,𝑗 − 𝑊 𝑛
𝑖,𝑗

Δ𝑡

= −(𝑃𝑥)𝑖,𝑗
2

(𝑈𝑛+1
𝑖,𝑗 + 𝑈𝑛

𝑖,𝑗)−
𝑃𝑖,𝑗
2

[
𝑈𝑛+1
𝑖+1,𝑗 − 𝑈𝑛+1

𝑖−1,𝑗

2Δ𝑥
+

𝑈𝑛
𝑖+1,𝑗 − 𝑈𝑛

𝑖−1,𝑗

2Δ𝑥

]

−(𝑄𝑦)𝑖,𝑗
2

(𝑈𝑛+1
𝑖,𝑗 + 𝑈𝑛

𝑖,𝑗)−
𝑄𝑖,𝑗

2

[
𝑈𝑛+1
𝑖,𝑗+1 − 𝑈𝑛+1

𝑖,𝑗−1

2Δ𝑦
+

𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗−1

2Δ𝑦

]

+
𝐷

2

[
𝑈𝑛+1
𝑖−1,𝑗 − 2𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛+1
𝑖+1,𝑗

Δ𝑥2
+

𝑈𝑛
𝑖−1,𝑗 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖+1,𝑗

Δ𝑥2

]

+
𝐷

2

[
𝑈𝑛+1
𝑖,𝑗−1 − 2𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛+1
𝑖,𝑗+1

Δ𝑦2
+

𝑈𝑛
𝑖,𝑗−1 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗+1

Δ𝑦2

]
. (4.8)

To write the scheme (4.7)-(4.8) in matrix form we solve equation (4.7) for

𝑊 𝑛+1
𝑖,𝑗 and get

𝑊 𝑛+1
𝑖,𝑗 =

(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1
𝑖,𝑗 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛
𝑖,𝑗 − 𝑊 𝑛

𝑖,𝑗. (4.9)

Substituting (4.9) into (4.8) gives

1

Δ𝑡

[(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1
𝑖,𝑗 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛
𝑖,𝑗 − 2𝑊 𝑛

𝑖,𝑗

]
= −(𝑃𝑥)𝑖,𝑗

2
(𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗)−

𝑃𝑖,𝑗
4Δ𝑥

(
𝑈𝑛+1
𝑖+1,𝑗 − 𝑈𝑛+1

𝑖−1,𝑗 + 𝑈𝑛
𝑖+1,𝑗 − 𝑈𝑛

𝑖−1,𝑗

)
−(𝑄𝑦)𝑖,𝑗

2
(𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗)−

𝑄𝑖,𝑗

4Δ𝑦

(
𝑈𝑛+1
𝑖,𝑗+1 − 𝑈𝑛+1

𝑖,𝑗−1 + 𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗−1

)
+

𝐷

2Δ𝑥2

[(
𝑈𝑛+1
𝑖−1,𝑗 − 2𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛+1
𝑖+1,𝑗

)
+
(
𝑈𝑛
𝑖−1,𝑗 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖+1,𝑗

)]
+

𝐷

2Δ𝑦2

[(
𝑈𝑛+1
𝑖,𝑗−1 − 2𝑈𝑛+1

𝑖,𝑗 + 𝑈𝑛+1
𝑖,𝑗+1

)
+
(
𝑈𝑛
𝑖,𝑗−1 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗+1

)]
.

After simplification we can write

𝐴1
𝑖,𝑗𝑈

𝑛+1
𝑖−1,𝑗 + 𝐴2

𝑖,𝑗𝑈
𝑛+1
𝑖,𝑗 + 𝐴3

𝑖,𝑗𝑈
𝑛+1
𝑖+1,𝑗 + 𝐴4

𝑖,𝑗𝑈
𝑛+1
𝑖,𝑗−1 + 𝐴5

𝑖,𝑗𝑈
𝑛+1
𝑖,𝑗+1

= 𝐵1
𝑖,𝑗𝑈

𝑛
𝑖−1,𝑗 + 𝐵2

𝑖,𝑗𝑈
𝑛
𝑖,𝑗 + 𝐵3

𝑖,𝑗𝑈
𝑛
𝑖+1,𝑗 + 𝐵4

𝑖,𝑗𝑈
𝑛
𝑖,𝑗−1 + 𝐵5

𝑖,𝑗𝑈
𝑛
𝑖,𝑗+1

+
2

Δ𝑡
𝑊 𝑛

𝑖,𝑗, (4.10)

where
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𝐴1
𝑖,𝑗 = − 𝑃𝑖,𝑗

4Δ𝑥
− 𝐷

2Δ𝑥2
, 𝐵1

𝑖,𝑗 =
𝑃𝑖,𝑗
4Δ𝑥

+
𝐷

2Δ𝑥2
,

𝐴3
𝑖,𝑗 =

𝑃𝑖,𝑗
4Δ𝑥

− 𝐷

2Δ𝑥2
, 𝐵3

𝑖,𝑗 = − 𝑃𝑖,𝑗
4Δ𝑥

+
𝐷

2Δ𝑥2
,

𝐴4
𝑖,𝑗 = −𝑄𝑖,𝑗

4Δ𝑦
− 𝐷

2Δ𝑦2
, 𝐵4

𝑖,𝑗 =
𝑄𝑖,𝑗

4Δ𝑦
+

𝐷

2Δ𝑦2
,

𝐴5
𝑖,𝑗 =

𝑄𝑖,𝑗

4Δ𝑦
− 𝐷

2Δ𝑦2
, 𝐵5

𝑖,𝑗 = −𝑄𝑖,𝑗

4Δ𝑦
+

𝐷

2Δ𝑦2
,

𝐴2
𝑖,𝑗 =

1

Δ𝑡

(
1 +

2𝜃

Δ𝑡

)
+

(𝑃𝑥)𝑖,𝑗
2

+
(𝑄𝑦)𝑖,𝑗

2
+

𝐷

Δ𝑥2
+

𝐷

Δ𝑦2
,

𝐵2
𝑖,𝑗 = − 1

Δ𝑡

(
1− 2𝜃

Δ𝑡

)
− (𝑃𝑥)𝑖,𝑗

2
− (𝑄𝑦)𝑖,𝑗

2
− 𝐷

Δ𝑥2
− 𝐷

Δ𝑦2
,

for 𝑖 = 1, . . . , 𝑁𝑥−1, 𝑗 = 1, . . . , 𝑁𝑦−1. Equation (4.10) will be used to compute

𝑈𝑛+1
𝑖,𝑗 . After that, 𝑈𝑛+1

𝑖,𝑗 is substituted into (4.9) to compute 𝑊 𝑛+1
𝑖,𝑗 .

From (4.9) and (4.10) we obtain the system

⎧⎨⎩
𝐴𝑈𝑛+1 = 𝐵𝑈𝑛 +

2

Δ𝑡
𝑊 𝑛 + 𝑑

𝑊 𝑛+1 =

(
1 +

2𝜃

Δ𝑡

)
𝑈𝑛+1 +

(
1− 2𝜃

Δ𝑡

)
𝑈𝑛 − 𝑊 𝑛

, (4.11)

where 𝐴 and 𝐵 are band matrixes of size ((𝑁𝑥−1)×(𝑁𝑦−1))2 with bandwidth

five, 𝑈𝑛+1, 𝑈𝑛, 𝑊 𝑛+1 and 𝑊 𝑛 are column matrixes of size (𝑁𝑥−1)×(𝑁𝑦−1)×1

and 𝑑 is the vector that contains appropriate initial and boundary conditions.

We note that the convergence of the difference scheme is obtained in the

same way as we did for the one dimensional case in Section 2.1. Thus, this

is an implicit numerical method of order 𝒪(Δ𝑡2 +Δ𝑥2 +Δ𝑦2).

4.1.2 A Laplace transform finite difference method

We now consider the extension of the Laplace transform finite difference

method to equation (4.1). Similarly to what was done in one dimension, we

apply the Laplace transform to remove the time dependent terms and obtain
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the equation

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
−𝜆2

𝑠𝑢−
∂

∂𝑥

(
𝑃

𝐷
𝑢

)
− ∂

∂𝑦

(
𝑄

𝐷
𝑢

)
= −𝑢0(𝑥, 𝑦)

𝐷
(1+𝜃𝑠)−𝑢1(𝑥, 𝑦)

𝐷
, (4.12)

with 𝑢(𝑥, 𝑦, 𝑠) the Laplace transform of 𝑢(𝑥, 𝑦, 𝑡) and 𝜆2
𝑠 = (𝜃𝑠2 + 𝑠)/𝐷. For a

fixed 𝑠, the finite difference scheme is given by

𝑈𝑖−1,𝑗(𝑠)− 2𝑈𝑖,𝑗(𝑠) + 𝑈𝑖+1,𝑗(𝑠)

Δ𝑥2
+

𝑈𝑖,𝑗−1(𝑠)− 2𝑈𝑖,𝑗(𝑠) + 𝑈𝑖,𝑗+1(𝑠)

Δ𝑦2
− 𝜆2

𝑠𝑈𝑖,𝑗(𝑠)

−𝑃𝑖+1,𝑗𝑈𝑖+1,𝑗(𝑠)− 𝑃𝑖−1,𝑗𝑈𝑖−1,𝑗(𝑠)

2𝐷Δ𝑥
− 𝑄𝑖,𝑗+1𝑈𝑖,𝑗+1(𝑠)− 𝑄𝑖,𝑗−1𝑈𝑖,𝑗−1(𝑠)

2𝐷Δ𝑦

= − 1

𝐷
(𝑢0(𝑥𝑖, 𝑦𝑗)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖, 𝑦𝑗)) , (4.13)

for 𝑖 = 1, . . . , 𝑁𝑥 − 1, 𝑗 = 1, . . . , 𝑁𝑦 − 1, 𝑃𝑖,𝑗 = 𝑃 (𝑥𝑖, 𝑦𝑗) and 𝑄𝑖,𝑗 = 𝑄(𝑥𝑖, 𝑦𝑗).

This discretized equation can be written in the form

𝐾𝑊𝑈𝑖−1,𝑗 + 𝐾𝑂𝑈𝑖,𝑗 + 𝐾𝐸𝑈𝑖+1,𝑗 + 𝐾𝑆𝑈𝑖,𝑗−1 + 𝐾𝑁𝑈𝑖,𝑗+1

= − 1

𝐷
(𝑢0(𝑥𝑖, 𝑦𝑗)(1 + 𝜃𝑠) + 𝑢1(𝑥𝑖, 𝑦𝑗)) ,

where the coefficients are given by

𝐾𝑊 =
1

Δ𝑥2
+

𝑃𝑖−1,𝑗

2𝐷Δ𝑥
, 𝐾𝑂 = − 2

Δ𝑥2
− 2

Δ𝑦2
− 𝜆2

𝑠,

𝐾𝐸 =
1

Δ𝑥2
− 𝑃𝑖+1,𝑗

2𝐷Δ𝑥
, 𝐾𝑆 =

1

Δ𝑦2
+

𝑄𝑖,𝑗−1

2𝐷Δ𝑦
,

𝐾𝑁 =
1

Δ𝑦2
− 𝑄𝑖,𝑗+1

2𝐷Δ𝑦
.

We obtain the linear system

𝐾(𝑠)𝑈(𝑠) = �̃�(𝑠), (4.14)

where 𝐾(𝑠) is a band matrix of size ((𝑁𝑥 − 1) × (𝑁𝑦 − 1))2, 𝑈(𝑠) a vector of

size (𝑁𝑥 − 1) × (𝑁𝑦 − 1) × 1 and �̃�(𝑠) a vector that contains the appropriate

initial and boundary conditions.

It follows directly, by doing Taylor expansions, that this finite difference

scheme has accuracy order in space given by 𝒪(Δ𝑥2 +Δ𝑦2).
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4.1.3 A Laplace transform finite volume method

The Laplace transform finite volume method presented in Section 3.2.2

is also applied in two dimensions for the spatial discretization of equation

(4.12). We consider the control volume Ω, see Figure 4.1, where

Ω = [𝑥𝑖 −Δ𝑥/2, 𝑥𝑖 +Δ𝑥/2]× [𝑦𝑗 −Δ𝑦/2, 𝑦𝑗 +Δ𝑦/2] ,

𝑖 = 1, . . . , 𝑁𝑥 − 1, 𝑗 = 1, . . . , 𝑁𝑦 − 1. Note that the point 𝑂 represents (𝑥𝑖, 𝑦𝑗).

Figure 4.1: Control volume Ω.

We integrate the ordinary differential equation (4.12) within the control

volume Ω, that is,∫
Ω

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
− 𝜆2

𝑠𝑢 − ∂

∂𝑥

(
𝑃

𝐷
𝑢

)
− ∂

∂𝑦

(
𝑄

𝐷
𝑢

)
𝑑𝑥𝑑𝑦

= − 1

𝐷

∫
Ω
(1 + 𝜃𝑠)𝑢0(𝑥, 𝑦) + 𝑢1(𝑥, 𝑦)𝑑𝑥𝑑𝑦. (4.15)

The domain Ω is subdivided in four rectangular elements as shown in

Figure 4.1. To derive the discretization, we approximate 𝑢(𝑥, 𝑦, 𝑠) in terms

of the nodal points and the shape functions in each element. Next, four

shape functions are chosen in a similar way to what was done for the one

dimensional case, as explained in [13]. For the element Ω𝑁𝐸, and assuming
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𝑂 represents the point (𝑥𝑖, 𝑦𝑗), the shape functions are given by

𝑁𝑂(𝑥, 𝑦, 𝑠) =
1

sinh(𝜇Δ𝑥) sinh(𝜇Δ𝑦)
sinh(𝜇(𝑥𝑖+1 − 𝑥)) sinh(𝜇(𝑦𝑗+1 − 𝑦)),

𝑁𝐸(𝑥, 𝑦, 𝑠) =
1

sinh(𝜇Δ𝑥) sinh(𝜇Δ𝑦)
sinh(𝜇(𝑥 − 𝑥𝑖)) sinh(𝜇(𝑦𝑗+1 − 𝑦)),

𝑁𝑁 (𝑥, 𝑦, 𝑠) =
1

sinh(𝜇Δ𝑥) sinh(𝜇Δ𝑦)
sinh(𝜇(𝑥𝑖+1 − 𝑥)) sinh(𝜇(𝑦 − 𝑦𝑗)),

𝑁𝑁𝐸(𝑥, 𝑦, 𝑠) =
1

sinh(𝜇Δ𝑥) sinh(𝜇Δ𝑦)
sinh(𝜇(𝑥 − 𝑥𝑖)) sinh(𝜇(𝑦 − 𝑦𝑗)),

where 𝜇 = 𝜆𝑠/
√
2. For this element the solution is then approximated by

𝑈(𝑥, 𝑦, 𝑠) = 𝑁𝑂(𝑥, 𝑦, 𝑠)𝑈𝑖,𝑗 + 𝑁𝐸(𝑥, 𝑦, 𝑠)𝑈𝑖+1,𝑗 + 𝑁𝑁 (𝑥, 𝑦, 𝑠)𝑈𝑖,𝑗+1

+𝑁𝑁𝐸(𝑥, 𝑦, 𝑠)𝑈𝑖+1,𝑗+1.

