
Min Li

Inexactness in Decomposition Methods for MINLP

Coimbra

2012

Min Li

Inexactness in Decomposition Methods for MINLP

Dissertação apresentada à Faculdade de

Ciências e Tecnologia da Universidade

de Coimbra, para a obtenção do grau

de Doutor em Matemática, na especia-

lidade de Matemática Aplicada.

Coimbra

2012

iv

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor, Professor Lúıs

Nunes Vicente, for his inspirational supervision, patient guidance, and invaluable encour-

agement throughout my PhD studies. I greatly admire his comprehensive knowledge of

Mathematical Optimization and his attitude towards scientific research. His effort, experi-

ence, and perseverance led me step by step to advance in my research, and finally to make

this dissertation possible.

I would also like to thank Prof. Zhang Yulin (Univ. of Minho) who pointed me to Prof.

António Leal Duarte (Univ. of Coimbra), with whom I studied Matrix Analysis in 2007/08.

Moreover, under their recommendations, I succeeded in being accepted in 2008 as a PhD

student in the UC/UP PhD Program in Mathematics. I take this opportunity to thank

all the people involved in the program, the coordinators, the course instructors, and my

classmates.

I deeply thank Prof. Ana Lúısa Custódio (New Univ. of Lisbon) for all her support in

the development of the MATLAB code. I am also very grateful to Prof. A. Ismael F. Vaz

(Univ. of Minho) for his help in AMPL and MATLAB.

I cannot possibly forget Mrs. Rute Andrade for helping me so many times in my personal

and academic matters.

I acknowledge the financial support from Fundação para a Ciência e a Tecnologia (PhD

scholarship SFRH/BD/33369/2008).

Finally, I would like to thank my parents, my husband, my brother, and my daughters

for their unlimited love, understanding, encouragement and unmeasurable support during

all these years.

v

vi

Abstract

In the context of convex mixed integer nonlinear programming (MINLP), we investigate

how decomposition methods such as the outer approximation (OA) method and the gen-

eralized Benders decomposition (GBD) method are affected when the respective nonlinear

programming (NLP) subproblems are solved inexactly.

We assume that the solution procedure chosen for the NLP subproblems is such that one

can impose a maximum size for the residuals of the first-order necessary conditions (duality

and complementarity). We show that the cuts in the master problems of OA and GBD can

be changed to incorporate such inexact residuals, still rendering the properties of equivalence

and finiteness in the limit case.

We then present some numerical results to illustrate the behavior of the OA and GBD

methods under NLP subproblem inexactness (for the case where the non-negativity of the

returned Lagrange multipliers of the NLP subproblems is not subject to inexactness).

A number of other studies are also made in terms of extending what is known from the

exact case to the inexact one. For instance, one can also conclude that the constraints of the

inexact GBD master problem can be derived from the corresponding ones of the inexact OA

master problem and that the study of inexactness can also accommodate the non-negativity

of the Lagrange multipliers of the NLP subproblems.

vii

viii

Resumo

No contexto da programação não linear inteira mista (MINLP), investigamos como é que

métodos de decomposição, como o método da aproximação exterior (OA) e a decomposição

generalizada de Benders (GBD), são afectados pela inexactidão na resolução dos respectivos

subproblemas de programação não linear (NLP).

Supomos que o procedimento de resolução dos subproblemas NLP é tal que seja posśıvel

impor um tamanho máximo nos reśıduos das condições necessárias de primeira ordem (no

que diz respeito à dualidade e complementaridade). Mostramos que os cortes em OA e GBD

podem ser modificados de forma a incorporar os reśıduos inexactos, conseguindo-se ainda

satisfazer as propriedades de equivalência e finitude no caso limite.

Apresentamos alguns resultados numéricos que ilustram o desempenho dos métodos OA

e GBD sob a inexactidão na resolução dos subproblemas NLP (para o caso em que a não-

negatividade dos multiplicadores de Lagrange associados a esta resolução inexacta não está

sujeita a inexactidão).

Estudam-se, ainda, outras extensões do que é conhecido no caso exacto para o inexacto.

Por exemplo, também conclúımos que as restrições do método GBD inexacto podem ser

obtidas através das correspondentes restrições do método OA inexacto e que este estudo

de inexactidão também acomoda a não-negatividade dos multiplicadores de Lagrange dos

subproblemas NLP.

ix

x

Contents

1 Introduction 1

1.1 General comments . 1

1.1.1 Exact or rigorous methods for MINLP 2

1.1.2 Heuristic methods for MINLP . 4

1.2 Summary of our work . 5

2 Decomposition methods for MINLP 7

2.1 NLP subproblems and equivalent formulations 7

2.2 Outer approximation . 11

2.3 Generalized Benders decomposition . 16

2.4 The extended cutting plane method . 18

3 Inexact outer approximation 23

3.1 Inexact solution of NLP subproblems . 23

3.2 Inexact OA master problem . 25

3.3 Assumptions for the inexact case . 26

3.4 Equivalence between perturbed and master problems for OA 28

3.5 Inexact OA algorithm . 33

4 Inexact generalized Benders decomposition 37

4.1 Equivalence between perturbed and master problems for GBD 37

4.2 Inexact GBD algorithm . 40

4.3 Derivation of the master problem for inexact GBD 41

5 Numerical experiments 43

5.1 Results for the inexact OA method . 45

5.2 Results for the inexact GBD method . 46

6 The case of inexact multipliers 51

xi

7 Concluding remarks 55

xii

List of Figures

2.1 Underestimating a function by linear representations. 13

2.2 Overestimating a feasible region by linear constraints. 14

2.3 The MINLP feasible integer points. 19

2.4 An MILP ECP relaxation. 19

2.5 A new cutting plane generated by ECP. 20

2.6 The new MILP ECP relaxation. 20

3.1 Exact and inexact cuts under convexity (for a generic function h). 28

xiii

xiv

List of Tables

5.1 The number of variables and constraints, and the optimal values of all tested

problems. The number of constraints include linear equalities and inequalities

and nonlinear inequalities. The AMPL code for Problems 1–6 was taken from

the MacMINLP collection [43] and for Problems 7–19 from the Open Source

CMU-IBM Project [1]. 44

5.2 Application of inexact OA to problems from the MacMINLP collection [43].

The table reports the number N of iterations taken as well as the number C

of inequalities found to violate Assumptions 3.3.1 and 3.3.2. 46

5.3 Application of inexact OA to problems from the Open Source CMU-IBM

Project [1]. The table reports the number N of iterations taken as well as the

number C of inequalities found to violate Assumptions 3.3.1 and 3.3.2. . . . 47

5.4 The tolerance chosen in every iteration according to (5.1) for problem FLay03H

(inexact OA and inexact cuts). For p = 0, 1, we always set the tolerance to

10−2. 48

5.5 The tolerance chosen in every iteration according to (5.1) for problem CLay0203M

(inexact OA and inexact cuts). For p = 0, 1, we always set the tolerance to

10−2. 48

5.6 Application of inexact GBD to problems from the MacMINLP collection [43].

The table reports the number N of iterations taken as well as the number C

of inequalities found to violate Assumptions 3.3.1 and 3.3.2. 49

5.7 Application of inexact GBD to problems from the Open Source CMU-IBM

Project [1]. The table reports the number N of iterations taken as well as the

number C of inequalities found to violate Assumptions 3.3.1 and 3.3.2. . . . 50

xv

xvi

Chapter 1

Introduction

1.1 General comments

A mixed integer nonlinear programming (MINLP) problem is an optimization problem in-

volving both continuous and discrete variables and where at least one of the functions defining

the objective function or the constraints is nonlinear. MINLP problems appear in a diversity

of applications, coming from the Industry or Engineering Sectors as well as from Finance

and Management Sciences. They include problems in process systems synthesis [23, 24, 39],

process flow sheets [38], portfolio selection [48, 49], batch processing in chemical engineer-

ing [54, 59], optimal design of gas or water transmission networks [40], and so on. More-

over, a vast collection of MINLP applications can be found in [33, 34]. Recently, and due

perhaps to a renewed practical interest, MINLP has become again a very active research

area [3, 5, 7, 11, 12, 13, 14, 15, 18, 19, 21, 22, 25, 26, 37, 50, 58], with the development of

new theories and algorithms and of new, sophisticated implementations.

In our thesis, we will adopt the MINLP formulation

P

min f(x, y)

s.t. g(x, y) ≤ 0,

x ∈ X ∩ Znd , y ∈ Y,

(1.1)

where X is a bounded polyhedral subset of Rnd and Y a polyhedral subset of Rnc . The

functions f : X×Y −→ R and g : X×Y −→ Rm are assumed continuously differentiable. We

say that the MINLP problem P is convex if both f(x, y) and g(x, y) are convex functions over

1

X × Y . For a fixed x, the MINLP reduces to a nonlinear programming (NLP) subproblem:

NLP(x)

min
y

f(x, y)

s.t. g(x, y) ≤ 0,

y ∈ Y.

(1.2)

Problem P is one of the most difficult optimization problems. It falls into the class of

NP-complete problems, meaning that no polynomial time algorithm is known for P and

that, if one existed, it would also be a polynomial time algorithm for any other problem in

NP (see, e.g., Nemhauser and Wolsey [51] and Schrijver [57]).

There are essentially two broad classes of methods for solving MINLP problems: the

exact or rigorous methods and the heuristic ones. We will now briefly review them.

1.1.1 Exact or rigorous methods for MINLP

Exact methods terminate when an optimal solution1 is computed (or approximately com-

puted) or an indication is given saying that the problem is infeasible, provided enough

computing time is given. These methods are rigorous in the sense that there is a mathe-

matical guarantee of convergence. The most well-known exact methods proposed for solving

MINLPs include branch-and-bound (B&B), outer approximation (OA), generalized Ben-

ders decomposition (GBD), the extended cutting plane (ECP) method, and LP /NLP-based

branch-and-bound (LP/NLP-B&B).

The B&B method was originally designed as an algorithm for mixed integer linear pro-

gramming (MILP) problems by Land and Doig [41] in 1960. Branching was modified to how

we commonly know it now by Dakin [20], and it was applied to MINLP problems by Gupta

and Ravindran [35] (see also [12, 16, 45]). This method starts by solving the continuous NLP

relaxation of the original problem (i.e., the related formulation where the discrete variables x

are fixed to a point in X). Let (x̃, ỹ) be an optimal solution of this continuous relaxation. If

all the discrete variables x̃ take integer values, the search is stopped and (x̃, ỹ) is an optimal

solution of the MINLP problem. Otherwise, this relaxed NLP problem provides a lower

bound to the optimal value. Then, assume that x̃j is a fractional value and ‘divide’ the

relaxed NLP problem into two subproblems by adding the constraint xj ≤ bx̃jc to one and

the constraint xj ≥ bx̃jc + 1 to the other. An enumeration tree is then initiated. When an

optimal solution is found for a node subproblem for which the discrete variables x take inte-

ger values, such node optimal value provides an upper bound to the original one. Otherwise,

the lower bound may be improved. Fathoming of nodes occurs in the following cases: the

1By solution or optimal solution of an optimization problem we mean a global or absolute minimizer.

2

node subproblem is infeasible, or the discrete variables of the solution of this subproblem are

integer, or the current lower bound exceeds the current upper bound. The algorithm stops

when there is no node to explore. What we have described before is what is called the stan-

dard or spatial B&B (see the classification in [17]). There are several variations of B&B for

MINLPs, such as branch-and-reduce (see Ryoo and Sahinidis [55]) and α-branch-and-bound

(see Androulakis et al. [6]).

Benders [8] developed in the 60s a technique for solving MILP problems, later called Ben-

ders decomposition. Geoffrion [31] extended it to MINLP with the help of nonlinear duality

theory [30, 31] in 1972, in what has become known as the generalized Benders decomposition.

Much later, in 1986, Duran and Grossmann [24] derived a new outer approximation method

to solve a particular class of MINLP problems, which has become widely used in practice.

Although the authors showed finiteness of the OA algorithm, their theory was restricted to

problems where the discrete variables appear linearly and the functions involving the con-

tinuous variables are convex. Both OA and GBD are iterative schemes requiring at each

iteration the solution of a (feasible or infeasible) NLP subproblem of the form (1.2) and one

MILP master problem involving a (finite) number of cuts.

For the class of MINLP problems mentioned in the previous paragraph, Quesada and

Grossmann [53] then proved that the cuts in the master problem of OA imply the cuts in the

master problem of GBD, showing that the GBD algorithm provides weaker lower bounds

(some authors [32, 46, 53, 56] associate this fact with the observation that GBD requires a

large number of major iterations to converge). Fletcher and Leyffer [27] generalized the OA

method of Duran and Grossmann [24] into a wider class of problems where nonlinearities in

the discrete variables are allowed as long as the corresponding functions are convex in these

variables. They also introduced a new and simpler proof of finiteness of the OA algorithm.

The relationship between OA and GBD was then addressed, again, by Grossmann [32] in this

wider context of MINLP problems, showing once more that the lower bound predicted by the

relaxed master problem2 of OA is greater than or equal to the one predicted by the relaxed

master problem of GBD (see also Flippo and Rinnooy Kan [28] for the relationship between

the two techniques). Recently, Bonami et al. [12] suggested a different OA algorithm using

linearizations of both the objective function and the constraints, independently of being

taken at the feasible or infeasible NLP subproblem, to build the MILP master problem.

This technique is, in fact, different from the traditional OA (see [27]), where the cuts in

the master MILP problems do not involve linearizations of the objective function in the

infeasible case.

Westerlund and Pettersson [61] generalized the cutting plane method [36] from convex

2By relaxed master problem, in this thesis, we mean a problem with fewer constraints than needed to
state the equivalence between the original problem and the master one.

3

NLP to convex MINLP, in what is known as the extended cutting plane method (see also [62,

63]). While OA and GBD alternate between the solution of MILP and NLP subproblems,

the ECP method relies only on the solution of MILP problems.

The LP/NLP-B&B method proposed by Quesada and Grossmann [53] is an extension

of both B&B and OA for convex MINLP (see also [3]). It solves an alternating sequence

of NLP subproblems and MILP master problems, but avoids solving completely the MILP

master problems (as in the case of the OA method) by interrupting the MILP tree search

whenever a pair (x̃, ỹ) is found such that x̃ ∈ X ∩ Znd and ỹ solves the NLP subproblem

NLP(x̃) (see (1.2)). Because the NLP subproblems are not necessarily solved at each node,

LP/NLP-B&B cannot also be labeled as a B&B.

