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Abstract 

There is a wide interest to the use of porphyrin related dyes in medical applications. Their 

photophysical and photochemical properties, and high quantum yield of generation of reactive 

oxygen species and absorption in the red part of the spectrum where tissues are most transparent, has 

made this group of molecules a target of interest to use as sensitizers in photodynamic therapy 

(PDT).  

We had available a family of halogenated tetraphenyl macrocycles that were designed to achieve 

properties of an ideal PDT photosensitizer. It was our interest to explore the photochemical and 

photophysical properties of these dyes in order to establish correlations that provide a greater 

understanding of the oxygen photosensitization mechanism for porphyrins, chlorins and 

bacteriochlorins in solution and in cells.   

The deactivation of the triplet excited states of these photosensitizers by interaction with oxygen was 

found to follow distinct pathways. The progressive macrocycle reduction introduces an increase in 

the quenching rate constant and a decrease of oxidation potential. Porphyrins and chlorins generate 

mostly singlet oxygen through a mechanism of energy transfer to molecular oxygen. 

Bacteriochlorins on the other hand show evidence for charge transfer, with generation of superoxide 

ion and consecutively hydroxyl radical.  

A direct consequence of having a system where light and oxygen are combined with a sensitizer is 

the irreversible photodamage of the sensitizer leading to its photodegradation.  The photobleaching 

kinetics was evaluated in solution. Bacteriochlorins photodegradation kinetics changes according to 

their peripheral substituents reaching levels of stability comparable to porphyrins.  

Subcellular localization and light induced-changes on the intracellular fluorescence of the 

photosensitizers were followed by microscopy in mammalian in cells and the primary sites of PDT 

action were identified. 

Intracellular detection of singlet oxygen at 1275 nm was observed upon irradiation of a 

photosensitizer in time-resolved experiments in single cells and in cell suspensions. Single cell 

results are consistent with a model in which long lived singlet oxygen can readily cross barriers 

between phase-separated domains.  

In light of bleaching-dependent problems and with the desire to achieve spatial and temporal control 

in detecting singlet oxygen at the single cell level, we set out to identify sensitizers which show 

photostability properties that enable the collection of meaningful data.  
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Resumo 

Há um vasto interesse no uso de compostos porfírinicos para aplicações médicas. As suas 

propriedades fotofísicas e fotoquímicas, como elevado rendimento quântico de formação de espécies 

reactivas de oxigénio e absorção no infravermelho onde os tecidos são mais transparentes, fez com 

que este grupo de moléculas fosse alvo de interesse para serem usadas como sensibilizadores em 

terapia fotodinâmica.  

Tinhamos à nossa disposição uma familia de macrociclos tetrapirrólicos halogenados que foram 

desenhados para alcançar as propriedades de um fotossensibilizador ideal. Era do nosso intereste 

explorar as propriedades fotoquímicas e fotofísicas deste grupo de compostos de forma a estabelecer 

correlações que possam fornecer um melhor entendimento do mecanismo de fotosensibilização do 

oxigénio em porfirinas, clorinas e bacterioclorinas em sistemas em solução e em células.  

Verificamos que a desactivação dos estados excitado tripleto destes fotossensibilizadores por 

interação com o oxigénio segue por diferentes caminhos. A redução progressiva do macrociclo 

introduz um aumento na constante de velocidade de supressão e uma dimunição no potencial de 

oxidação. Porfirinas e clorinas geram predominantemente oxigénio singuleto através de um 

mecanismo de transferência de energia para o oxigénio molecular. Por ouro lado, as bacterioclorinas 

mostram evidencias de um processo de transferências de carga para gerar ião superóxido e radical 

hidroxilo. 

Uma consequência directa da combinação de luz, oxygénio e fotossensibilizador  num sistema, é a 

degradação irreversível do sensibilizador. A cinética de fotodegradação foi avaliada em solução e 

para as bacterioclorinas varia de acordo com os substituintes periféricos atingindo níveis de 

estabilidade comparáveis aos das porfirinas.  

A localização subcellular e a variação na fluorescência induzidas por irradiação dos 

fotossensibilizadores foi seguida por microscopia em células. Os locais iniciais de acção da PDT 

foram identificados. 

A detecção intracelular de oxigénio singuleto resolvida no tempo foi observada a 1275 nm após a 

irradiação de um fotossensibilizador ao nível unicelular e em suspensão de células. Os resultados 

para experiências a nivel unicelular são consistentes com um modelo onde o oxigénio singuleto 

gerado rapidamente atravessa as barreiras entre separação de fases. 

Tendo em conta os problemas de fotodegradação associados à perda de controlo espacial e temporal 

em experiências a nível unicelular na detecção do oxigénio singuleto, procuramos identifiar de um 

grupo de sensitibilizadores aqueles que reunem condições de estabilidade essenciais para a obtenção 

de resultados com significado.  
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Structures 

The following structures correspond to the photosensitizers studied or referred in this 

dissertation. Respective scientific names are presented at the bottom of the table. 
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F2P   5,10,15,20-Tetrakis(2,6-difluorophenyl)porphyrin   

Cl2P   5,10,15,20-Tetrakis(2,6-dichlorophenyl)porphyrin 

FPMet   5,10,15,20-Tetrakis(2-fluoro-5-N-methylsulfamoylphenyl)porphyrin 

F2POH   5,10,15,20-Tetrakis(2,6-difluoro-3-sulfophenyl)porphyrin 

F2PMet   5,10,15,20-Tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl)porphyrin 

Cl2POH   5,10,15,20-Tetrakis(2,6-dichloro-3-sulfophenyl)porphyrin 

Cl2PMet  5,10,15,20-Tetrakis(2,6-dichloro-3-N-methylsulfamoylphenyl)porphyrin 

Cl2PEt   5,10,15,20-Tetrakis(2,6-dichloro-3-N-ethylsulfamoylphenyl)porphyrin 

Cl2PHep  5,10,15,20-Tetrakis(2,6-dichloro-3-N-heptylsulfamoylphenyl)porphyrin 

F2C   5,10,15,20-Tetrakis(2,6-difluorophenyl)chlorin 

Cl2C   5,10,15,20-Tetrakis(2,6-dichlorophenyl)chlorin 

FCMet   5,10,15,20-Tetrakis(2-fluoro-5-N-methylsulfamoylphenyl)chlorin 

F2Cmet   5,10,15,20-Tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl)chlorin 

ClCEt   5,10,15,20-Tetrakis(2-chloro-5-N-ethylsulfamoylphenyl)chlorin 

F2B   5,10,15,20-Tetrakis(2,6-difluorophenyl)bacteriochlorin 

Cl2B   5,10,15,20-Tetrakis(2,6-dichlorophenyl)bacteriochlorin 

F2BOH   5,10,15,20-Tetrakis(2,6-difluoro-3-sulfophenyl)bacteriochlorin  

FBMet   5,10,15,20-Tetrakis(2-fluoro-5-N-methylsulfamoylphenyl)bacteriochlorin 

FBMet2   5,10,15,20-Tetrakis(2-fluoro-5-N-dimethylsulfamoylphenyl)bacteriochlorin 

F2BMet   5,10,15,20-Tetrakis(2,6-difluoro-3-N-methylsulfamoylphenyl)bacteriochlorin 

ClBOH   5,10,15,20-Tetrakis(2-chloro-5-sulfophenyl)bacteriochlorin 

ClBEt   5,10,15,20-Tetrakis(2-chloro-5-N-ethylsulfamoylphenyl)bacteriochlorin 

Cl2BOH  5,10,15,20-Tetrakis(2,6-dichloro-3-sulfophenyl)bacteriochlorin 

Cl2BEt  5,10,15,20-Tetrakis(2,6-dichloro-3-N-ethylsulfamoylphenyl)bacteriochlorin 

Cl2Bhep  5,10,15,20-Tetrakis(2,6-dichloro-3-N-heptylsulfamoylphenyl)bacteriochlorin 

TPP   5,10,15,20-Tetrakisphenylporphyrin 

m-THPP  5,10,15,20-Tetrakis(m-hydroxyphenyl)porphyrin 

TPC   5,10,15,20-Tetrakisphenylchlorin 

m-THPC  5,10,15,20-Tetrakis(m-hydroxyphenyl)chlorin 

TPB   5,10,15,20-Tetrakisphenylbacteriochlorin 

m-THPB  5,10,15,20-Tetrakis(m-hydroxyphenyl)bacteriochlorin 

TMPyP   5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine 

PPa   Pyropheophorbide-a 

BP   benzo[cd]pyrene-5-one 

DMP-60  N,N-dimethylfulleropyrrolidiniuim iodide 

BBB   1,4-Bis[4-(N,N-diphenylamino)phenylethynyl]-2,5-dibromobenzene 
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1.1 Tetrapyrrolic photosensitizers: porphyrins, chlorins and 

bacteriochlorins 

Porphyrins, whose name comes from the Greek word porphura (purple),
1
 embrace an important 

class of intensely colored molecules that serve nature in a variety of ways.
2
 The different forms 

of porphyrins are involved in a number of biologically important roles, from oxygen transport 

and storage (hemoglobin and myoglobin) to electron transfer (cytochrome c, cytochrome 

oxidase) and energy conversion (photosynthesis). Their extremely versatile synthesis provides 

applications also for a variety of materials particularly in optoelectronics.
3 

 

 

 

 

 

                        I 

 

                       II 

 

                       III 

 

Figure 1.1 Comparative structures of porphyrin (I), chlorin (II) and bacteriochlorin (III). Numbering of 

porphyrin is shown, with beta (β) positions at bold and meso-positions underlined. 

 

Porphyrins are tetrapyrrolic molecules that possess in the heart of its skeleton a heterocyclic 

macrocycle, known as porphine (Figure 1.1). The fundamental porphine framework consists of 

four pyrrolic sub-units on opposing sides (α-positions, numbered 1, 4, 6, 9, 11, 14, 16, and 19) 

through four methine (CH) bridges (5, 10, 15 and 20) known as the meso- carbon 

atoms/positions, as shown in Figure 1.1. The resulting conjugated planar macrocycle can be 

turned into a porphyrin macrocycle when substituted at the meso - and/or β - positions by non-

hydrogen atoms or groups.  The insertion of four phenolic groups in the macrocycle skeleton to 

tetraphenylporphyrins, causes amphiphilic modification and gave rise to a series of potent tumor 

photosensitizers.
4
 

By progressive reducing the porphyrinic macrocycle leading to chlorins and bacteriochlorins, 

profound changes in chemical and physical properties are found. The reduction alters the 

symmetry of the molecule, though each macrocycle still maintains an 18 π-electron conjugated 

system as required for aromaticity. A notable change upon reduction is the striking increase in 

absorption in the red or near-IR region of the spectrum.  



 

 

4 

 

In chlorins the loss of one double bond destabilizes the π system, the highest occupied 

molecular orbital (HOMO) rises in energy, and the molecule becomes easier to oxidize. Only a 

small effect is observed on the lowest unoccupied molecular orbital (LUMO), and a reduction 

on the energy gap HOMO-LUMO is observed, and consequently, a red shift is occurs to the 

lowest energy absorption band. The energy gap between HOMO and LUMO is reduced in the 

order: porphyrin>chlorin>bacteriochlorin. While the energy required for oxidation follows the 

opposite order.  

Their different physical properties are exploited in biological systems where the chlorin 

macrocycle provides the basis for chlorophyll a and b in plant photosynthesis while the 

bacteriochlorins are present as a photosynthetic pigment (bacteriochlorophyll a) in bacteria.
5
 

The strong near-infrared (NIR) absorption, resultant from the macrocycle reduction, of chlorins 

and mainly bacteriochlorins, makes them well suited for a wide variety of applications in 

medicine and materials chemistry.
6-8

 However, the pronounced tendency of bacteriochlorins to 

undergo oxidation and generate photoproducts as the corresponding chlorin has been the main 

handling obstacle to their use with implications to the shelf-life.
9
 Surprisingly, until recently 

only a few methods described the preparation of bacteriochlorins despite the importance of this 

class of compounds. Researchers have now become actively involved in developing new 

synthetic routes to yield more stable and more efficient photosensitizers.
10-16

 

 

1.2 Photodynamic therapy 

Light has been employed in the treatment of disease since the antiquity. The first uses of 

photomedicine date back thousand years ago in ancient Egypt, India and China, for the 

treatment of skin diseases, although it was only until relatively recently that it has been used to 

any significant degree in medicine and surgery.
17,18

Niels Finsen was awarded with the Nobel 

Prize in Medicine in 1903 for the treatment of cutaneous tuberculosis by ultraviolet radiation. 

Early in the 20
th
 century light and a photosensitizer were combined in medicine and originated 

the field of photodynamic therapy. In 1900 Raab
19

 showed that acrydine dyes would be lethal to 

paramecia when light exposed. Later in 1925, Policard
20

 showed the phototoxicity of 

porphyrins, including hematoporphyrin. With the synthesis of hematoporphyrin derivative, 

HpD,
21

 a step forward was achieved when Lipson et al. observed preferential accumulation in 

the cancerous tissue rather than in the surrounding tissue
22

 and Dougherty et al.
23

 initiated 

pioneering studies on basic science and clinical applications. In 1983, a purified form of HpD, 

now commercially known as Photofrin® was developed. Photofrin®
24,25

 was the first 

photosensitizer to receive regulatory approval for treatment of various cancer types in more than 

40 countries throughout the world, including the United States. Since their work, a variety of 
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compounds has been tested in vitro and in vivo, but only tetrapyrrole macrocycles, with the 

exception of methylene blue, have been clinically approved and are the majority of 

photosensitizers used on PDT.  

Photodynamic therapy has been approved as a treatment modality against some forms of cancer, 

precancerous lesions and age-related macular degeneration (AMD). The most relevant clinical 

photosensitizers are listed in Table 1.1. 

 

Table 1.1 Clinically approved photodynamic therapy photosensitizers. Table information obtained from. 

26,27
 

Trade name Approval Indications 

Photofrin  Worldwide 

Advanced and early lung cancer, 

Oesophageal adenocarcinoma, cervical 

cancer and bladder cancer. 

Foscan Europe Palliative head and neck cancer 

Levulan Approved in 2000 in USA Actinic keratosis 

Metvix Europe Actinic keratosis and basal cell carcinoma 

Visudyne Approved in 65 countries Age-related macular degeneration 

   

 

HpD and Photofrin® are part of the first generation of photosensitizers. Although they have 

shown to be efficient in the treatment of many cancer types, they also have exhibited some 

disadvantages such as: prolonged patient photosensitivity (poor clearance), suboptimal tumor 

selectivity, low wavelength absorption and poor light penetration into the tumor tissue. 

Additionally, Photofrin® is a complex mixture of uncertain structures. Therefore, in order to 

overcome these drawbacks and also improve treatment efficacy, several strategies have been 

developed to find more tumor-selective agents with reduced side effects, especially skin 

phototoxicity. The synthesis of many second generation photosensitizers, most of them 

modified tetrapyrrolic compounds, improved various properties over the first generation of 

photosensitizers, and some of them were approved for clinical use or are under clinical trials 

(Table 1.1).  
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The third generation of photosensitizers is usually meant to designate second generation 

photosensitizers coupled to carriers such as cholesterol, antibodies or liposomes, for selective 

tumor accumulation and targeting tumor tissue.  

 

 

 

 

 

I 

 

                    II 

 

III 

 

Figure 1.2 Structures of approved photosensitizers Photofrin (I), Foscan (II) and Visudyne (III). 

 

For the purpose of PDT, the following characteristics have been proposed for the ideal 

photosensitizer
28,29

: i) chemically pure and of known specific composition, ii) stable at room 

temperature and with a straightforward synthesis, iii) minimal dark toxicity and only cytotoxic 

in the presence of light of a defined wavelength, iv) should have preferential retention by target 

tissue, v) should be rapidly excreted from the body and  have a low systemic toxicity, vi) should 

have strong absorption with high absorption coefficient in the near-infrared (between 700 and 

800 nm) where light penetration in tissue is maximum (Figure 1.3), vii) should have long triplet 

state lifetimes and effectively produce singlet oxygen and other reactive oxygen species (ROS), 

viii) be affordable and readily available in order to promote extensive use, ix) be easy to 

dissolve in biocompatible formulations, x) and have a subcellular localization that promotes a 

strong generation of ROS, preferentially the endoplasmic reticulum (ER), where oxidative stress 

has shown to induce immunogenic cancer cell death.
30-32
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Figure 1.3 Depth of penetration into the skin at different wavelengths. The percentages indicate the 

incident radiation reaching a given skin layer. The maximum light penetration depth in tissue is found for 

wavelengths in the range 650 - 800 nm, the therapeutic window. In this region light is poorly absorbed by 

most of the biological tissues and has lower scattering than in the visible region. Source: ILO - 

Encyclopedia of Occupational Health and Safety at:http://www.ilo.org/oshenc/part-vi/radiation-non-

ionizing/item/654-infrared-radiation. 

 

1.3 Photochemistry and photophysics of PDT 

Light, oxygen and a photosensitizer are the three essential elements involved in photodynamic 

therapy. After administration and delivery of the photosensitizer to the target tissue, light 

irradiation of a specific wavelength matching the absorption of the photosensitizer is used and 

the undesired tissue is destroyed.  

Upon irradiation and absorption of a photon, the photosensitizer is excited from the ground state 

(
1
S0) to the first excited singlet state (

1
S1), from which several physical pathways, represented in 

the Jablonski diagram in Figure 1.4, leading to deactivation can be followed.  The excited 

singlet state 
1
S1 can rapidly return to the ground state level 

1
S0 by a radiative process, called 

fluorescence or by a nonradiative process of internal conversion (IC), where the excess of 

energy is released as heat that dissipates to the surrounding medium (solvent or tissue). In 

addition, the excited singlet state can generate the triplet state (
3
Sn), by a fast spin inversion, in a 

process called intersystem crossing (ISC). The long-lived triplet state enables the interaction of 

the excited photosensitizer with the surrounding molecules increasing the number of paths by 

which it can be deactivated. The excited triplet state of a PDT photosensitizer can react by two 

mechanisms, normally defined as Type I and Type II.
33

 The Type I mechanism involves the 

hydrogen/electron abstraction between the sensitizer and either a biological substrate, a solvent 

http://www.ilo.org/oshenc/part-vi/radiation-non-ionizing/item/654-infrared-radiation
http://www.ilo.org/oshenc/part-vi/radiation-non-ionizing/item/654-infrared-radiation
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or another sensitizer, resulting in the formation of free radicals or radical ions. If molecular 

oxygen is present, these free radical species can interact and generate superoxide (O2
•-
) a direct 

electron transfer from the triplet state of the photosentitizer to oxygen may occur. Dismutation 

or one electron reduction of O2
•-
 gives H2O2 (equation 1.1), which on one electron reduction can 

generate hydroxyl radical (OH
•
). In biological systems where ferrous ion is present, it is 

generally assumed that OH
. 
is generated from H2O2 by the Fenton reaction (equation 1.2). 

34
 

2O2
●- 

 +  2H
+
   → O2  +  H2O2  (1.1) 

 

Fe
2+

    +    H2O2    →    Fe
3+

    +    OH●   +    OH
- 

 (2.1) 

 

In a Type II mechanism, energy transfer takes place from the excited triplet state of the 

sensitizer to ground state molecular oxygen, generating singlet oxygen. These oxygen species 

that result from a Type I and Type II mechanisms are highly reactive and can interact with a 

large number of biological molecules. In particular, hydroxyl radical reacts unspecifically with 

biomolecules such as proteins, polysaccharides and nucleic acids located less than a few 

nanometers from the generation site.  Singlet oxygen, generated in a Type II process, has a 

wider action radius which can reach hundreds of nm, according to its estimated lifetime in cells 

of ~3 µs.
35,36

 

 

Figure 1.4 Jablonski diagram representing the excitation and relaxation of a photosensitizer (S).  
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1.4 Reactive oxygen species 

1.4.1 Molecular oxygen: Ground state and excited state 

The properties of oxygen are a reflection of its unique electronic structure.  Unlike many other 

molecules, oxygen’s electronic ground state is a spin triplet. 

Mullikan
37

 predicted that the electronic configuration of molecular oxygen would give rise to 

three energetically close lying states and specified them as a 
3
Σg

-
 triplet ground state, and 

1
Σg

+
 

and 
1
Δg excited singlet states. Three different optical transitions are possible between the ground 

state 
3
Σg

- 
and the two excited states (

1
Σg

+
 = 31.5 kcal mol

-1
; 

1
Δg = 22.5 kcal mol

-1
) of molecular 

oxygen, and all of them are forbidden. The transition 
3
Σg

- 
→ 

1
Δg was first observed by Ellis and 

Kneser
38

 in absorption experiments with liquid O2 at ~1261 nm, and identified O2(
1
Δg) as the 

metastable O2 specie, commonly known as singlet oxygen.
38

 The higher energy state 
1
Σg

+ 
is not 

known to react with other molecules, at least in solution phase systems, because of its short 

lifetime due to the spin-allowed transition to the 
1
Δg state. The 

1
Δg lifetime is relatively long and 

this state has a rich chemistry that is distinctly different from that of the ground triplet state.
39

 

 

1.4.2 Quenching of sensitizer triplet states by molecular oxygen 

Singlet oxygen can be produced with varying efficiency as a consequence of quenching of both 

excited singlet and triplet states of organic molecules. Despite the major contributions of many 

authors to elucidate the mechanism of quenching of electronically excited states by molecular 

oxygen many aspects remain unclear.
39

 

Molecular oxygen can quench both excited singlet and triplet states. In the first case, O2 

quenching of the singlet excited states gives five spin allowed and two spin-forbidden possible 

processes. 
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 The quenching of triplet states by molecular oxygen can be described by Figure 1.5, proposed 

by Wilkinson et al.
40

 

 

Figure 1.5 Quenching of triplet excited states of a photosensitizer by molecular oxygen.  

 

According to this mechanism, molecular oxygen in a collision dependent process can quench 

triplet excited states of a photosensitizer (
3
S) leading to the reversible formation of encounter 

complexes 
1,3,5

(
3
S 

…
 O2 (    

 )). One out of nine of the collisions results in a singlet state 

complex which can decay by energy transfer to generate singlet oxygen and ground state 

photosensitizer at a rate kΔ.   

Because there is no spin or energy allowed product state for the quintet complex, quenching of 

3
S* can only occur via the singlet and triplet collision complexes. Which means that only 4/9 of 

all triplet collisions will be responsible for quenching. If only the singlet channel contributes to 

the deactivation of the triplet state of the sensitizer by molecular oxygen then   
           

and singlet oxygen generation efficiency (SΔ) should be unit. However, if the triplet channel 

also participates in the quenching, then   
           and singlet oxygen generation efficiency 

drops to 0.25. 

The mechanism of quenching the triplet states by molecular oxygen as presented on Figure 1.5 

is based on the mechanism first proposed by Gijzeman, Kaufman and Porter,
41

 which considered 

that for a group of aromatic  hydrocarbons the energy transfer channel was the only possible 

quenching path since their quenching rates were in good agreement with 1/9 kdiff. Although 

Wilkinson et al.
42

 observed the same behavior for anthracene derivatives in cyclohexane, this 

behavior is rarely observed.  In order to account for values higher than 1/9 kdiff, and even higher 
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than 4/9 kdiff ,the involvement of charge transfer complexes in the mechanism of quenching by 

molecular oxygen and the possibility of intersystem crossing between channels has been 

considered, and the mechanism initially proposed was modified to the version presented on 

Figure 1.5.
43-46

 

Quantitative correlations between physical properties of a sensitizer and its triplet state 

quenching rate constants by molecular oxygen, and the overall efficiency on singlet oxygen 

generation have been explored by a number of authors.
41,47-49

 Systematic studies by Wilkinson 

and Schmidt 
39,43,46,50-53

 have contributed significantly to the present knowledge, revealing 

meaningful tendencies.  

 It has been shown that the fraction of triplet states quenched by oxygen which yield singlet 

oxygen depends on several factors including the excited state energy, the nature of the excited 

state, the redox potential of the excited state and the nature of the solvent.
40,43,46,50,52

 

Wilkinson et al. have demonstrated for a group of biphenyl derivatives that the rate constant for 

quenching of the triplet excited states (kT
Q
) by molecular oxygen and the efficiencies with 

which singlet oxygen is produced (SΔ) are inversely correlated, and both show pronounced 

sensitivity to oxidation.  Furthermore these and other authors observed that the charge transfer 

and non-charge transfer (
1
kΔ) pathways compete in the quenching of triplet states by O2 and 

both yield 
1
O2 with different efficiencies.

40,43,46,52-55
 Schmidt and co-workers after studying a 

series of organic compounds in CCl4 
51,56-59

 have proposed some modifications to the 

mechanism in Figure 1.5, by including the formation of ground state oxygen from the encounter 

complexes and excluding intersystem crossing in charge transfer complexes (
1,3

(
3
S

δ+
…O2

δ-
)).  

In addition to other pathways to generate singlet oxygen Tsubomura and Mulliken 
60

 have first 

proposed the formation of a ground state complex between the organic molecule S and O2(
3
Σ

-
g) 

that after light absorption can populate to a charge-transfer state.  This charge-transfer state has 

been shown by Scurlock and Ogilby to be a precursor of singlet oxygen (O2
1
Δg).

61,62
 

Since the first excited singlet state of most photosensitizers rapidly undergoes intersystem 

crossing into a triplet state, quenching of singlet excited states by molecular oxygen has only a 

very short time to occur and so it will not be explored further in the discussion of the work in 

this thesis. 
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1.5 Cell death 

The generation of reactive oxygen species after light induced excitation of an intracellularly 

localized photosensitizer may lead to cell death mainly by apoptosis and/or necrosis. 
63,64

 In the 

case of a mammalian tissue being the target, necrosis and apoptosis can cause vascular damage 

with ischemia of the target tissue and/or an immune systemic response.
63

 More interesting, the 

activation of the immune system increases the priming of T-lymphocytes that recognize tumor 

antigens, leading to the development of an immune memory which can fight the recurrence of 

cancer.
65,66

 

Apoptosis is a very complex, multi-step, multi-pathway cell-death program controlled by 

intracellular and extracellular signals. It can be initiated either through the activation of death 

receptors or the mitochondrial release of cytochrome c. Both events eventually lead to activation 

of caspase cascades in a process tightly controlled by various proteins which leads to cell 

dismantling into apoptotic bodies without leakage of intracellular material to the immediate 

envirnoment.
67,68

 Necrotic cell death normally occurs when high light fluence doses or high 

photosensitizer concentrations are used with cells. 
69

 A quick and violent degeneration 

characterized by cytoplasm swelling, destruction of organelles and disruption of the plasma 

membrane, leading to release of material into the extracellular compartment is normally 

observed. 

