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Resumo

A procura de alvos olfactivos com recurso a robôs móveis tem recebido bastante atenção por

parte da comunidade cientı́fica nos últimos anos. Isto deve-se, em parte às possı́veis aplicações

em cenários tais como a detecção de fugas quı́micas, monitorização ambiental, monitorização

de agentes poluentes, inspecção de aterros e operações de busca e salvamento. Algumas destas

tarefas são realizadas em ambientes extremamente perigosos para os humanos, o que torna o

recurso a robôs ainda mais apelativo. A assistência de robôs autónomos em tarefas como estas

reduz o risco envolvido para os humanos nestas operações.

Esta tese tem como objectivo ir de encontro ao problema da busca de alvos olfactivos através

do uso de um grupo de robôs móveis, equipados com sensores de gás. Este grupo pode formar

uma rede de sensores móvel, permitindo a cobertura de áreas mais extensas num perı́odo de

tempo mais curto, o que se traduz num melhor desempenho em diversos ambientes (e.g., na

presença de ambientes ruidosos e amplos) quando comparado com uma solução que utiliza

apenas um robô. Nesta tese são considerados dois tipos de grupos de robôs: “sistemas multi-

robô” e “sistemas de enxames de robôs”. Para cada um destes sistemas, define-se um objectivo

de forma a ir ao encontro de vários desafios no âmbito da busca olfactiva com robôs móveis.

“Busca olfactiva e exploração com recurso a múltiplos robôs em ambientes desconhecidos e

estruturados” e “busca olfactiva com recurso a enxames de robôs em ambientes desconhecidos

e não-estruturados” são os dois objectivos principais desta tese. Em ambos os objectivos o

problema de “encontrar a pluma de odor”, o primeiro passo na localização de fontes de odor, é

considerado como o problema principal.
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ii Resumo

Para cumprir o primeiro objectivo, esta tese apresenta um método multi-robô de procura

olfactiva desenvolvido para ambientes estruturados. Este consiste num algoritmo de fronteira,

descentralizado, optimizado por uma função de avaliação de custo/utilidade que considera

pistas de odor (concentração de odor e informação de correntes de ar) em cada fronteira, o que

leva a que o robô tente encontrar fontes de odor o mais depressa possı́vel. Para além do desafio

da “procura olfactiva”, vários desafios tais como a “cooperação e partilha de tarefas”,

“localização e mapeamento multi-robot” e “programação e processamento” foram abordados.

O método proposto foi avaliado em simulações e num ambiente estruturado real de pequena

escala. Os resultados das experiências reais confirmam o efeito que as pistas de odor exercem

no comportamento dos robôs e mostram que ao utilizar o algoritmo proposto, os robôs

exploram primeiro as áreas com maior probabilidade de existência de fontes de odor. Os

resultados das simulações confirmam a vantagem da utilização de mais robôs em ambientes

mais complexos.

O segundo objectivo, “busca olfactiva com recurso a enxames de robôs em ambientes

desconhecidos e não-estruturados”, é abordado através de um algoritmo de optimização

analı́tico. Definindo uma cobertura singular e múltipla (fixa e móvel) para os sensores de gás,

encontrou-se a configuração óptima para N sensores móveis em diferentes ambientes, uma das

principais contribuições desta tese. Descobriu-se que a topologia óptima consiste numa

configuração em linha, com os sensores equidistantes. Independentemente do número de

sensores, a distância óptima entre pares de sensores vizinhos depende da velocidade do vento.

calculou-se uma função matemática capaz de estimar de forma óptima a distância entre pares

vizinhos de sensores, com base na velocidade do vento através de estimação por regressão

não-linear. Com base nos resultados das optimizações, desenvolveram-se e apresentaram-se

um conjunto de forças de controlo de atracção/repulsão para enxames de robots influenciadas

pelo vento. O comportamento emergente, converge para as formações óptimas. Os resultados

das optimizações foram validados e avaliados por experiências em ambientes realistas.

Finalmente esta dissertação propõe um método para o “seguimento de plumas de odor e



Resumo iii

declaração de fontes de odor com exames de robôs”. Apresenta-se a implementação do método

proposto em simulações e apresentam-se alguns resultados preliminares da sua validação bem

como a discussão de trabalho futuro nesta área.





Abstract

Searching for olfactory targets with mobile robots has received much attention in the recent

years due to its applications in chemical leak detection, environmental monitoring, pollution

monitoring, inspection of landfills, and search and rescue operations. Some of these tasks are

done in scenarios extremely dangerous for humans, making it more desirable to use robots

instead. The use of autonomous robots to assist such tasks reduces the risks involved in these

operations.

This thesis aims to address the problem of searching for olfactory targets with a group of

mobile robots. A group of robots with on-board sensors can actually form a mobile sensor

network, so they can cover larger area in a shorter time and they show better performance in

several scenarios (e.g., in the face of noisy and large environments) in comparison to a single

robot. Two types of robotic groups are considered in this thesis; “multi-robot systems” and

“swarm robotic systems.” For each of these systems a certain objective is defined to address

several challenges in robotic olfactory search.

“Olfactory search and exploration with multiple robots in structured unknown

environments” and “swarm robotics olfactory search in unstructured unknown environments”

are the two defined objectives of this thesis. In both objectives, the problem of “odor plume

finding” that is the first step to localize odor sources is considered as the main problem.

To fulfill the first objective, this thesis presents a multi-robot olfactory search and

exploration method designed for structured environments. The method is a decentralized

frontier based algorithm enhanced by a cost/utility evaluation function that considers the gas

v
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cues (odor concentration and airflow) at each frontier which makes the robots to try to find the

odor sources as fast as possible. Several challenges namely “task sharing and cooperation”,

“localization and multi-robot mapping”, “programming and processing” in addition to

“olfactory search challenges” are addressed. The proposed method is evaluated in simulations

and in small-scaled realistic structured environments. The results of real world experiments

confirm the effect of gas cues on the behavior of the robots and show that using the proposed

algorithm, robots firstly explore the areas with higher probability of existence of odor sources.

Simulation results show that having more robots is more advantageous in a complex

environment than in a simple environment.

We address the second objective, “swarm robotics olfactory search in unstructured

unknown environments”, through an analytical optimization approach. Defining single and

multiple (stationary and mobile) gas sensors coverage and finding the optimal configuration of

N mobile sensors in different environmental conditions are among the main novelties of this

thesis. We found that the topology of optimal solutions is in the form of line configuration,

with equal distance between each pair of neighboring sensors. Regardless of number of

sensors, the optimal distance between neighboring pairs depends on the wind speed. A

mathematical function that can accurately estimate the optimal distances based on the wind

speed was computed by nonlinear regression estimation. Moreover, based on the results of

optimizations, we present and design a set of wind-biased virtual attractive/repulsive control

forces for the swarm robots such that their emergent behavior converges to the optimal

formations. The optimization results were validated and evaluated by experiments in realistic

environments.

Finally, this dissertation proposes a method for “swarm robotics odor plume tracking and

source declaration.” We present the implementation of the proposed method in simulations and

provide some preliminary results of its validations and discuss the future works of this work.
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Chapter 1

Introduction

“A gas leak near the intersection of Cambie Street and West 7th Avenue in Vancouver forced

the evacuation of at least 10 buildings for five hours Thursday. The leak could be smelled for

several blocks in the area. ‘We advise any citizens in the affected area that smell gas in their

premise, to open their windows to ventilate and exit the building,’ said Roder, Fire and Rescue

Services Captain.” CBC News,1 Sep. 20 , 2012.

This quote from a recent news article describes a few harmful effects of a chemical release

in a residential area. The consequences of a chemical leak may be more detrimental than this

story (e.g., Bhopal disaster,2 1984), and may become a worldwide disaster. In these scenarios,

the origin of the contamination should be located as quickly as possible to minimize the

damage. Since the chemicals are often hazardous to human health, a promising solution to this

problem is to deploy a group of intelligent robotic vehicles that can autonomously navigate in

the environment and look for desired olfactory targets, instead of jeopardizing the lives of

human operators.

This thesis describes the results of four years of research about olfactory searching and

exploration with groups of robots. In particular, we study the case in which a cooperating team

of independent mobile robots uses local observations of a chemical concentration to rapidly

converge to the location of the release source. Although several goals are achieved and multiple

1http://www.cbc.ca/news/canada/british-columbia/story/2012/09/20/bc-cambie-gas-leak.html
2http://en.wikipedia.org/wiki/Bhopal disaster

1
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novel contributions are provided by this thesis, the work is still on-going and a lot of questions

are still remained unanswered.

1.1 Motivation

Olfaction is a sense widely used by social animals to find mates, to detect hidden resources or

threats, and to mark paths and territories. Some birds (e.g., red knots and dunlins), insects (e.g.,

ants, bees, termites, locusts) and marine animals (e.g., fish, antarctic krill, and small shrimp-like

crustaceans) communicate and cooperate with each other while searching for olfactory targets

[Wya03]. Robots equipped with olfactory sensors can potentially show similar behaviors with

applications in areas such as search and rescue operations.

In the early 1990s, researchers started to study the integration of olfactory abilities into

mobile robots in order to replace trained animals (e.g., search and rescue dogs) in search

operations [ISNM94, DTRMS94]. Compared to animals, robots can work for longer periods

without fatigue, they can be deployed quickly and maintained with lower cost, and most

importantly, they can enter dangerous zones. It is expected that olfactory robotics plays more

significant roles in areas such as searching for harmful gas leakages, smuggling drugs (e.g.,

heroin), survivors in collapsed buildings, mines in battle fields, and chemical targets in

anti-terrorist operations.

Searching for olfactory targets with mobile robots has received much attention in the recent

years. Robotics olfactory search finds applications in environmental monitoring [DM12],

chemical leak detection [RTDMS95], pollution monitoring [FCL12], inspection of landfills

[HBLNT12], and search and rescue operations [WZWH10]. Some of these tasks are done in

extremely dangerous scenarios for humans, being desirable to use robots instead. The use of

autonomous robots to assist such tasks reduces the risks involved in these operations.

The problem of autonomous search and exploration have been extensively addressed with

single robot systems. However, in several cases (e.g., in noisy and large environments) most

single robot approaches fail or show very low performance [HMG03]. Multiple robots with

on-board sensors can actually create a mobile sensor network, so they cover instantaneously
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a larger area than a single robot. In the case of olfactory search where the target profile is

inherently noisy and it does not have smooth gradient, using multiple robots can potentially

increase the performance in comparison to a single robot. Multi-robot systems usually extend

the limitations of single robot systems and in most cases have higher performance, although the

complexity of the system usually increases.

Among the advantages of multiple robot systems (in comparison to single robot systems),

it can be highlighted that these systems can potentially provide higher task accomplishment

speed, higher accuracy and fault tolerance. For example, multiple robots can localize themselves

more accurately [LBL10], fulfill search and exploration missions faster [SYTX06, BMSS05],

and generate maps of unknown environments more accurately [HB05]. As argued in [JZ00],

performance/cost ratio is the main advantage of multi-robot systems over single-robot systems.

Using a group of simple robots with a subset of the capabilities to accomplish a particular task

is usually less expensive to design and maintain than a single monolithic robot with all of the

necessary capabilities.

Several studies have concluded that the system-level cooperative behavior of many

biological systems such as social insects is robust, flexible and scalable

[CDF+01, BP95, HM02], and these characteristics are also envisaged for multi-robot olfactory

systems. The robustness of a group of robots is related to its ability to continue operating,

although at lower performance, despite failure of individuals, or disturbances in the

environment. The flexibility is defined as the ability of robots to adapt themselves to

environmental changes. The scalability requires that a robotic system be able to operate under

a wide range of group sizes. The robots’ coordination mechanisms should be relatively

undisturbed by changes in the group sizes.

The mentioned attributes are desirable for olfactory search systems. This study presents

cooperative multi-robot and swarming methodologies for olfactory search problems and tries to

achieve the mentioned benefits that are offered by such systems.
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1.2 Olfactory search problem

One of the main problems in olfactory robotics is localizing static odor sources in an

environment [XL05, MNdA02b, KRRJ06, LLD06, LRZ03, IKNM96]. In real situations, this

problem consists of three sub-problems:

1. Finding traces of the odor plume,

2. Tracking the odor plume towards its source,

3. Localizing and declaring the odor source.

“Declaration of the odor source” consists in accurately localizing the odor source in close

vicinity. This problem is either complemented by other sensing modalities, like vision

[KRRJ06] or is addressed by analyzing the proximity of plume detection points [FPLA03].

This subproblem is out of scope of this thesis but it is discussed in some parts of this

dissertation.

“Tracking the respective odor plume”, i.e., following the plume toward its source, has been

the problem more deeply studied, though mostly in laboratory conditions [LRZ03, IKNM96,

LRM+08], using heuristic and bio-inspired odor tracking algorithms [MNdA02b, FCM+09] and

mainly through centralized robotic approaches. This subproblem is not the main focus of this

dissertation, however it is discussed in some sections.

“Finding odor plumes”, that is, searching the environment randomly or systematically in

order to find odor clues, is the main goal of this study. This is a less studied sub-problem and the

first phase in search for odor sources [HMG03]. Plume finding problem is usually addressed by

general exploration methods [MNMdA09a], mapping [LCLG08, LD04], or coverage techniques

namely zig-zag sweeping, casting [PBiBB+06], random wandering [ITTM06], biased random

walks [MNdA02b], lévy-taxis [PBG09], and spiral movements [FCM+09], which are also used

for other spatial exploration tasks and are not efficiently designed for odor plume finding.

Sensor coverage [LWBSL12, BS07], exploration [BMSS05, FKK+06], and environmental

monitoring/mapping [LCLG08, DM12] are three correlated problems to “odor plume finding”.

Sensor coverage is the problem of spatially deployment of sensors in an environment in order
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to provide maximum coverage on a known working area. Exploration is the task of visiting all

areas of an unknown environment with mobile robots to obtain knowledge about that area.

Environmental mapping and monitoring is the problem of acquiring sensory data about all the

positions of a working environment using mobile robots. The techniques of coverage,

exploration, and monitoring are valuable to olfactory search and exploration, but they do not

provide a complete solution.

1.3 Problem constraints and assumptions

To design and propose robotic algorithms, several parameters such as robots types, required

equipments and sensors, considered environment and problem assumptions are important. The

considered hardware and robotic platforms restrict the computational complexity of a strategy.

For example, the use of a relatively sophisticated robot in contrast to an inexpensive robot

significantly affects the functionality and performance of proposed solutions. We classify these

parameters into following main categories.

1.3.1 Robotic systems

Regarding the robots and required hardware, this work mostly uses (and adapts) off-the-shelf

materials. Based on relatively simple available robots, two types of systems are considered in

this thesis:

• Cooperative multi-robot systems,

• Swarm robotic systems.

Cooperative multi-robot systems

“A multi-robot system is a group of robots, which are organized into a multi-agent architecture

so as to cooperatively carry out a common task, [WdS08].” There are two different

architectures for multi-robot systems; centralized and decentralized (also known as distributed)

architectures. For both architectures, higher efficiency in performing the tasks is achieved by
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dividing the main task to a set of subtasks and distributing the subtasks between the individual

robots. In the centralized approaches, a base station is responsible for distributing the subtasks

between the robots, whereas in decentralized architectures no such base station exist. It is

widely claimed (e.g., in [BHD94, Ark92, Ste94]) that decentralized architectures have several

inherent advantages over centralized architectures, including fault tolerance, reliability, and

scalability [Bro94]. Moreover, there are hybrid centralized/decentralized architectures

([CP95, Nor93]) wherein there is a central planner that applies high-level control over robots

which have some degrees of autonomy in their task distribution.

As argued in [JZ00], performance/cost ratio is the main advantage of cooperative multi-robot

systems over single-robot systems. Using heterogeneous robots with a subset of the capabilities

to accomplish a particular task, one can use simpler robots that are less expensive to engineer

than a single monolithic robot with all of the necessary capabilities.

Swarm robotic systems

Swarm robotics is a relatively new field that has gained significant attention in the scientific

community since the pioneering work by Reynolds on simulating flocks of birds [Rey87].

Swarm robotics is inspired by the observation of social insects like ants, termites, bees and

wasps, which are the fascinating examples of how a large number of simple individuals can

interact to create collectively highly intelligent systems [Şah04]. Several studies have

concluded that there is no centralized coordination mechanisms behind the operation of many

biological systems such as social insects [Sha05].

A swarm robotic system consists of (usually) large number of simple robots that operate

autonomously and independently under decentralized control laws. Although each agent follows

relatively simple rules, the swarm can collectively accomplish complex tasks at the macroscopic

level. Therefore in swarm robotics, complex global behavior of the system emerges from the

interaction of simple agents.
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Comparision of swarm and multi-robot systems

1. The relation between performance and number of robots: From the social behaviors

of some social animals (e.g., fish schools and ant colonies), it can be seen that adding

(or removing) group members to (from) the system does not affect the functionality of

the system. This is the main difference between multi-robot and swarm robotic systems,

i.e., removing several group members in a multi-robot system might strongly decrease its

functionality while in a robotic swarm does not. Additionally, in many cases, a swarm

robotic system achieves its emergent global behavior only if the swarm size is very large,

however, in most cooperative multi-robot systems, the functionality can be fulfilled even

with a few number of robots.

2. Complexity of the robots: Usually, in swarm robotic systems the individual robots are

very simple and weak in terms of robotic abilities. The robots’ sensors, actuators,

processing resources, communication and localization capabilities are usually poor in

swarm robotic systems in comparison to the cooperative multi-robot systems.

3. The overall behavior of the system: In swarm robotics, the global behavior of the system

usually emerges from the interaction of simple robots and it is beyond the ability of each

individual robot. On the other hand, each individual in multi-robot systems is usually able

to perform the whole task.

This thesis proposes different strategies for multi-robot and swarm robotic systems. In both

systems, we seek decentralized control approaches where the robots are independent, thus

cooperation is achieved through individuals’ communications.

1.3.2 Environment

Working environment is an important factor for the performance of search algorithms. The

profiles of a variety of emissions modalities namely chemicals, light, sound, RF waves, and

radioactivity, depend on the size, shape and conditions of the environment. Particularly,

regarding chemical release, the Reynolds number of the environment affects how chemical

substances are dispersed.
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In environments with low Reynolds numbers (i.e., in which viscosity dominates over

inertia), the dispersal is dominated by molecular diffusion resulting in Gaussian concentration

distributions with peak at chemical source [Hin86]. This condition is encountered when the

robots are relatively small in comparison to the size of the particles in the environment, such as

at microscopic scales in [HWPG07] and nanorobotics applications [GHL05], and also inside

fluids with high viscosity or moving at very low speeds [Vog96] .

At medium and high Reynolds numbers, odor molecules are carried by the flow forming an

odor plume due to the fact that their dispersal is dominated by the flow. As the odor travels

away from the source, the plume becomes more diluted due to diffusion. Two processes cause

the diffusion of odors: molecular diffusion and turbulence [RW02]. Molecular diffusion is a

slow process whose effect can be neglected in compare to turbulence. This is the condition of

most robotic scenarios where the robots are relatively huge, compared to the chemical

particles. Plumes may meander, become erratic, and contain fluctuating instantaneous

concentration gradients with isolated peak concentrations that are much higher than the

surrounding average concentrations [MEC92]. These conditions are often encountered in many

robotic applications. Thus, olfactory search at medium and high Reynolds numbers conditions

is suited to the problem of this thesis.

In the medium and high Reynolds number conditions, there are two environmental

parameters that directly affect the chemical emission profiles:

1. State of the air flow

In the absence of strong background flow, chemical profiles often resemble a Gaussian

distribution [Hin86]. In this condition, usually a simple gradient climbing algorithm can

efficiently solve the problem of olfactory search [RBHSW03].

However, in the presence of background flow, chemical emissions are carried from their

source by wind currents. A robot equipped with anemometers to measure wind direction

can direct its search upwind when it encounters the chemical [MdA06a]. Turbulence in

the background flow creates packets of variable chemical concentration in the air [Hin86].

This patchiness has a significant impact on the progress of a search algorithms. This thesis
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investigates olfactory search solutions in environments under stable airflow.

2. Shape of the environment and the obstacles

In terms of physical shape we can categorize the environments into the following groups:

(a) Outdoor environments: Field observations show that in outdoor natural

environments, the airflow magnitude is usually not weak (e.g., ≥ 0.2 m/s) and its

direction changes randomly and rapidly with large scales [Ary99]. In such

conditions, the distribution of the odor also changes quickly. There are many

previous studies that model the odor dispersal in these types of environments based

on the results of field observations [Bri73, Gif60].

(b) Indoor/semi-outdoor, scattered obstacles environments: In very large indoor

environments (e.g., warehouses) and some outdoor areas, the state of the air-flow

stays unchanged for long periods of time. In these environments, there might exist

a few obstacles scattered in the area which cause turbulences in the flow. However,

the odor plume shape does not change rapidly in comparison to outdoor

environments.

(c) Indoor structured environments: In most human built facilities (e.g., houses,

hospitals, tunnels, mines, etc.), the structure of the environment dictates the

air-flow direction, thus a chemical release is highly constrained by the

environment’s shape. In these environments most of the general odor dispersal

models do not provide accurate estimations. In cases where the map of the working

environment is a-priori known, computational fluid dynamics (CFD) simulations

may be used to model the odor dispersal [LBSS+12].

This thesis focuses on indoor/semi-outdoor structured and unstructured environments (case

b and c).

To efficiently search structured environments, the robots should use the map of the working

area in their algorithms since the odor dispersal is highly dependent on the environment’s shape.

However, in most real applications the map of the environment is not a-priori known so the
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robots need to generate the map while searching for olfactory targets. This requires a high

level of reasoning, communication and cooperation to efficiently search, explore and map these

environment. On the other hand in obstacle free and scattered obstacles environments, the odor

dispersal follows the airflow direction detectable by the robots. In these environments a lower

level of reasoning can be used to search for olfactory targets since mapping the environment

and using its structure is not essential for the algorithms. Due to these two facts, this thesis

presents swarm robotic approaches (i.e., simple local reactive behaviors) for olfactory search

in unstructured environments, while proposes multi-robot systems (i.e., relatively complex high

level cooperative algorithms) for olfactory search and exploration in structured environments.

1.3.3 Algorithms’ complexity

The order of complexity of algorithms and the control period are two other important parameters

in designing search and exploration methodologies for group of robots. These parameters define

the processing power requirement of the system. In swarm robotic systems, in contrast to many

multi-robot systems, the robots do not have high processing resources and thus they are not able

to run heavy processing tasks. This thesis avoids using very sophisticated robotic algorithms for

swarming systems. On the other hand regarding multi-robot systems, we presents algorithms

that can be run in many simple robotic platforms.

1.3.4 Communication

Robots need to communicate with each other due to at least two reasons; first, to coordinate

actions such that the task are efficiently accomplished without conflicts, and second, to exchange

their knowledge about the mission.

The amount of information transfered between the robots, the communication range and

the communication rate and speed are among the most important parameters in designing

methodologies for multi-robot and swarm robotic systems. In cooperative multi-robot systems,

the robots are usually able to communicate globally and exchange relatively high amounts of

data. In contrast, in swarm robotic systems the robots usually exchange small messages locally

in a short range. Therefore, the designed algorithms for multi-robot systems in this thesis use
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global communications to exchange relatively high amounts of data, while the algorithms for

swarm robotic systems only exchange short messages between the robots.

1.3.5 Number of robots

The number of robots used in a mission has significant impact on the functionality and

performance of most search methodologies.

In cooperative multi-robot systems, the more robots employed in a task, the more important

the coordination between their actions becomes. In these systems, scalable high-level

cooperation mechanisms are required to take the advantage of maximum number of robots and

to increase the efficiency of the system. In contrast, swarm robotic systems usually consist of

large number of simple robots where the desired collective behaviors emerge from the

interactions between the robots, and sometimes interactions between the robots and the

environment. Usually, these systems are functional only if a large number of robots are

employed whereas the performance does not change remarkably by small changes in the

number of robots.

One of the main constraints that restricts the number of robots in multi-robot or in swarm

systems is the total cost of the system. The robots in cooperative multi-robot systems are usually

more expensive than the robots in swarm robotic systems (due to higher capabilities). Hence,

the number of robots in multi-robot systems is usually limited to a few robots, whereas, the

number of robots in a swarm may be countless.

The proposed methodologies in this thesis are flexible and scalable to the number of robots,

although most of the experiments are done using a few robots in small scaled scenarios.

1.3.6 Olfactory sensors

A variety of different gas sensor types have been developed during the last decades. A review

of these sensors is presented by Arshak et al. in [AML+04]. Metal oxides semiconductor

(MOX), conductive and fluorescent polymer composites, optical, gas sensitive field effect

transistors, quartz crystal micro-balance (QCM), and surface acoustic wave (SAW) sensors are

some examples. The metal oxide semiconductor gas sensors are the most popular in mobile



12 Chapter 1. Introduction

robotics due to their high quality/cost ratio. A problem of most of these gas sensors is that their

response time and their recovery time both are lengthy (of the order of several seconds to tens

of seconds [LMWZ11]). In other words, these sensors do not respond immediately to the fast

concentration fluctuations. This issue restricts the search and navigation algorithms to the

strategies that only consider long-term exposure models for odor dispersal. This work

considers only algorithms suitable for the robots equipped with off-the-shelf metal oxide

semiconductor gas sensors.

1.4 Objectives

The research objective of this thesis is twofold; (i) to study multi-robot systems which

cooperatively explore structured environments and search for olfactory clues, (ii) to research

on swarming robots which cooperatively and efficiently search for odor plumes in unstructured

environments.

1.4.1 Multi-robot olfactory search and exploration in structured environments

In unknown structured environments, robots need to gain information about the working

environment in order to be able to efficiently search for olfactory targets. Thus, olfactory

search problem can be complemented with exploration methods. The problem of multi-robot

exploration is the problem of visiting all areas of an unknown environment with a set of mobile

robots. This problem is important for a wide range of applications, like search and rescue

operation, cleaning, patrolling, demining, grass cutting, etc. Most of the works in the area of

exploration have been implemented with a single robot that needs to have complete knowledge

about its localization. The ability to perform online complete exploration with multiple

cooperative mobile robots is presented in this thesis.

Olfactory search is a different but related problem to exploration. In an exploration method

basically a group of robots want to visit the entire environment, detect eventual odor clues and

localize their source. This is very different in comparison to search where a group of robots

navigate in the environment in order to find the odor clues as fast as possible while they finally



1.5. Challenges 13

explore the whole environment.

This objective seeks to answer the following questions in real-world indoor structured

environments. How can robots in a multi-robot system cooperate with each other without

having a leader? How can a group of robots share the tasks in a distributed way without

existence of a central task allocator? What informations should the robots exchange and when?

How can a robot integrate the gained information of another robot into its own data, in order to

increase its knowledge about the environment, the mission and the other robots’ status? How

can the robots cooperatively process a computationally heavy task?

1.4.2 Olfactory swarm search strategies in unstructured environments

In unstructured environments under airflow the odor profile is directed by the wind and is

predictable by estimation models. Simple swarm robotic behaviors can be designed to

efficiently find the plumes in these environments. Despite many other works in the field of

olfactory swarming which propose heuristic and intuitive approaches, this thesis looks for

analytical solutions.

The second objective of this thesis is to address the problem of odor plume finding by robotic

swarms in unknown unstructured environments. The goal is to propose an efficient methodology

to use a large number of simple mobile sensing nodes to increase the probability of finding an

odor plume.

This objective seeks answers for the following questions. How can swarm robots

cooperatively navigate in an environment without having a leader? What is the best strategy for

the swarm to look for olfactory targets in an unknown environment? What is the best spatial

formation of swarm robots in search for odor plumes? How should the individual’s behaviors

be designed in order to achieve the desired emergent swarm behaviors?

1.5 Challenges

Several challenges need to be addressed to fulfill the two mentioned objectives of these thesis.

Some of these challenges are mainly related to the first objective (multi-robot olfactory search
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and exploration in structured environments) and some of them are more related to the second

objective (olfactory swarm search in unstructured environments). This section describes these

challenges.