1.1.2 Heuristic methods for MINLP

Heuristic methods do not provide a guarantee of optimality at termination, and thus the

incumbent or best point found so far is not guaranteed to be an optimal solution. Any

of the decomposition methods mentioned above (OA or GBD) applied to a problem which

does not satisfy for instance a convexity assumption becomes a heuristic method. There are

several families of heuristics that have been successfully used for MILP problems: diving

heuristics [10], the feasibility pump technique (see [15, 25, 26]), and the relaxation induced

neighborhood search (see [22]). Later, some of these heuristics were extended to MINLP

problems by Bonami and Gonçalves [14]. We will only review here one of these heuristic

methods, the feasibility pump (FP). FP was introduced by Fischetti et al. [25] to find a good

feasible candidate point for MILPs (in other words, a point (x̃, ỹ) ∈ (X ∩Znd)×Y satisfying

g(x̃, ỹ) ≤ 0 and possibly not having a very high value f(x̃, ỹ), where now f and g are affine

functions). It can be viewed as a clever way to round a sequence points verifying all the

constraints of the original MILP, but possibly fractional in the discrete variables. Given a

point (x̂, ŷ) in these conditions, it is solved the linear program min{‖x − [x̂]‖1 : g(x, y) ≤
0, (x, y) ∈ X × Y }, where the i-th component [x̂]i represents x̂i rounded to the nearest

integer, with the aim of rounding x̂, and if its solution is not integer in the discrete variables,

the process is repeated. It was successfully applied to MILPs with binary discrete variables,

but not so well to instances with general discrete variables. Bertacco et al. [9] improved

FP in this more general scenario by applying a restarting scheme. Then, Achterberg and

Berthold [4] proposed a slight modification of the algorithm in order to find a better MILP

feasible candidate point, i.e., some other (x̃′, ỹ′) ∈ (X ∩Znd)×Y still satisfying g(x̃′, ỹ′) ≤ 0,

but with a much lower value f(x̃′, ỹ′). Later, in 2009, Bonami et al. [15] showed that FP can

be adapted to MINLP problems.

4

1.2 Summary of our work

In the above mentioned OA and GBD approaches (but also in the FP heuristic method),

the NLP subproblems are solved exactly, at least such property is assumed in the derivation

of the theoretical properties, such as the equivalence between original and master problems

and the finite termination of the corresponding algorithms. In this thesis we investigate the

effect of NLP subproblem inexactness in these techniques (see also our paper accepted for

publication [47]). For OA and GBD, we show how the cuts in the master problems can be

changed to incorporate the inexact residuals of the first-order necessary conditions of the

NLP subproblems, in a way that still renders the equivalence and finiteness properties, as

long as the size of these residuals allow inferring the cuts from the convexity properties. Such

residuals refer to the right hand sides of the duality and complementarity equations of the

first-order necessary conditions, which are no longer considered zero but of controllable size.

The first-order necessary conditions of the NLP subproblems can also be satisfied inexactly

due to the wrong sign of some of the Lagrange multipliers (being negative, or negative by

little, instead of non-negative). We extend our inexact OA and GBD methods to the case

where the negative part of these Lagrange multipliers is of controllable size.

We organize the thesis in the following way. In Chapter 2, we describe the exact methods

OA, GBD, and ECP and their main convergence properties. In Chapter 3, we extend OA

for the inexact solution of the NLP subproblems, rederiving the corresponding background

theory and main algorithm. In Chapter 4 we proceed similarly for GBD, also discussing

the relationship between the inexact forms of OA and GBD. Chapter 5 describes a set of

preliminary numerical experiments, reported to better understand some of the theoretical

features encountered in our study of inexactness in MINLP. In Chapter 6, we extend our

inexact OA and GBD approaches to the case where the Lagrange multipliers are (slightly)

negative. We end the thesis in Chapter 7 with some concluding remarks and prospects of

future work.

5

6

Chapter 2

Decomposition methods for MINLP

In this chapter, we review three well-known decomposition methods for solving convex

MINLP problems: outer approximation (OA), generalized Benders decomposition (GBD),

and the extended cutting plane (ECP) method. We start, in Section 2.1, by presenting and

discussing NLP formulations of subproblems related to (1.1) in Section 1.1, including their

first-order necessary conditions and covering feasible and infeasible cases. Then OA is intro-

duced in Section 2.2, GBD is described in Section 2.3, and the ECP method is presented in

Section 2.4. The algorithms OA and GBD are similar, in the sense that both build iteratively

a mixed integer linear programming (MILP) master problem by adding cuts taken at the

solution of NLP subproblems. The ECP method, however, does not require the solution of

NLP subproblems.

2.1 NLP subproblems and equivalent formulations

We assume that problem P defined in (1.1) (see Section 1.1) is convex. Let xj be any element

of X ∩ Znd . Consider, then, the (convex) subproblem

NLP(xj)

min
y

f(xj, y)

s.t. g(xj, y) ≤ 0,

y ∈ Y,

and suppose it is feasible, in the sense that there exists y ∈ Y such that g(xj, y) ≤ 0. In this

case, yj will represent an optimal solution of NLP(xj). One can then see that NLP(xj) yields

the upper bound f(xj, yj) to the optimal value of problem P. Given an xk in X ∩ Znd such

that NLP(xk) is infeasible, we will introduce two kinds of feasibility subproblems (‘feasibility’

in the sense of enforcing feasibility) and denote their optimal solutions by yk. The first

7

subproblem is

min
y∈Y

max
i∈{1,...,m}

g+i (xk, y),

where t+ = max{t, 0}, or equivalently

NLPF∞(xk)

min
y,u

u

s.t. gi(x
k, y) ≤ u, i = 1, . . . ,m,

y ∈ Y, u ∈ R,

(see Fletcher and Leyffer [27], Grossmann [32], and Quesada and Grossmann [53]). The

second feasibility problem is

min
y∈Y

m∑
i=1

g+i (xk, y),

or equivalently

NLPF1(x
k)

min
y,u

∑m
i=1 ui

s.t. g(xk, y) ≤ u,

u ≥ 0,

y ∈ Y, u ∈ Rm,

(see Fletcher and Leyffer [27] and Bonami et al. [12]). Note that u is a scalar in NLPF∞(xk)

and a vector in NLPF1(x
k).

As we have seen above, NLPF∞(xk) and NLPF1(x
k) can be interpreted as the mini-

mization of the `∞-norm and `1-norm, respectively, of the measure of infeasibility of the

corresponding NLP(xk) subproblem. So, one can easily see that these two subproblems are

feasible when NLP(xk) is infeasible. Although the `∞-norm and `1-norm are equivalent in

finite dimensional spaces, the optimal solutions of these two NLP subproblems might not be

the same in their y component, as the following example indicates.

Example 2.1.1. Consider the following MINLP problem

min x2 + y

s.t. −x+ y2 − y + 1 ≤ 0,

−x+ 2y ≤ 0,

x ∈ {0, 1}, y ∈ [0, 1].

One can see obviously that the subproblem NLP(0) is infeasible. The optimal solutions

of the two feasibility subproblems NLPF∞(0) and NLPF1(0), with respect to y, are 3−
√
5

2

and 0, respectively, and thus different.

8

When we know a priori which constraints are identified as infeasible in NLPF∞(xk) and

NLPF1(x
k), one can fit these two subproblems in a more general framework by using the

non-negative weights ωk1 , . . . , ω
k
m, and by posing the feasibility NLP subproblem

NLPFω(xk)

min

∑
j /∈Ik

ωkj g
+
j (xk, y)

s.t. gi(x
k, y) ≤ 0, i ∈ Ik,

y ∈ Y,

where, again, t+ = max{t, 0}, and Ik are the constraints identified as feasible. One can see

that NLPFω(xk) is the same as NLPF1(x
k) when ωkj = 1, j ∈ {1, . . . ,m}\Ik and Ik is the

set of indices i leading to u∗i = 0 in the solution of NLPF1(x
k). Analogously, NLPFω(xk)

is the same as NLPF∞(xk) when ωkj = 1 if gj(x
k, y) attains the maximum value u∗ in the

solution of NLPF∞(xk) and ωkj = 0 otherwise.

As we will see in the next lemma, the linear constraints obtained by linearizing gi,

i = 1, . . . ,m, around the optimal solutions of the feasibility NLP subproblems will be vi-

olated at the solution of these subproblems. This fact will later allow the master MILP

in OA algorithms to exclude previous pairs (xk, yk) as its optimal solutions and therefore

generate finite convergence for these methods. We state such a result for the feasibility NLP

subproblems in the more general format NLPFω(xk), as done in [27].

Lemma 2.1.1. For xk ∈ X ∩ Znd, if NLP(xk) is infeasible, so that yk solves NLPFω(xk)

with ∑
j /∈Ik

ωkj g
+
j (xk, yk) > 0,

for some Ik ⊂ {1, . . . ,m}, then x = xk violates the constraints

∇g(xk, yk)>

(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0,

for all y ∈ Y .

Then because NLPF∞(xk) and NLPF1(x
k) are two special cases of NLPFω(xk), this

lemma applies to these two feasibility NLP subproblems as well. The proof of Lemma 2.1.1

is simple and based on the first-order necessary conditions for NLPFω(xk). In Chapter 3 (at

the beginning of the proof of Theorem 3.4.1), we give a more general argument taking the

case of NLPF∞(xk), where these conditions are satisfied inexactly.

Now we need to enumerate the assignments of the discrete variables leading to feasible

9

and infeasible NLP subproblems:

T e = {j : xj ∈ X ∩ Znd ,NLP(xj) is feasible, and yj solves NLP(xj)} (2.1)

and

Se∞ = {k : xk ∈ X ∩ Znd ,NLP(xk) is infeasible, and yk solves NLPF∞(xk)}. (2.2)

Correspondingly, we also have

Se1 = {k : xk ∈ X ∩ Znd ,NLP(xk) is infeasible, and yk solves NLPF1(x
k)}

and

Seω = {k : xk ∈ X ∩ Znd ,NLP(xk) is infeasible, and yk solves NLPFω(xk)}.

For each of these discrete assignments, one needs also an algebraic characterization of the

optimal solutions of the corresponding NLP subproblems. For such a purpose, and since

the subproblems are convex, it suffices to work with first-order necessary conditions. For a

matter of simplicity, and without loss of generality, we suppose that the constraints y ∈ Y are

included in the constraints g(xj, y) ≤ 0 in problem NLP(xj), in the constraints gi(x
k, y) ≤

u, i = 1, . . . ,m, in problem NLPF∞(xk), and in the constraints g(xk, y) ≤ u in problem

NLPF1(x
k). Let us then assume that the optimal solutions of the NLP subproblems satisfy

the first-order necessary conditions also known as first-order necessary Karush-Kuhn-Tucker

conditions (or just KKT conditions in short). More particularly, in the case of NLP(xj), we

assume the existence of λj ∈ Rm
+ such that

∇yf(xj, yj) +
m∑
i=1

λji∇ygi(x
j, yj) = 0,

λjigi(x
j, yj) = 0, i = 1, . . . ,m.

When NLP(xk) is infeasible, we assume, for NLPF∞(xk), the existence of µk ∈ Rm
+ such that

m∑
i=1

µki∇ygi(x
k, yk) = 0,

1−
m∑
i=1

µki = 0,

µki (gi(x
k, yk)− uk) = 0, i = 1, . . . ,m.

As it is well known, these KKT conditions are necessary for local optimality under the

10

presence of a constraint qualification (see, e.g., [52]).

In the sequel, we use the superscripts l, p, and q to denote the iteration count, super-

script j to index the feasible NLP subproblems defined above, and k to indicate infeasible

subproblems. The following notation is adopted to distinguish between function values and

functions. f l = f(xl, yl) denotes the value of f evaluated at the point (xl, yl), similarly,

∇f l = ∇f(xl, yl) is the value of the gradient of f at the point (xl, yl), ∇xf
l = ∇xf(xl, yl) is

the value of the gradient of f with respect to x at the point (xl, yl), and ∇yf
l = ∇yf(xl, yl)

is the value of the gradient of f with respect to y at the point (xl, yl). Moreover, the same

conventions apply for all other functions in our thesis.

2.2 Outer approximation

In this section, we plan to compare two OA algorithms for solving a wide class of MINLP

problems where nonlinearities in the discrete variables are allowed as long as the correspond-

ing functions are convex in these variables. The OA algorithms were detailed by Fletcher

and Leyffer [27] and Bonami et al. [12]. They are both based on the standard outer ap-

proximation decomposition method for solving MINLPs of Duran and Grossmann [24] (and

later improved in [23, 60]), where the MILP master problem is obtained by linearizing the

objective function and the constraints only at feasible points of the original problem P.

On the one hand, Fletcher and Leyffer [27] showed that the argument given by Duran

and Grossmann in [24] was incomplete by providing one simple example where it is indeed

necessary to include information coming from the infeasible points of P. Then, they defined

an MILP master problem equivalent to the original MINLP by adding linearizations of the

constraints g also at the optimal solutions of the feasibility NLP subproblems NLPFω(xk).

The master MILP is posed in the variables α, x, and y and its cuts or constraints are defined

by linearizations of f at (xj, yj), j ∈ T e and by linearizations of g at both (xj, yj), j ∈ T e,

11

and (xk, yk), k ∈ Se∞, and is stated below,

POA
FL

min α

s.t. ∇f(xj, yj)>

(
x− xj
y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ 0,

∀j ∈ T e

∇g(xk, yk)>

(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0,

∀k ∈ Se∞
x ∈ X ∩ Znd , y ∈ Y, α ∈ R.

We remark that the authors in [27] used Seω rather than Se∞, but we use the latter one above

since it is the one adopted in our thesis and, moreover, we know that NLPF∞(xk) can be

seen as a special case of NLPFω(xk).

On the other hand, by also including cuts or constraints involving linearizations of the

objective function at the points (xk, yk), k ∈ Se∞, Bonami et al. [12] built an MILP master

problem different from the above one as follows:

POA
PB

min α

s.t. ∇f(xj, yj)>

(
x− xj
y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ 0,

∀j ∈ T e

∇f(xk, yk)>

(
x− xk
y − yk

)
+ f(xk, yk) ≤ α,

∇g(xk, yk)>

(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0,

∀k ∈ Se∞
x ∈ X ∩ Znd , y ∈ Y, α ∈ R.

