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Abstract 

The formation of tree rings is a slow and complex process. The year-to-year climatic variability 

and the constant interaction between the internal and external factors controlling cambial 

activity, create the conditions that make each tree ring unique. In order to capture the 

dynamics of cambial activity and wood formation during the growing season, it is necessary to 

monitor wood development in narrower time intervals (from minutes to weeks). Most of the 

studies on cambial activity and wood formation were held in cold environments, but in other 

environments, such as drought-prone areas, still remains poorly understood. In order to 

understand the cambial activity and wood formation under Mediterranean climate, a drought-

prone environment, timing and dynamics of cambial activity in maritime pine (Pinus pinaster 

Ait.) were monitored during two years (2010 and 2011). Anatomical observations of the 

cambial zone and differentiating xylem were made and stem radial increment monitored using 

manual and automatic dendrometers. The studies described in this thesis were carried out in 

Perimetro Florestal Dunas de Cantanhede, a managed plantation of maritime pine located in 

the west coast of Portugal. 

The cambial activity and wood formation of maritime pine trees with the same age and size 

but different growth rates in the period 2009-1994 (classified as fast and slow trees), was 

monitored throughout 2010, to determine whether the observed differences in tree-ring width 

were triggered by the timing of cambial activity or by the rate of cell production. It was 

determined that the timing of cambial activity was similar in both growth rate classes. 

However, fast-growing trees presented higher rates of rate of cell production than slow-

growing trees. The band dendrometer readings revealed a bimodal pattern of stem radial 

increment, with two peaks of increment, one more pronounced in spring and another in 

autumn. Although the bimodal pattern is typical of trees growing in the Mediterranean region, 

the combined analysis of anatomical observations of the cambial region and band 

dendrometers showed that the second period of radial increment corresponded mostly to the 

re-hydration of the stem, since no resumption of cambial activity was observed in autumn.  

In order to determine if differences in stem diameter were due to different rates of cell 

production or xylogenesis timings, the cambial activity of even-aged trees belonging to two 

diameter classes was monitored throughout 2011. The timings of cambial onset and 

differentiation were the same in both diameter classes. However, enlargement and cell wall 

deposition lasted longer in large trees. Besides the different durations, large trees also showed 

a higher rate of cell production. Thus, revealing that the differences in diameter observed 
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between the trees were due to the rates of cell production. In both diameter classes, the 

cambium was active from March to July, and quiescent from August to November, suggesting 

that in the Mediterranean region, trees are under a double climatic control: low temperatures 

and reduced photoperiod in the winter and high temperatures associated with low water 

availability in the summer. Summer quiescence was broken in late October, when precipitation 

re-hydrated the stem. In November, cambial divisions were observed, indicating that maritime 

pine has the ability to form new xylem cells after the summer drought.   

The influence of climate on the cambial activity and wood formation of maritime pine was 

studied over two dry years (2010 and 2011). It was found that cambial onset started earlier in 

response to a warmer late-winter and stopped earlier in response to a drier spring and 

summer, confirming that Mediterranean conifers are under a double climatic control. Low 

water availability during spring and summer limited cell production, which affected tree-ring 

width. Drier conditions also triggered an earlier start of latewood formation, leading to the 

development of fewer tracheids with smaller lumen area.  It was also observed that the 

duration of xylogenesis was not dependent on cambial onset. In fact, an earlier onset of 

xylogenesis did not trigger a longer duration of cambial activity.  

To ascertain the influence of water availability on stem radial increment of maritime pine, 

hourly variations of stem radial increment and tree water deficit were monitored throughout 

2010 using automatic dendrometers. The seasonal cycle was divided in five periods of distinct 

physiological activity: winter dormancy, spring growth, pre-summer contraction, summer 

quiescence and autumn re-hydration. The stem cycle approach was then used to divide the 

daily cycles in contraction, recovery and increment phases. Continuous positive radial 

increment started in spring and reached its maximum by the end of June, time at which a 

shrinking period was observed. The stem contraction observed in June was due to the inability 

of trees to recover the water lost by transpiration, contracting from one cycle to the next. In 

autumn, a period of re-hydration and rapid expansion was observed after precipitation. Daily 

variations in stem radius of maritime pine were mainly determined by the course of 

transpiration and thus, highly dependent on temperature and water availability.  

Overall, the results obtained in this dissertation provided a detailed insight on the dynamics of 

maritime pine cambial activity in a drought-prone environment, the Mediterranean region. It 

was observed that the cell production rate was the main responsible for the differences in 

tree-ring width and ultimately in stem diameter. Within an even-aged and managed forest, 

different individuals can present different cellular production rates (fast and slow trees) that in 
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time will be translated in different stem diameters (larger and smaller trees). Growth onset 

was not influenced by the size of the tree, but a longer duration of wood formation was 

observed in fast-growing and larger trees. In both years (2010 and 2011), the radial increment 

of all studied trees presented a clear bimodal pattern, with two increment peaks, as observed 

in other Mediterranean species. The first and more pronounced peak occurred in spring and a 

second less pronounced peak in autumn. The second growth peak corresponded mainly to a 

re-hydration of the stem after the summer drought. Climate played an important role in 

maritime pine cambial activity and wood formation, low temperatures and reduced 

photoperiod in winter and high temperatures associated with low water availability in the 

summer limited tree growth by imposing a dormant period.   
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Resumo 

A formação de aneís de crescimento é um processo lento e complexo. A variabilidade climática 

interanual e a interacção entre os factores internos e externos que regulam a actividade 

cambial são os grandes responsáveis pela singularidade de cada anel de crescimento. De 

maneira a capturar a dinâmica da actividade cambial e da formação de madeira ao longo do 

período de crescimento, é necessária a sua monitorização ao longo do ano e a uma escala 

temporal reduzida (de minutos a semanas). A grande maioria dos estudos sobre actividade 

cambial e formação de madeira foi realizada em ambientes limitados pela temperatura. 

Noutros ambientes, e em especial naqueles limitados por condições de seca, continua a ser um 

assunto pouco estudado. Com o intuito de melhor caracterizar a actividade cambial e a 

formação de madeira na região Mediterrânica, a actividade cambial do pinheiro-bravo (Pinus 

pinaster Ait.) foi monitorizada ao longo de dois anos (2010 e 2011). Para tal, foram feitas 

observações anatómicas da zona cambial e xilema em desenvolvimento, e monitorizado o 

incremento radial do tronco através de dendrómetos manuais e automáticos. Os estudos 

descritos nesta tese foram realizados no Perímetros Florestal Dunas de Cantanhede, uma 

plantação gerida de pinheiro-bravo, localizada na costa Oeste Portuguesa. 

A actividade cambial e a formação de madeira em pinheiros-bravos de idade e tamanho 

semelhantes, mas taxas de crescimento distintas entre 1994 e 2009 (árvores de crescimento 

rápido e lento), foi seguida ao longo do ano de 2010, com o objectivo de determinar se as 

diferenças observadas no tamanho dos anéis de crescimento foram devidas a diferenças no 

período de actividade cambial ou na taxa de divisão celular. O início da actividade cambial 

ocorreu simultâneamente em ambas as classes de crescimento. Contudo, as árvores de 

crescimento rápido apresentaram taxas de divisão celular maiores. As variações do diâmetro 

do tronco revelaram um padrão de crescimento bimodal, composto por dois picos de 

incremento, um de maior intensidade na Primavera e outro no Outono. Apesar de o padrão de 

crescimento bimodal ser característico da região Mediterrânica, a análise conjunta das 

observações anatómicas e das curvas de incremento do tronco revelaram que o segundo 

período de incremento correspondeu maioritariamente à re-hidratação do tronco, e não à 

reactivação da actividade cambial.  

Com o objectivo de determinar se diferenças no diâmetro do tronco foram devidas a 

diferentes taxas de divisão celular ou a diferenças no perído de xilogénese, a actividade 

cambial de árvores com idade idêntica, mas com troncos de diâmetro diferente, foi seguida ao 

longo de 2011. O início da actividade cambial e diferenciação de xilema ocorreu 
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simultaneamente em ambas as classes de diâmetro. Contudo, as fases de expansão e de 

deposição da parede secundária apresentaram uma maior duração nas árvores de maior 

diâmetro. Foi ainda observado que as árvores de maior diâmetro apresentaram uma maior 

taxa de divisão celular. Assim, foi concluído que as diferenças de diâmetro do tronco 

observadas em árvores da mesma idade foram devidas diferentes taxas de divisão celular. Em 

ambas as classes de diâmetro o câmbio permaneceu activo de Março a Julho, e quiescente de 

Agosto a Novembro. O período de actividade cambial descrito no pinheiro-bravo sugere um 

duplo controlo climático na região Mediterrânica: temperaturas baixas e fotoperíodo curto no 

Inverno, e temperaturas elevadas e baixa disponibilidade hídrica no Verão. A quiescência de 

Verão terminou após as primeiras chuvas após a seca de Verão (Outubro), que causaram a re-

hidratação do tronco. Foram ainda observadas divisões celulares no câmbio em Novembro, o 

que é indicativo da capacidade do pinheiro bravo em produzir novas células de xilema após a 

seca de Verão.  

A influência do clima, e em especial da disponibilidade hídrica, na actividade cambial do 

pinheiro bravo foi estudada ao longo de 2 anos (2010 e 2011). Foi determinado que um início 

precoce da actividade cambial estava relacionado com temperaturas mais amenas no final do 

Inverno. Observou-se ainda que o final precoce da actividade cambial estava relacionado com 

um Verão quente e com menor disponibilidade hídrica, confirmando um duplo controlo 

climático no crescimento das árvores. A baixa disponibilidade hídrica registada na Primavera e 

no Verão afectou negativamente o tamanho do anel de crescimento, promovendo o início 

precoce da formação do lenho tardio. Os traqueídos do lenho tardio, além de em menor 

número, apresentaram também uma menor área do lúmen. Observou-se ainda que o início e a 

duração da actividade cambial são independentes, uma vez que um início precoce não se 

traduziu num maior período de actividade cambial. 

Finalmente, para determinar o efeito da disponibilidade hídrica nos ciclos diários e sazonais de 

incremento radial do tronco de pinheiro-bravo, a variação horária do incremento radial e o 

défice de água no tronco foram monitorizados ao longo de 2010. O incremento radial do 

tronco foi dividido em cinco períodos distintos de actividade fisiológica da árvore: dormência 

de Inverno, crescimento primaveril, contracção antes do Verão, quiescência de Verão e re-

-hidratação de Outono. Estes períodos foram estudados individualmente com o intuito de 

perceber as variações na amplitude e na duração das várias fases do ciclo diário de incremento 

radial do tronco ao longo do ano. O ciclo diário foi dividido nas fases de contracção, 

recuperação e incremento. Um período contínuo de incremento radial positivo foi observado 

durante a Primavera, atingindo o máximo em Junho. Este máximo foi seguido de um período 
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de contracção, devido à incapacidade das árvores em recuperar a água perdida por 

transpiração durante o dia. O tronco das árvores foi contraindo até a árvore entrar em 

quiescência. A re-hidratação e expansão do tronco foi observada após as primeiras chuvas, no 

Outono. As variações diárias do diâmetro do tronco de pinheiro-bravo foram 

fundamentalmente devidas à transpiração e por isso dependentes da temperatura e da 

disponibilidade hídrica. 

Os resultados da presente tese forneceram informação detalhada sobre a dinâmica cambial de 

pinheiro-bravo proveniente de uma zona caracterizada por um período de seca sazonal, a 

região Mediterrânica. Foi observado que a taxa de divisão celular foi a principal responsável 

pelas diferenças encontradas no tamanho dos anéis anuais de crescimento, culminando em 

diferenças significativas no diâmetro do tronco de árvores de idade semelhante. Numa floresta 

gerida com árvores de idade semelhante, é possível encontrar indivíduos com taxas de divisão 

celular diferentes (crescimento rápido e lento), e que com o passar do tempo se irão acumular 

e expressar como diferenças de diâmetro (árvores de maior e menor diâmetro). Foi concluído 

que o início da actividade cambial foi independente do tamanho da árvore, contudo uma 

maior duração da formação de madeira foi observada nas árvores de maior diâmetro e com 

taxas de crescimento rápidas. O incremento radial de todas as árvores estudadas em 2010 e 

2011 apresentou um padrão bimodal típico da região Mediterrânica, com dois picos de 

incremento. O primeiro pico foi mais pronunciado e ocorreu na Primavera, enquanto que o 

segundo pico, menos pronunciado, foi observado no Outono. O segundo pico de incremento 

radial correspondeu à re-hidratação do tronco após a seca de Verão. O clima desempenhou 

também um papel importante na formação de madeira, com as temperaturas baixas e 

fotoperíodo curto durante o Inverno, e as temperaturas elevadas e baixa disponibilidade 

hídrica no Verão, a imporem períodos de dormência cambial.  
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1.1 Dendrochronology 

Trees, like all living organisms, respond to the changing environmental conditions with 

physiological regulations and cambial activity adjustments. Trees continuously adjust the 

timings of their growing activity in relation to the prevalent climatic conditions, which is 

reflected in the amount and characteristics of the xylem cells (Fritts 1976). Thus, the climatic 

conditions are imprinted in the wood making tree rings an excellent proxy of climate. Several 

climatic reconstructions have been made worldwide using tree rings. For example: Briffa et al. 

(1990) reconstructed the summer (April-August) temperature of northern Fennoscandia for 

the last 1400 years using tree-ring data, and Touchan et al. (2005) the May-August 

precipitation in the Eastern Mediterranean for the last 600 years. Tree-ring width can also be 

used to reconstruct drought indices: Nicault et al. (2008) reconstructed the Palmer Drought 

Severity Index in the Mediterranean region, which allowed them to identify the frequency and 

intensity of summer droughts in the last 500 years. These studies have allowed researchers to 

reconstruct the earth climatic conditions in the last millennium and compare past climatic 

trends with the present ones. 

In addition to tree-ring width, other characteristics can be used to extract climatic information. 

Maximum latewood density was used to reconstruct the summer temperature in Alaska in the 

last nine centuries (Anchukaitis et al. 2012). In another similar study also using maximum 

density, Dorado-Liñán et al. (2012) reconstructed the May-September mean temperature in 

the Pyrenees Mountains of the last 750 years. Another tree ring characteristic frequently used 

in climatic reconstructions is isotope ratios. Treydte et al. (2006) used the oxygen isotope ratio 

of tree-rings cellulose to reconstruct the last millennium precipitation in Pakistan. In order to 

improve the climatic signal and reinforce the reconstruction, different tree ring features can be 

used together. McCarroll et al. (2013) used a combination of nine tree growth proxies to 

reconstruct the summer temperature of the last 1200 years in northern Europe and Russia.  

Although dendrochronological studies are present worldwide, the climatic signal captured in 

tree rings is dependent on local climatic conditions. Trees at high latitudes and altitudes are 

mostly dependent on temperature, whereas trees from temperate climates and low altitudes 

are dependent on a combination of temperature and water availability (Vaganov et al. 2005; 

Linares et al. 2009). In the Mediterranean, tree growth is mainly dependent on water 

availability (Battipaglia et al. 2009; Gómez-Aparicio et al. 2011). Several dendrochronological 

studies on typical Mediterranean tree species have revealed that trees responded positively to 
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spring precipitation, presenting wider tree rings in years with higher precipitation (Martín-

Benito et al. 2008; Campelo et al. 2009; Vieira et al. 2009). 

Wood formation is a slow and complex process and the annual resolution of tree-rings cannot 

fully describe the climate-growth relationship. In order to improve the time resolution of 

dendrochronological studies, intra-annual features such as earlywood and latewood widths 

(Lebourgeois 2000; Vieira et al. 2009), intra-annual density fluctuations (IADFs; Rigling et al. 

2002; Campelo et al. 2007; Vieira et al. 2010), density profiles (Bouriaud et al. 2005; Martinez-

Meier et al. 2009) and vessel features (García-González and Fonti 2006; Campelo et al. 2010), 

have been incorporated in dendrochronological studies. Fonti and Garcia-Gonzalez (2008) 

found a clearer climatic signal in earlywood mean vessel size than in tree-ring width 

chronologies of mesic site oaks. Anatomical structures such as IADFs are formed in response to 

specific climatic conditions, thus their presence and location within a tree ring provides 

valuable information on the climatic conditions recorded during the growing season (Campelo 

et al. 2007). Vieira et al. (2010) observed that latewood IADFs in maritime pine trees were 

positively correlated to September and October precipitation and that chronologies of 

latewood IADFs could be used to reconstruct autumn precipitation.  