When the PDT damaged cells try to contain and remove damaged proteins, an autophagy 

mechanism of initial rescue is activated. Only when the PDT damage is sufficiently robust and 

the cells are damaged beyond repair, apoptosis occurs.
70

 PDT, at its highest dose may also lead 

to necrosis, as the proteins that participate in both autophagy and apoptosis may be immediately 

destroyed and the cellular integrity may be broken. The initial site of PDT-related damage may 

determine which cell pathway is initially activated. The extent of PDT related damage may also 

regulate how the PDT treated cells respond.
70

 

An important factor determining the outcome of PDT is how the photosensitizer interacts with 

cells within the target tissue. The key characteristic of this interaction is the subcellular 

localization of the photosensitizer, since photosensitizers can localize within many different 

cellular organelles such as mitochondria, lysosomes, endoplasmic reticulum and/or Golgi 

apparatus.   
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1.6 Phototransformation of sensitizers 

The same source of photons which is used to trigger a photosensitizer to destroy undesired 

tissue is also the cause of its photobleaching. The loss of sensitizer absorption or emission 

intensity by light is called photobleaching. The photobleaching of a photosensitizer has been a 

major concern of scientists from various fields. In materials science, the issue of producing 

stable electroluminescent polymers, for example, has been an important limiting factor in the 

evolution of this particular technological innovation.
71,72

   In biology, where photoinduced 

bleaching is likewise a general phenomenon, common photo-functional molecules include i) 

fluorescent probes used to assess cell structure and/or activity, and ii) sensitizers used to 

generate reactive oxygen species that, in turn, elicit cell death. The photobleaching of 

photosensitizers used in PDT is a field of interest since it can influence the success of the 

treatment in several ways.  

 

Figure 1.6 Schematic illustration of photobleaching mechanism after generation of triplet state. 

The mechanistic processes involved in the photobleaching of a sensitizer are generally oxidative 

and can be caused by singlet oxygen generated in a Type II process, and/or by free radicals in a 

Type I process.
73

 Light-induced molecular rearrangements, bond making/breaking reactions, 

and functional group modifications all contribute to the photobleaching phenomenon.  Two 

types of irreversible photobleaching leading to chemical change in a chromophore are normally 

considered: i) photomodification, where loss of absorbance or fluorescence occurs at some 

wavelengths, but the chromophore retains its modified form and ii) true photobleaching, which 

involves fragmentation of the sensitizer in species that no longer absorb in the visible region.  
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The photobleaching quantum yield varies significantly with the reaction path involved (Type I 

or Type II) and specific features of the sensitizer itself (e.g., the oxidation potential, lipophilicity 

etc.). 
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2.1 Introduction 

This chapter introduces a group of synthetic porphyrins, chlorins and bacteriochlorins prepared 

by a synthesis group in Coimbra in a joint collaboration with our group. The structures of these 

macrocycles were strategically modified by the presence of phenyl groups with different 

substituents at the meso positions to modulate the hydrophobic/hydrophilic character of these 

new photosensitizers.
1-4

 Reduction of the porphyrinic macrocycle along this series causes a 

number of changes. A most remarkable change is the increase in absorption in the red or near-

IR region of the spectrum, allowing deeper light penetration through tissue, and making 

bacteriochlorins interesting for biomedial applications. The introduction of halogen atoms in the 

ortho positions of the phenyl ring of the sensitizer should accelerate the intersystem crossing to 

the triplet excited state and maximize the triplet quantum yield (ФT). Additionally, the steric 

interaction between the halogen atoms and hydrogen atoms in β positions, increases the angle 

between the macrocycle and the phenyl ring, and diminishes the tendency of porphyrin 

derivatives to aggregate.
2,5

 

Porphyrins are part of the most widely studied photosensitizers due to their photosensitizing 

ability in PDT applications. Under illumination with light of an appropriate wavelength, 

porphyrins generate singlet oxygen with quantum yields considerably high, typically ~0.5 or 

higher. However, these photosensitizers are limited by their low light absorption in the near 

infrared region, where the effective depth of light penetration is higher.  

Bacteriochlorins efficacy in PDT has been associated to their ability to transfer a large part of 

their triplet energy to molecular oxygen, with consequent production of singlet oxygen (O2, 

1
Δg), but also to their ability to transfer an electron to molecular oxygen to generate superoxide 

ion (O2
•-
).  Because singlet oxygen and superoxide radical have active roles in the production of 

oxidative stress in cancer cells, it is important to establish the mechanism of energy transfer and 

electron transfer from the photosensitizer to molecular oxygen. 

Taking into account the photophysical and photochemical properties of these dyes, their 

potential application as photosensitizers for photodynamic therapy and to generate singlet 

oxygen in cells will be discussed.  
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2.2 Results and discussion 

2.2.1 Absorption and fluorescence properties 

Figure 2.1 shows the absorption spectra of the porphyrin Cl2PEt, chlorin F2CMet and 

bacteriochlorin Cl2BMet.  

 

Figure 2.1 Electronic absorption spectra in ethanol at room temperature of porphyrin Cl2PEt, chlorin 

F2CMet and bacteriochlorin Cl2BEt. 

 

Cl2PEt has a typical free base porphyrin absorption spectrum with an intense band around 400 

nm and four other less intense bands at lower energies. A simple model to interpret the 

electronic spectra of porphyrins has been proposed by Gouterman.
6,7

 According to this model 

the absorption bands in porphyrin systems arise from transitions between the two highest 

occupied molecular orbitals (HOMOs) and the two lowest unoccupied molecular orbitals 

(LUMOs), and the identities of the substituents of the ring can affect the relative energies of the 

transitions. A representation of the energy levels for the two HOMOs (a1u; a2u) and the two 

LUMOs (egx; egy) for free base porphyrin, chlorin and bacteriochlorin are shown in Figure 2.2.  

In porphyrins, the two HOMO orbitals and two LUMO orbitals lie close enough in energy and 

as result the optical transitions have nearly the same energy. By interaction and splitting of the 

electronic states a pair of low energy and low intensity transitions gives rise to the absorption 

bands Qx and Qy, and a pair of high energy transitions lead to the generation of Bx and By bands. 

Most of the intensity of the transition is carried by the B bands as a result of the addition of the 

transition dipoles. Bx and By, are observed as a single intense band called the Soret band. 
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Whereas the Q bands come from the near cancelation of the transition dipoles and are observed 

as low intensity absorption bands.
2
 

 

Figure 2.2 Schematic representation of HOMO and LUMO orbitals for tetraphenyl porphyrins, chlorins 

and bacteriochlorins.
8,9

 

 

Within the series, porphyrin, chlorin and bacteriochlorin the lowest LUMO’s are nearly 

isoenergetic, and so the energy does not change as the number of the π electrons is reduced. On 

the other hand, the macrocycle distortion causes destabilization of the HOMO, which rises 

along the series. As a result the HOMO-LUMO gaps get progressively smaller and the Qy bands 

shift to the red,
2
 explaining the red absorption of the chlorin around ~650 nm and the infrared 

absorption of the bacteriochlorins at ~745 nm. A less intense band around 519-529 nm, 

normally labeled as Qx is observed along the series and the Soret band is observed at 400-420 

nm for porphyrins and chlorins. For bacteriochlorins the Soret band splits into two independent 

bands with absorption peaks for wavelengths lower than 380 nm. The peak of higher energy 

(350-360 nm) is made up mainly of the a2u→egy configuration while the absorption band around 

370-380 nm is mainly a1u→egy. The strong absorption of chlorins and the even higher of 

bacteriochlorins in the near infrared, where the tissues are most transparent, confer to this group 

of photosensitizers a spectroscopic advantage for PDT.
10

 The exact position and intensity of the 

absorption peaks can also be dependent on both the concentration and the nature of the solvent.  

The absorption spectra of Cl2PEt, F2CMet and Cl2BEt, presented in Figure 2.1, and of all the 

other related sensitizers analyzed in this study, represent the main optical characteristics of 

typical tetraphenyl porphyrins, chlorins and bacteriochlorins, respectively.
2
 The variation on the 

peripheral substituents of the phenyl ring causes only relatively small changes on intensity and 

shifts on the absorption bands (Table 2.1). 
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Figure 2.3 Normalized fluorescence spectra of Cl2PEt, F2CMet and Cl2BEt in ethanol. 

 

 Figure 2.3 shows the fluorescence spectra of Cl2PEt, F2CMet and Cl2BEt, typical for 

tetraphenylporphyrins, chlorins and bacteriochlorins. The fluorescence spectra are a good mirror 

image of the absorption spectra and a small Stokes shift (~5 nm) is observed in ethanol 

solutions. Fluorescence emission maximum and fluorescence quantum yields are presented in 

Table 2.1. 

Comparing the fluorescence quantum yield of porphyrins and bacteriochlorins, a tendency is 

found according to the halogen atom substituent of the phenyl rings. ΦF organizes as following 

Cl2< Cl < F2 ≤ F. The presence of halogenated atoms in the ortho position of the phenyl ring in 

the porphyrins or bacteriochlorins structure increases the rate of intersystem crossing to the 

triplet state and further reduces the fluorescence intensity, a process normally explained by the 

internal heavy atom effect.
5,11

 Chlorine atoms, Cl, are heavier than fluorine, F, and so the 

process is enhanced because the spin-orbit coupling constants are increased. The fluorescence 

quantum yield determined for halogenated porphyrins are half of that of TPP, ΦF = 0.10±0.01.
12

 

Similarly, bacteriochlorins also show low fluorescence quantum yields.  

Chlorin F2CMet shows the highest value of fluorescence quantum yield of 0.36. A similar value 

was obtained by Monteiro et al.
13

 for a related chlorin FCMet (0.396).
14

 

From the crossing of the normalized absorption Q(0,0) and fluorescence bands we have 

estimated the singlet state energy (Es) in ethanol. Values of 44 kcal mol
-1

 were obtained for 

porphyrins. Bacteriochlorins have singlet states about ~6 kcal mol
-1

 lower in energy. The values 

are registered in Table 2.1. 
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Table 2.1 Absorption and emission properties of tetraphenyl porphyrins, chlorins and bacteriochlorins in 

ethanol and of other relevant macrocycles. 

  λQx(0,0) 

/nm 

εmax/10
3
 

/M
-1

 cm
-1

 

λems 

/nm 

Es 

/kcal mol
-1

 

ΦF 

P
o

rp
h

y
ri

n
s 

TPP
a
 650 9.6 652/719 44.0 0.100 ± 0.010 

mTHPP
b
 644 3.4  649/715 44.2 0.120  

FPMet
f
 639 0.79 ± 0.03 644/709  0.096 ± 0.021 

F2P
c
 655 5.3   657/713 43.6 0.069 ± 0.015 

F2POH 637 1.0 ± 0.16    

F2PMet
e
 639 0.68 ± 0.03 

 
654/720 44.8  0.049 ± 0.022 

Cl2P
c
 660 2.1 661/706 43.3 0.005 ± 0.002 

Cl2POH
e
   654/720 43.8   

Cl2PEt 652 5.2 ± 0.2 655/720 43.8 0.017 ± 0.003 

Cl2PHep
e
 653 3.9 ± 0.2 658/724 43.6 0.017 ± 0.004 

C
h

lo
ri

n
s 

mTHPC
b
 650 29.3  653  0.089  

FCMet
e
 652 34 ± 3 

 
657 43.6 0.396 ± 0.05 

F2C
c
 655 40  658 43.6 0.124 ± 0.026 

F2CMet
e,h

 655 50 ± 4
 

657 43.6 0.360 ± 0.04 

Cl2C
c
 660 2.1  661 43.4 0.005 ± 0.022 

Cl2CEt
f
 658 29 662  0.028 

B
ac

te
ri

o
ch

lo
ri

n
s 

mTHPB
b
 735 91 746  0.110 

FBMet
e
 743 62 746  0.060 ± 0.01 

F2B
d
 744 140  745 38.4 0.068 ± 0.07 

F2BOH
e
 745 56 745  0.023 ± 0.05  

F2BMet
e
 743 140 ± 3 

g
 746 38.1  0.138 ± 0.01 

ClBOH
e
 742 61 745  0.040 ± 0.08 

ClBEt
e
 743 76 746  0.038 ± 0.07 

Cl2B
d
 747 126 748 38.3 0.012 ± 0.002 

Cl2BOH
e
 745 61 748 38.3 0.006 ± 0.001 

Cl2BEt
e
 745 97 747 38.3 0.008 ± 0.002 

Cl2BHep
e
 746 76 749 38.2 0.008 ± 0.002 

a) from ref. 12, b) in methanol from ref.15, c) from ref.16, d) from ref. 15, e) published at ref. 3,4,17-19, f) published at 

ref.13 g) a chromatographic evaluation of the sample content was performed for this photosensitizer. The absorption 

coefficient determination was corrected based on 80 % of sample purity, h) corrected value for 12% of impurity 

content. The chromatographic evaluation of the other bacteriochlorins was not determined.  Errors obtained from the 

standard error associated to the linear fit (Ɛmax determination) or from the average of at least two independent 

experiments, whichever was higher. 
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2.2.2 Generation of the triplet state 

The generation of the triplet state is a requisite in order to proceed in the photosensitization 

process by a Type I and/or Type II reaction, and produce reactive oxygen species. 

We made use of the internal heavy atom effect to accelerate the intersystem-crossing S1→T1 

rate and consecutively maximize the triplet quantum yield (ФT) of our photosensitizers. Arnaut 

et al.
5
 predicted how spin-orbit coupling would affect the photophysical properties of 

tetraphenyl porphyrins when substituted in the ortho positions of the phenyl rings, with 

halogenated atoms such as F, Cl or Br. The predictions were verified by introducing heavy 

atoms in the ortho phenyl position of porphyrins. The observed increase in the triplet quantum 

yield was not accompanied by a significant decrease in the triplet lifetime. The triplet quantum 

yields were measured for some of the difluorinated and dichlorinated photosensitizers, and the 

values are present on Table 2.2.  

The determination of the triplet quantum yield was accessed using the singlet depletion 

method
20

. A more complete description is given in the material and methods section. The 

general equation is given as: 

  
  

  
   

  
 

    

      

           ))

         ))
  

    (2.1) 

Where, the superscripts s and ref denotes sample and reference, ε is the molar absorption 

coefficient, A the absorption and T the triplet quantum yield (ΦT
ref     ). OD values 

correspond to the slopes obtained from the linear dependence of the pre-exponential parameters, 

calculated by fitting the triplet decays at different laser energies (figure 2.4). 
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Figure 2.4 Changes in intensity of triplet-triplet absorption decays extrapolated to t=0 as a 

function of the laser relative energy, for F2PMet (445 nm), F2CMet (450 nm), Cl2BOH (400 nm) 

and benzophenone, BP, (545 nm).  

 

A triplet quantum yield close to unity is observed for Cl2PMet, while for fluorinated dyes the 

fraction of singlet states that undergo intersystem crossing is much less. The intersystem 

crossing is favored for the macrocycles with chlorine atoms since their spin-orbit coupling is 

higher, than for fluorinated ones. The combination ΦF+ΦT gives 0.94 for F2CMet showing that 

virtually all the photons absorbed lead either to fluorescence or to intersystem crossing. For 

F2PMet and F2BMet the same combination gives 0.75 and 0.74, respectively. Internal 

conversion is considered to have a substantial contribution for the singlet state decay in 

porphyrins and bacteriochlorins. 

We observed saturation in the triplet absorption curve at high light intensities for the porphyrin, 

chlorin and mainly for bacteriochlorins but not for benzophenone (figure 2.4).Different systems 

exhibit different degrees of non-linearity with the laser energy.
21,22

 The relationship between the 

triplet transient absorption with the laser intensity was explored by Lachish et al.
23

 which 

emphasized that in a monophotonic process a linear dependence would be expected at low light 

intensities although saturation is expected for higher intensities. Bacteriochlorin’s capacity to 

absorb light is very high, (ε>60000 M
-1

 cm
-1

) and at the laser intensities that we use in flash 

photolysis experiments, we easily achieve an unbalance between the number of photons 

generated at 355nm and the number of molecules presented in solution (absorbance ~0.2). 
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Similar saturation behaviors have been observed and documented for phtalocyanines
24

 and other 

bacteriochlorins 
25

, which similarly have high absorption coefficients. 
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Figure 2.5 Triplet state detection in ethanol for Cl2PEt (A), FCMet (B), and Cl2BEt (C). Left side - time-

resolved transient absorption spectra and right side - triplet-state decay profiles in ethanol at 440 nm (A), 

400 nm (B e C) in the presence and absence of oxygen.   

 

Flash photolysis was also used to spectroscopically identify the triplet state of the 

photosensitizers and determine their lifetimes. Figure 2.5 shows the triplet absorption spectra of 

the porphyrin Cl2PEt, the chlorin F2CMet and of the bacteriochlorin Cl2BHep obtained after 

excitation at 355 nm in ethanol. 
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The triplet-triplet absorption spectra for all the analyzed halogenated photosensitizers closely 

resemble that of Figure 2.5 and that of other related tetraphenyl macrocycles reported in 

literature.
11,16

 Both porphyrins and chlorins show absorption triplet bands around 330 and 450 

nm. While bacteriochlorins show three distinct absorption bands at 400, 600 and 790 nm.  

The decays at the triplet absorption wavelengths maxima (Figure 2.5, right-side) give triplet 

lifetimes longer than 28 µs in deaerated solutions, for all the tetraphenylmacrocycles studied. 

Long lived triplet states provide high sensitivity to the photosensitizers concerning the presence 

of quenching species in the environment. The presence of oxygen reduces significantly the 

triplet lifetime of porphyrins and more efficiently of bacteriochlorins and chlorins (Table 2.2). 

Bacteriochlorins and chlorins have their lifetime reduced to about 250 ns and 280 ns, 

respectively, while porphyrins triplet lifetimes are more sensitive to halogenation. Porphyrins 

with fluorinated atoms have triplet lifetimes in the 300-500 ns range, about 100 ns higher than 

chlorins and bacteriochlorins. Dichlorinated porphyrins triplet lifetimes are in the 600-900 ns 

range. 

The quenching rate constant of the triplet excited state by molecular oxygen was estimated from 

equation 2.2, considering the oxygen concentration in air-saturated ethanol at 20 ºC as [O2] = 

2.1 × 10
-3

 M. 
26

 

   (
 

  
 

 

  
 )   

 

[  ]
 (2.2) 

Where, τT is the triplet lifetime in air saturated ethanol solution and τT
0 

is the triplet lifetime in 

the absence of oxygen. Calculated kq are presented in Table 2.2.  The quenching rate constants 

measured for bacteriochlorins are generally faster than those of the porphyrins and chlorins 

analogues.  

Spin statistics associated with interaction between one triplet excited state (sensitizer) and 

another triplet state (as oxygen ground-state) require kq to be ≤ 1/9kdiff for a process where 

quenching proceeds via singlet channel. However, if both the singlet and the triplet channels 

contribute to the deactivation of the triplet excited state by molecular oxygen, then it is expected 

that kq ≤ 4/9kdiff. 
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Table 2.2 Triplet states lifetimes, quantum yield and energy measured by flash photolysis and 

photoacoustic calorimetry in ethanol solutions for halogenated tetraphenyl porphyrins, chlorins and 

bacteriochlorins. 

  τT (N2)  

/μs 

τT (air) 

/ns 

kq×10
9 

 
/M

-1 
s

-1 

ФT 1
0
 ET

 

 
/kcal mol

-1
 

P
o

rp
h

y
ri

n
s 

TPP
a
  349 1.6 0.73 ± 0.1  33.0  

mTHPP
c
   1.9 0.69    

FPMet  309 1.5    

F2P
b
 16.6 493 1.1    

F2PMet
f
  389 1.2 0.71 ± 0.04   

Cl2P
b
 16.5 641 0.87    

Cl2POH 40 855 0.55    

Cl2PEt 38 710 0.66  0.60 ± 0.04 33.0 ± 2 

Cl2PHep 41 758 0.62  0.56 ± 0.06 36.1 ± 5 

Cl2PMet  674  1.02 ± 0.08   

C
h

lo
ri

n
s 

mTHPC
c
   1.8 0.89   

FCMet
f
 43 285 1.7    

F2C
b
 5 305 1.8    

F2CMet
f
 50 283 1.7 0.58 ± 0.05   

Cl2C
b
 8.2 393 1.4    

B
ac

te
ri

o
ch

lo
ri

n
s 

mTHPB
c
   2.5 0.83   

FBMet
f
 55 200 2.4    

F2B
e
 33 216 2.6    

F2BMet
f
  226 2.2 0.65 ± 0.05 0.45 ±0.01 26 ± 4 

F2BOH
f
 61 268 1.8    

ClBOH
d
 39 246 1.9    

ClBEt
d
 36 228 2.1    

Cl2B
e
 32 254 2.1    

Cl2BOH
f
 33 226 2.1    

Cl2BEt
f
 38 265 1.8  0.69 ± 0.02 25.7 ± 3 

Cl2BHep
f
 28 295 1.6  0.66 ± 0.03 27.4  ± 4 

a) from ref. 12, b) from ref. 16, c) from ref.15, d) from ref.27, e) from ref.11 f) published at 3,4,17-19 ФT errors obtained 

from the standard error associated to the linear fits for ΔOD determination or from the error associated to the Ɛmax, 

whichever was higher. ϕ1
0 and ET errors calculated from the average of two independent experiments. 
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A value of kdiff was estimated from the difference in the singlet lifetimes of FPMet in oxygen- or 

air-saturated ethanol solutions and in degassed ethanol solutions (Figure 2.6) and the 

concentration of oxygen in oxygen- and air-saturated ethanol. The average value of the two 

determinations gives kdiff = 9.5x10
9
 M

–1
 s

–1
. The values of kq for porphyrins are ≤1/9kdiff 

confirming a singlet deactivation channel by energy transfer to molecular oxygen.  Chlorins 

show a kq slightly higher than 1/9kdiff and in bacteriochlorins 1/9kdiff ≤ kq ≤ 4/9kdiff which can be 

related to a process of charge-transfer. The possibility of charge transfer in the deactivation of 

bacteriochlorins and possibly also of chlorins, would mean the possibility of electron transfer to 

molecular oxygen, e.g. a deactivation channel that can give rise to a Type I reaction.  

 

 

 

Figure 2.6 Single photon counting of FPMet after excitation at 373 nm in degassed, air-saturated or O2-

saturated ethanol solutions. Weighted residuals (W.R.), autocorrelation functions (A.C.) and χ
2
 values are 

also presented. The instrument response function is presented by the dashed line. 

 

Porter and Wilkinson,
28

 observed that when the energy of the donor triplet was considerably 

higher than that of the acceptor, the process would be controlled by diffusion. As the triplet 

energies became comparable, the energy transfer efficiency decreases and no quenching by 

molecules with triplet levels higher than that of the donor were observed. 

The ability of oxygen to quench the triplet excited state of porphyrin derivatives is obvious from 

the substantial reduction on the triplet lifetime in the presence of O2. In order to have an 

efficient quenching of the triplet excited states of the photosensitizer by molecular oxygen, the 
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reaction has to be energetically favorable. Additionally, the efficiency of energy transfer from a 

triplet sensitizer to molecular oxygen is also dependent of spin statistics. 

The triplet state energies of various photosensitizers were determined by photoacoustic 

calorimetry (PAC) and the values obtained are presented on Table 2.2. 

 

 

Figure 2.7 Jablonski representative diagram of the processes involved in the generation and removal of 

the triplet excited state of a photosensitizer. Nonradiative processes involved in the photoacoustic wave 

generation, are represented by dashed arrows. Radiative processes are represented by full arrows.  

 

When a system of absorbing molecules is exposed to an appropriate exciting light, a population 

of electronically excited states is produced. Deactivation of these excited states can occur by a 

radiative or a nonradiative process. The last one is a source of heat and the only one that 

contributes to the photoacoustic effect. Structural volume changes may also contribute to the 

PAC signal but they are not relevant in our systems. 

The processes that contribute to the generation of photoacoustic waves are represented in Figure 

2.7 by dashed arrows. The first process (1) measured by PAC is the decay of the 
1
S state and 

the formation of the triplet state of the sensitizer (
3
S) and the second process (2) is the decay of 

the triplet state. These processes are translated into two-sequential decays, each one described 

by a lifetime (τi) and a fraction of energy released in that lifetime (i). The first exponential 

corresponds to the formation of the triplet state in the lifetime (τ1) and by the fraction of energy 

released in this lifetime (1). The lifetime τ1 is very short and is out of the temporal profile of 

the transducer (2.25 MHz). In the deconvolution process we set τ1 to 1 ns. 
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The second process is the decay of the triplet state. In the absence of quenchers, this is a long 

process and will not be detected in the time window of the PAC experiment with megahertz 

transducers. The energy balance between the absorbed energy (experimentally measured using a 

photoacoustic reference) and the heat decay associated with 1, gives the energy stored in the 

triplet state (ΦTET). Deconvolution of the PAC signal obtained with the reference and with the 

sample gives 1 and 2 when a two-sequential exponential model is employed. 

 

Figure 2.8 Photoacoustic waves generated at 355 nm in ethanol: for Cl2PHep (solid), for the reference 

MnTPP (dash) and residuals (dots). Photoacoustic waves normalized and subtracted from the solvent 

wave.  The calculated wave is superimposed with the sample wave and is indistinguishable. 