For the other three elements 𝑈(𝑥, 𝑦, 𝑠) can be represented in a similar

way.

We compute the integral on the right hand side of equation (4.15) by the

midpoint rule and obtain

1

𝐷

∫ 𝑥𝑖+
Δ𝑥
2

𝑥𝑖−Δ𝑥
2

∫ 𝑦𝑗+
Δ𝑦
2

𝑦𝑗−Δ𝑦
2

((1 + 𝜃𝑠)𝑢0(𝑥, 𝑦) + 𝑢1(𝑥, 𝑦))𝑑𝑥𝑑𝑦

≃ Δ𝑥Δ𝑦

𝐷
[(1 + 𝜃𝑠)𝑢0(𝑥𝑖, 𝑦𝑗) + 𝑢1(𝑥𝑖, 𝑦𝑗)] .

In order to ensure the viability of the calculation of the first integral in

(4.15), we consider 𝑃 (𝑥, 𝑦) = 𝑃 (𝑥) and 𝑄(𝑥, 𝑦) = 𝑄(𝑦). After the integration

of the first member of equation (4.15), the complete discretized equation that

corresponds to node 𝑂 is obtained by the contribution of all the four elements

and is given by

𝐾𝑂𝑈𝑖,𝑗 + 𝐾𝐸𝑈𝑖+1,𝑗 + 𝐾𝑊𝑈𝑖−1,𝑗 + 𝐾𝑁𝑈𝑖,𝑗+1 + 𝐾𝑆𝑈𝑖,𝑗−1 + 𝐾𝑁𝐸𝑈𝑖+1,𝑗+1

+𝐾𝑁𝑊𝑈𝑖−1,𝑗+1 + 𝐾𝑆𝐸𝑈𝑖+1,𝑗−1 + 𝐾𝑆𝑊𝑈𝑖−1,𝑗−1

= −Δ𝑥Δ𝑦

𝐷
sinh(𝜇Δ𝑥) sinh(𝜇Δ𝑦) ((1 + 𝜃𝑠)𝑢0(𝑥𝑖, 𝑦𝑗) + 𝑢1(𝑥𝑖, 𝑦𝑗)) ,

where the coefficients are given by
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𝐾𝑂 = 4[cosh(𝜇Δ𝑥) cosh(𝜇Δ𝑦/2) + cosh(𝜇Δ𝑦) cosh(𝜇Δ𝑥/2)]

−8 cosh(𝜇Δ𝑥) cosh(𝜇Δ𝑦)

+
2

𝜇
(𝑃𝑖+1/2 − 𝑃𝑖−1/2) sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦)− cosh(𝜇Δ𝑦/2))

+
2

𝜇
(𝑄𝑗+1/2 − 𝑄𝑗−1/2) sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥)− cosh(𝜇Δ𝑥/2)),

𝐾𝐸 = 2[2 cosh(𝜇Δ𝑦)− cosh(𝜇Δ𝑦/2)− cosh(𝜇Δ𝑥/2) cosh(𝜇Δ𝑦)]

+
2

𝜇
𝑃𝑖+1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦)− cosh(𝜇Δ𝑦/2))

+
1

𝜇
(𝑄𝑗+1/2 − 𝑄𝑗−1/2) sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2) − 1),

𝐾𝑊 = 2[2 cosh(𝜇Δ𝑦)− cosh(𝜇Δ𝑦/2)− cosh(𝜇Δ𝑥/2) cosh(𝜇Δ𝑦)]

− 2

𝜇
𝑃𝑖−1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦)− cosh(𝜇Δ𝑦/2))

+
1

𝜇
(𝑄𝑗+1/2 − 𝑄𝑗−1/2) sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2) − 1),

𝐾𝑁 = 2[2 cosh(𝜇Δ𝑥)− cosh(𝜇Δ𝑥/2) − cosh(𝜇Δ𝑥) cosh(𝜇Δ𝑦/2)]

+
1

𝜇
(𝑃𝑖+1/2 − 𝑃𝑖−1/2) sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

+
2

𝜇
𝑄𝑗+1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥)− cosh(𝜇Δ𝑥/2)),

𝐾𝑆 = 2[2 cosh(𝜇Δ𝑥)− cosh(𝜇Δ𝑥/2) − cosh(𝜇Δ𝑥) cosh(𝜇Δ𝑦/2)]

+
1

𝜇
(𝑃𝑖+1/2 − 𝑃𝑖−1/2) sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

− 2

𝜇
𝑄𝑗−1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥)− cosh(𝜇Δ𝑥/2)),

𝐾𝑁𝐸 = [cosh(𝜇Δ𝑥/2) + cosh(𝜇Δ𝑦/2)− 2]

+
1

𝜇
𝑃𝑖+1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

+
1

𝜇
𝑄𝑗+1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2) − 1),
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𝐾𝑁𝑊 = [cosh(𝜇Δ𝑥/2) + cosh(𝜇Δ𝑦/2)− 2]

− 1

𝜇
𝑃𝑖−1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

+
1

𝜇
𝑄𝑗+1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2)− 1),

𝐾𝑆𝐸 = [cosh(𝜇Δ𝑥/2) + cosh(𝜇Δ𝑦/2)− 2]

+
1

𝜇
𝑃𝑖+1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

− 1

𝜇
𝑄𝑗−1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2)− 1),

𝐾𝑆𝑊 = [cosh(𝜇Δ𝑥/2) + cosh(𝜇Δ𝑦/2)− 2]

− 1

𝜇
𝑃𝑖−1/2 sinh(𝜇Δ𝑥/2)(cosh(𝜇Δ𝑦/2)− 1)

− 1

𝜇
𝑄𝑗−1/2 sinh(𝜇Δ𝑦/2)(cosh(𝜇Δ𝑥/2)− 1).

As for the Laplace transform finite difference method, we also obtain the

linear system (4.14)

𝐾(𝑠)𝑈(𝑠) = �̃�(𝑠).

The consistency of the numerical method follows by doing Taylor series

expansions as we did in Section 3.2.2. Using convenient and practical

algebraic manipulations we can show that this finite volume difference scheme

has accuracy order 𝒪(Δ𝑥2 +Δ𝑦2).

4.1.4 Comparison of performance

Three different numerical methods were developed to get an approximate

solution of equation (4.1) in two dimensions: the Crank-Nicolson method

(CN-2D), the Laplace transform finite difference method (Laplace-FD-2D)

and the Laplace transform finite volume method (Laplace-FV-2D). In the

next numerical example, for which we are able to determine the analytical

solution, we compare their performance. At first we compute the errors and

the convergence rate and then we show how the solution behaves.
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Δ𝑥 = Δ𝑦 CN-2D Rate Laplace-FD-2D Rate Laplace-FV-2D Rate√
8𝜋/40 0.2611 × 10−3 0.3700 × 10−2 0.3700 × 10−2√
8𝜋/70 0.8510 × 10−4 2.0 0.1200 × 10−2 2.0 0.1200 × 10−2 2.0√
8𝜋/100 0.4331 × 10−4 1.9 0.5984 × 10−3 2.0 0.5984 × 10−3 2.0√
8𝜋/130 0.2542 × 10−4 2.0 0.3542 × 10−3 2.0 0.3542 × 10−3 2.0√
8𝜋/160 0.1705 × 10−4 1.9 0.2338 × 10−3 2.0 0.2338 × 10−3 2.0

Table 4.1: Global error 𝐸𝐺1 of Example 4.1.1 for 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ √
8𝜋,

Δ𝑡 = Δ𝑥, 𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 20, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm
ℓ∞.

Example 4.1.1. We consider equation (4.1) with 𝑃 = 𝑄 = 0 and 𝜃 = 𝐷 = 1:

∂2𝑢

∂𝑡2
+

∂𝑢

∂𝑡
=

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
, (𝑥, 𝑦) ∈ (0, 𝑏) × (0, 𝑏), 𝑡 > 0, (4.16)

with initial conditions

𝑢(𝑥, 𝑦, 0) = sin
(𝜋

𝑏
𝑥
)
sin
(𝜋

𝑏
𝑦
)

,

∂𝑢

∂𝑡
(𝑥, 𝑦, 0) = −𝑎

2
sin
(𝜋

𝑏
𝑥
)
sin
(𝜋

𝑏
𝑦
)

, (4.17)

and boundary conditions

𝑢(0, 𝑦, 𝑡) = 𝑢(𝑥, 0, 𝑡) = 0, 𝑢(𝑏, 𝑦, 𝑡) = 𝑢(𝑥, 𝑏, 𝑡) = 0. (4.18)

The exact solution is given by

𝑢(𝑥, 𝑦, 𝑡) = e−𝑎𝑡/2 sin
(𝜋

𝑏
𝑥
)
sin
(𝜋

𝑏
𝑦
)

, (4.19)

where constants 𝑎 and 𝑏 satisfy the relation

𝑏2 =
8𝜋2

2𝑎 − 𝑎2
.

We will consider this problem with 𝑎 = 1 and 𝑏 =
√
8𝜋. In Table 4.1 we

present the global error, defined by

𝐸𝐺1 = ∥𝑢 − 𝑈∥∞ = max
1≤𝑖≤𝑁𝑥−1,1≤𝑗≤𝑁𝑦−1

∣𝑢(𝑥𝑖, 𝑦𝑗, 𝑡)− 𝑈(𝑥𝑖, 𝑦𝑗 , 𝑡)∣, (4.20)

and the convergence rate for the three methods.
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Δ𝑥 = Δ𝑦 CN-2D Rate Laplace-FD-2D Rate Laplace-FV-2D Rate√
8𝜋/40 0.1200 × 10−2 0.8473 × 10−3 0.1100 × 10−2√
8𝜋/70 0.3781 × 10−3 2.1 0.1650 × 10−3 2.9 0.2742 × 10−3 2.5√
8𝜋/100 0.1924 × 10−3 1.9 0.5996 × 10−4 2.8 0.1229 × 10−3 2.2√
8𝜋/130 0.1129 × 10−3 2.0 0.2924 × 10−4 2.7 0.6990 × 10−4 2.2√
8𝜋/160 0.7576 × 10−4 1.9 0.1690 × 10−4 2.6 0.4519 × 10−4 2.1

Table 4.2: Global error 𝐸𝐺2 of Example 4.1.1 for 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ √
8𝜋,

Δ𝑡 = Δ𝑥, 𝑇𝑂𝐿 = 1/𝑁3, 𝑇 = 20, 𝛽 = − ln(10−16)/2𝑇 , computed with the norm
ℓ2,Δ.

All methods have a truncation error of second order and the CN-2D presents

a smaller error. However, let us now consider the error defined by the norm

ℓ2,Δ:

𝐸𝐺2 = ∥𝑢 − 𝑈∥ =

⎛⎝Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

∣𝑢(𝑥𝑖, 𝑦𝑗, 𝑡)− 𝑈(𝑥𝑖, 𝑦𝑗, 𝑡)∣2
⎞⎠1/2

. (4.21)

In Table 4.2 we can observe that the Laplace-FD-2D method has a signifi-

cant higher convergence rate. The same happens with the Laplace-FV-2D

method.

Figure 4.2: Results for Example 4.1.1. Left: exact solution 𝑢(𝑥, 𝑦, 𝑡). Right:
approximate solution by CN-2D for Δ𝑡 = Δ𝑥 = Δ𝑦 =

√
8𝜋/40.

In Figure 4.2 and Figure 4.3 we show how the solution behaves for this

problem: the solution 𝑢 and the numerical solutions match very well.

Despite the good results obtained from these methods, they proved to

be computationally inefficient: the resolution of system (4.14), used for the
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Figure 4.3: Approximate solution of Example 4.1.1 for Δ𝑡 = Δ𝑥 = Δ𝑦 =√
8𝜋/40. Left: Laplace-FD-2D. Right: Laplace-FV-2D.

Laplace-FD-2D and Laplace-FV-2D methods, and system (4.11) used for the

CN-2D method, require excessive memory and computational effort. In fact,

the three schemes lead to a system that has matrices with five diagonals.

For large values of 𝑁𝑥 and 𝑁𝑦, lengths of the domain in the 𝑥 and in the 𝑦

directions respectively, it quickly fills the computer memory. For example,

in the numerical test given above the methods Laplace-FD-2D and Laplace-

FV-2D do not deal with 𝑁𝑥, 𝑁𝑦 > 200. For the CN-2D method this drawback

is even more evident since the system (4.11) needs to be solved at each time

step; the method does not support 𝑁𝑥, 𝑁𝑦 > 160. Therefore a new strategy is

developed in the next section to overcome this difficulty.

4.2 An alternating direction implicit method

The numerical method proposed consists first of deriving a scheme based

on the Crank-Nicolson method giving rise to a sparse linear system that

need to be solved at each time step. Then, to overcome the computational

inefficiency of this implicit scheme in two dimensions, after discretization we

apply an alternating direction implicit (ADI) method. This approach allows

the reduction of our two dimensional problem into two problems in one

dimension which only require to solve systems with tridiagonal matrices.

The main idea of the ADI method is to split the computations in two
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steps. In the first step, we apply an implicit method in the 𝑥-direction and

an explicit method in the 𝑦-direction, producing an intermediate solution for

time. In the second step, we apply an implicit method in the 𝑦-direction and

an explicit method in the 𝑥-direction. This is described bellow.

