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[ met a traveller from an antique land

Who said: - Two vast and trunkless legs of stone
Stand in the desert. Near them on the sand,

Half sunk, a shatter'd visage lies, whose frown
And wrinkled lip and sneer of cold command

Tell that its sculptor well those passions read
Which yet survive, stamp'd on these lifeless things,
The hand that mock'd them and the heart that fed.
And on the pedestal these words appear:

"My name is Ozymandias, king of kings:

Look on my works, ye mighty, and despair!"
Nothing beside remains: round the decay

Of that colossal wreck, boundless and bare,

The lone and level sands stretch far away.

Eu encontrei um viajante de uma antiga terra

Que disse: - Duas imensas e destroncadas pernas de pedra
Erguem-se no deserto. Perto delas na areia

Meio enterrada, jaz uma viseira despedacada, cuja fronte
E 1abio enrugado e sorriso de frio comando

Dizem que seu escultor bem suas paixdes leu

Que ainda sobrevivem, estampadas nessas coisas inertes,
A mao que os escarneceu e o coragdo que os alimentou.

E no pedestal aparecem estas palavras:

"0 meu nome é Ozymandias, rei dos reis:

Contemplem as minhas obras, 6 poderosos, e desesperai-vos!"
Nada mais resta: em redor a decadéncia

Daquele destrogo colossal, sem limite e vazio

As areias solitarias e planas espalham-se para longe.

Ozymandias, by Percy Bysshe Shelley
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Abstract

Inhibition of amyloid fibril formation by stabilisation of the native form of the protein
transthyretin (TTR) is a viable approach for the treatment of severe diseases, such as
familial amyloid polyneuropathy, familial amyloid cardiomiopathy and senile systemic
amyloidosis. Several small organic molecules have evidenced ability to stabilise TTR and
thus inhibit fibrilization in vitro, but they display impairing issues of solubility, affinity
for TTR in the blood plasma and/or adverse effects. Notwithstanding, the stabilisation
strategy has been gaining momentum in the field of amyloid research, as a very first
therapeutic drug against such untreated diseases has now reached the market. The re-
sults of phase II/III clinical trials have revealed success in ameliorating pathological
symptoms in 60% of the treated patients, a figure that highlights both the adequacy of

the strategy and the prospect of further improvements.

Virtual screening (VS) relates to the use of computational techniques in the search of
promising drug leads amongst virtual catalogues of thousands or millions of chemical
compounds, thereby prioritizing candidates with high likelihood of being active for ex-
perimental evaluation. The first goal of this project was to evaluate a large battery of vir-
tual screening methods and identify those that are more suited for amyloid targets, using

transthyretin amyloid as a model target.

Given the high amount of structural information on TTR accessible in public repositories,
several structure-based approaches were first explored in order to gain insights about
the specificities of ligand binding to this target protein. Five docking programs employing
a ten of different scoring functions were exhaustively tested, leading to the identification
of an algorithm that is capable of predicting ligand binding modes that mimic those de-
termined through experimental techniques. Moreover, the knowledge about strong stabi-
lisers and their differential binding modes to the two TTR binding sites was used to build
five receptor- and ligand-based pharmacophore hypotheses based on the overlapping

physicochemical features of the ligands and of the TTR receptor sites.

Four protein- and ligand-based VS methods were evaluated for their ability to identify
novel TTR stabilisers, making use of a benchmark set comprising known actives and
carefully selected decoy molecules. Amongst the evaluated techniques are (i) 2D simi-
larity searches with chemical hashed fingerprints, pharmacophore fingerprints and
UNITY fingerprints, (if) 3D searches based on shape, chemical and electrostatic similarity,
(iif) LigMatch, a new ligand-based method which uses multiple templates and combines
3D geometric hashing with a 2D pre-selection process, (iv) molecular docking into con-

sensus X-ray crystal structures of TTR.
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The results of a benchmark for a set of high-throughput docking protocols against 40
protein targets of pharmaceutical relevance highlight the importance of a thorough vali-
dation of VS methods as an essential step to achieve meaningful results in a screening
campaign against any target. The same results motivated the implementation of several
academic-free docking-based protocols onto a freely-accessible distributed computing
platform, as a means to allow large-scale screening campaigns against TTR amyloid with
the help of volunteer citizens and to foster further drug discovery endeavours in the aca-

demia.

The potential of 22 best-performing VS protocols to retrieve promising new leads is il-
lustrated by ranking a tailored library of 2.3 million commercially available compounds.
Our predictions show that the top-scoring molecules possess distinctive features from
the known TTR binders, holding better solubility, fraction of halogen atoms and binding
affinity profiles combining the two binding sites of TTR. Forty-seven commercially avail-
able candidates were purchased from their respective chemical suppliers. Thirty-eight of
these have already been experimentally tested for inhibition of TTR fibril formation.
Thirty-one compounds showed inhibitory activity to some extent, of which five revealed
to be excellent inhibitors, allowing no more than 40% fibril formation in vitro at a pro-

tein-ligand concentration ratio of 1:2.

To sum up, this project represents a first attempt to rationalize the utilisation of compu-
tational methods against TTR amyloid. As a result, at least two novel and inventive lead
compounds that inhibit fibril formation in vitro have been discovered, and a new drug
discovery platform based on computational techniques and tailored towards the identifi-

cation of new amyloid inhibitors has been developed.
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Sumario

A inibicdo da formacgdo de fibras amiléides por estabilizacdo da forma nativa da proteina
transtirretina (TTR) é uma abordagem viavel para o tratamento de doencas debilitantes,
como a polineuropatia amiloidética familiar, a cardiomiopatia amiloidética familiar e a
amiloidose senil sistémica. Varias moléculas organicas previamente identificadas evi-
denciaram capacidade de estabilizar a TTR e assim inibir a fibrilizag¢do in vitro, mas
demonstram problemas de solubilidade, afinidade para a TTR no plasma sanguineo e/ou
efeitos adversos. Ainda assim, a estratégia de estabilizacdo da TTR tem vindo a despertar
ateng¢do no campo da investigagdo em amiléide, com recente introdu¢do no mercado far-
macéutico de um primeirissimo farmaco contra tais doencas. Os resultados de ensaios
clinicos de fase II/III revelaram sucesso no aliviar dos sintomas patolégicos em 60% dos
pacientes tratados, um nimero que enfatiza tanto a adequabilidade da estratégia seguida

como a perspectiva de futuras optimizacdes.

O conceito de rastreio virtual (VS) relaciona-se com a utilizacdo de técnicas compu-
tacionais na procura de compostos-lider com potencial terapéutico de entre catalogos
virtuais com milhares ou milhdes de compostos quimicos, “prioritizando” assim can-
didatos com elevada probabilidade de se revelarem activos para avaliagdo experimental.
O primeiro objectivo deste projecto foi avaliar uma ampla bateria de métodos de rastreio
virtual e identificar os mais apropriados para alvos amiléide, usando o caso de amildide

por transtirretina (TTR) como modelo de estudo principal.

Dada a elevada quantidade de informacao estrutural sobre TTR acessivel em repositérios
publicos, varias abordagens assentes na utilizacdo da estrutura foram primeiramente
exploradas de forma a ganhar introspecc¢des acerca das especificidades da associacao de
ligandos a esta proteina alvo. Entre varios aspectos intrigantes desta associagdo esta a
natureza elusiva dos fenémenos de cooperatividade observados, apesar da completa
equivaléncia em composicdo dos dois locais de ligagdo da TTR: quando ocorre associagdo
de um primeiro ligando a um primeiro local de liga¢do, a associagdo de um segundo
ligando idéntico ao segundo local de ligacdo é frequentemente afectada, maiori-
tariamente pela negativa). Alem disto, a TTR apresenta uma propensdo clara para se
associar a compostos hidrofébicos e electronegativos, contendo nucleos bifenilo e/ou

amplamente halogenados.

Neste projecto foram testados exaustivamente varios programas de acoplamento mole-
cular - nomeadamente, AutoDock 4, AutoDock Vina, eHiTS, FRED e GOLD - e
empregando diferentes fungdes de pontuagdo - entre as quais, a fungdo de energia livre

do AutoDock 4, a fun¢do de pontuacgdo do Vina, a funcao de pontuacao do eHiTS, a Chem-
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Gauss3, ChemGauss4, ChemScore, GoldScore, ScreenScore e ainda o potencial de pon-
tuacdo analitica (ASP). Este trabalho culminou na identificagdo do AutoDock 4 como o
algoritmo de acoplagem com melhor desempenho na determina¢do computacional dos
modos de ligagdo que mimetizam aqueles determinados experimentalmente, proxi-
mamente seguido pelo AutoDock Vina. Em acréscimo, o conhecimento reunido sobre
compostos fortemente estabilizadores, bem como os seus modos de ligacao diferenciais
em cada um dos locais de ligacdo da TTR, foi usado para construir 5 hip6teses do farma-
c6foro baseadas em fungdes fisico-quimicas consensuais quer dos ligandos quer dos
locais de ligagdo da TTR. Apesar de a valida¢do tedrica destes modelos ser questionavel,
por limitacdes inerentes a pontuacdo realizada pelo programa de pesquisas de farma-
c6foros disponivel, eles revelaram uma utilidade crucial ao serem combinados com
outras metodologias de rastreio virtual exploradas ao longo do projecto, com vista a

seleccdo final de compostos a testar experimentalmente.

Ao longo do projecto foram ainda testadas quatro metodologias da rastreio virtual cen-
tradas quer na estrutura de ligandos quer na estrutura proteica, tirando partido de uma
biblioteca vocacionada para benchmark e composta por moléculas activas conhecidas e
moléculas inactivas (“engodos”) criteriosamente seleccionadas. De entre as técnicas de
rastreio virtual avaliadas encontram-se (i) pesquisas de similaridade bidimensionais
usando impressdes digitais com correspondéncia quimica, impressdes digitais baseadas
em farmacoforo e impressdes digitais do tipo UNITY; (ii) pesquisas de similaridade tri-
dimensionais baseadas na forma, em complementaridade quimica e em similaridade
electrostatica; (iif) o programa LigMatch, uma metodologia nova capaz de usar multiplas
moléculas de referéncia e de combinar alinhamentos tridimensionais de correspondéncia
com um processo de pré-seleccio bidimensional; (iv) acoplamento molecular contra
estruturas cristalograficas consensuais da proteina TTR. Globalmente, as pesquisas de
similaridade bidimensionais oferecem o melhor desempenho de rastreio virtual, quer em
termos de enriquecimento precoce quer em de enriquecimento global (i.e. a capacidade
de ordenar uma base de dados de compostos activos e inactivos de forma a que um maior
ndmero possivel de compostos activos preencha as primeiras posi¢cdes da lista
ordenada). No entanto, este melhor desempenho tem como custo a selec¢do de com-
postos bastante idénticos aos utilizados como referéncia. Em contraste, o rastreio virtual
assente no método de acoplagem molecular tem a capacidade de sugerir potenciais
ligandos mais inovadores, sob o prejuizo da “prioritizacdo” de mais falsos positivos
(principalmente enviesada para compostos de elevado peso molecular). Os métodos
baseados na estrutura tridimensional de compostos, e em particular o novo método Lig-

Match, oferecem um melhor compromisso entre desempenho e inovacao.

XXiv



Os resultados de um trabalho de benchmark exaustivo realizado ao longo deste projecto
com um conjunto de protocolos de acoplamento molecular de alto débito contra 40 alvos
proteicos de relevincia farmacéutica enfatizam a importincia de uma validacdo cri-
teriosa das metodologias de rastreio virtual, como passo essencial para o alcangar de
resultados de significado numa campanha de rastreio contra qualquer alvo. E bastante
claro que o modelo “uma receita agrada a todos” ndo tem aplicagdo no dominio do
rastreio virtual de ligandos. Ainda assim, estes mesmos resultados motivaram a imple-
mentagdo destes protocolos acessiveis gratuitamente a investigadores académicos numa
plataforma de computacao distribuida, também ela de livre acesso, como forma de per-
mitir campanhas de rastreio virtual contra amiléide por TTR em larga escala, e de
fomentar futuros esforgos para a descoberta de novos farmacos na academia com a ajuda

e o envolvimento de cidadios voluntarios.

Neste trabalho, real¢a-se ainda o potencial de 22 protocolos de rastreio virtual com
melhor desempenho em benchmark para seleccionar compostos-lider promissores,
através da ordenacdo de um biblioteca personalizada de 2,3 milhdes de compostos qui-
micos disponiveis comercialmente. As nossas previsdes indicam que as moléculas
encontradas no topo das listas ordenadas possuem caracteristicas distintivas das de ini-
bidores de TTR ja conhecidos, detendo ainda melhores perfis de solubilidade, frac¢do de
halogéneos e afinidade de ligagdo combinada para os dois locais de ligacdo da TTR. Para
validar o trabalho computacional executado, foram adquiridos 47 candidatos disponiveis
comercialmente aos respectivos fornecedores. Destes, 38 compostos foram ja ensaiados
experimentalmente para averiguar a sua capacidade de inibicdo da formacao de fibras
amil6ides. 31 compostos demonstraram actividade inibitéria em alguma extensdo, dos
quais 5 correspondem a inibidores excelentes, permitindo uma formacdo de fibras in

vitro ndo superior a 40% a uma razdo de concentragdes de 1:2 entre proteina e ligandos.

Globalmente, este projecto representa uma tentativa pioneira de racionalizar a utilizacao
de métodos de desenho de fdrmacos computacionalmente assistido contra amiléide por
TTR. Como resultado, foram descobertos pelo menos dois compostos-lider novos e
inventivos, que inibem a formacdo de fibras in vitro. Foi ainda desenvolvida uma nova
plataforma para a descoberta de novos inibidores de amil6ide assente em técnicas com-

putacionais.
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Thesis outline

The thesis consists of seven chapters - including a general introduction and results di-
vided into six chapters - plus an epilogue, an appendix, and a section with references and
notes. At the end of the thesis, a short list of the most relevant publications produced dur-

ing the course of this PhD project is provided.

Chapter 1 is an introductory chapter. It first provides a brief overview of modern drug
discovery and the role of computer-aided drug design methods in the post genomic era.
The reader is introduced to the basic principles and the fundamental techniques in mo-
lecular modelling, with special emphasis on the main methodologies employed through-
out the project. A comment on the critical role of academia in the moving forward of the
drug discovery field softens the transition to the second half of the chapter, where the rel-
evance of the search for amyloid inhibitors is discussed, along with the implications of
new therapeutics in pathologies like Alzheimer’s and Parkinson’s disease. Transthyretin is
introduced as a model protein target in amyloid, in view of its involvement in severe and
currently untreated diseases, such as familial amyloid polyneuropathy, familial amyloid
cardiomiopathy and senile systemic amyloidosis, and a short review of the currently

known transthyretin amyloid inhibitors is provided.

Chapter 2 focuses on the use of structure-based approaches to study transthyretin-ligand
interactions. Currently available structural data on transthyretin complexes are sum-
marized and organised, and the results of structural quality evaluations are reported. An
exhaustive study comprising five different docking programs is presented as a means to
elucidate the most reliable structural models of transthyretin and the best performing

algorithms in handling the intricate specificities of its binding sites.

Chapter 3 reports the results of several attempts to identify structural and chemical dif-
ferences between the two equivalent binding sites of transthyretin. Five receptor- and
ligand-based pharmacophore models are revealed, each one derived from a different set
of transthyretin amyloid inhibitors exploring a specific region of each binding site. The
results of selectivity evaluations of the models are reported and their potential use in the

virtual screening of new amyloid inhibitors is discussed.

