
Thesis

Doctoral Program in Information Science and Technology

Artificial Intelligence

Context-Based Retrieval in

Software Development

Bruno Emanuel Machado Antunes

Thesis Advisor

Prof. Paulo Jorge de Sousa Gomes

Department of Informatics Engineering

Faculty of Sciences and Technology

University of Coimbra

2012

This thesis was supported by a FCT (Fundação para a Ciência e Tecnologia)
scholarship grant, with reference SFRH/BD/43336/2008,

co-funded by ESF (European Social Fund).

To my parents, Ana and José, and my love, Vera.

Abstract

Although software development may include all the activities that result in a soft-
ware product, from its conception to its realization, here we focus on the process of
writing and maintaining the source code. Software development projects have been
increasing in size and complexity, requiring developers to cope with a large amount
of contextual information during their work. With workspaces frequently compris-
ing hundreds, or even thousands, of artifacts, they spend a considerable amount
of time navigating the source code or searching for a specific source code artifact
they need to work with. With the aim of helping developers understand the source
code structure and find what they need, modern Integrated Development Environ-
ments (IDEs) provide several features for searching and navigating the source code.
But, according to some studies, developers still spend a considerable amount of time
searching and navigating the source code structure.

With regard to search, the most commonly used approach is the matching of
specific patterns in the lines of code that comprise a software system, requiring a
direct correspondence between the pattern and the text in the source code. The
limitations of this approach have been surpassed by the research carried out in the
field of Information Retrieval (IR), encouraging researchers to use these techniques
to help developers finding relevant source code for their current task. But, despite
the fact that context is argued to improve the effectiveness of IR systems, as far as
we know, none of the previous approaches have used the contextual information of
the developer to improve the retrieval or ranking of relevant source code in the IDE.

Another interesting form of delivering relevant source code artifacts to a de-
veloper is using a recommender system. These systems have been used in a wide
variety of domains, to help users find relevant information, deal with information
overload and provide personalized recommendations of very different kinds of items.
In software development, researchers studied ways of using contextual information
to recommend source code artifacts that are potentially relevant for the current
task of the developer. But, these approaches usually use a limited context model,
or require contextual information to be explicitly provided.

The research described in this thesis is focused on the development of a context-
based approach to search and recommendation of source code in the IDE. The
source code structure stored in the workspace of the developer is represented in
a knowledge base. A context model represents the source code elements that are
more relevant for the developer in a specific moment. These structures are then
used to improve the retrieval and ranking of source code elements, such as classes,
interfaces and methods, taking into account their relevance to the current context
of the developer. The relevance of the source code elements retrieved is computed
based on the structural and lexical relations that exist between these elements and
the elements in the context model.

We have implemented a prototype that implements and integrates our approach
in the Eclipse IDE. This prototype was tested with a group of developers in order to
validate our approach. The statistical information collected shows that the source
code elements manipulated by the developer are highly related. This supports our
claim that the relations that exist between source code artifacts can be used to
measure the proximity between these artifacts, and to compute their relevance in the
current context of the developer. Also, we have verified that the context components
have a clear contribution to improve the ranking of search results, with the search
results selected by the developers using our approach being better ranked in more
than half of the times. With respect to recommendations, although the results
are not so evident, we have shown that our context model can be used to retrieve
relevant source code elements for the developer, being able to predict the needed
source code element in more than half of the times.

Keywords: Context, Software Development, Ontologies, Information Retrieval, Recom-
mender Systems.

Resumo

Apesar do desenvolvimento de software poder incluir todas as actividades que dão origem a
um produto de software, desde a sua concepção até à sua realização, neste trabalho focamo-
nos apenas no processo de desenvolvimento e manutenção do código fonte. Os projectos
de desenvolvimento de software têm crescido em tamanho e complexidade, exigindo que os
programadores lidem com uma elevada quantidade de informação contextual durante o seu
trabalho. Com ambientes de trabalho frequentemente constitúıdos por centenas, ou mesmo
milhares, de artefactos, os programadores gastam uma quantidade de tempo considerável
a navegar no código fonte ou a procurar um artefacto espećıfico com o qual precisam
trabalhar. Com o objectivo de ajudar os programadores a compreender a estrutura do
código fonte e a encontrar os artefactos que precisam, os ambientes de desenvolvimento
integrados (IDEs) actuais fornecem diversas ferramentas para procurar e navegar no código
fonte. No entanto, de acordo com alguns estudos, os programadores gastam ainda assim
uma quantidade de tempo considerável a pesquisar e navegar na estrutura do código fonte.

Relativamente à pesquisa, a abordagem utilizada mais frequentemente é a procura de
padrões nas linhas de código de um sistema de software, o que requer uma correspondência
directa entre o padrão pesquisado e o texto no código. As limitações desta abordagem
foram já ultrapassadas por técnicas desenvolvidas na área de recolha de informação, en-
corajando vários investigadores a usar estas técnicas para ajudar os programadores a
encontrar artefactos relevantes para as suas tarefas. No entanto, apesar de ter sido de-
fendido que o contexto aumenta a eficácia dos sistemas de recolha de informação, tanto
quanto sabemos, nenhuma das abordagens anteriores utilizou o contexto do programador
para melhorar a recolha ou a ordenação de resultados de pesquisa de código fonte no IDE.

Outra forma interessante de ajudar os programadores a encontrar artefactos de código
fonte relevantes para as suas tarefas, é utilizando sistemas de recomendação. Estes sis-
temas foram já utilizados numa grande variedade de domı́nios, para ajudar os utilizadores
a encontrar informação relevante, lidar com a sobrecarga de informação e providenciar re-
comendações de tipos muito diferentes de items. Em desenvolvimento de software, vários
investigadores estudaram formas de utilizar a informação contextual do programador para
recomendar artefactos de código fonte potencialmente relevantes para as suas tarefas. No
entanto, estas abordagens utilizam normalmente um modelo de contexto limitado, ou
requerem que o programador forneça de forma expĺıcita a informação contextual.

A investigação descrita nesta tese centra-se no desenvolvimento de uma abordagem
baseada no contexto para pesquisa e recomendação de código fonte num IDE. A estrutura
do código fonte armazenado no ambiente de trabalho do programador é representada numa
base de conhecimento. Um modelo de contexto representa os elementos de código fonte
que são mais relevantes para o programador num determinado momento. Estas estruturas
são posteriormente utilizadas para melhorar a recuperação e classificação de elementos de
código fonte, tais como classes, interfaces e métodos, tendo em conta a sua relevância para
o contexto actual do programador. A relevância dos elementos de código fonte recolhidos
é calculada usando as relações estruturais e lexicais, que existem entre estes elementos e
os elementos no modelo de contexto do programador.

Foi também implementado um protótipo que integra a nossa abordagem no Eclipse
IDE. Este protótipo foi depois testado com um grupo de programadores, de forma a validar
a nossa abordagem em ambiente real. A informação estat́ıstica recolhida demonstra que
os elementos de código fonte manipulados pelo programador estão altamente relacionados.
O que suporta a nossa ideia de que as relações que existem entre os artefactos de código
fonte podem ser utilizadas para avaliar a proximidade entre estes artefactos, e calcular
assim a sua relevância no contexto actual do programador. Também verificámos que
as componentes do contexto têm uma clara contribuição para melhorar a classificação
dos resultados da pesquisa, sendo que os resultados seleccionados pelos programadores,
utilizando a nossa abordagem, estavam melhor classificados em mais de metade das vezes.
No que diz respeito às recomendações, apesar dos resultados não serem tão evidentes,
demonstrámos que o nosso modelo de contexto pode ser utilizado para identificar elementos
de código fonte relevantes para o programador, sendo capaz de prever o próximo elemento
acedido pelo programador em mais de metade das vezes.

Palavras-chave: Contexto, Desenvolvimento de Software, Ontologias, Recolha de In-
formação, Sistemas de Recomendação.

Acknowledgements

Although this thesis represents the culmination of a personal journey, it would not be
possible without the support of some people, who have helped me, one way or another, to
achieve this goal.

First of all, I would like to thank my advisor, Professor Paulo Gomes, for taking me
as his student and trusting my work. He was always there when I needed advice and
guidance, helping me find the solution when I only saw the problem. More than a mentor,
he became a friend and a source of inspiration.

This work would not be possible without the contribution of the research fellows Joel
Cordeiro, Francisco Correia e Pedro Costa. I would like to thank them for helping to
shape some of the ideas that were explored in this work. I would also like to thank all the
volunteers who have accepted to use our prototype during their work. Their contribution
was essential to validate and improve our approach.

At a more personal level, I would like to thank Vera, for having supported me in all the
bad moments, for sharing with me the happiness of the good times, and for understanding
all the moments I had to be absent. I would not be where I am today without the support
of my parents, Ana and José, whom I would like to thank for teaching me to set goals, for
encouraging me to fight for them, and for giving me everything I ever needed to achieve
them. They are, and will always be, my reference of courage and determination. Last,
but not least, I leave a word of gratitude to my family and friends, for their continuous
and unconditional support.

This thesis was supported by a FCT (Fundação para a Ciência e Tecnologia) schol-
arship grant, with reference SFRH/BD/43336/2008, co-funded by ESF (European Social
Fund). I would like to thank FCT for providing me the financial conditions I needed to do
what I like the most, research. Also, I thank CISUC (Centre for Informatics and Systems
of the University of Coimbra), for hosting me and giving me the best conditions to develop
and promote my work.

Finally, I would like to thank all those who, although not mentioned here, have crossed
with me during the long walk that brought me here.

Contents

Chapter 1: Introduction . 1
1.1 Research Goals . 3
1.2 Approach . 4
1.3 Contributions . 5
1.4 Outline . 6

Chapter 2: Background Knowledge . 7
2.1 Ontologies . 7

2.1.1 Classification . 8
2.1.2 Building Process . 9
2.1.3 Applications . 10

2.2 Context . 11
2.2.1 What is context? . 11
2.2.2 Context Modeling . 12

2.3 Information Retrieval . 14
2.3.1 Modeling . 15
2.3.2 Text Processing . 17
2.3.3 Query Formulation . 18
2.3.4 Evaluation . 19
2.3.5 Context-Aware Information Retrieval 20

2.4 Recommender Systems . 21
2.4.1 Classification . 21
2.4.2 Evaluation . 22
2.4.3 Context-Aware Recommendation . 23

2.5 Software Development . 24
2.5.1 Search . 28
2.5.2 Recommendation . 29

2.6 Summary . 31

Chapter 3: Approach . 33
3.1 Knowledge Base . 35

3.1.1 Ontologies . 36
3.1.2 Building . 37
3.1.3 Indexing . 41

3.2 Context Model . 42
3.2.1 Structural Context . 42
3.2.2 Lexical Context . 45
3.2.3 Context Transitions . 46

3.3 Context-Based Search . 49
3.3.1 Retrieval . 50
3.3.2 Ranking . 50

3.4 Context-Based Recommendation . 57
3.4.1 Retrieval . 57
3.4.2 Ranking . 59

3.5 Weight Learning . 60
3.6 Summary . 63

Chapter 4: Implementation . 65
4.1 Architecture . 65

4.1.1 Data Layer . 65
4.1.2 Business Layer . 66
4.1.3 Presentation Layer . 67

4.2 Features . 68
4.2.1 Search . 68
4.2.2 Recommendation . 69
4.2.3 Monitor . 70

Chapter 5: Validation . 75
5.1 Preliminary Study . 75

5.1.1 Context-Based Search . 78
5.1.2 Context-Based Recommendation . 81

5.2 Final Study . 85
5.2.1 Context Model . 85
5.2.2 Context-Based Search . 88
5.2.3 Context-Based Recommendation . 92

5.3 Discussion . 98
5.4 Limitations . 100

Chapter 6: Related Work .103
6.1 Context Awareness in Software Development 103
6.2 Software Exploration . 107

6.2.1 Textual Approaches . 108
6.2.2 Static Approaches . 110
6.2.3 Textual/Static Approaches . 111

6.3 Retrieval in Software Reuse . 111
6.3.1 Lexical Retrieval . 112
6.3.2 Structural Retrieval . 113
6.3.3 Lexical/Structural Retrieval . 114

6.4 Software Project History . 115

Chapter 7: Conclusions .117
7.1 Contributions . 118
7.2 Future Work . 120

7.2.1 Knowledge Base . 120
7.2.2 Context Model . 122
7.2.3 Context-Based Search . 123
7.2.4 Context-Based Recommendation . 124
7.2.5 Weight Learning . 124
7.2.6 Application Domain . 124

References .127

List of Figures

2.1 Relations between the different types of ontologies, adapted from (Guarino,
1998). 9

2.2 The five fundamental categories for context information, adapted from
(Zimmermann et al., 2007). 12

2.3 A screenshot of the Eclipse IDE. 25

3.1 The layered context model of the developer, crossing the different dimen-
sions that comprise her/his work environment. 34

3.2 The conceptual architecture of our approach to context-based retrieval in
software development. 35

3.3 The structural and lexical ontologies model. 36

3.4 Abstract representation of the process used to build the knowledge base. . . 38

3.5 Example of a simplified AST generated for the source code of listing 3.1. . . 39

3.6 Example of how the source code of listing 3.1 is represented in the structural
and lexical ontologies. 40

3.7 Abstract representation of the process used to build the context model. . . 42

3.8 Example of how the context model is derived from a set of interactions in
the interaction timeline. 46

3.9 Example of how the context transition window is applied to the interaction
timeline. 47

3.10 Abstract representation of the context-based search process. 50

3.11 Example of the source code elements retrieved for a given query. 51

3.12 Example of the structural paths between a set of retrieved structural ele-
ments (RE) and the elements in the structural context (CE). 53

3.13 Example of the lexical paths between the terms extracted form a set of
retrieved structural elements (RE) and the terms in the lexical context (CT). 56

3.14 Abstract representation of the context-based recommendation process. . . . 57

3.15 Example of the retrieval and ranking using both the interest and the time
based methods. 58

4.1 The architecture of the prototype implemented. 66

4.2 A screenshot of the prototype showing the search view (1) and the search
window (2). 68

4.3 A screenshot of the prototype showing the recommendation view (1), the
recommendation window (2), and the integration of recommendations in
the search interfaces (3 and 4). 69

4.4 A screenshot of the monitor interface showing information about the struc-
tural context, including the list of existing context models (1), the list of
events associated to the current context model (2), the list of structural
elements (3), the list of structural relations (4), the list of events associated
to the current structural element (5), and the evolution of the interest of
the current structural element (6). 72

4.5 A screenshot of the monitor interface showing information about the lexical
context, including the list of terms (1), the list of events associated to the
current term (2), and the evolution of the interest of the current term (3). . 72

4.6 A screenshot of the monitor interface showing information about the struc-
tural ontology, including the number of structural elements (1), the num-
ber of structural relations (2), the evolution in the number of structural
elements (3), and the evolution in the number of structural relations (4). . . 73

4.7 A screenshot of the monitor interface showing information about the lexical
ontology, including the evolution in the number of terms (1), the number
of lexical relations (2), and the evolution in the number of lexical relations
(3). 73

4.8 A screenshot of the monitor interface showing information about the context-
based search, including the number of selected search results (1), the dis-
tribution of the search weights (2), the evolution of the average rankings of
selected search results (3), and the evolution of the search weights (4). . . . 74

4.9 A screenshot of the monitor interface showing information about the context-
based recommendation, including the number of selected recommendations
(1), the distribution of the recommendation weights (2), the evolution of
the average rankings of selected recommendations (3), and the evolution of
the recommendation weights (4). 74

5.1 Evolution of the search weights for developers #4, #15, #6 and #9, where
the x-axis represents each weights update and the y-axis represents the
value of the weights. 91

5.2 Evolution of the recommendation weights for developers #4, #10A, #6
and #21, where the x-axis represents each weights update and the y-axis
represents the value of the weights. 97

List of Tables

2.1 The Recommender System for Software Engineering (RSSE) design dimen-
sions, adapted from (Robillard et al., 2010). 31

3.1 Example of the terms used to index the source code elements of listing 3.1. 42

3.2 List of captured interactions, their description and interest variation. 43

3.3 Example of how a set of consecutive interactions affects the interest of a
structural element. 44

3.4 Example of the term frequencies, inverse document frequencies, weights and
scores computed for the query illustrated in figure 3.11. 52

5.1 The mean and confidence interval for the rankings of the selected search
results, per component and experiment. 79

5.2 The weighted mean for the final weights of the context-based search, per
component and experiment. 79

5.3 Questionnaire results for the context-based search, including the mean and
the standard deviation, per group of developers. 80

5.4 Number of selected recommendations, per interface and group of developers. 82

5.5 The mean and confidence interval for the rankings of the selected recom-
mendations, per component and group of developers. 82

5.6 The weighted mean for the final weights of the context-based recommenda-
tion, per component and group of developers. 83

5.7 Questionnaire results for the context-based recommendation, including the
mean and the standard deviation, per group of developers. 84

5.8 The number of days of usage and average knowledge base sizes, per developer. 86

5.9 The average number of structural and lexical elements in the context model. 86

5.10 The percentage of times each relation appeared in the relations between
added and existing context elements. 87

5.11 The statistical information collected about the context transition process. . 87

5.12 The mean and confidence interval for the rankings of the selected search
results, per component. 89

5.13 Comparison between the rankings of the individual components for the
selected search results. 89

5.14 The number of selected results, average rankings and final weights for the
context-based search, per developer. 90

5.15 The weighted mean for the final weights of the context-based search, per
component. 91

5.16 The questionnaire results for the context-based search, including mean and
standard deviation. 93

5.17 The number, percentage and average rankings of newly accessed source code
elements found in recommendations, per value of N 94

5.18 Number of selected recommendations, per interface. 95

5.19 The mean and confidence interval for the rankings of the selected recom-
mendations, per component. 95

5.20 The number of selected results, average rankings and final weights for the
context-based recommendation, per developer. 96

5.21 The weighted mean for the final weights of the context-based recommenda-
tion, per component. 96

5.22 Questionnaire results for the context-based recommendation, including the
mean and the standard deviation. 99

Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

CVS Concurrent Versioning System

DM Data Mining

IDE Integrated Development Environment

IE Information Extraction

IFT Information Foraging Theory

IR Information Retrieval

FCA Formal Concept Analysis

JDT Eclipse Java Development Tools

LDA Latent Dirichlet Allocation

LSA Latent Semantic Analysis

LSI Latent Semantic Indexing

NLP Natural Language Processing

RF Relevance Feedback

RS Recommender System

RSSE Recommender System for Software Engineering

SAN Spread Activation Network

SDE Software Development Environment

SDiC Software Development in Context

TF-IDF Term Frequency/Inverse Document Frequency

UI User Interface

VSM Vector Space Model

Chapter 1

Introduction

“I don’t know anything, but I do know that
everything is interesting if you go into it deeply

enough.”

Richard Feynman

Although there is an intuitive meaning for context in our minds, it remains an ambiguous
concept that is difficult to define. Furthermore, the interest in the many roles of context
comes from different fields, such as literature, philosophy, linguistics and computer science,
with each field proposing its own view of context (Mostefaoui et al., 2004). The term
context typically refers to the set of circumstances and facts that surround the center
of interest, providing additional information and increasing understanding. The context-
aware computing concept was first introduced by Schilit and Theimer (Schilit and Theimer,
1994), where they refer to context as “location of use, the collection of nearby people and
objects, as well as the changes to those objects over time”. Similarly, Brown et al. (Brown
et al., 1997) define context as location, identities of the people around the user, the time
of day, season, temperature, etc. A more generic definition was provided by Dey and
Abowd (Dey and Abowd, 2000), who define context as “any information that can be used
to characterize the situation of an entity. An entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and applications themselves”. Additionally, they define a context-aware system as
a system that “provide relevant information and/or services to the user, where relevancy
depends on the user’s task”.

Especially in software development, the context of a developer can be viewed as a
rich and complex network of elements across different dimensions. Although software
development (McCarthy and McCarthy, 2006) may include all the activities that result in
a software product, from its conception to its realization, here we focus on the process of
writing and maintaining the source code. This activity is usually conducted by developers
in an Integrated Development Environment (IDE), which provide a set of tools aimed to
help developers develop their work in an integrated workspace.

With the increasing dimension of software systems, software development projects have
grown in complexity and size, as well as in the number of requirements and technologies
involved (Robillard et al., 2010). During their work, software developers need to cope with
a large amount of contextual information that is typically not captured and processed in
order to enrich their work environment. With workspaces frequently comprising hundreds,
or even thousands, of artifacts, they spend a considerable amount of time navigating the
source code or searching for a specific source code artifact they need to work with (Murphy
et al., 2006; Ko et al., 2006; Starke et al., 2009). This is especially true when developers

2 Chapter 1. Introduction

work on software maintenance and evolution tasks, which require them to locate a specific
feature in the source code, or understand what source code artifacts may be relevant for
their task. But, as the number of source code elements in the workspace of a developer
increase, the need to switch between different elements becomes more frequent and more
time is spent locating the needed elements.

With the aim of helping developers understand the source code structure and find
what they need, modern IDEs provide several features for searching and navigating the
source code. For instance, Eclipse1, one of the most used IDEs for the Java programming
language (Goth, 2005), provides at least seven different views for navigating the source
code (Murphy et al., 2006) and at least eight different types of search options, including
lexical and structural searches (Starke et al., 2009). Despite this number of tools, de-
velopers still spend a considerable amount of time navigating the source code structure.
According to a study conducted by Ko et al. (Ko et al., 2006), about 35% of the working
time of a developer is spent on searching and navigating the source code. As observed by
Murphy et al. (Murphy et al., 2006), the navigation tools are among the most used views
in Eclipse. Also, between the views dedicated to navigating the source code, the Package
Explorer view, which allows to browse the entire source code structure in the form of a
tree, was by far the most used, with 74% of selections, followed by the Search view, with
11% of selections.

With regard to search, Starke et al. (Starke et al., 2009) have observed that most of
the times the searches performed by developers are too generic, leading to a high number
of search results. Moreover, developers have difficulties in evaluating the relevance of
search results, and tend to skim the usually big list of search results, seeking any clue of
relevance. These searches are usually limited to the matching of specific patterns in the
lines of code that comprise a software system. A good example of such an approach is
grep2, an Unix utility for searching plain text with regular expressions. But the pattern
matching approaches have several shortcomings, requiring a direct correspondence between
the pattern and the text in the source code. The limitations of these approaches have
been largely surpassed by the research carried out in the field of Information Retrieval
(IR), where efforts have been devoted to “finding material (usually documents) of an
unstructured nature (usually text) that satisfies an information need from within large
collections (usually stored on computers)” (Manning et al., 2008). Although source code
is of a structured nature, the individual source code artifacts can be viewed as individual
documents, and their content can be represented by textual references, such as identifiers,
comments and literals. The improvements pledged by the use of IR techniques, encouraged
researchers using these techniques to help developers finding relevant source code for their
current task (Marcus et al., 2004; Lukins et al., 2008; Gay et al., 2009; Shao and Smith,
2009). But, despite the fact that context is argued to improve the effectiveness of IR
systems (Jones and Brown, 2004; Doan and Brézillon, 2004), as far as we know, none of
the previous approaches have used the contextual information of the developer to improve
the retrieval and ranking of relevant source code in the IDE.

Another form of delivering relevant source code artifacts to a developer is using a
recommender system. These systems are currently used in a wide variety of domains to
help users find relevant information, deal with information overload and provide person-
alized recommendations of very different kinds of items. The recommendation process
is commonly dependent on estimating the utility of a specific item for a particular user
(Adomavicius and Tuzhilin, 2005). Most of the approaches used in current recommender
systems are mainly focused in estimating how relevant is an item to an user, ignoring any
contextual information that could be used to improve the recommendation process. How-

1http://www.eclipse.org/ (August 2012)
2http://www.gnu.org/software/grep/ (August 2012)

http://www.eclipse.org/
http://www.gnu.org/software/grep/

1.1. Research Goals 3

ever, context-based recommendation systems are emerging, taking context into account
when providing recommendations to the user (Adomavicius and Tuzhilin, 2011).

A recommender system for software engineering has been defined by Robbilard et al.
(Robillard et al., 2010) as “a software application that provides information items esti-
mated to be valuable for a software engineering task in a given context”. The increasing
dimension and complexity of software development projects are fostering the develop-
ment of such systems, which have been applied to very different tasks such as software
reuse, expertise location, code comprehension, guided software changes, debugging, etc.
The contextual information is of vital importance in these systems, serving as input for
the recommendation process and determining the quality of its output (Robillard et al.,
2010). A better description of the user context would allow for more focused and pertinent
recommendations (Happel and Maalej, 2008).

Having identified the potential of recommender systems for software development,
researchers studied ways of using contextual information, either implicit or explicit, to
recommend source code artifacts that are potentially relevant for the current task of the
developer. For instance, the history of interactions between the developers and the source
code was used to identify navigational patterns, which allowed the recommendation of
relevant artifacts given a current artifact (Singer et al., 2005; DeLine et al., 2005; McCarey
et al., 2005). With the same objective, the information stored in the project memory of
a software product was used to identify relationships between source code artifacts (Ying
et al., 2004; Zimmermann et al., 2005; Cubranic et al., 2005). The context associated to
the current task of the developer was used to help focus the information displayed in the
IDE (Kersten and Murphy, 2006), to improve awareness, and facilitate the exploration of
source code (Parnin and Gorg, 2006; Saul et al., 2007; Robillard, 2008; Piorkowski et al.,
2012).

The research described in this thesis is focused on the development of context-based
approaches to search and recommendation of source code in the workspace of the devel-
oper. The source code structure stored in the workspace of the developer is represented
in a knowledge base. A context model represents the source code elements that are more
relevant for the developer in a specific moment. These structures are then used to improve
the retrieval and ranking of source code elements, such as classes, interfaces and methods,
taking into account their relevance to the current context of the developer. In the remain-
ing of this chapter, we state the main goals of our research, briefly describe our approach,
refer to the main contributions of our work, and describe the structure of this thesis.

1.1 Research Goals

As we have observed in previous studies, developers spend a considerable amount of time
navigating and searching for the source code elements needed for their tasks. Although
current IDEs already provide a set of tools, aimed to help developers navigate and find
what they need, these tools still suffer from some limitations that leave room for improve-
ments. Especially, concerning the search of source code in the IDE, as far as we know,
none of the existing approaches take into account the contextual information of the devel-
oper during the retrieval and ranking of search results, which could be used to improve the
accuracy of source code search in the IDE. With regard to the recommendation, the use
of contextual information is generally limited or based on information explicitly provided
by the developer.

Being aware of this scenario, our objective was set on the development of a context-
based retrieval approach for software development. This approach should take into account
a context model of the developer, which should be used to improve the search and rec-

4 Chapter 1. Introduction

ommendation of source code that is being created or maintained by the developer on the
workspace of an IDE. This generic objective can be decomposed in the following research
goals:

• The definition of a context model of the developer capable of representing both
the structural and lexical elements of the source code that are more relevant for
the developer in a specific moment. This context model should be automatically
created and continuously adapted to the current focus of attention of the developer.

• The development of a context-based approach to search and recommendation of
relevant source code elements in the workspace of the developer. This approach
should take into account the aforementioned context model, to retrieve and rank
the source code elements according to their relevance to the developer.

• The development of a prototype to integrate the context-based search and recom-
mendation approaches developed into an existing IDE. This prototype should be
implemented taking into account the requirements of stability, performance and
usability required to assure the validation of our approach in a real world scenario.

1.2 Approach

The approach we propose for achieving our research goals begin with the definition of a
knowledge base. This knowledge base represents the source code structure stored in the
workspace of the developer. The source code is represented from a structural and lexical
perspectives, which are formalized using ontologies. A structural ontology is used to make
explicit the different types of source code elements, as well as the structural relations
that exist between them. While a lexical ontology represents the terms that comprise the
identifiers of such source code elements, as well as the co-occurrence relations that exist
between the terms.

The contextual information of the developer is modeled in the form of a context model
that is grounded in the source code elements that are being manipulated by the developer.
As in the knowledge base, this context model combines a structural and a lexical dimen-
sions, which represent the source code elements, their structural relations and terms, that
are more relevant for the developer in a specific moment in time. A context transition
detection mechanism allows the context model to automatically adapt to the changes in
the focus of attention of the developer.

The context model defined is used to improve the ranking of source code elements
retrieved using a context-based search process. The retrieval is performed using the Vector
Space Model (VSM) (Salton et al., 1975) of IR, by matching the terms in the identifiers
of the source code elements with the terms contained in the search query. The retrieved
elements are then ranked according to a retrieval, a structural and a lexical components.
The retrieval component represents the ranking provided by the IR model, while the
structural and lexical components represent the proximity of the search result to the
context model of the developer. The contribution of these components to the ranking
of search results is defined by a set of weights that are learned over time. The best
combination of weights is inferred through an implicit feedback mechanism based on the
search results selected by the developer.

The same context model was used to support the context-based recommendation of
relevant source code elements to the developer. The recommendations are retrieved using
the source code elements with higher interest and accessed more recently, that are rep-
resented in the context model. The ranking of recommendations takes into account an
interest and a time components, representing the ranking obtained through the retrieval

1.3. Contributions 5

process, as well as a structural and lexical components, which represent the proximity
of the recommendation in relation to the context model. As in the context-based search
process, the contribution of each one of these components is learned over time, through
the analysis of the recommendations selected by the developer.

Finally, we have implemented a prototype that implements and integrates our approach
in the Eclipse IDE, one of the most used IDEs for the Java programming language.

1.3 Contributions

The main contributions of this work are the use of a context model of the developer
to improve the search and recommendation of source code in the IDE. Another impor-
tant contribution is the development of a functional prototype, which provides access to
context-based search and recommendation of source code in the Eclipse IDE. In a more
systematic way, the contributions of this thesis can be summarized as follows:

• Context Model. The context model we have used in our approach introduces
innovations that were not considered before. Although the context model used was
inspired by previous work, it extends the existing model with a lexical perspective,
which allowed us to explore the lexical relations between the source code elements,
the same way that the structural relations were explored before. Additionally, we
have also developed a mechanism to automatically detect context transitions. The
aim of this mechanism is to detect changes in the focus of attention of the developer
and reflect those changes in the context model.

• Context-Based Search. The context model developed was used to support an
approach to context-based search of source code in the IDE. The search results
retrieved are ranked according to the retrieval process and the context model of the
developer.

• Context-Based Recommendation. The same context model was also used to
support an approach to context-based recommendation of source code in the IDE.
The elements in the context model are used to retrieve recommendations of relevant
source code elements to the developer. These recommendations are than ranked
according to their relevance in relation to the entire context model.

• Learning. A learning mechanism was used, so that the ranking of search results and
recommendations could be adapted to the needs of the developer. This mechanism
uses the rankings of the search results and recommendations, selected by developers,
to favor the components that have a positive influence in their final ranking.

• Prototype. The context-based search and recommendation approaches developed
were implemented and integrated in the Eclipse IDE, using a plugin named Software
Development in Context (SDiC). This plugin can be easily installed in any Eclipse
instance, providing access to context-based search and recommendation of source
code in the IDE. The prototype is publicly available for download through the web
site of the SDiC project (http://sdic.dei.uc.pt), representing also an important
contribution of our research.

Finally, most of the work performed during the course of this thesis is published and
was presented in international events, such as ECAI, RecSys, SEKE or ICSOFT (see a
complete list in section 7.1).

http://sdic.dei.uc.pt

6 Chapter 1. Introduction

1.4 Outline

The following chapters start with the theoretical background that supports the research
developed under this thesis. Then, our approach and its different components are pre-
sented, as well as the prototype that implements and integrates our approach in the Eclipse
IDE. The experiments performed to validate this approach are described next, along with
a discussion of their results. Before concluding, we provide an overview on related work,
comparing our work with other approaches. Finally, the thesis concludes with some final
remarks, contributions and future work. A brief description of each one of the chapters is
provided in the following paragraphs.

Chapter 2 provides an introduction to the theoretical background that supports the re-
search developed under this thesis. We start with an introduction to ontologies, along
with some of their classification methods, building methodologies and applications. Then,
we provide a description of what context is and how it can be modeled. Next, we present
an overview of the IR field, and continue to the field of Recommender System (RS). The
chapter concludes with a perspective about software development, especially focused on
the needs of developers while working on an IDE.

Chapter 3 presents the conceptual architecture and describes the individual components
that embody the approach we have developed. After presenting an overview of the ap-
proach, we describe the knowledge base, which represents the source code structure, and
the context model, which models the contextual information of the developer. Then, we
explain how these structures are used to support the context-based search and recommen-
dation processes. Finally, we present the learning mechanism that adapts the ranking of
search results and recommendations by using the implicit feedback of the developer.

Chapter 4 describes the prototype that resulted from the implementation and integration
of our approach in the Eclipse IDE. The architecture of the prototype is presented, with
a description of the modules comprising the data, business and presentation layers. Then,
we describe the main features provided to the developer, including the context-based
search and recommendation interfaces, as well as a monitor interface that shows relevant
information about the different modules.

Chapter 5 discusses the experiments and results that are in the basis of the validation of
our research. The chapter starts with the description and results of a preliminary study,
which was essential to identify some issues that needed to be addressed. A final study
was then conducted and its results are presented next, including an evaluation of the
context model and the context-based search and recommendation processes. The chapter
concludes with a general discussion of the results obtained in the two studies.

Chapter 6 gives an overview of related work. We start by introducing some of the works
that focus on context awareness in software development. Then, a set of works that
tackled the problem of software exploration are presented. Next, we also include some
works dedicated to the problem of software reuse. Finally, a set of works that explore the
information extracted from a software project memory are described.

Chapter 7 concludes this thesis with some final remarks, highlighting its main contribu-
tions and providing several clues for future work.

Chapter 2

Background Knowledge

“If I have seen further it is by standing on the
shoulders of giants.”

Isaac Newton

This chapter provides an overview of the theoretical aspects that are in the basis of our
work. We start by introducing the concept of ontology as a knowledge representation
structure, its classification approaches, building process and applications. Then, context
and its ambiguous nature are described, along with the approaches used for modeling con-
textual information. The Information Retrieval (IR) field, which provides the framework
for textual search processes, is presented and described in relation to modeling approaches,
text processing operations, query formulation, evaluation and context-awareness. The field
of recommender systems, which is in the basis of any recommendation process, is also pre-
sented, including the classification of recommender systems, their evaluation and context
integration paradigms. Finally, we introduce the field of software development, with a
special focus on how developers search and collect relevant information for their needs.

2.1 Ontologies

An ontology is a powerful mechanism for representing knowledge and encoding its meaning,
allowing the exchange of information that machines are able to process and concisely
understand. Because of these characteristics, ontologies are one of the most important
concepts present in the Semantic Web (Berners-Lee et al., 2001) architecture. There are
various definitions of an ontology, going from a simple taxonomy to a strongly semantic and
logic encoded conceptualization of the world. The term ontology came from the philosophy
discipline, where it represents a branch dedicated to the study and description of existence
and reality (Zuniga, 2001). Once the term was adopted in the computer science domain, it
assumed a distinct role. A commonly cited definition is given by Gruber (Gruber, 1993):

“An ontology is an explicit specification of a conceptualization.”

Furthermore, Gruber defines a conceptualization as an abstract and simplified vision
of the world that for some reason we want to represent. In a more refined definition,
Guarino (Guarino, 1998) defines an ontology as:

“An engineering artifact, constituted by a specific vocabulary used to describe
a certain reality, plus a set of explicit assumptions regarding the intended
meaning of the vocabulary words.”

8 Chapter 2. Background Knowledge

Both definitions take an ontology as an abstract conceptualization of a certain reality,
and Guarino goes beyond that by saying it comprises a defined vocabulary and a set
assumptions on the meaning of this vocabulary. Usually, the vocabulary definition is
based on unary and binary predicates, called concepts and relations, respectively, and the
assumptions are represented using first-order logic theory (Smullyan, 1968). Generally,
an ontology contains an associated syntax, which represents the order and form of the
symbols that comprise the ontology; some structure, that denotes the organization of the
symbols and their relations; semantic information, containing the meaning of the symbols
defining what they represent; and pragmatics, showing how the symbols can be used and
their purpose (Maedche, 2002).

Some reasons that can be pointed out for the development of an ontology are described
by Noy and McGuinness (Noy and McGuinness, 2001), which we enumerate:

• To share common understanding of the structure of information among people or
software agents;

• To enable reuse of domain knowledge;

• To make domain assumptions explicit;

• To separate domain knowledge from the operational knowledge;

• To analyze domain knowledge.

Having tried to find a common definition of an ontology, we will now make some
considerations about its classification approaches, development process and applications.

2.1.1 Classification

We can distinguish different types of ontologies. A classification system has been purposed
by Guarino (Guarino, 1998), based on the level of generalization of the ontology (see figure
2.1). This classification is divided in four types of ontologies:

• Top-Level Ontologies describe general concepts that are independent from a specific
problem or particular domain. It is reasonable to have top-level ontologies for large
communities of users.

• Domain Ontologies describe the vocabulary related to a generic domain, through
the specialization of concepts from top-level ontologies.

• Task Ontologies are similar to domain ontologies, but they are used in the domain
of a specific task.

• Application Ontologies are the most specific ontologies, describing concepts that are
a specialization of both domain ontologies and task ontologies. Generally, these
concepts correspond to roles played by domain entities while performing a certain
task.

In another classification mechanism, Heijst (van Heijst et al., 1997) goes beyond the
subject of the conceptualization and classifies ontologies based on the structure of the
conceptualization, defining three types of ontologies:

• Terminological Ontologies such as lexicons, defining the terms needed to represent
the knowledge in the domain of discourse.

2.1. Ontologies 9

Top-Level Ontology

Domain Ontology Task Ontology

Application Ontology

Figure 2.1: Relations between the different types of ontologies, adapted from (Guarino,
1998).

• Information Ontologies which specify the record structure of databases.

• Knowledge Modeling Ontologies that specify conceptualizations of knowledge, hav-
ing a richer internal structure than information ontologies, and that are optimized
for a particular use of the knowledge that they describe.

An ontology can also be viewed as a particular knowledge base, as it defines a structure
and a shared vocabulary, which meaning is agreed and assumed to be always true by a
community of users. A generic knowledge base generally also describes facts, being com-
posed by an ontology and a “core” knowledge base that stores instances of the structures
defined in the ontology (Guarino, 1998).

2.1.2 Building Process

Although there is more than one methodology for building ontologies, we will briefly
describe one of the most used methodologies, developed by Noy and McGuinness (Noy
and McGuinness, 2001). First of all, we must take in mind that there are always various
alternatives for building an ontology, and that the one we choose will depend on the
application we plan for the ontology being created. We need to choose the alternative
that better reflects our reality, being at the same time the more intuitive, extensible and
maintainable. According to Noy and McGuinness, the life-cycle for the development of an
ontology comprises different steps:

1. Determine the domain and scope of the ontology. It is suggested to start the de-
velopment of an ontology by defining its domain and scope. This comprises the
definition of the domain that the ontology will cover, the purpose of the ontology,
for what type of questions the information in the ontology must provide answers
and who will use and maintain the ontology. This may change during the design
process of an ontology, but it helps to limit the scope of the model.

2. Consider reusing existing ontologies. The reuse of ontologies can be done either
for taking advantage of existing work, which can be done by refining or extending
existing sources for our particular domain, or because it may be a requirement if
our system must interact with other systems that use their own ontologies. There
are a lot of ontologies available in electronic format and represented using standard
languages that make their integration much easier. The Swoogle1 (Ding et al., 2004)
project is an example of a tool that helps reusing existing ontologies.

1http://swoogle.umbc.edu/ (August 2012)

http://swoogle.umbc.edu/

10 Chapter 2. Background Knowledge

3. Enumerate important terms in the ontology. Before starting to define the classes
and the corresponding class hierarchy, it is important to write down some terms
closely related to the domain of the ontology. This helps to start defining the terms
we want to talk about and their properties. In this phase we do not need to worry
about relations or the overlap among terms.

4. Define the classes and the class hierarchy. This step and the following one are
the most important and are also closely related. There are several approaches in
developing a class hierarchy: a top-down development process that starts with the
definition of the most general concepts in the domain and subsequent specialization
of concepts; a bottom-up development process that starts with the definition of most
specific classes, with subsequent grouping of these classes into more general concepts;
and a combination development that is a combination of the last two approaches,
starting by defining the more important concepts and ending up generalizing and
specializing them properly.

5. Define the properties of classes. Once we have defined some classes, we have to
describe the internal structure of concepts. There are several types of properties
that can be defined, such as properties, parts and relationships.

6. Define the restrictions on the properties. Properties can have different restrictions,
for instance referring to the value type, allowed values and cardinality of the values.

7. Create instances. The last step is the definition of the classes. This is done by
selecting the class we want to instantiate, creating an individual instance of that
class and filling the properties values.

This is an iterative approach and we can go through the various phases several times,
starting with a rough version of the ontology and filling in the details progressively to
evolve this ontology.

One of the biggest challenges of Semantic Web is to efficiently and effectively con-
struct ontologies, since they are the core representational medium for knowledge. When
possible, this should be done through some automated process, which makes things more
complex. In their work, Brewster et al. (Brewster et al., 2005) discuss the foundations on
which automated ontology construction should build, as well as a set of functions that an
ontology should fulfill. They argue that these foundations and the available resources for
ontology construction are highly problematic. Furthermore, there are different require-
ments in ontology construction that can be contradictory and impossible to be achieved
simultaneously.

2.1.3 Applications

Compared to syntactic standards, ontologies not only provide a common representation
and structure, but also help to reach a common understanding of the meaning of terms.
These characteristics make ontologies a privileged mean to support semantic interoper-
ability, which is a key factor in various applications (Maedche, 2002; Stuckenschmidt and
van Harmelen, 2005):

• Semantic Web is a domain where ontologies are a key concept. As referred before,
ontologies provide mechanisms that structure and semantically describe knowledge,
which is essential to make it machine understandable. Some examples of the use of
ontologies in Semantic Web prototypes are described by Staab, et al, (Staab and
Maedche, 2001), introducing knowledge portals for different application scenarios.

2.2. Context 11

• Natural Language Processing generally requires the integration of many knowledge
sources, where the domain knowledge represented as an ontology is a key factor for
the correct understanding of texts.

• Information Retrieval techniques require a shared vocabulary between the user and
the source information, preventing the need of a specific encoding and reducing
the ambiguity of the word matching, which makes the retrieval more efficient and
precise.

• Knowledge Management, which main roles include acquiring, maintaining and ac-
cessing knowledge of an organization, with this knowledge being mainly stored in
the form of documents. The mechanisms provided by ontologies allows one to move
from a document oriented approach to a knowledge resource approach, where every
structured resource is concisely described and interconnected in a flexible way.

• e-Business, which needs automation mechanisms, thus requiring a mean for common
understanding and interpretation of terms, given by ontologies, assuring the desired
interoperability and information integration.

