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ABSTRACT 

 

Xanthones or xanthen-9-ones (dibenzo-γ-pirone) comprise an important class of 

oxygenated heterocycles whose role is well-known in Medicinal Chemistry. The biological 

activities of this class of compounds are associated with their tricyclic scaffold but vary depending 

on the nature and/or position of the different substituents. To obtain more structural diversity 

and quantities for biological assays, suitable and efficient synthetic processes are necessary. 

Different synthetic methodologies, “classical” and “non-classical”, namely microwave 

assisted organic synthesis, heterogeneous catalysis and a combination of heterogeneous catalysis 

with microwave irradiation, were applied to obtain new xanthone derivatives. 

 

Thus, this thesis reports the synthesis and structure elucidation of seven new compounds: 

1,3-dihydroxy-5-methoxyxanthone (X1), 1-hydroxy-3-mesyloxy-5-methoxyxanthone (X2),   1-

hydroxy-5-methoxy-3-(3-methylbut-2-enyloxy)xanthone (P1), 1-hydroxy-5-methoxy-4-(3-

methylbut-2-enyl)-3-(3-methylbut-2-enyloxy)xanthone (P2), 1-hydroxy-5-methoxy-4-(3-

methylbut-2-enyl)-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2) xanthone (P3), 1-hydroxy-5-

methoxy-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone (P4) and 1-hydroxy-5-methoxy-

6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,4)xanthone (P5), as well as the evaluation of their 

antitumor activity. 

The synthesized xanthones and respective derivatives with prenyl units were structurally 

elucidated by spectroscopic methods including IR, NMR (1H, 13C, HSQC and HMBC) and HRMS. 

Their biological activity was evaluated by a screening assay for inhibition of growth of human 

tumor cell lines.  

 

 

Keywords: Prenylated xanthones, synthesis, microwave assisted organic synthesis (MAOS), 

heterogeneous catalysis, growth inhibitory activity of tumor cell lines. 
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RESUMO 

 

As xantonas ou xanten-9-onas (dibenzo-γ-pirona) constituem uma importante classe de 

heterociclos oxigenados com um papel bem conhecido na Química Medicinal. As atividades 

biológicas desta classe de compostos estão relacionadas com o seu esqueleto tricíclico e variam 

consoante a natureza e/ou posição dos diferentes substituintes. De forma a obter maior 

diversidade estrutural e quantidades para ensaios biológicos, são necessários processos sintéticos 

adequados e eficientes. 

 

 Diferentes metodologias sintéticas, “clássicas” e “não-clássicas”, nomeadamente síntese 

orgânica assistida por micro-ondas, catálise heterogénea e a combinação de catálise heterogénea 

com radiação micro-ondas, foram aplicadas para obter novos derivados xantónicos. 

Assim, esta tese descreve a síntese e elucidação estrutural de sete novos compostos: 1,3-

di-hidroxi-5-metoxixantona (X1), 1-hidroxi-3-mesiloxi-5-metoxixantona (X2), 1-hidroxi-5-metoxi-3-

(3-metilbut-2-eniloxi)xantona (P1), 1-hidroxi-5-metoxi-4-(3-metilbut-2-enil)-3-(3-metilbut-2-

eniloxi)xantona (P2),  1-hidroxi-5-metoxi-4-(3-metilbut-2-enil)-6’,6’-dimetil-4’,5’di-hidropirano(2’,3’:3,2) 

xantona (P3), 1-hidroxi-5metoxi-6’,6’-dimetil-4’,5’-di-hidropirano(2’,3’:3,2)xantona (P4) e 1-hidroxi-5-

metoxi-6’,6’-dimetil-4’,5’-di-hidropirano(2’,3’:3,4)xantona (P5), assim como a avaliação da sua atividade 

antitumoral. 

As xantonas e os respetivos derivados prenilados sintetizados foram caraterizados 

estruturalmente por métodos espetroscópicos, nomeadamente IV, RMN (1H, 13C, HSQC e HMBC) e 

EM de alta resolução. A sua atividade biológica foi avaliada através de um screening para a 

inibição de crescimento de linhas celulares tumorais humanas.  

 

 

Palavras-chave: Xantonas preniladas, síntese, síntese assistida por micro-ondas, catálise 

heterogénea, atividade inibidora do crescimento de linhas celulares tumorais. 
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ABBREVIATIONS AND SYMBOLS 

 

AChE Acetylcholinesterase  

A375-C5 Malignant melanoma cell line 

13C NMR Carbon nuclear magnetic resonance 

1H NMR  Proton nuclear magnetic resonance 

CEQUIMED-UP Centro de Química Medicinal – Universidade do Porto 

d  Doublet 

DCX Dicamphanoyl-dihydropyranoxanthone 

dd  Double doublet 

DMSO  Dimethyl sulfoxide 

DMXAA 5,6-dimethylxanthenone-4-acetic acid 

GI50   Concentration of compound that causes 50% inhibition of the growth of 

tumor cell lines 

HIV Human immunodeficiency virus 

HMBC Heteronuclear Multiple Bond Correlation 

HRMS High Resolution Mass Spectrometry 

HSQC Heteronuclear Single Quantum Correlation 

IBX 2-Iodoxybenzoic acid 

IR  Infrared spectroscopy 

IUPAC  International Union of Pure and Applied Chemistry 

J  Coupling constant 

LDL Low density lipoprotein 

m  Multiplet 

MAO Monoamine oxidase 

MAOS Microwave assisted organic synthesis 

MCF-7 Breast adenocarcinoma cell line 

mp  Melting point 
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MRSA Methicillin-resistant Staphylococcus aureus 

MW  Microwave 

NCI National Cancer Institute 

NCI-H460 Non-small cell lung cancer cell line 

NMR Nuclear magnetic resonance 

N,N-DMA               N,N-dimethylaniline 

NO Nitric oxide 

NSCLC Non-small cell lung cancer 

PAF Platelet activating factorP-gp P-glycoprotein 

q Quadruplet 

s  Singlet 

SRB Sulforhodamine B 

SNAr  Aromatic nucleophilic substitution 

t  Triplet 

tan δ Loss tangent 

THF Tetrahydrofuran 

TLC  Thin layer chromatography 

VEGF Vascular endothelial growth factor 

VRE Vancomycin-resistant enterococci 

WHO World Health Organization 
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OUTLINE OF THE THESIS 

 

The present thesis consists of five chapters: 

 

I. INTRODUCTION  

The state-of-the-art concerning the major classes of xanthone derivatives – prenylated and 

caged xanthones are presented. The biological activities of xanthones, namely antitumor are 

highlighted. The synthesis through “classical” and “non-classical” methodologies like MAOS and 

heterogeneous catalysis are described. 

 

II. AIMS 

Herein the main objectives of the present thesis are described.  

 

III. RESULTS AND DISCUSSION 

This section is divided in three parts: synthesis, structural elucidation and biological assays of 

the obtained compounds, concerning inhibitory activity of growth of human tumor cell lines. 

 

IV. EXPERIMENTAL PART 

In this chapter, the experimental procedures for the synthesis, structure characterization and 

biological evaluation of the synthesized compounds are detailed. 

 

V. CONCLUSIONS 

This chapter includes the general conclusions of the developed work. 
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INTRODUCTION 

  

Throughout the ages, Nature has catered to the basic needs of humans, not the least of 

which is the provision of medicines for the treatment of a wide spectrum of diseases. Plants, in 

particular, have given a significant contribution to the development of therapeutic systems. The 

continuing and essential role played by plant-based systems in the healthcare of many different 

cultures has been extensively documented and the World Health Organization (WHO) has 

estimated that in some Asian and African countries, 80% of the population depend on traditional 

medicine for primary health care (Cragg, G.M. et al., 2009; http://www.who.int/en/). 

Besides directly isolated natural products can be the actual drugs used for the treatment 

of a given disease, these natural molecules can serve as lead compounds for the development of 

analogues, with optimized pharmacological properties. They have been evolutionarily selected to 

bind to biological macromolecules representing some of them “privileged structures”, which are 

excellent templates for the synthesis of novel, biologically active, natural product-like molecules. 

Some problems concerning natural products are the lack of druglike properties, namely 

associated with pharmacokinetic properties and/or toxicity, so they need to be fine-tuned to 

possess the properties desired in a clinically useful drug. Optimization frequently entails 

modification, removal, or introduction of functional groups and stereocenters or more drastic 

remodelling of the basic scaffold to improve physicochemical and pharmacokinetic properties. 

Also the structural diversity is limited by the available biosynthetic pathways of the host organism, 

but the power of synthetic chemistry can be harnessed to access a greater extent of possible 

modifications and structural diversity (Cragg, G.M. et al.,2009; Kinghorn, A.D. et al., 2011). 

 

Xanthones are one of the main compounds of the exotic fruit of Garcinia Mangostana L., 

mangosteen, which have showed to posses diverse health benefits. In Southeast Asia, this fruit 

has been appreciated for centuries and strongly used as folk medicine due to their bioactive 

compounds. These allowed the scientists to notice its potential as a source of new therapeutic 

agents (Adnan, N. and Othman, N., 2012; Saslis-Lagoudakis, C.H. et al., 2011; Wittenauer, J. et al., 

2012).  

As in CEQUIMED-UP the synthesis of xanthone derivatives and their investigation as 

potential antitumor agents has been a research area in increasing development (Palmeira, A. et 

al., 2010; Pinto, M. and Castanheiro, R., 2009a and 2009b), this class of compounds was chosen to 

be studied in this thesis. 
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1. XANTHONES 
 

Xanthones or xanthen-9-ones are heterocyclic compounds with the dibenzo-γ-pyrone 

scaffold (Pinto, M. and Castanheiro, R., 2009a and 2009b; Sousa, M.E. and Pinto, M., 2005) (Figure 

1). Xanthone derivatives are secondary metabolites produced by plants and microorganisms that 

have a structural relationship with other γ-pyrone moieties: flavonoids (2) and chromones (3) 

(Figure 2). The xanthones from higher plants appear to be associated mainly with the families 

Clusiaceae and Gentianaceae (Nualkaew, N. et al., 2012; Pinto, M. and Castanheiro, R., 2009a and 

2009b; Vieira, L. and Kijjoa, A., 2005). Because of their diverse pharmacological properties, 

xanthone derivatives have an important and well-known role in Medicinal Chemist. 

 

 

Figure 1. Xanthonic scaffold and numbering (according to IUPAC, 

http://www.iupac.org;http://www.chem.qmul.ac.uk/iupac/)  

 

 

 

 

Figure 2. Scaffolds containing a γ-pyrone moiety (present in bioactive secondary metabolites) 
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Concerning the biosynthetic metabolic route in higher plants, xanthones are generated 

through two pathways: acetate (Figure 1 - ring A, numbered from 1 to 4) and shikimate (Figure 1 - 

ring B, numbered from 5 to 8). 

Xanthones can present different substituents on their scaffold, allowing great structural 

diversity (Na, Y., 2009; Sousa, M.E. and Pinto, M., 2005). According to this, xanthones can be 

classified into the major groups: simple oxygenated xanthones, xanthones glycosides, prenylated 

and related xanthones, xanthonic dymers, caged xanthones, xanthonolignoids and miscellaneous 

xanthones. The simple oxygenated xanthones can further be subdivided into sub-groups 

according to the degree of oxygenation in mono-, di-, tri-, tetra-, penta- and hexaoxygenated 

xanthones (Fotie, J. and Bohle, D.S., 2006). 

 

Although natural products have always played an important role in drug discovery, 

providing bioactive compounds of great interest in Medicinal Chemistry (Kinghorn, A.D. et al., 

2011), xanthones from natural origin are relatively limited in type and position of the substituents 

imposed by the biosynthetic pathways (Sousa, M.E. and Pinto, M., 2005). Due to their interesting 

structural scaffold and vast pharmacological properties, a lot of compounds was isolated from 

natural resources and/or many new xanthone-natural mimics were synthesized as novel drug 

candidates (Jun, K.Y. et al., 2011). Therefore, natural products can also be an important source of 

novel molecular architecture.  

The biological activities of this class of compounds are associated with their tricyclic 

scaffold but vary depending on the nature and/or position of the different substituents. The 

bioactivities of natural and synthetic analogues have been extensively reported and reviewed in 

the literature (El-Seedi, H.R. et al., 2010; Pinto, M. and Castanheiro, R., 2009a and 2009b; Pinto, 

M. et al., 2005). In this thesis, diverse activities will be discussed later, particularly antitumor (Giri, 

R. et al., 2010; Jun, K.Y. et al., 2011; Krajarng, A. et al., 2012; Na, Y., 2009; Woo, S. et al., 2007). 

  

 The major group of naturally occurring xanthones are prenylated xanthones, a group that 

have very important and diverse pharmacological activities. As a consequence of this, using the 

prenylated xanthone α-mangostin as a model, synthetic strategies leading to new prenylated 

derivatives have been explored. 
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1.1. PRENYLATED XANTHONES 

 

Prenylated xanthones are characterized by the presence of a prenyl group (C5 unit) in the 

xanthonic scaffold and represent the major group of naturally occurring xanthones (Pinto, M. and 

Castanheiro, R., 2009a and 2009b). The study of xanthone derivatives with important bioactivities 

has shown a relationship between biological activity and the presence of prenyl groups in key-

positions on the xanthone nucleus. Therefore, this feature becomes an important structural point 

for the interaction of xanthones with some targets, allowing an increase of selectivity and 

potency. 

 Although the C-prenyl derivatives are much more represented in Nature, oxyprenylated 

compounds are also found, and among them, only a small number are both C and O-prenylated. 

The main substituents (C5 group) found in prenylated xanthones included the common 3-

methylbut-2-enyl or isoprenyl group (A), the less frequent 2-hydroxy-3-methylbut-3-enyl group 

(B) and also the 1,1-dimethylprop-2-enyl or 1,1-dimethylallyl group (C). Compounds containing 

the 2,2-dimethyldihydropyran (D), the 2,2-dimethylpyran (E) and the 2,3,3-trimethyldihydrofuran 

(F) groups, which are the result of cyclization of the substituents A and C respectively, with the 

ortho hydroxyl group, could also be found (Figure 3). Modifications of these side chains by 

hydroxylation, hydrogenation, cyclization, and Claisen rearrangement reactions can also occur 

(Pinto, M. and Castanheiro, R., 2009a). 