We should also note that, strictly speaking, the authors in [12] used instead the index set

Se1. Despite the fact that in Section 2.1 we showed that the feasibility NLP subproblems

NLPF∞(xk) and NLPF1(x
k) may not have the same optimal solution, we have seen (in

Lemma 2.1.1) that there is no difference in using one or the other for establishing the

12

z

f

convex
objective
function

f(z)

z1 z2

1

Figure 2.1: Underestimating a function by linear representations.

equivalence between the convex MINLP problem P and the MILP master problem, under

the satisfaction of the KKT conditions at every solution of the NLP subproblems (as we will

see in Theorem 2.2.1).

Both OA methods are based on the equivalence between the corresponding master MILP

problem and the original MINLP problem P. By minimizing α in POA
FL we are minimizing

the continuous piecewise linear function

max
j∈T e

∇f(xj, yj)>

(
x− xj
y − yj

)
+ f(xj, yj) (2.3)

over the remaining constraints not involving f (in the case of POA
PB the max in (2.3) is taken

with respect to T e ∪ Se∞). So one is essentially replacing f by an underestimation of the

form represented in Figure 2.1. On the other hand, the constraints
∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ 0, j ∈ T e

∇g(xk, yk)>

(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0, k ∈ Se∞

(2.4)

define a polyhedral set which is a convex overestimation of the set {(x, y) ∈ X×Y : g(x, y) ≤
0}, as it is depicted in Figure 2.2.

As more terms are included in the piecewise linear underestimation (2.3) and more con-

straints are included in the polyhedral overestimation (2.4), the better are the corresponding

estimations. It comes therefore as no surprise that if the whole sets T e (or T e ∪ Se∞) and

13

z1

z2
convex
feasible
region

z1

z2

1

Figure 2.2: Overestimating a feasible region by linear constraints.

T e ∪ Se∞ are included in (2.3) and (2.4), then the master MILP becomes equivalent to the

original MINLP problem P. This statement is formally stated below (for a proof see [27]

or [12], respectively for POA
FL or POA

PB, or Theorem 3.4.1 in Chapter 3 when the inexact scenario

there considered is taken as exact). The equivalence says that the optimal solutions (x∗, y∗)

of P correspond to the optimal solutions (x∗, y∗, α∗) of POA
FL or POA

PB with α∗ = f(x∗, y∗). The

KKT conditions of the NLP subproblems play a major role in the proof.

Theorem 2.2.1. Let P be a convex MINLP problem as defined in (1.1). Assume that P is

feasible with a finite optimal value and that the KKT conditions are satisfied at every optimal

solution of NLP(xj) and NLPF∞(xk). Then P, POA
FL, and POA

PB have the same optimal value.

We now describe in more detail the OA approach. At each step of an OA algorithm,

one tries to solve a subproblem NLP(xp), where xp is chosen as a new discrete assignment.

Two results can then occur: either the NLP(xp) is feasible and an optimal solution yp is

computed, or this subproblem is found infeasible and an NLP subproblem, say NLPF∞(xp),

is solved, yielding an optimal solution yp. In the algorithm, the sets T e and Se∞ defined in

Section 2.1 will be replaced by:

(T e)p = {j : j ≤ p, xj ∈ X ∩ Znd ,NLP(xj) is feasible and yj solves NLP(xj)}

and

(Se∞)p = {k : k ≤ p, xk ∈ X ∩ Znd ,NLP(xk) is infeasible and yk solves NLPF∞(xk)}.

14

In order to prevent any xj, j ∈ (T e)p, from becoming the solution of the relaxed master

problem to be solved at the p-th iteration, one needs to add the constraint

α < UBDp
e,

where

UBDp
e = min

j ≤ p, j∈(T e)p
f(xj, yj).

The relaxed MILP master problem is then defined in the (x, y, α) variables as follows:

(POA
PB)p

min α

s.t. α < UBDp
e,

∇f(xj, yj)>

(
x− xj
y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ 0,

∀j ∈ (T e)p

∇f(xk, yk)>

(
x− xk
y − yk

)
+ f(xk, yk) ≤ α,

∇g(xk, yk)>

(
x− xk
y − yk

)
+ g(xk, yk) ≤ 0,

∀k ∈ (Se∞)p

x ∈ X ∩ Znd , y ∈ Y, α ∈ R.

Here we have chosen the OA approach of [12], corresponding to POA
PB, but a formulation

based on POA
FL would lead to the same convergence result given later in Theorem 2.2.2. A

detailed description of such an outer approximation algorithm can be introduced as follows:

Algorithm 2.2.1 (Outer Approximation).

Initialization

Let x0 be given. Set p = 0, (T e)−1 = ∅, (Se∞)−1 = ∅, and UBDe = +∞.

REPEAT

1. Solve the subproblem NLP(xp), or the feasibility subproblem NLPF∞(xp) pro-

vided NLP(xp) is infeasible, and let yp be an optimal solution.

2. Linearize the objective function and constraints at (xp, yp). Renew (T e)p =

(T e)p−1 ∪ {p} or (Se∞)p = (Se∞)p−1 ∪ {p}.

15

3. If NLP(xp) is feasible and f(xp, yp) < UBDe, then update current best point by

setting x̄ = xp, ȳ = yp, and UBDe = f(xp, yp).

4. Solve the master problem (POA
PB)p, obtaining a new discrete assignment xp+1 to be

tested in the algorithm. Increment p by one unit.

UNTIL ((POA
PB)p is infeasible).

Such an algorithm terminates in a finite number of steps (a proof is given in Section 3.5,

see Theorem 3.5.1, for the case where the KKT conditions of the subproblems are possibly

inexact).

Theorem 2.2.2. Let P be a convex MINLP problem as defined in (1.1). Assume that either

P has a finite optimal value or is infeasible, and that the KKT conditions are satisfied at

every optimal solution of all NLP subproblems. Then Algorithm 2.2.1 terminates in a finite

number of steps at an optimal solution of P or with an indication that P is infeasible.

2.3 Generalized Benders decomposition

In this section, we briefly review the generalized Benders decomposition (GBD) for solving

MINLP problems developed by Geoffrion [31].

Suppose that the KKT conditions are satisfied at every solution of the NLP subproblems

introduced in Section 2.2. For any xj ∈ X∩Znd , if NLP(xj) is feasible, let λj be the Lagrange

multiplier corresponding to its optimal solution yj. Otherwise, denote by µj the Lagrange

multiplier corresponding to the optimal solution yj to NLPF∞(xj). Then the master problem

for GBD can be built as follows (in the variables x and α):

PGBD
original

min α

s.t. infy∈Y
{
f(x, y) + (λj)Tg(x, y)

}
≤ α, ∀j ∈ T e

infy∈Y
{

(µk)Tg(x, y)
}
≤ 0, ∀k ∈ Se∞

x ∈ X ∩ Znd , α ∈ R,

where T e and Se∞ are defined as in Section 2.1.

There is an alternative formulation for the MILP master problem PGBD
original (in the sense

16

that is implied by PGBD
original) provided by Flippo et al. [29] (see [44] and also [32, 46, 53]):

PGBD

min α

s.t. f(xj, yj) +∇xf(xj, yj)>(x− xj)
+(λj)>

[
g(xj, yj) +∇xg(xj, yj)>(x− xj)

]
≤ α, j ∈ T e

(µk)>
[
g(xk, yk) +∇xg(xk, yk)>(x− xk)

]
≤ 0, k ∈ Se∞

x ∈ X ∩ Znd , α ∈ R.

In fact, the cuts in PGBD can be interpreted as surrogate constraints of the equations in

PGBD
original, and one can read a more general proof of this fact in Section 4.3 for the case where

the KKT conditions are possibly satisfied inexactly.

The master problem PGBD is also not posed in the continuous variables y and contains

only one constraint per NLP subproblem. Although this could seem advantageous when

compared to OA, numerical experience shows OA to be a faster method (see [23, 28, 32]).

Such a behavior is explained by the following fact, for which the proof is postponed to

Section 4.1 (see Theorem 4.1.1) in the inexact context of this thesis.

Property 2.3.1. Given some sets T e and Se∞ (the ones in (2.1) and (2.2) or any subsets of

those), the lower bound predicted by the master problem POA
FL or POA

PB is greater than or equal

to the one predicted by the master problem PGBD.

Moreover, by [31, 32], we can show the equivalence between PGBD and P as follows, in

the sense that they have the same optimal value, and that an optimal solution (x∗, y∗) of P

corresponds to an optimal solution (x∗, α∗) of PGBD with α∗ = f(x∗, y∗).

Theorem 2.3.1. Let P be a convex MINLP problem as defined in (1.1). Assume that P is

feasible with a finite optimal value and that the KKT conditions are satisfied at every optimal

solution of NLP(xj) and NLPF∞(xk). Then P and PGBD have the same optimal value.

The GBD strategy relies on the iterative solution of the following relaxed MILP:

(PGBD)p

min α

s.t. α < UBDp
e,

f(xj, yj) +∇xf(xj, yj)>(x− xj)
+(λj)>[g(xj, yj) +∇xg(xj, yj)>(x− xj)] ≤ α, j ∈ (T e)p

(µk)>[g(xk, yk) +∇xg(xk, yk)>(x− xk)] ≤ 0, k ∈ (Se∞)p

x ∈ X ∩ Znd , α ∈ R,

17

where the definitions of UBDp
e, (T e)p, and (Se∞)p are the same as those in Section 2.2. The

GBD algorithm is presented below.

Algorithm 2.3.1 (Generalized Benders Decomposition).

Initialization

Let x0 be given. Set p = 0, (T e)−1 = ∅, (Se∞)−1 = ∅, and UBDe = +∞.

REPEAT

1. Solve the subproblem NLP(xp), or the feasibility subproblem NLPF∞(xp) pro-

vided NLP(xp) is infeasible, and let yp be an optimal solution.

2. Linearize the objective function and constraints at (xp, yp). Renew (T e)p =

(T e)p−1 ∪ {p} or (Se∞)p = (Se∞)p−1 ∪ {p}.

3. If NLP(xp) is feasible and f(xp, yp) < UBDe, then update current best point by

setting x̄ = xp, ȳ = yp, and UBDe = f(xp, yp).

4. Solve the master problem (PGBD)p, obtaining a new discrete assignment xp+1 to

be tested in the algorithm. Increment p by one unit.

UNTIL ((PGBD)p is infeasible).

The GBD algorithm is shown to terminate in a finite number of steps (a proof is given

in Section 4.2, see Theorem 4.2.1, for the case where the KKT conditions of the NLP sub-

problems are possibly inexact).

Theorem 2.3.2. Let P be a convex MINLP problem as defined in (1.1). Assume that either

P has a finite optimal value or is infeasible, and that the KKT conditions are satisfied at

every optimal solution of all NLP subproblems. Then Algorithm 2.3.1 terminates in a finite

number of steps at an optimal solution of P or with an indication that P is infeasible.

2.4 The extended cutting plane method

Westerlund and Pettersson [61] proposed the extended cutting plane (ECP) method for

convex MINLP, which is an extension of Kelly’s cutting plane method [36] for convex NLP.

ECP does not rely on the solution of NLP subproblems. The main idea is also to keep

updating and solving a relaxed MILP master problem. If its optimal solution is not feasible

to the original problem, one generates a cutting plane using the most violated constraint

at this point and add it to the MILP relaxation, until its solution becomes feasible with

18

1

Figure 2.3: The MINLP feasible integer points.

1

Figure 2.4: An MILP ECP relaxation.

respect to the MINLP constraints g(x, y) ≤ 0. One can see this process more clearly from

Figures 2.3, 2.4, 2.5, and 2.6 (taken from [42]).

For the moment, suppose that f(x, y) is a linear function of the form f(x, y) = c>x x+c>y y.

The ECP method would start by solving the MILP (obtained from the original MINLP

problem P by removing the nonlinear constraints g(x, y) ≤ 0):{
min c>x x+ c>y y

s.t. x ∈ X ∩ Znd , y ∈ Y,

or, equivalently,

(PECP)0

min α

s.t. f(x, y) ≤ α,

x ∈ X ∩ Znd , y ∈ Y, α ∈ R.

Let (x0, y0, α0) be its optimal solution. To construct the subsequent master MILP problems,

given a new incoming point (xk, yk) ∈ (X ∩ Znd)× Y , we define a new function Gk(x, y) as

19

1

Figure 2.5: A new cutting plane generated by ECP.

1

Figure 2.6: The new MILP ECP relaxation.

20

follows:

Gk(x, y) = gi(x, y), where i ∈ arg max
j∈{1,...,m}

gj(x
k, yk).

Then one can build the relaxed master MILP problem of the method ECP in the following

way (assuming p ≥ 1 and considering as variables x, y, and α):

(PECP)p

min α

s.t. ∇f(xk, yk)>

(
x− xk
y − yk

)
+ f(xk, yk) ≤ α, ∀k = 0, . . . , p− 1,

∇Gk(x
k, yk)>

(
x− xk
y − yk

)
+Gk(x

k, yk) ≤ 0, ∀k = 0, . . . , p− 1,

x ∈ X ∩ Znd , y ∈ Y, α ∈ R.

Let (xp, yp, αp) denote its optimal solution and αp the corresponding optimal value. One can

easily see that the optimal values form a monotonically increasing sequence, i.e., that

αp ≥ αp−1 ≥ · · · ≥ α0.

Moreover, once a solution (xk, yk, αk) of the relaxed MILP problem is feasible, i.e., g(xk, yk) ≤
0, (xk, yk) will be a solution of the original problem P. The ECP algorithm is detailed next

for the case f(x, y) = c>x x+ c>y y.

Algorithm 2.4.1 (Extended Cutting Plane Method).

Initialization

Set p = 0.

REPEAT

1. Solve the relaxed master problem (PECP)p, and let an optimal solution be denoted

by (xp, yp, αp).

2. If Gp(x
p, yp) ≤ 0, update current best point by setting x̄ = xp and ȳ = yp. Oth-

erwise, linearize the objective function and the constraint Gp(x, y) at (xp, yp) and

use these linearizations to define the relaxed master problem (PECP)p+1. Incre-

ment p by one unit.

UNTIL (Gp(x
p, yp) ≤ 0).

The convergence of the extended cutting plane method is formally stated as follows

(see [61] for a proof).