2.2 Context

The term context has an intuitive meaning for humans, but due to this intuitive connota-
tion it remains vague and generalist (Mostefaoui et al., 2004). Furthermore, the interest
in the many roles of context comes from different fields, such as literature, philosophy,
linguistics and computer science, with each field proposing its own view of context. Re-
ferring to the computer science field, it is of particular interest for areas such as artificial
intelligence, context-aware systems and IR. Especially in the IR field, the use of context
is argued to improve the effectiveness of IR systems (Jones and Brown, 2004). But the use
of context to improve IR is a big challenge and most of these systems retrieve and rank
information based only on queries and document collections, ignoring the full potential of
the user’s context.

2.2.1 What is context?

The term context typically refers to the set of circumstances and facts that surround
the center of interest, providing additional information and increasing understanding.
According to the American Heritage Dictionary2 of the English Language, the term context
has two meanings:

1. “The part of a text or statement that surrounds a particular word or passage
and determines its meaning.”

2. “The circumstances in which an event occurs; a setting.”

The first definition is closely related to linguistics, while the second one, more gener-
alist, can be applied in other fields. A large number of definitions for the terms context
and context-aware have been proposed. The term context-aware computing was first in-
troduced by Schilit and Theimer (Schilit and Theimer, 1994), where they refer to context
as:

“. . . location of use, the collection of nearby people and objects, as well as the
changes to those objects over time.”

2http://www.ahdictionary.com/ (August 2012)

http://www.ahdictionary.com/

12 Chapter 2. Background Knowledge

Figure 2.2: The five fundamental categories for context information, adapted from (Zim-
mermann et al., 2007).

In a similar way, Brown et al. (Brown et al., 1997) define context as location, identities
of the people around the user, the time of day, season, temperature, etc. In a more generic
definition, Dey and Abowd (Dey and Abowd, 2000) define context as follows:

“Context is any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
application themselves.”

As stated by Mena et al. (Mena et al., 2007), it is clear the importance of context for
modeling human activities (reasoning, perception, language comprehension, etc), which
is also true in social sciences and computing. But a generic context definition is hard
to achieve, as context assumes different definitions and characteristics according to the
domain where it is used. Nevertheless, there are a set of invariant characteristics in the
different definitions of context: context always relates to an entity; is used to solve a
problem; depends on the domain of use and time; and is evolutionary because it relates
to a dynamic process in a dynamic environment.

2.2.2 Context Modeling

In an attempt to overcome the generality of common definitions of the term context, an
operational definition of context is proposed by Zimmerman et al. (Zimmermann et al.,
2007). This definition comprises three canonical parts: a definition in general terms,
a formal definition regarding the appearance of context, and an operational definition
characterizing the use of context and its dynamics. The general definition is based on
the definition provided by Dey et al. (Dey and Abowd, 2000), which defines context
as “any information that can be used to characterize the situation of an entity”. As a
formal extension to this definition, Zimmerman et al. state that the elements used on the
description of context information can be grouped in five categories: individuality, activity,
location, time and relations (see figure 2.2). The grouping of contextual information in
these five clusters is considered vital for a pragmatic approach, facilitating the engineering
and management of a context model for context-aware systems.

The individuality context comprises the contextual information about the entity the
context is bound to. It contains information related to anything that can be observed
about an entity. This context information can be of four types:

2.2. Context 13

• Natural Entity Context. This category comprises the characteristics of all natural
living and non-living things that are not result of human intervention.

• Human Entity Context. This category covers the characteristics of human beings.
The General User Model Ontology (GUMO) (Heckmann et al., 2005) is seen as a
potential source of characteristics to take into account.

• Artificial Entity Context. This category contains information about products or
phenomena that result from human actions or technical processes.

• Group Entity Context. This category comprises information about groups of entities
which share characteristics, interact with one another or have established relations.
It is important to take into account these groups when capturing characteristics
that emerge only when entities are grouped together.

The time context has an important role in context information, as most of its elements
are related over the temporal dimension. The storage of contextual information over time
allows the analysis of the interaction history and behavior habits of users, which can be
used to predict future contexts.

The location context gains relevance as portable computing devices become more rel-
evant and humans start to move in an ubiquitous computing environment. The location
models classify the physical or virtual location of an entity, as well as other spatial in-
formation, such as speed and orientation. These models can be split into quantitative
(geometric) and qualitative (symbolic) models. The quantitative models refer to geomet-
ric coordinates and the qualitative models refer to elements such as buildings, rooms,
streets, countries, etc.

The activity context covers the information about the activities performed by the user,
which determine to a great extent its current needs. This information describes what the
user wants to achieve and how, and can be defined by means of explicit goals, tasks and
actions.

The relations context comprises information about the relations between an entity and
other entities, which can be persons, things, devices, services or other entities. Because
the set of possible relation types is large, a clustering of relations regarding the types of
entities involved is proposed, splitting the relations into three types:

• Social Relations. This category describes social aspects of the entity context, usually,
interpersonal relations such as social associations, connections or affiliations between
two or more people. This information can be used as a basis for deriving patterns
in behavior and groups of people with similar interests, goals or levels of knowledge.

• Functional Relations. This category comprises relations where an entity makes use
of other entity, for a certain purpose and a certain effect.

• Composition Relations. This category includes relations between the whole and its
parts. In special, the aggregation relations, which imply that the parts will not exist
anymore if the containing object is removed.

The operational extension to the context definition, proposed by Zimmerman et al.
(Zimmermann et al., 2007), addresses its use and its dynamic properties: the transitions
between contexts of one entity and the sharing of contexts among several entities. Par-
ticularly, human entities change contexts and two consecutive contexts are never exactly
the same.

The transition between contexts can be defined as a variation of approximation, a
change of focus or a shift of attention. A variation of approximation occurs when the

14 Chapter 2. Background Knowledge

contextual knowledge represented by a context experiences a specialization or a general-
ization. The change of focus refers to a change in the reachability or accessibility of specific
elements of the context description in a specific situation. The shift of attention relates to
a change of the focus of attention on specific aspects of the contextual knowledge, which
is largely determined by the type and amount of knowledge required for the processing of
the current activity.

The sharing of context emerges when the contexts of two entities overlap and parts of
the context information become similar and shared. The emergence and exploitation of
context is described through the establishment of relations, adjusting of shared contexts
and exploiting of relations. The establishment of relations occurs when entities converge
spatially or temporally, this proximity enables them to start responding to each other. The
adjustment of contexts is necessary because the participants in an interaction need to share
the same understanding or interpretation of the meaning of a context description. Finally,
the larger the shared context between two interacting parties, the more an exploiting of
relations is facilitated, since they better understand each other.

2.3 Information Retrieval

The field of Information Retrieval (IR) is very broad, but an academic definition is given
by Manning et al. (Manning et al., 2008):

“Information retrieval (IR) is finding material (usually documents) of an un-
structured nature (usually text) that satisfies an information need from within
large collections (usually stored on computers).”

Although IR has been seen as an activity performed only by professional searchers,
current advances in the World Wide Web allow millions of ordinary users to perform IR
through web search engines such as Google3, Yahoo!4 or Bing5. IR is becoming the domi-
nant form of information access and IR applications continue to grow and expand to larger
archives and new computing environments. The IR field is not limited to the definition
provided above, providing also support for browsing and filtering document collections.
The IR techniques are also used to perform clustering tasks, by identifying groups of doc-
uments based on their contents, and classification tasks, by assigning documents to one,
or more, previously provided topics.

A typical IR process starts with the user expressing an information need, usually
represented as a query, which in its simplest form can be composed by one or more terms.
The query is processed by the IR system and a set of documents, from a collection, that
match the query are retrieved. The match between the query and the documents in the
collection requires that the same text processing operations are applied to both the query
and the document. The retrieved documents are ranked according to their relevance to
the query. When examining the retrieved documents, the user may identify those that are
more interesting and provide feedback to help refining the retrieval process.

Here, we pretend to provide only an overview of the IR field, with a special focus in
the areas that are of more relevance to this work. We start with a description of the most
important IR models, which provide the grounding framework for an IR system. Then, we
describe some of the text processing operations that are commonly used in IR. The query
formulation process is also addressed, giving special attention to the different types of

3http://www.google.com/ (August 2012)
4http://www.yahoo.com/ (August 2012)
5http://www.bing.com/ (August 2012)

http://www.google.com/
http://www.yahoo.com/
http://www.bing.com/

2.3. Information Retrieval 15

queries available and the mechanisms that provide aid during the query formulation pro-
cess. Next, the most relevant measures for evaluating IR systems are presented. Finally,
we provide some insights of how context has been exploited to improve the IR process.

2.3.1 Modeling

A central problem of IR systems is to predict which documents are relevant, or not,
in relation to a query. Such systems usually answer this problem by providing a list
of documents ordered by a estimation of their relevance to the query. Thus, ranking
algorithms are an essential part of IR systems, so that different interpretations of document
relevance result in different IR models. As proposed by Baeza-Yates and Ribeiro-Neto
(Baeza-Yates and Ribeiro-Neto, 1999), an IR model is characterized by:

• A set of representations for documents in a collection;

• A set of representations for queries;

• A framework for modeling document representations, queries, and their relation-
ships;

• A ranking function that associates a real number between a query and a document
representation.

The classical IR models describe documents and queries as sets of index terms, gener-
ally nouns, that represent the document contents. The importance of a term when used to
describe the contents of a document is usually represented as a weight. These models have
been categorized as set-theoretic, algebraic, and probabilistic. Following, we provide a brief
description of each category, as presented in (Baeza-Yates and Ribeiro-Neto, 1999). The
interested reader may find more information about the various IR models in the literature
(Baeza-Yates and Ribeiro-Neto, 1999; Manning et al., 2008; Büttcher et al., 2010).

Set-theoretic Models

The set-theoretic models are based on set theory and Boolean algebra. These models are
grounded on the original Boolean model, which interprets the relevancy of a term in a
binary fashion, thus the weight of a term is 1 when the term is present in the document,
or 0 otherwise. A query is a Boolean expression, comprising a set of terms connected by
Boolean operators, such as and, or and not. A document is considered relevant or non-
relevant, whether the terms in the document satisfy the given query or not, and partial
matching is not supported. The simplicity of the model is an advantage, but its limitations
usually lead to the retrieval of too many or too few documents.

As an attempt to overcome the limitations of the Boolean model, some derivative
models have been proposed over the years. One of these models is the extended Boolean
model, proposed by Salton et al. (Salton et al., 1983), which combines the characteristics
of the Vector Space Model (Salton et al., 1975) with Boolean algebra, to introduce term
weighting and partial matching into the classic Boolean model. Another group of deriva-
tive models are categorized as fuzzy retrieval models (Ogawa et al., 1991), which combine
the extended Boolean model with properties of the fuzzy set theory.

Algebraic Models

The algebraic models are based in representations of documents and queries in the form of
vectors and compute similarities using algebra. The original algebraic model, the Vector

16 Chapter 2. Background Knowledge

Space Model (VSM), was proposed by Salton et al. (Salton et al., 1975) to overcome the
limitations of the Boolean model, providing a framework for non-binary term weights and
partial matching. The documents and queries are represented as t-dimensional vectors of
term weights. The degree of similarity between a document and a given query is computed
as a correlation of their associated vectors. This way, the vector model is able to retrieve
documents which partially match the query, and rank the retrieved documents according
to their degree of similarity to the query. The advantages of the vector model rely on its
term weighting approach, partial matching support and ranking of documents according to
a degree of similarity to the query. On the other hand, assuming that terms are mutually
independent can be seen as a drawback, even if that using term dependencies is not a
trivial task.

The degree of similarity between a document and a given query is usually computed
using the cosine similarity measure, which represents the cosine of the angle between the
two vectors. This value is computed using linear algebra calculations, and given that all
the components of the two vectors are non-negative, the value of the cosine similarity
measure ranges from 0 to 1, for angles between 0◦ and 90◦, respectively. As shown in
equation 2.1, the cosine similarity between a document vector ~d and a query vector ~q is
represented as the dot product of their vectors normalized to unit length.

sim(~d, ~q) =
~d

| ~d |
· ~q

| ~q |
(2.1)

The term weights can be computed using various methods that have been proposed
and evaluated over the years. As originally proposed by Salton et al. (Salton and Buckley,
1988), the term weights are commonly computed using the Term Frequency/Inverse Doc-
ument Frequency (TF-IDF). The weights in a document vector represent the product of a
function of the term frequency (TF) and a function of inverse document frequency (IDF).
The weights in a query vector are usually represented using only a function of the term
frequency within the query. The idea behind term frequency is that the more frequent a
term is, in a document or query, the more relevant it is, in relation to that document or
query. The term frequency for a term t in document d is usually computed using equation
2.2, where ftd is the frequency of the term in the document.

tf(t, d) = log (ftd) + 1 (2.2)

The inverse document frequency, on the other hand, is based on the assumption that
terms appearing in many documents are less relevant than terms appearing in few docu-
ments, and is computed using equation 2.3, where D is the total number of documents in
the collection and dft is the number of documents containing the term t.

idf(t) = log

(
D

dft

)
(2.3)

Finally, the weight w for a term t in document d is given by the product of tf(t, d)
with idf(t), as shown in equation 2.4.

w(t, d) = (log (ftd) + 1)× log
(
D

dft

)
(2.4)

Some alternative algebraic models have been proposed to overcome some of the limita-
tions of the classical vector space model. The generalized vector space model (Wong et al.,
1985) introduces term correlations into the original model. The Latent Semantic Index-
ing (LSI) model (Deerwester et al., 1990), also known as Latent Semantic Analysis (LSA)
was proposed to map documents and queries to a lower dimensional space, composed of

2.3. Information Retrieval 17

concepts. Another alternative algebraic modes is the neural network model (Wilkinson
and Hingston, 1991), which takes advantage of the pattern matching characteristics of
neural networks to match and compute the similarity between queries and documents.

Probabilistic Models

As its name suggests, the probabilistic model, introduced by Robertson and Jones (Robert-
son and Jones, 1976), addresses the IR problem from a probabilistic perspective. This
model is based on the assumption that given a user query and a document, it is pos-
sible to estimate the probability that the user will find the document interesting. This
probability depends only on the query and document representations. The subset of the
documents that the user would like to obtain for a given query, which maximize the prob-
ability of relevance to the user, is considered an ideal answer set. A document is predicted
to be relevant if it is contained in this ideal answer set, or non-relevant otherwise. The
model assigns each document a measure of similarity to a given query, which represents the
odds of the document being relevant to that query. The documents are ranked according
to the odds of relevance in relation to the query. The advantage of probabilistic models
is that documents are ranked according to a probability of their relevancy, on the other
hand they require an initial separation of the documents in relevant and non-relevant sets,
ignore term frequencies and assume that terms are mutually independent.

A set of alternative probabilistic models are based on Bayesian networks (Pearl, 1988),
including the inference network model (Turtle and Croft, 1990, 1991) and the belief network
model (Ribeiro and Muntz, 1996). These models use the formalisms associated to Bayesian
networks to model the probability of a document being relevant for a given query.

2.3.2 Text Processing

As discussed before, in IR, terms are used to represent the contents of a document. We
have also described that terms are not equally significant when used to represent the
contents of a document. This way, it is common to pre-process the text of a document to
determine which terms should be used to index that document. According to Baeza-Yates
and Ribeiro-Neto (Baeza-Yates and Ribeiro-Neto, 1999), this process can be divided into
five main text operations: lexical analysis, elimination of stop-words, stemming, selection
of index terms, and construction of the term categorization structures.

The lexical analysis is the process of transforming a stream of characters into a stream
of tokens, or words. Although it may seem a simple procedure, it involves a careful analysis
of some aspects, such as digits, hyphens, punctuation marks, and the case of letters.

The stopwords removal process has the objective of filtering words that are not rel-
evant as index terms. A stopwords list includes words that appear too frequently in a
collection of documents, such as articles, prepositions and conjunctions, which are not
good discriminators and become useless to the retrieval process. The elimination of these
frequent words has the advantage of reducing the size of the indexing structure, but may
also reduce performance due to some information loss.

Taking into account that words may assume very different forms, typically conveyed
by plurals, gerund forms, and past tense suffixes, it would be difficult to match a term in
the query with the different forms in which it may appear in a document. The stemming
technique can be used to overcome this problem, by reducing the various variants of a root
word to the same concept. This process also reduces the size of the indexing structure,
because the number of different index terms in the structure is largely reduced.

When creating a representation of a document, all the words, or a subset of them, can
be used as index terms. When only a subset of the words contained in the document is

18 Chapter 2. Background Knowledge

used to index the document, a criteria must be defined to determine which terms should be
selected. Some of the approaches used for index terms selection include using only nouns,
based on the intuition that nouns carry the semantics of the document. Sometimes, nouns
are combined in groups to represent a specific concept, thus some approaches use groups
of nouns as index terms.

The terms used to index documents may be organized in a more complex structure,
such as a thesaurus (Roget, 1852). In its simplest form, a thesaurus of words comprises a
precompiled list of important words in a given domain, along with a list of related words
for each word in the list. This structure provides a standard vocabulary for indexing and
searching, helps locating terms for query reformulation and provides a classified hierarchy
that can be used to narrow or broaden the query according to the needs of the user.

2.3.3 Query Formulation

The information need of a user using an IR system is generally represented in the form
of a query. The type of query provided to an IR system is dependent on the underlying
IR model of that system, thus the various kinds of queries can be categorized in different
groups. As described by Baeza-Yates and Ribeiro-Neto (Baeza-Yates and Ribeiro-Neto,
1999), queries can be classified as keyword-based, pattern-based or structural-based.

The keyword-based queries comprise words and, in some cases, a combination of oper-
ations over several words. The single-word queries are the most simple, containing only
one word. The multiple-word queries are composed of more that one word and can be
further divided in context, Boolean or natural language queries. The context queries allow
to search for words in a given context, either in the form of a phrase, by matching the
words in the query as sequence of words in the document, or by matching the words in
the query within a maximum allowed distance in the document. The Boolean queries
combine keyword queries with Boolean operators, such as or, and, but, etc., requiring the
system to retrieve only the documents that satisfy the restrictions expressed in the query.
The natural language queries assume that a query is a simply enumeration of words and
context queries, eliminating the need to explicitly use Boolean operators.

The pattern matching queries are based on patterns, which can be defined as a set of
syntactic features that must occur in a text segment. The complexity of a pattern range
from a simple set of words to complex regular expressions, allowing the user to express
prefixes, suffixes, substrings, ranges, error handling, unions, concatenations, repetitions,
classes of characters, conditional expressions, etc.

The structural queries take advantage of the structure of text collections, allowing the
user to query such texts based on their structure. They integrate both the contents and
structure of documents in the query, providing a more powerful way of expressing the
information needs of the user.

The different types of queries described provide a broad range of options to describe
the information needs of the user. But, sometimes, it is difficult for the user to formulate
a query suitable to obtain the best results in the IR process. This problem has been
addressed by various approaches that try to improve the IR process by helping the user
formulating, or reformulating, the query. These approaches can be categorized as local
methods and global methods. The global methods, also known as query expansion methods,
include techniques for expanding, or reformulating, a query using information derived from
the entire document collection. The objective is to complement the initial query with terms
that are synonymous or related with the original terms in the query. The related terms
are usually derived from structured indexing structures, such as thesaurus.

The local methods rely on the initial set of documents retrieved by a query to achieve
the same objective. The most representative is relevance feedback (Rocchio, 1971), one of

2.3. Information Retrieval 19

the most used and effective ways of improving retrieval performance in IR systems based
on algebraic models. The basic idea behind relevance feedback is to use the feedback of
the user to iteratively refine the query. The process starts with the user submitting a
query to the IR system, which retrieves a set of documents in response to that query.
Then, the user is required to specify which documents are considered relevant to satisfy
the initial information need. The query is reformulated and weighted taking into account
the distribution of terms in relevant and non-relevant documents, as defined by the user.
The new query is submitted to the IR system, which retrieves a new set of documents.
The process can be repeated until the information needs of the user have been satisfied.
This process relies on the explicit feedback of the user, other forms of relevance feedback
are implicit relevance feedback and pseudo relevance feedback. The implicit relevance
feedback method infers the user feedback through the analysis of the user behaviour.
The pseudo relevance feedback method assumes that a predefined number of the topmost
ranked documents are relevant for the user, and executes the relevance feedback process
using these documents, even before the user receives the initially returned documents.

2.3.4 Evaluation

Traditional evaluation of IR systems is based on the assumption that given an information
need, represented by a query, every document in a collection can be classified as relevant
or non-relevant, in respect to that query (Baeza-Yates and Ribeiro-Neto, 1999). Based on
these assumptions, several evaluation measures have been proposed. The oldest and most
used measures in IR are recall and precision. The recall measure quantifies the quantity
of relevant search results that the system was able to retrieve, and is computed as the
fraction of the relevant documents that has been retrieved (see equation 2.5). As we can
see, it would be easy for a system to obtain a maximum score for recall by retrieving all
the documents in the collection.

recall =
| {RelevantDocuments}

⋂
{RetrievedDocuments} |

| {RelevantDocuments} |
(2.5)

The precision measure, on the other hand, quantifies the quality of the search results
retrieved by the system, and is computed as the fraction of the retrieved documents that
is relevant (see equation 2.6). Generally, precision takes into account all the documents
that were retrieved, but it can also be computed at different cut-off levels, considering
only the topmost results returned.

precision =
| {RelevantDocuments}

⋂
{RetrievedDocuments} |

| {RetrievedDocuments} |
(2.6)

The harmonic mean, or f-measure, has been proposed to combine recall and precision
in a single measure, providing a weighted average of both (see equation 2.7). It assumes
a high value only when both recall and precision are high, and has been used to find the
best compromise between the two measures.

f-measure = 2× recall × precision
recall + precision

(2.7)

Several other measures have been proposed, which might be of interest in different
situations. Here we have presented only the most relevant, please refer to the literature
for a detailed description of other measures (Baeza-Yates and Ribeiro-Neto, 1999; Manning
et al., 2008; Büttcher et al., 2010).

20 Chapter 2. Background Knowledge

2.3.5 Context-Aware Information Retrieval

The growth observed in IR motivates the research for better search technologies, and the
use of context is argued to improve the effectiveness of IR systems (Jones and Brown,
2004). Users of IR systems work in a personal and physical context, on the other hand the
documents they search often relate to specific contexts. Another fact that reinforces the
importance of context in IR relates to the developments in mobile and wireless comput-
ing, where the physical environment of the user can be seen as rich source of contextual
information. The use of context to improve information retrieval is a big challenge and
most IR systems retrieve and rank information based only on queries and document col-
lections, ignoring the user interests and actual context. But, although the full potential
of the modeling of context, in which the user performs the search, has been relegated
to background importance in IR, it is already present in established techniques such as
Relevance Feedback (RF) (Rocchio, 1971).

In their work, Doan and Brézillon (Doan and Brézillon, 2004) consider that one way
to improve the efficiency of IR systems is to make explicit the context the query belongs
to. The relevancy of the responses given by IR systems varies from user to user and is
dependent from their contextual spaces. This contextual information is seen to be linked to
the terms in the query, the user-profile, the system itself and the interactions between the
user and the system. Also, context information can be explicit, when it is collected directly
from existing information or introduced explicitly in the search process, or implicit, for
instance when it is inferred from the user interactions with the system. They propose
that the contextual information of the user can be build upon different sources: user
profile context, IR system context, document context, and user/system interaction. The
user profile represents the user preferences and is progressively filled in, often through
a relevance feedback mechanism. The IR system context depends on the system itself,
especially on the collected resources, the indexing algorithm, the matching algorithm, the
query language and the display of results. The document context is typically related
with the way documents are linked together, for instance using hypertext links. The
user/system interaction can be seen, for instance, as a dialog, with the user expressing
an information need, in which every query/response step can encode relevant information
that belongs to that specific context.

During the last years, several researchers have approached the use of contextual infor-
mation in IR. One of the first approaches for personalizing web search was proposed by
Pitkow et al. (Pitkow et al., 2002), using a user model based on the navigation history
of the user. In the following years, several works have explored the navigation history
(Gauch et al., 2003; Sugiyama et al., 2004; Matthijs and Radlinski, 2011) and the search
history (Liu et al., 2004; Speretta and Gauch, 2005; Tan et al., 2006; Kotov et al., 2011;
Sontag et al., 2012) of the user to personalize web search. Other works have combined
information stored in the desktop of the users with their browsing history to personalize
web search results (Teevan et al., 2005; Chirita et al., 2006). In most of these approaches,
the user profile is automatically built and used implicitly in the search process, but some
approaches rely on explicit user profiles (Chirita et al., 2005; Ma et al., 2007), for instance
requiring the user to select a set of interest topics in the Open Directory Project6 catalog.
While most of the research on personalized IR focuses on long-term models for represent-
ing the user interests, some approaches have explored the contextual information available
within a search session to achieve personalization. These approaches usually make use of
the queries and clicks performed during a search session to improve the ranking of search
results (Shen et al., 2005; Daoud et al., 2009; Xiang et al., 2010), suggest new queries (Cao
et al., 2008) or perform query disambiguation (Mihalkova and Mooney, 2009).

6http://www.dmoz.org/ (August 2012)

http://www.dmoz.org/

2.4. Recommender Systems 21

2.4 Recommender Systems

A broad range of different recommender systems are currently used in a wide variety of
domains to help users find relevant information, deal with information overload and pro-
vide personalized recommendations of very different kinds of items. The recommendation
process is commonly dependent on estimating the utility of a specific item for a particular
user (Adomavicius and Tuzhilin, 2005). The utility of an item to a user is usually repre-
sented by a rating, which can be explicitly provided by the user. The problem is that a
recommender system rarely knows the rating for every user/item pair, thus the unknown
ratings must be estimated. Based on the estimated ratings, a recommender system is able
to recommend a set of useful items for a user, ordered by their estimated ratings, or even
a set of relevant users for an item. Alternatively, instead of estimating the exact rating
for a user/item pair, some recommender systems predict only the relative preferences of
the user, what is known as preference-based filtering (Cohen et al., 1999).

Having the problem of rating estimation as a core issue, recommender systems are
usually classified according to their approach for estimating ratings. In the following
section we provide an overview of the three main categories of recommender systems.
Then, we describe some of the approaches used for evaluating recommender systems.
Finally, we discuss the use of context in recommender systems.

2.4.1 Classification

According to their approach for estimating the rating of a item for a user, recommender
systems are classified as collaborative, content-based or hybrid. Following, we provide a
brief description of each one of these categories, as provided by Adomavicius and Tuzhilin
(Adomavicius and Tuzhilin, 2005).

Collaborative

The collaborative recommender systems, or colaborative filtering systems, predict the util-
ity of an item for a user based on the items previously rated by other users (Resnick et al.,
1994). These approaches are based on the assumption that items rated as useful for an
user may be considered useful for other users that share the same preferences. According
to Breese et al. (Breese et al., 1998), collaborative recommendations can be classified as
memory-based (or heuristic-based) and model-based. The memory-based approaches use
heuristics to compute rate predictions, based on a collection of previously rated items,
while model-based approaches use the collection of rated items to learn a model that is
used to predict ratings. Because they are based only on the ratings provided by users,
collaborative recommender systems are able to recommend any type of items, indepen-
dently of their contents. However, some of these systems have some limitations, such as
the cold-start problem (Schein et al., 2002) and rating sparsity (Papagelis et al., 2005).
The cold-start problem relates to the fact that the system requires a minimum number
of previously rated items before being able to make accurate recommendations. Also, the
number of previously rated items in the system is frequently very small compared to the
number of ratings that must be predicted, this rating sparsity problem may lead to a poor
performance of the system.

Content-Based

The content-based recommendation approaches estimate the utility of an item for a user
through the utility assigned by the user to other items that are similar to that item (Basu
et al., 1998). These approaches assume that items can be estimated useful for a user if they

22 Chapter 2. Background Knowledge

are similar to other items that were rated useful for that user. An item is usually charac-
terized by an item profile, composed by a set of features extracted from its content, that is
used to evaluate when it should be recommended. These approaches were initially derived
from IR (Baeza-Yates and Ribeiro-Neto, 1999) and Information Extraction (IE) (Belkin
and Croft, 1992) research, where traditional information retrieval systems were improved
by using information about the user preferences. Due to their origins, the content-based
recommendation approaches are mostly used for recommending text-based items. These
items are characterized by keywords and their similarity is often computed using term
weighting approaches, such as TF-IDF (Salton and Buckley, 1988). Besides the heuristic
approaches based on IR, other techniques for content-based recommendation base their
utility function on a model learned from the data, using statistical learning and several
machine learning techniques (Mitchell, 1997). Because the content-based approaches are
only based on the contents of the items being recommended, they are highly dependent on
the number and quality of features associated to the items. Another problem associated
to these approaches is over-specialization, which causes the system to always recommend
items similar to what is already known to the user (Balabanović and Shoham, 1997).

Hybrid

With the objective of overcoming some of the limitations of both collaborative and content-
based approaches, some recommender systems combine the two and use an hybrid ap-
proach (Burke, 2002). The collaborative and content-based approaches may be combined
in different manners, for instance by implementing the two approaches independently and
combining their predictions, incorporating content-based characteristics in a collaborative
approach, or vice-versa, or building an unified model that incorporates characteristics of
the two approaches.

2.4.2 Evaluation

As discussed in (Jannach et al., 2011), the evaluation of a recommender system is essential
for determining the accuracy of the system or evaluate how it compares with previous
approaches. However, it is argued that the traditional approaches used for evaluating
such systems have several limitations, or that the quality of a recommender system can
not be adequately measured because there are too many objective functions. Nevertheless,
these systems have been traditionally evaluated using offline experiments based on a data
set, for instance containing an history of transactions.

The performance of a recommender system is usually measured using a set of metrics
(Jannach et al., 2011). Concerning the accuracy of predictions, the mean absolute error
(MAE) is the most used metric. As shown in equation 2.8, it is used to compute the
average deviation between predicted ratings (pi) and the real ratings (ri).

MAE =

n∑
i=1
| pi − ri |

n
(2.8)

The relevancy of the recommendations given to the user by the recommender system,
or the accuracy of classifications, is usually computed using the precision, recall and f-
measure metrics, which were already presented in the context of IR (see section 2.3.4).

The rankings of the recommendations provide a higher level of granularity when eval-
uating a recommender system. To evaluate the accuracy of ranks, Breese et al. (Breese
et al., 1998) proposed a metric based on the assumption that the lower the ranking of an
item the lower is its utility, because items at lower rankings are likely to be ignored by the
user. The rank score for user u is given by equation 2.9, where α represents the half-life of

2.4. Recommender Systems 23

utilities, hitsu are the recommendations selected by the user and rank(i) is the position
of item i in recommendations.

RankScoreu =
∑

i∈hitsu

1

2
rank(i)−1

α

(2.9)

The final score requires the normalization of the rank score, thus it is necessary to
compute the maximum ranking score using equation 2.10, which returns the maximum
achievable scores if all the items selected by the user were assigned to the lowest possible
rankings, i.e. ranked according to the bijective function idx(i), which assigns values from
1 to | hitsu | to the items in hitsu.

RankScoremax
u =

∑
i∈hitsu

1

2
idx(i)−1

α

(2.10)

Finally, the normalized rank score is given by equation 2.11.

RankScore
′
u =

RankScoreu
RankScoremax

u

(2.11)

Here we have presented only the most relevant metrics for evaluating the performance
of recommender systems, several alternative metrics can be found in the literature (Her-
locker et al., 2004; Jannach et al., 2011).

2.4.3 Context-Aware Recommendation

Most of the approaches used in current recommendation systems are mainly focused in es-
timating how relevant is an item to an user, ignoring any contextual information that could
be used to improve the recommendation process. However, context-based recommenda-
tion systems are emerging, taking context into account when providing recommendations
to the user (Adomavicius and Tuzhilin, 2011).

According to Adomavicius and Tuzhilin (Adomavicius and Tuzhilin, 2011), context
can be integrated in the recommendation process, where ratings can be modeled taking
into account contextual information, besides being based on users and items. Within this
scope, context can be defined from a representational point of view (Dourish, 2004), using
a predefined set of observable attributes that do not change significantly over time, or
from an interactional prespective, which models context through a short-term memory
interactional approach (Anand and Mobasher, 2007). The contextual information can be
obtained either explicitly or implictly, or can be inferred. It is obtained explicitly when it is
gathered directly from people or relevant information sources. Sometimes it is not possible,
or adequate, to obtain contextual information directly and it must be implicitly captured
from the data or the environment. Finally, contextual information can be inferred using
statistical or data mining techniques (Witten and Frank, 2005).

The contextual information can be used by a recommender system via context-driven
querying and search or contextual preference elicitation and estimation (Adomavicius and
Tuzhilin, 2011). The former approach is usually based on using contextual information to
query a repository of resources and select the most relevant resources. The later approach
is a recent trend and involves modeling and learning the user preferences, by monitoring
the interactions of the users or obtaining their feedback. Depending on the way context
is used, systems using contextual information follow a contextual pre-filtering, contextual
post-filtering, or contextual modeling paradigm. The contextual pre-filtering paradigm uses
the contextual information to restrict the data set to a reduced set of relevant items, which
can then be recommended using a traditional recommendation approach. The contextual

24 Chapter 2. Background Knowledge

post-filtering paradigm uses contextual information to filter or rank a list of recommen-
dations obtained using a traditional recommendation approach. The contextual modeling
paradigm uses the contextual information directly in the rating estimation process, and
can be further divided in heuristic and model based approaches. Some recommender sys-
tems combine multiple approaches, either to overcome some of the drawbacks of individual
approaches or adapt the recommendation process to different scenarios.

2.5 Software Development

The software development (McCarthy and McCarthy, 2006) activity is devoted to the de-
velopment of a software product. Although it may include all the activities that result in a
software product, from its conception to its realization, here we are focused on the process
of writing and maintaining the source code. This process is usually conducted by devel-
opers in an Integrated Development Environment (IDE)7, which is a software application
aimed to help developers during software development activities. These applications usu-
ally comprise a source code editor, build tools and a debugger, although some of them
may also contain other tools, such as a compiler or an interpreter. Among the most pop-
ular IDEs are Eclipse8, Netbeans9, IntelliJ IDEA10 and Microsoft Visual Studio11. The
Eclipse IDE (see figure 2.3) is one of the most used for the Java12 programming language
(Goth, 2005), although it can also be used for developing applications in other program-
ming languages, by means of various plug-ins. Due to its wide dissemination, open source
nature and extensibility features, Eclipse has been addressed in several academic studies
(Robillard et al., 2004; Ko et al., 2006; Sillito et al., 2006; Murphy et al., 2006; LaToza
et al., 2007; Sillito et al., 2008; Starke et al., 2009) and has served as a basis for the devel-
opment of several exploratory tools to help developers in their activities (Janzen and De
Volder, 2003; Robillard and Weigand-Warr, 2005; Singer et al., 2005; Holmes and Murphy,
2005; Mandelin et al., 2005; Poshyvanyk et al., 2006a; Sahavechaphan and Claypool, 2006;
Kersten and Murphy, 2006; Warr and Robillard, 2007; Hummel et al., 2008; Zhong et al.,
2009; Ratanotayanon et al., 2010; Piorkowski et al., 2012).

Over the recent years, a number of studies have been carried out to understand the
activities of the developer, especially how they comprehend software (von Mayrhauser and
Vans, 1995; LaToza et al., 2007), investigate the source code (Robillard et al., 2004; Ko
et al., 2006), use the IDE (Murphy et al., 2006), deal with interruptions (González and
Mark, 2004), and what are their information needs (Sillito et al., 2006; Ko et al., 2007;
Sillito et al., 2008). Here we will present two of these studies, one by Ko et al. (Ko
et al., 2006) and another by Sillito et al. (Sillito et al., 2008), which are mainly focused
on understanding how developers seek, collect and relate relevant information, as well as
what kind of questions they have and how these questions are answered by existing tools.

Having the objective of improving the developer’s effectiveness on maintenance tasks,
Ko et al. (Ko et al., 2006) performed an exploratory study to answer four questions:

1. How do developers decide what is relevant?

2. What type of relevant information do they seek?

3. How do they keep track of relevant information?

7http://en.wikipedia.org/wiki/Integrated_development_environment (August 2012)
8http://www.eclipse.org/ (August 2012)
9http://netbeans.org/ (August 2012)

10http://www.jetbrains.com/idea/ (August 2012)
11http://www.microsoft.com/visualstudio/ (August 2012)
12http://www.oracle.com/us/technologies/java/ (August 2012)

http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.eclipse.org/
http://netbeans.org/
http://www.jetbrains.com/idea/
http://www.microsoft.com/visualstudio/
http://www.oracle.com/us/technologies/java/

2.5. Software Development 25

Figure 2.3: A screenshot of the Eclipse IDE.

4. How do their task contexts differ on the same task?

Their study included 10 developers using the Eclipse IDE to perform five maintenance
tasks, three debugging tasks and two enhancement tasks, in a system unknown to them
and within a 70 minute period. During the experiment, the developers were artificially
interrupted with the aim of mimicking the real interruptions that occur in a real scenario.
They have recorded the work of the developers using a screen capture application and
then analyzed the videos.

With respect to the labor division, the developers spent a little more of a fifth of their
time handling interruptions. The non-interrupted time was spent performing different
activities, a quarter of it was spent performing textual searches and navigating the source
code, a fifth of it reading code and another fifth editing code. They have observed that
the developers followed a higher-level sequence of actions, which included choosing the
task to work on, searching for task-relevant information, understanding the relationships
between information and then dealing with the necessary code. When developers needed
to search for task-relevant information, most of them began with a textual search for what
they thought to be a task-relevant identifier in the code. The debugging tasks began with
searches for symptoms and surface features of the program’s failure. But, an average
of 88% of these searches led to the investigation of irrelevant code, mainly because the
identifiers in the code do not fully represented the code’s purpose. The enhancement
tasks began with searches for extension points in the source code, which could be used as
examples for implementing the new features.

When developers needed to determine the relevance of source code or related informa-
tion, they would go through different levels of information and several cues. For instance,
they would began with the package explorer, looking to the name of the file and its icon
and deciding then if they would open the file or simply expand its node in the tree. The

26 Chapter 2. Background Knowledge

developers who expanded the nodes would inspect the names of methods and fields, look-
ing for something interesting. While the developers who open a file generally skim the
source code, looking for identifiers or comments that might explain the intent of the file.
During these investigations, developers have found different types of relevant information,
including source code that would be edited, duplicated or used to understand the behavior
of other relevant code.

After analyzing a piece of code, developers also explored its incoming and outgoing
dependencies, usually by following static relationships. About 58% of them were direct
dependencies, which could be found through direct static relations, the other 42% were
indirect dependencies, which were usually related with elements indirectly related by two
or more static relations. Most of the exploring of direct dependencies was performed using
less sophisticated tools, such as the find and replace dialog. The authors point out that
the complexity and/or cost of using more powerful tools, such as Java Search or Open
Declaration, could be the reason for this behaviour. For exploring indirect dependencies,
the developers needed to scroll the source code, use the package explorer and go through
file tabs.

Regarding the task contexts, developers used different kinds of strategies to keep track
of relevant source code and information. They used the package explorer and file tabs
to keep track of files, the scroll bars and text carret to mark relevant segments of code,
bookmarks to mark lines of code and also the undo stack to access early versions of their
code. Some of them even used paper notes to remember relevant information. The authors
conclude that although the interfaces provided were helpful, they were not sufficient for
handling the developer needs. From their observations, the authors concluded that the
impact of interruptions in the work of developers were significant when developers did not
externalize the task state to the environment when the interruption was acknowledged,
and when they could not recall the state after returning from interruption.

Based on their findings, the authors propose a model for program understanding, which
describes this task as a process of searching, relating and collecting relevant information.
As central factors for the success of a developer, they point out that the environment
must provide clear and representative cues for the developer to judge the relevance of
information, and provide a reliable way of collecting the information the developer consid-
ers relevant. With respect to tools, they have concluded that the support for navigation
between relevant source code and information could be improved, as 35% of their non-
interrupted time was spent on searching and navigating the source code. Especially, the
tools should be able to provide better relevance cues, for instance to better understand
the purpose and intention of the source code. Also, these cues should be provided across
different layers, for instance to avoid the need to inspect the information in full to decide
what is, or is not, relevant. They also suggest that tools should make easier the navigation
through the dependencies of related source code. Finally, they propose that the existing
tools should help developers collect and compare information side by side.

Sillito et al. (Sillito et al., 2008) performed two qualitative studies in order to un-
derstand what a programmer needs to know about a code base when performing change
tasks, how does s/he search that information and how much existing tools help s/he on
getting that information. The first study was conducted in a laboratory setting, with
9 participants working with source code that was new to them. The participants were
asked to work in pairs and perform a change task in a time period of 45 minutes. During
the sessions, the discussion was audio recorded, the action in the screen was captured in
video and a log of several IDE events was made. In the end, the experimenter briefly
interviewed the participants about the experience. The second study was conducted on a
large technology company, with 16 programmers working on source code for which they
had responsibility. The participants were asked to perform tasks they have chosen, in a

2.5. Software Development 27

time period of 30 minutes. The sessions were audio recorded and an interview was made
by the experimenter by the end of each session.

The authors used a graph of entities, and relationships between those entities, repre-
senting the code base, to categorize the questions asked by developers during the study
sessions. A set of 44 different types of questions were categorized in four main categories:

1. Finding focus points;

2. Expanding focus points;

3. Understanding a sub-graph;

4. Questions about groups of sub-graphs.

The “finding focus points” category refers to questions about finding starting points in
code, points that are relevant to a task or entities corresponding to specific aspects of the
system. The “expanding focus points” category includes questions about expanding an
entity believed to be important for a task, which is achieved by expanding its incoming and
outgoing relationships. The “understanding a sub-graph” category implies understanding
the concepts behind multiple relationships and entities, which includes understanding a
certain behavior or data/control flow. The “questions over groups of sub-graphs” category
contains questions focused on comparing groups of sub-graphs in order to understand their
relationships and how a change to those structures will impact the rest of the system. As
expected, the questions in the first three categories appeared more frequently in the first
study, while those in the fourth category were more frequent in the second study.

Concerning the tool support for answering the 44 types of questions identified, they
have analyzed which tools were available and the level of support provided. The ques-
tions pertaining to the first category were typically answered by performing searches for
hypothetical identifiers or textual references. Although answering questions in this cat-
egory was considered well supported, there were some difficulties on formulating queries
and dealing with the amount of information returned. Answering questions in the second
category generally includes gathering information about different types of relationships
between source code entities. This task is typically supported by static analysis, debug-
ging, overview and data-flow tools. Despite some forms of indirection and the volume
of information presented by these tools, there is a good tools support in this case. The
tools available for answering questions in the third category were limited, although some
questions could be depicted using program slicing, debugging and code browsing tools.
Finally, the questions included in the fourth category were also difficult to answer, despite
the use of diff, code cloning detection and testing tools.