Chapter 4 is the intermission. The chapter provides a quick tour through chemical space
with eyes set on its merger with biological space, and explores the concepts of molecular
diversity, similarity and searches within large data repositories. The filtering of virtual
libraries of chemical compounds using different molecular descriptors is approached as a

primer to the construction of (i) a benchmarking set for evaluation of the virtual screening
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performance of several methods and (ii) a tailored screening set of approximately 2.3 mil-
lion compounds for the virtual high-throughput screening of new transthyretin amyloid

inhibitors.

Chapter 5 reports the results of an evaluation of a large battery of virtual screening pro-
tocols assembled to target transthyretin amyloid. Amongst the evaluated group of tech-
niques are two-dimensional (2D) and three-dimensional (3D) similarity search methods, a
new method combining both 2D and 3D descriptors to make use of multiple templates,
and docking and scoring. For each group of techniques, a best-performing virtual screen-

ing protocol is identified and its prospective application is discussed.

Chapter 6 presents a study of the application of the best-performing docking and scoring
protocols assembled in Chapter 5 to a set of 40 targets encompassing five protein families
of pharmacological interest. The academic-free nature and the satisfactory virtual screen-
ing performance of the selected protocols are discussed under the light of their potential
implementation as part of a large-scale volunteer computing resource freely accessible to

academics.

Chapter 7 reveals the implementation of a large-scale, multi-protocol, virtual screening
campaign in search of new lead compounds to inhibit amyloid formation by transthyretin.
The utilisation of several hardware resources, from an individual laptop, through a paral-
lel virtual machine and two HPC clusters, all the way to a large volunteer computing plat-
form is reviewed. The experimental validation of the developed virtual screening ap-

proaches led to the identification of potent inhibitors of transthyretin amyloid.

The Epilogue highlights the global conclusions drawn from this project and provides a
brief overview of my own perspectives, hopes and fears in the field of computer-aided

drug design and discovery, both at the academia and the industry.
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Chapter 1

General introduction

“Forget the merger of the Web with TV, of phones with
computers. The most powerful convergence underway
today involves silicon, the substrate of computing, and

carbon, the substrate of life.”

[Tom Petzinger, in The Wall Street Journal]



1. Drug discovery in the XXIst century

The complete sequencing of the human genome has opened up exciting new avenues for
groundbreaking medical research and biomedical applications. However, the excitement
behind this remarkable achievement is only comparable with the frustration felt before
the figures describing the lack of success observed in the drug discovery field over the
last decades. In 2010, the Food and Drug Administration (USA) approved no more than
21 drugs; a modest number showing that the pharmaceutical industry has not yet es-
caped the so-called “target-rich, lead-poor” predicament. The research and development
process leading to a new drug is a long and expensive road (Figure 1.1). There is an in-
creasing demand for more effective and safer drugs that can be administered to humans
for longer periods of time. Efficacy and safety alone are not sufficient. Besides producing
the desired response with minimal side effects, new drugs must also demonstrate to be

more cost effective than the treatments that went before them.
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Figure 1.1. Scheme of the research and development (R&D) setting leading to the ap-

proval of a new drug.

Most modern drug discovery programs follow a similar drug discovery and development
pipeline, as illustrated in Figure 1.2. The process begins with the identification and valida-
tion of a protein target, whose activity can be modulated to treat a particular disease.
Many protein targets fall into two major classes: enzymes and receptors. The goal of drug
design is thus to identify small molecules that can inhibit the activity of an enzyme, or can
modulate the activity of a receptor by antagonism, agonism or inverse agonism. Antago-
nists inhibit the effect of the natural substrate, whereas agonists create the same or
stronger effect as the substrate molecule, and inverse agonists produce an effect that is

opposite to that of an agonist. Successful drugs often accomplish their activity by compet-
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ing with an endogenous substrate at a protein target binding site. The development of
protein-based therapeutics is also highly valuable in the pharmaceutical and biotechnol-

ogy industries, but this thesis is mainly focused on small molecule drug discovery.

1.1. The drug discovery pipeline

In general lines, a drug target is first identified as being important to the pathology of
interest through either biological or genetic investigations. The use of modern biology
including functional genomics (such as micro-array technologies) and proteomics has
revolutionised the way by which new targets are identified. Once a target has been vali-
dated and characterised, the next step is to develop an assay that can be used to deter-
mine if a compound can modulate a target’s activity. The nature of the assay can vary
greatly, but typically the complexity of assays will increase and throughput decrease as
progress is made across the drug discovery pipeline (Figure 1.2). Thus, in a “lead finding”
stage, a high throughput screening (HTS) campaign of hundreds of thousands of com-
pounds (often the entire corporate collection of a pharmaceutical company) can be car-
ried out to discover one or more hits with affinities in the micromolar range (i.e. with
binding constants ranging from 10 micromolar to the low nanomolar range). This re-
quires robust assays with minimum human input that can be run with large automated
robots. After follow-up tests to confirm that the discovered molecules affect the target by
a specific mechanism, rather than through nonspecific binding, the hits are narrowed to a
limited number of new chemical entities. Further along the pipeline, these lead series
enter the lead optimisation stage. They are modified using medicinal chemistry methods
in order to decrease their dissociation constant (Ky) to the low nanomolar range, thereby
producing potent lead molecules [1]. The process of optimising these molecules into can-
didate drugs that fulfil the desired properties of potency, absorption, bioavailability, me-
tabolism and safety is typically the lengthiest stage in the drug discovery process. New
compounds will be synthesised based on some chemical insight, knowledge of the target
structure or existing active ligands. Chemical insight can include, for example, knowledge
that one chemical group can often be replaced by another similar group without losing
biological activity (bioisosterism). As each new compound is synthesised, its activity will
be measured and the impact of the chemical modification assessed and used to drive fur-
ther synthesis. The ideal output of the optimisation process is an enhanced compound
series and associated structure-activity relationships (SAR) data. The lead-to-candidate
stage is regarded as a multidimensional optimisation problem, for it involves exploring

the somewhat limited chemical space of the congeneric series of the lead compounds.
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Figure 1.2. A global scheme illustrating the various stages of the drug discovery pro-
cess. As disclosed, computer-aided drug design has its largest impact in lead discovery, lead

optimisation and, increasingly, during pre-clinical development phases.

Once preclinical animal safety studies on the candidate molecule have been conducted,
the investigational drug must take on three types of clinical trials: Phase I clinical trials
involve a restricted study on healthy human subjects to confirm safety; Phase II involves
a larger study on a patient population to confirm efficacy; Phase III involves a large study
of patients to gather additional information about safety and efficacy. Disappointingly,
more than 90% of the candidate drugs entering clinical trials will fail to reach the market,
most often as a result of poor biopharmaceutical properties, toxicity, or lack of efficacy
[2]. Given the attrition of so many potential pharmaceuticals during the late stages of
clinical development, the successful launch of a single new drug takes around 14 years

and is estimated to exceed US$800 million [3].

Computer-aided drug design has a role to play at each stage of the drug design and dis-
covery process and is the key to increasing and exploring the molecular knowledge and

chemical insight that is a prerequisite for success in modern drug discovery.

1.2. The role of computer-aided drug design

In all endeavours involving a highly technical component, from architecture, through car
design, all the way to washing powder formulation, the utilisation of computers to im-
prove quality of work and increase efficiency has been embraced. It is now difficult to
imagine how a new drug could be designed in the XXIst century with absolutely no con-
tribution from computer-aided drug design (CADD). The addition of CADD to the R&D
approaches of a company, could lead to a reduction in the cost of drug design and devel-
opment by more than 50% [4]. The use of CADD has led to the discovery of Indinavir, the
HIV protease inhibitor. Amongst the increasing examples of compounds designed with a
strong CADD component are also Dorzolamide (glaucoma treatment), Zanamivir (influ-
enza treatment) and Lopinavir (HIV treatment). For some compounds, CADD will be the
driving force in their design; for others a less pronounced but still significant contribut-

ing factor.
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The most powerful and effective drug discovery strategies involve a tight integration of
computational and experimental techniques at each stage of the process. In particular,
structural information can be exploited from the identification of the target, all the way
to the design of a bioavailable drug via structure-based drug design. Therefore, by bridg-
ing and building on resources in bioinformatics, structural biology, and structure-based

drug design, structural bioinformatics can accelerate the quest for a potential drug [5].

1.3. Proteins as molecular targets in drug discovery

Proteins are astonishingly complex molecular machines involved in virtually every criti-
cal process of biology. They evolved through selective pressure to carry out all sorts of
tasks, from simple, static, support functions, through the synthesis, break down or trans-
port of other molecules, all the way to the regulation of hyper-complex processes, such as
intra and extracellular communication or the control of gene expression. Built from a
small repertoire of 20 building blocks called amino acids, proteins vary not only in func-

tion but also in size and shape, in physical and chemical properties.

Despite their vital roles to all living (and some non-living) organisms, proteins are also
associated with malfunctioning and disease. The cause of malfunctioning of proteins can
be extrinsic or intrinsic. Extrinsic malfunctions are often due to failure of controlling
mechanisms, whereas intrinsic problems are usually the result of mutations, which affect
the structure and stability of proteins and thus their activity. A deep understanding of
how proteins work (and malfunction) opens up opportunities of interfering with their

function in a therapeutic or regulating manner.

Most proteins exert their biological functions as components of protein complexes. In
recent years and as result of the study of the crucial role of protein-protein interactions
for both physiological and pathological processes, the modulation of specific protein-
protein interactions has been considered of great pharmaceutical interest. The most
prominent example is perhaps that of protein kinases, implicated in multiple processes
related to cancer. Insoluble protein fibrils (as in amyloid) also result from deviant pro-
tein-protein interactions and ensuing assembly of conformational intermediates found
along the unfolding pathway of certain proteins. These are involved in important human
amyloid diseases - including Alzheimer's and Parkinson’s diseases, type 2 diabetes and

Creutzfeld-Jakob disease.
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1.3.1. Molecular recognition

The process of molecular recognition is fundamental to biology. In many biological pro-
cesses the first step consists of the binding of a ligand to a target receptor. The term ‘lig-
and’ derives from the Latin ligare, meaning tie, and is employed to depict a molecule that
binds to a receptor molecule by non-covalent forces. Ligands, including natural sub-
strates and drugs, bind to many different receptors, such as enzymes, antibodies, mem-
brane-bound proteins and DNA. The driving forces for ligand binding include comple-
mentarities in shape and electrostatics between the binding site surfaces and the ligand.
Thus, Coulombic and van der Waals interactions are key players in the process, aided by
the formation of hydrogen bonds and solvation forces. Ligand binding to a receptor often
produces a biological effect. For example, the binding of a natural substrate to an enzyme
will trigger a catalytic reaction, while the binding of a drug to the same enzyme may in-

hibit that reaction.

Molecular recognition between a ligand and a receptor is necessary for binding to occur.
Emil Fischer first proposed the theory of molecular recognition in 1894, in the form of
the lock and key model [6]. According to this theory, high affinity for a given receptor can
only be achieved by a ligand that holds a good geometric fit to that receptor. This fairly
simplistic view has been extended to include the conformational changes that the two
molecules may undergo during complex formation [7]. The so-called induced fit model
proposes a mechanism whereby an open form of an enzyme binds a substrate, which in-
duces the enzyme to undergo a conformational change and move into a closed form sur-
rounding the substrate. Catalysis occurs in this closed form and the enzyme opens again
to release the product. More recently, it was proposed that optimally fitting conformers
of both receptor and ligand can be found in solution, and that there is a shift in the equi-

librium towards the best-fitting conformers for both molecules upon binding [8].

1.3.2. Kinetics of binding

In solution, and under thermodynamic equilibrium conditions, a receptor, R, and ligand,
L, associate to form a non-covalent, reversible, receptor-ligand complex, RL (Equation
1.1). kon is the association rate constant for complex formation, whereas ks is the dis-

sociation rate constant.

Equation 1.1
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It is possible to determine equilibrium constants that depict the strength of the interac-
tion by determining equilibrium concentrations of R, L. and RL experimentally. The bind-
ing affinity between the ligand and receptor can either be expressed as the dissociation
constant, Ky (in M), or as the association constant, K, (in M-1) (Equation 1.2). If the con-
centration of ligand present is less than the value of Ky, then only a small proportion of
the receptor molecules will be associated with the ligand. If the concentration of ligand is
the same as the Ky, then half of the receptor molecules will be in the ligand bound state.
In a biological system, values of Ky generally range from 104 M (a loose association) to

10-16 M (a tight association).

Kq=1/K,=[R][L] / [RL]

Equation 1.2

The pharmacological literature frequently reports the ICso value, which is the concentra-
tion of an inhibitor required to reduce the binding of a ligand (or rate of reaction) by half
[9]. ICs0 values are relatively easy to measure and are often used to compare inhibitors
with one another in competitive binding assays. However, since the IC value is dependent
on the amount of ligand available to the receptor, comparisons between experimental

data obtained under different conditions are unfeasible.

1.3.3. Energetics of binding

The free energy of binding (AGvind) is the difference in the free energy of the complex and
the free energy of its components, the receptor and the ligand (Equation 1.3). It is a func-
tion of the temperature, pressure, ionic strength, pH, solvent, and concentrations of all of
the chemical species present. Absolute free energies are not available experimentally.
Instead, the free energy of a substance under a particular set of conditions is defined as

its free energy difference from a reference state.

o = (o o o
AG bind — G complex — (G ligand + G receptor)

Equation 1.3

AG®ing is directly related to the experimentally measured Ky (or K;), as shown in
Equation 1.4, where R is the gas constant and T is the absolute temperature in Kelvin. It is
possible to calculate AG°ind¢ Where Ky is defined with respect to the standard state i.e. ex-
perimental conditions of 1 atm pressure and 1 M activity of the solutions. The logarith-
mic relationship between AG®%ing and K; means that every 10-fold increase in potency is
due to a -1.363 kcal.mol-! change in binding energy [10]. At 25°C, AG%ina commonly takes

values between -2.4 and -16.7 kcal.mol-1, which is equivalent to K, values of between 10-2
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and 10-12 M [11]. Various computational methods aim to predict AG°ing in order to pro-

vide an estimate of Ky, and therefore ligand binding affinity.

AG%ng =-RTIn K;= RTIn Ky

Equation 1.4

AG®ing comprises two components: AH®, the change in enthalpy, and AS® the change in
entropy of the system on complex formation (Equation 1.5). When AH® is positive (unfa-
vourable) and TAS® is positive (so -TAS® is favourable), the interaction is described as
entropically driven. When the opposite situation is true, the interaction is described as
enthalpically driven. In the case of most synthetic drugs, which are commonly rather hy-
drophobic and rigid molecules, binding is an entropically favourable process, often show-
ing unfavourable enthalpy. Changes in enthalpy arise from alterations in van der Waals
and Coulombic interactions as the atoms of the complex replace atoms from the solvent
during complex formation. Changes in entropy reflect differences in the translational and
rotational degrees of freedom for the ligand, receptor and solvent molecules, and the loss
of conformational and vibrational entropy for both the receptor and ligand during com-

plex formation.

AG®,,g = AHO- TAS®

Equation 1.5

AH° can be determined experimentally using isothermal titration calorimetry (ITC). ITC
uses sensitive microcalorimeters to measure the heat released on association of a ligand
with a protein [12]. In a single ITC experiment, values of K,, AH® and the stoichiometry
are determined, allowing AG%ina and AS° to be calculated using Equation 1.4 and

Equation 1.5, respectively.

1.3.4. Protein structure determination

As the name implies, Structure-Based Drug Design (SBDD) requires the 3D representa-
tion of a protein target, ideally determined by experimental methods. Either in their apo
(without ligands) or holo form (complexed with ligands), protein structures are tradi-
tionally resolved using two principal methods: X-ray crystallography and nuclear mag-

netic resonance (NMR).