 

An indistinguishable overlap between experimental and calculated wave is observed for all the 

photosensitizers analyzed (Figure 2.8), and the residuals confirm the adequacy of the fitting 

model. An algorithm described by Melton et al.
29

 was used to deconvolute the values of 1. To 

avoid the possible contribution of biphotonic processes, the fraction of energy released 1, was 

measured as a function of power intensity (Figure 2.9), and extrapolated to zero laser energy. 

The energy balance for the kinetic scheme, presented in Figure 2.7, in the absence of oxygen 

can be translated into the following equation. 

     (  
 )         (2.3) 

Where, ET is the triplet energy, ΦT is the triplet quantum yield, 1 is the fraction of laser energy 

released in the formation of the triplet state, Ehv is the laser energy at 355 nm, ΦF the 

fluorescence quantum yield and ES is the energy of the singlet state. We have analyzed 

dichlorinated porphyrins and bacteriochlorins by photoacoustics. The triplet state energy is 

given by equation 2.3. The values obtained are registered on Table 2.2 and show that 

bacteriochlorins triplet states are about 10 kcal mol
-1

 lower in energy than porphyrins. The 
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production of 
1
O2 occurs via energy transfer from the sensitizer triplet state to molecular oxygen 

and requires a minimum of 22.5 kcal mol
-1

, the energy of the first electronic excited state of 

molecular oxygen (
1
Δg). Both porphyrins and bacteriochlorins triplet energies exceed this limit 

and can thus generate singlet oxygen irreversibly by energy transfer.  
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Figure 2.9 Fraction of energy released as a function of the laser relative intensity for Cl2PHep. Full points 

correspond to experimental values, and open point corresponds to the extrapolated value for a zero value 

of energy. 
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2.2.3 Singlet oxygen generation in solution 

The most common path for the generation of singlet oxygen is photosensitization or, more 

precisely, quenching of the excited state of the photosensitizer by molecular oxygen. Singlet 

oxygen photosensitization can occur by energy-transfer quenching of both excited singlet and 

triplet states. The singlet excited states lifetime are short lived for chlorinated and difluorinated 

related dyes (~0.5 ns and 3-9 ns, respectively),
13

 so quenching by molecular oxygen is most 

certainly negligible. FPMet has however, a singlet excited state relatively more long lived (11 

ns) and some quenching by molecular oxygen can be possible.  Phosphorescence emission was 

found at 1270 nm for all the photosensitizers. This is characteristic of the transition from the 

first excited singlet state (
1
Δg) of oxygen to the ground triplet state (

3
Σ

-
g). Typical lifetimes for 

the deactivation of singlet oxygen in ethanol, ~14 µs,
30

 were found (Figure 2.10). Interestingly, 

for bacteriochlorins and fluorinated porphyrins the rate constants obtained from fitting the rise 

on the singlet oxygen generation traces gives lifetimes larger than the ones predicted by the 

triplet decay in aerated solutions (Table 2.3). 

The amplitudes obtained from the monoexponential fit of the decays at 1270 nm extrapolated 

for t=0 at different laser energies are plotted on Figure 2.11. Singlet oxygen quantum yields 

were determined, from the ratio of the slopes of the reference (mref) and of the sensitizer (ms), 

obtained at low laser energies where the linearity is kept, according to, 

  
  

  

    
  

    (2.4) 

 

The curvature observed from the plot IΔ
0
 versus the relative laser energy may reflect the singlet 

ground state depletion as the laser energy is increased, and as it was also evident from the triplet 

state absorption data (Figure 2.4). 

Porphyrins systematically show higher values of singlet oxygen quantum yield than chlorins 

and bacteriochlorins. Moreover, the chlorinated dyes yield higher amounts of singlet oxygen in 

ethanol than the fluorinated ones.  

Comparing porphyrins, chlorins and bacteriochlorins, we found that, as the triplet state energy 

increases, the rate constant of oxygen quenching decreases and singlet oxygen quantum yield 

increases. The generation of a charge transfer (CT) state (
3
S

δ+
…O2

δ-
) from quenching of the 

triplet excited state of a sensitizer by oxygen can accelerate the rate of triplet quenching by 

oxygen and reduce the singlet oxygen quantum yield.
31-33

 Bacteriochlorins and chlorins have the 

lowest singlet oxygen quantum yields and also the higher quenching rate constants, suggesting 

the existence of a charge transfer channel for these photosensitizers. For molecules with 
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tendency to undergo oxidation, CT interactions with O2 can strongly influence the rate and 

efficiency of singlet oxygen formation. McGarvey et al.
34

 found that an increase in the Eox 

results in a systematic increase on the efficiency of singlet oxygen formation and in the triplet 

quenching rate constant (kq). 
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Figure 2.10 Singlet oxygen 1270 nm phosphorescence traces recorded in ethanol from F2POH (left panel) 

and Cl2BEt (right panel). The inset shows with more detail the rise on singlet oxygen generation. Singlet 

oxygen traces were obtained after excitation at 420 nm (F2POH) and 750 nm (Cl2BEt) with a 

femtosecond laser with 1 kHz of repetition rate.  
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Figure 2.11 Singlet oxygen phosphorescence intensity extrapolated to t = 0 in ethanol, as a function of 

the laser pulse energy.  
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In order to make a better and more reliable judgment of a possible charge transfer mechanism 

we compared the oxidation potentials for a number of photosensitizers studied in this work, 

which are presented in Table 2.4.  

 

Table 2.3 Singlet oxygen rise time, decay, and quantum yield generated by halogenated tetraphenyl 

porphyrins and bacteriochlorins in ethanol, and of related compounds. 

  τrisetime
f
 

/μs 

τdecay 

/μs 

ΦΔ
g
 

P
o

rp
h

y
ri

n
s 

TPP
a
   0.71 

mTHPP
c
   0.46 

FPMet
e
 0.62 ± 0.06 

3 

 

 

 0.64 ± 0.07 

F2P
b
   0.84 ± 0.04 

F2POH 0.87 ± 0.02
3
  0.71 ± 0.09 

F2PMet
e
 0.60 ± 0.01

3
  0.71 ± 0.07 

ClPEt   0.68 ± 0.08 

Cl2P
b
   0.98 ± 0.04 

Cl2POH
e
 0.81 ± 0.01 

1
 14.6 0.98 ± 0.03 

Cl2PEt 0.74 ± 0.01 
1
/1.2 ± 0.02

3
 14.7 0.85 ± 0.10 

Cl2PHep
e
 0.84 ± 0.01 

1
 14.5 0.85 ± 0.04 

C
h

lo
ri

n
s 

mTHPC
c
   0.43 

FCMet
e
   0.58 ±0.04 

F2C
b
   0.88 ± 0.04 

F2CMet
e
 0.41 ± 0.01

3
  0.54 ± 0.04 

Cl2C
b
   0.93 ± 0.05 

B
ac

te
ri

o
ch

lo
ri

n
s 

mTHPB
c
   0.43 

FBMet
e
 1.00 ± 0.02

3
 14.6 0.63 ± 0.05 

F2B
d
   0.48 

F2BOH
e
 0.95 ± 0.01

3
 14.6 0.44 ± 0.08 

F2BMet
e
 0.98 ± 0.01

3
 14.6 0.43 ± 0.06 

ClBEt 0.78 ± 0.01
3
 14.7  

Cl2B
d
   0.60 

Cl2BOH
e
 0.22 ± 0.02/0.49 ± 0.01

3
 14.8 0.85 ± 0.11 

Cl2BEt
e
 0.69 ± 0.01

3
 14.9 0.66 ± 0.10 

Cl2BHep
e
 0.33 ± 0.02

2
 14.3 0.63 ± 0.12 

a) From ref.2, b) from ref.16, c) from ref.15, d) from ref.11, e) published at3,17-19 f) errors obtained from the standard 

error associated to the rise fit. Rise traces presented in Appendix I. Rise times obtained after excitation solutions of 

the photosensitizers in ethanol with: 1- nanosecond laser (λexc=355 nm), 2-picosecond laser (λexc=355 nm), 3- 

femtosecond laser (λexc=420 nm for porphyrins and λexc=748 nm for bacteriochlorins). g) Standard errors obtained 

from the average of at least 2 experiments or from the linear fits to obtain ms.  
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Compared to porphyrins and chlorins oxidation potentials found for bacteriochlorins are lower 

than those of chlorins, and these are lower than the oxidation potentials of porphyrins. Two or 

three irreversible oxidations were found. The third one, at less positive potentials, is related to 

the oxidation of the -NHSO3R group. Photosensitizers that have an electron withdrawing group 

in the phenyl ring show an increase in the first oxidation potential, from +1.23 to +1.38 for Cl2P 

and Cl2Pet respectively. In bacteriochlorins, this is observed from +0.65, to +0.80 and to +0.82 

for F2B, F2BMet and Cl2BEt, respectively. Bacteriochlorins, F2BMet and Cl2BEt, have only two 

oxidations because the oxidation of the sulphonic group (Eox
0
) is probably overlapped with the 

first oxidation of the macrocycle (Eox1
0
).  

Table 2.4 Oxidation potentials, vs SCE, of some studied photosensitizers and of other selected 

macrocycles. Cyclic voltammograms and reduction potentials are presented in the Appendix I. 

  Eox
0
 

/V 

Eox1
0
 

/V 

Eox2
0
 

/V  

ECT 

/kcalmol
-1

 

ΔGCT 

/kcalmol
-1

 

P
o

rp
h

y
ri

n
s 

TPP
a
  0.95 1.32   

F2P
b
  1.23 1.51   

ClPOH 0.70 1.28 1.88   

Cl2P
b
  1.23 1.52   

Cl2PEt 0.85 1.38 1.60 33 8.6 

C
h

lo
ri

n
s TPC

a
  0.88    

Cl2CEt 0.85 1.36 1.59   

B
ac

te
ri

o
ch

lo
ri

n
s 

TPB
a
  0.40    

F2B
b
  0.65    1.24   

F2BOH 0.55   0.70   1.11 25.9   

F2BMet  0.80  1.18 28.2  0.05 

Cl2BEt  0.82 1.24 28.7  0.01 

a) oxidation potentials in dichloromethane vs. SCE, from ref.,8 b) oxidation potentials in benzonitrile, from ref.35 
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The energy of the full electron transfer from the photosensitizer to molecular oxygen is given 

by: 

        
      

   (2.5) 

Where,    
  is the triplet state oxidation potential and     

   the half-wave reduction potential of 

oxygen (    
  = -0.425 V vs. SCE in hydrogen-bonding solvents).

36
    

  is given by:   
  

    
    . Table 2.4 shows the calculated values for ΔGCT. Bacteriochlorins full electron 

transfer to molecular oxygen is nearly isothermic. A negative ΔGCT is a thermodynamically 

favorable electron transfer from the photosensitizer to oxygen, with the generation of radical 

species, such as superoxide ion. The energy for a radical ion pair formation for porphyrins is 

higher and so the endothermicity of these reactions makes it less probable to happen. These 

observations are consistent with the quenching of the triplet excited states by oxygen for 

porphyrins which follows essentially the energy transfer channel. On the other hand, the 

quenching of the bacteriochlorins triplet state is consistent with the involvement of charge 

transfer interactions in the quenching process.  

Assuming the existence of a charge transfer state, we can use PAC, to estimate the quantum 

yield of species resulted from electron transfer (ΦCT) between the triplet excited state of the 

photosensitizer and molecular oxygen following the energy balance on figure 2.7.
12

 

 
 
 

 
)                         (2.6) 

Where, CT refers to full electron transfer with formation of free ions.  The energy of radical ion 

pair that gives rise by charge separation to free ion can be estimated from the free energy of the 

charge separated state and is around ~28 kcal mol
-1

 for the bacteriochlorins analyzed (Table 

2.4). The triplet quantum yield of Cl2BEt was not determined, but a value close to unity would 

be expected considering the enhancement on the intersystem crossing provided by the heavy 

atom effect. All the other parameters have been described previously in this chapter. The sum of 

the quantum yields, ΦET and ΦΔ for F2BMet and Cl2BEt, is consistent with the triplet quantum 

yield measured for the first and expected for the last one. 
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Table 2.5 Free ions quantum yield in ethanol. 

 1
0
 2

0a
 ΦCT

b
 

F2BMet 0.45 ± 0.01 0.09 ± 0.04 0.16 ± 0.03 

Cl2BEt 0.69 ± 0.02 0.03 ± 0.02 0.26 ± 0.04 

a) Error obtained by the average of two experiments, b) Estimated error of 15 %. 

As the photosensitizer oxidation potential decreases and the CT process becomes more 

competitive against non-CT process, kq increases and ΦΔ decreases. In the absence of a charge 

transfer process it would be expected, as it was previously discussed, that the quenching rate for 

the triplet excited quenching to be 1/9kdiff. In such conditions, the generation of singlet oxygen 

should be equal to unity (ФΔ = 1), in a purely energy transfer process. When a CT process is also 

involved, the quenching rate should be higher, 4/9kdiff, and singlet oxygen quantum yield should 

be reduced to 0.25, since a new CT channel is possible leading back to ground state oxygen or 

to radical ions.  

Figure 2.12 Quenching of triplet excited states of a photosensitizer by molecular oxygen.  

 

The mechanism in Figure 2.12, expanded from Wilkinson´s mechanism presented in the 

Introduction, compiles most of the possibilities described in literature for quenching of the 

triplet states of an organic molecule by molecular oxygen. 

Porphyrins and chlorins generate essentially singlet oxygen by quenching of their triplet states. 

Although, the quenching rate constants of their triplet states by molecular oxygen can differ 

significantly, where porphyrins kq≤1/9kdiff and chlorins1/9kdiff > kq < 4/9kdiff, their singlet oxygen 

efficiency (defined as: SΔ =ΦΔ/ΦT) is close to 1 and there is no evidence for a charge transfer 
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complex. Thus, the direct channel for generation of singlet oxygen by energy transfer, with a 

rate constant of kΔ, dominates the triplet decay. 

 Bacteriochlorins, on the other hand, show 1/9kdiff < kq< 4/9kdiff, higher than chlorins, and only 

part of the triplet excited states that are quenched by molecular oxygen lead to singlet oxygen 

(SΔ~0.7 for F2BMet), this relation between kq and SΔ has been considered as an evidence for 

charge transfer in the quenching mechanism.
37

 

Energy transfer in the encounter complex formed in the singlet pathway has been interpreted as 

an internal conversion of 
1
(

3
S*


O2

3
g

–
) into 

1
(S


O2

1
g), following an early suggestion by 

Kearns and co-workers.
38

 This requires that the encounter complex decay rate constant should 

follow the energy-gap law and become slower as the triplet energy of the sensitizer increases, 

ΔE = EΔ - ET. Figure 2.13 compares the energy transfer rates from the triplet states of our 

dichlorinated porphyrins with those photosensitizers reported by Bodeisheim and Schmidt.
39

 

The rate constants for the porphyrin triplets have reached the maximum possible value of the 

nCT channel, 1/9kdiff. 
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Figure 2.13 Energy gap law for triplets of TPP, ketones, quinones and other aromatic molecules 

measured in CCl4 (■) and for the halogenated porphyrins in ethanol (○). Energy of 35 kcal mol
-1

 was 

considered for the porphyrins which triplet energy was not measured experimentally. Dotted line 

corresponds to 1/9kdiff for ethanol. 

 

Charge-transfer induced quenching of triplet states is clearly observed in the quenching of 

substituted naphthalene triplet states by molecular oxygen in acetonitrile, Figure 2.14.
37

 The 

quenching of triplet bacteriochlorins also follows the inverse correlation between the rates and 
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efficiencies of singlet oxygen generation observed for the naphthalene sensitizers when 

quenching proceeds through the CT channel.  
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Figure 2.14 Dependence of the rate constants for quenching of the triplet excited state by oxygen, kq (○ - 

bacteriochlorins Cl2BEt, F2BMet, and ● - naphthalene derivatives), and the quantum yield of singlet 

oxygen, ФΔ (□ - Cl2BEt, F2BMet and ■ - naphthalene derivatives), on the free energy change ΔGCT for 

electron transfer. Dotted line corresponds to 4/9kdiff in ethanol. 
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2.2.4 Generation of radical species in solution 

 

Spin trapping is often used for the detection and characterization of transient radicals. 
40,41

 A 

spin trap (SP) serves as an efficient scavenger of reactive free radicals to produce a more stable 

adduct and facilitate the measurement of electron paramagnetic resonance (EPR) spectra. 

 We have made use of two spin traps in this work, DMPO (5,5-dimethyl-1-pyrroline-N-oxide) 

and BMPO (5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide), to detect radicals generated 

by bacteriochlorins.  

 

  

         A                      B 

  
Figure 2.15 Structures of DMPO (A) and BMPO (B). 

 

 
Irradiation of Cl2BHep in DMSO and in the presence of DMPO for 10 s with a diode laser 

resulted in the spectrum presented in Figure 2.16. Similar spectra were recorded for Cl2BEt, 

Cl2BOH and Cl2BMet2 under the same experimental conditions (Appendix I). From computer 

simulation of the line shape and the hyperfine (hf) splitting of the signal, these EPR spectra 

were assigned to the adduct DMPO-OOH (Table 2.6). The EPR spectrum of F2BMet after 

irradiation in these conditions resulted in a mixture of DMPO-OOH and a carbon-centered 

localized radical adduct (Figure 2.16 B). When EPR spectra are obtained after illumination of 

the sensitizers in solution of Triton X-100 and in the presence of DMPO the formation of a spin 

adduct between this spin trap and hydroxyl radical (DMPO-OH) is observed, Figure 2.17.  The 

same adduct was detected for Cl2BOH when irradiated in PBS and in the presence of BMPO 

(Appendix I).
18

 The hyperfine constant values for the hydroxyl radical adducts are presented on 

Table 2.6. When BMPO spin trap was used, in combination with Cl2BOH and in PBS, 

irradiation induced the generation of superoxide ions which were trapped and detected as adduct 

BMPO-OOH (Table 2.6). 

We were unable to detect superoxide radical from the direct O2
●- 

trapping with DMPO under 

diode laser irradiation in TritonX-100, the adduct DMPO-OH was observed instead (Figure 

2.17). There are at least two possible explanations for this observation: O2
●-

 may act as a 
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precursor of 
.
OH or the DMPO/BMPO-OOH adduct may be formed, but cannot be observed 

due to its lifetime being too short. 
42

 

A B 

 

 

 

Figure 2.16 A) EPR spectrum of DMPO-OOH observed during illumination of Cl2BHep (A) and F2BMet 

(B) in DMSO solution with DMPO. Top (A, B) - after 10 sec of irradiation at 748 nm, Middle (A) and 

bottom (B) - simulation of EPR spectra, Bottom (A) - in the presence of superoxide dismutase (SOD) and 

after 10 sec of irradiation.
34

 

 

To confirm that the superoxide ion is at the origin of the observed signal, superoxide dismutase, 

a known scavenger of the superoxide ion, and which products are oxygen and hydrogen 

peroxide, was added to the first system in which DMSO was used as solvent, prior to 

irradiation. The generation of the radical adduct DMPO-OOH was inhibited, meaning that 

superoxide dismutase is an efficient scavenger of O2
●-

 and confirms that superoxide ion is, 

responsible for the observation of the DMPO-OOH EPR spectrum for each of the 

photosensitizers.  

The reaction of OH● with the solvent DMSO can generate the radical adduct DMPO-CH3. This 

carbon-centered methyl radical, forms a more stable adduct than the OH● itself.
43

 (Appendix I), 

and could be responsible for the mixed EPR spectrum observed for F2BMet. 

Catalase splits hydrogen peroxide into water and molecular oxygen. Irradiation of sensitizer 

solution in TritonX-100 or PBS where catalase is also present inhibited the generation of 

DMPO-OH adduct. This observation reflects the importance of hydrogen peroxide in the 

mechanism to generate hydroxyl radical. 

In other experimental conditions such as in the presence of catalase, absence of light or when 

the solution was saturated with nitrogen, no EPR signal was detected.  

b) c) 
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A 

 

B 

 

 

 

 

 

 

 

Figure 2.17 A) EPR spectrum recorded (top) and simulated (bottom) of Cl2BOH (50 µM) in PBS and in 

the presence of BMPO (50 mM). B) EPR spectrum observed from a solution of F2BMet (50 µM) in 

TRTX-100 and in the presence of DMPO (50 mM). Bottom – Simulation. 

 

 

 

Table 2.6 EPR hyperfine coupling constants for hydroxyl radical and superoxide radical adducts.  

 Spin adduct  Hyperfine coupling constant [G] 

  aN aHβ aHY 

Cl2BOH
a
 BMPO-OH 14.2 15.8  

 DMPO-OOH 13.3 10.6 1.34 

Cl2BEt DMPO-OH 14.9 14.7  

 DMPO-OOH 13.5 8.37 1.29 

Cl2BHep DMPO-OH 14.9 14.7  

DMPO-OOH 13.5 8.37 1.35 

Cl2BMet2 DMPO-OH 14.9 14.6  

DMPO-OOH 13.6 8.40 1.27 

F2BMet DMPO-OH 14.9 14.6  

DMPO-OOH/DMPO-CH3 14.9 21.3 1.1 

a) Published at
18

. 
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The photogeneration of superoxide ion by bacteriochlorins has been already reported 
44,45

 and its 

subsequent reactions to produce hydrogen peroxide in hydroxylic solvents can be 

mechanistically described as follows: 

3
S  +  O2  →  S(H)

+●
 + O2

●-
 (2.7) 

S(H)
+●

 +  O2
●- 

 →  S(H)
● 

+  HO2
●
 (2.8) 

2O2
●- 

 +  2H
+
   → O2  +  H2O2 (2.9) 

HO2
●
 +  HO2

●
  →  O2  +  H2O2 (2.10) 

HO2
●
  +  O2

●- 
 +  H

+ 
 →  O2  +  H2O2 (2.11) 

The rate of superoxide disproportionation at pH 7.4 is reported as 2.4 × 10
5
 M

-1 
s

-1
  (equation 

2.9) 
46

 and the disproportionation rate of the perhydroxyl radical is 8.1 × 10
5
 M

-1
 s

-1
 (equation 

2.10) 
47

. The oxidation of superoxide by the perhydroxyl radical reflects the fact that HO2
● is the 

more potent oxidant. The sensitizer radical cation is indicated as the proton source in 2.8 but the 

proton may also come from the solvent. When the proton source is the sensitizer, reactions 2.7 

and 2.8 may be concerted in a single proton coupled electron transfer step. 

The subsequent formation of the hydroxyl radical may proceed directly by equations 2.12 and 

2.13, but their rate constants, 16 and 3.7 M
-1

 s
-1 

in water, are much slower than the relatively 

rapid dismutation of the HO2
●/O2

●-
 radicals

48
. 

O2
●-

 + H2O2 → O2 + OH● + OH
-
       (2.12) 

HO2
● + H2O2 → O2 + OH● + H2O       (2.13) 

The Haber-Weiss reaction (equation 2.12) has been observed in gas phase
49

 but is still remains 

controversial in water. An alternative path for bacteriochlorins that may also lead to hydroxyl 

radical via photocatalysis can be described by the following reaction: 

3
Cl2BOH + H2O2 Cl2BOH

+●+ H2O2
●  Cl2BO3

●+ OH● + H2O  (2.14) 

In view of the facile electron transfer from 
3
Cl2BOH discussed above we propose the generation 

of hydroxyl radical through photocatalysis, although hydrogen peroxide is a worse electron 

acceptor than molecular oxygen. It has been suggested that the transient specie H2O2
● is 

accessed as a Franck-Condon transition in a dissociative electron attachment to H2O2 that 

produces OH● and HO

.
50

 Given the very weakly exothermic electron transfer between the 

 
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triplet excited state of Cl2BOH and O2, we expect electron transfer to H2O2 to be endothermic 

and slow. Nevertheless, the relatively long τT of Cl2BOH in water gives us the opportunity to 

investigate photoinduced electron transfer to H2O2. Before addressing the excited state reaction 

with H2O2, it is important to note that aqueous solutions of Cl2BOH are remarkably stable in the 

dark even in the presence of H2O2. We measured the triplet state lifetimes of Cl2BOH in N2-

saturated PBS solutions with various amounts of H2O2. Figure 2.18 shows the reciprocals of the 

triplet lifetimes as a function of [H2O2], from which we estimate the rate constant for electron 

transfer to H2O2, kH2O2=3x10
7
 M

-1 
s

-1
. This is much higher than the rate constants of reactions 

2.12 and 2.13 and makes of photocatalysis the preferred mechanism for hydroxyl radical 

generation by bacteriochlorins. This rate should correspond to an outer-sphere electron transfer 

reaction that is 5 kcal mol
-1

 endothermic,
51

 as expected from the low electron affinity of H2O2. It 

must be emphasized that in aerated solutions electron transfer to H2O2 competes with quenching 

by O2, which occurs with rate constant of 
4
/9kdiff. The production of hydroxyl radical only 

becomes effective with the depletion of O2 from the solution and concomitant accumulation of 

H2O2. 
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Figure 2.18 Decays of triplet Cl2BOH absorption at 790 nm in N2-saturated PBS solutions with the 

following concentrations of H2O2: 0, 1 and 4 mM. The inset shows the H2O2 concentration dependence of 

the reciprocal of the triplet lifetimes. 

 

 
  
The generation of hydroxyl radical is highly favorable in cells according to the Haber-

Weiss/Fenton reaction which consists of an iron reduction step by O2
. - 

(equation 2.15) and an 

OH
.
 generation step through the Fenton reaction 

52
 (equation 2.16). 
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The reduction of the iron metal can be accomplished by superoxide, but also by biological 

reductants such as ascorbate and glutathione.
53-55

 Also, iron is the most likely but not the only 

biological metal able to catalyze formation of hydroxyl radicals.  