They conclude by pointing out that questions in the first two categories could be easily
answered with current tools. But questions in the last two categories, which implied the
combination of information about different points of the source code, have a poor support
in todays tools. The authors suggest that a more comprehensive support is needed in
three related areas: support for more refined and precise questions, support for maintain-
ing context, and support for piecing information together. The support for more refined
and precise questions is needed because tools typically limit the possibility of defining the
scope on which to operate, forcing programmers to generalize their questions and end up
retrieving too many irrelevant results. Because most of the tools provide isolated informa-
tion, answering a question may involve gathering information from different sources with
results that are largely undifferentiated and unconnected. Improved support for maintain
context would help programmers answer higher level questions. The same way, support
for piecing information together would help programmers assemble all the information
needed to answer their questions.

28 Chapter 2. Background Knowledge

The two studies presented before provide an analysis of what are the information
needs of developers, how they collect and relate the needed information and how existing
tools support their efforts. In the following sections, we focus on the role that search and
recommendation tools may have in supporting the activities of the developers.

2.5.1 Search

As demonstrated by several studies (Ko et al., 2006; Sillito et al., 2008; Starke et al., 2009),
source code search is an essential activity for a developer working on an IDE. This activity
is supported by a range of search tools that are available in most of the today’s IDEs, but
little is known about their usage patterns and effectiveness. With the aim of analysing
the search activities of developers, Starke et al. (Starke et al., 2009) have performed a
study to understand how developers conduct their searches, explore the search results and
decide which results are relevant, during a change task. The study involved ten developers
working in two change tasks in a large software system that was unknown to them. The
developers worked in 30 minute sessions, using all the features provided by the Eclipse
IDE, including eight major kinds of search tools available in Eclipse, namely:

• Open Type. Search for classes or interfaces based on a partial name or pattern.

• File. Search for text within all of the files in the workspace.

• Find in File. Search for a piece of text within a specified file.

• Java. Search for declarations, references and occurrences of source code elements
(packages, types, methods and fields).

• References. Search for all references to a specified source code element, or elements,
matching a keyword.

• Implementors. Search for all classes that implement a specified interface, or inter-
faces, matching a keyword.

• Declaration. Search for all declarations of a specified source code element, or ele-
ments, matching a keyword.

• Occurrences in File. Search for all occurrences of a specified source code element in
the current file.

They have collected both quantitative and qualitative data about 96 complete search
episodes, that were conducted using the search tools provided in Eclipse. From the analysis
of this data, they have depicted five key observations:

1. The participants formed hypothesis about the problem based on their experience,
which was very important to begin exploring the source code and guide the remain-
ing work in the task;

2. They have performed searches based on their initial hypothesis, placing themselves
in the situation of the original developers and creating search queries based on
naming conventions, synonyms and different ways to express similar ideas;

3. They had only an idea of what to search for and of what would be relevant, so their
searches were often generic, leading to a high number of search results and a lack of
confidence about the relevance of these results to the task;

2.5. Software Development 29

4. Instead of investigating the search results in detail, the developers generally skimmed
through the results, trying to find evidence of their relevance in the information
provided by the search interface, such as the packages or names;

5. The developers tended to open a small number of search results, and most of the
times the source code of the opened elements was only skimmed, often starting new
searches when they did not find any clue of relevance.

Based on their observations, the authors propose several enhancements that could
help mitigate the problems faced by developers when searching for relevant source code
elements. Because developers often used the information available in the search interface,
such as structural information and element names, to evaluate the relevance of search
results, more contextual information could be provided to help determine the relevance
of a search result. The problem of dealing with many search results at once could be
partially solved with an improved ranking mechanism, which should also take into account
the context of the developer. Finally, several enhancements could be applied to the search
interfaces, in order to improve the search experience and guide the exploration of the
search results.

2.5.2 Recommendation

A Recommender System for Software Engineering (RSSE) has been defined by Robbilard
et al. (Robillard et al., 2010) as “a software application that provides information items
estimated to be valuable for a software engineering task in a given context”. The increasing
dimension and complexity of software development projects are fostering the development
of such systems, which have been applied to very different tasks in software development,
such as software reuse, expertise location, code comprehension, guided software changes,
debugging, etc.

As noted by Happel and Maalej (Happel and Maalej, 2008), the today’s work of a soft-
ware developer demands using diverse technologies and complex frameworks and coping
with a large amount of continually changing information, as well as dealing with strict
deadlines, limited resources and changing priorities. These authors point out that being
a knowledge and automation intensive domain, software development is a good target
for recommendation systems that help developers answering their questions. They argue
that pro-active recommendations should address both information seekers and information
providers, instead of focusing only on the information seekers perspective of recommend-
ing “what similar developers like”. They present a review of state of the art approaches
and discuss some of the limitations, and related challenges, that affect such approaches.
Among the limitations identified, they distinguish:

• The limitation to either recommend methods to use next or artifacts related to the
current situation;

• The dependence on centralized and static corpus;

• A limited description of context including single properties such as the current class
a user is working in;

• No pro-active triggering of information push;

• Inflexible architectures that do not allow for extensions.

From the limitations identified, they discuss some challenges for future systems. Re-
garding architectures, they suggest the use of decentralized approaches, instead of a clien-
t/server style, for encouraging information sharing and avoid performance issues. With

30 Chapter 2. Background Knowledge

respect to knowledge representation, it is proposed that more flexible knowledge repre-
sentation structures, such as those based on the Semantic Web (Berners-Lee et al., 2001)
technologies, would improve the information integration and sharing, as well as setting the
ground for making the system behaviour more transparent. Concerning pro-activeness,
they state that a better description of the user context would allow for more focused and
pertinent recommendations. Also, they consider that recommendations should go beyond
explicit knowledge, for instance, by trying to identify problem solving patterns that would
be relevant for developers.

Based on their analysis of existing tools, they also propose a “landscape” for software
development recommendation systems, depicting improvements that could be achieved by
addressing the stage of the recommendation process and the types of knowledge recom-
mended. With respect to the former, they suggest that intelligent push of information for
a given context of the user is desirable. Also, they claim that a recommendation system
should encourage the users to share certain information that could be useful within their
teams. Concerning the types of knowledge that should be recommended, they make a
distinction between development and collaboration information. As development infor-
mation, they highlight source code, relevant artifacts, quality measures and appropriate
tools, as the best candidates for recommendation. While people, awareness and informa-
tion about status and priorities, are pointed out as collaborative information that could
be provided to developers by appropriate recommendation systems. Finally, they identify
context awareness and the concept of “inverse search” as the basic building blocks of fu-
ture recommendation systems. Because the sharing of context information raises privacy
questions, an “inverse search” mechanism would allow the existence of a private infor-
mation model, with only some parts of this model being anonymously shared with the
community.

According to Robillard et al. (Robillard et al., 2010), the design of a RSSE can be
analyzed from three different perspectives: nature of context, recommendation engine
and output mode (see table 2.1). The recommendation context represents the input of a
RSSE, and it can be explicit, implicit or a hybrid of these. The context information can be
explicitly provided by the developer, for instance by indicating a set of elements of interest,
or it can be implicitly gathered, for instance through the analysis of the interactions of the
developer in the IDE. An hybrid approach may combine explicit information provided by
the developer with additional information that is gathered implicitly. The recommendation
engine may use additional types of data to make its recommendations, including source
code, system changes, artifacts, interaction history, etc. These recommendations can be
ranked according to their predicted relevance for the developer, which usually depends on
the task and the developer together. The output mode of a RSSE depends on the way
recommendations are provided to the developer. When the developer explicitly requests
for recommendations, the RSSE is said to work on pull mode. When recommendations are
automatically delivered to the developer, the RSSE works on push mode. The delivery
of recommendations can be processed in batch mode, when the recommendations are
presented in a separate zone of the IDE, or inline mode, if the recommendations are
presented as annotations over the desired artifacts.

Some of the features of a RSSE are considered cross-dimensional, including the user
feedback and explanations. The user feedback can be taken into account to improve the
ranking of recommendations, either locally, through explicit adjustments or an adaptive
mechanism, or globally. The explanations provided by the system allow the developer
to understand the origin of recommendations, which may help building their trust in the
system, but may also carry some pitfalls, such as information overload.

2.6. Summary 31

Table 2.1: The RSSE design dimensions, adapted from (Robillard et al., 2010).

Nature of Context Recommendation Engine Output Mode

Input Data Mode
(explicit | implicit | hybrid) (source | changes | bug reports

| mailing lists | interaction
history | peer’s actions)

(push | pull)

Ranking Presentation
(yes | no) (batch | inline)

Explanations
(from none to detailed)

User Feedback
(none | locally adjustable | locally adaptive | globally adaptive)

2.6 Summary

This chapter provided an introduction to the theoretical background that supports the
research developed in this thesis. This theoretic introduction will be complemented with
a detailed description of a more practical work, presented in chapter 6. Here we make a
bridge between the theoretical work described in the previous sections with the approach
we have followed in our work, which will be described in chapter 3.

We started with an introduction to the concept of ontology, as a knowledge represen-
tation structure, its classification approaches, building process and applications. We are
especially interested in a less formal definition of ontology, whereby an ontology can be
used to represent entities and the relations that exist between them. This type of ontology
was used in our knowledge base (see section 3.1), to represent the source code stored in
the workspace of the developer.

Then, context and its ambiguous nature was described, along with the approaches used
for modeling contextual information. Although context has been addressed in a generic
way, we have introduced the theoretic concepts behind the definition of a context model
(see section 3.2), which is one of the cornerstones of our approach. We are interested in
context as the set of circumstances and facts that surround the center of interest, providing
additional information and increasing understanding. We apply this definition to software
development, more specifically to the work of the developer in an IDE.

The IR field, which provides the framework for any textual search process, was pre-
sented and described in relation to modeling approaches, text processing operations, query
formulation, evaluation and context-awareness. The VSM and the TF-IDF term weighting
approach, which were described in the scope of the IR modelling approaches, are in the
basis of our context-based search process (see section 3.3), where they are used to retrieve
and rank the source code elements based on a query provided by the developer.

The field of recommender systems, which are in the basis of any recommendation
process, was also presented, providing the theoretical framework that are in the basis of
our context-based recommendation process (see section 3.4).

Finally, we have introduced the field of software development, with a special focus on
how developers search and collect relevant information for their needs. We have described
a set of studies focusing on the developer needs, especially with respect to search and
recommendation, that help framing our approach within the field of software development.

Chapter 3

Approach

“If we knew what it was we were doing, it would
not be called research, would it?”

Albert Einstein

This chapter describes the mechanisms that comprise the basis of our approach to context-
based retrieval in software development. We start by discussing the work environment of
a software developer from a broader perspective. The work of a developer covers several
dimensions that are not limited to the work developed on an Integrated Development
Environment (IDE). We have defined a context model of the developer, as illustrated in
figure 3.1, where these dimensions are represented in a layered model, including a personal
layer, a project layer, an organization layer and a community layer. The contextual infor-
mation of the developer crosses these four layers, focusing on different aspects according
to the targeted dimension. At each layer, the context of the developer can be used to
improve the retrieval of information that is relevant for her/his work, for instance through
search, recommendation or browsing.

The personal layer represents the work a developer has at hands at any point in
time, which can be defined as a set of tasks. In order to accomplish these tasks, the
developer has to deal with various kinds of resources at the same time, such as source
code files, specification documents, bug reports, etc. These resources may be dispersed
through different places and systems, although being connected by a set of explicit and
implicit relations that exist between them. At this level the context model represents the
resources that are important for the tasks the developer is working on. For instance, when
the developer is working on a specific task, there are a set of resources that are more
relevant for that task than others, which can be highlighted to the developer.

The project layer focuses on the project, or projects, in which the developer is involved.
A software development project is an aggregation of a team, a set of resources, and a
combination of explicit and implicit knowledge that keeps the project running. The team
is responsible for accomplishing tasks, which end up consuming and producing resources.
The relations that exist between people and resources are the glue that makes everything
work. The project layer represents the people and resources, as well as their relations, of
the software development projects where the developer is included. For instance, when
fixing a specific bug, it is important to know what other bugs might be related, which
files are likely to be affected, and which other developers working on the project may be
of help to solve the bug.

The organization layer takes into account the organization to which the developer
belongs. Similarly to a project, an organization is made up of people, resources and
their relations, but in a much more complex network. While in a project the people and

34 Chapter 3. Approach

COMMUNITY

LAYER

ORGANIZATION

LAYER

PROJECT

LAYER

PERSONAL

LAYER

SEARCH

RECO
M
M
EN
D
A
TIO

N

BR
O
W
SI
N
G

Figure 3.1: The layered context model of the developer, crossing the different dimensions
that comprise her/his work environment.

resources are necessarily connected due to the requisites of their work, in an organization
these projects easily become separate islands. The knowledge and competences developed
in each project may be of interest in other projects and valuable synergies can be created
when this information is available. The organization layer represents the organizational
context that surrounds a developer. For instance, when a developer needs to apply a
specific technology with which no one in the project team is familiar with, there may be
other colleagues, or even resources, in the same organization which can help.

The community layer takes into account the knowledge domain, or domains, in which
the developer works. This layer goes beyond the project and organization levels, including
a set of knowledge sources that stand out of these spheres. Nowadays, a typical developer
uses the Internet to search information and to keep informed of the advances in the
technologies s/he works with. These actions are based on services and communities, such
as source code repositories, foruns, mailing lists, blogs, etc. These knowledge sources
cannot be detached from the developer context and are integrated in the community layer
of our context model. For instance, due to the dynamic nature of the software development
field, the developer must be able to gather knowledge from sources that go beyond the
limits of the organization, either to follow the technological evolution or to search for help
whenever needed.

The research work described here is devoted to the personal layer of the context model
presented above. More specifically, we have focused on how the contextual information
of the developer could be used to improve the search and recommendation of source code
in the IDE. The following sections describe the different components that comprise our
approach (see figure 3.2). We start by describing the knowledge base, which provides a
formal representation of the source code stored in the workspace of the developer. The
source code is represented from a structural and a lexical perspectives. We describe how
these perspectives are formalized using a structural ontology and a lexical ontology, how
these ontologies are built and how the source code is indexed for later retrieval. Then,
we describe the context model that is used to represent the source code elements that

3.1. Knowledge Base 35

IDE

CONTEXT-BASED SEARCH CONTEXT-BASED RECOMMENDATION

KNOWLEDGE BASE

STRUCTURAL
ONTOLOGY

LEXICAL
ONTOLOGY

CONTEXT MODEL

STRUCTURAL
CONTEXT

LEXICAL
CONTEXT

DEVELOPER

Figure 3.2: The conceptual architecture of our approach to context-based retrieval in soft-
ware development.

are more relevant for the developer in a specific moment. As in the knowledge base, the
context model also comprises a structural and a lexical perspectives, which are presented
as the structural context and the lexical context. The context model is built based on
the interactions of the developer with the source code, and adapts itself as the focus
of attention of the developer changes. The knowledge base and the context model are
the foundations for the context-based search and recommendation approaches that are
described next. These mechanisms make use of these two models to improve the retrieval
and ranking of source code elements, when the developer searches for them or when
the system predicts they are relevant for the developer. Finally, we describe a learning
mechanism that adapts the ranking of source code elements according to the components
that are more relevant for each developer.

3.1 Knowledge Base

The knowledge base represents the source code structure that is stored in the workspace
of the developer. This knowledge base is unique for each developer, being built from
the source code files with which the developer is working, and maintained as these files
are changed. The source code structure is represented from a structural and a lexical
perspectives, which are formalized using ontologies. The structural perspective deals with
the source code artifacts and the structural relations that exist between them, while the
lexical perspective deals with the terms used to reference these artifacts and how they
are associated. In this section, we provide a detailed description of the ontologies used to
represent the knowledge base structure. Then, the process used to build and maintain the
knowledge base is presented. Finally, we describe how the knowledge is indexed for later
retrieval.

36 Chapter 3. Approach

Type

Class Interface

Method

subClassOf subClassOf

Structural
Element

subClassOf
subClassOf

calledBy

implementationOf

extensionOf
returnOf

parameterOf

Lexical
Element

indexedBy

usedBy

methodOf

attributeOf

Term

subClassOf

associatedWith

STRUCTURAL ONTOLOGY

LEXICAL ONTOLOGY

Figure 3.3: The structural and lexical ontologies model.

3.1.1 Ontologies

The source code structure represented in the knowledge base is formalized using ontologies,
which are used as an explicit representation of entities and their relations. The structural
and lexical perspectives of the source code will be described as two separate ontologies, for
the sake of comprehension, but they can be represented in an unique model, as presented
in figure 3.3. Next, we describe the structural and lexical ontologies in more detail.

Structural Ontology

The structural ontology represents a set of source code elements typically found in object-
oriented programming languages, as well as a subset of their most relevant relations (see
figure 3.3). The model was inspired by the source code structure used in the Java program-
ming language (Gosling et al., 2005), but can be easily adapted to other object-oriented
programming languages. The main source code elements we have represented in our struc-
tural ontology are classes and methods, which are the building blocks of an object-oriented
programming language. Additionally, we have also included interfaces, because they are
commonly used as a way to enforce behaviour in classes. These source code elements
are represented in the class hierarchy of the structural ontology by classes with the same
name, namely Class, Interface and Method, defined as sub-classes of an abstract class
named Structural Element. The Class and Interface classes are also defined as sub-classes
of the abstract class named Type, which aggregates some of the characteristics shared by
the two classes. The concrete implementations of classes, interfaces and methods, in the
source code, are represented as instances of the corresponding classes. The source code
elements represented in the structural ontology are connected by a set of relations that are
used in object-oriented programming to express inheritance (extensionOf and implemen-
tationOf), composition (attributeOf and methodOf) and behavior (parameterOf, returnOf,

3.1. Knowledge Base 37

calledBy and usedBy), which can be described as follows:

• extensionOf relates a class with another class that is extended by the former.
(e.g. MySQLDatabaseManager → extensionOf → DatabaseManager)

• implementationOf relates a class with an interface that is implemented by that class.
(e.g. DatabaseManager → implementationOf → IDatabaseManager)

• attributeOf relates a class with another class that has the former as an attribute.
(e.g. Connection → attributeOf → DatabaseManager)

• methodOf relates a method with a class that declares that method.
(e.g. addProduct(Product) → methodOf → DatabaseManager)

• parameterOf relates a class with a method that receives an object of that class as a
parameter.
(e.g. Product → parameterOf → addProduct(Product))

• returnOf relates a class with a method that returns an object of that class.
(e.g. Product → returnOf → getProduct())

• calledBy relates a method with another method that calls the former.
(e.g. getProduct() → calledBy → updateProduct(Product))

• usedBy relates a class with a method that uses an object of that class.
(e.g. Product → usedBy → updateProduct(Product))

Lexical Ontology

The lexical ontology represents the terms used to reference the source code elements,
including a set of relations that are used to express how terms relate to each other and
with the source code elements (see figure 3.3). The concrete terms used to compose the
name, also known as identifier, of a source code element are represented as instances of
the Term class, which is defined as a sub-class of the abstract class named Lexical Element.
The terms used to reference a source code element become indexed by that element using
the indexedBy relation. Each term instance can be associated to more than one source
code element, because it may be used to compose the name of different elements. The
number of times a term is used to index a source code element represents its frequency in
the knowledge base and is also stored. When two terms are used together to compose the
name of a source code element, we create an associatedWith relation between them. This
relation is used to represent the proximity between the terms, the same way co-occurrence
is interpreted as an indicator of semantic proximity in linguistics (Harris, 1954). We
interpret co-occurrence of two terms in identifiers as an indication of some kind of relation
between that terms. The terms that co-occur more often have a stronger relation than
those that are rarely used together. Therefore, the number of times the two terms co-
occur in the names of different structural elements is stored and used as the weight of the
relation between these terms.

3.1.2 Building

The knowledge based is built from the source code files that are stored in the workspace
of the developer. As illustrated in figure 3.4, these files are parsed in order to extract
the source code elements that they represent. Then, the source code elements extracted
go through a reference disambiguation process and are stored in the structural ontology.

38 Chapter 3. Approach

IDE

SOURCE
CODE
FILES

REFERENCE
DISAMBIGUATION

SOURCE
CODE

ELEMENTS

TERMS

KNOWLEDGE BASE

TERM
EXTRACTION

LEXICAL
ONTOLOGY

STRUCTURAL
ONTOLOGY

PARSING

Figure 3.4: Abstract representation of the process used to build the knowledge base.

The terms used to reference the source code elements are also extracted and stored in the
lexical ontology. We will now describe each one of these steps in more detail.

The source code structure stored in the workspace of the developer is typically or-
ganized as a set of projects containing several source code files. The knowledge base is
automatically built through the analysis of these source code files, and maintained as they
change over time. The source code elements, as well as their relations are extracted from
source code files through parsing. A parsed source code file results in an Abstract Syntax
Tree (AST), representing the abstract syntactic structure of the source code in the form
of a tree. A simplified AST, generated for the source code of listing 3.1, is presented in
figure 3.5. The source code of listing 3.1 represents a Compilation Unit, which comprises a
Package Declaration, an Import Declaration and a Type Declaration. The Type Declaration
accounts for the declaration of the DatabaseManager class, which contains three Method
Declarations, namely addProduct, getProduct and updateProduct. The body of method
updateProduct contains a Variable Declaration, named currentProduct, which is initial-
ized through a Method Invocation of method getProduct. The AST is used to extract
information about classes, interfaces and methods, and how they relate with each other.
The parsing does not require a source code file to be compilable, it only needs it to be
syntactically correct. This way, we are able to process all the source code files that are well
constructed, even if they are not compilable. After parsing the source code of listing 3.1
and generating its corresponding AST, represented in figure 3.5, the structural ontology
would be populated as illustrated in figure 3.6.

Although we are able to identify the source code elements that are locally declared
in each file, these elements are usually related with elements that are implemented in
different files. The references to these external elements may not include the information
necessary to unambiguously identify that element within the entire source code structure.
This information is available at compile type, because the compiler has access to the entire
source code structure and is able to create the proper bindings between this references
and their correspondent elements. Because we parse each file individually, we do not have
a view of the entire source code and have to deal with this problem in a process called
reference disambiguation. This process requires that the source code elements and their
relations, extracted during the parsing process, are added to the knowledge base in two
distinct phases. At first, all the source code elements are added to knowledge based at
once. Then, the relations between the source code elements are processed. A relation
between elements that have been unambiguously identified are directly added, while those
that contain ambiguous references must be disambiguated. The disambiguation process
tries matching the ambiguous element in the same package of the referencing element, in
a direct import or in package import, by searching the element in the elements that were
already added to the knowledge base. Following the example source code of listing 3.1,
the type Product is referenced several times, but in none of them the full reference, which

3.1. Knowledge Base 39

Listing 3.1: Example of part of the Java source code implementing a class.

1 package example.database;
2
3 import example.database.model .*;
4
5 public class DatabaseManager implements IDatabaseManager
6 {
7 [...]
8

9 public void addProduct(Product product)
10 {
11 [...]
12 }
13

14 public Product getProduct(String id)
15 {
16 [...]
17 }
18

19 public boolean updateProduct(Product product)
20 {
21 [...]
22

23 Product currentProduct = getProduct(id);
24

25 [...]
26 }
27

28 [...]
29 }

COMPILATION
UNIT

PACKAGE
DECLARATION

IMPORT
DECLARATION

TYPE
DECLARATION

METHOD
DECLARATION

METHOD
DECLARATION

METHOD
DECLARATION

VARIABLE
DECLARATION

METHOD
INVOCATION

example.database DatabaseManagerexample.database.model.*

addProduct getProduct updateProduct

currentProduct

getProduct(id)

Figure 3.5: Example of a simplified AST generated for the source code of listing 3.1.

would be example.database.model.Product, is provided. This way, when extracting
the structural relations, the type Product must go through the reference disambiguation
process, until its reference is found through the import declared in line 3 of listing 3.1.

The terms associated to each source code element are extracted from its name, or
identifier, using a term extraction process based on a set of rules. The identifiers of such
elements usually comprise more than one term, to better express the semantics associated
to each element. The naming conventions used in software development regulate how
the identifiers of classes, interfaces, methods or variables should be created and how the
different terms that comprise these identifiers should be joined. The naming convention
used in the Java programming language is CamelCase1, also known as medial capitals,

1http://en.wikipedia.org/wiki/CamelCase (August 2012)

http://en.wikipedia.org/wiki/CamelCase

40 Chapter 3. Approach

indexedByindexedBy

indexedByindexedBy

indexedBy indexedBy

DatabaseManager

updateProductaddProduct

add

manager

product get

database

methodOf methodOf

IDatabaseManager

implementationOf

getProduct

methodOf

Product

parameterOf returnOf parameterOf
usedBy

calledBy

update

associatedWith

associatedWith
associatedWith

associatedWith

indexedBy

indexedBy

LEXICAL ELEMENT

LEXICAL RELATION

STRUCTURAL ELEMENT

STRUCTURAL RELATION

Figure 3.6: Example of how the source code of listing 3.1 is represented in the structural
and lexical ontologies.

which defines that the terms comprising an identifier should be joined without spaces,
with the initial letter of each term in capitals. The convention also suggests that whole
words, instead of abbreviations, should be used, unless the abbreviation is more widely
used that the long form.

The term extraction process we use is based on this naming convention. The naming
convention is not enforced, developers are free to define an identifier using other con-
ventions or their own rules. But these conventions are followed by the majority of the
developers, because they assure coherence and improve the readability of the source code.
This way, we use a set of regular expressions to split identifiers into their individual terms,
based on the rules expressed in the naming convention. Additional rules provide that
acronyms are correctly extracted, identifiers with separator characters can be broken and
terms with only one character are discarded. The set of rules used can be summarized as
follows:

1. Split the identifiers into individual terms that are joined by the special character ’ ’
(e.g. result set → result | set).

2. If the terms, extracted using the previous rule, contain isolated capital letters, split
the terms using these capital letters (e.g. DatabaseManager→ database | manager).

3. If the terms, extracted using the previous rule, contain sequences of capital letters,
split the terms using these sequences (e.g. SQLQuery → sql | query).

3.1. Knowledge Base 41

4. If an extracted term contains only one character, discard this term.

Although this strategy will not work correctly with all the identifiers, the widespread
use of the naming convention assures it will work most of the times. In figure 3.6, one
can observe how the terms extracted from each source code element become represented
in the lexical ontology.

Because the source code is constantly being modified, when the developer changes the
source code files in the workspace, the knowledge base must be updated accordingly. The
workspace of the developer is constantly monitored for changes. When a source code file
is added, removed or updated, the knowledge base is updated as follows:

• Add. The source code file being added is parsed and the elements/relations extracted
are added to the knowledge base.

• Remove. All the elements/relations associated with the file being remoded are
removed from the knowledge base.

• Update. The elements/relations associated with the previous version of the file
being updated are first removed, then the file is parsed again and the extracted
elements/relations are added to the knowledge base.

3.1.3 Indexing

The source code elements represented in the knowledge base are indexed for later retrieval.
The indexing of these elements follows the Vector Space Model (VSM) (Salton et al., 1975),
an algebraic Information Retrieval (IR) model that is among the most used in several
IR systems (see section 2.3.1). In our approach, a document represents a source code
element, such as a class, an interface or a method, stored in the knowledge base. Thus, the
collection of documents represents all the source code elements that exist in the workspace
of the developer. The source code elements, or documents, are represented as a vector
of weights associated to the terms extracted from their identifiers. The terms in these
documents are weighted using Term Frequency/Inverse Document Frequency (TF-IDF)
(Salton and Buckley, 1988), which computes the weight of a term based on its frequency
in the document and the inverse of its frequency among the collection of documents (see
section 2.3.1). Although we here describe the theoretic aspects related to the indexing of
the source code elements, we did not implement the IR approach used, instead we have
used an existing search engine, as described in section 4.1.

The contents of the documents in our document collection, which represent source
code elements, comprises lines of source code, thus these documents can not be processed
as common textual documents. The only textual parts that can be found in source code
are usually located in identifiers, comments and string literals. In fact, most of the IR
approaches applied to source code use one, or more, of these textual fragments for indexing
source code elements (see chapter 6). We opted to use only the terms contained in the
identifiers to maintain simplicity and objectivity. We believe that these terms, being used
to name the source code element, are those that best describe the semantics associated
to that element. The problems of using the source code comments are that they require
additional processing to identify the most relevant terms and are often missing in source
code.

As described before, the identifiers commonly comprise more than one term. This
way, each source code element is indexed by the terms extracted from its identifier, using
the same approach described in section 3.1.2. Additionally, we also index the source code
elements by all combinations of the individual terms, in the same order they appear in the

42 Chapter 3. Approach

Table 3.1: Example of the terms used to index the source code elements of listing 3.1.

Element Terms

IDatabaseManager idatabasemanager, idatabase, databasemanager, i, database, manager

DatabaseManager databasemanager, database, manager

addProduct addproduct, add, product

getProduct getproduct, get, product

updateProduct updateproduct, update, product

Product product

identifier. This was done to deal with situations when the terms are incorrectly extracted,
or when the combination of terms, as expressed in the identifier, have some meaning. The
terms used to index the source code elements represented in listing 3.1 are presented in
table 3.1.

3.2 Context Model

The context model we have defined aims to represent the focus of attention of the devel-
oper in each moment and is based on the source code elements that are more relevant to
her/his work in that moment. The model is built from the interactions of the developer
with the source code elements and evolves over time, as the focus of attention of the devel-
oper changes. Similarly to the knowledge base, the context model comprises a structural
and a lexical dimensions. The process of building the context model from the developer
interactions is illustrated in figure 3.7 and will be described in more detail on the follow-
ing sections. Then, we present an approach to adapt the context model according to the
changes in the focus of attention of the developer.

IDE

DEVELOPER
INTERACTIONS

STRUCTURAL
ELEMENTS

LEXICAL
ELEMENTS

CONTEXT MODEL

TERM
ANALYSIS

LEXICAL
CONTEXT

STRUCTURAL
CONTEXT

INTERATION
PROCESSING

RELATION
ANALYSIS

STRUCTURAL
RELATIONS

Figure 3.7: Abstract representation of the process used to build the context model.

3.2.1 Structural Context

The structural context focuses on the structural elements and structural relations that are
more relevant for the developer in a specific moment. The relevance of these elements
and relations is derived from the interactions of the developer with the source code and
is represented as an interest value. The structural context was inspired by the work of
Kersten and Murphy (Kersten and Murphy, 2006), which have used a similar model to
represent the context associated to a task (see section 6.1). Next, we describe the structural
context in more detail, including the structural elements and structural relations.

3.2. Context Model 43

Table 3.2: List of captured interactions, their description and interest variation.

Interaction Description Variation

Open When the developer accesses an element for the first time. +0.4

Activate When the developer accesses an element that was previously accessed. +0.2

Edit When the developer edits an element. +0.1

Close When the developer closes an element. −0.4

Structural Elements

The structural elements account for the source code elements with which the developer is
interacting, including classes, interfaces and methods represented in the knowledge base
(see section 3.1.1). Associated to each element is an interest value that is derived from
the interactions of the developer with that element. The list of structural elements and
their interest is continuously updated, so that the interest of an element can be directly
consulted at any time, without the need to perform any extra calculation.

The interest of an element changes according to the different interactions that affect
that element. The impact of each interaction has been defined based on our experience and
some empirical tests. The variation applied to the interest of an element upon a certain
interaction reflects how that interaction contributes to increase or decrease the relevance
of that element in the context of the developer. The list of interactions that are taken
into account, their description and the variation applied to the interest of the affected
element are presented in table 3.2. When an element is opened, or accessed for the first
time, it is added to the structural context and its interest is increased. When the element
is activated or is edited, its interest is increased at a lower rate, because these interactions
tend to be more repetitive. The more the developer accesses or edits an element, the more
relevant it becomes in the context model. When an artifact is closed, its relevancy to the
developer decreases, but it is not immediately removed from the context model, as it may
still be relevant in the current context of the developer.

As time passes, the interest of the elements must be decayed, so that the relevance of
an element in the context of the developer decreases if it is not used over time. The decay
may be processed in different ways, for instance, as applied in previous works (Kersten
and Murphy, 2006; Parnin and Gorg, 2006), the interest of an element can be decreased
proportionally to the number of interactions of the developer over time. We opted to use
an approach based on time, so that the interest of the elements is decreased as time passes.
This way, the interest of an element is not affected by the interactions of the developer
with other elements, it is based only on the interactions that affected that element and
the time passed since its last interaction. The decay should be applied to each element
individually but, for reasons of simplicity, we apply the decay to all the elements at a fixed
time interval. In the current implementation, the decay is processed every five minutes
and applies a variation of −0.1 to the interest of every structural element in the context
model. These parameters were defined according to our own experience and observations
during the implementation of the approach. In order to prevent loosing context when the
developer is distracted, or away for some reason, the decay is executed only if the developer
has been active in the IDE since the last decay. When the interest of an element reaches
zero, that element is finally removed from the structural context. Consider SE the set of
structural elements represented in the knowledge base KB, as defined in equation 3.1.

SE = {se1, se2, . . . , sen | sei ∈ KB} (3.1)

44 Chapter 3. Approach

Table 3.3: Example of how a set of consecutive interactions affects the interest of a structural
element.

Interaction Variation Interest Normalized Interest

Open +0.4 0.4 ≈ 0.33

Activate +0.2 0.6 ≈ 0.45

Edit +0.1 0.7 ≈ 0.50

Edit +0.1 0.8 ≈ 0.55

Decay −0.1 0.7 ≈ 0.50

Activate +0.2 0.9 ≈ 0.59

Edit +0.1 1.0 ≈ 0.63

Close −0.4 0.6 ≈ 0.45

Let I(se) be the interest associated to an element se, then the structural elements rep-
resented in the context model would be the subset of structural elements in the knowledge
base with a positive interest (CSE ⊆ SE), as defined in equation 3.2.

CSE = {se1, se2, . . . , sen | sei ∈ KB ∧ I(sei) > 0} (3.2)

Consider E an event that affects an element se, including interactions and decays,
and E∆ the variation applied to the interest of the element se affected by the event E.
Then, the interest of an element is computed using equation 3.3, where I ′(se) denotes the
interest associated to the structural element se, before normalization, and E∆

i represents
the ith event of the n events that affected element se.

I ′(se) =
n∑

i=1

E∆
i (3.3)

As the developer interacts with the source code elements, their interest grows without
restriction. This could lead to a situation in which an element could obtain a dispro-
portionate interest in relation to the remaining elements. This would make it difficult to
compare the relative relevance of such an element in relation to the relevance of other ele-
ments. Also, we may argue that beyond some threshold, the interest of an element can be
considered so high that the real value of its interest is irrelevant. Taking this into account,
the final interest of an element is always normalized to the interval [0, 1]. The normalized
interest I(se) is computed using an inverted exponential function, as shown in equation
3.4, assuring that the interest of an element has an exponential growth, becoming very
close to 1 for values over 5. In table 3.3, we provide an example of how a set of consecutive
interactions affects the interest of a structural element.

I(se) = 1−
(

1

eI′(se)

)
(3.4)

As illustrated in figure 3.8, the structural elements Product, DatabaseManager, add-
Product, getProduct and updateProduct were added to the structural context because
they were manipulated by the developer at some point in time. The relevance of these
elements to the developer is represented by their interest values, which evolves according
to the different interactions of the developer with that elements over time.

3.2. Context Model 45

Structural Relations

The structural relations account for the relevance of the relations that exist between the
source code elements that are being manipulated by the developer. These relations corre-
spond to the structural relations that are defined in the structural ontology (see section
3.1.1). The relevance of the structural relations can be used to measure the relevance of
other source code elements, that may not being used by the developer but are structurally
related with the elements that are in the structural context.

The structural relations are not directly affected by the interactions of the developer,
therefore, their relevance is derived from the structural elements that exist in the struc-
tural context. When two, or more, structural elements are bound by one of these relations,
that relation is added to the structural context. Associated with each relation is an in-
terest value that represents the relevance of that relation in the context of the developer.
The interest of a relation is computed as an average of the interest of all structural ele-
ments that are bound by that relation. This way, the relevance of a structural relation
reflects the relevance of the structural elements that brought it to the structural context.
The structural relations and their interest are updated whenever the structural context
changes. When no more structural elements are bound by a relation, it is removed from
the structural context. Consider SR the set of relations defined in the structural ontology
SO, as defined in equation 3.5.

SR = {sr1, sr2, . . . , srn | sri ∈ SO} (3.5)

Let I(sr) be the interest associated to relation sr, then the structural relations repre-
sented in the context model would be the subset of structural relations of the structural
ontology with a positive interest (CSR ⊆ SR), as defined in equation 3.6.

CSR = {sr1, sr2, . . . , srn | sri ∈ SO ∧ I(sri) > 0} (3.6)

The interest of a structural relation is computed using equation 3.7, where sesri repre-
sents the ith structural element of the n structural elements bound by relation sr.

I(sr) =

n∑
i=1

I(sesri)

n
(3.7)

The structural relations represented in figure 3.8, namely parameterOf, usedBy, re-
turnOf, methodOf and calledBy, were added to the structural context because there are
structural elements bound by these relations. These relations were illustrated in figure
3.6, section 3.1.2, where an example of the knowledge base is provided. The interest
associated with these relations represents the average interest of the elements that are
bound by them.

3.2.2 Lexical Context

The lexical context focuses on the terms that are more relevant in the context of the
developer. The terms are extracted from the names of the source code elements that
are manipulated by the developer, using the same approach used to extract the terms
represented in the knowledge base (see section 3.1.2). Similarly to the elements and
relations in the structural context, the relevance of each term is given by an interest value.
The interest of a term is computed as an average of the interest of the structural elements
from which the term was extracted. The more relevant is a structural element, the more
relevant become the terms used to reference that element. The relevance of these terms
can be used to identify source code elements that are lexically related with the source

46 Chapter 3. Approach

DatabaseManager

addProduct

getProduct

updateProduct

Product
addProduct
updateProduct
DatabaseManager
getProduct

0.8
0.6
0.4
0.3
0.2

STRUCTURAL ELEMENTS INTEREST

STRUCTURAL CONTEXT

Product

parameterOf
usedBy
returnOf
methodOf
calledBy

0.6
0.6
0.5
0.4
0.3

STRUCTURAL RELATIONS INTEREST

add
product
update
database
manager
get

0.6
0.5
0.4
0.3
0.3
0.2

LEXICAL ELEMENTS INTEREST

LEXICAL CONTEXT

INTERACTION TIMELINE

TIME

INTERACTION INTERACTED
ELEMENT

Figure 3.8: Example of how the context model is derived from a set of interactions in the
interaction timeline.

code elements that are currently relevant for the developer. When the structural elements
change, the lexical context is updated accordingly. Consider LE the set of all lexical
elements contained in the knowledge base KB, as defined in equation 3.8.

LE = {le1, le2, . . . , len | lei ∈ KB} (3.8)

Let I(le) be the interest associated to the lexical element le, then the lexical elements
represented in the context model would be the subset of lexical elements in the knowledge
base with a positive interest (CLE ⊆ LE), as defined in equation 3.9.

CLE = {le1, le2, . . . , len | lei ∈ KB ∧ I(lei) > 0} (3.9)

The interest of a lexical element is computed using equation 3.10, where selei represents
the ith structural element of the n structural elements from which the lexical element le
was extracted.

I(le) =

n∑
i=1

I(selei)

n
(3.10)

The terms in the lexical context represented in figure 3.8 are add, product, update,
database, manager and get. These terms were extracted from the names of the elements
in the structural context. Their interest represents the average interest of the structural
elements referenced by them.

3.2.3 Context Transitions

As the focus of attention of the developer changes, the notion of what is relevant to her/his
work also changes and the context model must be adapted accordingly. The context model

3.2. Context Model 47

DatabaseManager

addProduct ServerManagerProduct

INTERACTION TIMELINE

getConnection

addProduct

SOFT TRANSITIVE
ELEMENT

HARD TRANSITIVE
ELEMENT

TRANSITION
WINDOW

TIME

INTERACTION INTERACTED
ELEMENT

Figure 3.9: Example of how the context transition window is applied to the interaction
timeline.

described before was designed to represent the focus of attention of the developer in each
moment, but does not provide, by itself, the mechanisms needed to adapt as the focus of
attention changes, which sometimes happens very fast. Because the developer commonly
addresses more than one task in a short period of time, or even at the same time (Kersten
and Murphy, 2006), the focus of attention is dispersed through different parts of the
source code structure. This means that, in fact, more than one context model exist in
parallel, and they must be activated and deactivated as the focus of attention changes.
This issue has been addressed with a mechanism that deals with context transitions, as
the focus of attention of the developer changes. Therefore, we may have several context
models, that are stored in a context model pool, and only one context model active in
each moment. The system automatically detects the changes in the focus of attention of
the developer and decides whether a new context should be created or an existing one
should be activated.

The changes in the focus of attention of the developer are detected based on how the
source code elements added to the context model are related with those that are already
in the context model. Our assumption is that when the attention of the developer shifts
to a different part of the source code structure, it is expected to see, in a short period of
time, a reasonable number of interactions with source code elements that have no relation
with those in the current context model. In such a situation, the system must adapt to
the change that is occurring in the behaviour of the developer and make a transition to a
new context, or an existing one. To detect these situations we have defined a mechanism
based on a transition window and a set of transitive elements. The transition window
is a fixed time window that represents the time span within which a certain number of
elements, having no relation with the current context, will start a context transition. We
call these elements as transitive elements, and they can be either hard or soft transitive.

The hard transitive elements are those that have no close relation with the elements
in the current context, whereas the soft transitive elements are those that have some kind
of relation with only hard transitive, or other soft transitive, elements. The distinction
between soft and hard transitive elements was necessary due to the fact that after accessing
an element that has no relation with the current context, the developer commonly accesses
other elements that are related with this element. This happens, for instance, when
the developer opens a class and then edits some of its methods or opens the interface
implemented by that class. If we would rely only on the hard transitive elements, it

48 Chapter 3. Approach

would be very difficult to detect a context transition, because we would never observe a
considerable number of unrelated elements within the transition window. This way, we
use the soft transitive elements to represent the elements that, although being related
with other elements in the context model, are only related with elements that are already
marked as transition elements. The transition window moves along the interaction timeline
as time passes. The hard or soft transitive elements that reach the limit of the time window
are no longer marked as transitive elements. As illustrated in figure 3.9, the transition
window is located at the head of the interaction timeline. There are three elements that
were accessed within the transition window, one is a hard transitive element, one is a soft
transitive element and the other is an element that was already in the context model. The
ServerManager class is considered a hard transitive element because it has no relation
with any of the previously manipulated elements, while the getConnection element is
considered a soft transitive element because it is a method of the ServerManager class
but is not related with the remaining elements in the context model. The addProduct

method is not considered a transitive element because it was manipulated before and was
already in the context model.