Although the inclusion of intra-ring features significantly increases the time resolution of tree 

rings climatic signal, all these assumptions were made retrospectively. To better understand 

the mechanisms and dynamics of wood formation and to assess the climatic influence on 

radial growth, wood formation needs to be continuously monitored.   

 

1.2 The vascular cambium and the formation of tree rings  

 

Tree rings derive from a lateral meristem: the vascular cambium, hereafter referred to as 

cambium. The meristematic cells of the cambium exist in two forms: fusiform initials, that are 

vertically orientated, and ray initials, which are horizontally orientated (Figure 1.1; Larson 

1994). Secondary xylem and phloem are produced through periclinal divisions of the fusiform 

initials (Figure 1.1; Lachaud et al. 1999). When the derivative of the cambial initial is produced 

towards the outside of the root or stem, it becomes a phloem cell, but when it is produced 

towards the inside, it becomes a xylem cell. The ray initials produce horizontally orientated ray 

cells, which form the vascular rays or radial system (Larson 1994). The radial system is largely 

composed of parenchyma cells which serve as pathways for the movement of nutrients, 



General introduction 

5 | Chapter I 

 

carbohydrates and water between the secondary phloem and the secondary xylem, and also 

serves as a storage center (Raven 1999). 

 

Figure 1.1 Periclinal and anticlinal divisions of fusiform and ray initials. Periclinal divisions are 

observed in the fusiform initials and are responsible for the formation of secondary xylem and 

phloem. Anticlinal divisions are observed in the ray initials and are responsible for the 

formation of the radial system.  

 

Cambial activity is regulated by both internal factors, such as hormones, and external factors, 

such as photoperiod, temperature and rainfall. Auxin (indole-3-acetic acid) is often considered 

as the main phytohormone involved in the regulation of cambial activity (Larson 1994; Uggla et 

al. 1998; Lachaud et al. 1999). Cambium activation and growth follow a distinct polar direction, 

starting on the top of the plant, near the leaves, and slowly descend through the stem. This is 

due to the basipetal auxin flux (Uggla et al. 1996; Schrader et al. 2003). Auxin plays an 

important role in most aspects of secondary growth, such as cell division, secondary wall 

thickness and final size of xylem cells (Uggla et al. 1996). It also favors the formation of 

fusiform initials rather than ray initials (Lachaud et al. 1999). However, auxin is not the only 

phytohormone that regulates cambial activity. Gibberllins act directly on cambial cell division 

by changing the auxin levels, cytokinins promote an increase in the cambial sensitivity to auxin 

and ethylene has been found in higher concentrations when the cambial zone is active 

(Lachaud et al. 1999).  

The annual course of cambial activity is strongly regulated by the climatic conditions, with cold 

or dry seasons imposing cambial dormancy, while warmer or rainy seasons inducing cambial 

activity (Larson 1994). The year-to-year variations in climate influence the quantity and quality 

of the wood formed. Thus, biological and physiological aspects of the regulation of cambial 

activity in trees are also of economic interest. The seasonality of cambial activity plays an 

important role in wood formation and reflects the adaptability of trees to their environment. 

In temperate and cold regions, cambium is dormant during the winter and active in spring and 

summer. Low temperatures and decreasing photoperiod in winter trigger trees to enter in 
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dormancy. The break of winter dormancy has been largely studied, and it has been concluded 

that temperature plays a key role (Oribe et al. 2001; Begum et al. 2007; Rossi et al. 2008; 

Begum et al. 2010).  Earlier onsets of cambial activity have been related to warmer spring 

temperatures (Rossi et al. 2008). Also, a relation between the end of cell division and 

temperature has been established in trees of cold environments, in order to guaranty that 

lignification is complete before winter (Gricar et al. 2005; Rossi et al. 2006).  

Other factors such as age, size and dominance class of the trees also influence the timings and 

rates of cambial activity (Rossi et al. 2008; Rathgeber et al. 2011). Rossi et al. (2008) 

determined that older trees presented shorter and delayed periods of cambial activity and 

Rathgeber et al. (2011) observed that dominant trees exhibited a longer and more intense 

period of wood formation. A higher cell production rate has also been associated with longer 

durations of xylogenesis (Lupi et al. 2010; Rossi et al. 2012). However, similar observations 

were made in trees that started to grow earlier. Thus, there is a relationship between timings, 

growth rate and cell production, with both timings and rates responsible for a prolonged 

duration and higher cell production.   

The seasonal cycles of cambial dormancy and activity are well described in trees of cold 

environments. However, seasonal dynamics of cambial activity and wood formation in trees 

from drought-prone environments is still fragmentary. It is thus important to consolidate the 

knowledge on xylem formation on such environments.  

 

1.3 Xylogenesis 

Cambium is generally defined as one layer of meristematic cells with the ability of an unlimited 

number of divisions (Larson 1994). During the growing season, cambium will derive some 

layers of cells with limited capacity of division: the xylem and phloem mother cells. The area 

where these cells divide is called cambial zone and contains the cambium and the xylem and 

phloem mother cells (Figure 1.2-a). After losing its ability to divide, the cambium derivative will 

be differentiated into xylem or phloem (Figure 1.2-b). The process of xylem differentiation 

starts with the enlarging of the cambium derivative. Water moves into the vacuole of the cell, 

increasing its lumen area, until the final size is reached. When the lumen reaches its final size, 

cells begin to mature, through the deposition of cell wall and lignification. When cell wall 

deposition ends, the protoplast autolysis and xylogenesis is complete.  
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Figure 1.2 Transversal sections of dormant (a) and active (b) cambium of maritime pine (Pinus 

pinaster). CZ cambial zone; XY mature xylem; PH phloem; EC enlarging cells; WT cell wall 

thickening cells. Scale bar 250 μm.  

 

1.4 The wood: secondary xylem  

Secondary xylem is a conductive tissue, providing both mechanical strength and long-distance 

transport of water and nutrients, which enables shoots of some woody plants to grow up to 

100 m tall (Taiz and Zeiger 2006). There are two types of wood: hardwoods and softwood 

(Figure 1.3). Hardwoods are found on Angiosperms and softwoods on Gymnosperms. The 

major difference between these two types of woods is the conductive elements. The main 

conducting elements in angiosperms are vessel elements, and in Gymnosperms tracheids 

(Figure 1.3). Both are elongated cells with secondary walls that lack protoplast at maturity. 

Tracheids are fusiform-shaped cells arranged in overlapping vertical files connected through 

pits. Unlike tracheids, vessel elements contain perforations, which are holes in the secondary 

walls that allow the communication between vessel elements. Perforations generally occur on 

the end of the walls, with the vessel elements joined end-to-end, forming long, continuous 

columns called vessels. 
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Figure 1.3 Transversal section of hardwood (top picture; Quercus faginea) and softwood 
(bottom picture; Pinus pinaster). Scale bar 250 μm.  

 

1.5 Objectives 

Although a strong relation between tree-ring width and climate has been established, 

dendrochronological studies are performed retrospectively using correlations between 

chronologies of tree-ring width and monthly climatic conditions, without considering wood 

formation at the intra-annual time scale. Since cambial activity changes throughout the 

growing season, the study of its dynamic and wood formation at an intra-annual time scale 

would provide a better understanding of the process and how it is controlled by climatic 

factors. Intra-annual analysis of wood formation decomposes the growing season into shorter 

periods of time by sampling in narrower time intervals (from minutes to weeks). This approach 

provides chronologies of the developing cell numbers or stem radial variation, which allow the 

study of cambial activity and wood formation throughout the year. 

The seasonal dynamics of cambial activity and wood formation have been widely studied in 

temperate and boreal climates, however cambial activity in drought-prone environments, such 

as the Mediterranean, still remains poorly understood. The main objective of this dissertation 

is to study the daily and seasonal dynamics of cambial activity and wood formation in maritime 
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pine growing under Mediterranean climate. In order to do so, the following specific objectives 

were established: 

1. Determine the influence of timings and rates of cell production on xylogenesis; 

2. Establish what causes the differences in diameter of trees with the same age; 

3. Ascertain the influence of climate on cambial activity and xylem differentiation;  

4. Define the daily and seasonal dynamics of stem radial variation and its relation to 

water availability; 

5. And determine whether the bimodal pattern of growth, typical of the Mediterranean 

region, originates from a double reactivation of the cambium.  

The objectives were pursued in four chapters, each one focusing on different aspects of the 

cambial activity of maritime pine:  

In Chapter II, the timings and duration of xylem formation in trees of the same age and size 

but different growth rates are described. The aim of this chapter is to determine whether the 

differences in tree-ring width result from different cell production rates and if the rate of cell 

production influences the timings of xylogenesis. It is also studied whether the bimodal stem 

radial increment pattern, typical of the Mediterranean, originates from a double reactivation 

of the cambium.  

In Chapter III the wood formation of trees with different sizes but similar age is described in 

order to determine if the differences in tree size are caused by different timings of cambial 

activity or by different rates of cell production.  

In Chapter IV, cambial activity and xylem differentiation of maritime pine trees are monitored 

over two years in order to investigate the influence of climate on the timings of cambial 

activity.  

In Chapter V, the hourly variation in stem radial increment and the water status of maritime 

pine are investigated using automatic dendrometers. The main objective is to define the daily 

and seasonal patterns of stem radius.  

Finally, the last chapter (Chapter VI) resumes the main findings of this dissertation and 

presents future perspectives. 
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2.1 Introduction 

The period in which wood formation occurs is the time window when environmental factors 

can act directly on the cells forming the tree ring and, consequently, on wood characteristics 

and properties. Thus, understanding the mechanisms of xylem development, namely the 

environmental factors responsible for the activation and cessation of radial growth, can have a 

great ecological and economic importance.  

Xylem growth is a complex mechanism involving increases in the number of cells produced by 

the division of initials in the cambial zone, and in the volume of derivatives, which undergo 

differentiation before their complete maturation and functionality. Recently, there have been 

major steps forward in understanding cambial activity and wood formation (Deslauriers et al. 

2009; Fonti et al. 2010; Gruber et al. 2010). In temperate and cold environments, there are 

evidences that temperature is a key factor for xylem growth, mainly in spring and autumn, as 

observed in the field (Vaganov et al. 2005; Rossi et al. 2007; Begum et al. 2008; Deslauriers et 

al. 2008; Seo et al. 2008) or with manipulation experiments (Oribe et al. 2001; Gričar et al. 

2006; Begum et al. 2007). Nonetheless, trees living in the same site and subjected to the same 

climate can exhibit different growing dynamics and periods of growth (Rathgeber et al. 2011). 

This clearly indicates that factors other than climate can play a role in determining the timings 

of xylem formation.  

In conifers of the Alpine timberline, xylem phenology is not constant throughout the tree’s 

lifespan, with older trees showing shorter and delayed periods of cambial activity and xylem 

cell differentiation than adult trees (Rossi et al. 2008). However, the older trees considered in 

that study were also taller and larger, thus the effect of age was not definitively disentangled 

from tree size. The shorter durations of xylogenesis observed in older trees by Rossi et al. 

(2008) could then be related to the size effect and not to age per se. In another study 

Rathgeber et al. (2011) removed the age factor by investigating xylogenesis in an even-aged 

plantation of silver fir. Trees showed the same age and similar heights, but belonged to 

different social classes. Cambial activity started earlier, stopped later, lasted longer and was 

more intense in dominant individuals than in intermediate and suppressed ones. Moreover, 

variability in tree-ring width was mostly explained by the rate of cell production, and only 

partially by the duration of growth. Since dominant trees were those with larger stem 

diameters and greater annual radial increments, it was unclear if either or both factors were a 

significant component of the growth process. Thus, the question whether cambial phenology is 

age and/or size related remains unraveled.  
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The Mediterranean climate is characterized by dry and hot summers and wet and cold winters, 

both periods unfavorable for growth (Mitrakos 1980; Terradas and Save 1992; Larcher 2000). 

Trees from these environments have physiological and morphological features (Cherubini et al. 

2003; Battipaglia et al. 2010) as well as phenological adaptations (Llorens et al. 2003; Gratani 

et al. 2008; Montserrat-Marti et al. 2009) to survive in this double-stressed climate. Thus, two 

physiologically active periods are observed, with photosynthesis, shoot elongation and leaf 

flushing occurring during the warm and rainy months of spring and autumn. Similarly, 

adaptations to the Mediterranean climate have been observed in the timings of cambial 

activity, with the presence of bimodal patterns of xylem growth (Linares et al. 2009; Battipaglia 

et al. 2010; Camarero et al. 2010; de Luis et al. 2011; Gutierrez et al. 2011). The two periods of 

growth in spring and autumn are separated by a drought-imposed quiescent period in summer 

(Larcher 2000; Cherubini et al. 2003). Is the bimodal growth pattern observed in 

Mediterranean areas generated by an autumnal reactivation of cambium or by a swelling of 

previously produced cells or by both components? Either process can be monitored with 

anatomical observations of xylem development or dendrometers, respectively, but to our 

knowledge, the two techniques are rarely used together (Deslauriers et al. 2007; Makinën et 

al. 2008; Camarero et al. 2010). The present study investigated timings and duration of xylem 

formation of maritime pine (Pinus pinaster Ait.) using both anatomical observations and band 

dendrometers. Trees with the same age and size but different annual growth rates in the last 

15 years (1994-2009) were selected in a coastal stand in Portugal with the aim of testing the 

hypotheses that 1) the differences in tree-ring width are a result of cell production and that 

cell production affects timings of xylogenesis and 2) the bimodal pattern originates from a 

double reactivation of cambial activity in spring and autumn. 

 

2.2 Material and Methods 

2.2.1 Study site: Perimetro forestal dunas de Cantanhede  

The studies described in the following chapters were all carried out in Perimetro Florestal 

Dunas de Cantenhede (40⁰21’35.15’’ N, 8⁰49’10.06’’ W), located in the west coast of Portugal 

(Figure 2.1). It is a naturally regenerated plantation of maritime pine (Pinus pinaster Ait.). The 

management of the plantation consists mainly in a selective thinning performed 25-30 years 

after the last final cut. The selective thinning removes all of trees with a diameter at breast 

height inferior to 10 cm, leaving only the dominant and co-dominant specimens (Amaral 1980). 
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The selected forest stand presented trees of approximately 50 ± 5 years and a density of c.a. 

230 trees per hectare. 

 

 

Figure 2.1 Map of Portugal with the study site location, Perimetro Florestal Dunas de 

Cantanhede, marked with a cross (×). 

 

Although it is a monospecific plantation, the shrub layer contains a high variety of species, 

such as: Calluna vulgaris (L.) Hull, Chamaespartium tridentatum L., Cistus crispus L., Cistus 

ladanifer L., Corema album (L.) D. Don., Cytisus grandiflorus (Brot) DC., Cytisus scoparius (L.) 

Link, Erica arborea L., Halimium halimifolium L., Lavandula stoechas L., Rosmarinus officinalis 

L., Ulex sp, and the invasive species Acacia longifolia (Andrews) Willd (Ferreira et al. 2010). The 

soil type is podzol, developed from sand and sandstone. It has a coarse granulometry and 

sandy texture in all horizons, which gives it a low water holding capacity (Ferreira et al. 2010). 

The pH is of 6.5 and the organic matter content of 0.17% (Srecu 2011). 

The climate is typically Mediterranean with a strong oceanic influence. Precipitation occurs 

mainly in autumn and winter and the summer is characterized by a pronounced drought 

(Figure 2.2). The long-term (1950-2011) mean annual temperature is 16.1 ⁰C, and the total 
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annual precipitation of 965 mm (CRU). Daily maximum and minimum temperature and total 

precipitation data were acquired from the nearest meteorological station (Instituto Português 

de Meteorologia), located in Figueira da Foz, at 25 km south from the study site.  