1.5.1 Task sharing and cooperation

Since in multi-robot/swarm-robotic systems there are several robots working together to solve

a global problem, the cooperation technique is a critical issue on their performance. One of the

main challenges in robotics is how the individuals can cooperate in a decentralized way in order

to increase the whole system’s performance. This challenge is addressed differently in multi-

robot systems than in swarm robotic systems. Usually in multi-robot systems, the individual

robots communicate with each other and by using a distributed common policy/protocol the

subtasks are taken by the robots autonomously. In swarm robotics, usually the robots have

minimal communications, thus, the global goals are achieved through the emergent result of

basic individual’s behaviors.

1.5.2 Navigation and formation

One of the main problems in cooperative robotics (specially in swarm robotics) is to design

control laws such that the group as a whole will achieve the intended goals, such as collision

free navigation or forming a spatial structure. Many researchers have been working on this

challenge during the recent years. Lack of a central control station poses a tough challenge in

designing these tasks.

1.5.3 Localization and multi-robot mapping

This challenge is mainly related to the first objective of this thesis in situations where the

environment is not a-priori known and there is no global localization system. While multiple

robots cooperatively search and explore an environment, information from individual robots

must be integrated to produce a single globally consistent map. This is a difficult problem to

solve when the robots do not have a global positioning system nor a common reference frame

[HB05].
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1.5.4 Programming and processing in multi-robot systems

Programming a group of robots is not like other types of programming. The model of

distributed computing (using many computers to work on a single large task) is somehow

similar to cooperative robotic programming. However, unlike distributed computing, each

individual in robotic groups deals with unique stimuli (e.g., each robot is in a different location

at any given time). The design of distributed algorithms is a main challenge in these robotics

systems. Some approaches use a control unit that coordinates other robots. Other approaches

use techniques borrowed from nature to give the system itself a type of collective intelligence.

Most the current research in robotics focuses on finding the most efficient and simple ways to

program individuals to achieve desired group behaviors. On the other hand, in most

multi-robot systems, an individual robot is not capable to solve computationally hard problems

due to lack of high processing power. In several situations, an approach is needed to empower

these systems in their problem solving.

1.5.5 Olfactory challenges

In addition to the general robotics challenges mentioned so far, this thesis deals with several

other challenges raised from olfactory aspect of work. Olfactory robotics techniques are highly

dependent on the environmental conditions. Proposing an olfactory search and exploration

method for a group of robots that needs less requirements/assumptions is a tough challenge in

the literature.

1.5.6 Swarm olfaction challenges

Finding the best spatial formation for the swarm robots in searching for an odor plume is a

challenge that none of the works either in the olfactory search area or in the swarm robotics field

has ever addressed. Another challenge is to design and propose simple control methodologies

for swarm robots to emerge to the best spatial formations.
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1.6 Novelties and contributions

The main theme of this work, olfactory search and exploration with a group of robots, raised

several related problems whose solutions provided some original contributions.

1.6.1 Olfactory-based multi-robot exploration in structured environments

This work presents a novel strategy that takes olfactory clues into the decision making of

exploration of unknown structured environments with multiple robots. The proposed method is

a decentralized frontier based algorithm enhanced by a cost/utility evaluation function that

considers the odor concentration and airflow at each frontier so that the robots try to find the

odor sources as fast as possible. It is shown that modified exploration methods practically

address the problem of searching for olfactory sources in unknown structured environments by

a team of robots.

1.6.2 Olfactory coverage maximization

This work presents an analytical method to find the optimal spatial formation of gas sensors

which maximizes their coverage area in unstructured environments. Defining single and

multiple gas sensors coverage and finding the optimal configuration of N stationary sensors in

different environmental conditions are among the main novelties of this thesis. Several works

exist on optimal coverage for different types of sensors, but none of them has ever addressed

and found the best formation of gas sensors for finding any possible odor plume in an unknown

environment.

1.6.3 Finding optimal formation of mobile swarm robots in odor plume finding

This thesis analytically finds the optimal spatial formation of swarm robots for odor plume

finding considering cross-wind movement for the swarm. This is a strong initial step towards

odor source localization with a swarm robotics approach.
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1.6.4 Wind-biased potential fields

This work proposes a set of wind-biased virtual attractive/repulsive control forces for swarm

robots such that their emergent behavior converges to the optimal formations. None of the

previously designed control systems in olfactory robotics community has ever biased the virtual

forces by the wind effect.

1.6.5 Robotic clusters concept

The novel concept of robotic clusters to empower multi-robot systems in their problem solving

is introduced in this work. A robotic cluster is a group of individual robots which are able to

share their processing resources, therefore, the robots can solve difficult problems by using the

processing units of other robots. None of the studies in robotics has ever suggested to share the

processing resources of agents/robots to increase the processing efficiency of each individual in

the system.

1.6.6 Parallel solution for topological map merging

This work presents a novel parallel solution for the conventional problem of multi-robot

topological map merging. This solution is based on robotic clusters concept. This is the first

parallel implementation of topological map merging problem.

1.7 Outline

Multi-robot olfactory search and exploration in structured environments that is the first of

objective of this thesis is studied in chapter 2. This chapter provides a detailed state of the art

of multi-robot olfactory search and exploration and presents and explains a proposed method

for this problem. Multi-robot task sharing and cooperation, olfactory search, localization,

topological mapping, parallel map merging and shared processing are the main challenges

discussed in this chapter. The proposed method is validated by simulations and also in

small-scaled realistic structured environments.
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Swarm robotics olfactory search that is the second objective of the thesis is studied in

chapter 3. This chapter first reviews the related works about the problem of swarm robotics

odor plume finding and then presents analytic optimizations for this problem. Afterwards, it

explains the design and implementation of swarming behaviors for individual robots to achieve

optimal configurations. Pseudo-Guassian odor dispersal model, definition of gas sensor area

coverage, optimal sensor deployment and optimal mobile sensor formation are the main topics

of this chapter. The methodology is validated in simulations and in realistic environment.

Although the two problems of “swarm odor plume tracking” and “swarm odor source

declaration” are not among the main objectives of this thesis, chapter 4 provides a state of the

art and presents a perspective proposed method for addressing these problems. Simulations

results of the proposed methodology are presented in this chapter. Finally chapter 5 present the

overall conclusions and future work of this study.



Chapter 2

Multi-robot olfactory search and

exploration

“A thousand people cannot convince one by words to the
extent that one person can convince a thousand by action.”
Zoroaster, 11th-10th century BC

The first main objective of this thesis is to develop a group of autonomous robots applied to

search and explore an unknown structured environment. Search and rescue operations inside

buildings, caves, tunnels and mines can be extremely dangerous tasks. An example of such

extremely risky situations is human operations inside industrial warehouses during a fire. In

these scenarios human senses can become severely impaired; smoke reduces the visibility,

communication is rendered impossible by the noise caused by the fire, and additionally

dangerous vapors and toxins may be released. The use of autonomous robots to assist such

tasks reduces the risks involved in these operations. Robots can search for toxic chemicals and

other desired targets while they explore the environment, providing real-time data about the

discovered map and the status of the facility. In unknown environments, search operations are

frequently complemented with the environment exploration.

19



20 Chapter 2. Multi-robot olfactory search and exploration

Figure 2.1: Robots searching in a warehouse.

2.1 Problem statement

Consider a group of N mobile robots, moving in R2 that are labeled as R1,R2, ...,RN . Each

robot Ri(i = 1, ...,N) is able to communicate with the other robots located at a short distance

∆. The robots are equipped with sensors for measuring the odor concentration and air flow

direction. There are unknown number of odor sources in the area which emit odor gas into the

environment. There is no central base-station for the system, so the robots should act separately

and independently from each other. There is no global localization system and the robots’

odometry is not very accurate. There is no prior knowledge about the environment except that it

is a structured building similar to a warehouse containing corridors, corners, branches, crosses,

etc, (Fig. 2.1). The problem is to localize all odor sources in the environment, explore the whole

area, and generate a map of the environment.

2.2 Related works

Efficient search and exploration in unknown environments is a fundamental problem for mobile

robotics. As this problem becomes increasingly solved by single robots, especially in obstacle

free environments, the next problem is to extend these techniques to groups of robots on
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structured environments. Using multi-robot systems may potentially provide several

advantages over single robot systems, namely faster exploration, better accuracy, and system

fault tolerance. However, in addition to the problems occurring in single robot olfactory search

and exploration, the extension to multiple robots poses following challenges:

• Multi-robot olfactory searching,

• Multi-robot task sharing and cooperation,

• Localization and multi-robot mapping,

• Multi-robot shared processing.

2.2.1 Multi-robot olfactory searching

Odor molecules released from their source are taken away by the wind and create a plume.

This process is called advection. While patches of molecules move away from the source, they

spatially expand and their mean concentration decreases. This is due to two different processes:

molecular diffusion and turbulent diffusion [MEC92]. Molecular diffusion is described as the

random motion of the molecules that causes them to move gradually apart. Turbulent diffusion

is a process that causes the patch of molecules to physically torn apart by flow turbulence

[KRRJ06]. Molecular diffusion is a slow and small-scale phenomenon. In contract, turbulent

diffusion is strong in a wide range of temporal and spatial scales. These processes yield to the

following three-dimensional advection-diffusion equation for the odor concentration [Sto11]:

∂C
∂t

+∇C ~U = ∇(K∇C) + Q (2.1)

where C represents the odor concentration, U is the wind speed, K denotes the turbulent

diffusion coefficient and Q is the source release rate. In this equation, the term ∇C ~U represents

advection and ∇(K∇C) stands for the turbulent diffusion.

The above equation implies that the air-flow direction and speed are the key parameters in

the distribution of odor in the environments. In the environments with no (or a few) obstacles,

this differential equation can be solved and a probabilistic pseudo-Gaussian model can be find
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that describes the odor concentration in average time exposure (chapter 3 goes to the details of

this model). However, in structured environments where the airflow is governed by the

structure of the facility, no general solution can be achieved. If the map of a structured

environment is known, computational fluid dynamics (CFD) modeling can be used to estimate

the odor concentration in any point of interest [ZC07]. If the map is unknown, neither

mathematical models nor numerical simulations can be used for concentration estimation or for

source localization. In this case, this thesis proposes modified exploration methods to be used

for olfactory search.

Researchers have developed methods that employ combinations and variations of plume

acquisition [MAdA03, MNdA02b] and plume upwind following

[MNS+10, MAdA03, LANM10] using reactive control algorithms (a comparison of these

methods is in [RBHSW03]). Most of these approaches are inspired by very simple creatures

like moths [FCM+09], glowworms [KG08], etc, therefore they are mostly low-level algorithms

making the robot react to the environmental changes based on some defined rules. On the other

hand the majority of the works have focused on either single robot experiments

[LCLG08, LD04, FCM+09] or multiple robots operating in open areas free of obstacles

[HMG02, MNS+10, MNdA06] with a background fluid flow. Despite most of these works, this

chapter needs to fulfill the goal with higher level of cooperation of multiple robots in real

structured environments. How can a group of robots efficiently localize odor sources in

structured buildings? This is a challenge that should be more studied in the robotic community.

2.2.2 Task sharing and cooperation

Cooperation is a key parameter in the performance of a group of robots which are trying to

solve a general search problem. The more robots that search an environment, the more

important the coordination between their actions becomes. The cooperation, communication,

and management of the robots in a multi-agent system can be done either in centralized way by

using a base station as the server, or decentralized way by having a distributed behavioral based

method (like in [MNMdA09a, BMSS05, TP07]). This study tackles the searching problem in

unknown environments without using a central station. The lack of a central station makes it
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more difficult to distribute the tasks between the robots. Since the environment is unknown, the

robots are unaware of the tasks before searching the area, i.e. there can be no kind of task

allocation before the start of the mission. Task allocation must be done automatically during

the mission by the participating robots.

The problem statement in this chapter explained that there are unknown number of odor

sources in the environment and the robots should localize all of them. Since the robots have no

a priori knowledge about the number of odor sources they must operate in the environment until

they cover all the area, i.e. they must continue searching while there are still unexplored areas.

Therefore this search problem should be complimented with unknown environment exploration

problem.

Singh and Fujimura [SF93] presented a decentralized online approach for heterogeneous

robots. In their method the robots work independently most of the time. When a robot finds a

situation that is difficult to solve by itself, it sends the problem to another robot which may be

able to solve the situation. The candidate robot is chosen by trading off the number of areas to

be explored, the size of the robot and the straight-line distance between the robot and the target

region. This technique generates a grid geometric map; therefore, the accuracy of the map

depends on the grid size. Moreover, all the robots need to have a considerable amount of

memory to store the entire map. Yamauchi [Yam98] proposed a distributed method for

multi-robot exploration, yielding a robust solution even with the loss of one or more vehicles.

A key aspect of that approach involves sharing map information among the robotic agents so

that they execute their own exploration strategy independently of all other agents. The robots

move to the closest frontier1 according to the current map, however, there is no coordination

component which chooses different frontiers for the individual robots. If the robots know their

relative locations and share a map of the explored area, then effective coordination can be

achieved through guiding the robots into different, non-overlapping areas of the environment.

In other words, effective coordination can be achieved by extracting exploration frontiers from

the partial maps and assigning robots to frontiers based on a global measure of performance

[BMSS05, MNMdA09b]. Frontier based exploration is a simple approach for decentralized

1Frontiers are the borders of the partial map, between explored space and unexplored area.
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Figure 2.2: Multi-robot frontier-based search and exploration.

multiple robot task allocation (Fig. 2.2). These frontiers, thus, represent locations that are

reachable from within the partial map and provide opportunities for exploring unknown terrain,

thereby allowing the robots to greedily maximize information gain [ZSBDT02]. However,

these methods should have a strategy to avoid sending two robots toward the same frontier.

Most of the related works in this area (namely [MNMdA09b] and [BMSS05]) try to explore

the environment with minimal excess effort in the minimum possible time, however, the main

goal of this project is olfactory search rather than exploration. The exploration must be done

in such a way that the group of robots automatically intends to look for the odor sources in the

environment.

2.2.3 Localization and multi-robot mapping

While multiple robots cooperatively search and explore an environment, information from

individual robots must be integrated to produce a single globally consistent map. Most of the

existing approaches to coordinate multi-robot mapping assume that all agents know their

locations in a shared (partial) map of the environment [MNMdA09a, BMSS05, MNMdA09b].

Having a physical general positioning system is an undesired constraint in unknown areas

where there is no previous knowledge about the environment.

Simultaneous localization and mapping (SLAM) has been a topic of much interest because

it provides an autonomous vehicle with the ability to discern and represent its location in a

feature rich environment. Some of the statistical techniques used in SLAM include extended
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Kalman filters, particle filters (Monte Carlo methods) and scan matching of range data [ENT05].

However, in the context of metric map building, SLAM’s performance depends on the accuracy

of the environmental sensors and requires very high data processing and also communication

between the robots.

While most research on multi-robot mapping has addressed the problem by creation of

occupancy grid maps ([GNSPK00, Thr01, KSF+03]), some research has been done on feature

based or topological maps ([MM11a, MM10, DS00b, FNL02, WJD08]). Topological maps

provide a brief characterization of the navigability of a structured environment, and, with

measurements easily collected during exploration, the vertices of the map can be embedded in

a metric space [HB05]. These maps use a graph to represent possibilities for navigation

through an environment and need less memory than their metric counterpart. The proposed

approach employs a topological mapping technique, so the robots only exchange few

environmental features.

Using topological maps, the problem of “map merging” is reduced to a “graph merging”

problem [HB05, KH04]. Jennings et al. [JKWT98] used individual robots to create topological

partial maps, and then used a simple distance metric to merge the maps considering a global

reference frame for all robots. Dudek et al. [DJMW98] created maps of a graph-like world

under the assumption that all robots start from the same point in the graph. Konolige et al.

[KFL+03] analyzed and showed the efficiency of taking a feature-based approach to merging

instead of attempting to match occupancy data.

Topological map merging is a difficult problem to solve when the robots do not have a

common reference frame or physical global positioning system [HB05]. Most of the works in

multi-robot mapping assume that all robots in the system have a common reference frame, an

assumption not made in this thesis. A few notable exceptions tackle the problem without a

common reference frame. Ko et al. [KSF+03] presented a method in which robots exchange

occupancy maps and localize themselves in each others maps using particle filters. Dedeoglu

and Sukhatme [DS00b] proposed a different approach for merging landmark-based maps

without a common reference frame. They used heuristics to estimate a transformation between

two maps using a single-vertex match found and paired other vertexes that are approximately
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close to each other under this transformation. The work most related to ours is that of Huang

and Beevers [HB05] who have presented a method that creates vertex and edge pairings using

the structure of the maps and then estimates a transformation using this match. By comparing

the map structure, mismatches can be discard earlier in the algorithm, and the transformations

can be computed using multiple-vertex matches instead of single-vertex matches. In our

previous experiments in [MM10], it was assumed that although there is no common reference

frame, the robots start the mission from the same initial node. This assumption made it easier

to solve the problem of map merging with multiple robots. Here we do not make any of these

assumptions and present an approach for this problem considering no common reference frame

and no common initial node. Moreover we develop a novel parallel algorithm for this problem

to run in robotic clusters using parallel programming approaches.

Whereas most approaches to topological map merging and related problems have focused

on using either map structure or map geometry [DS00a], the proposed algorithm in this chapter

takes advantage of both. Similar to [HB05], the use of map structure allows quick

identification of potential vertex matches in the maps (and rejection of mismatches), while the

use of map geometry enables the algorithm to directly merge maps with multiple

(disconnected) overlapping regions. However, if the geometric data of the local maps are not

obtained through a unique coordinate system these methods are not functional. This chapter

deals with two issues concerning map merging, the first, dealing with the uncertainty in the

localization of each robot by correcting it using the information of the partial maps, and the

second, presenting an approach for map merging for the case in which the robots’ coordinate

systems are different from one another.

2.2.4 Multi-robot shared processing (Robotic Clusters)

Multi-robot systems mostly consist of simple robots that usually have low computational

capability due to cost constraints [YN10]. However, there are situations where high

computational capabilities are required to solve complex problems. This thesis proposes a

novel approach based on computer cluster concepts to increase the processing efficiency of

each individual robot inside a distributed robotic system. The general idea is to design a
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corporation mechanism for high performance computing in multi-robot systems and solving

complex problems in robotics applications.

Parallelism in multi-robot systems in particular is achieved by similar methodologies defined

in multi-agent systems [MNSB11]. Robots usually run a distributed algorithm and based on a

given criteria, the tasks are assigned among the robots. In these systems, usually the individual

robots do not have a global view of the problem and they pick up the subtasks based on different

strategies (e.g., market-based approaches [DZKS06], priority approaches [CBR02] or coalitions

[FTL07, MNMdA09a]). Each one of them solves its local problem and the emergent result will

be the global solution.

Basically, in multi-robot systems, robots share the physical subtasks in order to increase the

efficiency of the team [CFK97, DJMW96]. None of the studies in this field has ever suggested

to share the processing resources of agents/robots to increase the processing efficiency of each

individual in the system. However, there are several robotic applications which require high

processing resources for the individual robots in a multi-robot system, namely “mapping”

[BEL+08, FP11], “robotics vision” [TAT+06], “path planning” [CP09] and “large-scale signal

processing” [BHH09]. For example, in multi-robot exploration and mapping, usually robots

share their local topological maps and each one of them merges them to generate a global map

of the whole environment. This problem is computationally hard if the robots do not share a

reference coordinate frame in complex environments. In fact, topological map merging in this

case is an NP-hard “maximum common subgraph isomorphism” problem. One of the best

solutions for this problem in robotics with several simplifications and assumptions is an

O(n4log(n)) algorithm [HB05], i.e., if the number of vertexes raised to several hundred, most

robots current are not able to merge two maps in real time. Considering the fact that robots

usually have to merge more than two maps (based on the number of robots participating in the

mission) and the low processing capability of the usual robots, this problem poses a tough

challenge. There are many similar applications in this field that require high processing

resources for individual robots.

Most of distributed robotic systems tend to use simple robots with advanced

communication capabilities (e.g., [BTI11]). Nowadays, robotics tend to use small processing
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Figure 2.3: Concept of robotic clusters

boards which run operating systems (e.g., Linux) and come with embedded wireless LAN

adapters (e.g., Gumstix1). Utilizing robots’ communication capabilities, this work proposes a

corporation mechanism based on computer cluster concepts to facilitate problem solving in

multi-robot systems.

Robotic clusters definition

In a robotic cluster systems, each robot is a computation node of a computer cluster in order to

empower multi-robot systems in solving computationally hard problems [MCM12]. Computer

clusters are typically independent computers connected via a single local area network (LAN).

Robots can also establish a computer cluster through wireless networks to form a robotic cluster.

We propose the following definition for a robotic cluster and then explain its characteristics,

requirements and implementations in details.

Definition 1 A robotic cluster is a group of individual robots which are able to share their

processing resources among the group in order to quickly solve computationally hard

problems.

In a robotic cluster, the processing resources can be shared by applying computer clustering

approaches. In these systems, each node is still able to run its own tasks independently,

moreover, the CPUs of these robots are shared in the cluster. Therefore, when a robot sends

some processing jobs to the others, the robots simultaneously run their own tasks and also the

1http://www.gumstix.net
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shared requested job. Fig. 2.3 demonstrates the concept of a robotic cluster which consists of

multiple heterogeneous robots connected through a wireless network.

Applications of robotic clusters are tasks that demand

• extreme processing resources, and

• relatively cheap designs.

Processing high amount of data or mapping a large and complex environment with multiple

simple robots are two examples of these applications. Processing and cost, both, are hard

constraints that emphasize simplicity of the individual robots, and thus motivate a cluster

approach to solve computationally hard problems. Excessive research is needed to find

methodologies that allow designing and implementing robotic clusters to address several

challenges in robotics research. The concept, requirements, characteristics and architecture of

robotic clusters are explained in [MCM12], and the problem of “topological map merging” is

addressed here by using “robotic clusters” concept.

Characteristics of robotic clusters

Robotic clusters benefit from a number of advantages offered by concepts of computer clusters,

including:

I. Processing Power: Each robot in a cluster is potentially able to use the processors of

other robots. Most of the previous experiments with real robots show that the robots usually

perform simple tasks (e.g., data logging and navigation) that do not require high processing

power, but in some situations they need to process a huge amount of data (e.g., when a robot

needs to process sensory data or finds itself in a different situation or needs to make a hard

decision). Therefore in a group of robots, most of the robots usually perform simple tasks and

only few robots need high processing resources. Using the clustering concepts the robots which

need processing power will be able to use the processing units of the other robots. This idea can

be more developed such that there can exist some special robots that do not participate directly

in robotic mission but help the other robots with sharing their processing power.
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II. Reduced Cost: The price of off-the-shelf simple computers or small laptops has

decreased in recent years. These simple computers can be used as the processing unit of each

individual robot and as a cluster they provide high processing capacity. Generally, in

comparison with single robots systems, the parallel processing power of a robotic cluster is, in

many cases, more cost efficient than a single robot with the same processing capability.

III. Scalability: One of the greatest advantages of robotic clusters is the scalability that

they offer. While complex single robots with high processing resources have a fixed processing

capacity, robotic clusters are easily expandable by adding additional nodes to the system when

conditions change.

IV. Availability: When a single supper robot fails, the entire mission fails. However, if a

robot in a robotic cluster fails, its operations can be simply transferred to another robot within

the cluster, ensuring that there is no interruption in the service.

V. Required equipments for robotic clusters: For implementing a robotic cluster, there is

no need of extra hardware rather than a wireless network and some robots equipped with

simple computers. Most of the recently developed robots are already equipped with small

computers running an operating systems capable of clustering. Only some software packages

(named middleware) and applications should be installed on the robots to form a robotic

cluster.

For more details about the idea of robotic clusters the reader is referred to reference

[MCM12] that is one of the recent author’s publications. In that article several issues namely

“programming in robotic clusters”, “middleware of robotic clusters”, “load distribution in

robotic clusters”, “Communication in robotic clusters”, “Dynamic architecture of robotic

clusters”, and “Robotic clusters’ spatial distribution” were discussed in details. This chapter

addresses the problem of topological map merging using robotic clusters concept.

One of the contribution of this study is to propose a novel parallel solution for the problem

of topological map merging based on the concept of robotic clusters [MCM12]. The robots

are able to establish a computer cluster and share their processing resources (brains) in solving

complex problems (in this case topological map merging problem) when needed. None of the

previously designed multi-robot systems in robotics community has ever used the computer
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cluster concepts in order to increase the robots’ processing capability. Additionally, this is the

first parallel solution for the problem of topological map merging in multi-robot systems.

Another significant contribution of this thesis is taking olfactory clues into the decision

making of exploration of unknown structured environments with multiple robots. The proposed

method is a decentralized frontier based algorithm enhanced by a cost/utility evaluation function

that considers the odor concentration and airflow at each frontier so that the robots will try to

find the odor sources as fast as possible. The researchers who have presented cooperative multi-

robot approaches in the field of olfactory search, have not addressed the problem by a frontier-

based search and exploration method (maybe one of the reasons is that most of them do not

consider the problem in structured environments and with multiple robots). On the other hand,

the researchers who have been working on multi-robot unknown environment exploration have

not addressed the problem of olfactory search. We believe that for searching olfactory sources

in unknown structured environments by a team of robots, modified exploration methods can

practically address the problem.

2.3 The proposed method for multi-robot olfactory search and

exploration

It is desired to find odor sources and explore the whole environment as fast as possible.

Therefore, it is essential that the robots share their tasks and individually achieve the objectives

through optimal paths towards the odor sources. In an unknown environment, the immediate

goals are the frontiers. while the robots are exploring an area, there are several unexplored

regions, which poses a problem of how to assign specific frontiers to the individual robots

without the existence of a specific task allocator. In the proposed approach, the robots firstly

decide to explore the frontiers which indicate higher odor concentration. The robots must avoid

selecting the same frontier, this may result in collision concerns. Another problem is the lack

of base station, so the robots should be able to explore autonomously and also avoid collisions

between themselves. To address these problems, the proposed method is based on a behavioral

decision-making exploration strategy that is shown in algorithm 1. The flowchart of this
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method is depicted in Fig. 2.4.

Algorithm 1: Odor source search and exploration algorithm

// Definitions:1
// feature: features are corridors, corners, etc. in a structured environment.2
// node: a node represents an environmental feature in the topological map.3
// frontier: an unexplored link in a node in the map.4
begin5

while there is at least one frontier in the map do6
repeat7

Go forward and follow potential field algorithm()8
Path planning improvement() // explained in section 2.3.49
Feature extraction() // explained in section 2.3.210

until getting a different environmental feature;11
C = Measure odor concentration()12
W = Measure wind direction by anemometer()13
if current node exists in the map then14

Update map’s data()15
Localization correction() // explained in section 2.3.616

else17
Add current node to map()18

if (M >odor threshold) and (W is not explored) then19
Set Objective to go(W)20

else21
F = unassigned frontier with highest Utility−Cost()22
Assign frontier F to this robot() // in the map23
D = the best path based on the A* algorithm(F)24
Set the new Objective to go(D)25

if Odor source detected() then26
Report this place as an odor source into the map()27

Send the new local map to the other robots()28
if received map data from other robots then29

Map Merging() // explained in section 2.3.530

end31

2.3.1 Odor source search and exploration algorithm

Algorithm.1 describes the decision making technique that should be run on every robot. The

robots start exploring the environment independently. Each robot goes forward to get into new

features in the environment. It generates its own local topological map out of the detected

features of the environment and also transmits this local map to the other robots which are

working on the same environment. When a robot has to make a decision to select its future path

(e.g., in the branches), it first measures odor concentration in that place. If the odor concentration

is more than a certain threshold, it means that the robot is in an odor plume and it must go up-

wind direction in order to localize the source. However if a robot is traveling inside an already
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Figure 2.4: The flowchart of the proposed method
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explored area and wants to select a frontier to explore, the frontier should be selected based

on the cost of reaching it and the utility it can provide to the search. The cost is calculated

through the A* method [HNR68], where it simultaneously determines the optimal path to reach

the frontier and its distance. Therefore, the cost is proportional to the distance that the robot has

to pass to reach the frontier.

cost(i,R) = dist(A∗i=0,n[(XR,YR), (X fi ,Y fi)]) (1)

where:

(XR,YR)→ position of the robot R

(X fi ,Y fi)→ position of the frontier i

n→ number of frontiers

The utility depends on the level of odor concentration in that frontier, which means that if

there are several frontiers at similar distances, the robot will go to the one that has higher utility,

i.e., higher odor concentration.