Transition Detection

A context transition is detected when a considerable number of hard or soft transition
elements is observed within the transition window, which is interpreted as a change in the
focus of attention of the developer. A change in the focus of attention of the developer
can be viewed from different perspectives, depending on the source code structure, the
tasks that are being addressed and the developer. Consequently, the size of the transition
window and the number of transitive elements necessary to trigger a context transition
varies with the situation.

Nevertheless, during the implementation and fine tuning of our approach we found a
set of parameters that have been used to detect context transitions. When the number of
hard transitive elements reaches a threshold of 3, or the number of soft transitive elements
reach a threshold of 6, within a context transition window of 3 minutes, a context transition
is initiated. These parameters were defined based on our own experience and observation
of different situations that, in our perspective, would represent a change in the focus of
attention of the developer. They may work well in most of the situations, but unavoidably
will be inaccurate in others. When a new structural element is being added to the context
model, we use algorithm 1 to detect if a context transition must be processed or not. This
algorithm references a set of functions, which are described as follows:

• UpdateContextTransitionWindow(). This function updates the transition elements,
contained in the context transition window, by verifying if the last access time of
these elements remains within the 3 minute frame. The transition elements whose
last access time is out of the 3 minutes frame are no longer marked as transitive
elements.

• ProcessContextTransition(). This function processes the transition to a new or an
existing context, depending on the situation.

• IsHardTransitive(structuralElement). This function verifies if the structural element
being processed is a hard transitive element.

• IsSoftTransitive(structuralElement). This function verifies if the structural element
being processed is a soft transitive element.

• AddContextElement(structuralElement). This function adds the structural element
being processed to the active context model.

3.3. Context-Based Search 49

Algorithm 1: ProcessContextElement

Input: A structuralElement to be added to the context model.
1 begin
2 UpdateContextTransitionWindow()

3 if structuralElementCount > hardElementThreshold then
4 if IsHardTransitive(structuralElement) then
5 if hardElementCount = hardElementThreshold then
6 ProcessContextTransition()

7 else
8 AddContextElement(structuralElement)

9 else if structuralElementCount > softElementThreshold then
10 if IsSoftTransitive(structuralElement) then
11 if softElementCount = softElementThreshold then
12 ProcessContextTransition()

13 else
14 AddContextElement(structuralElement)

15 else
16 AddContextElement(structuralElement)

Transition Processing

When a context transition is detected, the system must remove the transitive elements
from the current context, deactivate it and decide if a new context should be created or
an existing one should be activated. To activate an existing context, one must assure that
the developer is changing the focus of attention to a part of the source code structure
that originated the existing context. The system decides if an existing context should be
activated by comparing its elements with the transitive elements, those that were used to
detect the context transition in the first place.

For an existing context to be activated it has to contain all the transitive elements.
A context model that contains all the transitive elements assures that the new focus
of attention of the developer will be properly represented. Also, such a context model
increases the odds that the remaining elements in that context model are also relevant,
because they are very likely to be related with the transitive elements. In case that the
activated context model does not correctly represent the new focus of attention of the
developer, the context transition process will be there to detect this situation and process
a new context transition, if necessary. When there are no other context models, or when
the condition for activating an existing context model is not satisfied, a new context is
created. The transitive elements are added to this new context and then it is activated.

3.3 Context-Based Search

The context-based search process that we have defined allows the developer to search for
source code elements, such as classes, interfaces and methods, stored in the workspace.
As illustrated in figure 3.10, the search results are retrieved using an IR based approach,
which collects a set of source code elements that match a given query. These search results
are then ranked according to their relevance to the query, but also taking into account
their proximity to the context of the developer. We base our approach on the assumption
that the source code elements the developer is looking for are likely to be related with

50 Chapter 3. Approach

CONTEXT-BASED SEARCH

RETRIEVAL RANKINGQUERY
SEARCH
RESULTS

KNOWLEDGE
BASE

CONTEXT
MODEL

DEVELOPER

Figure 3.10: Abstract representation of the context-based search process.

the source code elements that are relevant in the current context. Next, we describe the
retrieval process in more detail and explain how different components are combined to
compute the relevance of a search result.

3.3.1 Retrieval

The retrieval of source code elements stored in the workspace of the developer is processed
using an IR approach based on the VSM model (see section 2.3.1). As described in section
3.1.3, a document represents a source code element, such as a class, an interface or a
method, stored in the knowledge base. Thus, the collection of documents represents all
the source code elements that exist in the workspace of the developer. The source code
elements, or documents, are represented as a vector of weights associated to the terms
extracted from their identifiers. The retrieval process starts with a query provided by
the developer. Similarly to the documents in the collection, the query is processed and
transformed into a vector of weights associated to each one of the terms comprising the
query. The documents indexed by one (or more) terms that match the terms in the query
are retrieved. The retrieved documents are then ranked according to different components,
which are described in the following section.

3.3.2 Ranking

The retrieved source code elements are ranked according to their relevance to the query
and the context model of the developer, including the structural and lexical contexts. The
relevance of a search result in relation to these components is given by a retrieval score
(sr), a structural score (ss) and a lexical score (sl). Finally, the contribution of these
components to the final score (sf) of the search result is given by a set of weights (wr, ws

and wl). The final score of the search result is computed as a weighted sum of the three
scores, as shown in equation 3.11.

sf = (wr × sr) + (ws × ss) + (wl × sl) (3.11)

wr + ws + wl = 1 (3.12)

The sum of the three weights is always one (see equation 3.12) and the value of each
score is always normalized in the interval [0, 1]. Therefore, the final score of a search result
is always within the interval [0, 1]. Next, we describe in detail how the retrieval, structural
and lexical scores are computed.

3.3. Context-Based Search 51

IDatabaseManager

idatabasemanager

DatabaseManager getProduct

databasemanager

idatabase

i

database

manager

databasemanager

database

manager

get

product

addProduct

add

product

updateProduct Product

product

get product

getproduct addproduct

update

product

updateproduct

D
O

C
U

M
EN

T
C

O
LL

EC
TI

O
N

Q
U

ER
Y

Figure 3.11: Example of the source code elements retrieved for a given query.

Retrieval Score

The retrieval score represents the relevance of the search result in relation to the query
provided by the developer. As described before, both the source code elements, or docu-
ments, and the query are represented by a vector of term weights. The terms in documents
and queries are weighted using TF-IDF (see section 2.3.1), which computes the weight of
a term based on its frequency in the document and the inverse of its frequency among the
collection of documents. The weight w of a term t in document d is given by equation 3.13,
where ftd is the frequency of the term in the document, D is the number of documents in
the document collection, and dft is the frequency of the term in the document collection.

w(t, d) = ftd × log
(
D

dft

)
(3.13)

The relevance of a document in relation to the query is represented as a correlation
between the vectors of term weights associated to both the document and the query.
This correlation is computed using the cosine similarity measure (see section 2.3.1), which
represents the cosine of the angle between the two vectors. The cosine similarity between a
query and a document is given by equation 3.14, which computes the dot product between
the query vector ~q and the document vector ~d.

sim(~q, ~d) =
~q

| ~q |
·
~d

| ~d |
(3.14)

Therefore, the relevance of a search result in relation to the query provided by the
developer is always a real value, within the interval [0, 1], representing the level of match
between the terms in the query and the terms extracted from the source code element, as
shown in equation 3.15.

sr = sim(~q, ~d) (3.15)

As illustrated in figure 3.11, a query containing the terms get and product, would
retrieve the documents representing the source code elements getProduct, addProduct,
updateProduct and Product. An example of how the retrieval score would be computed
for this query is given in table 3.4. We have included the frequency (TF) and inverse
document frequency (IDF) for each term in the document collection. Then, we have
computed the term weights for the query (Q) and each one of the documents (D1, . . . ,

52 Chapter 3. Approach

Table 3.4: Example of the term frequencies, inverse document frequencies, weights and scores
computed for the query illustrated in figure 3.11.

TF Weight

Term Q D1 D2 D3 D4 D5 D6 IDF Q D1 D2 D3 D4 D5 D6

add 0 0 0 1 0 0 0 1.79 0 0 0 1.79 0 0 0

addproduct 0 0 0 1 0 0 0 1.79 0 0 0 1.79 0 0 0

database 0 1 1 0 0 0 0 1.10 0 1.10 1.10 0 0 0 0

databasemanager 0 1 1 0 0 0 0 1.10 0 1.10 1.10 0 0 0 0

get 1 0 0 0 1 0 0 1.79 1.79 0 0 0 1.79 0 0

getproduct 0 0 0 0 1 0 0 1.79 0 0 0 0 1.79 0 0

i 0 1 0 0 0 0 0 1.79 0 1.79 0 0 0 0 0

idatabase 0 1 0 0 0 0 0 1.79 0 1.79 0 0 0 0 0

idatabasemanager 0 1 0 0 0 0 0 1.79 0 1.79 0 0 0 0 0

manager 0 1 1 0 0 0 0 1.10 0 1.10 1.10 0 0 0 0

product 1 0 0 1 1 1 1 0.41 0.41 0 0 0.41 0.41 0.41 0.41

update 0 0 0 0 0 1 0 1.79 0 0 0 0 0 1.79 0

updateproduct 0 0 0 0 0 1 0 1.79 0 0 0 0 0 1.79 0

Similarity 0 0 0.04 0.72 0.04 0.04

D6). Finally, the similarity obtained between each document and the query (sim(~q, ~d))
is shown in the bottom of the table. The number of documents retrieved is limited to
the top 100 documents with higher retrieval score, so that the ranking of the retrieved
documents can be computed within an acceptable time frame, which was defined around
1s. Although we here describe the theoretic aspects related to the retrieval of the source
code elements, we did not implement IR approach used, instead we have used an existing
search engine, as described in section 4.1.

Structural Score

The structural score represents the relevance of a retrieved search result in relation to
the structural context. We define this relevance as the structural proximity between
the source code element that was retrieved and the elements in the structural context.
The structural proximity between two structural elements is inversely proportional to the
structural distance between them. The task of measuring the structural distance between
two source code elements is reduced to the problem of finding the shortest path between
the two elements, by taking the structural ontology as a directed graph (Harary et al.,
1965), where vertices are represented by structural elements and the edges are represented
by structural relations. The cost of a path is given by the sum of the cost of the relations
that create the path. Instead of using a fixed cost for each relation, the cost of a relation is
inversely proportional to the interest associated to that relation in the structural context.
This way, we take into consideration the current relevance of the structural relations to
the developer, assuring that the paths created with more relevant relations will have a
lower cost. Theoretically, we could use the entire graph to find the shortest path between
a retrieved element and each one of the elements in the context model, for instance using
the Dijkstra algorithm (Dijkstra, 1959). But this would not be feasible within acceptable
time constraints. We also believe that when two elements are separated by a reasonable
number of relations, the distance between them become too high to be considered. This
way, we only consider the top 15 elements with higher interest in the structural context
and perform a search for the shortest paths with a maximum of 3 relations.

3.3. Context-Based Search 53

REA

REB

REC

E1

E3

0.6

0.6

0.4

CEA

CEC

CEBE2 0.8

0.8

0.6

0.6

RED

REE

REF

CED

CEF

CEE

0.4

0.2

0.4

STRUCTURAL RELATIONS

E4 0.8
0.6

R
ET

R
IE

V
ED

ST
R

U
C

TU
R

A
L

EL
EM

EN
TS

C
O

N
TEX

T
STR

U
C

TU
R

A
L ELEM

EN
TS

0.8

0.4

Figure 3.12: Example of the structural paths between a set of retrieved structural elements
(RE) and the elements in the structural context (CE).

The structural distance between two structural elements is computed using equation
3.16, where sri is the ith relation of the n relations that create the shortest structural path
between the elements sea and seb.

dist
′
s(sea, seb) =

n∑
i=1

1− I(sri) (3.16)

The structural distance between the source code elements is normalized using equation
3.17, so that this distance is always a real number in the interval [0, 1].

dists(sea, seb) = 1−
(

1

edist
′
s(sea,seb)

)
(3.17)

As shown in equation 3.18, the structural proximity between a source code element se
and an element in the structural context ce is inversely proportional to the structural dis-
tance between the two elements, given by dists(se, ce), and is proportional to the interest
of the element in the structural context, given by I(ce). This way, the lower the interest
of the element ce to the developer, the lower is the proximity of an element in relation to
ce.

proxs(se, ce) = (1− dists(se, ce))× I(ce) (3.18)

The structural proximity between a source code element and the structural context is
computed as an average of the structural proximity between that element and the elements
in the structural context. Therefore, the structural score of a retrieved element r is given
by equation 3.19, where cei represents the ith element within the list of n context elements.

ss(r) =

n∑
i=1

proxs(r, cei)

n
(3.19)

An example of how the structural score is computed is illustrated in figure 3.12. The RE
nodes represent the source code elements retrieved for a given query, the E nodes represent
structural elements, and the CE nodes represent the elements in the structural context.
We can find paths between these elements using the structural relations represented in the

54 Chapter 3. Approach

structural ontology. For instance, between elements REA and CEB, there is a path through
elements E1 and E2. The values associated to the CE nodes and the structural relations
represent their interest in the structural context, respectively I(ce) and I(sr). We will
now exemplify how the structural score of the retrieved element REA is computed. First,
we need to find the structural distance between the element REA and the context elements
CEA and CEB, which are given by equation 3.16:

dist
′
s(REA, CEA) = (1− 0.8) = 0.2

dist
′
s(REA, CEB) = (1− 0.6) + (1− 0.4) + (1− 0.8) = 1.2

Then, the structural distance is normalized, using equation 3.17:

dists(REA, CEA) = 1−
(

1

e0.2

)
≈ 0.1813

dists(REB, CEB) = 1−
(

1

e1.2

)
≈ 0.6988

The structural proximity of the element REA to the context elements CEA and CEB,
formalized in equation 3.18, is computed using the the structural distance between these
elements, as follows:

proxs(REA, CEA) ≈ (1− 0.1813)× 0.8 ≈ 0.6550

proxs(REA, CEB) ≈ (1− 0.6988)× 0.6 ≈ 0.1807

Finally, the structural score for the retrieved element REA is given by equation 3.19
and computed as follows:

ss(REA) ≈ 0.6550 + 0.1807

2
≈ 0.14

Lexical Score

The lexical score represents the relevance of a retrieved search result in relation to the
lexical context. We define this relevance as the lexical proximity between the terms as-
sociated with the source code element that was retrieved, which are extracted from its
identifier, and the terms in the lexical context. This proximity is inversely proportional
to the lexical distance between the terms. Similarly to the approach followed to compute
the distance between two structural elements, the lexical distance between two terms is
represented by the shortest path between them. Such paths can be found by taking the
lexical ontology as a graph, where vertices are represented by terms and the edges are
represented by the co-occurrence relations (associatedWith). We use the co-occurrence
frequency of the two terms to measure the weight of their relation. We are assuming that
the more frequent is the co-occurrence of two terms, the stronger is the relation between
them. As shown in equation 3.20, the weight of a co-occurrence relation lr between terms
ta and tb, is given by their co-occurrence frequency cf(ta, tb), normalized by the maximum
co-occurrence frequency in the knowledge base (cfmax).

3.3. Context-Based Search 55

w(lrtatb) =
cf(ta, tb)

cfmax
(3.20)

This way, the cost of a relation is inversely proportional to the weight associated to
that relation, so that more frequent relations connect terms with a lower cost. Accordingly,
the cost of a path is given by the sum of the cost of the relations that create the path. By
using the weight of the relations between terms to compute the cost of a path, we assure
that the paths between terms that co-occur more frequently will have a lower cost. Again,
we only consider the top 15 terms with higher interest in the lexical context and paths
with a maximum of 3 relations. The lexical distance between two terms is computed using
equation 3.21, where lri is the ith relation of the n relations that create the shortest lexical
path between the terms ta and tb.

dist
′
l(ta, tb) =

n∑
i=1

(1− w(lri)) (3.21)

The lexical distance between the two terms is normalized using equation 3.22, so that
this distance is always a real number in the interval [0, 1].

distl(ta, tb) = 1−
(

1

edist
′
l(ta,tb)

)
(3.22)

As shown in equation 3.23, the lexical proximity between a term t and a term in the
lexical context ct is inversely proportional to the lexical distance between the two terms,
given by distl(t, ct), and is proportional to the interest of the term in the lexical context,
given by I(ct). This way, the lower the interest of the term ct to the developer, the lower
is the proximity of a term in relation to ct.

proxl(t, ct) = (1− distl(t, ct))× I(ct) (3.23)

The lexical proximity between a term and the terms in the lexical context is computed
as an average of the lexical proximity between that term and each one of the terms in
the lexical context. The same way, the lexical proximity between a source code element
and the terms in the lexical context is computed as an average of the lexical proximity
between its terms and the terms in the lexical context. Therefore, the lexical score of a
retrieved element r is given by equation 3.24, where ti represents the ith term of the n
terms associated to that element and ctj represents the jth term of the m terms in the
lexical context.

sl(r) =

n∑
i=1

(∑m
j=1 proxl(ti,ctj)

m

)
n

(3.24)

An example of how the lexical score is computed is illustrated in figure 3.13. The RE
nodes represent the source code elements retrieved for a given query, the T nodes represent
terms, and the CT nodes represent the terms in the lexical context. The nodes TA1 and
TA2 represent the terms extracted from the identifier of element REA. The paths between
the terms extracted from a retrieved element and the terms in the lexical context are also
visible. For instance, between terms TA2 and CTC, there is a lexical path through terms
T1 and T2. The values associated to the CT nodes represent their interest in the lexical
context (I(ct)), while the values associated to the lexical relations represent the weight
of that relation in the knowledge base (w(lr)). We will now exemplify how the lexical
score of the retrieved element REA is computed. First, we need to find the lexical distance

56 Chapter 3. Approach

0.4

TA1

TA2

TB1

T4

0.8 CTA

CTC

CTB

0.8

0.6

0.8

TB2

TB3

TC1

CTD

CTF

CTE

0.4

0.2

0.4

LEXICAL RELATIONS

R
ET

R
IE

V
ED

ST
R

U
C

TU
R

A
L

EL
EM

EN
TS

C
O

N
TEX

T
LEX

IC
A

L ELEM
EN

TS

T2

REA

REB

REC

0.6

0.4

T1

0.6

0.8

T3 0.8

0.6

Figure 3.13: Example of the lexical paths between the terms extracted form a set of retrieved
structural elements (RE) and the terms in the lexical context (CT).

between the term TA1 and the terms CTA, and between the term TA2 and the terms CTC

and CTD, which are given by equation 3.21:

dist
′
l(TA1, CTA) = (1− 0.8) = 0.2

dist
′
l(TA2, CTC) = (1− 0.6) + (1− 0.8) + (1− 0.6) = 1.0

dist
′
l(TA2, CTD) = (1− 0.4) + (1− 0.8) = 0.8

Then, the lexical distance between these terms is normalized, using equation 3.22:

distl(TA1, CTA) = 1−
(

1

e0.2

)
≈ 0.1813

distl(TA2, CTC) = 1−
(

1

e1.0

)
≈ 0.6321

distl(TA2, CTD) = 1−
(

1

e0.8

)
≈ 0.5507

The lexical proximity of the terms extracted from element REA in relation to the terms
in the lexical context is computed using equation 3.23, as follows:

proxl(TA1, CTA) ≈ (1− 0.1813)× 0.8 ≈ 0.6550

proxl(TA2, CTC) ≈ (1− 0.6321)× 0.6 ≈ 0.2207

proxl(TA2, CTD) ≈ (1− 0.5507)× 0.4 ≈ 0.1797

Finally, the lexical score for the retrieved element REA is given by equation 3.24 and
computed as follows:

sl(REA) ≈
(

0.6550
6

)
+
(

0.2207+0.1797
6

)
2

≈ 0.09

Additionally, we have also identified a set of terms (such as get, set, add, to, is, etc.)
that appear very frequently in the name of the source code elements, especially methods.

3.4. Context-Based Recommendation 57

These very frequent terms co-occur with a variety of other terms and end up connecting
almost every term in a distance of a few relations, thus distorting our metric. This problem
could be partially solved with a list of very frequent terms that would be ignored, but this
would be very limiting, because the top frequent terms vary from workspace to workspace
and may include terms that are specific to each workspace. This way, we ignore all the
terms that would fall in the top 30% of all term occurrences. The paths that go through
one of these terms are discarded. This percentage is based on our observation of a group
of knowledge bases from different users, but needs to be further studied.

3.4 Context-Based Recommendation

The context-based recommendation process we have defined uses the context model of the
developer to retrieve and rank potentially relevant source code elements, as illustrated in
figure 3.14. This process is based on the assumption that most of the source code elements
needed by the developer are likely to be structurally or lexically related with the elements
that are being manipulated in that moment (see section 5.2.1). This way, we want to help
developers reaching the desired source code elements more easily and quickly, decreasing
the effort needed to search for that elements in the source code structure. The context
model plays a central role in this process, providing the mechanism needed to identify
and evaluate the relevance of the source code elements that are being manipulated. We
use the structural elements represented in the context model, along with their relations,
to retrieve recommendations of elements that are potentially relevant for the developer.
These recommendations are then ranked taking into account different components, which
represent both the retrieval process and the relevance to the context model.

CONTEXT-BASED RECOMMENDATION

RETRIEVAL RANKING RECOMMENTATIONS

KNOWLEDGE
BASE

CONTEXT
MODEL

Figure 3.14: Abstract representation of the context-based recommendation process.

3.4.1 Retrieval

The recommendations are retrieved using the source code elements in the context model
by combining two different methods, one based on the interest of these elements and other
based on the time elapsed since these elements were last accessed. The first emphasizes
the overall importance of the source code elements in the context of the developer, while
the later privileges the elements that were recently accessed by the developer.

The interest based method makes use of the relevance of the source code elements that
have been manipulated by the developer to identify other potentially relevant elements.
The recommendations include the topN elements with higher interest in the context model
and all the elements that are structurally related with them. We call N the query size of

58 Chapter 3. Approach

A

B

C

D I G

A

H

E D

0.8

0.6

0.4 0.8

0.70.8

0.6

0.5

1.0

0.3

0.6

A

B

C

D

E

G

H

A

I

D

0.8

0.6

0.5

INTEREST APPROACH TIME APPROACH

0.5

0.2

1.0

0.6

RETRIEVAL

RANKING

0.3

0.5

0.2

SC
O

R
E

SC
O

R
E

IN
TE

R
ES

T TIM
E

0.6

Figure 3.15: Example of the retrieval and ranking using both the interest and the time
based methods.

the recommendation process, and the default value of N we have used in our approach is
3. But this value can also be defined by the developer in specific situations (see chapter
4).

The time based method uses the time, instead of the interest, to measure the relevance
of the source code elements that are being manipulated by the developer. The interest of
an element represented in the context model reflects the relevance of that element during
a period of time. But, sometimes, the most relevant elements may not be those with an
higher interest during that period of time, but the ones that have been accessed more
recently. The time based method favors this aspect, retrieving source code elements that
are related with the elements that have been manipulated more recently. The recommen-
dations retrieved using this method include the top N elements of the context model that
have been accessed more recently and all the elements that are structurally related with
them. The value of N used in the time based method is the same that is used in the
interest based method.

A simplified representation of the retrieval process is shown in the upper side of figure
3.15. The interest based method starts by collecting the top 3 source code elements with
higher interest in the context model, shown as elements A, B and C. Then, all the elements
that are structurally related with these elements are also retrieved, which are represented
by elements D and E. The time based method first retrieves the 3 elements that were
accessed more recently by the developer, represented as elements G, H and A, and then
all the elements that are structurally related with them, represented by elements I and D.
The values associated with elements A, B and C represent their interest in the structural
context. The values associated with elements G, H and A represent the time elapsed since
their were accessed, normalized by the time of the most recently accessed element, which is
element G. The values associated with the relations represent the interest of these relations
in the structural context. The number of recommendations retrieved is limited to 100, so

3.4. Context-Based Recommendation 59

that the ranking of these recommendations is computed within an acceptable time frame,
which was defined around 1s.

3.4.2 Ranking

The recommendations retrieved are ranked taking into account the retrieval process and
their relevance to the context model of the developer. The retrieval process is represented
by an interest score (si) and a time score (st), while the relevance in relation to the context
model is represented by a structural score (ss) and a lexical score (sl). The final score of
a recommendation is given by a weighted sum of these scores, as shown in equation 3.25.

sf = (wi × si) + (wt × st) + (ws × ss) + (wl × sl) (3.25)

wi + wt + ws + wl = 1 (3.26)

The sum of the four weights is always one (see equation 3.26) and the value of each
score is always normalized in the interval [0, 1]. Therefore, the final score of a search
result is always within the interval [0, 1]. The structural and lexical scores are computed
the same way as for the context-based search ranking, see section 3.3.2. Next, we describe
in detail how the interest and time scores are computed.

Interest Score

The interest score represents the score of the elements that were retrieved using the interest
based method. There are two types of elements retrieved, those that are in the list of the
elements with higher interest in the structural context, and the ones that are structurally
related with them. The elements that are retrieved in the list have a score that corresponds
to their interest in the context model. The score of the elements retrieved through a
structural relation with the elements in the list is computed using the interest of the
relation and the interest of the element with which they are related. The interest of the
element in the list is used to normalize the interest of the structural relation, so that the
score of the retrieved element is proportional to the interest of the element in the list. This
way, the score of the retrieved elements take into account the relevance of both the relation
and the element that contributed to their retrieval. When an element has a structural
relation with more than one of the elements in the list, the score is given by the average
of the scores of all the relations. This way, the interest score is computed using equation
3.27, where I(r) is the interest of element r in the structural context, while I(sei) and
I(sri) are the interest of the ith element and relation, respectively, that got element r
retrieved.

si(r) =

I(r) if retrieved directly
n∑
i=1

I(sei)×I(sri)

n if retrieved indirectly
(3.27)

As represented in the lower side of figure 3.15, the elements with higher interest re-
trieved in the top N list (A, B and C) have an interest score correspondent to their interest
in the context model.

si(A) = 0.8

si(B) = 0.6

si(C) = 0.5

60 Chapter 3. Approach

Then, element D was retrieved using two structural relations with elements A and C,
and its score is computed as an average of the interest of these relations normalized by
the interest of elements A and C.

si(D) =
(0.8× 0.8) + (0.5× 0.6)

2
= 0.5

Finally, element E was retrieved using a structural relation with element C, thus its
interest score is computed by normalizing the interest of that relation with the interest of
element C.

si(E) =
0.5× 0.4

1
= 0.2

Time Score

The time score represents the score of the elements that were retrieved using the time
based method. The score is computed in a way that is similar to that used to compute
the interest score. The main difference is that the relevance of each element is computed
using the time elapsed since it was last accessed, instead of using its interest. This time
span (ts) is normalized by the maximum time span (tsmax) among the elements in the top
N list, as shown in equation 3.28.

T (se) =
ts

tsmax
(3.28)

Similarly to the interest score, the time score is computed using equation 3.29, where
T (r) is the normalized time span for element r, while T (sei) is the normalized time span
for the ith element and I(sri) is the interest of the ith relation, that got element r retrieved.

st(r) =

T (r) if retrieved directly
n∑
i=1

T (sei)×I(sri)

n if retrieved indirectly
(3.29)

As shown in figure 3.15, the time score is computed through the same rules applied
to the elements retrieved using the interest based method, replacing the interest of the
retrieved elements by the normalized time:

st(G) = 1.0

st(H) = 0.6

st(I) =
(1.0× 0.7) + (0.6× 0.6)

2
= 0.5

st(A) = 0.3

st(D) =
0.3× 0.8

1
= 0.2

3.5 Weight Learning

As described in the previous sections, the ranking of search results and recommendations,
which will be generically referred as results, is computed using a set of different compo-
nents. The contribution of each component to the final ranking is defined by a set of

3.5. Weight Learning 61

weights, one per each component (see sections 3.3.2 and 3.4.2). At first, these weights
are equally balanced, so that each component contribute in the same proportion to the
ranking of a result. We could not predict in advance which components would be more
relevant in the ranking process. Furthermore, the relevance of each component could vary
from developer to developer. Therefore, we have defined a learning mechanism to learn
which components are more relevant for the developer, so that these components could
be favored in the ranking process. This is done by learning the weights associated to each
one of the components used in the ranking of the results.

This learning mechanism uses the results that have been selected by the developer
to learn the weights that are associated to each component. This approach is based on
the assumption that all the results selected by the developers can be considered useful.
This way, the weights evolve based on the analysis of how each component contributed
to rank the results that were useful for the developer. Because the scores of the different
components are not comparable between each other, we use the ranking obtained by the
result in each component to find the influence of that component in the final ranking. The
final ranking of a result represents its place in the list of all results sorted by their final
score, while the ranking of a component represents the place of the result when the list
is sorted by the score of that component. The objective is to increase the weights of the
components that contributed to promote the selected results and decrease the weights of
the components that contributed to demote them.

When the developer selects a result whose ranking was computed using two or more
components, the learning process is initiated. When only one component is used to rank a
result, we do not have enough information to decide which components should be favored
and which should not. As shown in equation 3.30, we compute the influence of each
component (ix) using the difference between the final ranking of the result (rf) and the
individual ranking obtained for that component (rx). This way, the higher a result is
ranked in a specific component, the higher is the influence of that component in the final
ranking.

ix = rf − rx (3.30)

The influence obtained for each component is then normalized to the interval [−1, 1], so
that the components that had a higher influence get positive values, while those that had
a lower influence get negative values. The normalized influence (nix) is given by equation
3.31, where imin and imax represent the minimum and maximum influence among all
components.

nix = 2×
(

ix − imin

imax − imin

)
− 1 (3.31)

Then, the positive and negative influences must be balanced, so that the weights are
increased in the same proportion they are decreased, maintaining their sum as one. The
balanced influence (bix), for the groups of positive (+) and negative (−) influences, is given
by equations 3.32 and 3.33, where nit represents the sum of the influences in each group
and m represents the number of components in each group.

bi+x =
ni+x
ni+t

; ni+t =
m+∑
k=1

ni+k (3.32)

bi−x =
|ni−x |
ni−t

; ni−t =

m−∑
k=1

ni−k (3.33)

62 Chapter 3. Approach

Because the learning effort needed by the system depends on how correct is the selected
result, a learning coefficient is applied to the balanced influence. The value of the learning
coefficient depends on the final ranking of the result that was selected by the developer.
The better the ranking of the result, the lower the learning effort needed. This way, the
learning coefficient (µ) is given by equation 3.34, where rf is the final ranking of the result
and 0.01 is the maximum value for the learning coefficient. The maximum value for the
learning coefficient is used to determine the global learning rate and can be adjusted to
obtain a smoother or a coarser progression.

µ = 0.01×
(

1−
(

1

e0.2×rf

))
(3.34)

Finally, the difference for each weight is obtained by applying the learning coefficient
(µ) to the balanced influence (bix) of the corresponding component. The new weight (w′x)
is obtained by adding this difference to the previous weight, as shown in equation 3.35.

w′x = wx + (µ× bix) (3.35)

In order to exemplify the learning mechanism described here, consider a search result
selected by the developer with the following final (rf), retrieval (rr), structural (rs) and
lexical (rl) rankings:

rf = 2; rr = 6; rs = 1; rl = 3;

The influence of each component, namely retrieval (ir), structural (is) and lexical (il),
would be computed using equation 3.30, as follows:

ir = rf − rr = 2− 6 = −4

is = rf − rs = 2− 1 = 1

il = rf − rl = 2− 3 = −1

The influence of each component would then be normalized to the interval [−1, 1], so
that the components that contributed to promote the result get values closer to 1, while
those that contributed to demote it get values closer to −1. The normalized influence is
computed using equation 3.31, as follows:

nir = 2×
(

(−4)− (−4)

1− (−4)

)
− 1 = −1

nis = 2×
(

(1)− (−4)

1− (−4)

)
− 1 = 1

nil = 2×
(

(−1)− (−4)

1− (−4)

)
− 1 = 0.2

The normalized influences are then balanced, so that the positive and negative in-
fluences become symmetric and their sum is zero. Following our example, the retrieval
influence belongs to the group of negative influences, while the structural and lexical in-
fluences belong to the positive ones. The total influence for each group is computed as a
sum of their influences:

ni−t = −1

ni+t = 1 + 0.2 = 1.2

3.6. Summary 63

The influences are balanced using equations 3.32 and 3.33, as follows:

bi−r =
| −1 |
−1

= −1

bi+s =
1

1.2
≈ 0.8

bi+l =
0.2

1.2
≈ 0.2

The learning coefficient is computed using the final ranking of the result (rf), which
is 2 for our example. Because the final ranking is low, thus the result was well ranked, the
learning coefficient will be less significant. Using equation 3.34, the learning coefficient is
computed as follows:

µ = 0.01×
(

1−
(

1

e0.2×2

))
≈ 0.003

Finally, the new weights for the retrieval (w′r), structural (w′s) and lexical (w′l) com-
ponents would be computed using equation 3.35, by summing the balanced influence of
each component to its previous weight, as follows:

w′r = 0.33 + (0.003×−1) = 0.3270

w′s = 0.33 + (0.003× 0.8) = 0.3324

w′l = 0.33 + (0.003× 0.2) = 0.3306

As demonstrated by the previous example, the result that was selected by the developer
was much better ranked with the structural component (rs = 1), and even with the lexical
component (rl = 3), then with the retrieval component (rr = 6). Therefore, the weights
of the structural and lexical components were slightly increased, while the weight of the
retrieval component was decreased. The difference in the weights was minimal because
the result was already well ranked (rf = 2), the difference would be higher if the result
was poorly ranked.

3.6 Summary

We started this chapter by describing a broader perspective of the work environment
of a software developer, where the different dimensions that comprise her/his work are
presented in a layered model. This model includes a personal layer, a project layer, an
organization layer and a community layer. The contextual information of the developer,
at each one of these layers, can be used to improve the retrieval of information that is
relevant for her/his work. The research work described in this thesis is focused on the
personal layer of this model, more specifically, we have focused on how the contextual
information of the developer could be used to improve the search and recommendation of
source code in the IDE. Then we have presented the various mechanisms that comprise
the basis of our approach, including the knowledge base, the context model, the context-
based search and recommendation processes, and the learning of the weights used in these
approaches.

The knowledge base represents the source code structure that is stored in the workspace
of the developer. The source code structure is formalized using a structural ontology,
representing the source code elements and their structural relations, and a lexical ontology,

64 Chapter 3. Approach

representing the terms used to reference the source code elements and how these terms are
associated. The knowledge base is build through various steps, including the parsing of
the source code, the disambiguation of source code references, the extraction of terms from
the source code, and the population the two ontologies with the information extracted in
the previous steps. Finally, the source code elements represented in the knowledge base
are also indexed for later retrieval.

The contextual information of the developer is modeled using a context model, that is
built from the interactions of the developer with the source code elements in the workspace.
As in the knowledge base, this context model combines a structural and a lexical dimen-
sions, which represent the source code elements, their structural relations and terms that
are more relevant for the developer in a specific moment in time. A context transition
detection mechanism allows the context model to automatically adapt to the changes in
the focus of attention of the developer.

The context model defined is used to improve the ranking of source code elements
retrieved using a context-based search process. The retrieval is performed using an IR
model, by matching the terms in the identifiers of the source code elements with the terms
contained in the search query. The retrieved elements are then ranked according to a
retrieval, a structural and a lexical components. The retrieval component represents the
ranking provided by the IR model, while the structural and lexical components represent
the proximity of the search result to the context model of the developer.

The same context model was used to support the context-based recommendation of
relevant source code elements to the developer. The recommendations are retrieved using
the source code elements with higher interest and accessed more recently, that are rep-
resented in the context model. The ranking of recommendations takes into account an
interest and a time components, representing the ranking obtained through the retrieval
process, as well as a structural and lexical components, which represent the proximity of
the recommendation in relation to the context model.

The contribution of the different components to the ranking of search results and
recommendations is defined by a set of weights that are learned over time. The best
combination of weights is inferred using a learning mechanism based on the search results
and recommendations selected by the developer. The objective of this mechanism is to
increase the weights of the components that contributed to promote the selected results
and decrease the weights of the components that contributed to demote them.

In the following chapter, we describe the prototype implemented, which allowed us to
integrate our approach into the Eclipse IDE. We start by describing the various elements
that comprise the system architecture. Then, we focus on the features that are provided
to a developer using the prototype.

Chapter 4

Implementation

“Genius is one percent inspiration, ninety-nine
percent perspiration.”

Thomas Edison

The context-based search and recommendation approaches described in the previous chap-
ter were integrated in the Eclipse1 IDE, using a prototype plugin named Software Devel-
opment in Context (SDiC). The plugin automatically builds and maintains the knowledge
base, updating the structural and lexical ontologies whenever source code base changes.
The context model is automatically captured from the interactions of the developer in
the IDE. These operations are run in background, being completely hidden from the
developer and not requiring any kind of human intervention. The context-based search
and recommendation of source code elements are accessible through specific interfaces that
were added to the Eclipse IDE. The plugin was implemented using the Java2 programming
language, as required by the Eclipse platform. Next, we describe the different components
that comprise the implementation architecture of the prototype and explain in more detail
the features that are provided to the developer.

4.1 Architecture

The architecture of the prototype implemented comprises a data layer, a business layer and
a presentation layer, as illustrated in figure 4.1. The different components that comprise
each one of these layers are described in the following sections.

4.1.1 Data Layer

The data layer comprises the storage mechanisms necessary for the system operation,
including the Knowledge Base and the Database. The first is used to store the knowledge
needed for the system to operate, while the later is used to store the system usage data.

Knowledge Base The Knowledge Base stores the ontologies used in the system and in-
dexes the source code elements. The structural and lexical ontologies were stored and
manipulated as a graph using Neo4J3, a high-performance graph database that allowed

1http://eclipse.org (August 2012)
2http://www.oracle.com/us/technologies/java/ (August 2012)
3http://neo4j.org/ (August 2012)

http://eclipse.org
http://www.oracle.com/us/technologies/java/
http://neo4j.org/

66 Chapter 4. Implementation

KNOWLEDGE BASE

DATABASE MANAGERKNOWLEDGE MANAGER

CONTEXT SERVICE

EXPLORER SERVICE

MONITOR SERVICE

COLLECTOR SERVICE

EC
LI

P
SE

 P
LA

TF
O

R
M

SEARCH
INTERFACE

RECOMMENDATION
INTERFACE

MONITOR
INTERFACE

DATABASE

P
R

ESEN
TA

TIO
N

LA
Y

ER
B

U
SIN

ESS
LA

Y
ER

D
A

TA
LA

Y
ER

EC
LI

P
SE

 J
D

T

Figure 4.1: The architecture of the prototype implemented.

us to efficiently store and manipulate the large number of elements and relations rep-
resented in these ontologies. The indexing and retrieval mechanisms are provided by
Apache Lucene4, a high-performance, full-featured text search engine. This engine uses a
Vector Space Model (VSM) approach based on Term Frequency/Inverse Document Fre-
quency (TF-IDF). The term weighting and document ranking process used in Apache
Lucene has some refinements5, which are meant to improve search quality and usability
and that are not relevant in the context of our approach.

Database The Database stores system usage data that is collected for analysis, includ-
ing statistical information about the knowledge base, context model, search process and
recommendation process. The validation results were extracted from the data stored in
this database. This collected data is stored in a H26 database engine, embedded within
the system.

4.1.2 Business Layer

The business layer comprises the main modules of the system, which provide the mecha-
nisms to interact with the data structures of the data layer and the algorithms necessary
to deliver the features offered through the presentation layer.

Knowledge Manager The Knowledge Manager module provides the operations neces-
sary to manage the knowledge stored in the Knowledge Base. These operations include
adding, updating and deleting information, as well as indexing and retrieving the source
code elements represented in the knowledge base. The search and recommendation mech-
anisms are also implemented in this module, including the retrieval and ranking processes.

4http://lucene.apache.org/ (August 2012)
5http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/core/org/

apache/lucene/search/Similarity.html (August 2012)
6http://www.h2database.com/ (August 2012)

http://lucene.apache.org/
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/core/org/apache/lucene/search/Similarity.html
http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/api/core/org/apache/lucene/search/Similarity.html
http://www.h2database.com/

4.1. Architecture 67

Database Manager The Database Manager module encapsulates the Database, provid-
ing the operations needed to manage the data collected about the system usage.

Collector Service The Collector Service module deals with the process of collecting the
system usage data and uploading this data to a server. The process can be performed
manually by the developer, or automatically by the system, on a daily basis.

Explorer Service The Explorer Service module provides an interface for accessing the
Java source code files in the Eclipse workspace and to parse the Java source code. These
operations are supported by the Eclipse Java Development Tools (JDT)7, which provides
the necessary plug-ins to create a Java IDE out of the Eclipse platform. The JDT tools
allow access to a model representing the entire Java source code structure, from top level
projects to individual source code elements. It also provides the necessary mechanisms to
parse a Java source code file into an Abstract Syntax Tree (AST)8.

Monitor Service The Monitor Service module is responsible for monitoring the changes
applied to the source code files in the workspace and the interactions of the developer with
such files. These changes and interactions are captured through the Eclipse Platform9,
which provides the necessary mechanisms to detect these activities. The information
about the activity of the developer is made available to other modules through an event-
based mechanism. When a change in the workspace or an interaction of the developer is
registered, a corresponding event is fired to all the modules that are registered as consumers
of that event.

Context Service The Context Service module maintains a representation of the contex-
tual information of the developer. This module consumes the interaction events produced
by the Monitor Service module, from which a context model is built. Each interaction is
processed in order to update the current context model, or to make a context transition,
when that is the case. The various context models that may exist in a specific moment
are stored in a context model pool. Although only one of them is active at each moment,
the system may make a transition to an existing context model in certain conditions. The
changes applied to a context model, or to the context model pool, produce events that can
be captured by other modules that may need to be updated as a result of these changes.

4.1.3 Presentation Layer

The presentation layer comprises the user interfaces provided by the system, including the
Search Interface, the Recommendation Interface and the Monitor Interface. These interfaces
are fully integrated in the Eclipse environment and are the contact point between the
developer and the features provided by the system.

Search Interface The Search Interface provides an interface for the context-based search
process. This interface allows the developer to submit a query and explore the search
results. The search interface is described in more detail in section 4.2.1.

Recommendation Interface The Recommendation Interface provides an interface for
the context-based recommendation process. This interface allows the developer to explore
the recommendations provided by the system. The recommendation interface is described
in more detail in section 4.2.2.

7http://www.eclipse.org/jdt/ (August 2012)
8http://en.wikipedia.org/wiki/Abstract_syntax_tree (August 2012)
9http://www.eclipse.org/platform/ (August 2012)

http://www.eclipse.org/jdt/
http://en.wikipedia.org/wiki/Abstract_syntax_tree
http://www.eclipse.org/platform/

68 Chapter 4. Implementation

Figure 4.2: A screenshot of the prototype showing the search view (1) and the search window
(2).