The obtention of a crystal of the protein of interest is the fundamental step in X-ray crys-
tallography and it can take from weeks to decades to work out the delicate balance of the

appropriate conditions required to crystallise certain proteins. For example, due to their
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insolubility in water, it is very difficult to obtain satisfactory crystals of membrane pro-
teins (e.g. receptors and ion channels). In a second stage, an X-ray beam is passed
through the crystal and the resulting X-ray diffraction pattern is analysed. Given the
highly ordered state of the protein molecules in the crystal, it is possible to determine a
3D electron density map by means of Fourier transforms. A structural model of the pro-
tein can then be constructed based on a combination of the electron density map and

knowledge of the protein sequence.

NMR captures the magnetic moment of the nuclei of individual atoms to differentiate
chemical groups and determine interatomic distances and torsional angles. An intense
magnetic field is applied to a purified solution of the protein, resulting in the alignment of
certain nuclei spins with the field. Exposure to a brief electromagnetic pulse causes these
nuclei to become excited momentarily, and emit/absorb radiofrequency radiation that
can be detected and recorded. The excited atoms may also excite their neighbours, a
phenomenon referred to as the Nuclear Overhauser Effect (NOE). The NOE is exploited to
produce NMR spectra that are used to detect atoms within close proximity of one an-
other. By combining these and other spectra with knowledge of the protein sequence, it
is possible to determine a map of the 3D arrangement of atoms within the protein, from
which a series of models can be constructed. The main advantage of NMR is that, unlike
X-ray crystallography, it does not rely on obtaining a crystal of the protein of interest.
However, a significant limitation of NMR is the relatively small size (< 50 kDa) of the pro-

teins that might be analysed.

1.4. Computer-aided drug design: the basics

The concept of Computer-Aided Drug Design (CADD) encompasses the application of in-
formatics methods to the discovery, design and optimisation of biologically active com-
pounds. Indeed, in silico methods comprise a wide terrain, including bioinformatics,
where drug targets are derived from genomic data, docking studies, where the binding of
a ligand or drug to a particular target protein is studied computationally, and chemoin-

formatics, where activity and structure are correlated using statistical means.

In this subsection, a basic introduction to some of the methodologies most commonly
employed in CADD is provided. For further information, I point the reader to references
[13,14]. The following subsections approach the methods used in this project in greater

detail.
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1.4.1. Structure prediction and homology modelling

Frequently, drug discovery projects need to target proteins for which no structure has
been experimentally determined by either X-ray crystallography or NMR. In these cases,
structure prediction methods may be employed to obtain a suitable structure for SBDD..
The most prominent examples of this are perhaps G protein-coupled receptors (GPCRs),
a group of therapeutic targets linked with ca. 50% of the most recently marketed drugs
[15]. The most accurate structural prediction method is homology modelling [16], which
relies on the fact that all proteins adopt one of a finite number of folds, for which there

may already be a representative with a solved structure [17].

By definition, homology modelling requires a template sequence of a known 3D structure
that is evolutionarily related to the target sequence. Indeed, since protein structure is
conserved to a greater degree than protein sequence, it can be assumed that proteins

with significant sequence similarity will also share structural similarity [18].

Sequence comparison is usually carried out by the Basic Local Alignment Search Tool
(BLAST) [19], which assigns pairwise sequence similarity based on local alignments, ra-
ther than global alignments. In this way, it is possible to identify sequences that have
weaker, yet still significant, similarity to the target sequence. BLAST identifies a series of
short, non-overlapping sub-sequences (‘words’) in the target sequences, which are then
matched to candidate sequences. Since only the most significant word matches are evalu-
ated, BLAST is able to provide a very rapid result [20]. The extent of sequence similarity
between the target and template generally determines the accuracy of the model. A se-
quence identity of greater than 50% usually allows a high modelling accuracy (backbone
RMSD < 2 A) to be achieved, whereas a sequence identity of 30-50% typically results in a
medium modelling accuracy (backbone RMSD ~ 2-4 A), and below 30% sequence iden-

tity, model quality is often poor (backbone RMSD > 4 &) [21,22].

The next step in homology modelling is to find a solved protein structure that is homolo-
gous to a query sequence, based on sequence similarity. This structure then serves as a
template onto which a model of the query protein can be constructed. The model, which
is guided by the alignment of the two protein sequences, is initially built using only the
backbone atoms of the structure as a template. Where there are insertions or deletions in
the sequence alignment, the backbone of the model is generated according to the spatial
constraints of the adjacent residues. Once the backbone of the model has been con-
structed, side chains are added, starting with residues that are identical between the two
sequences. When this is the case, side chain conformations are adopted from the equiva-
lent residues on the template. Where residues differ between query and template, they

are modelled based on a combination of common side chain conformations and local spa-
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tial constraints. Once the side chains have been added, unfavourable contacts are re-
moved using an energy minimisation process. Although homology modelling has the ad-
vantage of avoiding extensive experimental studies, its main drawback is that it relies on
the existence of a suitable template. However, recent advances in structural genomics
have led to increased coverage of the fold space, meaning that it is becoming increasingly

possible to generate an accurate homology model for any given protein sequence [23].

1.4.2. Molecular Mechanics (MM): the force field

Molecular mechanics (also addressed to as force field methods) ignores electrons and
their motions and considers the atoms in a molecule as spheres connected by springs.
Typically, changes in energy due to bond stretching, angle bending, torsional energies
and non-bonded interactions (electrostatic and van der Waals interactions) are com-
puted using parameters such as bond lengths (), angles (8), torsions (w), charges (q) and
Lennard-Jones parameters (the collision parameter ¢ and the well depth &), which, to-
gether with a set of equations, constitute the force field [24]. A very simple molecular
mechanics force field is represented Equation 1.6 and the main energy contributions il-

lustrated in Figure 1.3.

Molecular Mechanics force fields are derived by studying distinct types of molecules. The
most prominent and commonly employed force fields are AMBER [25], CHARMM [26],
GROMOS [27] and OPLS [28], which were primarily designed for proteins and lipids.
Other force fields, such as GAFF [29] and MMFF [30] are more suited for small molecules.
Energy calculations using a MM force field quantify the extent to which bond lengths,

angles and torsions deviate from the ideal values defined in the force field.

V= Z (-1, Z P+ > 7[1+cos(nw y)|+

bonds angles torsions

_aq; 4 Ojj
+ & ||—
4ne, r. Z !

electrostatic 0" ij vanderWaals ij

Equation 1.6.
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Figure 1.3. Schematic representation of the main energy contributions to a force field.

Variations in potential energy are illustrated. Adapted from reference [24].

The iterative process of changing bond lengths, angles and torsions to generate better
structure conformations is called Energy Minimization (EM) [31]. At each iteration, the
energy of the new conformation is measured and the changes that lower the energy are
retained for further optimisation until no additional improvement is possible. This point
is referred to as the local energy minimum. As depicted in Figure 1.4, step-wise energy
minimization tendentiously lets a system trapped at a local minimum conformation. This
energy saddle prevents further progression rather than allowing the system to reach a
global minimum (the global minimum) and the corresponding lowest-energy conforma-
tion. To help crossing energy barriers, methods like simulated annealing, which performs
Metropolis walks in the search space by progressively lower temperatures [32], or, more

broadly, stochastic conformational searches are used.

12 General introduction



Energy
barrier

'

Initial
structure

|

Structure
generated by
conformational
--------------------- . search

Energy

Local
minimum

Global
minimum

Conformational parameter

Figure 1.4. Schematic representation of a one-dimensional energy surface. Energy
minimization methods move downhill to the nearest minimum. Energy barriers are crossed

using conformational search, eventually leading the most stable molecular conformation.

1.4.3. Conformational space sampling

Conformational searches comprise a set of techniques that can be used to generate large
ensembles of conformers by stepwise bond rotation, molecule rotation and translation,
and/or energy minimization. Contrarily to energy minimization, these methods can cross
energy barriers and reach conformations that will be close to the global energy mini-

mum. Several computational tools can be used to perform conformational searches.

The Monte Carlo (MC) technique and Genetic Algorithms (GA) are stochastic methods in
nature and are commonly applied to problems like molecular docking [33-36]. MC meth-
ods randomly generate all possible conformations by rotation about a bond, before
minimizing their energies and retaining the structure if it is the lowest energy conforma-
tion observed at that point in the simulation. The longer the simulation runs the more
effective conformational sampling is. On the other hand, GAs allow a more thorough con-
formational search. Selective pressure is applied during each iteration in order to en-
courage high-scoring conformational features to be carried over to the next generation.
New conformations are introduced via random mutations, while new conformational al-
ternatives are generated by the crossover of random pairs of conformations. More de-
tailed explanations about MC methods and GA are provided below, under the subject of
Molecular Docking. Finally, and by contrast, Molecular Dynamics (MD) is a deterministic
technique that also generates conformations by simulating the time-dependent move-

ment of the molecules (briefly described in a subsection below). As with EM, however,
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MD searches tend to get stuck in local minima and their application as a high-throughput

solution is very limited.

Molecules do not inhabit in void space. Generally, and especially on living systems, they
are found in aqueous environments that will affect their conformation. Thus, even though
energy minimization and conformational analysis can be undertaken in vacuum, it is of-
ten more adequate to explicitly account for the interactions of the solute with the solvent

[37].

More precise calculations of small molecule conformations require the use of quantum
mechanics (QM), but these are far more expensive in terms of computing time [38]. QM
calculates properties of the molecules using quantum physics to evaluate the interactions
between electrons and nuclei. QM methods can be divided into two main methods. The
most rigorous comprises ab initio techniques that do not require the use of pre-defined
parameters. These methods are however dependent on the selection of the basis set,
functions to describe the orbitals of the system. On the other hand, semi-empirical meth-
ods are faster than ab initio methods and applicable to compounds with larger molecular
weight. Semi-empirical quantum chemistry methods consider only electrons in the outer

shells of the atoms and use predefined parameters.

1.4.4. Molecular Interaction Fields: the grid

As with many biological processes happening in nature, ligand-receptor binding is mostly
determined by non-covalent forces. A Molecular Interaction Field (MIF) describes the
interaction energy between a target molecule and a certain chemical probe hopped along
a 3D grid around the target. Chemical probes come in many sizes and flavours and try to
mimic the chemical properties of a binding partner. MIFs can thus provide a detailed pic-
ture of the energetic conditions between two or more molecules approaching each other
[39]. Computer graphics are able to display MIFs as 3D isoenergy contours. Contours of
high positive energy represent regions from which the probe would be repelled, while

contours of high negative energy indicate energetically favourable regions for binding.

MIFs analyses are commonly applied in a wide range of molecular modelling studies [40-
45]. The chosen approach varies with the type and amount of information available for
the macromolecular targets and/or their ligands. When the 3D structure of a protein tar-
get is known, the MIFs are used to locate favourable regions for the ligand binding. These
regions can then be taken as a starting point for the design of stronger binders for that
receptor. Often, however, limited or no structural data of the receptor is available. In such

cases, MIFs can help generating reasonably detailed representations of the potential re-
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ceptor binding site by taking advantage of available information on active ligands. A pre-
requisite for this strategy is that all ligands explore the same binding mode within the

active site.

1.4.5. Quantitative structure-activity /property relationships

The characterization of Structure-Activity Relationships (SAR) is a critical task in any
medicinal chemistry project. Precise and descriptive SAR provide guidance to select fur-
ther compounds to be synthesized, by suggesting chemical modifications with higher
likelihood of yielding better molecules than a random modification. Quantitative struc-
ture-activity relationships (QSAR) and quantitative structure-property relationships
(QSPR) attempt to statistically relate modifications to the structure of a series of com-
pounds to an experimentally-determined biological activity or physical/chemical prop-
erty, respectively. The initial step in QSAR or QSPR modelling involves the choice of de-
scriptors to depict the physicochemical properties of the compounds under study. Consti-
tutional and topological descriptors are often combined with more complex descriptors,
representing the 3D structure of the molecules. These include several geometric descrip-
tors, and most importantly a variety of electrostatic, QM and MM-derived descriptors.
The mathematical models thus built can be utilised to predict the activity/property of
similar compounds [46]. QSAR and QSPR models are empirical equations that relate sev-

eral descriptors of the molecular structure to a single property:
Activity / Property = f (descriptor1, descriptor2, descriptor3, ...)

The concept of three-dimensional quantitative structure-activity relationships (3D-
QSAR) is a further expansion of QSAR. The most frequently used 3D-QSAR methods,
comparative molecular interaction field analysis (CoMFA) [47] and related approaches
[48], assume that the most important features of a molecule, when binding to a protein
target, are its steric and electrostatic properties, and its molecular interaction fields. Dur-
ing a 3D-QSAR analysis, a lattice box is built around each compound and a probe atom is
placed at each lattice point. The interaction between the ligand and the probe is meas-
ured to define properties such as shape, hydrophobicity and hydrogen bond donor-
acceptor capacity. The structural alignment of compound series within the lattice box is
the most demanding, time-consuming and subjective step in any 3D-QSAR study [49]
(see Figure 1.5). As a solution to this problem, alignment-independent descriptors have

been recently developed [40].
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Figure 1.5. A structural superposition of thyroxine and analogs, disclosing a neat

alignment of the scaffolds. Adapted from reference [50].

There are well-known strengths but also pitfalls to QSAR and a number of cautions must
be taken in order to retrieve the expected outcomes of the method [51]. Ligand-based
receptor site models (or 3D-QSARs, or pseudoreceptors) continue to serve as important
tools in drug design and new developments have been continuously witnessed, from the
early attempts to account multiple (ligand binding) modes [52-55], all the way to the
inclusion of multiple species in both receptor- and ligand-based QSAR studies [56-59].
Just recently, Natesan et al. validated a promising new multimode-multispecies method
using a ligand-based approach on a set of thyroxine analogs, withdrawing models with
good predictive ability of binding affinities for the protein target transthyretin [50]
(Figure 1.6).
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Figure 1.6. Illustration of the 3D-QSAR studies employing a multimode-multispecies

method on a set of thyroxine analogs. Recently published by Natesan et al. [50].

1.4.6. Molecular Dynamics simulations

Molecular Dynamics (MD) simulations are the archetypal computational technique for
conducting atomic-resolution studies of biological systems [60]. MD is a MM-based theo-
retical approach whereby successive configurations of a system are produced by inte-
grating the Newton’s law of motion (F = ma). The resulting trajectory describes how the

positions and velocities of particles in the systems vary with time [61]. MD simulations of
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biological macromolecules provide atomic detail on the internal motions of these sys-
tems. Constant improvements to the methodology and computing power extended the
use of MD studies to much larger systems including, for example, very large macromo-
lecular complexes, explicit solvent and/or membrane environment, greater conforma-
tional changes and longer time scales [60]. The original MD simulations were less than 10
picoseconds in length, but current simulations can be 100,000 times longer (microsecond

timescale) and millisecond-scale MD simulations have already been reported [62,63].
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Figure 1.7. Spatiotemporal resolution of MD simulations compared with various bio-
physical techniques. The temporal (abscissa) and spatial (ordinate) resolutions of each
technique are indicated in coloured boxes. Techniques capable of yielding data on single
molecules (as opposed to only on ensembles) are shown in bold. NMR methods can probe a
wide range of timescales, but they provide limited information on motion at certain inter-
mediate timescales, as indicated by the lighter shading and dashed lines. The timescales of
some fundamental molecular processes, as well as composite physiological processes, are
indicated below the abscissa. The (spatial) resolution needed to resolve certain objects is
shown at right. AFM, atomic force microscopy; EM, electron microscopy; FRET, Forster

resonance energy transfer. Extracted from reference [64].