For convenience of numerical analysis, we introduce the dimensionless

parameters

𝑥∗ =
𝑥√
𝐷𝜃

, 𝑦∗ =
𝑦√
𝐷𝜃

, 𝑡∗ =
𝑡

𝜃
, 𝜃 ∈]0, 1],

𝑃 ∗ =

√
𝐷

𝜃
𝑃, 𝑄∗ =

√
𝐷

𝜃
𝑄

and the dimensionless form of equation (4.1) can be written as, omitting

asterisks for notational simplicity,

∂2𝑢

∂𝑡2
(𝑥, 𝑦, 𝑡) +

∂𝑢

∂𝑡
(𝑥, 𝑦, 𝑡) = − ∂

∂𝑥
(𝑃 (𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡)) − ∂

∂𝑦
(𝑄(𝑥, 𝑦)𝑢(𝑥, 𝑦, 𝑡))

+
∂2𝑢

∂𝑥2
(𝑥, 𝑦, 𝑡) +

∂2𝑢

∂𝑦2
(𝑥, 𝑦, 𝑡), (4.22)

where (𝑥, 𝑦) ∈ Ω, 𝑡 > 0 and Ω ⊂ R
2 is a rectangular domain. We consider the

initial conditions given by

𝑢 (𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, (4.23)
∂𝑢

∂𝑡
(𝑥, 𝑦, 0) = 𝑢1(𝑥, 𝑦), (𝑥, 𝑦) ∈ Ω, (4.24)

and Dirichlet boundary condition

𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦, 𝑡), (𝑥, 𝑦) ∈ ∂Ω, 𝑡 > 0. (4.25)

Next, we describe some difference operators so that we can easily handle

the discretized equations (4.7)-(4.8). We define the first order forward and

backward difference operators as

𝛿+𝑥 𝑈𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖+1,𝑗 − 𝑈𝑛

𝑖,𝑗

Δ𝑥
, 𝛿+𝑦 𝑈𝑛

𝑖,𝑗 =
𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗

Δ𝑦
(4.26)

and

𝛿−𝑥 𝑈𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖,𝑗 − 𝑈𝑛

𝑖−1,𝑗

Δ𝑥
, 𝛿−𝑦 𝑈𝑛

𝑖,𝑗 =
𝑈𝑛
𝑖,𝑗 − 𝑈𝑛

𝑖,𝑗−1

Δ𝑦
. (4.27)
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The first order centered difference operators are given by

𝛿𝑥𝑈
𝑛
𝑖,𝑗 =

1

2
[𝛿+𝑥 + 𝛿−𝑥 ]𝑈

𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖+1,𝑗 − 𝑈𝑛

𝑖−1,𝑗

2Δ𝑥
, (4.28)

𝛿𝑦𝑈
𝑛
𝑖,𝑗 =

1

2
[𝛿+𝑦 + 𝛿−𝑦 ]𝑈

𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗−1

2Δ𝑦
, (4.29)

and the second order centered difference operators are defined by

𝛿2𝑥𝑈
𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖−1,𝑗 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖+1,𝑗

Δ𝑥2
, 𝛿2𝑦𝑈

𝑛
𝑖,𝑗 =

𝑈𝑛
𝑖,𝑗−1 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗+1

Δ𝑦2
. (4.30)

Considering the new variables, we use the discretization operators de-

fined in (4.28)-(4.30) and denote the set of discretization points 𝑈𝑛 = {𝑈𝑛
𝑖,𝑗},

𝑃𝑈𝑛 = {𝑃𝑖,𝑗𝑈𝑛
𝑖,𝑗}, 𝑄𝑈𝑛 = {𝑄𝑖,𝑗𝑈

𝑛
𝑖,𝑗}, 𝑃𝑥𝑈

𝑛 = {(𝑃𝑥)𝑖,𝑗𝑈𝑛
𝑖,𝑗}, 𝑄𝑦𝑈

𝑛 = {(𝑄𝑦)𝑖,𝑗𝑈
𝑛
𝑖,𝑗}

and 𝑊 𝑛 = {𝑊 𝑛
𝑖,𝑗}. The numerical method can be written in the form

𝑊 𝑛+1 + 𝑊 𝑛 = 𝑈𝑛+1 + 𝑈𝑛 +
2

Δ𝑡

(
𝑈𝑛+1 − 𝑈𝑛

)
(4.31)

and

𝑊 𝑛+1 − 𝑊 𝑛 = − Δ𝑡

2
𝑃𝑥(𝑈

𝑛+1 + 𝑈𝑛)− 𝑃Δ𝑡

2
𝛿𝑥
(
𝑈𝑛+1 + 𝑈𝑛

)
− Δ𝑡

2
𝑄𝑦(𝑈

𝑛+1 + 𝑈𝑛)− 𝑄Δ𝑡

2
𝛿𝑦
(
𝑈𝑛+1 + 𝑈𝑛

)
+

Δ𝑡

2
𝛿2𝑥
(
𝑈𝑛+1 + 𝑈𝑛

)
+

Δ𝑡

2
𝛿2𝑦
(
𝑈𝑛+1 + 𝑈𝑛

)
. (4.32)

Let us define the operators

𝐿𝑃 =
Δ𝑡

2
(𝑃𝑥 + 𝑃𝛿𝑥 − 𝛿2𝑥) and 𝐿𝑄 =

Δ𝑡

2
(𝑄𝑦 + 𝑄𝛿𝑦 − 𝛿2𝑦) (4.33)

and consider the numerical method((
1 +

2

Δ𝑡

)
+ 𝐿𝑃

)(
1 +

Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑈𝑛+1

=

((
1 +

2

Δ𝑡

)
− 𝐿𝑃

)(
1− Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑈𝑛 + 2(𝑊 𝑛 − 𝑈𝑛). (4.34)

Proposition 4.2.1. The numerical method (4.31) and (4.34) is a discretiza-

tion of the equation (4.22) and, for a sufficiently smooth 𝑢, the numerical

method is 𝒪(Δ𝑡2 +Δ2) accurate, where Δ2 = Δ𝑥2 +Δ𝑦2.
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Proof: If we replace the exact solution in the numerical method (4.31)-(4.32)

then, after expanding functions 𝑢𝑛+1 and 𝑤𝑛+1 into a Taylor series around

the point (𝑥𝑖, 𝑦𝑗, 𝑡𝑛+1/2),

𝑤𝑛+1 + 𝑤𝑛 = 𝑢𝑛+1 + 𝑢𝑛 +
2

Δ𝑡

(
𝑢𝑛+1 − 𝑢𝑛

)
+𝒪 (Δ𝑡2

)
(4.35)

and

𝑤𝑛+1 − 𝑤𝑛 = − Δ𝑡

2
𝑃𝑥(𝑢

𝑛+1 + 𝑢𝑛)− 𝑃Δ𝑡

2
𝛿𝑥
(
𝑢𝑛+1 + 𝑢𝑛

)
− Δ𝑡

2
𝑄𝑦(𝑢

𝑛+1 + 𝑢𝑛)− 𝑄Δ𝑡

2
𝛿𝑦
(
𝑢𝑛+1 + 𝑢𝑛

)
+

Δ𝑡

2

(
𝛿2𝑥 + 𝛿2𝑦

) (
𝑢𝑛+1 + 𝑢𝑛

)
+𝒪 (Δ𝑡2 +Δ2 +Δ𝑡Δ2

)
(4.36)

and the CN-2D method is 𝒪 (Δ𝑡2 +Δ2
)

accurate. Replacing (4.35) in (4.36)

yields(
1 +

2

Δ𝑡

)
𝑢𝑛+1 +

(
1− 2

Δ𝑡

)
𝑢𝑛 = − Δ𝑡

2
(𝑃𝑥 + 𝑄𝑦) (𝑢

𝑛+1 + 𝑢𝑛)

− Δ𝑡

2
(𝑃𝛿𝑥 + 𝑄𝛿𝑦)

(
𝑢𝑛+1 + 𝑢𝑛

)
+

Δ𝑡

2

(
𝛿2𝑥 + 𝛿2𝑦

) (
𝑢𝑛+1 + 𝑢𝑛

)
+ 2𝑤𝑛

+ 𝒪 (Δ𝑡2 +Δ2 +Δ𝑡Δ2
)
.

Using the operators defined in (4.33), the previous equation can be written

as ((
1 +

2

Δ𝑡

)
+ 𝐿𝑃 + 𝐿𝑄

)
𝑢𝑛+1 =

((
1 +

2

Δ𝑡

)
− 𝐿𝑃 − 𝐿𝑄

)
𝑢𝑛

+2(𝑤𝑛 − 𝑢𝑛) +𝒪 (Δ𝑡2 +Δ2 +Δ𝑡Δ2
)
. (4.37)

The accuracy of the numerical method is 𝒪 (Δ𝑡2 +Δ2
)
, and therefore we

can add to it any term of the same or higher order without changing the

accuracy of the scheme. With this in mind, let us consider the term

Δ𝑡

Δ𝑡 + 2
𝐿𝑃𝐿𝑄(𝑢

𝑛+1 − 𝑢𝑛). (4.38)

Since
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𝐿𝑃𝐿𝑄(𝑢
𝑛+1 − 𝑢𝑛) =

Δ𝑡2

4

(
𝑃𝑥 + 𝑃𝛿𝑥 − 𝛿𝑥2

) (
𝑄𝑦 + 𝑄𝛿𝑦 − 𝛿𝑦2

)
(𝑢𝑛+1 − 𝑢𝑛)

=
Δ𝑡2

4

(
𝑃𝑥 + 𝑃

∂

∂𝑥
− ∂2

∂𝑥2
+𝒪(Δ𝑥2)

)(
𝑄𝑦 + 𝑄

∂

∂𝑦
− ∂2

∂𝑦2
+𝒪(Δ𝑦2)

)

×
(
Δ𝑡

(
∂𝑢

∂𝑡

)𝑛+1/2

+𝒪(Δ𝑡3)

)

=
Δ𝑡3

4

(
𝑃𝑥 + 𝑃

∂

∂𝑥
− ∂2

∂𝑥2

)(
𝑄𝑦 + 𝑄

∂

∂𝑦
− ∂2

∂𝑦2

)
∂𝑢𝑛+1/2

∂𝑡

+𝒪 (Δ𝑡3Δ2 +Δ𝑡5
)
,

the term (4.38) is 𝒪 (Δ𝑡3Δ2 +Δ𝑡5
)

and can be added to (4.37) without any

change in the accuracy order. Then, we obtain((
1 +

2

Δ𝑡

)
+ 𝐿𝑃

)(
1 +

Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑢𝑛+1

=

((
1 +

2

Δ𝑡

)
− 𝐿𝑃

)(
1− Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑢𝑛

+2(𝑤𝑛 − 𝑢𝑛) +𝒪 (Δ𝑡2 +Δ2 +Δ𝑡Δ2 +Δ𝑡3Δ2
)
. (4.39)

Therefore, we conclude the numerical method (4.34) is 𝒪(Δ𝑡2+Δ2) accurate.

■

To implement the numerical method (4.34) we can split the equation in

two, following the Peaceman-Rachford strategy [75], by introducing a new

intermediate variable 𝑈 , which represents a solution computed for an

intermediate time. Thus we obtain a type of Peaceman-Rachford ADI,

((
1 +

2

Δ𝑡

)
+ 𝐿𝑃

)
𝑈 =

(
1− Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑈𝑛 +

Δ𝑡

Δ𝑡+ 2
(𝑊 𝑛 − 𝑈𝑛), (4.40)

(
1 +

Δ𝑡

Δ𝑡 + 2
𝐿𝑄

)
𝑈𝑛+1 =

((
1 +

2

Δ𝑡

)
− 𝐿𝑃

)
𝑈 +

Δ𝑡

Δ𝑡 + 2
(𝑊 𝑛 − 𝑈𝑛). (4.41)

If we apply the operator
((
1 + 2

Δ𝑡

)
+ 𝐿𝑃

)
to both sides of (4.41), it can

be seen that (4.40) and (4.41) are equivalent to (4.34). To implement the

difference scheme (4.40)-(4.41) we need to solve two systems. The resolution
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of (4.40) gives

(
1 +

2

Δ𝑡
+

Δ𝑡

2
𝑃𝑥 +

Δ𝑡

2
𝑃𝛿𝑥 − Δ𝑡

2
𝛿2𝑥

)
𝑈

=

(
1− Δ𝑡2

2(Δ𝑡 + 2)
(𝑄𝑦 + 𝑄𝛿𝑦 − 𝛿2𝑦)

)
𝑈𝑛 +

Δ𝑡

Δ𝑡+ 2
(𝑊 𝑛 − 𝑈𝑛).

After developing the difference operators we obtain the equation(
1 +

2

Δ𝑡
+

Δ𝑡

2
(𝑃𝑥)𝑖,𝑗

)
𝑈𝑖,𝑗 +

Δ𝑡𝑃𝑖,𝑗
2

𝑈𝑖+1,𝑗 − 𝑈𝑖−1,𝑗

2Δ𝑥

−Δ𝑡

2

𝑈𝑖−1,𝑗 − 2𝑈𝑖,𝑗 + 𝑈𝑖+1,𝑗

Δ𝑥2

=

(
1− Δ𝑡2(𝑄𝑦)𝑖,𝑗

2(Δ𝑡 + 2)

)
𝑈𝑛
𝑖,𝑗 −

Δ𝑡2𝑄𝑖,𝑗

2(Δ𝑡 + 2)

𝑈𝑛
𝑖,𝑗+1 − 𝑈𝑛

𝑖,𝑗−1

2Δ𝑦

+
Δ𝑡2

2(Δ𝑡 + 2)

𝑈𝑛
𝑖,𝑗−1 − 2𝑈𝑛

𝑖,𝑗 + 𝑈𝑛
𝑖,𝑗+1

Δ𝑦2
+

Δ𝑡

Δ𝑡 + 2

(
𝑊 𝑛

𝑖,𝑗 − 𝑈𝑛
𝑖,𝑗

)
.