 

Figure 2.2 Daily temperature and precipitation in Figueira da Foz during 2010, at 25 km south 

from the study site (data from Instituto Nacional de Meteorologia, Portugal). 

 

2.2.2 Maritime pine (Pinus pinaster Ait.) 

The studies presented in this dissertation were performed on maritime pine (Pinus pinaster 

Ait.). Maritime pine is a typical Mediterranean conifer that represents 31 % of the Portuguese 

forest (Godinho-Ferreira et al. 2005). Although there are other species representative of the 

Portuguese forest, like Quercus ilex L. and Quercus suber L., conifers are model species for 

anatomical studies on wood formation. The homogeneous xylem with just one type of cells 

(tracheids) and the softwood make conifers perfect for wood anatomy studies, like the ones 

developed in this dissertation.     

The distribution of maritime pine covers the Mediterranean basin and North Africa (Pereira 

2002). In Portugal, is mostly distributed in the West coast. Historically, maritime pine was 

planted to prevent the advance of sand dunes to cultivated areas. Apart from dune 

stabilization, maritime pine is also an important source of wood and resin. Although there is 

some contradiction on whether or not maritime pine occurs naturally in Portugal or if it was 
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introduced, palynological records have confirmed the presence of these species since 

Holocene (Morales-Molino et al. 2012). Maritime pine grows on low fertility soils under a wide 

range of water availability, from humid oceanic in France to arid conditions in central Spain 

and North Africa (Loustau et al. 1996). Maritime pine is also a shade-intolerant species, which 

is in agreement with its early succession stage (Zavala and Zea 2004). 

 

 

Figure 2.3 Maritime pine (Pinus pinaster Ait.) at the study site, Perimetro Florestal Dunas de 

Cantanhede. 

 

2.2.3 Tree selection 

The selected forest stand had a density of approximately 230 trees per hectare (Figure 2.3) and 

trees presented similar characteristics in terms of dominance, height and vigor (Table 2.1). All 

trees were dominant or co-dominant with an average cambial age of 45 years at breast height 

(Table 2.1). In December of 2009, 35 trees were sampled with an increment borer. A core was 

taken at breast height in the south direction. The cores were air dried and sanded until the 

tree-ring patterns were perfectly visible. Tree-ring width was measured to the nearest 0.01mm 

using a linear table, LINTAB (Frank Rinn S.A, Heidelberg, Germany) and the program TSAP-Win 

(Rinn 2003). Based on the tree-ring widths from the previous 15 years (1994-2009), the trees 

were divided in fast- (F-trees) and slow-growing trees (S-trees) (Figure 2.4). From the initial 35 

trees, 10 were selected for monitoring cambial activity and 25 for diameter variation. At the 
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end of the monitoring season four trees were excluded from the analysis because no growth 

was observed in 2010. Thus, 8 trees (4 F- and 4 S-trees) were analyzed for cambial activity and 

22 trees (12 F- and 11 S-trees) were monitored for diameter variation.  

For each tree, height and crown diameter were measured in 2009.  Diameter at breast height 

(DBH) was measured in the wood cores, from the last ring to the pith. Tree height was 

measured with an electronic clinometer and crown diameter calculated as twice the quadratic 

mean of the four cardinal radii of the projected crown.  

 

 Table 2.1 Diameter at breast height (DBH), height and crown diameter of fast- (F-trees) and 

slow-growing trees (S-trees) (mean ± standard deviation). 

 Xylogenesis Dendrometers 

Class F-Trees S-Trees F-Trees S-Trees 

DBH (cm) 12.97 ± 1.15 12.05 ± 1.28 23.58 ± 4.77 24.64 ± 3.09 

Height (m) 15.42 ± 0.92 15.02 ± 0.32 15.18 ± 0.85 15.45 ± 0.68 

Crown diameter (m2) 10.68 ± 0.26 9.82 ± 1.33 10.74 ± 1.46 7.62 ± 1.66 

 

 

 

Figure 2.4 Annual time series of slow- (S-trees) and fast-growing trees (F-trees) used for 

anatomical investigation and dendrometer measurements in 2010. F-values are the values of 

the two-way ANOVA analysis of variance in each 15-year window period (1978-1993: 

synchronized period / 1994-2009: different growth-rate period). 
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2.2.2 Xylem formation 

Sampling was performed from March to December 2010, [62-349 Day Of the Year (DOY)] by 

weekly collecting microcores on the stem using a Trephor (Rossi et al. 2006). The microcores 

were collected from 30 cm below and above breast height, in a spiral pattern on the south-

facing side of the tree stem. Before sampling, bark was removed in order to reach the living 

tissues. Between two successive sampling dates, microcores were collected at least 5 cm apart 

to prevent getting resin ducts from adjacent sampling points. The microcores were placed in 

eppendorfs filled with alcohol (50 % in water) and stored at 5 ºC to avoid tissue deterioration. 

In the laboratory, the microcores were dehydrated through successive immersions in alcohol 

and D-limonene and embedded in paraffin (Rossi et al. 2006). Transverse sections 6-10 μm 

thick were cut from the samples with a rotary microtome, stained with cresyl violet acetate 

(0.16% in water), and immediately observed in a microscope (400-500 x magnification), under 

visible and polarized light to distinguish the developing xylem cells. Cambial and enlarging cells 

only have primary cell walls, which, unlike secondary walls, do not shine under polarized light 

(Figure 2.5). Cambial cells are characterized by thin cell walls and small radial diameters, while 

enlarging cells have a diameter at least twice that of a cambial cell (Figure 2.5-b). Wall 

thickening cells shine under polarized light and show a light violet coloration changing to dark 

violet at the end of maturation (Figure 2.5-c). Lignification appears as a color change from 

violet to blue, starting at the cell corners and middle lamella and spreading centripetally into 

the secondary walls. When the entire cell wall presents a blue coloration, lignification is 

complete and tracheids reach maturity (Gričar et al. 2005). In each sample, the number of 

cambial and developing cells was counted along three radial rows and averaged per class. 

Xylem formation was considered to have begun when an average of at least one enlarging cell 

was observed in each class. Xylem differentiation was considered complete when no cells were 

observed in wall thickening phase.  

2.2.3 Band dendrometers 

To estimate the changes in stem diameter, band dendrometers made of astralon (model D1-L, 

UMS, Munich, Germany) were installed on the stem of 25 trees at breast height. Installation 

was performed in January 2010, which allowed for a period of adjustment before the 

beginning of the growing season (Linares et al. 2010). Before the installation of dendrometers, 

the bark was carefully removed with a chisel to adjust the band dendrometer to the stem and 

to reduce as much as possible non-xylematic sources of swelling and shrinking (Zweifel et al. 

2006). Band dendrometers were read weekly to the nearest 0.1mm. To avoid biases due to the 
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circadian rhythms of water storage and depletion, all measurements were done in early 

morning (Linares et al. 2009).  

 

Figure 2.5 Transverse sections of the cambial zone under visible (a and b) and polarized light 

(c). DC: dormant cambium; XY: xylem; PH: phloem; EC: enlarging cells; WT wall thickening cells. 

Scale bar = 50 μm.  

 

2.2.4 Statistical analysis 

The characteristics of the F- and S-trees (diameter, height and crown diameter) selected for 

the xylogenesis and dendrometer analyses were compared using a two-way analysis of 

variance (ANOVA). Tree-ring width was divided in two 15-year periods and compared using a 

two-way ANOVA, to test for differences between the S- and F- trees and between both 

periods. Mean cell distribution was compared between F-and S-trees using the non-parametric 

Kruskal-Wallis test (χ2). Cumulative and increment data from dendrometers were compared 

throughout the growing season using a PROC MULTTEST of the software package SAS version 

9.2 (SAS Institute, Cary, NC). When performing many hypothesis tests on the same data set, 

this procedure excludes the probability of declaring false significances by adjusting the 

P-values using 10,000 bootstrap resamplings with replacement. 

 

2.3 Results 

2.3.1 Temperature and Precipitation in 2010 

The minimum temperature in 2010 fell below zero in only three occasions, on January 9th and 

29th and on February 14th (Figure 2.1). Mean daily temperature in January and February ranged 



Are neighboring tree in tune? – Wood formation in Pinus pinaster 

21 |Chapter II 

 

between 3 and 13 ⁰C, with an average minimum temperature of 8 ⁰C measured during the 

week prior to the beginning of sampling. In spring and summer, temperature raised reaching a 

maximum of 39 ⁰C in mid-July. In September, temperature started gradually to decrease, but 

mean temperatures were still above 15 ⁰C. Temperature only dropped below 10 ⁰C in mid-

November. Precipitation was more frequent in January-March and October-November. In 

April, precipitation started to decrease and very few precipitation events were observed from 

June to September, with a total of 43 mm of rain recorded during that period. The first 

precipitation event in autumn occurred at the beginning of October, with a total of 90 mm of 

rain in one week.  

2.3.2 Tree characteristics 

Tree-ring width measurements showed that in the last 15 years F and S-trees were significantly 

different (F = 14.128; P = 0.001) despite the fact that in the previous period (1978-1993) this 

difference was not observed (F = 0.628; P = 0.436; Figure 2.4). DBH ranged from 20 to 27 cm, 

tree height between 15 and 16.5 m and crown diameter between 7.62 and 10.74 m2 (Table 

2.1).  No significant statistical differences were observed between F and S-trees concerning 

tree height (F = 0.0157; P = 0.901), DBH (F = 0.333; P = 0.569) and crown diameter (F = 3.036; 

P = 0.093). 

2.3.3 Xylem phenology  

The overall pattern of the differentiating tracheids showed a clear variation during the year in 

terms of number of cells (Figure 2.6). Cells in cambium, enlargement and cell wall thickening 

followed the typical bell shaped distribution, although there were still cells in wall thickening 

when the sampling stopped (DOY 349). Mature cells exhibited a growth curve with a plateau 

achieved at the end of summer. The number of cells in F-trees was always higher than in S-

trees for all differentiation phases, except for cambium in spring. Statistics confirmed these 

observations, with the frequency distribution of the number of cells in enlargement (χ2 = 6.97, 

P < 0.01), cell wall thickening (χ2 = 23.03, P < 0.001) and mature cells (χ 2= 10.39, P < 0.001) 

being significantly different between the two groups of trees.  

Winter samples revealed that there were 5-7 cells in the dormant cambium (Figure 2.6). The 

first samples taken in March (DOY 62), had 6-9 and 5-7 cambial cells in F- and S-trees 

respectively, which suggests that the cambium was already active. The maximum number of 

cambium cells occurred in June, followed by a slow decrease until October. The first tangential 

row of enlarging cells was observed in F-trees on DOY 76 (mid-March), and a week later in S- 
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 Figure 2.6 Number and frequency of cambial, enlarging, cell wall thickening and mature cells in 

fast- (F-trees) and slow-growing trees (S-trees). Vertical bars represent standard deviation; 

χ
2
: Kruskal-Wallis test between F- and S-trees. 
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trees. The enlargement phase lasted until September (DOY 223) in S-trees while enlarging cells 

were still observed in October in F-trees (DOY 279). The last enlarging cells were observed in 

December (DOY 336) in F- and S-trees. Cell wall thickening and lignification was observed in 

April, 21 days after the beginning of enlargement, and started first in F-trees on DOY 97 (Figure 

2.6). Since mid-July, S-trees exhibited a gradual reduction in the number of cells in wall 

thickening and lignification, while this reduction was observed in F-trees only in mid-October. 

The first mature cells were observed in May, on DOY 125, in F-trees, and two weeks later in S-

trees. In December, the last sampling month, cells under lignification were still observed in 

both groups of trees, and the duration of the maturation phase could not be determined. At 

the end of sampling, F-trees produced 40 cells, about 15 more than those produced by S-trees.  

2.3.4 Dynamics of diameter increment (Dendrometers)  

Trees of both groups showed annual stem diameter increments with a clear bimodal pattern, 

characterized by a pronounced first period of increment in spring, a decrease in summer, and a 

second less marked period of increment in autumn (Figure 2.7, top graphics). Stem diameter 

increment started in mid-March (DOY 83) for both groups, but F-trees presented higher 

increment rates than S-trees. The maximum increment was reached at the beginning of May, 

followed by a decreasing trend, and a stem variation close to zero in August-September. The 

second period of positive increment was observed in October-December and corresponded 

with the first rainy event of autumn (compare Figure 2.7 with Figure 2.2). Several false 

significant probability scores were calculated for both weekly and cumulative increments 

(Figure 2.7, lower graphics). The high variation in stem diameter increment among trees hid all 

differences between the two groups of trees, and bootstrapped differences were only 

significant for the measurements performed at the end of May, on DOY 146 (Figure 2.7-A). 

More marked differences were detected using cumulative data (Figure 2.7-B), with patterns of 

F- and S-trees diverging since mid-April, when the bootstrapped adjusted P-values became 

significant (P < 0.05).  

 

2.4 Discussion 

The present study investigated timings and duration of cambium phenology and dynamics of 

xylem growth in fast and slow trees, growing in a Mediterranean climate with oceanic 

influence. Trees had the same age, similar height and crown diameter. Despite the differences 

in annual growth rates in the last 15 years, trees had similar DBH. Earlier onsets of cell 
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enlargement in spring and the presence of a higher number of cells in cell wall thickening in 

winter were observed in F-trees. Also, since mid-April F-trees showed faster growth rates than 

S-trees, accumulating a higher number of cells in differentiation and mature xylem, confirming 

the hypothesis that cell production affects timings of xylogenesis. Although there was a clear 

bimodal pattern with two periods of stem increment in spring and autumn, no marked 

increase in the number of cambial cells was observed in autumn, suggesting that the second 

increment peak involved mainly changes in stem size. Consequently, the hypothesis that the 

bimodal growth pattern originates from a double period of cambial activity was not supported 

by the current findings. 

 

Figure 2.7 Weekly (A) and cumulative (B) increments by band dendrometers and probability scores 

comparing fast- (F-trees) and slow-growing trees (S-trees). Circles and crosses represent normal 

and adjusted p-values calculated by 10.000 bootstrap iterations with replacement, respectively. 

 

Differences in xylem growth have already been described in trees of different age, size and 

vitality, and growing in different climatic conditions (Rossi et al. 2008; Gričar et al. 2009; 

Linares et al. 2009; Lupi et al. 2010; Rathgeber et al. 2011). However, the differences in the 

growing season observed in these studies could result from a number of different factors, such 

as size, age, or dominance (Rossi et al. 2008). Also, the comparison of wood formation in even-
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aged trees by Rathgeber et al. (2011) was not completely conclusive since trees belonged to 

different social classes and had different sizes. For the first time, an experimental design 

maintaining constant age and size was applied in trees growing in the same forest stand. The 

observed differences between F- and S-trees in the period of xylogenesis showed that cell 

production, and not age or size, played an important role determining timings of xylem 

phenology. Rossi et al. (2012) demonstrated that cell production is closely interconnected with 

the phenological phases of xylem according to a complex causal link. The date of onset and the 

rate of cambial division affect the number of cells produced by the cambium which, in turn, 

influences the ending of cell differentiation (Lupi et al. 2010; Rossi et al. 2012). Although 

cambial activity started one week earlier in F-trees, the wider tree-ring formed in F-trees was 

caused by a higher rate of cell division, rather than a longer period of xylogenesis. The higher 

number of cells produced by the cambium of F-trees, lead to a larger accumulation of cells in 

the developing xylem, which prolonged the differentiation phase and delayed the end of wood 

formation. 

The analysis of the annual radial growth showed that F- and S-trees consistently diverged after 

1994. A severe drought occurred in 1995, which might have reduced the competitive ability of 

some trees, causing the different growth rates observed afterwards. During periods of low 

precipitation better-adapted trees can maintain higher growth rates and also recover faster 

(Metsaranta and Lieffers 2008; Martinez-Vilalta et al. 2012). F-trees could have recovered 

faster from the 1995 drought due to genetic, morphological (e.g. rooting depth), physiological 

and/or microclimatic differences. Further studies are necessary to understand why, after 1995, 

trees of the same age and size, showed different growth rates.  