Fe
3+

  +  O2
●-

   →  Fe
2+

  +  O2        (2.15) 

Fe
2+

  +  H2O2   →  Fe
3+

  +  OH
- 
 +  ●OH      (2.16) 

Hydroxyl radical is a highly reactive oxidant with a lifetime of about 2 ns in aqueous solution 

and a diffusion radius of 20 Å.
56

 Thus, after generation it will induce damage only to targets in 

its close proximity. In a system where superoxide radical and hydrogen peroxide are generated, 

the reaction of Haber-Weiss/Fenton is more favorable to happen and can result in a clear 

advantage for enhancing photodynamic therapy.
57
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2.3 Conclusions 

We found distinct differences between the photochemistry of the studied halogenated 

tetraphenyl porphyrins, chlorins and bacteriochlorins in ethanol solutions. Reduction of the 

macrocycle results in a remarkable increase in the absorption along the series. Halogenated 

porphyrins and bacteriochlorins show low fluorescence quantum yields but highly efficient 

intersystem crossing to generate very long lived excited triplet states.  

Bacteriochlorins are particularly interesting for photodynamic therapy because of their strong 

absorption in the phototherapeutic window, long lived triplet states and high quantum yield of 

ROS.  

Quenching of the triplet excited states of porphyrins by molecular oxygen was found to follow 

essentially an energy transfer path that leads to the quantitative generation of singlet oxygen. 

Bacteriochlorin excited triplet states, on the other hand, are quenched with a quenching rate 

constant that is >1/9kdiff and ΦΔ tends to be lower than of related porphyrin.
18

 This reciprocal 

combination is regarded as an attribute of charge transfer processes. Singlet oxygen is the main 

reactive oxygen species generated by these dyes, but a significant quantum yield of ~0.2 was 

determined for the generation of other reactive oxygen species by electron transfer. Superoxide 

ion and hydroxyl radicals were found as the result of full electron transfer in hydroxylic 

solvents. Hydroxyl radicals are highly toxic to cells and might enhance the efficacy of PDT.
27,58

 

A photocatalytic pathway for the generation of hydroxyl radical was found for 

bacteriochlorins.
18

 In biological conditions where oxygen depletion after PDT occurs very 

quickly in the tissue, accumulation of H2O2 would favor the generation of hydroxyl radicals. We 

speculate that generation of this ROS may be further enhanced by using ferrous iron as an 

adjuvant to PDT.  

Chlorins, FCMet and F2CMet, have strong absorption in the infrared and show fluorescence 

intensities about 2.7 times higher than that of Foscan.
15

 Moreover, they combine high 

fluorescence quantum yields and, ΦF+ ΦT approaches unity. Considering that they have ΦΔ>0.5 

and ΦF≈0.4, these dyes may exert both functions of a photosensitizer in PDT and fluorophore in 

fluorescence imaging, and be explored as templates for theranostics.
17

 

Porphyrins have high yield of singlet oxygen, which makes them interesting to study as singlet 

oxygen generators in cells. 
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2.4 Materials and methods  

 

2.4.1 Materials 

DMPO, BMPO, phenalenone, methanol, Triton X-100, dimethyl sulfoxide, hydrogen peroxide, 

and ethanol p.a. were obtained from Sigma-Aldrich. MnTPP, TPP and Cl2B were kindly offered 

by the synthesis group of Prof. Mariette Pereira. 

 

2.4.2 Methods 

Determination of absorption coefficients 

Absorption spectra were recorded at room temperature with a Shimadzu UV-2100 

spectrophotometer. Absorption coefficients were determined for photosensitizer samples with 

absorbance values below 1. We found no evidence of sensitizer aggregation at these 

concentrations. Solutions were prepared in ethanol by either dilution of a stock solution or by 

weight each point for the desired concentrations.  

 Fluorescence quantum yields 

Fluorescence spectra were recorded with a SPEX Fluorolog 3.22 spectrophotometer. The 

fluorescence yields were determined by matching the absorption of both sample and reference at 

0.2 at the excitation wavelength, and then the solutions were diluted by a factor of 10 before 

collecting the fluorescence. The fluorescence quantum yields were obtained from the ratio of the 

fluorescence bands of the sample and reference, multiplied by the fluorescence quantum yield of 

the reference, after correction for the difference in the refractive indexes between the sample 

and the reference solutions. The reference employed for porphyrins fluorescence quantum yield 

determination was (TPP, ΦF = 0.1 ± 0.01) and for bacteriochlorins 5,20,15,20-tetrakis(2,6-

dichlorophenyl) bacteriochlorins (Cl2B, ΦF = 0.012 ± 0.02)
11

, was used. Both references, TPP 

and Cl2B were prepared in toluene to avoid any possible aggregation in ethanol, and a correction 

for the refractive index of the solvent was applied.   

Determination of triple state quantum yield by Flash Photolysis 

Transient triplet-triplet absorption was obtained with an Applied Photophysics LKS. 60 flash 

photolysis spectrometer with a R928 photomutiplier from Hamamatsu for detection and HP 

Infinium (500 MHz, 1GSas-1) or Tektronix DPO 7254 (2.5 GHz, 40 GSas-1) oscilloscopes.  
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Ethanol solutions were prepared with absorption of ~0.2 and excitation of the samples was 

achieved at 355 nm with a Nd:YAG laser (Spectra-Physics Quanta Ray GCR 130, 5-6 ns 

FWHM, or EKSPLA PL 2143 A, 30 ps pulse width).  

Triplet quantum yield (ΦT) were determined according to the following equation,  

 

  
     

       
 )            )            ))          )))  

    (2.17) 

 
Where, the superscripts s and ref denote sample and reference, respectively. ΔODT is the pre-

exponential parameter obtained from the monoexponential fitting of the transient triplet decay in 

ethanol εT, is the triplet molar absorption coefficient and is determined from: 

              )   (2.18) 

Being ε is the ground-state molar absorption coefficient. ΔODT,S  are the pre-exponential factor 

obtained from the monoexponential fit of either the triplet absorption or the singlet depletion. 

The values of εT were measure at 445, 450 and 440 nm for F2PMet, F2CMet and Cl2PMet, 

respectively. The singlet depletions were measure at 405 nm for F2PMet and at 410 nm for 

F2CMet and Cl2PMet. The linear range of the laser energy dependence of these ΔOD values was 

used to obtain a more precise measurement of their ratio. Benzophenone (εT = 7300M
-1

 cm
-1

 at 

545 nm and ΦT = 1) was used as reference.
59

 

Triplet energy determination by Photoacoustic Calorimetry 

Photoacoustic calorimetry (PAC) was performed in a front-face cell design.
60

 The sample, 

reference and solvent solutions were flowed separately with a 1 mL min
-1

 rate by a pump (SSI 

chromatographic pump) through a cell of thickness 0.2 mm. They were irradiated at 355 nm 

with a Spectra-Physics Quanta Ray GCR 130 at a frequency of 10 Hz. A small fraction of the 

laser beam was reflected to a photodiode, used to trigger the transient recorder (Tektronix DSA 

601, 1 GSas-1). The photoacoustic waves detected with a 2.25 MHz Panametrics transducer 

(model 5676) and captured by the transient recorder, were transferred to a PC for data analysis. 

In a typical PAC experiment, 200 waves of the sample, reference and of pure solvent were 

recorded and averaged in the same experimental conditions. Four sets of averaged sample, 

reference and solvent waves were used for the data analysis at a given laser intensity, and four 

laser intensities were employed in each experiment. The laser intensities are obtained by 

interposing neutral density filters with transmissions between 25 and 100 %. The measurements 

were made using manganese 5,10,15,20-tetraphenylporphyrin (MnTPP) as photoacoustic 

reference.
12
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Single photon counting 

Fluorescence lifetime was measured at 293 K with a home-built time correlated single photon 

counting (TCSPC) apparatus described in detail elsewhere.
61

 The excitation source consisted of 

a Horiba-Jobin-Yvon pulsed nanoled, λexc=373 nm. Deconvolution of the fluorescence decay 

curves was performed using the modulation function method as implemented by Stricker in the 

SAND program.
62

 

Singlet oxygen quantum yield 

An adaptation of the spectrometer used in flash-photolysis for time-resolved singlet-oxygen 

phosphorescence allowed the detection of singlet oxygen phosphorescence. The modification of 

the spectrometer involved the interposition of a Melles Griot cold mirror (03MCS005), which 

reflects more than 99 %of the incident light in the 400-700 nm range, and Schott RG665 filter. 

A 600 line diffraction grating was mounted in place of a standard one to improve spectral 

resolution and sensitivity in the NIR. The emission was detected using a Hamamatsu R5509-42 

photomultiplier, cooled to 193 K in a liquid nitrogen chamber (products for Research, model PC 

176TSCE005). This equipment allows for spectral identification of the singlet oxygen 

phosphorescence and measurement of the singlet oxygen lifetime in the nanosecond and 

microsecond ranges.  

By extrapolating to time-zero the decays of the singlet molecular oxygen emissions measured in 

ethanol for the reference (phenalenone, ΦΔ= 0.95 ± 0.02)
63

 and for the sensitizers, at a given 

laser intensity, we obtain a relation between emission intensities, that is identical to the relation 

between the singlet molecular oxygen quantum yields. The singlet oxygen quantum yields were 

obtained from fitting the linear dependence between the intensities and the energies of the laser 

pulse. 

Singlet oxygen formation – Rise time determination 

Ethanol solutions were prepared with absorbance close to 0.2. Singlet oxygen phosphorescence 

at 1275 nm was detected by a cooled near-IR sensitive photomultiplier tube, PMT (Hamamatsu 

model R5509-42) by interposing a 1270 nm band-pass filter. Excitation for bacteriochlorins 

(except Cl2BHep) was achieved by using a Ti:Sapphire laser system (Spectra Physics, Tsunami 

and Spitfire), that delivers femtosecond pulses at a repetition rate of 1 kHz that are tunable over 

the range ~765-850 nm. The generation of 750 nm, a exciting wavelength was achieved by 

pumping an optical parametric amplifier (Spectra Physics, OPA-800CF), resulting in linearly 

polarized, femtosecond pulses tunable over the range ~300-3000 nm. A more detail description 

of the setup is given in the section 4.4.2 of Chapter 4. For Cl2BHep excitation was achieved at 
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355 nm by using a picosecond laser (35 ps) EKSPLA model PL2143A and using the same 

detection system. 

Electrochemistry 

Cyclic voltammetry experiments were performed in the Chemistry Department of the University 

of Coimbra by Madalina M. Barsan. 

Experiments were done at 25ºC on a computer-controlled µ-Autolab type I potentiostat-

galvanostat with GPES software (Metrohm-Autolab, Utrecht, Netherlands). The experiments 

were performed in de-aerated electrolytes (nitrogen bubbled through the solvent and then into 

the cell solution for at least 10 min before experiments and then as blanket during experiments). 

The solvents were either dichloroethane or acetonitrile containing 0.1 M tetra-n-

butylammonium perchlorate as supporting electrolyte. A three-electrode system was utilized 

and consisted of a glassy carbon working electrode (1 mm diameter), a platinum wire counter 

electrode, and a saturated calomel electrode (SCE) as reference. The reference electrode was 

separated from the solution in the cell by a fritted-glass bridge filled with the solvent/supporting 

electrolyte mixture.  

Detection of radicals by Electron Paramagnetic Resonance 

Reactive oxygen species generated by irradiation of the sensitizers in solution, form adducts 

with various spin traps more stable than the radicals itself making it possible to detect by EPR. 

EPR spectra were recorded under in situ irradiation with a Hamamatsu diode laser, type 

LA0873, S/N M070301, delivering 100 mW at 748 nm. This diode laser was controlled by a 

ThorLabs 500 mA ACC/APC Laser Diode Controller.  The laser energies were regularly 

checked with an Ophir model AN/2E laser power meter.  

The spin trap used in all the experiments was 5,5-dimethylpyrroline-N-oxide (DMPO). For 

detection of hydroxyl radical solutions of the sensitizer in PBS/TRTX-100 (3/100) were 

prepared. Just before irradiation DMPO (50 mM) was incorporated in solution.  

For detection of superoxide radical, DMSO was used as solvent. The sensitizer (50 μM) was 

previously dissolved in DMSO, and DMPO (50 mM) was added just before measuring.  

The PBS employed in these measurements was previously treated with chelating resin, Chelex 

100, in order to remove any contaminating metal ions that may catalyze the decomposition of 

peroxides.  
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Triplet excited state quenching by H2O2 

A solution of Cl2BOH was prepared in PBS with different concentrations of H2O2 (0 mM to 5 

mM) and was deoxygenated for ~30 min. Flash-photolysis (previously described) was used to 

record the triplet-triplet absorption decays at 790 nm after excitation at 355 nm. 
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3.1 Introduction 

 
As presented before, in the context of the properties of a “perfect” photosensitizer, it is expected 

that high stability towards light, or pH changes, would contribute to an increase in efficiency of 

a sensitizer.
1
 

However, photobleaching it is also a tool to limit the damage to healthy tissue, as it is markedly 

dependent on dose of photosensitizer, and to reduce the sensitivity of patients to light after 

PDT.
2,3

 It is difficult to achieve the right balance between photobleaching and photoaction, but 

with appropriate sensitizer dosages and bleaching rates, injury to normal tissues surrounding the 

tumor can be significantly decreased without compromising treatment efficacy. 

Porphyrins typically undergo slow photobleaching over time. Bonnett et al
4
 compared the 

photobleaching in solution for mTHPP, mTHPC and mTHPBC. mTHPC and mainly mTHPBC 

showed pronounced photodegradation under laser irradiation. The photoproducts were mainly 

dipyrrin derivatives and colorless fragments. Irradiation of mTHPBC resulted also in a small but 

detectable yield of mTHPC. The most stable of these macrocycles, mTHPP, generated 

benzoquinonylporphyrins as photoproducts.
5
 

Bacteriochlorins have shown some advantages and higher photodynamic actives in vivo over the 

first generation of sensitizers and many other clinically approved sensitizers.
6-8

The interest in 

bacteriochlorophyll a derivatives as sensitizers for medical applications, especially PDT, has 

long been explored in view of their promising photophysical and photochemical properties.
9,10

 

However, the use of these or other bacteriochlorins as photosensitizers was discredited because 

they were readily oxidized and difficult to prepare 
11

. Recently, new methods of synthesis have 

been described to yield very stable and tunable bacteriochlorins with high phototoxicity towards 

undesired tissue, reopening the interest in this class of compounds.
8,12-16

 

A number of different factors have been found to influence the reactions leading to the 

photodegradation of sensitizers. These may be related to the structure of the sensitizer (chemical 

modification of substituents or central metals, oxidation potential) or to their environment 

(solvent, presence of quenchers, pH, aggregation, oxygen level). The photodegradation quantum 

yield (Φpb) provides a quantitative measure of the resistance of sensitizers towards light induced 

structural changes.  

The photobleaching quantum yield can be expressed as: 

    
                                                     )

                                 )
 

(3.1) 

The disappearance rate of the photosensitizers under irradiation gives, 
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  (3.2) 

Where the number of photosensitizer molecules is given by n=CVNA, and C is the concentration 

in mol/dm
3
, V the volume in dm

3
 and NA the Avogadro number. The disappearance of the 

number of photosensitizer molecules can be obtained by the decrease in absorption per unit time 

(i.e., per second) 

   
  

  
 

(3.3) 

Thus, 

   
     

  
 

(3.4) 

The initial rate of absorption of the photons is given by the difference between the number of 

incident (I0) and transmitted (It) photons, by unit time 

                   ) (3.5) 

 

Where Ai is the initial absorbance of the medium at the wavelength  of the (monochromatic) 

incident light. The number of incident photons per unit time is determined by the power (W) of 

the light taking into consideration the energy of each incident photon 

 

   
 

    
 

(3.6) 

 

Thus, 

 

   
          )

  
 

(3.7) 

 

 
From these two initial rates, weobtain 
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(3.8) 

 

 

 

The photobleaching quantum yield relies on the fact that it accounts for the fluence rate of the 

light source, the volume of the irradiated solution and the photodecomposition rate constant. 

Indeed, the decomposition rate can also be written as: 

   
  

  
    

  

  
               

 

(3.9) 
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            )
 

(3.10) 

 

In this chapter the photobleaching for a number of halogenated porphyrins and bacteriochlorins, 

is followed by absorption changes in solution. Most of the existing knowledge on 

photobleaching mechanisms and kinetics derive from solution based studies. It is generally 

assumed that the photobleaching of dyes in solution can be directly translated into the behavior 

one would expect in cells. However, this assumption does not take into consideration that cells 

are very complex chemical systems where incorporated dyes can interact and bound to a number 

of targets, such as DNA, proteins, or other cellular components.  

We have incorporated some of the sensitizers tested in solution into mammalian cells and 

followed the fluorescence changes under light irradiation. Upon light irradiation, depending of 

the photosensitizer, reactive oxygen species will be generated, such as singlet oxygen, 

superoxide and/or hydroxide radical. The intracellular diffusion of these ROS will depend on 

their lifetimes, but in the case of porphyrins most of the ROS are singlet oxygen molecules with 

a lifetime of a few microseconds,
17-19

 and diffusion between different environments in the cell is 

possible causing not only damage at the generation site but also in other organelles.  On the 

other hand, bacteriochlorins may generate reactive oxygen species with different reactivities. 

Singlet oxygen and hydrogen peroxide have long lifetimes and therefore higher diffusion range, 

whereas superoxide or hydroxyl radical are short lived and will cause the most damage at the 

generation site.  Thus, the localization of the photosensitizer in the cell can have a major 

influence on the mechanism and efficiency of photodynamic therapy.   

The complexity of the photobleaching mechanisms and PDT efficacy is further increased by the 

fact that photosensitizers will be localized in different spatial domains in a cell where they have 

different lipophilicities, and we can expected to observe changes in their photobleaching 

kinetics due to their different environment. 

Since all the photosensitizers studied in this work have some fluorescence, this feature was used 

to analyze the light induced changes on dye localization, and photobleaching in cells. Confocal 

microscopy, as a more sensitive technique which uses lower fluencies, was used for subcellular 

localization of F2PMet and F2BMet by overlapping the fluorescence of the dyes with the 

fluorescence of specific organelle trackers.  

The intracellular light-induced fluorescence changes for hydrophobic and hydrophilic 

porphyrins and bacteriochlorins was followed by imaging and spectroscopically from directing 

the detected emission light of the photosensitizers from the microscope into a fiber optic 

spectrometer. 
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3.2 Results 
 

3.2.1 Photobleaching of photosensitizers with potential application in 

photodynamic therapy 

The resistance of our dyes to light was tested, their photobleaching quantum yields determined 

and the values obtained are presented on Table 3.1. Light induced modification of 

photosensitizers produced significant changes in the spectral characteristics. Very different 

photobleaching rates and very distinct pathways were observed.  
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Figure 3.1 Light induced changes in the absorption spectra of F2POH in PBS (A) and DMSO (B) when 

irradiated at 508 nm (pulsed laser,  77 mW), of F2CMet (C) and of F2BMet (D) in MeOH/H2O (3/2) after 

irradiation at 653 nm (pulsed laser, 6 mW) and 748 nm (diode laser, 71 mW),  respectively. The arrows 

show the absorption changes during irradiation time. 

 

 

Figure 3.1 shows the absorption spectra of porphyrin F2POH, chlorin F2CMet and of 

bacteriochlorin F2BMet before and after irradiation. After irradiation of F2POH in PBS or 

DMSO different photoproducts are formed. Absorbing products at ~650 nm and 750 nm are 

observed when irradiation is performed in DMSO. In PBS no increase in absorption is observed 

above 450 nm. Under specific conditions of pH, presence of surfactants, temperature and even 
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light porphyrins can aggregate to rearrange their monomeric molecules in parallel units stacked 

face-to-face or edge-to edge to generate J-aggregates, which is normally identified by the 

appearance of red-shifted absorption bands. 
20-25

 Rotomskis et al. have similarly observed the 

formation of red absorbing products after irradiation of haematoporphyrin, haematoporphyrin 

derivative, meso-tetraphenylporphyrin tetrasulphonated, Photofrin II, Photosan-3 and 

dimethoxyhaematoporphyrin in aqueous solution. After chromatography those photoproducts 

were identified as porphyrin, chlorin and bacteriochlorin type of molecules.
23

 The authors 

concluded that the formation of red absorbing products is favored by the presence of sandwich 

type structures and suggested a mechanism of light-induced reduction of porphyrins. However, 

to our knowledge light-induced aggregation and/or reduction of porphyrins in DMSO has not 

been observed before.  

Irradiation of F2BMet at 748 nm causes a decrease in all absorption bands characteristic of this 

dye. A slight increase is recorded at 404 and 652 nm, typical absorption bands of chlorins. The 

closely related chlorin F2CMet could be a possible photoproduct. If this is true, we can conclude 

that not all of the photobleached bacteriochlorin was converted into chlorin (from the molar 

absorption of each dye and considering the absorption changes observed, the percentage of 

bacteriochlorin that is converted into chlorin can be determined and is smaller than the 

percentage of bacteriochlorin bleached). The observation of isosbestic points in the absorption 

spectrum along with the irradiation suggests that a single reaction is responsible for the 

degradation of F2BMet. Similar behavior was observed to all other bacteriochlorins studied 

(Appendix II).  

Light induced irradiation at 653 nm of F2CMet (Figure 3.1 C) in MeOH/PBS solution resulted 

in decay of all the absorption bands. F2CMet suffers photomodification with the appearance of a 

new absorbing product at ~640 nm. Most probably the new absorbing photoproduct is also a 

chlorin.
5
 

The photobleaching kinetics was followed for a number of bacteriochlorins and monitored by 

the light induced changes in their near-infrared absorption band (~748 nm), Figure 3.2. First 

order kinetics was observed for all bacteriochlorins studied (data shown in Appendix II). For 

porphyrin, F2POH and chlorins, F2CMet or FCMet no clear photobleaching kinetics was 

identified. The formation of absorbing photoproducts with absorption bands close/under the 

bands of the photosensitizers might be pointed as a possible explanation.  

Photodecomposition quantum yields, Фpb, were determined and are presented in Table 3.1. For 

bacteriochlorins, Φpb values were calculated using equation 10. Since, no first-order rate 

constants were obtained for porphyrin, F2POH and chlorins, FCMet and F2CMet, Фpb was 

determined by using equation 8 instead and considering the absorption change that occur for the 
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first bleaching points (with less contribution of photoproducts generated at the same 

wavelength). 
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Figure 3.2 Photostability kinetics of halogenated bacteriochlorins in aerated methanol (Cl2BHep, 

FBMet2, FBMet) solutions and PBS (Cl2BOH) solution. Irradiation was achieved with a 748 nm diode 

laser with 40 mW. 

 

Our results follow the same trend as observed by Bonnett et al. 
4
 for a series of porphyrin, 

chlorin and bacteriochlorins. Porphyrin, F2POH, shows higher stability followed by the chlorins, 

F2CMet and FCMet, and finally by the bacteriochlorins. Nevertheless, the photostability of our 

halogenated bacteriochlorins are one to three orders of magnitude higher than those other 

bacteriochlorins, such as TOOKAD
26

 or mTHPBC
4,27

. Photobleaching quantum yield of 

Cl2BHep is quite remarkable (Фpb= 0.4×10
-6

), exceeding the stability of any other known 

bacteriochlorin, better than THPP (Фpb=3.8×10
-6

), and comparable to that of phtalocyanines.
28,29

 

From Figure 3.2, we can easily see that the photostability of the photosensitizers can be tuned 

and Фpd is highly dependent of the solvent used. The following trend for photobleaching 

quantum yield was found: H2O>MeOH/H2O>MeOH.  Interesting to note that photobleaching in 

DMSO occurs faster than in any of the other solvents. As a polar aprotic solvent, DMSO has 

shown to appreciably increase the rates of many reactions.
30

 We found that, not only that the 

photobleaching rate on DMSO is faster but also that the photobleaching products generated in 

this solvent are different from PBS/MeOH.
5
 From the irradiation of F2POH in DMSO two new 

bands at ~660 and 750 nm are observed, suggesting the generation of photoproducts that 
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resulted from the photomodification of the porphyrin. On the other hand, in PBS the breakage of 

the porphyrin structure is the most likely option.
28

 

Similar dependence was also observed by Bonnett et al. in MeOH and MeOH/H2O
4
 and by 

Spikes when studying the photobleaching of haematoporphyrin, Photofrin, tetraphenylporphyrin 

tetrasulfonic acid and uroporphyrin in different organic solvents and buffered aqueous 

solutions.
31

 

 

 

 

Table 3.1 Photobleaching quantum yields of halogenated porphyrins, chlorins and bacteriochlorins in 

different solvents.  

 Фpb×10
-6

 

 
Solvent PBS 

MeOH/ PBS 

(3/2) 
MeOH 

 

DMSO 

 

P
o

rp
h

y
ri

n
s 

F2POH 4.2 ± 0.7   65.7 ± 7 

Cl2PEt  6.5 ± 1.1   

C
h

lo
ri

n
s 

  
  

  

F2CMet 
 

1.9 ± 0.1
a
  

 

 

FCMet 

  

 

3.3 ± 0.2
a
  

 

B
ac

te
ri

o
ch

lo
ri

n
s 

Cl2BHep   0.4 ± 0.2  

Cl2BEt  6 ± 2   

Cl2BOH 152 ± 39    

ClBOH 284 ± 28 296 ± 59 35 ± 1.8  

ClBEt  82 ± 7.4   

F2BOH 203 ± 52    

F2BMet  10 ± 0.2 
b
 0.69 (EtOH) ± 0.07 22 ± 1 

FBMet  81 ± 6.5 17 ± 0.7  

FBMet2   12 ± 0.3  

a) in MeOH/H2O (3/2), b) from ref 32. Errors estimated from the average of at least 2 experiments or from 

the monoexponential fitting from the kinetics, whichever was higher.  
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Table 3.2 Photobleaching quantum yields of commercial photosensitizers and of mTHPP and mTHPB 

recalculated from 
33

.   

 

 

 
Фpb×10

-6
 Solvent 

C
o
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m

er
ci

al
 

p
h

o
to
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n

si
ti

ze
rs

 
Foscan ®

4,27
 33 PBS/MeOH 

Photofrin®
28,34

 55 PBS 

Tookad®
26

 1800 MeOH 

O
th

er
s 

mTHPP
28

 3.8 
 

PBS/MeOH 

mTHPBC
4,27
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Figure 3.3 Absorption spectra of Cl2BOH dissolved in a buffered aqueous solution at different pH values.  