21

Theorem 2.4.1. Let P be a convex MINLP problem as defined in (1.1) for which Y is

compact and assume that P has a finite optimal value. Then Algorithm 2.4.1 terminates in

a finite number of steps at an optimal solution of P.

If f(x, y) is not linear, the final point obtained by Algorithm 2.4.1 may not be the opti-

mal solution of the original problem. But we can guarantee that all the above considerations

would still be true by transforming the original problem so that it has a linear objective

function. One just needs to introduce an auxiliary variable ξ ∈ R and move the original ob-

jective function into the constraints using f(x, y)−ξ ≤ 0, and replace the original continuous

variable y ∈ Y ⊆ Rnc by (y, ξ) ∈ (Y × R) ⊆ Rnc+1.

22

Chapter 3

Inexact outer approximation

The OA algorithm described in Chapter 2 required the exact solution of all NLP subproblems.

In this chapter, we want to investigate how the OA method is affected when the NLP

subproblems are solved inexactly. We start in Section 3.1 by introducing the inexact version

of the first-order necessary conditions for the NLP subproblems. Then we show in Section 3.2

how the cuts in the master OA problem can be changed to incorporate the inexact residuals

of these KKT conditions. Section 3.3 introduces and comments on the conditions required

for validating the analysis in the inexact case. This analysis is given in Section 3.4 for the

equivalence between a perturbed MINLP problem and the corresponding master problem,

and in Section 3.5 for the convergence of the algorithm.

3.1 Inexact solution of NLP subproblems

Similarly to the exact case in Section 2.1, given any xj ∈ X ∩ Znd , if the NLP subproblem

NLP(xj)

min f(xj, y)

s.t. g(xj, y) ≤ 0,

y ∈ Y,

is feasible, we use yj to denote its approximate optimal solution. For an xk ∈ X ∩ Znd for

which NLP(xk) is infeasible, we use yk to represent an approximate optimal solution of the

feasibility subproblem

NLPF∞(xk)

min u

s.t. gi(x
k, y) ≤ u, i = 1, . . . ,m,

y ∈ Y, u ∈ R.

23

Following what we wrote in the exact case, we enumerate all the discrete assignments using

the following sets of indices:

T = {j : xj ∈ X ∩ Znd ,NLP(xj) is feasible and yj approximately solves NLP(xj)}

and

S∞ = {k : xk ∈ X ∩ Znd ,NLP(xk) is infeasible and yk approximately solves NLPF∞(xk)}.

As in the exact case, we suppose that the constraints y ∈ Y are part of the con-

straints g(xj, y) ≤ 0 and gi(x
k, y) ≤ u, i = 1, . . . ,m, in the subproblems NLP(xj) and

NLPF∞(xk), respectively. In addition, let us assume that the approximate optimal solutions

of the NLP subproblems satisfy an inexact form of the corresponding first-order necessary

KKT conditions. More particularly, in the case of NLP(xj), we assume the existence of

λj ∈ Rm
+ , r

j ∈ Rnc , and sj ∈ Rm, such that

∇yf(xj, yj) +
m∑
i=1

λji∇ygi(x
j, yj) = rj, (3.1)

λjigi(x
j, yj) = sji , i = 1, . . . ,m. (3.2)

When NLP(xk) is infeasible, we assume, for NLPF∞(xk), the existence of µk ∈ Rm
+ , zk ∈ Rm,

wk ∈ R, and vk ∈ Rnc , such that

m∑
i=1

µki∇ygi(x
k, yk) = vk, (3.3)

1−
m∑
i=1

µki = wk, (3.4)

µki (gi(x
k, yk)− uk) = zki , i = 1, . . . ,m. (3.5)

The size of the residuals rj, sj, vk, wk, and zk will be required to satisfy appropriate assump-

tions. The inexact version of OA (and the inexact GBD in Chapter 4) studied in this thesis

will attempt to find the best pair among all of the form (xj, yj) corresponding to j ∈ T .

Implicitly, we are thus redefining a perturbed version of problem P and will denote it by P :

P
{

min
j∈T

f(xj, yj) (3.6)

This problem is well defined if T 6= ∅ which in turn can be assumed when the original MINLP

problem P has a finite optimal value.

Finally we would like to stress that the point yj satisfying the inexact KKT condi-

24

tions (3.1)–(3.2) of the subproblem NLP(xj) can be interpreted as a solution of a perturbed

NLP subproblem, which has the form

perturbed NLP(xj)

min f(xj, y)− (rj)>(y − yj)
s.t. g(xj, y)− tj ≤ 0,

y ∈ Y,

where, for i = 1, . . . ,m,

tji =

sji
λji
, if λji > 0,

0, if λji = 0.
(3.7)

The data of this perturbed subproblem depends, however, on the approximate optimal so-

lution yj and inexact Lagrange multipliers λj. Similarly, the point yk satisfying the inexact

KKT conditions (3.3)–(3.5) of the subproblem NLPF∞(xk) can be interpreted as a solution

of the following perturbed NLP subproblem

perturbed NLPF∞(xk)

min u− (vk)>(y − yk)− wk(u− uk)
s.t. gi(x

k, y)− u− cki ≤ 0, i = 1, . . . ,m,

y ∈ Y, u ∈ R,

where, for i = 1, . . . ,m,

cki =

{
zki
µki
, if µki > 0,

0, if µki = 0,

which also depends on unknown information (approximate optimal solution (yk, uk) and

inexact Lagrange multiplies µk).

3.2 Inexact OA master problem

As shown in Section 2.2, OA relies on the fact that the original problem P is equivalent to

an MILP (master problem) formed by minimizing the least of the linearized forms of f for

indices in T e (or T e∪Se∞) subject to the linearized forms of g for indices in T e and Se∞. When

the NLP subproblems are solved inexactly (see the definitions in Section 3.1), one has to

consider perturbed forms of such cuts or linearized forms in order to keep an equivalence, this

time to the perturbed problem P . In turn, these inexact cuts lead to a different, perturbed

25

MILP (master problem) given by

POA

min α

s.t.

(
∇xf(xj, yj)

∇yf(xj, yj)− rj

)>(
x− xj
y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ tj, ∀j ∈ T,

∇f(xk, yk)>

(
x− xk
y − yk

)
+ f(xk, yk) ≤ α,(

∇xgi(x
k, yk)

∇ygi(x
k, yk)− 1

1−wk v
k

)>(
x− xk
y − yk

)
+ gi(x

k, yk) ≤ aki ,

i = 1, . . . ,m, ∀k ∈ S∞,
x ∈ X ∩ Znd , y ∈ Y, α ∈ R,

where tj is given by (3.7), for i = 1, . . . ,m,

aki =

mk+z

k
i −wkuk

mk+µ
k
i

, if µki > 0,

0, if µki = 0
(3.8)

(mk
+ is the number of positive components in µk), and wk < 1. Note that when r, s,

v, w, and z are zero, we obtain the well-known master problem in OA. We have added

the linearizations of the objective function in the infeasible cases, as suggested in [12] and

discussed in Section 2.2.

3.3 Assumptions for the inexact case

From the convexity and continuous differentiability of f and g, we know that, for any

(xl, yl) ∈ Rnd × Rnc ,

f(x, y) ≥ f(xl, yl) +∇f(xl, yl)>

(
x− xl
y − yl

)
, (3.9)

g(x, y) ≥ g(xl, yl) +∇g(xl, yl)>

(
x− xl
y − yl

)
. (3.10)

26

In addition, when yj is a feasible point of NLP(xj), we obtain from (3.10) and g(xj, yj) ≤ 0

that

0 ≥ g(xl, yl) +∇g(xl, yl)>

(
xj − xl
yj − yl

)
. (3.11)

The inexact OA method reported in this chapter, as well as the GBD method of the next

chapter, requires the residuals of the inexact KKT conditions to satisfy the bounds given

in the next two assumptions, in order to validate the equivalence between perturbed and

master problems, and to ensure finiteness of the respective algorithms. We first give the

bounds on the residuals r and s for the feasible case.

Assumption 3.3.1. Given any l, j ∈ T , with l 6= j, assume that

‖rl‖ ≤
−τ
[

(∇f l)>
(
xj − xl
yj − yl

)
+ f l − f j

]
‖yj − yl‖ ,

for some τ ∈ [0, 1], and

|sli| ≤ −σiλli

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]
,

for some σi ∈ [0, 1], i = 1, . . . ,m.

Essentially, these bounds will ensure that the above convexity properties will still imply

the inexact cuts for all combinations of discrete assignments l, j ∈ T . In fact, the inexact

cuts are defined by perturbed gradients of the form ∇yf(xj, yj) − rj, yielding perturbed

slopes. However, if the size of the perturbation rj is relatively small, the corresponding

inexact or perturbed cut is still valid at all remaining discrete assignments, and this is what

is in fact imposed by Assumption 3.3.1 (see Figure 3.1). In the case of exact cuts, convexity

trivially enforces the validness of the cuts (see also Figure 3.1), but the presence of perturbed

gradients may destroy it unless we restrict the size of such perturbations.

Now, we state the bounds for the residuals v, w, and z in the infeasible case.

Assumption 3.3.2. Given any j ∈ T and any k ∈ S∞, and for all i ∈ {1, . . . ,m}, if µki 6= 0,

assume that

1

1− wk ‖v
k‖ ‖yj − yk‖+

1

µki
|zki |+

uk

mk
+µ

k
i

|wk| ≤ −βi
[

(∇gki)>

(
xj − xk
yj − yk

)
+ gki

]
,

27

z

h

h(z)

zl zj

h(zj)

h(zl) + (∇h(zl)− rl)T (zj − zl)

h(zl) +∇h(zl)T (zj − zl)

1

Figure 3.1: Exact and inexact cuts under convexity (for a generic function h).

for some βi ∈ [0, 1], otherwise, assume that

1

1− wk ‖v
k‖ ‖yj − yk‖ ≤ −ηi

[
(∇gki)>

(
xj − xk
yj − yk

)
+ gki

]
,

for some ηi ∈ [0, 1].

The motivation and restrictiveness of Assumption 3.3.2 are the same as in Assump-

tion 3.3.1.

It is important to note that the complete satisfaction of the inequalities stated in Assump-

tions 3.3.1 and 3.3.2 requires the inexact solution for all possible assignments of the discrete

variables. As one can see from the proof of Theorem 3.4.1 below, the non satisfaction of one

of the inequalities in these assumptions may have as a potential effect the deterioration of

the upper bound on the optimal value of the original MINLP and consequently failure to

determine an optimal solution.

3.4 Equivalence between perturbed and master prob-

lems for OA

We are now in a position to state the equivalence between the original, perturbed MINLP

problem and the MILP master problem POA.

Theorem 3.4.1. Let P be the convex MINLP problem (1.1) and P be its perturbed problem

as defined in (3.6). Suppose that the classification of feasibility for the NLP subproblems

NLP(xj) is made exactly. Assume that P is feasible with a finite optimal value and that the

residuals of the KKT conditions of the NLP subproblems satisfy Assumptions 3.3.1 and 3.3.2.

Then POA and P have the same optimal value.

28

Proof. The proof follows closely the lines of the proof of [12, Theorem 1]. Since problem P

has a finite optimal value it follows (i) that for every x ∈ X ∩ Znd , either problem NLP(x)

is feasible with a finite optimal value or it is infeasible, (ii) that the sets T and S∞ are well

defined, and (iii) that the set T is nonempty. Now, given any xl ∈ X ∩Znd with l ∈ T ∪S∞,

let POA
xl denote the problem in α and y obtained from POA when x is fixed to xl. First we

will prove that problem POA
xk is infeasible for every k ∈ S∞.

Part I. Establishing infeasibility of POA
xk for k ∈ S∞.

In this case, problem NLP(xk) is infeasible and yk is an approximate optimal solution of

NLPF∞(xk) with corresponding inexact non-negative Lagrange multipliers µk. When we set

x = xk, the corresponding constraints in POA will result in(
∇ygi(x

k, yk)− 1

1− wk v
k

)>
(y − yk) + gi(x

k, yk) ≤ aki , (3.12)

for i = 1, . . . ,m. Multiplying the inequalities in (3.12) by the non-negative multipliers

µk1, . . . , µ
k
m, and summing them up, one obtains(
m∑
i=1

µki∇ygi(x
k, yk)− vk

)>
(y − yk) ≤

m∑
i=1

(zki − µki gi(xk, yk))− wkuk. (3.13)

By using (3.3), one can see that the left hand side of the inequality in (3.13) is equal to 0.

On the other hand, by using equation (3.5), the right hand side of the inequality in (3.13)

results in
∑m

i=1(z
k
i −µki gi(xk, yk))−wkuk = −(Σm

i=1µ
k
i +wk)uk, which is equal to −uk by (3.4).

Since NLP(xk) is infeasible, −uk must be strictly negative. We have thus proved that the

inequality (3.13) has no solution y.

This derivation implies that the minimum value of POA should be found as the minimum

value of POA
xj over all xj ∈ X ∩Znd with j ∈ T . We prove in the next two separate subparts

that, for every j ∈ T , the optimal value ᾱj of POA
xj coincides with the approximate optimal

value of NLP(xj).

Part II. Establishing that POA
xj has the same objective value as the perturbed

NLP(xj) for j ∈ T .

We will show next that (yj, f(xj, yj)) is a feasible solution of POA
xj , and therefore that

f(xj, yj) is an upper bound on the optimal value ᾱj of POA
xj .

Part II–A. Establishing that f(xj, yj) is an upper bound for the optimal value

of POA
xj for j ∈ T .

29

In this case, it is easy to see that POA
xj contains all the constraints indexed by l ∈ T(

∇xf(xl, yl)

∇yf(xl, yl)− rl

)>(
xj − xl
y − yl

)
+ f(xl, yl) ≤ α, (3.14)

∇g(xl, yl)>

(
xj − xl
y − yl

)
+ g(xl, yl) ≤ tl, (3.15)

where, for i = 1, . . . ,m,

tli =

{
sli
λli
, if λli > 0,

0, if λli = 0,

as well as all the constraints indexed by k ∈ S∞

∇f(xk, yk)>

(
xj − xk
y − yk

)
+ f(xk, yk) ≤ α, (3.16)

and by k ∈ S∞ and i ∈ {1, . . . ,m}(
∇xgi(x

k, yk)

∇ygi(x
k, yk)− 1

1−wk v
k

)>(
xj − xk
y − yk

)
+ gi(x

k, yk) ≤ aki , (3.17)

where aki is given as in (3.8).