Trees presented a clear bimodal pattern of stem diameter increment with two peaks, in spring 

and autumn, and a quiescent period in summer, which is characteristic of the vegetation from 

the Mediterranean region (Camarero et al. 2010; Gutierrez et al. 2011). Trees respond to 

water stress by closing the stomata and reducing leaf transpiration, which causes a progressive 

decline of CO2 uptake (Cochard et al. 2000). The change in CO2 uptake alters the proportion of 

carbon allocated to the different metabolic processes, which results in a decreased availability 

of carbon for those processes with lower priorities, such as cambial activity and secondary 

growth, which slow down or even cease (Oribe et al. 2003). In an early state of water deficit, 

cell expansion is restricted by the decline in turgor pressure, but if water stress persists 

cambial cell division can also be affected (Abe et al. 2003). De Luis et al. (2011) showed that 

water availability after the summer drought was the determining factor to increase the 

number of cambial cells of P. halepensis saplings subjected to different irrigation regimes. 
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However, in our case, the autumnal growth period did not correspond to a second period of 

cell division in the cambium. The autumnal recovery occurred shortly after the first rains and 

consisted mainly in a swelling of the outermost tissues of the stem and in the achievement of 

the pressure potential required for enlarging the few remaining undifferentiated cells, more 

likely produced by cambium during early summer (Abe et al. 2003; Rossi et al. 2009).   

The second increment period was more evident on stem diameter variation than on cell 

anatomy studies. Stem diameter increment consists of several components including cell 

accumulation, and swelling and shrinking of the outermost tissues of stem due to water 

absorption and thermal variations (Zweifel et al. 2006). In areas with long dry periods, swelling 

and shrinking of the xylem and phloem can cause drastic changes in stem dimensions that 

exceed growth (Forster et al. 2000). In our study, the association of dendrometers and 

anatomical observations showed that the second increment period was due to variations in 

tree water status rather that new cell production by the cambium. Also, a 3-week delay was 

observed between the beginning of xylem differentiation (corresponding to the date of 

appearance of the first enlarging cell) and diameter increment. The resolution of 

dendrometers is probably not suitable to record microscopic variations caused by the first 

increases in cell number (Gruber et al. 2009). Other studies which have also compared band 

dendrometers and cellular analysis showed that indirect measurements fail in assessing the 

start of growth in spring (Makinën et al. 2008; Linares et al. 2009; Camarero et al. 2010). 

Nonetheless, unlike anatomical observations, dendrometers are a non-destructive method of 

measuring stem diameter fluctuations and can provide suitable estimates of xylem growth, 

after the non-xylematic sources of cyclic rhythms of water storage and depletion are removed 

(Zweifel et al. 2006; Turcotte et al. 2011). 

 

2.5 Conclusion 

As far as we know, this is the first study where cambial phenology was monitored in trees with 

similar age and size and different tree-ring widths. The results showed that F- and S-trees 

exhibited different rates of cell production and durations of xylogenesis. F-trees presented a 

higher rate of cell production which led to a prolonged xylem differentiation and the formation 

of wider tree rings. Thus, we can also conclude that the observed differences in xylogenesis 

resulted from cell production rather than age or size. The divergence in the annual growth 

rates of these trees started after a severe drought, with F-trees showing a faster recovery rate 

than S-trees.  Also, the combined analysis of anatomical observations and dendrometers 
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demonstrated that the bimodal pattern of maritime pine in 2010 was related to changes in 

stem size rather than an autumnal resumption of cambial activity.  
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3.1 Introduction 

Forests are dynamic and complex ecosystems, with several extrinsic (e.g. climate, competition) 

and intrinsic factors (e.g. age, plant hormones) conditioning tree growth. The interaction of 

these factors is responsible for the variability of tree growth patterns observed in a forest. Has 

trees get older and taller, physiological processes such as photosynthetic capacity and 

hydraulic conductivity change (McDowell et al. 2005; Martinez-Vilalta et al. 2007). A study 

comparing the below-ground hydraulic conductance of Scots pine’s observed that it declined 

with increasing age/size (Martinez-Vilalta et al. 2007). Older/taller trees compensated for the 

decreased condunctance by resorting to water stored in the ellastic tissues of the stem. The 

physiological mechanisms  associated with the trees dimension have  repercurssions on the 

climatic signals recorded in the tree rings. For instance, Carrer and Urbinati (2004) found that, 

at the timberline, tree-rings of older/taller trees were more sensitive to climate, whereas the 

opposite was observed in Mediterranean pines (Vieira et al. 2009). These contradictory 

findings could be explained by the difficulty in disentangling the effect of age from size. 

The effects of age and size are also difficult to separate in wood formation studies. A study 

comparing xylogenesis in trees of different age from the alpine timberline revealed that old 

trees (> 250 yr) had a shorter and delayed period of cambial activity than adult trees (< 80 yr) 

(Rossi et al. 2008). However those older trees were also larger, thus the effect of age was not 

completely disentangled from size. With the aim of isolating the effect of size on xylem 

formation, Rathgeber et al. (2011) studied trees of different size and social status but similar 

age, growing in a plantation in France. They determined that the differences in tree size were 

due to the higher rate of cell production observed in the dominant trees. In maritime pine it 

was also observed that the rate of cell production was the responsible for the different tree-

ring widths observed in the last 15 years (Chapter II). However, xylogenesis timings are also 

linked with cell production (Lupi et al. 2010; Rossi et al. 2012), with higher cell production 

associated with longer periods of xylogenesis (Lupi et al. 2010) .  

Most of the studies describing wood formation and comparing it in trees of different size/age 

were carried out in boreal or temperate environments, where temperature is the main factor 

limiting tree growth. However, few studies were performed in water limited environments, 

such as the Mediterranean region. Climate is changing worldwide, with a predicted increase in 

temperature and a decrease in precipitation for the Mediterranean region (IPCC 2007). These 

changes could have important implications for tree growth, with an increase of water stress 

and resource competition (Martinez-Vilalta et al. 2008; Linares et al. 2009; Gómez-Aparicio et 
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al. 2011). Among all the species of the Mediterranean forest, pines are the most sensitive to 

competition, reaching reductions of potential growth close to 100% under intense competition 

(Gómez-Aparicio et al. 2011). The sensitivity to competition of pines increases at decreasing 

precipitation, especially in smaller trees (Gómez-Aparicio et al. 2011). Vieira et al. (2009) 

compared the climatic response of maritime pines of different age and size growing in the 

Mediterranean region and observed that younger and smaller trees responded to climatic 

conditions earlier in the growing season. This result suggested that younger/smaller trees 

started to grow earlier, which indicates that there could be differences in the timings of 

xylogenesis between the age/size groups. However, it was observed that the rate of cell 

production, not timings of xylogenesis, was responsible for the differences in tree-ring width 

(Chapter II). In order to determine whether the differences in stem diameter observed in an 

even-aged stand of maritime pine in Portugal are due to different rates of cell production or 

xylogenesis timings, the following hypotheses were tested: 1) growth onset occurs 

simultaneously in both diameter classes; 2) the rate of xylem cell production is higher in larger 

trees, and 3) the period of xylogenesis is longer in larger trees. 

 

3.2 Material and Methods 

3.2.1 Study site and tree selection 

The study site is described in section 2.2.1. The selected trees for this study had an average 

age at breast height of 55 years and were divided in two groups according to the frequency 

distribution of stem diameters determined by Campelo et al. (2013): large trees (L-trees; 38.7 ± 

3.9 cm) and small trees (S-trees; 23.9 ± 3.0 cm). Five trees were selected from each diameter 

class to monitor cambial activity and stem diameter variation during 2011. Height, age and 

diameter at breast height (DBH) from the two diameter classes were compared using t-tests 

(Table 3.1).  

Table 3.1 Average diameter at breast height (DBH), height and age of small (S) and large (L) 

trees (± standard deviation) and t-test comparing both diameter classes (n = 5)  

Class S-trees L-trees t-test P 

Diameter (cm) 22.5 ± 1.9 37.9 ± 2.6 10.58 < 0.001 

Height (m) 14.8 ± 0.8 17.0 ± 1.2 3.41 0.009 

Age (years) 45.6 ± 4.9 48.8 ± 4.4 1.08 0.312 
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3.2.2 Xylem development 

Sampling was performed from March 2011 to February 2012 (62-409 Day Of Year [DOY]), by 

weekly collecting microcores on the stem using a Trephor (Rossi et al. 2006). The collection 

and processing of the microcores samplings was performed following the procedure described 

in section 2.2.2.  

3.2.3 Xylem phenology 

The phenology of xylem development was compared between both diameter classes. For each 

tree, two phenophases were considered: cell enlargement and cell wall deposition. The 

beginning of each phase was defined as the date when more than 50 % of the observed radial 

paths showed at least one cell in that phase. The end of each phase was defined as the date 

when less than 50 % of the observed radial paths presented at most one cell in that phase. The 

duration of the phases was determined by the difference between onset and end of each 

phase. As the assumption of normality in data distribution was occasionally not fulfilled, 

differences in the timings and duration of the xylem phenology phases between diameter 

classes were tested using a Mann-Whitney rank sum test (U).  

3.2.4 Cell measurements  

When xylem formation was complete in February 2012, a microcore was collected from each 

tree, embedded in paraffin and processed following the procedure described in section 2.2.2. 

The resulting sections were stained with 1% aqueous safranin and permanently fixed with 

Canada balsam (Eukitt).  A camera fixed on an optical microscope was used for image analysis, 

at 20 × magnification. On each section, three radial paths were selected to measure lumen 

area and cell wall thickness, using Wincell (Regent Instruments Inc.). Tracheids were classified 

in earlywood and latewood following the Mork’s formula described in Denne (1989). The 

measurements were averaged by diameter class and compared using a generalized linear 

mixed model in SAS 9.2 (SAS Institute Inc. Cary, North Carolina). Each of the parameters was 

individually tested for differences using a One-way ANOVA.    

3.2.5 Band dendrometers 

To estimate the changes in stem diameter, band dendrometers made of astralon (model D1-L, 

UMS, Munich, Germany) were installed on 25 trees at breast height. This was done in January 

2011 to allow for a period of adjustment before the beginning of the growing season (Linares 

et al. 2010). Before the installation of dendrometers, the bark was carefully removed with a 

chisel to better adjust the band dendrometer to the stem and to reduce non-xylematic sources 
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of swelling and shrinking as much as possible (Zweifel et al. 2006). Band dendrometers were 

read weekly to the nearest 0.01 mm. To avoid biases due to the circadian rhythms of water 

storage and depletion, all measurements were done in early morning (Linares et al. 2009).  

 

3.3 Results 

3.3.1 Temperature and precipitation in 2011 

The average temperature in 2011 was 17.6 ⁰C and total precipitation was 800 mm, 1.5 ⁰C 

above and 165 mm below the long-term average, respectively (the long-term temperature and 

precipitation of the study site are described in section 2.2.1). In January and February, the 

average minimum temperature was 5.3 ⁰C, starting to rise in mid-March (DOY 75; Figure 3.1). 

From this point on, the average temperature was above 10 ⁰C until mid-December (DOY 345). 

The average spring (March-May) and summer (June-August) temperatures were 16.0 ⁰C and 

19.4 ⁰C, respectively. The temperature started to drop in October, and average temperatures 

below 10 ⁰C were only observed in mid-December. Precipitation was more abundant in 

January-April 2011 and from October 2011 to February 2012. In May, precipitation decreased 

abruptly and very few events of precipitation were observed until September, with a total of 

only 73 mm of rain recorded during that period.   

3.2.2 Xylem development and phenology 

Dividing and differentiating tracheids showed clear variation patterns during the year in terms 

of number of cells (Figure 3.2). At the beginning of the sampling season, in March, the 

cambium of L-trees was already active, presenting the maximum number of cells observed (9 

cells). S-trees achieved that number of cells one week later. The maximum number of cambial 

cells was observed between March and April in both groups. Afterwards, the number of 

cambial cells decreased progressively until reaching a minimum of five cells in the summer. In 

November the number of cambial cells increased again to 6-7 cells, remaining constant until 

the end of the study.  

The first cells in enlargement were observed one week earlier in L-trees. However, the 

beginning of enlargement did not present statistical differences between the two diameter 

classes (U = 4.50; P = 0.190; Figure 3.3). The rate of cell production was higher in L-trees, which 

presented an average of five cells in enlargement for eight weeks (March-May), whereas S- 

trees presented a maximum of 4 cells only during two weeks at the end of March (Figure 3.2). 
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Figure 3.1 Daily values of temperature and precipitation in Figueira da Foz during 2011, at 25 

km from the study site (ddata from Instituto Português de Meteorologia).  

 

Overall, enlargement lasted longer in L-trees, which presented cells in this differentiation 

phase until mid-September, while the last enlarging cells were observed in S-trees at the end 

of June (U = 20; P = 0.016). The average duration of enlargement was 250 days in L-trees and 

90 days in S-trees (U = 20; P = 0.016).  

Cell wall deposition started one week earlier in L-trees, at the end of March. L-trees exhibited 

6-7 cells in cell wall deposition for six months, from April to October. S-trees had a similar 

pattern, but with fewer cells (3-5) and during a shorter period, April to August (Figure 3.2). The 

beginning of cell wall deposition did not present significant differences in the two diameter 

classes (U = 3; P = 0.111). Cell wall deposition lasted until mid-September in the S-trees and 

until mi-November in L-trees (U = 20; P = 0.016). The duration of this phase lasted 250 days in 

the L-trees and 185 days in the S-trees (U = 20; P = 0.016). The first mature cells were observed 

simultaneously in both diameter classes in mid-April. At the end of the study, L-trees 

presented a total of 30 tracheids while S-trees only presented 15 tracheids. 
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Figure 3.2 Number of cambial, enlargement, cell wall thickening and mature cells in Large and 

Small trees. Vertical bars represent standard deviation.  
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Figure 3.3 Beginning, duration and end of enlargement and cell wall thickening, in Large and 

Small trees. Horizontal line represents the median and the whiskers standard deviation; 

* P < 0.05. 

 

3.3.3 Tracheids characteristics 

When the tree ring was analyzed as a whole, the total number of tracheids (F = 2.56; 

P = 0.148), their lumen area (F = 2.45; P = 0.151) and cell wall thickness (F = 0.415; P = 0.538) 

did not present significant differences between L- and S-trees (Figure 3.4). However the 

proportion of earlywood (EW)/latewood (LW) revealed significant differences in the two 

diameter classes (F = 5.02; P = 0.036). L-trees presented an average of 17 EW tracheids in 

respect to 12 EW cells in S-trees (F = 1.201; P = 0.305), these tracheids presented a larger 

lumen area and thinner cell wall in L-trees than in S-trees, but the differences were not 

significant (F = 2.49; P = 0.149 and F = 0.10; P = 0.751, respectively). The number of LW 
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tracheids was higher on L-trees (13) than on S-trees (4), however not significant (F = 3.722; 

P = 0.09). Although lumen area was slightly larger and cell wall thinner in L-trees, the 

differences were also not significant (F = 2.49; P = 0.130 and F = 0.24; P = 0.628, respectively).  

3.3.4 Stem radius variations 

In both classes, stem diameter increments showed a clear bimodal pattern, characterized by a 

pronounced increasing period in April, followed by a plateau in late spring and early summer, 

and a second less marked increase in autumn (Figure 3.5-A). The variation pattern showed a 

high synchrony between the two diameter classes. The maximum increment was observed in 

the beginning of April (DOY 100), with L-trees showing an increment of 2.8 x 10-2 mm and S-

trees 2.0 x 10-2 mm. After the maximum, the increment started to decrease, reaching a 

variation close to zero in the period from August to mid-October. In mid-October a second 

increment period was observed in both classes with similar amplitudes (Figure 3.5-B). The total 

cumulative increment observed was higher in L-trees than in S-trees, with 33 x 10-2 and 19 

x 10-2 mm, respectively. 

 

3.4 Discussion 

This study investigated timings of cambial reactivation and xylem differentiation in two 

diameter classes (large and small) from an even-aged maritime pine stand in Portugal. The 

cambium was active from March to July, and quiescent from August to November in both 

diameter classes. The annual periods of cambial activity observed in maritime pine suggested 

that, in the Mediterranean region, trees are under a double stress: low temperatures in the 

winter and high temperatures associated with low water availability in the summer. 