Computational models arising from MD simulations are useful because they can provide
critical mechanistic insights that may be difficult or impossible to garner otherwise. Drug
design applications of MD simulations include the estimation of target selectivity predic-

tions [65-67], generation of multiple conformations for flexible docking [68,69], devel-
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opment of dynamic protein-based pharmacophores [70-72], metabolism prediction [73]
and refinement of protein homology models [74]. A great deal of effort, however, has
been centred on the use of MD-based methods for the accurate determination of binding
free energies and relative binding free energies, largely inspired by some of the first ap-
plications of free energy methods to protein-ligand binding [75]. Relative binding free
energy calculations (commonly referred to as FEP calculations) constitute the majority of
protein-ligand binding calculations conducted in academic and industrial settings, and a
variety of techniques have been developed to improve their efficiency and accuracy. This
field of work has been thoroughly reviewed and I point the reader to references [76-79].
For a broader review of recent theoretical and computational advances in the modelling

of binding affinities, I recommend references [80-84].

1.5. Molecular Docking

Molecular docking is a method for predicting whether and how two or more molecular
entities can interact to form an intermolecular complex. Most docking algorithms can
generate many possible structures, and so they also need a means to evaluate each struc-
ture and discriminate the most valuable ones. Therefore, docking algorithms typically
consist of both a search algorithm to explore different conformations of the interacting
partners and a scoring function to estimate their binding affinities. The so-called “dock-
ing problem” globally refers to the challenge of generating and scoring plausible struc-

ture of intermolecular complexes [85].

There are six degrees of translational and rotational freedom of one molecule relative to
the other, along with the conformational degrees of freedom within each molecule. Sev-
eral algorithms have been devised to tackle the docking problem, mostly classified by the
degrees of freedom they disregard. The earliest approaches for docking small molecules
treated both the ligand and the protein as rigid bodies, exploring only the six degrees of
rotational and translational freedom [86]. Yet, more recently, the Monte Carlo method
and genetic algorithms have been explored for an efficient sampling of ligand (and some-

times protein) configurational space.

1.5.1. The Monte Carlo algorithm

The heart of the Monte Carlo (MC) algorithm is a random number generator, combined
with the ability to compute the energy of the system for a particular set of coordinates. A
MC simulation begins with a suitable set of coordinates for all particles of a system. This

set of coordinates is perturbed in a random manner and the new configuration of the sys-

18 General introduction



tem is accepted as a starting point for the next perturbing step if it is lower in energy
than the current. If the new geometry is, however, higher in energy, the Boltzmann factor
eE/KT js calculated and compared with a random number between 0 and 1. If e~E/kT js lar-
ger than this number, the new conformation is accepted; else, the old configuration is
(again) added to the sampling, and a new perturbing step is attempted. The key variation
of MC methods is how the perturbing step is accomplished. For a system comprised of
spherical particles (such as atoms), the only variables are the centre o mass of each parti-
cle, and the trial moves are simple translations of particles. For rigid non-spherical parti-
cles, the three rotational degrees of freedom must also be sampled, while for flexible
molecules it is also of interest to sample the internal degrees of freedom (conformations,

vibrations).

A central aspect of MC methods is to ensure that the chain of configurations results from
a symmetric probability decision. In this context, symmetry means that each step is re-
versible, i.e. the probability of undoing a step by the next move is equal to the probability
of generating the step - a condition often referred to as the detailed balance condition. If
this is not fulfilled, the properties derived from the resulting ensemble can (but do not
necessarily) display systematic errors, which are usually hard to trace. Generating ran-
dom moves corresponding only to translation in the positive direction, rather than both
positive and negative directions, will almost be sure to lead to artefacts. From a computa-
tional perspective, a MC simulation is by far less demanding than an MD simulation. In-
deed, if the detailed balance condition is verified, only a single random particle is sub-
jected to a single random perturbation in each step. This procedure is usually more effi-
cient than a trial step involving all particles: when only a single particle is moved, only
the change in the energy related to this particle is required, not the whole energy func-

tion.

One of the shortcomings of MC methods is their inability to account for correlated mo-
tions. Exploring the conformational space of a larger molecule, such as a protein in a sol-
vent, is inefficient, since several concurrent perturbations of torsional angles are re-
quired for generating acceptable conformational changes. Such correlated movements
are difficult to generate by random perturbations, and almost impossible if only single
particle movements are employed in each trial step. On the other hand, one of the advan-
tages of MC methods is the ease with which they can be implemented in computer pro-
grams, where they can be used to explore the translational and rotational space of rela-

tively small molecules and their internal degrees of freedom [36,87].
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1.5.2. Genetic algorithms

Genetic algorithms (GAs) are utilised as robust search algorithms in several optimisation
problems, for they can adapt and improve based on survival of the fittest, mixed with a
directed, yet randomised, search procedure. A GA simulates the process of evolution and
natural selection by the generation and manipulation of artificial genetic systems [88].
They accomplish this by manipulation the so-called chromosomes, which are repre-
sented as strings that can undergo reproduction, crossover and mutation. Just as the total
set of chromosomes makes up the genotype of a species, a collection of strings, or in the
simplest case just one string, are termed the structure of an artificial system. This struc-
ture encodes a set of parameters or points in solution space, similar to the genotype en-
coding the phenotype of an organism. Chromosomes are a collection of genes, each rep-
resented by an allele and location, whereas strings comprise features, each associated

with a value and location.

From the docking viewpoint, each chromosome represents a possible solution to the lig-
and-docking problem. Chromosomes are treated as individuals and as part of population
(of fixed size) where each member is evaluated for fitness. Parent chromosomes are then
randomly chosen but biased towards fitness and subjected to reproduction operators,
producing child chromosomes. Their fitness is evaluated and, if novel, they replace the
least fit individual in the population. The whole process, including operator and parent
selection, is repeated unless an acceptable solution is found. In the extended version of
the algorithm, populations are split into sub-populations and additional genetic operator
migration is introduced, allowing individuals to move across sub-populations. Crossover
recombines two fittest parent chromosomes whereas mutation changes a value at ran-
dom. “Survival of the fittest” is achieved over time, moving the population to the best so-
lution for the docking problem. The fitness function plays an essential role in the selec-
tion process and determines how accurately it can predict the binding conformation.
Starting ligand poses (chromosomes) are generated at random. Each chromosome con-
tains protein-ligand mappings of interaction points (hydrogen bonds, hydrophobic
points, conformation around rotatable bonds) and is given a fitness score according to

the evaluation of the scoring function.

In spite of the stochastic nature of GAs, they are generally highly reproducible. With cer-
tain targets, however, they may require more or longer runs to obtain a match to the

crystallographic binding mode.
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1.6. Classification of scoring functions

Structure-based drug design methods, such as molecular docking or de novo design, are
often used with the ultimate goal of predicting ligand-binding affinities, based on the po-
sitioning and interactions established within an active site. Besides trying to identify cor-
rect ligand poses that match X-ray determined conformations, scoring functions attempt
to correctly predict the experimental free energy of the association between a ligand and
a protein. In fact, even though many scoring functions report scores using abstract units,
some scoring functions were specifically design to estimate the Gibbs free energy of bind-
ing. Some studies have even claimed the ability to predict binding affinities within a 1.7-
2.4 kcal.mol! error [89]. Scoring functions can be divided in three main categories: (i)
force field-based functions (e.g. AutoDock 4 Free Energy Function, GoldScore), (ii) em-
pirical free energy or regression-based functions (e.g. ChemScore, X-Score), or (iii) know-

ledge-based potentials (e.g. DrugScore, Potential Mean Force).

1.6.1. Force field-based scoring functions

Force field-based scoring functions (also called Molecular Mechanics- or first principle-)
approximate binding affinity by summing individual contributions in a master equation.
The terms used for different interaction types are based on the physicochemical theory
and should not be cross-correlated with each other. These terms are often combined with
solvation and entropic terms. As docking methods are concerned, DOCK 3.0 score [90] is
one of the earliest scoring functions that covers the principal contributions to binding:
shape and electrostatics are dealt with by means of a van der Waals term and an electro-
static potential term. These separable terms are combined into a grid-based AMBER
force-field scoring function that is computed at specific grid points as the sum of ligand
atom interactions at the grid points (using a interpolation scheme) assuming additivity of

individual terms.

1.6.2. Empirical scoring functions

Empirical scoring functions are developed more specifically for protein-ligand docking
by fitting experimental binding affinities using a training set of protein-ligand complexes
and are thus dependent on the training set. The free energy of binding is approximated
by summing up individual energy terms, which are often simpler but related to molecular
mechanics energy terms. Weights or coefficients for each term are derived by regression
analysis. Different functions implement various types of energy terms and can include

entropic and desolvation terms (although these are still approximations).
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ChemScore [91], for example, comprises four simple terms: two contact terms for lipo-
philic and metal interactions, a hydrogen bonding term and a penalty term depending on
the number of rotatable bonds. The weights were derived by regression based on a train-
ing set of 82 protein-ligand complexes with known binding affinity and their robustness
assessed by cross validation. The design concept involved reduction of the total number
of terms and exclusion of those that showed intercorrelation. Additionally, all terms and
coefficients should be physics based and interpretable. The scoring was later applied to
de novo designed compounds that were synthesised and tested [92]. The scoring function
was found to be valuable, however, it overestimated binding affinity in several cases and

subtle changes between close analogues were not predicted with accuracy.

1.6.3. Knowledge-based scoring functions

Knowledge-based scoring functions are derived by statistical analysis of the frequency
distributions within a set of protein-ligand structures from which pairwise atomic inter-
action potentials are deduced. As such, they reproduce observed preferences of func-
tional group binding, i.e. experimental structures rather than binding affinities. Like with
empirical scoring functions, these functions try to overcome the problem of insufficient
description of a complex binding event due to the lack of explicit parameters. Well-
known examples are DrugScore [93] and Muegge’'s Potential Mean Force (PMF) [94].
With the increase in available crystal structures (and therefore knowledge), these scoring
functions are expected to further improve in the future. The scoring functions differ in
respect to their chosen reference distribution, an important term influencing the dis-
tance-dependent pair potentials. For example, PMF sets the cut-off at 12 A for sampling
atom pair contacts, while DrugScore at 6 A. The larger PMF cut-off value was chosen to

include implicit solvation effects, whereas DrugScore considers specific interactions.

1.7. Pharmacophore modelling and searches

A pharmacophore is the group of steric and electronic features that are necessary to en-
sure the optimal supramolecular interactions with a specific biological target and to trig-
ger (or block) its biological response [95]. Using this representation is a useful way to
identify new active compounds [96]. The new molecules are most typically studied in 3D
so that the pharmacophore model captures both the nature of the functional groups but

also their relative orientation to each other.

Because functional groups in a pharmacophore model are not usually considered at an

atomic level, but as broader interaction properties, pharmacophore searches are often
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successful at scaffold hopping, i.e. at retrieving molecules that are quite dissimilar to the
reference ligands. The most typically used features include hydrogen bond acceptors,
hydrogen bond donors, positive ionizable groups, negative ionizable groups and hydro-

phobic regions.

1.7.1. Ligand-based pharmacophore modelling

Ligand-centric approaches can be undertaken in order to identify the most important
functional groups and thus develop a pharmacophore model. A set of known active com-
pounds are structurally aligned in the 3D space and the shared functional groups identi-
fied, as well as their spatial arrangement [97]. Often, distance tolerances are applied to
the distance values, in order to compensate for small displacements that might be al-
lowed within the binding site. Training sets with highly active but conformationally re-
stricted compounds avoid time-consuming and potentially misleading superimpositions.
Moreover, in order to reproduce the bioactive conformation, pharmacophore models are
usually restricted to low-energy geometries, although not necessarily an energy mini-

mum [98].

Pharmacophore queries can also include a measure of the required shape of the mol-
ecules, based on the shape of the compounds used to build the model, in order to im-
prove complementarity to the biological target and avoid steric clashes. Possible adverse
steric interactions are prevented with the use of excluded volume spheres, forbidden
volumes that compounds cannot map. A complementary approach is the use of inclusion

volume spheres selected on the basis of the shape of highly active compounds.

Using queries to search in 3D requires a method to consider conformational flexibility.
The simplest approach is to generate and store multiple conformations of all ligands in
the database. The software will then test rigidly all conformations of the ligand and re-
turn those that fit. Alignment methods require a quantitative measure to assess the de-
gree of overlap between the ligands and the pharmacophore. Typically in point-based
methods, the optimisation algorithm attempts to reduce the root mean square deviation
of the pharmacophoric features by least-squares fitting. Employing additional 2D sub-
structure filters improves the efficiency of these approaches and reduces the computa-

tional time required.
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1.7.2. Receptor-based pharmacophore modelling and combined ap-

proaches

In the fairly long history of pharmacophore modelling, the utilisation of protein struc-
tures is a somewhat recent feature [99]. Nevertheless, several studies have already
shown good performances of combined protein structure- and ligand-based approaches
in pharmacophore modelling [100-102]. Several programs can nowadays be explored to
manually build receptor-based or receptor- and ligand-based models, such as MOE and
DS ViewerPro. The program LigandScout, on the other hand, offers automatic pharma-
cophore perception from 3D complexes [103]. Alternative approaches include structure-
based focusing (SBF) [71] and MUSIC [70,72], and can be followed even when only un-
bound (apo) structures of the protein target are available. These methods combine ac-
cessible interaction sites identified using geometric or energetic criteria, and may even

account for protein flexibility during the construction of pharmacophore hypotheses.

In Chapter 3, pharmacophore modelling and searches will be covered in detail, as a mixed
receptor- and ligand-based approach is exploited in attempt to devise a set of specific and

selective pharmacophore hypotheses for a target of pharmaceutical interest.

1.8. Molecular similarity and similarity searches

The terms molecular diversity and molecular similarity comprise several meanings, de-
pending on the chosen criteria, but, in essence, every small molecule-based approach to
identify novel active compounds exploits the concept of molecular similarity to some ex-
tent. The so-called “Similar Property Principle” states that molecules that are globally
similar should have similar biological activity [104]. In chemoinformatics, the measure of
diversity and similarity involves the use of three main components: the descriptors, the
coefficients and the weighting scheme. These will be covered in detail in Chapter 4. A
myriad of methods that compute diversity of molecules has been developed over the last
50 years and new methods are continuously being presented. Each method defines a dif-
ferent configuration of diversity space, and uses its own descriptors to accomplish its
mission. Methods of classification and selection of descriptors are increasing in popu-

larity and are employed to optimise the measures of molecular similarity and diversity.

Maldonado et al. offered an excellent review on this topic, covering several approaches
on molecular similarity and diversity, classification and selection methods, and different
approaches for comparative analysis [105]. Several types of molecular descriptors, classi-
fication and selection methods have been exploited throughout this project. They will be

described in great detail in Chapter 4.
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1.8.1. Molecular fingerprints

Molecular fingerprints are bit-string representations of molecular structure and/or
properties. Simple search strings and atom count vectors represent some of the most
basic forms of one-dimensional fingerprints and are often powerful search tools
[106,107]. Nevertheless, over the last decades several types of two-dimensional (2D)
fingerprints have been developed (see an example in Figure 1.8). State-of-the-art 2D
fingerprints include hashed connectivity pathways [108], structural dictionary-based
[109] and layered atom environment fingerprints [110]. For historical reasons, daylight
fingerprints have been used as a standard for benchmarking [108]. However, from a sci-
entific point of view it is difficult to recognize any 2D fingerprint as a standard for simi-
larity searches.

or

Patterns in the molecule (Note —all substructures!):
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Bit collision is allowed

Figure 1.8. Schematic representation illustrating the process of ChemAxon’s 2D
fingerprint generation. Each unique connected fragment sets a bit ‘on’. Fragments can be
from 1 to 7 in length, and map out the whole molecule in all directions (adapted from

ChemAxon’s website).