First take any l ∈ T and assume that yl is an approximate optimal solution of NLP(xl)

with corresponding inexact non-negative Lagrange multipliers λl. If l = j, it is easy to

verify that (yj, f(xj, yj)) satisfies (3.14) and (3.15). Assume then that l 6= j. From Assump-

tion 3.3.1, we know that, for some τ ∈ [0, 1],

−(rl)>(yj − yl) ≤ ‖rl‖ ‖yj − yl‖ ≤ −τ
[

(∇f l)>
(
xj − xl
yj − yl

)
+ f l − f j

]
.

Thus, [
(∇f l)>

(
xj − xl
yj − yl

)
+ f l − f j

]
− (rl)>(yj − yl)

≤ (1− τ)

[
(∇f l)>

(
xj − xl
yj − yl

)
+ f l − f j

]
≤ 0,

where the last inequality comes from 1− τ ≥ 0 and (3.9) with (x, y) = (xj, yj). We then see

that (3.14) is satisfied with α = f(xj, yj) and y = yj.

30

Now, from Assumption 3.3.1, one has for some σi ∈ [0, 1], i = 1, . . . ,m,

λli

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]
− sli ≤ λli

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]

− σiλ
l
i

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]

≤ (1− σi)λli

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]
≤ 0,

where the last inequality is justified by (3.11) and σi ∈ [0, 1]. Thus,

λli

[
(∇gli)>

(
xj − xl
yj − yl

)
+ gli

]
≤ sli, i = 1, . . . ,m. (3.18)

If λli is equal to 0, so is tli by its definition and we see that (yj, f(xj, yj)) satisfies the

constraints (3.15) with y = yj. If λli 6= 0, then (3.18) can be written as:

∇gi(xl, yl)>
(
xj − xl
yj − yl

)
+ gi(x

l, yl) ≤ sli
λli

= tli,

which also shows that the constraints (3.15) hold with y = yj.

Finally, we take any k ∈ S∞ and assume that yk is an approximate optimal solution of

NLPF∞(xk) with corresponding inexact Lagrange multipliers µk. It results trivially from

the assumption on convexity that the constraints (3.16) are satisfied with y = yj and α =

f(xj, yj). Now, for every i ∈ {1, . . . ,m}, if µki 6= 0, from Assumption 3.3.2, we have for some

βi ∈ [0, 1], that

− 1

1− wk (vk)>(yj − yk)− 1

µki
zki +

uk

mk
+µ

k
i

wk ≤ −βi
[

(∇gki)>

(
xj − xk
yj − yk

)
+ gki

]
,

i.e.,

− 1

1− wk (vk)>(yj − yk)− aki ≤ −βi
[

(∇gki)>

(
xj − xk
yj − yk

)
+ gki

]
by the definition of aki . Thus, the constraints (3.17) are satisfied with y = yj. When µki = 0,

it results that aki = 0 by its definition and, also by Assumption 3.3.2, we have that, for some

31

ηi ∈ [0, 1],

(∇gki)>

(
xj − xk
yj − yk

)
+ gki −

1

1− wk (vk)>(yj − yk) ≤ (1− ηi)
[

(∇gki)>

(
xj − xk
yj − yk

)
+ gki

]
≤ 0.

This also shows that the constraints (3.17) hold with y = yj.

We can therefore say that (yj, f(xj, yj)) is a feasible point of POA
xj , and thus ᾱj ≤ f(xj, yj).

Next, we will prove that f(xj, yj) is also a lower bound, i.e., ᾱj ≥ f(xj, yj).

Part II–B. Establishing that f(xj, yj) is a lower bound for the optimal value

of POA
xj for j ∈ T .

Recall that yj is an approximate optimal solution of NLP(xj) satisfying the inexact KKT

conditions (3.1) and (3.2). By construction, any solution of POA
xj has to satisfy the inexact

outer-approximation constraints:

(∇yf(xj, yj)− rj)>(y − yj) + f(xj, yj) ≤ α, (3.19)

∇yg(xj, yj)>(y − yj) + g(xj, yj) ≤ tj. (3.20)

Multiplying the inequalities (3.20) by the non-negative multipliers λj1, . . . , λ
j
m and summing

them together with (3.19), one obtains

(∇yf(xj, yj)− rj)>(y − yj) + f(xj, yj) +
m∑
i=1

λji (∇ygi(x
j, yj)>(y − yj) + gi(x

j, yj)− sji) ≤ α.

(3.21)

The left hand side of the inequality (3.21) can be rewritten as:(
∇yf(xj, yj) +

m∑
i=1

λji∇ygi(x
j, yj)− rj

)>
(y − yj) +

m∑
i=1

(λjigi(x
j, yj)− sji) + f(xj, yj).

By using (3.1) and (3.2), this quantity is equal to f(xj, yj), and it follows that inequal-

ity (3.21) is equivalent to f(xj, yj) ≤ α.

In conclusion, for any xj ∈ X ∩ Znd with j ∈ T , problems POA
xj and perturbed NLP(xj)

have the same optimal value. In other words, the MILP problem POA has the same optimal

value as the perturbed problem P given by (3.6).

It is easy to see that when the KKT conditions are exact (i.e., all the right hand side

residuals are zero), we recover Theorem 2.2.1 in Chapter 2. Moreover, this result would

remain true if we had used, as NLP feasibility subproblem, NLPF1(x
k) instead of NLPF∞(xk)

(recall that NLPF1(x
k) has been introduced in Section 2.1).

32

3.5 Inexact OA algorithm

One knows that the outer approximation algorithm terminates finitely when the MINLP

problem P is convex and when the optimal solutions of the NLP subproblems satisfy the

first-order KKT conditions (see Section 2.2). In this section, we will extend the outer ap-

proximation algorithm to the inexact solution of the NLP subproblems by incorporating the

corresponding residuals in the cuts of the master problems.

As in the exact case (see Section 2.2), at each step of the inexact OA algorithm, one tries

to solve a subproblem NLP(xp), where xp is chosen as a new discrete assignment. Two results

can then occur: either NLP(xp) is feasible and an approximate optimal solution yp can be

given, or this subproblem is found infeasible and another NLP subproblem, say NLPF∞(xp),

is solved, yielding an approximate optimal solution yp. In the algorithm, the sets T and S∞

defined in the Section 3.1 will be replaced by:

T p = {j : j ≤ p, xj ∈ X ∩ Znd ,NLP(xj) is feasible and yj approximately solves NLP(xj)}

and

(S∞)p = {k : k ≤ p, xk ∈ X ∩ Znd ,NLP(xk) is infeasible and yk approximately solves

NLPF∞(xk)}.

As before, yj and yk denote the approximate solutions of NLP(xj) and NLPF∞(xk), respec-

tively. In order to prevent any xj, j ∈ T p, from becoming the solution of the relaxed master

problem to be solved at the p-th iteration, one needs to add the constraint

α < UBDp,

where

UBDp = min
j ≤ p,j∈T p

f(xj, yj).

33

Then we define the following inexact relaxed MILP master problem

(POA)p

min α

s.t. α < UBDp,(
∇xf(xj, yj)

∇yf(xj, yj)− rj

)>(
x− xj
y − yj

)
+ f(xj, yj) ≤ α,

∇g(xj, yj)>

(
x− xj
y − yj

)
+ g(xj, yj) ≤ tj, ∀j ∈ T p,

∇f(xk, yk)>

(
x− xk
y − yk

)
+ f(xk, yk) ≤ α,(

∇xgi(x
k, yk)

∇ygi(x
k, yk)− 1

1−wk v
k

)>(
x− xk
y − yk

)
+ gi(x

k, yk) ≤ aki ,

i = 1, . . . ,m, ∀k ∈ (S∞)p,

x ∈ X ∩ Znd , y ∈ Y, α ∈ R,

where tj and aki were defined in (3.7) and (3.8), respectively. The presentation of the inexact

OA algorithm (given next) and the proof of its finiteness in Theorem 3.5.1 follows the lines

in [27].

Algorithm 3.5.1 (Inexact Outer Approximation).

Initialization

Let x0 be given. Set p = 0, T−1 = ∅, (S∞)−1 = ∅, and UBD = +∞.

REPEAT

1. Inexactly solve the subproblem NLP(xp), or the feasibility subproblem NLPF∞(xp)

provided NLP(xp) is infeasible, and let yp be an approximate optimal solution.

At the same time, obtain the corresponding inexact Lagrange multipliers λp of

NLP(xp) (resp. µp of NLPF∞(xp)). Evaluate the residuals rp and sp of NLP(xp)

(resp. vp, wp, and zp of NLPF∞(xp)).

2. Linearize the objective functions and constraints at (xp, yp). Renew T p = T p−1 ∪
{p} or (S∞)p = (S∞)p−1 ∪ {p}.

3. If NLP(xp) is feasible and f(xp, yp) < UBD, then update current best point by

setting x̄ = xp, ȳ = yp, and UBD = f(xp, yp).

4. Solve the relaxed master problem (POA)p, obtaining a new discrete assignment

xp+1 to be tested in the algorithm. Increment p by one unit.

34

UNTIL ((POA)p is infeasible).

If termination occurs with UBD = +∞ , then the algorithm visited every discrete as-

signment x ∈ X ∩Znd but did not obtain a feasible point for the original MINLP problem P,

or perturbed version P . In this case, the MINLP is declared infeasible. Next, we will show

that the inexact OA algorithm also terminates in a finite number of steps.

Theorem 3.5.1. Let P be the convex MINLP problem (1.1) and P be its perturbed problem

as defined in (3.6). Suppose that the classification of feasibility for the NLP subproblems

NLP(xj) is made exactly. Assume that either P has a finite optimal value or is infeasible, and

that the residuals of the KKT conditions of the NLP subproblems satisfy Assumptions 3.3.1

and 3.3.2. Then Algorithm 3.5.1 terminates in a finite number of steps at an optimal solution

of P or with an indication that P is infeasible.

Proof. Since the set X is bounded by assumption, finite termination of Algorithm 3.5.1 will

be established by proving that no discrete assignment is generated twice by the algorithm.

Let q ≤ p. If q ∈ (S∞)p, it has been shown in Part I of the proof of Theorem 3.4.1

that the corresponding constraint in POA
xp , derived from the feasibility problem NLPF∞(xq),

cannot be satisfied, showing that xq cannot be feasible for (POA)p.

We will now show that xq cannot be feasible for (POA)p when q ∈ T p. For this purpose,

let us assume that xq is feasible in (POA)p and try to reach a contradiction. Let yq be an

approximate optimal solution of NLP(xq) satisfying the inexact KKT conditions, that is,

there exist λq ∈ Rm
+ , r

q ∈ Rnc , and sq ∈ Rm, such that

∇yf
q +

m∑
i=1

λqi∇ygi(x
q, yq) = rq, (3.22)

λqi gi(x
q, yq) = sqi , i = 1, . . . ,m. (3.23)

If xq would be feasible for (POA)p it would satisfy the following set of inequalities for some y:

αp < UBDp ≤ f q, (3.24)(
∇xf

q

∇yf
q − rq

)>(
0

y − yq

)
+ f q ≤ αp, (3.25)

(∇gq)>
(

0

y − yq

)
+ gq ≤ tq, (3.26)

where, for i = 1, . . . ,m,

tqi =

{
sqi
λqi
, if λqi > 0,

0, if λqi = 0.

35

Multiplying the rows in (3.26) by the Lagrange multipliers λqi ≥ 0, i = 1, . . . ,m, and

adding (3.25), we obtain that

(∇yf
q − rq)>(y − yq) + f q +

m∑
i=1

λqi∇ygi(x
q, yq)>(y − yq) +

m∑
i=1

λqi g
q
i ≤ αp +

m∑
i=1

λqi t
q
i ,

which, by the definition of tq, is equivalent to

(∇yf
q − rq)>(y − yq) + f q +

m∑
i=1

λqi∇ygi(x
q, yq)>(y − yq) +

m∑
i=1

(λqi g
q
i − sqi) ≤ αp.

The left hand side of this inequality can be written as:[
∇yf

q − rq +
m∑
i=1

λqi∇ygi(x
q, yq)

]>
(y − yq) +

m∑
i=1

(λqi g
q
i − sqi) + f q.

Using (3.22) and (3.23), this is equal to f q and therefore we obtain the inequality

f q ≤ αp,

which contradicts (3.24).

The rest of the proof is exactly as in [27, Theorem 2] but we repeat here for complete-

ness and possible changes in notation. Finally, we will show that Algorithm 3.5.1 always

terminates at a solution of P or with an indication that P is infeasible (which occurs when

UBD = +∞ at the exit). If P is feasible, then let (x∗, y∗) be an optimal solution of P
with optimal value f ∗. Without loss of generality, we will not distinguish between (x∗, y∗)

and any other optimal solution with the same objective value f ∗. Note that from Theo-

rem 3.4.1, (x∗, y∗, f ∗) is also an optimal solution of POA. Now assume that the algorithm

terminates indicating a non-optimal point (x′, y′) with f ′ > f ∗. In such a situation, the

previous relaxation of the master problem POA after adding the constraints at the point

(x′, y′, f ′), called (POA)p, is infeasible, causing the above mentioned termination. We will

get a contradiction by showing that (x∗, y∗, f ∗) is feasible for (POA)p. First, by the assump-

tion that UBD = f ′ > f ∗, the first constraint α = f ∗ < UBD of (POA)p holds. Secondly,

since (x∗, y∗, f ∗) is an optimal solution to POA, it must be feasible for all other constraints

of (POA)p. Therefore, the algorithm could not terminate at (x′, y′) with UBD = f ′.

36

Chapter 4

Inexact generalized Benders

decomposition

In this chapter, similarly to OA in Chapter 3, we generalize GBD to the case where the

NLP subproblems are solved inexactly, rederiving the corresponding background theory and

main algorithm. Moreover, we discuss the relationship between the inexact forms of OA and

GBD. At last, we show that the inexact MILP master problem can also be derived in the

inexact case from a perturbed duality representation of the original, perturbed problem P
in (3.6). In this chapter, we will use the definitions and assumptions given in Sections 3.1

and 3.3.