Dividing the equation by Δ𝑡 results in

𝐴1
𝑖,𝑗𝑈𝑖−1,𝑗 + 𝐴2

𝑖,𝑗𝑈𝑖,𝑗 + 𝐴3
𝑖,𝑗𝑈𝑖+1,𝑗

= 𝐵1
𝑖,𝑗𝑈

𝑛
𝑖,𝑗−1 + 𝐵2

𝑖,𝑗𝑈
𝑛
𝑖,𝑗 + 𝐵3

𝑖,𝑗𝑈
𝑛
𝑖,𝑗+1 +

1

Δ𝑡 + 2

(
𝑊 𝑛

𝑖,𝑗 − 𝑈𝑛
𝑖,𝑗

)
, (4.42)

for 𝑖 = 1, . . . , 𝑁𝑥 − 1, 𝑗 = 1, . . . , 𝑁𝑦 − 1, where

𝐴1
𝑖,𝑗 = − 𝑃𝑖,𝑗

4Δ𝑥 − 1
2Δ𝑥2 , 𝐴2

𝑖,𝑗 =
1
Δ𝑡 +

2
Δ𝑡2 +

(𝑃𝑥)𝑖,𝑗
2 + 1

Δ𝑥2 ,

𝐴3
𝑖,𝑗 =

𝑃𝑖,𝑗

4Δ𝑥 − 1
2Δ𝑥2 , 𝐵1

𝑖,𝑗 =
Δ𝑡

4(Δ𝑡+2)Δ𝑦𝑄𝑖,𝑗 +
Δ𝑡

2(Δ𝑡+2)Δ𝑦2 ,

𝐵2
𝑖,𝑗 =

1
Δ𝑡 − Δ𝑡

2(Δ𝑡+2) (𝑄𝑦)𝑖,𝑗 − Δ𝑡
(Δ𝑡+2)Δ𝑦2 ,

𝐵3
𝑖,𝑗 = − Δ𝑡

4(Δ𝑡+2)Δ𝑦𝑄𝑖,𝑗 +
Δ𝑡

2(Δ𝑡+2)Δ𝑦2
.

The matrix form of (4.42) is
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴2
1,𝑗 𝐴3

1,𝑗

𝐴1
2,𝑗 𝐴2

2,𝑗 𝐴3
2,𝑗

. . . . . . . . .

𝐴1
𝑁𝑥−2,𝑗 𝐴2

𝑁𝑥−2,𝑗 𝐴3
𝑁𝑥−2,𝑗

𝐴1
𝑁𝑥−1,𝑗 𝐴2

𝑁𝑥−1,𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈1,𝑗

𝑈2,𝑗

...

𝑈𝑁𝑥−2,𝑗

𝑈𝑁𝑥−1,𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐵1
1,𝑗𝑈

𝑛
1,𝑗−1 + 𝐵2

1,𝑗𝑈
𝑛
1,𝑗 + 𝐵3

1,𝑗𝑈
𝑛
1,𝑗+1

𝐵1
2,𝑗𝑈

𝑛
2,𝑗−1 + 𝐵2

2,𝑗𝑈
𝑛
2,𝑗 + 𝐵3

2,𝑗𝑈
𝑛
2,𝑗+1

...

𝐵1
𝑁𝑥−2,𝑗𝑈

𝑛
𝑁𝑥−2,𝑗−1 + 𝐵2

𝑁𝑥−2,𝑗𝑈
𝑛
𝑁𝑥−2,𝑗 + 𝐵3

𝑁𝑥−2,𝑗𝑈
𝑛
𝑁𝑥−2,𝑗+1

𝐵1
𝑁𝑥−1,𝑗𝑈

𝑛
𝑁𝑥−1,𝑗−1 + 𝐵2

𝑁𝑥−1,𝑗𝑈
𝑛
𝑁𝑥−1,𝑗 + 𝐵3

𝑁𝑥−1,𝑗𝑈
𝑛
𝑁𝑥−1,𝑗+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Δ𝑡+2

(
𝑊 𝑛

1,𝑗 − 𝑈𝑛
1,𝑗

)
− 𝐴1

1,𝑗𝑈0,𝑗

1
Δ𝑡+2

(
𝑊 𝑛

2,𝑗 − 𝑈𝑛
2,𝑗

)
...

1
Δ𝑡+2

(
𝑊 𝑛

𝑁𝑥−2,𝑗 − 𝑈𝑛
𝑁𝑥−2,𝑗

)
1

Δ𝑡+2

(
𝑊 𝑛

𝑁𝑥−1,𝑗 − 𝑈𝑛
𝑁𝑥−1,𝑗

)
− 𝐴3

𝑁𝑥−1,𝑗𝑈𝑁𝑥,𝑗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For a fixed 𝑗, we need to solve a tridiagonal system of dimension (𝑁𝑥− 1).

This implies the resolution of (𝑁𝑦 − 1) tridiagonal systems. In a similar way,

the resolution of (4.41) gives(
1 +

Δ𝑡2

2(Δ𝑡 + 2)
(𝑄𝑦 + 𝑄𝛿𝑦 − 𝛿2𝑦)

)
𝑈𝑛+1

=

(
1 +

2

Δ𝑡
− Δ𝑡

2
𝑃𝑥 − Δ𝑡

2
𝑃𝛿𝑥 +

Δ𝑡

2
𝛿2𝑥

)
𝑈 +

Δ𝑡

Δ𝑡 + 2
(𝑊 𝑛 − 𝑈𝑛).

Again, we develop the operators and divide by Δ𝑡 to get

𝐶1
𝑖,𝑗𝑈

𝑛+1
𝑖,𝑗−1 + 𝐶2

𝑖,𝑗𝑈
𝑛+1
𝑖,𝑗 + 𝐶3

𝑖,𝑗𝑈
𝑛+1
𝑖,𝑗+1

= 𝐷1
𝑖,𝑗𝑈𝑖−1,𝑗 + 𝐷2

𝑖,𝑗𝑈𝑖,𝑗 + 𝐷3
𝑖,𝑗𝑈𝑖+1,𝑗 +

1

Δ𝑡 + 2

(
𝑊 𝑛

𝑖,𝑗 − 𝑈𝑛
𝑖,𝑗

)
, (4.43)
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for 𝑖 = 1, . . . , 𝑁𝑥 − 1, 𝑗 = 1, . . . , 𝑁𝑦 − 1, where

𝐶1
𝑖,𝑗 = − Δ𝑡

4(Δ𝑡 + 2)Δ𝑦
𝑄𝑖,𝑗 − Δ𝑡

2(Δ𝑡 + 2)Δ𝑦2
,

𝐶2
𝑖,𝑗 =

1

Δ𝑡
+

Δ𝑡

2(Δ𝑡 + 2)
(𝑄𝑦)𝑖,𝑗 +

Δ𝑡

(Δ𝑡 + 2)Δ𝑦2
,

𝐶3
𝑖,𝑗 =

Δ𝑡

4(Δ𝑡 + 2)Δ𝑦
𝑄𝑖,𝑗 − Δ𝑡

2(Δ𝑡 + 2)Δ𝑦2
, 𝐷1

𝑖,𝑗 =
𝑃𝑖,𝑗
4Δ𝑥

+
1

2Δ𝑥2
,

𝐷2
𝑖,𝑗 =

1

Δ𝑡
+

2

Δ𝑡2
− (𝑃𝑥)𝑖,𝑗

2
− 1

Δ𝑥2
, 𝐷3

𝑖,𝑗 = − 𝑃𝑖,𝑗
4Δ𝑥

+
1

2Δ𝑥2
.

The matrix form of (4.43) is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶2
𝑖,1 𝐶3

𝑖,1

𝐶1
𝑖,2 𝐶2

𝑖,2 𝐶3
𝑖,2

. . . . . . . . .

𝐶1
𝑖,𝑁𝑦−2 𝐶2

𝑖,𝑁𝑦−2 𝐶3
𝑖,𝑁𝑦−2

𝐶1
𝑖,𝑁𝑦−1 𝐶2

𝑖,𝑁𝑦−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑈𝑛+1
𝑖,1

𝑈𝑛+1
𝑖,2
...

𝑈𝑛+1
𝑖,𝑁𝑦−2

𝑈𝑛+1
𝑖,𝑁𝑦−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷1
𝑖,1𝑈𝑖−1,1 + 𝐷2

𝑖,1𝑈𝑖,1 + 𝐷3
𝑖,1𝑈𝑖+1,1

𝐷1
𝑖,2𝑈𝑖−1,2 + 𝐷2

𝑖,2𝑈𝑖,2 + 𝐷3
𝑖,2𝑈𝑖+1,2

...

𝐷1
𝑖,𝑁𝑦−2𝑈𝑖−1,𝑁𝑦−2 + 𝐷2

𝑖,𝑁𝑦−2𝑈𝑖,𝑁𝑦−2 + 𝐷3
𝑖,𝑁𝑦−2𝑈𝑖+1,𝑁𝑦−2

𝐷1
𝑖,𝑁𝑦−1𝑈𝑖−1,𝑁𝑦−1 + 𝐷2

𝑖,𝑁𝑦−1𝑈𝑖,𝑁𝑦−1 + 𝐷3
𝑖,𝑁𝑦−1𝑈𝑖+1,𝑁𝑦−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
Δ𝑡+2

(
𝑊 𝑛

𝑖,1 − 𝑈𝑛
𝑖,1

)
− 𝐶1

𝑖,1𝑈
𝑛+1
𝑖,0

1
Δ𝑡+2

(
𝑊 𝑛

𝑖,2 − 𝑈𝑛
𝑖,2

)
...

1
Δ𝑡+2

(
𝑊 𝑛

𝑖,𝑁𝑦−2 − 𝑈𝑛
𝑖,𝑁𝑦−2

)
1

Δ𝑡+2

(
𝑊 𝑛

𝑖,𝑁𝑦−1 − 𝑈𝑛
𝑖,𝑁𝑦−1

)
− 𝐶3

𝑖,𝑁𝑦−1𝑈
𝑛+1
𝑖,𝑁𝑦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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For a fixed 𝑖, we need to solve a tridiagonal system of dimension (𝑁𝑦 − 1).

This implies the resolution of (𝑁𝑥 − 1) tridiagonal systems.

We have seen the difference scheme (4.34) has a truncation error of order

𝒪 (Δ𝑡2 +Δ2
)
. Next, we focus our attention in its stability studied in the

following section.

4.2.1 Stability analysis

We prove the stability of finite difference scheme (4.34) for two distinct

cases: in the first we consider 𝑃 and 𝑄 constants and the second one has

𝑃 (𝑥, 𝑦) = 𝑃 (𝑥) ∕= 0 and 𝑄(𝑥, 𝑦) = 0. This last case appears in the study

of hyperbolic diffusion equations in two dimensions containing a first order

spatial derivative, namely in hyperbolic heat conduction problems due to

their wide industrial applicability [3, 17]. The discrete energy method is

used for both results. To this end, let us define the set of discrete values with

homogeneous boundary conditions.

Assume that

𝒢 = {𝑈 ∣ 𝑈 = {𝑈𝑖,𝑗}, and 𝑈0,𝑗 = 𝑈𝑁𝑥,𝑗 = 𝑈𝑖,0 = 𝑈𝑖,𝑁𝑦 = 0}.

For 𝑈, 𝑉 ∈ 𝒢, we define the inner product and norm respectively as

(𝑈, 𝑉 ) = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑈𝑖,𝑗𝑉𝑖,𝑗, ∥𝑈∥2 = (𝑈,𝑈) . (4.44)

We also define the following inner products that involve the first and second

order discretization operators of 𝑈, 𝑉 ∈ 𝒢:

(
𝛿+𝑥 𝑈, 𝛿+𝑥 𝑉

)
∗𝑥 = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

𝛿+𝑥 𝑈𝑖,𝑗𝛿
+
𝑥 𝑉𝑖,𝑗, ∥𝛿+𝑥 𝑈∥2∗𝑥 =

(
𝛿+𝑥 𝑈, 𝛿+𝑥 𝑈

)
∗𝑥 ,

(
𝛿+𝑦 𝑈, 𝛿+𝑦 𝑉

)
∗𝑦 = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=0

𝛿+𝑦 𝑈𝑖,𝑗𝛿
+
𝑦 𝑉𝑖,𝑗 , ∥𝛿+𝑦 𝑈∥2∗𝑦 =

(
𝛿+𝑦 𝑈, 𝛿+𝑦 𝑈

)
∗𝑦 ,

(
𝛿+𝑥 𝛿+𝑦 𝑈, 𝛿+𝑥 𝛿+𝑦 𝑉

)
∗ = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

𝛿+𝑥 𝛿+𝑦 𝑈𝑖,𝑗𝛿
+
𝑥 𝛿+𝑦 𝑉𝑖,𝑗,
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and

∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ =
(
𝛿+𝑥 𝛿+𝑦 𝑈, 𝛿+𝑥 𝛿+𝑦 𝑈

)
∗ .

Next, we introduce some lemmas that will be useful to prove the main

theorems.

Lemma 4.2.1. For any 𝑊 ∈ 𝒢,

∥𝛿𝑥𝑊∥ ≤ ∥𝛿+𝑥 𝑊∥∗𝑥, ∥𝛿𝑦𝑊∥ ≤ ∥𝛿+𝑦 𝑊∥∗𝑦, ∥𝛿𝑥𝛿𝑦𝑊∥ ≤ ∥𝛿+𝑥 𝛿+𝑦 𝑊∥∗.

Proof: The first two inequalities are obtained in a similar way to inequality

in Lemma 2.2.1. We only prove the third inequality. We have

∥𝛿𝑥𝛿𝑦𝑊∥2 = Δ𝑥Δ𝑦
𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

(𝛿𝑥𝛿𝑦𝑊𝑖,𝑗)
2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

(
𝛿𝑥

(
1

2
𝛿+𝑦 𝑊𝑖,𝑗 +

1

2
𝛿−𝑦 𝑊𝑖,𝑗

))2

.

Using the inequality (𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2 we obtain

∥𝛿𝑥𝛿𝑦𝑊∥2 ≤ 1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

(
𝛿𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

+
1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

(
𝛿𝑥

(
𝑊𝑖,𝑗 − 𝑊𝑖,𝑗−1

Δ𝑦

))2

.