Data were recorded as a function of the elapsed time of irradiation at 750/40 nm (Xenon lamp, 8.2 

mW/cm
2
). A)  Cl2BOH at pH 7 over an irradiation time of 165 min, B) Cl2BOH at pH 5 over an 

irradiation time of 177 min and C) Cl2BOH at pH 10 over an irradiation time of 145 min. Arrows indicate 

the direction of irradiation-induced spectral changes. 
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Different photoproducts are also observed when the irradiation of bacteriochlorins is followed at 

different pH values (Figure 3.3).  

 

Table 3.3 Photobleaching quantum yield dependence with pH for F2POH and Cl2BOH.  

 pH Φpb×10
-6a

 Solvent 

F2BOH 

5 1298 ± 78 

PBS 

 

7.4 189 ± 10 

10 157 ± 9 

Cl2BOH 

5 707 ± 42 

7.4 78 ± 4 

10 79± 4 

                                a) Standard errors determined from the monoexponential fitting of  

    the kinetics decays. 

 

In an acidic solution (pH 5) the sensitizers are less stable than at pH 7. A significant increase in 

absorption at ~410 nm and ~650 nm is observed at any pH value studied. At pH 10 the 

bleaching rate is slower for F2POH and for Cl2BOH we found no change in the photobleaching 

rate when compared to pH 7.  The light induces spectral changes at pH 10 that are similar to the 

ones observed at pH 7. The kinetics variability under different pH conditions fits well with our 

proposed model for hydroxyl radical generation, on Chapter 2. The rate of superoxide 

disproportionation (equation 3.11) is higher at pH 5 promoting the reaction in the direct way to 

generate more hydrogen peroxide and consecutively more hydroxyl radical (equation 3.12). At 

pH 10 we find a slight decrease in the photobleaching quantum yield for F2BOH and no changes 

in the kinetics for Cl2BOH. The excess of OH
-
 can neutralize H

+
 and reduce the bleaching rate 

because less H2O2 will be produced. With Cl2BOH the excess of OH
-
 might still not be enough 

to observe a significant effect on the bleaching rate. 

2O2

.- 
 +  2H

+
   → O2  +  H2O2       (3.11) 

O2

.-
 + H2O2 → O2 + OH

.
+ OH

-
       (3.12) 

Takeushi et al. reported that by lowering the energy of the HOMOs strongly disfavors oxidative 

destruction of the macrocycle, and should contribute to increase the stability with respect to 

oxidation.
35

 Incorporating halogen atoms, such as F or Cl atoms in the ortho-positions of the 

phenyl rings should raise the oxidation potential 
36

 of the photosensitizer and provide extra 

stability towards degradation. We do observe an increase in photostability on our dyes 

compared to non-halogenated photosensitizers such as Photofrin,
28,34

 Foscan
4,27

 and Tookad.
26

 

The nature of the substituents can also influence Φpb. We also observe a steric protection of the 
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photosensitizers to bleaching when bulky substituents are introduced in the phenyl ring, as 

observed from FBMet2 to Cl2BHep. 

 

3.2.1.1 Mechanistic considerations 

The photo-oxygenation processes which lead to photobleaching are expected to be complex. No 

major mechanistic studies were performed to understand the photobleaching of these dyes, 

although there is some evidence to support a Type II (singlet oxygen) photobleaching 

mechanism for F2POH and for chlorins (F2CMet and FCMet) based on their high singlet oxygen 

quantum yields. Bacteriochlorins, on the other hand, generate additional reactive oxygen species 

which most certainly contribute to enhance their bleaching rates. The contribution of a Type I 

reaction was further investigated by Dabrowski et al.
6
 by following the photobleaching of 

ClBOH in PBS/MeOH and in the presence of sodium ascorbate, an antioxidant. A dramatic 

increase in photostability for this dye was observed in the presence of this antioxidant, 

suggesting the participation of the hydroxyl radical in the photobleaching mechanism.
6
 When 

the photobleaching of our bacteriochlorins is held in methanol, known to be a radical scavenger, 

a decreased in the photobleaching quantum yield is registered compared to conditions that water 

is present. The faster photobleaching of the bacteriochlorins in PBS can be attributed to the 

generation of highly reactive oxygen species as hydroxyl radical, that we have shown to be 

detected under similar conditions and in the present of a spin probe by EPR (Chapter 2). 
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3.2.2 Subcellular localization of porphyrins and bacteriochlorins in cells: 

Photobleaching, relocalization and photomodification. 

Lipophilicity, often correlated to the bioactivity of drugs, is a factor to predict the ability of 

molecules to cross cellular membranes. It can be quantified by the partition coefficient between 

an organic solvent and water, log Pow, which is defined as the concentration ratio between these 

two phases when the solute and the solvent are in equilibrium. 
37

 

 The partition coefficient of the photosensitizers (Table 3.4) show that sulphonated tetraphenyl 

macrocyles have a higher affinity to aqueous environment (Pow< 1) while sulphonamide 

photosensitizers with high partition coefficient values have more propensity to diffuse over 

membranes and localize in a more lipophilic environment.  

 

Table 3.4 Partition coefficient values of the photosensitizers studied in this work, values obtained from 

references 
38

 and 
12

.  

 

 
 log POW 

P
o

rp
h

y
ri

n
s 

ClPEt 2.23  

ClPOH -2.71  

Cl2PEt 1.84  

Cl2POH -1.80  

FPMet 2.33  

FPOH -2.49  

B
ac

te
ri

o
ch

lo
ri

n
s 

Cl2BOH -1.69  

Cl2BEt 1.83  

ClBOH -1.70  

ClBEt 2.50  

F2BOH -1.44  

F2BMet 1.9 

FBMet 2.7 
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Hydrophobic photosensitizers 

 

F2PMet and F2BMet 

 

 

 

Figure 3.4 Intracellular distribution of F2PMet (5 μM) in A-549 cells. Left panel - Fluorescence of 

F2PMet and overlap image with ER-tracker, Mito-tracker and Lyso-tracker.  Arrows indicate the analyzed 

area for topographic construction. Right panel - Topographic profiles. 
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Confocal microscopy was used to determine the subcellular localization of F2PMet by 

overlapping the fluorescence image of the photosensitizer with specific organelle trackers for 

ER (endoplasmatic reticulum), mitochondria and lysosomes.  

The fluorescence micrographs obtained for F2PMet (Figure 3.4) reveal a diffuse pattern of dye 

localization throughout the cytoplasm with a more intense fluorescence in the perinuclear area 

of the cell. According to the topographic analysis their subcellular localization is more 

coincident with the endoplasmatic reticulum and mitochondria while overlapping with the lyso-

tracker is almost nonexistent. Taking into account the high affinity of F2PMet to interact with 

cell membranes and to be localized in a lipid environment, binding to Golgi apparatus should 

not be excluded. 

 

    
 

    
 

 
 

 
Figure 3.5 Time-lapse fluorescence images of F2PMet (5 μM) incubated in HeLa cells under light 

irradiation at 420/40 nm (100 W broadband Xe lamp) and emission recorded at 650/40 nm. Bottom panel- 

4.8 s 48 s 

96 s 480 s 
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Bright field image of HeLa cells incubated with F2PMet before irradiation. The inset corresponds to the 

time the cells were exposed to light. 

 

From the continuous incidence of light in the cells we can observe an intensification of the 

fluorescence and the appearance of a punctate fluorescence in the cytoplasm (Figure 3.5). An 

increase in the fluorescence intensity has been previously observed for mTHPC
39

, hypericin 
40

 

and several phtalocyanines 
41

, upon irradiation. The results were interpreted as a possible 

photoinduced disaggregation/relocalization of the sensitizers but in none of these sensitizers the 

light induced changes on the intracellular fluorescence evolved to a punctate profile. From 

comparing the contrast image of the same group of cells before irradiation (Figure 3.5, bottom 

picture) and the fluorescence image after irradiation we can observe that the punctate 

fluorescence is localized in defined round structures (Figure 3.5) present in the cytoplasm of the 

cell. Similar morphology, with distinct granules in the cytoplasm of the cell, was observed for 

derivatives of bacteriochlorin p on HeLa cells and for derivatives of chlorin p6 in A549 cells.
42-

44
 The authors have associated these vesicles to lipid droplets, by co-staining the cells with Nile 

Red. We have not used this tracker in our subcellular co-localization, since no evidence of the 

localization of the sensitizers in these granular structures was evident before irradiation. Other 

possibilities such as dye aggregation in the cytoplasm should not be excluded. 

The lipid droplets are able to accumulate large amounts of dye photoproduct. At high 

concentrations the already low fluorescence of F2PMet will be quenched, and even if some 

fluorescence is still generated in these structures could be under the detection limit of our 

system, which could explain the lack of fluorescence initially.  

The fluorescence spectra recorded from cells reveals two characteristic porphyrin bands at 672 

and 702 nm. Interesting, the ratio between the fluorescence intensity of the Q(0,0)/Q(0,1) bands 

is opposite to what is observed in solution. Continuous irradiation results in a ~20 nm shift of 

the first Q(0,0) band, which correlates in time with the appearance of the fluorescence from the 

granulated spots in the cytoplasm (Figure 3.5). This behavior was reproducible, although the 

intensity of this band depends on the group of cells being analyzed. In most of the cases the 

intensity of the band increases with irradiation, nevertheless a decrease and/or stabilization of 

the fluorescence (Figure 3.6) were also registered for some group of cells. Because the 

fluorescence is collected from an area which covers a group of cells in the focal plane, the 

different events that occur simultaneously as the cells are under light irradiation, such as 

bleaching, relocalization and/or dye leakage, will contribute to the spectra construction.  
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The increase in the first emission band could be explained by the generation of a photoproduct 

more fluorescent than F2PMet. A chlorin closely related to F2PMet as F2CMet has a 

fluorescence quantum yield that is about 7 times higher that of F2PMet. The photoreduction of 

porphyrins is not documented in such conditions, however, recently Friaa et al.
45

 have shown 

that under irradiation m-THPC (Foscan) is reduced to its anion radical in the presence of Trolox, 

a standard oxidant.  

Relocalization of the porphyrin or photoproduct into these granular structures should be also 

considered. Nevertheless is difficult to justify how the sensitizer would move in the cytosol (a 

hydrophilic area) to accumulate preferentially in these structures.  
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Figure 3.6 Left -Time-lapse fluorescence spectra of F2PMet (5 μM) in HeLa cells. Excitation at 420/40 

nm and emission recorded above 600 nm. Right- fluorescence kinetics followed at 701 nm and 672 nm 

(data averaged for at least 5 different groups of cells). Arrows indicate the direction of irradiation-induced 

spectral changes. 

 

The subcellular localization of bacteriochlorin, F2BMet, in A-549 cells was determined using 

the same protocol and trackers as used for F2PMet. The fluorescence images show a distribution 

profile of F2BMet in the endoplasmic reticulum and in the mitochondria, similar to F2PMet 

(Figure 3.7).   

Under prolonged irradiation, the fluorescence of F2BMet fades and a punctate pattern is 

revealed (Figure 3.8). Once again the fluorescence observed comes from structures similar to 

the ones observed on the bright field image on Figure 3.5. Hamblin and co-workers
46

 observed a 

similar clustered profile at specific sites in the cells when studying the subcellular localization 

of a group of novel bacteriochlorins. The authors have also ruled out the possibility of dye 

aggregation because otherwise inter-bacteriochlorin interactions would result in fluorescence 

quenching.  
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Figure 3.7 F2BMet (5 μM) subcellular localization in A-549 cells. Left panel - Confocal overlay pictures 

of A-549 cells double-stained with F2BMet and ER, Lyso or Mito tracker. Arrow indicates the analyzed 

area for topographic construction. Right panel - Topographic profiles. 
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Figure 3.8 Fluorescence microscope images of F2BMet (10 μM) incubated in HeLa cells, under elapsed 

irradiation tine at 500/40 nm (100 W broadband Xe lamp), and with emission at 750/40 nm. The inset 

corresponds to the time the cells were exposed to light. 
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Figure 3.9 Left -Time-lapse fluorescence emission spectra of F2BMet (19 µM) in HeLa cells. 

Fluorescence spectra recorded after excitation at 425/40 nm and emission over 600 nm. Right- 

fluorescence kinetics followed at 749 nm and 658 nm (data averaged for 5 different groups of cells). 

Arrows indicate the direction of irradiation-induced spectral changes. 

 

Following the fluorescence spectrum recorded under light irradiation, two emission bands are 

observed at the minimum light exposure of 1s, Figure 3.9, with maxima at 658 and 749 nm. 

Light induces bleaching of the bacteriochlorins manifested by a fast decrease of its band at 749 

nm, which is concomitant with an increase of fluorescence at 658 nm. The most probable 

1.6 s 16 s 

32 s  96 s 
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bleaching photoproduct is a chlorin. The emission band of the bacteriochlorin is shifted about 

~3nm to the emission maximum observed in solution. 

Compared to F2PMet, F2BMet has similar subcellular localization and similar behavior under 

light irradiation. However, the photostability of the dyes are clearly different: the 

bacteriochlorin bleaches faster than the porphyrin, but a quantitative assessment would require 

the knowledge of cellular concentration of these photosensitizers and correction for the intensity 

of the incident light absorbed. 

 

 

Cl2PEt and Cl2BEt 

 
 

The detection of fluorescence from cells incubated with chlorinated porphyrin or 

bacteriochlorins was less readily detectable. Chlorinated porphyrin or bacteriochlorins have 

very low fluorescence quantum yield, about a third of that from difluorinated sensitizers 

(Chapter 2), and no fluorescence spectrum was recorded. 

The fluorescence images show initially a punctate fluorescence pattern for Cl2PEt in HeLa cells 

which under continuous irradiation gets diffuse over the cytoplasm (Figure 3.10, top panels).  

Cl2BEt (Figure 3.10, lower panel) revels a more diffusive fluorescence all over the cell with 

higher intensity in the periphery of the nucleus. The subcellular localization was shown to be 

preferably in the ER of the cells.
6
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Figure 3.10 Time-lapse fluorescence microscope images of Cl2PEt (top panel) and Cl2BEt (lower panel) 

incubated in HeLa cells with a concentration of 10 μM, under irradiation at 425/40 nm and 500/40 nm 

(100 W broadband Xe lamp), and with emission at 650/40 nm and 750/40 nm, respectively. The inset 

corresponds to the time the cells were exposed to light. 

 

 

 

Hydrophilic photosensitizers 

 

F2POH and F2BOH 

 
The light induced changes on the fluorescence images and spectral profile in HeLa cells are 

presented on Figures 3.11 and 3.12 for F2POH and on Figures 13 and 14 for F2BOH. Initially a 

granular fluorescence pattern is observed for both the sensitizers in the cytoplasm of the cells. 

Under light irradiation a diffusion pattern of fluorescence all over the cell with some 

extracellular leaking, and preferential accumulation of the dye in the nucleus is observed for 

F2POH. A similar behavior and fluorescence distribution pattern is observed for other 

hydrophilic dyes as TPPS or TMPyP and their subcellular localization has been attributed to 

lysosomes.
47,48

 The preferential accumulation in the nucleus was suggested by Patito et al
47

 to 

occur because of an association of the photosensitizer to proteins which translocate to the 

nucleus under oxidative stress conditions. Not knowing exactly the subcellular location of 

F2POH, it is nevertheless an educated guess to assume that it is the lysosomes and the loss of the 

punctate fluorescence may be related to lysosomal/endosomal photodamage.  

The fluorescence changes under irradiation on HeLa cells incubated with F2BOH (Figure 3.13) 

are different from what was observed for F2POH. The fluorescence fades very quickly not being 

possible to observe any dye relocalization. This is consistent with the higher photobleaching 

quantum yield of F2BOH in solution. 
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Figure 3.11 Fluorescence images of HeLa cells incubated with F2POH (10 μM). Time-lapse irradiation 

with excitation at 420/40 nm and emission at 650/40 nm (100 W broadband Xe lamp). The inset 

corresponds to the time the cells were exposed to light. 
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Figure 3.12 Light-induced fluorescence changes of F2POH (10 μM) incubated in HeLa cells, with 

irradiation at 420/40 nm and emission above 600 nm with a 100 W Xe lamp. Left panel – fluorescence 

spectra, right panel - fluorescence intensity analyzed as a function of time at 654 and 705 nm, for an 

average of 5 groups of different cells.  

 

 Following the light-induced changes in the fluorescence spectra of F2POH (Figure 3.12), we 

can observe an increase in the fluorescence intensity of both emission bands Q(0,0) band and 

Q(0,1) band. 

 Although as the first one increases continuously over time the last band fades after ~25 s of 

irradiation. This behavior can be associated to the relocalization of the dye and change in the 

environment, or to the generation of a more fluorescence photoproduct with emission at ~ 650 
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nm (as it was possible to occur to F2PMet). The second hypothesis would also explain the 

change in the relative intensities of the two emission bands. 

 

     
 
Figure 3.13 Light induced fluorescence changes on HeLa cells incubated with F2BOH (10 µM). 

Fluorescence images recorded after excitation with a Xe lamp (100 W broadband) at 500/40 nm and 

emission at 750/40 nm for Cl2BOH. The inset corresponds to the time the cells were exposed to light. 
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Figure 3.14 Light induced changes on fluorescence in HeLa cells incubated with F2BOH (10 μM) with 

excitation at 500/40 nm and emission recorded above 600 nm. Left panel - fluorescence spectra, right 

panel - fluorescence analysis over time at the emission maximum of 749 nm and at the photoproduct 

maximum at 658 nm (data averaged for 5 different groups of cells). 

 

From the fluorescence spectra on HeLa cells incubated with F2BOH a typical band of this 

bacteriochlorin at 749 nm is observed (Figure 3.14). Following the light induced changes on the 

fluorescence spectra, the fluorescence maximum at ~749 nm of F2BOH fades as observed from 

the microscope images. The fluorescence intensity of the band centred at 658 nm, typical of a 

chlorin and that most probably corresponds to F2COH, increases during the first 18 s of 

irradiation thus and further irradiation causes its photobleaching.  It is known that F2COH is 

present as a contamination in the samples and comes from the synthesis and that as we pointed 

before are expected to have higher fluorescence quantum yield than the corresponding 

porphyrin. 
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Cl2POH/Cl2BOH 
 

The substitution of the two fluorine atoms in the phenyl ring of the porphyrins or 

bacteriochlorins by two chlorine atoms in Cl2POH and Cl2BOH does not introduce many 

changes on the initial fluorescence profile observed in the cells. The same applies to the 

behavior under irradiation, where Cl2POH fluorescence diffuses all over the cell under 

irradiation, while Cl2BOH fluorescence intensity quickly fades over time.  

 

     
 

 

     
 

 
Figure 3.15 Light induced fluorescence changes on HeLa cells incubated with: top panel- Cl2POH (10 

µM) and bottom panel - Cl2BOH (10 µM). Fluorescence images recorded after excitation with a Xe lamp 

(100 W broadband) at 425/40 nm and emission at 650/40 nm for Cl2POH and excitation at 500/40 nm and 

emission at 750/40 nm for Cl2BOH. The inset corresponds to the time the cells were exposed to light. 

 

 
The irradiation time required to collect the fluorescence pictures also leads to oxidative stress in 

the cells. Just based on the contrast images, necrosis was recognized as the mechanism of cell 

death under our experimental conditions. This evaluation was based on immediate and massive 

production of surface evaginations (bubbles) clearly visible by brightfield images after 

irradiation of the photosensitizer and by fluorescence when sulphonated dyes were irradiated. 
49

  

Nuclear and plasma membrane deformation (defined nucleus) developed rapidly and most of the 

blebs detach concomitantly from the cell membrane into the medium (Figure 3.16).  
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Figure 3.16 Bright field images of HeLa cells incubated with Cl2BEt (10 µM) before (left panel) and 

after 290 s of irradiation (right panel) with a Xe lamp (100 W broadband) at 500/40 nm. 
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3.3 Conclusions 
 

We have examined the photobleaching behavior, in solution and in cultured cells, of a group of 

sensitizers. 

Solution studies reveal that photobleaching is highly dependent on the solvent used and pH of 

the solution. Chlorinated dyes have shown a relatively higher photoresistance to degradation 

over the fluorinated. Increasing the size of the side chain in the phenyl substituent of the 

macrocycle has shown to contribute for some steric resistance to degradation by light. 

Halogenated sulphonamide bacteriochlorins revealed a photostability without precedents and 

can be as stable as some chlorins, while retaining some amphilicity.  

By establishing the intracellular localization of a photosensitizer we can predict the initial PDT 

targets. It is interesting to note that we found similar intracellular distribution pattern for 

sensitizers with similar octanol/water partition coefficients. An exception was Cl2PEt with a 

punctate pattern observed initially, but was not observed for other hydrophobic sensitizers.  

The sulfonamide sensitizers have a preferential accumulation in the endoplasmic reticulum of 

the cells, but some localization in the mitochondria is also possible.
6
  Some clinical 

photosensitizers that are also localized in the ER, such as Foscan or Photofrin®, have shown to 

trigger an apoptotic response after the generation of ROS.
50,51

  Most of these photosensitizers 

that cause photochemical damage to the ER have shown excellent in vitro PDT efficacy.
52

 

Photosensitizers localized in the lysosomes have shown to induce cell death via the release of 

lysosomal enzymes in the cytosol, or via the relocalization of the sensitizer after irradiation to 

other targets.
53

 It has been reported for phtalocyanines and Nile blue derivatives that damage of 

the lysosomal membrane damage does not seem to cause cytotoxicity to the cells.
54

 In some 

cases, apoptosis induced by photosensitizers localized in lysosomes was reported, but this was 

found to be a very slow process.
55

 If the sulphonic photosensitizers studied are indeed localized 

in the lysosomes, this could contribute to explain their lower efficacy in vitro and in vivo, when 

compared to the sulphonamide ones.
7,56

 Based on our results, the main differences found 

between these sensitizer and that might dictate their PDT efficacy are: photostability (higher for 

sulphonamide dyes than in the sulphonated ones), different subcellular localization (different 

primary site of action) and light-induced fluorescence changes (relocalization increases the 

number of action sites).  

Most of the light induced changes observed in the fluorescence of the dyes in the cells occur in 

the first seconds of exposure to light. This may be a consequence of the generation of reactive 

oxygen species which cause degradation of the sensitizer itself and/or the degradation of 
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molecules in the intracellular environment and that immediately surround the sensitizer.  With 

this in mind, it is important to ascertain the subcellular localization of the photosensitizers to 

recognize the primary site of action, though no predictions on the PDT efficiency of these 

sensitizers should be based on this premise since under light irradiation the sensitizer may 

relocalize to new targets or is photodegraded into new reactive photoproducts. 
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3.4 Materials and methods 

 

3.4.1 Materials 

F2POH, F2CMet, FCMet, Cl2BHep, Cl2BEt, Cl2BOH, ClBEt, ClBOH, F2BMet, FBMet2, FBMet, 

F2BOH, were kindly offered by Luzitin S. A. 

Methanol (MeOH) and dimethyl sulfoxide (DMSO) were used as received from Sigma-Aldrich.  

 

3.4.2 Methods 

Photodecomposition quantum yields 

A 3mL sample in a quart cuvette of the photosensitizer dissolved in a given solvent was placed 

in front of the irradiation source.  The loss of volume by evaporation during irradiation was 

compensated by weight, adding the necessary methanol volume to the sample before each time 

interval. Absorption spectra were recorded at different times from the sample that was 

constantly stirred during irradiation.  The photodecomposition quantum yields were obtained 

according to equation 8 or 10. Absorption spectra were recorded with spectrophotometers 

Shimadzu models 2100 and 2450.  

Phosphate buffer saline was prepared as 137 mM NaCl, 2.7mM KCl, 10 mM Na2HPO4, and 1.8 

mM KH2PO4, pH=7.  

Hamamatsu (max power 120 mW) and Sacher (max power 40 mW) diode lasers at 748 nm were 

used to irradiate bacteriochlorin solutions. Irradiation of porphyrin (F2POH) and chlorins 

(F2CMet and FCMet) was achieved by a pulsed laser OPO EKSPLA model PG/122/SH (ca. 

6ns) pumped by a Nd:Yag laser EKSPLA model NL301G at 508 nm and 653 nm, respectively. 

A power meter (power meter detector 818P) was used to quantify the incident photon flux. 

Photobleaching quantum yields were determined for bacteriochlorins by equation 10 and by 

equation 8 for porphyrins and chlorins. 

The photobleaching quantum yield of Cl2BOH solutions at pH 7, 5 and 10 were irradiated at 

750 nm with a Xe lamp. A 40 nm bandpass filter centered at 750nm was interposed between the 

lamp and the sample. The solution was continuously stirred under irradiation. Photobleaching 

quantum yield was determined by equation 10. 
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Intracellular distribution  

The intracellular distribution of bacteriochlorins F2BMet and porphyrin F2PMet was assessed in 

A-549 cell line. A-549 cells were plated at a density of 15×10
 3 

cells per well in eight-well slides 

(IBIDI, Germany) and were kept at 37 ºC in a 95 % atmospheric air and 5% CO2 humidified 

atmosphere, for 24 h. After being washed with fresh medium, the cells were incubated in the 

dark with 5 µM sensitizers, diluted in cell medium, for ≈18 h, at 37ºC in a CO2 incubator (5 % 

(v/v) CO2 in air). After  being washed with HBSS/Hepes buffer, the cells were incubated with 

specific intracellular organelle probes: 100 nM of Mito-tracker green,  1 mM ER-Tracker green, 

75 nM Lyso-Tracker green (Molecular Probes, Invitrogen Life Technologies), diluted in 

HBSS/HEPES buffer. After ~ 30 min incubation, at 37 ºC, in the dark, the cells were washed 

with HBSS/HEPES buffer and the slide was transferred to the microscope stage. Cells were 

visualized under a confocal microscope LSM 510 Meta; Carl Zeiss, Jena, Germany) with a 63× 

oil immersion objective (Plan-Apochromat, 1.4 NA Carl Zeiss). Images from the porphyrin and 

bacteriochlorin were obtained by exciting at 514 nm using an argon laser (45 mW) and 

fluorescence was detected after passage through a long-pass filter 575 nm and 700 nm, 

respectively. To obtain the fluorescence profile of the fluorescence probes a helium-neon laser 

(5 mW) was used as light source at 633 nm for visualization of cell morphology. 