4.1 Equivalence between perturbed and master prob-

lems for GBD

In the generalized Benders decomposition (GBD), the MILP master problem involves only

the discrete variables. When considering the inexact case, the master problem of GBD is

the following:

PGBD

min α

s.t. f(xj, yj) +∇xf(xj, yj)>(x− xj) +
∑m

i=1 λ
j
i∇xgi(x

j, yj)>(x− xj) ≤ α,

∀j ∈ T,∑m
i=1 µ

k
i [gi(x

k, yk) +∇xgi(x
k, yk)>(x− xk)] + wkuk −∑m

i=1 z
k
i ≤ 0,

∀k ∈ S∞,
x ∈ X ∩ Znd , α ∈ R,

37

where, remember, the pair (yj, λj) satisfies the inexact KKT conditions (3.1)–(3.2) and the

pair (yk, µk) satisfies the inexact KKT conditions (3.3)–(3.5), with residuals (rj, sj) and

(vk, wk, zk), respectively. One can easily recognize the classical form of (exact) GBD master

problem PGBD in Section 2.3 when wk = 0 and zk = 0.

A proof similar to the one of exact GBD and exact and inexact OA (Theorem 3.4.1) allows

us to establish the desired equivalence between the original, perturbed MINLP problem and

the MILP master problem PGBD.

Theorem 4.1.1. Let P be the convex MINLP problem (1.1) and P be its perturbed problem

as defined in (3.6). Suppose that the classification of feasibility for the NLP subproblems

NLP(xj) is made exactly. Assume that P is feasible with a finite optimal value and that the

residuals of the KKT conditions of the NLP subproblems satisfy Assumptions 3.3.1 and 3.3.2.

Then PGBD and P have the same optimal value.

Proof. Given any xl ∈ X ∩Znd with l ∈ T ∪S∞, let PGBD
xl denote the problem in α obtained

from PGBD when x is fixed to xl. First we will prove that problem PGBD
xk is infeasible for

every k ∈ S∞. When we set x = xk, in the corresponding constraint of PGBD, we obtain

m∑
i=1

µki gi(x
k, yk) + wkuk −

m∑
i=1

zki ≤ 0.

From (3.4) and (3.5), it results that uk ≤ 0, but one knows that uk is strictly positive when

NLP(xk) is infeasible.

Next, we will prove that for each xj ∈ X ∩ Znd , with j ∈ T , PGBD
xj has the same optimal

value as the perturbed NLP(xj). First, we will prove that the following constraints of PGBD
xj

f(xl, yl) +∇xf(xl, yl)>(xj − xl) +
m∑
i=1

λli∇xgi(x
l, yl)>(xj − xl) ≤ α, ∀l ∈ T, (4.1)

m∑
i=1

µki [gi(x
k, yk) +∇xgi(x

k, yk)>(xj − xk)] + wkuk −
m∑
i=1

zki ≤ 0, ∀k ∈ S∞ (4.2)

are satisfied with α = f(xj, yj). Under Assumptions 3.3.1–3.3.2, we know from the proof

of Theorem 3.4 (Part II–A) that the following hold: (3.14) with y = yj and α = f(xj, yj),

(3.15) with y = yj, and (3.17) with y = yj.

When l ∈ T , multiplying the inequalities (3.15) with y = yj by the non-negative mul-

tipliers λl1, . . . , λ
l
m and summing them together with (3.14) with y = yj and α = f(xj, yj),

38

one obtains

f(xl, yl) +∇xf(xl, yl)>(xj − xl) +
m∑
i=1

λli∇xgi(x
l, yl)>(xj − xl)

≤ f(xj, yj)−
[
∇yf(xl, yl) +

m∑
i=1

λli∇ygi(x
l, yl)− rl

]>
(yj − yl)

−
m∑
i=1

λlig(xl, yl) +
m∑
i=1

λlit
l
i.

The right hand side is equal to f(xj, yj) by the definitions of rl, sl, and tl, showing that (4.1)

holds with α = f(xj, yj).

When k ∈ S∞, multiplying the inequalities in (3.17) with y = yj by the non-negative

multipliers µk1, . . . , µ
k
m, and summing them up, one obtains, using (3.3) and (3.4),

m∑
i=1

µki∇xgi(x
k, yk)>(xj − xk) +

m∑
i=1

µki gi(x
k, yk) ≤

m∑
i=1

µki a
k
i ,

which, by the definition of ak, is the same as (4.2).

Thus, f(xj, yj) is a feasible point of PGBD
xj , and therefore f(xj, yj) is an upper bound on

the optimal value ᾱj of POA
xj . To show that is also a lower bound, i.e., that ᾱj ≥ f(xj, yj),

note that from (4.1), when l = j, PGBD
xj contains the constraint:

f(xj, yj) ≤ α.

We have thus proved that for any xj ∈ X ∩ Znd , with j ∈ T , problems PGBD
xj and perturbed

NLP(xj) have the same optimal value, which concludes the proof.

It is also easy to see that when the residuals are zero, we recover Theorem 2.3.1 in

Chapter 2. In addition we have the following remark.

Remark 4.1.1. It is well known, in the convex case, that the constraints of the GBD master

problem can be derived from the corresponding ones of the OA master problem, a fact reported

already in Property 2.3.1 for the exact case. The same happens naturally in the inexact case.

In fact, from the proof of Theorem 4.1.1 above, we can see that the constraints in POA
xj , for

j ∈ T , imply the corresponding ones in PGBD
xj . Moreover, one can easily see that any of the

constraints in POA imply the corresponding ones in PGBD.

Thus, one can also say in the inexact case that the lower bounds produced iteratively by

the OA algorithm are stronger than the ones provided by the corresponding GBD algorithm

(given next).

39

4.2 Inexact GBD algorithm

As we know for exact GBD, it is possible to derive an algorithm for the inexact case,

terminating finitely, by solving at each iteration a relaxed MILP formed by the cuts collected

so far. The definitions of UBDp, T p, and (S∞)p are the same as those in Section 3.5. The

relaxed MILP to be solved at each iteration is thus given by

(PGBD)p

min α

s.t. α < UBDp

f(xj, yj) +∇xf(xj, yj)>(x− xj) +
∑m

i=1 λ
j
i∇xgi(x

j, yj)>(x− xj) ≤ α,

∀j ∈ T p∑m
i=1 µ

k
i [gi(x

k, yk) +∇xgi(x
k, yk)>(x− xk)] + wkuk −∑m

i=1 z
k
i ≤ 0,

∀k ∈ (S∞)p

x ∈ X ∩ Znd , α ∈ R.

The inexact GBD algorithm is given next (and follows the presentation in [27] for OA).

Algorithm 4.2.1 (Inexact GBD Approximation).

Initialization

Let x0 be given. Set p = 0, T−1 = ∅, (S∞)−1 = ∅, and UBD = +∞.

REPEAT

1. Inexactly solve the subproblem NLP(xp), or the feasibility subproblem NLPF∞(xp)

provided NLP(xp) is infeasible, and let yp be an approximate optimal solution.

At the same time, obtain the corresponding inexact Lagrange multipliers λp of

NLP(xp) (resp. µp of NLPF∞(xp)). Evaluate the residuals rp and sp of NLP(xp)

(resp. vp, wp, and zp of NLPF∞(xp)).

2. Linearize the objective functions and constraints at xp. Renew T p = T p−1 ∪ {p}
or (S∞)p = (S∞)p−1 ∪ {p}.

3. If NLP(xp) is feasible and fp < UBD, then update current best point by setting

x̄ = xp, ȳ = yp, and UBD = fp.

4. Solve the relaxed master problem (PGBD)p, obtaining a new discrete assignment

xp+1 to be tested in the algorithm. Increment p by one unit.

40

UNTIL ((PGBD)p is infeasible).

Similarly as in Theorem 3.5.1 for OA, one can establish that the above inexact GBD

algorithm terminates in a finite number of steps.

Theorem 4.2.1. Let P be the convex MINLP problem (1.1) and P be its perturbed problem

as defined in (3.6). Suppose that the classification of feasibility for the NLP subproblems

NLP(xj) is made exactly. Assume that either P has a finite optimal value or is infeasible, and

that the residuals of the KKT conditions of the NLP subproblems satisfy Assumptions 3.3.1

and 3.3.2. Then Algorithm 4.2.1 terminates in a finite number of steps at an optimal solution

of P or with an indication that P is infeasible.

4.3 Derivation of the master problem for inexact GBD

As in the exact case, the MILP master problem PGBD can be derived from a more general

master problem closer to the original duality motivation of GBD:

PGBD
original

min α

s.t. infy∈Y
{
f(x, y) + (λj)>g(x, y)− (rj)>(y − yj)

}
−∑m

i=1 s
j
i ≤ α, ∀j ∈ T,

infy∈Y
{

(µk)>g(x, y)− (vk)>(y − yk)
}

+ wkuk −∑m
i=1 z

k
i ≤ 0, ∀k ∈ S∞,

x ∈ X ∩ Znd , α ∈ R.

It is easy to recognize the classical form of (exact) GBD master problem PGBD
original in Section 2.3

when sj = 0, wk = 0, and zk = 0. In fact, we will show next that the constraints in problem

PGBD
original imply those of PGBD.

When l ∈ T , one knows that NLP(xl) has an approximate optimal solution yl, satisfying

the corresponding inexact KKT conditions with inexact Lagrange multipliers λl. By the

convexity of f and g (see (3.9) and (3.10)),

f(x, y) + (λl)>g(x, y)− (rl)>(y − yl) ≥ f(xl, yl) +∇xf(xl, yl)>(x− xl)

+∇yf(xl, yl)>(y − yl)

+
m∑
i=1

λli
[
gi(x

l, yl) +∇xgi(x
l, yl)>(x− xl)

+ ∇ygi(x
l, yl)>(y − yl)

]
− (rl)>(y − yl).

41

Thus, using the inexact KKT conditions (3.1),

α ≥ inf
y∈Y

{
f(x, y) + (λl)>g(x, y)− (rl)>(y − yl)

}
−

m∑
i=1

sli

≥ inf
y∈Y

{
f(xl, yl) +∇xf(xl, yl)>(x− xl) +

m∑
i=1

λli∇xgi(x
l, yl)>(x− xl) +

m∑
i=1

λligi(x
l, yl)

}

−
m∑
i=1

sli

= f(xl, yl) +∇xf(xl, yl)>(x− xl) +
m∑
i=1

λli∇xgi(x
l, yl)>(x− xl) +

m∑
i=1

λligi(x
l, yl)

−
m∑
i=1

sli

= f(xl, yl) +∇xf(xl, yl)>(x− xl) +
m∑
i=1

λli∇xgi(x
l, yl)>(x− xl).

The last equality holds due to (3.2).

When l ∈ S∞, we know that NLPF∞(xl) has an approximate optimal solution yl satis-

fying the corresponding inexact KKT conditions with inexact Lagrange multipliers µl. Also

by the convexity of g (see (3.10)), we have that

(µl)>g(x, y)− (vl)>(y − yl) ≥ (µl)>
[
g(xl, yl) +∇xg(xl, yl)>(x− xl)

]
+

(
m∑
i=1

µli∇ygi(x
l, yl)− vl

)>
(y − yl).

Then, using the inexact KKT conditions (3.4),

0 ≥ inf
y∈Y

{
(µl)>g(x, y)− (vl)>(y − yl)

}
+ wlul −

m∑
i=1

zli

≥ inf
y∈Y

{
m∑
i=1

µli[gi(x
l, yl) +∇xgi(x

l, yl)>(x− xl)]
}

+ wlul −
m∑
i=1

zli

=
m∑
i=1

µli
[
gi(x

l, yl) +∇xgi(x
l, yl)>(x− xl)

]
+ wlul −

m∑
i=1

zli.

In summary we have the following property.

Property 4.3.1. Given some sets T and S∞, the lower bound predicted by the master

problem PGBD
original is greater than or equal to the one predicted by the master problem PGBD.

42

Chapter 5

Numerical experiments

We will illustrate some of the practical features of inexact OA and GBD algorithms by

reporting numerical results on the test set of AMPL problems described in Table 5.1. All

the problems are convex in the continuous variables. The first three problems are linear in

the discrete variables, and consist of simplified versions of process synthesis problems [24].

The implementation and testing of Algorithms 3.5.1 and 4.2.1 were made in MATLAB

(version 7.9.0, R2009b). In both algorithms, we used the MATLAB function fmincon to

solve the NLP subproblems, and the function cplexmilp from CPLEX [2] (version 12.4

called from MATLAB) to solve the MILP problems.

The linear equality constraints possibly present in the original problems (as well as the

bounds in the variables) were kept in the MILP relaxed master problems. The constraint

α < UBDp was implemented as α ≤ UBDp − 10−5. (Slight variations of the value 10−5

change the results but do not affect their pattern and the conclusions that can be drawn.)

For both methods, we report results for two variants, depending on the form of the

cuts. In the first variant (e.cuts), the cuts are the exact ones, while in the second variant

(i.cuts), the cuts are the inexact ones. In both variants, the NLP subproblems are solved

inexactly, with a tolerance (for function values in fmincon) varying dynamically. In the

first two iterations (p = 0, 1), we set this tolerance to 10−2, and then possibly decreased it

according to the absolute reduction in the upper bound UBD, as follows:

min
{

10−2,max{10−6, 10−θ × |UBDp−1 − UBDp−2|}
}
, p ≥ 2 (5.1)

with θ = 5 (different values of θ did not change the results significantly, neither taking a

relative reduction on the upper bounds instead). To ensure the achievement of feasibility

in the solution of the NLP subproblems, we set to 10−6 the tolerance corresponding to

the constraint violation in fmincon (and we recall here that our theory does not cover a

misclassification of feasibility).

43

Table 5.1: The number of variables and constraints, and the optimal values of all tested
problems. The number of constraints include linear equalities and inequalities and nonlinear
inequalities. The AMPL code for Problems 1–6 was taken from the MacMINLP collec-
tion [43] and for Problems 7–19 from the Open Source CMU-IBM Project [1].

