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In this thesis, the exergy analysis was applied to different case studies, regarding to 

demonstrate it as a significant approach in comparison with conventional energy methods, 

able to provide complementary or exclusive information, finding a more rational or 

enhanced use of energy in buildings. 
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Abstract 

Exergy analysis has been found to be a useful method for improving the conversion 

efficiency of energy resources, since it helps to identify locations, types and true 

magnitudes of wastes and losses. It has also been applied for other purposes, such as 

distinguishing high- from low-quality energy sources or defining the engineering 

technological limits in designing more energy-efficient systems. In this doctoral thesis, the 

exergy analysis is widely applied in order to highlight and demonstrate it as a significant 

method of performing energy assessments of buildings and related energy supply systems. 

It aims to make the concept more familiar and accessible for building professionals and to 

encourage its wider use in engineering practice. This thesis is divided into five main cases 

studies, which have different scopes and follow slightly different approaches but all with 

the same common objective. 

Case study I aims to show the importance of exergy analysis in the energy 

performance assessment of eight space heating building options evaluated under different 

outdoor environmental conditions. This study is concerned with the so-called “reference 

state”, which in this study is calculated using the average outdoor temperature for a given 

period of analysis. Primary energy and related exergy ratios are assessed and compared. 

Higher primary exergy ratios are obtained for low outdoor temperatures, while the primary 

energy ratios are assumed as constant for the same scenarios. The outcomes of this study 

demonstrate the significance of exergy analysis in comparison with energy analysis when 

different reference states are compared. 

Case study II and Case study III present two energy and exergy assessment studies 

applied to a hotel and a student accommodation building, respectively. Case study II 

compares the energy and exergy performance of the main end uses of a hotel building 

located in Coimbra in central Portugal, using data derived from an energy audit. The 

results show that the most energy-efficient hotel end use does not necessarily correspond to 

the most exergy-efficient one. A diagram including information related to primary energy 

demand and energy and exergy efficiencies is proposed, revealing to be a very useful tool 

for including in future legislation on energy performance of buildings. Case study III uses 

data collected from energy utilities bills to estimate the energy and exergy performance 
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associated to each building end use. Furthermore, the building end uses are ranked by 

inefficiencies or exergy destruction levels, using the concept of “Exergy Destruction 

Ratio”. Additionally, a set of energy supply options are proposed and assessed as primary 

energy demand and exergy efficiency, showing it as a possible benchmarking method for 

future legislative frameworks regarding the energy performance assessment of buildings. 

Case study IV proposes a set of complementary indicators for comparing 

cogeneration and separate heat and electricity production systems. It aims to identify the 

advantages of exergy analysis relative to energy analysis, giving particular examples where 

these advantages are significant. The results demonstrate that exergy analysis can reveal 

meaningful information that might not be accessible using a conventional energy analysis 

approach, which is particularly evident when cogeneration and separated systems provide 

heat at very different temperatures. 

Case study V follows the exergy analysis method to evaluate the energy and exergy 

performance of a desiccant cooling system, aiming to assess and locate irreversibilities 

sources. The results reveal that natural gas boiler is the most inefficient component of the 

plant in question, followed by the chiller and heating coil. A set of alternative heating 

supply options for desiccant wheel regeneration is proposed, showing that, while some 

renewables may effectively reduce the primary energy demand of the plant, although this 

may not correspond to the optimum level of exergy efficiency. The thermal and chemical 

exergy components of moist air are also evaluated, as well as, the influence of outdoor 

environmental conditions on the energy/exergy performance of the plant. 

This research provides knowledge that is essential for the future development of 

complementary energy- and exergy-based indicators, helping to improve the current 

methodologies on performance assessments of buildings, cogeneration and desiccant 

cooling systems. The significance of exergy analysis is demonstrated for different types of 

buildings, which may be located in different climates (reference states) and be supplied by 

different types of energy sources. 

 

Keywords: Exergy analysis, Performance assessments, Buildings, Micro-cogeneration, 

Desiccant cooling systems, Exergy efficiency, Primary energy. 
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Resumo 

A análise exergética tem sido usada como um método útil para melhorar a eficiência 
na utilização de recursos energéticos, uma vez que permite identificar os locais, tipos e 
magnitudes das perdas ou desperdícios de energia. Tem sido aplicada para outros fins, tais 
como, distinção entre recursos de alta e baixa qualidade energia, ou definir os limites 
tecnológicos de engenharia na concepção de sistemas mais eficientes. Nesta tese de 
doutoramento, a análise exergética é aplicada para demonstrar a sua importância na 
avaliação do desempenho energético de edifícios e sistemas de conversão de energia. Tem 
por objectivo tornar o conceito mais familiar e acessível entre os profissionais de energia 
em edifícios, incentivando o seu uso corrente em engenharia. Esta tese está dividida em 
cinco casos de estudos com diferentes orientações, seguindo abordagens ligeiramente 
distintas, mas procurando responder ao mesmo objectivo comum. 

O caso de estudo I tem como objectivo mostrar a importância da análise exergética 
na avaliação do desempenho energético de oito opções de aquecimento, sob diferentes 
condições ambientais externas. O estudo está focado no chamado "estado de referência", 
que neste estudo é calculado usando a temperatura média exterior para um dado período de 
análise. Rácios de energia e exergia primária foram estimados e comparados. Como 
resultado, os rácios de exergia são mais elevados para níveis de temperaturas exteriores 
mais baixas, enquanto os rácios de energia primária são constantes nesses mesmos 
cenários. Os resultados deste estudo demonstram o valor da análise exergética por 
comparação à análise energética, quando diferentes estados de referência são considerados. 

Os casos de estudo II and III apresentam duas avaliações do desempenho energético 
e exegético aplicadas a um hotel e de uma residência de estudantes, respectivamente. O 
caso de estudo II compara o desempenho energético e exegético de um hotel localizado em 
Coimbra, usando informação obtida por uma auditoria energética. Os resultados mostram 
que o utilizador final energeticamente mais eficiente do edifício não corresponde 
necessariamente ao mais eficiente em termos de exergia. Um diagrama incluindo 
informação de eficiência energética e exergética e consumos de energia primária por 
utilizador final é proposto, revelando ser uma ferramenta a incluir em legislação futura 
sobre o desempenho energético de edifícios. No caso de estudo III são usados dados de 
facturação de consumos para calcular o desempenho energético e exergético associado a 
cada utilizador final de energia do edifício. Adicionalmente, os diferentes utilizadores 
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foram classificados por níveis de ineficiências ou destruição de exergia, utilizando o 
conceito de “Exergy Destruction Ratio”. Foram ainda propostas diferentes opções de 
fornecimento de energia, avaliadas e classificadas em termos de consumo de energia 
primária e eficiência exergética, revelando ser assim um possível método de 
“benchmarking” para futuros quadros legislativos sobre o desempenho energético de 
edifícios. 

O caso de estudo IV propõe um conjunto de indicadores complementares para 
comparar sistemas de co-geração e sistemas de produção separada de calor e electricidade. 
Tem como objectivo identificar as vantagens da análise exergética comparativamente ao 
método de análise energética, mostrando exemplos particulares onde são mais evidentes. 
Os resultados demonstram que a exergia revela informação distinta face a uma abordagem 
energética convencional, sendo mais evidente em sistemas de co-geração e de produção 
separada com fornecimento de calor a temperaturas muito diferentes. 

O caso de estudo V usa o método de análise exergética para avaliar o desempenho 
energético e exergético de um sistema de arrefecimento exsicante, tendo por objectivo 
principal avaliar e localizar fontes significativas de irreversibilidades. Os resultados 
revelam que a caldeira a gás natural é o componente mais ineficiente, seguindo-se o 
“chiller” e o permutador de aquecimento. Um conjunto de opções alternativas de 
aquecimento para regeneração da roda exsicante é também proposto, revelando que 
algumas fontes de energia renovável podem efectivamente reduzir o consumo de energia 
primária, embora possam não corresponder a eficiências exergéticas elevadas. As 
componentes térmicas e químicas do ar húmido são também avaliados, assim como a 
influência de condições ambientais externas no desempenho da unidade. 

Este trabalho de investigação contém conhecimento essencial para o futuro 
desenvolvimento de indicadores complementares baseados em exergia, permitindo 
melhorar as metodologias convencionais de desempenho energético de edifícios, sistemas 
de co-geração e sistemas de arrefecimento dissecante. A importância da análise exergética 
é demonstrada para diferentes tipos de edifícios, que podem estar localizados em diferentes 
ambientais exteriores (estados de referência), e que podem ser fornecidos por diferentes 
fontes de energia. 

 

Palavras-chave: Análise exergética; Avaliações de desempenho; Edifícios; Micro-

cogeração; Sistemas de arrefecimento exsicante; Eficiência exergética; Energia primária. 
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Nomenclature1 

Main Symbols 

Af Floor conditioned area (hotel building), (m2) 
Eel,i Energy demand of hotel electric end use i, (kWh) 
Ep Primary-fossil energy demand, (kWh m-2) 

,p viiE  Primary energy load at the heating system of the desiccant wheel, (kW) 
Eu,i Useful energy demand related to the hotel end use i, (kWh) 
EDRk Exergy destruction ratio for the end use k, (-) 
Ef,i Energy demand related to fossil sources (hotel building), (kWh) 

pE  Primary energy input rate for a given space heating option, (kW) 
EP Specific Primary Energy demand of the hotel building, (kWh m-2) 
Ep,i Primary energy demand related to the hotel end, i, (kWh) 
ExD Useful exergy demand, (kWh) 
Exdes,i Exergy desired related to the hotel end use, i, (kWh) 

,in kEx  Exergy input rate of component k of the desiccant cooling plant, (kW) 

ivEx  Space heating exergy demand at sub-system iv, (kW) 

,out kEx  Exergy output rate of component k of the desiccant cooling plant, (kW) 

pEx  Exergy rate related to the primary energy demand of a space heating option, (kW) 
Exreq,i Exergy required related to the hotel end use i, (kWh) 
ExS Total exergy required at supply side, (kWh) 
Fel,p, Fp,e Conversion factor from electricity to primary energy, (-) 
Fp,f Conversion factor from fossil sources to primary energy, (-) 

chpI  Irreversibility rate occurring at the cogeneration system, (kW) 
Ik Irreversibility associated to building end use k, (kWh) 

kI  Irreversibility rate at the component k of the desiccant cooling plant, (kW) 

pI  Primary irreversibility rate, (kW) 
IR,k Relative irreversibility rate at the component k of the desiccant cooling plant, (-) 

,p refI  Primary irreversibility rate in the reference system, (kW) 

,t refI  Total irreversibility rate in the reference system, (kW) 
PER Primary Energy Ratio, (-) 
PERi Primary Energy Ratio, related to the hotel final use i, (-) 
PERove Overall Primary Energy Ratio of the desiccant cooling system, (-) 
PES Primary Energy Savings, (-) 

                                            
1 The list of symbols presented in this section is only referred to the main five chapters of this dissertation. 
The complete list of symbols is individually presented in each Research Paper, included in the Appendix. 
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PExR Primary Exergy Ratio, (-) 
PIS Primary Irreversibility Savings, (-) 

,H ivQ  Space heating load at sub-system iv, (kW) 
Qh.k Heating energy demand of the student housing end use k, (kWh) 

cQ  Cooling load of the desiccant cooling plant, (kW) 
TIS Total Irreversibility Savings, (-) 

,el ivW  Electricity load of chiller in the desiccant cooling plant, (kW) 

,el jW  Electricity demand of the hotel building end use, j (kWh) 

Greek symbols 

k  Exergy efficiency defect related to the desiccant cooling plant component k, (-) 

eg  Fraction of electricity produced by renewable sources, (-) 

hs ; ,h k  Fraction of useful heat derived from renewable sources, (-) 

,e chp  Electric-based efficiency of the cogeneration unit, (-) 

eg  Averaged efficiency of the electricity production system, (-) 

,eg f  Electric grid efficiency (powered by fossil sources), (-) 

,h chp  Thermal-based efficiency of the cogeneration unit, (-) 

,
f

hs k  Fuel-based heating system efficiency, related to end use k, (-) 

,hs f  Heating system efficiency powered by fossil sources, (-) 
  Exergy efficiency of a given heating option, (-) 

k  Exergy efficiency of the desiccant plant component k, (-) 

Acronyms 

AC Air Conditioning units 
CHP Combined Heat and Power 
DCS Desiccant Cooling System 
DHW Domestic Hot Water 
EC European Commission 
ECBCS Energy Conservation in Buildings and Community Systems 
EPBD Energy Performance of Buildings Directive 
ESN Energy Supplied Network 
HVAC Heat Ventilation and Air Conditioning 
IEA International Energy Agency 
MCHP Micro Combined Heat and Power 
OCDE Organisation for Economic Co-operation and Development 
RSECE Acronym in Portuguese: Regulation of the Climatization Energy Systems in Buildings 
WBCSD World Business Council for Sustainable Development 
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1. Introduction 

1.1. Background and motivation 

The World Business Council for Sustainable Development (WBCSD) identified 

buildings as one of the five main energy users with highest potential for the energy 

efficiency improvement in the short term (WBCSD, 2009). In the European Union (EU), 

buildings sector account for 40 % of total energy consumption and 36 % of CO2 emissions, 

representing Europe’s largest source of greenhouse gas emissions. Therefore, improving 

the energy performance of buildings is a key objective of the European policy framework 

for the transition to a low-carbon economy. To pursue this goal, an action plan for energy 

efficiency launched by the European Commission (EC, 2006) set a target for achieving by 

2020: 20 % reduction in greenhouse gas emissions, 20 % energy savings; and renewable 

energy accounting for 20 % of EU overall energy consumption. The action plan also 

establishes that the highest energy savings need to be made in residential (households) and 

commercial buildings, with potential savings estimated to be about 27 % and 30 %, 

respectively, followed by the industrial and transport sectors. Also, the Sustainable 

Building and Construction Initiative of the United Nations Environment Programme 

(Houvila and UNEP, 2007) defined building and construction as a key sector for the 

sustainable development. This sector presents a considerable potential for positive changes 

in becoming more efficient in terms of the use of resources being less environmentally 

intensive and more profitable. Energy benchmarks for buildings were outlined as an 

important instrument in helping decision-makers take correct appropriate steps and 

encourage energy efficient and sustainable buildings, while influencing the market 

mechanisms and promoting research and developments projects. 

The building sector is an activity sector with a complex industrial chain, which 

involves a wide variety of players and is dependent of an extended life cycle of products 

and user preferences, making it one of the most complex environmental policy targets 

groups (OCDE, 2003). Incentive instruments for energy efficiency in buildings, including 

economic and technical aspects, R&D programmes and other tools need to be implemented 

alongside governmental policies. Building regulations are crucial in helping to encourage 

energy efficiency improvements in the building sector, limiting buildings energy 
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consumption. Within the European Union, the Energy Performance of Buildings Directive 

(EPBD) 2002/91/EC (EC, 2002) and the recast EPBD 2010/31/EU (EU, 2010) are 

currently the main policy instruments regarding the reduction of energy consumption in 

buildings across Europe. Attention should also be given to the energy sources used for 

space heating and cooling, giving preference to the renewable energy and high-efficiency 

technologies, such as, solar thermal, air- or ground-source heat pumps systems. 

Besides to purely quantity aspects, the energy quality should also be considered, 

giving preference to the use of low-quality sources such as, ground heat source and district 

heat (IEA, 2008). The quality of energy is revealed by combining the First and Second 

Law of Thermodynamics, which is usually treated as “Exergy analysis”. In actual energy 

systems, part of the exergy supplied is consumed or destroyed, caused by the inherent 

irreversibilities associated to each energy conversion process (Bejan, 2006). For example, 

high energy-efficient boilers are widely used to meet low-temperature heat requirements, 

such as, space heating or domestic hot water applications. In these applications, the high 

exergetic potential of the fuels supplied is irretrievably lost, leading to high exergy 

destruction rates or low-exergy efficiencies (IEA, 2008). 

Consequently, this PhD research is driven to encourage the energy efficiency in 

buildings with regard to the quantitative and qualitative aspects of energy use, highlighting 

the importance of moving towards low-exergy technologies, the use of renewable and low-

temperature heat sources in accordance with the actual exergy requirements of buildings or 

system output. Additionally, the exergy analysis also plays a key role in the sustainable 

development, since it is one way to reduce the depletion of resources and decrease the 

exergy losses by increasing the exergy efficiency of the energy conversion systems (Dinçer 

and Rosen, 2007). Therefore, the exergy plays also an important role on the main topics of 

Energy for Sustainability (EfS) and MIT Portugal Program on Sustainable Energy 

Systems, of which this PhD is a part. 

1.2. Statement of the problem 

The conventional methods of assessment of the energy use in buildings are usually 

focused on purely energy quantity aspects (first law approach), generally interested on 

minimizing energy losses or reducing the related primary energy demand. Although, in this 

approach, the margins for efficiency improvement are generally narrow, contrasting with 
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exergy analysis methods, involving both first and second law principles. Despite the need 

of exergy methods for performance assessment of buildings has been claimed by several 

authors Schmidt and Shukuya (2003), Shukuya and Hammach (2002), Tolga Balta et al. 

(2008), Schmidt (2009) and Hepbasli (2012), their widespread use and current practice 

among building professionals is an issue that still exists. This problem has been minimized 

throughout the use of conversion factors, converting energy quantities into primary energy 

or related CO2 emissions, although it does not involve any energy quality considerations. 

The building sector was also considered a sector with a high potential for improving 

the quality match between energy supply and demand (Ala-Juusela, 2004), especially when 

high exergy sources are used to fulfil low-temperature (or low-exergy) requirements. As 

different levels of energy quality are required for the different end users within a building, 

adequate energy sources should be chosen in order to minimize quality differences 

between supply and demand. As example, for space heating and cooling requirements, 

with temperatures around 20 – 25ºC, the quality levels at demand (q) are relatively low 

(q=0.07). On other hand, lower than household electric appliances and lighting 

applications, which are associated to high energy quality levels (q=1) (IEA, 2008). 

Additionally, the energy supply structure is not as sophisticated as building demand 

requirements, therefore energy is supplied as electricity or high exergy sources, such as 

fossil fuels, applied to perform both high exergy tasks and low-temperature requirements. 

Since fossil fuels burn at very high (flame) temperatures up to 2000 K (Dincer and Cengel, 

2001), the available work (energy) obtained from the fossil fuels is largely wasted when 

the fossil fuels are used to space heating, hot water or even industrial steam production. 

This problem is known for a long time, but has not yet been addressed, especially in the 

building sector, where a dominant share of annual energy consumed with very low exergy 

efficiency and thereby polluting the atmosphere in an unnecessary way (Sakulpipatsin, 

2008). An way to address this issue is to use low-exergy sources or alternative energy 

resources, directly with temperature levels compatible with energy demand requirements. 

1.3. Objectives and research questions 
Exergy analysis method aims towards a deeper understanding of the nature of energy 

flows or conversion processes, maximizing the match between the supplied exergy and the 

useful energy at demand (Schmidt, 2009). In this doctoral research, energy and exergy 
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analysis methods are applied to different scopes, such as, performance assessments of 

buildings (hotel and student housing); assessments of heating options in buildings; 

comparison between cogeneration and separate heat and electricity production; and 

performance assessment of desiccant cooling systems. The main objectives are to 

demonstrate by practical examples the exergy analysis as a significant method for the 

performance assessment of buildings, showing it as a complementary approach to the 

energy method, making the exergy concept more familiar and practical for building 

professionals and encouraging further utilization in engineering practice. Based on the 

objectives, four main Research Questions (RQ) were formulated that this research will 

attempt to answer. 
 

RQ I How to demonstrate that the exergy can be a significant method able to 
provide meaningful or even exclusive information relatively to the conventional 
energy approach? 

RQ II How to distinguish building energy end uses by means of energy and exergy 
performance and how it can contribute for the overall performance 
improvement of buildings? 

RQ III How to evaluate and rank building energy end uses (or sub-components in 
multi-component systems) by irreversibilities levels and how to optimize their 
energy and exergy performance? 

RQ IV Can exergy indicators be useful to the usually applied Primary Energy Savings 
(PES) for comparing cogenerated and separated heat and electricity 
production systems? 

1.4. Outline of the thesis 
This thesis is constituted by five chapters and an appendix section. The chapters 

present the review of the most relevant scientific literature, the methods performed, the 

results and discussion and finally the main conclusions of this doctoral research. After the 

current Introduction section, Chapter 2 summarizes the main literature review, including 

exergy definitions, reference environment, developed exergy tools with major focus on the 

most important key topics about exergy in buildings. Chapter 3 describes the main case 

studies and the related methods used in this research. Chapter 4 presents the main 

outcomes of this research and Chapter 5 summarizes the main conclusions of the thesis, 

including main contributions, unsolved issues and suggestions for further research. In the 

appendix section, the main five research papers written during this research are included, 

which are following summarized: 



 

1. Introduction 

 

UC  2013 23 

 

- Research Paper I (Gonçalves et al., 2013a) makes a comparison between different 

heating options in buildings, located in different outdoor environmental conditions. This 

paper aims to show the significance of the exergy analysis relatively to the energy method 

for comparing scenarios with different dead state conditions. 

- Research Paper II (Gonçalves et al., 2012) uses energy and exergy indicators to 

assess the performance of a hotel building located in the city of Coimbra, using actual 

energy data derived from an energy audit. This study aims to demonstrate how exergy 

analysis could be applied together with conventional energy methods, distinguishing 

buildings according to the type of the energy end uses. 

- Research Paper III (Gonçalves et al., 2013d) compares primary energy and exergy 

indicators and discusses their significance for inclusion on future buildings energy codes. 

Using actual energy data, the primary energy and exergy performances of a student 

housing building were evaluated. Based on the concept of Exergy Destruction Ratio 

(EDR), the main building end uses were ranked monthly by the respective levels of 

irreversibilities (inefficiencies). Additionally, various alternatives for the energy supply 

were performed and benchmarked using primary energy and exergy indicators. 

- Research Paper IV (Gonçalves et al., 2013b) compares a micro-cogeneration 

(MCHP) unit with a set of reference scenarios, based on separate heat and electricity 

production. The paper highlights the limitations of using Primary Energy Savings (PES) 

indicator and identifies particular situations, where alternative indicators (based on the first 

and second laws of thermodynamics) could provide additional information not possible 

with a simple energy approach using PES. 

- Research Paper V (Gonçalves et al., 2013c) examines in detail all the component 

of a Desiccant Cooling System (DCS), evaluating their energy and exergy performance for 

a typical summer week in a Mediterranean climate (Naples, Italy). Using the concept of 

exergy efficiency defect, the sub-components of the DCS were ranked by levels of 

irreversibilities. Additionally, for the most inefficient component of the plant (the boiler), 

alternative systems were proposed and their performances evaluated. 
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2. State of the art 

Exergy analysis method has been applied since the early 1970s, aiming to find the 

most rational use of energy, reducing fossil fuels consumption for low-quality energy 

requirements and looking for a better match between quality levels of supply and demand 

(Torío et al., 2009). In buildings, most scientific efforts have been focused on reducing 

primary energy demand or related CO2 emissions, which have been accomplished through 

the use of more efficient equipments, improvements on building envelope quality (better 

insulation, enhance glazing, etc) or even teaching the users to change their behaviours. 

High performance and sustainable buildings requires maximizing energy, exergy and 

comfort performances, while minimizing the environmental footprint. In buildings and 

HVAC technologies, the exergy has been a forgotten concept (Kilkis, 2010), and most of 

the analysis conducted has been purely based on first law of thermodynamics. The exergy 

analysis leads to a better understanding of the influence of thermodynamic phenomena on 

the process effectiveness, highlighting the importance of different thermodynamic factors 

and most effective ways for improving energy conversion processes. Without the inclusion 

of the exergy concept in the analysis, major environmental problems and solutions remain 

hidden in the building sector (Kilkis, 2010). In recent years, the exergy concept has been 

increasingly applied and developed in the study of built environment, where the original 

studies of the architectural engineer Shukuya, including studies on fenestration, building 

services and human body (Shukuya and Assada, 1993; Shukuya, 1994, 1996) are 

mentioned as the firsts on this field. 

In this state-of-the art, a great quantity of research studies on exergy analysis of 

building was reviewed, with especial attention for those related to the exergy-based 

assessments and exergy indicators, which are the main topics of this dissertation. It is 

divided into eight sections organized as following. Section 2.1 describes various exergy 

definitions and introduces the low-exergy approach concept. In Section 2.2, the reference 

(dead state) environment issues are presented and discussed. Section 2.3 reviews the most 

important exergy calculation tools for exergy analysis of buildings. The important studies 

on exergy analysis of building are presented in Section 2.4, and the most significant 

indicators for exergy performance of buildings are presented in Section 2.5. Finally, in 
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Section 2.6 and Section 2.7 are presented the main studies on exergy analysis of 

cogeneration systems and desiccant cooling systems, respectively. 

2.1. Exergy definitions and low-exergy approach 
Many researchers and engineers have applied exergy methods for performance 

assessment, design or improvement of energy systems or conversion processes. When 

compared with the conventional energy method, the benefits of the exergy analysis are 

numerous. The concept is often perceived as highly complex and some practicing 

engineers disbelieved exergy to achieve tangible and useful results (Hepbasli, 2012). For a 

better understanding of the concept, a review of the definitions given by the different 

authors was conducted and the respective results are presented in Table 1. 

Table 1: Different exergy definitions. 

Author (s) Exergy definition 

(Kotas, 1995) The work equivalent of a given form of energy is a measure of its exergy, 
which is defined as the maximum work, which can be obtained from a given 
form of energy using the environmental parameters as the reference state. 

(Szargut, 2005) Exergy is a measure of a quality of various kinds of energy and is defined as 
the amount of work obtainable when some matter is brought to a state of 
thermodynamic equilibrium with the common components of the natural 
surroundings by means of reversible processes. 

(Bejan, 2006) Exergy is the minimum theoretical useful work required to form a quantity of 
matter from substance present in the environment and to bring the matter to a 
specified state. Exergy is a measure of the departure of the state of the system 
from that to the environment, and is therefore an attribute of the system and 
environment together. 

(Tsatsaronis, 2007) Exergy of a thermodynamic system is the maximum theoretical useful work 
(shaft work or electrical work) obtainable as the system is brought into 
complete thermodynamic equilibrium with the thermodynamic environment 
while the system interacts with this environment only. 

(Moran and 
Shapiro, 2008) 

Exergy is the maximum theoretical work that can be extracted from a 
combined system consisting of the system under study and the environment 
as the system passes from a given state to equilibrium with the environment. 

 

Terms like “maximum theoretical work”, “reference environment” and “energy 

quality” are used by the different authors for the definition of exergy. Furthermore, Kotas 

(1995), Wark (1995) and Bejan (2006) described exergy as constituted by four main 

components: the physical exergy (mechanical and thermal), chemical exergy, kinetic and 

potential exergy. The physical exergy is related with deviation of temperature and pressure 
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relatively to the reference environment. The chemical exergy is associated to the deviation 

of chemical composition of the system relatively to a given reference state. The kinetic and 

potential exergy is associated to the system velocity and height, respectively measured 

relative to a given reference point. 

The introduction of the exergy concept in built environment aims to improve the 

quality match between supply and demand (Sakulpipatsin, 2008), since in most of cases, 

high energy sources are used to satisfy low temperature and thereby low exergy needs. In 

this way, concerning the concept applied to buildings, the most of suitable concepts are: 

exergy as “a measure of a quality of various kinds of energy”, for supplied exergy 

assessment (e.g. electricity, fossil and renewable resources); and exergy as ”the minimum 

theoretical useful work required to form a quantity of matter from substance present in the 

environment and to bring the matter to a specified state”, applied to evaluate the exergy 

building end uses (e.g. space heating, hot water, food preparation, etc). 

In Figure 1, a scheme of the energy quality flows in buildings is represented at 

supply and demand side. The fossil energy supply and related energy use at building 

demand are represented. The size of each arrow gives an indication about the magnitude of 

each energy flow. A high match between supply and demand levels could be achieved 

through the use of suitable energy sources chosen according to the buildings demand, 

increasing significantly its overall exergy performance (Torío and Schmidt, 2010). 

Figure 1: Schematic view of energy 
quality flows in buildings: 

(a) Conventional building; 

(b) Low-temperature building. 

(Schmidt, 2009). 

 
 

There are huge varieties of technical solutions on the market able to provide low 

temperature levels for heating (or high temperature for cooling), although this is not the 
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main concern of engineers, who are mostly concerned on designing building systems based 

on pure energy quantitative aspects. To overcome this issue, the next generation of 

buildings should be planned to operate with sustainable energy sources for heating and 

cooling with adequate temperature levels. Therefore, the development of low-temperature 

heating systems or high-temperature cooling systems is a necessary pre-requisite for the 

use of alternative energy sources. These ideas lead to the concept of “Low-Exergy” or 

simply ‘LowEx’, which is found in the following studies Shukuya and Hammach (2002), 

Ala-Juusela (2004), CostExergy (2004), Schmidt and Ala-Juusela (2004), Cost24 (2007), 

Schmidt (2009). LowEx systems differ from “passive systems” that are designed to take 

profit of various “potentials” in the immediate environment. Low-exergy systems are 

“active” systems that allow the use of low valued energy, which is (easily) delivered by 

sustainable energy sources (e.g. by using heat pumps, solar collectors, either separate or 

linked to waste heat, energy storage, etc.) (Schmidt, 2004). The use of low-exergy supply 

systems is able to deliver heat/cool in environments relatively close to comfort conditions, 

and also provides many benefits, such as, improving the thermal comfort and indoor air 

quality and also the reduction of the exergy consumption (Gu, 2007). 

2.2. Reference environment 
The significance of the dead state definition for the exergy analysis was studied in 

detail by Rosen and Dincer (2004), Krakow (2007) and Utlu and Hepbasli (2007). The 

authors classified the exergy analysis as a relevant tool to compare actual and ideal 

(reversible) thermal systems, once two or more systems to be compared must have “basic 

similarities and equivalent boundary conditions” (Krakow, 2007). 

From the previous definitions, exergy is associated to the work potential (or quality 

changes of energy and matter) always defined relatively to a given reference environment 

(or dead state). When a system is in equilibrium with the environment, the state of the 

system is called ‘dead state’ and its exergetic value is zero. At this state, mechanical, 

thermal and chemical conditions between the system and the environment are in 

equilibrium. The system has also no motion or elevation relative to the environment 

coordinates (Bejan and Mamut, 1999). Under this state, there is neither the possibility of a 

spontaneous change within the system or the environment nor an interaction between them. 

A particular dead state is called ‘restricted dead state’, when only mechanical and thermal 

equilibrium occur between the system and its environment. In the restricted dead state, a 
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given system has no mass flow exchanges, both velocity and elevation relative to the 

environment coordinates are zero and the reference temperature and atmospheric pressure 

are respectively T0 = 25 ºC and p0 = 101 325 Pa (Moran, 1982). 

The exergy analysis results are usually sensitive to variations of the dead state 

conditions. Some authors conducted some sensitivity analyses on the effect of varying 

dead state of engineering systems. Rosen and Dincer (2004) described the sensitivity 

exergy parameter with the reference environment based on pressure and temperature. The 

results indicate that, when the state is significantly different from the chosen dead-state, the 

exergy flows are not very sensible to the reference state choice (e.g. power plants). 

However, when the properties of the system are close to the reference environment (e.g. 

space heating and cooling of buildings) strong variations are obtained. 

Concerning exergy analysis studies on dead state issues in built environment, some 

authors proposed that the dead state should be defined based on outdoor environment 

surrounding to the building (Alpuche et al., 2005; Angelotti and Caputo, 2007; 

Sakulpipatsin, 2008; Torío and Schmidt, 2010). Despite this definition requires the use of 

dynamic energy and exergy analysis, the major part of the papers reviewed apply the 

steady-state approach, using seasonal mean values and annual mean values (Torío et al., 

2009). Also, Sakulpipatsin (2008) evaluated exergy flows through the building envelope, 

including the air humidity in the definition of both the building and its reference 

environment. The author investigated two climatic conditions: Bangkok (Thailand) as hot 

and humid climate and De Bilt (The Netherlands) as cold and dry climate. Chengqin et al. 

(2002) suggested an unusual selection of the dead-state novel of HVAC systems, which 

simplifies the exergy analysis by excluding the need of calculating the exergy of water at 

ambient temperature. An exergetic modelling and experimental performance assessment 

study of a novel desiccant cooling system conducted by Hürdoğan et al. (2011) found that 

exergetic efficiency of the whole system ranges from 32 % to 10 %, for variations on dead 

state temperatures from 0 to 30 ºC. Finally, in the study conducted by Utlu and Hepbasli 

(2007), the effect of the reference (dead) state on energy and exergy efficiencies of the 

residential-commercial sectors was investigated. The authors concluded that exergy 

efficiency values vary from 8.11 to 11.92 % with the dead state temperatures from 25 to 

0 ºC. From all reviewed studies, it could be concluded that the choice of the reference 

environments greatly influences the exergy analysis results, which is a strong stimulus for 

the definition a common dead state framework for further exergy analysis studies. 
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2.3. Exergy calculation tools 
The ECBCS Annex 49 (IEA, 2008) developed a huge variety of tools and diagrams, 

showing exergy analysis results in buildings and communities from different perspectives. 

An overview of tools developed during ECBCS Annex 49 is presented in Table 2. The 

“IEA Annex 49 pre-design tool” was originally developed by Schmidt D. (2003) and was 

used and improved during the research project ECBCS Annex 37 (Ala-Juusela, 2004). It is 

a MS Excel tool, based on a steady-state heat demand that performs the calculations for a 

design point defined by the user of outdoor/indoor conditions, solar radiation, internal 

gains and air exchange rate. 

Table 2: Summary of tools for exergy analysis in built environment, developed during 
ECBCS Annex 49 (IEA, 2008). 

Tool Recommended 
user 

Interface/ 
Programing Licence Scope 

Annex 49 pre-design 
tool 

Engineer 
Architect Excel/Basic Open source System/building 

Cascadia Engineer 
Energy planner Excel/Basic Open source Community 

SEPE Engineer Excel/Basic Open source System/component 

DPV Engineer 
Architect GUI/C Private Building 

Human body Engineer GUI/Fortran Open source Occupant 

Decision Tree Owner 
Energy planner Graphical Open source System/building 

 

 
Figure 2: Energy supply chain for space heating in buildings, from primary energy 
transformation to final energy (Schmidt D., 2003). 

 

The pre-design tool is divided into seven blocks and sub--systems as illustrated in 

Figure 2. It is able to assess the overall energy and exergy performance of the supply 

systems and individual components (e.g. boiler, solar collectors, floor heating systems, 
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etc). More information about this tool may be found in IEA (2008). As output results, a set 

of diagrams may be presented showing the energy/exergy flows and energy/exergy losses 

that occur in each component of the energy supply chain. 

As previously stated, exergy analysis has been used to locate sources of 

inefficiencies and identify the potential for energy systems improvement (Szargut, 2005), 

allowing also a common and scientifically grounded approach for analysing different 

energy sources (fossil or renewable). However, the exergy analysis by itself does not 

provide any information about renewability of a given energy source. Therefore, in IEA 

(2008), the link between these two aspects requires an additional parameter called Primary 

Energy Ratio (PER) that calculated as the ratio between the useful energy demand and the 

fossil energy input. High PER values indicate that the proportion of fossil energy in the 

supply is low (high efficient systems or high share of renewables). The combined use of 

PER and exergy efficiency, led to the concept of ‘PER-exergy efficiency diagram’, 

developed by CHRI-Cauberg Huygen, in Netherlands. These diagrams were applied in the 

case studies of Annex 49 (IEA, 2008) for community supply systems, aiming to describe 

the exergy performance together with the use of renewable sources in communities. 