Light induced fluorescence changes in HeLa cells 

HeLa cells, a cervical cancer subline, was used for single cells experiments. Cells were grown in 

Eagle´s Minimum essential medium (EMEM, Sigma, Deutschland) supplemented with 2 mM L-

glutamine (Sigma), 1 % nonessential aminoacids (Sigma), 1 % penicillin-streptomycin (Sigma) 

and 10 % fetal calf serum (Sigma). The cells were maintained at 37 ºC in a humidified 5 % CO2 

atmosphere and platted when 80 % of confluence was achieved.  After washing them with 

phosphate buffered saline (PBS) and trypsinizing (0.25 % trypsin, Sigma), they detached from 

the bottom of the cultivation flask. The cell suspension was collected and centrifuged (2 min, 

1000 rpm) washed with cultivation medium, re-suspended in the cultivating medium and plated 

onto poly-D-lysine coated cover slips in 12 well plates. The cell density can vary from 

experiment to experiment. After seeding, the cells were left to settle and restart growth for at 

least 24 h before the sensitizer was incubated.  

Hydrophilic sensitizers: F2POH (10 µM), F2BOH (10 µM), Cl2POH (10 µM), Cl2BOH (10 µM) 

and hydrophobic sensitizers: F2PMet (10 µM), F2BMet (10 µM), Cl2PEt (10 µM), Cl2BEt (10 

µM) were added to the cell medium, and left to incubate for 24 h.  

After incubation cells were washed with PBS and the cover slip was transferred to a microscope 

slide, and visualized under an Olympus IX70 inverted microscope. The irradiation of the entire 

cell and surroundings was achieved by a steady-state Xe Lamp using interference filters to 
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select the appropriate excitation wavelength. Light emitted by the sample was detected through 

interference filters using a CCD camera (Evolution QEi controlled by ImagePro software, 

Media Cybernetics) placed at the image plane of the microscope. For bright-field images a 

tungsten lamp as an accessory of the microscope was used.  

For the detection of fluorescence spectrum from cells, the emitted light was collected by the 

microscope objective and then coupled onto an optical fiber connected to a spectrometer and 

CCD detector (USB 2000-FLG Ocean Optics, Florida, USA). 
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4 
Detection of reactive oxygen species in mammalian cells 
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4.1 Introduction 
 

Over the years, a number of different and sophisticated optical techniques have been developed 

to detect singlet oxygen from bulk ensembles. Only more recently singlet oxygen direct 

detection from single mammalian cells was demonstrated by Ogilby et al.
1-3

 

Ogilby exploited the D2O/H2O solvent isotope effect to collect appreciable singlet oxygen 

phosphorescence signals from single cells.
4-6

  Singlet oxygen lifetimes in the range 15-30 µs 

were obtained in D2O-incubated cells, and the lifetime was found to be dependent on the 

sensitizer subcellular localization.
6
 The authors have estimated the singlet oxygen lifetime to be 

~3 µs in H2O-incubated cells. This value of lifetime would significantly increase the radial 

diffusion of singlet oxygen in cells from what it was previously presumed (~ 10-300 ns). 
7,8

 

Singlet oxygen is the reactive oxygen species most efficiently produced by photosensitizers 

used in photodynamic therapy and also by most of the photosensitizers considered in this work. 

Because of its great importance in mediating cell death, the singlet oxygen mechanism of action 

and kinetics has been extensively studied.  

We have independently incorporated hydrophobic and hydrophilic photosensitizers into Hela 

cells and recorded the lifetime of singlet oxygen generated intracellularly in different spatial 

domains. We analyzed the results with the kinetic model exemplified in the scheme below. The 

mechanism of singlet oxygen generation and removal in a solution has already been discussed in 

chapter 2. When we try to address this same issue in the cell environment, we need to consider 

that singlet oxygen removal can now occur by physical quenching but can also involve chemical 

reactions with the surroundings in its site of action.  

 

T1+ O2 (X
3
Σg

-
)                                    O2 (a

1
Δg)   

 

The photosensitized production of singlet oxygen from the triplet excited state of the 

photosensitizer should follow the kinetics described by equation 4.1. In a phosphorescence 

experiment, the 1275 nm signal will be described as a difference of two exponential functions,  
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We consider the sum of all processes by which singlet oxygen can be removed (i.e., chemical 

and physical channels) through the first order constant,   . The reciprocal of this rate constant, 

1/  , defines the lifetime of singlet oxygen, τΔ. 

If the rate constant for singlet oxygen removal, kΔ, is much smaller than the rate constant for 

singlet oxygen generation, then the lifetime of singlet oxygen is obtained from the falling 

portion in the time-resolved phosphorescence signal. However, when working with cells, the 

rate constant for singlet oxygen deactivation may become much larger and the rate constant for 

the decay of the singlet oxygen precursor much smaller. Depending on the working conditions 

the lifetime of singlet oxygen may appear in the rising portion of the signal. 

To avoid possible misunderstandings, in the conditions where it becomes difficult to accurately 

determine if the singlet oxygen lifetime is defined by the rising or by the falling part of the 

phosphorescence signal, we have made use of the solvent isotope effect by preferentially record 

singlet oxygen traces from D2O based systems. The lifetime of singlet oxygen in D2O (~67 µs) 

is substantially longer than that in H2O (3.5 µs).
9
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4.2 Results 
 

4.2.1 Microscopy based singlet oxygen phosphorescence detection in single HeLa 

cells. 

Time-resolved singlet oxygen phosphorescence traces obtained from single cells incubated 

independently with hydrophilic and hydrophobic porphyrins (TMPyP, F2POH and F2PMet) and 

a hydrophilic bacteriochlorin F2BOH, in a D2O-based medium, are presented in Figure 4.1. 
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Figure 4.1 Time-resolved singlet oxygen phosphorescence traces recorded in single cell experiments 

using HeLa cells in a D2O-based medium. A) Traces recorded for TMPyP after 3 min (■) and after 9 min 

(●) of irradiation at 420 nm, B) Data recorded for F2POH after 3 min (■) and 9 min (●) of irradiation time 

at 420 nm, C) Data recorded for F2PMet after 3 min of irradiation at 420 nm (■), and D) Data recorded 

for F2BOH after 3 min of irradiation at 745 nm (■). Data presented by () were recorded for the 

respective sensitizer in the presence of BSA and data presented by (□) were recorded in the presence of 

NaN3.  

 

It is clear that the kinetics of the singlet oxygen phosphorescence traces recorded for the 

hydrophilic dyes (TMPyP and F2POH) evolve as a function of the elapsed irradiation time. Both 

the time constants for the rise (1/kT) and fall (1/kΔ) get increasingly longer as light is delivered 

to the system. The values of τΔ obtained can vary from 15-20 µs to 40 µs after several minutes 



 

 

98 

 

of irradiation for porphyrins TMPyP and F2POH. For the hydrophobic F2PMet and the 

hydrophilic F2BOH, the evolution in the singlet oxygen lifetime under irradiation was much less 

pronounced. We were not able to resolve the rising portion on the phosphorescence trace and 

the decay gives τΔ of ~30 µs and 15 µs, respectively. F2PMet, is subcellularly localized mainly 

in membrane-based structures, and it is well known that the triplet state lifetime in hydrocarbon 

solvents is smaller compared to water, because of the higher concentration of oxygen, i.e., kT 

(aqueous) <kT (hydrocarbon).  

A similar phenomenon of irradiation-induced changes in τΔ in H2O incubated cell suspensions 

was observed by Scholothauer
10

 and Hackbarth
11

 for  pheophorbide-a and by Kuimova et al 
12,13

 

from single cells. Kuimova et al considered that these observations were consistent with light 

induced viscosity changes during cell death.  

 

Spatial localization and scattered light  

For the detection of singlet oxygen phosphorescence in a single cell experiment, the excitation 

laser light is typically focused by the microscope objective into a beam waist of ~1 µm, at the 

sample, which is smaller than the cell diameter (30-40 µm).
14

 

In the laser focal volume, singlet oxygen can mediate significant changes in the reactive 

substrates (e.g., protein oxidation) which could certainly have a significant effect on the kinetic 

profile of the singlet oxygen phosphorescence signal recorded.
15

 However, the excitation light is 

appreciably scattered by the cell,
16

 and although a portion of the 1275 nm phosphorescence 

signal detected will come from a localized intracellular domain in or near the laser focal 

volume, an appreciable amount of the signal still comes from singlet oxygen produced in other 

parts of the cell and possibly also from other cells, where scattered light is absorbed by the 

sensitizer (Figure 4.2). Because the scattered light is less intense, the singlet oxygen 

phosphorescence emitted from these spatial domains will likely contribute to the overall signal 

observed with a kinetic profile that is different from that in the laser focal volume. In short, 

pronounced oxygenation of reactive substrates within the localized spatial domain of the 

focused laser will not be the only thing that influences singlet oxygen phosphorescence data in 

the single cell experiments.  
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Figure 4.2 Laser induced irradiation of HeLa cells incubated with TMPyP in D2O-based medium. 

Fluorescence detected under laser irradiation at 420 nm: A) after a few seconds and B) after 18 min. The 

spot in the figure represents the laser focal point. 

 

Irradiation power and elapsed irradiation time 

To collect a time-resolved O2(a
1
Δg) → O2(X

3
Σg

-
) phosphorescence trace from a single cell 

experiment, we have used a fluence of 7nJ per pulse and collect the 1275 nm emission for a 

period of time of 3 min using a multichannel scaler and a laser repetition rate of 1 kHz. Under 

these conditions, we generally observe morphological changes in the cell typical of a necrotic 

cell death (Figure 4.3, left-hand panel). No specific cell viability assays were done, but from the 

bright field images before and after irradiation we can identify morphological changes as 

vacuole formation, loss of membrane adhesion to the plate or condensation of chromatin in the 

nucleus.
17-20

In the control experiment of HeLa cells irradiated under the same conditions but 

without being incubated with a photosensitizer we have not observed any signs of cell damage.  

 

Influence of incubation medium.  

In order to avoid complications related to the presence of certain proteins and/or indicators in 

the normal cultivating medium, it can be more advantageous to use a specially-composed 

maintenance medium.
21

 It was shown that HeLa cells tolerate D2O quite well for the first ~5 h of 

application in the absence of light. 
4,16,18

 Nevertheless, if the cell handling and incubation 

protocol involves periods of time longer than ~5-6 h, this can have adverse effects in the cell 

population when the maintenance medium is used.
4
 We have always tried to ensure that we use 

live and viable cells at the start of a given experiment though this can be a non-trivial issue 

given the difficulties in the subcellular incorporation of some photosensitizers and the 

perturbations caused by replacing H2O with D2O when we optimize the weak singlet oxygen 

phosphorescence signal.  

A B 
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We have adopted two different incubation protocols to record singlet oxygen phosphorescence. 

The singlet oxygen traces presented in Figure 4.1 were recorded from HeLa cells incubated with 

the sensitizer in the specially-composed maintenance medium, and show signs of perturbations 

after incubation (Figure 4.3 right-hand column). In the left-hand column, HeLa cells were 

incubated with TMPyP in a cultivating medium and were exposed to the maintenance medium 

during the H2O/D2O exchange (~3 min) and experiment. Under these last conditions, and after 

the irradiation time used to record the singlet oxygen traces, vacuole formation from cells it is 

readily observed (right-hand column on Figure 4.3). The appearance of defined vacuoles under 

irradiation was already discussed in this work as a one of the visible responses to light induced 

oxidative stress caused on a viable cell in the process of cell death. The lack of a similar 

response to the cells which have been incubated with maintenance medium shows that most 

likely the cell “machinery” that gives rise to the formation of vacuoles is no longer working. 

The selection of cells to be used to detected singlet oxygen is limited to a bright field image, no 

viability assays are executed because they would interfere with the experiment itself, and so this 

can lead to perform the experiment in a dead or dying cell.  

A consequence from working with cells that are dead or dying at the start of the experiment is 

that we detect more easily the singlet oxygen phosphorescence signals. When cells are 

incubated in maintenance medium, we have observed that there is an increase in the uptake of 

the sensitizer and that in the case of TMPyP and F2POH there is a preferential migration to the 

nuclei of the cells.
22
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Figure 4.3 Bright field images obtained from cells incubated in H2O (left-hand column) and D2O (right-

hand column) medium with TMPyP. After moderate exposure of cells with TMPyP to focused laser light 

(for 3 min.), vacuole formation indicative of cell necrosis was apparent for the cells that were initially 

alive (left panel), whereas essentially no morphological changes were observed upon irradiation of 

dead/dying cells (right panel). Kinetic traces recorded from cells incubated with TMPyP as described in 

the left side panel after 3 min (dotted line) and 9 min of irradiation time (solid line). 
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Quenching of singlet oxygen: BSA and H2O 

It is important to ascertain that the recorded singlet oxygen signal is only a reflection of an 

intracellular singlet oxygen population. We have made use of bovine serum albumin (BSA), a 

protein that quenches singlet oxygen with a rate constant of kq = ~5.0 × 10
8
 s

-1
 M

-1 23
 and does 

not cross the outer membrane of HeLa cells,
2,5

 in order to avoid the detection of singlet oxygen 

that may have diffused or that may have been generated extracellularly. Extracellular singlet 

oxygen can be generated from photosensitizer molecules that cross the extracellular membrane 

under irradiation and are excited by scattered light. 

We incubate both live and, independently, dead/dying cells for over 1h in a medium containing 

fluorescein-labeled BSA. Upon washing the cells with fresh medium, no fluorescein 

fluorescence was detected from HeLa cells. This not only confirms that BSA does not enter 

HeLa cells but also that is not adsorbed onto the cell membrane.  

In the presence of BSA, singlet oxygen lifetimes are now reduced to ~13-20 µs which are 

consistent with the values obtained by Snyder et al.
5
 and with the value of singlet oxygen 

lifetime obtained from a live cell (trace on Figure 4.3).  Additionally, in the presence of BSA, 

the rising portion of the singlet oxygen phosphorescence signal, observed for the hydrophilic 

sensitizers, generally disappears or gets appreciably faster. The singlet oxygen traces obtained in 

the presence of BSA are presented on Figure 4.1 (traces) and the values of τΔ are summarized 

on Table 4.1. These results show that a large fraction of the singlet oxygen signal detected in 

cells media derives from an intracellular population of singlet oxygen. Nevertheless the 

reduction on the singlet oxygen lifetime in the presence of BSA shows that a non-negligible 

fraction of the singlet oxygen detected is detected from outside the cell. This can result from the 

propensity of hydrophilic dyes, to diffuse out of the cell under irradiation (enhanced by possibly 

a more leaky membrane of the perturbed cells) into a D2O-based medium which has low 

concentration of singlet oxygen quenchers. This would give rise to a longer lived population of 

singlet oxygen. 

Increasing the percentage of H2O (~3.5 µs)
24

 in a D2O-based (~67 µs )
25

 system will result in 

singlet oxygen quenching. It was previously reported that singlet oxygen lifetimes obtained 

from TMPyP sensitized single cell experiments indeed get shorter as the amount of H2O added 

to the system is increased.
4
 The rate constant for singlet oxygen quenching obtained from these 

experiments, 3.0 ± 0.7 × 10
3
 s

-1
 M

-14
 was consistent with that expected for H2O (i.e., 3.5 µs × 

55M)
-1 

~ 5 × 10
3
 s

-1
 M

-1
) quenching. We have performed H2O quenching experiments using 

TMPyP and, independently, the hydrophobic porphyrin F2PMet, as sensitizers under conditions 

where singlet oxygen traces were recorded from HeLa cells in the presence of BSA. For the data 

recorded using the hydrophilic sensitizer TMPyP (Figure 4.4), the plot of kΔ against the 
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concentration of H2O is reasonably linear and yields a quenching rate constant of 2.5 ± 0.2 × 10
3
 

s
-1

 M
-1

, consistent with the data recorded in the absence of BSA and also for the general 

quenching by H2O. Importantly, singlet oxygen in D2O is more cytotoxic than in H2O, and 

irradiation of a system with more D2O gives rise to a population of cells “more dead”, and its 

components should appear less effective as quenchers of singlet oxygen, potentially originating 

in a curvature in the plot on Figure 4.4. However, the data on Figure 4.4 gives a linear plot, 

which indicates that for cells that were already dead/dying at the start of the experiment, most of 

the pertinent intracellular damage was already done and/or the damage is irrelevant to the 

intracellular domains from which a significant fraction of our singlet oxygen signal is 

originated. This latter conclusion is supported by our BSA studies that show that τΔ recorded in 

the presence of BSA does not depend appreciably on the time of sensitizer irradiation.  

 
 

Figure 4.4 Plot of kΔ against the concentration of H2O of TMPyP incubated in HeLa cells in a D2O-based 

medium containing 0.75 mM BSA. Each point represents the average of data from at least 5 cells, and the 

slope yields kq= 2.5 × 10
3
 s

-1
 M

-1
.  

 

It was difficult to determine the quenching rate constant by H2O of singlet oxygen generated 

intracellularly in HeLa cells incubated with F2PMet, and the results were non-systematic. 

Nevertheless, the presence of H2O on HeLa cells incubated with this sensitizer resulted in a 

consistent decrease of the singlet oxygen lifetime, which indicates that singlet oxygen generated 

in lipophilic intracellular domains is still quenched by H2O.  Also consistent with this latter 

point, is the observed decreased on singlet oxygen lifetime generated by this hydrophobic 

sensitizer, when NaN3 is present in the cells. NaN3 is a hydrophilic quencher which subcellular 

localization should not meet F2PMet.  
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These results are consistent with the model that singlet oxygen readily crosses the interface 

between hydrophobic and hydrophilic domains.  

 

 

 

Table 4.1Summary of τΔ recorded from D2O incubated Mammalian cells in single cells and cell 

suspension experiments. The horizontal arrow represents prolonged irradiation. 

  τΔ /µs 

  Single cells Cell 

suspensions 

Hydrophilic sensitizers 

 

   

TMPyP Irradiation dependence ~15 ± 6→~40 ± 4 ~40 ± 4 

with BSA ~15 ± 3 - 20 ± 5 ~4.5 ± 1 

 with BSA  6 ± 2
1
 

    

F2POH  ~25 ± 6→ ~40 ± 4  

with BSA → ~20 ± 6  

F2BOH  ~15 ±   

with BSA ~13.6 ±  

Hydrophobic sensitizers 

 

   

F2PMet Irradiation dependence →~30 ± 6  

 with BSA →~17 ± 3  

PPa Irradiation dependent  →~27 ± 5 

 with BSA  <~5 ± 2 

Chlorin
2
  →~17 ± 2  

1) skin fibroblasts from 26, 2) from 6  Standard deviation obtained for at least 5 cells (single cells) or two independent 

experiments (cell ensemble). 
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Effect of localized photoxidative chemistry. 

Proteins play a significant role in the removal of intracellular singlet oxygen due to their high 

abundance in a cell and large rate for interaction with singlet oxygen.
27

 Proteins generally 

remove singlet oxygen via chemical reactions and not physical deactivation,
27

 and singlet 

oxygen could, over time, deplete the local concentration of effective singlet oxygen quenchers, 

which would, give rise to increasingly longer singlet oxygen lifetimes. Under focused laser 

irradiation one could think that in our microscope based single cell experiments we would 

deplete a pool of good intracellular quenchers of singlet oxygen. Protein structural changes 

which may accompany singlet oxygen mediated cell death can have an effect on singlet oxygen 

lifetime.
15,28

 However, our data in the presence of BSA seems to indicate that the effects of 

localized photo-oxidative chemistry do not appear to have a pronounced influence in the 

observed values of τΔ.  Even upon prolonged irradiation, we still record values of τΔ that are 

equivalent to those recorded from an “unperturbed cell” (phosphorescence traces on Figure 4.4 

τΔ~ 15-20 µs) 

 

Sensitizer light-induced relocalization and bleaching. 

Given the laser fluences required for the microscope based single cell experiments of 7 nJ per 

pulse, photobleaching of the photosensitizer during the irradiation time can have a marked effect 

on the intensity of the singlet oxygen signal recorded. 
13,29

 The photoinitiated reactions can 

result not only in the degradation of the sensitizer but can also induce changes in the 

surrounding environment leading to the relocalization of the photosensitizer in the cell and 

extravasation to the extracellular medium. TMPyP and F2POH are clear examples of light-

induced intracellular relocalization and leakage out in the extracellular medium (Figure 4.21 on 

section 4.2.4, and figure 3.11 on section 3.2.2, respectively)
17,22,30-32

 confirming the conclusion 

made on the basis of the BSA quenching experiments.  Thus the kinetics and signal intensity for 

singlet oxygen generation and removal may change over the course of the experiment 

influenced by the photobleaching products and by relocalization.
33

 No evolution in the rate 

constant of singlet oxygen formation and removal is observed for the bacteriochlorin F2BOH 

with increasing the irradiation time. A possible explanation for this is the low photostability of 

F2BOH in cells, as it was demonstrated in chapter 3, which compromises the relocalization of 

the dye in the cell and leakage to the extracellular medium. F2PMet, on the other hand, is a very 

stable dye, and in this case the most likely explanation is related to the local environment of 

where singlet oxygen is generated.  
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4.2.2 Cuvette-based singlet oxygen phosphorescence detection in cell suspensions 

 

To complement the microscope-based singlet oxygen experiments, we carried out independent 

experiments using cell suspensions. For these studies, we used nonadherent HL-60 cells, the 

experiments were run in D2O-based medium and sensitizers were incubated in culture medium 

and in the specially-composed maintenance medium. The choice of a D2O based medium 

instead of a H2O-based medium is related to the difficulty of decoupling the rate constant for 

singlet oxygen removal, kΔ, from the rate constant of oxygen generation, kT, because kT~kΔ in 

H2O-based media. Additionally the time constants involved (i.e., 1/kT and 1/kΔ) are 

comparatively short, and it is difficult to accurately quantify kΔ, in H2O-based media even with 

the appropriate control experiments. We have performed experiments with hydrophilic (TMPyP 

and PPa) and hydrophobic (F2PMet) sensitizers, and Figure 4.5 shows representative singlet 

oxygen phosphorescence traces recorded for TMPyP in cell suspensions.   

 

 

Figure 4.5 Time-resolved O2 (a
1
Δg) → O2 (X

3
Σg

-
) phosphorescence traces obtained from suspensions of 

HL-60 cells in a D2O-based medium and incubated with TMPyP. The sensitizer was irradiated at 420 nm 

using an average power of 1 mW (laser operated at 1 kHz). Data were acquired over a period of 1 min. A 

fit of eq. 4.1 to the data is shown as a solid line in each trace. A) Trace recorded after 1 min of irradiation, 

yielding τΔ = 40 µs. B) Trace recorded under the same conditions, only with 0.75 mM BSA present in the 

medium, τΔ ~ 4.5 µs. 

 

 

In the absence of BSA or NaN3, we recorded singlet oxygen lifetimes in the range of 39 - 42 μs 

and time constants for the singlet oxygen formation of ~2.0 - 4.5 µs (Figure 4.5). The rise time 

is consistent with the time constant obtained by independent measurements of TMPyP 

phosphorescence in cells at 900 nm, a wavelength where there is no emission from singlet 

oxygen. An irradiation-dependence increase in τΔ was observed, although this was a subtle 

increase of only ~3 µs. Cells incubated in the maintenance medium instead of the cultivating 
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medium revealed similar lifetimes. In the presence of 3.2 mM NaN3, we observed a substantial 

decrease in the intensity of the singlet oxygen and the expected reduction on τΔ to ~0.6 µs, 

which correspond to a quenching rate constant of singlet oxygen by NaN3 of 5 × 10
8
 s

-1
 M

-1 
in 

water 
13

. No change in the time constant for oxygen formation occurred.  

Experiments performed in the presence of 0.75 mM of BSA in the cell medium, likewise 

resulted in an appreciably decrease of singlet oxygen signal intensity and lifetime to τΔ~ 4.5 µs 

(Figure 4.5 B).This value is consistent with what is expected for the quenching of singlet 

oxygen by BSA in a homogeneous solution (i.e., 0.75 mM BSA and kq = 3×10
8
 s

-1
M

-1
). 

2,23
 

Once again, we have confirmed by an independent experiment with HL-60 cells incubated with 

BSA-fluorescein that BSA does not enter the cells in the course of our experiments. These 

observations show that an appreciable amount of the singlet oxygen phosphorescence signal 

detected in sensitized cell suspensions comes from an extracellular population of singlet 

oxygen. 

Such pronounced effect is consistent with data recorded from suspension of skin fibroblasts 

incubated with TMPyP by Jimenez-Banzo
26

 and from leukemia cells incubated with a 

hydrophilic aluminium phtalocyanine
34

. 

Some possible explanations related to cell preparation and maintenance during the experiment 

can be proposed: i) after incorporation of the sensitizer the procedures used to wash the cells 

with sensitizer-free medium are ineffective and do not completely remove residual extracellular 

sensitizer, ii) once the cells are washed and resuspended in a sensitizer-free medium, the 

intracellular sensitizer diffuses out to the extracellular domain along the newly established 

concentration gradient and stirring of the cells can exacerbate the permeability of the 

membrane.
35

 These effects are enhanced by light-induced perturbation of the cells, because the 

cell membrane tends to become more permeable to diffusion.  

It is important to recognize that the effect of sensitizer diffusion into the extracellular medium 

will be more pronounced in suspension cell measurements because light propagates through a 1 

cm thick sample that is dominated by the medium rather than by the cells. In microscope-based 

single cell experiments, the incident light is focused into the cell and the extracellular medium is 

irradiated only as a consequence of scattered light (i.e., the fraction of extracellular excitation is 

much smaller in the microscope-based study).  