 

 

 

Figure 3. Main substituents found in prenylated xanthones (Pinto, M., Castanheiro, R., 2009a) 

 

The prenyl substituents can occur in any position of the xanthonic scaffold, but there are 

some preferential positions. For example, substituents A and C usually appear in C2, C4 and C8, 
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while cyclic substituents like D and E frequently appear in C2-C3, C3-C4  (and C5-C6, C7-C8  for D) of 

the xanthonic scaffold (Pinto, M. and Castanheiro, R., 2009a). 

The biological activities of prenylated xanthones are vast, standing out the antitumor 

activity. Pinto and Castanheiro carefully review the activities of these xanthones and highlighted 

their importance as chemopreventive agents against chemical induced carcinogenesis and also as 

antitumor agents (Pinto, M. and Castanheiro, R., 2009b). In Obolskiy study (Obolskiy, D. et al., 

2009), several xanthone derivatives, extracted from the steam and root bark of mangosteen, 

particularly α-mangostin, β-mangostin and γ-mangostin (Figure 4), showed strong antitumor and 

antioxidant activity. These and other studies suggest that prenylated xanthones could be useful as 

chemotherapeutic agents for the treatment of certain cancers (Castanheiro, R. et al., 2009a; Giri, 

R. et al., 2010; Jun, K.Y. et al., 2011; Krajarng, A. et al., 2012; Na, Y., 2009; Woo, S. et al., 2007). It 

is important to note that prenylated xanthones exhibit a wide range of other activities in addition 

to this one, as will be discussed later in this thesis. 

 

            

                                        

 

 

 

 

Figure 4. α-mangostin (A), β-mangostin (B) and γ-mangostin (C) 

 

 

                  A                                                                              B     

       C     
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1.2. CAGED XANTHONES 

 

Caged xanthones are a group of polyprenylated xanthones mainly extracted from the 

Garcinia genus (Guttiferae family). They are characterized by a unique 4-oxa-tricyclo[4.3.1.0]dec-

2-one scaffold, in which a highly substituted tetrahydrofuran core with three quaternary carbon 

centers is featured (Figure 5). 

Most of the Garcinia genus contain prenylated xanthones, but caged xanthones mainly 

occur in five species: G. morella, G. hanburyi, G.bracteata, G. gaudichaudii, and G. scortechinii, 

widely distributed in Southeast Asia. From the biosynthetic point of view, caged xanthones are 

thought to be derived from a common benzophenone intermediate of a mixed shikimate-acetate 

pathway that has undergone plant-specific prenylations, rearrangements, and/or oxidation 

reactions (Han, Q-B. and Xu, H-X, 2009). 

As suggested by structure-activity relationship studies, the caged core is responsible for 

the bioactivities of this class of compounds. Among other activities like anti-viral, antibacterial and 

neurotrophic, they have been reported to have potent antitumor activity, with gambogic acid 

being the more notorious (Reutrakul, V. et al., 2007; Yen, C. et al., 2012). 

With an unusual caged skeleton and notable bioactivity, this promising class of xanthones 

attracts increasing attention among scientist from diverse areas. 

 

                                     

Isomorellinol                                                     30-Hydroxygambogic acid 

O

OH

O

O

O

HOOC

H

H

O

                              

Morellic acid                                                               Gambogic acid 

Figure 5. Examples of caged xanthones with antitumor activity 
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2. ACTIVITY OF XANTHONES 

 

Xanthone scaffold is considered a “privileged structure” since this class of compounds can 

interact with diverse drug targets and exhibit multiple pharmacological effects. In the field of 

Medicinal Chemistry, groups of compounds that can bind to different classes of receptors have 

attracted much attention as potential drug candidates (Kappe, C.O. and Dallinger, D., 2005; Vieira, 

L. and Kijjoa, A., 2005). 

Many naturally occurring xanthones and their prenylated derivatives are found to exhibit 

significant biological and pharmacological properties, such as antibacterial, antifungal and 

antitumor activities (El-Seedi, H.R. et al., 2010) and it can be inferred that the presence of prenyl 

groups can be associated with an improvement of potency and selectivity for some of these 

properties. Therefore, there is interest in obtaining this type of compounds to evaluate their 

antitumor activity. For this purpose, in this thesis, molecular modifications of the 1,3-dihydroxy-5-

methoxyxanthone (X1) were carried out to obtain xanthone derivatives with prenyl substituents, 

either in a cyclic or as an open-chain form (Castanheiro, R. et al., 2009b). 

Once xanthones posses a wide range of biological properties, it will be described the main 

activities reported in the last ten years (Figure 6), with special emphasis on antitumor activity. 

 

 

 

 

 

Figure 6. Some pharmacological activities of xanthones (El-Seedi, H.R. et al., 2010) 
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• Insecticidal and Antihelmintic Activities 

 

Although the significant number of helminth infections, few anthelminthic drugs are 

available for human use. The activities of α-mangostin (Figure 7), a major bioactive xanthone 

isolated from Garcinia mangostana and of the synthetic derivative mangostin diacetate were 

tested by Keiser, J.  α-Mangostin has showed promising activities against the trematodes 

Schistosoma mansoni, Echinostoma caproni, and Fasciola hepatica in vitro, but not in vivo (Keiser, 

J. et al., 2012). 

Xanthonol (Figure 7) has been shown to have moderate insecticidal and antihelmintic 

activities, being considered a promising lead for safe, efficacious systemic antiparasitic drugs, with 

new modes of action. This result is very important because an effective treatment for human and 

animal infections is urgently needed, since the efficacy of current insecticides and anthelmintics is 

limited by low therapeutic indices, environmental hazards and development of resistance. 

(Ondeyka, J.G. et al., 2006). 

         

                    Xanthonol                                                                          α-Mangostin 

 

Figure 7. Xanthonol and α-mangostin structures 

 

 

 

• Antimicrobial Activity 

 

Bacterial and fungal resistance to antibiotics has become a serious problem in the 

treatment of infectious diseases. The discovery of new antimicrobial agents is very important 

because of the increased incidence of infections by opportunistic fungi, especially in patients 

whose immune system has been compromised by AIDS, cancer, diabetes, age or other causes. 

Several studies have shown that diverse xanthones (α-, β-, γ-mangostin, among others) exhibit 

moderate to high inhibitory activities against diverse human pathogenic microorganisms, 
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particularly multi drug-resistant organisms such as the methicillin-resistant Staphylococcus aureus 

(MRSA) and vancomycin-resistant enterococci (VRE). These compounds warrant further attention 

as possible antibiotics with activities against various human pathogenic microorganisms (El-Seedi, 

H.R. et al., 2010). 

 

 

 

• Antiprotozoal Activity 

 

Protozoa such as trypanosomes, leishmania and the malaria parasites (Plasmodium spp.) 

are responsable for serious diseases. Malaria remains the most important parasitic disease, 

causing 2–3 million deaths every year, and the emergence and rapid spread of chloroquine-

resistant strains of Plasmodium falciparum threaten to increase the annual death toll (Azebaze, 

A.G.B. et al., 2007). Being in the past considered a disease of underdeveloped countries, today, 

due to climate changes, it is estimated that it can reach developed countries like United States, 

and therefore the attention and the investment applied in the discovery of new therapeutic drugs 

against malaria are increasing. Xanthones have already been evaluated by their antimalarial 

activity and had proven to be potential antimalarial agents (Dua, V.K. et al., 2004; Portela, C. et 

al., 2007). 

Prenylated xanthones from Garcinia subelliptica have shown trypanocidal activity against 

Trypanosoma cruzi, the etiologic agent for Chagas’ disease (Abe, F. et al., 2003). 

 

 

 

• Antiviral and Anti-HIV-1 Activities 

 

Xanthones are being evaluated by their neuraminidase inhibitory activity (Ryu, H.W. et al., 

2010). The neuraminidase family is a group of exo-acting enzymes that are important in a varied 

array of cell–cell interactions and cell–molecule recognition processes. Neuraminidase has a well 

known role in infectivity of the influenza virus and recent studies have also shown that it can 

enable several bacterial pathogens to evade the host immune system. Thus development of 

inhibitors of neuraminidase may provide a new weapon for the treatment of several pathogenic 

diseases.  

Concerning to anti-HIV activity, mangiferin (Figure 8) showed good activities, being now a 

novel anti-HIV agent effective against resistant HIV-strains (Wang, R.R. et al., 2011a). Gambogic 
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acid (Figure 5) have also shown moderate HIV-1 inhibitory activities in the reverse transcriptase 

assay (Reutrakul, V. et al., 2007). More recently, dicamphanoyl-dihydropyranoxanthone (DCX-

Figure 8) derivatives, previously discovered as novel anti-HIV agent, were evaluated for their 

potential to reverse multi-drug resistance in a cancer cell line over-expressing P-glycoprotein (P-

gp). DCX can act as dual inhibitor of HIV replication and chemoresistance mediated by P-gp. As 

such, they may be useful in combination therapy to overcome P-gp-associated drug resistance for 

AIDS treatment (Zhou, T. et al., 2012a and 2012b).  

 

                  

DCX                                                                    Mangiferin 

 

 

 

Figure 8. DCX and Mangiferin structures 

 

 

 

• Antioxidant Activity 

 

Xanthones with phenolic groups have been described for their remarkable antioxidant 

activities, namely scavenging ones (Chin, Y-W. et al., 2008; Mahabusarakam, W. et al., 2006; Rana, 

V.S. and Rawat, M.S.M., 2005). Beside free radical scavengers, they can act as metal chelators as 

well as inhibitors of lipid peroxidation. These properties have been implicated with their 

hepatoprotective, anti-inflammatory and cancer chemopreventive actions (Pinto, M. et al., 2005). 

One example of xanthone with this activity is the mangiferin (Figure 8), a “super 

antioxidant” more potent than vitamin C and E (Wu, Z. et al., 2010). 
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• Cardioprotective effect and cardiovascular activity 

 

Many xanthones with catechol systems are considered anti-atherosclerotic since they 

have anti-low density lipoprotein (LDL) oxidation and acyl CoA:cholesterol acyltransferase (ACAT) 

inhibition activities, both of which are potentially useful for treating and/or preventing 

atherosclerosis and hypercholesterolemia (Park, K.H. et al., 2006). They showed to have potential 

as cardiovascular protective agents (Jiang, D.J. et al., 2004; Marona, H. et al., 2009; Wang, Y. et al., 

2008). 

Xanthones can be useful in several pathologies like asthma, allergies, inflammation and 

thrombosis, once they are PAF-antagonists. PAF – exogenous platelet activating factor, initiates 

anaphylactic hypotension being an important mediator of those pathologies. Xanthones isolated 

from various plants showed inhibitory effects on PAF-induced hypotension, some of them with an 

activity higher than that of gingkolide-B, a recognized natural PAF-antagonist from Gingko biloba 

(Oku, H., et al., 2005). 

 

 

 

 

• Anti-allergic and Anti-inflammatory Activity 

 

Mast cells are known to participate in allergic and anaphylactic reactions related to 

immune responses. Various stimuli can activate mast cells, causing the release a number of 

biologically active molecules like histamine, serotonin, Interleukin-6 (IL-6), leukotriene C4 (LTC4), 

and prostaglandin D2 (PGD2), leading to allergic and inflammatory diseases, especially skin 

inflammation and allergic asthma. The diprenylated xanthones isolated from Garcinia 

Mangostana α-and γ-mangostin were investigated for their inhibitory effect on the allergy 

mechanism (Chae, H., et al., 2012). α-and γ-mangostin were found to modulate the production of 

IL-6, LTC4, PGD2 and the release of histamine, and also repress cyclooxygenase-2 expression, 

suggesting that α-and γ-mangostin may be useful as anti-allergic and anti-inflammatory molecules 

in preventing or treating various diseases (Nakatani, K. et al., 2002). 
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• Neuropharmacological Activity 

 

Alzheimer’s disease is the most common age-related degenerative brain disorder, which 

causes gradual, irreversible losses of memory and other mental abilities. Once it is associated with 

low brain neurotransmitters levels, it is fundamental to find new cholinesterase inhibitors as new 

drug candidates to treat Alzheimer’s disease and related dementias. Most currently known 

natural inhibitors of acetylcholinesterase (AChE) are alkaloids, which have the disadvantages of 

short half-lives and undesirable side effects (Lopez, S. et al., 2002). Thus, xanthones can play an 

important role as non-alkaloid cholinesterase inhibitors, exhibiting potent inhibitory activities 

against AChE (Urban, A. et al., 2004). Since multiple pathogenic factors, including aggregated 

amyloid-β peptide and tau protein, excessive levels of transition metals, oxidative stress and 

reduced acetylcholine levels, are implicated in Alzheimer’s disease, multipotent agents with 

diverse targets are expected to be more effective for treating Alzheimer’s disease than single-

target counterparts (Mattson, M.P., 2004). Once xanthone are “privileged structures” that can act 

in different receptors, multiple pharmacological effects can be combined into one xanthone 

molecule.  

In this way, is also important to note that xanthones are also capable to inhibit 

monoamine oxidase (MAO), an enzyme that exists as two isoenzymes – MAO-A and MAO-B, with 

an important role in the metabolism of neurotransmitters, including serotonin and dopamine 

(Harkcom, W.T. and Bevan, D.R., 2007; Nunez, M.B. et al., 2004; Ohishi, N, et al., 2000; Thull, U., 

et al., 1993). It was proved that the dysfunction of this enzyme is associated with neurological 

disorders like depression, drugs abuse and attention deficit, revealing the importance of finding 

new and effective MAO-inhibitors and therefore the importance of the xanthones (El-Seedi et al., 

2010). 

Xanthones are multipotent agents, found to be efficient radical scavengers, MAO 

(isoenzymes A and B) inhibitors and potential AChE inhibitors (El-Seedi et al., 2010; Mattson, M.P., 

2004), thereby fundamental tools in the treatment of dementias. 