∀i ∈ {1..n}

utility(i) = Odor Concentration(i) (2)

The pro f it of a frontier i for a robot R is then calculated as

pro f it(i,R) = utility(i)−β× cost(i,R) (3)

where β represents a coefficient representing the relative values of cost and utility.

Since each robot always tries to maximize the pro f it function in its frontier selection, the

frontiers with higher odor concentration will be explored faster by the robots which are more

close to them. Fig. 2.5 shows a snapshot of three robots searching in a structured environment.

The already explored area is highlighted and the frontiers are colored by green. The robots

select frontiers based on the explained algorithm.

During exploration and navigation, the robots are simultaneously acquiring olfactory

information (odor concentration and air flow direction) of the environment. While a robot is

traveling up-wind direction, if the level of detected gas decreases suddenly it means that the

robot has passed an odor source during its path. On the other hand, if a robot is traveling in the

down-wind direction and it starts to detect a high concentration of odor, it means that there is

an odor source in this location.
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Figure 2.5: 3 robots searching in a small-scaled structured environment.

Figure 2.6: Feature detection, left: corridor, right: branch.

Figure 2.7: Local sensing frame in different features. Left to right: Corridor, Corner, T-junction,
dead-end.

Figure 2.8: Feature detection process, blob detection and Segment-line extraction in a T-junction
(left) and a dead-end (right). The blobs are presented in yellow and the extracted lines are
presented in red.
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The robots generate the topological map of the environment during their search and

exploration mission. Within the topological map, besides having information regarding the

kind of nodes, their position and the odor concentration in that feature, it also has data

describing the location of the robots and their target frontier. Through this data, a robot can see

which frontiers are unexplored, their position and if any robot has targeted them as its objective

(see Fig. 2.10). Therefore, the robots will not attempt to explore the same frontiers. Each robot

is aware of the frontier that the other robots have aimed to explore, so it will choose another

frontier that is unexplored and unassigned to any other robot. As a result, the robots will

autonomously pick up the tasks in a way that not any frontier will be assigned to more than one

robot.

The robots repeat this procedure while there is at least one unexplored frontier in the

environment. At the end all odor sources will be localized and the whole environment will be

explored, no matter how many odor sources are in the environment or how many robots

participate in the search.

2.3.2 Environmental features

With the type of environment considered in this chapter, there are five types of features that

can be extracted; corridors, corners, crosses, T-junctions (branches) and dead-ends. The robots

recognize environmental features based on a local metric map (also called local sensing frame)

constructed with the range sensors while the robot moves across the environment. Fig. 2.6

shows a robot in different environmental features and Fig. 2.7 shows local sensing frames

extracted by the robots. The known features are classified based on the differences that they

show in their sensing frames. Similar to several other studies (e.g., [RM06]) this thesis uses

pattern recognition algorithms that has been addressed in its literature. Blob detection [SS02],

line-segment extraction [BHR86] and corner detection [GD04] are used to classify the features

(See Table 2.1). A dead-end (shown in Fig 2.8) has only one blob that is a unique identification

of this feature among all the other ones. T-junction has 3 blobs, cross has 4 blobs, corner has

2 and corridor also has 2 blobs. To correctly identify the features, similar to the method used

in [DSA01] for corridor detection, the histogram of dominant angles of the extracted blobs



2.3. The proposed method for multi-robot olfactory search and exploration 37

Table 2.1: Characteristics used in classifying the environmental features.
Feature name No. of Blobs No. of Segments No. of Corners Histogram Peaks
Corridor 2 2 0 0
Corner 2 4 2 0 and 90
T-junction 3 5 2 0 and 90
Cross 4 8 4 0 and 90
Dead-end 1 3 2 0 and 90

is calculated to provide more clues to correctly identify the features. For example one of the

differences between a corridor and a corner is that a corner has a peak in the 90 degree value

of its histogram since it has two 90 degree angles in its segment lines, but the corridors don’t.

This histogram is also useful to avoid the false positive results and is applied to detect the other

features (e.g., dead-ends). Table 2.1 presents the characteristics of different features based on

mentioned parameters. The function IsSimilar() in Algorithm 2 does the blob detection, corner

detection, segment-line extraction and histogram calculation on the acquired data and returns

True if the local sensing frame presents the same characteristics as the compared known feature.

Algorithm 2: Feature detection algorithm

// Inputs:1
// Known Feature[]: dataset of sensory data of the known features2
// M: Number of needed iterations to process an area3
// N: Number of needed similar features to recognize that feature as detected4
// Output: Detected feature5
Start :6
i = 17
repeat8

Found = False9
while !Found do10

S[] = acquire sensors’ data()11
foreach Known Feature[k] do12

if IsSimilar(S[],Known Feature[k]) then13
F[i++] = Known Feature[k]14
Found = True15
Break16

until i ≥ N;17
MF = Most repeated Value in F[]18
Freq = Frequency of MF in F[]19
if Freq ≤ M then20

Goto Start // did not detect any feature!21

return (MF)22
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In algorithm 2 the robot constantly tries to detect the environmental features of its

surrounding area. If at least in M out of N iterations the robot detects one feature, it considers

this feature as the detected feature of the local area. The values of M and N depend on (i) the

velocity of the robot, (ii) the accuracy of the sensors and (iii) the characteristics of

environmental features. If the robot could not detect M similar features in N iterations, it must

slow-down its speed and does the feature extraction of that place from the beginning. Based on

this method the robots were able to accurately classify the environmental features in the testing

environments. It was found that this feature extraction and classification process highly

depends on the accuracy of sensory system. The accuracy of the sonars that are used in the

maze-like environment tests (explained in Sec. 2.4.1) is less than 3 centimeters in the range of

1.5 meters. Having this accuracy, the robots could perfectly distinguish the environmental

features from each other. If the environment has more complex features the sensors of the

robots also need to be more complex. In all of experiments in this chapter, it is assumed that

the robots are able to accurately classify the environmental features.

This study has tried to design and explain the algorithm independent from feature

extraction methods. In fact any kind of environmental feature extraction technique that can

lead to topological mapping is appropriate to be used in this project. We used five sonar

sensors mounted on different sides of robots and algorithm 2 to distinguish basic environment

features from each other, i.e., each robot can recognize if it is located in a corridor or in a

corner or any other environmental feature. We have also tested this process using a Laser range

finder instead of sonars with a few minor changes in extracting local sensing frames.

2.3.3 Robots’ motion

The low level of autonomous navigation of a robot relies on the ability of the robot to

simultaneously achieve its target goal and avoid the obstacles in the environment. In an

unknown environment the robot should reactively avoid the obstacles while exploring. To

avoid the obstacles, a reactive potential field control method [Kha86] was used. The targeted

goal of the potential field is provided by the exploration algorithm (explained in Sec 2.3.1) and

the distance to obstacles are measured by the range sensors. In this method, the goal generates
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Figure 2.9: Artificial attractive/repulsive forces in an unknown environment. d1 to d5
correspond the distance measured by five sonar sensors. R1 to R5 are the artificial repulsive
forces that are calculated based on the inverse distance of d1 to d5. “A1” represents the artificial
attraction to the targeted goal. “A/R” shows the summation of the attractive and repulsive forces
and the direction that the robot actually takes.

an attractive artificial force, while the obstacles generate artificial repulsive forces to the robot.

The resulting motion is obtained by the summation of these attractive/repulsive forces. Fig. 2.9

illustrates the action of this method in a corridor. Considering the robot holonomic with N

range sensors, its next velocity ~v(t + ∆t) can be calculated based on its current velocity ~v(t) and

the forces that are applied to it ~F(t);

~v(t +∆t) = ~v(t) +µ~F(t)∆t (2.2)

with µ a constant coefficient. The equation of forces that is applied to a robot is given by:

~F(t) = c1

(
Goal Pose− x(t)

)n
+

N∑
j=1

c2∣∣∣d( j)
∣∣∣m ~(Vec j) (2.3)

The position of the robot at time t is described by x(t) ∈ R2. Goal Pose− x(t) is the distance

vector between the robot and its targeted goal. The first term in (2.3) is an attraction force

towards the goal that its amplitude is relative to the distance between the robot and its goal.

Since d( j) is simply the distance between the robot and the surrounding environment that is

reported by the sensor j, the second term is a force that is the inverse function of the distance
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of the robot to the surrounding obstacles. ~Vec j is a predefined vector whose magnitude is set to

one and its direction is from sensor j towards the center of the robot. c1 and c2 are two positive

coefficients and n and m are even integer parameters, therefore the first term is always a force

towards the goal and the second term is a forces from obstacles towards the robot, meaning that,

the robot will try to get far from the obstacles and reach its targeted goal.

Algorithm 3: Path planning improvement

// This algorithm is called in Algorithm. 1, line 9.1
Calculate a confined circular area around the robot()2
if any other robot is inside the circle then3

if there is a possibility of being in a direct collision pattern then4
if it is a direct collision path then5

Recalculate the objective()6

else7
if both currently exploring frontiers OR both moving inside explored area then8

//Give priority to the one which has lowest ID.9
if the robot ID is higher that the other robot’s ID then10

go back to previous node and stop for a while() // so the other robot passes11

else12
Continue navigating13

else14
//Give priority to the one that is exploring a frontier.15
if the robot is inside explored area then16

go back to previous node and stop for a while() // so the other robot passes17

else18
Continue navigating19

else20
Continue search and exploration algorithm.21

2.3.4 Path planning improvement for exploration enhancement

Robots’ motion is controlled through potential fields. This technique of motion planning avoids

static obstacles very well, but in situations that two or more moving robots are facing to each

other in narrow corridor, this technique makes the movements very slow and the performance

of the mission gets low. In order to improve the exploration process, this thesis presents some

control rules to prevent this kind of situations. These rules are shown in Algorithm 3. In this

algorithm, each robot considers a virtual bubble around itself. Once another robot enters to this



2.3. The proposed method for multi-robot olfactory search and exploration 41

bubble, this robot checks the probability of direct collision between them. The policy is to give

priority to one of them, so one of them stops and the other passes through the area. If one of

the robots is located in the already explored area, the one that is exploring a frontier will have

higher priority. But if both are in the same conditions the one that has lower robot ID has the

priority (Algorithm. 3).

2.3.5 Map merging

Consider several robots navigating in an environment and each one has its own coordinate

system. Their X and Y axes do not match with each other and even they do not know where the

reference point of the other’s localization system is. Each robot is generating its own

topological map of visited local area. Topological maps provide a brief characterization of the

navigability of a structured environment, and, with measurements collected during exploration,

the vertexes of the map can be embedded in a metric space [HB05]. These maps use a graph to

represent possibilities for navigation through an environment and need less memory than their

metric counterparts. The robots repeatedly send these local self generated topological maps to

each other. The submaps generated by individual robots contain translation and orientation

errors. The problem is how each one of them can integrate the data coming from the others to

its local map and generate a more complete map. Fig. 2.11 shows an example of this problem.

Whenever a robot finds a new feature in the environment, it adds this feature as a new node

to its local map and sends a message to all the other robots and reports the new map. If a robot

is walking inside already explored environment and gets into another feature that is different

from its previously detected feature, it modifies this feature in its local map and again sends a

message to all the other robots and reports the modifies map. On the other hand, each robot has

a running memory-resident program that always is listening to the network and receives all the

messages that are sent by the other robots. When a robot receives a message that shows another

robot has found or modified a feature in its map, it starts the hypothesis building process by

creating the list of all vertices in the local topological map that are structurally compatible with

the new map (conditions (4) and (5)). Vertices are tested for compatibility by examining their

attributes: exactly known attributes (e.g., vertex type) must match perfectly; inexactly known
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Figure 2.10: An example of topological map data.

Figure 2.11: An environment being explored by two robots with different coordinate systems
(left). Matching generated maps of two robots exploring the environment (right).

Figure 2.12: Two maps with different coordinate systems (left). The result of merging maps
(right).
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attributes (i.e., due to measurement error) must be compared with a similarity test. This task is

computationally intensive since it requires an exhaustive search of data. In this case the robot

needs a high processing resource to analyze the maps and merge them together. This thesis

provides two solutions for this problem; (i) sequential algorithm, (ii) parallel algorithm using

roboti clusters concept [MCM12].

Sequential solution

Algorithm 4, Merge seq, works on two given maps M1 = [V,E,k1] (where V is the set of vertexes

Vi , E is the set of edges ei and k1 (called size) is the number of edges of the map) and M2 =

[W,F,k2] and finds the largest common connected subgraph between these two and calculates

the best transformation function that maps M1 on M2. This transformation function matches

the coordinate reference frames of the two maps. Therefore, the final merged map is derived by

overlapping only the vertexes’ positions using the transformation function.

This thesis defines the stated terms in the algorithms as following:

• “V equiv(v,w,F)”: checks if vertexes v and w are equivalent. Two vertexes are

equivalent if their environmental features match with each other and their positions can

be approximately matched by function F.

• “E equiv(ei, f j)”: Two edges ei and f j are equivalent if their lengths are approximately

equal, i.e.

Length( f j)−∆T < Length(ei) < Length( f j) +∆T

and their connecting vertexes are equivalent. ∆T is a distance threshold that should be

defined based on the model of robots’ localization error.

• “Transform func(Vi,W j,Vk,Wl)”: calculates a transformation function that maps vertex Vi

on W j and vertex Vk on Wl. Having the positions of two vertexes in map M1 and two

vertexes in map M2, with a geometric calculation a transformation function can be simply

extracted that contains translation and rotation parameters.

• “Ad j(ei)”: Returns the two vertexes of edge ei.
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• “Index
(
Adj(ei)

)
”: Returns the indexes of two vertexes connected to edge ei.

• “Link(VIG1,M,F,N)”: Finds the Nth connected vertex to VIG1 in map M, considering the

rotation parameter in function F.

• “Max Node Deg” is the maximum degree of vertexes in the maps, i.e., the maximum

number of edges connected to a vertex.

Algorithm 4: Merge seq(M1,M2,MAP)

inputs:1
M1 = [V,E,k1]2
M2 = [W,F,k2]3

Output: A map that is the result of merging M1 and M24
begin5

LIST = Null6
for i = 1; i < k1; i ++ do7

for j = 1; j < k2; j ++ do8
if E equiv(ei, f j) then9

(I1M1, I2M1) = Index
(
Adj(ei)

)
10

(I1M2, I2M2) = Index
(
Adj( f j)

)
11

F = Transform func(VI1 M1 ,WI1 M2 ,VI2 M1 ,WI2 M2 )12
L equ v = Null13
S = Com subgraph(M1,M2,F, I1M1, I1M2,0)14
if S > 0 then15

add [F,S ,L equ v] to LIS T16

F = Transform func(VI2 M1 ,WI1 M2 ,VI1 M1 ,WI2 M2 )17
L equ v = Null18
S = Com subgraph(M1,M2,F, I2M1, I1M2,0)19
if S > 0 then20

add [F,S ,L equ v] to LIS T21

I = the index of largest S saved in LIS T22
if I == Null then23

return(Null)24

FI = Transformation function saved in LIS T (I)25
L equ VI = List of equivalent vertexes saved in LIS T (I)26
M1mapped = FI(M1)27
MAP = Save overlap(M1mapped ,M2,L equ VI)28
return(MAP)29

end30

Algorithm Merge seq compares all the edges in M1 and M2 one by one. Once an edge ei

in M1 is found equivalent of an edge f j in M2, a transformation function F will be calculated

that maps ei on f j. Then the algorithm 5, Com subgraph, finds the largest common connected

subgraph between the two maps starting from the edge ei and f j to check the compatibility of
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Algorithm 5: Com subgraph(M1,M2,F, IG1, IG2, size)

inputs:1
M1 = [V,E,k1], M2 = [W,F,k2]2
F = The transformation function that maps M1 on M23
IG1 = the index of the current under process vertex of M14
IG2 = the index of the current under process vertex of M25
size = the current size of common subgraph6

Output: Size of the largest common subgraph7
begin8

if !(V equiv
(
VIG1,WIG2,F

)
then9

return 010

if [IG1,IG2] < L equ v then11
L equ v = L equ v ∪ {[IG1,IG2]}12
size ++13
for N = 1; N < Max Node Deg ; N++ do14

IG1 = Link(VIG1,M1,F,N)15
IG2 = Link(WIG2,M2,1,N)16
if ∃ VIG1 & ∃ WIG2 then17

size = Com subgraph(M1,M2,F, IG1, IG2, size)18

if size == 0 then19
return 020

return(size)21
end22

the vertexes based on the transformation function F. Since each edge has two vertexes, for every

common edge, the algorithm 5 is applied two times; once assuming that the first vertex of ei is

matched with the first vertex of f j and once assuming the second vertex of ei is matched with

the first vertex of f j.

Com subgraph is a recursive algorithm that creates lists of corresponding vertexes

between the two maps (each list is called a hypothesis) by locally expanding single vertex

matches. It starts with the starting vertexes, compares them, and if they are compatible it finds

the next connected vertex to these vertexes and runs the algorithm with the new found vertexes.

If the algorithm finds any conflict (mismatch), it returns zero indicating that matching ei and f j

using function F will lead to a conflict in the rest of map edges and this match should be

ignored. Otherwise, if there were no mismatch during the process of Com subgraph algorithm,

it saves the list of compatible vertexes in L equ v and returns the number of the found common

connected subgraph (one hypothesis). Algorithm Merge seq saves the data (size, matched

vertexes and the transformation function) of the generates hypothesis in LIS T and then
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Table 2.2: List of similar edges and processed vertexes in algorithms 4 and 5 for the maps shown
in Fig. 2.12.(left). Mismatches are bolded in this table.

Edges Processed vertexes
e1− f4 V1W4
e1− f4 V1W5,V2W4,V3W1
e2− f1 V2W1
e2− f1 V3W1
e2− f2 V2W2
e2− f2 V3W2,V4W1
e2− f3 V2W3
e2− f3 V3W3,V4W2,V5W1,V2W4

e2− f5 V2W1
e2− f5 V3W1
e3− f1 V3W1
e3− f1 V3W2,V4W1

Edges Processed vertexes
e3− f2 V3W2,V2W1
e3− f2 V3W3,V4W2,V5W1,V2W4

e4− f1 V4W2,V5W1,V3W3,V2W4

e4− f1 V4W1
e4− f2 V4W2,V5W3
e4− f2 V4W3V5W2
e4− f3 V4W3,V5W4
e4− f3 V4W4
e4− f5 V4W1
e4− f5 V4W4
e5− f4 V5W4
e5− f4 V5W5

processes the next edges in M1 and M2. Finally, the LIS T will contain all common subgraphs

that can be generated between M1 and M2 with different transformation functions. Algorithm

Merge seq finds the biggest hypothesis in the LIS T and generates M1mapped based on its

transformation function. Eventually, M1mapped and M2 have common coordinate reference

frames and we have the list of matched vertexes between these two, merging these two maps

can be easily done by overlapping them on each other and generate a new map.

Table 2.2 shows how the algorithm Merge seq and Com subgraph work on two example

maps of Fig. 2.12.(left). Starting from e1 and f1, equivalent edges are (e1 − f4), (e2 − f1),

(e2− f2), etc. These edges are listed in the first column of table 2.2. Algorithm Com subgraph

compares the vertexes of the two maps, starting from the ones that are connected to the

equivalent edges, that generates hypotheses. The second column of table 2.2 has listed the

vertexes that are compared for each pair of edges. The mismatches are colored red. For

instance, processing equivalent edges (e1 − f4), algorithm Com subgraph considers the first

hypothesis which includes V1,W4. Since V1 is of degree one and W4 is of degree four, they do

not match, so the algorithm does not continue processing this hypothesis and returns zero

(V1W4 is colored red in the table to indicate the mismatch). Processing current equivalent

edges (e1 − f4), the algorithm takes next hypothesis into account which starts with V1,W5.
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These vertexes (V1 and W5) are compatible so the next vertexes V2 and W4 will be compared.

Since these two are also compatible the next vertexes V3 and W1 are compared that are

incompatible (so we have V1W5,V2W4,V3W1 in the table). Finally algorithm 4 will have the

list of all hypotheses saved in LIS T . For the mentioned example above, LIS T contains three

hypotheses because only those which do not lead to any mismatch are saved in LIS T . These

hypotheses are underlined in table 2.2. Based on the biggest found hypothesis (or one of the

biggest ones), algorithm Merge seq will map the M1 with the associated transformation

function to that hypothesis, this action will overlap M1 on M2 (Fig. 2.12.(right) shows this

overlap). Finally the complete map is driven by overlapping matched submaps.

Parallel solution

We provide a parallel solution for the topological map merging problem using message passing

interface (MPI) standard. This is the first parallel implementation of topological map merging

problem. Algorithm 6 demonstrates the pseudo-code of the proposed algorithm for parallel

topological map merging. The parallel part of this algorithm, lines 8 to 30, is run on multiple

robots of the cluster and the rest of the code is run serially only on the robot which has initially

started the program.

I. Load distribution: Each robot individually makes its decision to connect or to establish

a cluster or exit from it [MCM12]. When a robot needs to distribute a task between the other

robots in the cluster, it first should know how many robots have joined to the cluster and then

distribute the load between them.

Algorithm 6 dynamically distributes the load between the available robots in the cluster in

real time. This algorithm first finds the number of available operational nodes in the cluster (by

MPI comm size in line 10) and then it distributes the load between them. Therefore, if one or

more nodes in the cluster have failed or have lost the communication connection, algorithm 6

distributes the load only between the operational nodes. However, if after distributing the load,

one of the robots fails (or loses the connection), the robot which has initially distributed the task

will get a timeout (i.e., an MPI error message) instead of the results. The algorithm returns the

error (lines 33 and 34 of algorithm 6) and this robot has to start over running the algorithm, so
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Algorithm 6: Merge parallel(M1,M2,MAP), MPI solution

inputs:1
M1 = [V,E,k1]2
M2 = [W,F,k2]3

Output: A map that is the result of merging M1 and M24
begin5

MPI Init(...)6
MPI Barrier(MPI COMM WORLD)7
begin8

MPI comm rank (MPI COMM WORLD, &id)9
MPI comm size (MPI COMM WORLD, &p)10
Low value = (id−1)× k1/p + 111
High value = (id)× k1/p12
LIST = Null13
for i = Low value; i < High value; i ++ do14

for j = 1; j < k2; j ++ do15
if E equiv(ei, f j) then16

(I1M1, I2M1) = Index
(
Adj(ei)

)
17

(I1M2, I2M2) = Index
(
Adj( f j)

)
18

F = Transform func(VI1 M1 ,WI1 M2 ,VI2 M1 ,WI2 M2 )19
L equ v = Null20
S = Com subgraph(M1,M2,F, I1M1, I1M2,0)21
if S > 0 then22

add [F,S ,L equ v] to LIS T23

F = Transform func(VI2 M1 ,WI1 M2 ,VI1 M1 ,WI2 M2 )24
L equ v = Null25
S = Com subgraph(M1,M2,F, I2M1, I1M2,0)26
if S > 0 then27

add [F,S ,L equ v] to LIS T28

end29
MPI Bcast (&LIST, ...)30
if id == S id then31

MPI Reduce (&LIST,...)32
if !MPI S UCCES S then33

return(MPI ERROR)34

I = the index of largest S saved in LIS T35
if I == -1 then36

return(NULL)37

FI = Transformation function saved in LIS T (I)38
L equ VI = List of equivalent vertexes saved in LIS T (I)39
M1mapped = FI(M1)40
MAP = Save overlap(M1mapped ,M2,L equ VI)41
return(MAP)42

end43
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that it will distribute the load between the current available robots again.

The main source of potential parallelism in this application is data decomposition i.e.,

dividing problem search space between the robots. To automatically divide the search space

between the robots (without having a central base station), this algorithm uses the robots’ IDs

as unique indicators. In algorithm 6 all of the processing nodes (robots) have complete data of

two maps of M1 and M2 and each robot finds the biggest common subgraphs between the two

maps that starts in its share of data. Each robot should work on a block (that is a division of

whole search space) specified by two variables named Low value and High value. Low valuei

and High valuei are computed in robot i based on the following formulas:

Low valuei = (idi−1)×
k1

p
+ 1 (2.4)

High valuei = (idi)×
k1

p
(2.5)

where idi denotes the ID of robot i in the cluster, p is the total number of nodes and k1 is the size

of map M1. To explain these formulas, we provide an example; imagine the map size k1 is 1000

and the current number of available robots p is 5. Based on (2.4) and (2.5), for the robot whose

id is 1, Low value1 and High value1 are respectively 1 and 200, and for the robot with id = 2,

Low value2 is 201 and High value2 is 400. Thus, Robot 1 works on interval [1,200], robot 2 on

interval [201,400], robot 3 on [401,600] and so on. If the current number of robots was 10, the

share of each robot would be intervals with length 100.

Using function MPI comm rank() in the algorithm the robots find their own ID and calling

function MPI comm size() they will be aware of the total number of robots (p) participating in

the cluster at the moment. It is worth to mention that in MPI programming, the variables are

private, i.e., changes in a variable in a node (inside the parallel part of code) does not have any

effect in the value of the same variable in another node.

By considering k1 (and not k2) in (2.4) and (2.5), map M1 is divided between the robots in

equal shares. Now each node runs the previously presented sequential algorithm but starting

from its given share of data in M1 and finds the biggest common subgraphs between M1 and M2

(see algorithm 6).
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II. Functionality: Similar to algorithm 4, algorithm Merge parallel compares all the edges

in a block of M1 and M2 one by one. Once an edge ei in M1 is found equivalent with an edge

f j in M2, a transformation function F will be calculated that maps ei on f j. Then the algorithm

5, Com subgraph, finds the largest common subgraph between the two maps starting from the

edge ei and f j to check the compatibility of the vertexes based on the transformation function

F. Each robot saves its found common subgraphs into its LIS T . Finally, the LIS T s will contain

all common subgraphs that can be generated between M1 and M2 with different transformation

functions. These LIS T s are generated by different robots and need to be aggregated to one node

and be processed.

III. Aggregating the results: MPI Bcast is called in the algorithm, so that each robot will

broadcast its results (LIS T ) to the cluster. In this algorithm, the robot with id = S id is responsible

to aggregate the distributed results and calculate the final result. S id denotes the id of the robot

which initially requested the map merging process. This robot runs MPI Reduce to gather the

results of processed data from the other computers to its own LIS T . Based on the biggest found

common subgraph (hypothesis), algorithm Merge parallel will map the M1 with the associated

transformation function to that hypothesis and generates M1mapped. Finally the output map

(MAP) is generated by overlapping M1mapped and M2.

2.3.6 Localization correction

Robots’ localization is a key issue in multi-robot mapping and exploration. This work doesn’t

consider a global positioning system. The only tool that the robots have for determining their

position is their odometry. However, the odometry is unreliable because of uneven floors and

wheel slippage. It is therefore necessary to increase localization accuracy by measuring position

of the robot relative to known objects in the environment.

Normally odometry errors accumulate incrementally as the robot is traveling, therefore, the

robot’s localization is more accurate at the beginning of an experiment and loses its accuracy

during the test. If the robot enters in an environmental feature that has already been explored,

it can look at the map and find the start position of that feature, then correct its localization

based on the data that has been stored in the map. It does not matter if this feature was added to
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the map by the current robot or by another robot in the team, since the feature has been added

to the map in the past; it means that the location that was saved in the map is more reliable

than the current localization of the robot. This method is only used when the robot is passing

an area that has already been explored. In addition to correcting odometry errors using map’s

data, the robots are able to correct their internal odometry angle based on the features of the

environment. Since in usual structured buildings, all the corridors are parallel or perpendicular

to the main direction, similar to [BY10], when the robot detects a corridor and is moving along

it, the robot is able to correct the localization angle. This method is used in the unknown area as

well as in the already explored environment.