Monitor Interface The Monitor Interface interface is used to observe some information
about different aspects of the system, including the knowledge base, the context model
and the retrieval processes. The monitor interface is described in more detail in section
4.2.3.

4.2 Features

The main features provided to the developer by our prototype include interfaces for search
and recommendation of source code elements, which are based on the context-based search
and recommendation methodologies developed. Additionally, the prototype provides an
interface to monitor a set of information related to the system operation. These features
are described in more detail in the following sections.

4.2.1 Search

The search feature is available through a specific interface, that can be used as an Eclipse
View or an independent window. The search view (see 1 in figure 4.2) can be easily
integrated in the main window of the IDE, while the search window (see 2 in figure 4.2)
can be triggered at any moment, using a combination of keys (Ctrl+Alt+S), allowing
the developer to perform the whole search process using only the keyboard. The search
interface uses an incremental search10 mechanism, providing search results promptly. As
the developer writes the search query, the search interface is continually updated with
the to 30 search results for the current query. We believe that the combination of an

10http://en.wikipedia.org/wiki/Incremental_search (August 2012)

http://en.wikipedia.org/wiki/Incremental_search

4.2. Features 69

Figure 4.3: A screenshot of the prototype showing the recommendation view (1), the rec-
ommendation window (2), and the integration of recommendations in the search interfaces (3
and 4).

easy to use interface with a more precise search, makes our prototype a great tool to help
developers reach the desired source code elements quickly and efficiently.

Based on our experience, search is something that developers use when they do not
exactly know what they are looking for, or when what they want is somehow hidden in
the complexity of the source code structure. But, our prototype can also be used when
the developers know exactly what they are looking for, avoiding the need to spend time
browsing for a source code element in the source code structure or in the source code files.
Because the search results are ranked according to the context of the developer, most of
the times a query of a few characters is enough for the desired source code element to
appear in the first search results. The use of the context of the developer allows us to
identify what is more relevant for the developer among all the possibilities, and that is
what distinguish our approach from the traditional search tools provided by the Eclipse
IDE.

4.2.2 Recommendation

The recommendation feature provides recommendations of relevant source code elements
through a specific interface, that can be used as an Eclipse View or an independent
window. The recommendation view (see 1 in figure 4.3) can be integrated in the main
window of the IDE and stay visible all the time to keep the recommendations easily
accessible. The recommendation window (see 2 in figure 4.3) is an alternative that spares
space in the IDE, it can be triggered using a combination of keys (Ctrl+Alt+R) and is
fully functional using only the keyboard. This interface provides recommendations in the
form of a list and in what we call a code cloud (see 2 in figure 4.3). The recommendations

70 Chapter 4. Implementation

are automatically updated as the developer interacts with the IDE, reflecting the changes
that occur in the context model. The top 30 recommendations with higher score are
presented to the developer each time the the context model changes. The number of
elements of the structural context that are used for the recomendation process, which we
call of N (see section 3.4.1), is 3 by default, but can be set by the developer between 1
and 10, and is represented by the dotted scale in the top of the interface. By providing an
ordered list of source code elements that may be of interest to the developer in a specific
moment, we aim to decrease the effort needed to access such elements. This list provides a
shortcut to jump to the desired source code elements and helps the developers maintaining
awareness of what is more important in their current context. The recommendations are
also integrated with the search interface and are automatically shown to the developer
before performing the search (see 3 and 4 in figure 4.3). This integration is based on the
assumption that if the recommendations include the source code element desired by the
developer, this will avoid the need to perform the search. The value of N used for the
recommendations shown in the search interface is always 3, for reasons of simplicity of the
search interface.

4.2.3 Monitor

The monitor feature comprises an interface where a set of information related to the system
operation is provided (see figures 4.4 to 4.9). This interface was especially implemented
so that we could analyze important information about the system behaviour in different
situations. Eventually, it was also made available to the users, and turned out to be
an interesting way of explaining the concepts behind the system and motivating its use.
The interface is divided in four sections, accessible through different tabs, as shown in
the bottom of figure 4.4, which provide information related to the context model, the
knowledge base, the search feature and the recommendation feature. The charts shown in
these interfaces were created using JFreeChart11, a chart library for Java.

The information related with the context modeling and context transition processes
can be viewed in tab Context Model, as shown in figures 4.4 and 4.5. The interface
shows a list of all the context models that have been created and which one of them is
currently active (see 1 in figure 4.4). When one of these context models is selected, all the
information related with the selected context model is presented, including information
about the structural and lexical contexts. Also, a list of events (Added, Removed, Activated
and Deactivated) associated with the context model is presented (see 2 in figure 4.4).
Concerning the structural context, we can see the structural elements (see 3 in figure 4.4)
and structural relations (see 4 in figure 4.4) that are currently included in the selected
context model, as well as a visual representation of their current interest value. The hard
and soft transitive elements are shown in gray, with the soft transitive elements having a
lighter grey than the others. When one of these elements, or relations, is selected, a list of
the events (Added, Removed, Interest Incremented and Interest Decremented) that affected
that element are presented (see 5 in figure 4.4) and a chart representing the evolution of
its interest value over time is shown (see 6 in figure 4.4). Concerning the lexical context
model, we can see the terms that exist in the current context model (see 1 in figure 4.5).
Similarly to the structural context interface, when a term is selected, the list of events that
affected the term is presented (see 2 in figure 4.5) and a chart representing the evolution
of its interest value over time is shown (see 3 in figure 4.5).

The information about the knowledge base is available through the tab Knowledge Base,
as shown in figures 4.6 and 4.7. With respect to the structural ontology, the number of
instances per each sub-class of structural element (Class, Interface and Method) is presented

11http://www.jfree.org/jfreechart/ (August 2012)

http://www.jfree.org/jfreechart/

4.2. Features 71

using a pie chart (see 1 in figure 4.6). The number of structural relations (extensionOf,
implementationOf, attributeOf, methodOf, parameterOf, returnOf, calledBy and usedBy) that
were created between these instances is presented using a similar chart (see 2 in figure
4.6). The evolution in the number of elements represented in the structural ontology over
time is described using a historical chart (see 3 in figure 4.6), and a similar chart is used to
present the number of relations (see 4 in figure 4.6). Concerning the lexical ontology, the
current number of terms represented in the knowledge base and its evolution over time are
presented using a historical chart (see 1 in figure 4.7). The number of lexical relations that
were created between terms, and between terms and structural elements, are presented
using a pie chart (see 2 in figure 4.7), and its evolution is also presented using a historical
chart (see 3 in figure 4.7).

The information about the search results selected by the developer is accessible through
the tab Search, as shown in figure 4.8. The distribution of the selected search results per
each type of interface (Search View and Search Window) is presented using a pie chart (see
1 in figure 4.8), while the evolution of the average rankings of these results, per ranking
component (Retrieval, Structural and Lexical), is presented using a historical chart (see 2 in
figure 4.8). The current weight for each one of the ranking components is also presented
(see 3 in figure 4.8), along with a historical chart showing their evolution over time (see 4
in figure 4.8).

The information about the recommendations that were selected by the developer are
provided through tab Recommendation, as shown in figure 4.9. This interface is very similar
to that used to show information related to the selected search results. The number
of recommendations selected per interface (Recommendation View and Recommendation
Window), including the search interfaces (Search View and Search Window), are presented
using a pie chart (see 1 in figure 4.9). The evolution observed in the average rankings
of the selected recommendations, per ranking component (Interest, Time, Structural and
Lexical), is shown using a historical chart (see 2 in figure 4.9). The current weights of these
ranking components and their evolution are also presented (see 3 and 4 in figure 4.9).

72 Chapter 4. Implementation

Figure 4.4: A screenshot of the monitor interface showing information about the structural
context, including the list of existing context models (1), the list of events associated to the
current context model (2), the list of structural elements (3), the list of structural relations
(4), the list of events associated to the current structural element (5), and the evolution of
the interest of the current structural element (6).

Figure 4.5: A screenshot of the monitor interface showing information about the lexical
context, including the list of terms (1), the list of events associated to the current term (2),
and the evolution of the interest of the current term (3).

4.2. Features 73

Figure 4.6: A screenshot of the monitor interface showing information about the structural
ontology, including the number of structural elements (1), the number of structural relations
(2), the evolution in the number of structural elements (3), and the evolution in the number
of structural relations (4).

Figure 4.7: A screenshot of the monitor interface showing information about the lexical
ontology, including the evolution in the number of terms (1), the number of lexical relations
(2), and the evolution in the number of lexical relations (3).

74 Chapter 4. Implementation

Figure 4.8: A screenshot of the monitor interface showing information about the context-
based search, including the number of selected search results (1), the distribution of the
search weights (2), the evolution of the average rankings of selected search results (3), and the
evolution of the search weights (4).

Figure 4.9: A screenshot of the monitor interface showing information about the context-
based recommendation, including the number of selected recommendations (1), the distri-
bution of the recommendation weights (2), the evolution of the average rankings of selected
recommendations (3), and the evolution of the recommendation weights (4).

Chapter 5

Validation

“The pure and simple truth is rarely pure and
never simple.”

Oscar Wild

This chapter presents the process that we have followed to validate our approach and
discusses the results we have collected during that process. When evaluating an approach
based on something so complex and subjective as context, it is difficult to achieve results
using a laboratory controlled experiment. The context of a developer depends on an un-
predictable number of factors, and it would be almost impossible to simulate the different
conditions that influence the context of different developers in a laboratory environment.
Therefore, we believe that our approach had to be validated with developers working on
a real world scenario. These real world experiments pose several challenges and are dif-
ficult to implement at a large scale, because it is difficult to gather a significant number
of developers that are available to install and evaluate an experimental prototype during
their work. Nevertheless, we managed to run our experiments with a reasonable number
of developers. We started by conducting a preliminary study with a smaller number of
developers. This study was essential to mature our approach, by identifying a set of issues
that could be improved. The lessons learned during the preliminary study allowed us
to improve our approach and conduct a new study, this time with an higher number of
developers. The two studies and their results are described in the following sections. The
chapter concludes with a discussion of the results obtained during the validation process.

5.1 Preliminary Study

A preliminary study was created to verify if our approach could be used in a real scenario
and to gain insights about what we could be doing wrong and could be improved. This
preliminary study was conducted with an initial version of the prototype that had some
differences in relation to our final version, which was implemented based on the approach
described in chapter 3. Before discussing the results obtained for the context-based search
and recommendation in these experiments, we describe the reasons for the differences
between the initial and final versions of the prototype, as follows.

User Interface. The first user interface implemented was simpler and did not include
much of the useful features that can be found in the final version. Most of the improve-
ments were added later, based on the feedback we have collected from the developers in
regular and informal talks maintained during this preliminary study. Although our focus
was not in the user interface, the developers were using the prototype during their work

76 Chapter 5. Validation

and they were quite sensitive to usability issues. These improvements were essential for
the acceptance of the prototype by the developers, otherwise it would have been neglected
and we would not be able to validate our approach. We tried to solve the problems as
soon as they were detected, and most of them were solved even before the end of the
preliminary study. Here we will describe only the most important improvements that led
to the final user interface. There were other suggestions from the developers that we have
not implemented, either because they were outside the scope of this work, or because they
required an implementation effort for which we had no capacity.

• The initial version of the prototype included only the search interface in the form of
an Eclipse View, which was integrated in the Eclipse main window. Some developers
said this view was occupying too much space in their workspace, which was already
populated with other views. Furthermore, when they had the source code editor
in full screen, the search view was hidden and it was difficult to access it. These
concerns were addressed with the implementation of the search interface in the form
of an independent window. This window could be easily accessed using a combination
of keys and allowed the developers to use the search feature independently of the
configuration used in their workspace.

• Because developers spend most of their time using the keyboard, we realized that
the search process should not require them to use the mouse. They should be able to
perform a search, jump to the desired result and continue their work, without taking
their hands off the keyboard.

• The initial interface also allowed the developers to view the search results categorized
by type, list of packages and hierarchy of packages. We realized that these features
were almost ignored by the developers, because they wanted the process to be simple
and fast. Following this idea, we removed the categorization options and reduced
the interface to a list of search results. The search interface was transformed into an
incremental search, so that the list of search results could be automatically gathered
while the developer was typing the query. This new interface was cleaner and faster to
use, but then the developers had some difficulties in distinguishing the search results,
because there was results with very similar, or even equal, names. This problem was
easily solved by including additional information associated to each search result,
namely the type, package and project to which the search result belonged.

• When we introduced the recommendation features, in the second experiment of the
preliminary study, it was accessible through a separate window. The developers soon
started complaining that it was almost impossible to use, because they would not
bother opening a window just to look for something that might not even be there.
They suggested that it would make more sense to integrate the recommendations in
the search interface, so that they would have to deal with only one window. Also, if
the desired source code element was recommended, they would not have to perform
a search.

Knowledge Base. The initial knowledge base needed to be complemented with some
additional information, both in the structural ontology and in the lexical ontology. The
structural ontology was similar to the final version, but was lacking the behaviour rela-
tions, namely calledBy and usedBy. They were not included in our first implementation
because they would require an extra processing time during the parsing of the source code
elements. But we realized that these relations were essential to detect the structural prox-
imity between the source code elements. Actually, after being extracted, these relations
represent the great majority of the structural relations in the knowledge base. The lexical

5.1. Preliminary Study 77

ontology structure was the same as in the final version, but the statistical information
about term and co-occurrence frequencies was not being stored. The term frequencies
allowed us to identify the very frequent terms that were distorting the metric used to find
the proximity between terms. The co-occurrence frequency was used to assign a weight
to the co-occurrence relations, which were later applied to compute the cost of the paths
between terms.

Context Model. In its initial version, the context model did not include the structural
relations, which were latter added to the structural context and associated to an interest
value that is used to compute the cost of the paths between source code elements. Also,
in this initial version we did not have a mechanism to detect context transitions. That
mechanism was introduced to address one problem that was reported by some developers
when they started using the recommendation feature. They observed that when they
changed their focus of attention to a different part of the source code, the recommendation
feature would continue recommending source code elements related to their previous focus
of attention and would took some time to adapt to the new situation. They have realized
this because the recommendation feature is more dependent on the context model than
the search feature. It relies entirely on the context model to identify the source code
elements that may be relevant for the developer, whereas the search feature uses a query
provided by the developer. We noticed that our context model was not able to adapt to
this sudden changes in the focus of attention of the developer. Thus, we have created the
context transition mechanism to detect these changes and adapt to them.

Context-Based Search/Recommendation. Because of the lack of information in the
initial versions of the knowledge base and the context model, the ranking of the results
was slightly different. The structural score was computed the same way as in the final
version, but the cost of the structural relations was fixed, instead of being computed using
the interest associated to these relations in the structural context. The fixed cost assigned
to these relations were solely based on our interpretation and experience, thus it would
always be subjective. This way, we decided to associate the cost of such relations to
the interest they could have in the context of the developer. The lexical score was also
computed the same way, but by that time the cost of the co-occurrence relations was fixed
and the most frequent terms were not being ignored in the paths between terms. The
statistical information added to the knowledge base allowed us to associate the cost of a
co-occurrence relation to the weight of that relation. Also, we were able to ignore the very
frequent terms that were creating too much paths between the terms and distorting our
metric.

Learning. The learning of the weights associated to the different components were similar
to the final version, but the coefficient value was fixed and did not depend on the ranking
of the final result. Because of this, a result that was ranked in first place would lead to
a change in the weights on the same scale as another result ranked, for instance, in tenth
place. This was solved by using a learning coefficient that is higher for poorly ranked
results and lower for well ranked ones.

The preliminary study had two phases. A first experiment, called of experiment A,
was intended to test only the context-based search and was conducted with a team of 5
developers from a software house. The second experiment, called of experiment B, included
the context-based search and recommendation and was conducted with 10 developers, 4
from a software house and 6 from a computer science graduation. The 4 developers from
a software house in experiment B were also in experiment A.

The developers were using the Eclipse IDE to develop source code in the Java pro-
gramming language. The experience of the developers with Java was diverse, ranging from

78 Chapter 5. Validation

3 years up to more than 10, with an average around 6 years, and they have been using
Eclipse for different periods of time, ranging from 3 years up to more than 10, with an
average around 5 years. In average, for the two experiments, the knowledge base of each
developer contained 3,094 structural elements, 3,753 structural relations, 543 lexical ele-
ments and 5,136 lexical relations. The application was installed in the work environment
of the developers and presented as an innovative approach to retrieve source code artifacts
in the IDE. They were asked to use the application for about three weeks in each phase.
We have collected quantitative and qualitative results in the two experiments that are
described in the following sections. These will be analyzed according to the search and
recommendation features.

5.1.1 Context-Based Search

Concerning the context-based search, we wanted to find evidence that the use of the
context model would improve the ranking of relevant search results, reducing the effort of
the developers on finding the desired source code artifacts. This way, we had to verify if
the use of the context model was having a positive impact on the search process. We also
wanted to collect the opinions of the developers in relation to the prototype developed
and identify anything we could be doing wrong. The quantitative and qualitative results
collected are discussed in the following sections.

Quantitative Results

The impact of the context in the search process could be evaluated in two ways, one by
analyzing the ranking of the search results that were selected by the developers, other
by analyzing the evolution of the search weights as they adapt to the behavior of the
developers. With regard to the ranking of the search results, the final ranking depends
on the combination of three components: retrieval, structural and lexical. The retrieval
component represents a typical keyword-based search process, that is not influenced by
the context model and can be used as a reference ranking. The other two components
represent the influence of the context model in the final ranking of a search result. During
the experiment, we stored information about the search results that were selected by the
developer, namely the ranking obtained by the search result in each one of the three
components that contribute to the final ranking. The best ranking would be 1 and the
worst ranking would be 30, since only the top 30 search results are presented to the
developer. The data collected is summarized in table 5.1. The total number of search
results selected by developers was 720, from which 335 were selected during experiment A
and 385 during experiment B. In average, the search results selected were ranked in 2.80
place, with a retrieval ranking of 9.79, a structural ranking of 2.70 and a lexical ranking
of 5.78. These values clearly indicate that the search results that were relevant for the
developer were frequently better ranked through the context components than through
the keyword-based process. This behaviour shows evidence that the context components
had a positive influence in the final ranking of these search results, which would be ranked
in much lower positions if a simple keyword-based retrieval process was used.

The contribution of the retrieval, structural and lexical components for the final rank-
ing is defined by a set of weights that are learned from the behaviour of the developer.
The evolution of these weights reflect the importance of each component for the developer,
because each weight is increased or decreased according to the influence of the respective
component in the ranking of search results that were relevant for the developer. The
final weights for each component are here compared using a weighted mean, instead of
a simple mean, because the weights change according to the search results selected by

5.1. Preliminary Study 79

Table 5.1: The mean and confidence interval for the rankings of the selected search results,
per component and experiment.

A B A+B

x CI (95%) x CI (95%) x CI (95%)

Retrieval Rank (rr) 10.69 ± 1.01 9.00 ± 0.94 9.79 ± 0.69

Structural Rank (rs) 2.88 ± 0.46 2.55 ± 0.36 2.70 ± 0.29

Lexical Rank (rl) 5.98 ± 0.75 5.58 ± 0.66 5.78 ± 0.50

Final Rank (rf) 2.57 ± 0.30 3.01 ± 0.38 2.80 ± 0.25

Table 5.2: The weighted mean for the final weights of the context-based search, per compo-
nent and experiment.

A B A+B

x σ x σ x σ

Retrieval Weight (wr) 0.096 ± 0.069 0.121 ± 0.109 0.109 ± 0.093

Structural Weight (ws) 0.552 ± 0.092 0.565 ± 0.156 0.559 ± 0.130

Lexical Weight (wl) 0.318 ± 0.061 0.337 ± 0.052 0.328 ± 0.057

the developer. Thus, the weights of the developers that selected more search results have
more relevance for the mean, than those of the developers that selected less results. This
way, the weighted average we use takes into account the number of selected results by the
developer to compute the average final weights among all the developers. The weighted
mean of the final weights, per experiment, are presented in table 5.2, resulting in an aver-
age retrieval weight of 0.109, an average structural weight of 0.559 and an average lexical
weight of 0.328. As expected, the final weights confirm the tendency for a growth in the
contribution of the context components over the retrieval component. This growth was
notable and consistent in the two experiments, with a predominance of the structural
component over the lexical one. Once more, this evolution reflect the importance of the
context components over the retrieval component.

Qualitative Results

By the end of the experiment, developers were asked to fill a questionnaire. The objective
of the questionnaire was to perceive the opinion of the developers on the utility and
quality of the application. We also wanted to know what they liked the most, and the
least, and what suggestions they would give to improve the application. The questions
and results of the questionnaire are shown in table 5.3. In general, the answers were
very positive. Concerning the utility and usability of the application, the results show
that it was considered useful and with good usability. The impact of the application
on the productivity of the developers was also rated positively. The search results were
considered relevant, in general, with the most relevant results appearing well ranked very
often. Finally, the improvement in the ranking of relevant search results over time was
clearly noticed, especially by the developers of experiment A. That means that developers
acknowledged the evolution of search weights as they adapted to their behaviour.

The questionnaire also asked developers about what they liked most in the application.
Many developers said that the user interface as one of the best things, because it was
simple, intuitive and easily accessible. Also, the search was reported as being fast and
useful to quickly switch between source code artifacts. Other aspects mentioned as positive
were the innovative concept behind the application, the improvement of the search results

80 Chapter 5. Validation

T
a
b
le

5
.3
:

Q
u

estion
n

a
ire

resu
lts

for
th

e
co

n
tex

t-b
a
sed

sea
rch

,
in

clu
d

in
g

th
e

m
ea

n
a
n

d
th

e
stan

d
ard

d
ev

iation
,

p
er

grou
p

of
d

evelop
ers.

A
B

A
+

B

Q
u

e
stio

n
S

c
a
le

x
σ

x
σ

x
σ

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
tility

o
f

th
e

sea
rch

fu
n

ctio
n

a
lity

?
V

ery
L

o
w

(1
)

-
(5

)
V

ery
H

ig
h

4
.2

0
±

0
.5

1
4
.7

0
±

0
.9

4
4
.5

3
±

1
.3

6

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
sa

b
ility

o
f

th
e

sea
rch

fu
n

ctio
n

a
lity

?
V

ery
P

o
o
r

(1
)

-
(5

)
V

ery
G

o
o
d

4
.0

0
±

0
.6

3
4
.3

0
±

1
.0

9
4
.2

0
±

1
.2

7

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

a
ct

o
f

th
e

sea
rch

fu
n

ctio
n

a
lity

in
y
o
u

r
p

ro
d

u
ctiv

ity
?

V
ery

L
o
w

(1
)

-
(5

)
V

ery
H

ig
h

3
.6

0
±

0
.7

6
4
.1

0
±

0
.4

0
3
.9

3
±

0
.5

9

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

o
v
era

ll
relev

a
n

ce
o
f

sea
rch

resu
lts?

V
ery

Irrelev
a
n
t

(1
)

-
(5

)
V

ery
R

elev
a
n
t

4
.2

0
±

0
.5

1
4
.1

0
±

0
.7

0
4
.1

3
±

0
.8

2

H
o
w

o
ften

d
id

relev
a
n
t

sea
rch

resu
lts

a
p

p
ea

r
in

sea
rch

resu
lts?

V
ery

R
a
rely

(1
)

-
(5

)
V

ery
O

ften
4
.8

0
±

0
.5

1
4
.9

0
±

0
.4

0
4
.8

7
±

0
.6

3

H
o
w

o
ften

d
id

relev
a
n
t

sea
rch

resu
lts

a
p

p
ea

r
w

ell
ra

n
k
ed

in
sea

rch
resu

lts?
V

ery
R

a
rely

(1
)

-
(5

)
V

ery
O

ften
4
.6

0
±

0
.7

6
4
.3

0
±

0
.9

4
4
.4

0
±

1
.3

1

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

ro
v
em

en
t

in
ra

n
k
in

g
o
f

relev
a
n
t

sea
rch

resu
lts

o
v
er

tim
e?

V
ery

L
o
w

(1
)

-
(5

)
V

ery
H

ig
h

4
.8

0
±

0
.5

1
3
.8

0
±

1
.2

9
4
.1

3
±

1
.7

9

5.1. Preliminary Study 81

over time and the coherence between the application interface and the Eclipse interface.
On the other hand, one of the things they liked the least was about the confusion created
by artifacts with similar names but stored in different projects, which could be minimized
by improving the way search results are presented to the developer. The developers gave
interesting suggestions for improving the application. Some of them suggested that the
application could give recommendations of relevant knowledge before performing a search,
which could actually avoid the need to perform the search. Also, they would like to extend
the context-based search to other elements and different types of files. Other suggestions
were about the possibility of using filters in the search query, to allow filtering search
results by package or type, and the use of auto-complete, to help building the search
query. Finally, all developers said that would like to continue using the application in the
future.

5.1.2 Context-Based Recommendation

In relation to the context-based recommendation, the objective of the experiment was to
show evidence that our approach would help developers find relevant knowledge faster and
efficiently. More specifically, we wanted to evaluate if the recommendations could be used
to avoid the need to perform a search or browse the source code structure in order to find
the needed elements. We also wanted to assess that the context of the developer could
be used to identify the most relevant source code elements for the developer and that it
would have a positive impact on the ranking of these elements. We have collected both
quantitative and qualitative results from the experiment, that are discussed in the following
sections. The results analyzed refer to the recommendation feature only, although being
occasionally compared with the search results, for the sake of comprehension.

Quantitative Results

An immediate conclusion we could draw from a preliminary analysis of the results, both
quantitative and qualitative, is that the recommendation functionality was somehow con-
troversial, in the sense that some developers clearly found it useful and used it a lot, while
others did not find it relevant and almost ignored it. This fact may have several explana-
tions, but none could be directly drawn from the results we obtained from the experiment.
We believe that one of two things may have happened, one is circumstantial and the other
is behavioral. The circumstantial reason has to do with the specific characteristics of the
tasks, or work environment, of developers, which may not be ideal for using a recommen-
dation mechanism. For instance, if the work of the developer is spread among too many
artifacts, with little relation to each other, the recommendation feature tend to be less
useful. The behavioral reason arise from the fact that developers are not used to this kind
of functionality, it is something they do not expect to see in the Integrated Development
Environment (IDE) and those who are less open to new experiences tend to ignore it and
continue their work.

Because there was a big difference between the developers that really used the rec-
ommendation feature and those who ignored it, we decided to analyze the quantitative
results in two groups, one comprising all the 10 developers, called group C, and other
comprising only the 5 developers who have used the recommendation more intensively,
called group D. The later represents half of the developers and about 86% of the total
number of recommendation results selected. These developers were also the most active,
representing about 76% of all results selected, including search and recommendation.

As shown in table 5.4, developers selected a total of 214 recommendation results, from
which 183 have been selected by developers of group D. About 71% of all the selected

82 Chapter 5. Validation

Table 5.4: Number of selected recommendations, per interface and group of developers.

C D

Search View 82 (38.3%) 79 (43.2%)

Search Window 70 (32.7%) 50 (27.3%)

Recommendation View (List) 46 (21.5%) 40 (21.9%)

Recommendation View (Cloud) 2 (0.9%) 2 (0.9%)

Recommendation Window (List) 7 (3.3%) 6 (3.3%)

Recommendation Window (Cloud) 7 (3.3%) 6 (3.3%)

Total 214 (100%) 183 (100%)

Table 5.5: The mean and confidence interval for the rankings of the selected recommenda-
tions, per component and group of developers.

C D

x CI (95%) x CI (95%)

Interest Ranking (ri) 8.63 ± 1.21 9.46 ± 1.36

Time Ranking (rt) 7.26 ± 1.05 7.98 ± 1.18

Structural Ranking (rs) 6.14 ± 0.83 6.45 ± 0.91

Lexical Ranking (rl) 6.66 ± 0.85 6.47 ± 0.84

Final Ranking (rf) 5.07 ± 0.62 5.40 ± 0.71

results came from the search interface, which means that the developer had the intention
to search for a specific source code artifact, but the desired artifact was recommended even
before performing the search. The remaining recommendation results were selected using
the recommendation view, but almost only from the interface that provides a list of results,
which means the code cloud did not work out in practice and should be reconsidered. When
we take into account all the results selected, both from search and recommendation, the
recommendation results represent about 39% of all selected results, which rises to 43%
for developers of group D. This means that almost half of the times, the need of the
developer was satisfied by a recommendation. These numbers are a good indication that
our recommendation approach is reducing the effort of the developer on finding relevant
knowledge, avoiding the need to explore the source code structure or perform a search to
find the desired artifacts.

The average final ranking of the selected recommendation results was 5.07, with an
slightly superior ranking of 5.40 for developers of group D, see table 5.5. The average
rankings of the individual components show how the result would be ranked if only that
component was considered, and reflect how each component are influencing the final rank-
ing. For group C, there is not a significant difference in the average rankings of the four
components, with a small tendency for better structural and time rankings. When we
analyze the average rankings of the developers in group D, there is a more significant
difference between the retrieval (ri and rt) and the context (rs and rl) components, with
the context components obtaining better rankings. These numbers indicate that the use
of context is having a positive impact in the ranking of recommendation results, which
would be ranked lower if only the retrieval components were used.

The average final recommendation weights denote a tendency to favor the time and
context components compared to the interest component, as shown by the weighted mean
of the final weights, presented in table 5.6. This tendency is more clear in the developers
of group D, who have used the recommendation more frequently. As expected, the context

5.1. Preliminary Study 83

Table 5.6: The weighted mean for the final weights of the context-based recommendation,
per component and group of developers.

C D

x σ x σ

Interest Weight (wi) 0.197 ± 0.043 0.187 ± 0.039

Time Weight (wt) 0.280 ± 0.075 0.282 ± 0.081

Structural Weight (ws) 0.242 ± 0.109 0.242 ± 0.118

Lexical Weight (wl) 0.277 ± 0.0716 0.286 ± 0.0740

components gain more relevance over time, as they have a positive impact in the ranking of
the selected recommendation results. On the other hand, we see that the time component
plays a more important role, than the interest component, in the retrieval process.

Qualitative Results

By the end of the experiment, developers were asked to fill a questionnaire. The objective
of this questionnaire was to perceive their opinion on the utility and quality of recommen-
dation functionality. We also wanted to know what they liked the most, and the least,
and what suggestions they would give to improve the prototype. The questionnaire was
anonymous, so we could not split the analysis of the results the same way we did when
analyzing the quantitative results. This way, we opted to split the developers into a group
C, comprising all the 10 developers, and a group comprising the 5 developers which gave
the best scores to the recommendation functionality, called group E.

As shown in table 5.7, when we consider the opinion of all the developers, the results
show an average score for all the questions and a high standard deviation, which reflects
the divergence of opinion among the developers. These results are coherent with those
obtained in the quantitative analysis, as roughly half of the developers considered the
recommendation functionality almost unhelpful while the others found it very useful. The
results of group E show much better results, especially concerning the utility, usability
and impact on productivity. The standard deviation is also much smaller, revealing an
higher convergence of opinions. The results of the questions related with the ranking
of the recommendation results are less impressive, similar to those obtained for all the
developers. Such results show that some work must be done to improve the precision of
the algorithm.

The questionnaire also asked developers about the things they liked the most and
the least, and which suggestions they would give to improve the system. Most of the
developers liked the idea of having a list of recommendations that could help predict their
immediate needs. They pointed out that recommendations worked well as a quick jump
list and could replace some of the interfaces for exploring the source code offered by the
IDE. Some of them considered it more useful when they were working in a small context,
as the recommendations were more accurate.

The problems pointed out about recommendation were essentially related with the
user interface and the accuracy of the recommendations. According to some developers,
the user interface uses too much of the space available in the IDE. They suggested that
the recommendation interface should be completely merged with the search interface.
The code cloud was considered an interesting interface but not useful. With respect to
accuracy, some of the developers referred that occasionally the system would not suggest
any relevant artifacts and, as expected, they would have to use the search. After all, 70%
of the developers said they would like to continue using the recommendation functionality.

84 Chapter 5. Validation

T
a
b
le

5
.7
:

Q
u

estion
n

a
ire

resu
lts

for
th

e
co

n
tex

t-b
a
sed

reco
m

m
en

d
a
tio

n
,

in
clu

d
in

g
th

e
m

ea
n

a
n

d
th

e
stan

d
ard

d
ev

iation
,

p
er

grou
p

of
d

evelop
ers.

C
E

Q
u

e
stio

n
S

c
a
le

x
σ

x
σ

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
tility

o
f

th
e

reco
m

m
en

d
a
tio

n
fu

n
ctio

n
a
lity

?
V

ery
L

o
w

(1
)

-
(5

)
V

ery
H

ig
h

3
.6

0
±

2
.0

6
4
.6

0
±

0
.7

6

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
sa

b
ility

o
f

th
e

reco
m

m
en

d
a
tio

n
fu

n
ctio

n
a
lity

?
V

ery
P

o
o
r

(1
)

-
(5

)
V

ery
G

o
o
d

3
.5

0
±

1
.3

6
4
.2

0
±

0
.5

1

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

a
ct

o
f

th
e

reco
m

m
en

d
a
tio

n
fu

n
ctio

n
a
lity

in
y
o
u

r
p

ro
d

u
ctiv

ity
?

V
ery

L
o
w

(1
)

-
(5

)
V

ery
H

ig
h

2
.8

0
±

2
.8

2
4
.0

0
±

0
.6

3

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

o
v
era

ll
relev

a
n

ce
o
f

reco
m

m
en

d
a
tio

n
resu

lts?
V

ery
Irrelev

a
n
t

(1
)

-
(5

)
V

ery
R

elev
a
n
t

3
.2

0
±

1
.2

9
3
.8

0
±

0
.5

1

H
o
w

o
ften

d
id

relev
a
n
t

resu
lts

a
p

p
ea

r
in

reco
m

m
en

d
a
tio

n
resu

lts?
V

ery
R

a
rely

(1
)

-
(5

)
V

ery
O

ften
3
.3

0
±

1
.0

9
3
.6

0
±

0
.7

6

H
o
w

o
ften

d
id

relev
a
n
t

resu
lts

a
p

p
ea

r
w

ell
ra

n
k
ed

in
reco

m
m

en
d

a
tio

n
resu

lts?
V

ery
R

a
rely

(1
)

-
(5

)
V

ery
O

ften
3
.0

0
±

1
.1

8
3
.2

0
±

0
.5

1

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

ro
v
em

en
t

in
ra

n
k
in

g
o
f

relev
a
n
t

reco
m

m
en

d
a
tio

n
resu

lts
o
v
er

tim
e?

V
ery

L
o
w

(1
)

-
(5

)
V

ery
H

ig
h

3
.1

0
±

1
.3

7
3
.4

0
±

0
.7

6

5.2. Final Study 85

5.2 Final Study

The final study was conducted after the analysis of the information collected during the
preliminary study. This information was very important to evaluate our initial approach
and detect issues that should be corrected. After applying the necessary changes to the
prototype, which were already discussed in the previous section, we wanted to conduct an
experiment similar to that of the preliminary study, but this time with a higher number
of developers. This way, we have publicized the prototype within our university and in
some communities. The prototype was installed and activated by 35 developers. Among
these developers, 9 never uploaded usage data and 5 uploaded usage data that did not
show any use of the search and recommendation features. Therefore, the results analyzed
in this study were collected from 21 developers. Three of these developers have used the
prototype in two different workspaces, which are referred as workspace A and B, for each
developer. The number of days using the prototype and the knowledge base sizes for
each developer are presented in table 5.8. The developers used the prototype during an
average of 38 days, working with knowledge bases having an average of 3,496 structural
elements, 9,370 structural relations, 679 lexical elements and 13,077 lexical relations. As
in the preliminary study, we have collected statistical information about the context-based
search and recommendation processes, but this time we analyze this information in more
detail. In this study, we have also collected information about the context modeling
process. The information collected is described and discussed in the following sections.

5.2.1 Context Model

Concerning the context modeling mechanism, we have collected statistical data about new
elements added to the context model and how they were related with the elements that
were already in the context model. This information would allow us to better understand
how the source code elements manipulated by the developer are related with each other
and how this could be used to improve the context modeling and transition processes. We
have analyzed a total of 48,044 elements added to the context model, and have verified
if they were related within a distance of 3 relations with the top 15 elements with higher
interest, of both the structural and the lexical contexts. About 88% of the elements were
structurally related with at least one structural element, within an average distance of 2.3
relations, and about 86% were lexically related with at least one lexical element, within
an average distance of 2.0 relations. These numbers show that most of the source code
elements accessed by developers were related, both structurally and lexically, with at least
one of the elements manipulated before, within a distance of about two relations.

In table 5.9 we present the average number of structural and lexical elements in the
context model, as well as the average number of elements that were related and unrelated
with the added element. The lexical related elements have an higher average due to the
fact that a source code element name typically comprises more than one term, and each
match between one of these terms and the terms in the lexical context was considered. The
results show that the source code elements added to the context model were structurally
related with an average of almost 40% of the elements that were already in the context
model. The results of the lexical elements are even more expressive. This reinforces the
idea that the source code artifacts manipulated by developers are highly related. We have
also analyzed the types of relations that are more common between the added elements and
the existing elements. The percentage of times each relation appeared is shown in table
5.10. The composition and behavior relations are by far the most common, as expected.

With respect to the context transition process, we have collected statistical information
about 109 context transitions, presented in table 5.11. All the context transitions led to

86 Chapter 5. Validation

Table 5.8: The number of days of usage and average knowledge base sizes, per developer.

Structural Ontology Lexical Ontology

Developer Days Elements Relations Elements Relations

#1A 22 7,213 21,394 1,034 28,089

#1B 19 6,479 18,333 987 25,264

#2 32 12,089 30,983 980 35,186

#3A 21 5,227 13,737 761 18,094

#3B 79 7,581 21,788 1,531 39,058

#4 72 911 1,666 408 3,298

#5 2 743 1,509 317 3,108

#6 36 1,527 3,200 509 6,279

#7 20 14,690 46,666 1,753 41,845

#8 47 397 668 389 2,048

#9 68 2,697 5,603 798 11,839

#10A 10 892 1326 314 4269

#10B 28 178 274 163 803

#12 15 12,106 32,113 1,761 59,004

#15 102 949 2,543 354 3,994

#17 12 2,420 4,529 1,023 9,122

#19 30 265 449 489 2,402

#21 82 3,556 10,245 574 12,981

#24 18 139 282 128 954

#27 27 1,845 4,632 335 6,525

#28 23 3,463 10,169 1,258 11,549

#29 31 1,262 2,051 374 4,156

#30 6 252 329 156 1,048

#31 1 315 710 256 1,452

x 38 3,496 9,370 679 13,077

Table 5.9: The average number of structural and lexical elements in the context model.

Average Structural Elements 11.69

Average Structural Related Elements 4.64

Average Structural Unrelated Elements 5.05

Average Lexical Elements 14.26

Average Lexical Related Elements 22.60

Average Lexical Unrelated Elements 3.82

the creation of a new context. We could conclude that a transition to a previous context
is something very uncommon, but the problem may also reside in the rules we have
defined for switching to an existing context. At first, the similarity between the two
sets of elements was computed using the Jaccard index (Jaccard, 1901), also known as
the Jaccard similarity coefficient, which is a statistical measure used for comparing the
similarity between sample sets. When the similarity between the two sets was greater than
a threshold of 0.5, the existing context would be activated. After some time, we verified

5.2. Final Study 87

Table 5.10: The percentage of times each relation appeared in the relations between added
and existing context elements.

Relation Percentage

extensionOf 8.57%

implementationOf 1.38%

attributeOf 36.62%

methodOf 90.73%

parameterOf 10.37%

returnOf 3.07%

calledBy 49.75%

usedBy 31.19%

Table 5.11: The statistical information collected about the context transition process.

Context Transition Percentage

New Context 100%

Existing Context 0%

Hard Transition 73%

Soft Transition 27%

that the context transitions to existing context models were not happening and realized
that using the Jaccard metric would not be adequate for our purpose. The two sets being
compared were very often disproportionate, because the number of transitive elements
tends to be small compared to the number of elements in a context model. Hence, the
threshold was never reached and none of the existing contexts would be activated.

Being aware of this problem, we have refined the conditions to activate an existing
context, focusing only in the transition elements. Because the transition elements are
more relevant for the context transition process than the others, we may assume that if
an existing context contains all the transition elements, then this context model is a good
candidate to be activated (see section 3.2.3). Despite this change, there were no context
transitions to an existing context. This way, we tend to believe that the transitions to an
existing context are rare, but the process must be better studied in order to draw stronger
conclusions. With respect to the transitive elements, we could conclude that context
transitions are more often caused by reaching the hard transitive elements threshold, than
by reaching the soft transitive elements threshold. This was expected, because the hard
transitive elements are more relevant to the process and therefore have a lower threshold.
But, it also shows that the soft transitive elements have their role in detecting context
transitions.

Finally, we asked the developers to evaluate how each context transition detected by
the system could be identified as a change in their focus of attention. They were presented
with the structural elements that were in the context model before the transition and the
elements that were used to detect the transition, both hard and soft transitive. They
were asked to rate how the context transition would be related with a change in their
focus of attention, in a scale from 1 (Poorly Related) to 5 (Highly Related). The average
score for the 55 context transitions evaluated was 3.00, with a confidence interval of
±0.33, for a confidence level of 95%. The average score obtained is not conclusive, but is
encouraging, at least. One of the problems we have faced is that developers have some
difficulties understanding the concepts of context transition and focus of attention, which

88 Chapter 5. Validation

can have lead to misjudgment in the evaluation process. When we defined the context
transition process, we were seeking to endow our approach of a mechanism to deal with
situations when the developer changes the focus of attention to different parts of the
source code. Therefore, our definition of context transition is very practical and focused
on improving the retrieval mechanisms of our approach. But, when we ask developers
about context transitions and changes in their focus of attention, they may create very
different interpretations for these concepts, due to their ambiguity. Because of this, they
may end up giving an average classification to a context transition, just because they do
not understand what is being asked.

Also, we have asked developers to evaluate the context transitions some time after
these have occurred, because we did not want to interrupt their work every time a context
transition was detected. This could also pose a problem to the evaluation process, because
the source code is constantly evolving and as time passes a context transition becomes
more difficult to evaluate, or even to understand. This could be overcome by asking the
developers to evaluate a context transition in the moment it occurs, which inevitably would
lead to interruptions in their work. Another approach could be asking the developers to
explicitly indicate a context transition, but this would require an extra effort from them
and would also be affected by the interpretation problems we have referred before.

5.2.2 Context-Based Search

Concerning the context-based search, our evaluation was similar to that described in the
preliminary study. This way, we wanted to find evidence that the use of the context model
was having a positive impact on the ranking of the search results. The quantitative and
qualitative results collected are described in detail in the following sections.