Problem nc nd # of constraints optimal value f ∗

synthes1 3 3 6 6.01

synthes2 6 5 14 73.04

synthes3 9 8 23 68.01

batch 22 24 69 285506.51

trimloss2 6 31 24 5.30

optprloc 5 25 29 -8.06

CLay0203H 72 18 132 3760.00

CLay0203M 12 18 54 41573.26

CLay0204H 132 32 234 6545.00

CLay0204M 20 32 90 6545.00

CLay0205M 30 50 135 8092.50

CLay0303H 78 21 150 3760.00

CLay0303M 12 21 66 26669.11

CLay0304H 140 36 258 6920.00

FLay03H 110 12 144 48.99

FLay03M 14 12 24 48.99

FLay04M 18 24 42 54.41

fo7-2 72 42 211 17.74

Syn10M04M 140 80 516 -4557.06

44

In the tables of results we report the number N of iterations taken by Algorithms 3.5.1

and 4.2.1. We also report, in the rows corresponding to the variant i.cuts, the number C

of constraint inequalities of Assumptions 3.3.1 and 3.3.2 that were violated by more than

10−8 during the course of the algorithm, i.e., for all discrete assignments considered by each

application of the algorithm. (The maximum number for such a C when solving problems

synthes1, synthes2, and synthes3, given that no infeasible case occurred for these problems

for both OA and GBD, is N(N−1)(1+c)/2, where c = 12 (synthes1), c = 26 (synthes2), and

c = 41 (synthes3).) We should point out here again that Assumptions 3.3.1 and 3.3.2 refer

to all possible discrete assignments and not only to those generated by an application of the

algorithm, but such a surrogate number will provide us a good indication of the potential

violation of these assumptions.

The stopping criteria of both algorithms consisted of the corresponding relaxed master

program being infeasible, or the number of iterations exceeding 50 (MAX in the tables), or

the solution of the MILP relaxed master program repeating a previous one (upper script b

in the tables). The upper script a denotes the cases where the algorithms did not stop at an

optimal value.

5.1 Results for the inexact OA method

Tables 5.2–5.3 summarize the application of inexact OA (Algorithm 3.5.1) (variant inexact

solution of NLP subproblems and exact cuts, e.cuts, and variant inexact solution of NLP

subproblems and inexact cuts, i.cuts) to our test set. For problems synthes2 and synthes3

in Table 5.2 and problems CLay0203H, CLay0303H, CLay0304H, and FLay04M in Table 5.3,

the variant e.cuts entered in cycle, repeating the solution of the MILP, indicating that the

inclusion of inexactness in the cuts renders OA more robust. Moreover, looking at the results

of both tables, one can see that the number of iterations taken by i.cuts is in general smaller

than in e.cuts, except for problem CLay0204H. We also observe that inexact OA converged

in most of the cases even neglecting the imposition of the inequalities of Assumptions 3.3.1

and 3.3.2.

We note that the inexact tolerance is changing dynamically along the iterations (according

to (5.1)) in both inexact methods (OA and GBD) and for both variants (e.cuts and i.cuts).

Tables 5.4 and 5.5 present the outcome of the formula (5.1) for two given problems and the

i.cuts version.

45

Table 5.2: Application of inexact OA to problems from the MacMINLP collection [43]. The
table reports the number N of iterations taken as well as the number C of inequalities found
to violate Assumptions 3.3.1 and 3.3.2.

Problem Cuts N C

synthes1 e.cuts 3 -

synthes1 i.cuts 3 0

synthes2 e.cuts 5b -

synthes2 i.cuts 4 0

synthes3 e.cuts 5b -

synthes3 i.cuts 4 1

batch e.cuts 4 -

batch i.cuts 3 3

trimloss2 e.cuts 8 -

trimloss2 i.cuts 8 0

optprloc e.cuts 3 -

optprloc i.cuts 3 0

5.2 Results for the inexact GBD method

Tables 5.6–5.7 summarize the application of inexact GBD (Algorithm 4.2.1) (variant inexact

solution of NLP subproblems and exact cuts, e.cuts, and variant inexact solution of NLP

subproblems and inexact cuts, i.cuts). There is perhaps less difference between the two

variants compared to OA, for which a possible explanation is the fact that, for GBD, the

‘exact’ cuts in the variant e.cuts already incorporate inexact information coming from the

inexact Lagrange multipliers. As in OA, there is more tendency to enter in a cycle for e.cuts,

repeating the solution of the MILP, than for i.cuts. One can see that the e.cuts variant

stopped without finding a feasible point, entering in cycle, for problems batch, trimloss2, and

CLay0204H, which did not happen for the variant i.cuts. One observes that inexact GBD

takes more iterations than inexact OA in these problems, which, according to Remark 4.1.1,

might be expected since inexact GBD yields weaker lower bounds and has been observed to

take more major iterations to converge than OA (see [32, 53]). The number of inequalities of

Assumptions 3.3.1 and 3.3.2 violated in inexact GBD is also higher than the one in inexact

OA.

46

Table 5.3: Application of inexact OA to problems from the Open Source CMU-IBM
Project [1]. The table reports the number N of iterations taken as well as the number C of
inequalities found to violate Assumptions 3.3.1 and 3.3.2.

Problem Cuts N C

CLay0203H e.cuts 5b -

CLay0203H i.cuts 5 3

CLay0203M e.cuts 11 -

CLay0203M i.cuts 11 8

CLay0204H e.cuts 2a (6885.00) -

CLay0204H i.cuts 9a (6885.00) 2

CLay0204M e.cuts 4 -

CLay0204M i.cuts 4 6

CLay0205M e.cuts 7 -

CLay0205M i.cuts 7 6

CLay0303H e.cuts 5b -

CLay0303H i.cuts 2 0

CLay0303M e.cuts 11 -

CLay0303M i.cuts 11 0

CLay0304H e.cuts 7b -

CLay0304H i.cuts 2 0

FLay03H e.cuts 11b -

FLay03H i.cuts 6b 5

FLay03M e.cuts 8 -

FLay03M i.cuts 8 13

FLay04M e.cuts 31b -

FLay04M i.cuts 28 103

fo7-2 e.cuts 6 -

fo7-2 i.cuts 6 30

Syn10M04M e.cuts 6 -

Syn10M04M i.cuts 3 1

47

Table 5.4: The tolerance chosen in every iteration according to (5.1) for problem FLay03H
(inexact OA and inexact cuts). For p = 0, 1, we always set the tolerance to 10−2.

Iteration Tolerance

p=0 1× 10−2

p=1 1× 10−2

p=2 4.80× 10−4

p=3 1× 10−2

p=4 1× 10−2

p=5 1× 10−2

Table 5.5: The tolerance chosen in every iteration according to (5.1) for problem CLay0203M
(inexact OA and inexact cuts). For p = 0, 1, we always set the tolerance to 10−2.

Iteration Tolerance

p=0 1× 10−2

p=1 1× 10−2

p=2 1× 10−2

p=3 1× 10−6

p=4 1× 10−6

p=5 1× 10−6

p=6 1× 10−6

p=7 1× 10−2

p=8 1× 10−2

p=9 1× 10−2

p=10 1× 10−2

48

Table 5.6: Application of inexact GBD to problems from the MacMINLP collection [43].
The table reports the number N of iterations taken as well as the number C of inequalities
found to violate Assumptions 3.3.1 and 3.3.2.

Problem Cuts N C

synthes1 e.cuts 4 -

synthes1 i.cuts 4 0

synthes2 e.cuts 9 -

synthes2 i.cuts 9 0

synthes3 e.cuts 10 -

synthes3 i.cuts 10 19

batch e.cuts 1 (Inf) -

batch i.cuts 3a(398558.84) 0

trimloss2 e.cuts 16b (Inf) -

trimloss2 i.cuts 22 0

optprloc e.cuts MAX -

optprloc i.cuts MAX 21

49

Table 5.7: Application of inexact GBD to problems from the Open Source CMU-IBM
Project [1]. The table reports the number N of iterations taken as well as the number C of
inequalities found to violate Assumptions 3.3.1 and 3.3.2.

Problem Cuts N C

CLay0203H e.cuts 14a,b(5240.00) -

CLay0203H i.cuts 42a(4000.00) 330

CLay0203M e.cuts 42 -

CLay0203M i.cuts 42 155

CLay0204H e.cuts 4b (Inf) -

CLay0204H i.cuts 28a(10265.00) 301

CLay0204M e.cuts MAX -

CLay0204M i.cuts MAX 329

CLay0205M e.cuts MAX -

CLay0205M i.cuts MAX 192

CLay0303H e.cuts 4b (Inf) -

CLay0303H i.cuts 6 (Inf) 0

CLay0303M e.cuts MAX -

CLay0303M i.cuts MAX 93

CLay0304H e.cuts 21a,b(9440.00) -

CLay0304H i.cuts 20a(9840.00) 561

FLay03H e.cuts 11b -

FLay03H i.cuts 11b 14

FLay03M e.cuts 44 -

FLay03M i.cuts 44 161

FLay04M e.cuts 5a,b(54.99) -

FLay04M i.cuts MAX 215

fo7-2 e.cuts 8b (Inf) -

fo7-2 i.cuts 34 (Inf) 0

Syn10M04M e.cuts 7a,b(−31.15) -

Syn10M04M i.cuts 7a(−31.15) 10

50

Chapter 6

The case of inexact multipliers

In Chapters 3 and 4, we have analyzed the OA and GBD methods when the correspond-

ing NLP subproblems are solved inexactly. We have assumed there that the approximate

solutions of these subproblems satisfied an inexact form of the corresponding first-order nec-

essary KKT conditions (see (3.1)–(3.5)). Note that the Lagrange multipliers appearing in

these conditions were assumed to be non-negative, i.e., that no inexactness was considered

in the non-negativity of the Lagrange multipliers. However, when we solve the NLP sub-

problems inexactly, depending on the solver chosen, the approximate Lagrange multipliers

returned may not be non-negative, by a small residual amount. In this chapter, we will show

how we can generalize the approaches of Chapters 3 and 4 to consider inexactness in the

non-negativity of the Lagrange multipliers of the NLP subproblems.

Given any vector v ∈ Rn, let Mv denote the index set of its negative elements,

Mv = {i : vi < 0, i = 1, . . . , n},

and Pv its complement,

Pv = {1, . . . , n} \Mv.

The MINLP problem considered in this chapter was defined in (1.1) and also assumed

convex. The respective NLP subproblems were defined in Section 3.1. Recall that given any

element xj ∈ X ∩Znd , if NLP(xj) is feasible, yj denotes an approximate optimal solution of

NLP(xj) satisfying an inexact form of the corresponding KKT conditions. Here, we assume

that there exists a vector of inexact multipliers λj ∈ Rm (not necessarily non-negative) and

vectors of residuals rj ∈ Rnc and sj ∈ Rm such that the following equations hold:

∇yf(xj, yj) +
m∑
i=1

λji∇ygi(x
j, yj) = rj, (6.1)

λjigi(x
j, yj) = sji , i = 1, . . . ,m. (6.2)

51

When NLP(xk) (for xk ∈ X ∩Znd) is infeasible, recall also that yk represents an approx-

imate optimal solution of NLPF∞(xk) satisfying an inexact form of the corresponding KKT

conditions. Here, we assume the existence of a vector of Lagrange multipliers µk ∈ Rm (not

necessarily non-negative) and vectors of residuals zk ∈ Rm, wk ∈ R, and vk ∈ Rnc such that

m∑
i=1

µki∇ygi(x
k, yk) = vk, (6.3)

1−
m∑
i=1

µki = wk, (6.4)

µki (gi(x
k, yk)− uk) = zki , i = 1, . . . ,m. (6.5)

The sets of indices T and S∞ for collecting the approximate optimal solutions of these two

types of NLP subproblems are defined as in Section 3.1, and we remember their definitions

here:

T = {j : xj ∈ X ∩ Znd ,NLP(xj) is feasible and yj approximately solves NLP(xj)}

and

S∞ = {k : xk ∈ X ∩ Znd ,NLP(xk) is infeasible and yk approximately solves NLPF∞(xk)}.

Now, for the feasible index j ∈ T , we begin by redefining a new vector of multipliers λ̄j,

now non-negative, and corresponding new residuals r̄j and s̄j. Our idea is to apply the anal-

yses developed in Chapter 3 and 4 directly to this new setting, avoiding long rederivations.

Given j ∈ T , we define the new inexact multipliers as

λ̄ji =

{
λji , if i ∈ Pλj ,
−λji , if i ∈Mλj ,

(6.6)

for i = 1, . . . ,m, and new residuals as

r̄j = rj − 2
∑
i∈M

λj

λji∇ygi(x
j, yj), (6.7)

s̄ji =

{
sji , if i ∈ Pλj ,
−sji , if i ∈Mλj ,

for i = 1, . . . ,m. By using these new inexact multipliers and residuals, the inexact KKT

52

conditions (6.1) and (6.2) can be rewritten equivalently, in the form

∇yf(xj, yj) +
m∑
i=1

λ̄ji∇ygi(x
j, yj) = r̄j, (6.8)

λ̄jigi(x
j, yj) = s̄ji , i = 1, . . . ,m. (6.9)

Note that λ̄j, from its definition in (6.6), is now a non-negative vector in Rm. Thus, note

also that (6.8) and (6.9) have exactly the same form and properties as the inexact KKT

conditions (3.1) and (3.2) given in Section 3.1.

We can apply the same idea to the infeasible case. Consider any k ∈ S∞ and define the

new inexact non-negative multipliers as

µ̄ji =

{
µji , if i ∈ Pµj ,
−µji , if i ∈Mµj ,

(6.10)

for i = 1, . . . ,m. Consider also the new residuals v̄k, w̄k, and z̄k defined as

v̄k = vk − 2
∑
i∈M

µk

µki∇ygi(x
k, yk),

w̄k = wk + 2
∑
i∈M

µk

µki ,

z̄ki =

{
zki , if i ∈ Pµk ,
−zki , if i ∈Mµk ,

for i = 1, . . . ,m. Then, equations (6.3)–(6.5) under these definitions, can also be rewritten,

equivalently, in the form

m∑
i=1

µ̄ki∇ygi(x
k, yk) = v̄k, (6.11)

1−
m∑
i=1

µ̄ki = w̄k, (6.12)

µ̄ki (gi(x
k, yk)− uk) = z̄ki , i = 1, . . . ,m, (6.13)

where µ̄k is now a non-negative vector in Rm, see (6.10). The inexact KKT conditions (6.11)–

(6.13) have exactly the same form and properties as (3.3)–(3.5) in Section 3.1.

Thus, the whole approaches of Chapters 3 and 4 carry out to the setting of the current

chapter, by simply replacing rj, sj, vk, wk, and zk by r̄j, s̄j, v̄k, w̄k, and z̄k.