Enlargement started at the same time in both diameter classes, supporting the hypothesis that 

growth onset was not affected by tree size, which indicated that a common factor (e.g. 

temperature and/or photoperiod) was involved in the break of winter dormancy. The 

differences in the timings of xylogenesis between the two groups were observed in the end of 

enlargement and cell wall deposition, with both phases lasting longer in L-trees, confirming our 

third hypothesis. Apart from the different timings, the rate of cell production was also higher 

on L-trees.  
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Figure 3.4 Number of tracheids, their lumen area and cell wall thickness in tree-ring, earlywood 

and latewood, for large and small trees.  

 

3.4.1 Cambial dormancy and activity 

Winter cambial dormancy in trees consists of two phases, the resting and the quiescent phase 

(Riding and Little 1984; Rensing and Samuels 2004). The resting phase corresponds to the 

period when the cambium is unable to produce new cells, even when supplied with auxin and 

under favorable conditions (Little and Bonga 1974). When the cambium regains the ability to 

produce new cells it is said to be quiescent (Little and Bonga 1974). Cambium is reactivated 

and quiescence broken when the environmental conditions are suitable for growth (Larson 

1994). Thus, the cambial resting stage is determined by internal factors and the quiescent 

stage by external factors. The number of cambial cells in S-trees was the same in the start 

(March 2011) and in the end of the study (February 2012), suggesting that in March these 

trees were still in the quiescent stage. However, L-trees presented a higher number of cells in 
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March 2011 than in February 2012, suggesting that quiescence had been broken and that 

cambium was already active in the beginning of March.  

The conversion from quiescent to active state is strongly connected with temperature (Korner 

1998; Rossi et al. 2008; Begum et al. 2010). Rossi et al. (2008) determined that the minimum 

temperature threshold for tree growth in conifers from cold environments was between 4 and 

5 ⁰C. In localized heating experiments, the portion of the cambium heated started to divide 

earlier, demonstrating the importance of temperature in cambial reactivation (Oribe et al. 

2001; Oribe et al. 2003; Gričar et al. 2006; Begum et al. 2007; Begum et al. 2010). In maritime 

pine, xylogenesis started earlier in years with a warmer winter (Chapter IV). 

 

Figure 3.5 Average cumulative and weekly increments in stem diameter measured with band 

dendrometers in large and small trees.  

 

In a literature review on the regulation of cambial activity in trees from temperate and cold 

environments, the resting phase was described to occur between November and December, 

the quiescent phase from January to March and cambial activity from April to October (Begum 
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et al. (2013). The timing of cambial re-activation observed in maritime pine was in agreement 

with this classification, however the minimum number of cambial cells was observed in 

August-November, suggesting that the trees were quiescent during that period. The high 

temperatures registered during summer associated with water stress, can trigger trees to 

enter a quiescent state until the return of favorable environmental conditions (Sarris et al. 

2013; Chapter V). The reduction of the number of cambial cells observed during the summer 

appears to be a defense mechanism from the harsh environmental conditions.  

Summer quiescence was broken after the precipitation events that took place in late October. 

Precipitation re-hydrated the stem and brought the tree to a physiologically active state. The 

cambial activity observed in November indicates that maritime pine can resume growth after a 

period of drought (Vieira et al. 2009; Sarris et al. 2013). An increase in the number of cambial 

cells in October-November has also been observed in another Mediterranean species, 

Juniperus thurifera, however it was followed by the differentiation of new xylem cells 

(Camarero et al. 2010). Previous studies suggest that maritime pine also has the ability to form 

new xylem cells in autumn (Vieira et al. 2009; Campelo et al. 2013), however, the short 

photoperiod observed in November may have prevented it.  The number of cambial cells 

remained constant from December to February, suggesting that the cambium was dormant. 

Further studies are necessary, namely heating experiments, in order to determine if there is 

true winter dormancy or if the cambium remains quiescent until spring. Studies in the cambial 

activity of Mediterranean trees have demonstrated that cambium can maintain activity during 

mild winters (Liphschitz and Levyadun 1986; Cherubini et al. 2003). Whatever the case may be, 

high temperatures and low water availability during summer were the main factors limiting 

cambial activity, and not winter temperatures. 

The annual periods of cambial dormancy and activity in the Mediterranean region appear to be 

different from the ones proposed by Begum et al. (2013) and so should be the limiting 

factor(s). Tree growth in the Mediterranean region appears to be under a double stress: low 

temperatures and short photoperiod during winter and high temperatures, irradiance and low 

water availability in the summer. Although a clear transition between the different xylem 

differentiation phases was observed in 2011, the double stress and the year-to-year climatic 

variability typical of the Mediterranean region represent a new challenge for the general 

definition of cambial activity and dormancy.  
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3.4.2 Cambial activity and wood formation 

Differences in the timings of cambial activity have been observed in trees of different age and 

social status (Rossi et al. 2008; Rathgeber et al. 2011). Cambial activity was reported to start 

earlier on younger (Rossi et al. 2008) and dominant trees (Rathgeber et al. 2011). Although, L-

trees presented more cambial cells in the beginning of March and started to differentiate one 

week earlier than S-trees, this difference was not statistically significant. Contrary to the 

observations by Rathgeber et al. (2011), who found a strong relationship between the onset, 

duration and end of cambial activity and tree size, it was observed that only the duration and 

end of the xylem differentiation phases were related to tree size.  L-trees were larger, taller 

and probably with better access to resources above- and belowground which allowed them to 

produce new xylem cells for a longer period of time. Additionally, L-trees showed higher rates 

of cell production in spring and, therefore, more time was needed to complete xylem 

maturation, leading to a later end of cambial activity (Lupi et al. 2010).  

 From the meteorological records, 2011 was an unusually hot and dry year (Chapter IV, Figure 

4.1). In order to avoid drought-induced hydraulic failure, trees close their stomata (Ripullone et 

al. 2007; McDowell et al. 2008), limiting carbon uptake and eventually growth (Oribe et al. 

2003; Michelot et al. 2012). Probably L-trees were able to prolong xylogenesis due to a deeper 

rooting system or to a higher amount of storage water (Phillips et al. 2003; Martinez-Vilalta et 

al. 2007). Phillips et al. (2003) showed that taller trees used a higher percentage of stored 

water to support daily water transport and that the use of stored water also increased 

photosynthesis on a daily basis. In fact, in maritime pine  the number of cells in the wall 

deposition phase was kept nearly constant during the summer in L-trees, while S-trees showed 

a progressive reduction of the number of cells in that phase along the summer. This indirectly 

reveals that L-trees had more carbon resources. 

Comparing the cellular parameters studied in the 2011 tree-ring (number, lumen area and cell 

wall thickness), between L- and S-trees, the only significant difference was the larger 

proportion of latewood in L-trees. Latewood is formed in response to a decline in water 

availability (Domec and Gartner 2002). Lower water contents decrease cell turgor resulting in 

smaller, denser and mechanically stronger tracheids (Abe et al. 2003; Sperry et al. 2006). 

Latewood may also provide water storage, with earlywood responsible for most of the water 

transport needs of a tree (Domec and Gartner 2002). The wider latewood present in L-trees 

can be explained by the better and prolonged access to water by those trees. A larger 

latewood is thus in agreement with the longer period of growth found in L-trees. 
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3.4.3 Diameter increment variations 

The variation in diameter registered by the band dendrometers showed a clear synchrony 

between both diameter classes, although L-trees presented a higher increment. Diameter 

increment consists of several components, including the daily swelling and shrinking of the 

elastic tissues of the stem (Irvine and Grace 1997; Zweifel et al. 2006). The high synchrony 

observed between both diameter classes reflects the strong component of water in stem 

diameter increment. The onset and maximum stem diameter increments corresponded to the 

start and maximum number of cells observed in the enlargement phase. As observed in 

previous studies, the resolution of band dendrometers is probably not sufficient to record the 

microscopic variations caused by the first increases in cambial cell number (Gruber et al. 2009; 

Chapter II). The plateau and slight increment decrease observed in the summer corresponded 

to the stem de-hydration and contraction, triggered by high temperatures and low soil water 

availability (Zweifel et al. 2001; Chapter V). During the summer, trees are not able to 

completely compensate for the water lost during the day due to transpiration, contracting 

gradually from one cycle to the next (Devine and Harrington 2011; Chapter V). In autumn, 

precipitation triggered a second increment peak of stem diameter, corresponding to the re-

hydration of the stem. Although the second peak also corresponded to the increase in the 

number of cambial cells observed in November, the main responsible for the second peak was 

stem re-hydration. In the end of the study, L-trees presented a bigger increment, which was in 

agreement with the higher number of cells observed in those trees. 

 

3.5 Conclusions 

For the first time, periods of cambial activity and dormancy were defined in trees with the 

same age and different size, growing under Mediterranean climate. Our findings supported the 

hypothesis that the cambial activity of maritime pine is adjusted to cope with the double 

climatic stress typical of the Mediterranean region, with low temperatures and reduced 

photoperiod in winter, and high temperature associated with low water availability in the 

summer. The simultaneous onset of the enlargement phase in both diameter classes indicates 

that the start of xylem differentiation was not mediated by size, leading us to admit that the 

start of cambial activity (or break of winter quiescent) should be triggered by the same factor 

(e.g. photoperiod and/or temperature). However, the longer duration of xylogenesis observed 

in L-trees was probably due to a better access to resources by those trees, allowing higher 

rates of cell production.  
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We propose that, in the Mediterranean region, although the break of winter dormancy is 

triggered by temperature, as in other environments (Temperate and Boreal), summer drought 

is equally limiting. Although significant improvements have been made in defining the annual 

periods of cambial activity and dormancy in the Mediterranean region, further studies are 

necessary in order to better describe the capacity of trees to adjust cambial activity to the 

current environmental conditions, namely, after the summer drought. 
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4.1 Introduction 

Environmental factors affect wood formation at different levels, from a slight variation in 

lumen area to the complete absence of a tree-ring (Fritts 1976). In general, species of high 

latitudes and altitudes are mainly limited by temperature (Rossi et al. 2007), whereas 

temperate species are controlled by a combination of temperature and water availability 

(Carrer and Urbinati 2006). In dryer areas such as the Mediterranean region however, tree 

growth is mainly limited by water availability (Cherubini et al. 2003). Several 

dendrochronological studies carried out in this region have demonstrated the importance of 

water availability, especially during spring, on tree growth. A positive relation between 

earlywood widths and May precipitation was observed in maritime (Pinus pinaster Ait.) and 

Aleppo pines (Pinus halepensis L.), two typical Mediterranean species (de Luis et al. 2009; 

Vieira et al. 2010; Campelo et al. 2013). A broader study by Lebourgeois et al. (2012) 

concluded that spring drought (May-June) was the primary factor limiting conifer growth in the 

Mediterranean, with narrower tree rings being observed in years with a drier spring.  

Although a strong relation between tree-ring width and climate has been established in the 

Mediterranean area, all of the above-mentioned studies were performed retrospectively, using 

correlations between tree-ring width series and monthly climatic variables, without 

considering wood formation at the intra-annual scale. Studies on the wood formation of 

Spanish juniper (Juniperus thurifera L.) and Aleppo pine have described xylem production to 

occur in two different seasonal periods: spring and fall (de Luis et al. 2007; Camarero et al. 

2010). This growth pattern has been described as the bimodal growth pattern and is 

characteristic of water limited environments, such as the Mediterranean, the desert and 

tropical woody species (Liphschitz and Levyadun 1986; Camarero et al. 2010).  Apart from the 

seasonal pattern of xylem growth, Camarero et al. (2010) also observed that onset and 

duration of xylogenesis were mainly determined by temperature. In maritime pine however, it 

was determined that xylogenesis was mainly determined by the rate of cell production, with 

trees with higher cell production presenting a longer growing period (Chapter II).  

Even though there are some studies on the cambial activity of trees from water limited 

environments, the established knowledge is still fragmentary, especially in terms of the 

climatic influence on xylogenesis. A strong relation between temperature and cambial activity 

has been reported for conifers of colds environments, but the effect of water stress on drier 

climates still remains poorly understood. The climate is changing and the frequency of extreme 

warm years in Europe is expected to increase (IPCC 2007). In Eastern Europe, 2010 had an 



Cambial activity and wood formation of maritime pine in the Mediterranean 

48 | Chapter IV 
 

exceptionally warm summer, breaking the 500-year-long seasonal temperature records 

(Barriopedro et al. 2011), but 2011 was even drier. Understanding how cambial activity is 

affected by warm and dry periods is crucial to predict how forest will respond to the predicted 

climatic changes. In order to determine the influence of warm and dry summers on tree 

growth, the cambial phenology of maritime pine was studied in two years with a pronounced 

summer drought: 2010 and 2011. We have tested the hypotheses that 1) growth onset occurs 

earlier in warmer years, and 2) the end of xylogenesis is water dependent, stopping earlier in 

drier years. 

 

4.2 Material and Methods  

4.2.1 Study site and Climatic Data 

The study site is described in detail in section 2.2.1. For the present study, 33 dominant trees 

were selected, 25 for the diameter increment monitoring and 8 for the anatomical study. The 

same trees were monitored in the two study years. The climate is typically Mediterranean with 

a strong oceanic influence. Precipitation occurs mainly in autumn and winter and the summer 

is hot and dry (Figure 4.1). The monthly meteorological data (maximum and minimum 

temperature and total precipitation), was downloaded from the closest grid point to the study 

site in CRU (8.75 E; 40.25 N), for the period 1950-2011.  

The Standardized Precipitation-Evapotranspiration Index (SPEI) was calculated to evaluate the 

joint effect of temperature and precipitation, by calculating the monthly difference between 

precipitation and potential evapotranspiration for the 1950-2011 period (Vicente-Serrano et 

al. 2010). SPEI was calculated using the SPEI package from the R freeware program 

(http://cran.r-project.org). SPEI is a standardized index with an average of zero and a standard 

deviation of one, and it can be compared with other SPEI values over time and space. The 2010 

and 2011 SPEI’s were compared with the SPEI from 1950-2011, by calculating the difference 

between them, in order to identify periods of drought. A period of drought was characterized 

by a negative SPEI value (Vicente-Serrano et al. 2010). 

4.2.2 Xylem formation 

Wood samples were collected weekly from March to December 2010 [Day Of the Year (DOY) 

62-349] and from March 2011 to February 2012 (DOY 62-409), using a Trephor. The samples 

were then processed following the procedure described in section 2.2.2.  



Xylogenesis of Pinus pinaster under a Mediterranean climate 

49 | Chapter IV 

 

 

Figure 4.1 Temperature and precipitation from the nearest grid point (downloaded from CRU). 

(A) Mean monthly temperatures recorded in 2010 and 2011 and mean air temperature of 

historical series recorded from 1950 – 2011. (B) Sum of monthly precipitation recorded in 2010 

(black bars) and 2011 (grey bars) and mean precipitation of historical series recorded from 1950 

– 2011 (grey line). (C) Standardized Precipitation-Evapotranspiration Index [SPEI in 2010 (black 

circles) and 2011 (grey circles)]. The zero represents the index calculated for the long-term 

mean (1950-2011), the negative values are drought periods. 

 

4.2.3 Xylem phenology 

For each tree, the phenology of xylem development in 2010 and 2011 was compared. Two 

phenophases were considered: cell enlargement and cell wall thickening. The beginning of 

each phase was defined as the date when more than 50 % of the observed trees showed at 
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least one cell in that phase. The end of each phase was defined as the date when less than 50 

% of the observed trees presented at most one cell in that phase. The onset and end of 

enlargement and cell wall thickening were then ordered by date and a normal probability plot 

was used to compare the ordered date values with the percentiles of a normal distribution. All 

analyses were performed using SAS 9.2 (SAS Institute Inc., Cary, North Carolina). 

4.2.4 Cell measurements 

When xylem formation was complete in winter 2012, a microcore was collected per tree, 

embedded in paraffin and cut as described in section 2.2.2. The resulting sections were stained 

with 1% aqueous safranin and permanently fixed with Canada balsam (Eukitt) to measure cell 

features using Wincell (Regent Instruments Inc.). A camera fixed on an optical microscope was 

used for image analysis, at 20 × magnification. On each section, three radial paths were 

selected to measure lumen area and cell wall thickness. Tracheids were classified in earlywood 

and latewood following the Mork’s formula described in Denne (1989). The measures were 

averaged by year and the years were compared using a paired t-test.   