 

 

 

• α-Glucosidase Inhibitory Activity 

 

Nowadays, several diseases like obesity, heart disease and diabetes are rising. In the case 

of diabetes, glycosidases, a large family of enzymes that are involved in the processing of complex 

carbohydrates have been consider as an important therapeutic target. α-Glucosidase inhibitors 
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also show promising therapeutic potential in the treatment of disorders such as human 

immunodeficiency virus (HIV), as referred above, metastatic cancer, and lysosomal storage 

diseases (Melo, E.B. et al., 2006). In the specific case of diabetes mellitus type II (Floris, A.L. et al., 

2005), α-glucosidase is a key enzyme required for cleavage of maltose for absorption of glucose 

into blood in the small intestine. Thus, abnormally high levels of plasma glucose after a 

carbohydrate meal may be regulated by α -glucosidase inhibitors. 

Xanthones are now being study as α-glucosidase inhibitors because of the high level of 

natural abundance and antioxidant potential (Ryu, H.W., et al., 2011). They proved to have 

antihyperglycemic activity, helping to low postprandial glucose absorption by retarding the 

cleavage of complex carbohydrates (Seo, E.J. et al., 2007). One good example of this inhibitory 

activity is γ-mangostin (Ryu, H.W., et al., 2011). 

 

 

 

• Cytotoxicity and Cancer Chemoprevention Activities 

 

Despite the advances in anticancer drug development, cancer is still a major cause of 

human mortality and morbidity. Today there are powerful tools for the development of new 

cancer treatments, but small molecules like xanthones possessing potent anticancer activities are 

still attractive as novel anticancer drug candidates (Woo, S. et al., 2010). 

Among a myriad of biological activities described for xanthones, the in vitro growth 

inhibitory activity on tumor cell lines appeared to be quite significant, since they exert their effect 

on a wide range of different tumor cell lines. Apart from the antitumor effect, some extracts 

containing xanthones have been described for their antimutagenic properties and for their cancer 

chemopreventive effect, acting as inhibitors of tumoral promoters. The xanthones reported to 

date as antitumor agents include the xanthone molecule itself (Figure 1), as well as other natural 

and synthetic derivatives (Palmeira, A. et al., 2010; Pinto, M. et al., 2005). 

 

Mangosteen, Garcinia mangostana, is a fruit found in South East Asia that has been used 

as traditional medicine. Its therapeutic properties are related with xanthones, its principal 

secondary metabolites (Peres, V. et al., 2000). Prenylated xanthones isolated from young fruits of 

Garcinia mangostana, namely α, β, and γ-mangostin (Figure 4) showed cytotoxic activity against 

several human tumor cell lines (El-Seedi, H.R. et al., 2010; Suksamrarn, S. et al., 2006). α-

Mangostin (Figure 7), one of major xanthones isolated from mangosteen, has been reported for 

its antiproliferative, antitumor growth, metastasis suppression and apoptotic effects against 
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human breast cancer, prostate cancer , colon cancer and leukaemia (Han, A.-R. et al., 2009; Lee, 

Y.-B. et al., 2010; Na, Y., 2009; Woo, S. et al., 2007). 

 

Another impressive natural xanthone is psorospermin (Figure 9), a dihydrofuranxanthone 

of the African plant Psorospermum febrifugum. This molecule showed excellent anticancer activity 

against human and murine cancer cell lines (Na, Y., 2009). Psorospermin advanced to clinical trials 

but further development for the commercial market suffered from limited resources. Meanwhile 

stereoselective total synthesis for psorospermin was reported (Schwaebe, M.K., et al., 2005), 

giving a future opportunity to clinical trials with this compound. Psorospermin has shown 

biological activities via intercalation of the xanthone group with DNA base pairs (Shen, R. et al., 

2010) and alkylation of epoxide by N7-guanine in the presence of topoisomerase II (Na, Y., 2009; 

Woo, S. et al., 2007). 

Topoisomerases are critical cellular enzymes necessary for cell proliferation, being 

involved in the DNA replication. Because of the importance of these enzymes in the cell 

proliferative process, topoisomerases are one of the major targets in anti-cancer drug 

development. Also, compounds that can act as DNA cross-linking agents, inhibiting replication and 

transcription and therefore causing cell death, are an important class of anti-tumor drugs 

targeting DNA. In Sangwook Woo study, these two mechanisms were tested and the synthesized 

xanthones exhibited strong inhibitory activity against different cancer cell lines (Woo, S. et al., 

2010). 

 

Also among these interesting xanthones is the polyprenylated xanthone gambogic acid 

(Figure 5), the most abundant caged Garcinia xanthones, isolated from the resin of the Garcinia 

hurbury tree. In finished phase II clinical trials in China, this compound was identified as a potent 

anticancer agent during highthroughput screening to determine if this agent could be used as a 

novel anticancer agent. A variety of mechanisms have been proposed by which gambogic acid 

inhibits the proliferation of cancer cells and induces apoptosis. These include inhibition of 

antiapoptotic proteins, induction of apoptosis-associated proteins, inhibition of topoisomerase II, 

among others. Other reported pathway is the inhibition of angiogenesis by suppressing vascular 

endothelial growth factor (VEGF) signalling, a factor that is highly expressed in human cancer 

tissues. It was also found that the apoptotic effect of gambogic acid was not related to cell cycle 

arrest, a common pathway for many current natural anticancer drugs, including paclitaxel and 

that gambogic acid reversed docetaxel resistance in gastric cancer cells, further supporting the 

potential of gambogic acid as a prospective anticancer drug candidate (Sun, H. et al., 2012; Wang, 

X. et al., 2011b). 
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One the best-known synthetic xanthone candidate as anticancer drug is 5,6-

dimethylxanthenone-4-acetic acid (DMXAA), also known as Vadimezan (Figure 9). Once 

angiosenesis is a fundamental process in tumor growth and progression, considerable efforts have 

been directed to antiangiogenic therapy as a new treatment for human cancers. DMXAA, a simple 

carboxylated xanthone, was discovered in a structure-activity relationship study involving a series 

of xanthone-4-acetic acids related to the parent drug flavone acetic acid. DMXAA was the most 

effective analog and was then selected for detailed evaluation (Palmeira, A. et al., 2010). 

DMXAA is a vascular disrupting agent that leads to the collapse of tumor vasculature and 

subsequent tumor cell death (Na, Y., 2009) by immunomodulation and cytokines induction. It also 

possesses inductive effects in 5-hydroxytryptamine and nitric oxide (NO). In this way, DMXAA may 

be applied in synergy not only with conventional cytotoxic agents and other antivascular agents, 

but also with immunomodulatory agents that increase host-mediated responses such as cytokines 

and NO (Pinto, M. et al., 2005). This compound has attracted scientific interest because of its 

excellent pharmacological profile since its discovery. Its multiple actions can be used as a basis to 

improve antivascular therapy. 

Until recently, DMXAA was the most advanced in clinical development among 

investigational vascular disrupting agents, being tested mainly for lung cancer. However, two 

phase III trials of this small molecule in the first- and second-line settings in non-small cell lung 

cancer (NSCLC) were terminated early after the observation of no overall survival benefit 

(Reckamp, K.L., 2012; Rogosin, S. and Sandler, A.B., 2012).  

 

 

                               

 

                          Psorospermin                                                             DMXAA 

                

      

 

Figure 9. Psorospermin and DMXAA structures 
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Once xanthones can exhibit their antitumor activity through different mechanisms of 

action, in table 1 are summarized xanthone derivatives/substituents and their mechanisms. 

 

Table 1. Mechanisms of action for xanthone derivates with antitumor activity (Pinto, M. et al., 2005 

and references cited therein)  

 

 MECHANISMS 

 

XANTHONE DERIVATIVES/SUBSTITUENTS 

Apoptosis via caspase 3 Prenyl; Glycosyl; Methylenecarboxy 

Aromatase inhibition Imidazolyl; Triazolyl 

DNA binding Pyrano; Amino; Oxygenated 

DNA breaks and DNA-proteins cross-links Furano; Epoxy 

DNA synthesis suppression Epoxy; Polycyclic; Prenyl; Dialkylamine; 

Oxygenated; Furano 

11-β-Hydroxylase inhibition Xanthone-anthraquinone 

17-α-Hydroxylase/C17,20-lyase inhibition Imidazolyl; Triazolyl 

Immunomodulation, cytokines induction Methylenecarboxyl 

Kinases modulation Dihydroxy; Dihydroxy/nitro; 

Methylenecarboxy; Prenyl; Glycosyl; Formyl; 

Hydroxyl; Xanthonolignoids; Oxygenated 

Phospholipase C inhibition Xanthone-chromone, Tetra-oxygenated 

Prostaglandin (PG) E2 receptors blocking Prenyl; Carboxy 

Protein synthesis suppression and RNA 

synthesis suppression 

Epoxy 

Sphingomyelinases inhibition Prenyl 

Topoisomerases I and II inhibition Furano; Prenyl; Oxygenated; Pyrano; 

Xanthonolignoids; Carboxamide; Epoxy; Acyl; 

Thioxanthones 
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Transforming growth factor-β (TGF-β) gene 

expression increasing 

Glycosyl 

Vasculogenic mimicry inhibition Methylenecarboxyl 

 

 

With all these biological activities and their promising value is easily understandable that 

xanthones, either from synthesis or natural resources, are considered a class of compounds with 

great interest. 
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3. SYNTHESIS OF XANTHONES 
 

Once the biosynthetic routes are a limiting factor for the structural variation of naturally-

occurring xanthones, the chemical synthesis can be a good alternative to create new derivatives 

as well as to rationalize the structure-activity relationship. 

 

One of the first synthesis of xanthones was made by Michael and Kostanecki, involving the 

distillation of a mixture of a phenol, an o-hydroxybenzoic acid and acetic anhydride (Sousa, M.E. 

and Pinto, M., 2005). Since then, different methods have been developed, with higher yields and 

less drastic experimental conditions (Sousa, M.E. and Pinto, M., 2005). 

Three classical methods can be used to synthesize xanthones: 

• the Grover, Shah, and Shah (GSS) reaction; 

• the synthesis via benzophenone; 

• the synthesis via diaryl ethers intermediates. 

 

The GSS reaction (Figure 10) is a one-pot process for preparing hydroxyxanthones and still 

popular due to usually accessible materials. The xanthone is obtained by adding a salicylic acid 

derivative (1) and a suitable phenol (2), both heated together with zinc chloride in phosphoryl 

chloride as solvent. It can afford the xanthone skeleton (4), directly only if the benzophenone 

intermediate (3) carries another hydroxyl group at 6 or 6’ position, which means if an alternative 

site for cyclization is available (*). 

 

 

Figure 10. Synthesis of xanthones via GSS reaction 

 

The xanthone synthesis via benzophenone intermediate (Figure 11, I) begins with 

condensation, by Friedel-Crafts acylation, of a substituted benzoyl chloride with a phenolic 

derivative (a) in the presence of aluminium chloride and anhydrous diethyl ether as solvent, 

followed by a intramolecular cyclization (b). 
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The xanthone synthesis via diaryl ether (Figure 11, II) is an Ullman condensation of 

sodium phenolates with ortho-halogenated benzoic acids (c), followed by ring formation by 

electrophilic cycloacylation of the 2-aryloxybenzoic acids (d). 

Once intermolecular acylations give generally higher yields than Ullmann ether syntheses, 

the chosen route for xanthone synthesis is usually the acylation, followed by cyclization to form 

the heterocyclic ring (Sousa, M.E. and Pinto, M., 2005). 

 

 

 

 

 

Figure 11. Synthesis of xanthones via benzophenone and via diaryl ethers intermediate 

 

Different methods of construction of xanthone core have been reported in the last years. 

Modifications to the GSS reaction (Figure 10) have emerged.  For example, in some cases, better 

results can be obtained using as catalyst the Eaton’s reagent (phosphorus pentoxide and 

methanesulfonic acid) instead of the traditional mixture of phosphorus oxychloride and zinc 

chloride (Davies, J.S.H. et al., 1958; Grover, P.K. et al., 1955; Pillai, R.K.M. et al., 1986; Sousa, M.E. 

and Pinto, M., 2005). Later, this alternative method will be discussed in this thesis applied to the 

xanthone synthesis. 
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 Very recently, Verbanac (Verbanac, D. et al., 2012) described an efficient microwave-

assisted chemical synthesis of (thio)xanthones. According to them, from a mixture of phenolic 

acids and phenol derivatives with Lewis acid (Figure 12), heated under microwave irradiation, 

xanthones can be obtained with the desired regioselectivity in a shorter reaction time (50 

seconds) and with very good yields (upper than 80%). 

 

 

 

Figure 12.  Xanthone synthesis by Verbanac, D. et al., 2012 

 

 

 

Others methodologies for the synthesis of xanthones can be found in a very recent review 

by Key-Simeon Masters and Stefan Bräse (Masters, K-S. and Bräse, S., 2012). 
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4. SYNTHESIS OF PRENYLATED XANTHONES 

 

4.1. “CLASSICAL” SYNTHETIC METHODOLOGIES 

 

The methodologies to obtain synthetic prenylated xanthones and respective cyclic 

derivatives are based on different approaches of molecular modification (Pinto, M. and 

Castanheiro, R., 2009a) namely: 

• Molecular extension through prenylation of xanthonic scaffold (Figure 13); 

• Molecular rigidification by Claisen rearrangement and/or cyclization of prenylated 

precursors (Figures 14 and 15).  

 

 

4.1.1. Molecular extension through  prenylation of xanthonic scaffold 

 

 The xanthonic scaffold can be prenylated by a nucleophilic substitution reaction with 

prenyl bromide, in alkaline medium. The products of this reaction are usually prenyloxy 

xanthones, however, in some cases, diprenylated derivatives with the prenyl group on the carbon 

adjacent to the prenyloxy substituent can also be obtained (Figure 13 (i)). If the reaction is 

performed in an aqueous medium, for example a KOH solution, C-prenylation can also occur 

(Figure 13 (ii)) (Pinto, M. and Castanheiro, R., 2009a). 

 

 
 

(i) Prenyl bromide, K2CO3, Acetone, reflux, 8h (2, 48%; 3, 3%) 

 

 

 

(ii) Prenyl bromide, aq. KOH 10%, room temperature, overnight (5, 11%; 6, 13%; 7, 10%). 