Quantitative Results

During this study, the developers selected a total of 1120 search results. Among the
searches with selected search results, the search queries used by the developers had an
average size of 6.36 ± 0.26 characters. The reduced size of the search queries may be
indicative that the use of context reduces the need of using larger search queries. The
incremental search mechanism that was used in the search interface may have also con-
tributed to shorter queries, because the search results were being displayed automatically
as the query was being written. The searches returned an average of 12.22± 0.61 results,
taking into account the limit of 30 results presented to the developer. The search process
was performed on an average of 213.65±20.87ms, which is within our objective of around
1s. These values and respective confidence intervals were computed for a confidence level
of 95%. As shown in table 5.12, the search results selected had, in average, a final ranking
of 2.40, a retrieval ranking of 8.03, a structural ranking of 2.31 and a lexical ranking of
5.34. These values are marginally better and consistent with the results obtained in the
preliminary study, showing evidence that the context components had a positive influence
in the final ranking of the search results. We have also stored the ranking of the search
results if only one of the context components was combined with the retrieval component,
so that they could be evaluated separately (see table 5.12). The results show that, in
average, the structural and retrieval components combined would result in a final ranking
of 2.08, while the lexical component combined with the retrieval one would result in a
final ranking of 4.78. These values confirm, once again, that the context components have
a positive impact in the ranking of search results, even when used individually, especially
the structural component. Another interesting conclusion we can draw is that search re-
sults would be slightly better ranked if the lexical component was ignored. Although this

5.2. Final Study 89

Table 5.12: The mean and confidence interval for the rankings of the selected search results,
per component.

x CI (95%)

Retrieval Ranking (rr) 8.03 ± 0.50

Structural Ranking (rs) 2.31 ± 0.19

Lexical Ranking (rl) 5.34 ± 0.42

Final Ranking (rf) 2.40 ± 0.16

Retrieval/Structural Ranking 2.08 ± 0.16

Retrieval/Lexical Ranking 4.78 ± 0.37

Table 5.13: Comparison between the rankings of the individual components for the selected
search results.

Difference

Comparison Count Percentage x CI (95%)

Structural Ranking (rs) < Retrieval Ranking (rr) 801 71.5% 8.96 ± 0.59

Structural Ranking (rs) = Retrieval Ranking (rr) 243 21.7% — —

Structural Ranking (rs) > Retrieval Ranking (rr) 76 6.8% 3.75 ± 0.99

Lexical Ranking (rl) < Retrieval Ranking (rr) 693 61.9% 7.44 ± 0.57

Lexical Ranking (rl) = Retrieval Ranking (rr) 272 24.3% — —

Lexical Ranking (rl) > Retrieval Ranking (rr) 155 13.8% 6.36 ± 1.01

Final Ranking (rf) < Retrieval Ranking (rr) 665 59.4% 10.02 ± 0.68

Final Ranking (rf) = Retrieval Ranking (rr) 329 30.4% — —

Final Ranking (rf) > Retrieval Ranking (rr) 126 11.3% 2.81 ± 0.54

is true, we believe that the lexical component should not be neglected, because it plays
an important role in those cases where the search result does not get a structural score.

Besides analyzing the average rankings for each component, we have also investigated
if the search results were effectively getting better ranked by using the context model in the
ranking process. As presented in table 5.13, in comparison with the retrieval component,
the search results were better ranked in almost 60% of the times, being worse ranked in
only 11% of the times. The average rankings difference when the search results were better
ranked was 10.02, being only 2.81 when they were worse ranked. Although there were worse
ranked results in 11% of the times, the difference in the ranking of these results was much
smaller when compared to the improvement in the rankings of the better ranked results.
The differences between the final and the retrieval rankings were clearly influenced by the
context components, with the structural component getting better rankings in about 71%
of the times and the lexical component in about 62% of the times.

The evidence that the context of the developer is having a positive impact in the rank-
ing of search results is reinforced when we analyze the average rankings for each developer,
which are presented in table 5.14. The average ranking of the structural component is
consistently lower across almost all the developers, especially with those who have selected
more results (see for instance developers #1, #4, #6, #9 and #21). Regarding the lexical
component, the results are not so clear, but it still gets better average rankings with most
of the developers with higher number of selected results (see for instance developers #4,
#6, #9 and #21).

The weighted mean of the final search weights, according to the number of selected
search results per developer, is presented in table 5.15. The differences between the three

90 Chapter 5. Validation

Table 5.14: The number of selected results, average rankings and final weights for the
context-based search, per developer.

Rankings Weights

Developer Results rr rs rl rf wr ws wl

#1A 59 9.46 4.02 11.04 3.00 0.343 0.395 0.262

#1B 35 10.46 4.46 11.74 3.17 0.337 0.372 0.291

#2 30 20.50 2.44 8.45 2.60 0.255 0.392 0.352

#3A 42 1.93 1.31 2.14 1.60 0.341 0.337 0.315

#3B 32 6.94 2.00 4.17 1.84 0.321 0.349 0.331

#4 427 9.79 1.88 4.48 2.21 0.00 0.745 0.255

#5 5 2.80 2.20 2.60 2.20 0.341 0.329 0.330

#6 114 7.65 1.43 5.26 2.17 0.217 0.446 0.338

#7 9 7.44 7.25 12.22 8.11 0.362 0.352 0.286

#8 5 3.80 1.50 1.00 2.20 0.338 0.326 0.332

#9 100 10.25 4.47 7.54 3.29 0.270 0.387 0.309

#10A 6 2.33 1.33 1.67 2.33 0.328 0.339 0.333

#10B 1 3.00 1.00 7.00 3.00 0.341 0.333 0.325

#12 10 8.60 1.75 10.00 2.70 0.340 0.340 0.320

#15 164 2.27 2.05 2.95 2.27 0.271 0.431 0.298

#17 0 — — — — — — —

#19 7 2.71 1.17 1.25 1.14 0.335 0.334 0.331

#21 30 10.90 2.43 5.92 2.20 0.273 0.382 0.344

#24 9 1.33 1.33 1.75 1.33 0.342 0.332 0.325

#27 18 5.78 1.67 2.14 2.00 0.336 0.330 0.334

#28 4 1.50 1.00 1.00 1.00 0.338 0.331 0.331

#29 0 — — — — — — —

#30 8 1.38 1.86 1.60 1.50 0.343 0.323 0.333

#31 5 4.00 1.00 4.00 4.00 0.340 0.330 0.330

weights are consistent with those obtained in the preliminary study, with an average
retrieval weight of 0.177, an average structural weight of 0.529, and an average lexical
weight of 0.291. It is clear that the context components are being favored in relation to
the retrieval component. This is more evident when we look at the final weights, shown
in table 5.14, of the developers with a higher number of selected results (see for instance
developers #4, #6, #9 and #15). The evolution of the weights of these developers over
time is shown in figure 5.1. A fact worth mentioning is that in the case of developer #4,
who have selected, by far, the highest number of search results, the weight of the retrieval
component was reduced to zero. This means that the retrieval process was used only
for retrieving the search results, but was not contributing for their ranking, which was
computed using only the context components.

Qualitative Results

By the end of the experiment, we requested the developers to fill an anonymous question-
naire. The objective was to collect their opinion about the context-based search feature.
We collected feedback results from 12 developers that used the prototype, which are pre-
sented in table 5.16. The average classification for all the questions was very positive,

5.2. Final Study 91

Table 5.15: The weighted mean for the final weights of the context-based search, per com-
ponent.

x σ

Retrieval Weight (wr) 0.177 ± 0.143

Structural Weight (ws) 0.529 ± 0.172

Lexical Weight (wl) 0.291 ± 0.034

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11
	

21
	

31
	

41
	

51
	

61
	

71
	

81
	

91
	

10
1	

11
1	

12
1	

13
1	

14
1	

15
1	

16
1	

17
1	

18
1	

19
1	

20
1	

21
1	

22
1	

23
1	

24
1	

25
1	

26
1	

27
1	

28
1	

29
1	

30
1	

EVOLUTION	 OF	 SEARCH	 WEIGHTS	
DEVELOPER	 #4	

RETRIEVAL	 WEIGHT	 STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	 41	 51	 61	

EVOLUTION	 OF	 SEARCH	 WEIGHTS	
DEVELOPER	 #15	

RETRIEVAL	 WEIGHT	 STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	 41	 51	 61	 71	 81	

EVOLUTION	 OF	 SEARCH	 WEIGHTS	
DEVELOPER	 #6	

RETRIEVAL	 WEIGHT	 STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	 41	 51	 61	 71	 81	 91	

EVOLUTION	 OF	 SEARCH	 WEIGHTS	
DEVELOPER	 #9	

RETRIEVAL	 WEIGHT	 STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

Figure 5.1: Evolution of the search weights for developers #4, #15, #6 and #9, where the
x-axis represents each weights update and the y-axis represents the value of the weights.

92 Chapter 5. Validation

especially for the questions related to utility and usability. The questions related with the
improvement in their productivity and in the ranking of search results over time, obtained
the less expressive classifications and the higher variance.

With respect to the things they liked the most, most of the developers referred that
the search feature was very fast, efficient and simple to use, saving time and reducing the
effort needed to search for desired elements. They highlighted the fact that it was very
useful to jump from class to class, and method to method, avoiding the need to navigate
the source code structure. The search results were considered very accurate and better
ranked than traditional search.

Some of the things that developers liked the least where related with implementation
problems, such as synchronization issues in the incremental search feature and the resource
consumption of the prototype. The limitation to search only the identifiers of the source
code elements was noted by several developers. Also, it was referred that when changing
contexts very fast, the relevant search results took some time to appear well ranked.
Another limitation that was noted was the inability to find inner classes, which are classes
that are defined inside other classes.

Taking into account the limitations identified, the developers gave several suggestions
for improving the prototype. They wanted the search to be performed in the entire
content of the source code elements, for instance including variable names and comments.
Concerning the user interface, they would like to be able to expand search results, see the
search results organized in clusters and avoid the search results that are already opened
in that moment.

5.2.3 Context-Based Recommendation

As in the preliminary study, the context-based recommendation evaluation aimed to collect
evidence that the recommendations could be used to avoid the need of performing a
search or browsing the source code structure to find the needed elements. In the following
sections, we present the quantitative and qualitative results that were collected. Although
these results refer to the recommendation process only, they are occasionally compared
with the search results, for the sake of comprehension.

Quantitative Results

At first, we wanted to evaluate the capacity of the system in predicting the source code
elements that the developers would need in the near future, so that these elements could be
pro-actively recommended to them. Also, we wanted to discover what value of N should
be used to achieve the best results (see section 3.4.1). This evaluation was performed in
the background, by verifying if the source code elements being opened, or accessed, for
the first time were already being recommended by the system. This way, we were able
to evaluate our approach using the behavior of the developers during their work, without
requiring them to use our recommendations. We have implemented a mechanism to store
the top 30 recommendations generated by the system with a random value of N (between
1 and 10). For each source code element opened, or accessed, for the first time, we have
verified if that element was being recommended by the system in that moment.

In table 5.17, we present the results obtained per each value of N , along with the total
number of elements found in recommendations, the percentage of elements found, and
the average final rankings. In average, considering all values of N , 41.14% of the source
code elements opened, or accessed, for the first time were already being recommended
by the system. The best results were achieved with a value of 2 for N , with which the
system has been able to predict the developer needs in 52.98% of the times. With a

5.2. Final Study 93

T
a
b
le

5
.1
6
:

T
h

e
q
u

es
ti

on
n

ai
re

re
su

lt
s

fo
r

th
e

co
n
te

x
t-

b
a
se

d
se

a
rc

h
,

in
cl

u
d

in
g

m
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

.

Q
u

e
st

io
n

S
c
a
le

x
σ

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
ti

li
ty

o
f

th
e

se
a
rc

h
fu

n
ct

io
n

a
li
ty

?
V

er
y

L
o
w

(1
)

-
(5

)
V

er
y

H
ig

h
4
.7

5
±

0
.9

2

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
sa

b
il
it

y
o
f

th
e

se
a
rc

h
fu

n
ct

io
n

a
li
ty

?
V

er
y

P
o
o
r

(1
)

-
(5

)
V

er
y

G
o
o
d

4
.7

5
±

0
.9

2

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

a
ct

o
f

th
e

se
a
rc

h
fu

n
ct

io
n

a
li
ty

in
y
o
u

r
p

ro
d

u
ct

iv
it

y
?

V
er

y
L

o
w

(1
)

-
(5

)
V

er
y

H
ig

h
4
.3

3
±

1
.1

9

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

o
v
er

a
ll

re
le

v
a
n

ce
o
f

se
a
rc

h
re

su
lt

s?
V

er
y

Ir
re

le
v
a
n
t

(1
)

-
(5

)
V

er
y

R
el

ev
a
n
t

4
.4

2
±

1
.2

4

H
o
w

o
ft

en
d

id
re

le
v
a
n
t

se
a
rc

h
re

su
lt

s
a
p

p
ea

r
in

se
a
rc

h
re

su
lt

s?
V

er
y

R
a
re

ly
(1

)
-

(5
)

V
er

y
O

ft
en

4
.5

0
±

1
.2

2

H
o
w

o
ft

en
d

id
re

le
v
a
n
t

se
a
rc

h
re

su
lt

s
a
p

p
ea

r
w

el
l

ra
n

k
ed

in
se

a
rc

h
re

su
lt

s?
V

er
y

R
a
re

ly
(1

)
-

(5
)

V
er

y
O

ft
en

4
.4

2
±

1
.2

4

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

ro
v
em

en
t

in
ra

n
k
in

g
o
f

re
le

v
a
n
t

se
a
rc

h
re

su
lt

s
o
v
er

ti
m

e?
V

er
y

L
o
w

(1
)

-
(5

)
V

er
y

H
ig

h
4
.0

8
±

1
.4

2

94 Chapter 5. Validation

Table 5.17: The number, percentage and average rankings of newly accessed source code
elements found in recommendations, per value of N .

Rankings

N Count Percentage rf ri rt rs rl

1 1340/3338 40.14% 6.52 7.67 6.56 7.10 5.81

2 1743/3290 52.98% 10.25 10.26 11.10 9.79 8.61

3 1678/3254 51.57% 12.64 11.55 14.86 11.54 10.01

4 1565/3251 48.14% 14.12 13.37 17.11 12.50 10.49

5 1443/3255 44.33% 14.84 13.52 18.83 12.34 11.14

6 1315/3315 39.67% 15.26 13.65 19.79 12.46 11.21

7 1144/3174 36.04% 15.36 13.92 20.18 12.10 11.39

8 1043/3113 33.51% 15.36 13.94 20.35 12.39 11.59

9 1038/3179 32.65% 14.94 13.51 20.54 11.76 11.19

10 1004/3195 31.42% 15.27 13.95 20.35 12.01 11.17

Total 13313/32364 41.14% 13.21 12.35 16.46 11.32 10.14

value of 3 for N , the percentage of predicted elements was 51.57%, which is also very
close to the best percentage obtained for a value of 2. As expected, the results also
show that very lower values of N tend to have worse values, as the number of source
code elements used to retrieve the recommendations is not enough to reach the desired
element. The higher values of N also have worse results, which can be explained by the
fact that when we increase the number of source code elements in the retrieval process,
the recommendations became more dispersed and the probability of finding what the
developer needs decreases. We believe that these results are very interesting and show
that the context of developers has much to say about their immediate needs. Although
the rankings can still be improved, the results also show a slight tendency for better
rankings obtained with the context components, which reveals a positive impact of the
context model in the final ranking.

We have also collected information about the recommendations selected by the devel-
opers. Among the list of recommendations with selected recommendations, the average
number of recommendations presented to the developer was 25.34± 0.70, taking into ac-
count the maximum of 30 recommendations that could be presented. The recommendation
process was performed on an average of 292.86 ± 47.02ms, which is within our objective
of around 1s. These values and respective confidence intervals were computed for a confi-
dence level of 95%. As shown in table 5.18, a total of 379 recommendations were selected.
About 93% were selected from the recommendations integrated in the search interfaces,
while the recommendation only interfaces were almost ignored. This difference is even
more expressive than that obtained in the preliminary study. We believe this can be ex-
plained by the fact that an interface that provides pro-active recommendations and also
allows to perform a search delivers more value to the developer. This may also indicate
that the developer had the intention to search for a specific source code element, but the
desired element was being recommended even before performing the search. When we take
into account all the source code elements selected, both from search and recommendation,
the recommendations represent about 34% of all selected elements, which is also consistent
with the results of the preliminary study. That means that in 34% of the times in which
the developer used our prototype to reach a desired source code element, the need of the
developer was satisfied by a recommendation.

5.2. Final Study 95

Table 5.18: Number of selected recommendations, per interface.

Search View 174 (45.9%)

Search Window 180 (47.5%)

Recommendation View (List) 11 (2.9%)

Recommendation View (Cloud) 13 (3.4%)

Recommendation Window (List) 0 (0%)

Recommendation Window (Cloud) 1 (0.3%)

Total 379 (100%)

Table 5.19: The mean and confidence interval for the rankings of the selected recommenda-
tions, per component.

x CI (95%)

Interest Ranking (ri) 9.08 ± 0.77

Time Ranking (rt) 8.96 ± 0.80

Structural Ranking (rs) 8.03 ± 0.76

Lexical Ranking (rl) 7.41 ± 0.68

Final Ranking (rf) 5.40 ± 0.55

As shown in table 5.19, the average final ranking of the selected recommendations was
5.40. Although it may still be subject to improvements, we consider that this is a good
precision for this type of recommendation system. The average rankings of the individual
components were 9.08 for the interest component, 8.96 for the time component, 8.03 for
the structural component and 7.41 for the lexical component. These rankings do not show
a significant difference between the four components. Although the context components
have slightly better average rankings, the difference is lower than the difference obtained in
the preliminary study. Interestingly, the lexical component achieves better rankings than
the structural one, which depicts that the lexical relations between source code elements
are contributing to improve the precision of the recommendations. When we analyze the
average rankings for each developer, which are presented in table 5.20, we verify that there
is not a convergence about which components may be more relevant. For instance, among
the developers who have selected more recommendation results, there are cases where the
context components had better average rankings (#4, #7 and #8) and others where the
interest or the time components obtained better average rankings (#2, #6 and #27).

The weighted means for the final recommendation weights are presented in table 5.21.
In accordance with the average rankings, the weights do not show evidence of a significant
difference between the four components, although there is a slight favoring of the context
components. Also, for the weights to converge it is necessary to select a significant number
of recommendations, and when we consider the weights of the developers who have selected
a higher number of recommendations, as shown in table 5.20, the differences become more
explicit. For instance, the weights of developer #4 show a clear predominance of the
context components, the weights of developer #10A were favoring the structural and the
interest components, and the weights of developer #21 and #7 were tending to favor the
structural and lexical components. The evolution of the recommendation weights for these
developers is shown in figure 5.2.

96 Chapter 5. Validation

Table 5.20: The number of selected results, average rankings and final weights for the
context-based recommendation, per developer.

Rankings Weights

Developer Results ri rt rs rl rf wi wt ws wl

#1A 16 13.94 14.25 10.13 10.25 7.00 0.248 0.225 0.282 0.245

#1B 6 11.67 4.00 21.17 7.83 4.83 0.240 0.268 0.233 0.259

#2 10 6.50 5.40 7.70 9.10 3.50 0.250 0.253 0.244 0.254

#3A 0 — — — — — — — — —

#3B 0 — — — — — — — — —

#4 128 10.10 8.05 7.09 4.84 3.64 0.130 0.174 0.332 0.364

#5 8 7.00 11.50 10.88 9.88 12.13 0.285 0.230 0.235 0.250

#6 38 5.79 6.34 7.39 6.68 3.92 0.274 0.234 0.236 0.257

#7 16 15.38 20.38 5.53 10.15 9.25 0.239 0.185 0.305 0.271

#8 22 7.86 9.14 5.63 2.29 5.45 0.262 0.202 0.269 0.261

#9 1 2.00 16.00 6.00 18.00 2.00 0.252 0.249 0.251 0.248

#10A 63 9.06 9.30 8.90 11.31 9.37 0.318 0.265 0.343 0.074

#10B 2 2.00 2.00 11.50 3.00 1.50 0.254 0.249 0.247 0.251

#12 2 1.00 1.50 12.00 4.50 1.50 0.252 0.252 0.245 0.251

#15 2 5.50 9.50 4.00 6.00 4.00 0.250 0.246 0.254 0.250

#17 4 2.25 2.00 2.50 2.50 2.50 0.250 0.258 0.244 0.248

#19 0 — — — — — — — — —

#21 33 10.64 12.76 10.72 8.58 5.42 0.246 0.201 0.262 0.291

#24 3 12.33 13.67 12.33 3.33 4.33 0.251 0.241 0.251 0.258

#27 21 3.71 3.05 6.00 10.31 2.86 0.261 0.245 0.261 0.232

#28 1 18.00 12.00 7.00 15.00 13.00 0.244 0.251 0.258 0.247

#29 1 7.00 11.00 13.00 4.00 4.00 0.251 0.248 0.246 0.254

#30 1 1.00 1.00 2.00 1.00 1.00 0.251 0.251 0.248 0.251

#31 1 4.00 12.00 8.00 4.00 5.00 0.253 0.244 0.250 0.253

Table 5.21: The weighted mean for the final weights of the context-based recommendation,
per component.

x σ

Interest Weight (wi) 0.224 ± 0.071

Time Weight (wt) 0.214 ± 0.035

Structural Weight (ws) 0.297 ± 0.041

Lexical Weight (wl) 0.264 ± 0.098

5.2. Final Study 97

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	 41	 51	 61	 71	 81	 91	 101	 111	 121	

EVOLUTION	 OF	 RECOMMENDATION	 WEIGHTS	
DEVELOPER	 #4	

INTEREST	 WEIGHT	 TIME	 WEIGHT	

STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	 41	 51	

EVOLUTION	 OF	 RECOMMMENDATION	 WEIGHTS	
DEVELOPER	 #10A	

INTEREST	 WEIGHT	 TIME	 WEIGHT	

STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	 21	 31	

EVOLUTION	 OF	 RECOMMENDATION	 WEIGHTS	
DEVELOPER	 #21	

INTEREST	 WEIGHT	 TIME	 WEIGHT	

STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

1	 11	

EVOLUTION	 OF	 RECOMMENDATION	 WEIGHTS	
DEVELOPER	 #7	

INTEREST	 WEIGHT	 TIME	 WEIGHT	

STRUCTURAL	 WEIGHT	 LEXICAL	 WEIGHT	

Figure 5.2: Evolution of the recommendation weights for developers #4, #10A, #6 and
#21, where the x-axis represents each weights update and the y-axis represents the value of
the weights.

Qualitative Results

The developers were requested to fill an anonymous questionnaire to give their opinion
about the recommendations provided by the system. We collected feedback results from
15 developers that used the prototype, which are presented in table 5.22. Although the
average classification for all the questions is positive, there are some differences that should
be highlighted. The usability of the system was considered good, and the relevance of rec-
ommendations was rated positively. The utility of the recommendations and the learning
mechanism were also rated above the average. From these results we also conclude that
the raking of recommendations is something that can be improved. The utility and impact
in the productivity obtained the lowest score among all the questions.

We also asked developers about the things they liked the most and the least, and which
suggestions they would give to improve the system. With respect to what they liked, most
of the developers said the recommendations were an easy, fast and useful way to jump into
the desired source code elements. They said it was saving the time needed to investigate
the source code structure, look inside source code files or even perform a search.

Concerning the things they liked the least in the recommendation feature, a few of the
developers said that performing a search was sometimes more efficient than looking for the
desired elements in the list recommendations. This was sometimes related with the need
to improve the accuracy of the approach, so that the relevant recommendation appear
better ranked. Some of the developers noted that most of the times the recommendations
included elements that were currently opened and active, which should be avoided because
the recommendation of such elements is irrelevant. Also, the code cloud was not considered
useful by several developers.

98 Chapter 5. Validation

Taking into account their analysis of the prototype, developers have proposed several
suggestions. Most of the suggestions were related with the user interface. For instance,
some of them wanted to be able to expand the recommendations and see more information
about them. Because the recommendations were sometimes confused with search results,
they suggested that they should be somehow differentiated. The capacity of the system in
dealing with fast context transitions is something that could also be improved. They also
suggested that recommendations could be used to improve the code-completion feature,
the source code navigation and to highlight relevant methods directly in the source code.

5.3 Discussion

We presented the experiments we have performed to validate and evaluate our approach.
These experiments were carried out in a real world scenario, with developers using our
prototype during their daily work. Although these real world experiments pose several
challenges and are difficult to implement at a large scale, we managed to run the ex-
periment with a reasonable number of developers. We started with a preliminary study,
involving a smaller group of developers, which allowed us to evaluate an initial version of
our prototype. The feedback we have collected during this experiment was essential to
identify a number of issues that had to be improved. A a good portion of these issues were
related with the user interface, showing that usability was a crucial factor. We have also
identified some issues in the various components of our approach, which were corrected
before the final study.

With respect to the context model, we have collected statistical information about how
the source code elements accessed by the developer are related between each other. The
results showed that these elements are highly related, being structurally or lexically related
with other elements already in the context model in more than 80% of the times. Which
reinforces our assumption that the relations between an arbitrary source code element and
the elements in the context model could be used to access the relevance of that element
to the developer. Concerning the context transition mechanism, we asked developers to
evaluate a set of context transitions, but concluded that it was hard to evaluate, due to
the different interpretations that a context transition may have.

The context-based search process was evaluated by comparing the different components
that contribute to the final ranking of a search result. We analyzed the search results that
were selected by the developer, assuming that these results were considered more relevant
than the remaining. From this analysis, we have concluded that the results were most of
the times better ranked using our approach than they would if using only the retrieval
model. In fact, they were better ranked in about 60% of the times, and worst ranked in only
11% of the times. This pattern was consistent in the two experiments and fairly regular
among all the developers, showing evidence that the context model has a very positive
impact in the ranking of the search results. This was also visible in the evolution of the
weights used to balance the contribution of each component, with the learning mechanism
tending to favor the context components in detriment of the retrieval component. Given
the difference between the three components, the weight learning process played a central
role in improving the ranking of the search results.

Regarding the context-based recommendation process, we evaluated the capacity of
our approach in predicting the source code elements needed by the developer in the near
future. This was done by analysing if the source code elements accessed by the developers,
during their work, were already being recommended by the system. By taking into account
the two context elements with higher interest and accessed more recently, our approach
was able to predict the element being accessed in about 53% of the times, being ranked

5.3. Discussion 99

T
a
b
le

5
.2
2
:

Q
u

es
ti

on
n

ai
re

re
su

lt
s

fo
r

th
e

co
n
te

x
t-

b
a
se

d
re

co
m

m
en

d
a
ti

o
n

,
in

cl
u

d
in

g
th

e
m

ea
n

a
n

d
th

e
st

a
n

d
a
rd

d
ev

ia
ti

o
n

.

Q
u

e
st

io
n

S
c
a
le

x
σ

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
ti

li
ty

o
f

th
e

re
co

m
m

en
d

a
ti

o
n

fu
n

ct
io

n
a
li
ty

?
V

er
y

L
o
w

(1
)

-
(5

)
V

er
y

H
ig

h
3
.8

0
±

1
.5

8

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

u
sa

b
il
it

y
o
f

th
e

re
co

m
m

en
d

a
ti

o
n

fu
n

ct
io

n
a
li
ty

?
V

er
y

P
o
o
r

(1
)

-
(5

)
V

er
y

G
o
o
d

4
.3

3
±

1
.2

9

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

a
ct

o
f

th
e

re
co

m
m

en
d

a
ti

o
n

fu
n

ct
io

n
a
li
ty

in
y
o
u

r
p

ro
d

u
ct

iv
it

y
?

V
er

y
L

o
w

(1
)

-
(5

)
V

er
y

H
ig

h
3
.2

7
±

1
.5

2

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

o
v
er

a
ll

re
le

v
a
n

ce
o
f

re
co

m
m

en
d

a
ti

o
n

s?
V

er
y

Ir
re

le
v
a
n
t

(1
)

-
(5

)
V

er
y

R
el

ev
a
n
t

4
.0

0
±

0
.7

3

H
o
w

o
ft

en
d

id
re

le
v
a
n
t

re
co

m
m

en
d

a
ti

o
n

s
a
p

p
ea

r
a
m

o
n

g
a
ll

re
co

m
m

en
d

a
ti

o
n

s?
V

er
y

R
a
re

ly
(1

)
-

(5
)

V
er

y
O

ft
en

3
.9

3
±

1
.0

9

H
o
w

o
ft

en
d

id
re

le
v
a
n
t

re
co

m
m

en
d

a
ti

o
n

s
a
p

p
ea

r
w

el
l

ra
n

k
ed

a
m

o
n

g
a
ll

re
co

m
m

en
d

a
ti

o
n

s?
V

er
y

R
a
re

ly
(1

)
-

(5
)

V
er

y
O

ft
en

3
.6

7
±

1
.2

9

H
o
w

w
o
u

ld
y
o
u

ra
te

th
e

im
p

ro
v
em

en
t

in
ra

n
k
in

g
o
f

re
le

v
a
n
t

re
co

m
m

en
d

a
ti

o
n

s
o
v
er

ti
m

e?
V

er
y

L
o
w

(1
)

-
(5

)
V

er
y

H
ig

h
3
.8

0
±

1
.5

8

100 Chapter 5. Validation

on average at position 11. We believe this is a clear evidence that the context model has
a very important role on identifying the source code elements that may be of interest to
the developer. When it comes to analysing the importance of the different components
that contribute to the ranking of recommendations, the results are not as consistent as
those obtained for the search process. As opposed to search, where we rely on the query
of the developer to retrieve the desired source code elements, in recommendation we rely
exclusively on the context model to retrieve and rank recommendations, which are only
predicted to be relevant for the developer. Thus, the effectiveness of the recommendation
process is highly dependent on the context of the developer. When we analyzed the
recommendations that were selected by the developer, the results were not as evident as
in search. The four components that contribute to the final ranking of recommendations
had different results for different developers. This way, we were not able to conclude which
components are more relevant to rank recommendations, as their importance change from
developer to developer. This fact reinforces the importance of using a weight learning
mechanism, allowing the system to adapt the contribution of these components to the
different characteristics of each individual developer.

The qualitative assessment was performed using anonymous questionnaires, to collect
the opinion of the developers in relation to the context-based search and recommendation
features. The opinion about the search feature was very positive and consensual among the
developers, being considered very fast, efficient and simple to use. The major limitation
identified by the developers was related with the inability of searching the entire content of
the source code elements, since the search was limited to the identifiers of such elements.
With respect to the recommendation feature, the results were not so evident. Although it
was also considered, by most of the developers, an easy, fast and useful way to jump into the
desired source code elements, there is still a lot of space for improvements. The suggestions
provided by the developers focus on improving the accuracy of the recommendations and
the user interface.

5.4 Limitations

The results obtained in our experiments should be analyzed in light of some limitations.
First, we chose not to conduct a laboratory study, because we believe that the ambiguity
and complexity associated to the context of a developer could not be simulated is such
an environment. This way, we conducted our experiments with developers in their work
environment, so that our study could be as closest as possible of a real world scenario.
Although we believe this was the best way of validating our approach, we had no control
over the representativity of the source code base of each developer, or the tasks performed
by these developers. We have collected additional information about the size and struc-
ture of the source code base used by each developer, which can be indicative but not
completely representative of its complexity and scope. Concerning the tasks performed
by the developers, we tried not to focus on individual tasks, thus we have no information
related with the kind of tasks that were addressed. We do not know to what extent the
source code base or the kind of tasks being addressed may be influencing the results that
were obtained. Also, we have conducted the study with volunteers, this way we could
not guarantee that the developers would be representative in terms of different aspects,
such as experience, development methods, time constraints, domain, etc. Nevertheless, we
tried to validate our approach with a diversified group of developers, from both industry
and academia.

Considering the use of the search results and recommendations selected by the devel-
opers to access the impact of the context in the retrieval mechanisms, we are assuming

5.4. Limitations 101

that these selected source code elements were relevant for the developers. Although it is
a common assumption in this kind of evaluation, we can not assure that they were in fact
relevant for the work of the developer. This assumption avoids the need to obtain explicit
feedback from the developers, which would end up interrupting their work. The strategy
used works like an implicit feedback mechanism, but may lead to wrong assumptions in
some cases.

Finally, the prototype we have implemented is limited to the Java programming lan-
guage and can be used only in the Eclipse IDE. Although these limitations must be taken
into account, our choices were weighted taking into account the characteristics of the
selected programming language and IDE. The Java programming language is one of the
most used programming languages and we believe it is representative of the great majority
of object oriented programming languages. The Eclipse IDE is also one of the most used
IDEs for the Java programming language, being one of the most complete with respect to
the features and tools available to the developers.

Chapter 6

Related Work

“Research is to see what everybody else has seen,
and to think what nobody else has thought.”

Albert Szent-Györgyi

This chapter presents several works, in different areas, that are related with our work,
either because they have similar objectives, or because they have applied techniques that
are similar to those we have used. We categorize these works in four main sections,
according to where they have been applied. First, we introduce works related with context
awareness in software development, that is where our work is grounded and where a
more detailed comparison is provided. Next, we describe some works related to software
exploration, where search and recommendation have been largely applied to help exploring
a software system. Following, several works in the area of software reuse are presented,
which also make use of search and recommendation to foster reuse in software development.
Finally, we present some of the works that have used the history of a software development
project to provide guidance to software developers.

6.1 Context Awareness in Software Development

The increasing dimension and complexity of software systems, as well as the nature of the
work of a software developer, led to a situation where developers need to handle several
complex tasks, in a single day of work, and keep track of the different contexts associated
to these tasks. As an attempt to overcome the problems associated to task complexity
and task switching, several approaches have applied context to improve awareness and
help recovering the mental state associated to a task. Most of these approaches use the
interaction history of the developer to infer and model the context associated to a task.
Some of them use the interaction history and navigation paths of different developers to
identify which artifacts are more relevant in a specific task context. Our approach as been
inspired by some of these works, in the way we also use the interaction history to model
the context, or the focus of attention, of the developer in a specific moment, to aid search
and exploration of the source code. Following, we describe some of the existing approaches
and compare them with our work.

Kersten and Murphy (Kersten and Murphy, 2005, 2006) have developed a model for
representing tasks and their context. They define a task as “a usually assigned piece of
work often to be finished within a certain time”, which for a programmer includes bug
fixes, feature additions and code base explorations. Also, they define a task context as
“the information - a graph of elements and relationships of program artifacts - that a
programmer needs to know to complete that task”. This task context is derived from an

104 Chapter 6. Related Work

interaction history, which comprises a sequence of interaction events representing oper-
ations performed on a software program’s artifact. The interaction history representing
the activity performed for a task is then processed and a graph is created, representing
the task context. In this graph, nodes represent program’s artifacts and edges represent
the programming language reference relations. The task’s interaction history is used to
compute a weight for the elements in the task context, which is a real number representing
the element’s Degree of Interest (DOI) for the task. This approach to element weighting is
loosely based on the model proposed by Card and Nation (Card and Nation, 2002), which
have used a DOI model together with focus+context visualization techniques to create
attention-reactive interfaces for hierarchical information.

They then use the information in a task context either to help focus the information
displayed in the Integrated Development Environment (IDE), or to automate the retrieval
of relevant information for completing a task. In order to support their investigation effort
they developed Mylar, which integrates the task context model with the Eclipse1. The
Mylar IDE integration allows programmers to work with task context in several commonly
used parts of Eclipse, namely:

• DOI-based element decoration of Java, XML and files;

• DOI-based filtering in tree and list views;

• DOI-based ranking of elements and relationships in table views;

• DOI-based folding in the editor.

Furthermore, Mylar provides task context specific functionalities such as:

• Active Search View, which shows elements and relations of predicted interest;

• Active Test Suite, which creates and runs unit tests in the task context;

• Active Hierarchy, which shows the inheritance context of the task.

To validate their theory, they performed a longitudinal field study, which was repre-
sentative of the real long-term tasks performed on large systems on industry, obtaining
both quantitative and qualitative evidence that their approach can make programmers
more productive (Kersten and Murphy, 2006). Their prototype has evolved to the My-
lyn2 project, and the task focused interface they developed is currently part of the Eclipse
IDE.

We have also used a degree of interest model to represent the context of the developer
in a specific moment, which is inspired by the model proposed by Kersten and Murphy.
As in their work, we rely on the interactions of the developer in the IDE to build this
model. However, we monitor only source code elements, such as classes, interfaces and
methods, that are opened, activated, edited or closed by the developer. Based on the DOI
of these elements, we compute a DOI for the structural relations that exist between them.
The DOI we assign to each relation represents the relevance of that type of relation to the
developer, and not the relevance of a specific relation between two source code elements.
Also, we have extended this model with a lexical perspective, by assigning a DOI to the
terms that comprise the identifiers of the source code elements that are represented in the
context model of the developer.

Instead of using the context model to help focus the User Interface (UI) in the elements
that are more relevant to the developer, we use this model to improve the retrieval of source

1http://www.eclipse.org/ (August 2012)
2http://www.eclipse.org/mylyn/ (August 2012)

http://www.eclipse.org/
http://www.eclipse.org/mylyn/

6.1. Context Awareness in Software Development 105

code elements through search and recommendation. The objective is to be able to compute
the relevance of any retrieved source code element to the developer, being it in the context
model or not. The relevance is measured as a distance between a source code element and
the context model of the developer. This distance is computed using the structural and
lexical relations that exist between the source code elements, which are represented using
an ontology.

Another important difference is that their approach is grounded on the concept of
tasks, which requires the developer to explicitly specify when a task starts and ends, and
makes it difficult to deal with situations when the developer works on more than one task
at the same time. Our approach aims to create a context model that represents the current
focus of attention of the developer, independently of the task, or tasks, s/he is working
on that moment, thus being more generic. The changes in the focus of attention of the
developer are automatically detected by the system, allowing the context model to adapt
to the behaviour of the developers without requiring their direct intervention.

In the same line of task management and recovery, Parnin and Gorg (Parnin and
Gorg, 2006) propose an approach for capturing the context relevant for a task from a
programmer’s interactions with an IDE, which is then used to aid the programmer recov-
ering the mental state associated with a task and to facilitate the exploration of source
code using recommendation systems. In this scenario, they define context as “a subset
of elements of a program, such as a method, a class or a file, in which the programmer
is interested at a given point in time”. The context information is gathered through the
analysis of the interaction history of the user, which is defined as “a record of a user’s
interactions with an application for the purpose of providing insight into that history as
well as facilitating future interactions”. They analyze the interactions of a programmer to
create a representation of the context of the programmer. The categories of interactions
they are interested in are those that apply to an IDE, such as navigation, click, edit and
query. The interaction history stores the time and the names of the methods with which
the programmer interacted during a work day. Because the contexts derived from large
sessions contain too many methods, these are filtered using measures of interest based
on the amount of time a programmer spent with a method and the transition patterns
between methods.

From the perspective of a context-recommendation system, the objective is to provide
a list of items related to an active entity, based on the assumption that accessing an entity
from this list is easier than accessing it through other ways. Their idea was to display
a list of the active methods in the IDE, and the problem of filtering the most relevant
methods to be displayed was resumed to a replacement problem, which they have studied
using various replacement algorithms. As a further enhancement, prefetching algorithms
were also used, in order to recommend methods that were not previously encountered.
They conducted an exploratory case study, obtaining interaction history from professional
programmers through a plugin for Microsoft Visual Studio3 called InteractionHistoryDB,
concluding that their approach demonstrates improved exploration of source code over
traditional recommendation systems (Parnin and Gorg, 2006).

While their approach focus only on methods, our context model takes into account
other elements, such as classes and interfaces. They recommend a list of methods whose
relevance is computed based only on the interaction patterns of the developer, ignoring
any structural or lexical relations that may exist between them. We use the most relevant
and most recently accessed elements in the context model to discover structurally related
elements that may be of interest for the developer. Furthermore, we use also the structural
and lexical relations between the retrieved elements and the elements in the context model

3http://www.microsoft.com/visualstudio/ (August 2012)

http://www.microsoft.com/visualstudio/

106 Chapter 6. Related Work

to rank the recommendations according to their relevance to the developer.
Piorkowski et al. (Piorkowski et al., 2011) have studied previous approaches used to

help developers navigating the source code structure. These approaches use various mod-
els for predicting the locations to where developers need to navigate at a certain moment,
including recency, working sets, frequency, bug report similarity, within-file distance, for-
ward call depth, undirected call depth and source topology. They have concluded that
recency was the most accurate model for predicting click-based navigations, while within-
file distance obtained the best results for view-based navigation. They have also studied a
multi-factor model based on Information Foraging Theory (IFT) (Pirolli and Card, 1999),
which uses both the source code topology and the words contained in methods. A com-
bination of this model with the recency model provided consistent better results in both
click and view-based navigations.

More recently, Piorkowski et al. (Piorkowski et al., 2012) have implemented a new
algorithm based on their previous findings (Piorkowski et al., 2011) on using IFT to
help developers navigating the source code. They take into account a list of the last
methods visited by the developer, which size can be configured based on a low momentum
schema (1) and a high momentum schema (10). The algorithm uses this list of previously
visited methods to produce a list of 10 recommendations, including methods previously
visited and not previously visited by the developer. The recommendations are retrieved
and ranked according to a spread-activation algorithm based on a graph representing the
source code structure and the words shared between methods. The recency information
was also taken into account, by applying a greater activation to more recently accessed
methods. This algorithm was compared with a purely lexical-based algorithm that uses
the Term Frequency/Inverse Document Frequency (TF-IDF) (Salton and Buckley, 1988)
measure to compute the similarity between methods. They implemented a plugin for
Eclipse that could provide recommendations using the two algorithms, and conducted a
study with a group of professional developers completing a debug task. They analyzed the
hit rate and usefulness of the system and discovered that the low momentum schema, using
only the last visited method, provides better recommendations than the high momentum
schema. They have also found evidence that using the source code structure and the words
shared between methods is better that using only the words. Finally, they concluded
that the system was able to recommend relevant places for exploration, but that these
recommendations were more useful later in the task.

Their approach is comparable with that proposed by Parnin and Gorg (Parnin and
Gorg, 2006), as they also focus the methods recently visited by the developer. They ex-
tend the approach of Parnin and Gorg, by taking into account the structural relations and
lexical similarity between methods to identify a set of relevant methods. Again, our recom-
mendation approach includes classes and interfaces, besides methods, as recommendable
items. We measure the lexical proximity between these elements through the co-occurrence
of terms in their identifiers, instead of using TF-IDF to find their similarity. Finally, we
use all the elements in the current context of the developer to rank the recommendations
according to their structural and lexical proximity to the current context.