2.4. Synopses of exergy studies in buildings 

In the last few years, several exergy analysis studies about built environment have 

been conducted. As result of an initiative initiated by the International Society for Low 

Exergy Systems in Buildings, a guidebook on low-exergy heating and cooling systems was 

published (LowEx, 2003). Three additional international research projects on this topic 

have been conducted: IEA ECBCS Annex 37 (Ala-Juusela, 2004), IEA ECBCS Annex 49 

(IEA, 2008) and COSTeXergy (CostExergy, 2004). These projects aimed to promote the 

rational use of energy in buildings by encouraging the use of low temperature heating 

systems and high temperature cooling systems in buildings. Xydis et al. (2009) dealt with 

energy and exergy assessments in hotels. The authors demonstrated that the exergy 

analysis results in four typical hotels in Northern and Southern Greece could assist to 

define the most appropriate energy sources to be used in non-residential buildings (e.g. 

hotels). Balta et al. (2008) exploited the exergetic analysis for the assessment of a low-

exergy heating system from the power plant through a ground-source heat pump till the 

building envelope. Yucer and Hepbasli (2011) performed an exergy assessment study of an 
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educational building heated by a conventional boiler. The energy and exergy flows 

between the stages were obtained using a pre-design tool (Schmidt D., 2003) for an 

optimized building design. Sakulpipatsin et al. (2010) presented an extended method for 

exergy analysis of buildings and HVAC, according to an energy demand build-up model 

from the building side to energy supply side. The two considered case studies meet the 

standard Dutch energy performance regulations, nevertheless their overall exergy 

efficiencies are low in both cases (17.15 % and 6.81 %). A summary including the main 

exergy analysis studies conducted in built environment and the main outcomes is presented 

in Table 3. 

Table 3: Main review studies on the use of exergy for buildings and related energy systems 

Authors/References Scope Main features or outcomes 
(Ala-Juusela, 2004) Low exergy solutions by 

case studies 
Guidebook about the design of low-exergy 
technologies; new concepts/system 
solutions and recommendations for 
innovative strategies and policies 

(IEA, 2008) Exergy metrics for 
performance and 
sustainability 

Exergy tools for building design and 
performance assessment; demonstration 
projects; framework for policy measures 

(Sakulpipatsin et al., 
2005, 2010; 
Sakulpipatsin, 2008) 

Exergy efficient building 
design 

Method for exergy analysis of buildings; 
thermal exergy and energy demand/losses in 
HVAC systems 

(Schmidt D., 2003; 
Tolga Balta et al., 
2008; Schmidt, 2009) 

Overall energy chain 
analysis 

Methodology based on a pre-design analysis 
tool; energy and exergy flows investigated 
from power plant to building envelope 

(Ozgener and 
Hepbasli, 2005; 
Ozgener et al., 2006, 
2007; Ozgener and 
Ozgener, 2009, 2010) 

Geothermal district 
heating systems 

Exergy efficiencies; exergy flow diagrams; 
exergoeconomic analysis; reference state 
sensibility 

(Kilkis, 2007, 2012) Exergy concerns on net-
zero buildings 

Two case studies; net-zero exergy building 
concept; exergy-aware energy chain for 
greater sustainability in green cities of the 
future 

2.5. Energy-exergy performance indicators 
In this section, a review on exergy based indicators for building analysis was 

conducted. The Directive 2010/31/EU (EU, 2010) proposes that energy performance of 

buildings shall be clearly expressed by an Energy Performance indicator relating the 

primary energy use or CO2, which are calculated by means conversion factors per energy 

carrier. Far from being fixed, these indicators are dependent on particular conditions of a 

country and huge variations are expected on account of differences on the share of 
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renewable energy in the energy supply systems at a global scale. Additionally, they are 

only based upon the first law principles, neglecting any issue concerned with quality or 

exergy quantities. To overcome these issues, different types of indicators have been 

proposed. Kanoglu et al. (2012) define efficiency as a measure of effectiveness and/or 

performance of a system, which may take different forms and designations, depending on 

the type and objective of the analysis. The concept of energy efficiency is usually applied 

and based on the first law of thermodynamic principles and may be simply described as the 

ratio of energy output to the energy input. In turn, the exergy efficiency is based on both 

first and second law of thermodynamics, and may be named as second law efficiency, 

exergetic efficiency or even effectiveness (Cornelissen, 1997). Similarly to other efficiency 

definitions, the exergy efficiency is defined as the ratio of the final (or useful) exergy 

output to the required exergy input. Usually, two types of exergy efficiencies are used: 

“simple/universal” and “rational/functional”. Detailed literature about these terms can be 

found in Kotas (1995), Cornelissen (1997), Bejan (2006), Torío et al. (2009). The main 

difference between these two exergy efficiencies is the way the exergy output is defined by 

(Kanoglu et al., 2012). The rational efficiency considers the difference between “desired 

output” and other kind of outflow from the system. In turn, the simple exergy efficiency 

considers any kind of outflow from the system. In most of buildings, undesirable outputs 

are presented (e.g. return flows of heat/cold systems), although the simple exergy 

efficiency works better when input/outputs flow are transformed into some kind of 

desired/required quantities (Kanoglu et al., 2012). 

Boelman and Sakulpipatsin (2004) and Sakulpipatsin (2008) conducted a critical 

analysis of exergy efficiency definitions with better potential to be used in built 

environment. Having a simple heat exchanger operating near environmental conditions as 

case-study, Sakulpipatsin (2008) studied the sensitivity of both the simple and rational 

efficiencies to outdoor temperature, fluid inlet temperature and thermal effectiveness of the 

heat exchanger. As result, the study indicated that the rational efficiency is more sensitive 

to these parameters than the simple energy efficiency. Furthermore, the exergy efficiency 

has been also applied as an indicator for the performance assessment of buildings by the 

following authors: Zmeureanu and Yuwu (2007), Tolga Balta et al. (2008), Wei and 

Zmeureanu (2009), Xydis et al. (2009), Balta et al. (2010) and Bingöl et al. (2011). 

Despite some attempts to use the exergy approach in legislative codes on energy 

performance of buildings, it has not been completely addressed. Favrat et al. (2008) 
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presented a description of the exergy efficiency, including exergy-based parameters for the 

new energy regulation of Geneva (Swiss canton). The authors exploited the use of exergy 

efficiency as a new parameter to characterize the exergy performance of buildings. For 

simplicity, the overall supply system was divided into a structure formed by four 

subsystems, including the room convector, the plant of the building, a possible district 

heating and cooling plant and an external power plant. In this proposal, the overall exergy 

efficiency is the chosen parameter to describe the performance of the building and its 

energy supply chain. Another benchmarking proposal for the assessment of the 

performance of energy building systems was done by Schmidt et al. (2007). The author 

defined the concept of “exergy expenditure figure”, which is calculated as the ratio of the 

exergy required at supply (effort) to the useful energy at demand (use) side. This parameter 

could be seen as a kind of quality factor (energy to exergy ratio) of the energy processes 

occurring at a given component (Torío et al., 2009). Some other exergy key indicators have 

been used to compare buildings and quality energy use and, in a certain way, information 

about sustainability (Cornelissen, 1997). 

The sustainable development requires not only green and affordable supply sources, 

but also a right and efficient use of the resources. In this field, exergy analysis has revealed 

to be a very useful tool for improving the efficiency and sustainability (Cornelissen, 1997), 

reducing the use of resources and thus minimizing the undesired environmental effects. 

Rosen et al. (2008) defined the relation between exergy efficiency and sustainability 

through the sustainability index. Van Gool (1997) recommended the concept of “Exergetic 

improvement potential” to compare different processes or sectors in the economy. The 

maximum improvement in the exergy efficiency for a process or system is achieved when 

the exergy loss and irreversibilities are minimized (Hepbasli and Arif, 2008). Some other 

thermodynamic exergy related parameters were applied in the study of Xiang et al. (2004), 

namely the fuel depletion ratio, the relative irreversibility, the productivity lack, the 

productivity lack and the exergetic factor. 

2.6. Exergy analysis of CHP plants 
Micro-combined heat and power (MCHP) systems have been investigated as an 

emerging technology with a high potential in residential and commercial sectors. Despite, 

the current scenario characterized by technologic improvements on electricity power 

plants, and the high integration of renewables into electric current grids, some doubts exist 
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about the advantages of cogeneration systems. Analyses of performance covering several 

MCHP units, coupled with an extensive model development and testing work were 

conducted within the International Energy Agency (IEA) Annex 42 by Ferguson (2005), 

Beausoleil-Morrison and Ferguson (2007), Sasso et al. (2007) and Beausoleil-Morrison 

(2008). Additionally, several studies on energy performance of cogeneration systems were 

review. Rosato and Sibilio (2012) calibrated and validated the performance of a 6 kWel 

MCHP unit, Kelly et al. (2008) elaborated an approach to model a domestic 

microcogenerator using a building simulation tool and Roselli et al. (2011) reported the 

energetic, economic and environmental implications of using small scale cogeneration 

systems, by means of an experimental research activity performed by the authors and other 

researchers. These studies are however based on methods involving only first law 

principles. In addition, involving both first and second laws of thermodynamics, the 

following studies were reviewed: Abusoglu and Kanoglu (2008) performed a 

thermodynamic analysis of an existing diesel engine cogeneration system; Kanoglu and 

Dincer (2009) assessed various building cogeneration plants through energy and exergy 

efficiencies, and Gonçalves et al. (2011) made a comparative study between a MCHP and a 

reference system, using actual energy demand data of a student housing building located in 

Coimbra (Portugal). Some other studies reviewed about exergy analysis of CHP systems 

are summarized in Table 4. 

Table 4: Review studies on the use of exergy for CHP plants. 

Reference Scope Main features/outcomes 
(Smith and Few, 
2001) 

Second-law analysis 
cogeneration plant and 
heat pump 

Exergy analysis to assess the plant 
performance and indicate areas of 
improvement 

(Rosen et al., 2005) Cogeneration-based 
district energy systems 

Energy and exergy efficiency analysis; Case 
study in Edmonton, Canada; Exergy 
efficiencies found to be more meaningful 

(Balli et al., 2007) Performance evaluation of 
CHP system in Turkey 

Ways to improve the exergy efficiency of 
this system; Exergy balance for each 
component and whole CHP system. 

(Ertesvag, 2007) Comparison of energy 
and exergy indicators 

Limitations of legislative regulations; 
Relative avoided irreversibility; Industrial 
cogeneration cases studies. 

(Kanoglu et al., 2007) Performance assessment 
of building cogeneration 
systems 

Exergy analysis revealed to be an useful 
tool; Allows meaningful comparisons of 
different cogeneration systems. 

(Barelli et al., 2011) Cogeneration systems 
based on fuel cells 

Performance evaluation of the optimal 
operating conditions that ensures the most 
efficient use of the energy and exergy inputs 
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2.7. Exergy analysis of desiccant cooling systems 
Desiccant Cooling Systems (DCS) are heat-driven systems designed to provide 

cooled and dehumidified air for indoor environments. They can be used as an alternative or 

complement to conventional vapour compression or absorption cooling systems. Several 

research works involving DCS have been conducted in the last years. La et al. (2010) 

studied a modified regenerative evaporative cooling coupled with a rotary desiccant 

cooling process, delivering both dry air and chilled water simultaneously. Furthermore, 

Angrisani et al. (2010, 2011a, 2011b, 2011c, 2012) conducted a set experimental-based 

studies on small scale poly-generation system, constituted by a natural gas 

microcogenerator connected to a desiccant cooling system. The authors experimentally 

assessed the parameters and technical features of the system components, and calibrated a 

model of the system in TRNSYS (Klein et al., 1976). 

Most of the studies reviewed are designed based on an energy approach, nevertheless 

thanks to the growing interest towards exergy methods, the exergy concept has been 

applied to DCS. In Table 5, the main exergy analysis studies reviewed on heat-driven DCS 

are presented. As shown, the exergy analysis has been mostly applied for performance 

assessments, to evaluate the potential for improvement and to locate irreversibilities 

sources. 
 

Table 5: Review studies on the use of exergy for heat-driven desiccant cooling systems. 

Reference Scope Main features and outcomes 
(Lavan et al., 1989) Second-law analysis Introduction of an equivalent Carnot 

temperature for evaluating the reversible 
COP 

(Kanoglu, 2004) Experimental open-cycle 
Desiccant cooling system 

Exergy destruction and exergy efficiency 
Theoretical performance system limit; 
Identification and quantification of the 
exergy losses 

(Hürdoğan et al., 2011) Exergetic modelling and 
experimental performance 
assessment 

Exergy efficiencies of the system were 
determined to assess individual 
performances and potential for 
improvements 
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3. Methods 

3.1. Overview 

In this section, the methodology adopted in this doctoral research is described. 

Despite constituted by different case studies, its main structure is common and constituted 

by three main blocks (A, B and C), as shown in Figure 3. The left and right arrows 

characterize the exergy requirements at supply and demand side, respectively. Their 

relative dimensions show that the exergy supplied to a system is always higher than exergy 

at demand (useful), as occurs in actual energy conversion systems, where part of the 

exergy input is irretrievably lost due to irreversibilities (exergy destruction). In Table 6, the 

main points, targets and tools involved in the blocks A, B and C are described in detail. 
 

 
Figure 3: Main structure adopted by this research work. 

 

 

Table 6: Description of topics, targets and methods addressed by the Blocks A, B and C 

Block A: Energy and exergy demand assessments 

Topics 
- Evaluate the energy and exergy demand (useful) for different building end uses; 
- Distinguish thermal, mechanical and chemical energy forms; 
- Evaluate the exergy requirements for different reference environments states. 

Targets 
- Building end uses (space heating and cooling; domestic hot water; electric 
appliances; food preparation); - Delivered heat and electricity (cogenerated or 
produced separately); - Moist air flows. 

Tools 
- Energy assessments: energy audits, energy utilities bills, simulated results, 
experimental data; 
- Exergy calculations: analytical methods based on thermodynamics fundamentals. 

Block B: Energy and exergy supply requirements 

Topics 
- Evaluate energy and exergy requirements at supply side; 
- Assess different sources according to their energy quality values; 
- Distinguish between primary-fossil and renewable energy sources. 

 

Block B: 
Energy and 
exergy 
requirements 
at supply 

Block A: 
Energy and 
exergy 
demand 
assessments 

Block C: 
Energy-exergy performance evaluations 

Case 
study I 
  
  
  

Case 
study II 

Case 
study III 

Case 
study IV 

Case 
study V 
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Targets 
- Fossil energy sources (e.g. natural gas, coal, fuel oil); renewable energy sources 
(biomass and biofuels; hydro, wind, solar, geothermal); low-temperature thermal 
sources (e.g. solar thermal). 

Tools 
- Energy assessments: energy audits, energy utilities bills, simulated results, 
experimental data; 
- Exergy calculations: analytical methods based on thermodynamics fundamentals. 

Block C: Energy-exergy performance evaluations 

Topics 
- Comparing energy and exergy indicators for performance assessments; 
- assessing thermodynamic inefficiencies (exergy destruction); 
- Finding indicators for potential improvement of energy systems. 

Targets - Building end uses; - Buildings as a whole; - Micro-combined heat and power; - 
Desiccant cooling systems; - Components of a desiccant cooling system. 

Tools 

- Energy-exergy indicators: Primary energy ratio; Primary energy demand; Exergy 
efficiency; Primary Exergy Ratio; Exergy efficiency. 
- Parameters for potential improvement: Exergy efficiency defect; Relative 
irreversibility rate; - Parametric and sensitivity analysis. 

 

Based on these three blocks, five main case studies were performed and applied to 

different scales, from single energy systems to buildings as whole. The methods followed 

by each case study are following presented. Furthermore, a summary-table of the main 

indicators and related definitions used by each case study is presented in Table 7. 

Table 7: Main indicators addressed in each case study. 

Indicator Definition Mathematical Formula 
Case study I 

PER 
Primary Energy Ratio: Ratio of useful 
energy for space heating to the primary-fossil 
energy supplied 

,H iv

p

Q
PER

E


  

PExR 
Primary Exergy Ratio: Ratio of useful 
exergy for space heating to the primary-fossil 
energy supplied, evaluated as exergy values. 

iv

p

ExPExR
Ex



  

pI  
Primary Irreversibility rate (whole supply 
chain): difference between primary exergy 
supplied and exergy desired at the last sub-
system of the supply chain. 

p p ivI Ex Ex     

 1p pI Ex PExR    

Case study II 

EP EP indicator: Specific primary energy 
demand per square meter of floor area. 

, ,f i el j eg
i

f

E W
EP

A





 

iPER 
Primary Energy Ratio (final user, i): Ratio 
of the useful energy to the primary energy 
supplied, related to the final user i. 

,

,

u i
i

p i

E
PER

E
  

i  
Exergy efficiency: Ratio of the exergy 
desired (output) to the exergy required 
(input), related to the final user i. 

,

,

des i
i

req i

Ex
Ex

   
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Case study III 

PE  

Primary-fossil energy demand: Sum of 
primary energy demand associated to each 
building final user, (excluding the fraction of 
heat produced by renewable sources). 

 ,
, , ,

,

1h kf e
P p k h k p e kf

k khs k

Q
E F F W


     

ove  
Exergy efficiency: Ratio of the (useful) 
exergy at building final user to the exergy 
supplied. 

D
ove

S

Ex
Ex

   

kEDR  
Exergy Destruction Ratio: Ratio of the 
irreversibility associated to each final user 
and the total exergy supplied. 

k
k

S

IEDR
Ex

  

Case study IV 

PES 

Primary Energy Savings: Relative primary 
energy difference between a cogeneration 
and a reference system for separate heat and 
electricity production. 

, ,
, ,

11 1 1eg hs
e chp h chp

eg f hs f

PES
  

 

 
 


 

PIS 

Primary Irreversibility Savings: Relative 
primary-based irreversibility difference 
between a cogeneration and a reference 
system for separate heat and electricity 
production. 

,

1 chp

p ref

I
PIS

I
 


  

TIS 

Total Irreversibility Savings: Relative total 
irreversibility difference between a 
cogeneration and a reference system for 
separate heat and electricity production. 

,

1 chp

t ref

I
TIS

I
 


  

Case study V 

PERove 
Primary Energy Ratio: Ratio of the cooling 
capacity to the total primary fossil energy 
input. , ,

c
ove p

p vii el el iv

QPER
E F W





 

k  
Exergy efficiency (component, k): Ratio of 
exergy output (or desired) to exergy input (or 
required), associated to the component k. 

,

, ,

1out k k
k

in k in k

Ex I
Ex Ex

   
 
   

k  
Exergy efficiency defect: Ratio of exergy 
destruction at the k-th component to the total 
exergy input. ,

k
k

in k
k

I
Ex

 


  

,R kI  
Relative irreversibility: Ratio of the exergy 
destruction at the k-th component to the total 
irreversibility ratio occurring in the plant. 

,
k

R k
k

k

II
I




  

3.2. Case study I: Comparison of heating options in buildings 
The objective of this case study is to assess the energy and exergy performance of 

different building heating options located at different outdoor environmental conditions. 

The advantages of the exergy analysis in comparison with the conventional energy 

approach are highlighted in this study. Eight different space heating supply options are 

compared and the related performance evaluated using energy and exergy-based indicators. 
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The heating load of the building for different environmental conditions was predicted by 

modelling and simulation using the software package TRNSYS, using different built-in 

weather files. The methodology follows an approach from “Demand” to “Supply” side, 

similarly to the pre-design tool developed by Schmidt D. (2003), although the current 

approach includes some new features, such as, renewables and non-renewable energy 

sources and considers the hourly heat load demand at building envelope (demand side). A 

schematic illustration of this approach is presented in Figure 4. 

 

Figure 4: Schematic of the 
Case-study I methodology. 

Each heating option is associated to the so-called “Energy Supply Network” (ESN) 

that is defined as a combination of four sub-systems: (i) power plant; (ii) heat generator; 

(iii) emission system; and (iv) room. The heat generator could be powered by electricity, 

fossil or renewable fuel sources. As summarized in Table 7, two main indicators were 

proposed and used in this study: the Primary Energy Ratio (PER) and the Primary Exergy 

Ratio (PExR). Additionally, the irreversibility rate occurring in each sub-system (i-iv) was 

also evaluated. More detailed information about the followed methodology, model 

characterization, operating conditions, indicators and characterization of each ESN can be 

found in Research Paper I. 

3.3. Case Study II: Hotel building 

3.3.1. Building description and methods 

This case study involves an energy-exergy performance assessment of a four star 

hotel building located in Coimbra, Portugal. It has a maximum capacity of 180 guests, one 
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hundred and twenty bedrooms and thirteen suites, distributed along seven floors. The hotel 

has 6531 m2 of conditioned area, 3443 m2 reserved for parking and 596 m2 for other non-

useful areas. The HVAC plant is constituted by a natural gas boiler, providing heat for 

space heating and Domestic Hot Water (DHW), and an air-to-water chiller for the space 

cooling requirements of the hotel. Additionally, some individual Air Conditioning (AC) 

units are installed, working as auxiliary systems of the central system, mainly used for 

space cooling. Air handling units and extraction fans are installed in the roof of the 

building, ensuring the air quality requirements. A detailed energy audit was conducted 

regarding to identify the energy consumption patterns of the building and the related 

breakdown by final users. The energy audit is a procedure recommended by the Portuguese 

building certification scheme (RSECE, 2006) aiming to evaluate the energy performance 

of buildings. Figure 5 shows a scheme of the main end users and energy flows considered 

in this analysis. 

3.3.2. Energy and exergy indicators 

Three main indicators were used in this analysis: Primary energy consumption (EP), 

Primary Energy Ratio (PER) and exergy efficiency. EP is given by the annual primary 

energy consumption of the building per unit of floor of the conditioned area. Different 

primary energy factors are applied depending of source type (e.g. natural gas) or energy 

carrier (e.g. electricity). These indicators are summarized in Table 7 and detailed presented 

in Research Paper II. 

 

 
Figure 5: Schematic of the Case-study II methodology. 
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3.4. Case Study III: Student housing building 
In this case-study, the student housing building shown in Figure 6 was studied using 

principles based on both first and second laws of thermodynamics. Actual energy 

consumption data derived from utilities bills (natural gas and electricity) and information 

about the efficiencies of the installed systems were used to estimate the energy demand of 

each building end use (space heating, domestic hot water, food preparation and electric 

appliances). The building performance was described using energy and exergy indicators. 

The contribution of each building end use for the overall inefficiencies was also evaluated, 

using the indicator “Exergy Destruction Ratio”, as defined in Table 7. Additionally, a set 

of alternative supply options were proposed regarding to compare them from energy and 

exergy perspectives. The methodology proposed in this study follows an approach from the 

“demand” to the “supply side”, where the demand is evaluated at building end uses and the 

supply is evaluated at fossil or renewable energy inputs. 

 

Figure 6: Student housing building, Campus II, 
University of Coimbra (Case study III). 

3.4.1. Building description and key indicators 

The student housing building is located at Campus II of University of Coimbra and 

has an overall conditioned area of 1807 m2. The building has a rectangular shape, with 

main facade south-oriented. Each floor is composed by a kitchen, living room, a study 

room and eighteen double bedrooms (with a private bathroom). The building has a 

maximum capacity of 144 students and operates 24 hours per day. The building is closed in 

August, on account of the calendar holidays. Natural gas is the main energy source used 

for space heating requirements, domestic hot water and food preparation. Electricity is 

exclusively used for lighting and other electric appliances. Concerning the primary energy 

assessments, natural gas was assumed as primary-fossil energy source. On the other hand, 

the primary energy factor associated to electricity production was estimated based on 

actual Portuguese electric grid performance. 
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In this study, three main performance indicators were assessed: the Primary Energy 

Ratio (PER), the exergy efficiency and the exergy destruction ratio. As defined in Table 7, 

PER gives information about the ratio between useful energy to the total primary energy 

input, the exergy efficiency measures the exergy performance of the building, providing 

information about the irreversibility degree that occurs in the building conversion 

processes, and the exergy destruction ratio is defined as the ratio of irreversibility 

associated to each end use to the total exergy input, aiming to identify and locate the 

building end users by inefficiencies. Detailed formulations of these indicators are reported 

in Research Paper III. 

3.5. Case Study IV: Micro-cogeneration technologies 

3.5.1. MCHP description and research approach 

In this case study, the schematically 6 kWel MCHP unit presented in Figure 7 was 

experimentally tested and its performance compared with a set of different heat and 

electricity supply options, including the actual electric mixes of Portugal and Italy. 

Figure 7: Schematic of the internal 
circuits of the cogeneration system under 
analysis. 

 
The unit is powered by a three cylinders water cooled internal combustion engine 

that has a displacement volume of 952 cm3. The engine is connected to an electronically 

controlled 16 poles synchronous generator, with an inverter automatically synchronized in 

phase and frequency. The electrical output can vary from 0.3 to 6 kW according to the 

user’s demand in electric following mode. The manufacturer indicates a rated heat output 

rate of 11.7 kW (considering 33.5 litre per minute water flow rate, with supply and return 

temperatures of 65 ºC and 60 ºC, respectively). The heat is recovered from exhaust gases 
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and engine jacket, being afterwards transferred to an external water flow circuit in a plate 

heat exchanger. 

Additionally, a schematic layout of the comparative analysis done between the 

cogeneration and reference system (separate electric and heat system) is shown in Figure 8. 

This analysis is exclusively designed for CHP systems powered by primary-fossil energy 

sources, however the reference (separated electricity and heat production) may be fuelled 

by both fossil (FS) and renewable sources (RS). The MCHP performance was 

experimentally tested for different electric-heat loads and operating temperature 

conditions. The reference was assumed to have different share of renewable sources, 

efficiencies and delivered temperatures. 

Figure 8: Schematic layout of energy flows and sub-systems considered in Case-study IV 

3.5.2. Main proposed indicators 

The main three indicators PES, PIS and TIS in use in this case study are presented in 

Table 7. The main objective of this analysis is to reveal the limitations of the current 

indicator PES and show particular examples where the indicators based on first and second 

laws of thermodynamics (PIS and TIS) can provide significant or even exclusive 

information for the comparison of cogeneration and separated heat and electricity 

production systems. PES is proposed by the European Directive 2004/8/CE (EC, 2004) and 
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quantifies the primary energy savings of cogeneration relatively to the reference system. 

On the same order, PIS and TIS compare the relative irreversibilities (or inefficiencies) 

savings of a CHP with an equivalent reference system. The irreversibility concept is widely 

used in exergy analysis and it is related to part of exergy supplied that is destroyed (not 

recovered) in conversion processes. Regarding the assessment of the energy and exergy 

performances related to renewable sources, two additional indicators are also applied: the 

Energetic Renewability Ratio (EnRR) and Exergetic Renewability Ratio (ExRR). More 

detailed information about these two indicators can be found in Research Paper IV. 

3.6. Case Study V: Desiccant cooling systems 

3.6.1. System description 

In this case study, a Desiccant Cooling System (DCS) located at Università degli 

Studi del Sannio in Benevento (Italy) is studied. The DCS is constituted by a desiccant 

wheel, an air-to-air heat exchanger, an evaporative cooler, heating and cooling coils. As 

heating system, a natural gas boiler produces hot air for the desiccant wheel regeneration 

process. After pass through the desiccant wheel, the process air passes through the air-to-

air heat exchanger and cooling coil, which is connected to a compressed chiller that 

produces cold water. The schematic layout of the DCS is shown in Figure 9. 

 
Figure 9: Schematic view of the desiccant cooling system. 

The system is divided into seven components (i-vii) and thirteen assessment points 

(1-13), where the specific properties of moist air are evaluated. Three main air flows (R, C 
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and P) are represented: - “Stream R” is used for regeneration of the desiccant wheel (5-6). 

The air flow is warmed up in the heating coil (1-5), which is connected to the heating 

system (vii); - “Stream P” is the process air, which is dehumidified in the desiccant wheel 

(1-2), pre-cooled at the cross flow heat exchanger (2-3) and cooled down for the desired 

temperature at the cooling coil (3-4); - “Stream C” is an auxiliary air flow used to pre-cool 

down the process air. It crosses an evaporative cooler at (1-7), absorbing heat from the 

process air at the heat exchanger (7-8). 

3.6.2. Operation conditions and main parameters addressed 

This study is focused on the period from 1st to 7th August (9h00 to 18h00), using the 

weather data corresponding to the city of Naples (Italy). Using averaged values in this 

period, the energy and exergy rates were estimated for the assessment points (1-13). The 

following energy performance parameters were addressed for the components of DCS: 

thermal efficiency and COP were calculated for the boiler and chiller, respectively; the 

effectiveness was estimated for the desiccant wheel, heat exchanger, evaporative cooler, 

heating and cooling coil. Similarly considering exergy, the exergy efficiency was assessed 

for all sub-systems of the DCS. In addition, a set of alternative heating systems providing 

the heat required for the regeneration process was also considered. They include high 

efficient (e.g. heat pump or cogeneration) or systems that make use renewable energy 

sources (e.g. solar thermal, waste). The overall performances of the DCS was evaluated by 

the indicators Primary Energy Ratio (PER) and exergy efficiency. More information about 

the methodology and mathematical formulations used in this study are detailed in 

Research Paper V. 

3.7. Inter-Connection between blocks, case studies and 
research questions 

In this section is made the inter-connection between the three blocks (defined in 

Section 3.1), the case studies and the research questions, previously addressed. The 

objective is to make easier understand the differences between case studies, and how they 

are linked with the main structure of the thesis. In Table 8 is summarized these inter-

connections, where is shown that both fossil and renewable energy sources are usually 

considered at supply side (Block B); different energy final uses or energy sub-products are 

considered in Block A; and PER and exergy efficiency are the main indicators in use by all 
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case studies (excluding Case study III). Concerning the research questions: RQ I is 

transversal to all the studies; RQ II is addressed in Case study II and III; RQ III is 

answered in Case study III and V and RQ IV is mostly replied in Case study IV. 

 

Table 8: Inter-connections between case-studies, main topics addressed and research 
questions associated 

 Block A Block B Block C Research 
questions 

Case Study I Space heating Fossil and 
renewable sources PExR; PER RQ I 

Case study II 

Space heating-cooling; 
DHW; food 
preparation; electric 
appliances 

Primary-fossil 
sources 

Primary energy 
demand; PER; 
Exergy efficiency 

RQ I, II 

Case Study III 
Space heating; DHW; 
food preparation; 
electric appliances 

Fossil and 
renewable sources 

PER, Exergy 
efficiency; Exergy 
destruction ratio 

RQ I, II, III 

Case study IV Heat and electricity 
rate delivered 

Fossil and 
renewable sources 

PES, PIS, TIS, 
energetic/exergetic 
renewability ratios 

RQ I, IV 

Case study V Heating and cooling 
processes of moist air 

Fossil and 
renewable sources; 
electricity 

PER; Exergy 
efficiency; Exergy 
efficiency defect 

RQ I, III 
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4. Results and Discussion 

In this chapter, the main results of the case studies conducted are presented. It is 

divided into five sections, each one corresponding to a given case study. Only the main 

outcomes were selected to be presented here, although the complete results and detailed 

discussions are presented in the Appendix in Research Papers I to V. 

4.1. Case study I: Comparison of heating options in buildings 
The exergy load at each component of the ESN, corresponding to the winter day 12th 

January in Coimbra, is presented in Figure 10. Each ESN is constituted by i) room air 

space; ii) emission system (high, medium, low temperature); iii) heating system (fuel or 

electric based) and iv) primary energy plant. This diagram provides information about the 

magnitude and location of the high exergy rates, occurring at each component (i-iv) of the 

ESN, quickly finding where the exergy differences (exergy destruction rate or high 

irreversibility rate) between components are higher. 

Figure 10: Specific exergy rate at 
each component of ESN A to H 
(weather data corresponding to 
Coimbra on 12th January). 
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Comparing ESN A and B, the results indicate that most of the exergy losses occur in 

the conversion from the heating system, (ii) to the emission, (iii). However, from an energy 

perspective (as shown in Figure 11), relatively low energy losses occur in the same 

conversion, due to high energy efficiency of the heating system (95 % and 80 %, 

respectively). Moreover, comparing ESN E from both perspectives, the energy viewpoint 

indicates that the major inefficiencies occur at power plant, although as shown in Figure 

10, similar exergy destruction occurs at both power plant and heat generator. 
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Figure 11: Specific energy rate at 
each component of ESN A to H 
(weather data corresponding to 
Coimbra on 12th January). 
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Figure 12: Specific primary 
energy rate as a function of PExR 
for ESN A-H in four different 
locations (averaged weather data 
of January). 

In order to evaluate the relationship between primary energy demand and energy and 

exergy performance indicators, Figure 12 presents the primary energy rate as function of 

PExR. As shown, PExR depends of the outdoor conditions (that defines the reference dead 

state), however, the energy efficiency (PER) of each ESN sub-components is constant for 

different outdoor conditions (as shown in Section 5.2 of Research Paper I). As example, 

for the weather conditions of Coimbra, PExR of ESN H is about 0.08, while for Berlin 

PExR is about 0.155. The indicator PExR can be applied whenever possible for the 

performance evaluation of heating options in buildings, especially when different reference 

weather conditions are compared or when PER assumes the same value, not allowing the 

comparison between options. 

Furthermore, the irreversibility rate at each sub-system was also assessed for January 

outdoors conditions at Coimbra, Lisbon, Berlin and Paris and is published in Section 5.3 of 

Research Paper I. For fuel based heating systems (ESN A-D), the highest irreversibility 

rate occurs at heat generator, while for electric ESN E, the irreversibilities are equally 
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shared between heat generator and power plant. For the ESN with higher primary exergy 

demand (ESN E), the heat generator accounts for 49 % of total irreversibility, while the 

power plant and emission contributes with 44 % and 7.2 %, respectively. 

4.2. Case Study II: Hotel building 
In this section, the main results derived from the Case study II are presented. This 

case study aims to assess the overall energy-exergy performance of a hotel building located 

in Coimbra and the related performance associated to each final user. 

The monthly energy demand associated to natural gas and electricity and related 

breakdown by energy end uses were obtained through an energy audit conducted in the 

building. The annual natural gas and electricity demand was estimated as 706 080 kWh 

and 250 628 kWh, corresponding to an estimated primary energy of 2 918 500 kWh. In 

Figure 13, the specific annual exergy demand and exergy efficiency associated to each 

building end use are shown. The electric equipments have the highest exergy demand, 

followed by the space heating and cooling and Domestic Hot Water (DHW) needs. Electric 

equipments, ventilation and food preparation (cooking) have the highest (primary) exergy 

performance, while the values associated to low-temperature air conditioning requirements 

are associated to very low-exergy efficiencies. 

Figure 13: Annual primary exergy 
demand and exergy efficiency of 
hotel’s end uses and building as 
whole. 
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The energy and exergy performance “picture” of the building, including relative 

information about the primary energy consumption, PER and the exergy efficiency of each 

building energy end use is shown in Figure 14. In this diagram, the differences between 

energy and exergy performances (PER and exergy efficiency, respectively) are easily 

identified, as well as, the higher contributors for the primary energy consumption of the 
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building. In this building, the electric appliances (including lighting, ventilation and other 

electric devices) are the main primary energy consumption contributors of the hotel, are 

associated to a low-PER, although a relatively high exergy efficiency. In turn, the space 

heating and cooling have a high-PER value, although low exergy efficiencies. More 

detailed results may be found in Research Paper II. 
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Figure 14: Exergy efficiency vs. PER 
diagram for Hotel´s end-uses energy 
consumers. 

4.3. Case Study III: Student housing building 

In this section, the main energy-exergy results of the student housing building 

handled in Case Study III are presented. The monthly energy breakdown by final user was 

predicted based on natural gas and electricity bills related to the year 2009, occupancy 

patterns, systems efficiency and other information provided by the technical staff of the 

building. The installed heating system is constituted by a boiler with 90 % thermal 

efficiency that satisfies the space heating and DHW requirements. Considering the 

estimated useful energy of each building final user, the primary energy demand and the 

related exergy supplied are compared for the actual supply chain and for a set of proposed 

alternative options. 