 

Figure 13. Prenylation of the xanthonic scaffold with different experimental conditions (i, ii). 
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4.1.2. Molecular rigidification by Claisen rearrangement and/or cyclization of prenylated 

precursors 

 

 

• Claisen rearrangement of prenylated precursors 

 

The molecular rigidification can be the result of Claisen rearrangement. In figure 14 (i), 

the 1-hydroxy-3-(3-methylbut-2-enyloxy)-9H-xanthen-9-one (8) were heated in vacuum at 200-

210°C to obtain rearranged prenyl xanthones and/or cyclic derivatives. Three products were 

formed: 1,3-dihydroxy-9H-xanthen-9-one (9), and two products with 4,4,5-trimethyl-4,5-

dihydrofuran-ring condensed in either linear (10) or angular ways (11). These dihydrofuran 

derivatives results of Claisen rearrangement in both the available ortho positions of the xanthone 

scaffold to give (1,1-dimethylallyl) derivatives (Figure 3, C) followed by spontaneous cyclization 

involving the 3-hydroxy group (Pinto, M. and Castanheiro, R., 2009a). 

 

 

(i) Vacuum, 200-210°C (9, 32%; 10, 18%; 11, 9%) 

 

 

(ii) N,N-DMA, 200°C (13, 60%; 14, 30%) 

 

Figure 14. Claisen rearrangement of prenylated precursors 
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Other example of the Claisen rearrangement is the reaction of 3-methoxy-1-(3-methylbut-

2-enyloxy)-9H-xanthen-9-one (12) performed in N,N-dimethylaniline (N,N-DMA) (Figure 14 (ii)). A 

mixture of 1-hydroxy-3-methoxy-4-(3-methylbut-2-enyl)-9H-xanthen-9-one (13) and the 

dihydrofuranoxanthone (14) were obtained, along with a small amount of starting material (12). 

The xanthone 13 resulted of a para Claisen rearrangement of xanthone 12, while 

dihydrofuranoxanthone 14 was obtained from an ortho Claisen rearrangement followed by a 

spontaneous cyclization with the 1-hydroxy group (Pinto, M. and Castanheiro, R., 2009a). 

 

 

 

 

• Cyclization of prenylated precursors 

 

The molecular rigidification can also be the result of cyclization of prenylated precursors. 

In figure 15, the monoprenylated xanthone 2 is used as precursor for the synthesis of 

dihydropyranoxanthones. By heating 2 with zinc chloride in o-xylene, the angular 

dihydropyranoxanthone 15 is obtained (Pinto, M. and Castanheiro, R., 2009a; Castanheiro, R. et. 

al., 2009b).  

 

 

(i) ZnCl2, o-xylene, 200°C, 21h (15, 22%) (Castanheiro, R. et. al, 2009b) 

 

Figure 15. Synthesis of dihydropyranoxanthones 
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4.1.3. Different approaches for the synthesis of prenylated xanthones 

 

Prenylated xanthones can also be generated by a condensation and consequent 

cyclization reaction of prenylated building blocks. For example, using this method the naturally 

occurring α-mangostin (Figure 16, 20) can be synthesized. The coupling reaction between the 

building blocks (16 and 17) leads to benzophenone intermediate (19) that cyclizes, to give the 

natural xanthone (20) (Pinto, M. and Castanheiro, R., 2009a). 

 

 

 

 

 

Figure 16. Synthesis of α-mangostin (i): sBuLi, THF, -78°C, 49%; (ii) IBX, toluene/DMSO (1/1), room 

temperature, 76%; (iii) 10% Pd/C, HCO2NH4, acetone, room temperature, 63%; (iv) PPh3, CCl4, THF, 

room temperature, silica gel, 43% 
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4.2. “NON-CLASSICAL” SYNTHETIC METHODOLOGIES 

 

The synthetic procedures can be achieved not only by the application of classical 

methodologies, such as the use of conventional heating, but more recently following “non-

classical” synthetic alternatives like microwave-assisted organic synthesis (MAOS) and/or 

heterogeneous catalysis. In this thesis, the molecular modifications to obtain prenylated 

xanthones were attained by the application of these two techniques discussed later on. 

To quickly and efficiently synthesize a large number of xanthones derivatives, alternative 

synthetic methodologies to the classical ones are being increasingly explored. The lack of 

reproducibility, difficult and expensive scale-up and standardization of synthetic processes are the 

main hurdles towards the industrial production. Time- and energy-consuming synthetic routes, 

usually involving the use of volatile and toxic organic solvents, can be apparently cost-viable and 

environmentally acceptable for the synthesis at a laboratory scale. However, in an industrial scale, 

due to the product high cost and to the negative impact they cause on the environment, that 

routes are often not viable. Also, the appearing of a new philosophy that aims to minimize the use 

of non-renewable resources and organic solvents, the generation of toxic secondary products and 

the consumption of energy and the emission of gases – the so called green chemistry or 

sustainable chemistry, a concept that has received enormous attention in recent times - has 

encouraged the use of “non-classical” synthesis (Sosnik, A. et al., 2011). 

To overcome those hurdles and achieved the aims of the green chemistry, synthetic 

alternatives like microwave-assisted organic synthesis (MAOS) and heterogeneous catalysis are 

being applied. 

 

 

• MAOS - Microwave-assisted organic synthesis 

 

MAOS, first reported in the late 1980s, relies on the application of microwave (MW) 

irradiation as the energy source for organic reactions. MWs comprise electromagnetic radiation 

with a frequency between 0.3 and 300 GigaHertz (GHz), with domestic and synthetic ovens 

usually opperating between 2 and 8 GHz (Figure 17). 
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Figure 17. Electromagnetic spectrum (http://labs.ciid.dk/experiments/) 

 

 

MAOS is mainly based on the efficient heating of materials by microwave dielectric 

heating effects. Microwave dielectric heating is dependent on the ability of a specific material 

(solvent or reagent) to absorb microwave energy and convert it to heat. The ability to convert 

MW energy into heat, at a given frequency and temperature, is determined by the dissipation 

factor or ‘loss tangent’, tan δ and in general a reaction medium with a high (>0.5) tan δ value, at 

the standard operating frequency of a microwave synthesis reactor (2.45 GHz), is required for 

efficient absorption and rapid heating (Kappe, C.O., 2008).  

Microwave irradiation triggers heating by two main mechanisms— dipolar polarization 

and ionic conduction. Whereas the dipoles in the reaction mixture (for example the polar solvent 

molecules) are involved in the dipolar polarization effect, the charged particles in a sample 

(usually ions) are affected by ionic conduction. When irradiated at microwave frequencies, the 

dipoles or ions of the sample align in the applied electric field. As the applied field oscillates, the 

dipole or ion field attempts to realign itself with the alternating electric field and, in the process, 

energy is lost in the form of heat (Figure 18).  

Although is not the only important factor in the conversion of energy into heat, the 

polarity of the solvent is an important tool to predict if the solvent will be heated under MW 

irradiation. Usually, polar solvents absorb well MW irradiation, while less polar or non-polar 

solvents are low absorbing or do not absorb. If the reaction requires the use of solvents that are 
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non-polar and therefore MW low absorbing, there are passive heating elements, like weflon
TM 

(inert phluoropolymer) magnetic bars, that are made out of strongly microwave absorbing 

materials and therefore increase the MW absorbance level of the medium, allowing the heating 

of the mixture reaction (Kappe, C.O., 2008; http://www.milestonesci.com).  

 

Figure 18. Dipolar polarization; microwave versus traditional heating process 

 

 

Until recently, heating reaction mixtures on a laboratory scale was typically performed 

using isomantles, oil baths or hot plates applying a reflux set-up where the reaction temperature 

is controlled by the boiling point of the solvent. This traditional form of heating – surface heating - 

is a rather slow and inefficient method for transferring energy into a reaction mixture and often 

results in the temperature of the reaction vessel being higher than that of the reaction mixture. In 

contrast, microwave irradiation produces efficient internal heating by direct coupling of 

microwave energy with the molecules present in the reaction mixture (Figure 18) (Kappe, C.O., 

2008; Salema, A.A. and Ani, F.N., 2011; Sosnik, A. et al., 2011). Since the reaction vessels 

employed in microwave chemistry are made out of essentially microwave transparent materials 

such as glass or Teflon only the reaction mixture is heated. 

 

 The equipment used in this work was the MicroSYNTH from Milestone. There are 

different adaptable accessories to thus equipment, allowing it to be used widely, in a small or 

large scale, at different values of pressure and temperatures. The inside temperature of the vessel 

is measured by an optic fiber sensor and the outside temperature, in the cavity, is controlled 

through an infrared sensor (Figure 19) (Favretto, L., 2003; http://www.milestonesci.com). 
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Figure 19. MW equipment system (http://www.milestonesci.com) 

 

Due to unique advantages such as shorter reaction times, higher yields, limited generation 

of by-products and the relatively easy scale-up without detrimental effects, this technology has 

steadily become an appealing synthetic tool (Kappe, C.O. and Dallinger, D., 2009; Kappe, C.O., 

2008 and 2004; Sosnik, A. et al., 2011). 

 

Comparing the results and reaction conditions with the reaction presented before in 

Figure 13 (i), it is notably the optimization of the synthetic process when MW irradiation was 

applied (Figure 20). This reaction was faster, with better yields and more selectivity as we can 

conclude by the analysis of table 2 (Pinto, M. and Castanheiro, R., 2009a). 

 

 

 
 

 

 

Figure 20. Prenylation using MAOS (i) Prenyl bromide, K2CO3, Acetone, MW, 200W, 3x20min, 59°C 
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Table 2. Prenylation through MW irradiation and conventional heating 

 
Conventional Heating MW 

Yield 
48% (2)  

  3% (3) 

83%(2) 

 5% (3) 

Reaction time 8 h 1h 

 

 

The microwave heating process, the high temperatures attained and the ability to work 

under high pressure conditions for relatively short times make reactions faster than under 

conventional thermal conditions and limit the occurrence of side reactions (Salema, A.A. and Ani, 

F.N., 2011; Kappe, C.O., 2008 and 2004). Therefore, better yields, more selectivity and reaction 

times reduced from days and hours to minutes and seconds represent a big gain in areas like 

Medicinal Chemistry and Drug Discovery, where large libraries of compounds are generated. 

In table 3 are summarized some relevant differences between conventional thermal 

heating and MW heating (the differences need to be understood as general) (Sosnik, A. et al., 

2011). 

Table 3. Main general differences between conventional and MW heating (Sosnik, A., et al., 2011). 

PROPERTY CONVENTIONAL HEATING MW HEATING 

Heating rate  Slow Fast 

Maximum reaction 

temperature 

Limited by the bp* of the solvent 

(reflux) 

Overheating above bp* (up to 

100°C in a closed-vessel) 

Reaction time (rt) Long  Short  

Pressure High pressure reactions more 

dangerous (longer reaction time) 

High pressure reactions are 

safer 

Homogeneity of heating Low High 

Yield Low High 

Amount of secondary products High Low 

Solvent conditions Difficult to work without solvent Easy to work in solvent-free 

conditions 

Reproducibility 
a
 Low High 

*bp – boiling point 
a 

A higher reproducibility of MW reactions is commonly claimed, but this depends on the sophistication of the 

equipment, as domestic MW ovens lack optimal reproducibility. 

Other advantage of MW technique is, when one of the reactants is liquid, it can act as a 

solvent and absorb MW irradiation sufficiently to heat the system, so that reactions can be 



31 

 

conducted under solvent-free conditions (Bougrin, K. et al., 2005; Kappe, C.O. and Dallinger, D., 

2009; Kappe, C.O., 2004).  Due to environment and economical advantages, solvent-free reactions 

are becoming more appealing, optimizing conventional procedures, by turning them cleaner, 

safer and simpler. Syntheses traditionally with long reaction times can sometimes become faster 

when MW and solvent-free conditions are associated. Today, more therapeutic targets are being 

identified and the synthesis and optimization of lead compounds have to be accelerated (Kappe, 

C.O. and Dallinger, D., 2005). The traditional synthesis is usually slow and can be insufficient to 

satisfy the growing need of new drugs. In this context, MW and solvent-free methods have high 

potential in accelerating this discovery. Avoid the use of organic solvents leads to cleaner, cheaper 

and efficient syntheses (Green Chemistry), with good yields and short reaction times (Verbanac, 

D. et al., 2012). 

MW irradiation has shown many advantageous features over the conventional methods 

and, even if the experimental conditions to expand its applications in industry remain to be 

optimized, it is obvious that MW represents one the most versatile and promising synthetic and 

processing technologies available today (Sosnik, A. et al., 2011). 

 

• Heterogeneous Catalysis 

 

Nowadays, one of the biggest challenges in chemistry is to develop synthetic routes that 

are less polluting, designing clean or green chemical transformations that should not cause 

permanent damage to the environment. Ways to minimize the consumption of energy and raw 

materials must be deployed so that optimal value of resources could be realized and 

environmentally friendly products can be obtained at reasonable costs – Green Chemistry. 

Catalysts can be a great help to achieve many of these goals (Zhou, C.H., 2011). 

Catalysts could be synthetic or natural chemicals capable of making an otherwise 

impracticable reaction to occur under the mildest possible conditions. Recently, an important 

family of catalysts derived from the soil has raised the interest of the chemists, being the most 

remarkable ones the clays and zeolites (Nagendrappa, G., 2011 and 2002). The commercially 

available montmorillonite K10 clay was one of the chosen catalysts to work with. 

Clays are widespread, easily available and low-cost chemical substances. Both in their 

native state and in numerous modified forms, clays are versatile materials that can function as 

Brönsted and/or Lewis acids, or as bases and are used to catalyze various types of organic 

reactions, usually allowing higher yields and greater selectivity (Nagendrappa, G., 2011). 

Clays are aluminosilicate nanoparticles (<2 mm in diameter) with layered structures and a 

surface area of about 23000 cm2 per gram. The layers possess net negative charge that is 
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neutralized by cations such as Na+, K+, Ca2+, which occupy the interlamellar space and can be very 

easily replaced by other cations or other molecules. Therefore, simple procedures can easily alter 

clays properties like acidity, pore size, surface area and others, turning clays, in addition to their 

environmental compatibility and cheapness, in a catalyst of choice. 

Several reviews have been written about clays, highlighting the advantages and 

developments in the area of organic synthesis using clays (Varma, R.S., 1999; Zhou, C.H., 2011). 