Two-dimensional fingerprints were originally developed for similarity searching employ-
ing single reference compounds. Yet, more recently it was demonstrated that the use of
multiple template molecules could enhance search performance [111]. Normally, every
template is a known bioactive compound. However, molecules found to be most similar
to a single reference compound in a first similarity search can be used, regardless of its
activity. This is known as ‘turbo’ similarity searching [112]. Further studies resulted in
attempts to boost fingerprint search performance by following strategies to either scale
[113] or average [114] fingerprints, as well as on the assessment of alterative scoring
protocols — namely the nearest neighbour methods [114] and data fusion [115]. These
techniques individually determine similarity indexes for the database compounds against

each reference molecule; the similarity score is either computed as the average similarity
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against a pre-specified number of nearest neighbours in the reference set or as the
maximum [114]. The latter strategy is usually referred to as 1-NN or ‘sum fusion rule’
and has yielded the best results in comparative benchmarks [115]. Notwithstanding,
nearest neighbour methods, namely 1-NN, seem to show less ability to detect structurally
distinct active compounds than methods employing multiple compound information as a
whole [116]. Peter Willet as offered an excellent review where data fusion methods are

extensively discussed [117].

1.8.2. 3D similarity methods

Similarity search algorithms often employ either 2D or 3D molecular descriptors. How-
ever, certain methods rely exclusively on 3D descriptors, including shape-matching al-
gorithms [118], shape-based fingerprints [119], fuzzy, 3D-feature representations de-
rived from cluster analysis of molecular conformations [120], molecular field descriptors
[121] and pharmacophore fingerprints [122]. These fingerprints attempt to transform
local molecular views into a global view by systematically scrutinizing potential pharma-
cophore arrangements in molecules. Ensemble pharmacophore techniques render 3D-
similarity searching independent of exhaustive guessing of the bioactive conformation of
a compound, which persists to be a big bottleneck for important applications of several

3D descriptors and methods.

1.9. Virtual Screening

Experimental high-throughput screening (HTS) is nowadays one of the standard tech-
niques used in the pharmaceutical industry for lead discovery. HTS implies fully auto-
mated assays, allowing fast biological evaluation of a large number of compounds for a
given target. However, the costs associated with such screenings are high and the hit
rates low. This problem might be avoided by not screening complete databases experi-

mentally, but only small subsets enriched in the most promising compounds.

As opposed to HTS, virtual screening (VS, or vHTS) describes any computational ap-
proach used to prioritise compounds for experimental screening, predicted to have bet-
ter probability of being active than compounds selected by chance. Large virtual cata-
logues may be used, typically with thousands to millions of structures, corresponding to
compounds available in-house, commercially available compounds or chemically feasible

compounds.
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Virtual screening can follow a structure-based approach, a ligand-centric strategy or
combination of both structure- and ligand-based methods. Structure-based VS typically
uses molecular docking to select compounds predicted to bind with high affinity to the
binding site of the target protein. Ligand-based VS uses information from known active
compounds to select other molecules. A training set of these structures is the starting
point to build pharmacophore queries, as well as similarity or substructure searching
procedures. As mentioned above, structure-based pharmacophore models and searches
are also being applied with success. Mixed approaches try to make use of knowledge on
both the target receptor structure and the known active ligands to define the pharma-

cophore queries.

Virtual screening can be applied to millions of molecules in a relatively short timeframe.
However, the real value of VS is in its complementarity to experimental evaluation tech-
niques. Both ligand- and structure-based approaches are able to identify sets of com-
pounds, which must then be tested in an adequate in vitro assay. The main disadvantage
of virtual screening is that if tight constraints are used on the type of compounds selec-
ted, this will limit the possibility of finding novel and unexpected molecules due to ser-

endipity.

2. Drug discovery in academia

The drug discovery process requires a fundamental step of identification of a few small
molecules (lead compounds) that can serve as a basis to further optimisation and the
development of a new drug. While in the past this step was mostly accomplished by ser-
endipity, experimental screening methods are today crucial to the generation of new
leads. High-throughput screening (HTS) has indeed become the archetypal technique
used by the industry to maximize the productivity of the drug discovery process on its
early stages. Yet, and despite the success stories of HTS [123-126], the complexity and
the quality of the assays [127-129], along with the high-costs involved in their imple-
mentation and application, greatly limit its use in small pharmaceutical companies, let
alone by academic researchers. Even so, this need not hinder the involvement of aca-
demic researchers in drug discovery campaigns for targets of limited commercial value,
such as rare diseases and diseases common in developing countries. In a time when the
number of target protein structures is sharply increasing versus limited numbers of new
therapeutic solutions being introduced in the market, the academic setting is an import-

ant niche for the “bubbling” of new ideas in the field of drug discovery.
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Considering the great impact in costs reduction of CADD at the pharmaceutical industry,
the utilisation of in silico methods is becoming a reality also at the academia. In fact, many
of the available applications in current use are either open-source software or distri-
buted free-of-charge under a general public license (GPL). Proprietary CADD software is
often provided for free or negotiated at reduced costs to the academia. The range of ap-
plications currently accessible to academic researchers is immense [130] and their inte-
gration in drug discovery programs can foster the involvement of Universities. Moreover,
with the ever-increasing computer power and new calculation methods, computational
screening is becoming more accessible and is much cheaper than HTS. Academic re-
searchers can design and apply their own algorithms and applications to guide screening
campaigns, even if they can only afford the experimental testing of a few tens of com-

pounds.

In recent years, a dramatic increase in the availability of large-scale data for drug discov-
ery has been witnessed [131]. Indeed, the number and dimension of screening and bioac-
tivity data repositories has expanded significantly. The ChEMBL database [132], a tre-
mendous resource that has been recently transferred from the private sector into the
public domain, now supplements the existing databases, such as the BindingDB [133],
BindingMoad [134] or PDSP Ki [135]. Chemical structure repositories, such as PubChem
[136], ZINC [137] and GDB-13 [138], provide access to tens of millions of compounds for
applications such as virtual screening [139]. It is also worth mentioning other public do-
main databases containing useful data for drug discovery. DrugBank [140] and DailyMed
[141] provide information regarding approved drugs, ClinicalTrials.gov gathers data on
clinical-stage experimental drugs, and DSTTox [142] and TOXNET [143] collect toxicity
information from a broad range of public sources. In the field of toxicity, a number of
public screening initiatives are also in progress, such as the EPA ToxCast [144-146] and
Tox21 [147] projects. Even though these efforts are mainly focused on environmental

chemicals, the resulting knowledge may still be of relevance in a drug-discovery context.

Furthermore, a meeting of different commercial and publicly accessible chemical infor-
matics, databases and social networking tools is underway and promises to change the
way research collaborations are started, preserved and extended [148]. A community-
based platform that combines conventional drug discovery informatics with Web2.0 fea-
tures in secure groups is believed to be the solution to allow for profitful, immediate col-
laborations involving sensitive drug discovery data and intellectual property. Assorted
chemical and biological data from low-throughput or high-throughput experiments are
stored, mined and then selectively shared either just securely between elected colleagues

or openly over the Internet [149,150].
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The increasing availability of public data, CADD resources and software, and computer
power coincides with initiatives in the pharmaceutical industry aimed at reducing costs,
for example via increased outsourcing and engaging in precompetitive activities. In prin-
ciple, one can expect that the coupling of new theoretical approaches developed at the
academia with experimental screening techniques exploited by industry will improve the
productivity of drug discovery [151]. The establishment of cooperative efforts between
the two settings is highly desirable, as it can decrease the high-risk/high-reward ratio of
a drug discovery project, which is more critical in the industrial realm for the approval

and marketability of new drug candidates.

3. Amyloid as a target for drug discovery

The term “amyloid”, which means ‘starch-like’ and derives from the Greek amylon (for
starch), was originally coined by Rudolf Virchow in 1854 [152]. The name resulted from
a mistaken association of the amyloid substance with carbohydrates, motivated by their
common iodine-staining properties. Amyloid actually refers to insoluble proteinaceous
aggregates that exert cytotoxic activity and destroy the tissue architecture in certain tar-
get organs. Amyloid formation mostly results from abnormalities of the process of pro-
tein folding and unfolding, causing proteins to lose their native structure and self-
assemble into insoluble, extracellular fibrils. The number of diseases caused by such ab-
normalities, known as the amyloidoses, is growing. Important examples of such patholo-
gies are Alzheimer’s, Parkinson’s and Huntington’s diseases, type 2 diabetes, familial
amyloid polyneuropathy (FAP) and cardiomiopathy (FAC), infectious spongiform en-
cephalopathies, such as Creutzfeldt-Jacob’s disease, and the so-called ‘aging diseases’ like

senile systemic amyloidosis (SSA).

The pathogenesis of the amyloidoses requires contribution of multiple factors, of which
only a few are well established: the conformational modification of the amyloidogenic
protein, post-translational modifications and co-deposition of glycosaminoglicans and
serum amyloid P. Yet, in parallel with the exponential growth of biochemical data regard-
ing the key events of the fibrillogenic process, several reports have shown that small
molecules, through the interaction with either amyloidogenic proteins or with the com-
mon constituents, can modify the kinetics of formation of amyloid fibrils or facilitate
amyloid reabsorption. To date, however, only one inhibitor of amyloid formation is
known to have reached the drug market: an “only-child” shading light over a perhaps

overlooked niche for potential new therapies.
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3.1. Amyloid and amyloid diseases

Amyloid disorders are those resulting from the formation and deposition of amyloids.
They are usually divided into two categories, depending on the distribution of the amy-
loid deposits. In localized amyloidosis, amyloid is restricted to a single tissue or organ,
usually in the surroundings of the cells responsible for the synthesis of the precursor
protein. In systemic amyloidosis, the amyloidogenic proteins are usually derived from
circulating precursors that are either in excess, abnormal or both. Table 1.1 provides a

brief summary of the most well-known amyloid diseases.

Table 1.1. Summary of known amyloidosis in humans.

Ar.nylmd pro- [P e Amyloidosis Syndrome and/or involved tis-
tein sues
AB AP protein precursor L Alzheimer’s disease
(ABPP) Aging and Familial (prototype Dutch)

APrpse Prion protein IL, Spongiform encephalopathies
AcCal (Pro)calcitonin L C-cell thyroid hormones

. . Islets of Langerhans
AIAPP Islet amyloid polypeptide L Insulinomas
AANF Atrial natriuretic factor L Cardiac atria amyloidosis
APro Prolactin IL, A p_1tu1tary

Prolactinomas

Alns Insulin L latrogenic diabetes mellitus
ALac Lactoferrin IL, Cornea amyloidosis
AMed Lactadherin L Senile aortic amyloidosis
AKer Kearto-epithelin IL, Cornea
AL Immunoglobulin light chain S, L Primary Myeloma-associated
AH lcr}?;ﬁ:m()gbbulm ey S, L Primary Myeloma-associated
ATTR Transthyretin S Familial, Senile, Systemic
AA (Apo) serum AA S Secondary, reactive
AP2M B2-microglobulin S Chronic haemodialysis
AApoAl Apolipoprotein Al S Familial
AApoAll Apolipoprotein Al S Familial
AGel Gelsolin S Familial (prototype Finnish)
ALys Lysozyme S Familial
AFib Fibrinogen a-chain S Familial
ACys Cystatin C S Familial (prototype Iceland)
ABri BRI gene product S Familial dementia, British

L - Localised; S - Systemic. Adapted from reference [153].

3.1.1. Localized and systemic amyloidoses

The most well-known example of localised amyloidosis is that of Alzheimer’s disease
(AD), affecting more than 5% of the population over the age of 65 years and approxi-
mately 25 million people worldwide [154,155]. In AD, the major component of the amy-
loid deposits is a peptide, the amyloid B-peptide (Ap). In neuritic plaques of AD patients,
this peptide is 42 to 43 amino acid residues-long, while in vascular amyloid it is 39 to 40
residues long [156,157]. The AP peptide is derived from the larger precursor protein
(APP) as a normal cleavage product [158,159].
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Several other common types of localized amyloidosis have been described, including
amyloidosis restricted to certain tumours of endocrine glands. In medullar carcinoma of
the thyroid, amyloid fibrils are composed of procalcitonin [160,161], whereas in patients
with islet cell tumours associated with diabetes mellitus type 2, the amyloid subunit de-
posited is termed islet amyloid polypeptide or amylin [162,163]. Transmissible spongi-
form encephalopathies in human (or prion diseases) are characterised by neuronal
spongiform degeneration, astrocytic gliosis and parenchymal amyloid deposition in the

form of amyloid plaques [155].

Systemic amyloidosis can be further subdivided into non-hereditary and hereditary amy-
loidosis. In humans, the most frequent forms of non-hereditary systemic amyloidosis are
amyloid A associate amyloidosis (AA) and light and heavy immunoglobulin chains asso-
ciated amyloidosis (AL and AH, respectively). On the other hand, the most common forms
of hereditary amyloidosis are related to six different proteins: transthyretin, apolipopro-

tein Al, apolipoprotein Al], lysozyme, gelsolin, cystatin C and fibrinogen.

3.1.2. Transthyretin-associated amyloidoses

The protein transthyretin is associated with the most prevalent type of hereditary sys-
temic amyloidoses. The pathologic conditions include familial amyloid polyneuropathy
(FAP) and familial amyloid cardiomiopathy (FAC). A non-hereditary condition is also re-
lated to TTR: senile systemic amyloidosis (SSA), affecting about 25% of people over 80
years of age. In SSA, the deposits occur mainly in the heart and are composed of wild-
type TTR. FAP is related to a peculiar form of hereditary autosomal dominant polyneuro-
pathy. Corino de Andrade first described the disease in 1952 [164] in the Portuguese
population, mainly from the northern part of the country. The age of onset of the disease
is usually between 20 and 35 years of age, characterised by systemic deposition of amy-
loid and with a special involvement of the peripheral nerves. Progression to death is fast,

usually within 10 to 15 years.

Clinically, FAP is characterised by early impairment of temperature and pain sensation in
the feet, and autonomic dysfunction leading to paralysis, malabsorption and emaciation.
Painless injury to the feet complicated by ulcers, cellulitis, ostemyelitis and Charcots
joints may also occur [165]. Motor involvement occurs with disease development, caus-
ing wasting and weakness, accompanied by a progressive loss of reflexes. Upper limbs
involvement may occur years after lower limbs manifestations, progressing in a similar
way. The amyloid deposits can occur extracellularly in any part of the peripheral nervous
system, including the nerve trunks, plexus and sensory and autonomic ganglia. In the

peripheral nerves, they affect the epineurium, perineurium and especially the endoneu-
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rium. In the endoneurium, deposits are usually closely opposed to Schwann cells or col-

lagen fibrils.

The heart is another organ frequently involved in FAP. Clinically, the cardiomiopathy
may express as an arrhythmia, heart block or hear failure. Electrocardiographic abnor-
malities with Q-wave and T-wave repolarisation changes and various conduction dis-
turbances are some of the clinical features. Echocardiography shows a restrictive car-
diomiopathy with thickened interventricular septum and ventricular walls [166], al-
though changes consistent with a hypertrophic cardiomiopathy have also been described
[167]. In FAP, the amyloid deposits are widely distributed and other clinical features ad-
ditional to the main ones already described can occur: nephropathy and more rarely

pulmonary [168] and bone involvement [169].