The energy and exergy performances were evaluated using the indicators PER and 

exergy efficiency, respectively. The results show significant differences between primary 

energy and exergy performances. Thus, high PER values are obtained in the winter season, 

while high exergy efficiency values are obtained in the summer season. It occurs since the 

low-exergy requirements associated to space heating demand (in winter) are mostly 

fulfilled by high exergy sources (e.g. natural gas). On other hand, the exergy efficiency has 

its maximum value in July, corresponding to low-thermal loads together with high 

reference dead states. 
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As overall results, the annual primary energy demand of the building is 353 kWh m-2 

and the overall annual exergy efficiency is 27 %. For an ideal match between exergy levels 

of supply and demand, the ideal exergy performance was defined as 100 %. Therefore, for 

this building, the difference between the current and an ideal building reveals a potential 

for improvement at about 73 %. Having such high value, a possible question arises “What 

is the contribution of each building end use or task for this level of inefficiencies?” This 

question can be answered through an indicator named Exergy Destruction Ratio (EDR), 

where the corresponding results are presented in Figure 15. The results show that in winter 

season, the main contributors for building inefficiencies are the space heating, followed by 

hot water needs and electric appliances. Even though the fact that space heating and hot 

water preparation are produced in the boiler that has a high energy efficiency (90 %), the 

exergy analysis indicates them as the lowest exergy efficient end users, because it applies 

of high exergy sources to perform low-temperature required tasks. EDR is found as a 

significant indicator able to identify the most important contributors for the building 

inefficiencies, helping to find their locations and potential for the overall improvement. 
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Figure 15: Exergy efficiency and EDR related to the end uses of the student housing 
building. 

Furthermore, the proposed alternative supply options are presented in Table 9 and the 

corresponding primary energy demand and exergy efficiency results are shown in 

Table 10. Concerning the energy building benchmark scheme in Portugal, the primary 

energy demand is commonly compared with a given reference value that is defined by a 

legislative code. For student housing buildings in Portugal, the reference value is 

220 kWh m-2 (RSECE, 2006). Following a similar approach for the exergy analysis and 

assuming 100 % as reference, the lowest primary energy demand scenario (B-IV) presents 
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a value close to the reference (240 kWh m-2), while the related exergy efficiency is only 

33 %, therefore far from the ideal scenario. These results indicate that assessing buildings 

exclusively by a simple primary energy analysis is not enough for a complete description 

of the overall performance. Moreover, the exergy efficiency was identified as a possible 

indicator to be included in future energy performance benchmarks of buildings and able to 

rank similar scenarios from both primary energy and exergy viewpoints. More detailed 

results can be found in Research Paper III. 
 

Scenario Description Parameter 
A-I 

Integration of renewable 
sources into the electric 
system 

0.0e   
A-II 0.2e   
A-III 0.4e   
A-IV 0.6e   
B-I 

Fuelled-based heating system 
0.80hs   

B-II 0.92hs   
B-III Electric-based heating system 0.98hs   
B-IV 

Air source heat pump 2.50hs   
(COP) 

C-I 
Integration of renewables 
into the heating system 

0.10h   
C-II 0.20h   
C-III 0.50h   
D-I 

Space heating decreasing hQ  - 20 % 
D-II hQ  - 40 % 
D-III 

Space heating increasing hQ + 50 % 
D-IV hQ + 100 % 

 

Table 9: Description of the 
different alternative supply 
scenarios for the student housing 
building. 

 

 

 

Table 10: Proposed scenarios 
ranked by primary energy use 
and related exergy efficiency. 
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4.4. Case Study IV: Micro-cogeneration technologies 
In this section, the main results of the comparisons performed in Case Study IV 

between MCHP and a reference separate heat and electricity production system are 

presented. PES iso-lines diagrams were built in order to quickly find scenarios, where the 

MCHP can result in primary energy savings relatively to the reference system. 

Additionally, the indicators PIS and TIS were compared for different scenarios, aiming to 

demonstrate by particular examples, the cases where their use is advantageous 

comparatively to the “conventional” PES. Considering MCHP unit operating at its 

maximum electrical power (6 kW) and the Portuguese and Italian electric grids as 

electrical references, Figure 16 shows PES and PIS for different fractions of heat 

(produced from renewable solar thermal). The scenarios PT-I to PT-III are related to the 

Portuguese electric grid, and the roman numbers I, II and III correspond to different 

renewable heat fractions produced by solar thermal panels of 0 %, 30 % and 60 %, 

respectively. The main heating system is the same – a natural gas boiler, with 90 % 

efficiency. The same assumptions are applied for the scenarios IT-I to IT-III, but assuming 

the Italian electric grid as reference. Comparing PT-I and IT-I, PES presents a value about 

10 % for Italian electric grid as reference, and 3 % assuming the Portuguese electric grid. 

Additionally, PIS presents different numerical values than PES, giving information about 

relative irreversibilities differences between MCHP and reference for different scenarios. 
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Figure 16: PES, PIS, EnRR and ExRR assessments assuming different fraction of heat 
delivered from renewables and considering the actual performance of electric grid of 
Portugal and Italy. 
 

Finally, the Energy and Exergetic Renewability Ratios (EnRR and ExRR, 

respectively) provide information about the integration of renewables in the reference 

system, so the difference between EnRR and ExRR evaluates the energy quality of the 
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renewables delivered by the reference system. In the current example, the obtained values 

indicate that low-quality renewable energy is being produced. 

Depending on the heating system technology, different supply/return temperatures 

options are possible. Maximum temperatures are usually established for the different 

systems: boiler, air source or ground source heat pump and solar thermal collectors (IEA, 

2008). Therefore, for similar thermal loads produced by different technologies, different 

exergy output levels may result. The same assumptions are still valid for the MCHP, 

although it operates under a very limited range of supply/return water temperatures. In the 

current analysis three levels of supply/return temperatures were tested for the MCHP: 

trial #1, 65/60 ºC; trial #2, 59/54 ºC and trial #3, 72/67 ºC. In Figure 17, PES and PIS are 

presented for all trials #1, #2 and #3, considering as a reference system an electric fossil 

efficiency, 52.5 % and a fossil-based heating efficiency, 90 %; both without inputs from 

renewables. Concerning PES, similar values are obtained for the trials #1 and #2, because 

similar MCHP performances were obtained for these two experimental tests. However, 

looking at PIS, since the heat is released at different temperatures for trial #1 and #2, PIS 

assume different values. For lower supply/return temperatures (trial #2) high 

irreversibilities are generated at MCHP, leading to low irreversibilities savings (PIS). The 

low thermal efficiency of the MCHP at trial #3 leads to a reduction of both PES and PIS, 

although trial #3 it is not comparable with two others, because PES is not the same. More 

detailed information and complete results are included in Research Paper IV. 
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Figure 17: PES and PIS 
assuming the MCHP 
performance at part-load 
ratio 1 for trials #1, #2 and 
#3. 

4.5. Case Study V: Desiccant Cooling Systems 
The results of the analysis of a DCS are presented in this section and were derived 

from simulations performed for a summer week from 1st to 7th August, using the 

Meteonorm weather data for the city of Naples, Italy. During this period, the DCS unit 
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operates from 9h00 to 18h00, with the outdoor temperature varying from 21 to 29 ºC and 

the humidity ratio from 0.008 to 0.017 kg/kg. The dead state was calculated based on 

averaged outdoor conditions during the period, T0 = 26.1 ºC; 0 = 0.0114 kg/kg and 

p0 = 101 325 Pa. The energy and exergy-based efficiencies were calculated for all sub-

components of the DCS and huge differences were found, as shown in Figure 18. 

Figure 18: Energy and exergy 
efficiency of sub-components of 
DCS and overall system. 
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Despite the fact that the exergy efficiency indicator identifies the most inefficient 

components of the plant, this indicator alone is not sufficient to identify and assess the 

individual contribution of each one for the overall inefficiencies of the plant, since each 

one has different exergy inputs. In this way, the parameter Exergy Efficiency Defect was 

applied. The results derived from its application to all components of the DCS are shown 

in Figure 19, showing that the most inefficient component of the plant (higher exergy 

efficiency defect) is the boiler (69.0 %), followed by the chiller (12.3 %) and the heating 

coil (3.1 %). The overall exergy efficiency defect is about 88.2 %, indicating a huge 

potential for improvement. Therefore, concerning the exergy performance improvement of 

the plant, the results indicate that the boiler should be the first component to be replaced. 

Additionally, a set of additional scenarios were proposed to evaluate the energy-

exergy performance differences among heating technologies, including those fuelled by 

renewable sources. The results show that there are options which make lower use of 

primary-fossil energy sources, although do not necessarily correspond to high exergy 

efficiency scenarios. Moreover, when high efficient heating systems are considered, the 

exergy efficiency defect indicates that the chiller becomes the most inefficient component 

of the plant. Considering the variability of the plant performance with the environmental 

conditions, the results show that the irreversibility rate is highly dependent of the inlet 
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operating conditions, having its maximum value for high inlet/outlet temperature and 

humidity ratio differences (points 1 and 4). More detailed examples and discussions can be 

found in Research Paper V. 
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Figure 19: Exergy efficiency defect for 
the components (i-vii) of DCS. 
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5. Conclusions and further work 

5.1. Contributions provided by this dissertation 

The exergy topic has been applied worldwide, mostly in universities or research 

institutions, although on the scope of doctoral studies, this thesis is the first work 

addressing the topic “exergy analysis of buildings”, carried out at the University of 

Coimbra. This dissertation presents a set of new perspectives of using the exergy method 

to assess the energy performance of buildings and related energy systems, helping to 

identify and locate inefficiency sources and improve the rational use of energy in 

buildings. It is expected to overcome the established idea outside of the scientific 

community that the exergy methods are complex and do no provide significant add-value 

comparatively to the conventional energy methods. In this thesis, the exergy analysis 

method was mainly applied to buildings as a whole system, including a building hotel, a 

student housing building and a building simulated model. Concerning individual systems, 

it also involves the exergy performance of a DCS and a MCHP. New exergy calculation 

tools, methodologies and indicators were developed and applied through different case 

studies. The individual contribution provided by each one is following summarized. 

The Case study I showed that the exergy-based performance indicator, PExR is more 

suitable to distinguish different heating options than the energy-based indicator, PER. 

Through the exergy analysis, it was also possible to assess in detail the irreversibility rate 

of each sub-component of the energy supply network that would not be possible using a 

simple conventional energy analysis approach. 

The Case studies II and III showed how to evaluate the energy and exergy 

performance of buildings, using actual energy consumption data. The results were 

presented for the whole building and individually for each energy final user. The values of 

the exergy performance are very low, especially for end uses with low-temperature heat 

requirements (e.g. space heating and DWH), notwithstanding they are usually associated to 

high energy efficiencies (e.g. condensing boilers or heat pump systems). The use of 

renewable sources may reduce effectively the levels of primary energy demand, although 

may not conduct to high exergy performances. The use of diagrams “primary energy 

demand vs. exergy efficiency” allows to show the differences from both perspectives in a 
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better way, clearly identifying the most important contributors of the building 

inefficiencies. 

In Case study IV, the values of the exergy-based indicators developed to compare 

cogeneration and separated heat and electricity production systems are discussed. Through 

a set of particular examples, an experimental tested MCHP unit was compared with 

different reference scenarios, demonstrating how exergy-based indicators are different and 

significant relatively to the commonly used parameter, PES. Moreover, in the 

Case study V, the exergy method was applied to a DCS, providing information about the 

overall performance of the plant in the actual setup, and considering other alternatives for 

the desiccant wheel regeneration. Through the indicator “exergy efficiency defect”, it was 

also possible to assess the irreversibility levels that occur in each component of the plant 

and thus identify the most inefficient components of the plant. 

The multi-effect of this research includes the share of knowledge among the 

scientific community through the published journal papers and attended conferences, the 

development of new skills, including the use of modelling and simulation tools, data 

energy analysis, and practice in experimental and analytical methods. Moreover, it is 

expected that the indicators developed may be applied or at least their use recommended in 

future legislative frameworks on energy performance of buildings. 

5.2. Answers for the research questions 
The answers to the four research questions formulated in the Section 1.3 are 

following presented. Some of them are generic and related to all case studies, and others 

more directed to a particular one. 

RQ I How to demonstrate that the exergy can be a significant method able to 
provide meaningful or even exclusive information relatively to the conventional 
energy approach? 

 

The RQ I is entirely related to the overall objectives of this dissertation and 

consequently is transversal to all the studies. For example, the differences between energy 

and exergy indicators are highlighted in Case study I, when different ESN options are 

evaluated for different outdoor conditions. The energy ratios (PER) were assumed as 

constant for the different scenarios, while the related exergy-based index PExR changed 

according to the assumed “dead state” point. The results demonstrated that the use of 
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exergy-based indicators allowed to distinguish different supply options, which would not 

be possible using purely energy-based methods. Also, in all the other case studies, the 

effective the effective advantages of the exergy relatively to energy approach were 

demonstrated. 

RQ II How to distinguish building energy end uses by means of energy and exergy 
performance and how it can contribute for the overall performance 
improvement of buildings? 

 

The RQ II is answered in Case studies II and III, where a building hotel and a student 

housing were examined. In Case study II, the differences between primary energy and 

exergy efficiency indicators of the various final users and for the building as a whole were 

highlighted. Moreover, in Case study III, the building was assess by means primary energy 

and exergy performance and its end uses were classified by the indicator EDR, helping to 

evaluate which of them can contribute more for the performance improvement of the 

building. 

RQ III How to evaluate and rank building energy end uses (or sub-components in 
multi-component systems) by irreversibilities levels and how to optimize their 
energy and exergy performance? 

 

The RQ III is entirely related with the irreversibility rate parameter and how it 

changes for the various building end uses or components of a stand-alone system. In Case 

study III, using the concept of EDR, the various building end uses were evaluated and 

ranked by inefficiency levels, helping to identify those that more contribute for the 

irreversibilities levels of the building. Additional, in Case study V, each sub-component of 

the DCS are also ranked by irreversibilities levels, using the concept of “exergy efficiency 

defect”, providing important information about the performance improvement of the plant. 

RQ IV Can exergy indicators be useful to the usually applied Primary Energy Savings 
(PES) for comparing cogenerated and separated heat and electricity 
production systems? 

 

The RQ IV is entirely related to Case Study IV, which aims to demonstrate the 

significance of using exergy-based indicators to compare cogeneration and equivalent 

reference heat and electricity production systems. In this study, a MCHP system was 

compared with a set of alternative reference scenarios, showing that exergy indicators (e.g. 

PIS and TIS) may provide more significant information not possible by the use of PES. 
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5.3. Unsolved issues and recommendations for future research 
In this section, the main unsolved issues found in each case study and the 

recommendations for future research are addressed. The Case study I highlights the 

importance of the reference environment when different space heating options are 

compared. To easily understand the analysis, some simplifications were considered, 

although, in future studies a more complete approach is recommended, including 

efficiencies varying with outdoor environmental conditions, different envelope U-values, 

defined according the building codes of the country or region where the building is located; 

more detailed analysis, including moist air and chemical exergy considerations. 

In Case study II and III, the energy and exergy performances of two different types 

of buildings and related final users are evaluated. For future research, more detailed energy 

audits should be conducted, especially concerned on a detailed energy breakdown by 

building final users and exergy requirements levels. Additionally, similarly to primary 

energy reference values for building benchmarks, also standard exergy efficiency values 

should also be defined. It would overcome the issue raised in Case study III, where was 

assumed as reference exergy efficiency 100 %, which may be too high and not realistic. 

The Case study IV compared the energy and exergy performance of cogeneration 

and separated heat and electricity production system. One limitation of those analyses is 

that the cogeneration system was assumed to be fuelled exclusively by fossil energy 

sources, despite the reference could be fuelled by both fossil and renewables. PES and PIS 

are able to compare levels of primary energy between the two systems, although for 

renewable-based cogeneration systems, alternative indicators should be defined. 

As future work in Case study V, additional weather conditions should be considered 

(e.g. different dry bulb air temperature and relative humidity pairs) in order have more 

robust conclusions about the conditions where DCS are more suitable and identify the 

operating conditions that can maximize its both energy and exergy performance. 

For closing, covering all the studies, it was demonstrated that the limitations of 

conventional energy methods can be overcome or significantly reduced following an 

approach based on exergy analysis. However, as further studies, more complex exergy 

analysis involving the trade-offs between exergy efficiency and cost of the system, usually 

so-called “exergo-economic” analysis is recommended, aiming to find the best 

compromise between energy/exergy performance and cost. 
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Abstract 

The energy assessments of buildings are usually performed based on fundamentals of 

the First Law of Thermodynamics, especially concerned on quantitative energy aspects. 

This approach does not provide however a faithful thermodynamic evaluation of the 

overall energy conversion processes that occur in buildings and a more detailed approach 

should be followed. The exergy analysis is a useful method that combines First Law and 

Second Law perspectives and has been applied in many related engineering fields, such as, 

power plants analysis, CHP systems, heat pumps or building energy systems. In this study, 

the overall energy and exergy performance of eight space heating options are compared for 

different outdoor environmental conditions. The methodology follows an approach from 

demand (at building envelope) to supply side (primary energy supplied), assuming that 

each energy supply network (ESN) or heating option is divided into the following sub-

systems: room, emission, heat generator and power plant. The related energy and exergy 

performance of each ESN are evaluated through the following indicators: primary energy 

ratio (PER) and primary exergy ratio (PExR). The results show that for similar primary 

energy performance, PExR may assume distinct values depending of outdoor 

environmental conditions. The highest energy efficient ESN has a PER of 2.2, while the 

related PExR changes from 7 % to 16 % for Lisbon and Berlin, respectively. Furthermore, 

the assessment of irreversibility rate associated to each ESN sub-system reveals that the 

inefficiency sources could be pinpointed and measured, leading to tangible suggestions for 

further improvements. 

Keywords: Exergy analysis; TRNSYS; Primary energy ratio; Primary exergy ratio; 

Irreversibility rate. 
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Nomenclature 

E  Specific energy rate [W m-2] 

Ex  Specific exergy rate [W m-2] 

fth,RER Fraction of renewable energy resources for thermal production 

fel,RER Fraction of renewable energy resources for electrical production 

Fq Quality factor [-] 

I  Irreversibility rate [W. m-2] 

PER Primary energy ratio [-] 

PExR Primary exergy ratio [-] 

Q  Thermal load [W. m-2] 

0T  Reference (dead) state temperature 

T  Temperature [K] 

elW  Specific electricity rate [W. m-2] 

Greek symbol 
  Energy efficiency 

Subscripts 

i Power plant 

ii Heat generator 

iii Emission 

iv Room 

p Primary 

ret Return 

s Supplied 

th Thermal 

1 Introduction 
Since 1970s, many energy computational modelling tools and building energy codes 

have been developed, although mostly based on mathematical models based on First Law 

of Thermodynamics. The Energy Conservation Law states that energy is conserved in any 

energy conversion process and cannot be destroyed. However, from an engineering 

perspective, the conservation principle alone is not adequate to handle some important 

aspects related with energy utilization [1]. Therefore, the exergy is then employed as 

complementary method to the energy conservation principle. The exergy analysis applies 

the conservation of mass and energy principles together with the Second Law of 

Thermodynamics, concerning quantity and quality aspects of energy utilization [1-2]. 
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Exergy is defined as the maximum theoretical work that can be obtainable from a system at 

a given specified state relatively to its reference (dead) state [1]. Alternatively, it may be 

defined as the magnitude of the minimum theoretical work required to bring a given 

system from a reference (dead) state to a given required one [1]. At the dead-state, the 

system is at the temperature and pressure of its environment or in thermal and mechanical 

equilibrium. There is no kinetic and potential energy relative to the environment, and it 

does not react with the environment (chemical inert). Unlike energy, exergy can be 

destroyed during an energy conversion due to the irreversibility nature of processes (such 

as, heat transfer throughout a finite temperature difference, friction, unrestrained expansion 

of fluids and others). Exergy analysis is a useful tool for achieving the goal of a more 

efficient energy-resource use and addressing the environmental impacts of the energy 

resource utilization, since it can provide information about the match between supply (e.g. 

fossil fuels) and energy demand (e.g. low-temperature space heating, domestic hot water) 

[3]. It provides the locations, types and true magnitudes of wastes and losses and rank them 

by the order of significance [4]. 

Some authors have evaluated the exergy in buildings and their related energy 

systems to identify their potential for improvement and understand some important aspects 

of the different building energy conversion processes [5]. The International Energy Agency 

(IEA) launched two international research projects related with exergy efficiency in 

buildings. The main objective of ECBCS-Annex 37 (Low Exergy Systems for Heating and 

Cooling) [6] is to increase the knowledge of the different exergy flows in buildings and 

find possibilities for further improvements in their final energy utilization. In the same line, 

under ECBCS Annex 49 (Low Exergy Systems for High-Performance Buildings and 

Communities) [7] a set of tools for exergy analysis of buildings were developed, providing 

guidelines, recommendations and best-practice examples for building designers, engineers 

or decision makers. Some other studies on this topic were conducted. Schmidt et al. [8], [9] 

and [10] proposed and applied a method based on a pre-design tool to design low exergy 

buildings. It can be applied to assess and compare different energy flows exist in buildings, 

distinguishing them according to their quantity and quality values, from supplied primary 

energy to its final utilization. A similar approach was also conducted by Balta et al. [11] 

that applied the exergy analysis method to assess and compare four different energy 

options for a building space heating application. The exergy efficiency of heat pump, 

condensing boiler, conventional boiler and solar heating was evaluated as 66 %, 3.31 %, 
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2.99 % and 12.64 %, respectively. Using the methodology based on a pre-design analysis 

tool developed in [6], Balta et al. [12] performed an exergy analysis of a low-exergy 

heating system from the power plant through the ground-source heat pump to the building 

envelope. The energy and exergy demand were quantified and the exergy destructions 

were investigated and illustrated throughout the overall system. Favrat et al. [13] 

developed a procedure to include the calculation of an exergy indicator for the “Canton of 

Geneva” in Switzerland to introduce the exergy concept in building energy codes. The 

overall system was divided into a supply structure formed by four sub-systems: room 

convector, plant of the building, a possible district heating and cooling plant and an 

external power plant. The exergy method has been also applied for the assessment of 

ventilation systems in buildings. Zmeureanu and Yuwu [14] studied the impact of 

separated mechanical ventilation system on the annual energy and exergy performance of 

several design alternatives of residential heating systems in Montreal (Canada). Wei et al. 

[15] applied the exergy analysis to variable air volume (VAV) systems in office buildings 

for air-conditioning. The energy and exergy efficiency and related equivalent-CO2 

emissions, associated to electricity generation of used by the VAV system were assessed 

and presented. Additionally, Lohani and Schmidt [16], Sakulpipatsin [17] and Gonçalves et 

al. [18] studied the combination of simulation tools with the exergy analysis. 

In the previous studies [8-12], the energy and exergy method are used to assess or 

compare different energy options, showing differences between the energy and exergy 

performance indicators. However, and especially in the cases where the energy 

performance indicators fail, the importance of the exergy indicator to compared different 

energy options were not completely highlighted. Furthermore, the exergy analysis of 

hybrid systems (i.e. conventional systems + renewables), systems powered by electricity 

that may be partly generated by renewables (e.g. hydro, wind, solar) and other poly-

generation systems have not been addressed, namely when different outdoor environmental 

conditions are compared. Taking into account the limitations found in the literature, this 

study aims to apply the energy and exergy method to assess the performance of different 

building heating options located at different outdoor environmental conditions. 

Furthermore, the advantages of the exergy approach in compare to the conventional energy 

method are investigated in this work. As a case study, eight different energy supply options 

for a building space heating are compared using energy and exergy indicators. A building 

model and eight different systems are modelled in TRNSYS simulation engine. Each 
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option is simulated for different outdoor environmental conditions, using different weather 

files. The energy systems may be powered by both fossil and renewable sources. The 

primary energy and exergy demand, primary energy ratio (PER), primary exergy ratio 

(PExR) and irreversibility rates were calculated and compared for each proposed scenario. 

2 The exergy method applied to HVAC systems 
Schmidt [8] developed a methodology for exergy analysis of buildings based on an 

approach from demand to supply side. As demand, the author defined the useful energy 

demand required to satisfy the various energy building end uses (e.g. space heating tasks or 

hot water requirements), and as supply, the energy and exergy demand are evaluated at 

primary energy sub-system. Further studies [11-12, 16-17] also have used this method for 

energy and exergy steady-state calculations. In this study, the basis of this method was 

included into a model developed in TRNSYS, introducing some features, such as 

renewable and non-renewable energy considerations and dynamic assessment of the energy 

and exergy loads. The method is illustrated in Figure 1 and the related mathematical model 

is described in this section. 

, |H iv ivQ Ex  
 

, |p i iE Ex  
 

, ,el ii el RERW f  


,el iiW  


, |p ii iiE Ex  
 

, |H iii iiiQ Ex  
 

inT

retT

, ,H iii th RERQ f  


,el iW  


,H iiQ  


 
Figure 1: Schematic representation of the systems (i–iv) and their connections. 

 

According to Figure 1, “Demand” corresponds to the thermal energy required for the 

space heating requirements of the building, assuming an indoor air temperature of 20 °C. 

“Supply” refers to the primary (fossil) energy demand, after efficiencies and energy losses 
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of all sub-systems are taken into account. Each heating option is associated to a so-called 

“Energy Supply Network” (ESN), which is defined as a combination of four sub-systems: 

power plant (i), heat generator (ii), emission system (iii) and air room (iv). The heat 

generator could be powered directly by fuel or electricity, which is “generated” at the 

power plant (i). Two different energy resources are considered as the inputs: renewable 

energy resources (RER-local + RER-nation) and non-renewable energy resources (NRER), 

according to the schematic of Figure 1. In the current study, only primary energy flows 

derived from NRER were included into the energy and exergy assessments, therefore the 

integration of RER into sub-systems (i) or (ii) is only treated as reduction of demand 

associated to NRER. 
 

In Figure 1, the room (iv) is the ultimate sub-system of the ESN, corresponding to the 

sub-system with the minimum exergy requirement to perform the space heating task. 

Conceptually, it corresponds to the mechanical work required to power a reversible heat 

pump device, operating between indoor and outdoor conditions. The evaluation of the 

exergy demand at room (iv), ivEx is given by Eq. (1). 

 , 01iv H iv ivEx Q T T          (1) 

where, ,H ivQ  is the space heating load at room (iv), 0T  is the reference (dead state) 

temperature and ivT  is the required room air temperature (in this study, 20 °C was 

assumed). The heating load at room may be obtained by a static approach, using 

established conventional methods or, using dynamic simulation tools. In this study, 

TRNSYS 16 [19] was used to assess the hourly heating load of the building, using the 

weather data provided by the software's database, corresponding to different outdoor 

environments. The emission system (iii) corresponds to a conventional water-to-air heat 

exchange, usually called as “radiator” or “fan coil” in HVAC terminology. At this sub-

system, no energy losses were considered, so from the energy conservation principle 

applied to the systems (iii) and (iv), , ,H iii H ivQ Q  . Although, the exergy rate at the emission 

(iii) is given by Eq. (2). 

 
0

, 1 ln in
iii H iii

in ret ret

T TEx Q
T T T

 
    
       (2) 

where, ,H iiiQ is the heating load at emission (iii), inT  and retT  are the inlet and return water 

temperature, respectively, 0T is the reference temperature. Since, there is not information 
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related to the electric auxiliaries’ loads were neglected by the current analysis. 

The heating system at (ii) may be powered directly by fuels (including both fossil and 

renewable sources) or electricity. The energy supplied rate at (ii), ,s iiE , is given by Eq. (3), 

where ,H iiiQ is the thermal load at emission (iii), fth,RER is the thermal fraction derived from 

RER, and ii is the thermal efficiency of the heat generator (or COP, for heat pump 

technologies). From Figure 1, the thermal load produced by the heat generator (ii) is given 

by  , , ,1H ii H iii th RERQ Q f   . 

 ,
, ,1H iii

s ii th RER
ii

Q
E f


 


         (3) 

The energy supplied at (ii) could be assumed as primary energy, when the system is 

powered directly by primary-fossil sources,  , ,s ii p iiE E  or simply as an electric load, 

 , ,s ii el iiE W   for electric based heating systems. The term  ,1 th RERf  outlines that inputs 

derived from RER are not accounted as input. For fuel based heating systems, the related 

primary exergy rate at (ii), iiEx is given by the product of ,p iiE and the quality factor of the 

fuel, ,q iiF  as given by Eq. (4). For electric based heating generators, ,in el iiEx W  . 

, ,ii q ii p iiEx F E           (4) 

For electric based heating systems, regarding an equivalent comparison based on same 

type of supplied fuel, the primary energy associated to electricity production should to be 

accounted. Therefore, the related performance of the electric power plant should be 

incorporated into the analysis. The primary energy and exergy load at the power plant for 

electric-based heating systems are given by Eqs. (5) and (6), respectively. 

 ,
, ,1el ii

p i el RER
i

W
E f


 


         (5) 

, ,i q i p iEx F E           (6) 

where, ,el iiW  is the electricity demand at heat generator (ii), i  is the thermal efficiency of 

the power plant and ,q iF  is the quality factor of the supply source and the parameter ,el RERf  

is the fraction of electricity produced by RER. 
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3 Energy and exergy performance indicators 
The exergy analysis can provide several advantages when compared to the 

conventional energy approach; however, it is not widely adopted by the building industry, 

energy building-modelling professionals or even in building energy standards. In the 

Portuguese energy building code RCCTE [20], as well as, in the European Directive for the 

Energy Performance of Buildings, EU 2002/91/CE [21], the exergy concept is not 

mentioned or even its use recommended. In the procedure followed by RCCTE, the energy 

performance of buildings is quantified by their related primary energy demand, simply 

using primary energy conversion factors. In this study, two new indicators are proposed: 

primary energy ratio (PER) and an equivalent index based on exergy – the primary exergy 

ratio (PExR). In the following sub-sections, the mathematical formulations of these 

indicators are presented. 

3.1 Primary Energy Ratio 

Primary Energy Ratio (PER) is defined as the ratio of delivered useful energy 

(thermal, electric, mechanic) to the primary-fossil energy supplied (derived from natural 

gas, fuel oil or coal). This indicator provides information about the efficiency of employing 

NRER to fulfil the space heating requirements of the building. Taking into account the 

symbols of Figure 1, PER is given by the Eq. (7), where ,H ivQ  is the heating load at (iv) 

and pE  is the required total primary energy. For fuel based heat generators, ,p p iiE E  and 

for electric based heating systems, ,p p iE E  . 

,H iv

p

Q
PER

E


          (7) 

3.2 Primary exergy ratio 

The overall exergy performance of an energy conversion system is usually given by 

the exergy efficiency, which is defined as the ratio of the output exergy to the total exergy 

required. This indicator quantifies how well the exergy input is converted, or looking from 

the reverse direction, shows the irreversibility level generated during the conversion 

process. For the current study, primary exergy ratio is defined as the useful exergy demand 

to the primary exergy input rate, expressed by Eq. (8): 
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iv

p

ExPExR
Ex



          (8) 

where, ivEx  is the exergy heat demand at room (iv) and pEx  is the primary energy input, 

expressed as exergy values. Similarly, for heat generators powered by fossil fuels, 

,p p iiEx Ex   and for systems powered by electricity, ,p p iEx Ex  . 

3.3 Primary irreversibility rate 

The potential work lost during an energy conversion process is commonly defined as 

the irreversibility rate or exergy destruction rate [2]. It is given by the difference between 

the exergy input or required and the exergy output or desired at a given system or sub-

system. Using the symbols of Figure 1, the overall irreversibility rate for a given ESN is 

given by Eq. (9). Furthermore, the relationship between irreversibility rate and PExR is 

expressed by Eq. (10). 

p p ivI Ex Ex             (9) 

 1p pI Ex PExR           (10) 

As previously, for heat generators powered by fossil fuels, ,p p iiEx Ex   and for systems 

powered by electricity, ,p p iEx Ex  . The irreversibility rate evaluated for each sub-system 

presented in Figure 1 is given by Eqs. 11 to 14. For the emission (iii), 

,p iii iii ivI Ex Ex            (11) 

where, iiiEx is the exergy demand at emission (iii) and ivEx is the exergy demand at room 

(iv). For fuel based heat generators (ii), 

, ,p ii p ii iiiI Ex Ex            (12) 

where, ,p iiEx is the exergy related to the primary energy input to (ii). For electric driven 

heat generators (ii), 

, ,p ii el ii iiiI W Ex            (13) 

where, ,el iiW is the electricity rate input to (ii). For the power plants (i), the irreversibility 

related rate is given by Eq. (14). 
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, , ,p i p i el iiI Ex W            (14) 

where, ,p iEx is the exergy rate related to the primary energy supplied to the power plant (i). 

4 Model characterization and simulation scenarios 
In this study, eight ESN are described using different types of emission system (low, 

medium and high temperature), heat generators (powered by fuel, electric resistance and 

air source heat pump) and power plants technologies (natural gas, oil or coal). Part of heat 

or electricity delivered may be produced by RER, therefore reducing the demand of 

NRER. Using the same building model, the energy and exergy performance of each ESN 

was evaluated under different outdoor environmental conditions. Different simulations 

were conducted using Meteonorm weather files for the following locations: Coimbra and 

Lisbon in Portugal, Paris in France and Berlin in Germany. In this section, the building 

model and energy supply networks (ESN) are described, as well as, the main parameters 

and assumptions made. 

4.1 Building model description and operating conditions 

The building model is describe as single thermal zone, rectangular shaped with main 

façade south-orientated and was modelled in TRNSYS using the components Type 109 

and Type 56. It has a total floor area of 336 m2 and volume of 907.2 m3. For the ventilation 

rate, it was assumed 0.6 air changes per hour (value established by RCCTE [20]). The 

sensible heat demand was calculated assuming an indoor set-point temperature of 20 °C. 

No humidity loads were considered into the analysis. The main envelope parameters are 

presented in Table 1. 

Table 1: Building model envelope characterization 

Type of façade Orientation U-value [W m-2 K-1] Area [m2] 
Exterior Walls North and South 0.870 304 
Exterior Walls East and West 0.870 37.8 
Roof Horizontal 0.493 336 
Ground Horizontal 1.323 336 
Glazing South 2.83 (g = 0.755) 14.0 

 

The U-values of the construction elements are in agreement with the reference or 

recommended values established for new residential buildings in Portugal, which are 

defined by the building code RCCTE [20]. The standard also outlines maximum 
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admissible U-values for the envelope performance of new buildings. They change 

according type of construction (walls, roofs or pavements), boundary conditions (contact 

with exterior or non-conditioned spaces) and climatic zone (three climatic zones are 

defined in Portugal). For locations with more severe climate than Portugal (e.g. France or 

Germany), lower U-values are recommended, although in this study, the same building 

model (and related U-values) was applied for all the heating options proposed and outdoor 

environmental conditions proposed. The main objective of the study is not to assess the 

heating demand and related primary energy consumption of the building model, respecting 

the building codes of each country, but to address the energy and exergy performance 

variations for different outdoor environmental conditions. 

4.2 Characterization of the energy supply networks (ESN) 

The different combinations of emission systems, heat generators and power plants 

are described in Tables 2 to 4, respectively. The thermal efficiencies of the heating systems 

presented in Table 3 were defined according to pre-design tool developed by Schmidt [8], 

widely used in the projects: IEA-ECBCS Annex 37 [6] and Annex 49 [7]. Since most of 

the systems installed in buildings do not operate at their maximum capacity, thermal 

efficiencies are defined at part-load ratio as 30 %. Furthermore, the related power plant 

efficiencies were retrieved from Ref. [25], using recommended values by power plant 

technology. In Tables 3 and 4 are also shown the quality factors related to each fuel source 

or carrier and were also retrieved from Ref.s [22-24]. Combining the sub-systems 

presented in Tables 2-4, the definition of each ESN is presented in Table 5. As example, 

“ESN G” is a supply network constituted by an “Air source heat pump (HG4)”, where the 

heat is released by “Medium temperature (50/40 °C) (E2)” emission system. Furthermore, 

30 % of electricity is produced by RER and the remainder (70 %) is generated in a 

conventional “Power plant fuelled by oil (PP2)”. 