The first inequality ∥𝛿𝑥𝑊∥ ≤ ∥𝛿+𝑥 𝑊∥∗𝑥 leads to

∥𝛿𝑥𝛿𝑦𝑊∥2 ≤ 1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

(
𝛿+𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

+
1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

(
𝛿+𝑥

(
𝑊𝑖,𝑗 − 𝑊𝑖,𝑗−1

Δ𝑦

))2

.
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Now, we shift the index 𝑗 in the second summation and get

∥𝛿𝑥𝛿𝑦𝑊∥2 ≤ 1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

(
𝛿+𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

+
1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−2∑
𝑗=0

(
𝛿+𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

=
1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(
𝛿+𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

− 1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

(
𝛿+𝑥

(
𝑊𝑖,1 − 𝑊𝑖,0

Δ𝑦

))2

+
1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(
𝛿+𝑥

(
𝑊𝑖,𝑗+1 − 𝑊𝑖,𝑗

Δ𝑦

))2

− 1

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

(
𝛿+𝑥

(
𝑊𝑖,𝑁𝑦 − 𝑊𝑖,𝑁𝑦−1

Δ𝑦

))2

≤ Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(
𝛿+𝑥 𝛿+𝑦 𝑊𝑖,𝑗

)2
= ∥𝛿+𝑥 𝛿+𝑦 𝑊∥2∗.

■

The following lemma is the well known property of summation by parts

[53, 98]. The proof is similar to the one in Lemma 2.2.2 and we do not include

it.

Lemma 4.2.2. For any 𝑈, 𝑉 ∈ 𝒢,

(
𝛿2𝑥𝑈, 𝑉

)
= − (𝛿+𝑥 𝑈, 𝛿+𝑥 𝑉

)
∗𝑥 ,

(
𝛿2𝑦𝑈, 𝑉

)
= − (𝛿+𝑦 𝑈, 𝛿+𝑦 𝑉

)
∗𝑦 .

The next lemma can be seen, for instance in [22, 31, 86].

Lemma 4.2.3. For any 𝑈 ∈ 𝒢, the following inequalities hold

∥𝛿+𝑥 𝑈∥2∗𝑥 ≤ 4

Δ𝑥2
∥𝑈∥2, ∥𝛿+𝑦 𝑈∥2∗𝑦 ≤ 4

Δ𝑦2
∥𝑈∥2,

∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ ≤
4

Δ𝑦2
∥𝛿+𝑥 𝑈∥2∗𝑥, ∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ ≤

4

Δ𝑥2
∥𝛿+𝑦 𝑈∥2∗𝑦.
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Proof: Let us start to prove the first inequality. We have

∥𝛿+𝑥 𝑈∥2∗𝑥 = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

(
𝛿+𝑥 𝑈𝑖,𝑗

)2
= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

(
𝑈𝑖+1,𝑗 − 𝑈𝑖,𝑗

Δ𝑥

)2

≤ Δ𝑥Δ𝑦
𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑖+1,𝑗)
2 + 2 (𝑈𝑖,𝑗)

2

Δ𝑥2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2

Δ𝑥2
(𝑈𝑖+1,𝑗)

2 +Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2

Δ𝑥2
(𝑈𝑖,𝑗)

2 .

Shifting the index 𝑖 in the first summation and using the conditions

𝑈0,𝑗 = 𝑈𝑁𝑥,𝑗 = 0 we obtain

∥𝛿+𝑥 𝑈∥2∗𝑥 ≤ Δ𝑥Δ𝑦

𝑁𝑥∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑖,𝑗)
2

Δ𝑥2
+Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑖,𝑗)
2

Δ𝑥2

+ Δ𝑥Δ𝑦

𝑁𝑦−1∑
𝑗=1

2 (𝑈0,𝑗)
2

Δ𝑥2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑖,𝑗)
2

Δ𝑥2
+Δ𝑥Δ𝑦

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑁𝑥,𝑗)
2

Δ𝑥2

+ Δ𝑥Δ𝑦
𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

2 (𝑈𝑖,𝑗)
2

Δ𝑥2

=
4

Δ𝑥2
∥𝑈∥2.

Let us now consider the norm ∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗. We have

∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(
𝛿+𝑥 𝛿+𝑦 𝑈𝑖,𝑗

)2
= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(
𝛿+𝑥

(
𝑈𝑖,𝑗+1 − 𝑈𝑖,𝑗

Δ𝑦

))2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

(𝛿+𝑥 𝑈𝑖,𝑗+1 − 𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2

≤ Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

2 (𝛿+𝑥 𝑈𝑖,𝑗+1)
2
+ 2 (𝛿+𝑥 𝑈𝑖,𝑗)

2

Δ𝑦2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

2 (𝛿+𝑥 𝑈𝑖,𝑗+1)
2

Δ𝑦2
+Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

2 (𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2
.
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Shifting the index 𝑗 in the first summation and using the conditions

𝑈𝑖,0 = 𝑈𝑖,𝑁𝑦 = 0 we obtain

∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ ≤ Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦∑
𝑗=1

2 (𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2
+Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2 (𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2

+ Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

2 (𝛿+𝑥 𝑈𝑖,0)
2

Δ𝑦2

= Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2 (𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2
+Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

2
(
𝛿+𝑥 𝑈𝑖,𝑁𝑦

)2
Δ𝑦2

+ Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=1

2 (𝛿+𝑥 𝑈𝑖,𝑗)
2

Δ𝑦2

=
4

Δ𝑦2
∥𝛿+𝑥 𝑈∥2∗𝑥.

Similarly we obtain ∥𝛿+𝑦 𝑈∥2∗𝑦 ≤ 4
Δ𝑦2

∥𝑈∥2, ∥𝛿+𝑥 𝛿+𝑦 𝑈∥2∗ ≤ 4
Δ𝑥2

∥𝛿+𝑦 𝑈∥2∗𝑦.

■

Before proving the main result, note that the ADI method (4.34) can be

written in the form(
1 +

2

Δ𝑡

)
𝑈𝑛+1 +

(
1− 2

Δ𝑡

)
𝑈𝑛 − 2𝑊 𝑛 +

Δ𝑡

Δ𝑡 + 2
𝐿𝑃𝐿𝑄

(
𝑈𝑛+1 − 𝑈𝑛

)
= − (𝐿𝑃 + 𝐿𝑄)

(
𝑈𝑛+1 + 𝑈𝑛

)
. (4.45)

Taking into account (4.31) we have

𝑊 𝑛+1 −𝑊 𝑛+
Δ𝑡

Δ𝑡 + 2
𝐿𝑃𝐿𝑄

(
𝑈𝑛+1 − 𝑈𝑛

)
= − (𝐿𝑃 + 𝐿𝑄)

(
𝑈𝑛+1 + 𝑈𝑛

)
. (4.46)

Theorem 4.2.1. Suppose that {𝑈𝑛
𝑖,𝑗 ,𝑊

𝑛
𝑖,𝑗} and {𝑉 𝑛

𝑖,𝑗 , 𝑌
𝑛
𝑖,𝑗} are solutions of the

finite difference scheme (4.31) and (4.46) with constants 𝑃 and 𝑄, which sa-

tisfy the boundary condition (4.25), and have different initial values {𝑈0
𝑖,𝑗 ,𝑊

0
𝑖,𝑗}

and {𝑉 0
𝑖,𝑗, 𝑌

0
𝑖,𝑗} respectively. Let 𝜔𝑛

𝑖,𝑗 = 𝑊 𝑛
𝑖,𝑗 − 𝑌 𝑛

𝑖,𝑗, 𝜖𝑛𝑖,𝑗 = 𝑈𝑛
𝑖,𝑗 − 𝑉 𝑛

𝑖,𝑗. For Δ𝑡 ≤ 1,

such that, Δ𝑡 ≤ 𝑐𝑝Δ𝑥, Δ𝑡 ≤ 𝑐𝑞Δ𝑦, with constants 𝑐𝑝, 𝑐𝑞, then {𝜔𝑛
𝑖,𝑗, 𝜖

𝑛
𝑖,𝑗} satisfy

∥𝜔𝑛+1∥2+∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥+∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦 ≤ (1+𝐶Δ𝑡)
(∥𝜔𝑛∥2 + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

)
,

(4.47)

where 𝐶 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡.
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Proof: For 𝜔𝑛 = {𝜔𝑛
𝑖,𝑗} and 𝜖𝑛 = {𝜖𝑛𝑖,𝑗}, from (4.46) we have

𝜔𝑛+1 − 𝜔𝑛 +
Δ𝑡

Δ𝑡 + 2
𝐿𝑃𝐿𝑄

(
𝜖𝑛+1 − 𝜖𝑛

)
= − (𝐿𝑃 + 𝐿𝑄)

(
𝜖𝑛+1 + 𝜖𝑛

)
. (4.48)

Multiplying both sides of (4.48) by 𝜔𝑛+1+𝜔𝑛 with respect to the inner product

(4.44) we obtain, using (4.33) with 𝑃 and 𝑄 constants,

∥𝜔𝑛+1∥2 − ∥𝜔𝑛∥2

+
Δ𝑡3

4(Δ𝑡 + 2)

((
𝑃𝑄𝛿𝑥𝛿𝑦 − 𝑃𝛿𝑥𝛿

2
𝑦 − 𝑄𝛿2𝑥𝛿𝑦 + 𝛿2𝑥𝛿

2
𝑦

) (
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
+
Δ𝑡

2

((
𝑃𝛿𝑥 − 𝛿2𝑥 + 𝑄𝛿𝑦 − 𝛿2𝑦

) (
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= 0. (4.49)

By (4.31) and summation by parts we have(
𝛿2𝑥𝛿

2
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
=
(
𝛿+𝑥 𝛿+𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝛿+𝑥 𝛿+𝑦

(
𝜖𝑛+1 + 𝜖𝑛

))
+

2

Δ𝑡

(
𝛿+𝑥 𝛿+𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝛿+𝑥 𝛿+𝑦

(
𝜖𝑛+1 − 𝜖𝑛

))
= ∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ − ∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ +

2

Δ𝑡
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗, (4.50)

(
𝛿2𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= −∥𝛿+𝑥 (𝜖𝑛+1+𝜖𝑛)∥2∗𝑥−

2

Δ𝑡

(∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 − ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥
)

(4.51)

and(
𝛿2𝑦
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= −∥𝛿+𝑦 (𝜖𝑛+1+𝜖𝑛)∥2∗𝑦−

2

Δ𝑡

(∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦 − ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦
)
.

(4.52)

We can rewrite (4.49) as

∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

= ∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

−Δ𝑡

2

(∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 + ∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
)

− Δ𝑡2

2(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗

−Δ𝑡

2

(
(𝑃𝛿𝑥 + 𝑄𝛿𝑦)

(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
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− Δ𝑡3

4(Δ𝑡 + 2)

((
𝑃𝑄𝛿𝑥𝛿𝑦 − 𝑃𝛿𝑥𝛿

2
𝑦 − 𝑄𝛿2𝑥𝛿𝑦

) (
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
. (4.53)

Let us now discuss the terms with 𝑃 or 𝑄. We first consider the terms

− (𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
and − (𝑄𝛿𝑦

(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
.

Using the Cauchy-Schwarz inequality, Lemma 4.2.1 and the inequality

𝑎𝑏 ≤ 𝜂𝑎2 + 𝑏2/4𝜂, (4.54)

for 𝜂 > 0, we have

− (𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ ∥𝑃𝛿𝑥(𝜖
𝑛+1 + 𝜖𝑛)∥∥𝜔𝑛+1 + 𝜔𝑛∥

≤ ∥∣𝑃 ∣𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥∗𝑥∥𝜔𝑛+1 + 𝜔𝑛∥
≤ 𝜂1∣𝑃 ∣2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥

+
1

4𝜂1
∥𝜔𝑛+1 + 𝜔𝑛∥2.

Using the inequality

(𝑎 + 𝑏)2 ≤ 2𝑎2 + 2𝑏2, (4.55)

we conclude that

− (𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ 𝜂1∣𝑃 ∣2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥
+

1

2𝜂1
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2). (4.56)

Similarly

− (𝑄𝛿𝑦
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ 𝜂2∣𝑄∣2∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
+

1

2𝜂2
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2). (4.57)

Let us now consider the term

− (𝑃𝑄𝛿𝑥𝛿𝑦
(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
.

Using the Cauchy-Schwarz inequality, Lemma 4.2.1 and the inequalities

(4.54)-(4.55), we have

− (𝑃𝑄𝛿𝑥𝛿𝑦
(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ 𝜂3∣𝑃𝑄∣2∥𝛿+𝑥 𝛿+𝑦 (𝜖
𝑛+1 − 𝜖𝑛)∥2∗

+
1

2𝜂3
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2).(4.58)
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Finally, we consider the terms(
𝑃𝛿𝑥𝛿

2
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
and

(
𝑄𝛿𝑦𝛿

2
𝑥

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
.

Using summation by parts, Lemma 4.2.1 and the inequalities (4.54)-(4.55),

we obtain(
𝑃𝛿𝑥𝛿

2
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= − (𝑃𝛿𝑥𝛿

+
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝛿+𝑦
(
𝜔𝑛+1 + 𝜔𝑛

))
∗𝑦

≤ ∥𝑃𝛿𝑥𝛿
+
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

) ∥∗𝑦∥𝛿+𝑦 (𝜔𝑛+1 + 𝜔𝑛
) ∥∗𝑦

≤ ∥∣𝑃 ∣𝛿+𝑥 𝛿+𝑦
(
𝜖𝑛+1 − 𝜖𝑛

) ∥∗∥𝛿+𝑦 (𝜔𝑛+1 + 𝜔𝑛
) ∥∗𝑦

≤ 𝜂4∣𝑃 ∣2∥𝛿+𝑥 𝛿+𝑦 (𝜖
𝑛+1 − 𝜖𝑛)∥2∗

+
1

4𝜂4
∥𝛿+𝑦 (𝜔𝑛+1 + 𝜔𝑛)∥2∗𝑦.