In order to avoid some of the problems associated with recording singlet oxygen signals in cell 

suspensions using a hydrophilic dye, we have recorded data from the lipophilic sensitizer 

F2PMet (Figure 4.6). Although, we found it difficult to obtain consistent results with this 

photosensitizer in cells suspension, a 1275 nm emission signal from D2O-based suspension 
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cells, upon irradiation at 420 nm and in the presence of BSA resulted in a decay with a τ< ~4.5 

µs. When NaN3, a hydrophilic quencher, was added to the medium, no effect was observed on 

the lifetime recorded, possibly because the lifetime observed was already very short. 

 

Figure 4.6 Time-resolved singlet oxygen trace from HL-60 cells incubated with F2PMet in a D2O-based 

medium. The data recorded after 4 min of elapsed irradiation time in the presence of BSA (0.75 mM), fit 

with a single exponential yield τΔ = 4.5 µs. 

 

We have used PPa as another lipophilic sensitizer which readily incorporates into a variety of 

cells and it is known to localize in the plasma membrane and other membranes in the 

cytoplasm.
17,36-38

 

Despite the facile bleaching of this dye, we have been able to record singlet oxygen 

phosphorescence signals from HL-60 cells incubated with PPa (Figure 4.7).  

Upon an elapsed irradiation time of 1 min of HL-60 cells incubated with PPa, singlet oxygen 

phosphorescence signal was detected at 1275 nm and fit to the sum of two exponential decays 

with τ1= 2.9 ±0.1 µs τ2=18 ± 1 µs. After irradiation for additionally 4 min, the rate of 

appearance and disappearance of singlet oxygen clearly decrease (τrise= 0.8 ± 0.1 µs; τ1 = 4.1 ± 

0.1 µs; τ2 = 27 ± 3 µs). In the presence of 50 mM NaN3 the signal is reduced to τ = 3.2 ± 0.1 µs. 

The addition of BSA to the surrounding medium removes the long-lived component (after 1 min 

irradiation the trace is best fit with a single exponential decaying function with τdecay = 3.7 ± 0.1 

µs, after 4 min of irradiation the trace is best fit as the difference of two exponential functions 

with τrise = 1.0 ± 0.1 µs and τdecay= 5.4 ± 0.1 µs).  With added NaN3, and after 4 min of 

irradiation a single exponential decaying fit gives τ = 3.0 ± 0.1 µs.  

The interpretation of these data is not trivial, we are in a domain where kT~kΔ but also appears 

that both kT and kΔ change during the course of the experiment. Nevertheless, an appreciable 

amount of the 1275 nm emission signal can be attributed to singlet oxygen phosphorescence on 
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the basis of the NaN3 quenching. Moreover, from the BSA experiment, it appears that the bulk 

of the signal that we assigned to singlet oxygen phosphorescence is originated inside the cell.  
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Figure 4.7 Time resolved 1275 nm emission traces recorded upon 420 nm irradiation of PPa in 

suspensions of HL-60 cells in a D2O-based medium. A) Data recorded in the absence of added BSA. B) 

Data recorded in the presence of 0.75 mM BSA. (○) Traces recorded after an elapsed irradiation period of 

1 min (■) Traces recorded after an elapsed irradiation period of 4 min and (▼) trace recorded in the 

presence of NaN3 (50 mM). 

 

Even though we are working with D2O-incubated cells, the lifetime of singlet oxygen recorded 

from suspension cells appears to be shorter than that recorded in our single cell experiments.  

Since the radiation fluence required to record a singlet oxygen signal from cell suspensions is 

less than that used in our single cells experiments, the shorter values of τΔ recorded from 

suspension cells containing PPa could reflect a higher concentration of effective intracellular 

singlet oxygen quenchers (e.g. proteins) that have yet to be fully oxygenated/oxidized upon 

elapsed irradiation, compared to our single cell experiments. However, this interpretation 

contradicts the conclusions obtained through a variety of independent single cell experiments 

which point a value of τΔ ~15-20 µs to the inherent intracellular lifetime in a D2O incubated cell. 

A more likely explanation is that a high concentration of PPa co-localized in membrane 

domains would yield singlet oxygen with short τΔ. This is support by an independent experiment 

of PPa (with 1% added DMSO to facilitate PPa dissolution) prepared on unilamellar vesicles 

(i.e., liposomes). Both the absorption and fluorescence spectra of this system of PPa in 

liposomes were characteristic of PPa aggregation (i.e., spectrally broadened absorption bands, 

weak fluorescence intensity), and most importantly no singlet oxygen signal was detected. This 

efficient quenching could be due to high local concentrations of PPa and/or to the inability of 

PPa aggregates to make appreciable amounts of singlet oxygen. However, upon the addition of 

Triton X-100 to the PPa-liposomes system an appreciably singlet oxygen signal was observed 

correlated to liposomes fragmentation into smaller units in which presumably PPa was less 

packed. Considering this interpretation, experiments performed with incubation times and 



 

 

110 

 

different concentrations in the medium of the HL-60 cells did not yield the expected changes on 

the kinetics of singlet oxygen, which may indicate that PPa concentration in the HL-60 cells 

membranes may not appreciably change.  

The irradiation dependence change in kT could reflect changes in the extent to which PPa binds 

to proteins as the proteins are oxidized by singlet oxygen and/or the viscosity of the 

environment around the sensitizer. 

 

 

 

 

4.2.3 Detection of oxygen radicals in cells 

Bacteriochlorins generate singlet oxygen as the main reactive oxygen specie in ethanol solution 

(ФΔ ~ 0.4-0.8). Nevertheless, a significant fraction of the triplet states generated by these 

molecules can also generate charge transfer complexes with molecular oxygen that ultimately 

lead to the generation of superoxide and hydroxyl radical in DMSO and TRTX-100 solutions, 

respectively.   

 

 

Figure 4.8 Reaction of 3'-(p-aminophenyl) fluorescein (APF) with ROS (more specific to OH
.
) resulting 

in a fluorescent form. 

 

 

 

 



 

 

111 

 

 

By direct detection of 
1
O2 phosphorescence at 1275 nm in HeLa cells, we have ascertained that 

bacteriochlorin, F2BOH, generates singlet oxygen also intracellularly. We had no direct way to 

evaluate if also other reactive oxygen species would be generated at the cellular level. 

Indirectly, we have made use of 3’-(p-aminophenyl) fluorescein, APF, a nonfluorescent probe 

that reacts rather selectively with the hydroxyl radical to release fluorescein which is fluorescent 

near 520 nm.
39

 

 

Before irradiation 

   

 

After 15 min of irradiation 

   

 

After 45 min of irradiation with 505 nm LED 

   

 

Figure 4.9Fluorescence micrographs of A549 cells co-incubated with F2BMet and APF. Left-panel 

shows bright field images of the cells before irradiation. Middle-panel shows red fluorescence from the 

photosensitizer when excited at 514 nm and with emission above 700 nm. Right-panel shows the 

fluorescence of fluorescein (excitation at 490 nm and emission at 510 nm) obtained after illumination of 

the cells with 505 nm LED (0.6 mW/cm
2
). 
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Figure 4.9 shows the fluorescence of F2BMEt in cells and the fluorescence of fluorescein 

observed after the irradiation of the cell culture at 505nm. Prior to that illumination, only a 

residual fluorescence from fluorescein emission was observed. Over the two sets of irradiation 

time (15 and 45 min) an increase on fluorescence intensity was recorded. It is clear that 

excitation of F2BMet in cells leads to the generation of a ROS that are capable of reacting with 

APF and generate the fluorescent fluorescein. Considering the preferential reaction of APF with 

hydroxyl radical rather than other reactive oxygen species such as singlet oxygen and 

superoxide,
40

 one can conclude that, in addition to singlet oxygen, F2BMet promotes also the 

generation of hydroxyl radical in cells. These radicals are extremely reactive and can be 

expected to explore only a small reaction volume before being consumed. F2BMet is localized 

in the ER and mitochondria and, we would be expected these to be the primary targets of the 

hydroxyl radicals. F2BMet may initially generate hydroxyl radical by the mechanism proposed 

for solution, but the presence of Fe
2+

 in cells will enhance the production of this specie by the 

Fenton reaction. The increased phototoxicity of bacteriochlorins over many sensitizers that 

exclusively follow a Type II photoensitization process has been associated to their ability to 

generate reactive oxygen species more cytotoxic than singlet oxygen, such as the hydroxyl 

radical.
41
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4.2.4 Microscope based singlet oxygen detection – photobleaching considerations 

 

To record a singlet oxygen trace from individual cells we make use of a focused laser to initiate 

a photosensitized reaction that produces singlet oxygen in the subcellular domain that is being 

irradiated. 
42-45

  At the laser fluences used to detect and monitor singlet oxygen 

phosphorescence, bleaching of the photosensitizer generally occurs over the elapsed irradiation 

time. The generation of ROS and the bleaching of the dye is not the only consequence of its 

electronic excitation. As we have observed in Chapter 2 for our porphyrins and bacteriochlorins, 

photomodification and relocalization are commonly observed after continuous light induced 

irradiation of these dyes at appropriate wavelengths. 

Bleaching and relocalization can also occur in microscopy with fluorescent probes, used to 

assess cell structure and activity, under the conditions in which the cell is being examined, and 

this is a major limitation for their use.
46-51

 This is a characteristic of fluorescein and other 

fluorescent probes which partly reflects the fact that, under many biologically-pertinent 

conditions, an excited state of the probe itself can sensitize the production of singlet oxygen in 

appreciable yield. 
52,53

 

Singlet oxygen traces recorded from dyes continuously changing over the irradiation time are 

collected without temporal or spatial control of the cytotoxic species created in situ.  The 

amount of singlet oxygen produced varies over time, which is reflected in the intensity of the 

singlet oxygen phosphorescence signal recorded.
45,54

 Moreover, the photobleached products can 

also influence the decay kinetics of singlet oxygen.
25,55,56

 

In light of the bleaching-dependent problems inherent to working with cells, we set out to 

identify from a group of sensitizers, which ones are sufficiently stable to enable collecting 

reproducible data under the conditions of our single cell experiments. Additionally we also 

investigate whether solution experiments can be used to predict the behavior of a given 

sensitizer inside a cell.  

Krieg and Whitten
57

 reported in 1984 that the oxygen-dependent photobleaching of 

protoporphyrin IX in solution is significantly enhanced in the presence of selected amino acids 

and, independently, in the presence of  erythrocyte ghosts which contain lipids as well as 

membrane proteins.  A mechanism was proposed in which singlet oxygen creates, for example, 

a protein-based oxygenated intermediate (e.g., a long-lived peroxide) which, in turn, can then 

oxidize the porphyrin.  These observations have been substantiated in a number of studies where 

the photobleaching of selected chlorins was enhanced upon the addition of bovine serum 

albumin to the solution.
58,59

 This indicates that the rate and extent of sensitizer bleaching in a 
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cell will depend on the immediate environment and, hence, intracellular location of that 

sensitizer. 

We investigated  the following non-porphyrin singlet oxygen sensitizers, that in view of their 

low cytotoxicity, and reasonable stability under irradiation in solution: benzo[cd]pyrene-5-

one(BP),
60

N,N-dimethylfulleropyrrolidiniuim iodide (DMP-C60),
61

 and 1,4-Bis[4-(N,N-

diphenylamino)phenylethynyl]-2,5-dibromobenzene (BBB).
62
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Figure 4.10 Absorption spectra of BP as a function of the elapsed irradiation time in: A) benzene (1 kHz 

fs laser irradiation at 400 nm with 57 mW/cm
2
) and B) DMSO (irradiation at 420 nm with 43 mW/cm

2
).  

Arrows show the direction of irradiation-induced changes in the spectra.   
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The polycyclic aromatic molecule BP has an absorption profile that extends to wavelengths 

longer than 500 nm (Figure 4.10) and with a maximum centered at ~483 nm.    The carbonyl 

group facilitates S1 T1 intersystem crossing,
60

 resulting in a weak fluorescence (F ~ 0.004 in 

toluene) at ~560 nm, and a singlet oxygen quantum yield close to unity.
60
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Figure 4.11 Absorption spectra of BP in aqueous phosphate-buffered solutions, PBS, as a function of the 

elapsed irradiation time with a 1 kHz fs laser at 420 nm.  A) Data were recorded over an elapsed 

irradiation period of 219 min with 17 mW/cm
2
.  B) The sample also contained 0.75 mM Bovine Serum 

Albumin, BSA, and data were recorded over an elapsed irradiation period of 220 min with 29 mW/cm
2
.  

In both experiments, a small amount of DMSO (0.25% by volume) was added to facilitate BP 

solubilization.   

 
BP is reasonably stable upon prolonged irradiation at 400 nm in oxygenated solutions of 

benzene (Figure 4.10 A). On the other hand, appreciable photoinitiated changes are rapidly 

observed when BP is dissolved in DMSO (Figure 4.10 B), which is reflected in the 
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comparatively large photodegradation quantum yield of 7.02 × 10
-4

. This phenomenon was also 

observed for F2POH (Chapter 3), proving once again that DMSO appreciably increases the rates 

of many reactions.
63

 

The isosbestic points in the spectra shown in Figure 4.10 suggest that, over the time period 

examined, only one photoproduct of BP is formed in each case.  However, the absorption 

spectra shows that the photoproduct formed in DMSO may be different from that in benzene. 

BP is hydrophobic, and it was previously dissolved in DMSO (~ 0.25% by volume) and then 

mixed with Phosphate buffer, PBS, aqueous solutions.  The absorption spectra of BP in these 

conditions show a broadening of the absorption bands, when compared to the absorption spectra 

in organic solvents, explained by dye aggregation. Under irradiation (Figure 4.11 A) no major 

changes occurred over time. When Bovine Serum Albumin, BSA, is added to the solution in 

PBS, BP becomes more sensitive to irradiation (figure 4.11). A substantial increase of the 

absorption is observed in the U.V. which could be related to the photooxidation of BSA
64

 by 

singlet oxygen generated by BP. It is expected that BP will not be particularly photostable under 

intracellular conditions where other oxidative mechanism can also play a role,. The data 

obtained presented in figure 4.12 are consistent with this expectation. The corresponding 

emission spectra recorded from HeLa cells incubated with BP indicate that the emitting 

molecules are not the same as those seen in solution experiments (Figure 4.13).  

 

   
 

   
 
Figure 4.12 Images of BP-containing HeLa cells based on emission detected at wavelengths longer than 

500 nm upon excitation at 480 nm (4.1 mW/cm
2
 from a cwXe lamp).  Images were recorded as a function 

of the elapsed irradiation time at 480 nm.   
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Figure 4.13 BP-containing HeLa cells emission spectra detected at wavelengths longer than 500 nm and 

upon excitation at 480 nm (8 mW/cm
2
 from a cwXe lamp). Images were recorded as a function of the 

elapsed irradiation time at 480 nm.   

 

 

BBB 

BBB was the focus of earlier studies by Ogilby and co-workers, 
65

 that have shown that 

molecules containing alkyne-conjugated phenyl moieties are more stable than the corresponding 

molecule with alkene-based units upon exposure to singlet oxygen.  Also, the rate of singlet-

oxygen-mediated photobleaching markedly decreases by introducing electron-withdrawing 

substituents on such an alkene-based unit.
66

 

However, upon incorporating the dye in cells it becomes extremely labile toward irradiation 

(Figure 4.14).  The hydrophobicity of the dye would make us predict that it is likely to be 

localized in a lipophilic environment and clearly the local environment of the molecule will 

most likely play a role on the photostability of the molecule. The generation of singlet oxygen 

will rapidly lead to cell damage by oxidizing cellular components, such as lipids and proteins, 

that consecutively will initiate chain reactions.  
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Figure 4.14 Images of BBB-containing HeLa cells based on emission detected at wavelengths longer 

than 500 nm upon excitation at 425/40 nm (6 mW/cm
2
 from a cwXe lamp).  Images were recorded as a 

function of the elapsed irradiation time at 480 nm.   

 

 

DMP-C60 

The construction of fullerene derivatives has been of great interest to biological fields because 

they may overcome the hydrophobicity of C60 without loss of the interesting photochemical and 

photophysical properties of this molecule.
67-70

 

However, introducing perturbations in the conjugated system of C60 is known to change its 

photophysical properties. C60 itself has a singlet oxygen quantum yield of ~1.0 and is highly 

resistant to light induced degradation 
68,71,72

 

The derivative we selected to study, DMP-C60 has been reported to have a singlet oxygen 

quantum yield of 0.27 ± 0.02 in CH3OD (with 1% added DMSO).
73

  In a D2O-based PBS 

solution (with 4% added DMSO), these same investigators were not able to detect a O2(a
1
g)  

O2(X
3
g

-
) phosphorescence signal upon irradiation of DMP-C60 implying that, under these latter 

conditions, the singlet oxygen quantum yield is appreciably less than 0.27.
73

  Although the latter 

may partly reflect the aggregation of DMP-C60,
73

 these observations also contribute to the 

suggestion that, under physiological conditions, irradiation of C60 and its derivatives may be 

cytotoxic as a consequence of the production of oxygen-related radicals, and not singlet 

oxygen.
61,73,74

 We can nevertheless still use this compound to address aspects of the 

photoinitiated oxygen-dependent degradation of intracellular sensitizers. The derivative we 

opted to study, DMP-C60, can be incorporated into a cell and can initiate cell death upon 

irradiation.
61
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Figure 4.15 (A) Absorption spectra of DMP-C60 in: A) H2O/DMSO (9-to-1, by volume) as a function of 

the elapsed time with 355 nm irradiation (10 Hz ns laser at 45 mW/cm
2
).  (B) Data were recorded under 

similar conditions from a solution that also contained 0.75 mM BSA.  Arrows show the direction of 

irradiation-induced changes in the spectra.   

Irradiation of DMP-C60 at 355 nm in a bulk solution of H2O/DMSO (9-to-1, by volume) shows a 

modest degradation-dependent change in the absorption spectrum (Figure 4.15 A).  This modest 

change is consistent with the comparatively small quantum yield of DMP-C60 photodegradation 

in this solvent,  pd = 4.6 × 10
-7

.   Upon irradiation of a corresponding solution containing 0.75 

mM BSA, more pronounced changes in the absorption spectrum are observed (Figure 4.15 B).  

Most interestingly, however, these latter changes only influence the spectra at wavelengths 

shorter than ~ 400 nm, likely reflecting photoinduced changes in BSA.  Thus, one might be able 

to exert some control in a cell-based DMP-C60 experiment by irradiating at wavelengths longer 

than 400 nm. 
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Upon incubation of HeLa cells with DMP-C60, this dye was readily incorporated into the cells 

(Figure 4.16). Images obtained of these cells based on the fluorescence of DMP-C60 show a 

punctate diffusional pattern of dye localization and a non-negligible amount of the dye appears 

to be randomly dispersed in the cytoplasm (Figure 4.16).  Upon irradiation of these cells at 450 

nm, only slight changes in the broad-band intensity of emitted light were observed, with much 

of the change occurring at early irradiation times.  Most notably, there appears to be minimal 

irradiation-induced relocalization of the dye suggesting that if the dye is localized subcellularly 

inside an organelle no damage occurs when reactive oxygen species are produced by DMP-C60. 

This latter observation is in contrast to what is observed upon irradiation of TMPyP sensitizer 

that likewise initially is localized in lysosomes which appear to suffer a facile rupture of the 

lysosome upon irradiation (vide infra).  It appears that DMP-C60 might indeed be a sufficiently 

stable sensitizer for selected oxygen-dependent intracellular experiments, which generates 

reactive oxygen species capable of effectively induce cell death but that may do not involve 

singlet oxygen.  

 

 

     

Figure 4.16 Fluorescence images of HeLa cells that had been incubated with 25 M DMP-C60 recorded 

as a function of the elapsed irradiation time at 450 nm (8.2 mW/cm
2
 from cwXe lamp).  Emission was 

detected at wavelengths longer than 600 nm.  
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TMPyP 

Porphyrin-based molecules have long been used as singlet oxygen sensitizers, particularly for 

PDT-related applications.
75

 As it was discussed on chapter 3 the properties of these molecules 

are readily tuned by changing substituents and/or the extent to which the macrocycle is reduced 

(i.e., chlorins and bacteriochlorins).  Most importantly, these compounds are generally not 

cytotoxic in the absence of light. 

The hydrophilic porphyrin TMPyP has been the basis for much of the single cell singlet oxygen 

phosphorescence work over the years.
43,76,77

  It is readily incorporated into cells, produces 

singlet oxygen efficiently with a quantum yield of 0.77 ± 0.04,
78

 and is sufficiently fluorescent 

to allow for imaging experiments to ascertain its localization.
45

  Indeed, these properties of 

TMPyP have made it a popular sensitizer in experiments to record singlet oxygen 

phosphorescence from cells.
43,45,79
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Figure 4.17 Absorption spectra of TMPyP dissolved in a buffered aqueous solution containing 0.75 mM 

BSA.  Data were recorded as a function of the elapsed time of irradiation at 420 nm (1 kHz fs laser, 50 

mW/cm
2
). Arrows indicate the direction of irradiation-induced spectral changes.  

 

In a solution model where TMPyP is dissolved in a buffered solution containing BSA, 

photoinduced bleaching is readily apparent (Figure 4.17).  As with other sensitizers, the 

quantum yield of TMPyP photodegradation in the presence of BSA (1.2 × 10
-5

) is appreciably 

larger than that in a PBS solution lacking BSA (3.3 × 10
-6

). 
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Figure 4.18 Fluorescence images of HeLa cells that had been incubated with 20 M TMPyP recorded as 

a function of the irradiation time at 425/40 nm (2.6 mW/cm
2
 from cw Xe lamp).  Emission was detected 

at 650/40 nm.  
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Figure 4.19TMPyP fluorescence emission from Hela cells.  Images were recorded as a function of the 

elapsed irradiation time at 425 nm. Emission was detected at wavelengths longer than 500 nm (2.6 

mW/cm
2
 from a cwXe lamp).   

 

Upon incubation of a cell with TMPyP, this molecule first localizes in lysosomes (Figure 4.18, 

left frame).
45

  Upon irradiation of the TMPyP, the singlet oxygen produced presumably 

facilitates lysosome rupture. Depending on the experimental conditions, TMPyP thus released 

may then localize in the nucleus, binding to the DNA, and/or it may cross the plasma membrane 

into the extracellular medium (Figure 4.18, right frame).
45,80

 Moreover, intracellular TMPyP 

bleaches upon prolonged irradiation.
80

 All of these processes are manifested in TMPyP-

sensitized singlet oxygen phosphorescence signals.
43,45,80

 

Based solely on the photobleaching kinetics of each of the studied photosensitizers and 

comparing them with TMPyP, from which singlet oxygen traces are easily recorded, we can 

speculate that any dye more resistant to light degradation than TMPyP should be sufficiently 

stable to be analyzed under the experimental conditions necessary to observe a singlet oxygen 
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signal (Figure 4.20). Based on that data, one could additionally predict that it would be possible 

to detect an intracellularly generated singlet oxygen signal from most of the sensitizers studied 

in this work, including BP and DMP-C60.  

However, all the other porphyrins show photoinduced intracellular relocalization, just like 

TMPyP, followed by photobleaching upon irradiation, 
45,80-82

 and light induced fluorescence 

changes upon irradiation are dramatic. Considering that we would be able to detect singlet 

oxygen from these sensitizers, they are far from meeting the characteristics of an ideal 

intracellular sensitizer for singlet oxygen detection with spatial and temporal control. 

 

 

     
 

   
 

 
Figure 4.20 Fluorescence image of HeLa cells incubated with TMPyP recorded as a function of elapsed 

irradiation time over 3 min at 420 nm with a femtosecond laser (7 nJ per pulse). Emission detected at 

650/40 nm. 

 

DMP-C60, is the tested dye with the most stable fluorescence behavior upon irradiation. 

However, its low efficiency on generating singlet oxygen species might not be sufficient for 

meaningful results.  

We might be facing a paradox: we look for a photosensitizer that is simultaneously stable and 

does not suffer relocalization and, at the same time, generates reactive oxygen species that 

reacts directly with the sensitizer or with the surrounding environment causing its destruction. 

An alternative approach to obtain the stability of the chromophore could be its encapsulation. 

Evidence has been presented to indicate that encasing/encapsulating a sensitizer or fluorophore 
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can increase its stability towards oxygen-dependent degradation.
83-85

 Although this observation 

may reflect a number of phenomena, it is principally a consequence of shielding the 

chromophore from reactive species that can diffuse over a finite distance (e.g., singlet oxygen, 

hydroperoxides, etc.) 

 

Table 4.4 Photobleaching quantum yields determined in solution.  

 Фpb
a
 Solvent 

BP 7.02 ± 1 x 10
-4

  DMSO 

DMP-C60 4.56 ± 2 x 10
-7 

 

 

DMSO/H2O (1/9) 

TMPyP 1.22 ± 0.1 x 10
-5 

 

 

3.25 ± 0.3 x 10
-6

  

PBS (with BSA) 

PBS 

a) Standard errors obtained from the kinetics fitting.  
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4.3 Conclusions 
 

It is particularly challenging to directly record O2 (a
1
Δg) → O2 (X

3
Σg

_
) phosphorescence from 

single live cells in a time-resolved laser-based experiment. Most of this challenge comes from 

the fact that singlet oxygen is cytotoxic. Thus, the system on which the experiment is made is 

perturbed continuously as the experiment is performed. Chemical reactions of singlet oxygen 

with proteins, for example, can readily change the local intracellular environment which 

consecutively can influence the production and removal of singlet oxygen kinetics. Regardless 

of these expected environmental changes, we were able to detect singlet oxygen from HeLa 

cells incubated with porphyrins and bacteriochlorins and have demonstrated that, once we 

account for the effects of certain irradiation dependent phenomena (i.e., sensitizer leaking out of 

the cell), the inherent intracellular lifetime of singlet oxygen does not appear to change 

dramatically as the cells progresses towards death.  

In experiments performed with hydrophobic and hydrophilic dyes, where singlet oxygen is 

generated in different subcellular locations, the data obtained are consistent with long-lived 

species that crosses phase-separated domains. Nevertheless, key aspects of singlet oxygen 

behavior still depend on the local environment in which it is produced.  

From our BSA based experiments we have confirmed that hydrophilic dyes can diffuse out of 

the cell, giving rise to the detection of a population of singlet oxygen generated in the 

extracellular medium.  