5 Results and discussion 
In this section, the results of the energy and exergy analyses applied to each ESN are 

presented. They are organized in three main sections. In Section 5.1, the energy and exergy 

demand is evaluated individually for each sub-system of the ESN. In Section 5.2, the 

energy-exergy performance indicators and primary energy demand are compared for 

different outdoors environmental conditions. To close, in Section 5.3, the irreversibility 

rate is evaluated for the different sub-system of the ESN. For the exergy analysis, the 
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definition of the reference (dead) state temperatures for all considered outdoor 

environmental scenarios are presented in Table 6. They were calculated based on the 

average temperature for each period (day or month), using the weather's data at each 

location (city). 

Table 2: Description of the emission systems, operating temperatures and type of technology 

Code Emission system Technology 
E1 Low temperature (40/30 ºC) Floor heating or large convector areas 
E2 Medium temperature (50/40 ºC) Convectors/Fan coils 
E3 High temperature (70/60 ºC) Convectors/Fan coils 

 
 

Table 3: Technologies and efficiencies for the heat generators 

Code Heat generator 
Thermal efficiency 
(based on Ref. [7]) 

Quality factor of 
the source [-] 

HG1 Condensing boiler (Natural Gas) 95% 0.92 
HG2 Standard oil boiler 80% 0.99 
HG3 Electric Boiler 98% 1.00 
HG4 Air source heat pump 2.5 (COP) 1.00 

 
 

Table 4: Description of power plant types and technologies 

Code Fuel Efficiency a Quality factor [-] 

PP1 Coal 42.3 % 1.03 
PP2 Fuel Oil 39.7 % 0.99 
PP3 Natural gas (Combined Cycle) 52.5 % 0.92 
a Efficiencies reference values in application for Directive 2004/8/EC [25] 
 

 
 

Table 5: Different combinations of sub-systems for the definition of ESN A-H 

ESN Power plant Heat 
generator Emission RER-local  

(Thermal) 
RER-nation 

(Electric) 

Fu
el

 

A - HG1 E3 0 0 
B - HG2 E3 0 0 
C - HG1 E2 0 0 
D - HG1 E2 0.30 0 

E
le

ct
ri

c 

E PP3 HG3 E3 0 0 
F PP3 HG4 E2 0 0 
G PP2 HG4 E2 0 0.30 
H PP1 HG4 E1 0.20 0.40 
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Table 6: Reference (dead) state temperature for the outdoor environments examined. 

Weather’s file Reference period T0 (K)b 

Coimbra, Portugal 

12th January (day) 278.42 
January (month) 283.11 
February (month) 284.11 
March (month) 285.66 
November (month) 286.03 
December (month) 283.55 

Lisbon, Portugal January (month) 284.57 
Paris, France January (month) 275.99 
Berlin, Germany January (month) 272.99 
b Calculation method: daily or monthly averaged temperature. 
 

5.1 Energy and exergy demand 

Having as reference the weather outdoor conditions of Coimbra's city (Portugal), 

annual dynamic simulations were conducted to evaluate the space heating thermal demand 

and related exergy load of the building model. The results for the subsystem room (i) are 

presented in Figure 2. 

Figure 2: Space heating 
energy and related 
exergy demand of the 
building (simulated 
results for weather data 
corresponding to 
Coimbra). 
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Two different lines are presented: one corresponding to the space heating thermal 

demand (directly derived from the simulation output results); and second one associated to 

the space heating related exergy demand at room (iv). For a conceptual point of view, the 

exergy curve represents the minimum equivalent work required to run a reversible heat 

pump system operating between outdoor and indoor air temperature. The differences 

between the two parameters show that exergy of a low-temperature requirements task 

(such as space heating) is very low when compared with the related energy value. 

Considering a single day analysis (12th January at Coimbra), the energy and exergy 
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average demand at each sub-system of each ESN, are presented in Figure 3-A and 3-B, 

respectively. 
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Figure 3-A: Specific heating 
energy rate at each sub-system 
for ESN A–H (weather data 
corresponding to Coimbra on 
12th January). 
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Figure 3-B: Specific exergy rate 
at each sub-system for ESN A–
H (weather data corresponding 
to Coimbra on 12th January). 
 

The energy and exergy differences at sub-system room (iv) were discussed 

previously and they are equivalent for all ESN, since the same building model was applied. 

Concerning the emission system (iii), since different type of systems were assumed, the 

exergy demand at (iii) changes accordingly. The lowest exergy demand value occurs for 

ESN H, which involves a low temperature (40/30 °C) emission system. The exergy 

differences among ESN at (iii) are almost imperceptible, when compared with differences 

verified at (ii) or (i). The related energy load at (iii) is the same for all ESN analysed, 

because no thermal losses were assumed in that sub-system. 

The energy and exergy demand at heat generator (ii) show high differences from 

both perspectives. Comparing the differences between (ii) and (iii), the exergy 

requirements at (ii) are always higher than (iii), showing the presence of irreversibilities at 

the conversion from (ii) to (iii). Concerning energy, some of the ESN present lower 
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demand values at heat generator (iii) than at emission (iii). This means that RER are 

considered as source or the heat generators may have energy efficiency higher that unit 

(heat pumps), which occurs for ESN D, F, G and H. 

Furthermore, for ESN A–D, the heat generator is powered directly by fuels sources, 

so the last value is located at (ii). Although, in order to have a facilitated comparison 

among other options, the energy–exergy for ESN A–D demand at (ii) were extended to (i). 

These diagrams are particularly useful for evaluating and comparing the major 

inefficiencies or exergy losses at the ESN. The slope of the lines provides useful 

information regarding the mentioned fact, although from an energy perspective, due to the 

presence of slopes in different directions, it is more difficult to extract consistent 

conclusions about the sub-system where the major inefficiencies occur. As an example, 

comparing ESN A and B, from an energy perspective both supply systems indicate 

relatively low-energy losses at the heating system, but from an exergy point of view, most 

of exergy losses (about 40 W m−2) occur in the transformation from (ii) to (iii). Moreover, 

for the ESN E, the energy diagram (Figure 3-A) indicates that the major inefficiencies 

occur at power plant, but from exergy diagram (Figure 3-B), they are shared between 

power plant and electric heat generator. Comparing the results from Figure 3-A and 

Figure 3-B, the differences between energy and exergy approaches are highlighted. From 

an overall perspective, these diagrams reveal that major source of irreversibilities occur at 

the heating system (i) and power plant (ii). 

5.2 Energy and exergy indicators 

The energy and exergy performance of ESN A–H are evaluated through the 

indicators PER and PExR. In Figure 4, these two indicators are presented using averaged 

values for the typical winter day of 12th January. Since constant heating efficiencies and 

quality factor were assumed, the results show a linear correlation between the indicators 

PER and PExR, both having the same performance ranking: ESN H, G, D, F, C, A, B. 

Despite a different numerical value, these results do not show the main advantages of 

PExR relatively to PER. However, in Figure 5, these differences are highlighted when 

different outdoor environmental conditions are compared. Each point represents the 

monthly averaged energy and exergy performance (PER and PExR, respectively) for ESN 

A–H for different winter months, using as reference outdoors conditions of Coimbra. The 

related reference (dead) state temperatures are presented in Table 6. 
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Figure 4: PExR as a function of 
PER for ESN A–H (weather data 
corresponding to Coimbra on 
12th January). 
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Figure 5: PExR as a function of 
PER for ESN A–H for typical 
winter's months (weather data 
corresponding to Coimbra). 

The results show that PExR of each ESN changes according to different months, 

while PER remains constant. It clearly shows the limitation of PER for the performance 

assessment of each ESN, when different outdoor conditions are compared. The exergy 

performance (PExR) of each ESN assumes the highest value for January, following 

December, February, March and November. It shows that PExR is higher for “cold” 

months, which are associated to low reference (dead) state temperatures, T0. Low T0 leads 

to slightly high exergy requirements at demand, therefore for the same system's efficiency, 

high exergy performance is achieved. High exergy efficiencies indicate a more rational use 

of the resources, indicating a match between exergy levels between supply and demand. 

Since the PER and/or PExR indicators are non-dimensional ratios, they give 

information about the primary energy and exergy efficiency of the heating conversion 

process, but no information concerning the actual primary energy demand of the building. 

The primary energy demand (or related CO2 emissions) is the commonly indicator 

recommended to measure the energy performance of buildings. Combining PER and PExR 
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with primary energy consumption of buildings a more complete information about the 

building energy performance is granted. In Figure 6, the specific primary energy rate is 

presented as a function of PExR, for Coimbra's winter months from January to March. The 

primary energy demand is higher for low efficient ESN and more severe outdoor 

environmental conditions: pE (January) > pE (February) > pE (March). Concerning exergy 

performance of each ESN, the higher PExR value is also obtained for January, followed by 

February and March, and the differences more relevant for ESN with low primary energy 

demand. These results also reveal the “ability” of PExR to distinguish systems’ 

performance for different reference outdoor conditions. 

Figure 6: Specific primary 
energy rate as function of 
PExR for ESN A–H 
(weather data 
corresponding to 
Coimbra). 
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In the previous approach, the heating performance of the building model proposed 

was assessed for different European cities: Coimbra (Portugal) and Lisbon (Portugal), Paris 

(France) and Berlin (Germany). The same building envelope, ventilation requirements, and 

related U-values were applied for all the weather reference conditions. U-value influences 

the space heating demand and related primary energy/exergy rate of the building model. In 

this study, U-values of the building model are the recommended values for the Portuguese 

weather's conditions, although considering more severe climate conditions (e.g. Berlin and 

Paris), lower U-values are recommended, reducing the primary energy demand. In this 

study, the same U-values applied to all the different climatic conditions are considered, 

regarding to assess only the ESN performance, and not the envelope. 

In Figure 7-A and 7-B, the specific primary energy rates as function of PER and 

PExR are shown, respectively. These diagrams could provide useful information about the 

energy or exergy performance of the supply systems, together with the primary energy 
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demand associated. Since constant efficiencies were defined for heat generator and related 

power plant sub-systems, PER of each ESN is constant for the different weather 

conditions. As an example, PER of ESN E is about 0.5 for all scenarios, and the same 

occurs for ESN H, where PER = 2.2. On other hand, concerning the exergy performance, it 

changes according to the reference weather conditions. Thus, for ESN H, PExR is about 

0.07 for Coimbra's weather and about 0.155 for Berlin's outdoor environment. Since 

different exergy requirements at demand (room, iv) are obtained for each weather 

conditions, the exergy performance is a very sensitive parameter, especially for ESN with 

low primary energy demand. 
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Figure 7-A: Specific primary 
energy rate as function of 
PER for ESN A–H in four 
different locations (weather 
data corresponding to 
January). 
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Figure 7-B: Specific primary 
energy rate as function of 
PExR for ESN A–H in four 
different locations (weather 
data corresponding to 
January). 

 

These diagrams are also very useful for comparing buildings performances when the 

same primary energy demand is achieved, but with different energy and exergy 

performance results, depending of the reference outdoor environmental conditions. From 

results derived from Figure 7-A and 7-B, considering ESN E in Lisbon and ESN F in 
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Berlin, approximately the same primary energy demand is achieved (40 W m−2). Therefore, 

the related PER is higher for Berlin (about 1.4) than for Lisbon (about 0.5). Comparing the 

two options, for these two scenarios, PER of ESN F is 1.8 times more efficient than 

ESN E. Doing the same comparison ( pE = 40 W m-2), but considering exergy performance 

(PExR), the following results are derived: PExR for ESN E in Lisbon is about 0.02, while 

the related value for ESN F in Berlin is 0.105. It indicates that ESN F is 4.25 times more 

(exergy) efficient than ESN E, which is a very different result than the one obtained for 

PER. Considering the accuracy of PExR from thermodynamic perspective, it is suggested 

that PExR should be used as a valid indicator rather than PER. 

5.4 Irreversibility rate: breakdown by sub-system 

The primary irreversibility rate or exergy destroyed in each ESN is directly related 

with the primary exergy rate input and its exergy performance PExR, as expressed by 

Eq. (10). Furthermore, the related exergy destruction or irreversibility rate associated to 

each individual component is given by Eq.s 11-14. The irreversibility rate for each ESNs 

sub-system is presented in Figures 8-A to 8-D, using average results for January weather's 

outdoors conditions of Coimbra, Lisbon, Berlin and Paris, respectively. In Figures 8-A to 

8-D, it is possible to assess and specify the most inefficient components of each ESN, as 

well as, the minimum exergy required to perform the space heating task for each outdoor 

environmental condition. For fuel based heating systems (ESN A–D), the most of 

irreversibility rates occur at heat generator, while for electric-based options, the 

irreversibilities are shared between the heat generator and power plant. Concerning 

emission system (iii), as it operates near to the space heating temperature, its associated 

exergy destruction is relatively low when compared with the related value at heat generator 

or power plant). However, it is possible to distinguish irreversibility rate differences among 

emission systems, depending if they are high, medium or low temperature systems: the 

irreversibility rate at high-temperature emission systems (ESN A, B, E) is higher than 

medium-temperature systems (ESN C, D, F and G), and these two higher than low-

temperature emission system (ESN H). 

Taking into attention the values of exergy required at demand (building room, iv), its 

value is too low when compared with total exergy supply, revealing low-exergy efficient 

processes, especially for ESNs with high primary exergy demand. From the Figures 8-A to 

8-D, it is also possible to distinguish different exergy requirements at room for the 
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different outdoor environmental conditions. Thus, for locations with a low reference (dead 

state) temperature, such as Berlin or Paris, the exergy demand at room is higher than in 

Coimbra or Lisbon. Concerning the overall primary exergy rate, this value is also very 

different for the different outdoor climate conditions, because the same U-values were 

considered for all of them. Therefore, by improving the envelope quality for more severe 

outdoor conditions, low primary exergy rate could be obtained, as well as, the related 

primary irreversibility rate associated to each system. 
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Fig. 8. Primary exergy rate required for ESN A–H and its allocation by irreversibilities and 
exergy required; weather data for January in (A) Coimbra, (B) Lisbon, (C) Paris and (D) 
Berlin. 

Fig. 9 shows the irreversibility breakdown (in %) by each subsystem, that is relative 

irreversibility associated to each sub-system of ESN E, which have higher primary exergy 

demand. As shown, the heat generator accounts with 49 % for the total irreversibility rate, 

the power plant with about 44 % and the emission with 7.2 %. Following a simple energy 

approach, these values are hidden, since the thermal efficiency of the heat generator is 

98 %, showing only inefficiency at powered plant (PP3), which has an associated 

efficiency of 52.5 %. 
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Figure 9: Allocation of the primary irreversibilities 
of the sub-systems related to ESN E (weather data 
corresponding to Berlin in January). 

Power plant 
(43.8 %)

Heat generator
(49.0 %)

Emission 
(7.2 %)

 

6 Conclusions 

In this study, the energy and exergy performance of eight heating supply options 

were compared for different outdoor environmental conditions. Since the space heating is 

usually associated to low-exergy task, huge differences were found between energy and 

related heating exergy demand at sub-system iv (room). Therefore, it leads to significant 

variations between energy and exergy performances for each ESN evaluated. However, the 

exergy performance (PExR) is the indicator with more thermodynamic significance, since 

it includes both quantitative and qualitative energy aspects. 

For a given outdoor environmental condition, a linear relationship between energy 

and exergy performance indicators is found for all ESN. However, when different outdoor 

conditions are compared, higher exergy performances (PExR) are obtained for lower 

outdoor temperatures, while PER remains the same. 

For low outdoor temperature conditions, the exergy at demand side (room) is higher, 

than when high outdoor temperatures are considered, therefore for the same resource (or 

exergy input), better performances are achieved. This approach reveals that the exergy is 

an useful method for comparing of thermal-based energy options, with similar primary 

energy performances and located at different outdoor environmental conditions. 

Furthermore, the use of primary exergy demand and related irreversibilities or exergy 

destruction occurring at the sub-systems revealed to be a practical outcome, since it helps 

to quantify and locate the true thermodynamic inefficiencies associated to each ESN. The 

authors expect that the outcomes of this work may be used as basis of further comparison 

studies on energy performance of buildings, located at different outdoors conditions. 
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Abstract 

Buildings account for 40 % of total energy consumption in the European Union. The 

sector is expanding, which will lead to an increase of its energy consumption, if no 

additional measures are taken. The Directives 2002/91/EC and 2010/31/EU (recast) on the 

energy performance of buildings have as objective to reinforce the improvement of the 

energy performance of buildings, proposing the use of energy performance indicators, 

based on primary energy use or CO2 emissions. In this study, the limitations of the actual 

method are identified and a new indicator, based on exergy, is proposed, aiming to give 

new insights about the energy use in buildings. As a case study, a hotel building located in 

Coimbra (Portugal) is analysed using actual energy consumption data derived from a 

conducted energy audit. Besides primary energy based indicators, two more indicators 

were used: the primary energy ratio (PER) and exergy efficiency. Results show an 

estimated overall primary energy consumption of 446 kWh m-2 year-1, and 49 % and 17 %, 

found as PER and exergy efficiency, respectively. From an individual analysis, the electric 

equipments were found as the main contributors for the primary energy consumption of the 

hotel; however, they present the highest exergy efficiency when compared to processes 

related with space air conditioning. 

Keywords: Exergy analysis; Energy audits; Energy performance of buildings; Energy 

labelling 

Nomenclature 

fA  Floor Area [m2] 

COP  Coefficient of Performance (averaged) [-] 

E  Energy demand [kWh] 
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EP Energy performance indicator, based on primary energy use 

Ex  Exergy demand [kWh] 

qF  Quality factor 

PER Primary energy ratio 

T Temperature [°C] 

Wel Electricity demand [kWh] 

Subscripts 

0 reference 

acc air conditioning for cooling 

ach air conditioning for heating 

aux electric auxiliaries loads 

ch chiller 

ck cooking 

cs cooling system 

de distribution and emission system 

des desired 

ds distribution and storage 

DHW domestic hot water 

ee electric appliances 

eg electric grid 

f fossil fuel (primary energy) 

hg heat generator 

hs heating system 

i energy end-user 

ove overall 

p primary 

req required 

u useful energy (at last user of the energy supply chain) 

Greek symbols 
  Energy efficiency 
  Exergy efficiency 

Acronyms 

DHW domestic hot water 

EPBD Energy Performance of Buildings Directive 

EU European Union 

HVAC Heating Ventilation and Air Conditioning 
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RCCTE acronym in Portuguese, “Regulation of the Buildings Thermal Behaviour 
Characteristics” 

RSECE acronym in Portuguese, “Regulation of the Energy Systems in Buildings” 

SCE acronym in Portuguese, “Energy and Indoor Air Quality Certification of Buildings” 

1 Introduction 
In the European Union (EU) the building sector is responsible for 40 % of energy 

consumption and 36 % of CO2 emissions [1]. The related regulation on energy 

performance of buildings is an important instrument to achieve the EU Climate and Energy 

objectives. The Directive 2002/91/EC [2] on energy performance of buildings (EPB) is the 

main legislative instrument at EU level to promote the improvement of the energy 

performance of buildings. Under this directive, each member state must apply minimum 

requirements regarding the energy performance of new and existing buildings, ensuring the 

certification of their energy performance and requiring the regular inspection of boilers and 

air conditioning systems in buildings. Portugal adopted a series of measures to implement 

Directive 2002/91/EC [2] into the national law. In this scope, three decrees were officially 

published on April 2006 [3-5], which configure simultaneously the minimum requirements 

and the corrective measures for IAQ and energy efficiency, in either new or existing 

buildings. Decree 78/2006 creates and defines the operational rules for the National 

System for Energy and Indoor Air Quality Certification of Buildings (SCE). Decree 

79/2006 establishes the new revision of the Regulation for HVAC Systems, including 

requirements for regular inspection of boilers and air-conditioning equipments and systems 

(RSECE) and Decree 80/2006 establishes the new revision of the regulations regarding the 

Thermal Behaviour of Buildings (RCCTE). 

In 2010, the European Commission published Directive 2010/31/EU [6], a recast 

directive on EPB, in order to reinforce the energy performance requirements and to clarify 

and streamline some of its provisions. The adoption of a methodology for a detailed 

evaluation of the EPB is one of the directive's requirements. EPB shall be clearly expressed 

by an energy performance (EP) numerical indicator of primary energy use, based on 

conversion factors per energy carrier. These factors may be based on national or regional 

yearly average values or may take into account relevant European standards [6]. Some 

authors have studied the implementation of the European directive in different member 

state. Maldonado [7] contains extended summaries on the main outcomes of five topics: 

certification of buildings, inspections of boilers and air-conditioning systems, training of 
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experts, procedures for characterisation of energy performance, information campaigns. 

Moreover, the survey undertaken by Economidou [8], from Buildings Institute Europe 

showed large variations in the approaches adopted by different countries. Ballarini and 

Corrado [9] applied the EPBD through the energy assessment of some residential buildings 

in Turin (Italy). The energy use for heating/cooling is calculated through the application of 

the overall system efficiency and expressed through EP indices, based on annual primary 

energy demand per square meter. Similar studies were accomplished in Ireland [10], 

Portugal [11], Spain [12] and Greece [13], [14] and [15]. A software tool (EPA-ED) that 

can be used to perform building energy audits and assess buildings in a uniform way is 

proposed by Poel et al. [16]. The output results include monthly energy consumption for 

heating and cooling; calculated energy demand for domestic hot water (DHW), a summary 

with calculated savings (fuel consumption, electricity, CO2 emissions, energy indicator) 

and cost (investment cost, payback period). Similarly, the authors Rey et al. [17] proposed 

a new energy certification method called Building Energy Analysis (BEA) [18] to assess 

the building energy labelling, valid for residential and non-residential buildings, where the 

quantitative indicator is based on the energy required by the building, taking into account 

the instantaneous consumption energy demand and HVAC performance. 

Despite some differences verified in the various methodologies reviewed, the EP 

indicators are related with the primary energy use in buildings or, in some cases, with the 

associated CO2 emissions. However, from all the indicators proposed by either the 

European Directives or National Laws none distinguishes energy flows according to their 

quality levels. For example, one unit of energy for heating, expressed as thermal energy, is 

treated in the same way as one unit of electricity for lighting or electric equipments. 

However, from a thermodynamic point of view, the potential conversion value of one unit 

of electricity is completely different from the same unit value associated to the thermal 

energy, for space heating or hot water. Thus, the buildings as energy consumers with 

multiple quality requirements (space heating and cooling, hot water, illumination, 

ventilation and others), should include quality related aspects into its energy performance. 

From the reference literature [19-22], the energy quality associated to an energy state 

of flow is evaluated throughout the thermodynamic property “Exergy”, which relates the 

principles of mass and energy conservation together with the second law of 

thermodynamics, for design or analysis of thermal systems. The exergy analysis is 

particularly suited for furthering the goal of more efficient resource use, since it enables 



 

Research Paper II 
 

UC  2013 II.9 

 

the locations, types, and true magnitudes of waste and loss to be determined. The method 

has been applied in many fields, from industrial sector [23], [24] and [25] to buildings and 

their energy systems [22], [23], [26], [27], [28], [29] and [30]. Despite the add-value of the 

exergy analysis in the building context, the concept was not referred in the actual 

legislative frameworks on EPB. However, Favrat et al. [31] proposed a procedure for the 

calculation of an exergy indicator, regarding its inclusion into a new law for the “Canton of 

Geneva” in Switzerland. Nevertheless, this indicator is only related with HVAC analysis 

and does not account for other energy users, such as: lighting, electric services, hot water 

or ventilation. 

The present study aims to show the importance of additional energy and exergy 

based indicators for a better energy use description on EPB. Besides the conventional EP 

indicators, based on primary energy use, the primary energy ratio and exergy efficiency are 

proposed as extra indicators for an improved overall and individual (by energy end-user) 

energy use description of buildings. For the application of the methodology proposed, a 

four star hotel building located in Coimbra (Portugal) was analysed. Data derived from the 

energy [32] and indoor air quality audit [33] conducted during the energy labelling process 

of the building was used. The primary energy use, exergy efficiency and primary energy 

ratio were calculated for the overall building and for the following energy end-users: space 

heating and cooling, cooking, domestic hot water (DHW), ventilation, lighting and electric 

powered equipments. A “map” of the building is then presented, including information on 

energy and exergy performance of the hotel, indicating good-practices for the improvement 

of the energy performance of the building. 

2 Energy and exergy indicators 

2.1 Primary based energy indicators 

The EP indicator recommended by the Portuguese Law on EPB is expressed as the 

annual primary energy demand per square meter of conditioned area, in [kgep m-2 year-1]. 

The conversion factors between final and primary energy established for solid, liquid and 

gas fuels is 0.086 kgep per kWh and 0.290 kgep per kWh for electricity. These values 

assume that fuels are considered primary energy sources and electricity as a transformed 

product. Thus, it is assumed that the overall electric grid efficiency (power plant + 

distribution) is of 30 % for the electricity production. 
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In this study, a similar based procedure is conducted. Thus, the primary energy 

demand associated to the final user i, Ep,i is given by Eq. (1), where Ef is the annual fossil 

fuel demand (assumed as direct primary energy); Wel is the annual electricity input and eg

is the overall energy efficiency of the electric grid (electric power plant + distribution). The 

specific primary energy or EP indicator is then calculated using the primary energy input, 

taking into account the building floor area, fA , expressed by Eq. (2). 

,
, ,

el i
p i f i

eg

W
E E


          (1) 

,p i

i f

E
EP

A
          (2) 

Different procedures are used for the assessment of fE and elW , depending on the 

type of buildings. For new buildings with floor areas smaller than 1000 m2, the Portuguese 

regulation RCCTE [4] defines a procedure for the calculation of the useful energy at the 

building’s envelope, and according to the type and efficiency of the energy supply systems,

fE and elW  are predicted. For new buildings, with floor areas larger than 1000 m2, the use 

of dynamic simulation energy tools for the prediction of the building’s energy 

requirements is done through the patterns defined by the type of building. For existing 

buildings, the energy bills for the last three years of the building operation, an energy audit 

and the use of dynamic simulation tools are some of the procedures defined in [5], for the 

assessment of the annual energy demand of the building. 

2.2 Primary energy ratio 

The EP indicator defined by Eq. (2) Ep is based on the primary energy consumption 

of the building and includes information on envelope performance and systems’ efficiency. 

However, this approach does not distinguish between systems’ efficiency, including the 

use of renewables in the supply, and envelope performance. It is also important to consider 

whether improvements should be made either on the building’s envelope or on its systems. 

Thus, on this study, the indicator Primary Energy Ratio (PER) is used to provide 

information on the overall efficiency of the energy supply systems, including information 

on the integration of renewables on the energy supply systems. For a given energy use i, 

PERi is defined as the ratio of useful energy at demand  ,u iE and primary energy supplied
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 ,p iE , as given by Eq. (3). ,p iE is calculated by Eq. (1) and ,u iE is defined according to the 

type of final energy use. In this study, as an existing hotel building was considered as a 

case study, the assessment of the useful energy ,u iE is presented according to energy end-

users present in the hotel. 

,

,

u i
i

p i

E
PER

E
          (3) 

For the heating system, constituted by a conventional heat generator (power by fuel), 

hydraulic distribution-emission system and/or air conditioning heating units (ach), the 

useful energy is given by Eq. (4). 

, , , ,u hs f hg hg de el ach ach el aux

B CA

E E W COP W      
    (4) 

The terms A and B are related to the useful energy provided by the heat generator and 

air conditioning heating units, respectively; and C with the electric auxiliaries for the 

heating tasks. Ef,hg is the fuel input of the heat generator; hg is the thermal efficiency of the 

heat generator and de is the efficiency of distribution network and emission system. ,el achW  

and achCOP are the supplied electricity and the averaged COP of the heating air 

conditioning units, respectively and ,el auxW is the electricity load required for the auxiliaries 

of space heating process (e.g. pumps, fans). 

For the cooling system  cs , a chiller for cold water production/hydraulic 

distribution-emission distribution system and air conditioning cooling units are used. The 

formulation is given by 

, , , ,u cs el ch ch de el acc acc el aux

D E F

E W COP W COP W     
    (5) 

The expressions D and E are related to the useful energy provided by the chiller and 

air conditioning cooling units, respectively. and F with the electric auxiliaries for the 

cooling tasks. ,el chW and chCOP  are the supplied electricity and the averaged Coefficient of 

Performance for the chiller; ,el accW and accCOP are the supplied electricity and the averaged 

Coefficient of Performance of the cooling air conditioning units and ,el auxW is the electricity 

load required for the auxiliaries of space heating process (e.g. pumps, fans). 
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For the domestic hot water (DHW) production system, the useful energy is given by 

Eq. (6). 

,DHW , ,u f hg hg ds el auxE E W          (6) 

where, Ef,hg is the fuel supplied to the generator; hg  and ds are the energy efficiency of the 

heat generator and hot water distribution and storage system, respectively. ,el auxW is the 

electric auxiliaries loads required for the cooling system. 

For cooking applications  ck , powered by fuel (primary energy source) and/or 

electricity, the useful energy was assumed as equivalent to the fuel or electricity demand, 

as given by Eq. (7). 

, , ,u ck f ck el ckE E W          (7) 

For electricity powered equipments  ee  (excluding heating and cooling equipments), 

such as lighting, ventilation and other hotel’s electric equipments, the useful energy is 

given by Eq. (8). 

,u ee elE W          (8) 

The overall PER for the building,  ovePER is given by Eq. (9), formulated as the 

ratio of the sum of the ratios of useful energy to primary energy inputs. 

,

,

u i
ove

i p i

E
PER

E
         (9) 

2.3 Exergy efficiency 

The previously formulated PER gives an indication of the primary energy used by a 

system to perform a given task. However, PER does not take into account the 

thermodynamic considerations in the energy usage of a system. Energy is conserved in 

every device or process and cannot be destroyed [22]. Thus, the exergy concept is applied, 

dealing with both quantity and quality aspects of the energy use. Final energy uses, such 

as, heating, cooling, DHW, cooking or electrical appliances require very different exergy 

levels at demand, however, high exergy sources (e.g. natural gas or electricity) can still be 

used at supply. Thus, the exergy efficiency indicator,  i  is applied, regarding to 

compare exergy levels between supply and demand [19]. It is expressed by Eq. (10), 
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where, Exdes,i is the exergy desired (output) and Exreq,i is the exergy required (input) to 

perform a given task i. 

,

,

des i
i

req i

Ex
Ex

           (10) 

The required exergy is directly related with the type or thermodynamic state of the 

supplied energy source. According to Kotas [19], exergy input associated to a given energy 

quantity could be calculated by the product between the quality factor of the source and the 

respective energy related. Thus, the exergy input is expressed as the product of quality 

factor by the primary energy input, given by Eq. (11). 

,
, , , , ,

,

el k
req i q f f i q f k

k eg k

W
Ex F E F


        (11) 

where, Fq,f is the quality factor of the fuel and Ef,i is the fuel energy supplied for the task i. 

, ,q f kF is the quality factor of the fuel source, k for the electricity production ,el kW . In this 

study, as natural gas is the major resource used both electricity generation, the quality 

factor Fq,f  = 1.04, was used [19]. 

On other side, the assessment of the desired exergy, Exdes,i is calculated by Eq. (12),

, , ,des i q i u iEx F E          (12) 

where, Fq,i is the quality factor for the desired task i and Eu,i is the useful energy required to 

perform the task i. The assessment of Fq,i is quite different from the quality factor of the 

source, Fq,f, since different exergy´s levels are involved for each task. Thus, in order to 

apply the exergy method it is important to split all the energy consumers according to their 

final use, defining a dead-state temperature and a required temperature for all thermal-

based applications. For electric applications (excluding heating and cooling equipments), 

Fq,k = 1 [34]. However, for thermal-based applications, such as space heating and cooling, 

DHW or cooking applications, Fq,i is given by Eq. (13), 

0
, 1q i

i

TF
T

           (13) 

where T0 is the dead state temperature and Ti is the required temperature to perform a given 

task i. The quality factors for the assessment of the desired exergy are shown in the next 

section. 
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3 The case study 

3.1 Building description 

The building under study is a four star hotel located in the city of Coimbra 

(Portugal), built in 1990. From top view, the building has a rectangular shape, with the 

major axis oriented north-south. The main glazing surfaces are east and west oriented. The 

building has a maximum capacity of 180 guests, distributed by one hundred and twenty 

rooms and thirteen suits, along of seven floors. The hotel has a useful (conditioned) area of 

6531 m2, from which about 3443 m2 are reserved for parking and 596 m2 for other non-

useful areas. The energy systems installed in the hotel include a main central system 

constituted by a natural gas boiler for heating and domestic hot water (DHW) and a chiller 

for cooling requirements. Additionally, some individual air conditioning (AC) units were 

installed to work as auxiliaries of the main central system. Air handling units and 

extraction ventilators are installed in the roof, ensuring the air quality requirements. 

3.2 The energy audit 

The energy audit is the first procedure recommended by the Portuguese certification 

system [5] for the assessment of annual primary energy consumption of non-residential 

building, allowing the breakdown by demand end-users. The information about the 

building structure, construction materials, architectural drawings and installed systems was 

provided by the hotel's maintenance staff. It was possible to collect bills for natural gas and 

electricity – the main energy suppliers of the hotel – for the last three years. The list of the 

main analysed documents includes: 

- the natural gas bills through the years 2007–2009; 

- the electricity bills through the years 2007–2009; 

- list of installed equipments in the hotel; 

- technical catalogues of installed equipments; 

- equipments’ maintenance reports; 

- building constructions’ materials; 

- architectural drawings; 

- schedule profiles for the main energy consumers. 
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3.3 Energy end-users 

The energy audit aimed to assess the specific energy consumption of the building and 

the division by its end-users’ consumers. The related natural gas bills were divided into 

two independent sub-sectors: “hotel-building” and “hotel-kitchen”. In the “hotel-building” 

sector, natural gas is used for DHW production and air space heating, while in the “hotel-

kitchen” it is used for cooking tasks. Electricity is used for space heating/cooling systems, 

ventilation, water pumping, lighting and building equipments. As a transformed energy 

product, the overall power plant and electric grid efficiency were taken into account. Fig. 1 

shows a scheme with the considered breakdown by energy end-user. 
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Figure 1: Scheme of the energy end-users of the hotel. 

4 Discussion and results 

4.1 Natural gas demand by end-users 

The natural gas is mainly used for space heating, DHW and cooking tasks. From the 

analysis of the natural gas bills for the years 2007 to 2009, it resulted in an annual energy 

consumption of 706 080 kWh, where 632 990 kWh (90 %) are associated to space heating 

and DHW and 73 090 kWh (10 %) with cooking. The partition of the natural gas 

consumption between space heating/DHW applications was estimated based on monthly 

bills analysis and number of clients. Non-heating requirements were assumed from June to 

October, so for that period a natural gas consumption of 5.69 kWh per client was used. The 
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results for the monthly natural gas consumption, allocated by space heating, DHW and 

cooking, are shown in Figure 2, and the annual results shown in Table 1. 
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Figure 2: Natural gas energy 
demand for space heating, 
DHW and cooking 
applications. 

 

Table 1: Annual natural gas allocated by energy end-user. 

 Natural gas Space heating DHW Cooking 
Energy (kWh) 706 080 360 804 272 186 73 090 

Allocation 100 % 51 % 39 % 10 % 

4.2 Electricity demand by end-users 

The electricity’s versatility makes its allocation by end-users very difficult. In the 

current study, electricity is used for a huge variety of end-users, such as: space 

heating/cooling, hot/cold water pumping, ventilation, lighting, computers and other electric 

equipment. The hotel’s annual electricity demand, derived from electricity bills analysis 

for the years 2007 to 2009 amounts to 656 093 kWh. The energy audit conducted aimed to 

divide the electricity demand of the hotel by its end-users. Figure 3 shows the monthly 

electricity consumption by end-user results, derived from the conducted audit. 