4.2.5 Band dendrometers 

To estimate the changes in stem diameter, band dendrometers made of astralon (model D1-L, 

UMS, Munich, Germany) were installed on 25 trees at breast height. This was done in January 

2010 to allow for a period of adjustment before the beginning of the growing season (Linares 

et al. 2010). Before the installation of dendrometers, the bark was carefully removed with a 

chisel to better adjust the band dendrometer to the stem and to reduce non-xylematic sources 

of swelling and shrinking as much as possible (Zweifel et al. 2006). Band dendrometers were 

read weekly to the nearest 0.01 mm. To avoid biases due to the circadian rhythms of water 

storage and depletion, all measurements were done in early morning (Linares et al. 2009).  

 

4.3 Results 

4.3.1 2010 and 2011 climate 

In 2010 and 2011, temperatures were higher than the long-term mean (1950-2011), except in 

January and December, when they were similar (Figure 4.1-A). The average annual 

temperature observed in 2010 and 2011 was 17.1 ⁰C and 17.6 ⁰C, respectively.  The main 

differences between the two years were observed in April, May, July, August and October. 

April, May and October were warmer in 2011 and July and August in 2010.  The long-term 
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annual precipitation for the area was 965 mm. Total annual precipitation registered in 2010 

and 2011 was 1200 and 800 mm, respectively. The higher precipitation recorded in 2010 was 

caused by extra precipitation in January, February, October and December (Figure 4.1-B). The 

precipitation in 2011 was similar to the long-term mean, except for the months of May, June, 

September and December, when it was lower. Both studied years showed periods of drought 

as confirmed by the negative SPEI values (Figure 4.1-C). In 2010 the drought period lasted from 

April to September, with prominent negative values in July and August, whereas in 2011, the 

drought period lasted from March to October. Although the SPEI for July was less negative 

(and even positive in August), spring and early summer were much drier in 2011 than in 2010. 

4.3.2 Xylem phenology 

Cambial phenology showed similar dynamics in 2010 and 2011 (Figure 4.2). In both years the 

cambium was already active on the first sampling date, in March, presenting 7 ± 2 and 9 ± 2 

cells in the cambial zone in 2010 and 2011, respectively. The maximum number of cambial 

cells was observed during May-June in 2010, and March-April in 2011. At the end of summer 

(September) the number of cells in the cambial zone decreased to 5-7 cells in both years. 

Variation in the onset of cell enlargement was higher in 2011, with trees starting enlargement 

between DOY 68 and 117 (Figure 4.3). In 2010, 50 % of the studied trees had begun 

enlargement in DOY 85, whereas in 2011 the same observation was made earlier, in DOY 75. 

Enlargement also ended earlier in 2011, 50% of the trees had completed it in DOY 254 where 

in 2010 that was observed in DOY 288. The duration of enlargement, calculated as the 

difference between the onset and end, was 203 days in 2010, 24 days longer than in 2010. Cell 

wall thickening began earlier in 2011 with half of trees presenting tracheids in the cell wall 

thickening phase in DOY 90, compared with DOY 102 in 2010. The end of this phase was only 

observed in 2011, while in 2010 there were still tracheids in cell wall thickening at the end of 

the sampling season (DOY 345). According to the normal distribution, in 2011 the end of cell 

wall thickening for 50 % of the trees was on DOY 355, which means that, on average, it lasted 

265 days. Regarding cell production, more tracheids were produced in 2010 than in 2011 

(Figure 4.4). In the end of the 2010 there were 40 mature xylem cells and in the end of 2011 

there were 25. Additionally, in 2010 the total number of cells showed a faster growth rate 

(Figure 4.4). 
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Figure 4.2 Number of cells in the cambial zone of Pinus pinaster during 2010 and 2011. Vertical 

bars represent standard deviation.  

 

4.3.3 Xylem characteristics 

The number of earlywood tracheids and their characteristics were similar in both years with no 

significant differences in the studied variables (number of tracheids, t = 0.89, P = 0.42; lumen 

area, t = -0.37, P = 0.72 and cell wall thickness, t = 2.24, P = 0.06) (Figure 4.5). Latewood 

presented a higher number of tracheids in 2010 (t = 3.58, P = 0.01) with a larger lumen area 

(t = 2.41, P = 0.05) but a similar cell wall thickness (t = 0.05, P = 0.96). The number of 

earlywood cells varied between 12 and 14, whereas latewood presented an average of 16 and 

13 cells in 2010 and 2011, respectively. The lumen area was larger in earlywood (1200 – 1250 

µm2) than in latewood (140 – 180 µm2) and the opposite was observed in cell wall thickness 

(3.5 – 4 µm and 7 µm in earlywood and latewood, respectively).  

4.3.4 Stem radius variations 

In both years, stem diameter increments showed a clear bimodal pattern, characterized by a 

pronounced first period of increment in spring, followed by plateau in summer, and a second 

less marked period of increment in autumn (Figure 4.6). Stem diameter increments showed a 

high synchrony in the two years, with the same onset date around DOY 75. The maximum 

increment was reached at the end of April (DOY 112) in 2010 and 10 days earlier in 2011 

(Figure 4.6-B). After the maximum, the increment started to decrease, reaching a variation 

close to zero in August-September (DOY 180 – 250). The second increment peak was observed 

in October-December (DOY 250 – 340), starting earlier in 2010 (DOY 286) than in 2011 (DOY 

306). The total cumulative increment observed in 2010 was higher than in 2011 (Figure 4.6-A).  
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Figure 4.3 Distribution of the onset of cell enlargement (open circle), end of enlargement (open 

triangle), start of cell wall thickening (closed square) and cessation of cell wall thickening 

(closed diamond) for 8 trees of Pinus pinaster in 2010 and 2011 expressed in days of year 

(DOY). 

 

4.4 Discussion 

This study investigated timings and duration of cambium phenology and dynamics of xylem 

growth in maritime pine in two warm and dry years (2010 and 2011). Our findings confirmed 

the double climatic control of xylogenesis in the Mediterranean region: cambial activity started 

earlier in response to a warmer late winter and stopped earlier in the drier year, confirming 

the hypotheses. Although cambial activity started earlier in 2011, it also stopped earlier, 

demonstrating that onset and duration of cambial activity are independent. The drier spring 

and summer triggered an earlier start of latewood formation, resulting in a smaller tree-ring 

and narrower tracheids.  
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Figure 4.4 Variation in the total number of cells (cells in enlargement, wall thickening and 

mature) during 2010 and 2011. The horizontal middle line represents the median. 

 

4.4.1 Cambial onset 

The minimum temperature required for tree growth in species of very cold environments is 

between 0 and 10 ⁰C (Korner 1998; Deslauriers and Morin 2005; Rossi et al. 2008). The range 

of  winter  temperatures  experienced  in  the  study site  was  within  those  threshold  values,  

however, the cambium was dormant. Nevertheless, an earlier onset of cambial activity was 

observed in the warmer year (2011), suggesting that the cambium was responsive to 

temperature. The fact that the cambium was dormant although the temperature was above 

the threshold, suggests that probably, the temperature threshold in the Mediterranean (and 

other warm regions,) is higher than the one established for altitude and Boreal environments. 

Factors other than or in addition to temperature can also trigger the break of winter dormancy 

in trees, such as photoperiod (Nizinski and Saugier 1988; Rossi et al. 2006). In winter, the short 

day length slows down the metabolism in the meristems, triggering the tree to enter a 

dormant state until the return of favorable environmental conditions (Rossi et al. In press). Our 

observations confirmed that although winter temperature was above the described 

temperature threshold, cambial onset was controlled by temperature, occurring earlier in 

warmer years. Several studies have demonstrated that cambial activity is highly responsive to 

temperature, starting earlier in years with higher spring temperature (Begum et al. 2008; 

Deslauriers et al. 2008; Rossi et al. 2008).  
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Figure 4.5 Early- and latewood number of cells, cell area (µm) and cell wall thickness (µm
2
) in 

2010 (black circles) and 2011 (grey circles). Vertical bars represent the standard deviation. 

 

4.4.2 Impact of drought on xylem development 

Although cell differentiation started later, the tree ring formed in 2010 was wider than that of 

2011.  Thus, an earlier onset of cambial activity did not result in a larger tree ring or a longer 

duration of xylogenesis as reported by Lupi et al. (2010) in the boreal forest of Quebec. 

Dendrochronological studies on maritime pine have shown that radial growth is closely related 

to April and May precipitation (Vieira et al. 2009; Campelo et al. 2013). During 2011, April and 

May precipitation were below average, especially in May. In addition to lower spring 

precipitation, temperatures in April and May were 4.4 ⁰C above the long-term mean.  Thus the 

spring period in 2011 was much drier when compared to 2010, as clearly shown by the more 

negative SPEI values. The warmer late winter and drier spring observed in 2011 displaced 

maximum cell production in time, from June to April, demonstrating that wood formation 

adjusts to the prevailing climate conditions. Timings of xylogenesis were triggered by climate, 

with no relation being observed between onset and end of xylogenesis. Water stress is the 

primary factor limiting tree growth in the Mediterranean area, thus an earlier onset of the 

growing season would only trigger a wider ring if no water stress occurred during spring.  

Water stress causes severe limitations to plant growth and metabolism, which translates into 

growth reduction and even tree mortality (Allen et al. 2010; Choat et al. 2012). During periods 

of drought, turgor-driven cell expansion, cell wall synthesis and protein synthesis are 

No. of Cells
E

a
rl

y
w

o
o

d

4

8

12

16

20

24

Lumen area ( m
2

)

1100

1200

1300

1400

1500

Cell wall thickeness ( m)

2

3

4

5

2010 2011

L
a

te
w

o
o

d

4

8

12

16

20

2010 2011

100

150

200

250

300

2010 2011

5

6

7

8

9



Cambial activity and wood formation of maritime pine in the Mediterranean 

56 | Chapter IV 
 

substantially affected (Hsiao et al. 1976; Chaves et al. 2002). Trees respond to water stress by 

adopting one of two behaviors: isohydric or anisohydric (McDowell et al. 2008). Maritime pine 

adopts an isohydric behavior, which means that it will close its stomata in order to avoid 

hydraulic failure (Ripullone et al. 2007). By closing the stomata, carbon uptake and 

photosynthesis are affected, which translates into a decrease of carbohydrate availability, 

generally followed by a growth reduction (Oribe et al. 2003; Michelot et al. 2012) and 

ultimately carbon starvation induced mortality (McDowell 2011; Adams et al. 2013). In an 

experimental study, using an isohydric species (Pinus edulis Engelm.), Adams et al. (2009) 

showed that warmer conditions (≈4 ⁰C) triggered a faster consumption of carbon reserves, 

increasing the risk of mortality due to carbon starvation. The summer of 2010 was 

exceptionally warm in Europe (Barriopedro et al. 2011), while the drought period in 2011 was 

longer. The cumulative effect of two consecutive hot and dry years probably had a negative 

impact on the carbon reserves of maritime pine, which reflected in the narrower tree ring 

formed in 2011. The transition from early- to latewood reflects the availability of water for 

cambial activity (Domec and Gartner 2002). Lower water content decreases cell turgor thus 

affecting cell enlargement resulting in smaller, denser and mechanically stronger tracheids 

(Abe et al. 2003; Sperry et al. 2006). Although there was a higher number of latewood 

tracheids in 2010, latewood formation started earlier in 2011. Besides the differences in the 

number of latewood tracheids, their anatomical characteristics also differed, with the 2011 

tracheids having a smaller lumen area. The formation of tracheids with smaller lumen area and 

thicker cell walls diminishes the hydraulic conductivity but increases the xylem resistance to 

drought-induced cavitation (Hacke and Sperry 2001; Dalla-Salda et al. 2009). Numerous studies 

have linked higher wood density in conifers with drought stress (Domec and Gartner 2002; 

Pittermann et al. 2006). In a water exclusion experiment in the field, Belien et al.  (2012) 

observed that the number of tracheids was unaffected by the treatment, but the lumen area 

of tracheids was reduced in trees subjected to rain exclusion. In the present study, a decrease 

was also observed in the lumen area of latewood tracheids in response to water stress.   

4.4.3 Diameter increment variations 

Our study revealed a close relationship between the rapid increment in stem diameter and the 

beginning of the enlargement phase in both years. However, cambial onset could not be 

accurately determined by dendrometers (Linares et al. 2009; Camarero et al. 2010). The 

resolution of band dendrometers is probably not sufficient to record the microscopic 

variations caused by the first increases in cambial cell number (Gruber et al. 2009). Increment 

in diameter consists of several components including the daily swelling and shrinking of the 
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outermost stem tissues due to water absorption and thermal variations, which makes it 

difficult to isolate the wood formation component (Zweifel et al. 2006). In maritime pine there 

were two maximal increments in both years: one in spring and another in autumn. This 

bimodal pattern of stem radial increment is characteristic of trees growing under a 

Mediterranean climate and follows water availability (Cherubini et al. 2003; Linares et al. 2009; 

Camarero et al. 2010).  

 

Figure 4.6 Cumulative (A) and weekly increments (B) in the stem diameter measured with band 
dendrometers in 2010 (black line) and 2011 (grey line).  

 

In spring, the increase in stem diameter presented a delay between years (earlier in 2011), 

corresponding to the observed differences in the beginning of cell enlargement. The spring 

peak was observed in April, in both years, two months before the summer solstice. Several 

authors have reported maximum growth rates around the summer solstice in conifers of cold 
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environments (Rossi et al. 2006; Gruber et al. 2010). Rossi (2006) hypothesized that the 

maximum growth rates of trees growing at altitude synchronize with maximum day length and 

not temperature to ensure that tracheid differentiation is safely completed before winter. In 

the study area, however, the average winter temperatures were never below the minimum 

temperature range for tree growth, allowing tracheid differentiation to continue all year 

round. Actually, in 2010 cell wall deposition was not complete in mid-December, when the 

sampling ended (Chapter II). De Luis (2007) made similar observations on Aleppo pines 

growing in Spain, suggesting that cell wall deposition is not limited by winter temperatures in 

the Mediterranean region.    

During the summer, when temperatures are higher and there is a decrease in water 

availability, the stem dehydrates and contracts (Zweifel et al. 2001; Chapter V). In the 

Mediterranean climate, rainfall events after the summer can trigger the formation of new cells 

by the cambium and/or the differentiation of immature cells, which can result in the formation 

of intra-annual density fluctuations (Campelo et al. 2007). Although enlargement and 

differentiation of immature cells was observed in the autumn of 2010, probably produced by 

the cambium during early summer (Chapter II), the second increment peak corresponded 

mostly to a rehydration of the stem. The 20 days delay between years in the autumn 

increment period (later in 2011) corresponded to the differences in the precipitation events 

that triggered stem rehydration.  

 

4.5 Conclusion 

Maritime pine was responsive to late-winter conditions, starting cambial activity and xylem 

differentiation earlier in response to warmer temperatures. Although growth differentiation 

started earlier in 2011, it also ended earlier due to drier conditions during spring, thus resulting 

in a narrower tree ring. Our results clearly demonstrated the influence of precipitation on 

xylogenesis, with lower water availability in April and May restricting cell production. In 

addition, a longer drought period had repercussions not only on the number of latewood 

tracheids (fewer) but also on their anatomy, with cells presenting a smaller lumen area. 

Maritime pine xylogenesis is thus under a double climatic control, temperature controls 

growth onset and water availability determines growth cessation. Band dendrometers proved 

to be useful to estimate the onset of the cell enlargement phase. Although a bimodal 

increment pattern was recorded by the dendrometers, the autumnal increment period was 

mostly rehydration of the stem.  
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5.1 Introduction 

The variation in stem size of trees results from an irreversible component due to growth and a 

reversible component due to changes in the water balance of tissues (Irvine and Grace, 1997). 