Their chemical composition and crystal structure are the basis on which they are divided into 

four main groups such as illite, smectite, vermiculite, and kaolinite. In clays groups, the one 

that is found to be most useful as a catalyst to the synthetic organic chemist is a subgroup of the 

smectite clay, called montmorillonite. The montmorillonite lattice is composed of a octahedral 

sheet of [Al2(OH)6] between two tetrahedral sheets of [SiO4]4- (Figure 21). The three-sheet layer 

repeats itself, and the interlayer space holds the key to the chemical and the physical properties 

of the clay, once, like said before, it has cations that can be replaced by other cations or 

molecules. 

 

 

 

Figure 21. Structure of montmorillonite (Nagendrappa, G., 2002) 

 

 When the clay is dry these cations reside in the hexagonal cavities of the silica sheets. 

When wet, the layers of the clay move apart by the entry of water molecules, the clay swells and 

the interlayer cations become easily exchangeable by a variety of metallic and non-metallic 

cations, for example H3O
+, NH4

+, Al3+, Fe3+. Therefore the catalytic properties of montmorillonite 

clay can be manipulated to meet the needs of synthetic organic chemists and a variety of organic 

reactions can be carried out with great success using such clays as catalysts. With clays, reactions 
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take place more efficiently, under milder conditions, with better yields, shorter reaction times and 

greater product selectivity. 

 

Figure 22 shows an example of a prenylation reaction of xanthone 1 that occurred in the 

presence of K10 clay. Different reaction conditions – room temperature (A), conventional heating 

at 100 °C (B) and MW irradiation (C) were tested. By analysis of table 4, it is clear that the 

combination of K10 clay-catalysis with MW irradiation was the better method to obtained 

dihydropyranoxanthone 15 (better yields and shorter reactions times). 

 

 

 

 

Figure 22. Clay-catalyzed condensation (i) K10 Clay, CHCl3, prenyl bromide, stirring, heating 

(Castanheiro, R. et al., 2009b) 

 

 

 

 

 

Table 4. Yields obtained with different reaction conditions (Castanheiro, R. et al., 2009b)

Method 
Reaction 

time 
Temperature 

Yields with K10 

clay 

Yield with classical synthetic 

method 

A 5 days 
Room 

temperature 
51% 

 

 

10,5% 

B 60 minutes 100°C 63% 

C with solvent 20 minutes 110°C 53% 

C without 

solvent 
20 minutes 105°C 86% 

 

 

 

Besides these, clays have others advantages. The work-up and purification are simpler, 

because the clay is separated easily from the reaction mixture and the catalyst can be reused or 
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regenerated (Nagendrappa, G., 2002). For all this, the clay-catalyzed synthesis is economical and 

environmentally favourable, representing a great advantage in a moment where there is urgent 

to replace the not-so-desirable conventional catalysts by the called green catalysts. 

In this thesis, the chemical syntheses catalyzed by montmorillonite K10 clay were 

performed under microwave irradiation. Associating MW irradiation with inorganic solid supports 

such as clays, either with solvent or under solvent-free conditions, can bring advantages to the 

chemical synthesis once it usually allows better reaction rates, high yields, ease of manipulation 

and selectivity (Castanheiro, R. et al., 2009b; Nagendrappa, G., 2011; Varma, R.S., 1999). 
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AIMS 

 

  

 This thesis had the main goal the synthesis of xanthone derivatives with prenyl 

substituents, either in a cyclic or as an open-chain form, and to evaluate their biological activity, 

namely antitumor. Different synthetic methodologies were applied, considering the principles of 

the Green Chemistry. To elucidate the structure of the new obtained compounds, spectroscopic 

methods were a useful tool. 

 Based on these, the aims of this thesis were: 

 

- To synthesize the building block 1,3-dihydroxy-5-methoxyxanthone; 

- To obtained new prenylated xanthone derivates – cyclic and/or open-chain; 

- To apply different methodologies to the synthesis of xanthones derivatives  – “classical” 

and “non-classical” – to attempt better yields, shorter reactions times, more selectivity, 

lower costs and less environmental danger; 

        -     To elucidate the structures of the new compounds using analytical techniques, namely IR,   

              HRMS and NMR (1H, 13C, HSQC and HMBC); 

- To evaluate the biological activity of the synthesized compounds, namely the antitumor 

activity, through their effect on the in vitro growth of three human tumor cell lines, MCF- 

7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (malignant 

melanoma). 
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RESULTS AND DISCUSSION 

 

1. Synthesis of xanthone derivatives 

 

PART I 

Synthesis of 1,3-dihydroxy-5-methoxyxanthone 

 

 The 2-hydroxy-3-methoxybenzoic acid and phloroglucinol (1,3,5-trihydroxybenzene) were 

used as starting materials for the synthesis of 1,3-dihydroxy-5-methoxyxanthone (X1). This 

xanthonic building block (X1) was synthesized through the Grover, Shah and Shah (GSS), method 

A (Figure 23), and also applying Eaton’s reagent (P2O5/CH3SO3H) (B) as the condensation agent 

(Figure 24), both with conventional heating (Grover, P.K. et al., 1955; Davies, J.S.H. et al., 1958; 

Pillai, R.K.M. et al., 1986). 

In method A (GSS reaction), the use of ZnCl2 and POCl3 results in better yields, obtaining 

the 1,3-dihydroxy-5-methoxyxanthone (X1) with 39% yield. 

 

 

Figure 23. Synthesis of 1,3-dihydroxy-5-methoxyxanthone through method A (ZnCl2, POCl3,70°C, 

4h30) 

 

 

In method B (Eaton’s reaction) (Figure 24), due to different reaction conditions, two 

different xanthones were obtained: 1,3-dihydroxy-5-methoxyxanthone (X1) and 1-hydroxy-3-

mesyloxy-5-methoxyxanthone (X2), with 23% and 15% yield, respectively. 

 



39 

 

Figure 24. Synthesis of 1,3-dihydroxy-5-methoxyxanthone through method B (P2O5, CH3SO3H, 

100°C, 1h) 

 

The purification of X1 and X2 was performed by flash column chromatography, using flash 

silica gel as stationary phase and a gradient of chloroform/acetone as mobile phase. After 

crystallization from methanol, yellow crystals of both compound X1 and X2 were obtained. 

 

 

PART II 

Synthesis of prenylated xanthones 

 

To synthesize prenylated xanthones, the first synthetic approach involves the nucleophilic 

substitution on the xanthonic building block 1,3-dihydroxy-5-methoxyxanthone (X1), with prenyl 

bromide in alkaline medium (Cs2CO3) using acetone as solvent, under 200W microwave irradiation 

for 1 hour. In this procedure, two main prenylated derivatives were obtained: 1-hydroxy-5-

methoxy-3-(3-methylbut-2-enyloxy)xanthone (P1) and 1-hydroxy-5-methoxy-4-(3-methylbut-2-

enyl)-3-(3-methylbut-2-enyloxy)xanthone (P2) in 15% and 5% yield, respectively (Figure 25). Other 

two products were detected but in such small percentage that could not be isolated. 

 

 

 

Figure 25. General procedure for the synthesis of P1 and P2 by MW irradiation (i) Prenyl bromide, 

Cs2CO3, Acetone, MW, 200W, 1h 
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The second synthetic approach involves a combined methodology using MAOS and 

montmorillonite K10 clay. 

The 1,3-dihydroxy-5-methoxyxanthone (X1) was prenylated in the presence of 

montmorillonite K10 clay, using chloroform as solvent, under 180W microwave irradiation for 45 

minutes (Figure 26). In this clay-catalyzed synthesis, three main prenylated derivatives were 

obtained, along with a small amount (13% yield) of starting material: 1-hydroxy-5-methoxy-4-(3-

methylbut-2-enyl)-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone (P3, 0.3% yield), 1-

hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone (P4, 3% yield) and 1-

hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,4)xanthone (P5, 13% yield). Other 

two products were detected but in such small percentage that could not be isolated. 

 

 

 

Figure 26. General procedure for the synthesis of P3, P4 and P5 by MW irradiation (ii) Prenyl 

bromide, montmorillonite K10 clay, Chloroform, MW, 180W, 45min  

 

 

 The purification of these prenylated xanthone derivatives was performed by flash column 

chromatography and preparative TLC (SiO2; hexane/ethyl acetate), and through crystallization. 
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2. STRUCTURE ELUCIDATION 

 

 The structure elucidation of X1, X2, P1, P2, P3, P4 and P5 was established on the basis of 

melting point, IR, HRMS and NMR (1H, 13C, HSQC and HMBC) techniques.  

 

 

 By the analysis of the IR data, all compounds (X1, X2, P1, P2, P3, P4 and P5) show the 

presence of a band at 3500-3400cm-1 corresponding to O-H stretch of hydroxyl groups. It is 

possible to observe a band corresponding to the C=O, as well as bands corresponding to the C-C 

aromatic bond typical from the xanthone scaffold. As expected, in P1 to P5, the IR data show the 

presence of additional bands, corresponding to the C-C and C-H bonds of the prenyl group. 

Nevertheless, prenylation did not occurred for all hydroxyl groups, once there is still present the 

band at 3500-3400 cm-1, characteristic of OH group. 

 

 

The EI-HRMS gave the accurate molecular mass of the compounds and their molecular 

formula: 

 

X1 -EI-HRMS m⁄z  found for C14H10O5  : 258.0530; 

X2- EI-HRMS m⁄z  found for C15H12O7S  : 336.0305; 

P1 - EI-HRMS m⁄z  found for  C19H18O5  : 326.1157; 

P2 - EI-HRMS m⁄z  found for  C24H26O5  : 394.1769; 

P3 – not determined; 

P4 – EI-HRMS m⁄z found for C19H18O5  : 326.1153; 

P5 - EI-HRMS m⁄z found for C19H18O5  : 326.1157. 

 

 

The 1H NMR and 13C NMR data of X1, X2, P1, P2, P3, P4 and P5 are presented in tables 5 

to 18.  
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Table 5. 1H NMR data for compound X1 

 

                                       X1                                        δδδδH 

H-2 6.22 (1H, d, J= 2.1) 

H-4 6.41 (1H, d, J= 2.1) 

H-6 7.50 (1H, dd, J= 8.0 and 1.4) 

H-7 7.38 (1H, t, J= 8.0) 

H-8 7.66 (1H, dd, J= 8.0 and 1.4) 

O-H1 12.82 (1H, s) 

O-H3 - 

OCH3 3.97 (3H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 

 

 

 

Table 6. 13C NMR data for compound X1 

 

                                       X1                                       δδδδC 

C-1 162.8 

C-2 98.3 
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C-3 166.1 

C-4 94.2 

C-4a 157.2 

C-5 147.9 

C-6 116.7 

C-7 124.1 

C-8 115.7 

C-8a 120.6 

C-9 179.8 

C-9a 102.1 

C-10a 145.4 

OCH3 56.2 

¥ Values in ppm (δC). 

 

 

 

Table 7. 1H NMR data for compound X2 

   

                                        X2                                           δδδδH 

H-2 6.83 (1H, d, J= 2.1) 

H-4 7.18 (1H, d, J= 2.1) 

H-6 7.58 (1H, dd, J= 8 and 1.5) 
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H-7 7.45 (1H, t, J= 8.0) 

H-8 7.71 (1H, dd, J= 8.0 and 1.5) 

O-H1 12.79 (1H, s) 

OCH3 3.99 (3H, s) 

OSO2CH3 3.53 (3H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 

 

 

 

Table 8. 13C NMR data for compound X2 

   

                                     X2                                            δδδδC 

C-1 162.2 

C-2 104.6 

C-3 154.8 

C-4 101.6 

C-4a 156.2 

C-5 148.1 

C-6 117.5 

C-7 124.8 

C-8 115.8 

C-8a 120.6 
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C-9 181.1 

C-9a 107.3 

C-10a 145.7 

OCH3 56.4 

OSO2CH3 37.9 

¥ Values in ppm (δC).  

 

The 1H NMR spectra of compounds X1 and X2 showed five signals corresponding to 

aromatic protons, namely H-2 and H-4 and H-6, H-7, H-8. The group OCH3 was confirmed by the 

existence of a singlet due to three protons at 3.97 and 3.99 ppm, respectively 3.9 ppm. The signal 

for the protons of hydroxyl groups (OH1) appeared as a singlet at 12.82 and 12.79 ppm, 

respectively. In compound X2, the protons of the group OSO2CH3 appeared as a singlet at 3.53 

ppm. 

The 13C NMR spectra of X1 and X2 revealed signals that correspond to the carbon atom of 

the carbonyl group (δC 179.8 and 181.1, respectively) and to two aromatic rings (values of δδδδC 

between 98.3 and 145.4 ppm for compound X1 and between 104.6 and 145.7 ppm for compound 

X2; corresponding to twelve carbons). The signal for the carbon of OCH3 group appeared at δδδδC 

56.2 and 56.4 ppm, respectively, and in compound X2 the carbon of the mesyl group appeared at 

37.9 ppm. 

 

 

Table 9. 1H NMR data for compound P1 

      

                                           P1                                               δδδδH  

H-2 6.36 (1H, d, J= 2.3) 
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H-4 6.54 (1H, d, J= 2.3) 

H-6 7.22 (1H, dd, J=8.0 and 1.7) 

H-7 7.29 (1H, t, J=8.0) 

H-8 7.81 (1H, dd, J=8.0 and 1.7) 

O-H1 12.81 (1H, s) 

OCH3 4.03 (3H, s) 

H-1’ (H prenyl) 4.59 (2H, d, J=6.7) 

H-2’ (H prenyl) 5.50 (1H, t, J=6.7) 

H-4a’ and H-4b´ (H prenyl) 1.82 (3H, s) and 1.76 (3H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 

 

 

 

Table 10. 13C NMR data for compound P1 

      

                                       P1                                          δδδδC 

C-1 163.2 

C-2 98.2 

C-3 166.1 

C-4 93.3 

C-4a 157.5 
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C-5 148.2 

C-6 115.6 

C-7 123.5 

C-8 116.7 

C-8a 121.5 

C-9 180.7 

C-9a 103.8 

C-10a 146.3 

OCH3 56.4 

C-1’ (prenyl) 65.5 

C-2’ (prenyl) 118.5 

C-3’ (prenyl) 139.3 

C-4a’ and C-4b’ (prenyl) 25.8 and 18.3 

¥ Values in ppm (δC). 