Furthermore, a more detailed audit was also conducted in the machinery area, for HVAC 

and DHW electricity distribution. In Table 2 are shown the allocation for the electricity in 

the machinery area for heating/cooling/DHW auxiliaries and ventilation tasks is shown. 

For the analysis, the energy end-users were divided in six main groups, according to 

the type of energy end-user: space heating and cooling, ventilation, DHW, cooking and 

electric equipments (including lighting). The division of the annual energy consumption 

for natural gas and/or electricity and associated primary energy for the six energy end-

users assumed is shown Figure 4. It demonstrates that the hotel’s electric equipments are 

the major primary energy consumers; followed by space heating and cooling applications. 
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Figure 3: Monthly energy 
demand for the main 
electricity end-users. 
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Figure 4: Primary energy, 
natural gas and electricity 
annual demand, allocated by 
end-users. 
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Table 2: Annual electricity allocation for the energy end-users of the technical area. 

HVAC Systems Allocation [%] Electricity [kWh/year] 
Chillers 35 % 88221 
Cold water pumping 8 % 19298 
AC (Cooling mode) 15 % 38813 
Hot water pumping 4 % 9273 
AC (Heating mode) 11 % 26972 
Room convectors 1 % 3509 
Ventilation (Extraction) 5 % 12281 
Ventilation (outside air or “new”) 18 % 43860 
DHW pumping 3 % 8400 
Overall 100 % 250628 
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As referred, for an exergy analysis, a reference dead-state temperature should be 

defined. In the study, as only monthly consumption was estimated, the dead-state 

temperature assumed was the average value of temperature verified for each month, so the 

quality factors change every month. For the calculation of the monthly consumption (input 

and useful), it was assumed that the seasonal variation, verified for the natural gas and 

electricity bills, is exclusively related with the air space conditioning (heating and cooling) 

process. The results of the monthly energy demand for the heating and cooling tasks are 

shown in Figure 5. The assessment of the useful energy at building’s envelope was 

conducted based on previously formulation, using estimated efficiencies for the energy 

systems installed. Based on measurements derived from audit [32], the boiler (heat 

generator) thermal efficiency was estimated as 80 %, a COP=4.5 for the chiller and an 

average COP=2.5 for the individual AC units. The hot/cold water distribution and emission 

losses were estimated as 10 %. The useful energy for heating and cooling were also 

verified by dynamic simulation, where a model of the building was built and simulated 

using actual data provide by the maintenance staff of the hotel and the descriptive project 

of the building hotel. 
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Figure 5: Monthly distribution 
for heating and cooling tasks, 
expressed as natural, 
electricity inputs and useful 
thermal at demand side. 

4.3 Energy and exergy based indicators 

Using the results derived from section 4.1 and 4.2 and assuming an overall efficiency 

for the electric grid of 30 %, value applied by [4], the PER and exergy efficiency indicators 

are presented. In Table 3 the results for natural gas, electricity and related primary energy 
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input, the useful energy at demand side and PER indicator for the tasks: heating, cooling, 

ventilation, DHW, cooking and hotel electric equipments (lighting, elevators, personal 

computers and others) are presented. From the results, derived an overall PER of 0.49, 

which means that only 49 % of primary energy input is effectively used for the considered 

hotel’s tasks. According to the results, electricity powered equipments (except the AC units 

and chillers) are identified as those with lower PER values (0.30), due to low overall 

electric grid efficiency used. Special attention should be given to space heating and 

cooling, provided by AC units (PER=0.59). The higher PER value obtained is associated to 

the chiller, since it has a high COP value. For a purely energy perspective, in Figure 6 the 

EP indicator and the PER for each energy end-user is shown. For the first, a floor area of 

6531 m2 was assumed. The hotel’s electric equipments have the highest share of primary 

energy demand and the lowest associated PER, so they constitute the bigger end-user 

contributor for the decrease of the overall PER value of the hotel (all users). However, as it 

is highly influenced by the overall efficiency of the electric grid of the nation, the 

improvement of the overall PER of the building should be made by local production of 

electricity (e.g. Combined Heat and Power) or increase of renewable energy sources share, 

such as: wind, solar or hydro. 

Table 3: Estimated annual energy values for heating, cooling, ventilation, DHW, cooking and 
hotel´s equipments and respective PER indicators. 

Task 
Primary 

energy  
[kWh/year] 

Natural Gas 
[kWh/year] 

Electricity 
[kWh/year] 

Useful Energy 
 [kWh] 

PER 

Heating (boiler) 360 804 360 804 n.a. 230 915 0.64 

Heating (auxiliaries) 31 270 n. a. 9273 9 273 0.30 

Heating (AC Units) 90 953 n.a.  26 972 53 944 0.59 

Cooling (Chiller) 297 491 n.a.  88 221 317 595 1.07 

Cooling (auxiliaries) 65 076 n.a.  19 298 19 298 0.30 

Cooling (AC Units) 130 883 n.a.  38 813 77 626 0.59 

Ventilation (quality  
air requirements) 201 144 n.a.  59 649 59 649 0.30 

DHW 272 186 272 186 n.a. 174 199 0.64 

DHW (auxiliaries) 28 327 n.a.  8 400 8 521 0.30 

Cooking 73 090 73 090 n.a. 73 090 1.00 

Hotel Equipments 1 367 276 n.a.  405 466 405 466 0.30 

Overall 2 918 500 706 080 656 093 1 429 577 0.49 
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The assessment of the exergy level required of each task includes the assessment of a 

quality factor, which involves the definition of a reference state (or dead state). In this 

study, the monthly average outdoor temperatures were used for the dead-state air 

temperature for heating, cooling and cooking application and derived from the weather 

data available for Coimbra, Portugal [35]. For the DHW, as a water heating based user, a 

constant water dead state temperature of 10 ºC was assumed. The monthly dead state 

temperature, required temperature and correspondent quality factors for each task are 

shown in Table 4. 

Table 4: Quality factors, dead-state temperatures and required temperatures for the thermal 
based tasks. 

  Dead state 
(air), T0 [ºC] 

Space heating 
(TH = 20 ºC) 

Space cooling 
(TC =25 ºC) 

Cooking 
(TCK = 150ºC) 

DHW 
(THW = 60 ºC; 
T0,w = 10 ºC) 

Jan 8.7 0.04 - 0.33 0.15 
Feb 9.0 0.04 - 0.33 0.15 
Mar 10.2 0.03 (-0.05) 0.33 0.15 
Apr 12.8 0.02 (-0.04) 0.32 0.15 
May 14.9 0.02 (-0.04) 0.32 0.15 
Jun 17.9 - (-0.02) 0.31 0.15 
Jul 20.5 - (-0.02) 0.31 0.15 
Aug 20.1 - (-0.02) 0.31 0.15 
Sep 18.7 - (-0.02) 0.31 0.15 
Oct 15.3 - (-0.03) 0.32 0.15 
Nov 11.2 0.03 (-0.05) 0.33 0.15 
Dec 9.1 0.04 - 0.33 0.15 

The quality factor increases with the difference between the reference and the desired 

temperature for a given task. According to the obtained values, cooking and DHW tasks 

have higher quality factor values than space air conditioning tasks. The negative values 

presented in the space cooling column indicate that the monthly outdoor reference 

temperature is lower than the indoor desired temperature, which gives that T0/Ti in Eq. (13) 

becomes lower than unit. It indicates that using average monthly values, a potential of the 

outdoor environment exists to perform the cooling tasks. For electric powered equipments 

(except for heating and cooling applications), the quality factor of the electric work is 

equal to the unit [34]. The exergy analysis results, expressed as specific annual exergy 

demand and the exergy efficiency for each end-user, are shown in Figure 7. Significant 

differences are shown between PER (Figure 6) and the exergy efficiency values. If the 

electricity powered equipments are associated to the lowest values of PER, the associated 
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exergy efficiency assumes the highest values when compared with other tasks. Low exergy 

efficiency values indicate the use of high exergy sources to perform lower exergy tasks. 

The presented results show that space and heating application, contrarily to PER 

indication, wrongly apply the resource used as input. In this case, as these tasks have low 

exergy requirements, the use of high exergy source, such as natural gas, leads to low 

exergy efficiencies despite high PER values.  

Figure 6: Annual primary 
energy demand and PER for 
hotel´s end-uses energy 
consumers. 
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Figure 7: Annual primary 
energy demand, expressed as 
exergy values and exergy 
efficiency for Hotel´s end-
uses energy consumers. 
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The “map” of the building, including information about PER, exergy efficiency and 

relative information about primary energy consumption for each task, are shown in Figure 

8. The main differences between PER and exergy efficiency could be easily identify as 

well as the bigger contributors’ users for the primary energy consumption of the building. 

Thus, the electric equipments, including lighting, ventilation and other electric devices are 

the main contributors to the primary energy consumption of the hotel. This is also related 

with its low associated PER value. On the other hand, space heating and cooling users 
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reveal higher PER values than electric power equipments, despite low associated primary 

energy values. From an exergy analysis, results revealed that the electrical powered 

equipments are the most efficient together with the cooking application, and those 

associated to air conditioning systems present lowest exergy efficiencies. 
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Figure 8: Exergy efficiency vs. PER 
diagram for Hotel´s end-uses energy 
consumers. 

5 Conclusions 
In this study, results derived from an energy audit conducted during an energy 

labelling process of a hotel building, located in Coimbra (Portugal) were used to evaluate 

energy and exergy performance of the building and its energy users for heating, cooling, 

DHW, ventilation and other hotel’s electric equipments. The EP indicator, PER and exergy 

efficiency were evaluated as 446 kWh m-2 year, 49 % and 17 %, respectively. The “map” 

of the building, including relative information on primary energy, PER and exergy 

efficiency for the building and its energy end-users, revealed to be a useful tool for 

comparison between buildings and services. Furthermore, concerning the lack of exergy 

aspects into legislative frameworks on EPB, the study conducted could give important 

contributions for a possible integration of new exergy based performance indicators in new 

EPBD versions. As a future work, some sensitivity analysis using different energy 

efficiency values for the energy systems and different integrations of renewables should be 

taken into account to study the effect on energy and exergy performance of the building. 

Moreover, the approach followed could be implemented for different buildings and 

locations and used for comparative analysis studies. 
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Abstract 

Building sector is currently the largest world energy consumer, exceeding industry 

and transportation sectors. Traditionally, the energy assessment of buildings uses 

numerical indicators, based on primary energy use or related CO2 emissions. However, 

these indicators are typically defined based on quantitative energy aspects, neglecting 

another important thermodynamic parameter related with energy quality, commonly 

known as exergy. In this study, primary energy and exergy based indicators are compared 

and their significance discussed for future inclusion on energy benchmark performance of 

buildings. As case-study, the primary energy and exergy performance of a student housing 

building located in Coimbra, Portugal was properly assessed. The annual primary 

consumption and exergy efficiency were evaluated as 353 kWh m-2 and 27 %, respectively. 

The contribution of each end use for the building inefficiencies is also evaluated through 

the indicator Exergy Destruction Ratio, indicating that space heating is the most inefficient 

end use of the building, followed by hot water and electric equipments. Additionally, a set 

of alternative supply options were proposed, and their related performances were evaluated 

from both energy and exergy perspectives. Significant differences were found between 

both approaches, concluding that despite some options may be assumed as efficient from a 

primary energy perspective, they may are associated to low exergy performances. The use 

exergy and primary energy based indicators revealed to be a more detail approach for 

energy performance description of buildings, expecting their integration in future energy 

building codes frameworks. 

Keywords: Primary energy demand; Exergy analysis; Primary energy ratio; Exergy 

efficiency; Exergy efficiency defect. 
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Nomenclature 

ED Total energy demand (kWh.m-2) 
EP Primary energy (kWh.m-2) or (kgoe) 
ExD Total exergy demand (kWh.m-2) 
ExS Total exergy supply (kWh.m-2) 
Exs,k Energy supply related to end use k (kWh.m-2) 
Exd,k Energy demand related to end use k (kWh.m-2) 

e
pF  Primary energy factor for electricity (-) or (kgoe.kWh-1) 
f

pF  Primary energy factor for fossil fuels (-) 

,
f

q egF  Quality factor of fossil fuels in use by the electric grid (-) 

,
r

q egF  Quality factor of renewable fuels in use by the electric grid (-) 

,
f

q hsF  Quality factor of fossil fuels in use by the heating system (-) 

,
r

q hsF  Quality factor of renewable fuels in use by the heating system (-) 
T0 Dead state temperature (K) 
Trq Required temperature (K) 
Ts Supply temperature (K) 
Tr Return temperature (K) 
H2P Heat-to-power ratio (-) 
Qd Thermal-energy demand (kWh.m-2) 
We Electric appliances demand (kWh.m-2) 
I Irreversibility (kWh.m-2) 
PER Primary energy ratio (-) 
EDR Exergy Destruction Ratio (-) 
Greek symbols 

ove  Overall exergy efficiency (-) 

e  Fraction of electricity produced from renewables (-) 

h  Thermal fraction produced by renewables (-) 

hs

f  Efficiency of heating system powered by fossil fuels (-) 
f

eg  Efficiency of electric system powered by fossil fuels (-) 

hs

r  Efficiency of heating system powered by renewable sources (-) 
r
eg  Efficiency of electric grid powered by renewable sources (-) 

Subscripts 
k End use or task 
j Electric end use 
Acronyms 
ECBCS Energy Conservation in Buildings and Community Systems 
EPBD Energy Performance of Buildings Directive 
HVAC Heating, Ventilation and Air Conditioning 
RCCTE “Regulation of the Buildings Thermal Behaviour Characteristics” (in Portuguese) 
RSECE “Regulation of the Energy Systems in Buildings” (in Portuguese) 
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1 Introduction 
In the European Union, buildings are responsible for 40 % of energy consumption 

and 36 % of CO2 emissions (Eurostat 2010). The current growth in population, growing of 

buildings’ services and comfort levels, together with the increase of time spent inside 

buildings, assure that the upward trend in energy demand of buildings will continue in the 

future (Pérez-Lombard et al. 2008). Energy efficiency in buildings is a crucial objective for 

energy policy at a regional, national and international level. Within the European Union, 

the recast Directive 2010/31/EU aims to reinforce the improvement of the energy 

performance of buildings, which among other measures, recommends the adoption of a 

common general methodology and the use of a numerical indicator for energy performance 

assessment and comparison between buildings (European Commission 2010). This 

indicator shall be estimated based on actual annual energy consumption data, regarding to 

satisfy the different energy end uses of the building (e.g. space heating and cooling, 

domestic hot water, lighting, ventilation and electric appliances). The annual energy 

demand of buildings should then be converted into primary energy or CO2 emissions 

values, using properly conversion factors applied independently to each energy carrier. 

These factors may be based on national or regional annual weighted averages or specific 

values for on-site production. 

In Portugal, there are two main regulatory documents that establish rules and 

procedures for the assessment of energy performance of buildings: the Portuguese Decree- 

Law nº 80/2006 (RCCTE 2006) that is mostly concerned on thermal requirements of 

building envelopes and procedures for energy assessment of residential buildings; and the 

Portuguese Decree- Law nº. 79/2006 (RSECE 2006) establishes the rules for design, 

installation, maintenance and auditing of HVAC and other energy systems in buildings. 

Both documents propose an energy performance indicator based on primary energy use, 

using primary energy factors defined accordingly to the type of energy source or carrier 

(e.g. gas, oil or electricity). 

Some authors have been studying the implementation of the European Directive on 

Energy Performance of Buildings (EPBD) in the different EU member states. Dascalaki et 

al. (2012) revised the EPBD transposition in Greece that was enacted into national law in 

2008, and Ballarini et al. (2009) applied the EPBD method to conduct an energy 

assessment of residential buildings in Turin (Italy), where the heating and cooling energy 
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use is expressed by a numerical indicator based on annual primary energy per square meter 

of conditioned area. Similar studies were undertaken for Ireland (Gallachóir et al. 2007), 

Portugal (Ferreira and Domingos 2011), Spain (González et al. 2011) and Greece 

(Dascalaki 2011). From the previous studies reviewed, energy indicators are exclusively 

based on energy conservation principle, giving especial attention to high energy 

consumption processes or low efficient systems. All the important aspects related with 

energy quality (or exergy) were neglected, lacking information about the energy quality 

degradation through its use in buildings. An important review study conducted by Pérez-

Lombard et al. (2012) analysed and discussed some efficiency fundamental topics, 

avoiding unfounded judgements and misleading statements. The authors addressed the 

problem of measuring energy efficiency both in qualitative and quantitative terms, and 

discussed two key topics: the links between energy efficiency and energy savings, and the 

border between energy efficiency improvement and renewable sources promotion. 

Concerning buildings, their main energy end uses include: space heating (SH) or 

cooling (SC), domestic hot water (DHW), food preparation (FP) or electric appliances 

(EA), which from a thermodynamic point of view have very different exergy requirements. 

The exergy of an energy form or a substance is the measure of its usefulness quality or 

potential to cause change, defined as the maximum work that can be produced by a system, 

flow of matter or energy when it comes to equilibrium with a specific reference or dead 

state (Rosen and Dincer 1997; Dincer and Rosen 2007). Unlike energy, exergy is only 

conserved during ideal processes and destroyed (unrecovered) due to irreversibilities in 

real processes (Moran and Shapiro 2008; Bejan 2006). 

The exergy method has been applied in many fields: industrial sector (Madlool et al 

2012; Al-Ghandoor et al. 2012 and Laurijssen et al. 2013); geothermal district heating 

systems (Ozgener et al. 2007; Oktay and Dincer 2009 and Ozgener and Ozgener 2009); or 

for a global scale to societies (Chen et al. 2011; Koroneos 2011). In buildings, the exergy 

method has been applied with different objectives: Gonçalves et al. (2012) compare energy 

and exergy indicators for each energy end use of a hotel building, using actual data derived 

from an energy audit; Yucer and Hepbasli (2011) performed a thermodynamic analysis of 

an educational building using exergy analysis method and found as exergetic efficiencies 

for boiler and the fan coil, 13.4 % and 37.6 %, respectively; and Yildiz and Güngör (2011) 

applied the energy and exergy method for the assessment of the entire space heating 

process of buildings, using a pre-design analysis tool, developed by Schmidt (2003) and 
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also widely applied at ECBCS-IEA Annex 37 (IEA 2003). Significant contributions for the 

topic exergy analysis of buildings were done by the international research work ECBCS-

IEA Annex 37 (IEA 2003) and Annex 49 (IEA 2010). Within ECBCS-IEA Annex 37, the 

authors define low exergy systems as “heating or cooling systems that allow the use of low 

valued energy as the energy source” with focus on space heating applications. On the other 

hand, ECBCS-IEA Annex 49 defines low exergy systems as “systems that are able to 

provide acceptable thermal comfort with minimum exergy destruction”, aiming to find the 

optimal match between quality (i.e. exergy) levels of supply and demand for any use or 

appliance within buildings. Furthermore, Schmidt (2009) summarises the international co-

operative work ECBCS-IEA Annex 49 and Torio et al. (2009) conducted a critical review 

of the exergy analysis of renewable energy-based climatisation systems for buildings, 

finding among other conclusions, that exergy analysis should always come in parallel with 

the energy analysis, and that a common agreement on the methodologies for the exergy 

analysis of renewable energy-based climatisation systems is mandatory for any proposal 

dealing with the application of exergy indicators in a normative framework. In the research 

studies (Sakulpipatsin et al 2010; Gonçalves et al. 2011 and Balta et al. 2008), the exergy 

topic was applied highlighting its relevance for design and assessment of buildings and 

their HVAC systems. 

Most of the papers devoted to energy assessment of buildings are mainly concerned 

on the reduction of their primary energy demand, which may be done by increasing 

insulation levels or increasing the air tightness of the building envelope. The exergy 

analysis can be used to optimise the performance of energy systems both on a component 

or system levels and some authors suggest that it should be performed always in parallel 

with the energy analysis. However, energy and exergy analyses lead to different or even 

opposite conclusions and it is not always explained how authors would combine the 

different indications derived from the two approaches. Concerning renewable sources, they 

are not necessarily low exergy sources (Torio et al. 2009) and some of them should be 

considered as high exergy sources (e.g. biomass is comparable to fossil fuels), while others 

are low exergy sources, when a physical boundary is adopted (e.g. solar thermal). It is still 

an open question whether it is more important to save primary energy or to save primary 

exergy, which means using renewable and non-renewables sources in the most efficient 

way. All these issues may represent a limit to the widespread of the exergy analysis and to 

the comprehension of its relevance. In this study, an overall methodology is presented 
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combining energy and exergy analyses in renewable energy-based systems. It aims to 

apply a set of energy and exergy based indicators and discuss their use for different energy 

supply strategies, including the use of fossil and renewable sources. As a case study, a 

student housing building located in Coimbra (Portugal) was considered. A simple energy 

audit was conducted regarding to assess the monthly energy consumption profiles and the 

related break-down by energy end uses. The study comprises a whole energy and exergy 

analyses, following an approach from demand to supply side, including inputs from fossil 

and renewable sources. The overall primary-fossil energy consumption, primary energy 

ratio (PER) and exergy efficiency () were used as indicators. Additionally, the parameter 

proposed by Bejan et al. (1996), designated by Exergy Destruction Ratio (EDR) was 

assessed, regarding to find the main contribution of each end use for the building overall 

inefficiencies. A set of parametric analyses were conducted by changing parameters, such 

as: systems efficiency, heat demand or different integration of renewables into both 

thermal and electrical systems. 

2 The energy and exergy method 

2.1 Primary energy factors 

The methodology followed by EPBD proposes the use of energy performance 

indicators based on primary energy use or CO2 emissions. The quantification of suitable 

conversion factors is not an easy task, especially for electricity and thermal networks, since 

it takes into account several parameters, such as, the mix of energy sources within certain 

geographical boundaries (international, national, regional or local). Furthermore, the 

interaction between buildings and energy grids for every country or regional area has 

different challenges to face regarding their energy infrastructure, different climate and 

building traditions (Utlu and Hepbasli 2007). 

EPBD establishes that every country has to define primary energy or carbon 

emission conversion factors for the different energy carriers, establishing requirements on 

energy efficiency or prioritizing certain supply technologies. There are not “right” 

conversion factors in absolute terms. Rather, different conversion factors are possible, 

depending on the scope and the assumptions of the analysis. It leads to the fact that 

‘strategic factors’ weighting factors may be adopted in order to find a compromise 

agreement (Utlu and Hepbasli 2007). They may be used to include considerations not 

directly connected with the conversion of primary sources into energy carriers or to 
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promote or discourage the adoption of certain technologies and energy carriers. As 

example, biomass and biofuels would have a very low conversion factor, making them an 

attractive solution, however, the availability of biomass is not infinite and it needs to be 

used also for other non-energy purposes, such as, food production. Therefore, in regions 

with low local availability, it may be desirable to increase the conversion factor in order to 

reduce the attractiveness of biomass relatively to other solutions (e.g. solar thermal 

systems) (Utlu and Hepbasli 2007). 

In Portugal, the current legislation on energy performance of buildings, RCCTE 

(2006) proposes an energy efficiency indicator expressed in primary energy demand per 

square meter, applying as primary energy factors the following quantities: 0.290 

kilogram(s) of oil equivalent (kgoe) per kWh of electricity, and 0.086 kgoe per kWh of 

solid, liquid or gas fuels. Conventionally, one kgoe is equivalent to the approximate 

amount of energy that can be extracted from one kilogram of crude oil, assigned a net 

caloric value of 41 868 kJ.kg-1 or 11.63 kWh. Using the same units for the conversion 

factors (kWh), these factors are equivalent to 1 kWhp kWh-1 for solid, liquid or gas fuels 

and 3.372 kWhp kWh-1 for electricity, where the subscript “p” indicates a primary energy 

quantity. The value for electricity indicates a global efficiency (thermal to electrical 

conversion at the power plant, plus grid losses) of 30 %, or a requirement of 3.372 kWh of 

primary-fossil energy to supply 1 kWh of electrical energy at the end-user. However, this 

value is not updated and does not correspond to the actual Portuguese electric grid 

performance, because it does not consider the use of the recent installed renewables power 

plants for electricity production, leading to the reduction of primary-fossil resources 

demand, and thus to a different conversion factor. Furthermore, these parameters are only 

concerned with a pure energy quantitative perspective, neglecting important energy quality 

aspects. The proposed methodology includes primary energy and quality energy aspects 

and follows an approach from the demand to supply side, where ‘demand’ corresponds to 

energy or exergy requirements at end uses (e.g. heating (SH), domestic hot water (DHW), 

food preparation (FP), electric appliances (EA), .etc) and ‘supply’ corresponds to the 

energy or exergy supplied derived from renewables or fossil energy resources. 

In Fig. 1, the main energy sources, energy flows, end uses and the boundary 

condition adopted by this study are represented, where the main sub-systems and flows 

applied by the case-study building and additional scenarios proposed are highlighted. 
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Fig.1 Generic scheme of the building energy systems and related energy flows 

2.2 Energy and exergy at end uses 

The total exergy demand of buildings is generically given by the sum of the exergy 

associated to thermal energy demand (e.g. SH, SC, DHW, FP) and electricity required for 

the electric based end-uses (e.g. ventilation, lighting and electric appliances). A simplified 

method to calculate the exergy demand related to thermal end uses was developed by 

Schmidt (2003). In this approach, the exergy thermal demand can be calculated simply by 

multiplying the energy demand with the quality factor of heat (or cold) at given required 

temperature (e.g. for space heating/cooling applications, the required temperature is 

usually considered to be the temperature of the indoor air). The exergy associated to 

electricity demand is equivalent to the energy quantity. Therefore, the total energy and 

exergy requirements at demand side of the building, including thermal and electric end 

uses is generically given by Eq. (1) and Eq. (2), respectively (IEA 2010). 

, ,D d k e j
k j

E Q W           (1) 
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      (2) 

where, ,h kQ is the thermal energy demand related to end use k; 0T and ,rq kT  are the dead state 

temperature and required temperature for the task k, respectively, and eW is the electricity 

demand of the building. ,q kF is usually called the quality factor (IEA 2010), related to 
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thermal end use k. The exergy demand of thermal end uses only takes into account the 

thermal component of the energy demand, no chemical or pressure components are 

included; which is reasonable as long as no (de)humidification is present (IEA 2010). 

Furthermore, the method implies that all the energy is supplied at a given rqT . This is the 

required temperature at which the energy can be supplied or removed from the zone 

(Trq ≥ roomT in case of heating or Trq ≤ roomT  for cooling). 

The assessment of thermal and electric requirements, hQ  and eW , respectively may 

be given by two different approaches: for new buildings, they are estimated using methods 

defined based on legislative frameworks on energy performance of buildings; for existing 

buildings, the thermal and electric demand are usually estimated by an energy audit 

following an approach from supply to demand side, accounting for the inefficiencies 

through the supply energy network. 

2.3 Primary-fossil energy demand 

The sources that may be used to meet the energy requirements of the building are 

divided into fossil (non-renewable) and renewables, as shown in Fig. 1. These sources can 

be directly used by energy building systems or converted into electricity for further 

utilization in electric based applications. In this study, from a purely energy analysis 

perspective, only primary-fossil energy resources were accounted, following the same rule 

of the major regulatory frameworks on energy performance of buildings. Therefore, the 

most efficient buildings are those that make low use of primary fossil energy resources 

(that means using as much as possible renewable sources). In this section, the formulations 

for assessing the primary-fossil energy demand are presented. “Primary-fossil” or simply 

“primary” means the energy contained in fossil fuels, such as, natural gas, coal, fuel oil or 

diesel. The energy assessment of fuels is commonly given between the mass flow rate and 

the Lower Heating Value. Despite some of these energy sources require additional primary 

energy to be processed, those were not accounted in this study. 

Taking into account the assumptions previously described, and knowing the thermal 

and electric energy demand of the building end uses, the total primary energy is given by 

Eq. (3). This formula was based on IEA (2010) and re-arranged for this study. 

 ,
, , ,

,
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where, ,
f

p kF is the primary energy factor associated to the fossil source used to fulfil the 

thermal end use k, e
pF  is the primary energy factor of electricity, ,

f
hs k is the efficiency of 

the energy conversion system powered by fossil sources and related to the end use k, ,h k  

is the fraction of heat delivered derived from renewables, which is given by the ratio of 

heat derived from renewables to the total heat produced by the heating system . When 

electricity is used as energy carrier for the thermal end uses, ,
f e

p k pF F , where the primary 

energy factor for electricity is given by 

1e e
p f

eg

F 



          (4) 

where f
eg is the overall efficiency of the power plants installed, including energy losses in 

the distribution, and e is the ratio of electricity derived from renewables to the total 

electricity produced. 

2.4 Total exergy input 

The assessment of the exergy input includes both fossil and renewable energy 

sources, aiming to find the most efficient use of these sources according to the different 

building exergy requirements. From an exergy viewpoint, high performance buildings are 

those that have a high match between exergy supply and demand, measured by the 

indicator “exergy efficiency” (further defined). 

Considering the building of Fig. 1, the thermal and electric energy building end uses 

can be fulfilled by fossil and renewable sources, therefore the total exergy supplied to the 

building is generically given by Eq. (5). This formula was based IEA (2010) and re-

arranged for this study. 
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  (5) 

where, ,
f

q kF and ,
r

q kF  are quality factors associated to fossil fuels and renewable sources, 

respectively, ,
f

hs k and ,
r
hs k are the efficiency of the heating system associated to thermal use 

k, powered by fossil (or derived) and renewables, respectively. f
eg and r

eg are the 

efficiency of the electric grid, powered by fossil and renewable sources, respectively. ,
f

q egF



 

Research Paper III 
 

UC  2013 III.15 

 

and ,
r

q egF  are quality factors associated to fossil fuels and renewable sources used by the 

electric grid, respectively. When a given thermal end used k is powered by electricity, 

, ,
f

q hs kF = , ,
1 f re e

q eg q egf r
eg eg

F F 
 

 
  

 
, which represents the weighted quality factor for the 

electricity and may be produce from fossil and renewable sources.

For the particular use of direct low-temperature renewable sources (e.g. solar thermal 

system), the quality factor, ,
r

q hsF is calculated by Eq. (6), where, sT and rT are the supply and 

return temperature, respectively. 

0
, 1 lnr s
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s r r
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       (6) 

2.5 Key Performance indicators 

In this sub-section, two main indicators are defined regarding to assess the energy 

and exergy performance of the building. The Primary Energy Ratio (PER) aims to evaluate 

the primary-fossil energy use efficiency and the exergy efficiency measures the exergy 

performance of the buildings (including fossil and renewable inputs). Additionally, 

regarding to quantify the contribution of each end use for the overall inefficiencies of the 

building, the indicator EDR is also further defined. 

2.5.1 Primary Energy Ratio 

Primary Energy Ratio (PER) is defined as the ratio between useful energy (at 

building end uses) and total primary-fossil energy supplied, as given by Eq. (7) (IEA 

2010). 

D

P

EPER
E

          (7) 

where, DE is the overall energy demand building end uses, and PE is the total primary-

fossil energy demand of the building, defined by the Eq. (3). 

2.5.2 Exergy efficiency 

The exergy efficiency is an indicator able to measure the exergy performance of the 

building using whole-building energy and exergy data at supply and demand. It is always 

lower than unit and depends on the occurrence of the irreversibility degree at building 
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energy conversion processes, being particularly suitable for assessing the thermodynamic 

perfection degree of the building (Moran and Shapiro 2008; Dincer and Rosen 2007). In 

this study, the exergy efficiency is given as the ratio between the exergy demand at the 

building end uses and overall exergy requirements of the building, as given by Eq. (8) 

(IEA 2010). 

D
ove

S

Ex
Ex

           (8) 

where, SEx is the total exergy supplied, associated to energy inputs from renewables and 

fossil fuels, defined by Eq. (5), and DEx  is the exergy associated to energy demand at end 

uses, given by Eq (2). 

2.5.3 Exergy Destruction Ratio 

Considering that the maximum exergy efficiency has a theoretical value of 100 %, 

the difference between the actual and theoretical exergy efficiency may give an indication 

about the exergy improvement potential of the building. Nevertheless, this indicator alone 

cannot provide any information about the contribution of each end use for the overall 

inefficiencies which occurred at the building. In this study, the concept of Exergy 

Destruction Ratio (EDR) defined by Bejan et al. (1996) was applied to identify and rank 

building energy end use by thermodynamic inefficiencies. EDR is defined by the ratio 

between the irreversibility associated to each end use, kI and the total exergy inputs SEx , as 

defined by Eq. (9). 

k
k

S

IEDR
Ex

          (9) 

The irreversibility associated to a given building end use, k, is given by Eq.(10), 

where ,s kEx  and ,d kEx are the exergy supplied and exergy demand, respectively, both 

associated to the end use k. 

, ,k s k d kI Ex Ex          (10) 

Furthermore, the sum of EDR of each k end use is related with the overall exergy 

efficiency of the building, ove , as given by the Eq. (11). 

1k ove
k

EDR           (11) 
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3 An illustrative example 
As case-study, a student housing building located at Campus II of the University of 

Coimbra (Portugal), with a total floor conditioned area of about 1807 m2 was examined. 

The building has four floors and from top-view has a rectangular shape, with the main 

facade south-orientated. Each floor is composed by eighteen double rooms (with 

bathroom), one kitchen, a living and study room. At the ground floor the technical rooms, 

laundry/clothes preparation and study rooms are located. 

The building has a maximum capacity of 144 students and operates 24 hours per day, 

eleven months per year. In August, the building is closed and does not operate due to the 

students’ holiday break, so this period was not included into the analysis. The building is 

equipped with a centralized heating system, constituted by a natural gas boiler, two storage 

tanks and a hydraulic distribution/emission system able to satisfy the requirements for 

space heating and domestic hot water requirements of the building. Natural gas is also used 

in the kitchen for food preparation. No HVAC systems are installed for space cooling 

needs. The electricity is used for lighting, appliances and other electric equipments, and it 

is supplied by the national Portuguese electric grid, which is supply with fossil and 

renewable sources. Four main energy end uses were included into the analysis: space 

heating, domestic hot water, food preparation and electrical appliances (lighting, elevators, 

computers, others). 

3.1 Portuguese electric grid efficiency 

The Portuguese electric grid accounts for a great number of energy sources for the 

electricity production, including both fossil and a high share of renewable sources. Using 

information from IEA (2012) for Portugal, the mix of sources used for electricity 

production is shown in Fig. 2. 

In this study, fossil sources include coal, oil and natural gas, while renewables 

sources account for biofuels and waste and earth resources, which includes hydro, wind, 

solar PV and geothermal. Furthermore, to estimate efficiencies by type of source, the ratio 

of energy inputs to electricity produced from each source was accounted. Having these 

assumptions in mind, and using the symbols presented in Section 2, the Portuguese electric 

grid performance, including losses in distribution, presents the following parameters: 

0.40f
eg  ; 0.77r

eg  ; 0.38r  . 
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Fig. 2: Mix by sources 
used by the Portuguese 
electric system in 2009. 

3.2 The reference environment and quality factors 

The exergy analysis requires the knowledge of the monthly energy consumption and 

respective quality factor of the sources used, as well as, information about the minimum 

exergy requirement associated to each building end use. The exergy demand requires the 

knowledge of the dead-state and required temperature, defined for each building thermal-

based end use. In this study, the dead state was defined using the outside monthly mean air 

temperature and required temperature for space heating, domestic hot water and food 

preparation were established as 20 ºC, 60 ºC and 120 ºC, respectively. The value of 20 ºC 

for space heating requirements is usually the minimum temperature required to achieve 

indoor comfort environments, and 60 ºC is the typical value defined for the hot water 

requirements in buildings. These two temperatures are in accordance with the related 

values presented at the studies (IEA 2010; Schmidt 2009). The required temperature 

defined for food preparation (120 ºC) may be discussed due to huge number of food 

preparation methods used (e.g. baking, roasting, frying, grilling, barbecuing, smoking, 

boiling, steaming and braising). The value of 120 ºC as required temperature for food 

preparation was defined based on Utlu and Hepbasli (2007). The monthly quality factor 

values defined for each building end use are presented in Table 1. For the electric powered 

equipment, the quality factor assumes the value of the unit. 