2.4 Experimental results

The proposed method has been tested and validated both in real world and in simulation. The

functionality of the method in searching and exploration in a structured real environment has

been verified. Afterwards, in order to evaluate the method in more complex environments, the

method has been tested in simulation. We divide the experimental results in two parts; multi-

robot olfactory search results and multi-robot mapping result.

2.4.1 Experiments in structured environments

The proposed method was tested in different reduced scale maze-like environments, like the

one shown in Fig. 3.43. This testing arena, with 3 × 4m2 area by 0.5 meters height, has

controlled ventilation through a manifold that extracts air from the testing environment through

a honeycomb mesh integrated into one of the walls. The opposite surface of the environment

contains a similar mesh that allows the entrance of clean air that flows through the environment.

Controlled gas sources are simulated with ethanol vapor, generated using bubblers and pumped

to different places of the environment through a set of Polyvinyl chloride (PVC) tubes. Fig.

2.13.(right) shows a chemical release mechanism that is used as odor source in the experiments.

Inside this environment, a maze like structure is built to simulate real structured buildings. This

environment is consist of corridors, crosses, corners and dead-ends.
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Figure 2.13: Left: iRobot Roomba robot equipped with a laptop and sonar, gas, and anemometer
sensors. Right: the chemical release mechanism

The robots

The iRobot1 Roomba was used in the experimental tests. This is an attractive platform because

it is inexpensive, readily available and can be fully monitored and commanded through a serial

port interface. In the current work, a set of Roombas were upgraded with a small laptop

computer (ASUS Eee PC 901) running a Linux based operating system and the Player2

environment. The computer interfaces through a micro-controller board with a set of five

sonars, three 2-D anemometers and a gas sensing board (Fig. 2.13.(left)). Based on values

measured by sonar sensors, the robots recognize the basic environmental features (e.g.,

corridors, dead-ends, etc.). The gas concentration was measured with a custom sensing board

based on metal oxide gas sensors (Figaro3 TGS2620). A triangular anemometer was designed

based on three self heated NTC4 sensors placed around a triangular prism and processing the

raw measurements with a method similar to the one previously described in order to estimate

the wind direction [MdA06b]. The Player/Stage driver for Roomba robots makes it possible to

run the same code either in simulation or on the real Roomba robots.
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Figure 2.14: Three robots exploring a gas free environment.
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Figure 2.15: Three robots exploring the environment and finding the odor sources
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Experimental validation

In order to evaluate the method, the algorithm was experimented in the previously described

environment with one, two and three Roomba robots separately, first without having any odor

source, and then with an odor source releasing gas in the left-bottom corner of the arena at

eight centimeters height, as shown in Fig. 2.15.1. The robots have no a-priori knowledge about

the number of odor sources existing in the environment. When there is no odor source in the

environment, all frontiers have the same utility and the search algorithm acts like a pure frontier

based exploration algorithm that is enhanced by avoiding collisions between the robots. The

method is validated by comparing the results and analyzing the behavior of the robots.

Fig. 2.14 shows three robots exploring a small maze while searching for odor sources. In

this experiment there were no odor sources. All robots started from the same point but not at the

same time and were run a few seconds after each other (like if they were deployed at the entrance

of a warehouse). The red footprint shows the first robot’s path, the blue footprint is related to

the second robot and the green shows the footprint of the third robot. These experiments show

the functionality of algorithm in different maze structures and with different number of robots.

Frame 3 of Fig. 2.14 shows an example of coordination between the robots; when the second

robot reached the junction it figured out that the path in the front was already explored so it

chose the left path. In frame 5, the third robot had to decide to either take the front or the left

path, since both paths were already explored, it checked the nearest unexplored and unassigned

frontier in the map that was provided by the other robots and finally chose the front path. “Path

planning improvement” is presented in frames 9 and 10, when the second robot goes backward

for a while to avoid possible collisions with the first robot. Fig. 2.16 shows a topological map

generated by the robots in one experiment over the real topology of the testing environment.

The red lines and vertexes demonstrate the generated topological map before implementing

the proposed localization correction method, and the green shows a map after applying the

localization correction technique. The effect of localization correction technique is significant,

1http://www.irobot.com
2http://playerstage.sourceforge.net
3http://www.figarosensor.com
4Negative Temperature Coefficient
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e.g., all the lines of the green map are parallel to the corridors. The robots correct their odometry

during the mission so the maps’ errors do not accumulatively increase. The maps out of several

tests were similar, however they did not match perfectly. In these experiments the algorithm 4

was used to merge the maps since the size of topological maps in these scenarios were small.

Section 2.4.3 evaluates the presented parallel solution of map merging (algorithm 6) in details.

Fig. 2.15 shows the tests done with the same maze structure and the same robots, but

with an ethanol odor source on the left side of the environment. The first robot in the first

branch decided to go to the left-way because it sensed an odor clue and the wind was from that

direction (red footprints). The other robots also automatically changed their path in accordance

with the new conditions. The results show the effect of odor concentration on the behavior of

the robots. In each test the exploration time, that is the time it takes to cover all the maze paths,

is measured. Fig. 2.17 shows that the complete exploration time is higher when considering

gas cues, however the difference is less than 21 percent. Fig. 2.18 shows the time to reach the

target (the location of the odor source) in these two scenarios. The chart shows that the robots

reach the target much faster with having gas cues rather than without having it, which shows

the functionality of the algorithm. Each result is the average of five similar tests. Different tests

with constant conditions had similar results with about eight percent variance. The maximum

speed of the robots was kept constant in the tests. More experiments were done by placing the

odor source in other locations of the arena and the results were similar to the graph in Fig. 2.18.

The robots were initially released at the downwind side of the testbed (similar to many other

previous works namely [LANM10, MAdA03]) in the experiments. This is the same task that

the handlers of SaR dogs do at the start of the search mission. In fact if we position the robots

on the other side of the environment (upwind side) they will not be able to sense the odor and

therefore they will explore the environment until they eventually get into the active odor plume

area. The same point is valid if there is no air-flow in the environment. In this case the robots

mostly explore the environment rather than tracking odor plumes, Although they always intend

to explore the frontiers with higher odor concentration first.
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Figure 2.16: Generated maps for the environment in Fig. 3.43, red: without localization
correction, green: with localization correction.

Figure 2.17: Exploration time, with/without odor source.

Figure 2.18: Reaching the target (the location of the odor source), With/without olfactory cues.
Without odor source the method acts like a pure frontier based exploration algorithm.
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2.4.2 Olfactory search performance assessment

For evaluating the exploration algorithm and measuring its performance, the Player/Stage

framework [GVH03] was used, since in the real world, there are several constraints that do not

allow easily testing the proposed method. The Player/Stage framework provides a very easy

way of testing and monitoring the proposed algorithm in different configurations. Most of the

parts of proposed method including decision-making, feature extraction, robots’ motion,

localization correction, path planning improvement, and map merging are imported to the

simulation with a few minor modifications. Only some parts related to sensory interfaces are

totally changed in the simulations. Regarding the world model, in compare with real-world

experiments, bigger and more complex environments are tested in the simulations.

PlumeSim [CSM10] is used for simulating odor plumes inside Player/Stage. It is capable

of feeding simulated chemical plumes into Player/Stage from a wide variety of sources, from

analytical models to data generated by CFD software. In this work the model of testing

environment that is presented in Fig. 2.19 was given to ANSYS Fluent CFD [ANS06] software

to simulate odor sources and provide odor concentration data. 3-D ANSYS Fluent is used to

simulate the odor plume, however, the robots move on the 2-D floor with gas sensors at 10

centimeters height, so, only the airflow and concentration measured by the robots at that height

are relevant for their decisions. Fig. 2.20 shows four snapshots of 3-D plumes propagation

during the time in one of the tested scenarios. The 2-D data is given to the PlumeSim simulator

in Player/Stage and is shown in Fig. 2.21. This environment contains three simulated odor

sources in three corners of the arena (the other corner is the entrance door). The airflow was

ventilated from the inlet side (left) with constant speed of 0.5 m/s. Since the environment

contains several obstacles, the flow velocity varies in different parts of the environment. For

example in the left-top corridor, the air has lower velocity relatively to the bottom corridor

since there is an obstacle in its front. As it is shown in the simulation snapshots of Fig. 2.20,

the odor propagation directly depends on the airflow velocity.

Fig. 2.22 shows the average results of five tests with one, two and three robots. A

conclusion from Fig. 2.22 is that having more robots is more advantageous in finding more

odor sources. Similar to many multi-agent systems, reduction of operation time by using more
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Figure 2.19: Model of a testing environment in simulations

Figure 2.20: ANSYS Fluent simulation results; contours of mass fraction of ethanol propagated
in the testing environment of Fig. 2.19 during the time.
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Figure 2.21: Robots searching for simulated odor sources in Player/Stage

Figure 2.22: Results for different number of robots finding multiple sources

Figure 2.23: Speedup for different number of robots finding multiple sources
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robots is calculated by speed up formula as bellow:

Speedup =
Tsingle
Tmulti

where:

• Tsingle: Operation time of the method using one robot.

• Tmulti: Operation time of the method using several robots.

In Fig. 2.23, it can be seen that speedup is more for more odor sources, i.e. having more robots

in the operation will result in better search time in looking for more odor sources.

The worst case in the search operations is when the robots search for odor sources but there

is no odor source in the environment. In this case the robots have to cooperatively explore the

whole environment without having any olfactory cue. Therefore, the method is tested in

simulation in different environments without having any odor source to evaluate its

“exploration” ability in complex scenarios.

One of the possible ways to measure the performance of the proposed method is to

compare it with an optimal method. However, there is no optimal method for exploring an

unknown world. If the robots had prior map of the environment, the exploration problem

would be reduced to the standard well-known “multi-agent traveling salesman” (TSP) problem.

It is very obvious that the exploration method will never be better than solution of traveling

salesman problem, because the robots do not have a priori map of the environment before

exploring but TSP does have the world model before the mission. However, the proposed

search and exploration method are compared with the results of traveling salesman solution as

an unreachable, more than perfect, optimal method. This can be a good criterion for evaluating

the method.

The method was tested with different number of robots in three different mazes (see Fig.

2.24, Fig. 2.25 and Fig. 2.26). These mazes were also used to run an optimal TSP algorithm

and the results are compared in Fig. 2.28. The graphs show the average of five tests for each data.

The variance was less than five percent. The results show that the exploration time improves with

higher number of robots. Another conclusion is that having more robots is more advantageous
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Figure 2.24: A maze with 36 nodes Figure 2.25: A maze with 81 nodes

Figure 2.26: A maze with 136 nodes
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Figure 2.27: Number of repeated nodes. Comparing the results of the proposed method with
TSP method in maze shown in Fig. 2.24

Figure 2.28: Test of various numbers of robots against complexity of the environment, 1: maze
in Fig. 2.24, 2: maze in Fig. 2.25, 3: maze in Fig. 2.26

in a complex maze than in a simple maze. This also shows that the cooperation algorithm in this

approach is efficiently functional.

A repeated node is a node that robots pass more than once. Another good parameter for

measuring the performance of the method is counting repeated nodes since these represent losses

of performance. Fig. 2.27 shows the number of nodes that have been repeated more than once in

the TSP algorithm as well as in the proposed method for the maze shown in Fig. 2.24. Although

Fig. 2.27 shows that the number of repeated nodes is more in the proposed method comparing

with TSP, the results are acceptably comparable especially considering the fact that TSP has

prior knowledge about the world but the robots in the proposed method don’t.

A conclusion from Fig. 2.27 and Fig. 2.28 is that there is a trade-off between the number of

robots and the size of the world since the number of repeated nodes tends to increase with the

the number of robots (e.g., when the number of robots is four, for the maze shown in Fig. 2.24,

the number of revisited nodes is more than when there are three robots). However, Fig. 2.28

shows that even in this case the exploration time is improved.
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The algorithms and their parameters were modified and adjusted after several simulation

experiments. For example, the value of k (common subgraph size) in conditions (4) and (5) is a

critical issue. Based on simulation experiments, it was figured out that it is good enough to set

k to eight. This means that if two robots find a common subgraph with eight vertices, they can

merge their local maps together. However, this value is highly dependent on the structure of the

environments. If an environment is rich of unique features this value should be less and if an

environment is full of similar features this value must be higher.

The effectiveness of the algorithm was investigated as a function of the number of robots

available. Ideally, it would be expected that doubling the number of agents would halve the time

required for search and exploration. However, Even with a priori map information it is often

not possible to achieve this amount of performance increase. The ideal number of agents for

the most efficient exploration of an environment depends on the nature of the environment. The

large environment of Fig. 2.26 showed greater improvements in the exploration performance

when the number of agents was increased. Another significant point is that the method is fully

functional even in the case of some robots’ failures. If one or several robots fail during the

operation the other robots will accomplish the mission. A not studied problem is when there are

partially malfunctioning robots, in this case the robots might send wrong information about the

environment to the others and the whole mission may fail.

Regarding olfactory search the presented method does not have any assumption regarding

air flow. If there is detectable air flow in the environment the robots take this clue inside their

decision makings, but if there is no air flow the search algorithm acts like a cooperative

exploration method. In the later case, the robots can eventually find odor sources (if there is

any) during the exploration of the environment.

2.4.3 Map merging experimental results

We have designed and implemented a robotic cluster using modified iRobot Roomba1 robots.

The iRobot Roomba robot is an attractive platform because it is inexpensive, readily available

and can be fully monitored and commanded through a serial port interface. In this work, a set

1http://www.irobot.com
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of eight Roomba robots were upgraded with small laptop computers (ASUS Eee PC 901 and

ASUS Eee PC 1015PEM) running Ubuntu1 operating system and the Player2 environment to

control the robots.

After configuring some necessary parameters (e.g., IP addresses) on the robots, an MPI

software is needed to be installed. MPI is actually a library of routines that can be called

usually from Fortran or C programs. There are a large number of implementations of MPI, two

open source versions are LAM3 and MPICH. LAM is an effective way for fast client-to-client

communication and is portable to all Unix-based machines. MPICH is another freely available,

portable implementation of MPI, a standard for message passing for distributed memory

applications used in parallel computing, available for most flavors of Unix and other operating

systems.

We installed MPICH libraries because it provides more programming facilities on Ubuntu

and its installation is straight forward. After installing LAM or MPICH or a similar MPI library,

the cluster is established, it is only needed to write and compile parallel programs on the robots.

Compiling MPI programs can be done with several compilers, e.g., mpic++, with extended MPI

libraries.

The algorithms have been run on the implemented robotic cluster using up to eight modified

Roomba robots. For evaluation of the method, all algorithms are tested ten times with different

sets of maps. Several topological maps were experimentally generated by real robots using the

results of our past experiments in [MM11a, MNMdA09a, MM10, MNMdA10]. Fig. 2.24 and

Fig. 2.26 show three simulated environments being mapped by multiple robots.

Fig. 2.29 and 2.30 demonstrate an example of the map merging experiments. In Fig. 2.29

two partial maps of one environment are shown that were generated by two robots without

having common reference frames. About 10 percent of vertexes and edges of these partial maps

are equivalent. Fig. 2.30 presents the result of merging these maps. The execution time for each

merging experience is measured five times and their mean values are shown in Fig. 2.31.(left).

These results show that if the maps are large enough (map size bigger than 54 in this case),

1http://www.ubuntu.com
2http://playerstage.sourceforge.net
3http://www.lam-mpi.org
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execution time decreases as number of robots increase.

Parallel algorithms are usually evaluated by analyzing their speedup and their efficiency

over the serial algorithms. Reduction of processing time by using more robots (speedup) can be

calculated by:

S peedup =
Tseq

TParallel

where:

• Tseq: execution time of code using one robot.

• Tparallel: execution time of parallel code using several robots

A parallel algorithm is called “efficient” if its speedup is nearly linear to number of

processors [KRS90]. Fig. 2.31.(right) presents the speedup of the parallel algorithm for

different size of maps. It can be seen that speedup has almost linear relation to the number of

robots for all size of N in large maps, thus, proving the efficiency of the proposed parallel

algorithm. This means that having more robots in the cluster increases the speed of solving this

problem. It should be mentioned that, according to the Amdahl law [Amd67, Ale07], it is very

difficult, even in an ideal parallel system, to obtain a speedup value equal with the number of

processors because each program, in terms of running time, has a part that cannot be

parallelized and has to be executed sequentially by one single processor.

The size, the topology and the degree of connectivity of the maps are also important

effective parameters in the speed of the algorithms. Sometimes a smaller map takes more time

to process than a bigger one because of the other parameters. For evaluating the methods in a

more scientific way we generated several artificial maps similar to the maps of real structured

environments by running a C program. The maps generated by this software are structurally

similar to each other but their sizes are different. The maps are split to two submaps having

about 10 percent of vertexes and edges in common. Then one of the submaps is rotated with a

random angle and the results are fed to the algorithms as inputs. Fig. 2.32 shows two examples

of these generated maps. Fig. 2.33 shows the merged map resulted from running the

algorithms on the maps of Fig. 2.32. The execution time and speedup are measured for these
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Figure 2.29: Partial maps generated by 2 robots with different coordinate systems

Figure 2.30: The result of map merging algorithm for the maps of Fig. 2.29
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Figure 2.31: Left: Execution time results for different size of real world and simulation maps
based on number of robots. Right: Speedup for different sizes of problem in the real world and
simulations.

Figure 2.32: Two given artificial maps to be merged by the algorithms.

Figure 2.33: Merged map with about 1000 vertexes and 900 edges.
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experiments and are reported in Fig. 2.34. These results show that for large enough maps, the

speedup increases by the number of robots in the cluster.

Algorithm 7: Merge(M1,M2,MAP), with clustering solution

inputs:1
M1 = [V,E,k1]2
M2 = [W,F,k2]3

Output: A map that is the result of merging M1 and M24
begin5

if (k1 < M) and (k2 < M) then6
Merge seq(M1,M2,MAP)7
return(MAP)8

else9
Merge parallel(M1,M2,MAP)10
return(MAP)11

end12

Another parameter to evaluate the performance of parallel algorithms is efficiency which

measures the utilization rate of the processors in the execution of a parallel program. It is equal

to the ratio of speedup and the number of processors used. We have measured this parameter for

the proposed map merging parallel algorithm. Fig. 2.35 (left) demonstrates the efficiency of the

proposed parallel algorithm on the real world and simulation topological maps, while, Fig. 2.35

(right) presents the efficiency of the algorithm on the artificially generated topological maps.

Both graphs show similar results, i.e, the efficiency is mostly between 0.6 and 0.8 specially on

large graphs it converges to 7.2. This is a significant result that proves the efficiency of the

method in reality, since it was obtained by implementation of the algorithm on a real robotic

cluster.

The presented results showed that the proposed method can speed up the execution time of

a map merging algorithm. We believe that this approach can be used in many other multi-robot

applications that demand for high processing resources.

2.5 Conclusions and discussion

An algorithm for multi-robot odor source search, exploration and topological mapping inside

large buildings composed by parallel and perpendicular corridors (warehouse-like
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Figure 2.34: Left: Execution time results for different size of artificial maps based on number
of processors. Right: Speedup for different sizes of artificial topological maps

Figure 2.35: Left: The efficiency of parallel algorithm in different size of real and simulated
topological maps. Right: The efficiency of parallel algorithm in different size of artificially
generated topological maps.
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environments) was proposed. The algorithm was experimentally validated in a small, realistic

testing environment with up to three Roomba robots. Details about all the complementary

aspects required to such implementation are provided. These include motion control, feature

extraction and classification, localization and map merging. The exploration efficiency is

improved by integrating odor sensing cues in the frontiers selection so they navigate towards

the odor sources and localize them while cooperating with each other by sharing information in

their local maps. If the robots do not sense any olfactory clue, they try to efficiently explore the

environment until they get into active odor plume area. When a robot is inside an odor plume

(sensing high odor concentration) it intends to track the plume by traveling in the upwind

direction. In the case that a robot is in a situation that wants to make decision to select a

frontier, it picks up the frontier with highest odor concentration. In terms of mapping, the

robots generate the topological map of environment during exploration. Map sharing is the

main tool for automatic distributed task sharing and cooperation in this method. The robots

merge their topological maps based on common subgraph isomorphism techniques even if they

do not have common coordinate systems. Based on the stored information inside the maps,

each robot knows the location of unexplored frontiers and assigns one of them to itself as a

target to explore, so the other robots will not select the same frontier. Two solutions were

presented for the problem of topological map merging; sequential solution and parallel

solution. The parallel solution is run on a robotic cluster platform. In the real world

experiments presented in this chapter we implemented the sequential approach since the size of

maps were relatively small. However, the parallel approach was also implemented on a real

robotic cluster and its performance was measured using various types of topological maps. The

results show a significant speed-up in merging large maps using the proposed method.

In addition to real world experiments, the algorithm has been simulated against a large

variety of configurations in the Player/Stage framework. Odor plumes have been simulated

using PlumeSim in Player/Stage. The effect of the number of robots on exploration in different

type of environments has been analyzed and discussed. The results of real world experiments

show the effect of gas cues on the behavior of robots and it shows that using the proposed

algorithm, robots firstly explore the areas with higher probability of existence of odor sources.
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Simulation results show that having more robots is more advantageous in a complex maze than

in a simple maze.

Finally, there are some issues that should be discussed here. Although, most of the real

world human-made structures can be modeled to the kind of environments that are tested in this

chapter but the question is if this approach can be easily adapted to a situation in which the

robot cannot be assumed to be able to reliably perceive the feature it is traveling through. In

more complex environments, as it was previously stated, the feature extraction method that is

used in this study can be replaced by another methodology providing better results in the target

environment. Even if the range of the sensors is limited or there is noise in sensing, the robot can

perform some movements in the environment to correctly identify the environmental features.

The number of defined features can also be increased in such complex environments. However,

if the robots are not able to correctly identify the environmental features, the topological maps

will have some degree of unreliability and map merging cannot be done based on similarity

checks of this chapter. In most of the human constructed facilities, the robots are able to classify

the general features of the environment (maybe by using more complex sensors including 3D

Laser range finders and cameras) and so this method can be applied.

Regarding possible conflicts between the robots in their task-allocations, three points should

be mentioned. First, the topological maps are very small data files that are transferred in a few

milliseconds and there is not a big delay in the communications between the robots. Second,

it must be very rare that two robots want to choose frontiers exactly at the same time because

most of the times the robots are traveling without changing their frontiers. Third, even if two

robots are going to choose frontiers at the same time, they might automatically choose different

frontiers based on their positions and the utility/cost function. Considering these three points,

the probability of two robots to choose the same frontier is very low. Even if this happens

(that we’ve never seen in the experiments and simulations) two robots will temporarily travel

to explore one frontier, however, as soon as one of them gets to a new detected feature, it

will process the map to pick up a frontier and for sure this time it will not choose the same

frontier since it is already taken by the other robot. The other point is that in the algorithm 1 the

robots make their decisions independently and there is no condition that may lead to a deadlock
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between the robots. In algorithm 2 that is for improving the path planning of the robots, there

are priority checkings between the robots. The robot that has lower priority should go back or

wait for some seconds until the other robot passes.





Chapter 3

Swarm olfactory search

“If you justify a mistake with one thousand reasons, you
will end up with one thousand and one mistakes.”
Avicenna (Abu Ali Sina), 980-1037

The second objective of this thesis is to address the problem of odor plume finding by robotic

swarms in an unknown unstructured environment. As mentioned earlier, odor plume finding is

the first step in localizing odor sources. The goal is to propose an efficient methodology to use a

large number of simple sensing nodes, increasing the probability of finding an odor plume. This

chapter considers unstructured environments under turbulent airflow in designing swarm search

methodologies.

3.1 Problem statement

The problem of “odor plume finding using a swarm of robots” is stated as following:

Consider a swarm of N robots that are able to communicate with each other over a distance

∆d and are equipped with olfactory sensors for sensing the odor concentration C̄ and airflow

speed ~U. There is no central controller for the system, so the robots act independently. The

problem is: “How to maximize the probability of finding odor plumes in an unknown

environment with a set of N searching swarm robots without a central coordinator having

minimal communications?”

75
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To maximize the probability of finding odor plumes in an unknown environment, one should

answer the following questions:

1. What is the best spatial formation for the swarm robots in searching for an odor plume?

2. What is the best movement strategy for the swarm in odor plume searching?

These questions seem dependent upon each other. Probably the best spatial formation for a

particular movement strategy is not the best for another movement strategy. To find the best

formation of swarm robots in search for odor plumes, this thesis considers two strategies

regarding the swarm movements.

• Initially we assume no global movements for the swarm and analytically find the best

formation of robots (section 3.3).

• Afterwards assuming cross-wind movements for the robots we find the best formation of

swarm robots in search for odor plumes (section 3.6).

It is analytically proved and generally accepted that cross-wind movement is the best strategy

to acquire the maximum information in searching for odor plumes in an unknown environments

under stable airflow [SS84]. None of the works either in the olfactory search area or in the

swarm robotics field has ever found the best spatial formation in the mentioned problem.

3.2 Related works

Global swarm behaviors emerge consequently from local individual robots’ interactions,

without needing any global engineering principles. In design of swarm robotics systems,

complex techniques are generally avoided, while instead, principles such as locality of sensing

and communication, simplicity of distributed behavioral algorithms and homogeneity are

followed. The main benefits of pursuing a swarm robotics approach are scalability in the

number of robots, robustness in noisy conditions, and fault tolerance against individual failure

[NCD08].
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Swarming has been rarely exploited in olfactory searching, but there have been many

groups working on other aspects of swarm engineering. Swarm robotics pattern formation

[NCD08, GP02], aggregation [SŞ07], navigation [CBCR99], self-assembly [GBMD06], and

foraging [TDK02] are the main challenges in this field. Beside these challenges, there are

extensive works on modeling [MEA04], learning [PM07], communications [CRPM06] and

analytics [GP02] of swarm robotics. Moreover, there are several applications that have been

addressed by swarm robotics approaches, namely, items clustering [HM99], area coverage

[SKS06], stick pulling [IMBG01], collective transportation [KB00b], self-organized task

allocation for foraging tasks [KB00a], and landmine detection [CBCR99]. However, this thesis

is focused towards tackling the olfactory search problem for large groups of robots following

swarm robotics principles.

Although research in this fields started with centralized and leader based approaches, most

of the recent research is concentrated on decentralized approaches, which offer reduced

computational complexity and robustness to failures. Such approaches include behavioral

[BS05], artificial potential functions [GP04b], virtual agents [BL02], and probabilistic [SS05].

For olfactory search problem, a mobile sensor network is more advantageous, in comparison

to a single robot that can measure only the odor concentration on its own place. The airflow that

carries the odor patches can be very irregular and chaotic, thus the resulting distribution of odor

concentration may be also very irregular with large intermittency in the region downwind an

odor source. Additionally, the search space may be much larger than the active area of an odor

source. In these conditions, using multiple sensing nodes spread throughout the environment

improves the detection process, increasing the probability of finding an odor plume in a given

time. A swarm of robots can establish a dynamic mobile sensor network and move in the area

of interest to find the olfactory targets.

Most of the works concerning olfactory search have focused on odor plume tracking

[MRH06, LFC01, LM09, LKV06] whereas plume finding has received less attention. Most of

these studies (e.g., [GDC+97, KRRJ06, VVS07]) assume that robots start their search within or

very near the plume. Plume finding problem is usually addressed through general exploration

methods [MNMdA09a], mapping [LCLG08, LD04], or coverage techniques namely zig-zag
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sweeping, casting [PBiBB+06], random wandering [ITTM06], biased random walks

[MNdA02b], lévy-taxis [PBG09], and spiral movements [FCM+09], which are also used for

other spatial search tasks and are not efficiently designed for odor plume finding.

Recently, a few studies were reported that tackle the problem of optimal gas sensor

deployment mainly for safety systems in process facilities. Legg et al. [LBSS+12] presented a

method that utilizes computational fluid dynamics (CFD) simulations to optimize gas sensor

locations in order to maximize the likelihood of early detection of gas clouds in specific

facilities. Miyata and Mori [MM11b] introduced another procedure for optimization of gas

detector locations by using gas dispersion simulation tools in specific chemical plants.