Singer et al. propose NavTracks (Singer et al., 2005), a plugin for Eclipse that provide
recommendations of relevant source code files based on the navigation history of a soft-
ware developer. The patterns created by the developer when navigating in the source code
are used to identify relationships between related files. The association rules are created
between files that are accessed in short navigational cycles and are stored in an associa-
tion repository. When the developer opens or navigates to a source code file, the system
collects a list of related files using the association rules stored in the repository. The rec-
ommendations retrieved using more recent relationships are ranked higher than the others.
The algorithm gives more importance to recent relationships over the more frequent ones,

6.2. Software Exploration 107

because a frequency heuristic would not be suitable to deal with task switches.
Deline et al. (DeLine et al., 2005) propose an approach for recommending source code

elements based on wear-based filtering, which uses the interaction information of software
developers to guide the attention of other software developers exploring the same source
code. The current position of the developer in the source code is used as an implicit query
for retrieving the source code elements that have been most frequently accessed next.
They propose that these frequently accessed next elements could be recommended to the
developer in a list, ranked according to how frequently they were accessed.

The RASCAL recommender agent was developed by Mccarey et al. (McCarey et al.,
2005) to provide recommendations of relevant methods to a software developer. The
system builds an user/item preference database, by mining usage histories of software
components in a repository. This database is then used to compute similarities between
users and infer relationships between the software components, such as their order of
use. The recommender agent monitors the activities of the developer to update the user
preferences and recommend methods that are likely to be employed by the developer in a
specific context. The recommendations are collected and ordered using both collaborative
and content-based filtering techniques.

The last three works we have described are based on the extraction of navigational
patterns between the source code elements. These patterns are used to infer association
rules that allow to predict a set of potentially relevant elements, based on the current or
previous visited elements. We use the interactions of the developer with the source code
elements to build a context model representing the source code elements that are more
relevant to the developer in a specific moment. But, instead of using navigation patterns,
the recommendation of potentially relevant source code elements is based on the structural
and lexical relations between these elements and the elements in the context model.

6.2 Software Exploration

A software system is usually modified and extended several times during its lifetime, so
that existing features can be improved, new features added and existing bugs resolved.
The process of applying such changes to a software system is typically known as software
maintenance and software evolution. When performing these change tasks, developers
need to explore and investigate the source code to understand which source code artifacts
are involved in the implementation of a specific feature. The task of identifying the source
code artifacts associated with a feature is known as feature location, or concept location,
and is one of the most common activities performed by developers (Dit et al., 2011b).
Several approaches have been proposed to help developers locating features in the source
code, providing the necessary tools to guide the developers in their exploration. The
different techniques applied to feature location are typically categorized as dynamic, static
and textual (Dit et al., 2011b). The dynamic approaches help locate features that can
be observed during runtime and are typically associated with the analysis of information
produced in execution traces. The static approaches explore the structural dependencies
of the source code, which are often used by developers when exploring the source code
by their own. The textual approaches rely on the words that can be found in the source
code, for instance in identifiers and comments, to help locate features. Finally, some
approaches apply more that one technique at the same type, trying to overcome the
individual limitations of each technique alone. In this section, we will focus on works that
apply textual, static or both techniques to feature location, which can be compared with
our own approach.

108 Chapter 6. Related Work

6.2.1 Textual Approaches

The textual approaches to feature location usually rely on one of three techniques to es-
tablish a relation between a feature and its location in the source code: pattern matching,
Information Retrieval (IR) and Natural Language Processing (NLP) (Dit et al., 2011b).
The pattern matching approach provides a way to match specific patterns in the lines of
code that comprise a software system. A good example of such an approach is grep4, an
Unix utility for searching plain text with regular expressions. But the pattern matching
approaches have several shortcomings, requiring a direct correspondence between the pat-
tern and the text in the source code. In this section, we analyze some approaches that
make use of IR, NLP techniques and ontologies. These approaches can be comparable to
our own approach, as we also apply an IR technique, to retrieve the most relevant source
code components, some concepts of NLP, to identify lexical relations between different
source code elements, and ontologies, to represent the source code structure. But our ap-
proach is more generic, in the sense that we are addressing search and recommendation of
source code in the IDE, independently of the type task being performed by the developer.
Also, we are focused on exploiting the context of the developer to enhance the results
provided by the IR technique alone. Most of the existing textual approaches ignore, or
make little use, of contextual information to help locate features in the source code.

Poshyvanyk et al. (Poshyvanyk et al., 2006b) proposed the integration of the Google
Desktop Search (GDS) with Eclipse. They have developed a plugin for Eclipse that allows
the developer to perform a search using GDS, the same way they would do with the file
search provided in Eclipse, taking advantage of advanced features, such as searching with
multiple terms, exact phrases, boolean operators and restrictions on result types. A pilot
case study shows that GDS is faster than the Eclipse file search and also easier to use.

Marcus et al. (Marcus et al., 2004) propose an approach to concept location using an
IR technique named Latent Semantic Indexing (LSI) (Deerwester et al., 1990). The source
code is converted to a corpus, where each function and declaration block is represented as
a document. Each document is indexed by a set of terms extracted from the comments
and identifiers in the source code represented by that document. The user can formulate
queries in natural language, or using terms contained in the source code, and the system
retrieves a list of documents ranked according to their similarity to the search query.
Their approach was later implemented as a plugin for Eclipse (Poshyvanyk et al., 2006a),
allowing the developer to perform fragment-based searches and providing suggestions for
formulating the search query. This approach has been augmented by Poshyvanik and
Marcus (Poshyvanyk and Marcus, 2007), by applying Formal Concept Analysis (FCA)
(Ganter and Wille, 1999) to automatically organize the search results. The FCA technique
is used to create concept lattices, using attributes that represent the terms automatically
extracted from comments and identifiers in the top ranked search results. These concept
lattices are presented to the user, with links to the documents in the source code, and can
be used to browse the search results and refine the search query.

Lukins et al. (Lukins et al., 2008) have applied the Latent Dirichlet Allocation (LDA)
(Blei et al., 2003) to find the source code entities related to a bug. The source code is
automatically processed, using a plugin for NetBeans5, in order to create a document
collection. The terms extracted from the comments, identifiers and strings found in meth-
ods are stemmed, cleaned from stop words and associated to a document representing a
method. The document collection for all the methods is provided to the LDA tool, which
creates a static LDA model of the source code. This model is then queried when a bug
is discovered, for instance using the terms extracted from the bug title and description,

4http://www.gnu.org/software/grep/ (August 2012)
5http://netbeans.org/ (August 2012)

http://www.gnu.org/software/grep/
http://netbeans.org/

6.2. Software Exploration 109

which must be processed in the same way as the source code. The system returns a list
of methods that may need to be modified in order to solve the bug.

Gay et al. (Gay et al., 2009) propose the use of Relevance Feedback (RF) (Rocchio,
1971), a technique that uses the user input to improve IR algorithms, when locating
concepts, or features, in the source code. They combine an IR based approach, similar
to the one proposed in (Marcus et al., 2004), with an explicit RF mechanism. During
the examination of the search results, the user is asked to evaluate a search result as
relevant, irrelevant or neutral. The search query is then reformulated, by removing the
terms associated to the set of relevant results, and removing the terms associated to the
set of irrelevant results. This way, the query is iteratively refined, in order to guide the
user to find the most relevant results.

Shepherd et al. (Shepherd et al., 2007) propose the use of natural language analysis
of the source code to help locate and understand the implementation of concepts. Their
approach, named Find-Concept, combines structural program analysis with NLP applied
to the source code. The source code is modeled using an Aspect-Oriented Identifier Graph
Model (AOIG), which represents actions and their direct objects. The retrieval process
starts with a query formulated by the user, that must be decomposed in a Verb-Query and
a Direct-Object-Query. Then, the system automatically recommends other Verb-Query
or Direct-Object-Query words, based on the NLP analysis of the source code, that the
user may iteratively include in the query. Finally, the search results are presented to the
user in the form of a result graph, where nodes represent the retrieved methods and edges
represent their structural relationships.

Hill et al. (Hill et al., 2009) propose an approach to support the developer in composing
the search queries and evaluating the relevance of the search results. Their approach was
inspired by some insights gathered from the work of Shepherd et al. (Shepherd et al.,
2007) described before. They concluded that the previous approach was not able to search
for features represented as noun phrases, without verbs. This way, they propose to use
phrases, or word sequences, extracted from the source code, to capture the context of the
words used in the user query. These phrases are automatically extracted from method and
field signatures. When the developer performs a search, the search results are grouped
according to the phrases to which their are associated, and these phrases are organized in
an hierarchy, from most general to more specific phrases.

Abebe and Tonella (Abebe and Tonella, 2010) have applied NLP to extract domain
concepts from program element identifiers and organize them in an ontology. The list
of terms extracted from a class, attribute or method is parsed and analyzed so that a
sentence is generated. The nouns contained in the generated sentences are used to create
concepts in the ontology. These concepts are then connected with ontological relations
derived from the linguistic dependencies expressed in each sentence. This ontology is then
used to reformulate queries for concept location. Their approach was later improved in
order to prune the produced ontology from irrelevant implementation details (Abebe and
Tonella, 2011). They have studied two IR approaches, one based on term frequencies
and other based on topic modeling, to filter irrelevant concepts from the ontology. The
two approaches achieved a poor performance, but they have concluded that these auto-
mated techniques could be largely improved with a semi-automated approach, requiring
a developer to select the most relevant keywords from an automatically generated list of
keywords.

In their work, de Alwis and Murphy (de Alwis and Murphy, 2008) try to overcome
the need to use several tools to answer conceptual queries posed by a developer. They
have developed Ferret, a tool that integrates information from different sources, which
are defined as spheres. Answering a conceptual query involves resolving relations between
different spheres or composite spheres. Their approach is able to answer 36 different

110 Chapter 6. Related Work

conceptual questions over four different spheres.
Wursch et al. (Wursch et al., 2010) propose an approach to answer natural language

queries about a software system, similarly to Ferret (de Alwis and Murphy, 2008). Their
approach was built on top of Evolizer6, a platform for software evolution analysis that
integrates information from different software repositories. An ontology layer was added
on top of the Evolizer data layer, comprising an OWL (Bechhofer et al., 2004) ontology that
provides a formal description of the semantics associated to the source code. This ontology
is used to answer natural language queries about the source code through Ginseng (Guided
Input Natural Language Search Engine) (Bernstein et al., 2006), a tool that provides an
interface for querying an OWL/RDF knowledge base using quasi-natural language queries.

6.2.2 Static Approaches

The feature location using static approaches follows the usual behaviour of a developer
when exploring the source code, using the structural relations that exist between the
source code artifacts to guide the investigation process. These approaches usually require
the developer to provide a starting point, usually a set of classes and/or methods, and then
use the structural relations represented in a model of the source code, such as a call graph,
to identify other potentially relevant source code elements. We also use the structural
relations of the source code to identify source code elements that may be interesting for
the developer in a specific context. But, one big advantage of our approach is that it
does not require the developer to provide the initial set of relevant elements, as they
are automatically identified by capturing the context of the developer. The structural
relations are also used to evaluate the relevance of each retrieved element, in relation to
the current context of the developer.

Janzen and Volder (Janzen and De Volder, 2003) developed JQuery, an Eclipse plu-
gin that combines hierarchical browsing with a logical query language to help developers
navigate the source code structure. The process starts with a logical query, containing
a predicate and a set of variables, that can be created by the developer or picked from
a list of predefined queries. The results are displayed in a hierarchy, using the relation-
ships expressed in the query. The hierarchy can then be extended, using other types of
relationships that can be selected in context-menu specific to each node.

Saul et al. (Saul et al., 2007) have developed FRAN, a random walking algorithm that
uses the structure of object-oriented programs to recommend related functions. Starting
from a query function, their algorithm first identifies a set of functions that are in the
same layer of the query function, including sibling functions (those that are called by
the same functions that call the query function) and spouse functions (those that call the
same functions that are called by the query function). The set of functions retrieved in the
first step are then ranked according to the concept of authorities and hubs, provided by
the HITS7 (Hypertext Induced Topic Selection) algorithm. A call graph of the functions
retrieved is used to find hubs (functions that aggregate functionality) and authorities
(functions that implement functionality). They have also developed a second algorithm,
named FRIAR (Frequent Itemset Automated Recommender), which uses sets of functions
that are frequently called together to mine association rules that predict the most relevant
functions associated to a query function.

Robillard (Robillard, 2008) propose an approach to help developers exploring the
source code, using the structural dependencies of the source code to identify and rank
source code elements that worth investigate. They focus on the problems faced by devel-
opers when investigating the source code associated to a task they have to accomplish.

6http://www.evolizer.org (August 2012)
7http://en.wikipedia.org/wiki/HITS_algorithm (August 2012)

http://www.evolizer.org
http://en.wikipedia.org/wiki/HITS_algorithm

6.3. Retrieval in Software Reuse 111

The elements of interest are explicitly provided by the developer, using concern models
created with ConcernMapper (Robillard and Weigand-Warr, 2005), a plugin for Eclipse
that allows the developer to specify concerns and associated program elements, such as
methods and fields. The structural relations of the elements of interest, more specifically
the method call and field access relations, are used to find a set of elements that can
be suggested to the developer. The suggested elements are ranked according to a set of
heuristics based on the concepts of specificity and reinforcement. The specificity assures
that elements having fewer structural relations are more important, while reinforcement
increases the importance of elements that are contained in clusters that include other el-
ements of interest. The suggestions are provided to the developer using Suade (Warr and
Robillard, 2007), a plugin for Eclipse that integrates with ConcernMapper, in the form of
a list of methods ranked according to the degree of membership assigned by the ranking
algorithm.

6.2.3 Textual/Static Approaches

Some approaches combine textual techniques with static techniques to improve the feature
location process. To the best of our knowledge, none of these approaches makes use of the
current context of the developer, relying only in IR techniques to provide an initial set
of elements, which are then used to retrieve related elements and rank them according to
their structural proximity.

An approach to software exploration using both structural and lexical information
is proposed by Hill et al. (Hill et al., 2007). Their tool, named Dora, automatically
identifies the relevant neighborhood for a set of seed methods. The seed methods are
selected through a search process, initiated with a search query provided by the developer.
The candidate relevant methods are identified using the structural call relations with the
seed methods. These candidate methods are ranked using a method relevance score, that
represents their relevance to the query. The method relevance score is computed using the
term frequency, the location of the term in the method and the content of the method.
The candidate methods that obtain a score higher than a first threshold are considered
relevant, while methods with score between the first threshold and a second threshold are
further explored.

Shao and Smith (Shao and Smith, 2009) propose an approach to feature location that
combines an IR technique with structural information. Their methodology uses LSI to
retrieve a list of methods, and their scores, based on a query. A call graph model is then
used to identify all the methods that are structurally related with the retrieved methods.
The methods that have a structural relation with other retrieved methods are considered
more relevant and have an additional score. The final score of each method is computed
as a combination of the scores obtained by the LSI and call graph components.

6.3 Retrieval in Software Reuse

The software reuse (Krueger, 1992) research area has provided several approaches to help
software developers in reusing existing source code faster and easier, so that reuse could
become a common practice in the programming process. One of the most important steps
of the reuse process is to find relevant software components that are suitable for reuse
in a specific context. Several techniques have been proposed to create repositories of
reusable components and provide the necessary mechanisms to effectively retrieve those
components. Some approaches support the retrieval process on the textual references
found in the source code, while others explore structural information to evaluate and rank
software components according to their applicability in a specific context. Although our

112 Chapter 6. Related Work

approach is focused on source code exploration (helping developers finding relevant source
code elements in the code they are developing or maintaining), some of the approaches
that are used in software reuse can be related with our work. For instance, some of
them use IR approaches, others apply some heuristics to evaluate the structural proximity
between source code elements, and some even use some sort of contextual information to
automate and improve the retrieval process. Here we present a set of works that focus on
improving the retrieval of software components for reuse in the IDE, grouped according
to their retrieval approach, which can be lexical, structural or both.

6.3.1 Lexical Retrieval

The lexical approaches to the retrieval of reusable software components make use of the
textual references found in the source code to locate potentially reusable source code.
These approaches compare with our own in the sense that they use this textual references
to retrieve source code, although this is done with a very different purpose. Despite the
fact that some of these approaches use the current context of the developer to improve the
retrieval, or even to trigger the suggestion, of reusable components, the context is usually
limited to the current active method or class, while our approach makes use of a more
complex context model that represents the current focus of attention of the developer.

The CodeFinder tool, proposed by Henninger (Henninger, 1996), uses an approach
based on an associative spread activation retrieval algorithm and query reformulation, to
improve the retrieval of software components and reduce the effects of indexing problems.
The software components are automatically associated to individual terms in an associa-
tive network, which is then used by the spread activation algorithm to induce semantic
relationships between components that share the same terms, and terms that co-occur in
the same component. The query reformulation mechanism provides suggestions of rele-
vant components and terms that can be included in the query. The system also provides
a way to improve the repository structure, by allowing the developer to assign new terms
to a component and using relevance feedback to learn the weight of the relations that link
terms to components.

Ye and Fischer (Ye and Fischer, 2002) propose CodeBroker, a tool that pro-actively
suggests reusable components to Java developers using Emacs8. The system creates an
index of the Java documentation (JavaDoc) associated to Java source code. An interface
agent monitors the JavaDoc comments and signature definitions created by the developer,
from which it extracts queries to retrieve matching components. The components retrieved
are ranked according to their relevance, and are filtered from components contained in a
discourse model and an user model. The discourse model includes components that have
been explicitly marked by the developer as not being interesting for the current session.
The user model contain components that are already known by the developer.

Chatterjee et al. (Chatterjee et al., 2009) propose the SNIFF search algorithm, which
combines Application Programming Interface (API) documentation with Java source code
to retrieve chunks of source code that match a free-form query. The source code lines are
automatically annotated with the documentation and terms, extracted from the APIs that
are used in each line, and then indexed in a database for retrieval. When the developer
performs a search, the system retrieves source code chunks annotated with words that
match the words contained in the query. The source code chunks retrieved are grouped
in clusters, based on their similarity. The clusters presented to the developer are ranked
according to their frequency in the code base.

Heinemann et al. (Heinemann et al., 2012) propose an approach to recommend meth-
ods that may be relevant for the current work of a developer. They try to overcome the

8http://www.gnu.org/software/emacs/ (August 2012)

http://www.gnu.org/software/emacs/

6.3. Retrieval in Software Reuse 113

problem of lack of information faced by structural approaches, and provide recommen-
dations based on the terms extracted from identifiers preceding method calls. They use
the terms contained in the identifiers that precede method calls to create an associative
index between a set of terms and the method call. This index is queried with the terms
contained in the identifiers that precede the current position of the cursor in a source code
file, to retrieve API methods that have the most similar term sets.

6.3.2 Structural Retrieval

The retrieval of reusable software components based on the structural relations found in
the source code has been explored in various ways. The structural nature of source code
has been used to compute the similarity between different source code artifacts, to find
the source code needed to go from an object to another or to instantiate a specific type
of object, and to find source code that fit on specific test or design specifications. Our
approach focuses on finding the source code elements that are more relevant in the current
context of the developer, using the source code structure to compute the proximity between
the retrieved elements and those in the current context model of the developer. The use
of context on these approaches is once again typically limited to the current position in
the source code or to a set of seed elements provided by the developer.

Strathcona, an Eclipse plugin proposed by Holmes and Murphy (Holmes and Murphy,
2005), is used to help developers locating source code examples that are relevant for their
current task. When the developer requests for examples related with a class, method
or field declaration, the system generates a structural context of these elements to find
source code examples that match that description. The structural context depends on
the type of element in the query, and may include the containing class, parent classes or
interfaces, the types of the fields of these classes and calls of the queried method. The
match between the structural context and the source code in the repository is computed
using six heuristics based on inheritance, method calls and field types.

Mandelin et al. (Mandelin et al., 2005) developed an Eclipse plugin, called PROSPEC-
TOR, to assist developers that need to obtain a specific type of object, but do not know
how to write the code needed to obtain that object. Their approach accepts queries in the
form of input and output types. These queries are answered with a ranked list of jungloids
(a list of objects and method calls needed to go from an object type to another), that are
mined through the analysis of API signatures. The tool is integrated with the content
assistant feature of Eclipse, automatically providing suggestions of jungloids that can be
used to obtain an object type found in the current context, which comprises the source
code surrounding the current position of the cursor.

Similarly to PROSPECTOR, the PARSEWeb tool, proposed by Thummalapenta and
Xie (Thummalapenta and Xie, 2007), suggests examples of method call sequences, helping
developers going from a specific object type to a desired one. Instead of using only the
API signatures, PARSEWeb relies on entire code samples to answer a query.

With the objective of assisting developers with examples in the form of source code
snippets, Sahavechaphan and Claypool (Sahavechaphan and Claypool, 2006) proposed
an Eclipse plugin called XSnippet. The tool provides help in object instantiation tasks,
supporting simple constructor invocations, static method invocations and more complex
sequence of method invocations. The snippets can be retrieved using generalized, type-
based and parent-based instantiation queries. A generalized instantiation query returns
all the snippets that instantiate a given type. The other two types of queries are context
dependent. The first takes into account all the types that are related with the current
method, while the second takes into account the parent types of the type containing the
current method. The retrieved snippets are ranked using three different heuristics: length,

114 Chapter 6. Related Work

frequency and context. The length heuristic ranks snippets based on the lines of code,
snippets with fewer lines of code are ranked higher. The frequency heuristic assures that
snippets occurring more frequently are ranked higher. The context heuristic ranks snippets
according to the match between the context of the current method and the context of the
snippet.

Hummel et al. (Hummel et al., 2008) developed an Eclipse plugin for retrieving relevant
software components, called Code Conjurer. The tool aims to proactively provide useful
software reuse recommendations, using a test-driven and a design-based search approaches.
The test-driven approach provides recommendations upon the definition of a test case,
and assures they are useful for the developer by testing them with the defined test case.
The design-based approach retrieves implementation recommendations for the components
being designed by the developer. Finally, it also provides an automated dependency
resolution feature, to automatically fetch components that are required by a component
being reused.

Zhong et al. (Zhong et al., 2009) developed an Eclipse plugin called MAPO, which
automatically mines and recommends API usage patterns to assist developers with useful
source code snippets. The recommendation is performed when the developer requests API
patterns related with a method. The recommended patterns are ranked according to the
current context of the developer, by computing a similarity value between the names of
current active method and class, and the names in the recommended code snippet.

Keivanloo et al. (Keivanloo et al., 2010) proposed a Semantic Web (Berners-Lee et al.,
2001) approach to code search with SE-CodeSearch, an Internet-scale source code search
infrastructure. Their approach uses an OWL (Bechhofer et al., 2004) ontology to model
the source code structure and applies Semantic Web reasoning to infer missing knowledge
and answer complex queries. The ontology was designed to deal with high-level concepts
of object-oriented source code, including the type hierarchies, package relationships and
their dependencies, method calls and return statements, and unqualified name resolution.
The infrastructure provided by this ontology, and associated reasoning mechanisms, is able
to answer pure structural queries, metadata queries, transitive queries, method call-based
queries, absent information queries and mixed queries.

6.3.3 Lexical/Structural Retrieval

The lexical and structural approaches have also been combined, in order to overcome the
limitations of both approaches alone and improve the retrieval process. Although with a
different purpose, we also combine the lexical a structural perspectives of the source code
to compute the proximity between the retrieved source code elements and the current
context model of the developer.

Exemplar, created by Grechanik et al. (Grechanik et al., 2010), combines IR and
program analysis techniques to retrieve relevant applications for tasks or requirements
expressed through high level queries. Their approach makes use of the help documentation
of APIs, and the dataflow links between them, to improve the retrieval and ranking of
relevant applications. The keywords from a query are matched in the description of the
applications and in the help documentation of API calls invoked by the applications. The
retrieved applications are then ranked according to a set of weights that represent three
components: the matching between the keywords in the query and the description of the
application, the matching between the retrieved API calls and those that are invoked by
the application, and the dataflow connections between the API calls in the application.

Portfolio, proposed by McMillan et al. (McMillan et al., 2011), is a search engine
that combines different models to improve the retrieval and visualization of functions and
their usages. The relevant functions are retrieved using a Vector Space Model (VSM)

6.4. Software Project History 115

approach, by matching the query terms with the terms in the source code. A navigation
model, based on the PageRank (Brin and Page, 1998) algorithm, is used to rank functions
according to the query terms and functional dependencies that are shared between them.
An association model, based on a Spread Activation Network (SAN) (Collins and Loftus,
1975), uses the function call graph to propagate the score of relevant functions to related
functions, where the number of shared terms reflects the strength of the relation between
them. The final ranking of each function is computed as a weighted sum of the scores
obtained through the navigation model and the association model. The search results are
presented to developers in a list and in a graph where the usage relations between them
can be visualized. Their experiments show evidence that this approach performs better
that Google Code Search and Koders9, and that the visualization mechanism allow the
developers to understand how the retrieved functions are used.

6.4 Software Project History

The history associated with a software development project is typically stored in various
systems, such as version control systems and issue tracking systems, and different types
of resources, such as messages or documents, etc. These systems and resources represent
a valuable source of information about a software system, and have been used to uncover
implicit knowledge and provide guidance to software developers. Here we present a set of
works that have exploited the historical information associated to a software development
project to retrieve relevant source code elements for a software developer. They are com-
parable to our approach, in the sense that they provide mechanisms to retrieve relevant
files or source code elements based on a query or a specific context, which is typically
reduced to current active file or source code element. But, while they use the contextual
information provided by the historical archive of a software system, we rely on a context
model based on the current interactions of the developer with the source code, along with
their structural and lexical relations, to identify and retrieve the most relevant source code
elements for the developer in that specific moment.

Ying et al. (Ying et al., 2004) have developed an approach that uses the information
provided by a software configuration management system, such as Concurrent Versioning
System (CVS)10, to identify relevant source code to a developer performing a modification
task. Their approach identifies change patterns by mining the information provided by
such systems with Data Mining (DM) (Witten and Frank, 2005) techniques. These change
patterns are used to recommend relevant source code files contained in the same change
sets that include an initial source code file.

Following the same concept, ROSE (Zimmermann et al., 2005), developed by Zimmer-
mann et al., provide recommendations of more fine-grained entities, such as source code
elements, that were changed together. Their approach uses DM techniques to extract
association rules from the changes applied to the source code in a CVS archive. The asso-
ciation rules extracted are then used to predict further changes, reveal hidden couplings
and avoid errors produced by incomplete changes.

Hipikat was developed by Cubranic et al. (Cubranic et al., 2005) to recommend rele-
vant artifacts from a project memory. The project memory is made up of the various kinds
artifacts created during a software development project and their relationships, including
source code, documentation, email messages, forum posts, bug reports and test plans. The
artifacts and relationships contained in the project memory are automatically extracted
from the project archives used in a software development project. The recommendations

9http://www.koders.com/ (August 2012)
10http://en.wikipedia.org/wiki/Concurrent_Versions_System (August 2012)

http://www.koders.com/
http://en.wikipedia.org/wiki/Concurrent_Versions_System

116 Chapter 6. Related Work

of relevant artifacts are provided upon a query from the developer. These recommenda-
tions are retrieved by following the relationship links between the artifacts of interest and
other artifacts.

More recently, Ratanotayanon et al. (Ratanotayanon et al., 2010) proposed the con-
cept of transitive changesets to uncover transitive relationships that can be used to help
developers identifying features in the source code. A changeset contains information about
atomic changes performed in a revision control system and some metadata. The transi-
tive changesets are created by expanding the information associated to changesets with
transitive relations, including, for instance, which lines of code, and respective source code
elements, were changed in a changeset. They have developed a plugin for Eclipse, called
Kayley, which allows the developer to query a repository of transitive changesets extracted
from a commit history and obtain a list of the program elements changed in the retrieved
changesets.

Chapter 7

Conclusions

“Life is the art of drawing sufficient conclusions
from insufficient premises.”

Samuel Butler

The research work described in this thesis represents the steps taken towards the fulfillment
of the objectives that were set in the beginning of our journey. We proposed to use the
contextual information of the developer to improve the retrieval of relevant source code
artifacts during software development. This high level research goal was decomposed in
a set of more fine grained objectives, including the definition of a context model of the
developer, the use of this context model to improve the ranking of source code elements
searched by the developer, and to pro-actively provide recommendations of relevant source
code elements to the developer.

The approach we have proposed for achieving our objectives began with the defini-
tion of a knowledge base, where the source code structure stored in the workspace of the
developer is represented. This knowledge base comprises a structural ontology, which is
used to make explicit the different types of source code elements and their relations, and
a lexical ontology, which represents the terms used to reference the source code elements.

The contextual information of the developer is modeled in the form of a context model.
As in the knowledge base, this context model combines a structural and a lexical dimen-
sions, which represent the source code elements, their structural relations and terms, that
are more relevant for the developer in a specific moment. A context transition detection
mechanism allows the context model to automatically adapt to the changes in the focus
of attention of the developer.

The context model defined is used to support a context-based search process, in which
the results are retrieved using an Information Retrieval (IR) model and ranked according to
a retrieval, a structural and a lexical components. The retrieval component represents the
ranking provided by the IR model, while the structural and lexical components represent
the proximity of the search result to the context model of the developer. The contribution
of these components to the ranking of search results is defined by a set of weights, which
are learned over time, through the analysis of the search results selected by the developer.

This context model was also used to support the context-based recommendation of
relevant source code elements to the developer. The recommendations are retrieved using
the source code elements in the context model with higher interest and accessed more
recently. The retrieved recommendations are then ranked according to an interest and a
time components, representing the ranking obtained through the retrieval process, as well
as a structural and lexical components, which represent the proximity of the recommenda-
tion in relation to the context model. As in the context-based search process, the weights

118 Chapter 7. Conclusions

of these components are learned over time, through the analysis of the recommendations
selected by the developer.

We have implemented a prototype that implements and integrates our approach in the
Eclipse IDE. This prototype was tested with a group of developers in order to validate
our approach. The statistical information collected shows that the source code elements
manipulated by the developer are highly related, being structurally or lexically related
with other elements already in the context model in more than 80% of the times. This
supports our claim that the relations that exist between source code artifacts can be used
to measure the proximity between these artifacts and to compute their relevance in the
current context of the developer. Also, we have verified that the context components have
a clear contribution to improve the ranking of search results. The search results selected
by the developers using our approach, were better ranked in about 60% of the times, and
worst ranked in only 11% of the times. With respect to recommendations, although the
results are not so evident, we have shown that our context model could be used to retrieve
relevant source code elements for the developer, being able to predict the needed source
code element among the top 30 recommendations in about 53% of the times.

The main contributions of this research, including a list of scientific publications that
were produced, are described in the following section. Then, the chapter concludes with
a set of improvements, suggestions and questions that remain open for future work.

7.1 Contributions

The research developed during this thesis resulted in several contributions, including im-
provements over previous work, new approaches for problems yet to be solved and a
prototype that is publicly available. Here we will describe each one of these contributions,
concluding with a list of scientific publications that are within the scope of this thesis.

The context model of the developer is in the basis of all the research we have conducted
(see section 3.2). Although the context model we have developed was inspired by previous
work (Kersten and Murphy, 2006), it introduces innovations that were not considered be-
fore. We have extended the previous model with a lexical perspective (see section 3.2.2),
which allowed us to explore the lexical relations between the source code elements, the
same way that the structural relations were explored before. This lexical perspective has
revealed to be relevant in the ranking of search results, and especially recommendations.
We believe that the potential of the lexical relations in the source code was not fully ex-
plored, because much more is yet to be improved, investigated and evaluated, as described
further in future work.

Additionally, we have also developed a mechanism to automatically detect context tran-
sitions (see section 3.2.3). The aim of this mechanism is to detect changes in the focus
of attention of the developer and reflect those changes in the context model. We wanted
to avoid the explicit association between the context model of the developer and tasks,
because they are difficult to manage and require the explicit intervention of the devel-
oper. The mechanism we have developed allows the context model to be adapted faster
and more close to the behaviour of the developer, without requiring any kind of direct
intervention. This mechanism was especially important for the context-based recommen-
dation process, because it is completely dependent on the context model for retrieving
and ranking recommendations.

The aforementioned context model was used to support an approach to context-based
search of source code in the IDE (see section 3.3). The search results are retrieved using
an IR model, and are ranked according to both this retrieval model and the context model
of the developer. This way, the ranking of a search result is influenced by its proximity to

7.1. Contributions 119

the context model of the developer, tanking into account both the structural and lexical
relations that exist in the source code. To the best of our knowledge, this is the first
approach to combine IR and a context model of the developer to retrieve and rank source
code elements in an IDE. As the evaluation of our approach has demonstrated, the use of
the context model provides a clear improvement in the ranking of search results.

Moreover, we have also developed an approach to context-based recommendation of
source code in the IDE (see section 3.4). The elements in the context model with higher
interest and that have been accessed more recently are used to retrieve recommendations
of relevant source code elements to the developer. These recommendations are then ranked
according to the elements that got them retrieved, as well as to their structural and lexical
proximity to the entire context model. Although other works have tackled the problem
of predicting the needs of the developer using similar concepts (Kersten and Murphy,
2006; Parnin and Gorg, 2006; Piorkowski et al., 2012), to the best of our knowledge, our
approach is the first that combines the recommendation of different types of elements
(classes, interfaces and methods), the use of lexical relations based on the co-occurrence
of terms, and the ranking of recommendations taking into account their proximity to the
entire context model.

A learning mechanism was developed, so that the ranking of search results and rec-
ommendations could be adapted to the needs of the developer. This mechanism uses the
rankings of the search results and recommendations, selected by developers, to favor the
components that have a positive influence in their final ranking. We believe that this
mechanism represents a contribution, as we have seen nothing similar applied to the same
problems we are addressing.

The context-based search and recommendation approaches developed were imple-
mented and integrated in the Eclipse IDE, using a plugin named Software Development
in Context (SDiC). This prototype was used to validate our approach with developers
in a real word scenario, so it was developed with particular care with respect to several
aspects. We devoted especially attention to performance, stability, and usability, so that
the prototype could be used by the developers in their daily work. The prototype was
used by a considerable number of developers, whose feedback was used to correct several
problems and make important improvements. The result is a prototype that can be easily
installed in any Eclipse instance, providing instant access to context-based search and rec-
ommendation of source code in the IDE. This prototype is publicly available for download
through the web site of the SDiC project (http://sdic.dei.uc.pt), representing also an
important contribution of our research.

The contributions of this work are described in several scientific publications, presented
in both national and international events, including some highly selective ones. Next, we
enumerate these publications and provide additional information, when available, regard-
ing the type of publication, the acceptance rate, and the ERA1 ranking of the event where
it was presented.

• Antunes, B. and Gomes, P. (2009). Context-Based Retrieval in Software Develop-
ment. In Proc. of the Doctoral Symposium on Artificial Intelligence (SDIA 2009) of
the 14th Portuguese Conference on Artificial Intelligence (EPIA 2009), pages 1–10,
Aveiro, Portugal (Doctoral Symposium)

• Antunes, B., Correia, F., and Gomes, P. (2010). Towards a Software Developer Con-
text Model. In Proc. of the 6th International Workshop on Modeling and Reasoning
in Context (MRC 2010) of the 19th European Conference on Artificial Intelligence
(ECAI 2010), pages 1–12, Lisbon, Portugal (Workshop)

1http://core.edu.au/index.php/categories/conference%20rankings/1 (August 2012)

http://sdic.dei.uc.pt
http://core.edu.au/index.php/categories/conference%20rankings/1

120 Chapter 7. Conclusions

• Antunes, B., Cordeiro, J., Costa, P., and Gomes, P. (2011). Using Contextual Infor-
mation to Improve Awareness in Software Development. In Proc. of the 23rd Inter-
national Conference on Software Engineering and Knowledge Engineering (SEKE
2011), pages 349–352, Miami, USA (Short Paper — Acceptance Rate: 31% — ERA
Ranking: B)

• Antunes, B., Cordeiro, J., and Gomes, P. (2012d). SDiC: Context-Based Retrieval
in Eclipse. In Proc. of the Informal Demonstrations of the 34th International Con-
ference on Software Engineering (ICSE 2012), pages 1467–1468, Piscataway, NJ,
USA. IEEE Press (System Demonstration)

• Antunes, B., Cordeiro, J., and Gomes, P. (2012c). Context Modeling and Context
Transition Detection in Software Development. In Proc. of the 7th International
Conference on Software Paradigm Trends (ICSOFT 2012), pages 477–484, Rome,
Italy (Full Paper — Acceptance Rate: 11% (Full Papers) 43.3% (Global) — ERA
Ranking: B)

• Antunes, B., Cordeiro, J., and Gomes, P. (2012b). Context-Based Search in Soft-
ware Development. In Proc. of the 7th Conference on Prestigious Applications of
Intelligent Systems (PAIS 2012) of the 20th European Conference on Artificial In-
telligence (ECAI 2012), pages 937–942. IOS Press (Full Paper — Acceptance Rate:
28.5% — ERA Ranking: A)

• Antunes, B., Cordeiro, J., and Gomes, P. (2012a). An Approach to Context-Based
Recommendation in Software Development. In Proc. of the 6th ACM Conference on
Recommender Systems (RecSys 2012), pages 171–178, New York, NY, USA. ACM
Press (Full Paper — Acceptance Rate: 20% — ERA Ranking: B)

• Antunes, B., Cordeiro, J., and Gomes, P. (2013). An Approach to Context Mod-
eling in Software Development. In Software Paradigm Trends, Communications
in Computer and Information Science (CCIS). Springer-Verlag, Berlin, Heidelberg
(ICSOFT 2012 Extended Paper — Submitted for Publication)

7.2 Future Work

We believe that our approach is a relevant contribution on how to use contextual informa-
tion to improve the retrieval and ranking of relevant source code elements in the workspace
of the developer. However, it comprises several components and different processes, whose
complexity requires them to be studied in more detail, still leaving plenty of room for im-
provements. Although we have included a lot of enhancements during the implementation
and validation of our approach, we had several ideas and received a number of suggestions
that could not be fully explored during the period of this research. This work was built
upon the work of others before us, and we know that it was just one more step of a long
walk that is yet to come. Here we will discuss some of the ideas, suggestions and questions
that we believe should be explored in the future, either by us or any other researches that
may be interested in using or expanding our approach.

7.2.1 Knowledge Base

The knowledge base is an essential building block of our approach and is highly dependent
on the source code structure created by developers. The quality of the knowledge base
is directly dependent on the way developers create and organize their source code (see

7.2. Future Work 121

section 3.1.2). For instance, if developers do not follow the established naming conven-
tions when defining identifiers, or simply do not use coherent approaches to build quality
identifiers, our assumption that we can find lexical relations between source code elements
through their identifiers become compromised. This way, the lexical ontology is particu-
larly influenced by the quality and readability of the source code being represented. In
fact, several studies have been carried out to evaluate the quality, importance and impact
of identifiers in several software development activities (Takang et al., 1996; Caprile and
Tonella, 1999; Lawrie et al., 2006; Dit et al., 2011a). This problem could be partially
mitigated, for instance, by using enhanced approaches to extract terms from identifiers.
Although the CamelCase approach to identifier splitting is the most obvious and widely
used approach, more complex and efficient approaches have been proposed in the recent
years (Enslen et al., 2009; Lawrie et al., 2010; Guerrouj et al., 2011). The set of terms
that index a source code element could also be expanded, for instance, by taking into
account the comments associated to that element. Although not all terms contained in
these comments may be of interest to index a source code element, the most discriminating
terms could be found, for instance, using term frequency based approaches such as Term
Frequency/Inverse Document Frequency (TF-IDF) (Salton and Buckley, 1988).

Another problem we may have with terms is that different forms of a same word may
be used in different situations, leading to the coexistence of different representations, or
terms, of the same word in the lexical ontology. This happens because words have several
inflected forms, which are used to express different grammatical categories, such as tense,
number or gender. This characteristic of words make it more difficult to identify lexical
relations between the source code elements, because we can not create association rela-
tions between different terms, although they may represent the same original word. This
problem has been addressed in both computational linguistics and information retrieval
by using mechanisms that reduce the different forms of a word to a shared primitive form,
such as stemming (Lovins, 1968). These mechanisms could also be integrated in our ap-
proach, so that terms could be stored using their root form, and association rules could
be created using these root forms, instead of the original form found in the source code.

The lexical ontology could also be extended by using word synonyms, so that instead
of terms, we could have sets of terms that convey the same natural language concept.
This could be achieved by using existing lexical ontologies, such as WordNet (Miller,
1995; Fellbaum, 1998), where terms are already grouped in groups of synonyms. But,
such approach would require a term found in a source code element to be mapped to its
corresponding concept, in what is known as word sense disambiguation. Although the
mapping between a term and its sense is not a trivial task, especially when we have little
linguistic information about the context where the term is used, this approach would allow
us to associate source code elements to a network of concepts, instead of simple terms, for
instance as proposed by Ratiu et al. (Ratiu and Deissenboeck, 2006). By using concepts
instead of terms, we could also extend the lexical ontology with other types of semantic
relations, such as hypernymy (a concept is a kind of another concept) and part-of (a
concept is a part of another concept), which can also be found in WordNet.

With respect to the structural ontology, the representation of the source code could
benefit from using other sources of information. We could, for instance, process the
source code comments, which are known as JavaDoc2 in the Java programming language,
to extract relations between certain source code elements. As an example, we have the
@see and @link tags in JavaDoc, which can be used by the developer to make explicit
references from a source code element to other related elements. The relations expressed
by these tags may not become explicit through the analysis of the source code structure,

2http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/javadoc.html (Au-
gust 2012)

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/javadoc.html

122 Chapter 7. Conclusions

but could be inferred by the analysis of the JavaDoc associated to the respective elements.
The structural ontology could also be complemented with relations extracted directly

from the information represented in the context model of the developer. For instance, two
source code elements that are part of the same context model are expected to have some
relation between them, even if this relation is not explicit in the source code structure.
This can not be taken for granted, because the simple fact that the developer accessed
these two elements in the same context model does not guarantee that they are related.
But, if we also take into account the degree of interest of the two elements, we may use
it to measure the likelihood that the two elements were not accessed in the same context
model by accident. We may assume that if the two elements have an high interest value,
they are both relevant in the current context model and there is some kind of relation
between them that can not be ignored. This situation is expected to happen when the
two elements have some kind of strucural relation, but when that is not the case, a special
relation can be created between them. These type of association rules have been explored
before, for instance taking into account the navigation patterns of the developers (Singer
et al., 2005; DeLine et al., 2005; McCarey et al., 2005) and the source code artifacts that
are changed together in version control systems (Ying et al., 2004; Zimmermann et al.,
2005).