At supply side, natural gas was used by the heating system and directly for food 

preparation. The quality factor associated to renewables for the heating system (e.g. hot 

water derived from solar-thermal) was calculated based on Eq. (6), assuming a supply 

temperature of 60 ºC and a return temperature of 40 ºC (IEA 2010). The quality factor 

associated to fossil sources for the electric system was calculated based on weighted 

Coal 
26% 

Fuel oil 
7% 

Natural Gas  
28% 

Biofuels and 
Waste 

5% 

Water 
(hydropower) 

18% 

Wind 
15% 

Others 
1% 
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quality factors of coal (1.03), natural gas (0.92) and oil (0.99) – the main fossil sources 

used by the Portuguese electrical system (Utlu and Hepbasli 2007). Finally, the quality 

factor associated to electric grid renewables was estimated based on the weighted quality 

factors of two main sources: earth sources (wind, hydro, etc), assumed as having a quality 

factor equal to unit; and biofuels and waste (burned fuels) that the quality factor was 

assumed as the same of the quality factor of wood (1.03) (Utlu and Hepbasli 2007). The 

quality factors at supply side applied in this study are presented in Table 2. 

 

Table 1: Monthly air dead-state temperatures and related quality factors for the end uses: 
space heating (SH), domestic hot water (DHW) and food preparation (FP) 

Month 0T  ,q SHF  ,q DHWF  ,q FPF  

Jan 282.35 0.04 0.15 0.33 
Feb 282.95 0.03 0.15 0.33 

Mar 283.95 0.03 0.15 0.33 
Apr 286.25 0.02 0.14 0.32 
May 288.85 0.01 0.13 0.32 
Jun 291.75 0.00 0.12 0.31 
Jul 294.25 0.00 0.12 0.30 

Aug 294.25 0.00 0.12 0.30 
Sep 292.75 0.00 0.12 0.31 
Oct 289.45 0.01 0.13 0.32 
Nov 284.95 0.03 0.14 0.33 
Dec 282.45 0.04 0.15 0.33 

 

Table 2: Main quality factors of the sources evaluated at supply side 

Source Symbol Value Reference  
Natural gas ,

f
q kF  0.92 (IEA 2010) 

Solar thermal ,
r

q kF  0.15 (IEA 2010) 
Fossil fuels (electric grid) ,

f
q egF  0.98 (weighted) (Utlu and Hepbasli 2007) 

Renewables (electric grid) ,
r

q egF  0.97 (weighted) (Utlu and Hepbasli 2007) 

4 Results and discussion 
The results presented in this section are based on an actual whole building energy 

data derived from natural gas and electricity bills reported to the year 2009. Additional 

information based on occupancy patterns, efficiency of the systems installed and other 

information provided by the technical staff were used for estimating the monthly energy 

breakdown by end use. The results are presented in Fig. 3, showing the energy demand for 

the different end uses of the building. Electric appliances, food preparation and domestic 

hot water have approximately a constant energy demand over the year, while, space 
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heating demands show the expected seasonality. In this section, the energy and exergy 

performance of the building are presented for each month, using the current energy supply 

system. Additionally, EDR was applied to evaluate the contribution of each end use for the 

overall building inefficiencies. Keeping the same building energy requirements, a set of 

different alternative supply scenarios were proposed and their annual primary energy and 

exergy performance were assessed. At the end, the primary energy demand was compared 

with the reference primary energy value, established for this category of buildings in 

Portugal. 
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Fig. 3: Energy supply by energy 
source or carrier, considering the 
current energy supply scenario of 
the student housing building 

4.1 Primary energy requirements 

In the current energy supply scenario of the building, the heating system is 

constituted by a natural gas boiler, with a thermal efficiency of about 90 %, and do not 

include inputs from renewable. The electricity to fulfil the electric requirements is 

provided by Portuguese electric grid whose the related performance is presented in Section 

3.2. The monthly primary energy demand and the ratio between heat demand and 

electricity (H2P) are presented in Fig. 4, showing how these two important parameters  
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Fig. 4: Primary energy and 
heat to power ratio of the 
student housing building for 
the current energy supply 
scenario. 
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change over the year. Due to the increase of space heating requirements in the winter, high 

primary energy values (and H2P) are obtained in the winter season. With an exclusively 

primary energy approach, the results show that high potential for reducing the primary 

energy demand of the building occurs in the cold season (winter), indicating that more 

efficient heating systems should be installed or renewables can be supplied for thermal 

production. 

4.2 Energy and exergy performance 

The primary energy demand provides information about absolute energy quantities; 

however, it does not provide information about the efficiency of conversion itself. Using as 

energy efficiencies for the boiler and electric grid, 90 % and 40 %, respectively, it is 

possible to conclude that thermal based end uses are individually more efficient than 

electric ones. However, since the exergy levels of the building end uses are too different 

only an exclusive energy approach could lead to not thermodynamic true results. 

In Fig. 5, the indicators PER (based on primary energy use) and exergy efficiency are 

presented for the current building energy supply scenario. The results show significant 

differences between primary energy and exergy efficiency perspectives: high PER values 

are obtained in the winter season, while the higher exergy efficiency is obtained in the 

summer. Despite the fact that the high energy efficiency (or PER) of the building occurs in 

the winter season, the low-exergy requirements associated to space heating tasks, together 

with the use of high exergy sources (e.g. natural gas) as supply sources, leads to low-

exergy efficiencies in this period. On the other hand, when the space heating requirements 

are reduced or the ratio H2P decreases, the overall exergy of the building increases, and its 

maximum value occurs when the thermal needs are lower. 

Fig. 5: Monthly evolution of PER 
and exergy efficiency of the student 
housing building for the current 
energy supply scenario. 
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From an exergy point of view, the results show that a higher potential for improving 

the exergy performance of the building occurs in the winter season, which could be 

accomplished by replacing high exergy sources (e.g. natural gas) by low-quality ones, such 

as, hot water from solar thermal or waste source nearby. Using low-temperature sources 

from renewables, the exergy performance of the building increases, while reduce the 

related primary energy demand is reduced. 

4.3 Building inefficiency 

The previous results showed that the annual primary energy of the building is 

353 kWh m-2 and its annual exergy efficiency is about 27 %. For benchmark purposes, the 

legislation on energy performance of buildings recommends that the primary energy 

demand of the building should be compared with a given reference value, defined 

according to similar well-design buildings, taking into account the climate and suitable 

materials and construction techniques. 

Concerning exergy, the maximum (ideal) building performance is achieved when 

exergy efficiency is equal to the unit (100 %). Thus, since the students’ housing has annual 

exergy efficiency of about 27 %, the related building potential improvement is about 73 %, 

which represents a quantification of the building inefficiencies. Therefore, after 

quantifying the related thermodynamic inefficiencies, another question may arise: “Which 

is the contribution of each end use for the overall building inefficiencies?” This important 

question could be answered by the indicator EDR that was defined by Eq. (11). This 

important indicator was assessed for the four main end uses of the building, assuming the 

current building supply scenario. 
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Fig. 6: Exergy efficiency and EDR 
related to the end uses of the student 
housing building 

The results presented in Fig. 6 show that for winter season the main contributors of 

building inefficiencies are the space heating, followed by hot water and electric appliances. 



 

Research Paper III 
 

UC  2013 III.23 

 

On the other hand, in the summer season, the most inefficient end uses are associated to 

domestic hot water and electricity production. Space heating and hot water are clearly the 

most inefficient end uses of the building; nevertheless their main associated energy 

conversion system (natural gas boiler) has high thermal energy efficiency. EDR was found 

as a significant indicator that is able to identify and quantify the building inefficiencies 

contributors, pointing at the right directions for its performance improvement. 

4.4 Primary energy vs. exergy efficiency 

In the previous section, the monthly primary energy and exergy efficiency of the 

building were shown, and the contribution of each end use for the building inefficiencies 

was identified. In this section, a set of different energy supply scenarios are evaluated 

using primary energy and exergy efficiency indicators. The following parameters change 

for each scenario: share of renewables for electrical and heating system, heating system 

efficiency/technology and space heating demand. Fifteen scenarios, divided into four main 

groups (A-D), each one associated to a different parameter were proposed and evaluated. 

The proposed scenarios and related parameters are presented in Table 3. 
 

Table 3: Proposed scenarios for the energy and exergy performance assessment 

Scenario Parameter Value Description 
A-I 

e  

0.00 
- Integration of renewables in the electric system 
from 0 to 0.6. 

A-II 0.20 
A-III 0.40 
A-IV 0.60 

B-I 
f

hs  

0.80 
- Fuelled based heating system. 

B-II 0.92 
B-III 0.98 - Electric heating. 
B-IV 2.50 - Heating based on heat pump. 

C-I 
h  

0.10 
- Integration of renewables in the heating system. C-II 0.20 

C-III 0.50 
D-I 

hQ  

-20 % 
- Space heating demand decrease. 

D-II -40 % 
D-III +50 % - Space heating demand increase. 
D-IV +100 % 

The results related to each scenario, expressed as primary energy and exergy 

efficiency are presented in Fig. 7. The scenarios A-I to A-IV, parametric analyses with 

different integration of renewables into the electric system were examined. The results 

show that the integration of renewables in the electric grid leads to a reduction of primary 

energy demand of the building and an increase of exergy efficiency. These results occur 
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because the energy efficiency related to renewables is higher than the fossil sub-system, 

77 % and 40 %, respectively, as reported in Section 3.1. 

The effects of applying different heating efficiencies or technologies are evaluated in 

Scenarios B-I to B-IV. As shown in Fig. 7, from B-I to B-II, the increase of the energy 

efficiency of fuel based heating systems conducts to a reduction of primary energy and an 

increase of exergy efficiency. When the fuel based heating system (B-II) is replaced by an 

electric one, even with approximately the same efficiency (B-III), the performance of the 

electric grid is included, leading to an increase of primary energy and a huge decrease of 

exergy efficiency. Replacing it by a heat pump COP 2.5 (Scenario B-IV), the exergy 

efficiency increases and the primary energy demand decreases. Among all, this scenario 

has the lower primary energy demand and the second best exergy efficiency performance. 
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Fig. 7: Primary energy and 
exergy performance for the 
scenarios proposed in Table 3. 

The scenarios C-I to C-III regard to evaluate the integration effect of renewables 

(from low-temperature sources: thermal solar system) into the heating system. According 

to the physical boundary defined in Fig.1, inputs from solar-thermal systems are assumed 

as thermal-based products, and in this study were evaluated as supply temperature, 

Ts = 60 ºC and return temperature, Tr = 40 ºC. Therefore, the replacement of high exergy 

inputs, such as natural gas, by low-exergy renewable ones (e.g. solar thermal sources), 

conducts to a decrease of the primary energy demand and an increase of exergy efficiency 

of the building. 

Finally, scenarios D-I to D-IV aim to assess the sensitivity of the primary energy and 

exergy efficiency indicators by changing the space heating demand of the building. The 

results indicate that decreasing the space heating requirements of the building, the primary 

energy reduces, while the exergy efficiency improves. The contrary is verified when the 

space heating requirements of the building increase. Moreover, this parameter is highly 
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influenced by the insulation of the building, so improvements on the building insulation 

lead to a decrease of the building space heating demand, contributing positively for the 

reduction of primary energy demand and increase on the exergy efficiency. These results 

also prove the results found out by EDR that attributes the most inefficient end use of the 

building to space heating requirements. So, any reduction of the space heating demand, 

leads to improvements on overall exergy efficiency, as shown by D-I to D-IV results. 

For a general view of all options, the relationship between exergy efficiency and 

primary energy is shown in Fig. 8. The results show a decreasing tendency of the exergy 

efficiency, while the primary energy of the building increases. However, this tendency is 

not a rule, so it can be changed for other proposed scenarios not included in this study. It 

may be particularly useful to compare options with similar primary energy, but that could 

present different exergy performances. Furthermore, the results show that even for low-

primary energy demand scenarios, their related exergy efficiency is far from the best ideal 

exergy scenario  1ove  . 

Fig. 8: Relationship between 
primary energy and exergy 
efficiency for the scenarios 
proposed. 
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4.5 Energy-exergy benchmarks 

Concerning the building benchmark, the primary energy demand is commonly 

compared with a given ‘reference’ value, calculated based on well-designed high efficient 

buildings. For student housing buildings, the Portuguese law, RSECE (2006) defines the 

reference value of 220 kWh m-2 for the annual primary energy consumption. The previous 

results indicate that the primary energy demand is higher than the reference value for most 

of energy supply scenarios analysed. Exception is made for B-IV and C-III that have 

relatively close values, indicating them as high efficient supply strategies. From an 

exclusive energy approach, high performance buildings are those that have an actual 
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primary energy demand closer or lower than the reference. However, even for the most 

efficient energy scenario (B-IV, Ep=240 kWh m-2), the related exergy efficiency is about 

33 %, clearly lower than the ideal scenario. The use of a single primary energy reference 

value for assessing the energy performance of buildings revealed to be insufficient, so the 

exergy efficiency may be an useful complementary indicator for buildings benchmark. 

The energy and exergy performance results are ranked by primary energy, as 

presented in Table 4. Both columns have different tones, depending how far each option is 

from their respective value. Relatively to the reference value, the low-primary energy 

demand scenario has a deviation of 9 %, while the related exergy efficiency has a deviation 

about 67 %, showing a good solution from an energy point of view, but a weaker solution 

from an exergy perspective. 

 

Table 4: Proposed scenarios ranked 
by primary energy use and related 
exergy efficiency. 

As proposal for further building benchmark policy, it would be useful the definition 

of two characters (or numbers): one representing the primary energy performance and 

other indicating its related exergy efficiency. By this procedure, buildings may by 

characterized by quantity and quality aspects, giving information about their primary 

energy use, together with exergy match between exergy supply and demand. 

5 Conclusions 

In this study, a methodology for energy-exergy performance assessment of buildings 

was proposed. As a case-study, actual energy data derived from a simple energy audit of a 

student housing building was analysed from both energy and exergy perspectives. The 

monthly primary energy performance and exergy efficiency were evaluated, showing 
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significant differences from both approaches. The annual primary energy is 353 kWh m-2, 

while exergy efficiency is about 27 %. Furthermore, the indicator, EDR shows that space 

heating and domestic hot water are the most inefficient end uses of the building in the 

winter season, while in the summer season, electric appliances and hot water contribute 

with the same magnitude for the building inefficiencies. Additionally, comparing the 

supply options proposed, significant differences were found between primary energy and 

exergy perspectives. The most efficient primary energy option has a primary energy 

demand of 240 kWh m-2, which is a close value to the reference efficient building value 

(220 kWh m-2), but its related exergy efficiency is only of 33 %, showing a great exergy 

potential for improvement. Therefore, it shows that a single primary energy analysis is 

insufficient for a complete characterization of the energy performance of buildings and an 

additional parameter, such as exergy, should be included. 

As a final conclusion, authors expect that the methodology reported here would be 

useful for demonstrating the exergy approach as one of the tools to investigate the most 

rational use of energy sources within the built environment, and may be a good basis for 

future implementation of the exergy concept in regulatory frameworks for performance. 
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Abstract 

The Directive 2004/8/EC on the promotion of cogeneration proposes a comparative 

indicator based on primary energy savings, neglecting some important thermodynamic 

aspects, such as exergy. This study aims to compare and discuss the usefulness of a set of 

complementary indicators for performance assessments of cogeneration systems, 

concerning thermodynamic principles based on first and second law (the exergy approach). 

As case study, a 6 kW electric output micro-combined heat and power unit was 

experimentally tested and a model of the unit was developed in TRNSYS. Considering as 

reference a set of different heat and electricity scenarios, including the actual electric mixes 

of Portugal and Italy, the indicators Primary Energy Savings (PES) and Primary and Total 

Irreversibilities Savings (PIS and TIS), as well as, energy and exergy renewability ratios 

were assessed and discussed. The results show that the use of MCHP has higher 

advantages for the Italian electric grid, than an equivalent scenario considering the 

Portuguese electric network as reference. As result, for a particular scenario analysed, PES 

and PIS have 3 % and 6 % for Portugal, and 10 % and 18 % for Italy, respectively. 

Furthermore, for one particular scenario evaluated, the indicators energetic and exergetic 

renewability ratios have 23 % and 14 %, respectively for the Portuguese electric grid, and 

19 % and 10 % for the Italian electric system. 

Keywords: Micro-Combined Heat and Power; Exergy analysis; Primary Energy Savings, 

Relative Irreversibilities Savings. 
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Nomenclature 

EnRR Energy Renewability ratio [-] 

pE  Primary-fossil energy rate [kW] 

rE  Primary-renewable energy rate [kW] 

ExRR Exergy Renewability ratio [-] 

fF  Exergy to LHV (Lower Heating Value) of the fuel (fossil) supplied [-] 

hF  Exergy to energy ratio of the heat delivered [-] 

rF  Exergy to LHV (Lower Heating Value) of the fuel (renewable) supplied [-] 

HP Heat-to-Power (electricity) ratio [-] 

pI  Primary-fossil irreversibility rate [kW] 

tI  Total irreversibility rate [kW] 

LHV Lower Heating Value [kJ/kg] 

PER Primary-fossil Energy Ratio [-] 

PES Primary-fossil Energy Savings [-] 
*
EDPES  Primary Energy Savings (EU Directive on cogeneration (2004)) [-] 

PExR Primary-fossil Exergy Ratio [-] 

PIS Primary-fossil Irreversibilities Savings [-] 

PLR Part-Load Ratio [-] 

hQ  Thermal energy rate delivery [kW] 

0T  Reference (dead state) temperature [K] 

rT  Return temperature [K] 

sT  Supply temperature [K] 

TIS Total Irreversibilities Savings [-] 

eW  Electricity rate delivered [kW] 

Greek symbols 

eg  Fraction of renewables for the electric grid [-] 

hs  Fraction of renewables for the heating system [-] 

,h chp  Thermal efficiency of the cogeneration unit [-] 

,e chp  Electric efficiency of the cogeneration unit [-] 

hs  Thermal efficiency of the reference heating system [-] 

eg  Electric efficiency of the reference electric grid [-] 

Subscripts 

chp Combined heat and power system 

ref Reference (separate heating system + electric grid) 

eg Electric grid 

f Fossil energy sources 
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hs Heating system 

r Renewable energy sources 

Acronyms 

CHP Combined Heat and Power 

EF Sub-system of the electric grid powered by fossil sources 

ER Sub-system of the electric grid powered by renewable sources 

HF Sub-system of the heating system powered by fossil sources 

HR Sub-system of the heating system powered by renewable sources 

MCHP Micro-Combined Heat and Power 

FS Fossil sources 

FS Renewable sources 

1 Introduction 

Micro-combined heat and power (MCHP) systems have been investigated as an 

emerging technology with high potential for the residential and services sectors. If 

designed and operated correctly, the combined production of electrical and heat from a 

single fuel source could reduce the primary energy consumption and the associated 

greenhouse gas emissions, with respect to a traditional system based on separate 

production of electric and thermal energies. Its decentralised nature has also the potential 

to reduce peak demands on central power generation plants and reduce transmission and 

distribution losses on electrical grid. With respect to maximum electric power output, 

different definitions of micro or small size cogeneration are available in technical and 

scientific literature: the European Directive 2004/8/EC [1] on the promotion of 

cogeneration sets this value as 50 kWel; De Paepe et al. [2] studied residential applications 

of MCHP systems (<5 kWel) for detached single family households; and Dentice et al. [3] 

refer to residential and light commercial applications to characterize MCHP and Domestic 

CHP system, considering as maximum power output 15 kWel. The value of 15 kWel was 

adopted in this work as the reference size for the definition of micro-cogeneration, 

although there is no agreed size limit for the definition of micro-cogeneration. 

Analyses of performance data from several MCHP units, coupled with an extensive 

model development and testing work were conducted within the International Energy 

Agency (IEA) Annex 42 [4-7]. Most of the developed models follow a pragmatic “grey 

box” approach, with a structure that partially reflects the physical process and partially 

relates to empirical relations. This approach was also applied by Rosato et al. [8] that 
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calibrated and validated the performance of a 6 kWel MCHP unit. Kelly et al. [9] 

developed an approach to model a domestic microcogenerator systems in building 

simulation tools and Angrisani et al. [10] studied the Energy, Economic and Environmental 

implications (3-E analysis) of using these complex small scale trigeneration energy 

conversion systems, starting with the results of an intensive theoretical and experimental 

research activity. Based on experimental tests, Bush [11] calibrated and validated a model 

of a 4 kW MCHP system in TRNSYS [12]. Dorer et al. [13] identified parameters that 

influence the performance of MCHP system, using several building types and MCHP 

systems in terms of energy and emissions, comparing them with traditional condensing gas 

boiler and heat pump technologies. Possidente et al. [14] performed experimental tests on 

three different MCHP prototypes for a wide range of operating conditions, and Roselli et 

al. [15] reported the energy, economic and environmental implications of the use of small 

scale cogeneration systems, by an experimental research activity performed by the authors 

and other researchers. 

The previously reviewed studies are exclusively based on First Law of 

Thermodynamics that states that all forms of energy are conserved in every device and 

cannot be destroyed or consumed [16]. From an engineering perspective, besides to 

quantitative aspects, energy should also be classified in terms of quality energy aspects, 

using also the Second Law of Thermodynamics. An important thermodynamic concept that 

deals with both First and Second Law of Thermodynamics is Exergy (or Availability), 

which defines the maximum useful work that can be extracted from an energy state or 

flow, relatively to a given reference state. This concept may be applied to compare energy 

states or flows according to their quantity and quality aspects [16-18]. The exergy method 

has been applied to some engineering applications, e.g., geothermal district heating 

systems [19-21], solar energy systems [22-24], desiccant cooling systems [25-27] or 

buildings [28-30]. Concerning exergy analysis of Combined Heat and Power (CHP) 

systems, Ertesvåg [31] conducted an exergy comparison of indices for combined heat and 

power systems, Abusoglu et al. [32] performed a thermodynamic analysis based on the 

first and second laws for an existing diesel engine cogeneration system and Gonçalves et 

al. [33] made a comparative study between a MCHP and a reference system, using current 

demand data for a student housing building, located in Coimbra (Portugal). Kanoglu et al. 

[33] assessed various building cogeneration plants through energy and exergy efficiencies, 

and in Ref. [35] the authors conducted an extensive overview of various energy-exergy 
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based efficiencies used in power cycles, where the results of some illustrative examples are 

presented using combined energy and exergy diagrams. Also, Rosen et al. [36] conducted 

an efficiency analysis, accounting for both energy and exergy concerns to design a 

cogeneration-based district energy system. The results showed that complex array of 

energy forms involving cogeneration energy systems are difficult to compare without 

applying the exergy analysis method. Other studies based on exergy analysis of 

cogeneration systems are presented in the studies [37-40]. 

The European Directive 2004/8/CE [1] is a legal instrument that aims to increase the 

energy efficiency and improve security of supply, by creating a framework to promote and 

develop high efficient cogeneration systems. The document establishes rules and 

procedures to assess and compare CHP systems with separated heat and electricity supply 

scenarios. The main parameter applied by the directive is the Primary Energy Savings 

(PES), assessing the relative primary energy savings of a cogeneration plant relatively to a 

given reference system. The current Directive has been studied by some authors that have 

found some of the most relevant limitations. Frangopoulos [41] explained the main 

restrictions on the calculation of the power to heat ratio and proposed a new method for the 

calculation of the power to heat ratio and the primary energy savings of cogeneration 

system. Furthermore, Moreira et al. [42] discussed how the legal framework of the 

Portuguese energy market might be modified to accommodate the cogeneration Directive 

2004/8/EC [1]. The authors found that changes on the framework of small and micro-CHP 

systems could induce strong improvements on electric grid connection limitations, 

inducing a strong growth in the number of installed systems. 

From the previous studies, the following topics were reviewed: experimental 

methods for performance assessment of CHP/MCHP units; energy and exergy indicators 

for evaluation of cogeneration devices; and main methods and issues found in the current 

Directive 2004/8/EC [1]. Based on the main limitations found in these studies, this study 

aims to propose a set of complementary indicators to conventional one (PES), regarding to 

compare cogeneration and separate heat and electricity production systems (reference), 

applying principles based on both first and second law fundamentals. They are formulated 

based on two perspectives: one concerning levels of primary-fossil energy demand, and 

another based on thermodynamic concept of “irreversibility”, which accounts for 

differences in exergy levels between demand and supply. This approach involves also a 

separate treatment for fossil and renewable energy sources for the reference system. As 



 

Energy Conversion and Management 73 (2013) 195–206 
 

IV.10 UC  2013 

 

case study, a micro-combined heat and power unit (6 kW) was experimentally tested at 

three different operating temperature levels, and a TRNSYS model of the unit was 

developed for the comparative studies performed. A set of parametric analyses were 

conducted, including different supply scenarios for heat and electricity separate production, 

including the actual electric grid mixes of Portugal and Italy. The indicators proposed were 

compared and discussed, highlighting their main advantages and limitations for each 

particular scenario examined. 

2 Analytical framework 

2.1 The European Directive on cogeneration 

The European Directive 2004/8/CE [1] uses the indicator Primary Energy Savings 

 *
EDPES  to compare the relative primary (fossil) energy demand difference between a 

cogeneration and a reference system, based on separate heat and electricity production. The 

related formulation is given by Eq. (1) [1]. 

*

, ,

11ED
h chp e chp

hs eg

PES
 
 

 


       (1) 

where, ,h chp and ,e chp are respectively the thermal and electric efficiency of the CHP unit, 

evaluated for the actual operating performance (or manufacture data). hs and eg are the 

efficiencies of the heating and electric system, respectively, evaluated using a reference 

framework or actual data (reference scenarios). Directive states that each cogeneration unit 

should be compared with the best available and economically justified technology for 

reference heating and electric systems rather than average power installed. The document 

follows the same fuel principle (both reference and CHP systems using same type or 

category of fuels are compared) and applies harmonized efficiency reference values for 

separate production of electricity and heat, as defined by the Commission Decision of 21 

December 2006 [43]. This equation is valid for cogeneration units, defined in Annex I of 

the directive as type b) d) e) f) g) and h), with efficiency higher than 75 %; or type a) and 

c) 80 %. For lower efficiencies, an expression referred to assess the amount of the 

electricity that can be considered as cogenerated is applied. 

Despite thermodynamically different, Eq. (1) applies to electricity and heat delivered 

the same weight or energy “quality value”. A well-known technique to distinguish energy 
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quantities, according to their quality value, is the exergy analysis, which is the basis 

concept applied in the current paper for definition of a set of new alternative indicators for 

comparative assessment of combined and separate systems. 

In Figure 1, a schematic layout of CHP and reference systems with all energy flows 

involved in this study is presented. The reference system may be powered by fossil and 

renewable sources. The reference electric system includes electricity produced in 

conventional power plants (sub-system EF), using primary-fossil sources (FS), and/or 

electricity produced at the sub-system (ER), using renewable energy sources (RS). In the 

same way, heat could be derived from RS (e.g. solar thermal, district heating, wood, 

biofuels or biomass) converted at the sub-system HR; or produced at sub-system HF, using 

FS (e.g. natural gas boiler, diesel or fuel oil). 
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Figure 1: Schematic layout of all energy flows and temperatures involved in the energy and 
exergy analysis. 

 

2.2 Energy performance assessments 

2.2.1 CHP Unit 

The energy performance indicator of a generic CHP plant is usually expressed by its 

energy efficiency. In this study, it is expressed by the parameter Primary Energy Ratio,
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chpPER , which is defined as the ratio of the useful (electric and thermal) energy rate 

delivered to the primary-fossil energy rate input, as expressed by Eq. (2). 

, ,chp e chp h chpPER            (2) 

where, ,e chp and ,h chp are the electric and thermal efficiency of the CHP plant, which are 

given by Eq. (3) and (4), respectively. 

,
,

,

e chp
e chp

p chp

W
E

 

           (3) 

,
,

,

h chp
h chp

p chp

Q
E

 

          (4) 

where, ,e chpW is the delivered rate of electrical energy, ,h chpQ is the heat rate delivered and 

,p chpE is the energy rate related to primary fossil sources. In this study, thermal energy 

delivery is assumed as single phase (liquid water), incompressible substance and with 

constant specific heat. Furthermore, in this study, the CHP system only considers primary-

fossil energy inputs. 

2.2.2 Reference system 

The reference system is constituted by two main sub-systems: electric grid (ER + EF) 

and heating system (HR + HF) that could be fuelled by fossil sources, FS and/or renewable 

sources, RS. The indicator for assessing the primary energy performance of the reference 

system is described as Primary-fossil Energy Ratio, refPER , defined by the ratio between 

the sum of electricity and heat delivered to the sum of primary-fossil energy inputs to the 

heating system and electric grid, as expressed by the Eq. (5). 

, ,

, ,

h hs e eg
ref

p hs p eg

Q W
PER

E E





 
          (5) 

where, ,h hsQ and ,e egW is the thermal energy and electricity delivered, respectively; and 

,p hsE and ,p egE are the primary energy supplied for heating system and electric grid, 

respectively. Rearranging the equation, refPER can also be written by the Eq. (6), where, 

eg and hs are the fractions of renewables for electricity and heat production, respectively. 

They are defined as the ratio of electricity (or heat) produced from renewables to total 
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electricity (or heat) derived from electric grid (or heating system). ,eg f and ,hs f are the 

energy efficiency of the EF and HF sub-systems, respectively. The primary energy 

performances between reference and CHP systems can be directly compared (

;chp refPER PER ), finding which of the system provides a better utilization of primary 

energy resources. 

,

,

,

, , ,

1

1 1

h hs

e eg
ref

eg h hshs

eg f hs f e eg

Q
W

PER
Q
W

 
 

 
   
 

     
        

    







      (6) 

2.3 Performance assessments based on exergy analysis 

2.3.1 CHP Unit 

Following the previous approach for primary energy, the exergy based efficiency of a 

CHP plant is defined by the ratio of exergy delivered (electricity and heat) to total exergy 

supplied. Thus, for devices exclusively powered by FS, the Primary-fossil Exergy Ratio 

(PExR) of a given CHP unit is given by, 

, , ,

, ,

e chp h chp h chp
chp

f chp p chp

W F Q
PExR

F E





        (7) 

where, ,e chpW is the electricity rate delivered, ,h chpQ is the heat rate delivered and ,p chpE is the 

primary-fossil energy rate. ,f chpF is the exergy to LHV ratio of the fuel for the CHP and 

,h chpF is the exergy to energy ratio of the delivered thermal energy, which could be defined 

by Eq. (8),  

 
,0

,
,, ,

1 ln s chp
h chp

r chps chp r chp

TTF
TT T
 

      
      (8) 

where, ,s chpT and ,r chpT are the supply and return temperatures of CHP, respectively, and 0T is 

the dead-state temperature. 

2.3.2 Reference System 

Similarly to Section 2.2.2, the primary-exergy performance of the reference system, 

refPExR , is generically given by Eq. (9). 
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, , , ,

e eg h hs h hs
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f eg p eg f hs p hs

W F Q
PExR

F E F E






        (9) 

Rearranging the equation for highlighting some important quantities, refPExR  can 

also be given by Eq. (10). 
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
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

    (10) 

where, ,f egF and ,f hsF are the exergy to LHV ratio of the fossil fuel for the electric grid and 

heating system, respectively. ,h hsF is also given by an equation similar to Eq. (8), although 

the symbols ,s chpT and ,r chpT are replaced by the supply and return temperatures delivered by 

the heating system. refPExR  could be compared with chpPExR , aiming to evaluate the 

exergy performance of both system, when only fossil sources are used by the reference 

system. 

2.3.3 Parameters for renewable performance assessments 

In the literature, there are some thermodynamic parameters used for performance 

assessment of energy systems, which include inputs from both fossil and renewable 

sources. In this section, the parameters energetic renewability ratio and exergetic 

renewability ratio proposed by Coskun et al. [44] are introduced. The energetic 

renewability ratio  EnRR  is defined as the ratio of useful renewable energy obtained from 

a system to the total energy input, including both renewable and fossil sources. On the 

other hand, the exergetic renewability ratio  ExRR is defined as the ratio of useful 

renewable exergy delivered by a system to the total exergy input, considering also both 

renewable and fossil sources. Using the symbols of Figure 1, EnRR and ExRR are 

formulated by Eq. (11) and Eq. (12), respectively. 

, ,

, , , ,

eg e eg hs h hs
ref

p eg r eg p hs r hs

W Q
EnRR

E E E E
 


  


          (11) 

, , ,

, , , , , , , ,

eg e eg hs h r h hs
ref

f eg p eg r eg r eg f hs p hs r hs r hs

W F Q
ExRR

F E F E F E F E
 


  


        (12) 
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The symbol ,h rF  is the exergy to energy ratio of the heat delivered by the sub-system HR, 

and its value can also be calculated using Eq. 8, applying the supply and return 

temperatures of the heat delivered by the sub-system HR. ,p egE  and ,r egE  are the primary-

fossil and renewable energy supplied to the sub-systems EF and ER, respectively. ,p hsE  

and ,r hsE  are the primary-fossil and renewable energy supplied to the sub-systems HF and 

HR, respectively. If the heating is fuelled by renewable thermal sources (e.g. hot water 

from solar-thermal or wastes), ,r hsF  is also similar to Eq. (8), where ,s chpT and ,r chpT are 

replaced by the supply and return temperatures to the sub-system HR. 

2.4 Comparative assessments between CHP and reference systems 

The indicators defined in Section 2.3 aim to assess individually the energy and 

exergy performances of CHP or reference systems, identifying which of them has highest 

energy or exergy performance. However, they do not quantify the differences between 

cogeneration and separate heat and electricity production, which may be evaluated by the 

indicator primary energy savings (PES) or paying respect to the second law, comparing the 

irreversibilities differences between cogeneration and separate production, using the 

indicators PIS or TIS. The formulations of these indicators are defined in the following 

sub-sections. 

2.4.1 Primary-fossil Energy Savings 

The formulation of Primary Energy Savings, applied by the European Directive on 

cogeneration [1] was presented in Section 2.1. In the directive, the cogeneration is 

compared with a reference system, where the efficiencies are based on harmonized values 

using the same type of fuel than CHP. In the current study, the same concept is also 

applied, although the cogeneration system is assumed as exclusively fuelled by primary-

fossil energy sources and the reference system may be fuelled by both fossil and renewable 

sources. Similarly to Eq. 1, this new formulation for PES also assumes the following 

conditions: 

 

, ,

, ,

h chp h hs

e chp e eg

Q Q

W W

 




 

           (13) 
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where, ,h chpQ  and ,h refQ  are the heat rate delivered by CHP and reference system, 

respectively; and ,e chpW  and ,e egW  are the electricity rate output of CHP and reference 

system, respectively. PES is then given by Eq. (14). 

, ,
, ,

11
1 1eg hs

e chp h chp
eg f hs f

PES
  

 

 
    

      
   

     (14) 

2.4.2 Primary-fossil and Total Irreversibilities Savings 

Based on the previous analysis for PES, the following indicators measure the 

“irreversibilities savings” between CHP and reference were proposed. The concept of 

irreversibility is extensively used in exergy analysis and it is related with fraction of exergy 

input that is destroyed (not recovered) in energy conversion process. The indicators 

Primary-fossil Irreversibilities Savings (PIS) and Total Irreversibilities Savings (TIS) were 

proposed. PIS assumes only primary-fossil energy inputs in the reference system; while 

TIS includes both fossil and renewable energy inputs. These indicators are similar to RAI 

proposed by Ertesvåg [31], however these indicators differ by the term used to make the 

parameter dimensionless: RAI uses the exergy input, while PIS and TIS use irreversibility 

rate associated to the reference system. The authors decided here to use the irreversibility 

of the reference system, following the same approach of PES, which dimensionless by the 

parameter that is being compared. Furthermore, through this approach, the maximum 

theoretical value of the indicator is equal to 1, which occurs when the cogeneration system 

has no irreversibilities associated. PIS is then defined by Eq. (15) or Eq. (18). 