However in these studies, the gas source location (leak point) and the map of environment are

both a-priory known, and best sensors’ positions among a list of candidate locations is found

by simulations. A-priory knowing the source location and the map of the environment and

having a list of candidate positions for the sensors are three assumptions that we do not make

in this thesis. Moreover, instead of CFD simulations, this chapter provides analytical results

using gas dispersion models.

Despite most of the previous studies, this thesis presents an analytical method to find the

optimal spatial formation of swarm robots in plume finding strategies (described in sections

3.3.1 and 3.6). Among of the main novelties of this thesis is definition of single and multiple

(stationary and mobile) gas sensors coverage and finding the optimal configuration of N mobile

sensors in different environmental conditions. Moreover, based on the results of optimizations,

we present and design a set of wind-biased virtual attractive/repulsive control forces for the

swarm robots such that their emergent behavior converges to the optimal formations (explained

in sections 3.4 and 3.7.1). None of the previously designed control systems in olfactory robotics

community has biased the virtual forces by the wind effect. The optimization results were

validated and evaluated by experiments in small scale realistic environments (in sections 3.5

and 3.8).
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3.3 Optimal coverage of stationary gas sensors

Finding the best spatial formation of swarm robots for detection of odor clues is the first step of

searching for olfactory targets in a given space using a swarm of robots. This section

formulates the problem of odor plume detection by a network of stationary gas sensors and

analytically proposes an optimal configuration for plume detection, under a set of assumptions

for the problem. This solution was analyzed and verified by simulations and finally

experimentally validated in a reduced scale realistic environment using a set of Roomba-based

mobile robots. The simulations and the experimental results verified the analytically found

optimal formations.

This section finds the best configuration of robots to maximize their sensing coverage area

and section 3.4 designs swarming behaviors of individual robots to reach to the found

configurations.

3.3.1 Odor dispersion model

The effort to design and develop robotic olfactory search strategies faces the problem of

understanding how the odor molecules disperse in the environments under naturally turbulent

flow. As already mentioned in Chapter 2, odor patches released by an odor source are mainly

transported by the airflow, forming an odor plume. As the plume travels away from the source,

it becomes more diluted due to molecular diffusion and turbulence that mixes the odor

molecules with the clean air [RW02]. Molecular diffusion is a slow process whose effect on the

plume shape can be neglected. The dispersion of odor molecules is dominated by flow

turbulences in ventilated indoor or in outdoor environments. The odor molecules move

downwind due to mean flow velocity ~U while their net motion is a random walk because of the

fluctuations. In large scale environments, fluctuations happen also in the initial direction of the

plume that create undulating and meandering patterns. As the flow carries patches of odor, the

amplitude of the concentration within a patch decreases away from the source, and the average

time between two successive patches increases. The instantaneous odor concentration strongly

fluctuates intermittently with peaks above three orders of magnitude around the average
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concentration value [CWK02]. Under these circumstances, a chemical sensor located far

enough downwind of the odor source measures no odor concentration most of the time. The

probability of encountering an odor patch at any given point is determined by the relative

location of the sensor to the odor source, the statistics of the flow and the shape of the

environment and the obstacles [Sut47, Gif60]. The velocity of the airflow is set by the

environmental conditions and hence stays unchanged for long periods of time compared with

the time scale of odor fluctuations. Fig. 3.1 presents the nature of an odor plume from different

scales.

Probability density function of odor dispersion in a turbulent medium is represented by the

pseudo-Gaussian model for odor distribution in average-term exposure [Sut47, Gif60, RW02].

The Gaussian plume models that are solutions for the differential equation (2.1), yield results

that match experimental results reasonably well [Jon83]. If an odor source is located at position

(0,0,0), its release rate is Q and the average wind speed is Ū toward x-axis (Fig. 3.2), then

the mean concentration of odor in position (x,y,z) is given by the following probability density

function:

C̄(x,y,z) =
Q

2πŪσy(x)σz(x)
exp

{ −y2

2σ2
y(x)

+
−z2

2σ2
z (x)

}
(3.1)

where x, y, and z (here and throughout this article) denote the downwind, crosswind, and vertical

position coordinates relative to the odor source with x positive along the mean wind direction
−→
U .

The standard deviations σy(x) and σz(x) model the horizontal and vertical dispersion of the

plume. These standard deviations are not constant. It was experimentally found by Briggs

[Bri73] that both parameters are functions of the downwind distance from the source (x)

according to the environmental conditions, as expressed in Table 3.1. In this table the following

environmental conditions are considered; A: neutral, B: slightly stable, C: stable, D:

isothermal, E: moderate inversion, F: strong inversion.

Fig. 3.2 shows the mean odor concentration in a 2-D plane of z = 0.1m, generated from

an odor source at (0,0,0) when release rate is 0.01 g/s and wind speed is 1m/s toward the x-

axis direction, in (left) neutral/slightly stable (A-B) and (right) moderate/strong inversion (E-F)

environmental conditions, based on equation (3.1) and Table 3.1.
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A

B C

Figure 3.1: Odor plume structure in an environment with obstacles. A. mean structure, B.
instantaneous structure, and C. instantaneous slice.

Table 3.1: Standard deviations for an urban environment in various environmental conditions
[Bri73].

Env. σy(x) σz(x)

A-B 0.32x(1 + 0.0004x)−0.5 0.24x(1 + 0.001x)0.5

C 0.22x(1 + 0.0004x)−0.5 0.20x

D 0.16x(1 + 0.0004x)−0.5 0.14x(1 + 0.0003x)−0.5

E-F 0.11x(1 + 0.0004x)−0.5 0.08x(1 + 0.0015x)−0.5
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Figure 3.2: The mean concentration in the 2D plane of z = 0.1m. source location:(0,0,0), release
rate = 0.01 g/s and Ū = 1m/s. Left: A-B conditions, right: E-F conditions

Figure 3.3: The probability of detecting odor patches by a sensor at (0,0) if the odor source
is located in various points in the plane, when source release rate = 0.01 g/s, k = 105 and
Ū = 0.5m/s in A-B environmental conditions (left), and E-F environmental conditions (right).
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3.3.2 Gas sensor area coverage

Most gas sensors show pseudo-linear responses to gas concentrations [AML+04]. Considering

the odor dispersion model in (3.1) at a fixed height (z = constant = source height) this 3D

phenomena can be treated as a 2D problem. Similar to [BS02] and [MYWZ11], we conclude

that if an odor source is at O(x0,y0), the conditional probability of detecting odor patches by a

stationary gas sensor located at position (x,y) is given by:

P
(
Dxy|Ox0y0

)
=

kQ
2πŪσy(x)σz(x)

exp{−
(y− y0)2

2σ2
y(x)

} (3.2)

where k is the sensitivity parameter of a gas sensor to the odor concentration. In other words, if

a sensor is located at position (x,y), its probability of detecting an odor patch released from a

source located at (x0,y0) is given by P
(
Dxy|Ox0y0

)
in (3.2). Equation (3.2) defines that the

higher the concentration of the odor is, the higher the probability of detecting by a sensor

becomes. It should be mentioned that the environment in this model (and throughout this

chapter) is presented by uniform grid maps, so any Cartesian (x,y) denotes a grid cell with

center at (x,y). Since this equation presents a probability function, its result is truncated to

[0,1]. Although this equation has been simplified by considering z = constant = z0, standard

deviations of vertical direction (σz(x)) exists and plays a significant role in this probability

function. From equation (3.2), if there is a gas sensor at a given position (x,y), where

(y− y0) >> σy(x), its probability of finding an odor patch is very small. Fig. 3.3 is an example

that presents the distribution of this probability when a sensor is located at (0,0), Ū is 1 m/s,

and the environment is in moderate/strong inversion conditions (E-F type). As it is shown in

Fig. 3.2 and Fig. 3.3, the odor plume emitted from a source, shapes towards the airflow

direction, whereas, the probability of detection of a gas sensor, shapes towards the opposite

direction of the airflow.

Given N independent sensors si located at (xi,yi), i = 1...N, we compute the total

probability P
(
D(xi,yi)N

i=1

∣∣∣Ox jy j

)
of detecting odor patches released from a source in O(x j,y j), due

to the combined efforts of all sensors. This probability is one minus the probability that all



84 Chapter 3. Swarm olfactory search

sensors fail to detect:

P
(
D(xi,yi)N

i=1

∣∣∣Ox jy j

)
= 1−

N∏
i=1

{
1−P

(
Dxiyi |Ox jy j

)}
(3.3)

In other words, if an odor source is located at O(x j,y j), the probability that at least one sensor

(out of N applied sensors) detects odor patches is given by P
(
D(xi,yi)N

i=1

∣∣∣Ox jy j

)
in equation (3.3).

The probability functions (3.2) and (3.3) inherently define probabilistic coverage area for

gas sensors. To obtain the area covered by the gas sensors, a sensitivity threshold S th for the

probability of odor patch detection should be considered. This is based on the fact that most gas

sensors show a sensitivity threshold i.e. bellow a certain odor concentration, the sensors do not

detect any odor patch. Thus, this thesis defines the binary coverage of a gas sensor to a point of

interest as following:

Definition 1 (Single Gas Sensor Binary Coverage) Given a standstill sensor si at position

(xi,yi) and a point of interest p j = (x j,y j) the coverage of the sensor si to the point p j is defined

as:

Cs[si(xi,yi), p j] =

 1, P
(
Dxiyi |Ox jy j

)
> S th

0, Otherwise
(3.4)

where P
(
Dxiyi |Ox jy j

)
is given by (3.2). Fig. 3.4.A presents the coverage area of one standstill

gas sensor when the wind is towards right direction. Despite most of the coverage areas of other

types of sensors (e.g., acoustic, thermal, vision) which are either circular or directional sectors

towards sensor’s heading, the coverage area of gas sensors is ellipsoid shape biased towards the

upwind direction.

With the knowledge of the coverage between sensor si and all points of interest, the overall

coverage by sensor si can be defined by aggregation. If there are m points of interest, then the

total coverage by a sensor si is defined as:

Definition 2 (Overall Coverage by a Sensor) The overall coverage “covers[si]” by a sensor

si over a region with m points of interest in R2 is given by:

covers[si] =

m∑
j=1

Cs[si(xi,yi), p j] (3.5)
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A B C

Figure 3.4: Arbitrary placement of sensors and their coverage area when S th = 0.3, k = 105,
Q=0.01g/s, and U=0.2m/s in strong inversion conditions. The red circles show the gas sensors
and the white regions represent the probabilistic coverage area. Note: the coverage area in C is
larger than in B.

In this chapter, m is the total number of grid cells of a region.

Given N sensors si located at (xi,yi), i = 1...N, we define their combined coverage to the

point p j as:

Definition 3 (N Gas Sensors Binary Coverage) The combined binary coverage of N standstill

sensors si, i = 1...N on a point p j is defined as:

Cs[S (xi,yi)N
i=1
, p j] =

 1, P
(
D(xi,yi)N

i=1

∣∣∣Ox jy j

)
> S th

0, Otherwise
(3.6)

P
(
D(xi,yi)N

i=1

∣∣∣Ox jy j

)
is given by equation (3.3) and is the combined probability of detection of odor

patches if the odor source is located at O(x j,y j) by N sensors and S denotes the set of (xi,yi)

positions of the sensors.

Finally, the overall coverage of N sensors over a region is defined by:

Definition 4 (Overall Coverage by N Sensors) The overall coverage “covers[S ]” by N

sensors si, i = 1...N over a region with m points of interest in R2 is given by:

covers[S ] =

m∑
j=1

Cs[S (xi,yi)N
i=1
, p j] (3.7)

This equation implies that the overall coverage is a function of:

• sensors’ positions,
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A B C

Figure 3.5: The optimized configuration of two, four and eight gas sensors in an area when the
wind-speed is 0.2m/s (moderate/strong inversion (E-F) conditions). The coverage area in B is
larger than in Fig. 3.4.B and also Fig. 3.4.C and any other configuration of 4 sensors.

• source release rate,

• average wind speed,

• sensors sensitivity,

• and distribution standard deviations related to environmental conditions.

Using these equations, Fig. 3.4.B and Fig. 3.4.C present the coverage area of four sensors

in two different configurations. It should be pointed out that, the coverage area in Fig. 3.4.C is

larger than the coverage area in Fig. 3.4.B, showing that the coverage area of N sensors depends

on their spatial topology in fixed conditions.

3.3.3 Optimal sensor deployment

Optimal sensor deployment aims to position the sensors in a way that overall coverage is

maximized. Thus, we are looking for a series of sensors positions si = (xi,yi) such that:

{s1, s2, ...sN} = arg max covers[S ]

The optimal sensor positions are where the coverage area of the sensors is maximized.

Therefore maximizing the area of sensor coverage, defined in (3.7), is used as the criterion of
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A B

C D

Figure 3.6: The optimized configuration of seven gas sensors in an area when the wind speed is
A: 0.2, B: 0.5, C: 2, and D: 4 m/s in moderate/strong inversion (E-F) environmental conditions.

our optimization. We optimize this criterion with various number of sensors and different

average wind speeds in four environmental conditions. Without loss of generality, we assume

constant values for the following parameters during the optimizations: S th = 0.35,

Q = 0.01g/s, k = 105 and the environment size = 50× 50m2. These values are close to real

world experimental measurements [CABJ+11].

The Powell’s conjugate gradient descent method [PFTV02] was used (in Matlab) to optimize

this problem, since it does not need the derivative of the function and its convergence is fast even

in high dimensional spaces. N sensors on a 2-D plane require 2N dimensional search space. For

each combination of sensors’ position, the coverage area is computed. The solution is a set of

positions for sensors that their coverage area is the largest.
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3.3.4 Optimization results of stationary gas sensor deployment

The optimal coverage area was measured for different number of sensors from 3 to 16, and

different wind speeds from 0.1 to 15 m/s in the four environmental conditions listed in Table

3.1. The topological shape of the sensors in the optimal solutions was analyzed in each case.

Fig. 3.5 shows examples of optimized positions of two, four and eight sensors and their

maximum coverage area in an environment under moderate/strong inversion (E-F) conditions

when the wind speed is equal to 0.2 m/s. Different values of U, and N in different

environmental conditions result in similar (but not equal) solutions. Fig. 3.6 shows another

example of optimized positions of seven sensors with different values for the wind speed. A

remarkable point from all of the optimized solutions is that:

Conclusion 1 (Cross-wind Line Topology) The topology of all of the optimal solutions is line

configuration towards cross wind direction, with equal distance between each pair of

neighboring sensors.

Fig. 3.7 is an example that shows the optimal distance between the adjacent sensors in

the optimized configuration in neutral/slightly stable (A-B) and moderate/strong inversion (E-

F) environmental conditions when the number of sensors is 3 to 16. This chart only shows the

optimal results when the environmental conditions is A-B and F-E types (see table 3.1), however

in the other environmental conditions, the obtained results for the same number of sensors are

similar to this figure. By analyzing these results of the optimizations, it can be seen than, in

constant wind speed, when the number of sensors changes (from 3 to 16), the optimal distance

between the sensors changes only for a few centimeters and is almost constant even in various

environmental conditions (see the examples in Fig. 3.5 and Fig. 3.7). The maximum mean

square distance of each chart to their average (for any value for the airflow) in Fig. 3.7 is about

10.5cm. Therefore, we can draw the second conclusion as follows:

Conclusion 2 (Wind Dependent Distance) The distance between neighboring pairs in

optimal configurations depends mainly on the wind speed, whereas, the number of sensors and

the environmental conditions do not show significant impact on optimal configurations.
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Figure 3.7: The optimal distance between the neighboring sensors in the optimized
configurations. Number of sensors (N) varies from 3 to 16, environmental conditions (Env)
is listed in Table 3.1, and the airflow is between 0.1 to 15 m/s.

Figure 3.8: The average optimal distance between neighboring sensors in different airflow
speeds in different environmental conditions.

Figure 3.9: The maximum coverage area of 10 gas sensors in 4 different environmental
conditions while the airflow varies from 0.1 to 15 m/s.



90 Chapter 3. Swarm olfactory search

These conclusions are drawn after the results obtained from numerical optimizations and

are among the most significant contributions of this thesis. The results in Fig. 3.7 show that the

higher wind speed, the smaller the optimal distance. Therefore, as the wind speed increases,

the distance in-between the sensing nodes should decrease in order to maintain optimal

coverage, however as the wind speed decreases sensors should get apart and keep a larger

distance in order to maximize their coverage area. Fig. 3.8 shows the average optimal distance

between adjacent sensors in different airflow speeds in different environmental conditions.

Taking the results shown in Fig. 3.8 and using a non-linear regression analysis, an

analytical equation was obtained that describes the optimal distance between the sensing nodes

as a function of the wind speed:

f (U) = 2.28e−2.3U −0.03U + 0.52 (3.8)

The red line in Fig. 3.8 is the fitted function (3.8) and the scattered blue circles are the results of

the optimizations. The mean square error of this regression line is 7.3× 10−3. This function is

later used by moving senor robot to estimate the optimal distance based on the wind speed.

Fig. 3.9 presents the overall coverage area achieved by 10 sensors in the optimal

configurations for four different environmental conditions. Although the optimal distance for

the neighboring sensors is not dependent to the environmental conditions or to the number of

sensors, Fig. 3.9 shows that when the environment is under moderate/strong inversion

conditions, the coverage area of a group of gas sensors is larger than when the environmental

conditions is neutral/slightly stable. On the other hand, in constant environmental conditions,

when the wind speed is lower the coverage area increases. Therefore, in a windy

environment more sensors are required to cover a given area. Similar results were obtained

considering other numbers of gas sensors.

It should be mentioned that the obtained results are valid for the values of S th, k and Q

defined in section 3.3.3, however for other values, the optimal configuration for sensors is the

same (i.e. a cross-wind line) and only the values of the optimal distance between the sensors

and regression function (3.8) change. This process of optimization can be repeated and optimal

results can be achieved for other conditions.
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3.4 The proposed method, wind-biased potential fields,

“cross-wind line-up” behavior

The optimization results showed that, to maximize the probability of detecting odor plumes by

a swarm, the robots should line-up cross-wind with equal distances from each other. There is no

central node for swarm robots and the formation topology of the swarm is the emergent result

of individual robots movements. Therefore, for the swarm to have a desired formation topology,

each robot should move in the space with a correct and well-defined control manner. To control

the motion of the robots to reach the optimal formations, this section presents a novel method

based on the virtual attraction/repulsion forces [GP04a, GP04b]. Despite previous works on

swarm formations, we take the wind direction and the wind speed into account and bias the

attraction/repulsion forces by the wind to implement the desired cross-wind line-up formation.

This method is a suitable control strategy for the swarming robots since it does not need a central

control node and it is flexible to impediment other robotic behaviors (e.g obstacle avoidance).

We define a behavior named “cross-wind line-up” for the individual robots in order to implement

line formation for the swarm. This behavior defines two types of virtual forces that are applied

to the robots: robot-to-robot and robot-to-environment forces.

3.4.1 Robot-to-robot forces

To line-up the robots toward the cross-wind direction, each robot measures the air-flow

direction
−→
U and assumes this direction as its internal X-axis coordinate system and then it

measures the relative distance to its neighboring robots. Then, the robots try to minimize their

X-axis distances from their neighbors and maintain a constant distance with them in their

Y-axis. Hence, we define a nonlinear bounded potential between each pair of neighboring

robots i and j at time t:

<
−→
X axis > ≡ <

−→
U > (3.9)

−→
F i j

cr(t) =
−→
Fxi j

cr(t) +
−→
Fyi j

cr(t) (3.10)
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−→
Fyi j

cr(t) =


−µ1

(
‖
−→
Y i j‖−D1

)[
1

‖pi j(t)‖2

][ −→Y i j

‖
−→
Y i j‖

]
, 0 < ‖

−→
Y i j(t)‖ < D1

−µ2
(
‖
−→
Y i j‖−D1

)[
1

‖pi j(t)‖2

][ −→Y i j

‖
−→
Y i j‖

]
, D1 < ‖

−→
Y i j(t)‖ < D2

0 , ‖
−→
Y i j(t)‖ > D2

(3.11)

−→
Fxi j

cr(t) =


−µ3
−→
X i j

[
1

‖pi j(t)‖2

]
, 0 < ‖

−→
X i j(t)‖ < D2

0 , ‖
−→
X i j(t)‖ > D2

(3.12)

D1 = 2.28e−2.3U −0.03U + 0.52 (3.13)

where

•
−→
F i j

cr(t) is the force applied to robot i by robot j at time t.
−→
Fxi j

cr(t) and
−→
Fyi j

cr(t) are

respectively the x and y components of
−→
F i j

cr(t).

• ‖pi j(t)‖ is the distance between robots i and j. The term
[ 1
‖pi j(t)‖2

]
correlates the force

between each pair of robots to their inverse square distance. Therefore, the robots in close

vicinity apply large magnitude forces to each other while they do not apply significant

forces to the robots which locate very far.

• Xi j = xi − x j and Yi j = yi − y j where (xi,yi) is the relative position of robot i and (x j,y j)

denotes the relative position of robot j. It is obvious that ‖
−→
Y i j‖ denotes the magnitude and[ −→Y i j

‖
−→
Y i j‖

]
is the direction of the vector

−→
Y i j (either +1 or -1).

• µ1, µ2 and µ3 are constant coefficients for tuning acceleration of the robots. µ1 is the

Y-component repulsing coefficient and µ2 is the Y-component attracting coefficient while

µ3 is the X-component attracting coefficient.

• D1 is a design parameter that specifies the desired distance interval between the

neighboring robots. We defined D1 using the equation (3.8) to be equal to the

optimization results.

• D2 defines the margin of the area that a robot applies forces to the other robots. Logically

for line formation D2 should be bigger than D1 and smaller than 2D1. Moreover, 0<D1 <

D2 < ∆d.
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The design of the above equations is inspired by the Hooke’s law, thus the forces are similar

to the forces in the physical springs. Hence, the robots try to minimize their X-component

distance to zero and to maintain a distance of D1 (that is the optimized distance) in their Y-

component distance (see Fig. 3.10). Since the X-axis in the robots is selected to be toward the

air-flow direction
−→
U , the robots will line up cross-wind with constant distance of D1 towards the

Y-Axis.

Using the above equation, the total “cross-wind line-up” force
−→
F i

cr(t) for robot i is

determined as:
−→
F i

cr(t) =

N∑
j=1; j,i

−→
F i j

cr(t) (3.14)

It is worth to mention that, although the summation of the force is over all the other robots (N),

only those within the detection range (∆d) of robot i which are closer than D2 actually effect the

value of
−→
F i

cr(t).

3.4.2 Robot-to-environment forces

The low level of autonomous navigation of a robot relies on the ability of the robot to

simultaneously achieve its target goal and avoid the obstacles in the environment. To avoid the

obstacles, a reactive potential field control method [Kha86] is used. Fig. 3.11 is an example

that shows the virtual potential forces applied to a robot in an environment. Considering M

range sensors, we define the applied forces to robot i by its surrounding environment as:

−→
F i

obs(t) =

M∑
j=1

c1∣∣∣di( j)
∣∣∣n−−−−−−→(Veci j) (3.15)

Since di( j) is the distance between robot i and an obstacle that is reported by the range sensor j,

the force is an inverse function of the distance of the robot to the surrounding obstacles.
−−−−→
Veci j

is a predefined vector whose magnitude is set to one and its direction is from sensor j toward

the center of robot i. c1 is a positive coefficient and n is an even integer parameter.
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Figure 3.10: Cross-wind line-up behavior; forces applied to the robots based on equations (3.9-
3.16). F1 demonstrate the total forces applied to R1 from R2 and R3. F2 and F3 present the
total forces applied to R2 and R3 respectively.

Figure 3.11: Obstacle avoidance for a robot with five range sensors. d1 to d5 correspond the
distance measured by the sensors. R1 to R5 are the artificial repulsive forces. “F1” represents the
artificial robot-to-robot force and “F2” illustrates the summation forces of obstacle avoidance.
Vector ‘F1+F2” shows the total force applied to robot 1.
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3.4.3 Swarm movements

A question that is not yet answered is that “what should the swarm do if none of the robots detect

any odor patches after performing the cross-wind line-up formation?” Implementing the virtual

force in equations (3.33) and (3.15) will converge to a steady-state line topology for the robots.

If none of the robots detect any odor clue for a long time, it means that with high probability

there is no odor source in the coverage area of the swarm. In this case the swarm robots should

move spatially and explore the environment. Several different search and exploration strategies

namely zig-zag casting, spiral movements, random or biased random walks, levy taxis, etc., can

be taken. As an example of swarm movements, one tactic is that if the swarm robots hold the

desired formation and still do not detect any odor plume, they move up-wind while keeping their

line formation. Hence, they will sweep and cover the environment toward up-wind. We do not

claim that this movement strategy is a perfect strategy (and it is not the goal of this section to

show that), but this is only a sample strategy that we use to show how the formation configuration

can be hold while the swarm moves. For the swarm to have a desired movement trajectory, each

robot should move in the space in the correct direction. To implement this movement strategy,

we define
−→
F i

G(t) that is an applied virtual force to robot i at time t towards the swarm’s goal.
−→
F i

G(t), in this example, is equal to an up-wind control virtual force,
−→
F i

G(t) =
−→
F i

U pW(t) where:

−→
F i

G(t) =
−→
F i

U pW(t) =

 0 , ‖
−→
F i

cr(t)‖ > Fth

−α
−→
U i(t) , ‖

−→
F i

cr(t)‖ ≤ Fth

(3.16)

Fth is a threshold value for the forces applied to a robot, α is a constant positive coefficient

and
−→
U i(t) is the airflow vector that the robot i measures at time t. The above formula checks

if ‖
−→
F i

cr(t)‖ is bigger than a defined threshold or not. If ‖
−→
F i

cr(t)‖ is very small it means that the

resultant virtual forces applied to robot i are near zero, i.e, the topology of the robot and its

neighbors is in the form of a cross-wind line and it is in its steady state. In this case a force in

the opposite direction of the airflow is applied to the robot (−α
−→
U i(t)) and robot moves toward

up-wind direction.
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3.4.4 The total force

The total applied force to a robot in “cross-wind line-up” behavior is:

−→
F i

s(t) =
−→
F i

cr(t) +
−→
F i

obs(t) +
−→
F i

G(t) (3.17)

For a swarm of N individual robots in Euclidean plane, the desired direction of motion of

robot i is given by:

θi
d(t) = arctan

(−→
F i

y(t),
−→
F i

x(t)
)

(3.18)

where θi(t) denotes the steering angle of robot i at time t,
−→
F i

y(t) and
−→
F i

x(t) represent the x and y

components of the force
−→
F i

s. Now, a proportional controller is used for the orientation dynamics

of the robot:

wi(t) = −λ
(
mod

(
(θi(t)− θi

d(t)) +π,2π
)
−π

)
(3.19)

where λ is a positive proportional gain. Finally, the next velocity of the robot −→v i(t) is

calculated based on its last velocity −→v i(t−∆t) and the forces applied to it
−→
F i(t);

−→v i(t) = −→v i(t−∆t) +η
−→
F i

s(t)∆t (3.20)

while η is a constant coefficient multiplied to the acceleration of the robot.

Algorithm 8: Cross-wind line up behavior

Behavior = Cross-wind Line-up1
while Behavior == Cross-wind Line-up do2

ci = Measure odor concentration()3
Ui = Measure air-flow velocity()4
{Pi} = Measure distances to the neighbors()5
{di , Veci} = Measure distances and direction to the obstacles()6
Navigate while holding formula(3.17)7
if (ci > odor threshold) || (A robot indicates finding odor plume) then8

Broadcast(plume detected)9
Behavior = Plume tracking10

Algorithm 8 presents the pseudo-code that each robot runs to perform cross-wind line-up

behavior. The robots maintain this behavior until one (or some) of them gets into an odor
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plume by sensing odor concentrations higher than a defined threshold. Plume tracking is not in

the scope of this thesis, however a robot which gets into the odor plume can perform another

behavior to inform the other robots to get into the plume and track it (discussed in chapter 4).