7.2.2 Context Model

With respect to the context model of the developer that we have used in or approach,
there are a set of processes and parameters of special interest that could be studied in
more detail. For instance, the decay applied to the interest of a structural element in
the context model follows a linear function of time (see section 3.2.1). We believe that
the interest of such elements should be decreased according to the time passed since they
were last accessed, thus their interest is decreased at fixed intervals of time. But, should
the interest of an element be decayed exponentially, for instance as proposed by Parnin
ang Gorg (Parnin and Gorg, 2006) in their momentum function? Additionally, it would
be interesting to understand if different decay rates should be applied to different source
code elements. For instance, should the interest of a class decay at the same rate as the
interest of a method? The answers to these questions are hard to find, leaving room for
further investigation.

The weight of the structural relations in the context model represents the weight of a
generic type of relation, instead of representing the weight of a specific relation between two
structural elements, which was proposed by Kersten and Murphy (Kersten and Murphy,
2006) in their context model (see section 3.2.1). We used the weight of generic relations,
because we needed to compute the cost of paths between any arbitrary elements. If we
had used a model where only the specific relations between the structural elements in
the context model were considered, most of the relations found in these paths would not
have an associated weight. But, there are situations when the specific relations between
structural elements in the context model will be part of the paths between the structural
elements whose distance is being measured. In such cases, the weight of the specific
relations could be boosted, so that the weight of such relations could be higher than the
weight of the generic relation that connect the two elements.

The context transition detection is another point that requires further research (see
section 3.2.3). The parameters that regulate this process were defined based on our own
experience and observations, and the results obtained through the developers evaluation
of context transitions were not conclusive. The objective of context transitions is to model
the change in the focus of attention of the developer, which does not necessarily mean
a transition to a new task. This definition of context transition raises some ambiguity,

7.2. Future Work 123

because we must take into account that a context transition is perceived differently by
different developers in different situations. This way, we have also asked ourselves if the
parameters that control context transitions should change according to the developer, and
even to the situations. Also, our context transition mechanism is entirely based on the
structural relations between source code elements. But, it would be interesting to evaluate
what is the role of lexical relations in this process. Could lexical relations be used to detect
context transitions, or, at least, influence the decision of making a context transition? As
we can see, there is still much to be studied concerning the context transition mechanism
we have proposed.

7.2.3 Context-Based Search

With regard to the indexing and retrieval processes of the context-based search (see sec-
tions 3.1.3 and 3.3.1), the indexing of the source code elements could be improved by using
some of the techniques that were already described in section 7.2.1, such as stemming and
synonymy. The use of stemming in source code search has been already studied by Wiese
et al. (Wiese et al., 2011), showing that stemming can be used to improve the ranking
of relevant search results. The use of synonymy would allow us to overcome the problem
of a restricted vocabulary. Because the source code elements are indexed using only the
terms found in the identifiers of such elements, the search process is limited by the terms
used by developers. By including synonyms in the retrieval process, we would expand
the vocabulary that could be used, allowing a source code element to be retrieved by the
terms in its identifier and also their synonyms. Additionally, we could index the source
code elements using terms extracted from other sources of textual information, such as
comments and literals. Concerning the IR process, we could explore the use of other IR
models that have already been used in the past, such as Latent Semantic Indexing (LSI)
(Marcus et al., 2004; Poshyvanyk and Marcus, 2007; Shao and Smith, 2009) and Latent
Dirichlet Allocation (LDA) (Lukins et al., 2008).

The process of measuring the proximity between a search result and the context model
should also be studied in more detail in the future. The distance between a source code
element and the context model is computed using the cost of the shortest paths between
that element and all the elements in the context model (see section 3.3.2). This distance
is also proportional to the interest of the relations that comprise each path and to the
interest o the element in the context model. This approach takes into account all the
paths that connect the structural element with the context model. This means that a
search result that is related with several elements in the context model may be considered
more distant to the context model than another search result that is related with only one
element, depending on the interest associated to the structural elements and relations in
the context model. But, one can argue, for instance, that a search result that is related
with more elements in the context model should be considered more close to the context
model than another that is related with only one element. Furthermore, there may be
several paths between the same two structural elements, although we only use the shortest
path between them in our approach. We may also consider taking into account the several
paths that exist between two structural elements when computing the distance between the
two. These assumptions are extensible to the lexical ontology, where a similar approach is
used. We believe that our strategy is the one that better reflects the proximity between a
search result and the entire context model. But, the effectiveness of different approaches
must be studied, in order to find which approach obtains better results.

Still concerning the proximity between a search result and the context model, the
number of context elements taken into account when computing this proximity was limited
to 15, while the paths were limited to a maximum of 3 relations (see section 3.3.2). These

124 Chapter 7. Conclusions

limits were ultimately defined by the need of keeping the computation time within an
acceptable time frame. Further investigation is needed, in order to evaluate if different
limits have a significant influence in the precision of the search process.

7.2.4 Context-Based Recommendation

Concerning the retrieval process of the context-based recommendation (see section 3.4.1),
we have used only the structural context to retrieve the source code elements that are
recommended to the developer. We retrieve the top N elements in the structural context,
ordered by both their interest and the time their were last accessed, as well as all the
elements that are structurally related with these elements. But, it would be interesting
to evaluate if the lexical context and the lexical relations could also be used to retrieve
relevant recommendations. For instance, we could retrieve the structural elements that
are lexically related with the top N elements in the structural context. Also, we could use
the top N terms in the lexical context to retrieve other source code elements that were
indexed by these terms.

With regard to the number of elements of the context model used to retrieve recom-
mendations, we always retrieve the top N elements, ordered by the interest value and the
time elapsed since they were last accessed. We would like to evaluate if using different
values of N for the interest and time based methods could improve the precision of the
recommendation process.

The user interface used for the context-based recommendation could also be improved,
for instance by providing an explanation for each recommendation. These explanations
could help developers understand if a given recommendation is interesting or not. We could
use the structural elements and relations that contributed for retrieving a recommendation
to compose an explanation of that recommendation to the developer. The challenge here is
how to include such information in a user interface that is expected to be simple, intuitive
and easy to use.

Finally, the same investigations that were suggested for improving the process of com-
puting the proximity between a search result and the context model, apply to the context-
based recommendation as well (see section 7.2.3).

7.2.5 Weight Learning

The learning process focuses on learning the best combination of weights that are used in
the ranking of search results and recommendations, which will be generically referred as
results (see section 3.5). These weights are learned through the analysis of the results se-
lected by the developer. The learning process is processed continually over time, adapting
to favor the components that have a positive influence in the ranking of the results that
are more relevant for the developer. It would be interesting to evaluate the use of differ-
ent sets of weights per context model. This approach would be based on the assumption
that in different contexts, the components that are more relevant for the developer may
change. Thus, why not learn the best weights that should be used in a specific context
model, instead of using a set of weights that is independent of the current context of the
developer?

7.2.6 Application Domain

Although our context model and context-based retrieval approaches were applied to the
software development domain, we believe that the conceptual framework of our work
could also be applied to other domains. This would be possible in a scenario where the

7.2. Future Work 125

user deals with resources that can be related with some sort of relations and that can
also be associated with textual references. The structural ontology could be adapted
to represent the new kind of resources, along with their structural relations, while the
lexical ontology would still represent terms, and their co-occurrence relations, extracted
from these resources. The context model of the user would be identical to the one we
have used, but the interactions used to create the model could be adapted to reflect the
behaviour of the user in this new scenario. In the software development domain, the
structural context seems to have a higher relevance than the lexical context, but in a
different domain may occur just the opposite. Whatever the case, our weight learning
mechanism would guarantee that this particularities would be taken into account.

References

Abebe, S. L. and Tonella, P. (2010). Natural Language Parsing of Program Element
Names for Concept Extraction. In Proc. of the IEEE 18th International Conference on
Program Comprehension (ICPC 2010), pages 156–159, Washington, DC, USA. IEEE
Computer Society.

Abebe, S. L. and Tonella, P. (2011). Towards the Extraction of Domain Concepts from the
Identifiers. In Proc. of the 18th Working Conference on Reverse Engineering (WCRE
2011), pages 77–86, Washington, DC, USA. IEEE Computer Society.

Adomavicius, G. and Tuzhilin, A. (2005). Toward the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions
on Knowledge and Data Engineering, 17(6):734–749.

Adomavicius, G. and Tuzhilin, A. (2011). Context-Aware Recommender Systems. In
Recommender Systems Handbook, pages 217–253. Springer US.

Anand, S. and Mobasher, B. (2007). Contextual Recommendation. In From Web to Social
Web: Discovering and Deploying User and Content Profiles, volume 4737 of Lecture
Notes in Computer Science, pages 142–160. Springer-Verlag, Berlin, Heidelberg.

Antunes, B., Cordeiro, J., Costa, P., and Gomes, P. (2011). Using Contextual Information
to Improve Awareness in Software Development. In Proc. of the 23rd International
Conference on Software Engineering and Knowledge Engineering (SEKE 2011), pages
349–352, Miami, USA.

Antunes, B., Cordeiro, J., and Gomes, P. (2012a). An Approach to Context-Based Rec-
ommendation in Software Development. In Proc. of the 6th ACM Conference on Rec-
ommender Systems (RecSys 2012), pages 171–178, New York, NY, USA. ACM Press.

Antunes, B., Cordeiro, J., and Gomes, P. (2012b). Context-Based Search in Software
Development. In Proc. of the 7th Conference on Prestigious Applications of Intelligent
Systems (PAIS 2012) of the 20th European Conference on Artificial Intelligence (ECAI
2012), pages 937–942. IOS Press.

Antunes, B., Cordeiro, J., and Gomes, P. (2012c). Context Modeling and Context Tran-
sition Detection in Software Development. In Proc. of the 7th International Conference
on Software Paradigm Trends (ICSOFT 2012), pages 477–484, Rome, Italy.

Antunes, B., Cordeiro, J., and Gomes, P. (2012d). SDiC: Context-Based Retrieval in
Eclipse. In Proc. of the Informal Demonstrations of the 34th International Conference
on Software Engineering (ICSE 2012), pages 1467–1468, Piscataway, NJ, USA. IEEE
Press.

128 References

Antunes, B., Cordeiro, J., and Gomes, P. (2013). An Approach to Context Modeling in
Software Development. In Software Paradigm Trends, Communications in Computer
and Information Science (CCIS). Springer-Verlag, Berlin, Heidelberg.

Antunes, B., Correia, F., and Gomes, P. (2010). Towards a Software Developer Context
Model. In Proc. of the 6th International Workshop on Modeling and Reasoning in
Context (MRC 2010) of the 19th European Conference on Artificial Intelligence (ECAI
2010), pages 1–12, Lisbon, Portugal.

Antunes, B. and Gomes, P. (2009). Context-Based Retrieval in Software Development.
In Proc. of the Doctoral Symposium on Artificial Intelligence (SDIA 2009) of the 14th
Portuguese Conference on Artificial Intelligence (EPIA 2009), pages 1–10, Aveiro, Por-
tugal.

Baeza-Yates, R. A. and Ribeiro-Neto, B. (1999). Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Balabanović, M. and Shoham, Y. (1997). Fab: Content-Based, Collaborative Recommen-
dation. Commun. ACM, 40(3):66–72.

Basu, C., Hirsh, H., and Cohen, W. (1998). Recommendation as Classification: Using So-
cial and Content-Based Information in Recommendation. In Proc. of the 15th National
Conference on Artificial Intelligence (AAAI ’98/IAAI ’98), pages 714–720, Menlo Park,
CA, USA. AAAI Press.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. (2004). OWL Web Ontology Language Reference.
Published: W3C Recommendation.

Belkin, N. J. and Croft, W. B. (1992). Information Filtering and Information Retrieval:
Two Sides of the Same Coin? Communications of the ACM, 35(12):29–38.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific Amer-
ican, 284:34–43.

Bernstein, A., Kaufmann, E., Kaiser, C., and Kiefer, C. (2006). Ginseng a guided input
natural language search engine for querying ontologies. In Jena User Conference.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet Allocation. J. Mach.
Learn. Res., 3:993–1022.

Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical Analysis of Predictive Al-
gorithms for Collaborative Filtering. In Proc. of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 43–52, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Brewster, C., Iria, J., Ciravegna, F., and Wilks, Y. (2005). The Ontology: Chimaera or
Pegasus. In Proc. of the Dagstuhl Seminar on Machine Learning for the Semantic Web,
pages 13–18.

Brin, S. and Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Comput. Netw. ISDN Syst., 30(1-7):107–117.

Brown, P. J., Bovey, J. D., and Chen, X. (1997). Context-Aware Applications: From the
Laboratory to the Marketplace. IEEE Personal Communications, 4:58–64.

References 129

Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling
and User-Adapted Interaction, 12(4):331–370.

Büttcher, S., Clarke, C. L. A., and Cormack, G. V. (2010). Information Retrieval: Imple-
menting and Evaluating Search Engines. MIT Press.

Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li, H. (2008). Context-Aware
Query Suggestion by Mining Click-Through and Session Data. In Proc. of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’08), pages 875–883, New York, NY, USA. ACM.

Caprile, C. and Tonella, P. (1999). Nomen Est Omen: Analyzing the Language of Function
Identifiers. In Proc. of the 6th Working Conference on Reverse Engineering (WCRE
’99), pages 112–122, Washington, DC, USA. IEEE Computer Society.

Card, S. K. and Nation, D. (2002). Degree-of-Interest Trees: A Component of an
Attention-Reactive User Interface. In Proc. of the Working Conference on Advanced
Visual Interfaces (AVI ’02), pages 231–245, New York, NY, USA. ACM.

Chatterjee, S., Juvekar, S., and Sen, K. (2009). SNIFF: A Search Engine for Java Using
Free-Form Queries. In Proc. of the 12th International Conference on Fundamental
Approaches to Software Engineering (FASE ’09) of the Joint European Conferences
on Theory and Practice of Software (ETAPS ’09), pages 385–400, Berlin, Heidelberg.
Springer-Verlag.

Chirita, P.-A., Firan, C. S., and Nejdl, W. (2006). Summarizing Local Context to Per-
sonalize Global Web Search. In Proc. of the 15th ACM International Conference on
Information and Knowledge Management (CIKM ’06), pages 287–296, New York, NY,
USA. ACM.

Chirita, P. A., Nejdl, W., Paiu, R., and Kohlschütter, C. (2005). Using ODP Metadata to
Personalize Search. In Proc. of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’05), pages 178–185,
New York, NY, USA. ACM.

Cohen, W. W., Schapire, R. E., and Singer, Y. (1999). Learning to Order Things. Journal
of Artificial Intelligence Research, 10(1):243–270.

Collins, A. M. and Loftus, E. F. (1975). A Spreading-Activation Theory of Semantic
Processing. Psychological Review, 82(6):407–428.

Cubranic, D., Murphy, G. C., Singer, J., and Booth, K. S. (2005). Hipikat: A Project Mem-
ory for Software Development. IEEE Transactions on Software Engineering, 31(6):446–
465.

Daoud, M., Tamine-Lechani, L., Boughanem, M., and Chebaro, B. (2009). A Session
Based Personalized Search Using an Ontological User Profile. In Proc. of the 2009
ACM Symposium on Applied Computing (SAC ’09), pages 1732–1736, New York, NY,
USA. ACM.

de Alwis, B. and Murphy, G. C. (2008). Answering Conceptual Queries with Ferret. In
Proc. of the 30th International Conference on Software Engineering (ICSE ’08), pages
21–30, New York, NY, USA. ACM.

130 References

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman, R. (1990).
Indexing by Latent Semantic Analysis. Journal of the American Society for Information
Science, 41(6):391–407.

DeLine, R., Khella, A., Czerwinski, M., and Robertson, G. (2005). Towards Understanding
Programs Through Wear-Based Filtering. In Proc. of the ACM Symposium on Software
Visualization (SoftVis ’05), pages 183–192, New York, NY, USA. ACM.

Dey, A. K. and Abowd, G. D. (2000). Towards a Better Understanding of Context and
Context-Awareness. In Proc. of the CHI Workshop on the What, Who, Where, When,
and How of Context-Awareness, The Hague, The Netherlands.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1:269–271.

Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R. S., Peng, Y., Reddivari, P., Doshi, V.,
and Sachs, J. (2004). Swoogle: A Search and Metadata Engine for the Semantic Web.
In Proc. of the 13th ACM International Conference on Information and Knowledge
Management (CIKM 2004), pages 652–659, New York, NY, USA. ACM.

Dit, B., Guerrouj, L., Poshyvanyk, D., and Antoniol, G. (2011a). Can Better Identifier
Splitting Techniques Help Feature Location? In Proc. of the IEEE 19th International
Conference on Program Comprehension (ICPC ’11), pages 11–20, Washington, DC,
USA. IEEE Computer Society.

Dit, B., Revelle, M., Gethers, M., and Poshyvanyk, D. (2011b). Feature Location in Source
Code: A Taxonomy and Survey. Journal of Software Maintenance and Evolution:
Research and Practice.

Doan, B.-L. and Brézillon, P. (2004). How the Notion of Context can be Useful to Search
Tools. In Proc. of the World Conference E-learn 2004, Washington, DC, USA.

Dourish, P. (2004). What We Talk About When We Talk About Context. Personal and
Ubiquitous Computing, 8(1):19–30.

Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K. (2009). Mining Source Code
to Automatically Split Identifiers for Software Analysis. In Proc. of the 6th IEEE
International Working Conference on Mining Software Repositories (MSR ’09), pages
71–80, Washington, DC, USA. IEEE Computer Society.

Fellbaum, C., editor (1998). WordNet: An Electronic Lexical Database. MIT Press.

Ganter, B. and Wille, R. (1999). Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg.

Gauch, S., Chaffee, J., and Pretschner, A. (2003). Ontology-Based Personalized Search
and Browsing. Web Intelli. and Agent Sys., 1(3-4):219–234.

Gay, G., Haiduc, S., Marcus, A., and Menzies, T. (2009). On the Use of Relevance
Feedback in IR-Based Concept Location. In Proc. of the IEEE International Conference
on Software Maintenance (ICSM 2009), pages 351–360.

González, V. M. and Mark, G. (2004). “Constant, Constant, Multi-Tasking Craziness”:
Managing Multiple Working Spheres. In Proc. of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’04), pages 113–120, New York, NY, USA. ACM.

References 131

Gosling, J., Joy, B., Steele, G. L., and Bracha, G. (2005). The Java Language Specification.
Addison-Wesley, Upper Saddle River, NJ, 3 edition.

Goth, G. (2005). Beware the March of this IDE: Eclipse is Overshadowing other Tool
Technologies. IEEE Software, 22(4):108–111.

Grechanik, M., Fu, C., Xie, Q., McMillan, C., Poshyvanyk, D., and Cumby, C. (2010).
A Search Engine for Finding Highly Relevant Applications. In Proc. of the 32nd
ACM/IEEE International Conference on Software Engineering (ICSE ’10), pages 475–
484, New York, NY, USA. ACM.

Gruber, T. R. (1993). A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition, 5:199–220.

Guarino, N. (1998). Formal Ontology in Information Systems. In Formal Ontology in
Information Systems, pages 3–15, Amsterdam. IOS Press.

Guerrouj, L., Di Penta, M., Antoniol, G., and Guéhéneuc, Y.-G. (2011). TIDIER: An
Identifier Splitting Approach Using Speech Recognition Techniques. Journal of Software
Maintenance and Evolution: Research and Practice.

Happel, H.-J. and Maalej, W. (2008). Potentials and Challenges of Recommendation
Systems for Software Development. In Proc. of the International Workshop on Recom-
mendation Systems for Software Engineering (RSSE ’08), pages 11–15, New York, NY,
USA. ACM.

Harary, F., Norman, R. Z., and Cartwright, D. (1965). Structural Models: An Introduction
to the Theory of Directed Graphs. Wiley, New York.

Harris, Z. (1954). Distributional Structure. Word, 10(23):146–162.

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., and von Wilamowitz-
Moellendorff, M. (2005). GUMO - The General User Model Ontology. In Proc. of the
10th International Conference on User Modeling (UM 2005), volume 3538 of Lecture
Notes in Computer Science, pages 149–149. Springer Berlin/Heidelberg.

Heinemann, L., Bauer, V., Herrmannsdoerfer, M., and Hummel, B. (2012). Identifier-
Based Context-Dependent API Method Recommendation. In Proc. of the 16th European
Conference on Software Maintenance and Reengineering (CSMR), pages 31–40, Szeged,
Hungary. IEEE Computer Society.

Henninger, S. (1996). Supporting the Construction and Evolution of Component Repos-
itories. In Proc. of the 18th International Conference on Software Engineering (ICSE
’96), pages 279–288, Washington, DC, USA. IEEE Computer Society.

Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating Collab-
orative Filtering Recommender Systems. ACM Transactions on Information Systems,
22(1):5–53.

Hill, E., Pollock, L., and Vijay-Shanker, K. (2007). Exploring the Neighborhood with Dora
to Expedite Software Maintenance. In Proc. of the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE ’07), pages 14–23, New York,
NY, USA. ACM.

132 References

Hill, E., Pollock, L., and Vijay-Shanker, K. (2009). Automatically Capturing Source Code
Context of NL-queries for Software Maintenance and Reuse. In Proc. of the IEEE
31st International Conference on Software Engineering (ICSE 2009), pages 232–242,
Washington, DC, USA. IEEE Computer Society.

Holmes, R. and Murphy, G. C. (2005). Using Structural Context to Recommend Source
Code Examples. In Proc. of the 27th International Conference on Software Engineering
(ICSE ’05), pages 117–125, New York, NY, USA. ACM.

Hummel, O., Janjic, W., and Atkinson, C. (2008). Code Conjurer: Pulling Reusable
Software out of Thin Air. IEEE Software, 25(5):45–52.

Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des
Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles, 37:547–579.

Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G. (2011). Recommender Systems:
An Introduction. Cambridge University Press.

Janzen, D. and De Volder, K. (2003). Navigating and Querying Code Without Getting
Lost. In Proc. of the 2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD ’03), pages 178–187, New York, NY, USA. ACM.

Jones, G. J. F. and Brown, P. J. (2004). The Role of Context in Information Retrieval.
In Proc. of the ACM SIGIR Workshop on Information Retrieval in Context, Sheffield,
UK.

Keivanloo, I., Roostapour, L., Schugerl, P., and Rilling, J. (2010). SE-CodeSearch: A
Scalable Semantic Web-Based Source Code Search Infrastructure. In Proc. of the IEEE
International Conference on Software Maintenance (ICSM 2010), pages 1–5, Washing-
ton, DC, USA. IEEE Computer Society.

Kersten, M. and Murphy, G. C. (2005). Mylar: A Degree-of-Interest Model for IDEs.
In Proc. of the 4th International Conference on Aspect-Oriented Software Development
(AOSD ’05), pages 159–168, New York, NY, USA. ACM.

Kersten, M. and Murphy, G. C. (2006). Using Task Context to Improve Programmer
Productivity. In Proc. of the 14th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (SIGSOFT ’06/FSE-14), pages 1–11, New York, NY,
USA. ACM.

Ko, A. J., DeLine, R., and Venolia, G. (2007). Information Needs in Collocated Software
Development Teams. In Proc. of the 29th International Conference on Software Engi-
neering (ICSE ’07), pages 344–353, Washington, DC, USA. IEEE Computer Society.

Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung, H. H. (2006). An Exploratory Study
of How Developers Seek, Relate, and Collect Relevant Information during Software
Maintenance Tasks. IEEE Trans. Softw. Eng., 32(12):971–987.

Kotov, A., Bennett, P. N., White, R. W., Dumais, S. T., and Teevan, J. (2011). Modeling
and Analysis of Cross-Session Search Tasks. In Proc. of the 34th International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’11),
pages 5–14, New York, NY, USA. ACM.

Krueger, C. W. (1992). Software Reuse. ACM Comput. Surv., 24(2):131–183.

References 133

LaToza, T. D., Garlan, D., Herbsleb, J. D., and Myers, B. A. (2007). Program Compre-
hension as Fact Finding. In Proc. of the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering (ESEC-FSE ’07), pages 361–370, New York, NY, USA. ACM.

Lawrie, D., Binkley, D., and Morrell, C. (2010). Normalizing Source Code Vocabulary. In
Proc. of the 17th Working Conference on Reverse Engineering (WCRE), pages 3–12,
Washington, DC, USA. IEEE Computer Society.

Lawrie, D., Morrell, C., Feild, H., and Binkley, D. (2006). What’s in a Name? A Study of
Identifiers. In Proc. of the 14th IEEE International Conference on Program Compre-
hension (ICPC ’06), pages 3–12, Washington, DC, USA. IEEE Computer Society.

Liu, F., Yu, C., and Meng, W. (2004). Personalized Web Search For Improving Retrieval
Effectiveness. IEEE Trans. on Knowl. and Data Eng., 16(1):28–40.

Lovins, J. B. (1968). Development of a Stemming Algorithm. Mechanical Translation and
Computational Linguistics, 11:22–31.

Lukins, S. K., Kraft, N. A., and Etzkorn, L. H. (2008). Source Code Retrieval for Bug
Localization Using Latent Dirichlet Allocation. In Proc. of the 15th Working Conference
on Reverse Engineering (WCRE ’08), pages 155–164.

Ma, Z., Pant, G., and Sheng, O. R. L. (2007). Interest-Based Personalized Search. ACM
Trans. Inf. Syst., 25(1).

Maedche, A. (2002). Ontology Learning for the Semantic Web. Kluwer Academic Pub-
lishers.

Mandelin, D., Xu, L., Bod́ık, R., and Kimelman, D. (2005). Jungloid Mining: Helping to
Navigate the API Jungle. In Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’05), pages 48–61, New York, NY, USA.
ACM.

Manning, C. D., Raghavan, P., and Schütze, H. (2008). Introduction to Information
Retrieval. Cambridge University Press.

Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J. I. (2004). An Information Retrieval
Approach to Concept Location in Source Code. In Proc. of the 11th Working Conference
on Reverse Engineering (WCRE’04), pages 214–223.

Matthijs, N. and Radlinski, F. (2011). Personalizing Web Search Using Long Term Brows-
ing History. In Proc. of the 4th ACM International Conference on Web Search and Data
Mining (WSDM ’11), pages 25–34, New York, NY, USA. ACM.

McCarey, F., Cinnéide, M. O., and Kushmerick, N. (2005). Rascal: A Recommender
Agent for Agile Reuse. Artificial Intelligence Review, 24(3-4):253–276.

McCarthy, J. and McCarthy, M. (2006). Dynamics of Software Development. Pro-Best
Practices. Microsoft Press.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu, C. (2011). Portfolio: Find-
ing Relevant Functions and their Usage. In Proc. of the 33rd International Conference
on Software Engineering (ICSE ’11), pages 111–120, New York, NY, USA. ACM.

134 References

Mena, T. B., Saoud, N. B.-B., Ahmed, M. B., and Pavard, B. (2007). Towards a Method-
ology for Context Sensitive Systems Development. In Proc. of the 6th International
and Interdisciplinary Conference on Modeling and Using Context (CONTEXT 2007),
volume 4635 of Lecture Notes in Computer Science, pages 56–68, Roskilde, Denmark.
Springer.

Mihalkova, L. and Mooney, R. (2009). Learning to Disambiguate Search Queries from
Short Sessions. In Proc. of the European Conference on Machine Learning and Knowl-
edge Discovery in Databases: Part II (ECML PKDD ’09), pages 111–127, Berlin, Hei-
delberg. Springer-Verlag.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41.

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1
edition.

Mostefaoui, G. K., Pasquier-Rocha, J., and Brezillon, P. (2004). Context-Aware Com-
puting: A Guide for the Pervasive Computing Community. In Proc. of the IEEE/ACS
International Conference on Pervasive Services (ICPS 2004), pages 39–48, Washington,
DC, USA. IEEE Computer Society.

Murphy, G. C., Kersten, M., and Findlater, L. (2006). How are Java software developers
using the Elipse IDE? IEEE Software, 23(4):76–83.

Noy, N. F. and McGuinness, D. L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology. Published: Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05.

Ogawa, Y., Morita, T., and Kobayashi, K. (1991). A Fuzzy Document Retrieval Sys-
tem Using the Keyword Connection Matrix and a Learning Method. Fuzzy Sets Syst.,
39(2):163–179.

Papagelis, M., Plexousakis, D., and Kutsuras, T. (2005). Alleviating the Sparsity Problem
of Collaborative Filtering using Trust Inferences. In Proc. of the 3rd International Con-
ference on Trust Management (iTrust’05), pages 224–239, Berlin, Heidelberg. Springer-
Verlag.

Parnin, C. and Gorg, C. (2006). Building Usage Contexts During Program Comprehension.
In Proc. of the 14th IEEE International Conference on Program Comprehension (ICPC
’06), pages 13–22, Washington, DC, USA. IEEE Computer Society.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Piorkowski, D., Fleming, S., Scaffidi, C., Bogart, C., Burnett, M., John, B., Bellamy, R.,
and Swart, C. (2012). Reactive Information Foraging: An Empirical Investigation of
Theory-Based Recommender Systems for Programmers. In Proc. of the ACM Annual
Conference on Human Factors in Computing Systems (CHI ’12), pages 1471–1480, New
York, NY, USA. ACM.

Piorkowski, D., Fleming, S. D., Scaffidi, C., John, L., Bogart, C., John, B. E., Burnett,
M., and Bellamy, R. (2011). Modeling Programmer Navigation: A Head-to-Head Em-
pirical Evaluation of Predictive Models. In Proc. of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 109–116, Pittsburgh, PA,
USA. IEEE.

References 135

Pirolli, P. and Card, S. K. (1999). Information Foraging. Psychological Review, 106(4):643–
675.

Pitkow, J., Schütze, H., Cass, T., Cooley, R., Turnbull, D., Edmonds, A., Adar, E., and
Breuel, T. (2002). Personalized Search. Commun. ACM, 45(9):50–55.

Poshyvanyk, D. and Marcus, A. (2007). Combining Formal Concept Analysis with In-
formation Retrieval for Concept Location in Source Code. In Proc. of the 15th IEEE
International Conference on Program Comprehension (ICPC ’07), pages 37–48.

Poshyvanyk, D., Marcus, A., and Dong, Y. (2006a). JIRiSS - An Eclipse Plug-in for Source
Code Exploration. In Proc. of the 14th IEEE International Conference on Program
Comprehension (ICPC ’06), pages 252–255.

Poshyvanyk, D., Petrenko, M., Marcus, A., Xie, X., and Liu, D. (2006b). Source Code
Exploration with Google. In Proc. of the 22nd IEEE International Conference on
Software Maintenance (ICSM ’06), pages 334–338.

Ratanotayanon, S., Choi, H. J., and Sim, S. E. (2010). Using Transitive Changesets
to Support Feature Location. In Proc. of the IEEE/ACM International Conference
on Automated Software Engineering (ASE ’10), pages 341–344, New York, NY, USA.
ACM.

Ratiu, D. and Deissenboeck, F. (2006). Programs are Knowledge Bases. In Proc. of the
14th IEEE International Conference on Program Comprehension (ICPC ’06), pages
79–83, Washington, DC, USA. IEEE Computer Society.

Resnick, P., Lacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). GroupLens:
An Open Architecture for Collaborative Filtering of Netnews. In Proc. of the ACM
Conference on Computer Supported Cooperative Work (CSCW ’94), pages 175–186,
New York, NY, USA. ACM.

Ribeiro, B. A. N. and Muntz, R. (1996). A Belief Network Model for IR. In Proc. of the
19th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR ’96), pages 253–260, New York, NY, USA. ACM.

Robertson, S. E. and Jones, K. S. (1976). Relevance Weighting of Search Terms. Journal
of the American Society for Information Sciences, 27(3):129–146.

Robillard, M., Walker, R., and Zimmermann, T. (2010). Recommendation Systems for
Software Engineering. IEEE Software, 27(4):80 –86.

Robillard, M. P. (2008). Topology Analysis of Software Dependencies. ACM Trans. Softw.
Eng. Methodol., 17(4):18:1–18:36.

Robillard, M. P., Coelho, W., and Murphy, G. C. (2004). How Effective Developers
Investigate Source Code: An Exploratory Study. IEEE Trans. Softw. Eng., 30(12):889–
903.

Robillard, M. P. and Weigand-Warr, F. (2005). ConcernMapper: Simple View-Based Sepa-
ration of Scattered Concerns. In Proc. of the OOPSLA Workshop on Eclipse Technology
eXchange, pages 65–69, New York, NY, USA. ACM.

Rocchio, J. (1971). Relevance Feedback in Information Retrieval. In The SMART Retrieval
System, pages 313–323. Prentice Hall.

136 References

Roget, P. M. (1852). Roget’s Thesaurus of English Words and Phrases. Longman, London.

Sahavechaphan, N. and Claypool, K. (2006). XSnippet: Mining For Sample Code. In
Proc. of the 21st ACM SIGPLAN Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications (OOPSLA ’06), pages 413–430, New York, NY,
USA. ACM.

Salton, G. and Buckley, C. (1988). Term-Weighting Approaches in Automatic Text Re-
trieval. Information Processing and Management, 24(5):513–523.

Salton, G., Fox, E. A., and Wu, H. (1983). Extended Boolean Information Retrieval.
Communications of the ACM, 26(11):1022–1036.

Salton, G., Wong, A., and Yang, C. S. (1975). A Vector Space Model for Automatic
Indexing. Commun. ACM, 18(11):613–620.

Saul, Z. M., Filkov, V., Devanbu, P., and Bird, C. (2007). Recommending Random Walks.
In Proc. of the 6th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC-
FSE ’07), pages 15–24, New York, NY, USA. ACM.

Schein, A., Popescul, A., Ungar, L., and Pennock, D. (2002). Methods and Metrics for
Cold-Start Recommendations. In Proc. of the 25th Int. ACM SIGIR Conf. on Research
and Development in Information Retrieval (SIGIR ’02), pages 253–260, New York, NY,
USA. ACM.

Schilit, B. and Theimer, M. (1994). Disseminating Active Map Information to Mobile
Hosts. IEEE Network, 8(5):22–32.

Shao, P. and Smith, R. K. (2009). Feature Location by IR Modules and Call Graph. In
Proc. of the 47th Annual Southeast Regional Conference (ACM-SE 47), pages 70:1–70:4,
New York, NY, USA. ACM.

Shen, X., Tan, B., and Zhai, C. (2005). Context-Sensitive Information Retrieval Using
Implicit Feedback. In Proc. of the 28th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’05), pages 43–50, New
York, NY, USA. ACM.

Shepherd, D., Fry, Z. P., Hill, E., Pollock, L., and Vijay-Shanker, K. (2007). Using Natural
Language Program Analysis to Locate and Understand Action-Oriented Concerns. In
Proc. of the 6th International Conference on Aspect-Oriented Software Development
(AOSD ’07), pages 212–224, New York, NY, USA. ACM.

Sillito, J., Murphy, G. C., and De Volder, K. (2006). Questions Programmers Ask During
Software Evolution Tasks. In Proc. of the 14th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering (SIGSOFT ’06/FSE-14), pages 23–34,
New York, NY, USA. ACM.

Sillito, J., Murphy, G. C., and Volder, K. D. (2008). Asking and Answering Questions
during a Programming Change Task. IEEE Transactions on Software Engineering,
34(4):434–451.

Singer, J., Elves, R., and Storey, M.-A. (2005). NavTracks: Supporting Navigation in
Software Maintenance. In Proc. of the 21st IEEE International Conference on Software
Maintenance, pages 325–334, Budapest, Hungary. IEEE.

References 137

Smullyan, R. M. (1968). First-Order logic. Springer-Verlag.

Sontag, D., Collins-Thompson, K., Bennett, P. N., White, R. W., Dumais, S., and Biller-
beck, B. (2012). Probabilistic Models for Personalizing Web Search. In Proc. of the 5th
ACM International Conference on Web Search and Data Mining, WSDM ’12, pages
433–442, New York, NY, USA. ACM.

Speretta, M. and Gauch, S. (2005). Personalized Search Based on User Search Histories.
In Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence (WI
’05), pages 622–628, Washington, DC, USA. IEEE Computer Society.

Staab, S. and Maedche, A. (2001). Knowledge Portals: Ontologies at Work. AI Magazine,
22:63–75.

Starke, J., Luce, C., and Sillito, J. (2009). Searching and Skimming: An Exploratory
Study. In Proc. of the IEEE International Conference on Software Maintenance (ICSM
2009), pages 157–166, Edmonton, Alberta, Canada. IEEE.

Stuckenschmidt, H. and van Harmelen, F. (2005). Information Sharing on the Semantic
Web. Advanced Information and Knowledge Processing. Springer.

Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004). Adaptive Web Search Based on User
Profile Constructed without Any Effort from Users. In Proc. of the 13th International
Conference on World Wide Web (WWW ’04), pages 675–684, New York, NY, USA.
ACM.

Takang, A. A., Grubb, P. A., and Macredie, R. D. (1996). The Effects of Comments and
Identifier Names on Program Comprehensibility: An Experimental Investigation. J.
Prog. Lang., 4(3):143–167.

Tan, B., Shen, X., and Zhai, C. (2006). Mining Long-Term Search History to Improve
Search Accuracy. In Proc. of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’06), pages 718–723, New York, NY,
USA. ACM.

Teevan, J., Dumais, S. T., and Horvitz, E. (2005). Personalizing Search via Automated
Analysis of Interests and Activities. In Proc. of the 28th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’05),
pages 449–456, New York, NY, USA. ACM.

Thummalapenta, S. and Xie, T. (2007). PARSEWeb: A Programmer Assistant for Reusing
Open Source Code on the Web. In Proc. of the 22nd IEEE/ACM International Con-
ference on Automated Software Engineering (ASE ’07), pages 204–213, New York, NY,
USA. ACM.

Turtle, H. and Croft, W. B. (1990). Inference Networks for Document Retrieval. In Proc.
of the 13th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval (SIGIR ’90), pages 1–24, New York, NY, USA. ACM.

Turtle, H. and Croft, W. B. (1991). Evaluation of an Inference Network-Based Retrieval
Model. ACM Trans. Inf. Syst., 9(3):187–222.

van Heijst, G., Schreiber, A., and Wielinga, B. (1997). Using Explicit Ontologies for KBS
Development. International Journal of Human-Computer Studies, 42:183–292.

138 References

von Mayrhauser, A. and Vans, A. M. (1995). Program Comprehension During Software
Maintenance and Evolution. Computer, 28(8):44–55.

Warr, F. W. and Robillard, M. P. (2007). Suade: Topology-Based Searches for Software
Investigation. In Proc. of the 29th International Conference on Software Engineering
(ICSE ’07), pages 780–783, Washington, DC, USA. IEEE Computer Society.

Wiese, A., Ho, V., and Hill, E. (2011). A Comparison of Stemmers on Source Code
Identifiers for Software Search. In Proc. of the 27th IEEE International Conference
on Software Maintenance (ICSM ’11), pages 496–499, Washington, DC, USA. IEEE
Computer Society.

Wilkinson, R. and Hingston, P. (1991). Using the Cosine Measure in a Neural Network for
Document Retrieval. In Proc. of the 14th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval (SIGIR ’91), pages 202–210,
New York, NY, USA. ACM.

Witten, I. H. and Frank, E. (2005). Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Series in Data Management Systems. Morgan Kauf-
mann, 2nd edition.

Wong, S. K. M., Ziarko, W., and Wong, P. C. N. (1985). Generalized Vector Space
Model in Information Retrieval. In Proc. of the 8th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’85), pages
18–25, New York, NY, USA. ACM.

Wursch, M., Ghezzi, G., Reif, G., and Gall, H. C. (2010). Supporting Developers with
Natural Language Queries. In Proc. of the 32nd ACM/IEEE International Conference
on Software Engineering (ICSE ’10), pages 165–174, New York, NY, USA. ACM.

Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., and Li, H. (2010). Context-Aware Ranking
in Web Search. In Proc. of the 33rd International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR ’10), pages 451–458, New York, NY,
USA. ACM.

Ye, Y. and Fischer, G. (2002). Supporting Reuse by Delivering Task-Relevant and Per-
sonalized Information. In Proc. of the 24th International Conference on Software En-
gineering (ICSE ’02), pages 513–523, New York, NY, USA. ACM.

Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M. C. (2004). Predicting Source
Code Changes by Mining Change History. IEEE Trans. Softw. Eng., 30(9):574–586.

Zhong, H., Xie, T., Zhang, L., Pei, J., and Mei, H. (2009). MAPO: Mining and Recom-
mending API Usage Patterns. In Proc. of the 23rd European Conference on Object-
Oriented Programming (ECOOP 2009), Genoa, pages 318–343, Berlin, Heidelberg.
Springer-Verlag.

Zimmermann, A., Lorenz, A., and Oppermann, R. (2007). An Operational Definition of
Context. In Proc. of the 6th International and Interdisciplinary Conference on Modeling
and Using Context (CONTEXT 2007), volume 4635 of Lecture Notes in Computer
Science, pages 558–571, Roskilde, Denmark. Springer.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining Version
Histories to Guide Software Changes. IEEE Transactions on Software Engineering,
31(6):429–445.

References 139

Zuniga, G. L. (2001). Ontology: Its Transformation From Philosophy to Information
Systems. In Proc. of the International Conference on Formal Ontology in Information
Systems, pages 187–197. ACM Press.

	Chapter 1: Introduction
	Research Goals
	Approach
	Contributions
	Outline

	Chapter 2: Background Knowledge
	Ontologies
	Classification
	Building Process
	Applications

	Context
	What is context?
	Context Modeling

	Information Retrieval
	Modeling
	Text Processing
	Query Formulation
	Evaluation
	Context-Aware Information Retrieval

	Recommender Systems
	Classification
	Evaluation
	Context-Aware Recommendation

	Software Development
	Search
	Recommendation

	Summary

	Chapter 3: Approach
	Knowledge Base
	Ontologies
	Building
	Indexing

	Context Model
	Structural Context
	Lexical Context
	Context Transitions

	Context-Based Search
	Retrieval
	Ranking

	Context-Based Recommendation
	Retrieval
	Ranking

	Weight Learning
	Summary

	Chapter 4: Implementation
	Architecture
	Data Layer
	Business Layer
	Presentation Layer

	Features
	Search
	Recommendation
	Monitor

	Chapter 5: Validation
	Preliminary Study
	Context-Based Search
	Context-Based Recommendation

	Final Study
	Context Model
	Context-Based Search
	Context-Based Recommendation

	Discussion
	Limitations

	Chapter 6: Related Work
	Context Awareness in Software Development
	Software Exploration
	Textual Approaches
	Static Approaches
	Textual/Static Approaches

	Retrieval in Software Reuse
	Lexical Retrieval
	Structural Retrieval
	Lexical/Structural Retrieval

	Software Project History

	Chapter 7: Conclusions
	Contributions
	Future Work
	Knowledge Base
	Context Model
	Context-Based Search
	Context-Based Recommendation
	Weight Learning
	Application Domain

	References