Using Lemma 4.2.3 and the inequalities (4.54)-(4.55), we can conclude that(
𝑃𝛿𝑥𝛿

2
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ 𝜂4∣𝑃 ∣2∥𝛿+𝑥 𝛿+𝑦 (𝜖
𝑛+1 − 𝜖𝑛)∥2∗

+
2

𝜂4Δ𝑦2
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2).(4.59)

Similarly(
𝑄𝛿𝑦𝛿

2
𝑥

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ 𝜂5∣𝑄∣2∥𝛿+𝑥 𝛿+𝑦 (𝜖
𝑛+1 − 𝜖𝑛)∥2∗

+
2

𝜂5Δ𝑥2
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2).(4.60)

From (4.53) and the inequalities (4.56)-(4.60), we obtain

∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦
≤ ∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦
−Δ𝑡

2

(∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 + ∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
)

− Δ𝑡2

2(Δ𝑡+2)∥𝛿+𝑥 𝛿+𝑦 (𝜖
𝑛+1 − 𝜖𝑛)∥2∗

+Δ𝑡
2

(
𝜂1∣𝑃 ∣2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 + 𝜂2∣𝑄∣2∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦

+1
2

(
𝜂−1
1 + 𝜂2

−1
) (∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2))

+ Δ𝑡3

4(Δ𝑡+2)

( (∣𝑃𝑄∣2𝜂3 + ∣𝑃 ∣2𝜂4 + ∣𝑄∣2𝜂5
) ∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗

+1
2

(
𝜂−1
3 + 4𝜂4

−1Δ𝑦−2 + 4𝜂5
−1Δ𝑥−2

) (∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2) ).
(4.61)
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Reorganizing the terms and using the conditions Δ𝑡 ≤ 𝑐𝑝Δ𝑥 and Δ𝑡 ≤
𝑐𝑞Δ𝑦, we obtain

𝐴∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

≤ 𝐵∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

+
Δ𝑡

2
∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥(𝜂1∣𝑃 ∣2 − 1) +

Δ𝑡

2
∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦(𝜂2∣𝑄∣2 − 1)

+
Δ𝑡2

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗
(
Δ𝑡
(∣𝑃𝑄∣2𝜂3 + ∣𝑃 ∣2𝜂4 + ∣𝑄∣2𝜂5

)− 2
)
,

(4.62)

where 𝐴 and 𝐵 are given by

𝐴 = 1− Δ𝑡

2

(
𝜂−1
1 + 𝜂−1

2

2
+

𝑐2𝑝𝜂
−1
5 + 𝑐2𝑞𝜂

−1
4

Δ𝑡 + 2
+

Δ𝑡2𝜂−1
3

4(Δ𝑡 + 2)

)
(4.63)

and

𝐵 = 1 +
Δ𝑡

2

(
𝜂−1
1 + 𝜂−1

2

2
+

𝑐2𝑝𝜂
−1
5 + 𝑐2𝑞𝜂

−1
4

Δ𝑡 + 2
+

Δ𝑡2𝜂−1
3

4(Δ𝑡 + 2)

)
. (4.64)

Let us choose 𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 𝜂5 = 𝜂 with

𝜂 ≤ min

{
1

𝑃 2
,
1

𝑄2
,

2

(𝑃𝑄)2 + 𝑃 2 + 𝑄2

}
. (4.65)

Then, from (4.62) we have

𝐴∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

≤ 𝐵∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦 , (4.66)

with

𝐴 = 1− Δ𝑡

2

(
𝜂−1 + 𝜂−1 𝑐2𝑝 + 𝑐2𝑞

Δ𝑡 + 2
+ 𝜂−1 Δ𝑡2

4(Δ𝑡 + 2)

)
(4.67)

and

𝐵 = 1 +
Δ𝑡

2

(
𝜂−1 + 𝜂−1 𝑐2𝑝 + 𝑐2𝑞

Δ𝑡+ 2
+ 𝜂−1 Δ𝑡2

4(Δ𝑡 + 2)

)
. (4.68)

Using Lemma 4.2.3 and Δ𝑡 ≤ 𝑐𝑞Δ𝑦, from (4.66) we obtain

𝐴∥𝜔𝑛+1∥2 + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

≤ 𝐵∥𝜔𝑛∥2 +
(
1 +

𝑐2𝑞Δ𝑡

Δ𝑡 + 2

)
∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦. (4.69)
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If we choose 𝜂 such that

𝜂 >
1

2
(1 + 𝑀), for 𝑀 = max

{
𝑐2𝑝 + 𝑐2𝑞

2
,
4(𝑐2𝑝 + 𝑐2𝑞) + 1

12

}
,

we can easily check that 0 < 𝐴 ≤ 1. Additionally if we choose 𝜂 such that

𝜂 ≤ 1

𝑐2𝑞
+

𝑐2𝑝 + 𝑐2𝑞
2𝑐2𝑞

we have 𝐵 ≥ 1 + 𝑐2𝑞Δ𝑡/(Δ𝑡 + 2). Therefore by choosing 𝜂 such that

1

2
(1 + 𝑀) < 𝜂 ≤ min

{
1

𝑃 2
,
1

𝑄2
,

2

(𝑃𝑄)2 + 𝑃 2 + 𝑄2
,
2 + 𝑐2𝑝 + 𝑐2𝑞

2𝑐2𝑞

}
, (4.70)

it follows

𝐴
(∥𝜔𝑛+1∥2 + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

) ≤ 𝐵
(∥𝜔𝑛∥2 + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

)
.

(4.71)

Consequently, by noting that

𝐵

𝐴
= 1 +Δ𝑡

𝜂−1 + 𝜂−1 𝑐
2
𝑝+𝑐

2
𝑞

Δ𝑡+2 + 𝜂−1 Δ𝑡2

4(Δ𝑡+2)

1− Δ𝑡
2

(
𝜂−1 + 𝜂−1 𝑐

2
𝑝+𝑐

2
𝑞

Δ𝑡+2 + 𝜂−1 Δ𝑡2

4(Δ𝑡+2)

) ≤ 1 + 𝐶Δ𝑡,

where 𝐶 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡, we obtain the main

result.

■

From the previous theorem we get the following result.

Corollary 4.2.1. Suppose that {𝑈𝑛
𝑖,𝑗 ,𝑊

𝑛
𝑖,𝑗} and {𝑉 𝑛

𝑖,𝑗 , 𝑌
𝑛
𝑖,𝑗} are solutions of the

finite difference scheme (4.31) and (4.46) which satisfy the boundary condition

(4.25), and have different initial values {𝑈0
𝑖,𝑗 ,𝑊

0
𝑖,𝑗} and {𝑉 0

𝑖,𝑗, 𝑌
0
𝑖,𝑗} respectively.

Let 𝜔𝑛
𝑖,𝑗 = 𝑊 𝑛

𝑖,𝑗 − 𝑌 𝑛
𝑖,𝑗, 𝜖𝑛𝑖,𝑗 = 𝑈𝑛

𝑖,𝑗 − 𝑉 𝑛
𝑖,𝑗. For Δ𝑡 ≤ 1, such that, Δ𝑡 ≤ 𝑐𝑝Δ𝑥,

Δ𝑡 ≤ 𝑐𝑞Δ𝑦, with constants 𝑐𝑝, 𝑐𝑞, then {𝜔𝑛
𝑖,𝑗, 𝜖

𝑛
𝑖,𝑗} satisfy

∣∣𝜔𝑛∣∣2 + ∣∣𝛿+𝑥 𝜖𝑛∣∣2∗𝑥 + ∣∣𝛿+𝑦 𝜖𝑛∣∣2∗𝑦 ≤ 𝐾
(∣∣𝜔0∣∣2 + ∣∣𝛿+𝑥 𝜖0∣∣2∗𝑥 + ∣∣𝛿+𝑦 𝜖0∣∣2∗𝑦

)
, (4.72)

where 𝐾 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡.

The proof follows from Theorem 4.2.1 by making recursion with respect

to 𝑛. We can easily obtain a similar proof as the one in Corollary 2.2.1. Thus,

we can conclude that the difference scheme is stable.
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Remark 4.2.1. The previous results require that the maximum time step size

is directly proportional to the space mesh sizes. Usually optimal results are

obtained when time step and space steps are comparable and therefore this

is a natural condition. Similar conditions can be seen in literature for ADI

numerical methods for hyperbolic problems, that usually do not include the

first order derivatives in space [31, 33, 55, 93, 97].

Remark 4.2.2. Since 𝑃 and 𝑄 are constants we assume they are less than one

in absolute value, that is, less than the diffusion coefficient. If 𝑃 and 𝑄 are

larger than the diffusion coefficient, asymptotic analysis of exact

solutions shows that the Cauchy problem of equation (4.22) can be unsta-

ble [95]. The choice of constants 𝑐𝑝 and 𝑐𝑞 mentioned in the previous theorem

can depend on the values of 𝑃 and 𝑄 as can be concluded by observing the

condition (4.70). A practical choice could be to consider 𝑐2𝑝 + 𝑐2𝑞 ≤ 2/3, for all

𝑃,𝑄.

In the next theorem we establish the stability result in the case where

𝑃 (𝑥, 𝑦) = 𝑃 (𝑥) ∕= 0 and 𝑄(𝑥, 𝑦) = 0. The operators in (4.33) become

𝐿𝑃 =
Δ𝑡

2
(𝑃 ′ + 𝑃𝛿𝑥 − 𝛿2𝑥) and 𝐿 = −Δ𝑡

2
𝛿2𝑦 , (4.73)

where 𝑃 ′ = 𝑃 ′(𝑥) denotes the derivative of 𝑃 (𝑥) in the 𝑥 variable. The finite

difference scheme (4.46) turns to

𝑊 𝑛+1 − 𝑊 𝑛 +
Δ𝑡

Δ𝑡 + 2
𝐿𝑃𝐿

(
𝑈𝑛+1 − 𝑈𝑛

)
= − (𝐿𝑃 + 𝐿)

(
𝑈𝑛+1 + 𝑈𝑛

)
. (4.74)

Let us suppose that 𝑃 (𝑥) has non-negative derivative 𝑃 ′(𝑥) and define

∥𝑃∥2 =
𝑁−1∑
𝑖=1

(𝑃𝑖)
2, ∥𝑈𝑛∥2𝑃 ′ = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑃 ′
𝑖

(
𝑈𝑛
𝑖,𝑗

)2
and

∥𝛿𝑦+𝑈𝑛∥2∗𝑦𝑃 ′ = Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=0

𝑃 ′
𝑖

(
𝛿𝑦+𝑈𝑛

𝑖,𝑗

)2
.

Theorem 4.2.2. Suppose that {𝑈𝑛
𝑖,𝑗 ,𝑊

𝑛
𝑖,𝑗} and {𝑉 𝑛

𝑖,𝑗 , 𝑌
𝑛
𝑖,𝑗} are solutions of the

finite difference scheme (4.31) and (4.74) where 𝑃 (𝑥, 𝑦) = 𝑃 (𝑥) ∕= 0 has
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non-negative derivative 𝑃 ′(𝑥) and 𝑄(𝑥, 𝑦) = 0, which satisfy the boundary

condition (4.25), and have different initial values {𝑈0
𝑖,𝑗 ,𝑊

0
𝑖,𝑗} and {𝑉 0

𝑖,𝑗 , 𝑌
0
𝑖,𝑗}

respectively. Let 𝜔𝑛
𝑖,𝑗 = 𝑊 𝑛

𝑖,𝑗 − 𝑌 𝑛
𝑖,𝑗, 𝜖𝑛𝑖,𝑗 = 𝑈𝑛

𝑖,𝑗 − 𝑉 𝑛
𝑖,𝑗. For Δ𝑡 ≤ 1 such that

Δ𝑡 ≤ 𝑐Δ𝑦, with constant 𝑐, then {𝜔𝑛
𝑖,𝑗 , 𝜖

𝑛
𝑖,𝑗} satisfy

∥𝜔𝑛+1∥2 + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦 + ∥𝜖𝑛+1∥2𝑃 ′

≤ (1 + 𝐶1Δ𝑡)
(∥𝜔𝑛∥2 + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦 + ∥𝜖𝑛∥2𝑃 ′

)
, (4.75)

where 𝐶1 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡.

Proof: For 𝜔𝑛 = {𝜔𝑛
𝑖,𝑗} and 𝜖𝑛 = {𝜖𝑛𝑖,𝑗}, from (4.74) we have

𝜔𝑛+1 − 𝜔𝑛 +
Δ𝑡

Δ𝑡+ 2
𝐿𝑃𝐿

(
𝜖𝑛+1 − 𝜖𝑛

)
= − (𝐿𝑃 + 𝐿)

(
𝜖𝑛+1 + 𝜖𝑛

)
. (4.76)

Multiplying both sides of (4.76) by 𝜔𝑛+1+𝜔𝑛 with respect to the inner product

(4.44) we obtain, using (4.73),

∥𝜔𝑛+1∥2 − ∥𝜔𝑛∥2

+
Δ𝑡3

4(Δ𝑡 + 2)

((−𝑃 ′𝛿2𝑦 − 𝑃𝛿𝑥𝛿
2
𝑦 + 𝛿2𝑥𝛿

2
𝑦

) (
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
+
Δ𝑡

2

((
𝑃 ′ + 𝑃𝛿𝑥 − 𝛿2𝑥 − 𝛿2𝑦

) (
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= 0. (4.77)

Using the equalities (4.50)-(4.52) we can rewrite (4.77) as

∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

= ∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

−Δ𝑡

2

(∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 + ∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
)

− Δ𝑡2

2(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗

−Δ𝑡

2

((
𝑃 ′ + 𝑃𝛿𝑥

) (
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
+

Δ𝑡3

4(Δ𝑡 + 2)

((
𝑃 ′𝛿2𝑦 + 𝑃𝛿𝑥𝛿

2
𝑦

) (
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
. (4.78)

Let us now discuss the terms with 𝑃 . With the assumption that 𝑃 ′ is

non-negative and by (4.31), we obtain
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−Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜔𝑛+1 + 𝜔𝑛

)
= −Δ𝑡

2

(
𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜖𝑛+1 + 𝜖𝑛

)− (𝑃 ′(𝜖𝑛+1 + 𝜖𝑛), 𝜖𝑛+1 − 𝜖𝑛
)

= −Δ𝑡

2
Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑃 ′
𝑖

(
𝜖𝑛+1
𝑖,𝑗 + 𝜖𝑛𝑖,𝑗

)2

−Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑃 ′
𝑖

((
𝜖𝑛+1
𝑖,𝑗

)2
− (𝜖𝑛𝑖,𝑗)2)

≤ −Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑃 ′
𝑖

(
𝜖𝑛+1
𝑖,𝑗

)2
+Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

𝑃 ′
𝑖

(
𝜖𝑛𝑖,𝑗
)2

= −∥𝜖𝑛+1∥2𝑃 ′ + ∥𝜖𝑛∥2𝑃 ′ . (4.79)

We also have, from (4.56),

−Δ𝑡

2

(
𝑃𝛿𝑥
(
𝜖𝑛+1 + 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

) ≤ Δ𝑡

2
𝜂1∥𝑃∥2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥

+
Δ𝑡

4𝜂1
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2). (4.80)

On the other hand, by (4.31) and summation by parts we have(
𝑃 ′𝛿2𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
= − (𝑃 ′𝛿+𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝛿+𝑦
(
𝜖𝑛+1 + 𝜖𝑛

))
∗𝑦

− 2

Δ𝑡

(
𝑃 ′𝛿+𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝛿+𝑦
(
𝜖𝑛+1 − 𝜖𝑛

))
∗𝑦

= −Δ𝑥Δ𝑦
∑𝑁𝑥−1

𝑖=1

∑𝑁𝑦−1
𝑗=1 𝑃 ′

𝑖

((
𝛿𝑦+𝜖𝑛+1

𝑖,𝑗

)2
−
(
𝛿𝑦+𝜖𝑛𝑖,𝑗

)2)
− 2

Δ𝑡
Δ𝑥Δ𝑦

∑𝑁𝑥−1
𝑖=1

∑𝑁𝑦−1
𝑗=1 𝑃 ′

𝑖

(
𝛿𝑦+
(
𝜖𝑛+1
𝑖,𝑗 − 𝜖𝑛𝑖,𝑗

))2
≤ −∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦𝑃 ′ + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦𝑃 ′ .