3.5 Validation of “cross-wind line-up” behavior

The presented optimizations and proposed wind-biased potential fields were validated in both

simulations and realistic experiments.

3.5.1 Simulations

The system was tested in several different simulation environments containing obstacles with

different number of robots. This section goes to the details of these simulations and presents the

results.

Testing environment

Models of several testing environments were given to ANSYS Fluent CFD1 software to simulate

odor sources and provide odor concentration data. The olfactory data generated by ANSYS

Fluent was exported to Matlab to be used in simulations. One of the environments designed for

these simulations is depicted in Fig. 3.12. The dimension of designed arenas for simulations

varied from 4 × 6 m2 to 30 × 40 m2. The airflow was ventilated from the inlet side (left)

with different speeds from 0.5 to 20 m/s. In the environments with obstacles, the flow velocity

varies in different parts of the arena. Fig. 3.13 shows several 3D snapshots of an odor plume

propagation during the time in one of the tested scenarios. As shown in the simulation snapshots,

the odor propagation is time variant and under turbulent flow. Although the odor plume was

simulated in 3D, the robots move on the floor with their gas sensors always at the same height,

so only the odor concentration measured in the 2D plane at the height of the sensors is relevant

to the robots’ decisions. We extracted the odor concentrations and airflow velocities of 10

1ANSYS Fluent CFD, “FLUENT user’s manual” Software Release, vol. 6, 2006.
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centimeters height from the 3-D odor plumes and fed it to the robots in the simulations. Fig. 3.14

and Fig. 3.15 present some snapshots of two extracted 2-D odor plumes in two scenarios.

Robots

Robots were simulated in Matlab as independent entities with no shared variables. The

environmental data including odor concentrations, wind speed and obstacles locations are

shared among the robots such that the robots can measure the odor concentration and air-flow

speed of their places. Robots are able to measure their distances to the obstacles existing in the

neighborhood or to the other neighboring robot. The neighborhood range is an adjustable

parameter that can be modified in different tests. The wind-biased potential forces (explained

in section 3.4) were implemented for the movement control of the robots.

Figure 3.16 shows the virtual forces that the swarm robots generate in the “cross-wind

line-up” behavior in different configurations. Each arrow in a place shows the magnitude and

the direction of virtual forces that would be applied to another robot if it was located in that

place. By adding (or removing) robots to these scenarios the configuration of forces will

change, however, these figures only show the virtual forces in the current setup of the figures

before adding another robot. These forces are obtained by implementing the equations (3.9) to

(3.13). As shown in these figures, the wind direction affects the virtual forces amplitudes. The

red “X” marks in each figure show the locations that the virtual forces converge to.

Validation

Fig. 3.17 shows a series of snapshots during a simulation that show the functionality of the

system. The first frame of this figure shows that 10 robots are released randomly in one part of

the environment. The next frames demonstrate the cross-wind line-up behavior, where they get

apart from each other toward the cross-wind direction. The last frame shows that a robot (the

red one) gets into the plume and detects it. Since the wind speed was 5 m/s in this example,

the individual robots computed their desired distance (D1) using equation (3.13) as 0.37m. Fig.

3.17 shows that the robots tend to reach to the analytic optimal configuration. In this test,

the coefficient parameters of the method were set as following: ∆d = 1m, i.e. the range of
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Figure 3.12: The model of a testing environment with 4×6m2 dimensions.

Figure 3.13: ANSYS Fluent three dimension simulations; contours of mass fraction of ethanol
propagated in the testing environment of Fig. 3.12.

Figure 3.14: Extracted 2-D odor contours of mass fraction of ethanol propagated in the testing
environment of Fig. 3.13 during the time.
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1 2 3

4 5 6

7 8 9

10 11 12

Figure 3.15: Extracted 2-D odor contours of mass fraction of ethanol propagated in a 30×40m2

testing environment during the time. The figure shows a part (10×15m2) of this evironment.

Figure 3.16: Virtual forces generated by robots when the wind direction is left to right. The X
marks show the locations that the virtual forces converge to. If another robot is added to this
system, it will move to one of the marked places. Note: the robots in the right figure are not on
a cross-wind line, thus, their configuration is not stable.
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1 2

3 4

Figure 3.17: 10 swarm robots performing cross-wind line formation.

1 2 3

4 5 6

Figure 3.18: Eight swarm robots searching in an environment for possible odor sources. The
swarm dynamically changes its topology to deal with environmental changes. There is no odor
source in the environment. The airflow is 10 m/s from left to right, Fth = 0.01 and α = 0.1.
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A B

C D

Figure 3.19: A part of a 30×40m2 environment. A: line formation, D1 = 0.5m. B: line formation,
D1 = 1m. C: line formation, D1 = 2m. D: hyperball formation, distance = 1m. The odor plume
is shown in yellow.

Figure 3.20: Odor plume detection success, during 20 tests in each configuration.
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communication between the robots is considered to be 1 meters, µ1 = 2 and µ2 = µ3 = 1,η =

0.2,λ = 0.1,c1 = 1, based on the dynamics of simulated robots to achieve a maximum speed of

0.1 m/s.

One simulation that shows the functionality of the method considering the movement for

the swarm (described in section 3.4.3) is shown in Fig. 3.18. In this test, we intentionally did

not put any odor source in the environment to better demonstrate this behavior. The robots

expand toward cross-wind in a line and when they are stable they start to move up-wind. The

swarm’s topology changes with the environmental changes dynamically. The robots cover a

large area towards up-wind, searching for any possible odor plume. In the other simulations

and experiments in this section, Fi
U pW(t) in equation 3.17 is considered to be zero to disable the

up-wind movements of the swarm and only evaluate the formation strategy.

Evaluation

The method was tested in a large environment (30× 40m2) with 5 and 10 robots repeatedly.

Fig. 3.19 shows a part of this environment that is 10×15m2 and includes an ethanol source. The

release rate was set to 0.01 g/s and the wind speed was 0.5 m/s. To evaluate the optimization

results we measured the plume detection ability of swarm robots in two different formation

strategies; 2-D hyperball formation (similar to [GP04b]) and cross-wind line formation strategy

and we manually set the parameter of distance between the robots (D1) to 0.5, 1 and 2 meters

in different tests to find the best configuration. Each test was repeated for 20 times for every

formation and value of D1. If at least one robot could detect the odor plume in less than one

minute after the swarm formation was established, we consider a success in plume detection.

The number of successfully detecting the odor plume was counted.

The results in Fig. 3.20, show that the best performance between tested configurations is the

one with cross-wind line up formation when D1 is 1 m. On the other hand, using the results of

sensor placement optimization in section 3.3.1 (Fig. 3.7.A and equation (3.8)), in the conditions

of these simulations, the best formation strategy is line formation with D1 = 1.22m. The best

configuration between the simulated ones is very close to the found analytic formation. This

validates the analytical optimization conclusions.
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3.5.2 Experimental results

In addition to simulations, the method was validated with our currently available equipments.

Realistic environment

The method was tested in a reduced scale unstructured environment shown in Fig. 3.21 (left).

This arena, with 3 × 4 m2 area by 0.5 meters height, has controlled ventilation through a

manifold that extracts air from the testing environment through a honeycomb mesh integrated

into one of the walls. The opposite surface of the environment contains a similar mesh that

allows the entrance of clean air that flows through the environment. A controlled ethanol gas

source using bubblers is pumped to arbitrary places of the environment through a set of PVC

tubes. The ethanol release rate was about 0.01 g/s during the tests. The ceiling of this testbed

is covered by a sheet of transparent Plexiglas to be visualized from the outside.

The robots

A set of iRobot Roomba robots were upgraded with small laptop computers (ASUS

EeePC901) running ROS1 to control the robots. The wind-biased potential fields formulas

were implemented in C and were run in ROS as the control strategy of the robots. The robots

were equipped with Laser Range Finders (Hokuyo URG-04LX) for obstacles avoidance.

Adaptive Monte Carlo localization (AMCL2) libraries were used in ROS to localize the robots

in the environments. WifiComm3 was used in ROS that allows multiple robots to communicate

with each other peer to peer through an ad-hoc network. Each robot was equipped with an e2v

MiCS-55214 and a Figaro TGS2620 gas sensor to measure the odor concentration. The robots

repeatedly broadcast their localization data, and accordingly, they measure their x-axis and

y-axis distances. In these tests, the airflow was intentionally ventilated and controlled towards

the x-axis of the robots and wind speed was manually provided (broadcasted) to the robots.

Fig. 3.21 (right) presents one of these developed robots.

1http://www.ros.org
2http://www.ros.org/wiki/amcl
3http://www.ros.org/wiki/wifi comm
4http://www.e2v.com
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Figure 3.21: Left: the realistic testbed environment. 1,2,3: robots, 4: ventilation system, 5:
transparent Plexiglas ceiling, 6: odor source.
Right: One of the developed robots containing gas sensors, Laser Range Finder, and iRobot
Roomba controlled by a laptop.

Figure 3.22: The output of e2v sensors of robots 1, 2 and 3 in Fig. 3.21 (left) from left to right
in each row respectively. The wind speed was 1±0.1m/s in the first row and 0.5±0.1m/s in the
second row.

Figure 3.23: Successful detections rate against the distance between the neighboring robots
when the wind speed is (left) 0.6±0.1m/s, and (right) 1±0.1m/s. A. line formation, B. hyperball
formation.

1 2 3

1 2 3
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Validation

Fig. 3.21 (left) shows three robots maintaining cross-wind line-up formation finding an odor

plume. The robots spatially construct a line formation in the cross wind direction and maintain

a specific distance from each other. If one of the robots moves toward a direction, regardless of

the cause of this movement, the other robots dynamically move to maintain the line formation.

Fig. 3.22 is an example that shows the output of the e2v sensors in two tests. Each row

shows three graphs corresponding to the three robots of the Fig. 3.21 (left). The first row was

taken when the wind speed was 1±0.1m/s and the second row was taken when the wind speed

was 0.5±0.1m/s. In both cases the robot 3 (that was close to the center line of the plume) has

detected the odor plume whereas robot 1 did not detect the plume. Robot 2, whose distance to

robot 3 is 0.7 m in this example, has detected the plume when the wind speed was 0.5m/s but

not when the wind speed was 1m/s. In each test if at least one of the robots detects the odor

plume we consider a success in plume detection.

Similar to the presented simulations, for evaluating the optimization results, the

experiments were done with manual values for D1 testing cross-wind line formation and also

hyperball (triangle) formation. The wind speed was 0.6±0.1m/s and we set D1 to 0.3, 0.5, 0.7,

0.9, 1.1 and 1.3m in different tests. Three robots were released randomly about two meters

down-wind the source and each test was repeated 15 times and the plume detections were

counted. The period of each test was one minute.

The results demonstrated in Fig. 3.23 (left) show that line formation provides more

detections and the maximum number of success is reported when the distance between the

robots is 0.9 and 1.1 meters. Using equation (3.8), the optimal distance in this configuration is

1.07 meters that agrees with the results of the real experiments.

The experiments in the realistic testbed were repeated by changing the wind-speed to 1±

0.1m/s. Fig. 3.23 (right) demonstrates the results and shows that when the robots have line

formation and their distance is 0.7, the maximum number of detections will be achieved. Based

on equation (3.8), the optimal distance in this configuration is 0.71 meters that again agrees with

the results of these experiments.
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3.6 Optimal formation of swarm robots in search for odor plumes

This section finds the best formation of mobile robotic gas sensors (i.e., swarm robots equipped

with gas sensors) to maximize their sensing coverage area during their crosswind movements.

3.6.1 Mobile gas sensor coverage area

Considering definition 1 for single stationary gas sensor coverage, and assuming crosswind

movement for a robotic gas sensor, the binary coverage of the mobile sensor si to the point p j

during its crosswind traveling is defined as:

Definition 5 (Single Mobile Gas Sensor Binary Coverage in Crosswind Movement) Given

a sensor si, moving crosswind from position (xi,yi) to position (xi,yi + L), and a point of

interest p j = (x j,y j), the coverage of the sensor si to the point p j is defined as:

Cm[si,L, p j] =


1,

L∑
l=0

Cs[si(xi,yi + l), p j] > 0

0, Otherwise

(3.21)

where Cs[si(xi,yi + l), p j] is given by (3.4) and L is the number of unit steps (grids) that the

mobile sensor travels crosswind in the environment. This definition implies that a mobile sensor

covers a point if at least in one location during its trajectory it can detect odor patches released

from a possible odor source in that point.

With the knowledge of the coverage between sensor si and all points of interest, the overall

coverage can be defined by aggregation. If there are m points of interest, then the total coverage

by a sensor si while traveling crosswind is defined as:

Definition 6 (Overall Coverage by a Mobile Gas Sensor in Crosswind Movement) The

overall coverage by a mobile sensor si over a region with m points of interest in R2 while

traveling for L unit steps is given by:

cover[si,L] =

m∑
j=1

Cm[si,L, p j] (3.22)
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where m is the total number of grid cells in an environment. Although the coverage is

defined in binary form, its nature is still probabilistic. Fig. 3.25 presents the coverage area of a

mobile gas sensor traveling for one and two meters.

Assuming crosswind movement for all N robotic gas sensors, the binary coverage of the

sensors to the point p j is defined:

Definition 7 (Multiple Mobile Gas Sensors Binary Coverage in Crosswind Movement)

Given a set of N sensors si, i = 1...N, moving crosswind from position (xi,yi) to position

(xi,yi + L), and a point of interest p j = (x j,y j), the coverage of the sensors to the point p j is

defined as:

Cm[S (xi,yi)N
i=1
,L, p j] =


1,

L∑
l=0

Cs[S (xi,yi+l)N
i=1
, p j] > 0

0, Otherwise

(3.23)

where Cs[S (xi,yi+l)N
i=1
, p j] is given by (3.6).

Finally, the overall coverage of N mobile gas sensors traveling crosswind over a region is

defined by:

Definition 8 (Overall Coverage by N Mobile Sensors in Crosswind Movement) The

overall coverage by N mobile sensors si, i = 1...N traveling crosswind for L unit steps, over a

region with m points of interest in R2 is given by:

cover[S (xi,yi)N
i=1
,L] =

m∑
j=1

Cm[S (xi,yi)N
i=1
,L, p j] (3.24)

This equation implies that the overall coverage is a function of traveling distance of the mobile

sensor, sensors’ initial positions, source release rate, average wind speed, sensors sensitivity,

and distribution standard deviations related to environmental conditions.

Fig. 3.26 shows the coverage area of three mobile gas sensor traveling crosswind for one

meter holding various spatial formations. It is obvious that in constant conditions the coverage

area of N mobile gas sensors depends on their spatial topology.



3.6. Optimal formation of swarm robots in search for odor plumes 109

Figure 3.24: Coverage area of a standstill gas sensor when S th = 0.3, k = 105, Q = 0.01g/s,
and U = 0.2m/s in an environment in Neutral/slightly stable (A-B) conditions. The direction of
airflow in this figure is from left to right.

Figure 3.25: Coverage area of a mobile gas sensor traveling for 1m (left), and 2m (right). The
environmental conditions are the same as in Fig. 3.24

Figure 3.26: Coverage area of three mobile gas sensors traveling for 1m with different spatial
formations.
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Table 3.2: Parameters of optimizations

N L U Env.

2, 3, 6, 10, 16 0.5, 1, 2, 4, 8 0.1-10 A-B, C, D, E-F

3.6.2 Optimal sensor formation

Similar to section 3.3.3, the aim of this section is to find the optimal mobile sensors formation

in a way that overall coverage is maximized. Thus, we look for a series of sensors positions

si = (xi,yi) such that:

{s1, s2, ..., sN} = arg max cover[S (xi,yi)N
i=1
,L]

Optimal sensor formations are the configurations where the coverage area of the sensors is

maximized. Therefore maximizing the area of sensor coverage, defined in (3.24), is used as the

criterion of our optimization. We optimize this criterion with various number of sensors and

different average wind speeds in four environmental conditions considering various traveling

distances (L) for the mobile sensors. All considered assumptions in this section are similar to

section 3.3.3 and again the Powell’s conjugate gradient descent method was used (in Matlab) to

optimize this problem.

3.6.3 Optimization results of mobile gas sensor formation

The optimal coverage area was measured for different number of sensors from 2 to 16 traveling

cross wind for 0.5, 1, 2, 4 and 8 meters, and different wind speeds from 0.1 to 10 m/s in the four

environmental conditions (see Table 3.2). The topological shape of the sensors in the optimal

solutions was analyzed in each case. Fig. 3.27 shows examples of optimized formation of three

mobile sensors while traveling one meter crosswind (L = 1m) with different values for the wind

speed. Fig. 3.28 shows another example of optimized configuration of two to five sensors

and their maximum coverage area in an urban environment under neutral/slightly stable (A-B)

conditions when the wind speed is equal to 1 m/s and the swarm crosswind movement (L) was

1 m. Different values of U, N and L in different environmental conditions result in similar (but

not equal) solutions. One interesting point from all of the optimized solutions is that:
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Figure 3.27: The optimized formation of three mobile gas sensors in an area when the wind
speed is A: 0.2, B: 0.3, C: 1 and D: 3 m/s in A-B environmental conditions.

A B

C D

Figure 3.28: The optimized formation of 2 to 5 mobile gas sensors in an area when the wind
speed is 1m/s in A-B environmental conditions.
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Figure 3.29: The X and Y components of optimal distance between the neighboring sensors in
the optimized configuration in A-B environmental conditions when the number of sensors (N)
is 2 to 16 and the swarm’s crosswind movement distance (L) is 1m.

Figure 3.30: The X and Y components of optimal distance in A-B environmental conditions
when N = 10 and L varies from 0.5 to 8m.

Figure 3.31: The X and Y components of optimal distance in E-F environmental conditions
when N = 10 and L varies from 0.5 to 8m.

Figure 3.32: The optimal distance between the neighboring sensors in the optimized
configurations in different environmental conditions. The chart is the average of the results
for N = 2 to 10 and L = 1 to 8m.



3.6. Optimal formation of swarm robots in search for odor plumes 113

Conclusion 3 (Diagonal Line Topology) The formation of all of the optimal solutions for

mobile sensors is diagonal line configuration, with equal distance between each pair of

neighboring sensors.

The distance between the robots in the optimal formations is called optimal distance. We study

the X and Y components of the optimal distance in every optimization set (listed in Table 3.2).

Fig. 3.29 presents some results of the optimizations that shows the X and Y components of

optimal distance between the neighboring sensors in optimized configurations in

neutral/slightly stable (A-B) environmental conditions when the number of sensors is 2 to 16

and the swarm’s crosswind movement distance L is 1m. This chart shows that in this

conditions, changing N from 2 to 16 does not affect the optimal distance. Although this chart

only shows the optimal results for one set of parameters, in other conditions, changing N from

2 to 16 does not show a significant change in the optimization results as well. By analyzing

these results of the optimizations, it can be seen that in constant wind speed, when the number

of sensors changes (from 2 to 16), the optimal distance between the sensors changes only for a

few centimeters and is almost constant even when the swarm movement distance is changed

(see the examples in Fig. 3.28).

Fig. 3.30 presents another set of optimization results when N = 10, Env. = A− B type, U

varies from 0.1 to 10m/s and L has different values form 0.5 to 8m. This chart shows that

different values of L (swarm’s crosswind movement distance) provides [almost] the same

optimization results. Only when L is very small (L=0.5) and the wind speed is less than a

certain value (about 2 m/s) the optimal distances show different results. For other values of

optimization parameters similar results were obtained. Fig. 3.31 presents the optimization

results in another environmental conditions that shows similar conclusions.

By considering the results in Fig. 3.29, Fig. 3.30 and Fig. 3.31 we can conclude that:

Conclusion 4 (Wind & Environment Dependent Distance) The distance between

neighboring mobile sensor pairs in optimal configurations depends mainly on the wind speed

and the environmental conditions, whereas, the number of sensors and the swarm’s crosswind

movement distance do not show significant impact on optimal configurations.
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Figure 3.33: The average optimal distance between neighboring sensors in A-B environmental
conditions and an non-linear regression estimation.

These conclusions are drawn after the results obtained from numerical optimizations and are

among the most significant contributions of this thesis.

Fig. 3.32 shows the effect of environmental conditions on the optimization results. This

chart is the average result of optimizations when N = 2 to 16 and L = 1 to 8m. This chart

shows that in an environment under neutral/slightly stable conditions the distance (specially

X-component) between the neighboring sensors is larger than in an environment under strong

inversion conditions. The results in Fig. 3.32 show that in fixed environmental conditions, when

the wind speed is less than a certain value the higher wind speed, the larger the optimal X-

distance. The certain values (peaks in the graphs) depend on the environmental conditions.

It is 0.3 for A-B, 0.5 for C, 0.7 for D, and 1.1 for E-F conditions. However when the wind

speed is more than the certain value the higher wind speed, the smalled the optimal X-distance.

Therefore, as the wind speed increases, the X-distance in-between the sensing nodes should

decrease in order to maintain optimal coverage. When the wind is smaller than mentioned

certain values, the Y-distance is very high and it decreases when the wind speed increases. The

Y-distance dramatically decreases and converges to a value near 0.1m when the wind speed is

higher than the certain values.

Considering the results shown in Fig. 3.32 and using a non-linear regression analysis, the

following analytical equation was obtained that describes the optimal distance between the

sensing nodes as a function of the wind speed in neutral/slightly stable environmental
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conditions.

Dx =

 −9.6e−8.8U −2.6U + 4.4, U ≤ 0.3

2.8e−1.3U −0.07U + 1.1, U > 0.3
(3.25)

Dy = 8.3e−11.1U −0.007U + 0.15 (3.26)

The graph in Fig. 3.33 is the fitted function (3.25) and (3.26) while the scattered circles are

the average results of the optimizations in A-B environmental conditions. The mean square error

of this regression line is 4×10−3. For the other environmental conditions, estimation functions

can be calculated in the same way. This function is later used by moving senor robot to estimate

the optimal distance based on the wind speed.

It should be mentioned that the obtained results are valid for specific values of S th, k and Q

defined in section 3.6.2, however for other values the optimal configuration for the sensors is the

same (i.e., a line) and only the values of the optimal distance between the sensors and regression

function (3.25) are changed. This process of optimization can be repeated and optimal results

can be achieved in other conditions.

3.7 The proposed method, wind-biased potential fields, “diagonal

line-up” behavior

Conclusions 3 and 4 state that the robots should line-up with equal distances from each other

while moving cross-wind, to maximize the probability of the finding odor plumes. Despite in

section 3.3, here the line is not always towards the cross-wind. It is a diagonal line composed by

the robots which their x-distance components and y-distance components are given by equations

(3.25) and (3.25) (in the mentioned environmental conditions). Similar to section 3.4 we define

a behavior named “diagonal line-up” for the individual robots in order to implement diagonal

line formation for the swarm. This behavior defines two types of virtual forces that are applied

to the robots; robot-to-robot and robot-to-environment forces.
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3.7.1 Robot-to-robot forces

Similar to section 3.4, each robot measures the air-flow direction
−→
U and assumes this direction as

its internal X-axis coordinate system and then it measures the relative distance to its neighboring

robots. Then, the robots try to maintain a specific distance at their X-axis from their neighbors

and maintain another specific distance distance with them at their Y-axis. Therefore,

<
−→
X axis > ≡ <

−→
U > (3.27)

−→
F i j

sl(t) =
−→
Fxi j

sl(t) +
−→
Fyi j

sl(t) (3.28)

−→
Fyi j

sl(t) =


−µ4

(
‖
−→
Y i j‖−D3

)[
1

‖pi j(t)‖2

][ −→Y i j

‖
−→
Y i j‖

]
, 0 < ‖

−→
Y i j(t)‖ < D3

−µ5
(
‖
−→
Y i j‖−D3

)[
1

‖pi j(t)‖2

][ −→Y i j

‖
−→
Y i j‖

]
, D3 < ‖

−→
Y i j(t)‖ < D4

0 , ‖
−→
Y i j(t)‖ > D4

(3.29)

−→
Fxi j

sl(t) =


−µ6(
−→
X i j−D5)

[
1

‖pi j(t)‖2

]
, 0 < ‖

−→
X i j(t)‖ < D4 &

−→
Y i j ≥ 0

−µ6(
−→
X i j + D5)

[
1

‖pi j(t)‖2

]
, 0 < ‖

−→
X i j(t)‖ < D4 &

−→
Y i j < 0

0 , ‖Xi j(t)‖ > D4

(3.30)

D5 =

 −9.6e−8.8U −2.6U + 4.4, U ≤ 0.3

2.8e−1.3U −0.07U + 1.1, U > 0.3
(3.31)

D3 = 8.3e−11.1U −0.007U + 0.15 (3.32)

where

•
−→
F i j

sl(t) is the applied force to robot i by robot j at time t.
−→
Fxi j

sl(t) and
−→
Fyi j

sl(t) are respectively

the x and y components of
−→
F i j

sl(t).

• µ4, µ5 and µ6 are constant coefficients for tuning acceleration of the robots. µ4 is the

Y-component repulsing coefficient and µ5 is the Y-component attracting coefficient while

µ6 is the X-component coefficient.

• D3 is a design parameter that specifies the desired Y-component distance interval



3.7. The proposed method, wind-biased potential fields, “diagonal line-up” behavior 117

between the neighboring robots. We defined D3 using the equation (3.26) to be equal to

the optimization results.

• D5 is a design parameter that specifies the desired X-component distance interval between

the neighboring robots. We defined D5 using the equation (3.25).

• D4 defines the margin of the area that a robot applies forces to the other robots.

Logically for line formation D4 should be bigger than max(D3,D5) and smaller than

2×max(D3,D5). Moreover, 0 < D3,D5 < D4 < ∆d.

The above equations are designed inspired by the Hooke’s law, thus, the forces are similar to

the forces in the physical springs. Hence, the robots try to maintain their X-component distance

to D5 and to maintain a distance of D3 in their Y-component distance. The result will be a

diagonal line that its slope is D3/D5).

Using the above equations, the total “diagonal line-up” force
−→
F i

sl(t) for robot i is determined

as:
−→
F i

sl(t) =

N∑
j=1; j,i

−→
F i j

sl(t) (3.33)

3.7.2 Robot-to-environment forces

The robot-to-environment forces are exactly the same as the ones defined in section 3.4.2 so

they will not be repeated here.

3.7.3 Swarm movements

It is desired for the swarm robots to hold the “diagonal line-up” formation and move cross-

wind. Hence, they will sweep and cover the environment toward cross-wind. To do so, each

robot should move in the space in the correct direction. Here we set the
−→
F i

G(t) equal to
−→
F i

CrW(t)

that is defined as :
−→
F i

G(t) =
−→
F i

CrW(t) =
−→
Fxi

CrW(t) +
−→
Fyi

CrW(t) (3.34)

−→
Fxi

CrW(t) = 0 (3.35)
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−→
Fyi

CrW(t) ==

 0 , ‖
−→
F i

sl(t)‖ > Fsth

Fβ , ‖
−→
F i

sl(t)‖ ≤ Fsth

(3.36)

where
−→
Fxi

CrW(t) and
−→
Fyi

CrW(t) are respectively the X and Y competent of the defined cross-wind

force
−→
F i

CrW(t). Fsth is a threshold value for the forces applied to a robot and Fβ is a constant

predefined force. The above formula checks if ‖
−→
F i

sl(t)‖ is bigger than a defined threshold or not.

If ‖
−→
F i

sl(t)‖ is very small it means that the resultant virtual forces applied to robot i are near zero,

i.e, the topology of the robot and its neighbors is in the form of a diagonal line and it is in its

steady state. In this case a force (Fβ) toward Y-axis direction (i.e, cross-wind) is applied to the

robot and robot moves toward cross-wind direction.

3.7.4 The total force

The total applied force to a robot in “diagonal line-up” behavior is:

−→
F i

sm(t) =
−→
F i

sl(t) +
−→
F i

obs(t) +
−→
F i

G(t) (3.37)

Similar to section 3.4.4, the desired direction of motion of robot θi
d(t), a controller for the

orientation dynamics of the robot wi(t) and the next velocity of the robot −→v i(t) can be calculated

by replacing
−→
F i

s(t) by
−→
F i

sm(t) in equations 3.18, 3.19 and 3.20. Algorithm 9 presents the pseudo-

code that should be run in each robot to perform this behavior.