3.1.3. Amyloid formation pathway: the hypotheses

While the involvement of the amyloid substance with several impairing diseases is more
or less consensual, different theories have been proposed to explain the formation of
amyloid. In fact, the three main hypotheses are, in many respects, complementary in na-

ture:
* The conformational hypothesis

Soluble globular proteins undergo destabilisation and conformational changes into
partially unfolded states before self-assembling into amyloid fibrils. In particular,
many mutations seem to favour protein destabilization. Unlike globular proteins,
however, amyloidogenic peptides like the AP peptide are mostly composed of ran-
dom-coiled structure in their native states. Still, these peptides can adopt partially
structured conformations that are stabilised by oligomerization. Walsh et al. wit-
nessed a transient increase in a-helix during the conversion of an extensively un-

folded AP to amyloid fibrils enriched in 3-sheet [170].
* The proteolytic hypothesis

Proteolysis has been deemed as a critical process in most forms of amyloidosis. In-
deed, amyloidogenic proteins are often released from their precursors via proteolysis.
AP, for instance, results from cleavage of the amyloid precursor protein (APP) by a
combination of §- and y-secretases [171,172]. Moreover, TTR peptides, besides the in-
tact protein, have been detected in amyloid fibrils of SSA and FAP patients, leading to
the hypothesis that proteolysis could underlie the formation of fibrils by releasing

amyloidogenic fragments [173]. Both experimental and computational works have
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been conducted to assess the amyloidogenic propensities of different TTR fragments
[174-176]. However, earlier studies showed that no fragments are found in samples
of Val30Met TTR fibrils, and the collected evidence seems to indicate that the release
of peptides is not a requirement for amyloid formation [177,178]. Therefore, the role

of proteolysis in TTR amyloid is still uncertain.
* Nucleation and seeding

A number of studies have shown that amyloid formation is often a nucleation-
dependent process, whereby ordered nuclei are formed after a lag phase [179]. Fast
growth of the fibril takes place after nucleation and is followed by an accumulation
time course (sigmoidal in shape) [180]. According to this hypothesis, fibril growth re-
quires the formation of an oligomeric nucleus that is the highest energy species along
the pathway, and the rate of fibril formation is increased by addition of preformed ag-
gregates (or seeds), which effectively circumvent the nucleation step. TTR amyloid has
long been believed to follow a nucleation-dependent polymerization. However, this
view is not entirely consensual. Hurshman et al. demonstrated that, under denaturat-
ing conditions, the aggregation of TTR monomers is not accelerated by seeding and

suggested a downhill polymerisation process [181].

3.1.4. Amyloid fibrils: an unique superstructure

The 3D structure of amyloid fibbers has been extensively investigated using various bio-
physical methods, such as X-ray diffraction [182-184], solid-state NMR [185-187], elec-
tron microscopy [188], Fourier-transformed infrared spectroscopy [189] and atomic
force microscopy [190,191]. Regardless of their protein precursor, these polymers share
in common a remarkable number of features: they are built of uniform, non-branched
fibers with a diameter of ca. 100 A and variable lengths. The molecular structure is
marked by an extended  conformation of polypeptide chains stacked through hydrogen
bonds and arranged in sheets that run parallel to the main axis of the fiber (see Figure
1.9). The p-strands are disposed perpendicularly to the main axis and are separated by

distances of 4.7 A; the distance between the sheets varies from approximately 10 to 15 A.

Before growing into mature extended fibrils, the amyloidogenic proteins self assemble
into small B-rich oligomers, presenting a globular shape and the tinctorial properties of
amyloid fibrils. Typically, these oligomers are soluble in physiological buffers and play a
key role in the cytotoxic mechanisms of disease-associated amyloidogenic proteins

[192,193].
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The highly ordered supersecondary structure of protofibrils and fibrils is specifically
recognized by dyes like thioflavin and Congo red, which are widely utilised in the diagno-
sis of amyloid disease and important in the study of ligand binding to amyloid fibrils

[194-196].
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Figure 1.9. An illustration of different studies conducted to shade light on the pos-

sible structure of amyloid protofibrils. (A) Molecular model of the generic amyloid fibril
derived by synchroton X-ray diffraction, showing the common core protofilament structure
[197]. (B) Models of Ap protofilaments associations via different steric-zipper interfaces.
The interface between two p-strands within the crystal structures of (1) AB1s-21 Form II or
(I1) ApBz27-32 was used to model interactions between two protofilaments [198]. (C) A theo-
retical model of a transthyretin protofilament obtained by molecular docking and driven by

experimental data [74].

3.2. Transthyretin (TTR): a model target in amyloid

Transthyretin (TTR) was first discovered in 1942 during an electrophoresis experiment
with cerebrospinal fluid (CSF) [199] and shortly after detected in serum [200]. It was
first called component X and later named “prealbumin”, a term based on its characteristic
migratory electrophoresis pattern in front of albumin. TTR is an evolutionarily conserved
homotetrameric protein synthesized in the liver and the choroid plexus of the brain,
which can be found in the blood plasma and cerebral spinal fluid. In 1958, TTR was
shown to be a carrier of the thyroid hormone thyroxine (T4) [201] and, ten years later, to

bind retinol-binding protein (RBP) [202]. In 1982, it became clear that TTR was not re-
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lated to albumin, and the current name was adopted by the International Union of Bio-

chemists to avoid misunderstandings [203].

TTR is also implicated in the deposition of fibrils in peripheral nerves and heart tissue in
FAP and FAC, respectively. This process involves an initial step whereby the native TTR
tetramer dissociates to monomers with altered tertiary structure, followed by the self-
assembly of these monomers to form cytotoxic oligomers [204,205]. The initial step was
shown to be rate limiting for amyloid formation and can be modulated by the binding of
thyroxine-like compounds to the two identical thyroxine-binding sites of tetrameric TTR
[181,206-208]. Even today, TTR stands as one of the very few targets available to the
therapeutic targeting of amyloid fibril formation. Our interest in human TTR as a model
target is linked not only to its involvement in disease [74,204,209], but also to the many

peculiarities that render it a particularly challenging target [210].

In the late 1990s, it was shown that ligand binding to TTR results in stabilization of the
tetrameric fold and inhibition of amyloid formation in vitro [211-213]. As will be de-
scribed in a subsection below, mostly over the last decade, tens of analogues and deriva-
tives have been discovered and designed, showing potential as drug candidates
[206,214-222]. Although several stabiliser molecules discovered to date have shown
efficacy at inhibiting fibrilization in vitro, the optimal balance between affinity and selec-
tivity for TTR in the blood plasma is still a goal to achieve. Furthermore, the typical TTR
stabiliser (comprised of two aromatic rings often substituted with halogen atoms) is as-
sociated with undesirable properties, such as poor solubility and low polar surface areas,

which are in turn linked with important adverse-effects and accumulation in the body.

3.2.1. Gene Structure and Expression

Human TTR is encoded by a single-copy gene, which has been assigned to chromosome
region 18q11.2-q12.1 by Sparkes et al. [223]. The gene spans approximately 7.0 kilobase
pairs with four exons (each with approximately 200 bases), three introns, a TATA box-
like sequence at nt -24-30 and a CAAT box-like sequence at -95-102 [224,225]. Given
the association of FAP with a mutation in TTR, it can be assumed that the gene for this
pathology is also mapped to 18q11.2-q12.1. The genomic structures of TTR have also
been reported in the rat [226] and the mouse [227]. Investigations on transgenic mice
identified two regions that are sufficient for directing TTR gene expression in the liver
[228], but little is known about the regulatory mechanisms for the abundant expression

in the choroid plexus of several species.
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Complementary DNA (cDNA) coding for TTR of more than 10 different species has cur-
rently been cloned [229]. It generally consists of a 5’ untranslated region (14-30 nucleo-
tides), a coding region of 127-130 amino acids (varying across different species), and a 3’
untranslated region (115-181 nucleotides) preceding the poly(A) tail. Changes intro-
duced in the splice sites of intron 1 resulted in the expression of TTR with a shorter and
more hydrophilic N-terminal amino acid sequence [230]. While the direct impact of these
changes on TTR function is elusive, binding studies performed with plasma from birds
and mammals revealed that TTR preferentially binds T3 in birds and T4 in mammals.
Oddly enough, the amino acids that are involved in the interaction of TTR with thyroid
hormones are entirely conserved across vertebrate TTRs [231]. Chang et al. proposed
that the change in the N-terminal could be responsible for the change in hormone affinity
[232]. The shorter, more hydrophilic N-termini correlates with preferential binding to Ta,
whereas the longer, more hydrophobic N-termini with preferential binding to Ts
[232,233]. More recently, this hypothesis was quantitatively confirmed through further
binding affinity studies, and the influence of the N-terminal region on the binding of T3

and T4 to TTR became more evident [234].

Figure 1.10 shows a multiple alignment of the amino acid sequence from representative
species, revealing the very high degree of conservation that has occurred in TTR between
eutherians, marsupials, birds and lizards (65-85%). The sequence conservation between
TTR from the latter species and amphibian and fish is significantly lower (47-48% iden-
tity). Nonetheless, comparison of the protein sequences considering conservative amino
acid substitutions discloses higher analogy between sequences, implying great conserva-

tion of TTR properties at the chemical level.

Even though TTR is encoded by a single gene yielding a single protein product, great se-
quence heterogeneity is found as result of mutations in single residues at various posi-
tions of the wild-type sequence. The mutations may be non-pathogenic or cause severe
pathologies such as FAP. Despite the even distribution of pathogenic mutations along the
protein sequence, multiple mutation hotspots focused on localised regions of the protein
structure have been suggested [229]. Strikingly, some of the mutations that cause disease
in humans are a normal feature of the protein in other species. For example, the genetic
mutations that lead to the Val30Leu and Ile84Ser TTR variants in humans are normally
present in sea bream (see Figure 1.10). Comparison of human TTR variants linked to dis-
ease with TTR from other species reveals that 15 of the 36 substituted amino acids in
human TTR have been 100% conserved in TTR of all other species, which may imply that
these particular residues are of structural or functional relevance and there has been
strong evolutionary pressure to conserve them [235]. The remaining 21 amino acids ex-

hibit low conservation across species.
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Figure 1.10. Multiple sequence alignment carried out using Clustal X [236] of

transthyretin with the prepeptide from representative species of all vertebrates. Ad-
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apted from reference [235]. Human [224], pig (Sus scrofa) [237], rat (Rattus norvegicus)
[238], dunnart (Sminthopsis macroura) [224], wallaby (Macropus eugenii) [239], opossum
(Monodelphis domestica) [224], chicken (Gallus gallus) [240], skink (Tiliqua rugosa) [241],
frog (Rana catesbeiana) [242], and sea bream (Sparus aurata) [243]. Coloured blocks refer
to the physiochemical properties of the amino acids according to the key. The underlined
residues correspond to the region modelled by homology (and using rotamer-based meth-
ods) in reference [235]. Residues marked with an asterisk are identical in all species ana-

lysed.

Gene expression of TTR is significantly restricted to the liver and the choroid plexus. TTR
synthesised in the liver is secreted into the blood, whereas that from the choroid plexus
epithelium is secreted into the brain cerebrospinal fluid, where it is the main carrier of
thyroid hormones [244]. TTR gene expression has also been found in the eye of cattle
and sheep [245-247]. Small amounts of mRNA are expressed in the pancreas of rat and
humans [248]. In vitro cultures of pigment epithelium of the rat retina show production
and secretion of TTR into the interphotoreceptor space of the retina [249]. Presence of
TTR in the visceral yolk sac during fetal rat development [250], in the developing rat eye
[251], and in the developing chicken heart [252] have also been reported. There have
also been cases where no expression was detected in the choroid plexus and TTR expres-
sion occurs exclusively in the liver. These include premetamorphic tadpoles of the frog
[253] and juvenile sea bream [243]. The significant expression of TTR in the intestine
and the heart of adult sea bream raises questions about the physiological function of the
protein at these sites. Without any doubt, however, the diverse location of TTR gene ex-

pression provides evidence of evolutionary deviations and adaptations in TTR function.

3.2.2. Molecular Structure

The molecular structure of transthyretin was first described by Blake et al. [254] and fur-
ther refined at 1.8 A resolution [255]. TTR is a multimeric protein composed of four iden-
tical 127-residues monomers and functioning as a 55-kDa homotetrameric unit. Each
subunit is characterised by an extensive f-structure composed of eight strands, arranged
into two four-stranded sheets (D-A-G-H and C-B-E-F), and one short a-helix between
strands E and G (Figure 1.11). The assembly of the two -sheets largely determines TTR’s

tertiary structure. Critical contributions to the tertiary structure are made by:
¢ acluster of seven aromatic residues;

* three tyrosines and one aspartic acid involved in side-chain-main-chain interactions;

* one histidine (buried in TTR’s dimer) integrating an internal network of water mol-

ecules.
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Figure 1.11. Molecular structure of one TTR subunit. The coordinates were retrieved
from the Protein Data Bank (PDB entry 1tta), the 3D ribbon representation was produced
using VMD and the 2D topology diagram was generated using HERA/PDBsum [256,257].

Quaternary interactions take place at two sets of interfaces proximally arranged around
two of the three molecular 2-fold axes in the tetramer. The exclusive monomer-monomer
interface encompassed by the F, F’, H and H’ strands is mainly orchestrated by hydrogen
bond interactions in an antiparallel arrangement of the f-strands that extend the two
four-stranded sheets in the monomers to eight-stranded sheets in the dimer. The two
dimers then assemble by hydrophilic and hydrophobic interactions between the AB and

the GH loops at interfaces that entail all four monomers (see Figure 1.12A).

The native tetramer of TTR features two funnel-shaped binding sites deeply buried in a
narrow cylindrical channel situated at the interface of two dimers. The channel has a di-
ameter of approximately 8 A, and the proximity of paired side-chains of Leu-110, Ser-115
and Ser-117 causes a strong constriction near the centre. The structurally-equivalent
binding sites display negative cooperativity for the binding of thyroxine [258] and hold
characteristics typically associated to protein-protein interfaces [259]: featureless and
flat [260], and mostly comprised of apolar residues. The residues involved in T4 binding
seem to have been conserved between the human and the chicken TTR [240]. The

chemistry of the binding sites is characterised by three linearly-arranged elements:
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* ahydrophilic patch formed by the hydroxyl side-chains of Ser-117 and Thr-119;

* a hydrophobic patch formed by the methyl groups of the Leu-17, Thr-106, Ala-108,
Leu-110, Thr-119, and Val-121 pairs;

* agroup of charged residues including the paired side-chains of Lys-15 and Glu-54.

The characteristics of TTR binding sites and the nature of cooperative effects in ligand
binding will be further discussed in a subsection below and in Chapters 2 and 3 of this

thesis.
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Figure 1.12. Molecular structure of human transthyretin (TTR) bound to its endogen-
ous ligand thyroxine (T4). (A) A 3D ribbon representation of the X-ray structure (PDB
code 2rox), with T4 positioned within the two symmetrical binding sites created at the

dimer-dimer interface (vertical dashed line). (B) Expanded views of the binding sites from
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two different perspectives. In the central panels, the result of a multiple structural
alignment of 30 TTR complexes is displayed as licorice drawings for the side chains of one
monomer. At the edge panels, the molecular surface of binding site residues is shown. (C) A
2D topology diagram of the binding sites’ features. (D) An alternative 2D diagram of the

interactions between TTR and T4 generated using PoseView.

Under physiological conditions, TTR can also be found in complex with the retinol-
binding protein (RBP), a 21 kDa protein composed of 182 residues that transports all-
trans-retinol [261,262]. In theory, each TTR tetramer presents four anchor points for the
binding of RBP molecules, one per monomer (see Figure 1.13). However, like with thyrox-
ine [258], the association between TTR and RBP displays negative cooperativity, i.e. the
binding of a first RBP molecule to TTR alters the affinity of binding of a second molecule
and so forth. In practice, crystallographic studies have established the stoichiometry of
the TTR-RBP complex as two RBP molecules per TTR tetramer [263-265]. The concen-
tration of RBP in the plasma is limiting, and the complex isolated from serum is com-

posed of TTR and RBP in a 1 to 1 stoichiometry.

Figure 1.13. Molecular structure of TTR bound to two retinol-binding protein (RBP)
molecules in a 3D ribbon representation. Retinol is shown in a Corey-Pauling-Koltun
(CPK) representation; the presence of retinol bound to RBP is essential for the formation of
a stable TTR-RBP complex. The coordinates were retrieved from the Protein Data Bank

(PDB entry 1gab) and the image was generated with VMD.