Thus,

Δ𝑡3

4(Δ𝑡 + 2)

(
𝑃 ′𝛿2𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
≤ − Δ𝑡3

4(Δ𝑡 + 2)

(∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦𝑃 ′ − ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦𝑃 ′

)
. (4.81)



4.2. An alternating direction implicit method 127

Finally, from (4.59) we have

Δ𝑡3

4(Δ𝑡 + 2)

(
𝑃𝛿𝑥𝛿

2
𝑦

(
𝜖𝑛+1 − 𝜖𝑛

)
, 𝜔𝑛+1 + 𝜔𝑛

)
≤ 𝜂2Δ𝑡3

4(Δ𝑡 + 2)
∥𝑃∥2∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗

+
Δ𝑡3

2(Δ𝑡 + 2)𝜂2Δ𝑦2
(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2). (4.82)

From (4.78) and the inequalities (4.79)-(4.82), we obtain

∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

≤ ∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

−Δ𝑡

2

(∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 + ∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
)

− Δ𝑡2

2(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗ − ∥𝜖𝑛+1∥2𝑃 ′ + ∥𝜖𝑛∥2𝑃 ′

+
Δ𝑡

2

(
𝜂1∥𝑃∥2∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥 +

𝜂−1
1

2

(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2) )
− Δ𝑡3

4(Δ𝑡 + 2)

(
∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦𝑃 ′ − ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦𝑃 ′

)
+

Δ𝑡3

4(Δ𝑡 + 2)

(
𝜂2∥𝑃∥2∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗ + 2𝜂2
−1Δ𝑦−2

(∥𝜔𝑛+1∥2 + ∥𝜔𝑛∥2)).
(4.83)

Reorganizing the terms and using the condition Δ𝑡 ≤ 𝑐Δ𝑦, we obtain

𝐴∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦
+∥𝜖𝑛+1∥2𝑃 ′ + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦𝑃 ′

≤ 𝐵∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦
+∥𝜖𝑛∥2𝑃 ′ + Δ𝑡3

4(Δ𝑡+2)∥𝛿+𝑦 𝜖𝑛∥2∗𝑦𝑃 ′

+Δ𝑡
2 ∥𝛿+𝑥 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑥(𝜂1∥𝑃∥2 − 1)− Δ𝑡

2 ∥𝛿+𝑦 (𝜖𝑛+1 + 𝜖𝑛)∥2∗𝑦
+

Δ𝑡2

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 (𝜖

𝑛+1 − 𝜖𝑛)∥2∗
(
Δ𝑡𝜂2∥𝑃∥2 − 2

)
, (4.84)

where 𝐴 and 𝐵 are given by

𝐴 = 1− Δ𝑡

2

(
𝜂−1
1

2
+

𝑐2𝜂−1
2

Δ𝑡+ 2

)
(4.85)
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and

𝐵 = 1 +
Δ𝑡

2

(
𝜂−1
1

2
+

𝑐2𝜂−1
2

Δ𝑡 + 2

)
. (4.86)

Let us choose 𝜂1 = 𝜂2 = 𝜂 with

𝜂 ≤ 1

∥𝑃∥2 . (4.87)

Then, from (4.84) we have

𝐴∥𝜔𝑛+1∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛+1∥2∗ + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦

+∥𝜖𝑛+1∥2𝑃 ′ +
Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦𝑃 ′

≤ 𝐵∥𝜔𝑛∥2 + Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑥 𝛿+𝑦 𝜖𝑛∥2∗ + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦

+∥𝜖𝑛∥2𝑃 ′ +
Δ𝑡3

4(Δ𝑡 + 2)
∥𝛿+𝑦 𝜖𝑛∥2∗𝑦𝑃 ′ ,

(4.88)

with

𝐴 = 1− Δ𝑡

2

(
𝜂−1

2
+ 𝜂−1 𝑐2

Δ𝑡+ 2

)
(4.89)

and

𝐵 = 1 +
Δ𝑡

2

(
𝜂−1

2
+ 𝜂−1 𝑐2

Δ𝑡 + 2

)
. (4.90)

Using Lemma 4.2.3. and Δ𝑡 ≤ 𝑐Δ𝑦, from (4.88) we obtain

𝐴∥𝜔𝑛+1∥2 + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦 + ∥𝜖𝑛+1∥2𝑃 ′

≤ 𝐵∥𝜔𝑛∥2 +
(
1 +

𝑐2Δ𝑡

Δ𝑡 + 2

)
∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦 +

(
1 +

𝑐2Δ𝑡

Δ𝑡 + 2

)
∥𝜖𝑛∥2𝑃 ′ .

(4.91)

If we choose 𝜂 such that

𝜂 >
1

4
(1 + 𝑐2),

we can easily check that 0 < 𝐴 ≤ 1. Additionally if we choose 𝜂 such that

𝜂 ≤ 1 + 𝑐2

2𝑐2

we have 𝐵 ≥ 1 + 𝑐2Δ𝑡/(Δ𝑡 + 2). Therefore by choosing 𝜂 such that

1

4
(1 + 𝑐2) < 𝜂 ≤ min

{
1

∥𝑃∥2 ,
1 + 𝑐2

2𝑐2

}
, (4.92)
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it follows

𝐴
(∥𝜔𝑛+1∥2 + ∥𝛿+𝑥 𝜖𝑛+1∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛+1∥2∗𝑦 + ∥𝜖𝑛+1∥2𝑃 ′

)
≤ 𝐵

(∥𝜔𝑛∥2 + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦 + ∥𝜖𝑛∥2𝑃 ′

)
. (4.93)

Consequently, by noting that

𝐵

𝐴
= 1 +Δ𝑡

𝜂−1

2 + 𝜂−1 𝑐2

Δ𝑡+2

1− Δ𝑡
2

(
𝜂−1

2 + 𝜂−1 𝑐2

Δ𝑡+2

) ≤ 1 + 𝐶1Δ𝑡,

where 𝐶1 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡, we obtain the main

result.

■

From the previous theorem we get the following result.

Corollary 4.2.2. Suppose that {𝑈𝑛
𝑖,𝑗 ,𝑊

𝑛
𝑖,𝑗} and {𝑉 𝑛

𝑖,𝑗 , 𝑌
𝑛
𝑖,𝑗} are solutions of the

finite difference scheme (4.31) and (4.74) which satisfy the boundary condition

(4.25), and have different initial values {𝑈0
𝑖,𝑗 ,𝑊

0
𝑖,𝑗} and {𝑉 0

𝑖,𝑗, 𝑌
0
𝑖,𝑗} respectively.

Let 𝜔𝑛
𝑖,𝑗 = 𝑊 𝑛

𝑖,𝑗 − 𝑌 𝑛
𝑖,𝑗, 𝜖𝑛𝑖,𝑗 = 𝑈𝑛

𝑖,𝑗 − 𝑉 𝑛
𝑖,𝑗. For Δ𝑡 ≤ 1, such that, Δ𝑡 ≤ 𝑐Δ𝑦, with

constant 𝑐, then {𝜔𝑛
𝑖,𝑗, 𝜖

𝑛
𝑖,𝑗} satisfy

∥𝜔𝑛∥2 + ∥𝛿+𝑥 𝜖𝑛∥2∗𝑥 + ∥𝛿+𝑦 𝜖𝑛∥2∗𝑦 + ∥𝜖𝑛∥2𝑃 ′

≤ 𝐾1

(∥𝜔0∥2 + ∥𝛿+𝑥 𝜖0∥2∗𝑥 + ∥𝛿+𝑦 𝜖0∥2∗𝑦 + ∥𝜖0∥2𝑃 ′

)
where 𝐾1 denotes a constant independent of Δ𝑥,Δ𝑦,Δ𝑡.

The proof follows from Theorem 4.2.2 by making recursion with respect

to 𝑛 or by considering the proof of Corollary 2.2.1. Thus, we can conclude

that the difference scheme (4.74) is stable.

Remark 4.2.3. The choice of constant 𝑐 mentioned in the previous theorem

can depend on the value of 𝑃 as can be concluded by observing the condition

(4.92).

Remark 4.2.4. In the case where 𝑃 = 𝑄 = 0, by following the same steps of

the previous proof, we can easily conclude that the difference scheme (4.46) is

not unconditionally stable.
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4.2.2 Numerical results

In this section we present numerical tests which confirm the previous

theoretical results obtained for the difference scheme. We compare some

numerical results with exact solutions and we also illustrate the behavior of

some solutions. Let

𝜖𝑖,𝑗 = 𝑢𝑖,𝑗 − 𝑈𝑖,𝑗, 𝜔𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝑊𝑖,𝑗, (4.94)

where 𝑢 is the exact solution, 𝑤 is defined by (4.5) and 𝑈 and 𝑊 are the

approximate solutions, respectively. To measure the error and the rate of

convergence we consider the norms defined by

∥𝜖∥∞ = max ∣𝑢𝑖,𝑗 − 𝑈𝑖,𝑗∣, ∥𝜔∥∞ = max ∣𝑤𝑖,𝑗 − 𝑊𝑖,𝑗∣, (4.95)

for 1 ≤ 𝑖 ≤ 𝑁𝑥 − 1, 1 ≤ 𝑗 ≤ 𝑁𝑦 − 1, and

∥𝜖∥ =

⎛⎝Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

∣𝑢𝑖,𝑗 − 𝑈𝑖,𝑗∣2
⎞⎠1/2

∥𝜔∥ =

⎛⎝Δ𝑥Δ𝑦

𝑁𝑥−1∑
𝑖=1

𝑁𝑦−1∑
𝑗=1

∣𝑤𝑖,𝑗 − 𝑊𝑖,𝑗∣2
⎞⎠1/2

. (4.96)

We present two problems for which we are able to determine the exact

solution in order to compute the errors and the convergence rate.

Example 4.2.1. We consider the problem

∂2𝑢

∂𝑡2
+

∂𝑢

∂𝑡
= −𝑃

∂𝑢

∂𝑥
− 𝑄

∂𝑢

∂𝑦
+

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
, (𝑥, 𝑦) ∈ (0, 1) × (0, 1), 𝑡 > 0,

with initial conditions

𝑢(𝑥, 𝑦, 0) = e𝑃𝑥/2+𝑄𝑦/2 sinh(𝑏𝑥) sinh(𝑐𝑦),

∂𝑢

∂𝑡
(𝑥, 𝑦, 0) = −𝑎

2
e𝑃𝑥/2+𝑄𝑦/2 sinh(𝑏𝑥) sinh(𝑐𝑦),

and boundary conditions

𝑢(0, 𝑦, 𝑡) = 𝑢(𝑥, 0, 𝑡) = 0,
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𝑢(1, 𝑦, 𝑡) = e−𝑎𝑡/2e𝑃/2+𝑄𝑦/2 sinh(𝑏) sinh(𝑐𝑦),

𝑢(𝑥, 1, 𝑡) = e−𝑎𝑡/2e𝑃𝑥/2+𝑄/2 sinh(𝑏𝑥) sinh(𝑐).

The exact solution is given by

𝑢(𝑥, 𝑦, 𝑡) = e−𝑎𝑡/2e𝑃𝑥/2+𝑄𝑦/2 sinh(𝑏𝑥) sinh(𝑐𝑦),

where constants 𝑎, 𝑏 and 𝑐 satisfy the relation

𝑏2 + 𝑐2 =
𝑎2 − 2𝑎 + 𝑃 2 + 𝑄2

4
.

We consider this problem with 𝑎 = 1 +
√

17 + 𝑃 2 + 𝑄2, 𝑏 =
√

(4 + 𝑃 2)/2

and 𝑐 =
√

(4 + 𝑄2)/2. We show the errors and convergence rates for different

𝑃 values, such as, in Table 4.3 and Table 4.4 for 𝑃 = 0.5, 𝑄 = 0.4, in Table

4.5 and Table 4.6 for 𝑃 = 0.5, 𝑄 = −0.4, and in Table 4.7 and Table 4.8 for

𝑃 = 0.5, 𝑄 = 0. For all the cases we observe the convergence rate is second

order as expected, although the norm ℓ2,Δ provides smaller errors.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥∞ Rate Error ∥𝜔∥∞ Rate
1/128 0.1945 × 10−4 0.1324 × 10−3

1/256 0.4837 × 10−5 2.0 0.4098 × 10−4 1.7
1/512 0.1201 × 10−5 2.0 0.1205 × 10−4 1.8
1/1024 0.2996 × 10−6 2.0 0.3424 × 10−5 1.8
1/2048 0.7487 × 10−7 2.0 0.9439 × 10−6 1.9

Table 4.3: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 =
0.4, 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ∞.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥ Rate Error ∥𝜔∥ Rate
1/128 0.8624 × 10−5 0.4189 × 10−4

1/256 0.2156 × 10−5 2.0 0.1059 × 10−4 2.0
1/512 0.5391 × 10−6 2.0 0.2670 × 10−5 2.0
1/1024 0.1348 × 10−6 2.0 0.6719 × 10−6 2.0
1/2048 0.3369 × 10−7 2.0 0.1687 × 10−6 2.0

Table 4.4: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 =
0.4, 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ2,Δ.
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Δ𝑥 = Δ𝑦 Error ∥𝜖∥∞ Rate Error ∥𝜔∥∞ Rate
1/128 0.1729 × 10−4 0.1294 × 10−3

1/256 0.4306 × 10−5 2.0 0.4032 × 10−4 1.7
1/512 0.1071 × 10−5 2.0 0.1193 × 10−4 1.8
1/1024 0.2666 × 10−6 2.0 0.3402 × 10−5 1.8
1/2048 0.6666 × 10−7 2.0 0.9399 × 10−6 1.9

Table 4.5: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 =
−0.4, 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ∞.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥ Rate Error ∥𝜔∥ Rate
1/128 0.7423 × 10−5 0.3617 × 10−4

1/256 0.1856 × 10−5 2.0 0.9179 × 10−5 2.0
1/512 0.4641 × 10−6 2.0 0.2319 × 10−5 2.0
1/1024 0.1160 × 10−6 2.0 0.5843 × 10−6 2.0
1/2048 0.2900 × 10−7 2.0 0.1468 × 10−6 2.0

Table 4.6: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 =
−0.4, 𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ2,Δ.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥∞ Rate Error ∥𝜔∥∞ Rate
1/128 0.1767 × 10−4 0.1256 × 10−3

1/256 0.4401 × 10−5 2.0 0.3899 × 10−4 1.7
1/512 0.1094 × 10−5 2.0 0.1150 × 10−4 1.8
1/1024 0.2726 × 10−6 2.0 0.3272 × 10−5 1.8
1/2048 0.6813 × 10−7 2.0 0.9028 × 10−6 1.9

Table 4.7: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 = 0,
𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ∞.