Algorithm 9: Diagonal line-up behavior

Behavior = Diagonal Line-up1
while Behavior == Diagonal Line-up do2

ci = Measure odor concentration()3
Ui = Measure air-flow velocity()4
{Pi} = Measure distances to the neighbors()5
{di , Veci} = Measure distances and direction to the obstacles()6
Navigate while holding formula(3.37)7
if (ci > odor threshold) || (A robot indicates finding odor plume) then8

Broadcast(plume detected)9
Behavior = Plume tracking10
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3.8 Validation of “diagonal line-up” behavior

The presented method was validated in both simulations and realistic experiments.

3.8.1 Simulations

The method was tested in several different simulation environments containing obstacles with

different number of robots. Most of the details are similar to the simulations details explained

in section 3.5.1. Therefore this section only provides the differences and the results.

Testing environment

Similar to section 3.5.1, the environments were imported to ANSYS Fluent CFD and the odor

concentrations and airflow velocities of 10 centimeters height from the 3-D odor plumes were

extracted and fed to the robots in the Matlab simulations. Since the wind in these simulations

was stable and laminar toward one direction, this environments are under neutral and slightly

stable conditions.

Robots

Robots were simulated in Matlab exactly similar to section 3.5.1. The only difference is the

wind-biased potential forces. The virtual forces in section 3.7 were implemented in the robots

in order to demonstrate the “diagonal line-up” behavior. Figures 3.34 and 3.35 show the virtual

forces that the swarm robots generate in the “diagonal line-up” behavior in different

configurations. By adding (or removing) robots to these scenarios the configuration of forces

will change, however, these figures only show the virtual forces in the current setup of the

figures before adding another robot. These forces are obtained by implementing the equations

(3.27) to (3.32).

Validation

Fig. 3.36 shows a series of snapshots during a simulation that show the functionality of the

“diagonal line” behavior and swarm’s cross-wind movement and obstacle avoidance behavior.
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Figure 3.34: Virtual forces generated by a robot when the wind direction is left to right. Left:
D3 = 0.5m, D5 = 0.5m, middle: D3 = 1m, D5 = 1m and right: D3 = 1m, D5 = 0.15m. The X
marks show the locations that the virtual forces converge to. If another robot is added to this
system, it will move to one of the marked places.

Figure 3.35: Virtual forces generated by two robots while D3 = 0.5m, D5 = 0.5m. If a robot is
added to this system it will converge to one of the X points. This configuration is not stable and
the robots are under attraction forces toward each other.

In this scenario there was no odor source so the robots maintain these behaviors and do not find

anything.

Fig. 3.37 shows another scenario that ten robots perform the same behaviors in an

environment including an odor source. The first frame of this figure shows 10 robots released

randomly in one part of the environment. The next frames demonstrate the “diagonal line-up”

behavior, where they get apart from each other toward a diagonal line. The robots maintain the

diagonal line formation and move towards cross-wind and avoid the obstacles. The last frame

shows that a robot (the red one) gets into the plume and detects it. In this scenario D3 and D5

were set manually to D3 = D5 = 0.3m and D4 was set to 0.45m. The rest of the simulation

parameters were set to the same values of the simulation in Fig. 3.17.
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Figure 3.36: Eight swarm robots forming “diagonal line” formation and move cross-wind while
avoiding obstacles. The swarm dynamically changes its topology to deal with environmental
changes. There is no odor source in the environment and the wind is ventilated from left to
right. In this simulation, the environment is 4×6m2 and we set D3 = 0.4m and D5 = 0.4m.
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Figure 3.37: Ten swarm robots searching in an environment for possible odor sources. The
swarm dynamically changes its topology to deal with environmental changes. There is no odor
source in the environment. In this scenario: D3 = 0.3, D5 = 0.3, D4 = 0.45,Fsth = 0.01 and
Fβ = 0.1.
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Figure 3.38: Ten swarm robots searching in a large environment for possible odor sources. The
swarm dynamically changes its topology to deal with environmental changes. The airflow is 0.5
m/s from left to right. The robots perform the diagonal line-up behavior until one of them finds
the plume.
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Figure 3.39: Odor plume detection success of diagonal line-up behavior , during 15 tests using
10 swarm robots in each configuration.

Figure 3.40: Odor plume detection success of diagonal line-up behavior, during 15 tests using 5
swarm robots in each configuration.

Figure 3.41: Odor plume detection success of hyper-ball behavior, during 15 tests using 5 and
10 swarm robots in each configuration.
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Evaluation

The method was tested in a large environment (30× 40m2) with 5 and 10 robots repeatedly.

Fig. 3.38 shows a part of this environment that is 10×15m2 and includes an ethanol source. The

release rate was set to 0.01 g/s and the wind speed was 0.5 m/s. The robots perform the diagonal

line-up behavior until one of them finds the plume. Similar to section 3.5.1, to evaluate the

optimization results, we measured the plume detection ability of swarm robots in two different

formation strategies: 2-D hyperball formation and diagonal line formation strategy. In diagonal

line formation, we manually set the parameter of distance between the robots (D5) to 1, 2, 3

and 4 and (D3) to 0.1, 1.1, 2.1 and 3.1 meters in different tests to find the best configuration.

In 2-D hyperball formation the desired distance between neighboring robots was set to 1, 2, 3

and 4m (similar to D5). Each test was repeated for 15 times for every formation and value of

D3 and D5. If at least one robot could detect the odor plume in less than one minute after the

swarm formation was established, we consider a success in plume detection. The number of

successfully detecting the odor plume was counted.

The results, in Fig. 3.39, show that the best performance between tested configurations is

the one with diagonal line up formation when D3 is 0.1m and D5 is 2m or 3m. On the other

hand, using the results of optimization in section 3.3.1 (Fig. 3.7.A and equation (3.8)), in the

conditions of these simulations, the best formation strategy is diognal line formation when D3

is 0.17m and D5 is 2.52m. The best configuration between the simulated ones are very close to

the found analytic formation. This validates the optimization achievements.
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3.8.2 Experimental results

In addition to simulations, the method was experimented with our currently available robotic

facilities.

Realistic environment

The method was tested in the reduced scale environment shown in Fig. 3.43. This arena was

already explained in section 3.8.2.

The robots

A set of LSE miniQ1 robots were developed at our laboratory based on the 2WD miniQ2

platform. The motivation behind this was to build cheap and simple robotic units for swarm

olfactory research.

The LSE miniQ (presented in Fig. 3.42) communicates with a host computer using XBee3.

The host computer runs ROS programs (nodes) to control the robots. Each robot is controlled

by an individual ROS node. A single computer can run several ROS nodes, i.e., a swarm of LSE

miniQs. Each robot contains an e2v MiCS-5524 gas sensor to allow the detection of volatile

organic compounds. Two LEDs (one blue and one red) placed on the top of the robot are used for

visual tracking by a camera mounted at the ceiling of the laboratory. The SwisTrack4 software

is used to track and localize the robots. The robots repeatedly broadcast their localization data,

and accordingly, they measure their x-axis and y-axis distances. In these tests, the airflow was

intentionally ventilated and controlled towards the x-axis of the robots and wind speed was

manually provided (broad-casted) to the robots.

Validation

Fig. 3.44 shows four robots maintaining diagonal line-up formation finding an odor plume. The

robots spatially construct a diagonal line topology and move towards cross-wind direction and

1http://lse.isr.uc.pt/news/lseminiqrobot
2http://www.dfrobot.com
3http://www.digi.com/xbee/
4http://www.ros.org/wiki/swistrack
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Figure 3.42: The developed LSE MiniQ robots containing gas sensors, XBee modules and
LEDs.

Figure 3.43: The realistic testbed environment viewing from two different angles. 1,2,3,4:
robots, 5: odor source (Acetone release bubbler), 6: transparent Plexiglas ceiling, 7: ventilation
system

maintain a specific distance. If one of the robots moves toward a direction, regardless of the

cause of this movement, the other robots dynamically move to maintain the line formation. In

this particular test we set D3 and D5, both, to 0.4m and the odor source was located at position

(0,0.8)m. If one robot is located close to a boundary (or an obstacle) of the testing area, it tries to

avoid it. The robots trajectory and the odor map generated by the robots is presented in Fig. 3.45

and Fig. 3.46.

Similar to the presented simulations, for evaluating the optimization results, the experiments

were done with manual values for D3 and D5 testing diagonal line formation and also hyperball

formation while moving towards cross-wind. The wind speed was about 0.7± 0.1m/s and we

tested the diagonal line formation strategy with different number of robots (2, 3 and 4) in various

sets of parameters (D5 from 0.5 to 3.0 m and D3 0.1m and 0.5m). In different tests, one, two,

three and four robots were released in one corner of the testbed and each test was repeated seven

times and the plume detections were counted. We considered the following two positions for the
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Figure 3.44: A series of snapshots during an experiment. The left frames show rviz
environments where the internal status of the robots and their goals are presented. The right
frames show the real LSE MiniQ robots in the testbed.
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Figure 3.45: Left: the trajectory of the robots during the experiment shown in Fig. 3.44. Right:
the Z-axis in this figure shows the chemical concentration sensed by the robots during their
maneuvers.

Figure 3.46: The chemical map of the environment generated by the robots after an experiment.
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Figure 3.47: A series of snapshots during an experiment while N = 4, D3 = 0.5m and D5 = 1m.

1 2

3 4

Figure 3.48: Left: the trajectory of the robots during an experiment while N = 4, D3 = 0.1m and
D5 = 0.75m. Right: the Z-axis in this figure shows the chemical concentration sensed by the
robots during their maneuvers.

Figure 3.49: The chemical map of the environment generated by the robots after the experiment
described in Fig. 3.48.
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Figure 3.50: Detection rate in hyperball formation against different values for the distance
between the neighboring robots (D).

Figure 3.51: Detection rate of diagonal line formation against different values for D3 and D5,
when (left) the number of robots is 4, (middle) the number of robots is 3, and (right) the number
of robots is 2.

odor source release: (0,0.8) and (2,2). Each particular test was repeated two times (once having

the source at (0,0.8) and another time at (2,2)). In each test if at least one of the robots detects

the odor plume we consider a success in plume detection. Fig. 3.47 shows a series of snapshots

in one of these experiments. Fig. 3.48 presents the trajectory of four robots in one experiment

and Fig. 3.49 shows the chemical map of the environment generated by the data captured by the

robots after an interpolation process.

Fig. 3.50 and 3.51 show the results of the realistic experiments, testing hyperball and

diagonal line formations with different parameters . Comparing the results shown Fig. 3.50 to

the three charts in Fig. 3.51, proves that hyperball formation provides less detections in

comparison to diagonal line formation. The results in Fig. 3.51 (left) show that if there are four

robots in this arena, when the X-distance between each pair of robots is one meter, they can

detect the odor sources in 100 percent of the tests. It should be mentioned that we can not

increase D5 more than one meter (for four robots) since the length of the testbed is 4m.

Fig. 3.51 (middle) shows that if there are three robots in this environment they reach to one

hundred percent detection when their X-distance is 1.5m. The results in Fig. 3.51 (right) show
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that if there are two robots, they detect the odor patches when their X-distance is 2.5m. Since

two robots can provide (almost a) full coverage over this area, it is obvious that having more

number of robots also will fully cover the environment and will not provide useful information

regarding optimal distance between the robots. Therefore, considering the small size of the

testbed, the best distance of two robots should be considered to be the best distance of the

robots in this environment. The best X-component distance of two robots is 2.5m and the

Y-component can be both 0.1 and 0.5m. During these tests, changing D5 from 0.1 to 0.5m does

not show a significant change in the results since the testbed is small.

Using equations (3.31) and (3.32), the optimal X-distance in this configuration is 2.1m and

the optimal Y-distance is 0.15m that approximately agree with the results of the real

experiments. The difference between the results of the real world experiments and the results

of the optimizations is because the airflow and the detection of the sensors in reality are not as

constant as what is assumed in the analytical optimizations. Nevertheless, the realistic

experiments show very close results to the optimizations.

3.9 Conclusion and discussion

Optimal spatial formation of swarm robots to maximize the probability of detection of odor

plumes was studied under a set of assumptions. We first considered no global movements for

the swarm and found the best optimal configurations of the gas sensors in search for odor

plumes. Afterwards, considering cross-wind movement for the swarm we found the optimal

formation of swarm robots that maximizes their probability of finding an odor plume in an

unknown environment.

This chapter showed that assuming no global movement for a swarm, their optimal

topology is line configuration toward cross wind direction with equal distance between each

pair of adjacent sensors. Regardless of number of sensors, the optimal distance between

neighboring pairs depends on the wind speed.

Considering cross-wind movement for the swarm, the formation of the optimal solutions is

diagonal line configuration, with equal distance between each pair of neighboring sensors. The
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distance between neighboring pairs in optimal configurations depends mainly on the wind speed

and the environmental conditions, whereas the number of sensors and the swarm’s crosswind

movement distance do not show significant impact on optimal configurations.

Mathematical functions that can accurately estimate the optimal distances based on the wind

speed was computed by nonlinear regression estimation. Moreover, swarm robotics wind-biased

attractive/repulsive virtual forces were designed to emerge to the optimal configurations.

The method was tested and validated in simulations and in a reduced scale realistic

environment under laminar and stable controlled airflow. The results verify the functionality of

the swarming formation strategy and also validate the obtained optimization results. A few

additional experiments were done in an indoor environment under unstable and variable

airflow. The swarm successfully performed the diagonal line-up behavior in any condition,

however the results of the experiments in the setup of our indoor environment are not

comparable with the optimizations due to instability of the airflow.



Chapter 4

A perspective on odor plume tracking

and source declaration with a swarm

“It is the same whether you take it that the Earth is in motion or the Sky,
In both the cases, it does not affect the Astronomical Science.
It is just for the Physicist to see if it is possible to refute it.”
Abu Rayhan Biruni, 973-1048

“Tracking odor plumes” and “odor source localization” problems are not among the main

objectives of this thesis. However these are the next problems that we need to address in future in

order to have a complete olfactory swarm system for localizing the odor sources in an unknown

environment. This chapter proposes a method to address these problems using swarm robotic

approaches. Although the proposed method is implemented in simulations and preliminary

results validate its functionality, still, excessive study is needed in order to analytically prove its

functionality.

4.1 Problem statement

Considering three phases for “odor source localization”, the problems of odor plume finding

and odor source declaration using a swarm of robots are stated as following:

Consider a swarm of N robots that are able to communicate with each other over a distance

133
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Figure 4.1: A swarm of robots navigating and searching for odor source.

Odor plume

Odor Source

Swarm of Robots

Robots

∆d and are equipped with olfactory sensors for sensing the odor concentration C̄ and airflow

speed ~U. There is no central controller for the system, so the robots act independently. The

problems are:

1. How can a swarm of robots cooperatively track an odor plume?

2. How to maximize the probability of identifying a true odor source and minimizing the

probability of false detections?

4.2 Related works on odor plume tracking

The use of robotic systems to track odor plumes has been broadly investigated in the literature.

However, tracking plumes using multiple robots has received much less attention. In this

problem, a large number of robots, equipped with sensors and communication tools, track the

odor plumes in minimal time. This section presents a short survey on the previous works on

this problem with more attention on the multi-robot approaches.

Three main families of algorithms that provide general solutions to odor plume tracking

have been investigated. The simplest are derived from classical hill climbing or gradient ascent
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techniques [RMV91]. The second is a family of algorithms inspired by behaviors of biological

systems, such as E. coli bacteria [DSR04] or other biological swarms [GP04b, LP02]. A final

family employs probabilistic methods which we select Bayesian occupancy grids approach to

mention [FJC+07].

4.2.1 Hill climbing (gradient ascent) algorithms

The first attempts to use a mobile robot to track a plume were implemented with simple gradient

ascent algorithms. Rozas et al. [RMV91] presented one the first attempts to use a mobile robot

equipped with chemical sensors to follow a gas concentration gradient towards its source. In

these approaches, due to intermittent structure of the plume, odor concentration is seen as a

noisy function and it is assumed that the odor source is located at the maximum of this function.

Most of these hill climbing algorithms show the possibility of being trapped in local maximums.

Some works have tried to implement hill climbing algorithm using multiple robots in order

to track the plume mainly by considering the robots as nodes of a sensor network. Sandini et al.

[SLV93] presented a gradient ascent cooperative multi-robots coverage approach and showed

that it is faster than single robot approaches. Some attempts have been made to avoid stalling

at a local maximum by incorporating a random walk [DSR04], swarm cooperation [CHRE04a],

or probabilistic models which will be discussed later in this section.

Turbulent behavior of airflow, lack of smooth odor concentration gradient, patchiness of

odor depression, meandering and time variant characteristics of odor plumes imply that

concentration gradient climbing methods (chemotaxis [RBHSW03, GDC+97]) alone cannot

efficiently track odor plumes in an environment under turbulent flow.

4.2.2 Biologically inspired algorithms

Since the ability of tracking odor plumes is crucial to many living species, several robotic

algorithms are inspired by various organisms in Nature. Most bio-inspired algorithms are

based on the behaviors of moths [HMG02, FCM+09, LRZ03] that perform three main actions

[Rus99]:
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• Up-wind surge: when exposed to odor patches, go towards upwind.

• Casting: after losing the plume, swing from side-to-side for a few seconds, in the hope to

reacquire the plume

• Spiral: if still the plume is not found, perform circular motion patterns.

Based on the combinations of these three actions, researchers have developed various state-

based algorithms. Hayes et al. [HMG02] derived a similar odor plume tracking strategy inspired

by moths behaviors, called spiral surge, to implement a distributed and cooperative search,

based on odor and wind measurements in an environment with background flow. Ferri et al.

[FCM+09] successfully applied a modified spiral algorithm in the absence of airflow by relying

on communication between agents rather than wind measurements to track the plume.

Another group of algorithms are inspired by the behaviors of bacteria. Russell et al. [Rus03]

compared three chemo-tactic algorithms based on E. coli bacteria, the silkworm moth, and the

dung beetle in environments of varying degrees of turbulence. This work found that success

of each algorithm depends on the consistency of the plume: the E. coli algorithm is limited to

chemical concentrations with smooth variations, the silkworm moth algorithm is preferred in

tracking a sharply fluctuating plume, and the dung beetle algorithm is more successful when

tracking a homogeneous plume.

We categorize the multi-robot bio-inspired approaches as following:

General swarm methodologies

Swarming algorithms have provided more robust solutions to plume tracking problem. Cui et al.

[CHRE04b] have developed a swarm-based fuzzy logic algorithm to locate a single hazardous

emission source in the presence of multiple local emission concentrations. The social foraging

behavior of E. coli bacteria, also known as bacteria foraging optimization (BFO), have inspired a

robust swarming algorithm in search for sources [LP02, TCK+12]. This approach is well suited

for noisy source searches because the algorithm successfully targets the global optimum in spite

of weaker local optima.
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Kazadi [Kaz03] proposed a swarming approach for finding odor plumes in a windy

environment by trying to extend the well-known spiral surge and up-wind plume tracking to a

swarm of robots. In this method, each robot independently searches for odor plumes, if a robot

found an odor clue it calls the other robots to come to the place and follow up-wind direction.

Hayes et al. [HMG03] have also presented a work to extend the spiral surge to a swarm of

robots. They ran single robot spiral surge algorithms on multiple robots individually and tried

to optimize this algorithm’s parameters by monitoring the group of robots using a centralized

learning process.

Swarm biased random walk

Dhariwal et al. [DSR04] have described a method inspired by the chemotaxis of E. coli bacteria.

In the BRW algorithm, all agents act independently without communication or synchronization

and execute two actions: a run and a tumble. A run is a movement in a straight line, and a

tumble is a random reorientation in a new direction. In the presence of an emission source,

the concentration gradient affects the length of the robot’s run. If a run is in the direction of a

positive gradient, the length of the run is extended by a bias. By extending the length of runs

in the direction of the positive gradient, the robot moves toward the gradient source. While this

approach is prevalent in the field, Virk et al. [VK98], Marques et al. [MNdA02a] and Russell et

al. [Rus03] are the first to simulate the biased random walk algorithm on a large robotic network

to locate multiple generic gradient sources.

Biasing Expansion Swarm Approach (BESA)

Cui et al. [CHRE04a] have presented an algorithm to trace an unspecified number of chemical

sources in a large, unknown area, called Biasing Expansion Swarm Approach. The agents obey

three basic swarm control rules of separation, cohesion, and alignment with a bias towards

areas of higher emission concentration. The key point of BESA algorithm is the formation of a

global ad-hoc network in which agents are limited to local communication. Through this ad-hoc

network, each agent can communicate with the other agents and sense their concentrations and

use them in its local BESA algorithm.
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Each agent uses a occupancy grid to plan its next target cell within the framework of the

swarm rules. To maintain the rule of separation, an agent avoids entering a cell already occupied

by another agent. To maintain swarm cohesion, the agent uses a gradual expansion algorithm.

This gradual expansion algorithm maintains the cohesion property of the swarm as well as the

ad-hoc network by requiring that an agent stays within local communication range of at least

one member of the swarm.

In order to steer the swarm toward the emission sources, the BESA algorithm assigns a

parameter to each agent’s expansion cells. The agent will choose the expansion cell with the

highest biasing parameter as its target cell [CHRE04a]. The effect of this biasing action is that

agents target empty cells that are nearest to the cells where high concentrations are measured.

As a result, the swarm moves in the direction of higher concentrations. However, since the odor

dispersion is time-variant and patchy, these approaches usually do not show high performance

in olfactory search.

Particle Swarm Optimization (PSO)

PSO is another heuristic approach that is mainly used for finding maximum or minimum values

of a function [KES01]. PSO is inspired by the behavior of schools of fish or flocks of birds to

find food. The coordination of movements of the individuals in the swarm is the central aspect

that inspires PSO. A PSO algorithm maintains a population of particles (the swarm), where each

particle represents a location in a multidimensional search space (also called problem space).

The particles start at random locations and search for the minimum (or maximum) of a given

objective function by moving through the search space. The movements of a particle depend

only on its velocity and the locations where good solutions have already been found by the

particle itself or other neighboring particles in the swarm. Note that, unlike many deterministic

methods for continuous function optimization, PSO uses no gradient information [Tal09].

In a typical PSO algorithm each particle keeps track of the coordinates in the search space

which are associated with the best solution it has found so far. The corresponding value of the

objective function (fitness value) is also stored. Another value that is tracked by each particle

is the “best” value obtained so far by any particle in its neighborhood. When a particle takes
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the whole population as its neighbors, the best value is the global best. At each iteration of the

PSO algorithm the velocity of each particle is changed toward the personal and global best (or

neighborhood best) locations. Moreover, several random components are also incorporated into

the velocity update.

Marques et al. adapted the PSO algorithm to the multi-robot odor searching problem for

finding odor sources in large spaces [MNdA06]. Li et al. proposed a probability particle swarm

optimization (P-PSO) algorithm for multi-robot based odor source localization in ventilated

indoor environments and evaluated it through simulations [LMB+08]. Akat and Gazi proposed

a decentralized and asynchronous algorithm named DAPSO (decentralized and asynchronous

PSO) that allows for dynamic neighborhood topology and time delays in information exchange

[AG08]. Recently, Turduev et al, experimentally showed that the performance of DAPSO is

higher than ant colony optimization (ACO) and bacterial foraging optimization (BFO)

[TCK+12] in finding odor sources.

Ant Colony Optimization (ACO)

ACO is another heuristic method for solving optimization problems. It is inspired by the way

real ants find shortest paths from their nest to food sources [DBS06]. An essential aspect

thereby is the indirect communication of the ants via pheromone, i.e., a chemical substance

which is released into the environment and that influences the behavior or development of

other individuals of the same species. Ants mark their paths to the food sources by laying a

pheromone trail along their way. The pheromone traces can be smelled by other ants and lead

them to the food source. The pheromone guides following ants of the next iteration so that they

search near the paths to good paths (solutions). The pheromone from older iterations does not

influence the following iterations for too long, because it evaporates. Thus, an ACO algorithm

is an iterative process where pheromone information is transferred from one iteration to the

next one. The process continues until some stopping criterion is met: e.g., a certain number of

iterations has been done or a solution of a given quality has been found [BP95].

Several studies have utilized ACO algorithm for odor source localization in simulation

environments [MLLZ06, ZLC09]. Turduev et al, implemented ACO algorithm in a realistic
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environments using small mobile robots and compared its performance with DAPSO and BFO

in chemical gas concentration mapping [TCK+12].

Attractant/Repellent swarm model analysis

Gazi and Passino [GP04b] presented a swarm model for individuals moving in an

attractant/repellent profile which includes stability and convergence analysis of the swarm. The

model controls agents individually but it is centralized in that each agent needs to know the

relative positions of all other agents. In that work, simulations were performed primarily to

verify analysis. Attractant/Repellent approaches are usually used in the swarming search

methods to design spatial formations and movements.

4.2.3 Probabilistic algorithms

Another family of algorithms address plume tracking through probabilistic methods. Farrell

et al. [FPL03] have used hidden Markov methods (HMM) with measurements of chemical

concentrations and fluid dynamics to predict the likelihood of odor detection that results in

traveling towards odor source. Pang and Farrell [PF06] used similar measurements coupled

with Bayesian inference to build a source likelihood map that identifies a narrow search area

for the source. Olfati-Saber [OS07] has simulated distributed target tracking on a mobile sensor

network by integrating a network of cooperative Kalman filters with a flocking-based mobility

model that preserves network connectivity. Scerri et al. [SGO+07] have proposed a distributed

bayesian binary filter grid (BBFG) that allows teams of unmanned aerial vehicles (UAVs) to

use received signal strength indicator (RSSI) sensors to locate multiple RF emitters over a large

area. Each UAV maintains its own BBGF and shares some sensor readings with other UAVs.

The BBGF output is converted into a map of information entropy, and all UAVs plan paths

through regions of highest entropy to maximize the amount of information gained.
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4.3 Related works on odor source declaration

The problem of accurately detect and declare an odor source is not deeply studied in the

literature. In many studies, other modalities rather than olfactory, e.g., vision, are used to

identify the source when an agent passes sufficiently near it.

Li et al. [LMS+09] presented a three-step odor source declaration method which include

robots convergence, odor concentration persistence judgment and odor mass throughput

calculation. They showed experimental results in both simulation and indoor environments

under airflow.

Lilienthal et al. [LUF+04] evaluated two machine learning approaches, artificial neural

network (ANN) and support vector machine (SVM), to propose a methodology for declaring

whether an object is a gas source or not from a series of concentration measurements recorded

while the robot performs a rotation maneuver in front of a possible source. They reported a

maximal hit rate of approximately 87.5 % using a support vector machine.

A few probabilistic algorithms also offer solutions to this problem. The hidden Markov

methods (HMM) proposed in [FPL03] estimate the location of the odor source probabilistically.

The method presented by Pang and Farrell [PF06] also builds a source likelihood map that

identifies a narrow search area for the location of the source.

4.4 A proposed method for swarm odor plume tracking

Despite most of other works in this area that propose centralized approaches and address the

problem in a very simple conditions, this chapter presents a distributed method in which robots

localize an odor source in an unknown environment where the odor distribution is time-variant

and patchy, the flow is turbulent, and there are obstacles in the environment. The main

contribution in this method is that the motion of swarm robots is not only based on the

robot-to-robot virtual forces; the olfactory sensory data affects the motions of the robots and

also the virtual forces that they apply to each other. In this method, when one robot finds the

odor plume, all of the swarming robots aggregate together and track the odor plume based on

their swarm formation and the stochastic concentration gradient and airflow direction. Finally,
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once some of the robots identified the odor source, using a consensus system, they

cooperatively declare the source. The individual robots switch between these behaviors

automatically without any central coordinator. The performance of the method is evaluated

against various number of swarming robots, the emission rate of the odor source, the number of

obstacles in the environment and the size of the testing environment. The emergent behavior of

the swarm proves the functionality, robustness and scalability of the system in different

conditions in simulations. Real world experiments with large number of robots are required to

prove its functionality in real scenarios.