,

1 chp

p ref

I
PIS

I
 


          (15) 

where, chpI and ,p refI are the primary-fossil irreversibilities rates that occur at the CHP and 

reference system, respectively. chpI and ,p refI  are given by Eq. (16) and (17), respectively. 

Detailing Eqs. (15) to (17), PIS is given by Eq. (18). 

, , , , ,chp f chp p chp e chp h chp h chpI F E W F Q            (16) 

, , , , , , , ,p ref f eg p eg f hs p hs e eg h hs h hsI F E F E W F Q             (17) 
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   (18) 

In the Eq. (18), HP is the ratio of heat to electricity delivered, which is assumed as 

the same for the CHP or reference system: HP =  , ,h chp e chpQ W  =  , ,h hs e egQ W  . This 

equation only includes as inputs primary-fossil energy sources. For particular situations, in 

which two or more reference systems are under comparison (including the same EF and 

HF, but different HR and ER sub-systems), PES or PIS may not be sufficient to compare 

cogeneration and separate reference systems. Therefore, the indicator TIS is proposed for 

assessing the total irreversibilities savings, considering inputs from both fossil and 

renewable sources. TIS is defined by Eq. (19), where ,t refI  is defined by Eq. (20). 

Developing Eqs. (19) and (20) the final formulation for TIS is expressed by Eq. (21). 

,

,

1 p chp
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I
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I
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
           (19) 

, , , , , , , , , , , ,t ref f eg p eg f hs p hs r eg r eg r hs r hs e eg h hs h hsI F E F E F E F E W F Q              (20) 
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           (21) 

3 Experimental and modelling procedures 
In this study, MCHP unit was experimentally tested and its performance compared 

with a set of different separate heat and electricity production scenarios, including the 

actual electric grid mixes of Portugal and Italy and combining other options for heat 

production, including different share of renewables. 

3.1 Description of the tested MCHP unit 

The tested MCHP unit is based on a water cooled internal combustion engine, with 

three cylinders and a displacement of 952 cm3. The engine is connected to an electronically 

controlled 16 poles synchronous generator, with an inverter automatically synchronized in 
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phase and frequency. The electrical output can vary from 0.3 to 6 kW according to the 

user’s demand in electric following mode. The manufacturer refers a rated heat output rate 

of 11.7 kW, with a water flow rate of 33.5 l/min, considering 65 ºC and 60 ºC as supply 

and return temperature, respectively. The heat is recovered from exhaust gases and engine 

jacket, being afterwards transferred to an external water flow circuit in a plate heat 

exchanger. The manufacturer main technical data of the unit is presented in Table 1. 
 

Table 1: Main technical data of the MCHP unit 

Parameter (unit) Nominal value or range   
Electric power delivered (kW) 0.3 - 6.0 
Rated thermal energy delivery (kW) 11.7 
Rated natural gas power input (kW) 20.8 
Water outlet temperature (ºC) 60-65 
Engine displacement (cm3) 952 
Shaft speed range (RPM) 1600-1800 
Rated electrical efficiency (%) 28.8 
Rated thermal efficiency (%) 56.2 
Overall efficiency (%) 85.0 

3.2 Experimental procedures 

The experimental assessment of the MCHP performance was conducted through a set 

of experimental tests performed in a test facility located at University of Sannio in 

Benevento (Italy). The MCHP unit is connected to a heating coil, where the supplied heat 

may be used to regenerate a silica-gel rotor in a desiccant air-conditioning system. More 

information about this installation can be found in Ref.s [45–50]. The main instrumentation 

data, measuring range, accuracy and locations in the test facility are represented in 

Figure 2. The data acquisition system supplied by the manufacturer was complemented 

with some others devices, including a graphical interface to display and record data, such 

as: supply and return water temperatures, natural gas and water mass flow rate, rate of 

thermal energy recovered, electrical power output and auxiliaries loads. The current 

performance of the unit was evaluated by measuring the parameters: electric power output, 

rate of thermal energy delivered and fuel energy input rate. The unit was tested at different 

Part-Load Ratio (PLR) and supply/return temperatures. PLR is obtained dividing electricity 

rate by the rated electric power of the unit (6 kW). Different supply/return temperatures 

were experimentally assessed, for different values of PLR. Each assessment point was 

evaluated on the basis of significant number of samples, obtained for thermal energy 
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delivered steady state conditions. The tests were performed with an outdoor environmental 

temperature of 15 ºC, which was also assumed for the reference state in the exergy 

analysis. 

Figure 2: Test facility layout of the MCHP 
unit located at University of Sannio (Italy). 

 

3.3 Briefing about TRNSYS model 

As referred, a computational tool was developed in software TRNSYS to perform the 

energy and exergy comparisons of CHP systems and separate production systems. Based 

on experimental assessments, a model of MCHP was implemented using Type 907/TESS, 

which is able to read the performance data of the engine from an external text file. This file 

contains information about efficiency (both mechanical and electrical) and heat transfer 

data, including the fraction of total thermal energy rate recovered by the after-cooler, oil 

cooler, exhaust gas heat exchanger, engine jacket and the thermal energy fraction 

dissipated to the environment. Additionally, Type 5 is used to model the internal heat 

recovery system of the MCHP unit, where two important input parameters were defined: 

the mass flow rate passing through the hot side and the overall heat transfer coefficient. 

Performance parameters related to the separate heat and electricity production systems 

(reference) were also included into the TRNSYS project, through the Equation Object. 

3.4 Electricity mix scenarios 

The electricity mixes of Portugal and Italy were used to compare the actual 

performance of the MCHP in real electric grid contexts. Based on data of the International 

Energy Agency (IEA) [51], primary energy inputs (fossil and renewables) and 
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corresponding electricity produced were used to assess the overall efficiency by source. In 

Table 2 and 3 are presented the energy inputs and electricity associated to fossil and 

renewable sources, the related efficiencies of EF and ER sub-systems and fraction of 

renewables corresponding to the electric mixes of Portugal and Italy. Concerning 

renewables, this study is divided into: ‘biofuels and waste’ (including solid biofuels, liquid 

biofuels, industrial and municipal waste products), and ‘earth resources’, corresponding to 

hydro, wind, geothermal, solar, tide/wave/ocean energy sources. For “earth resources”, as 

inputs, (IEA) [51] assumed the electricity produced by each source. The fraction of 

renewables was obtained by the ratio of electricity derived from renewable sources to the 

total electricity produced. 

Table 2: Electricity mix and production performance for Portugal in 2009. 

 Fossil sources Renewable sources 

Technology Coal and 
Peat Fuel oil Natural 

gas 
Earth 

resources* 
Biofuels and 

waste** 
Total Energy Input (GWh) 32 959 8 734 29 912 17 968 6 257 
Electricity generated (GWh) 12 896 3 285 14 712 16 930 2 384 
Losses in the electric grid (%) 7.55 % 
Overall efficiency, eg  40 % 74 % 
Fraction of renewables, eg   38 % 
* Directly used as exist in Earth (e.g. hydro, wind, solar, geothermal, etc). 
** Sources produced or derived from Human activity. 
 
Table 3: MCHP performances obtained by the experimental tests, used for the text file of 
Type 907/TESS. 

 Fossil sources Renewable sources 

Technology Coal and 
Peat 

Oil 
Products Natural gas Earth 

resources* 
Biofuels and 

waste** 
Total Energy Input (GWh) 116 951 87 993 307 334 109 776 36 100 

Electricity generated (GWh) 43 416 25 946 147 269 66 607 9 403 

Losses in the electric grid (%) 6.95 % 
Overall efficiency, eg  39 % 48 % 
Fraction of renewables, eg   26 % 
* Directly used as exist in Earth (e.g. hydro, wind, solar, geothermal, etc). 
** Sources produced or derived from Human activity. 
 

4 Results and discussion 

4.1 Energy and exergy assessments of MCHP unit 

The performance results derived from the experimental tests conducted to MCHP 

unit are expressed as electric, thermal and PER (or overall efficiency) in Figure 3. The 
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performances were evaluated for three supply/return temperatures levels (averaged values), 

according to the experimental tests performed: 

- trial #1: , 65s chpT  ºC and , 60r chpT  ºC; 

- trial #2: , 59s chpT  ºC and , 54r chpT  ºC; 

- trial #3: , 72s chpT  ºC and , 67r chpT  ºC. 
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Figure 3: Experimental results of electric, thermal and overall (PER) energy 
performance of the MCHP unit. 

The tests were conducted for temperatures in the internal circuit of the MCHP higher 

than 55 ºC, corresponding to normal operating conditions. The results indicate similar 

performances for trial #1 and #2, where the unit’s performance is approximately constant 

within operating temperatures from 55 ºC to about 70 ºC. At about 70 ºC, as security 

control measure, the internal circuit of the unit is partially deviated to an external radiator, 

releasing part of heat generated into the surrounding environment. Therefore, the thermal 

efficiency and related PER drop for operating temperatures higher than 70 ºC, as also 

shown in the trial #3 curves in Figure 3. These results are then applied to set up the text file 

required by Type 907/TESS. In Table 4 is presented all the parameters needed to build the 

file, considering the performance results obtained by the trial #1. 

Finally, regarding to compare the energy and exergy performances (PER and PExR) 

of the MCHP, in the Figure 4, they are represented for the various experimental tests 

conducted. Significant differences were found between PER and PExR, especially due to 

low exergy content of the heat delivered by the microcogenerator, although concerning 
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only PExR, the differences are almost imperceptible for the various levels of temperatures, 

because the exergy associated to thermal is too low. 

Table 4: MCHP performances obtained by the experimental tests, used for the text file of 
Type 907/TESS. 

 Part-Load Ratio (PLR) [-] 

 0.17 0.34 0.51 0.68 0.84 1.00 
Electrical rate [kW]; A 1.0 2.1 3.1 4.1 5.0 6.0 
Primary-fossil energy rate [kW]; B 10.3 12.7 15.1 17.4 19.6 21.7 
Total waste heat rate [kW]; C=B-A 9.3 10.7 12.0 13.4 14.5 15.7 
Waste heat recovered rate [kW]; D 6.6 7.8 8.9 9.9 10.8 11.7 
Electrical Efficiency [-]; E=A/B 0.10 0.16 0.20 0.23 0.26 0.28 
Mechanical Efficiency [-]; F=A/0.95/B 0.10 0.17 0.21 0.25 0.27 0.29 
Fraction waste heat recovery [-]; 
G=D/C 0.71 0.73 0.74 0.74 0.74 0.75 

Fraction waste heat to environment [-]; 
H=1-G 0.29 0.27 0.26 0.26 0.26 0.25 
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Figure 4: Energy and exergy 
performance assessments of 
MCHP for the experimental 
tests conducted. 

 

4.2 Primary-fossil Energy Savings 

PES iso-lines diagrams are useful tools allowing a quick assessment of the primary 

energy savings provided by MCHP for a huge number of electricity/heat efficiencies 

reference scenarios. In Figures 5 and 6, different efficiencies for electric and heating 

system and integration of renewables are compared with MCHP evaluated at PLR=1 (trial 

#1). Figure 5 is a PES iso-line diagram considering different efficiencies values for the 

power plant and heating system (assuming no renewables) – a similar approach followed 

by European Directive 2004/8/EC [1]. Negative values of PES indicate no advantages for 

the use of the cogeneration system. Using this chart, three points (A, B and C) were 
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represented: Point A corresponds to a fossil-based power plant with an efficiency of 40 % 

(corresponding to the Portuguese electric grid power installed/subsystem EF in Figure 1) 

and a heating system with 90 % efficiency (reference efficiency for natural gas boiler in 

[43]); Point B corresponds to reference efficiency of 52.5 % for the electricity production 

(harmonized value for electricity production considering a CHP with natural gas as fuel 

and 2006-2011 as installation period, [43]) and the same heating efficiency than point A 

(90 %); and Point C keeps the same electric efficiency than B, but considers an 

improvement of heating efficiency to about 98 %, corresponding to a typical efficiency of 

a condensing boiler. The related PES for A, B and C are 23 %, 12 % and 8 %, respectively. 

As expected, improvements on efficiency in the electric grid and heating system remove 

advantages to the use of MCHP. 

Figure 5: Iso-lines PES diagram 
as function of heating system 
efficiency (e.g. boiler) and electric 
grid efficiency (no renewables 
included). 
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The values of PES are even lower when renewables are included. Figure 6 presents 

PES iso-lines for a constant heating system efficiency of 90 %, and considers power plant 

(EF) efficiencies from 30 to 60 %, and a fraction of electricity produced from renewables 

(φeg) from 0 to 40 %. Two points are represented: Point A, with an efficiency of 52.5 % for 

electricity production [43] and φeg = 0; and Point B considering the same electric grid 

efficiency, but with 15 % of electricity produced from renewables (φeg = 0.15). For Point 

A, PES is about 12 %, while for Point B, PES decrease to about 5 %. The use of these 

diagrams clearly shows that improvements on efficiency or including renewables into 

electric system could effectively limit the use of cogeneration systems. Furthermore, since 
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there are a huge number of scenarios in which PES has the same value; including the 

second law into analysis, different result may be obtained. 
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Figure 6: Iso-lines PES diagram as 
function of electric grid efficiencies and 
integration of renewables into electric 
grid (Heating system with 90% 
efficiency, and no thermal energy from 
renewables). 

 

4.3 Energy and exergy assessments of reference system 

Since there are a huge number of parameters involved in the energy-exergy 

performance of the reference system, in this section, different scenarios were proposed 

aiming to assess the sensitivity of PER and PExR with those parameters. The heat to 

electricity ratio of CHP (or reverse, power-to-heat ratio, as it is mentioned in European 

Directive [1]) is an important parameter that strongly affects the viability of the 

cogeneration. Particularly, this occurs because efficiencies of separate system related to 

electricity and heat production are very different, as can be seen in harmonized values of 

the efficiencies defined in Ref. [43]. 

Figure 7 compares the indicators PER and PExR by changing the following 

parameters:  , ,h hs e egQ W  , ,eg f , eg and hs . The values of  , ,h hs e egQ W   correspond to 

implicit values for production units types a) b) c) d) and e) of Annex II of the Directive on 

Cogeneration [1], where a) 1.05, b) and c) 2.22, d) 1.81 and e) 1.33. Six scenarios were 

proposed, where the efficiency of the heating system (HF) was kept constant (90 %) for all 

the scenarios, and the others parameters changed ( ,eg f , eg and hs ) are presented the 

table below Figure 7. The results show that for high values of  , ,h hs e egQ W   PER increases 

(highest value at unit a), while PExR decreases (lowest value at unit type b and c). PER 

evolution is explained due to higher efficiency of the heating system (HF) when compared 
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with electric grid (EF). On the other hand, the exergy content of the heat is much lower 

than the corresponding one for electricity, therefore PExR decreases with the increase of 

 , ,h hs e egQ W  . Figure 7 also shows that PER and PExR increase when electricity produced 

from renewables increase (Scenarios #2 and #3), or when heat production derived from 

renewables increases (Scenarios #3 to #6). In these scenarios, the heat is derived from 

renewable thermal sources, assuming the typical supply/return temperatures of a solar 

thermal system. Therefore, the corresponding exergy to energy ratio is obtained by Eq. 8: 

Fr,hs=0.124, where Ts=60 ºC, Tr = 40 ºC, with 0T = 283.15 K. In addition, Figure 7 also 

shows the related performance of MCHP, corresponding to trial #1. At maximum 

performance (PLR=1), the points located on the left of the vertical arrow show lower 

energy performances at reference system than for the microcogenerator and the points 

below horizontal the arrow indicate lower exergy performance for the reference system. 
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Figure 7: Energy and exergy 
performance (PER and PExR) 
considering different 
reference systems. 

4.4 Comparative analysis between combined and separated heat and 
electricity production 

Through the direct comparison between performance indicators (PER or PExR) it is 

possible to identify the more efficient systems (combined or separate heat and electricity 

production), from energy or exergy viewpoints. However, the relative difference between 

equivalent MCHP and reference systems (evaluated as primary energy or irreversibility 

savings), considering the same heat and electricity production, may be obtained through 

indicators PES, PIS and TIS. These indicators are compared as discussed in this section. 

Additionally, the indicators EnRR and ExRR are also compared, regarding to evaluate 

energy and exergy performance using renewables for the separate heat and electricity 
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production. Since there are a huge number of variables involved in each parameter, five 

distinct analyses were developed regarding to evaluate in detailed their importance for each 

particular scenario. 

Analysis #1: Assessment of PES and PIS as a function of electricity delivered by the 

microcogenerator 

In Figure 8, PES and PIS are presented for different MCHP electric outputs, 

corresponding MCHP performances obtained at trial #1. The reference assumes the same 

heat to electricity ratio of the MCHP at each electric load evaluated, considering also the 

following parameters: ,eg f = 52.5 %, ,hs f = 90 %. No renewable sources for heat and 

electricity production in reference system were considered. For the reference, , 0.209h hsF  , 

corresponding to a supply and return temperature of 90 ºC and 70 ºC (typical temperature 

value of a boiler, according Ref. [52]. On other hand, MCHP has supply and return 

temperatures of 65 ºC and 60 ºC, respectively, corresponding to ,h chpF =0.156. These two 

quality factors values were calculated using the same reference dead-state temperature, as 

283.15 K. The results show that both PES and PIS increase having their maximum values 

at full load of the MCHP. Due to the increase of microcogenerator performance with 

increase of electricity delivered rate, ,e egW , together with reduction of heat to electricity 

ratio (HP), PES and PIS increase. Moreover, PIS increases faster than PES with electric 

output, indicating that the ratio of irreversibility rate of CHP to reference chpI / refI

decreases faster with ,e chpW than the equivalent ratio evaluated as primary energy. 
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Figure 8: PES and PIS evaluated for 
different HP ratios and assuming 
the actual MCHP performance at 
each load. 

Analysis #2: PES and PIS assessments for different MCHP operating temperatures 

Depending on type of heating system, different supply/return temperatures pairs are 

possible. In Ref. [52] maximum temperatures are defined for different systems: oil boiler, 
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natural gas boiler, air source or ground source heat pump, solar thermal collectors. For the 

same thermal load produced by different technologies, different exergy levels are derived, 

even for the same conversion efficiency. Concerning the microcogenerator tested, it has a 

limited range of supply/return water temperatures. The normal operating temperatures 

range from 55 ºC to 70 ºC in the internal circuit: for temperatures below 55 ºC in the 

internal circuit at the outlet of the plate heat exchanger (see Figure 2), so the unit has a 

control system for the warm-up period, avoiding that the entire internal flow rate crosses 

the plate heat exchanger. On the other hand, for temperatures higher than 70 ºC, the control 

system partially by-pass the fluid flow rate to the internal radiator, wasting heat to the 

surrounding environment. In Figure 9, PIS and PES are presented for the trial #1, #2 and 

#3 conducted at PLR = 1. The same parameters were assumed for the reference system as 

in the previous analysis #1. PES of trial #1 and #2 are approximately the same, as thermal 

and electrical performances of MCHP are very similar (see Fig. 3). Although, looking at 

irreversibilities, since the heat is released at different temperatures at trial #1 and #2, PIS 

assume different values. Due to lower supply/return temperatures at trial #2, the 

irreversibilities savings are higher for this tested condition, indicating a high irreversible 

MCHP system when compared with the equivalent reference. The reduction of the thermal 

efficiency leads to a reduction of both PES and PIS, therefore trial #3 is not comparable 

with the other two. 

Figure 9: PES and PIS assuming 
the MCHP performance at 
PLR=1 for the three 
experimental trials and fixing 
the reference system for each 
comparison. 
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Analysis #3: PES and PIS assessments considering the heating system operating at 

different supply/return temperatures 

Different heating technologies are able to provide heat within a distinct range of 

supply/return temperatures. As example, boilers could produce water or steam at very 

different temperature/pressure, keeping approximately the same values of efficiencies 

values, although with high differences concerning exergy performance. In Figure 10, PES 
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and PIS are evaluated assuming the microcogenerator operating at PLR = 1 (of trial #1) 

and considering three supply/return temperatures for the reference heating system, with no 

efficiency variation. The different supply/return temperature pairs considered were: T-I) 

,s hsT =90 °C and ,r hsT =80 ºC; T-II) ,s hsT =80 °C and ,r hsT =70 ºC; and T-III) ,s hsT =70 °C and 

,r hsT =60 ºC ( 0T = 285.15 K). As most of energy parameters for both CHP and reference 

system were kept constant, PES is the same for all the scenarios evaluated. Concerning 

PIS, since different supply/return temperatures are considered, ,h hsF  changes leading to 

different relative irreversibilities between CHP and reference. From the results, lower 

delivered supply/return temperatures mean higher irreversibilities at the heating system (T-

III); higher PIS values mean a more inefficient reference system and higher benefits for the 

cogeneration. As PES is constant for all these scenarios, these analyses demonstrate how 

PIS could be an add value parameter for comparing CHP and reference with heat delivered 

at different supply/return temperatures. 
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Figure 10: PES and PIS 
assessments considering 
the MCHP at PLR=1 
(trial #1) and changing the 
supply/return 
temperatures of the 
reference system. 

Analysis #4: Assessment of PES, PIS, EnRR and ExRR for different electric mix 

scenarios and share of renewables for heat production 

Considering the MCHP unit operating at PLR=1, this analysis takes into account 

different combinations of electric grid and heating systems. Portuguese and Italian electric 

mixes are considered, as well as different share of renewables used for heat production. 

The results are presented in Figure 11, where the scenarios PT-I to PT-III are related to 

Portuguese electric grid performances, and IT-I to IT-III to the Italian electric grid, both 

corresponding to fractions of heat derived from renewables equal to 0, 0.30 and 0.60, 

respectively. For all the scenarios, it was assumed that thermal sources are directly derived 

from solar thermal, Fr,hs= 0.124 (considering Ts= 60 ºC, Tr = 40 ºC and 0T =283.15 K). The 

results show higher PES values for Italian electric grid context than for the corresponding 
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Portuguese one. This is a consequence of the low fraction of electricity derived from 

renewables in Italy, increasing the demand for primary-fossil energy by the reference 

system and higher primary irreversibilities. Comparing the scenarios PT-I and IT-I, 

corresponding to 0 % of renewables in heating system ( 0hs  ), PES has a value of about 

3 % for the Portuguese electric grid as reference system, and about 10 %, when the Italian 

electric grid is considered. Concerning PIS at 0hs   (PT-I and IT-I), the irreversibilities 

saved by MCHP are evaluated as 6 % for the Portuguese electric grid, and about 18 %, for 

the Italian context. It indicates that the quality match between supply (from fossil origin) 

and demand is higher for the Portuguese electric grid than for Italy. Since the 

irreversibilities of the Portuguese electric grid are lower, the same MCHP system allows 

higher irreversibility reduction in the Italian context. 
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Figure 11: PES, PIS, EnRR and ExRR assessments assuming different fraction of heat 
delivered from renewables and considering the actual performance of electric grid of 
Portugal and Italy. 

 
Additionally, since different fractions of heat and electricity are derived from 

renewable sources, the renewability ratios were also assessed. They aim to provide 

information about the use of renewables by the reference heating system and electric grid. 

The results indicate that for the same equivalent scenarios (e.g. PT-I and IT-I, PT-II and 

IT-II,…), the Portuguese electric grid has higher values of both EnRR and ExRR than the 

corresponding Italian context, due the higher share of renewables for electricity production 

in Portugal. Both EnRR and ExRR increase with increase of renewables for heat production 

by the reference system. ExRR is always lower than EnRR especially for high heat 

fractions of heat produced from renewables, indicating the heat produced as a low exergy 

product. 
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Analysis #5: The rule of TIS for assessing different renewable supply scenarios 

The current analysis aims to demonstrate particular situations, in which TIS provides 

particular results not accomplished by PES or PIS. In the following analysis, TIS is 

evaluated for three similar reference scenarios, where the conversion efficiency of 

renewables (sub-system ER) changes. All scenarios consider that 20 % of heat and 

electricity are produced by renewable sources. Thermal input sources are considered for 

the HR, where , 0.124r hsF  , evaluated using Eq. 8, where supply and return temperatures 

are assumed as 60 ºC and 40 ºC [52], respectively ( 0T = 283.15 K). 

The results are presented in Figure 12, where the efficiency of electric 

grid/renewables sub-system ER  ,eg r in scenarios S-I, S-II and S-III are 40 %, 60 % and 

90 %, respectively. From the results, PES and PIS present the same values, because fossil 

based heating and electric systems, as well as the share of renewables, are the same for all 

scenarios. However, the quantity of renewables sources changes due to different 

efficiencies considered for ER sub-system. In the scenarios S-I to S-III, the increase of 

efficiency for the sub-system ER leads to a decrease of TIS, indicating an increase of 

exergy performance of the reference system relatively to MCHP, so the irreversibilities 

savings at S-III are lower when compared with S-I. Concerning the renewability ratios 

EnRR and ExRR, the results show a moderate increase of these two indicators when the 

efficiency of the electric grid/renewables sub-system ER is improved. Since ExRR < EnRR, 

it indicates the presence of low-exergy renewable sub-products (20 % of low temperature 

heat delivered at by reference system is derived from renewable sources). 
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Figure 12: PES, PIS, EnRR and ExRR 
assessments applying different 
efficiencies for the ER sub-system. 

5 Conclusions 
In this study, the importance of the exergy analysis for cogeneration systems 

assessments is highlighted. The limitations of the European Directive 2004/8/EC were 
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reported and some complementary indicators based on first and second law of 

thermodynamics were proposed. The main indicator used by the European Directive (PES) 

revealed to be insufficient to characterize and compare CHP systems and separate systems 

for heat and electricity production. PIS revealed to provide additional results to PES, 

especially when equivalent reference system are compared (same efficiencies and fuels 

inputs), but delivering heat at different temperatures. MCHP unit was compared with 

different heating supply options and the electric grids contexts of Portugal and Italy. 

Considering no renewables for heating system, PES and PIS have as results: 3 %, 6 % for 

Portugal, and 10 %, 18 % for Italy, respectively. Additionally, TIS revealed to be an useful 

indicator to compare similar fossil based reference scenarios (same conversion efficiencies 

at EF or HF, and fraction of heat and electricity produced from renewables), but different 

inputs in the sub-systems powered by renewables (ER, HR). Finally, the indicators 

energetic and exergetic renewability ratios were found as significant indicators, giving 

information about quantity and exergy content of heat and electricity produced from 

renewables by the reference system. 
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Abstract 

The current increase of the energy consumption of buildings requires new 

approaches to solve economic, environmental and regulatory issues. Exergy methods are 

thermodynamic tools searching for sources of inefficiencies in energy conversion systems 

that the current energy techniques may not identify. Desiccant cooling systems are 

equipments applied to dehumidifying and cooling air streams, which may provide 

reductions of primary energy demand relatively to conventional air-conditioning units. In 

this study, a detailed thermodynamic analysis of open-cycle desiccant cooling system is 

presented. It aims to assess the overall energy and exergy performance of the plant and 

identify its most inefficient sub-components, associated to higher sources of 

irreversibilities. The main limitations of the energy methods are highlighted and the 

opportunities given by exergy approach for improving the system performance are 

properly identified. As case-study, using a pre-calibrated TRNSYS model, the overall 

energy and exergy efficiency of the plant were found as 32.2 % and 11.8 %, respectively 

for a summer week in Mediterranean climate. The exergy efficiency defect identified the 

boiler (69.0 %) and the chiller (12.3 %) as the most inefficient components of the plant, so 

their replacement by high efficient systems is the most rational approach for improving its 

performance. As alternative heating system to the boiler, a set of different technologies and 

integration of renewables were proposed and evaluated applying the indicators: Primary 

Energy Ratio (PER) and exergy efficiency. The heating system fuelled by wood was found 

as having the best primary energy performance (PER = 109.6 %), although the related 

exergy efficiency is only 11.4 %. The highest exergy performance option corresponds to 

heat pump technology with COP = 4, having a PER of 50.6 % and exergy efficiency of 
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28.2 %. Additionally, the parametric analyses conducted for different operating conditions 

indicate that the overall irreversibility rate increases moderately for larger cooling effects 

and more significant for higher dehumidification rates. 

Keywords: Desiccant cooling systems; Exergy efficiency; Exergy efficiency defect; 

Renewable energy sources. 

Nomenclature 

minC  Minimum of the capacitance rate [kJ K-1 s-1] 

cp,a Specific heat at constant pressure of dry air [kJ kg-1 K-1] 

cp,v Specific heat at constant pressure of water vapour [kJ kg-1 K-1] 

COP Coefficient of performance [-] 

pE  Primary-fossil energy input rate [kW] 

rE  Renewable energy input rate [kW] 

ex  Specific exergy of moist air [kJ kg-1] 

Ex  Exergy rate [kW] 

chex  Specific chemical exergy of mixture [kJ kg-1] 

tmex  Specific thermo-mechanical exergy of mixture [kJ kg-1] 

wex  Specific exergy of water [kJ kg-1] 
p

elF  Primary energy factor for electricity [-] 
ex
fF  Chemical exergy to Lower Heating Value (LHV) of the fuel [-] 
ex

rF  Quality factor associated to the renewable energy source used [-] 

h Specific enthalpy [kJ kg-1] 

fh  Specific enthalpy of saturated-liquid (water) [kJ kg-1] 

fgh  Enthalpy of vaporization for water [kJ kg-1] 

I  Irreversibility rate [kW] 

RI  Relative irreversibility [-] 

,a Cm  Mass air flow rate for air stream C [kg s-1] 

,a Pm  Mass air flow rate for air stream P [kg s-1] 

,a Rm  Mass air flow rate for air stream R [kg s-1] 

cwm  Mass flow rate of chilled water [kg s-1] 

hwm  Mass flow rate of hot water [kg s-1] 

wm  Water mass flow rate for the evaporative cooler [kg s-1] 

p Pressure [kPa] 

psat Saturated pressure [kPa] 

PER Primary Energy Ratio [-] 

regQ  Heat rate required for air regeneration [kW] 
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Ra Ideal gas constant of dry air [kJ kg-1 K-1] 

Rv Ideal gas constant of water vapour [kJ kg-1 K-1] 

RIS Relative irreversibilities savings [-] 

s Specific entropy [kJ kg-1 K-1] 

fs  Specific entropy of saturated-liquid (water) [kJ kg-1] 

T Temperature [ºC] or [K] 

Tw Wet-bulb temperature [K] 

vf Specific volume of saturated-liquid (water) [m3 kg-1] 

elW  Electricity input rate [kW] 

yi Molar fraction of a substance i in the mixture [-] 

Greek symbols 

  Effectiveness [-] 

  Exergy efficiency defect [-] 
  Relative humidity [-] 

r  Fraction of heat produced from renewables [-] 

eg  Averaged electric grid efficiency [-] 

hs  Thermal efficiency of heating system [-] 

i  Chemical potential of the substance i [kJ kg-1] 
  Exergy efficiency [-] 

  Humidity ratio [kg kg-1] 

Subscripts 

0 Restricted dead state 

hs Heating system. 

in Input or required 

j Assessment point 

k Component 

out Output or desired 

ove Overall 

r Return 

ref Reference scenario 

s Supply 

Acronyms 

DCS Desiccant Cooling System 

DW Desiccant wheel 
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1 Introduction 
The exergy analysis is a thermodynamic analysis technique based on second law of 

thermodynamic that provides an alternative way for assessing and comparing processes 

and systems more rationally and meaningfully. This well-known technique is defined as a 

measure of the potential work of different energy forms or states evaluated in a given 

reference environment [1-3]. The method may be applied to any thermodynamic system, 

and in particular for multi-component systems, it is able to identify and locate 

irreversibility sources, allowing to evaluate the contribution of each sub-system for the 

overall inefficiency of the plant [4]. 

Regarding to achieve comfort indoor environmental conditions, active energy 

systems are usually installed in buildings. Nevertheless, due to their high energy 

consumption, operating costs and/or some harmful effects on environment, these systems 

have been replaced by alternative ones, including hybrid systems that make use of 

renewable energy resources. Despite most of conventional systems are strongly 

implemented, most of their alternatives are still under research or development stages. The 

Desiccant Cooling Systems (DCS) are heat-driven systems, designed to provide cooled and 

dehumidified air to indoor environments, and have been moderately applied as alternative 

or complement to conventional compression/absorption cooling systems. These systems 

could have potentially economic, energy and environmental advantages with respect to 

traditional cooling devices, although the complexity of such systems may reduce their 

acceptance, especially in situations where there aren’t on-site qualified operating 

professionals. Its operation is based on a rotary dehumidifier (the Desiccant Wheel, DW), 

where the air is dehumidified. It is made by a desiccant material, such as silica gel, 

activated alumina or lithium chloride salt, which is able to hold the moisture of the air. 

Although, it has to be regenerated through a warm air stream, usually heated by a gas fired 

boiler. Low-grade thermal energy (60-95 ºC) is sufficient for the regeneration, meaning 

that solar, geothermal or waste heat may be used. Previously dehumidified and after 

passing through an air-to-air heat exchange, the air stream can be cooled to the desired 

temperature, forcing it to cross a cooling coil (connected to a conventional chiller, for 

example). A DCS may avoid the air stream of overcooling and re-heating, as occurs in the 

conventional systems providing cooled and dehumidified air. 

Several research works involving DCS have been conducted in the last years. 

Angrisani et al. [5–8] conducted a set of experimental-based studies on a small scale poly-
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generation system, constituted by a natural gas microcogenerator connected to a desiccant 

cooling system. The authors assessed all technical features of all the sub-components of a 

DCS system and successfully implemented and calibrated it into a model, developed in 

TRNSYS [9]. Parmar et al. [10] developed an artificial neural network model for 

predicting the dry bulb temperature and specific air humidity at the outlet of a desiccant 

wheel. La et al. [11] studied a modified regenerative evaporative cooling system coupled to 

a rotary desiccant cooling process, which can produce both dry air and chilled water 

simultaneously. The authors aimed to evaluate the feasibility and energy saving potential 

of this novel system. Combining chilled ceiling, displacement ventilation and desiccant 

dehumidification, Hao et al. [12] investigated the feasibility of this integrated system for 

finding the configuration that can realize desirable levels of indoor air quality, thermal 

comfort and energy savings in hot and humid climates. 

From all the studies reviewed [5-12], they are based on an entirely energy 

conventional (or first law of thermodynamic) approach, do not revealing the actual 

thermodynamic performance of the systems under analysis, and do not answering to 

questions, such as: ‘How far each system is from ideal system?’; or ‘What is the most 

inefficient component of the plant?’; or even ‘How much each system contributes for the 

plant inefficiency?”. These and other questions, may be answered using exergy methods 

that have been applied as valuable tools for design, analysis or performance assessments of 

different type of systems: solar thermal systems [13,14], cogeneration systems [15,16], 

buildings and HVAC systems [17, 18], power and refrigeration cycles [19,20]; or even in 

large scale, such as societies or countries [21]. 

Using the second law analysis, Darwish et al. [20] investigated a liquid-phase 

separation novel refrigeration cycle, concluding that the highest inefficient component is 

the heating generator, contributing to the total exergy destruction of the plant in 42 %. 

Roux et al. [14] conducted a thermodynamic optimisation of a small scale solar thermal 

Brayton cycle, dividing inefficiency sources into two types of irreversibilities (internal and 

external), finding that the internal irreversibility rate is almost three times the external 

irreversibility rate. Wei et al. [22] presented an exergy analysis study of variable air 

volume (VAV) system for office buildings air-conditioning, and concluded that the largest 

improvement on exergy efficiency is obtained by changing the heating source from 

electricity to renewable energy sources (such solar or geothermal), closing that the use of 

mechanical cooling in cold climate should be more questioned. The benefits of exergy 
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analysis combined with dynamic energy simulation tools were also claimed by Wei et al. 