 

The 1H NMR spectrum of P1 showed five signals corresponding to aromatic protons, 

namely H-2 and H-4 and H-6, H-7, H-8 (values of δH between 6.36 and 7.81 ppm). The group OCH3 

was confirmed by the existence of a singlet due to three protons at 4.03 ppm. The signal for the 

protons of hydroxyl group appeared as a singlet (δH 12.81 ppm). The presence of the prenyl group 

was confirmed by the existence of a duplet and a triplet corresponding to the protons H-1’ and H-

2’ (δH 4.59 and 5.50 ppm, respectively) and the signal for the protons of two methyl groups 

appearing as a singlet (δH 1.82 and 1.76 ppm). 

The 13C NMR spectrum revealed signals that correspond to the carbon atom of the 

carbonyl group (δC 180.7 ppm) and to two aromatic rings (values of δδδδC between 98.2 and 146.3 

ppm; corresponding to twelve carbons). The signal for the carbon of OCH3 group appeared at δδδδC 

56.4 ppm. The spectrum also revealed signals of the five carbons of the prenyl group. 
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Table 11. 1H NMR data for compound P2 

 

                                    P2                                           δδδδH 

H-2 6.39 (1H, s) 

H-6 7.21 (1H, dd, J=7.9 and 1.8) 

H-7 7.27 (1H, t, J=7.9) 

H-8 7.79 (1H, dd, J=7.9 and 1.8) 

O-H1 12.96 (1H, s) 

OCH3 3.99 (3H, s) 

H-1’ (H prenyl) 4.63 (2H, d, J=6.6) 

H-2’ (H prenyl) 5.50 (1H, t, J=6.6) 

H-4a’ and H-4b’ (H prenyl) 1.81 (3H, s) and 1.76 (3H, s) 

H-1” (H prenyl) 3.55 (2H, d, J=7.4) 

H-2” (H prenyl) 5.30 (1H, t, J=7.4) 

H-4a” and H-4b” (H prenyl) 1.87 (3H, s) and 1.67 (3H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 
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Table 12. 13C NMR data for compound P2 

      

                                        P2                                         δδδδC 

C-1 161.7 

C-2 95.2 

C-3 163.7 

C-4 108.4 

C-4a 153.8 

C-5 148.7 

C-6 115.6 

C-7 123.2 

C-8 116.5 

C-8a 121.2 

C-9 181.3 

C-9a 103.4 

C-10a 146.7 

OCH3 56.2 

C-1’ (prenyl) 65.7 

C-2’ (prenyl) 119.0 

C-3’ (prenyl) 138.5 
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C-4a’ and C-4b’ (prenyl) 25.8 and 18.3 

C-1” (prenyl) 21.8 

C-2” (prenyl) 122.2 

C-3” (prenyl) 131.7 

C-4a” and C-4b” (prenyl) 25.9 and 17.6 

¥ Values in ppm (δC). 

 

The 1H NMR spectrum of P2, a diprenylated xanthone, showed four signals corresponding 

to aromatic protons of the phenyl rings, namely H-2 and H-6, H-7, H-8 (values of δH between 6.39 

and 7.79 ppm). The group OCH3 was confirmed by the existence of a singlet due to three protons 

at 3.99 ppm. The signal for the protons of hydroxyl group appeared as a singlet (δH 12.96 ppm). 

The presence of the prenyl groups was confirmed by the existence of two duplet corresponding to 

the protons H-1’ and H-1” (δH 4.63 and 3.55 ppm), of two triplet corresponding to the protons H-

2’ and H-2” (δH 5.50 and 5.30 ppm) and the signal for the protons of two methyl groups appearing 

as a singlet (δH 1.87 and 1.67 ppm). 

The 13C NMR spectrum of P2 revealed signals that correspond to the carbon atom of the 

carbonyl group (δC 181.3 ppm) and to two aromatic rings (values of δδδδC between 95.2 and 146.7 

ppm; corresponding to twelve carbons). The signal for the carbon of OCH3 group appeared at δδδδC 

56.2 ppm. The spectrum also revealed signals of the ten carbons of the two prenyl groups present 

in this compound. 

 

Table 13. 1H NMR data for compound P3 

O

O OH

O

OCH3

3`

2`

5`

6`

4`

1´´
2´´

3´´

4a´´ 4b´´

1

45

6

7

8

8a

10a

9a

4a 3

2
9

7a`

7b`

 

                               P3                                           δδδδH 

H-6 7.22 (1H, dd, J=7.8 and 1.8) 
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H-7 7.30 (1H, t, J=7.8) 

H-8 7.81 (1H, dd, J=7.8 and 1.8) 

O-H1 13.10 (1H, s) 

OCH3 4.01 (3H, s) 

H-4’ (H dihydropyran)  2.17 (2H, t, J=6.8) 

H-5’ (H dihydropyran) 2.01 (2H, t, J=6.8) 

H-7a’ and H-7b’ (H dihydropyran) 1.38 (6H, s) 

H-1” (H prenyl) 3.98 (2H, d, J=7.4) 

H-2” (H prenyl) 6.26 (1H, t, J=7.4) 

H-4a” and H-4b” (H prenyl) 1.75 (6H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 

 

 

 

 

Table 14. 13C NMR data for compound P3 

    

O

O OH

O

OCH3

3`

2`

5`

6`

4`

1´´
2´´

3´´

4a´´ 4b´´

1

45

6

7

8

8a

10a

9a

4a 3

2
9

7a`

7b`

 

                                 P3                                         δδδδC 

C-1 163.6 

C-2 95.1 

C-3 164.2 

C-4 108.1 
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C-4a 152.7 

C-5 148.4 

C-6 115.8 

C-7 123.4 

C-8 116.7 

C-8a 121.4 

C-9 180.8 

C-9a 103.4 

C-10a 146.1 

OCH3 56.6 

C-4’ (dihydropyran) 15.9 

C-5’ (dihydropyran) 31.6 

C-6’ (dihydropyran) 76.7 

C-7a’ and C-7b’ (dihydropyran) 26.2 

C-1” (prenyl) 28.6 

C-2” (prenyl) 94.3 

C-3” (prenyl) 135.4 

C-4a” and C-4b” (prenyl)  18.9 

¥ Values in ppm (δC).  

 

 

 

In the 1H NMR spectra of P3 the signal for the protons of hydroxyl group appeared as a 

singlet (δH 13.10) and the group OCH3 was confirmed by the existence of a singlet due to three 

protons at 4.01 ppm. The spectra also show three signals corresponding to aromatic protons H-6, 

H-7, H-8 (values of δH between 7.22 and 7.81 ppm).  
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The presence of the prenyl group was confirmed by the existence of a duplet and a triplet 

corresponding to the protons H-1’’ and H-2’’ (δH 3.98 and 6.26 ppm, respectively) and the signal 

for the protons of two methyl groups appearing as a singlet (δH 1.75 ppm). The presence of a 

fused dihydropyran ring was confirmed by the existence of two triplets due to two methylene 

protons (H-4’ and H-5’: δH 2.17 and 2.01 ppm) and the signal for the protons of two methyl groups 

appearing as a singlet (δH 1.38 ppm). 

The 13C NMR spectra of P3 revealed signals that correspond to the carbon atom of the 

carbonyl group (δC 180.8 ppm) and to two aromatic rings (values of δδδδC between 95.1 and 164.2 

ppm). The signal for the carbon of OCH3 group appeared at δδδδC 56.6 ppm. The spectrum revealed 

signals of the ten carbons of the two prenyl groups present in this compound. 

 

 

Table 15. 1H NMR data for compound P4 

                     

3`

2`

5`

6`

4`

O

O OH

O

OCH3

1

45

6

7

8

8a

10a

9a

4a 3

2
9

7a`

7b`

  

                                         P4                                     δδδδH 

H-4 6.46 (1H, s) 

H-6 7.21 (1H, dd, J=8.0 and 1.8) 

H-7 7.27 (1H, t, J=8.0) 

H-8 7.81 (1H, dd, J=8.0 and 1.8) 

O-H1 13.20 (1H, s) 

OCH3 4.01 (3H, s) 

H-4’ (H dihydropyran) 2.74 (2H, t, J=6.8) 

H-5’ (H dihydropyran) 1.85 (2H, t, J=6.8) 

H-7a’ and H-7b’ (H dihydropyran) 1.38 (6H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 
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Table 16. 13C NMR data for compound P4 

     

3`

2`

5`

6`

4`

O

O OH

O

OCH3

1

45

6

7

8

8a

10a

9a

4a 3

2
9

7a`

7b`

  

                                         P4                                    δδδδC 

C-1 160.4 

C-2 104.2 

C-3 161.9 

C-4 95.4 

C-4a 155.3 

C-5 148.2 

C-6 115.5 

C-7 123.1 

C-8 116.7 

C-8a 121.4 

C-9 180.8 

C-9a 102.8 

C-10a 146.4 

OCH3 56.4 

C-4’ (dihydropyran) 16.0 

C-5’ (dihydropyran) 31.7 

C-6’ (dihydropyran) 76.3 

C-7a’ and C-7b’ (dihydropyran) 26.7 

¥ Values in ppm (δC). 
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Table 17. 1H NMR data for compound P5 

  

                                       P5                                         δδδδH 

H-2 6.26 (1H, s) 

H-6 7.22 (1H, dd, J=7.9 and 1.7) 

H-7 7.29 (1H, t, J=8.0) 

H-8 7.82 (1H, dd, J=7.9 and 1.7) 

O-H1 12.61 (1H, s) 

OCH3 4.02 (3H, s) 

H-4’ (H dihydropyran)  2.93 (2H, t, J=6.8) 

H-5’ (H dihydropyran) 1.89 (2H, t, J=6.8) 

H-7a’ and H-7b’ (H dihydropyran) 1.39 (6H, s) 

¥ Values in ppm (δH) relative to Me4Si as an internal reference. J values are in Hz. 

 

 

Table 18. 13C NMR data for compound P5 

      

                                       P5                                       δδδδC 

C-1 160.8 
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C-2 99.5 

C-3 161.61 

C-4 100.1 

C-4a 154.5 

C-5 148.5 

C-6 115.6 

C-7 123.5 

C-8 116.7 

C-8a 121.5 

C-9 180.8 

C-9a 103.6 

C-10a 146.3 

OCH3 56.5 

C-4’ (dihydropyran) 16.2 

C-5’ (dihydropyran) 31.8 

C-6’ (dihydropyran) 76.3 

C-7a’ and C-7b’ (dihydropyran) 26.7 

¥ Values in ppm (δC).  

 

In the 1H NMR spectra of P4 and P5 the group OCH3 was confirmed by the existence of a 

singlet due to three protons at 4.01 and 4.02 ppm, respectively. The signal for the protons of 

hydroxyl group appeared as a singlet (δH 13.20 and 12.61 ppm, respectively). 

The multiplicity and coupling constants for the protons observed in the 1H NMR spectra of 

P4 and P5 showed four signals corresponding to aromatic protons, namely H-4 or H-2 

respectively, and H-6, H-7, H-8 (values of δH between 6.46 and 7.81 ppm (P4); 6.26 and 7.82 ppm 
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(P5)). The presence of a fused dihydropyran ring was confirmed by the existence of two triplets 

due to two methylene protons (H-4’ and H-5’: δH 2.74 and 1.85 ppm (P4); 2.93 and 1.89 ppm (P5)) 

and the signal for the protons of two methyl groups appearing as a singlet (δH 1.38 ppm (P4); 1.39 

(P5)). 

The 13C NMR spectrum of P4 and P5 revealed signals that correspond to the carbon atom 

of the carbonyl group (δC 180.8 ppm) and to two aromatic rings (values of δδδδC between 95.4 and 

161.9 ppm (P4); 99.5 and 161.6 ppm (P5)). The signal for the carbon of OCH3 group appeared at δδδδC 

56.4 and 56.5 ppm, respectively. The spectrum revealed signals of the five carbons of the prenyl 

group present in these compounds. 

 

 

 

• NMR – 2D 

 

The position of the substituents on the xanthone skeleton was determined on the basis of 

HSQC and HMBC spectral analysis (Figures 27 and 28). 

 

In HMBC spectra of all prenylated xanthones, the hydrogen-bonded hydroxyl group (OH-

1) correlated with C-1, C-2 and C-9a, allowing the assignment of these carbon resonances. The H-

1´ of prenyl group in compound P1 and H-1´ and H-1´´ of prenyl group in compound P2, correlated 

with C-3 of xanthone ring indicating that all the prenylated xanthones had a 3,3-dimethylallyloxy 

group at C-3. For the diprenylated xanthones P2 and P3 it was also observed that the H-1´´ of the 

prenyl group correlated with C-4 and C-4a. 

In the case of dihydropyranoxanthones, it was observed that the H-4´ of the pyran ring of 

compounds P3 and P4 correlated with C-1, C-2, C-3, C-5´, and C-6´ indicating the presence of a 

2,3-dihydropyran ring. The H-4´ of the pyran ring of compound P5 correlated with C-3, C-4, C-4a, 

C-5´, and C-6´ indicating the presence of a 3,4-dihydropyran ring.  
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Figure 27. Main connectivities found in HMBC of prenylated xanthone P1-P5 

 

 

 

  

Figure 28. (a) Example of HSQC spectrum of prenylated xanthone P1 

(a) 
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Figure 28. (b) Example of HMBC spectrum of prenylated xanthone P1 

 

 

  

(b) 
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3. BIOLOGICAL ASSAYS 

 

In CEQUIMED-UP, a research area in increasing development has been the investigation of 

xanthones as potential antitumor agents. In this context, the synthesized compounds X1, X2, P1, 

P2, P3, P4 and P5 were evaluated by their effect on the in vitro growth of three human tumor cell 

lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 

(malignant melanoma). 

In table 19, the results of the evaluated activity are presented. 

 

 

Table 19. Effects of the synthesized compounds on the growth of human tumor cell lines 

 

Xanthone 

GI50 (µM) 

MCF-7 NCI-H460 A375-C5 

X1 >110 >90 N.R. 

X2 >150 >150 >150 

P1 >112.5 >112.5 >112.5 

P2 >12.4 >12.4 >12.4 

P3 >7.5 >12.4 >12.4 

P4 >150 >150 >150 

P5 >37.5 >37.5 >37.5 

 
Results expressed as GI50, concentration of compound that cause 50% inhibition of tumor cell lines growth, 

are means ± SEM (standard error of the mean) of 3 independent experiments performed in duplicate. 