The problem here is: “How can a swarm of robots cooperatively track an odor plume

efficiently?”. Since the plume’s shape and the environment are both unknown, there is no

optimal solution for this problem. However, to address this problem in a turbulent odor plume,

we propose a method where the swarm robots establish a cohesive spatial sensor network.

Since the robots are spatially distributed in the environment, they can cooperatively measure

the odor concentration and airflow velocity of different locations and track the plume more

efficiently.

Based on the nature of odor distribution model [BS02] and formula (3.2), the following

fact should be considered: when a robot observes an odor patch, it is obvious that the best

strategy is to make a step in the direction from which the patch has arrived. Since the wind

carries the odor patches, if (x0,y0) is the position of the observed odor patch, with a very high

probability the source can only be located in the interior of a cone that can be estimated with:

y− y0 = ±(x− x0),y < y0 (red lines in Fig. 4.2 and equation (3.2), re-noting that Y-axis direction

is assumed to be the air-flow direction). In other words, if a patch is observed at position (x0,y0),

one should visit the places close to (x0,y0) and toward the upwind direction. Each odor patch

observation reduces the uncertainty about the odor source position.

We propose swarm formation and navigation methods to cooperatively track the plume

toward its source. The pseudo-code of the main algorithm that is run on each individual robot

is presented in Algorithm 10. In this method, when a robot finds the odor plume (i.e. detects

some odor patches in a place), the other robots get close to that robot in order to increase the

probability of detecting the odor patches of that area. This sensor network navigates toward
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upwind direction and visits the places around the detected odor patches.

On the other hand, considering equations (3.6) and (3.3), when robots get close to each

other, the coverage area of the swarm gets expanded toward the opposite direction of the air-

flow. Fig. 4.3 compares the coverage area of three different configurations of seven sensors in

an environment. The right figure that is a mesh configuration shows the longest sensor coverage

toward opposite wind direction. Maintaining a mesh-like topology the swarm will detect the

odor patches coming from very further possible locations.

The formation is obtained by implementing virtual attraction/repulsion forces between the

robots considering minimum communications. The robots which sense more odor patches

(higher odor concentration), attract other robots with stronger forces to cover the region. Each

robot individually measures the odor concentration and the airflow speed and its distance to the

neighboring robots and tries to travel toward up-wind direction and higher odor concentrations

while maintaining a constant distance to the neighbors. As an emergent result, the swarm

moves toward the consensus direction of all the swarm members and spatially sweeps the

region of interest. To do so, each robot performs three tasks simultaneously:

4.4.1 Maintaining formation of the sensor network (swarm)

The first task requires the robots aggregate together to keep a specific distance margin between

each other and try to virtually push and pull each other. If a robot goes toward a specific

direction, the robots in behind, to maintain the sensor network’s cohesion, go toward the same

direction and the robots in front also go to that direction in order to keep their distance.

Therefore, the swarm always moves toward the direction that more robots tend to go while

keeping the formation of established sensor network. For instance if ten robots try to go to the

left and five robots to the right, the whole swarm (maybe with lower speed) will move to the

left because the resultant virtual forces that is applied to each robot from the other robots is in

that direction.

To implement this behavior, the virtual forces applied to a robot i from another robot j is
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Figure 4.2: An odor patch is detected at (x0,y0). Based on equation (3.2), with a high probability
this patch has come from a source in the blue highlighted area A.

Figure 4.3: Sensor coverage area of seven sensors in three different configurations while
Pthreshold = 0.2. When the sensors get close to each other the covered area expands toward
the opposite direction of the air flow.

Figure 4.4: Plume tracking behavior; The vertical gauges present the odor concentration that
the robots sense at the moment. R1 and R2 which sense high odor concentrations tend to track
the plume by climbing the gradient and navigating toward up-wind (holding equation 4.4) while
the other robots maintain the cohesion of the swarm formation (holding equation 4.1, 4.2, 4.3).
The robots which sense higher odor concentration, (R1 and R2), apply bigger forces to the other
robots.
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Algorithm 10: Olfactory swarm algorithm for each individual robot

Behavior = Plume finding1
Mission accomplished = False2
while !Mission accomplished do3

switch Behavior do4
case Plume finding5

ci = Measure odor concentration()6
Ui = Measure air-flow velocity()7
{Pi} = Measure distances to the neighbors()8
{di , Veci} = Measure distances and direction to the obstacles()9
Navigate while holding formula(3.37 or 3.37)10
if (ci > odor threshold) || (A robot indicates finding odor plume) then11

Broadcast(plume detected)12
Behavior = Plume tracking13

case Plume tracking14
ci = Measure odor concentration()15
Ui = Measure air-flow velocity()16
Broadcast to neighbors(ci,Ui)17
Maintain formation of sensor network by formula(4.3)18
Navigating toward odor source by formula(4.4)19
Avoid obstacles by holding formula(3.15);20
if Odor Source Identified() then21

Behavior = Source identification22

if No robot indicates finding odor plume then23
Behavior = Plume finding24

case Source identification25
if !Odor Source Identified() then26

Behavior = Plume tracking27

else28
Broadcast to neighbors(“source is identified”)29

if (more than M robots are sending “source is identified”) then30
Broadcast to neighbors(“source is identified”)31
Mission accomplished = True32

End of algorithm33
// odor threshold = threshold for odor plumes active area.
// Odor Source Identified() is explained in section 4.5.
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defined as:

~Fi j
co(t) =


µ4q j

‖~p ji(t)‖2
( ~p ji(t)
‖~p ji(t)‖

), ‖~p ji(t)‖ < R1

0, R1 ≤ ‖~p ji(t)‖ ≤ R2

−µ5q j

‖~p ji(t)‖2
( ~p ji(t)
‖~p ji(t)‖

), ‖~p ji(t)‖ > R2

(4.1)

while µ4 and µ5 are two positive coefficients and R1 and R2 define a distance margin between

each two neighboring robots (0 < R1 < R2 < ∆d). If two neighboring robots are farther than

the defined threshold R2 the equation acts like an attraction force, however, if the neighboring

robots are closer than R1 the formula acts like a repulsion force. This equation maintains the

swarm in a cohesive form.

q j is defined as:

q j = βi
c j−C0

Cmax−C0
(4.2)

where parameter c j represents the current odor concentration measured by robot j, Cmax is the

maximum odor concentrations that the swarm robots have reported so far, and C0 denotes the

minimum value that the olfactory sensors report in clean-air conditions. βi is a constant that is

predefined by the system designer as the effectiveness of the robot i on the other robots.

In most previous studies in swarm formation (e.g., [GP04b]), force formula is the inverse

function of the distance between the agents and other parameters such as q j are ignored.

However, we used q j as a parameter of effectiveness of the robots on each other and defined a

formula for that based on the problems’ modality (i.e. olfactory) to increase the efficiency of

the method. Each robot has a parameter q so that the force that the robots apply to each other

will be dependent on that. A robots with bigger q applies bigger forces to its neighboring

robots. Therefore, a robot which senses high odor concentrations applies high amplitude

virtual forces to its neighbors, in contrast, a robot that does not sense high odor, does not apply

significant forces to its neighbors.

By the above equations, the total cohesion force ~Fi
co(t) for a robot i is determined as:

~Fi
co(t) =

N∑
j=1; j,i

~Fi j
co(t) (4.3)
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4.4.2 Navigating toward odor source

While the robots maintain the cohesion of the swarm, they must navigate toward the odor source.

A navigational force is defined for each robot to perform this behavior:

~Fi
odor(t) =

 −K1~∆Ui(t) + K2~∆Ci(t) ,ci >CT

0 ,ci <CT

(4.4)

K1 and K2 are two positive constant coefficients, ~∆Ui(t) is the airflow direction, ~∆Ci(t) is

the direction of the gradient of odor concentration measured by robot i, and CT is a defined

threshold for odor concentration. The first term in the above equation applies a force towards

up-wind direction to the robot, whereas the second term applies a force towards the higher odor

concentrations.

Not all the robots in a swarm are always located in an area of active odor plume. At a

given moment, some of them may sense high odor concentrations and air flow while others do

not sense any odor clues. Equation (4.4) implies that if a robot senses high odor concentration

and also high air-flow speed, it goes toward up-wind direction and higher odor concentration,

however, if the robot does not sense air-flow, it only follows the odor gradient. On the other

hand if a robot does not sense high odor concentrations, it follows the swarm to maintain the

sensor network’s cohesion.

4.4.3 Obstacle avoidance

The obstacle avoidance forces applied to the robots in this behavior are the same as forces

defined in section 3.4.2.

Total Force:

The total force applied to a robot i in this behavior is given by:

Fi
plume(t) = Fi

co + Fi
odor + Fi

obs (4.5)

Now, θi(t), wi(t) and ~vi(t) are calculated by formula (3.18), (3.19) and (3.20) respectively,
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Figure 4.5: Source identification behavior; R1, R2 and R3 identify the odor source and broadcast
a message to other robots nearby.

replacing Fi
s(t) with Fi

plume(t).

As an emergent result, the robots which detect high chemical concentrations tend toward

up-wind direction and toward higher odor gradients (due to equation 4.4), while all the robots

maintain their sensor network formation (due to equation (4.1). If some robots tend to go to one

direction and others to another direction the whole swarm will actually move toward resultant

summation of virtual forces of all the robots.

4.5 A discussion on swarm odor source declaration

The problem here is: “How to maximize the probability of identifying a true odor source and

minimizing the probability of false detections?” This thesis does not go deep into the

mechanisms of odor source identification, however, a simple approach is used for the robots to

declare an odor source. An individual robot identifies an odor source if one of the following

conditions holds:

1. While a robot is traveling up-wind direction, if the mean level of detected gas decreases

suddenly it means that the robot has passed an odor source during its path.

2. If a robot is traveling in the down-wind direction and it starts to detect a very high

concentration of odor, it means that there is an odor source in this location.

3. If there is no air-flow in the environment and the robot detects a very high concentration

of odor, it means that there is an odor source nearby.
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The probability of detecting an odor source by a robot can be modeled bases on the robot’s

sensitivity and the characteristics of the odor source and the environment. Due to the patchy

nature of odor plumes, there might be some false positive results in detection of odor sources.

Therefore, odor source identification should not be dependent on only one robot (also because

of the fact that in any swarm system there might be some faulty robots). This thesis suggests

a consensus system in order to detect the odor source by the swarm. Considering p as the

probability of detection and q as the probability of false detection of an odor source by a robot,

we should maximize the overall swarm’s source detection probability and minimize the overall

swarm’s false detection probability. Since the robots identify the source independently, using

the binomial probability distribution, the probability of false detection of odor source by at least

M independent robots is given by:

P(Odor source detection by at least M out o f N robots) =

N∑
i=M

( N!
i!(N − i)!

)
pi(1− p)(N−i) (4.6)

P(False detection o f source by K robots) = qK (4.7)

Where N is the total number of the robots in the region. The above equations shows that

the higher value for M results in the lower probability of false detection. On the other hand,

the higher M the lower probability of detection of the odor source by M robots. This shows a

trade-of in selecting the value of M.

While the robots are navigating toward source, if a robot is in a situation that thinks the

odor source is very close to its location it will broadcast a message to other neighbor robots

to announce that. We call this message as “mission accomplished” or “odor source identified”

message. Any other robot which is in the same situation will broadcast a similar message.

On the other hand, if a robot has not yet identify an odor source but is receiving “odor source

identified” message from more than a defined number of robots (M) it will stop working and it

will also broadcast the same message. The emergent behavior is that if several robots start to

send “odor source identified” message and their number is more than a defined threshold, after
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a short time all the robots will start sending the same message and will stop working (this is a

kind of consensus system in the swarm). The required number of robots which should declare

the odor source (M) depends on several parameters such as the certainty of each of them in

detecting the odor source, the swarm size, and the width of the odor plume.

Suppose that there are 10 robots in the region of an odor source and the probability of

source detection of each of them is 0.7 and their probability of false detection is 0.2. If one

selects M = 3 in this method, the probability of at least 3 out of 10 robots identifying the source

is 0.998 (equation (4.6)) and if exactly three robots identify the source the probability of the

false detection of them is 0.008 (equation (4.7)).

4.6 Preliminary validation

We evaluate the method with different swarm sizes in environments with obstacles in which

there are turbulences in the plume and the concentration of odor is patchy and does not change

gradually. Similar to the previous chapter the model of the testing environments were given

to ANSYS Fluent CFD software to simulate odor sources and provide 3-D odor concentration

data and 2-D olfactory data was extracted. The olfactory data generated by ANSYS Fluent were

exported to Matlab to be used in simulations. Robots were simulated in Matlab as independent

entities with no shared variables similar to section 3.5.1.

Fig. 4.6 shows the virtual forces that the swarm robots generate in “plume tracking” behavior

in various configurations. Each arrow in a place show the magnitude and the direction of virtual

forces that would be applied to another robot if it was located in that place. By adding (or

removing) robots to these scenarios the configuration of forces will change, however, these

figures only show the virtual forces in the current setup of the figures before adding another

robot that its qi is 1. These forces are obtained by implementing the formula (4.1) and (4.2).

As shown in these figures, each robot implies repulsive forces in its close surrounding area and

attractive forces far from it. The robots which sense higher odor concentrations imply higher

forces in their neighborhood (e.g., Fig. 4.6.B). As a result, if there was any other robot near

these robots, the virtual forces would attract it toward these robots until a certain margin. This
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A B

C D

E

Figure 4.6: Virtual forces in “plume tracking” behavior. A: one robot sensing odor concentration
greater than CT (odor threshold). B: only the upper robot senses odor concentrations greater
than the threshold. C: only the two upper robots sense odor concentrations greater than the
threshold. D: two robots sense equal odor concentrations greater than the threshold. E: two
robots sense odor concentrations greater than the threshold while the upper robot senses more
odor concentration than the lower robot.
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margin can be adjusted by modifying the parameters R1 and R2. It must be mentioned here

that the movements of the robots in this behavior is not only based on these virtual forces.

Based on formula (4.4), each robot tends to go toward higher odor concentrations and up-wind

direction while being affected by the swarm virtual forces. The direction and amplitude of

navigation forces depend on the amount odor concentration and the air-flow direction in any

specific location and is highly time-variant in these tests.

4.6.1 Validation

Fig. 4.7 demonstrates a series of snapshots during a simulation that shows the functionality

of the method. The first frame of this figure shows that 10 robots are released randomly in

one part of the environment. The next frames demonstrate the cross-wind line-up behavior,

where the robots do not sense high odor concentrations and they get apart from each, form a

diagonal line and move toward cross-wind direction. To better explain the functionality of the

method, we have colored the robots based on their status in these simulations. If the mean odor

concentration that a robot senses is less than a certain threshold, the color of that robot is black,

but, if the robot senses more odor concentrations the robot turns to red. The blue robots are the

ones which have detected and identified the odor source. In frame 5 of this figure one robot finds

the odor plume, so it turns to red, therefore the other neighboring robots aggregate toward this

robot in the next frames. From frame 5 to frame 12, the swarm robots track the plume toward

higher concentrations while upholding sensor network’s cohesion. The robots dynamically (and

automatically) change their colors in this behavior and the emergent result is that the swarm

is able to pass through the obstacles by changing its shape and travel toward the odor source.

Frame 13 shows that a robot has detected the odor source (a very high concentration), and it

turns its color to blue. In frame 14 some other robot detects the odor source and turns to blue.

Since the swam size is not huge we defined M = 3 in the voting system explained in section 4.5.

Therefore when three robots indicate that they have detected an odor source, another robot which

detects these three robots will turn to blue to broadcast the message. The next frames show that

more robots are indicating the odor source and this message is propagating in the swarm. In

this experiment, the coefficient parameters of the method were set as following: ∆d = 1m, i.e.
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Figure 4.7: Swarm of 10 robots searching a 4× 6m2 environment for an odor source. The
emission rate of odor source is 0.01 g/s. The red color means that the robot senses high odor
concentration.
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1 2 3

4 5 6

7 8 9
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13 14 15

Figure 4.8: Swarm robots searching for an odor source in a 30×40m2 environment. The figures
only show a 10×15m2 part of this environment.
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the range of communication between the robots is considered to be one meters, D1 = 0.25m

and D2 = 0.37m to keep the distance between the neighboring robots (during plume-finding

behavior) between 25 to 37 cm, βi = 1 for all the simulated robots since they are all equivalent,

R1 = 0.1m and R2 = 0.5m for keeping the cohesion of the sensor network (during plume tracking

behavior) and keep the neighboring robots in range of 10 to 50 centimeters apart, K1 = 0.5 and

K2 = 0.5 to equally correlate the odor gradient, the wind and the forces applied to the robots,

CT = 0.1 as odor threshold and the other of the parameters were set equal to the parameters in

section 3.5.1.

Fig. 4.10 shows another experiment that demonstrates the movements of 10 swarming robots

in a large environment. In this experiment, the diagonal line-up behavior is used for finding

the plume. In this experiment, the coefficient parameters of the method were set to the same

values of previous simulations except following parameters: ∆d = 2m, R1 = 0.7m, R2 = 1.5m,

D3 = 0.50m and D5 = 0.15m. As shown in Fig. 4.10, when the plume meanders, the shape of

the swarm automatically changes and the robots track the plume toward its source.

4.6.2 Evaluation

The method was evaluated against the following parameters:

• the number of swarming robots,

• the emission rate of the odor source, and

• the number of obstacles.

The first parameter is to test the scalability of the method in different conditions. The second

parameter is to evaluate the sensitivity of method in different amount of odor in the environment.

The last is to measure the performance of the method against airflow turbulences caused by

obstacles.

Three environments with 0, 5 and 10 obstacles have been tested with 5, 15, 20 and 30 robots,

while the emission rate of the odor source in the left side of the testbed was set to 0.01, 0.02

and 0.05 g/s. The wind speed was set to 0.5 m/s in these simulations. Fig. 4.9 shows the
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Figure 4.9: Snapshots of odor plumes in three simulated environments. left: obstacle-free
environment, middle: environment with 5 obstacles, right: environment with 10 obstacles. The
dimension of these environments is 4×6m2.

1 2 3

4 5 6

7 8 9

10 11 12

Figure 4.10: A swarm of 25 robots searching for an odor source in a 4×6m2 environment. The
emission rate of odor source is 0.05 g/s.
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Figure 4.11: Search time in different environment with different number of robots while the
emission rate of odor source was I: 0.01g/s, II: 0.02g/s, and III: 0.05g/s
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simulated odor plumes in these environments. Each experiment was repeated for ten times. In

each experiment the other parameters were kept constant and the search time is measured. Since

the goal of this section is to evaluate only the “plume tracking” method, we ran cross-wind line-

up behavior for plume finding and measured the duration of plume tracking from the time that

a robot finds the plume.

Fig. 4.11 shows the average search times in the mentioned conditions. The charts show that

a bigger swarm finds the odor source faster than a small swarm specially when there are more

obstacles and the emission rate of the odor source is low. The swarm was able to deal with the

obstacles, turbulence and local maximums.

4.7 Conclusion and discussion

This chapter presented a proposed approach for a swarm of robots to track odor plumes and

localize the source in near realistic conditions where the environments is under flow turbulent

and the odor distribution is time-variant and patchy. The method was designed based on the

swarm robotics principles of simplicity of individuals, distributed control and minimum

communications. To track the plume, the swarm robots establish a dynamic sensor network by

maintaining a cohesive formation between themselves to overcome the problems of local

maximums, patchiness and turbulences in the odor plumes. The odor concentration and

air-flow speed were considered in the swarm formation virtual forces’ equations to more

efficiently preform the tasks. The swarm identifies the odor source proposing a consensus

approach that decreases the probability of false detection of the source. The plume tracking

method has been simulated and the results prove functionality, robustness and scalability of the

proposed approach in different conditions. The swarm shows acceptable performance for

reduced swarm sizes and provides increasing performance with increasing swarm sizes

specially when there are more obstacles in the environment and the emission rate of the odor

source is low.

An issue that needs to be discussed is the emergent behavior of the swarm in dealing with

very intermittent plumes where the robots lose the plume frequently during the plume tracking
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behavior. While a group of robots are performing plume-tracking behavior, they cooperatively

try to track the plume by going up-wind direction and toward higher gradients while maintaining

sensor network’s cohesion. If suddenly all of the robots lose the plume, they all change their

state to plume finding behavior (lines 23 and 24 of algorithm 10). In this case the robots start

to perform plume finding behavior, until one of them finds the plume again and then all of

them aggregate to that place. The main point here is that the robots are able to automatically

and individually change their behavior without having a central station when the environmental

condition changes.

Aditional study is still needed in order to analytically prove the functionality of the proposed

method of this chapter. A formulation similar to what we presented for odor plume finding is

required to analytically find the best strategy of swarm robots in these two problems. Moreover,

the proposed method needs to be experimentally validated in real world scenarios using a swarm

of robots.





Chapter 5

Concluding remarks and future works

“My heart was never deprived of knowledge
few secrets remain that I have not learned,
For seventy-two years I have pondered day and night,
now I know this: Nothing is really known.”
Omar Khayyám, 1048-1131

5.1 Conclusions and remarks

This thesis provided a solution for the problem of “olfactory search and exploration in structured

unknown environments” with a multi-robot system and another solution for “odor plume finding

in unstructured unknown environments” using a swarm robotic system. The proposed methods

were evaluated in simulations and in small-scaled realistic environments and the results were

discussed. Moreover, the thesis proposed a swarm robotic approach for “odor plume tracking”

and “odor source declaration” problems and provided preliminary results of its simulations.

5.1.1 Multi-robot olfactory search in structured environments

A cooperative distributed approach for searching odor sources in unknown structured

environments with multiple mobile robots was proposed in chapter 2. The method is a

decentralized frontier based exploration algorithm enhanced by a cost/utility evaluation

function that considers the odor concentration and airflow at each frontier. Therefore, frontiers

161
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with higher probability of containing an odor source will be searched and explored first. While

searching and exploring the environment, the robots independently generate on-line local

topological maps and by sharing them with each other they construct a global map. The

method also improves path planning of the robots for exploration process by presenting a

priority policy. Since there is no global positioning system and each robot has its own

coordinate reference system for its localization, this work used topological graph matching

techniques for map merging. Two solutions were presented for the problem of topological map

merging; sequential solution and parallel solution. The parallel solution is run on a robotic

cluster platform. The results show a significant speed-up in merging large maps using the

proposed method. The proposed method was tested in both simulation and real world

environments with different number of robots and different scenarios. The search time,

exploration time, complexity of the environment and number of double-visited map nodes were

investigated in the tests. The results of real world experiments show the effect of gas cues on

the behavior of robots and it shows that using the proposed algorithm, robots firstly explore the

areas with higher probability of existence of odor sources. Simulation results show that having

more robots is more advantageous in a complex maze than in a simple maze.

5.1.2 Swarm robotics olfactory search

Optimal spatial formation of swarm robots to maximize the probability of detection of odor

plumes was studied in chapter 3. First no global movements for the swarm was considered and

the best optimal configurations of the gas sensors in search for odor plumes were found.

Afterwards, considering cross-wind movement for the swarm we found the optimal formation

of swarm robots that maximizes their probability of finding an odor plume in an unknown

environment. Assuming no global movement for a swarm, their optimal topology is line

configuration toward cross wind direction with equal distance between each pair of adjacent

sensors. Regardless of number of sensors, the optimal distance between neighboring pairs

depends on the wind speed. Considering cross-wind movement for the swarm, the formation of

the optimal solutions is diagonal line configuration, with equal distance between each pair of

neighboring sensors. The distance between neighboring pairs in optimal configurations
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depends mainly on the wind speed and the environmental conditions, whereas the number of

sensors and the swarm’s crosswind movement distance do not show significant impact on

optimal configurations. Mathematical functions that can accurately estimate the optimal

distances based on the wind speed was computed by nonlinear regression estimation.

Moreover, swarm robotics wind-biased attractive/repulsive virtual forces were designed to

emerge to the optimal configurations. The method was tested and validated in simulations and

in a reduced scale realistic environment. The results verify the functionality of the swarming

formation strategy and also validate the obtained optimization results.

5.1.3 Swarm odor plume tracking and odor source declaration

An approach for a swarm of robots to track odor plumes and localize the source in near

realistic conditions was proposed in chapter 4. To track the plume, the swarm robots establish a

dynamic sensor network by maintaining a cohesive formation between themselves to overcome

the problems of local maximums, patchiness and turbulences in the odor plumes. The odor

concentration and air-flow speed were considered in the swarm formation virtual forces’

equations to more efficiently preform the tasks. The swarm identifies the odor source

proposing a consensus approach that decreases the probability of false detection of the source.

The plume tracking method has been simulated and the results prove functionality, robustness

and scalability of the proposed approach in different conditions. The swarm shows acceptable

performance for reduced swarm sizes and provides increasing performance with increasing

swarm sizes specially when there are more obstacles in the environment and the emission rate

of the odor source is low. Additional study is still needed in order to analytically prove the

functionality of the proposed method of this chapter.

5.2 Future works

Although the two objectives of this thesis are fulfilled in real world scenarios, yet the work

is not finished and many areas can still be explored. This section identifies future works and

categorizes possible developments which can be considered to continue this study.
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5.2.1 Multi-robot systems

Regarding multi-robot olfactory search in structured environments the following future works

can be mentioned:

• Improvement of the feature extraction technique: In order to apply the presented

method in real world complex environments, the feature extraction/detection technique

should be improved by better pattern recognition approaches. Since this issue was not

the main objective of this thesis, a simple pattern recognition approach was used that can

distinguish five different environmental features from each other. However, most real

world environments contain more complex structures, so more advanced methodologies

are needed to reliably distinguish the environmental features. Fusing the sensory data of

multiple robots which observe an environmental feature from different points of view

might improve feature extraction. We call this cooperative environmental feature

extraction. The robots should cooperate with each other to acquire useful information

from the surrounding environment from different points of view and then fuse and

process this data in order to accurately extract its features. Since sensor fusion

approaches are usually heavy processing tasks, the idea of robotic clusters can be useful

to execute cooperative environmental feature extraction in real time.

• Cooperative communication: The proposed method in this thesis does not necessarily

require perfect communications, however communication failures decrease its efficiency.

In real world structured environments, there might exist zones with no network signal.

Using an ad-hoc architecture (e.g., OLSR1, BATMAN2, etc.) that the robots connect to

each other and establish a network wirelessly and automatically without using a router,

might be beneficial in these scenarios. In this case, the relative spatial topology of the

robots is an important parameter in the performance and functionality of the system that

should be studied.

• Robotic platforms for real world environments: The Roomba and LSE-MiniQ robots

1http://www.olsr.org/
2http://www.open-mesh.org
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used in the experiments of this thesis are not able to navigate in rough trains. They

cannot even overcome usual obstacles in human made facilities like taking stairs or using

elevators. Robots which are able to navigate in these situations are needed to be

employed in real world scenarios.

5.2.2 Odor plume tracking and odor source declaration

• Mathematically analyzing odor plume tracking and odor source declaration:

Although the proposed method for swarm robotic odor plume tracking and source

declaration was implemented in simulations and preliminary results validated its

functionality, still additional studies are needed in order to analytically prove its

functionality. A formulation similar to what was presented for odor plume finding is

required to analytically find the best strategy of swarm robots in these two problems.

• Experiments: The proposed method for odor plume tracking and source declaration

needs to be experimentally validated in real world scenarios using a swarm of robots.

5.2.3 Larger number of robots

Due to restrictions of available hardware resources, the methods were evaluated using a few

number of robots. It would be valuable if the methods can be evaluated using a large number of

robots in future.

5.2.4 Larger environments

The size of the environment relative to the size of robots is an important parameter in search

scenarios. The methods in this thesis were experimented in small-scaled environments. If the

methods can be evaluated in very larger environments (compare to size of robots), it will be

scientifically valuable.
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5.2.5 Outdoor environments

This work considered indoor and semi-outdoor environments. It would be interesting to check

the validity of the obtained results in outdoor environments. Similar results are expected if the

state of the wind is laminar and does not change rapidly. In situations that the wind direction

changes rapidly, a deep study is required to adapt the proposed methods to those scenarios.
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