RBP binds at a 2-fold axis of symmetry in the TTR tetramer, and therefore the recognition
site itself has 2-fold symmetry: four TTR amino acids (Arg-21, Val-20, Leu-82, and Ile-84)
are contributed by two monomers. Residues Trp-67, Phe-96, and Leu-63 and Leu-97 of
RBP are flanked by the symmetry-related side chains of TTR. The structure also discloses
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an interaction of the carboxy terminus of RBP at the protein-protein recognition inter-

face.

3.2.3. Function

The name TransThyRetin describes the most prominent physiological “roles” of TTR, i.e,,
the transport of thyroxine [266] and retinol-binding protein [267]. The implication of
such name was that the physiological roles of TTR were sufficiently well understood to
replace the prior descriptive term of “thyroxine binding prealbumin” by the more func-
tional nomenclature. Currently, there seems to be no room for doubt that the assumption
that the biology of TTR was fully known was slightly precipitated. As pointed out by Bux-
baum and Reixach, “semantic clarity leading to undeserved observational certainty is a

constant risk when trying to rationalize scientific nomenclature” [210].

TTR is suspected to result from a duplication event in a gene of the vertebrate lineage
encoding 5-hydroxyisourate hydrolase (HIUase), a member of a wide family of enzymes
involved in purine metabolism [268]. Given their high sequence similarity to TTR,
HIUases were initially believed to have transport functions and became known as TTR-
like proteins (TLPs) or TTR-like proteins (TRPs) [269,270]. Only more recently it was
recognized that both prokaryotic and eukaryotic members of this family are involved in
the degradation of uric acid to (S)-allantoin [270]. Both the sequence and the structure of
TTR and TRPs have been highly conserved throughout evolution, suggesting important
biological roles. However, TTR knockout mice have normal fetal development, are pheno-
typically normal, viable and fertile, even though they have no detectable retinol in plasma
and a decreased level of thyroid hormone [271]. These contradictory notions corroborate

the fact that the function of TTR is still poorly understood.

Until recently, TTR had established clinical significance in two settings. TTR serum con-
centration has been used as a marker of nutritional and inflammatory status in several
conditions [272,273]. Under normal circumstances, TTR is present in human plasma at a
concentration of 0.25 mg.mL-1 [274,275] and with a fast turnover rate of 2 days half-life
[276]. More relevantly, as an etiologic agent, TTR is amongst ca. 30 proteins linked to the
important amyloid diseases. Besides its activities as a carrier protein, TTR has also been
shown to hold protease activity [277]. The “puzzling” nature of this proteolytic role
stems not only from its apparent disconnection to TTR transport roles but also from the

lack of structural protease determinants in the protein [278].

Since TTR is also synthesized in the brain (by the choroid plexus), it is plausible to deem

a function in the biology of the nervous system. Indeed, using TTR gene knockout mice it
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was possible to establish implications in sensorimotor performance [279], depressive-
like behaviour [280], neuropeptide maturation [281], nerve regeneration [279] and spa-
tial reference memory [282]. Interestingly, TTR has also been shown to be able to se-
quester amyloid S protein [283,284] and to play a protective role in transgenic murine
models of Alzheimer’s disease (AD) [285,286]. In fact, the lack of TTR seems to yield a
discrete behavioural phenotype, even in the absence of the pathologic A gene [280].
However, evidence of these observations in humans is still missing. While the exact
mechanisms by which TTR operates in the brain remain elusive, it is clear that the func-

tion of this protein extends beyond its systemic role as a carrier of T4 and retinol.

TTR’s ability to bind several families of compounds has also been hypothesized as a way
of acting as an endogenous detoxifier of molecules with potential pathologic effects. This
has also been proposed for albumin, the most abundant protein in the plasma (35-50
mg.mL1), which presents four hydrophobic binding regions that are able to bind ions,
fatty acids, drugs, hormones, and prevent the formation of free radicals [287]. The many
similarities between serum albumin and TTR - such as their molecular weight, low iso-
electric point or ability to bind hydrophobic compounds - paired with their complemen-
tary secondary structures - albumin being mostly a-helical and TTR mostly p-sheet -
makes it reasonable to advocate that these proteins may share responsibilities like the
removal of potentially toxic dietary substances or by-products of metabolism [210]. Re-
cently, Liz et al. provided an exceptional review focused on the association of TTR with
various types of ligands and substrates, which also attempts to establish links to putative

biological roles [288].

3.2.4. Variants and involvement in disease

Several studies have shown that amyloidogenic mutations destabilise the native struc-
ture of TTR and thus accelerate a cascade of events that involves tetramer dissociation
followed by partial unfolding of the released monomers into an aggregation-prone con-
formation by which oligomers, soluble aggregates, insoluble amorphous aggregates, and
amyloid fibrils are formed in a downhill polymerization process. Holding highly con-
served sequence and structure across human and non-human species, TTR alone is asso-
ciated with more than 90 amyloidogenic mutations, which are all implicated in the depo-
sition of fibrils [205]. Of these, V30M, L58H, T60A, 184S and V122I mutations are respon-
sible for the majority of familial amyloidotic polyneuropathy (FAP) and familial amyloi-
dotic cardiomiopathy (FAC) cases [289].

Chapter 1 43



10 20

GPTGTGESKCPLMVEKVLDAVRGSPA
R P E I N S
G
30 40 50
INVAVHVFRKAADDT TWEPFASGKTS
M M ITNP A G S D R AR
A L D S A 4 ol
L v T Vv
G E
60 70
ESGELHGLTTEEEFVEGIYKVEIDT
GPEGPR HKAK L LEHNA v
K R R S
80 90 100
KSYWKALGISPFHEHAEVVFTAND S
F S Q S G
p 4 N K S
110 120
GPRRYTIAALLSPYSYSTTAVVTNEP
vV 8 MI C S8 s I
M H -
A
127
K E

Figure 1.14. Human TTR amino acid sequence revealing the position of several amy-
loidogenic mutations (in red). Citations for each mutation can be found in the online

database maintained by C. E. Costello at the Boston University School of Medicine.

(http://www.bumc.bu.edu/msr/ttr-database/, accessed 12/09/2011)

Val30Met TTR (or V30M - where residue Valine in position 30 is mutated to a Methio-
nine) was identified as a common underlying genetic variant of FAP in 1984 [290]. A
large number of mutations have been detected since then, many of them associated with
FAP, which are evenly distributed over the TTR sequence [291-294] (see Figure 1.14).
V30M-TTR has been found in many kindreds around the world and is known to be the
most common amongst the amyloidogenic TTR mutations [293-295]. In 1994, 1233 pa-
tients had received a FAP diagnosis at Centro de Estudos de Paramiloidose in Porto and
more than 1500 patients were registered in Portugal almost ten years later (M. ]. M.
Saraiva, PhD, oral communication, September 2003). An epidemiological survey con-
ducted by Holmgren et al. in Northern Sweden estimated that the number of ATTR V30M
gene carriers in a total population of 500,000 was approximately 7500 [296]. In Japan,
more than 394 FAP patients had been found by 2005. These were geographically scat-

tered across the country and were genetically independent [295].
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Figure 1.15. Distribution of FAP around the world. Locations of foci of patients with FAP
amyloidogenic V30M-TTR are presented. The size of the circles is related to the number of

patients at each location (extracted from reference [295]).

The question of whether there is a common origin in the foci for a mutant allele is still a
matter of debate. Portugal, Sweden and Japan are geographically distant and no consan-
guineous links between foci have been detected. However, inspired by renowned histori-
cal relations between Europe, Japan, North and South America, and Africa, Continho hy-
pothesized that a mutant allele in the Portuguese kindred could be the single origin of the
mutation for FAP foci around the world [297]. This hypothesis has not been scientifically
tested, though. Ohmori et al. compared haplotypes in multiple foci of FAP patients and
found out that a common founder could be conceivable for Japanese and Portuguese pa-
tients, as well as for Portuguese and Spanish patients, but not for Swedish and other pa-

tients [298]. Additional investigation of genotypes and phenotypes are still required.

Besides V30M-TTR, several other TTR variants are implicated in different forms of amy-
loidosis characterised by diverse symptoms of variable severity and age of onset. The
L55P-TTR variant, for example, albeit rare, is related with an extremely aggressive form
of TTR amyloidosis, involving the heart, peripheral nerves and other organs, with pa-
tients dying at earlier ages and 5 to 10 after diagnosis [299]. The V122I-TTR variant is
the most common amyloidogenic mutation worldwide. It is responsible for the onset of
FAC, predominantly in individuals of African descent. It is estimated that approximately
4% of African Americans (1.3 million people) are heterozygous for the V1221 allele [300].
FAC does not result from loss of TTR function (due to aggregation); it seems to be caused
by tissue-selective TTR deposition in the heart [300,301]. The age of onset of FAC is simi-
lar to that of senile systemic amyloidosis (SSA) - typically >60 years of age - but FAC pa-
tients are considerably more prone to suffer cardiac failure (especially V1221 homozy-

gotes) [300,302,303].
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A few TTR variants have been shown to play a protective role against amyloid fibril for-
mation, when coupled with amyloidogenic mutations (compound heterozygotes), by
interallelic transsupression. Mutations like R104H and T119M stabilise the TTR tetramer
by increasing the energy barrier for dissociation. In the T119M-TTR variant, the stabiliza-
tion caused by the mutation is so high that dissociation is almost completely prevented

[304].

3.2.5. Amyloidogenic determinants and intermediates

Amongst the intrinsic structural changes necessary for amyloid formation by TTR upon
tetramer dissociation, the displacement of the D-strand-loop-C-strand from its native
position in the TTR monomer is believed to be essential to expose a new interface com-
prised by strands A and B, in turn required for monomer assembly into aggregates
[182,305-307]. Site-directed spin labelling combined with electron paramagnetic reso-
nance (EPR) [308] and hydrogen/deuterium (H/D) exchange studies by NMR spectros-
copy have supported this hypothesis [309] and a computational model of an amyloid
protofilament of TTR was proposed by Correia et al. [74]. In this work, proper subunit-
subunit docking was possible only after full displacement of the D-strand-loop-C-strand

segment from the -sandwich core of the TTR monomer (see Figure 1.11).

Further computational studies by Rodrigues et al. using high-temperature MD simula-
tions have suggested that disruption and displacement of f3-strand D, followed by separa-
tion of pB-strand C from the core of the TTR monomer, exposes key residues and a hydro-
phobic interface - embodied by p-strands A and B - that may promote monomer-
monomer interactions [209]. This event occurs earlier in simulations of the L55P-TTR
variant and is only witnessed in simulations WT-TTR after extensive unfolding of the en-
tire monomer occurred. These observations are in agreement with the amyloidogenic
propensities of these two TTR variants. The simulations have also evidenced a pro-
nounced unfolding of the a-helical motif of TTR into coils and turns in L55P-TTR, con-
trasting with the unfolding behaviour of WT-TTR. Loss of a-helical content and transi-
tions from a-helix to B-sheet are known to be a determinant of some amyloid diseases,

namely BSE and Creutzfeldt-Jakob [310].

The atomic-scale events observed by Rodrigues et al. provide a (possible) picture of what
the intermediate structures in the unfolding pathways of TTR may look like. Whether
these potentially amyloidogenic species are on- or off-pathway intermediates to fibril
formation is still a matter of debate, but these simulations show that the intermediates

can populate multiple unfolding routes in relatively high amounts [209]. These computa-
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tional insights are useful to the understanding of the molecular mechanisms behind TTR
amyloid and, thus far, could not be offered by any experimental methods. Structural bio-
informatics methodologies have indeed aided efforts taken towards a deeper under-
standing of the determinants of TTR amyloid and amyloid in general. Another remark-
able example has been recently provided by Cendron et al,, where the authors applied a
battery of protein stability prediction algorithms to analyse a diverse set of TTR variants
[311]. Collectively, their results hold up the notion that the high amyloidogenic propen-
sity of pathogenic TTR variants is mostly determined by destabilization of their native

structures, rather than by a higher B-aggregation tendency.

3.2.6. Mechanism of neurotoxicity

The biochemical basis by which amyloidogenic proteins exert neurotoxic effects is still
elusive [312]. It is plausible that neurotoxicity is a common feature to all types of amy-
loid. It even seems possible that the amyloid conformation itself may be the toxic princi-
ple. There is limited evidence implying specific amino-acid sequences for the toxic effects
[193]. In fact, deposition of gelsolin and apolipoprotein Al, which hold little or no amino-
acid sequence similarity to TTR, has been proposed to cause FAP [295]. Thus, toxicity
does not seem to be linked to the presence of specific amino acid sequences, so much as

to specific conformational motifs of structure-rich protein aggregates.

Several studies have been undertaken in order to understand the mechanism of neuro-
toxicity in FAP. Hou et al. presented a model of the mechanism of TTR-induced neurotox-
icity, according to which TTR monomers, low-molecular-mass nuclei, oligomers or
protofibrils are the major toxic species [313] (see Figure 1.16). Their studies show that
these low-molecular-mass diffusible species can bind to lipid membranes. This process
causes disruption of the structure of the lipid rafts, thus inducing alterations in the mem-
brane. This in turn leads to activation and calcium entry through voltage-gated calcium
channels (VGCC). Moreover, TTR may also bind to a receptor for advanced glycation end-
products (RAGE) to affect MAP kinase signalling [314] and induce endoplasmic reticulum
(ER) stress, with release of calcium from intracellular stores [315]. ER stress is poten-
tially cytodestructive, and RAGE receptors regulate cascades that are implicated in mito-
genesis, cellular injury, death, and apoptosis [316]. The larger amyloid deposits are less
toxic than the low-molecular-mass diffusible species but may constitute a local pool of

TTR that may dissociate back into toxic species.
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Figure 1.16. Hypothetical mechanism illustrating how TTR may cause neuronal dys-
function. ROS, reactive oxygen species; V-type, V-type binding domain on RAGE; C-type, C-

type binding domain on RAGE. This figure was extracted from reference [313].

3.2.7. Extrinsic factors in TTR amyloid

The most accepted model for FAP pathogenesis is grounded on the presence of point mu-
tations resulting in instability of the native TTR tetramer, followed by early dissociation
to non-native monomeric species with propensity for self-association [204]. Nonetheless,
this model does not seem to account for a few important aspects surrounding TTR amy-
loid. First and foremost, non-mutated TTR can also form amyloid in vivo, leading to SSA
in elders. Moreover, TTR keeps accumulating into amyloid deposits even upon liver
transplantation [317]. The fact that carriers of the same amyloidogenic TTR variant de-
velop disease symptoms in times varying by decades [318] also remains unexplained.
Even though TTR is mainly produced in liver, deposition of amyloid fibrils typically oc-
curs in a number of different tissues in different patients. With these examples in mind, it
is clear that non-genetic/endogenous factors are required to trigger TTR deposition in a
specific tissue. Besides the conformational modification of the amyloidogenic protein, the
most established factors in the field of amyloid are the co-deposition of glycosaminogli-
cans (GAGs) and of serum amyloid P component (SAP), and post-translational modifica-

tions.

There is evidence that glycosaminoglicans (GAGs) may play a role in TTR deposition.
GAGs represent a diverse group of highly sulfated carbohydrates that controls several
physiological processes [319]. GAGs are normally detected in proteoglycans, attached to

the proteinaceous core. Amongst the most well known GAGs are heparan sulfate (HS),
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dermatan sulfate, keratan sulfate and chondroitin sulfate (CS), whose carbohydrate scaf-
folds vary considerably in extent of sulfation. GAGs are also found attached to amyloid
deposits, including TTR aggregates. In FAP, amyloid deposits often occur in the endoneu-
rium [320], which is rich in extracellular matrix proteins, namely CS proteoglycans [321].
Amyloid deposition is also frequently found in association with HS proteoglycan-rich
basement membranes [322]. In fact, HS can also bind to amyloid and induce fibrillogen-

esis [323], and as been suggested as a therapeutic target in amyloidogenesis [324-326].