Doxorubicin was used as positive control, GI50: MCF-7 = 0,065 ± 0,0085 µM; NCI-H460: 0,064 ± 0,0068 µM; 

A375-C5: 0,145 ± 0,0098 µM. NR, not reproducible. Final concentrations of DMSO (≤0,75%) did not interfere 

with the biological activity tested. 

 

In this essay, prepared in the laboratory according to the established in National Cancer 

Institute (NCI) (Monks, A. et al., 1991; Vichai, V. and Kirtikara, K., 2006), the compounds were 

tested in several concentrations until a maximum of 150 µM. The reasons why tests are not 

executed with superior concentrations are the following: i) the vehicle of compounds (dimethyl 

sulfoxide, DMSO) becomes toxic to the cells and ii) components with GI50 values above 150 µM, in 

principle, do not have a therapeutical interest. In fact, the majority of compounds with 

therapeutical interest present GI50 values in the scale of nanomolar. So that the compounds can 

be tested until a maximum concentration of 150 µM, without achieving the toxicity limit of DMSO, 
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they should be dissolved in a stock concentration of 60 mM. When such is not possible, they can 

only be tested in concentrations that do not hit the toxicity limit of DMSO and therefore not in all 

the desired concentrations. By analyzing table 19, none of the components hit the GI50 in the 

tested concentrations. 

The compounds X2 and P4 present concentrations of GI50 superior to 150µM, indicating 

that they are components that do not achieve the GI50 in the tested concentrations for this essay, 

in the three used cellular lines. Regarding the compounds X1 and P1, even though they have not 

been tested until the maximum desired concentration (150 µM), they were tested until 

concentrations close to 100 µM, not being able to achieve the GI50. Therefore, xanthones X1, X2, 

P1 and P4 are not active, showing results for GI50 above 100 µM. 

  

The evaluation of the other compounds (P2, P3 and P5) was limited by problems 

associated with their solubility; it was not possible to prepare stocks with the desired 

concentrations (60 mM) to test and determine the concentration value able to hit the GI50. It was 

only possible to determine a low limit of concentration until which the GI50 was not achieved. 

Therefore, we cannot conclude regarding the activity of P2, P3 or P5. 

 

It is also important to mention that the component X1 has not showed reproducible 

results. Even though it was possible to determine an amount of concentration of GI50 in the first 

two essays (medium value 45 µM), when new essays were executed the result has not been 

reproducible. This lack of reproducibility could be explained by the lack of stability of the 

compound that can have suffered alteration during the evaluation. 
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IV. EXPERIMENTAL PART  
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IV. EXPERIMENTAL PART 

 

GENERAL METHODS 

 

Purifications of compounds were performed by flash chromatography using Merck silica 

gel 60 (0.040-0.063 mm), chromatography flash cartridge (GraceResolv, Grace Company, 

Deerfield, IL, USA) and preparative thin layer chromatography (TLC) using Merck silica gel 60 

(GF254) plates. TLC was used for monitoring reactions.  

MW reactions were performed using glassware setup for atmospheric-pressure reactions 

and also 12mL or 50mL closed glass reactors (internal reaction temperature measurement with a 

fiber-optic probe sensor) and were carried out using an Ethos MicroSYNTH 1600 Microwave 

Labstation from Millestone (ThermoUnicam, Portugal). 

Melting points were obtained in a KÖfler microscope and are uncorrected. IR spectra were 

measured on an ATI Mattson Genesis series FTIR (software: WinFirst v.2.10) spectrophotometer in 

KBr microplates (cm-1). 1H and 13C NMR spectra were taken in DMSO-d6 or CDCl3 at room 

temperature, on Bruker Avance 300 (300.13 MHz for 1H and 75.47 MHz for 13C) or Bruker DRX-500 

(500.13 and/or 300.13 MHz for 1H and 125.77 and/or 75.47 MHz for 13C) spectrometers. Chemical 

shifts are expressed in δ (ppm) values relative to tetramethylsilane (Me4Si) as an internal 

reference and assignment abbreviations are the following: singlet (s), doublet (d), triplet (t) and 

doublet of doublets (dd). 13C NMR assignments were made by 2D HSQC and HMBC experiments 

(long-range C, H coupling constants were optimized to 7 and 1 Hz). 

HRMS spectra were recorded as electronic impact (EI) mode on a VG Autospec M 

spectrometer (m/z) at C.A.C.T.I. (Vigo, Spain). 

2-hydroxy-3-methoxybenzoic acid, phloroglucinol (1,3,5-trihydroxybenzene), prenyl 

bromide 95% and montmorillonite K10 clay were purchased from Sigma-Aldrich and were grade 

pro analysis.  
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Part I - Synthesis of 1,3-dihydroxy-5-methoxyxanthone (X1) 

 

 

A) General procedure for the synthesis of 1,3-dihydroxy-5-methoxyxanthone (X1) through 

Grover, Shah and Shah (GSS) classical method 

A mixture of phloroglucinol (1.2 g, 9.6 mmol), 2-hydroxy-3-methoxybenzoic acid (1.25 g, 

7.4 mmol) anhydrous zinc chloride (3 g), and phosphoryl chloride (12 mL) were heated, under 

stirring, at 70°C for 4h30. The deep-red reaction mixture obtained was poured onto crushed ice. 

The resulting red brownish solid was filtered, washed with water and dried. The crude product 

was then purified by flash chromatography (SiO2; a gradient of CHCl3/Me2CO, starting with 95:5). 

The product was crystallized from methanol to afford yellow crystals of xanthone. Compound 1,3-

dihydroxy-5-methoxyxanthone (X1) (39% yield) was identified by their spectroscopic and 

analytical data. 

 

 

 

B) General procedure for the synthesis of 1,3-dihydroxy-5-methoxyxanthone (X1) through 

modified GSS applying Eaton’s reagent 

To obtain Eaton’s reagent, a mixture of phosphorus pentoxide (6.5 g) and 

methanesulfonic acid (40 mL) was heated at 100°C for 30 min, under stirring, until a clear solution 

was obtained. Phloroglucinol (2,0 g, 16 mmol) and 2-hydroxy-3-methoxybenzoic acid (1.61 g, 9.6 

mmol) were added to this mixture and heating continued for 1h. The reaction mixture was poured 

into ice-water. The resulting solid was collected by filtration, washed with water and dried. The 

crude product was then purified by flash chromatography (SiO2; a gradient of CHCl3/Me2CO with 

crescent polarity). The products were crystallized from methanol to afford yellow crystals of both 

xanthones (X1 and X2). 

The compounds 1,3-dihydroxy-5-methoxyxanthone (X1) (23% yield) and 1-hydroxy-3-

mesyl-5-methoxyxanthone (X2) (15% yield) were identified by their spectroscopic and analytical 

data. 
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1,3-dihydroxy-5-methoxyxanthone (X1) - mp 219-222°C (methanol); IR (KBr) νmax: 3465, 3093, 

2936, 1654, 1605, 1567, 1499, 1450, 1362, 1176, 1107, 992 cm-1; 1H-NMR (300.13 MHz; DMSO-

d6): δ = 12.82 (1H, s, O-H1), 7.66 (1H, dd, J = 8.0 and 1.4 Hz, H-8), 7.50 (1H, dd, J = 8.0 and 1.4 Hz, 

H-6), 7.38 (1H, t, J = 8.0, H-7), 6.41 (1H, d, J = 2.1, H-4), 6.22 (1H, d, J = 2.1, H-2), 3.97 (3H, s, OCH3) 

ppm; 13C-NMR (75.47 MHz; DMSO-d6): δ = 179.8 (C-9), 166.1 (C-3), 162.8 (C-1), 157.2 (C-4a), 

147.9 (C-5), 145.4 (C-10a), 124.1 (C-7), 120.6 (C-8a), 116.7 (C-6), 115.7 (C-8), 102.1 (C-9a), 98.3 (C-

2), 94.2 (C-4), 56.2 (OCH3) ppm. EI-MS m⁄z (%): 259 (18), 258 (100) [M]+, 244 (10), 243 (62), 229 

(5), 215 (6), 187 (26). EI-HRMS m⁄z  calc  for C14H10O5 : 258.0528, found: 258.0530. 

 

 

 

 

1-hydroxy-3-mesyl-5-methoxyxanthone (X2) - mp 201-204°C (methanol); IR (KBr) νmax: 3437, 

3086, 2937, 1651, 1618, 1581, 1495, 1439, 1363, 1283, 1184, 1111, 973 cm-1; 1H-NMR (300.13 

MHz; DMSO-d6): δ = 12.79 (1H, s, O-H1), 7.71 (1H, dd, J = 8.0 and 1.5 Hz, H-8), 7.58 (1H, dd, J = 8.0 

and 1.5 Hz, H-6), 7.45 (1H, t, J = 8.0, H-7), 7.18 (1H, d, J = 2.1, H-4), 6.83 (1H, d, J = 2.1, H-2), 3.99 

(3H, s, OCH3), 3.53 (3H, s, OSO2CH3) ppm; 13C-NMR (75.47 MHz; DMSO-d6): δ = 181.1 (C-9), 162.2 

(C-1), 156.2 (C-4a), 154.8 (C-3), 148.1 (C-5), 145.7 (C-10a), 124.8 (C-7), 120.6 (C-8a), 117.5 (C-6), 

115.8 (C-8), 107.3 (C-9a), 104.6 (C-2), 101.6 (C-4), 56.4 (OCH3), 37.9 (OSO2CH3) ppm. EI-MS m⁄z 

(%): 337 (12), 336 (85) [M]+ , 258 (100), 243 (43), 229 (71), 187 (17), 97 (25), 83 (22), 69 (31). EI-

HRMS m⁄z  calc  for C15H12O7S : 336.0304, found: 336.0305. 
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Part II - Synthesis of prenylated xanthones (P1-P5) under MW irradiation 

 

 

A) General procedure for the synthesis of prenylated xanthones (P1 and P2) under MW 

irradiation in alkaline medium 

A mixture of 1,3-dihydroxy-5-methoxyxanthone (X1) (2 mmol), prenyl bromide (4 mmol), 

Cs2CO3 (4 mmol) in dry acetone (200 mL), in a two-necked glassware apparatus, provided with 

magnetic stirring bar, fiber-optic temperature control and reflux condenser, was heated for 1h 

according to the following microwave program: Power:200W; temperature: 62°C; ramp time: 5 

min; hold time: 55 min; final temperature 59°C. After cooling, the mixture was filtered and 

washed with acetone. The solvent was removed under reduced pressure and the collected crude 

product was purified by flash chromatography (SiO2; a gradient of hexane/ethyl acetate, with 

crescent polarity). The isolation of the components of the mixture was then carried out by 

preparative TLC (SiO2; hexane/ethyl acetate 75:25). Prenylated xanthones P1 and P2 were 

crystallized from CH2Cl2/petroleum ether (60-80) to afford yellow crystals. These two compounds 

were shown to possess spectroscopic and analytical data as next described. Compounds yields 

were 15% for P1 and 5% for P2. 

 

 

 

B) General procedure for the synthesis of prenylated xanthones (P3 - P5) under MW 

irradiation with Montmorillonite K10 clay 

A slurry of the K10 clay (20 equiv by weight, 10 g) in CHCl3 (30mL) was treated with the 

1,3-dihydroxy-5-methoxyxanthone (X1) (2 mmol), followed by the addition of prenyl bromide (4 

mmol) in a 100mL closed microwave reactor, provided with magnetic stirring bar and fiber-optic 

temperature control. The mixture was irradiated at 180W for 45 min (ramp time: 5 min; hold 

time: 40 min) and the final temperature was 96°C. After cooling, the reaction mixture was filtered 

under vacuum, washed with CH2Cl2, Me2CO and MeOH, and the solvent evaporated under 

reduced pressure. The recovered clay was reactivated by washing with MeOH. The crude product 

was purified by flash chromatography (SiO2; hexane/ethyl acetate 95:5) and the isolation of the 

components of the mixture was then carried out by preparative TLC (SiO2; hexane/ethyl acetate 

6:4). Prenylated xanthones were then crystallized from n-hexane/ethyl acetate to obtain yellow 

crystals. The prenylated xanthones P3, P4 and P5 were identified by their spectroscopic and 

analytical data as next described. Compounds yields were 0,3% for P3, 3% for P4 and 13% for P5. 
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1-hydroxy-5-methoxy-3-(3-methylbut-2-enyloxy)xanthone (P1) – mp 158-160°C 

(CH2Cl2/petroleum ether (60-80)); IR (KBr) νmax: 3427, 2965, 2914, 2843, 1650, 1614, 1570, 1488, 

1431, 1283, 1153, 1094, 955 cm-1; 1H-NMR (300.13 MHz; CDCl3): δ = 12.81 (1H, s, O-H1), 7.81 (1H, 

dd, J = 8.0 and 1.7 Hz, H-8), 7.29 (1H, t, J = 8.0, H-7), 7.22 (1H, dd, J = 8.0 and 1.7 Hz, H-6), 6.54 

(1H, d, J = 2.3, H-4), 6.36 (1H, d, J = 2.3, H-2), 5.50 (1H, t, J = 6.7, H-2’), 4.59 (2H, d, J = 6.7, H-1’), 

4.03 (3H, s, OCH3), 1.82 and 1.76 (3H, s, H-4a’ and H-4b’) ppm; 13C-NMR (75.47 MHz; CDCl3): δ = 

180.7 (C-9), 166.1 (C-3), 163.2 (C-1), 157.5 (C-4a), 148.2 (C-5), 146.3 (C-10a), 139.3 (C-3’), 123.5 (C-

7), 121.5 (C-8a), 118.5 (C-2’), 116.7 (C-8), 115.6 (C-6), 103.8 (C-9a), 98.2 (C-2), 93.3 (C-4), 65.5 (C-

1’), 56.4 (OCH3), 25.8 and 18.3 (C-4a’ and C-4b’) ppm. EI-MS m⁄z (%): 326 (6) [M]+, 309 (11), 259 

(9) , 258 (100), 243 (25), 187 (9). EI-HRMS m⁄z  calc  for  C19H18O5 : 326.1154, found: 326.1157. 