As a general rule, the stem contracts during the day, due to transpiration and photosynthesis 

and expands during the night and on rainy days when water reserves are gradually 

replenished. Cermak et al. (2007) observed that the internal water storage can provide a 

significant proportion of the total diurnal and even seasonal water used by a plant. The water 

stored in the elastic tissues of the stem buffers the lag between roots and shoot, thus 

preventing embolisms and ensuring optimal transpiration rates (Peramaki et al. 2005).  The 

dynamics of the daily changes in stem size can thus provide valuable information about the 

water status and radial growth of trees (Downes et al. 1999; Zweifel et al. 2000; Deslauriers et 

al. 2003; Deslauriers et al. 2007; Turcotte et al. 2009). In fact, stem radial variation can be de-

trended in order to extract the tree water deficit, (Zweifel et al. 2005; Drew et al. 2011). 

It is well established that timing and magnitude of daily variations in stem size are mainly 

determined by the course of transpiration and soil water content (Kozlowski 1976; Zweifel et 

al. 2006). So, it is expected that these daily cycles are strictly dependent on microclimatic 

conditions and can quickly change according to weather conditions. Dendrometer data 

collected in the Swiss Alps by King et al. (2012) demonstrated that the amplitude and duration 

of the circadian cycles of Norway spruce (Picea abies Karst.) and European larch (Larix decidua 

Mill.) changed during the year. Smaller cycles were observed on rainy days and larger ones 

when the daily mean temperature was between 15 and 20 °C. Duchesne and Houle (2011) 

studied the daily variation in stem radius of balsam fir [Abies balsamea  (L) Mill.] growing in the 

boreal forest of Quebec and observed that stem expansion was higher on rainy days. In the 

Italian Alps, an eight year study on the stem radial variation of timberline conifers found that 

stem increment responded positively to precipitation and negatively to temperature 

(Deslauriers et al. 2007). All the above-mentioned studies were performed in cold 

environments with a short growing season, where water availability is not generally a problem. 

Are the daily and seasonal changes of stem diameter the same in a drought prone 

environment, with a longer growing season, like the Mediterranean climate? If not, how do 

trees respond to water stress?  

Seasonal variations in stem radius have already been studied in the Mediterranean region with 

contradictory findings. Gutierrez et al. (2011) reported that Quercus ilex L. radial increment 

was mainly constrained by temperature, whereas Camarero et al. (2010) observed that in 
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Juniperus thurifera L. and Pinus halepensis (Miller) the climatic response changed during the 

year, with stem radius variations dependent on temperature during growth onset and on 

precipitation during the summer. A different study revealed that Abies pinsapo (Boiss.) wood 

formation was greatly reduced by drought (Linares et al., 2009). Although radial increment has 

already been studied on a seasonal level, the daily variations of stem radius still remain 

undetermined under a Mediterranean climate. In this study the seasonal and daily variations in 

the stem radius of maritime pine (Pinus pinaster Ait.), growing on a drought prone site in 

Portugal are described.  The following hypotheses were tested 1) changes in stem size have a 

seasonal and daily pattern that reflects the availability of water and 2) once the internal water 

storage is depleted the tree enters a quiescent state.   

 

5.2 Methods 

5.2.1. Study site 

The study site is described in section 2.2.1. 

5.2.2. Data collection 

From January to November 2010, automatic band dendrometers (EcoMatik, model DC, 

Munich, Germany) were used to measure stem perimeter variations in four trees with similar 

characteristics in terms of dominance, vigor and tree-ring width (sampled at the same time as 

the trees in Chapter II). The dendrometers were installed on the stem at a height of about 3 m, 

1 month before the start of the growing season, to allow a period of adjustment. Before 

installing the dendrometers, the outermost tissues of the bark were removed to reduce the 

influence of hygroscopic swelling and shrinkage of the bark, and to ensure close contact with 

the xylem. Plastic beads were placed around the dendrometer cable to reduce friction with the 

tree bark. The dendrometer sensors were linear variable differential transducers with an 

accuracy of 7 μm enclosed in an aluminum frame and attached to the tree via a stainless-steel 

cable. Sensors and cables have a thermal expansion coefficient inferior to 0.1 and 1.4 x 10-6 μm 

C-1, respectively. Measurements were collected every 20 min and stored in a datalogger (The 

ulogger 4R, EcoMatik, Munich, Germany). Data were transformed into radial measurements by 

dividing the circumference by 2π, and hourly averages were calculated for the following 

analyses. The final dendrometer series presented missing data due to technical problems that 

occurred during the monitoring period, and outlier values, that were removed.  
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Daily maximum and minimum temperatures and total precipitations were acquired from the 

nearest meteorological station belonging to the Instituto Português de Meteorologia and 

located in Figueira da Foz, at 25 km South from the study site. 

5.2.3. Extraction of stem variation phases 

The time series obtained from each tree were individually processed according to the stem 

cycle approach of Downes et al. (1999), modified by Deslauriers et al. (2003). Cycle extraction 

was performed using a three-step procedure composed of two SAS routines (SAS Institute, 

Inc.) specially developed to analyze hourly automatic dendrometer data (Deslauriers et al., 

2011). The procedure divides the series into three distinct phases: (1) contraction, the period 

between the first maximum radius and the next minimum; (2) recovery, the period from the 

minimum until the position of the previous maximum value or when the stem reverts to a 

contraction phase; and (3) radial increment, which can be positive or negative depending on 

whether or not the previous maximum was achieved (Figure 5.1). A cycle was constituted by a 

contraction, followed by a recovery and a radial increment phase, when present. For each 

cycle, the SAS routines calculated the amount of stem radial variation and its relative duration.  

In order to better describe stem radial variation over the year, the dendrometer series were 

divided into five periods according to the amplitude of the cycles and net radius variation 

(Turcotte et al., 2009): period 1, winter dormancy during which the radius variation was 

around zero [Day Of the Year (DOY) 20-77]; period 2, spring growth, from the start of positive 

radius increment  (when the daily increment was higher than in the previous day), until the 

spring maximum (DOY 78-178); period 3, pre-summer contraction, when the daily increment 

was negative (DOY 179-214); period 4, summer dormancy, when the amplitude of the cycles 

reached minimum values (DOY 215-275); and period 5, autumn re-hydration, during which the 

radial increment increased rapidly in a short period of time (DOY 276-328; Figure 5.2). Stem 

radial variation was also averaged per hour in order to compare its daily amplitude in the five 

periods.   
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Figure 5.1 Cycles of stem radius variation detected by automatic dendrometers in maritime 

pine. The cycles are divided in three phases: 1) recovery, period between the first minimum and 

the previous maximum; 2) contraction, period between the maximum and the next minimum; 

and 3) increment, period when the stem radius exceeds the previous maximum until the 

subsequent maximum. Circles represent hourly data measured in July 2010. 

5.2.4. Tree water deficit 

To distinguish changes in stem radius due to water content variability and growth, a de-

trending approach was used as described in Zweifel et al. (2005). Tree water deficit (∆W) was 

calculated as the difference in stem size under increasingly dry conditions relative to the size of 

the fully-hydrated stem (Figure 5.3). We assumed that at the beginning of the study the stem 

was fully hydrated, thus presenting a zero value of ∆W. Increasingly negative values indicate 

increasing tree water deficit.   

5.2.5. Statistical analyses 

The three phases of stem radial variation were re-scaled at an average of zero (by subtracting 

the mean from each value) and linear regressions were calculated between amplitude and 

duration of each phase. Data of temperature and precipitation were processed following the 

occurrence of each cycle. Maximum and minimum temperatures and total precipitation were 

calculated for each circadian cycle and compared with the corresponding radial variations. 

Pearson correlations were performed separately for the five periods to determine the 

influence of weather on the amount of stem variation and duration of each phase.   

DOY

187 188 189 190 191 192 193 194

S
te

a
m

 r
a

d
iu

s
 v

a
ri

a
ti
o
n

(
m

)

2.6

2.8

3.0

3.2

3.4

3.6

Contraction

Recovery

Increment

Cycle

Duration of
recovery Duration of

contraction

Duration of
increment

R
e
c
o
v
e
ry

N
e
g
a
ti
v
e

in
c
re

m
e
n
t

P
o
s
it
iv

e
in

c
re

m
e
n
t

C
o
n

tr
a

c
ti
o

n



Seasonal and daily changes of stem radial variation of Pinus pinaster in a drough-prone environment 

65 | Chapter V 

 

 

Figure 5.2 Temperature and precipitation (A and B, respectively) in Figueira da Foz (data from 

Instituto Portugues de Meteorologia) and stem radial increment of maritime pine in 2010 (C);  

the vertical lines delimit the 5 periods of increment during that year: Period 1: winter; Period 2: 

spring; Period 3: pre-summer; Period 4: summer; Period 5: autumn.Figure 4. Mean hourly 

variation in stem radius in the five periods of 2010. A) raw data; B) cumulative data. 

 

Missing data and the different lengths of the selected periods could affect the robustness of 

statistical tests. To address this issue, tests were validated using the bootstrap procedure 

(Efron and Tibshirani 1993). Regressions and correlations were repeatedly calculated by 

randomly re-sampling the original data set and estimating the confidence intervals of the 

distribution. Bootstrapping was performed 10,000 times to improve the robustness of the 
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results (e.g. correlation coefficient or regression slope), which were considered significant 

when both confidence intervals were either higher or lower than zero.   

 

5.3 Results 

5.3.1. Temperature and precipitation in 2010 

Mean daily temperature in the winter prior to the growing season ranged between 3 and 

13 °C. The minimum temperature only dropped below 0 °C on three occasions, on January  9th 

and 29th, and February 14th (Figure 5.2-A). In spring and summer, temperatures rose reaching a 

maximum of 39 °C in mid-July. In September, they gradually started to decrease, but mean 

temperatures were still above 15 °C. Temperatures only dropped below 10 °C in mid-

November. Precipitation was more frequent in January-March and October-November (Figure 

5.2-B). In April precipitation started to decrease and very few precipitation events were 

observed from June to September, with a total of 40mm registered during those months. The 

first precipitation in autumn occurred at the beginning of October, with a total of 90 mm in 

one week. 

5.3.2. Stem radial variation and tree water deficit 

Stem radius variation presented a clear seasonal pattern with marked characteristics in each 

period (Figure 5.2-C). Period 1 showed daily cycles of stem radius but no positive increment. 

Continuos positive radial increments were first observed in period 2. Vigorous growth was 

observed during this period, which lasted until the end of June, when a maximum was 

reached. In period 3, stem radius decreased markedly until the beginning of August. In August 

and September (period 4) the stem radial variation was minimal. In October (period 5), stem 

radius increased drastically within 10 days, which coincided with the first significant 

precipitation after the summer drought (Figure 5.2-B). Stem radial variation started to stabilize 

in November.  

The variation observed in the tree water deficit was the opposite of that observed in stem 

radius (Figure5.3). In periods 1 and 2 the trees recovered during the night from the ∆W 

generated during the day (returning to zero). During period 3 there was a general decline of 

∆W with trees not able to recover to a ∆W close to zero on a daily and monthly basis, resulting 

in the shrinkage of the stem. The ∆W remained negative during period 4 (summer). The stem 

only recovered the initial hydration status in period 5.   
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Figure 5.3 De-trending of the stem radial variation of Maritime pine (Pinus pinaster) from 

February to November 2010. A) Stem radius variation (black line) and growth trend line (red 

line); B) Tree water deficit (∆W); the vertical lines delimit the 5 periods of increment during that 

year: Period 1: winter; Period 2: spring; Period 3: pre-summer; Period 4: summer; Period 5: 

autumn. 

Besides the seasonal pattern, stem radius variation changed considerably during a 24-h period 

(Figures 5.1 and 5.4). The average maximum radius was observed between 09:00 and 13:00 

and the minimum between 19:00 and 21:00 (Figure 5.4-A). The largest daily stem radius 

variation was observed in period 3, with variations of up to 0.4 mm. Although there was a 

circadian rhythm of contraction and recovery during period 1, the cycles started and ended at 

the same radial value, suggesting that no increment occurred (Figure 5.4-B). In fact, continuous 

positive radial increments were only observed in period 2 and 5 (Figure 5.4-B). On the 

contrary, in periods 3 and 4, the mean values at the end of the day were lower. The 

percentage of days with positive increment was also different in each period with periods 2, 5 
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and 1 presenting the higher percentage (71, 60 and 52%, respectively) and periods 3 and 4 the 

lowest (33 and 44%, respectively).  

 

Figure 5.4 Mean hourly variation in stem radius in the five periods of 2010. A) Raw and B) 

cumulative stem radial variation (mm). 

 

5.3.3. Seasonal changes in cycle duration and amplitude 

The cycles presented different amplitudes and duration of their phases within every period 

(Figure 5.5). Contraction and recovery phases varied between 0 and 0.6 mm and the increment 

ranged between -0.13 and 0.1 mm. Period 3 showed the highest amplitude of contraction and 

recovery whereas the opposite was observed in period 5. Except for periods 1 and 5, recovery 

lasted longer than contraction. Increment was generally positive in periods 2 and 5, negative in 

period 3, while varying around zero in the remaining periods. The duration of increment 

decreased from period 1 and reached a minimum in period 3, increasing again in periods 4 and 

5.  

Regression analyses revealed some significant linear relationships between amplitude and 

duration of the phases (Figure 5.6). In period 3, the amplitude of recovery and increment was 

highly dependent on duration, and the same was observed in periods 4 and 5 for contraction. 

The distribution of the duration of phases was similar in periods 1 and 5 (Figure 5.6, pie 

charts). In periods 2 and 3, contraction had a longer duration than recovery and increment 

represented only 26% and 12% of the cycle, respectively. In period 4 the recovery lasted longer 

than the contraction phase.  
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5.3.4. Responses to weather 

The amplitude and duration of stem radial variation presented different responses to 

temperature and precipitation throughout the year (Figure 5.7). During period 1 (winter 

dormancy), a positive correlation was observed between maximum temperature and the 

amplitude of contraction and amplitude and duration of recovery. Period 2 (spring growth) 

showed similar results although a negative correlation with precipitation was also observed.  

Period 3 (pre-summer contraction) exhibited a positive response of amplitude of contraction 

and recovery to minimum temperature and a negative response of amplitude of contraction to 

maximum temperature. A negative response to minimum temperature was also observed in 

the duration of contraction. During the pre-summer contraction duration of increment also 

responded negatively to precipitation. In period 4 (summer) amplitude of contraction and 

recovery was positively correlated with minimum and maximum temperatures, respectively. A 

positive response was also observed between duration of contraction and recovery and 

maximum temperature. In period 5 (autumn), increment showed a positive correlation with 

minimum temperature.  

 

5.4. Discussion  

5.4.1. Seasonal variation of stem radius and tree water deficit over the year  

The study investigated stem radius variations of maritime pine growing under a Mediterranean 

climate by identifying five periods of distinct physiological activity: winter dormancy, spring 

growth, pre-summer contraction, summer quiescence and autumn re-hydration. Radial 

increment started in spring and reached its maximum in June. A marked contraction was 

observed in summer, followed by a period of stable fluctuations. In autumn, after the first 

rains, the stem re-hydrated rapidly. At daily resolution, the cycles of radial variation changed in 

amplitude and duration during the year, with the largest variations exhibited in summer, when 

the amplitudes were 10 times higher than those observed in the other periods. 

In trees of cold environments, stems show a marked re-hydration before the beginning of 

growth (Tardif et al. 2001; Deslauriers et al. 2003; Turcotte et al. 2009), but this was not 

observed in maritime pine at the study site. Re-hydration is a direct consequence of the 

freezing temperatures: at high altitudes and latitudes, stem size closely follows the daily 

changes in winter temperature rather than the tree evapotranspiration, with shrinking and 
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swelling occurring during the night and day, respectively, producing what is called an inverted 

cycle (Zweifel and Hasler 2000). Ultimately, water is withdrawn from the living cells to avoid 

freeze-induced cavitation and, consequently, the stem diameter reduces (Zweifel and Hasler 

2000). Prior to spring growth, when temperatures rise above freezing point, the ice melts and 

water can replenish the living tissues (Turcotte et al. 2009). This swelling of the tissues restores 

the tree to a physiologically active state. In our study site however, there were no inverted 

cycles in winter indicating that the sap did not reach freezing point. In fact, temperatures only 

dropped below 0 °C occasionally and for short periods.  