Example 4.2.2. In the second problem we consider equation (4.1) with 𝜃 = 0,

𝐷 = 1 and 𝑃 , 𝑄 constants, that is, the parabolic equation

∂𝑢

∂𝑡
= −𝑃

∂𝑢

∂𝑥
− 𝑄

∂𝑢

∂𝑦
+

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
, 𝑥, 𝑦 ∈ ]−∞,∞[ , 𝑡 > 0.

The initial condition is 𝑢(𝑥, 𝑦, 0) = e−(𝑥
2+𝑦2) and the boundary conditions are

lim
𝑥→−∞𝑢(𝑥, 𝑦, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑦, 𝑡) = 0,

lim
𝑦→−∞𝑢(𝑥, 𝑦, 𝑡) = 0, lim

𝑦→+∞𝑢(𝑥, 𝑦, 𝑡) = 0.
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Δ𝑥 = Δ𝑦 Error ∥𝜖∥ Rate Error ∥𝜔∥ Rate
1/128 0.7741 × 10−5 0.3732 × 10−4

1/256 0.1935 × 10−5 2.0 0.9449 × 10−5 2.0
1/512 0.4839 × 10−6 2.0 0.2385 × 10−5 2.0
1/1024 0.1210 × 10−6 2.0 0.6004 × 10−6 2.0
1/2048 0.3024 × 10−7 2.0 0.1509 × 10−6 2.0

Table 4.8: Errors and rates obtained from Example 4.2.1 with 𝑃 = 0.5, 𝑄 = 0,
𝑡 = 1, 0 ≤ 𝑥, 𝑦 ≤ 1 and Δ𝑡 = Δ𝑥, computed with the norm ℓ2,Δ.

The analytical solution is given by

𝑢 (𝑥, 𝑦, 𝑡) =
1√

1 + 4𝑡
e−

(𝑥−𝑃𝑡)2+(𝑦−𝑄𝑡)2

1+4𝑡 . (4.97)

We present the errors and convergence rates for different 𝑃 values, such

as, in Table 4.9 for 𝑃 = 1, 𝑄 = 1, and in Table 4.10 for 𝑃 = 0, 𝑄 = 0. For both

cases we observe the convergence rate is second order, with and without the

values 𝑃,𝑄. Unlike the previous example, the smaller errors are provided by

the norm ℓ∞.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥∞ Rate Error ∥𝜖∥ Rate
20/128 0.1226 × 10−2 0.2373 × 10−2

20/256 0.3078 × 10−3 2.0 0.5890 × 10−3 2.0
20/512 0.7215 × 10−4 2.1 0.1405 × 10−3 2.1
20/1024 0.1748 × 10−4 2.1 0.3434 × 10−4 2.0
20/2048 0.4370 × 10−5 2.0 0.8585 × 10−5 2.0

Table 4.9: Errors and rates obtained from Example 4.2.2 for 𝑃 = 𝑄 = 1,
𝑡 = 1, −10 ≤ 𝑥, 𝑦 ≤ 10, and Δ𝑡 = Δ𝑥, computed with the norms ℓ∞ and ℓ2,Δ.

Δ𝑥 = Δ𝑦 Error ∥𝜖∥∞ Rate Error ∥𝜖∥ Rate
20/128 0.4641 × 10−3 0.8902 × 10−3

20/256 0.1176 × 10−3 2.0 0.2226 × 10−3 2.0
20/512 0.2618 × 10−4 2.1 0.5083 × 10−4 2.1
20/1024 0.6174 × 10−5 2.1 0.1215 × 10−4 2.1
20/2048 0.1544 × 10−5 2.0 0.3038 × 10−5 2.0

Table 4.10: Errors and rates obtained from Example 4.2.2 for 𝑃 = 𝑄 = 0,
𝑡 = 1, −10 ≤ 𝑥, 𝑦 ≤ 10, and Δ𝑡 = Δ𝑥, computed with the norms ℓ∞ and ℓ2,Δ.
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Figure 4.4: Solution 𝑢(𝑥, 𝑦, 𝑡) of Example 4.2.2 versus approximate solution
for 𝑃 = 𝑄 = 1 at 𝑡 = 1. Left: exact solution 𝑢(𝑥, 𝑦, 𝑡). Right: approximate
solution for Δ𝑡 = Δ𝑥 = Δ𝑦 = 0.02.

In Figure 4.4 we show how the solution behaves for this problem: the

solution 𝑢 and the numerical solution match very well.

Example 4.2.3. Another example that gives an insight on the physical be-

havior of the solution is the equation

∂2𝑢

∂𝑡2
+

∂𝑢

∂𝑡
= − ∂

∂𝑥
(𝑃𝑢)− ∂

∂𝑦
(𝑄𝑢) +

∂2𝑢

∂𝑥2
+

∂2𝑢

∂𝑦2
, 𝑥, 𝑦 ∈ ℝ, 𝑡 > 0,

with initial conditions

𝑢(𝑥, 𝑦, 0) =
1√
𝜋

e−(𝑥2+𝑦2),
∂𝑢

∂𝑡
(𝑥, 𝑦, 0) = 0,

and boundary conditions

lim
𝑥→−∞𝑢(𝑥, 𝑦, 𝑡) = 0, lim

𝑥→+∞𝑢(𝑥, 𝑦, 𝑡) = 0,

lim
𝑦→−∞𝑢(𝑥, 𝑦, 𝑡) = 0, lim

𝑦→+∞𝑢(𝑥, 𝑦, 𝑡) = 0.

In Figures 4.5 and 4.6 we display the approximate solutions for 𝑃 and 𝑄

constants and observe how the solution changes with the direction of those

values, for 𝑡 = 3.

In Figure 4.7 we consider 𝑃 non-constant, 𝑃 (𝑥) = 𝑥/2, and 𝑄 = 0. The

behavior of the solution can be observed as we travel in time.
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Figure 4.5: Results of Example 4.2.3. Left: initial condition. Right: ap-
proximate solution for 𝑃 = 0.5 and 𝑄 = 0 at 𝑡 = 3. Computed with
Δ𝑡 = Δ𝑥 = Δ𝑦 = 0.02.

Figure 4.6: Approximate solution of Example 4.2.3 for 𝑡 = 3 computed with
Δ𝑡 = Δ𝑥 = Δ𝑦 = 0.02. Left: 𝑃 = 0.5, 𝑄 = −0.5. Right: 𝑃 = 0.5, 𝑄 = 0.5.

Example 4.2.4. We consider equation (4.22) in the domain [0,∞[×[0, 1] with

𝑃 and 𝑄 constants, to observe the behavior of the solution performed with

nonzero boundary conditions. The initial conditions are 𝑢0(𝑥, 𝑦) = 0 and

𝑢1(𝑥, 𝑦) = 0 and the boundary conditions are

𝑢(𝑥, 0, 𝑡) = 0, 𝑢(𝑥, 1, 𝑡) = 0, (4.98)

𝑢(0, 𝑦, 𝑡) = sin(𝜋𝑦), 𝑢(∞, 𝑦, 𝑡) = 0. (4.99)

Next we present the solution for 𝑡 = 1, 𝑃 = 1 and 𝑄 = 0. We observe that

for 𝜃 = 0, Figure 4.8, the solution is smooth. For 𝜃 = 1 the solution presents

a jump discontinuity at 𝑥 = 1 but the CN-ADI method performs quite well
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Figure 4.7: Approximate solution of Example 4.2.3 computed with 𝑃 (𝑥) =
𝑥/2, 𝑄 = 0, Δ𝑡 = Δ𝑥 = Δ𝑦 = 0.02. Left: 𝑡 = 1. Right: 𝑡 = 3.

without oscillations, although performed with a very small space step.

Figure 4.8: Approximate solution of Example 4.2.4 for 𝑃 = 1 and 𝑄 = 0 at
𝑡 = 1. Computed with Δ𝑡 = Δ𝑥 = Δ𝑦 = 0.001. Left: 𝜃 = 0. Right: 𝜃 = 1.



Chapter 5

Final remarks and

perspectives of future

research

In this final chapter we draw some conclusions about the subjects

addressed in this work. We also leave some new and open questions we

intend to consider in future investigation.

5.1 Conclusions

In this work we focused our attention in the study and development of

numerical methods to solve a second order hyperbolic diffusion equation in

the presence of a potential field. The solution of an initial boundary value

problem is under consideration, with Dirichlet boundary conditions, in one

and two dimensions.

In one dimension, we have studied a differential equation that takes into

account the existence of a potential field and a relaxation time parameter,

and we have seen its solution is affected by those values. For the relaxation

time parameter 𝜃 = 0, the equation is parabolic and therefore the solution is

smooth. For 𝜃 ∕= 0 we have a hyperbolic equation which transports an initial

discontinuity at the inflow boundary. Such discontinuity dissipates as we

137
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travel in time.

We considered first a finite difference scheme based on Crank-Nicolson

method. We proved its convergence and the numerical results confirmed our

theoretical analysis. To avoid integration in time, we introduce numerical

methods based on the Laplace transform. These numerical methods consist

first of applying the Laplace transform and then the resulting equation is

approximated by a proper spatial discretization. Finally, an inverse Laplace

transform algorithm using continued fractions, which is accurate and very

efficient for time integration, is implemented to obtain the desired numerical

solution. For the spatial discretization three different methods have been

used: the Laplace-FD, the Laplace-FV and the Laplace-PL methods.

If 𝑃 is constant and the ordinary differential equation obtained with the

Laplace transform is homogeneous, we are able to apply the inverse Laplace

algorithm directly. If we have a non-homogeneous equation, we can apply

the inverse Laplace algorithm directly only if we know a particular solution,

otherwise we must consider a spatial discretization. If 𝑃 is non-constant, the

spatial discretization is mandatory.

Considering the spatial discretization, if we compare the Laplace-FD and

the Laplace-FV methods, we have seen that the Laplace-FV method yields

better performances near discontinuities. The Laplace-PL method is also

accurate and performs quite well near discontinuities, avoiding oscillations

where other methods do not. On the whole, the Laplace-PL method has the

best performance since it can be applied to every problems considered with

good results.

In summary, we can conclude that the methods based on the Laplace

transform are a good choice for problems where there is interest to deal with

very large times. An example that illustrates this behavior was studied in

Section 3.4, where a symmetric periodic potential field was included. Any

iterative numerical method would take too long to compute the solution for

similar times. Even the unconditionally implicit numerical methods that

allow large time steps are not able to give solutions so quickly. This is the

case of the CN method, although we have seen its good performance and
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efficiency for short times and this is the reason it was used in this work.

Three of the numerical methods applied in one dimension, Chapters 2

and 3, were extended in Chapter 4 in order to solve the analogous hyperbolic

diffusion equation in two dimensions: CN-2D, Laplace-FD-2D and Laplace-

FV-2D methods. Due to the computational limitations of these schemes,

we have derived a second order accurate ADI finite difference method to

solve the two dimensional problem. The stability of the method was proved

by the discrete energy method. Several numerical results demonstrate the

second order accuracy of the method, when compared with some analytical

solutions, and are in agreement with the theoretical analysis presented. We

highlight the efficiency of this finite difference scheme, which was achieved

by the procedure of splitting the resolution of one system in two tridiagonal

systems. The good performance of the CN-ADI method is confirmed with the

contribution of problems containing a great variety of initial and boundary

conditions.

5.2 Future research

Throughout this research we found some issues that may be worth being

explored in the future:

(i) As already mentioned in the literature review, there are a significative

number of numerical methods that contributed to achieve the fourth

order accuracy in space, when solving diffusion problems in one and

two dimensions. We have the same purpose for our model problem.

(ii) The computational inefficiency patent in the Laplace-FD-2D and the

Laplace-FV-2D methods should be overcome in order to facilitate their

application in two dimensions. This would permit us to consider a wide

range of initial and boundary conditions, without restricting the length

of the spatial variables. A possible approach to accomplish this is to

introduce also an ADI method as we did for the Crank-Nicolson method.
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Furthermore, our interest in this topic increases when, once again, we

focus our attention in the behavior of the solution for long times. Yet,

we are aware of the difficulties involved due to the Laplace transform

mechanism and the viability of this idea is still in study.

(iii) Another possibility of study is the temperature equation of the Jeffreys

type [49], which models heat conduction problems. Although it is not

directly related to the equation presented in this thesis, we find it

interesting since it contains a mixed derivative term.

(iv) The numerical solution of partial differential equations, when defined

on unbounded domains, is sometimes obtained with artificial boundary

conditions to limit the area of computation [38]. To minimize possible

reflections that occur in these boundaries, incorporation of absorbing

boundary conditions (ABCs) have been used to guarantee a realistic,

accurate and stable approximation to the solution on the original and

unbounded domain. The study and design of (ABCs) can be found in

the literature for linear and nonlinear problems, in one and two space

dimensions, for instance, in [7, 37, 38, 48, 88]. We want to investigate

deeper this issue, since we have to confine to a computational domain

when we deal with artificial boundary conditions in unbounded do-

mains. The artificial boundary conditions justify this strategy.
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