 

  

 

1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-3-(3-methylbut-2-enyloxy)xanthone (P2) – mp 

116-118°C (CH2Cl2/petroleum ether (60-80)); IR (KBr) νmax: 3447, 2956, 2920, 2849, 1648, 1610, 

1579, 1493, 1439, 1273, 1170, 1096, 963 cm-1; 1H-NMR (300.13 MHz; CDCl3): δ = 12.96 (1H, s, O-

H1), 7.79 (1H, dd, J = 7.9 and 1.8 Hz, H-8), 7.27 (1H, t, J = 7.9, H-7), 7.21 (1H, dd, J = 7.9 and 1.8 Hz, 

H-6), 6.39 (1H, s, H-2), 5.50 (1H, t, J = 6.6, H-2’), 5.30 (1H, t, J = 7.4, H-2”), 4.63 (2H, d, J = 6.6, H-1’), 

3.99 (3H, s, OCH3), 3.55 (2H, d, J = 7.4, H-1”), 1.87 and 1.67 (3H, s, H-4a” and H-4b”), 1.81 and 1.76 

(3H, s, H-4b’ and H-4a’) ppm; 13C-NMR (75.47 MHz; CDCl3): δ = 181.3 (C-9), 163.7 (C-3), 161.7 (C-

1), 153.8 (C-4a), 148.7 (C-5), 146.7 (C-10a), 138.5 (C-3’), 131.7 (C-3”), 123.2 (C-7), 122.2 (C-2”), 

121.2 (C-8a), 119.0 (C-2’), 116.5 (C-8), 115.6 (C-6), 108.4 (C-4), 103.4 (C-9a), 95.2 (C-2), 65.7 (C-1’), 

56.2 (OCH3), 25.9 and 17.6 (C-4b” and C-4a”), 25.8 and 18.3 (C-4b’ and C-4a’), 21.8 (C-1”) ppm. EI-

MS m⁄z (%): 394 (6) [M]+, 377 (17), 326 (21), 322 (17), 311 (45), 309 (100), 294 (26), 271 (17), 258 

(17). EI-HRMS m⁄z  calc  for C24H26O5 
 : 394.1780, found: 394.1769. 

 

 

 

1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2) 

xanthone (P3) – mp >300°C (decomp.); IR (KBr) νmax: 3429, 2954, 2927, 2872, 1651, 1613, 1579, 

1495, 1441, 1271, 1165, 1102, 803 cm-1; 1H-NMR (300.13 MHz; CDCl3): δ = 13.10 (1H, s, O-H1), 

7.81 (1H, dd, J = 7.8 and 1.8 Hz, H-8), 7.30 (1H, t, J = 7.8, H-7), 7.22 (1H, dd, J = 7.8 and 1.8 Hz, H-

6), 6.26 (1H, t, J = 7.4, H-2”), 4.01 (3H, s, OCH3), 3.98 (2H, d, J = 7.4, H-1”), 2.17 (2H, t, J = 6.8, H-4’), 

2.01 (2H, t, J = 6.8, H-5’), 1.75 (6H, s, H-4a” and H-4b”), 1.38 (6H, s, H-7a’ and H-7b’) ppm; 13C-

NMR (75.47 MHz; CDCl3): δ = 180.8 (C-9), 164.2 (C-3), 163.6 (C-1), 152.7 (C-4a), 148.4 (C-5), 146.1 
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(C-10a), 135.4 (C-3”), 123.4 (C-7), 121.4 (C-8a), 116.7 (C-8), 115.8 (C-6), 108.1 (C-4), 103.4 (C-9a), 

95.1 (C-2), 94.3 (C-2”), 76.7 (C-6’), 56.6 (OCH3), 31.6 (C-5’), 28.6 (C-1”), 26.2 (C-7a’ and C-7b’), 18.9 

(C-4a” and C-4b”), 15.9 (C-4´) ppm. 

 

 

 

1-hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone (P4) – mp 154-156°C 

(n-hexane/ethyl acetate); IR (KBr) νmax: 3445, 2954, 2927, 2841, 1650, 1617, 1576, 1493, 1445, 

1269, 1156, 1098, 992 cm-1; 1H-NMR (300.13 MHz; CDCl3): δ = 13.20 (1H, s, O-H1), 7.81 (1H, dd, J = 

8.0 and 1.8 Hz, H-8), 7.27 (1H, t, J = 8.0, H-7), 7.21 (1H, dd, J = 8.0 and 1.8 Hz, H-6), 6.46 (1H, s, H-

4), 4.01 (3H, s, OCH3), 2.74 (2H, t, J = 6.8, H-4’), 1.85 (2H, t, J = 6.8, H-5’), 1.38 (6H, s, H-7a’ and H-

7b’) ppm; 13C-NMR (75.47 MHz; CDCl3): δ = 180.8 (C-9), 161.9 (C-3), 160.4 (C-1), 155.3 (C-4a), 

148.2 (C-5), 146.4 (C-10a), 123.1 (C-7), 121.4 (C-8a), 116.7 (C-8), 115.5 (C-6), 104.2 (C-2), 102.8 (C-

9a), 95.4 (C-4), 76.3 (C-6´), 56.4 (OCH3), 31.7 (C-5´), 26.7 (C-7a´ and C-7b´), 16.0 (C-4´) ppm. EI-MS 

m⁄z (%): 327 (7), 326 (41) [M]+, 311 (10), 309 (33), 283 (21), 271 (100), 270 (21), 258 (5), 256 (9), 

242 (11). EI-HRMS m⁄z calc for C19H18O5 : 326.1154, found: 326.1153. 

 

 

 

1-hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,4)xanthone (P5) – mp 215-217°C 

(n-hexane/ethyl acetate); IR (KBr) νmax: 3424, 2967, 2933, 2851, 1657, 1612, 1577, 1492, 1432, 

1268, 1158, 1099, 968 cm-1; 1H-NMR (300.13 MHz; CDCl3): δ= 12.61 (1H, s, O-H1), 7.82 (1H, dd, J = 

7.9 and 1.7 Hz, H-8), 7.29 (1H, t, J = 8.0, H-7), 7.22 (1H, dd, J = 7.9 and 1.7 Hz, H-6), 6.26 (1H, s, H-

2), 4.02 (3H, s, OCH3), 2.93 (2H, t, J = 6.8, H-4’), 1.89 (2H, t, J = 6.8, H-5’), 1.39 (6H, s, H-7a’ and H-

7b’) ppm; 13C-NMR (75.47 MHz; CDCl3): δ = 180.8 (C-9), 161.6 (C-3), 160.8 (C-1), 154.5 (C-4a), 

148.5 (C-5), 146.3 (C-10a), 123.5 (C-7), 121.5 (C-8a), 116.7 (C-8), 115.6 (C-6), 103.6 (C-9a), 100.1 

(C-4), 99.5 (C-2), 76.3 (C-6´), 56.5 (OCH3), 31.8 (C-5´), 26.7 (C-7a´ and C-7b´), 16.2 (C-4´) ppm. EI-

MS m⁄z (%): 327 (10), 326 (48) [M]+, 311 (30), 309 (9), 272 (13), 271 (100), 270 (9), 258 (13), 256 

(14), 242 (20). EI-HRMS m⁄z calc for C19H18O5 : 326.1154, found: 326.1157. 

 

 

  



69 

 

Part III – Tumor Cell Growth Assay 

 

 

Stock solutions of compounds were prepared in DMSO (Sigma Chemical Co.) and stored at 

4°C. The samples were freshly diluted with culture medium just prior to the assays.  

 

TUMOR CELL GROWTH ASSAY: The effect of compounds on the growth of the human tumor cell 

lines was evaluated according to the procedure adopted by the National Cancer Institute (NCI, 

USA) in the in vitro anticancer drug discovery screen. This assay is based in the protein-binding 

dye sulforhodamine B (SRB) to indirectly assess cell growth (Monks, A. et al., 1991; Vichai, V. and 

Kirtikara, K., 2006). The following human tumor cell lines were used:  MCF-7 (breast 

adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (malignant melanoma). 

Cells were routinely cultured in RPMI-1640 medium with ultraglutamine 1 (Lonza) supplemented 

with 5% heat-inactivated fetal bovine serum (FBS, PAA Laboratories), at 37°C in an humidified 

atmosphere containing 5% CO2. For the SRB assay experiments, cells were plated in 96-well plates 

at the following densities: at 5000 cells/well for MCF7 and NCI-H460 cell lines and at 7500 

cells/well for A375-C5. The cell density for each cell line was chosen  based on previous studies 

(Neves, M.P. et al., 2012 and 2011) in order to ensure cellular exponential growth throughout all 

the experimental period, ,. Cells were further incubated and allowed to adhere for 24 h and then 

treated with five serial dilutions of studied compounds (prepared in culture medium) for 48 h.  In 

addition, cells were also treated with five serial dilutions of doxorubicin (Sigma Aldrich), as a 

positive control, and with the vehicle of the compounds, DMSO (at maximum concentration of 

used). Following this incubation period, cells were fixed in situ with 10% of trichloroacteic acid 

(TCA, Merck), washed with water, and incubated with SRB (Sigma Aldrich) for 30 minutes. After 

washing with 1% acetic acid (Merck), the bound dye was solubilized with 10 mM Tris-BASE (Sigma 

Aldrich) and the absorbance was measured at 510 nm in a microplate reader (Synergy Mx, 

Biotek). A dose–response curve was generated and GI50, corresponding to the concentration of 

compound that inhibits 50% of the net cell growth, was determined as previously described 

(Monks, A. et al., 1991). 
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V. CONCLUSIONS 
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CONCLUSIONS 

 

 Despite all the advances that science has had over the years, Nature remains today the 

larger source of new drugs. 

 Recently there has been an increased interest in xanthones, due to their diverse 

pharmacological activities and to their capacity of binding to different classes of receptors, which 

make them “privileged structures” in Medicinal Chemistry. Therefore, xanthones obtained by 

synthesis began to represent a significant part of the derivatives described in literature. 

  

 

 In this work, seven new compounds were obtained – X1, X2, P1, P2, P3, P4 and P5 - by 

the application of different methodologies and reaction conditions. 

The synthesis of 1,3-dihydroxy-5-methoxyxanthone (X1) by GSS was a successful way to 

obtain X1 in moderate yields (39%). When the GSS reaction was modified by the use of Eaton’s 

reagent as condensation agent, another product X2 was obtained in 15% yield and the yield of X1 

was lower (23%). 

 To obtained prenylated xanthones from X1, the synthetic approach used involved 

MAOS. The reaction was not very selective and different products were obtained. In an alkaline 

medium (Cs2CO3), four products were originated, but only two were in sufficient quantity to be 

isolated and identified – the prenylated xanthones 1-hydroxy-5-methoxy-3-(3-methylbut-2-

enyloxy)xanthone (P1) and 1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-3-(3-methylbut-2-

enyloxy)xanthone (P2), obtained in 15% and 5% yield, respectively. 

MAOS was also combined with heterogeneous catalysis, using montmorillonite K10 clay 

as catalyst being obtained three main products: 1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-

6’,6’-dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone (P3, 0,3% yield), 1-hydroxy-5-methoxy-6’,6’-

dimethyl-4’,5’-dihydropyran(2’,3’:3,2)xanthone(P4, 3% yield), 1-hydroxy-5-methoxy-6’,6’-

dimethyl-4’,5’-dihydropyran(2’,3’:3,4)xanthone (P5, 13% yield). 

 All the compounds were structurally elucidated using analytical techniques like IR, NMR 

and HRMS, and evaluated by their antitumor activity in human tumor cell lines.  

According to the data (GI50), the compounds xanthones X1, X2, P1 and P4 were not 

active, showing results for GI50 above 100 µM. Concerning the compounds P2, P3 and P5, because 

it was only possible to determine a low limit of concentration until which the GI50 was not 

achieved, it was not possible to conclude regarding the activity of P2, P3 or P5.  
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In the future, once the solubility of the compounds was a limiting factor of this 

evaluation, it must be improved to enable the preparation of solution in higher concentrations 

(60mM) that allow the determination of IG50. For a future and more conclusive evaluation, the 

solubility can be improved by using co-solvents like Tweens, or even by the incorporation of the 

compounds in macromolecules like cyclodextrins (Castro, C.A., et al., 1995).  

 

Therefore, according to the aims mentioned before, the work developed enabled to: 

• obtain the building block 1,3-dihydroxy-5-methoxyxanthone;  

•  apply different methodologies of synthesis resulting in five new prenylated 

xanthone derivatives – cyclic and open-chain;   

• structurally elucidate the new compounds using analytical techniques; 

• evaluate their antitumor activity. 

 

 

The xanthone scaffold revealed to be promising to the development of new biological 

active compounds. In the future it will be important to optimize the experimental conditions for 

MAOS and heterogeneous catalysis, once they can be methodologies of election in the synthesis 

of xanthone derivatives. 

 

  

Xanthones comprise an ever growing and considerably diverse group of compounds in 

terms of structure, occurrence, and bioactivity. They represent attractive targets for both total 

synthesis and associated exploration of analogues for the purpose of exploiting the infinity of 

diverse and specific bioactivities that this class of compounds possesses. 

The synthesis of the xanthone derivatives is an exciting contemporary area of chemical 

research, and the work developed shows that the evolution of chemical synthesis, through the 

application of new “non-classical” methodologies, can be a powerful tool to create structural 

diversity, leading to new and improved bioactive compounds of great interest.  
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ATTTACHMENT  I : COMPOUNDS STRUCTURES 

NAME STRUCTURE ABBREVIATION 

 

1,3-dihydroxy-5-methoxyxanthone 

 

 

X1 

 

1-hydroxy-3-mesyloxy-5-methoxyxanthone 

 

 

X2 

 

1-hydroxy-5-methoxy-3-(3-methylbut-2-

enyloxy)xanthone 

 

 

 

P1 

 

1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-

3-(3-methylbut-2-enyloxy)xanthone 

O

O OH

O

OCH3

 

 

 

P2 

 

1-hydroxy-5-methoxy-4-(3-methylbut-2-enyl)-

6’,6’-dimethyl-4’,5’-

dihydropyran(2’,3’:3,2)xanthone 

 

 

 

P3 

 

1-hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-

dihydropyran(2’,3’:3,2)xanthone 

 

 

P4 

 

1-hydroxy-5-methoxy-6’,6’-dimethyl-4’,5’-

dihydropyran(2’,3’:3,4)xanthone 

 

 

 

P5 

 