 

Figure 5.5 Amplitude and duration of the three phases of stem radius variation. 
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Marked stem contractions and re-hydrations were observed in summer and autumn, 

respectively. In July, when the highest temperatures and day length were registered in the site, 

the circadian cycles of stem contraction and recovery showed amplitudes 10 times higher than 

in the rest of the year. A similar finding was made by King et al. (2012) in the Swiss Alps. They 

observed that a rise of 10 ⁰C in temperature increased the stem cycle amplitude of spruce and 

larch in 40%. Increased temperatures and day length combined, reduced the duration of the 

recovery phase (as seen in Figure 5.6) and increased the water lost by transpiration (Cermak et 

al. 2007). During the summer, the recovery phase was not sufficient to replenish the stem 

from the water lost during the day and trees had to resort to the internal water storage to 

keep up the transpiration demands (Zweifel et al. 2001; Sevanto et al. 2002; De Schepper and 

Steppe 2010).  

The stem shrinkage observed during July (period 3) corresponded to the period when the ∆W 

presented a clear decreasing trend which can be associated with the exhaustion of the internal 

water storage. In the summer, soil water content diminishes and day length increases which 

decreases recovery. Ultimately the transpiration demands are not meet and the stem 

gradually contracts from one cycle to the next (Devine and Harrington 2011). Transpiration is 

controlled by stomatal responses to water availability (Jarvis and McNaughton 1986; Zweifel et 

al. 2006). To avoid drought-induced hydraulic failure, stomata closes during midday to 

maintain the water potential above the threshold of xylem cavitation (Loustau et al. 1996). The 

physiological consequences of stomata closure are carbon starvation and secondary growth 

decline, due to the allocation of carbon to higher ranking physiological processes such as root 

growth (Chaves et al. 2002; Oribe et al. 2003; Zweifel et al. 2006). As a result, trees reduce 

their metabolism and enter in quiescence (Cherubini et al. 2003; Makinën et al. 2008). In 

autumn, a period of re-hydration was observed in response to precipitation events. During the 

first 10 days of period 5, a series of cycles lasting more than 24 hours (long cycles) were 

observed, corresponding to a vigorous re-hydration.   

The relationship between duration and amplitude of the stem radial variation phases changed 

during the year and reflected the prevailing climatic factors in each period. During period 3 the 

amplitude of recovery and increment was highly dependent on its duration. The recovery 

phase takes place mostly during the night. In the summer the days are longer which restricts 

the duration of recovery. If the duration of recovery is not sufficient to replenish the stem, 

then recovery will be limited and positive increments would not occur at all. As a consequence, 

the stem would progressively contract, which explains the negative increments observed 

during this period. 
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Figure 5.7 Bootstrapped correlations between amplitude and duration of each phase 

of stem radial variation and temperature and precipitation. The correlations are 

significant (p<0.05) when the confidence interval (twice the standard deviation, 

drawn as vertical error bar) is either higher or lower than zero.  

 

During period 4 (summer), when tree water deficit was higher, a positive correlation was 

observed between the duration and amplitude of contraction. This relation is directly 

connected to the overall tree water status. During the summer the tree could not compensate 

for the water daily losses, presenting the most negative ∆W values. If the tree can no longer 
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replenish the water lost by transpiration, then contraction would have to be restrained, which 

would result in a higher dependence between duration and amplitude. The opposite 

relationship was observed in periods 1 and 2, when the recovery phase was not limited, and 

the same amplitudes of contraction and recovery were achieved independently of duration. In 

autumn, the soil was replenished with water, thus amplitude and duration of recovery and 

increment were no longer dependent. However, due to the short duration of contraction 

during this period, a consequence of the long cycles, contraction amplitude was dependent on 

its duration.   

5.4.2. Climatic response  

The climatic response of duration was less clear than that of amplitude. During the first period, 

maximum temperature presented a positive correlation with recovery and contraction 

amplitudes and recovery duration, but no significant correlation with minimum temperature 

was observed. It is a well-documented fact that temperature can limit growth onset (Rossi et 

al. 2007; Deslauriers et al. 2008; Rossi et al. 2008). Rossi et al. (2008) determined that the 

average minimum temperature for xylogenesis was 4 – 5 °C. In the study site, the average 

minimum temperature in winter was 6 °C, which suggests that in the Mediterranean region, 

the minimum temperatures limiting cambial onset are higher. Several studies in the 

Mediterranean region have documented an earlier onset of cambial activity in response to 

higher winter temperatures (de Luis et al. 2007; Linares et al. 2009; Camarero et al. 2010). 

However, no threshold temperature has yet been determined for this area. The positive 

correlations observed in period 1 are indicative that trees were physiologically active during 

the winter. Corcuera et al. (2011) observed that, as in other Mediterranean evergreen conifers, 

maritime pine can maintain physiological activity all year round. It has also been demonstrated 

that cambial activity can be maintained during mild winters (Liphschitz and Levyadun 1986; 

Cherubini et al. 2003). In fact, maritime pine in the study area presented a long-lasting xylem 

differentiation persisting until December (Chapter II). 

In period 2 the climatic conditions were optimal for tree growth with most of the increment 

being observed during this period. Previous dendrochronological studies on maritime pine 

showed that the climatic conditions observed in spring were the most determinant for tree-

ring width (Vieira et al. 2009; Campelo et al. 2013). The climatic response of contraction and 

recovery was similar in this period, which, once again, demonstrates the interdependency of 

the two phases. The positive correlation found between contraction and maximum 

temperature suggests that transpiration rates were elevated. As temperatures rise, 
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transpiration rates increase, promoting water loss and contraction (Zweifel et al. 2001; Cermak 

et al. 2007). Contraction and recovery also showed a negative correlation with precipitation in 

period 2. Studies on the diurnal course of transpiration showed that even irrigated trees 

experience stomatal closure if root water uptake is not sufficient to keep up with transpiration 

(White et al. 1996). The negative response of contraction to precipitation can be due to the 

indirect effect of clouds.  Clouds would decrease direct solar radiance, thus decreasing leaf 

temperature, transpiration and ultimately contraction (King et al. 2012).  

 In July (period 3), the amplitude of contraction showed a negative correlation with maximum 

temperature. During this period, temperatures are high and soil water content is low, thus 

stomatal control on transpiration rates is stronger (Jarvis and McNaughton 1986; Zweifel et al. 

2006). The stronger control of transpiration has a negative effect on contraction, reducing it. A 

positive correlation between amplitude of recovery and contraction and minimum 

temperature was also observed during this period. Lower temperatures benefit recovery, 

which translates in a better overnight hydration allowing a bigger contraction the following 

day. 

In autumn (period 5), a positive correlation was observed between increment and minimum 

temperature. During this period there is a general decrease of temperature and photoperiod, 

which will induce a decrease in physiological activity, with the minimum temperature 

establishing the threshold for stem radius variation. Contraction did not show any correlation 

with the climatic parameters, revealing that expansion is a far more prominent phase during 

this period, as a consequence of the long cycles. Although stem re-hydration was observed 

during this period, no positive correlations with precipitation were registered. The re-

hydration period, which corresponded to the long cycles, only lasted for 10 days whereas the 

rest of period 5 corresponded to the stabilization of stem size variation, and this may be the 

reason why the correlations were not significant.  

 

5.5 Conclusions 

The investigation confirmed the hypothesis that maritime pine stem radius variation has a 

daily and seasonal pattern that reflects the availability of water. Daily variations in stem radius 

were mainly determined by the course of transpiration and thus dependent on temperature 

and tree water status. The balance between water loss via transpiration and water uptake by 

the roots demonstrated a strong dependence between contraction and recovery phases. 
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Ultimately the rate of root water uptake and soil water content limited stem radius variation 

and the trees entered in a quiescent state, confirming the second hypothesis.  

Temperature played an important role in stem size variation during the year, both directly by 

increased transpiration, and indirectly by decreasing soil water content via evapotranspiration. 

The increment onset of maritime pine was dependent on maximum temperature rather than 

minimum temperature, as observed on trees in cold environments. Nonetheless, water 

availability played the major role in stem radial variations. The severe water stress observed in 

summer caused the stem to contract and the tree to enter in a quiescent state, confirming the 

importance of water regulation in the survival of trees in a drought prone environment, such 

as the Mediterranean.   
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6.1 General conclusions 

Wood formation studies have received a great interest in the last years, with major findings 

regarding the physiology and climatic control of cambial activity (Deslauriers and Morin 2005; 

Gričar et al. 2005; Rossi et al. 2008; Seo et al. 2008; Rathgeber et al. 2011; Begum et al. 2013). 

However, most of these studies were held in temperate, boreal or altitude environments 

where temperature is the main factor limiting tree growth. It is thus important to expand 

these studies to other environments, namely drier ones, such as the Mediterranean. Cambial 

activity and wood formation have been occasionally studied in the Mediterranean region 

however this subject still remains poorly understood (de Luis et al. 2007; Linares et al. 2009; 

Camarero et al. 2010). The interaction and interchanging between external (e.g. temperature, 

water availability, and photoperiod) and internal factors (age, size and competition) controlling 

tree growth in the Mediterranean region make wood formation a very complex subject. In this 

dissertation the cambial activity and wood formation of maritime pine under Mediterranean 

climate were monitored in two years, 2010 and 2011, via anatomical observations and radial 

increment variation measurements, in order to meet the following objectives: 

1. Determine the influence of timings and rates of cell production on xylogenesis; 

2. Establish what causes the differences in diameter of trees with the same age; 

3. Ascertain the influence of climate on cambial activity and xylem differentiation;  

4. Define the daily and seasonal dynamics of stem radial variation and its relation to 

water availability; 

5. And determine whether the bimodal pattern of growth, typical of the Mediterranean 

region, originates from a double reactivation of the cambium.  

In Chapter II, trees of the same age, height, diameter at breast height and social status, but 

different tree-ring width in the past 15 years (1994-2009), were studied in order to determine 

what caused the differences in tree-ring width. It was observed that trees with larger tree-ring 

widths (fast growing trees), presented an earlier onset of cell enlargement and a faster growth 

rate in spring. However, the earlier start of cambial activity observed in the fast growing tress 

was not the responsible for the longer duration of xylogenesis but the higher rate of cell 

division, as described by Lupi et al. (2010) and Rossi et al. (2012). The higher rate of cell 

division lead to a larger accumulation of cells in the developing xylem and prolonged the 

differentiation phase, which delayed the end of wood formation. Thus, the differences if tree-

ring width were due to rate, not timing of cell production (Objective 1). 
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In Chapter III, cambial activity and wood formation of trees with the same age but different 

diameters were compared. The onset of cambial activity was independent of tree size, 

supporting the previous findings that a common factor (e.g. temperature and/or photoperiod) 

was involved in the break of winter dormancy (Chapters II). This was contrary to the findings of 

Rathgeber et al. (2011), who found a strong relationship between the onset, end and duration 

of cambial activity and tree size. Although there were no differences in the timings of cambial 

onset between the diameter classes, enlargement and cell wall deposition lasted longer and 

presented a higher rate of cell production in large trees. The longer duration of xylogenesis 

observed in the large trees was probably due to a better access to resources, allowing higher 

rates of cell production (Objective 2).  

Cambium was active from March to July, and quiescent from August to November, in both 

diameter classes. The minimum number of cambial cells was observed during the summer, 

suggesting a protection mechanism from hydraulic failure. A similar mechanism had been 

described in cold environments regarding freeze-induced cavitation (Zweifel and Hasler 2000; 

Turcotte et al. 2009). In November an increase in the number of cambial cells was observed, 

which was indicative of the break of summer quiescence. Fall precipitation re-hydrated the 

stem and brought the tree to a physiologically active state. Although cambial activity was 

observed in November, it was not followed by the differentiation of tracheids, demonstrating 

that maritime pine has the potential to form new xylem cells in autumn if the right climatic 

conditions are present. The annual periods of cambial dormancy and activity in the 

Mediterranean region are thus different from those proposed for temperate climates (Begum 

et al. 2013), and so should be the limiting factors.  

In Chapter IV, the influence of climate on maritime pine cambial activity and xylem 

differentiation was monitored in two years (2010 and 2011). It was determined that the start 

of cambial activity was dependent on temperature, starting earlier in warmer years, which was 

in agreement with Deslauriers and Morin (2005) and (Rossi et al. 2008). However, the 

temperature threshold for cambial activity in the Mediterranean region was higher than the 

one reported for Boreal or altitude environments. The end of xylogenesis was associated to 

water stress, with an earlier stop observed in the drier year. It was also observed that a 

prolonged drought period had repercussions on the number and lumen area of latewood 

tracheids, with fewer cells with a smaller lumen area. Xylogenesis in the Mediterranean region 

appears to be under a double climatic control: temperature controls growth onset and water 

availability growth cessation (Objective 3).  
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In Chapter V, the daily cycles of stem radial variation in maritime pine were monitored during 

one growing season (2010), completing. The daily cycles of stem radial variation were studied 

in five periods of distinct physiological activity: winter dormancy, spring growth, pre-summer 

contraction, summer quiescence and autumn re-hydration. The amplitude and duration of the 

daily cycles changed during the year, in response to the climatic conditions (Objective 4). Daily 

variations in stem radius were mainly determined by the course of transpiration and thus 

dependent on temperature and tree water status. The severe water stress observed in 

summer caused the stem to contract and the tree to enter in a quiescent period. In autumn, 

after the first rains, the stem re-hydrated rapidly restoring the tree to a physiologically active 

state.  

The radial increment variation registered by band dendrometers proved to be useful to 

describe the seasonality of wood formation (Chapters II, III and IV). There was a delay 

between the onset of cambial activity observed in the anatomical study and the one recorded 

by the band dendrometers. This delay was due to the insufficient resolution of the band 

dendrometers to record the microscopic variations caused by the first increases in cambial cell 

number (Gruber et al. 2009). In both study years, the onset of radial increment corresponded 

to the start of the enlargement phase. Radial increment showed a clear bimodal pattern, with 

two periods of positive increment, in spring and autumn. However, although maritime pine has 

the ability to resume cambial activity after the summer drought (Vieira et al. 2009; Campelo et 

al. 2013), the second period of increment was mostly due to the re-hydration of the stem and 

to the differentiation of cambial derivatives, more likely produced by cambium during early 

summer (Objective 5). 

Classical dendrochronological studies of maritime pine already provided indirect data on how 

tree-rings respond to climate (Vieira et al. 2009; Campelo et al. 2013). Monitoring wood 

formation throughout the growing season offered a method of direct observation on the 

climate-growth interaction, at a much more detailed time-resolution. It was determined that 

tree growth in the Mediterranean region was under a double climatic control, with growth 

onset in spring being limited by temperature, and the combined effect of high temperatures 

and low precipitation limiting tree growth in late spring/early summer. The relationship 

between climate and tree growth in the Mediterranean region is a complex one. Though the 

effect of a pronounced drought on maritime pine wood formation was successfully described, 

the response of cambium to other climatic scenarios needs further research.   
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 6.2 Future perspectives 

The results of the present thesis generated important information on the wood formation 

process of maritime pine growing in a drought-prone environment. However, further studies 

are necessary to improve the knowledge on the dynamics of cambial activity in the 

Mediterranean region. In order to fully understand the complex climate-growth relation, a 

long-term research would be necessary to include more years with different climatic 

characteristics.  

To further understand wood growth dynamics under Mediterranean climate, aspects on water 

and carbon economy of trees should also be taken into account. Measurements of sap-flow 

would give important insights on the water economy of plants and measurements of 

photosynthesis and non-structural carbohydrates a perspective on carbon economy.  

Another interesting direction would be to perform wood formation and physiological studies in 

trees of different provenances, in order to identify the populations that better adapt to 

drought conditions. The climate is changing, and it is predicted that the frequency and 

intensity of summer drought in the Mediterranean region will increase. Thus, the selection of 

drought resistance populations should be a top priority in future reforestations.  
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"Há um tempo em que é preciso abandonar as roupas usadas, que já tem a forma do nosso 

corpo, e esquecer os nossos caminhos, que nos levam sempre aos mesmos lugares. É o tempo 

da travessia: e, se não ousarmos fazê-la, teremos ficado, para sempre, à margem de nós 

mesmos." 

Fernando Pessoa 
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