The question that is posed now is how to control the size of the new residuals, assuming

that one can make the old ones as small as we want. Considering just the case of j ∈ T , and

53

looking only at r̄j (since ‖s̄j‖ = ‖sj‖), one can see from (6.7) that

‖r̄j‖ ≤ ‖rj‖+ 2
∑
i∈M

λj

|λji |‖∇ygi(x
j, yj)‖.

Thus, assuming that

max
i∈M

λj

‖∇ygi(x
j, yj)‖

is a bounded quantity, one can make r̄j as small as we want by reducing the size of the

residual rj and the size of the violation of non-negativity in the inexact multipliers,

max
i∈M

λj

|λji |,

possibly by resolving the NLP subproblem under tighter tolerances.

54

Chapter 7

Concluding remarks

In this thesis we have attempted to gain a better understanding of the effect of inexactness

when solving NLP subproblems in two well-known decomposition techniques for Mixed In-

teger Nonlinear Programming (MINLP), the outer approximation (OA) and the generalized

Benders decomposition (GBD).

As pointed out to us by I. E. Grossmann, solving the NLP subproblems inexactly in OA

positions this approach somewhere in between exact OA and the extended cutting plane

method (Section 2.4). It is part of our future work to better study how the inexact OA

relates to the extended cutting plane method.

Regarding the conditions required on the residuals of the inexact KKT conditions, one can

see from Assumptions 3.3.1 and 3.3.2 that the complete satisfaction of all those inequalities

would ask for repeated NLP subproblem solution for all the possible discrete assignments.

Such requirement would then undermine the practical purpose of saving computational effort

aimed by the NLP subproblem inexactness. In our numerical tests we disregarded the

conditions of Assumptions 3.3.1 and 3.3.2 and verified, after terminating each run of inexact

OA or GBD, how many of them were violated among those identified during the course of

the algorithm. The results indicated that convergence can be achieved without imposing

Assumptions 3.3.1 and 3.3.2, and that the number of violated inequalities was relatively low

(especially for OA). The results also seem to indicate that the cuts in OA and GBD must be

changed accordingly when the corresponding NLP subproblems are solved inexactly. Testing

these inexact approaches in a wider test set of larger problems and investigating how MINLP

solvers could benefit from our approach is out of the scope of this thesis, although it seems

a necessary step to further validate these indications.

Our study was performed under the assumption of convexity of the functions involved.

Moreover, we also assumed that the approximate optimal solutions of the NLP subproblems

were feasible in these subproblems. Relaxing this assumption introduces another layer of

difficulty but certainly deserves attention in the future. In particular, our treatment of

55

inexactness assumes a proper classification of feasibility. In practice, a misclassification of

infeasibility can indeed cause numerical trouble. This is certainly another topic deserving a

deeper study.

As we mentioned in the Introduction, the Feasibility Pump, denoted here as FP, is a

method for the solution of MINLP problems of the type (1.1) which also alternates between

solving NLP subproblems and MILP relaxed master problems. It is a non-rigorous method

since at the end it only guarantees the computation of a feasible point, i.e., a point (x̃, ỹ)

satisfying (x̃, ỹ) ∈ (X ∩Znd)×Y and g(x̃, ỹ) ≤ 0. FP requires the exact solution of the NLP

subproblems. In the future, we plan to apply to FP similar ideas as in inexact OA and GBD

to relax the exact solution of the NLP subproblems, by redefining the cuts in the master

MILP relaxed problems with inexact residual information.

56

Bibliography

[1] CMU/IBM MINLP Project. http: // egon. cheme. cmu. edu/ ibm/ page. htm .

[2] IBM ILOG CPLEX. http: // www-01. ibm. com/ software/ integration/

optimization/ cplex-optimizer . Version 12.4, 2012.

[3] K. Abhishek, S. Leyffer, and J. T. Linderoth, FilMINT: An outer

approximation-based solver for convex mixed-integer nonlinear programs, INFORMS J.

Comput., 22 (2010), pp. 555–567.

[4] T. Achterberg and T. Berthold, Improving the feasibility pump, Discrete Optim.,

4 (2007), pp. 77–86.

[5] A. Ahlatçıoğlu and M. Guignard, Convex hull relaxation (CHR) for

convex and nonconvex MINLP problems with linear constraints. http: // www.

optimization-online. org/ DB_ FILE/ 2011/ 01/ 2903. pdf . 2011.

[6] I. P. Androulakis, C. D. Maranas, and C. A. Floudas, α-BB: A global op-

timization method for general constrained nonconvex problems, J. Global Optim., 7

(1995), pp. 337–363.

[7] P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wächter, Branching and

bounds tightening techniques for non-convex MINLP, Optim. Methods Softw., 24 (2009),

pp. 597–634.

[8] J. F. Benders, Partitioning procedures for solving mixed-variables programming prob-

lems, Numer. Math., 4 (1962), pp. 238–252.

[9] L. Bertacco, M. Fischetti, and A. Lodi, A feasibility pump heuristic for general

mixed-integer problems, Discrete Optim., 4 (2007), pp. 63–76.

[10] T. Berthold, Primal Heuristics for Mixed Integer Programs, master’s thesis, Technical

University of Berlin, 2006.

57

[11] T. Berthold and A. M. Gleixner, Undercover – a primal heuristic for MINLP

based on sub-MIPs generated by set covering, in Proceedings of the European Workshop

on Mixed Integer Nonlinear Programming, April 2010, pp. 103–112.

[12] P. Bonami, L. T. Biegler, A. R. Conn, G. Cornuéjols, I. E. Grossmann,

C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wächter, An

algorithmic framework for convex mixed integer nonlinear programs, Discrete Optim., 5

(2008), pp. 186–204.

[13] P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A feasibility pump for

mixed integer nonlinear programs, Math. Program., 119 (2009), pp. 331–352.

[14] P. Bonami and J. P. M. Gonçalves, Heuristics for convex mixed integer nonlinear

programs, Comput. Optim. Appl., 51 (2012), pp. 729–747.

[15] P. Bonami, M. Kilinc, and J. Linderoth, Algorithms and software for convex

mixed integer nonlinear programs, in Mixed Integer Nonlinear Programming, vol. 154

of IMA Vol. Math. Appl., Springer, New York, 2012, pp. 1–39.

[16] P. Bonami, J. Lee, S. Leyffer, and A. Wächter, More branch-and-bound ex-

periments in convex nonlinear integer programming. Preprint ANL/MCS-P1949-0911,

Argonne National Laboratory, Mathematics and Computer Science Division, 2011.

[17] S. Burer and A. N. Letchford, Non-convex mixed-integer nonlinear programming:

A survey, Surveys in Operations Research and Management Science, 17 (2012), pp. 97–

106.

[18] M. R. Bussieck and A. Pruessner, Mixed-integer nonlinear programming,

SIAG/OPT Views-and-News, 14 (2003), pp. 19–22.

[19] I. Castillo, J. Westerlund, S. Emet, and T. Westerlund, Optimization of

block layout design problems with unequal areas: A comparison of MILP and MINLP

optimization methods, Comput. Chem. Eng., 30 (2005), pp. 54–69.

[20] R. J. Dakin, A tree-search algorithm for mixed integer programming problems, The

Computer Journal, 8 (1965), pp. 250–255.

[21] C. D’Ambrosio and A. Lodi, Mixed integer nonlinear programming tools: A practical

overview, 4OR, 9 (2011), pp. 329–349.

[22] E. Danna, E. Rothberg, and C. L. Pape, Exploring relaxation induced neighbor-

hoods to improve MIP solutions, Math. Program., 102 (2005), pp. 71–90.

58

[23] M. A. Duran and I. E. Grossmann, A mixed-integer nonlinear programming algo-

rithm for process systems synthesis, American Institute of Chemical Engineers Journal,

32 (1986), pp. 592–606.

[24] , An out-approximation algorithm for a class of mixed-integer nonlinear programs,

Math. Program., 36 (1986), pp. 307–339.

[25] M. Fischetti, F. Glover, and A. Lodi, The feasibility pump, Math. Program., 104

(2005), pp. 91–104.

[26] M. Fischetti and D. Salvagnin, Feasibility pump 2.0, Math. Program. Comput., 1

(2009), pp. 201–222.

[27] R. Fletcher and S. Leyffer, Solving mixed integer nonlinear programs by outer

approximation, Math. Program., 66 (1994), pp. 327–349.

[28] O. E. Flippo and A. H. G. R. Kan, Decomposition in general mathematical pro-

gramming, Math. Program., 60 (1993), pp. 361–382.

[29] O. E. Flippo, A. H. G. R. Kan, and G. van der Hoek, Duality and Decom-

position in General Mathematical Programming, Econometric Institute, University of

Rotterdam, 1987. Report 8747/B.

[30] A. M. Geoffrion, Duality in nonlinear programming: A simplified application-

oriented development, SIAM Rev., 13 (1971), pp. 1–37.

[31] , Generalized Benders decomposition, J. Optim. Theory Appl., 10 (1972), pp. 237–

260.

[32] I. E. Grossmann, Review of nonlinear mixed-integer and disjunctive programming

techniques, Optim. Eng., 3 (2002), pp. 227–252.

[33] I. E. Grossmann and N. V. Sahinidis (eds.), Special issue on mixed-integer pro-

gramming and its applications to engineering, Part I, Optim. Eng., 3 (2002).

[34] , Special issue on mixed-integer programming and its applications to engineering,

Part II, Optim. Eng., 4 (2003).

[35] O. K. Gupta and V. Ravindran, Branch and bound experiments in convex nonlinear

integer programming, Management Science, 31 (1985), pp. 1533–1546.

[36] J. E. Kelley, The cutting-plane method for solving convex programs, J. Soc. Indust.

Appl. Math., 8 (1960), pp. 703–712.

59

[37] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E.

Bixby, E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, A. Lodi, H. Mit-

telmann, T. Ralphs, D. Salvagnin, D. E. Steffy, and K. Wolter, MIPLIB

2010, Math. Program. Comput., 3 (2011), pp. 103–163.

[38] G. R. Kocis and I. E. Grossmann, Relaxation strategy for the structural optimiza-

tion of process flow sheets, Industrial and Engineering Chemical Research, 26 (1987),

pp. 1869–1880.

[39] , Global optimization of nonconvex mixed-integer nonlinear programming (MINLP)

problems in process synthesis, Industrial and Engineering Chemical Research, 27 (1988),

pp. 1407–1421.

[40] C. D. Laird, L. T. Biegler, and B. V. B. Waanders, A mixed integer approach

for obtaining unique solutions in source inversion of drinking water networks, Journal

of Water Resource Management and Planning, 132 (2006), pp. 242–251.

[41] A. H. Land and A. G. Doig, An automatic method of solving discrete programming

problems, Econometrica, 28 (1960), pp. 497–520.

[42] A. N. Letchford, Mixed-integer non-linear programming: A survey, 1st LANCS

Workshop on Discrete and Non-Linear Optimisation, Southampton, 2009.

[43] S. Leyffer, MacMINLP. http: // wiki. mcs. anl. gov/ leyffer/ index. php/

MacMINLP .

[44] , Deterministic Methods for Mixed Integer Nonlinear Programming, PhD thesis,

University of Dundee, Dundee, Scotland, UK, 1993.

[45] , Integrating SQP and branch-and-bound for mixed integer nonlinear programming,

Comput. Optim. Appl., 18 (2001), pp. 295–309.

[46] S. Leyffer and J. Linderoth, A practical guide to mixed integer nonlinear

programming (MINLP). http: // coral. ie. lehigh. edu/ wp-content/ uploads/

presentations/ siopt-05-minlp-presentation. pdf . 2005.

[47] M. Li and L. N. Vicente, Inexact solution of NLP subproblems in MINLP, J. Global

Optim., (to appear).

[48] H. M. Markowitz, Portfolio selection, The Journal of Finance, 7 (1952), pp. 77–91.

[49] , Portfolio Selection: Efficient Diversification of Investments, Wiley, New York,

1959.

60

[50] G. Nannicini, P. Belotti, J. Lee, J. Linderoth, F. Margot, and

A. Wächter, A probing algorithm for MINLPs with early detection of failures by

SVM, in CPAIOR 2011: The 8th International Conference on Integration of Artifi-

cial Intelligence and Operations Research, vol. 6697 of Lecture Notes in Comput. Sci.,

Springer, New York, 2011, pp. 154–169.

[51] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization,

Wiley, New York, 1988.

[52] J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, Berlin,

second ed., 2006.

[53] I. Quesada and I. E. Grossmann, An LP/NLP based branch and bound algorithm

for convex MINLP optimization problems, Comput. Chem. Eng., 16 (1992), pp. 937–947.

[54] D. E. Ravemark, Optimization Models for Design and Operation of Chemical Batch

Processes, PhD thesis, Swiss Federal Institute of Technology, 1995.

[55] H. S. Ryoo and N. V. Sahinidis, A branch-and-reduce approach to global optimiza-

tion, J. Global Optim., 8 (1996), pp. 107–138.

[56] S. Sager, Numerical Methods for Mixed-Integer Optimal Control Problems, PhD thesis,

Interdisciplinary Center for Scientific Computing, Universität Heidelberg, 2005.

[57] A. Schrijver, Theory of Linear and Integer Programming, Wiley, Chichester, 1986.

[58] M. Tawarmalani and N. V. Sahinidis, Global optimization of mixed-integer non-

linear programs: A theoretical and computational study, Math. Program., 99 (2004),

pp. 563–591.

[59] A. Vechietti and I. E. Grossmann, LOGMIP: A disjunctive 0-1 non-linear opti-

mizer for process system models, Comput. Chem. Eng., 23 (1999), pp. 555–565.

[60] J. Viswanathan and I. E. Grossmann, A combined penalty function and outer-

approximation method for MINLP optimization, Comput. Chem. Eng., 14 (1990),

pp. 769–782.

[61] T. Westerlund and F. Pettersson, An extended cutting plane method for solving

convex MINLP problems, Comput. Chem. Eng., 19 (1995), pp. 131–136.

[62] T. Westerlund and R. Pörn, Solving pseudo-convex mixed integer optimization

problems by cutting plane techniques, Optim. Eng., 3 (2002), pp. 253–280.

61

[63] T. Westerlund, H. Skrifvars, I. Harjunkoski, and R. Pörn, An extended

cutting plane method for a class of non-convex MINLP problems, Comput. Chem. Eng.,

22 (1998), pp. 357–365.

62