[22], which suggested the integration of the exergy methods into building energy codes 

(such as, EnergyPlus [23] or TRNSYS [9]). 

Specifically in the field of desiccant cooling systems, few studies on exergy analysis 

have been found in literature: Lavan et al. [24] assessed the overall second law 

performance for a desiccant air conditioning system, applying the concept of “feasible 

performance”. Additionally, Kanoglu et al. [25] developed a procedure for energy and 

exergy analysis of desiccant cooling systems. The authors found that desiccant wheel has 

the greatest percentage of exergy destruction followed by the heating system. These 

analyses allowed to quantify and identify the sites with the losses of exergy and therefore 

showing the direction to approach the ideal COP. And Hurdogan et al. [26] evaluated the 

energy-exergy performance a novel desiccant cooling system, using average measured 

parameters obtained from experimental results. The exergy efficiencies of all the systems 

components were determined in attempt to assess their individual performances and 

potential for improvement be found. In the field of liquid desiccant dehumidification 

systems, the studies [27-29] were also performed. 

From the studies reviewed of desiccant cooling systems [24-26], the authors have 

applied exergy analysis to assess in detail the exergy to performance or finding 

irreversibility sources, although without considering other sources/technologies for the 

heating system (e.g. solar thermal, wood or heat pump systems) or evaluating the impact of 

replacing one of components on the exergy performance of other components or plant as a 

whole. In this study, the exergy method was implemented into a pre-calibrated DCS model, 

previously implemented in TRNSYS by Angrisani et al. [7,30]. The objective is to assess 

the overall energy and exergy performance of all components and DCS plant as whole and 

locate the most inefficient components, associated to higher sources of irreversibilities. As 

case-study, using weather data corresponding to the city of Naples (Italy), for the period 

from 1st to 7th August (9h00-18h00), the indicators primary energy ratio (PER), exergy 

efficiency, irreversibilities rate, exergy efficiency defect and relative irreversibility were 

assessed and discussed. Additionally, the PER and exergy efficiency were assessed and 

compared for a set of renewable energy scenarios and different heating technologies (e.g. 

solar thermal, wood fuelled heating systems and heat pumps). The main irreversibilities 

present in the DCS were evaluated as function of the operating conditions in the period, 
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and at the end, an iso-line diagram was proposed for evaluating irreversibilities savings due 

to improvements on boiler efficiency or integration of renewables from solar thermal. 

2 The exergy method applied to DCS 
In DCS, moist air is exposed to several changes of temperature and humidity ratio, so 

special attention should be given to the exergy variations of moist air in each system 

component. The definition of the reference dead-state is also a very sensitive parameter in 

exergy analysis and should be carefully treated. According to Ref. [1], the specific exergy 

of a mixture air flow is constituted by a thermo-mechanical and chemical exergy 

component, generically described by Eq. (1). 

tm chex ex ex           (1) 

where tmex is the thermo-mechanical exergy and chex is related to the chemical exergy term, 

which are related to the change from the actual state to a restricted or dead state. 

Neglecting kinetic and potential effects, the thermo-mechanical exergy and chemical 

exergy are given by Eq. (2) and (3), respectively [1]. 

   0 0 0tmex h h T s s           (2) 

 ,0
1

n

ch i i i
i

ex y  


          (3) 

where, in Eq. (2), h is the specific enthalpy, s the specific entropy and T0 is the dead state 

temperature. In Eq. (3), yi and i are the molar fraction of substance in the mixture and the 

chemical potential of the substance i, respectively, and the sub-script ‘0’ represents the 

restricted dead-state point. 

2.1 Specific exergy of moist air and water 

Assuming the outdoor air as an ideal gas mixture, constituted by dry air and water 

vapour, the exergy of moist air at a given point j, neglecting kinetic and potential effects, is 

given by Eq. (4) [1], where, ,p ac and ,p wc are the specific heat of dry air and water vapour at 

constant pressure, j and 0 are the humidity ratio of moist air at point j and dead-state 

point, respectively, jT and 0T are the temperature at point j and dead-state, respectively. aR  

is the ideal gas constant of dry air and jp and 0p are the pressure at point j and dead-state, 
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respectively. Furthermore, the specific exergy of water at point j is described by Eq. (5) 

[1].

 
   

 

, , 0 0 0
0 0

0
0

0

ln 1 1.608 ln

1 1.6081 1.608 ln 1.608 ln
1 1.608

j j
j p a p v j j a

mechanicalthermal

j
a j

j

chemical

T p
ex c c T T T R T

T p

R T

 


 

 

    
          

    

    
           



 
 

(4) 

 

     , , ,0 0 , ,0 0 0lnw j f j f f j f f j sat v

chemicalthermal mechanical

ex h h T s s v p p R T            (5) 

where the symbols ,f jh and ,0fh are the specific enthalpy of saturated-liquid at a generic 

point j and at dead-state, respectively; ,f js and ,0fs are the specific entropy of saturated-

liquid at a generic point j and at dead-state, respectively. 0T is the dead state temperature, 

fv is the specific volume of liquid water, jp  and satp are the pressure at a generic point j 

and saturated pressure, respectively. vR is the universal constant for the water vapour (ideal 

gas) and 0 is the relative humidity at dead state. For water flows in closed-cycle circuits, 

without any contact with air, the chemical term 0 0lnvR T  becomes zero, since it is assumed 

0 1  (saturated state). For applications with steam injector, where pure water enters or 

leaves the control volume (e.g. evaporative coolers), 0  is calculated for the air properties 

at dead-state point. 

2.2 Exergy-based indicators 

In engineering systems, non-dimensional energy ratios are usually applied to 

evaluate energy systems efficiencies (e.g. the thermal efficiency or coefficient of 

performance, COP). It gives information about “the ability to produce a desired effect with 

minimum use of energy or resource” [2]. However, the efficiency based on a purely an 

energy approach is ambiguous, and cannot accurately measure “the distance” to ideal 

(reversible) system. Therefore, the performance of a given energy system should be 

evaluated by means exergy or second law efficiency. A general definition of exergy 

efficiency for a given k component is given by Eq. (6). 
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,
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1out k k
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in k in k

Ex I
Ex Ex

   
 
          (6) 

where, ,out kEx and ,in kEx are the exergy output and input rate to the component k, 

respectively, and kI  is the irreversibility rate generated at component k. The symbols 

,out kEx and ,in kEx could not represent physical input/outputs rates, but desired or required 

effects. The ratio of exergy output to exergy input is always less than unit and its value 

depends on the degree of irreversibility of the process, which is a particular suitable 

criterion for the degree of thermodynamic perfection of a process [3]. 

A multi-component system like a DCS, where the control volume can be divided into 

a finite number of sub-systems, there are advantages to introduce the concepts “exergy 

efficiency defect”   and relative irreversibility  RI . Exergy efficiency defect is given 

by the ratio between exergy destruction rate at the k-th component to the total exergy input 

rate to the overall system, as given by Eq. (7) [3]. 

,

k
k

in k

I
Ex

 


          (7) 

The relative irreversibility, ,R kI is defined by the ratio of exergy destruction of the k-th 

component to the total irreversibility rate occurring in the system, as shown by Eq. (8). 

,
k

R k
k

k

II
I




          (8) 

The sum of the exergy efficiency defect of the k components is expressed by Eq. (9), 

where ove is the overall efficiency of the system. It shows the direct causal relationship 

between component’s irreversibility rate and their effect on overall efficiency of the 

system. 

1k ove
k

            (9) 

Finally, the comparison of irreversibilities levels between systems may be done 

through the indicator the Relative Irreversibilities Savings (RIS) [35], expressed by 

,

1 k
k

k ref

IRIS
I

 

          (10) 
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where kI are the irreversibility rate for a given heating system under and refI is the 

irreversibility rate for the reference scenario. 

3 Methodology 

3.1 System description 

The DCS system under study is an air handling unit located at the Università degli 

Studi del Sannio, Benevento (Italy), constituted by a desiccant wheel, an air-to-air heat 

exchanger, an evaporative cooler and heating and cooling coils. Natural gas boiler is used 

as heating system for the DW regeneration and the sensible cooling of the process air 

exiting the cross flow heat exchange is realized by a conventional chiller. The schematic of 

the system is shown in Figure 1, where three air flows (R, C and P) are represented: 

 “Stream R” is used for the regeneration of the desiccant wheel (5-6) after its passage 

in the heating coil interacting with the boiler (1-5); 

 “Stream C” is the auxiliary air flow used for the pre-cooling of the processed air (7-

8) after its passage in the evaporative cooler (1-7); 

 “Stream P” is the process air, dehumidified by the desiccant wheel (1-2), pre-cooled 

at the cross flow heat exchanger (2-3) and cooled at the cooling coil (3-4), which 

interacts with the chiller. 

,el ivW

 ,r hsE,p viiE

 ,p hsE

 
Figure 1: Schematic of the desiccant cooling system. 

The assessment points (1-13) are presented in Figure 1, where point no. 1 represents 

the outdoors conditions. In Ref. [5–8], more detailed information about the experimental 
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plant lay-out is available. The TRNSYS model of the DCS was calibrated and validated 

using experimental data by Angrisani et al. [7] and implemented in [31]. The main 

parameters used for each DCS component (Type in TRNSYS) are presented in Table 1. 

Table 1: The main parameters of the TRNSYS types used for the components models under 
investigation. 

Component Type no. Parameter Value 

i 1716 
Dehumidifier F1 effectiveness [-] 0.207 
Dehumidifier F2 effectiveness [-] 0.717 
Set-point outlet air humidity ratio [kg/kg] 0.008 

ii 91 Heat exchanger effectiveness [-] 0.446 
iii 508 Coil bypass fraction [-] 0.177 

iv 655 
Rated capacity [kW] 8.45 
Rated COP [-] 2.93 

v 506 Saturation efficiency [-] 0.551 
vi 670 Effectiveness of heat exchanger [-] 0.842 

vii 6 
Maximum heating rate [kW] 26.7 
Efficiency of auxiliary heater [-] 0.902 

3.2 Energy and exergy methods applied to DCS 

In this study, for the energy and exergy analysis of the DCS system described in 

Figure 1, the following assumptions were taken into account: 

a) Steady-state and one dimensional condition; 

b) Negligible potential and kinetic energy effects; 

c) No pressure losses across the components; 

d) The auxiliaries’ loads for the fans and pumps were neglect. 

According to Figure 1, the system was divided in seven components (i-vii) and 

thirteen assessment points (1-13), where the specific energy and exergy were evaluated. In 

Eq. (11-17) [26], a set of equations describing mathematical formulations for energy and 

exergy based performances of the components i-vii are shown [25, 26]. 

Desiccant wheel, i: 

 
 

 
 

, 1 2

, 5 1

, 2 1

, 5 6

a P fg
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m h
m h h

m ex ex
m ex ex

 





 


  







        (11) 
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Heat exchanger, ii: 
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Cooling coil, iii: 
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        (13) 

Chiller, iv: 
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Evaporative cooler, v: 
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Heating coil, vi: 
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        (16) 

Natural gas boiler, vii: 
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The symbol fgh is the enthalpy of vaporization for water,  is the humidity ratio, h is 

the specific enthalpy and ex is the specify exergy. ,a Pm , ,a Rm ,a Cm  are the air mass flow rate 

for stream P, R and C, respectively. hwm cwm are the hot and cold water mass flow rate, 

respectively. ,
ex
f viiF  is the chemical exergy to Lower Heating Value (LHV) (quality factor) 

of the fuel (natural gas), which in this study was assumed equal to 1.04, according to Ref. 

[3]. ,p viiE  is the primary-fossil energy input (natural gas) and ,el ivW  is the electric power 

input to the chiller (equivalent to exergy). 

In the Eq. 11, the effectiveness related to the DW is defined as the ratio between the 

dehumidification performance of the wheel with respect to the regeneration heat input. In 

the Eq.s 12, 13 and 16, the effectiveness related to components ii, iii, and vi, respectively is 

given as the ratio of the amount of heat transfer to the maximum possible heat transfer, 

where minC is the minimum of the capacitance rate of cold and hot streams, given by the 

product of mass flow rate and specific heat related to each stream. COP is the coefficient 

of perform of the chiller and  is the thermal efficiency of the boiler. 

The overall energy performance of the DCS is defined by Primary energy Ratio 

(PER), which is defined by the ratio of cooling capacity to the total primary-fossil energy 

inputs, as expressed in Eq. (18). 

 



, 1 4

, ,

a P
ove p

p vii el el iv

boiler chiller

m h h
PER

E F W






 


       (18) 

where, ,p viiE is the primary energy input to the boiler, given by the product of fuel mass 

flow rate to the Lower Heating Value of fuel. In this study, natural gas is assumed as 

primary energy source. For electricity, the conversion factor for primary-fossil energy, p
elF  

is calculated based on the average electric grid efficiency. In this paper, 2.17p
elF  , 

calculated for the efficiency of Italian electric grid, eg = 46.1 % [32]. 

3.3 Energy-exergy performances and integration of 
renewables 

The heat required for DW regeneration could be provided from both renewables and 

fossil energy sources. Depending of required temperature levels, only some type of 
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renewable sources could be used for the regeneration of the desiccant wheel, so renewables 

combined with fossil powered systems are commonly used. As example, solar thermal 

systems are usually combined with boilers or heat pump systems. On other side, 

combustion-based renewable systems, fuelled by wood, pellets or others biofuels may be 

used as stand-alone (single) heating system, once they could provide enough air 

temperature for DW regeneration. 

When renewables are included, the demand for primary-fossil energy is reduced, 

leading to an increase of the energy performance of the system (PER). Thus, for a given 

fraction of heat delivered from renewables  r , the corresponding primary energy 

demand of a fuel-based heating system, ,p hsE is generically obtained by 

 , 1reg
p hs r

hs

Q
E 


 


         (19) 

where regQ is the heat required for the regeneration and hs  is the overall thermal efficiency 

of heating system. For electric-based heating systems, the value given by Eq. (19) should 

be multiply by p
elF , the primary conversion factor related to electricity. 

Concerning the assessment of total exergy input when renewables are included into 

the heating system, the exergy input rate is formulated by 

, , , ,
ex ex

hs f hs p hs r hs r hsEx F E F E           (20) 

where, ,p hsE and ,r hsE are fossil and renewable source energy inputs, respectively and ,
ex
f hsF  

and ,
ex

r hsF are the exergy to Low Heating Value (LHV) ratio of the fossil and renewable 

fuels, respectively. As regards renewables, if direct thermal sources are used (e.g. hot water 

from solar thermal), ,
ex

r hsF is commonly calculated by Eq. (21), where sT and rT are the 

supply and return temperature, respectively, and 0T is the dead-state temperature [33]. 

 
0

, 1 lnex s
r hs

s r r

T TF
T T T

 
     

       (21) 

4 Results and discussion 
In this section, the energy and exergy results derived from the simulations of the 

DCS model [30] are presented. Averaged values for temperature, humidity ratio, dry 
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air/water mass flow rate and power inputs, calculated for the period from 1st to 7th August, 

from 9h00 to 18h00 and using climate data corresponding to the city of Naples (Italy), 

were used to perform the analyses. In this period, the outdoor temperature varies from 21 

to 29 ºC and the humidity ratio from 0.008 to 0.017 kg of water/kg dry air. 

The evolution of humidity ratio and dry bulb temperature for the air points (1-8) of 

the DCS is shown in Figure 2, where the saturated line corresponding to the moist air with 

humidity ratio 100 % is also represented. In air stream P (air points 1-2-3-4), water vapour 

is removed from the air by means of the desiccant wheel (1-2); two constant humidity ratio 

cooling processes then follows: one at cross flow heat-exchanger (2-3) and the other at 

cooling coil (3-4). In air stream C, water vapour is added by means of the evaporative 

cooler (1-7), a heating process (7-8) at heat exchanger then follows. Finally, as regards the 

regeneration air stream R, the air flow is heated in the heating coil (1-5), before crossing 

the desiccant wheel (5-6). 

Figure 2: Evolution of the 
temperature and humidity 
ratio for the points of the 
stream P, C and R. 
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4.1 Dead-state point 

An important issue in exergy analysis is the definition of the dead-state point, which 

describes conditions where the specific exergy is zero. In the literature on exergy analysis 

of DCS, there is no recommended value for the definition of the dead state condition, 

although this is a very important issue and should be carefully chosen. For this study, the 

median of outdoor temperature and humidity ratio that occurs in the period from 1st to 7th 

August (9h00 to 18h00) was chosen as dead-state, regarding to be the nearest point of the 

environmental conditions during the operation of the plant. Using the climate file 

corresponding to the city of Naples (Italy), the dead-state was found as 0 26.1 º CT  , 
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0 0.0114  kg water/kg dry air,  0 53.5 %  . The dead state pressure was assumed 

constant for all points assessed, 0 101325p  Pa, so the mechanical part of exergy in Eq. 4 

is neglected in this study. 

4.2 Energy and exergy properties 

The evolution of the specific exergy of moist air at each point of Streams P, C and R 

is shown in Figure 3. Comparing the exergy variation of the three main air streams, stream 

R has the highest point’s exergy variation, followed by stream P and C. Points in stream C 

are near environmental conditions or dead state point, therefore their specific exergy are 

near zero. Furthermore, the iso-line at 0  = 53.5 % is represented, having the lowest value 

(zero) at dead state conditions. 
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Figure 3: Evolution of the 
specific exergy with dry 
bulb temperature at each 
point of the stream P, C 
and R. 

The numeric values of temperature, humidity ratio, enthalpy and specific exergy of 

the points (1-13) in DCS are presented in Table 2. The specific enthalpy of moist air and 

specific enthalpy/entropy of water, required by Eq. 5, were calculated by the software 

package Engineering Equation Solver (EES) [33]. Additionally, thermal and chemical 

exergy components (Eq. 4) of moist air points are also presented in Table 2, as well as the 

fraction related to thermal exergy (ratio of specific thermal exergy to total specific exergy). 

As expected, higher fractions of thermal exergy occur for high deviations of air 

temperatures relatively to dead state temperature (Points 2 and 5). For points particularly 

near to the dead state temperature (Points 1, 3, 4 and 7), the specific exergy of moist air is 

mostly equally divided in thermal and chemical exergy. As stated, since the pressure 

differences related to dead state were neglected, the mechanical component of exergy was 
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ignored. Some special attention is given for specific exergy of the water points (9-12) and 

(13), which differs in one magnitude order. Thus, in the points (9-12) only thermo-

mechanical aspects were assumed, because as points in a closed circuit, without air contact, 

a saturated atmosphere is assumed  0 1  , and 0 0ln 0v sR T   . Nevertheless, the water spray 

used for air humidification (13), both thermo-mechanical and chemical exergy of water 

should be taken into account, since 0 1  . 

Table 2: Air and water properties used for exergy analysis. 

Fluid 
[point] 

T 
[ºC] 


[kg/kg] 

h 
[kJ/kg] 

m 
[kg/s] 

ex 
[kJ/kg] 

ex(th) 
[kJ/kg] 

ex(ch) 
[kJ/kg] 

ex(th)/ex 
[%] 

Air [0] 26.1 0.0114 55.4 - 0.000 0.000 0.000 0.0 
Air [1] 25.9 0.0122 57.2 0.225 0.004 0.000 0.004 2 % 
Air [2] 42.8 0.0080 63.5 0.225 0.536 0.459 0.077 85 % 
Air [3] 33.8 0.0080 54.5 0.225 0.176 0.099 0.077 56 % 
Air [4] 18.9 0.0080 39.3 0.225 0.167 0.090 0.077 53 % 
Air [5] 56.9 0.0122 89.1 0.225 1.531 1.527 0.004 100 % 
Air [6] 40.8 0.0162 82.8 0.225 0.483 0.362 0.121 75 % 
Air [7] 22.6 0.0135 57.1 0.225 0.046 0.021 0.025 47 % 
Air [8] 31.6 0.0135 66.4 0.225 0.076 0.051 0.025 68 % 

Water [0] 26.1 - 109.4 - 0.000 - - - 
Water [9] 13.9 - 58.4 0.404 1.070 - - - 

Water [10] 16.0 - 67.2 0.404 0.729 - - - 
Water [11] 62.7 - 262.5 0.165 8.661 - - - 
Water [12] 52.3 - 219.0 0.165 4.534 - - - 
Water [13] 

(spray) 
22.6 - 94.8 0.001 82.630 - - - 

4.3 Energy and Exergy Performances 

The individual operation of each component allows to identify and quantify the sites 

with the exergy destruction (irreversibilities) occurs showing the direction to approach the 

best plant performance (or reversible COP). In this section, the energy- and exergy-based 

results for each individual component and plant as whole are presented. The parameter 

commonly applied to assess the energy-based performance of heat exchangers, desiccant 

wheel or evaporative cooler is the effectiveness. On other hand, for the boiler and chiller 

parameters, such thermal efficiency and COP are currently applied. Furthermore, these 

energy-based performances influence the exergy performances and the related 

irreversibilities rates. The differences between energy-based and exergy efficiencies of 

each DCS component are shown in Figure 4. The effectiveness of DW presents the lowest 
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energy-based performance, while chiller and boiler have higher energy efficiencies, 

following by the heating and cooling coils, with values of 75 % and 84 %, respectively. 

The chiller has a COP estimated in the period of 2.37, while the boiler has a constant 

thermal efficiency of 90.2 %. The overall PER of the DCS has a value of 32.2 %, showing 

that there are potential for improving PER. Questions such as: “where” or “how” this 

improvement can be more rationally made are given further, using the exergy results. 
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Figure 4: Energy and 
exergy based efficiencies of 
sub-components of DCS 
and overall system. 

Energy efficiency deals only with energy quantities aspects, while exergy relates 

both quantity and quality aspects, indicating the actual “effort” required by each 

component to “produce” the “desired product”. Being exergy a non-conservative property, 

significant differences are found between energy and exergy-based efficiencies. Especially 

for components working near dead-state conditions (ii, iii, iv and v), the exergy efficiencies 

are extremely low. The exergy efficiency could give hints about the most inefficient 

component of the plant, although this indicator alone is not enough since each component 

has different exergy input rates. Concerning the chiller and the boiler that from an energy 

perspective appear to be the most efficient components of plant, from an exergy point of 

view, they have indeed very low efficiency values: 9.2 % and 8.2 %, respectively as shown 

in Table 3. The overall exergy performance of the DCS was estimated as 11.8 %, which 

indicates an even higher potential for improvement than from energy perspective. 

Better than individual exergy efficiencies of components, exergy analysis techniques 

may also provide information about the highest contributors for plant inefficiencies, 

applying the concept of “relative irreversibility” and “exergy efficiency defect” [2-3]. The 

irreversibilities generated in each component of the plant are related with the exergy 
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efficiency and the exergy input rates. The exergy input rate, irreversibility rate, exergy 

efficiency and relative irreversibility for each component are shown in Table 3. 

Table 3: Exergy analysis results of the DCS, for dead state conditions: T0 = 26.1 ºC, 
0 = 0.0114 kg water/kg dry air and p0 = 101.325 kPa. 

Plant 
Component 

Exergy input 
rate [kW] 

Irreversibility 
rate [kW] 

Exergy efficiency 
[%] 

Relative 
Irreversibility [-] 

i 0.236 0.116 50.8% 1.2% 
ii 0.081 0.074 8.4% 0.8% 

iii 0.138 0.135 1.6% 1.4% 
iv 1.496 1.358 9.2% 13.9% 
v 0.113 0.103 9.0% 1.1% 

vi 0.683 0.339 50.4% 3.5% 
vii 8.329 7.646 8.2% 78.2% 

Overall 11.075 9.772 11.8% 100.0% 
 

The results indicate the boiler (vii) as the component, where the highest 

irreversibility rate occurs (7.6 kW) followed by the chiller (1.4 kW), with a relative 

irreversibility of 78.2 % and 13.9 %, respectively. As the major part of the air state points 

are relatively near to the dead state conditions, the use of high exergy sources, such as 

electricity for the chiller and natural gas in the boiler, leading to high levels of 

irreversibilities in those components. 

Concerning the most inefficient component in the plant (the boiler), the 

irreversibilities arise mainly due two energy conversion processes: the chemical exergy of 

the fuel (natural gas) when converted into thermal energy, usually evaluated at flame 

temperature (about 2200 K); and when the thermal energy is converted into low-

temperature thermal sources (hot water). Therefore, the replacement of the boiler by a 

more exergy efficient technology, or that makes use of low-exergy thermal sources, may 

significantly contribute for the reduction of the irreversibility rates. Besides to relative 

irreversibility indicator, the concept of exergy efficiency defect [3] is applied to compare 

the irreversibility rate at a given component and the total exergy input to the plant. The 

results are shown in Figure 5 and indicates that the most inefficient component of the plant 

(higher exergy efficiency defect) is the boiler (69.0 %), followed by the chiller (12.3 %) 

and heating coil (3.1 %). The overall exergy efficiency defect is about 88.2 %, indicating a 

huge potential for improvement. For the rational improvement of the exergy performance 

of the system, the exergy analysis method indicates the boiler as the first component to be 

replaced, since has the highest value of exergy efficiency defect. 
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As previously stated, the reference state is a very important parameter for the exergy 

analysis. Since other alternatives for dead state could be used, the sensitivity of the overall 

exergy efficiency of the system with the reference (dead-state) temperature was examined. 

As results, the exergy efficiency varies from 14 % to about 8 % when the reference 

temperature increases from 19 ºC to 37 ºC (292 K to 310 K). They show that for higher 

outdoors (reference) temperature, the margin or potential for improving the system 

increases, meaning the actual exergy input rate “grow faster” than the theoretical useful 

exergy rate. Nevertheless, the reference humidity ratio was assumed constant 

(0.0114 kg/kg), therefore different results could arise if the variation of ω0 was also taken 

into account. 
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Figure 5: Exergy efficiency defect for 
the components (i-vii) of DCS. 

 

4.4 Analysis of performance for different heating technologies and 
renewable energy sources 

Alternative ways for improving the heating system exergy performance include its 

replacement by another technology that makes use more efficiently of primary-fossil 

energy resources (e.g. heat pump or cogeneration system) or use low-temperature (or low-

exergy) sources, preferentially derived from renewable sources (e.g. solar thermal system 

or other thermal waste). 

The current combustion heat generator (natural gas boiler) leads to very low-exergy 

performances due to high irreversibility levels that occur during the energy conversion 

process. Once the temperature levels required for the air regeneration are relatively 

moderate (less than 90 ºC), the use of low-temperature thermal renewable sources is a good 

alternative for the heating system. However, some renewable options cannot effectively 

lead to improvements on exergy efficiency, although conduct to reductions on primary 

fossil energy demand (e.g. heating systems fuelled by wood, biofuels/biomass). In this 
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way, to compare different heating systems alternatives, primary energy and exergy 

performance indicators should be used. In this study, a set of different heating alternative 

systems technologies (including renewables) were proposed and the indicators PER and 

exergy efficiency were applied to compare them, keeping the cooling system as the same 

(i.e. chiller with an averaged COP 2.37). A brief description of the proposed scenarios and 

the main parameters used for each are presented in Table 4. 

Furthermore, in Figure 6, a PER vs. exergy efficiency diagram is presented showing 

the differences between primary energy and exergy performance for each scenario 

considered. There are a couple of options that make lower use of primary-fossil energy 

sources, but that may not correspond to high exergy efficiency scenarios. The intensive use 

of renewables conducts to reductions on fossil energy sources (increasing of PER), 

although concerning exergy efficiency, the results show significant differences depending 

the type or quality of sources used. As an example, in Scenario D, heating requirements are 

totally provided by wood (considered a fully renewable source). This scenario presents the 

highest value of PER, however, it corresponds to the lowest exergy efficient option 

 11.4 %  , because wood is a high exergy source and the combustion process is a highly 

irreversible process. On the other side, Scenario G (heat pump with COP 4 as heating 

system) presents the highest exergy efficiency (about 27 %), despite a moderate 

PER (50.6 %). The worst PER option is the Scenario E (a purely electric heating system) 

corresponds to a primary energy efficiency (PER = 95%). This is mostly related to the 

primary energy associated to the electricity production, leading to a low PER value. 

 

Figure 6: PER vs. Exergy 
efficiency concerning different 
renewables and heating 
technologies scenarios. 
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Table 4: Proposed scenarios and main parameters used for the exergy analysis of DCS, 
concerning renewables and others heating technologies. 

Scenario # Description  
A Natural gas boiler, with thermal efficiency 90 % (original system). 
B Scenario A (60 %) + solar thermal system (40 %): the natural gas boiler 

provides 60 % of the heat requirements and the solar thermal system 40%. Solar 
thermal supply and return temperatures: Ts=60 ºC and Tr = 40 ºC, respectively.
 , 0.15ex

r hsF  [32]. 

C Scenario A (20 %) + solar thermal system (80 %): the natural gas boiler 
provides 20 % of the heat requirements and the solar thermal system 20%. Solar 
thermal supply and return temperatures: Ts=60 ºC and Tr = 40 ºC, respectively.
 , 0.15ex

r hsF  [32]. 

D Heat requirements fully provided by a wood-fuelled heating system, with 
thermal efficiency of 86 %, based on efficiency based harmonized values [34]. 
Exergy to LHV of wood  , 1.05ex

r hsF  [32]. 

E Heat requirements fully provided by an electric heating system, with an 
estimated thermal efficiency of 95 %. 

F Heat requirements fully provided by air source heat pump, assuming COP = 2. 
G Heat requirements fully provided by heat pump, assuming COP = 4. 

 

Additionally, the exergy efficiency associated to this option presents also a low 

value, indicating the electric resistance as an inadequate technology converting electricity 

(high exergy) into thermal energy (low-exergy) for air regeneration. These analyses is 

show that the exclusive use of PER is not sufficient to describe the overall performance of 

DCS, and the exergy efficiency indicator reveals to be a good complementary indicator 

providing additional information about the rational use of energy sources. 

Considering these scenarios, Figure 7 shows the variations of the parameter “exergy 

efficiency defect” occurring in the two most inefficient components of the plant (the chiller 

and the heating system) and the overall plant. The results clearly show the high exergy 

efficient options as C and G, which corresponds to scenarios with low exergy efficiency 

defect values (76.1 % and 71.8 %, respectively). They correspond to the best exergy 

performances, due to irreversibilities reductions obtained at the heating system. In these 

results, exergy efficiency defect is demonstrated as an important parameter that helps to 

identify the most inefficient component of the plant at each scenario. As example, in the 

scenario A, the heating system (natural gas boiler) was responsible for 69 % of exergy 

efficiency defect and chiller for 12.3 %. The heating system was found as the most 

inefficient system, so its replacement by a more efficient technology could contribute for 

improvements on overall performance of the plant. Additionally, for the most exergy 
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efficient option (G), the exergy efficiency defect is 25.9 % for the heating system (heat 

pump) and 29.4 % for the chiller, showing in this case the chiller as a higher contributor 

for the inefficiencies than the heating system. 

Figure 7: Exergy efficiency defect 
for the proposed heating systems 
and their impact on chiller (primary 
based) and overall plant. 
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4.5 Operating conditions and irreversibilities savings 

For the desiccant wheel regeneration, depending of the outdoors conditions 

(temperature and humidity ratio), well-defined air temperatures and heat loads are 

required. For the period of analysis, and choosing as desired output conditions, 4 18T  ºC 

and 4 0.008  kg/kg, some parametric analysis were conducted for three inlet temperatures 

levels (T1 = 25 ºC, 28 ºC and 32 ºC) and assuming the humidity ratio occur in the period. In 

Figure 8, the temperature requirements for air regeneration at point (5), and the 

corresponding irreversibility rate at the boiler are shown. The results show that the 

temperature required for air regeneration (T5) and irreversibility rate of the boiler increase 

Figure 8: Regeneration 
temperature and 
irreversibility rate at boiler 
(Scenario A, B and C). 
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for higher humidity ratio and temperature differences between points 1 and 4. 

Concerning the same period of analysis, in Figure 9 surfaces corresponding to the 

irreversibility rate occurring in scenarios A, B and C are represented as function of inlet 

temperature and humidity ratio,  1 1,T   pairs verified in the period of analysis. For 

simplicity, no other scenarios were taken into account. The output desired conditions were 

kept constant at 4 18º CT  and 4 0.008  kg/kg. 
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Figure 9: Irreversibility rate at heating 
system (vii), as function of inlet temperate 
and humidity ratio for Scenarios A, B and 
C. 

Similarly, the results show that irreversibility rate rises for increasing values of 1T  

and 1 . Comparing the scenarios A, B and C, the lowest irreversibility rate is obtained 

when high share of (solar thermal system) are used for the heating system. In this example, 

the quality factor associated to low-temperature solar thermal sources is , 0.15ex
r hsF  , 

calculated based on supply and return temperatures of 60 ºC and 40 ºC, respectively [32]. 
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Figure 10: Sum of the irreversibility 
rate at boiler (vii) and chiller (iv), as 
function of inlet temperate and 
humidity ratio. 

For these temperature levels, solar thermal systems alone could not be enough for 

DW regeneration, especially for high temperature requirements. Therefore these systems 
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have to be integrated with other technological systems able to deliver heat at adequate 

temperature levels for the regeneration process. In Figure 10, the sum of the irreversibility 

rate occurring at the two most inefficient sub-systems (the chiller and the boiler at 

Scenario A) is represented as function of humidity ratio and inlet temperature. Considering 

the same output desired conditions, 4 18T  ºC and 4 0.008  kg/kg, the results show that 

the irreversibilities levels are more sensible to variations of inlet humidity ratio than of 

inlet temperature levels. 

The relative irreversibilities savings (RIS) between heating systems can be shown by 

changing different parameters through the use iso-line diagrams. In Figure 11, considering 

as reference (Scenario A), RIS is shown as function of boiler efficiency and share of solar 

thermal renewable sources, assuming , 0.15ex
r hsF  . The results show that improvements on 

heating efficiency or fraction of renewable thermal sources lead to reductions of the 

irreversibility rates, leading to the increase of irreversibility differences between reference 

and alternative system. As example, from Figure 11, the best represented scenario ( 1vii 

and 0.8r  ) corresponds to a RIS about 75 %.

Figure 11: Relative irreversibilities 
savings considering the integration 
of renewables from solar thermal. 
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5 Conclusions 
In this paper, an energy and exergy analysis was applied for a novel, non-

conventional DCS, in order to locate and quantify the most inefficient sub-components of 

the plant. The overall primary energy performance of the DCS, PER was estimated as 



 

Int. J. Energy Res.. doi: 10.1002/er.3076 
 

V.30 UC  2013 

 

32.2 % and the exergy performance 11.8 %, a quite low value, showing a high potential for 

performance improvement. Using the parameter exergy efficiency defect, the results 

indicate the boiler as the most inefficient component of the plant (69 %), followed by the 

chiller (12.3 %). The other components are relatively insignificant for the total 

irreversibilities of the plant. 

The replacement of the natural gas boiler by alternative heating technologies, such 

as, low-temperature solar thermal renewable sources or high efficient heat pump systems 

are those that mostly improve the DCS exergy performance. The results also show that the 

use of renewables reduces effectively the primary energy demand of the plant, although 

does not always corresponding to the best exergy scenario. For a complete and detail 

assessment, both primary energy-based indicators (PER) and exergy efficiency should be 

used. From the examples, the wood fuelled heating system has highest value in terms of 

PER (107.2 %), but the lowest exergy efficient option (11.4 %). On other side, the heat 

pump system (COP = 4) is the heating system with the highest exergy efficiency (about 

27 %), but with a moderate PER value (50.6 %). The effectiveness of the exergy method 

for analysis is demonstrated through this paper, where the exergy efficiency defect was 

found a helpful method to assess and locate high sources of irreversibilities, showing the 

direction to minimize the xergy losses and to approach the ideal system. Moreover, the 

irreversibility rate was found as highly dependent of inlet conditions, therefore for fixed 

outlet conditions, the maximum irreversibility rate value was obtained for high temperature 

and humidity ratio differences between inlet and outlet conditions. 
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