The evaluation of the cell suspension data, where the overall rate of singlet oxygen removal is 

roughly equivalent to singlet oxygen formation, can be challenging and should be discussed 

with care since it can lead us to misleading conclusions. 

Experiments performed on single cells and cell suspensions follow from very different handling 

procedures and employ different cells line, which per se can influence the data obtained in a 

time-resolve phosphorescence experiment. 

In the second part of this chapter we have focused our study on the photobleaching problems 

associated to the sensitizers used to generate a singlet oxygen signal under our experimental 

conditions. In addition to generate singlet oxygen, we used the fluorescence probe APF to 

demonstrate that bacteriochlorins also generate other radical species, namely hydroxyl radical. 

We can conclude that predictions about intracellular stability based solely on the chemical 

structure of the sensitizer can be erroneous. Rather, one is best advised to first examine the 

behavior of a given sensitizer with an appropriate solution experiment (e.g., a solution with an 
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added protein) before proceeding to an in vitro test.  Indeed, we state that attempts to design a 

stable sensitizer based solely on principles of functional group reactivity will continue to be a 

challenge. The data obtained in this work contributes in a meaningful way to the ultimate goal 

of designing and synthesizing singlet oxygen sensitizers whose intracellular behavior can be 

controlled under a variety of oxidizing conditions.     
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4.4 Materials and methods 
 

4.4.1 Materials 

5,10,15,20-Tetrakis(N-methyl-4-pyridyl)-21H,23H-porphine ( TMPyP, Sigma-Aldrich), and 

pyropheophobide-a (PPa, Frontier Scientific), phosphate-buffered saline solution (PBS, Sigma-

Aldrich) and bovine serum albumin (BSA, MW ∼65 kDa, Sigma-Aldrich), BSA-fluorescein 

conjugate (Molecular Probes/Invitrogen), and D2O (99% D, EurisoTop), dimethyl sulfoxide 

(DMSO, Sigma-Aldrich) and benzene (Sigma-Aldrich), sodium azide (Sigma-Aldrich), were 

used as received. F2POH, F2BOH, F2BMet were kindly offered by Luzitin S.A. 

Benzo[cd]pyrene-5-one, BP,
86

  1,4-bis[4-(N,N-diphenylamino)phenylethynyl]-2,5-

dibromobenzene, BBB,
87

 and N,N-dimethylfulleropyrrolidiniuim iodide, DMP-C60,
88

 were 

prepared as outlined in the papers respectively cited.   

 

4.4.2 Methods 

The output of a continuous wave (cw) diode-pumped Nd:YVO4 laser ( Millenia V, 5W; Spectra 

Physics/Newport) is used to pump a Ti:Sapphire laser (Tsunami 3941, Spectra Physics/ 

Newport, Irvine, CA). The Tsunami, operating at a repetition rate of 80 MHz, delivers tunable 

pulses over a spectral range of ~725 to 910 nm and a Gaussian temporal profile with full width 

at half maximum (FWHM) from ~75 to 95 fs depending on the wavelength. The pulse energy is 

amplified by approximately a factor of 105 in a 1000 Hz pumped regenerative amplifier 

(Spitfire pumped by an Evolution Nd:YLF laser). The Spitfire operates with a repetition rate of 

1 kHz, this ultimately results in tunable pulses from ~760 to 850 nm (~100-150 femtoseconds 

with a spectral bandwith of ~ 15 nm fwhm). Laser powers can be adjusted by rotating the 

polarization of the beam with a half-wave plate (model WPH05M-780, Thorlabs) and then 

passing the resultant beam through a fixed polarized optic (Thorlabs model GT-10B Glan-

Taylor Polarizer). For experiments with porphyrins, the laser output was frequency-doubled by 

a β-barium borate (BBO) crystal (giving 380-425 nm output) and associated filters were placed 

after the polarizer to remove light that it is not frequency-doubled. 
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Microscope-based Singlet oxygen detection 

 

 

 

Figure 4.21 Schematic drawing of the femtosecond optical system used to directly detect singlet oxygen 

with the associated beam paths. The cuvette holder used for solution and cell ensemble experiments can 

be removed such that the output from the microscope can be sent directly to the PMT.  

 

For the bacteriochlorin, an optical parametric amplifier (OPA-800CF) is used in order to 

achieve an excitation at 745 nm. The output of the Spitfire is directed to pump the OPA, 

delivering tunable femtosecond pulses from ~ 300-3000 nm, thereby significantly improving the 

spectral range. The average light power was measured with a power meter (Field Max-II 

controller, Head model No. P519Q, Coherent, Santa Clara, CA). 

The output of the laser is directed into an inverted microscope (Olympus IX 71) and focused 

(diameter ~1 µm at the beam waist) using a water immersion, long working distance (~ 2 mm) 

60× objective (Olympus LUMPLFL60×W/IR/0.90). 
2,14

 

A CCD camera (Evolution QEi controlled by Image-Pro software, Media Cybernetics) is 

attached to the microscope and placed at the image plane of the microscope. The position of the 

laser spot is ascertained by imaging with the CCD camera a scattered/reflected light from a 

glass plate. A motorized stage (Prior, model: CS152DP) and controller (Prior, ProScan II) are 

used to move the cells relative to the laser spot. The microscope lamp (Olympus, TH4-200) and 
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a band pass filter at 700 nm (FWHM 40 nm) are used for bright field illumination to avoid 

induced damage of the cells. 

The 1275 nm 
1
O2 phosphorescence emitted from the sample upon irradiation is isolated with an 

interference filter at 1270 nm (FWHM 50 nm, bkInterferenzoptikElektronikGMbH, Germany) 

and detected by a liquid nitrogen cooled near-infrared photomultiplier tube (PMT, Hamamatsu 

model R55509-42, Hamamatsu City, Japan) used in a time-resolved photo counting mode. The 

response time of the PMT is 3 ns, it has an active area of 3 × 8 mm and a spectral response that 

covers the range from 400 nm – 1500 nm. The output of the PMT is amplified (model 445, 

preamplifier, Stanford Research Systems, Sunnyvale, CA) and sent to a multiscaler photon 

counter (MSA 300, Becker Hickl, Germany).  

Singlet oxygen detection on single cells 

HeLa cells, a cervical cancer subline, was used for single cells experiments. Cells were grown in 

Eagle´s Minimum essential medium (EMEM, Sigma, Deutschland) supplemented with 2 mM L-

glutamine (Sigma), 1 % non-essential aminoacids (Sigma), 1 % penicillin-streptomycin (Sigma) 

and 10 % fetal calf serum (Sigma). The cells were maintained at 37 ºC in a humidified 5 % CO2 

atmosphere and platted when 80 % of confluence was achieved.  After washing them with 

phosphate buffered saline (PBS) and trypsinizing (0.25 % trypsin, Sigma), they detached from 

the bottom of the cultivation flask. The cell suspension was collected and centrifuged (2 min, 

1000 rpm) washed with cultivation medium, re-suspended in the cultivating medium and plated 

onto poly-D-lysine coated cover slips in 12 well plates. The cell density can vary from 

experiment to experiment. After seeding, the cells were left to settle and restart growth for at 

least 24 h before the sensitizer was incubated.  

The specially-composed maintenance medium was prepared by using 140 mMNaCl, 3.5 

mMKCl, 2mM MgCl2, 1.25 mM NaH2PO4, 10 mM glucose and 10 mM HEPES.
4
 

The sensitizers TMPyP (µM), F2POH (µM), F2BOH (µM) were added to the medium, and left 

to incubate for 20 - 24h.  Hydrophobic dye F2PMet (12.5 µM) was diluted in the medium by 

adding a maximum of 1 % ethanol.  

The exchange of intracellular H2O with D2O was achieved by exposing the cells to a hypertonic 

solution (double concentration of KCl and NaCl in the maintenance medium). The cover slip 

containing the cells was removed from the culture medium and washed with PBS. The cells 

were incubated for 3-5 min with the hypertonic D2O-based solution. After incubation the cells 

were washed three times with maintenance medium after washing with PBS. The cells were 

held in a CO2 incubator at 37 ºC for ~ 24 h in an isotonic maintenance medium containing the 
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sensitizer to incubate. The cells were washed three times with ABM/D2O after incubation, and 

transferred to the microscope. 

For some experiments, cells were only exposed to D2O-based maintenance medium for a period 

that did not exceed ~15 min and the laser experiments were performed immediately thereafter.  

Singlet oxygen detection on cells suspensions 

Nonadherent HL-60 cells (Human promyelocytic leukemia cells) were used. Cells were 

maintained in 75 cm
2
 cultivation flasks in RPMI 1640 medium supplied with 10% fetal calf 

serum, 1 % L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin at a concentration of 

~5 × 105 cells/ml. In a typical experiment, the cells were collected from the flask, centrifuged at 

1000 rpm for 2 min, resuspended, and incubated with 50 µM solution of TMPyP dissolved in 

the cultivating medium for 24 h at 37 ºC. When the hydrophobic sensitizer F2PMet was used, a 

maximum 1% ethanol was added from the stock solution to a final concentration of 12.5 µM in 

the medium. PPa was dissolved in the medium by adding a maximum of 1 % DMSO to a final 

concentration of 5 µM, and left to incubate for 3 h. 

Some experiments were performed by incubating cells with a solution of the sensitizer dissolved 

in maintenance medium. After incubation, the cells suspension was centrifuged (1000 rpm for 2 

min) and the medium was removed. Samples were resuspended in D2O-based hypertonic 

maintenance medium for 3 min to remove intracellular H2O via osmosis 
4
 and then centrifuged 

and suspended again in D2O-based maintenance medium with or without BSA, depending on 

the experiment to be performed. Cells were present at a concentration of ~ 10
6
 cells/mL. During 

experiment cells were continuously stirred to maintain their suspension.  

PPa preparation on liposomes  

Experiments on liposomes were performed by Thomas Breitenbach. Unilamellar vesicles were 

prepared from 1,2-dimyristoylglycero-3-phosphocholine (Sigma-Aldrich) by an established 

procedure. 
89

 

Intracellular detection of hydroxyl radicals 

The 3’-(p-aminophenyl)fluorescein probe was employed for intracellular detection of hydroxyl 

radicals. A-549 cells were plated at a density of 15x10
3
 cells per well in 8 wells slides (IBIDI, 

Germany) and were kept at 37 ºC in a 95% atmospheric air and 5% CO2 humidified atmosphere, 

for 24h. After washing the cells with fresh medium, cells were incubated in the dark with 5 µM 

F2BMet, diluted in cell medium, for ≈16 h, at 37 ºC in a 95% atmospheric air and 5% CO2 

humidified atmosphere, and 10 µM of 3’-(p-aminophenyl)fluorescein was added and incubated 
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for additional 1-2 hours. After washing the cells with HBSS/HEPES buffer, the slide was 

transferred to the microscope stage and control images of the cells with excitation at 488 nm and 

530 nm emission were recorded under a confocal microscope (LSM510 Meta, Carl Zeiss, Jena, 

Germany) with a 63x oil immersion objective (Plan-Apochromat, 1.4 N.A., Carl Zeiss, Jena, 

Germany). The cells slide was irradiated at 505 nm with a LED and fluorescein fluorescence 

images were recorded immediately after illumination with the confocal microscope as described 

above.   

The bacteriochorin images were recorded by exciting at 514 nm, using an Argon laser (45 mW); 

emission light was collected after passage through a long-pass filter of 575 nm. A Helium–Neon 

laser (5mW) was used as light source at 633 nm for visualization of cell morphology. 
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5.1 Overall conclusion 
 

The work described in this dissertation explores the photochemical and photophysical properties 

of halogenated tetraphenyl macrocycles that were designed to meet the requirements of PDT 

photosensitizers. This project was developed and progressed along with the work of synthesis 

and biology teams in order to understand and optimize the photosensitizers to improve the 

chances of succeeding in Photodynamic Therapy.  

As photosensitizers for PDT, bacteriochlorins have favorably distinguished themselves from 

porphyrins and chlorins by the intense absorption in the red, where light penetration in the 

tissues is optimal, and by the ability to interact with oxygen through energy and charge transfer 

channels leading to the generation of oxygen species with different reacitivities. Singlet oxygen 

and hydroxyl radical were generated and detected in solution and intracellularly. Intracellular 

singlet oxygen was found to have a comparatively long lifetime and readily crosses phase-

separated domains. We found that, porphyrins mainly generate singlet oxygen and their PDT 

targets will be selectively chosen in the whole of the cell, rather than be correlated to their initial 

intracellular localization. On the other hand, the very reactive hydroxyl radical generated by 

bacteriochlorins will induce damage at the generation site. As so, bacteriochlorins can initiate 

cell death processes that are associated to their initial subcellular localization.  

An important achievement of the design of this new group of macrocycles, especially 

bacteriochlorins, is their high photostability. As the charge-transfer interaction between the 

photosensitizer and oxygen becomes stronger ΔG, for full electron transfer from the sensitizer 

and oxygen, becomes negative (Figure 5.1 A). ΔG decreases as the oxidation potential of the 

photosensitizer increases. However, this is associated with an increase in the photobleaching 

quantum yield (Figure 5.1 B). According to Jori,
1
 the upper limit for the photobleaching 

quantum yield of a useful photosensitizer is 10
-5

, and this sets a lower limit of -0.5 V for the 

oxidation potential of the excited state of the photosensitizer. The high charge-transfer 

interaction between molecular oxygen and the triplet excited state of the sensitizer and the 

photobleaching quantum yield below 10
-5

 are best combined in F2BMet. This combination of 

parameters can have a decisive role in determining the most effective photosensitizer.  

For bacteriochlorins, generation of reactive oxygen species occurs by deactivation of the triplet 

state by singlet and triplet channels. In conditions where the quenching rate constant approaches 

the diffusion controlled limit, the actual rate constant for the deactivation of the triplet excited 

state of the photosensitizer by molecular oxygen should be corrected for diffusion.  

            (        ) (5.1) 
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In order to use the appropriate diffusion limit, kD was calculated considering an estimated value 

of kdiff=(1/9+4/9)/2kdiff, which represents an average of the relevant spin statistic factors. 

The biology team from Coimbra determined the phototoxicity of bacteriochlorins in vitro. The 

lethal light dose required to kill 90 % of cells (LLD90) incubated with a given concentration of a 

photosensitizer increases in the following order: ClBOH<ClBEt<Cl2BEt<FBMet<F2BMet.  

We found that the photodynamic efficiency of these bacteriochlorin photosensitizers is 

correlated with kD/Фpb (Figure 5.2). In conditions where other important criteria for PDT 

efficacy are met, the ratio between the rate constant of the interaction between the 

photosensitizer and molecular oxygen (kD), and photosensitizer photostability (Фpb) can 

determine the order of PDT efficacy of bacteriochlorin photosensitizers. 

The higher efficacy of sulfonamide dyes over the sulfonated ones in killing cancer cells should 

be also evaluated considering their subcellular localization. Sulfonic dyes have a lysosomal like 

accumulation while sulfonamides, distribute mainly into the mitochondria and endoplasmic 

reticulum (ER). ER and/or mitochondria targeting PDT has been shown to be highly effective 

and in addition, ER co-localization has been considered to play an essential role on inducing an 

innate inflammatory response in tumor cells.
2,3
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Figure 5.1 A) Dependence of the quenching rate constant of the triplet excited sate by molecular oxygen 

(kq) with the oxidation potential for some porphyrins and chlorins.  B) Dependence of the photobleaching 

quantum yield with the triplet state oxidation potentials of some halogenated bacteriochlorins (Cl2Bet, 

F2BMet, FBMet) and mTHPP, mTHPC and mTHPB. Graphs were constructed using the values from 

table S2 in the Appendix III.  
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Figure 5.2 Dependence between light doses required to kill 90% of S91-I3 cells (LLD90)
4-6

 and the ratio 

of the triplet-oxygen interaction rate constant (kD) and photodegradation quantum yield (Φpb) for 

halogenated bacteriochlorins, using kdiff = 2.64x10
9
 M

–1
 s

–1
. Values presented in table S2 in the Appendix 

III. 

An important part of this work was to directly quantify the intracellular singlet oxygen lifetime. 

Time-resolved singlet oxygen detection is the most desirable and accurate approach to do it, 

although to perform these experiments at the single cell level can be very challenging. We work 

on a dynamic system which is being perturbed during the experiment, and this will be reflected 

in the phosphorescence data. Despite the environmental changes, we have demonstrated that 

singlet oxygen lifetime does not appear to change dramatically as the cells progresses to death. 

Also, singlet oxygen produced from intracellular localized hydrophilic or hydrophobic 

sensitizers was consistent with a model where it readily crosses between phase separated 

domains.   

With the fluences used with the present methodology to directly detect singlet oxygen at the 

single cell level, bleaching of the sensitizers was currently observed. Ideally, singlet oxygen 

sensitizers should have high singlet oxygen quantum yield and photostability. Our results show 

that in order to achieve a predictable behavior in cells, appropriate photobleaching studies in 

solution should be performed. 

This work aimed to optimize the photodynamic effect that results from the combination of 

oxygen, a photosensitizer and light of appropriate wavelength. We are now better informed on 

how photochemistry plays a role in cellular damage and how we can take advantage of this 

knowledge to improve new drugs for PDT. The properties of the ideal photosensitizer are very 

well described in the literature. However, in the process of selecting the best drug candidate it is 

useful to consider the results of this work: the type of interaction between oxygen and the 

photosentizer excited state, under a specific environment, will dictate the success of the 

photosensitizer. 
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Appendix I 

 

Supporting material for data in Chapter 2 

 

- Rise time decays of singlet oxygen emission at 1275 nm 

- Cyclic voltammograms of F2BMet and Cl2Bet and reduction potentials  

- EPR spectra of Cl2Bet, Cl2BHep, F2BMet, Cl2BMet2 and Cl2BOH. 
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Figure S1 Rise-time of singlet oxygen emission at 1275 nm for bacteriochlorins (top), porphyrins and 

chlorin (bottom) in ethanol. Excitation was achieved with a femtosecond laser at 750 nm for 

bacteriochlorins and 420 nm for porphyrins. 

 

 

 

 

Figure S2 Upper panel: Cyclic voltammogram recorded in 0.1 M TBAP dissolved in ACN containing 0.5 

mM F2BMet; scan rate 25 mV s
-1

. Lowe panel: Cyclic voltammogram recorded in 0.1 M TBAP dissolved 

in ACN containing 0.5 mM Cl2PEt; scan rate 25 mV s
-1

. 
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Table S1 Reduction potentials vs SCE, of selected macrocycles and their photodecomposition quantum 

yields in PBS:MeOH (2:3, V:V). 

 Ered2
0
 

V 

Ered1
0
 

V 

Cl2PEt –1.40 -0.94 

TPC   –1.12 

Cl2CEt –1.44 –0.84 

TPB  –1.10 

F2B –1.46 –0.95 

F2BOH  –0.93 

F2BMet –1.18 –0.74 

Cl2BEt –1.15 –0.79 
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Figure S3 EPR spectrum observed from a solution of Cl2BEt (50 µM) in TRTX-100 (top panel) or in 

DMSO (lower panel) and in the presence of DMPO (50 mM), recorded after 10 s of irradiation with a 

diode laser at 748 nm. Signal simulation on the right side. 

 

10 G

 

Figure S4 EPR spectrum observed from a solution of Cl2BHep (50 µM) in TRTX-100 and in the 

presence of DMPO (50 mM), recorded after 10 s of irradiation with a diode laser at 748 nm. Signal 

simulation at the right side. 
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Figure S5 EPR spectrum observed from a solution of F2BMet (50 µM) in DMSO and in the presence of 

DMPO (50 mM), recorded after 10 s of irradiation with a diode laser at 748 nm. Signal simulation at the 

right side. 
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Figure S6 EPR spectrum observed from a solution of Cl2BMet2 (50 µM) in TRTX-100 (top panel) or in 

DMSO (lower panel) and in the presence of DMPO (50 mM), recorded after 10 s of irradiation with a 

diode laser at 748 nm. Signal simulation on the right side. 
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Figure S7 EPR spectrum observed from a solution of Cl2BOH (50 µM) in DMSO (top panel) and in the 

presence of DMPO (50 mM), recorded after 1 min of irradiation with a diode laser at 748 nm. Signal 

simulation on the right side. 

  

 

 

 

 

 

 

 

 
 

 

 

 
 

 
 

 

 

 

 
 

10 G 



 

 

147 

 

Appendix II 
 

Supporting data to Chapter 3 

 

- Light induced changes in the absorption spectra and photobleaching kinetics of 

F2POH, Cl2BHep, Cl2BEt, F2BMet, FBMet, FBMet2 and ClBOH. 
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Figure S8 Left panel - Light induced changes in the absorption spectra of Cl2PEt in MeOH/PBS solution 

(3/2) when irradiated at 512 nm with a diode laser with 52 mW. Right panel – Photobleaching kinetics 

followed by absorbance at 512 nm. No clear kinetics was found. 
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Figure S9 Left panel - Light induced changes in the absorption spectra of FCMet in MeOH/PBS solution 

(3/2) when irradiated at 653 nm with a diode laser with 6.3 mW. Right panel – Photobleaching kinetics 

followed by absorbance at 653 nm.  
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Figure S10 Left panel - Light induced changes in the absorption spectra of F2POH in PBS solution when 

irradiated at 748 nm with a diode laser with 95 mW. Right panel – Photobleaching kinetics followed by 

absorbance at 746.5 nm, and fitted to a mono exponential decay with k = 3.81×10
-3

. 

 

 

 

 

 

   

Figure 3.11 Light induced changes in the absorption spectra of Cl2BHep in methanol solution when 

irradiated at 748 nm with ~40mW. Left panel- before irradiation, right panel – after 315 min of 

irradiation. 

 

 



 

 

150 

 

0 5000 10000 15000 20000

0,735

0,740

0,745

0,750

0,755

0,760

0,765

 

 

A
b
s
o

rb
a

n
c
e

 

Time /s

 

Figure 3.12 Photobleaching kinetics of Cl2BHep in methanol, followed by absorbance at 746 nm and 

fitted to a monoexponential to yield k = 1.7×10
-6

. 

 

 

 

       

 

Figure 3.13 Light induced changes in the absorption spectra of Cl2BEt in MeOH/PBS (3/2, v/v) solution 

before (left panel) and after 180 min of irradiation (right panel) at 748 nm diode laser with ~40 mW. 
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Figure S14 Photobleaching kinetics of Cl2BEt in MeOH/PBS (3/2, v/v), followed by absorbance at 746 

nm and fitted to a monoexponential to yield k = 6.9×10
-5

. 
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Figure S15 Left panel - Light induced changes in the absorption spectra of F2BMet in MeOH/PBS (3/2, 

v/v) solution at 748 nm with a diode laser with ~40 mW.Left panel - Photobleaching kinetics followed by 

absorbance at  744 nm and fitted to a monoexponential to yield k = 7.6×10
-5

.  
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Figure S16 Light induced changes in the absorption spectra of FBMet in methanol solution before (left 

panel) and after 182 min of irradiation (right panel) at 748 nm diode laser with ~40 mW. 
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Figure S17. Photobleaching kinetics of FBMet in methanol, followed by absorbance at 742 nm and fitted 

to a monoexponential to yield k = 5.86×10
-5

. 
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Figure S18 Light induced changes in the absorption spectra of FBMet in MeOH/PBS (3/2, v/v) solution 

before (left panel) and after  65 min of irradiation (right panel) at 748 nm diode laser with ~40 mW. 
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Figure S19 Photobleaching kinetics of FBMet in MeOH/PBS (3/2, v/v), followed by absorbance at 743 

nm and fitted to a monoexponential to yield k = 3.3×10
-4

. 
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Figure S20 Light induced changes in the absorption spectra of FBMet2 in methanol solution before (left 

panel) and after  225 min of irradiation (right panel) at 748 nm diode laser with ~40 mW. 
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Figure S21 Photobleaching kinetics of FBMet2 in methanol, followed by absorbance at 742 nm and fitted 

to a monoexponential to yield k = 4.7×10
-5

.  
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Figure S22 Photobleaching kinetics of ClBOH in MeOH/PBS (3/2, v/v), followed by absorbance at 743 

nm and fitted to a monoexponential to yield k = 3.9×10
-3

. 
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Figure S23 Photobleaching kinetics of ClBOH in PBS, followed by absorbance at 746.5 nm and fitted to 

a monoexponential to yield k = 4.3×10
-3

. 
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Figure S24 Photobleaching kinetics of ClBOH in methanol, followed by absorbance at 741 nm and fitted 

to a monoexponential to yield k = 4.2×10
-4

. 
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Figure S25 Light induced changes in the absorption spectra of F2BOH in PBS at pH7.4. 
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Figure S26 Light induced changes in absorption spectra of F2BOH in PBS at pH5. 
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Figure S27 Light induced changes in absorption spectra of F2BOH in PBS at pH10. 
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Appendix III 
 

Supporting data to Chapter 5  
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Table S2  

 E*ox 

 /V 

kq  

/s
-1

 

Фpb LLD90 

 /Jcm
-2e

 

TPP
a
 -0.48105 1.6×10

9
   

F2P
b
 -0.20105 1.1×10

9
   

Cl2P
b
 -0.20105 8.7×10

8
   

Cl2PEt -0.14105 6.7×10
8
   

FBMet -0.62254 2.4×10
9
 8.1×10

-5
 0.17 

F2B
c
 -0.62254 2.6×10

9
   

F2BMet -0.47254 2.2×10
9
 1.0×10

-5
 0.14 

ClBOH  1.9×10
9
  0.26 

ClBEt  2.1×10
9
  0.22 

Cl2BEt -0.39749 1.8×10
9
 6.0×10

-6
 0.19 

mTHPP
d
 -0.48105 1.9×10

9
 3.8×10

-6
  

mTHPC
d
 -0.55105 1.8×10

9
 3.3×10

-5
  

mTHPB
d
 -0.81422 2.5×10

9
 1.5×10

-3
  

a) From ref. 1, b) from ref. 2, c) from ref. 3, d) from ref. 4 and redox potentials considered the same as those of TPP, 

TPC and TPB according to ref.5 , e) from ref. 6-8 
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