Amongst other non-genetic factors, several post-translational modifications may directly
affect protein structure, stability and function. Glycation, in particular, is a common link
between amyloidogenic pathologies, including Alzheimer’s and Parkinson’s diseases and
FAP [324-326]. Methylglyoxal is one of the strongest glycation agents in vivo and it is
produced in all living cells as a non-enzymatic glycolysis by-product [327]. Methylglyoxal
glycation was indeed identified in Alzheimer’s disease [328-330], Parkinson’s disease
[331], dialysis-related amyloidosis [332], prion diseases [333], hemodialysis-related (32
microglobulin amyloidosis [334], and murine ApoAll amyloidosis [335]. Likewise, a re-
port showed that amyloid fibrils extracted from FAP patients are glycated by methylgly-
oxal [336]. Lately, Costa et al. found out that fibrinogen is a specific glycation target with
increased glycation in FAP patients, besides being one of the main TTR interacting pro-
teins in plasma [337]. The authors observed a significant reduction of the chaperone ac-
tivity in vitro upon glycation by methylglyoxal, and concluded that fibrinogen prevents
plasma TTR thermal-induced protein aggregation. A new model for TTR amyloidogenesis
in vivo was thus proposed, wherein increased glycation of fibrinogen reduces its chaper-
one activity, reducing TTR tetramer stability and triggering the pathway to aggregation,

amyloid formation and disease (Figure 1.17).
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Figure 1.17. Schematic representation of the molecular effects of fibrinogen glycation
in vivo. In vitro studies showed that amyloidogenic TTR variants hold higher propensity to
follow an aggregation route towards the formation of amyloid. Considering the findings by
Costa et al. showing that fibrinogen interacts with TTR in the plasma, it was proposed that
fibrinogen chaperone activity decreases TTR’s tendency to form fibrils. This figure was ad-

apted from reference [337].

3.3. Therapeutic strategies in amyloid

In parallel with the exponential growth of biochemical data on key events of the fibrillo-
genic process, several reports have shown that small molecules, through interaction with
either the amyloidogenic proteins or with the common constituents, can modulate the
kinetics of amyloid fibril formation or facilitate amyloid reabsorption. These molecules
can be categorized on the basis of their target and mechanism of action, according to the
following features: (i) compounds that stabilise the amyloidogenic protein precursor; (i)
compounds that halt fibrillogenesis by interaction with partially unfolded intermediates
and/or with low molecular weight oligomers populating the initial stages of fibril forma-
tion; (iii) compounds that act on mature amyloid fibrils and decrease their structural sta-
bility. Besides these three categories, there is a fourth group of compounds that can dis-
place critical co-factors of the amyloid deposits, such as GAGs and SAP, and thus promote

the dissolution of fibrillar aggregates.

Several reviews can be found in the literature describing in great detail both potential
strategies and compounds discovered to inhibit amyloid [338,339]. For the sake of conci-
sion, over the following subsections [ will focus only on the first three mechanisms of

therapeutic action, based on the model for amyloid fibril formation by TTR originally

50 General introduction



proposed by Quintas et al. [204] (see Figure 1.18), and point the reader to references

[340-343] (and references therein) for more information on the fourth kind of strategies.
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Figure 1.18. Model for amyloid fibril formation by TTR under common physiological
conditions. Three main points of therapeutic intervention are highlighted by the icons in

purple and the elliptical insets. This figure was inspired by reference [204].

3.3.1. Stabilization of the native protein

A rule-of-thumb in protein biochemistry is that ligands that bind to a protein in a specific
conformation are able to stabilise that particular conformation. This implies that binders
of native-state proteins have the capacity to prevent (or at least postpone) protein dis-
sociation and/or unfolding, which are triggering events of the fibrillogenic pathway.
Transthyretin is an outstanding illustration of this concept. The observation that thyrox-
ine not only binds but also stabilises the TTR tetramer and inhibits fibril formation [206]
paved the way to the identification of several classes of structurally diverse inhibitors of
fibrillogenesis. A number of examples is given in the next subsection, starting on page 56.
The fact that the binding of thyroid hormones to TTR stabilises the protein against fibril
formation in the brain [206] is a thrilling indication that the inhibition confirmed in vitro

may also be valuable in vivo.

As will be explained in the last section of this chapter, this therapeutic strategy was fol-
lowed throughout my PhD project, while seeking to identify novel and safe amyloid in-
hibitors holding high selectivity for TTR in the human plasma and adequate (drug-like)

properties for this target compartment. More details about the techniques for studying
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the binding of small molecules to TTR and for evaluating its inhibitory effect of fibril for-

mation will be provided in subsequent sections and chapters of this thesis.

3.3.2. Neutralization of intermediate species

Compounds that stabilise a certain precursor protein are unlikely to produce an anti-
amyloid effect in other amyloidogenic proteins. Conversely, given the common structural
link that unites amyloid aggregates, compounds that neutralize or inhibit aggregation
into cytotoxic intermediates are most likely to exert similar anti-amyloid activity towards

many types of amyloid.

Several families of structurally uncorrelated compounds have been investigated for their
ability to interfere with the self-aggregation process of peptides and proteins driving the
amyloid fibril formation. The vast majority of such molecules was tested in vitro on Ap
peptides — mostly AP 1-40 and AP 1-42. However, this approach to the development of
new therapeutics for Alzheimer’s disease seems to suffer from at least one of several
shortcomings: uncertainty about the mechanism of action, lack of specificity, limited
central nervous system penetration, or compound intrinsic toxicity. Indeed, for many of
these compounds it cannot be ascertained what step of the aggregation process they are
targeting. The use of synthetic AP peptide in in vitro experiments is itself associated with
a high degree of batch-to-batch variability, which affects the reproducibility and relia-
bility of the results [344].

Techniques for studying the interaction between small organic molecules and protein
intermediates and aggregates, as well as characterizing the kinetics of the polymerization
process, include dye staining, fluorescence and mass spectrometry, dynamic light scatter-
ing, circular dichroism, NMR and X-ray diffraction, along with electron and atomic force

microscopy for imaging data.

The Congo red dye was found to inhibit AR and amylin fibril cytotoxicity, either by pre-
venting fibril formation, through increasing soluble peptide levels, or binding to pre-
formed fibrils [345] (see Figure 1.19). Later on, it was also shown that Congo red stabi-
lises AP monomers and thus inhibits A 1-40 polymerization [346]. Unfortunately, this
compound is unsuitable to become a drug candidate, not only due to toxicity issues but
also to a highly variable concentration-response detected in vitro with different amyloi-
dogenic peptides and proteins [347,348]. The aggregation kinetics, conformational chan-
ges and thermodynamics of the model system immunoglobulin light chain variable do-
main all lead to think that, at relatively low concentrations, Congo red might bind and

promote a partially unfolded state of the protein, whereas at higher concentrations it
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might favour a denaturated state, therefore respectively accelerating or stalling fibrillo-

genesis [349].
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Figure 1.19. Chemical formulae of the Congo red dye. A model for the interaction with
polypeptides in amyloidogenic conformation was originally proposed by Li et al. [350]. An
antiparallel dimer of A 1-42 may interact with Congo red through hydrophobic interac-
tions between the central part of the peptide and the biphenyl groups of the dye, while two
salt bridges would be formed between two opposed Lysine residues and the two sulfonate

groups.

Effective inhibitors of AP self-assembly have been widely described, typically in two de-
fined categories: peptide-based and small molecule inhibitors [351-354]. Amongst a
number of small molecules that have been reported to inhibit A fibril formation are ri-
fampicin [355,356], melatonin [357], an antioxidant compound called nordihy-
droguaiaretic acid (NDGA) [358] and (-cyclodextrins [359]. A class of inhibitors includ-
ing apomorphine and its analogues was shown to interfere with Ap 1-40 fibrillogenesis
and to promote accumulation of stable protofibrillar intermediates, thus blocking fibril
formation [360]. More recently, Sood et al. has been studying the role of molecular chi-
rality in the action AP self-assembly inhibitors using enantiomeric organofluorine com-

pounds [361].

Information about small molecule inhibitors of the self-assembly of partially unfolded
TTR monomers is scarce. Cardoso and Saraiva identified two interesting scaffolds that
were able to inhibit, to an extent of approximately 60%, the association between inter-

mediate species leading to TTR fibril elongation [362] (see Figure 1.20).
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Figure 1.20. Chemical formulae of two compounds identified by Cardoso and Saraiva
to inhibit the extension of L55P-TTR fibrils. SKF 99130 (left pane) was able to promote
approximately 57% inhibition and SKF 64346 (right pane) approximately 64% [362].

3.3.3. Disruption of amyloid fibrils

Therapeutic approaches against amyloid can also include disrupting or dissolving mature
amyloid fibrils. Several compounds have been shown to directly target amyloid deposits

and/or to promote amyloid disassembly.

The anthracycline 4’-iodo-4’deoxy-doxorubicin (IDOX), a derivative of doxorubicin, is a
good example of a compound falling in this category (see Figure 1.21). Originally devel-
oped by Pharmacia, IDOX is an antineoplastic agent that was serendipitously found to
induce amyloid resorption in patients with immunoglobulin light chain amyloidosis (AL)
[363]. Unlike its parent doxorubicin, IDOX binds strongly to several types of natural amy-
loid fibrils tested: amyloid A, AB-peptide, AL, f2-microglobulin and insulin [364]. These
results suggested that this compound specifically recognizes common structural features
of the amyloid fibrils and that iodine plays an important role in determining amyloid tar-
geting. Moreover, and again by contrast with doxorubicin, IDOX can also inhibit amyloid
fibril formation by binding to insulin fibrils synthesized in vitro, mediated by key hydro-
phobic interactions at two separate binding sites [364]. IDOX has also been shown to be
capable of disaggregating TTR amyloid fibrils in vitro into amorphous material [365].
Studies of the interaction of IDOX with an “amyloid-like” oligomer isolated throughout
the crystallization of L55P-TTR revealed that this compound induced rapid dissociation

of the crystals [366].
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Figure 1.21. Chemical formulae of 4’-iodo-4’deoxy-doxorubicin (IDOX).

While interesting in essence, this potential therapeutic strategy is haunted by concerns
that compounds able to solubilise the amyloid fibrils could favour the release and accu-
mulation of highly toxic oligomers [367-369]. Surprisingly, Cardoso et al. have shown
that the fragments resulting from IDOX-induced disruption of TTR fibrils are not cyto-
toxic, and also reported a group of tetracyclines and nitrophenols that exhibit fibril dis-
ruption activity [370]. Together with IDOX, these molecules may be used as templates
towards the identification of a pharmacophore defining their interaction with mature
amyloid fibrils. Notwithstanding, further theoretical and experimental studies need to be
conducted before disruption of fibrils becomes an appealing strategy to be pursuit in the

development of novel therapies for FAP and other amyloid diseases.

3.3.4. An invasive approach: the case of TTR amyloid

The idiosyncrasies and peculiarities that characterise FAP as the most prominent TTR-
related amyloidosis extend to the unique therapeutic strategy of established efficacy that
has been in place until the imminent launching of tafamidis meglumine, the first drug
against FAP. Since TTR is mainly synthesized in the liver, liver transplantation is a crude
form of genetic therapy that removes the pool of the amyloidogenic precursor. The first
liver transplantation on a FAP patient happened in Sweden in 1990 and the approach has

then been followed all over the world.

Even though liver transplantation has been reported to slow down the progression of
FAP [371], with improvements in autonomic function, gut symptoms, nutritional state
[372] and detectable regression of the TTR amyloid deposits 1-2 years upon transplanta-
tion [373], the procedure does not always result in amelioration of symptoms, and pro-
gression of cardiomiopathy after transplantation in FAP patients has been reported
[317]. Furthermore, liver transplantation is very costly and several problems are known
to arise from the procedure [374,375] (common to other organ transplant procedures).
Timing is key and yet one of the major setbacks: firstly, FAP gene carriers who show no

clinical symptoms cannot undergo liver transplantation before disease onset; secondly,
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clinical complications present before the surgery will remain unchanged after the pro-

cedure is taken.

3.4. Pharmacology of TTR amyloid inhibitors

The study of TTR-T4 interactions may well represent one of the first landmarks of the use
of computer graphics towards a detailed understanding of protein-ligand interactions.
Indeed, it was back in 1982 that Blaney et al. pioneered molecular modelling studies of T4
and several analogues by calculating their molecular surfaces along with TTR binding
sites [376] (see Figure 1.22). More than a decade later, the identification of flufenamic
acid, a known anthranilic acid with non-steroidal anti-inflammatory activity, as a potent
TTR tetramer stabiliser was the first stepping stone in the quest for strong TTR amyloid
inhibitors [377]. Contemporarly, Kelly’s group found out that diflunisal had comparable
activity in terms of inhibiting TTR fibril formation. They tested 78 structurally diverse
compounds, including benzophenones, anthraquinones, flavones, stilbene derivatives
and adamantane derivatives; an eye-opener endeavour that singled out the flavone api-
genine and the stilbene derivative resveratrol, along with flufenamic acid, as the most
promising inhibitors [212]. In 2000, Klabunde et al. offered an exceptional summary of a
first decade of preliminary efforts to identify promising drug leads against TTR amyloid

[215].
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Figure 1.22. Early molecular representations of the interactions between TTR and T4

analogues. The different panes correspond to cross-sections of T4 analogue-TTR binding
surfaces: (A) L-thyroxine and four naphthyl analogues (B, C, D and E). The orange arrow in-

dicates an empty pocket. This figure was extracted from reference [376].

Either by serendipity or design, over the past decade a number of new effective amyloid
inhibitors have been discovered. Lately, fragment-based approaches have been employed
to identify the most efficient combinations for the substructural elements composing the

classic binder [378-380]. Amongst the most common threads to TTR stabilisers are:
* two aromatic rings, often linked by a spacer;

* one carboxylic group, either in meta or para position;

* one or several halogen atoms attached to the central scaffold.

From the pharmacology viewpoint, a critical aspect associated to most TTR binders is
indeed the recurrent occurrence of halogenated substituents. As will be discussed in
greater detail in Chapter 4, possibly due to the presence of two charged Lysines at both

entrances of the binding channel, TTR binding sites seem be more electropositive than all
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other surfaces of the protein. This may explain TTR’s natural propensity to bind electro-

negative/halogenated compounds.

The use of halogen atoms in Medicinal Chemistry is a quite controversial subject. In a
personal communication at the University of Marburg (Germany), in 2006, Professor
Hugo Kubinyi showed great scepticism and concern about bioactive molecules containing
halogens, opening up exceptions for only a few molecules bearing fluorine and one very
specific molecule bearing one bromine atom. Still, while some of the most reputable
medicinal chemists show concerns about halogens’ potential for bioaccumulation and
toxicity, discouraging their use in drug design [381], other researchers highlight the

versatility of these exotic atoms [382].

A second critical aspect from the pharmacology and drug design viewpoints is that TTR
binding sites display cooperativity effects in ligand binding. Indeed, it has been reported
for several ligands that the binding of the first molecule to one TTR binding site causes a
decrease in affinity of binding of the second molecule to the unoccupied site (negative
cooperativity). This is the case for T4, flufenamic acid and perhaps most other known TTR
ligands. The true nature of this allosteric effect is hard to pin down. Without exception, all
crystal structures of TTR complexes available in the PDB show two occupied pockets
within the asymmetric unit; none was able to capture a single ligand-binding event. In

parallel, and as pointed out before, the two TTR binding sites are completely identical.

The first attempts to understand cooperativity effects in TTR were made by Cheng et al.,
where, based on binding data at several pH values, the authors suggest that an electro-
static interaction may contribute to negative cooperativity [383]. As a follow up to this
work, Irace and Edelhoch tried to tackle conformational changes in TTR binding sites
upon T4 binding. The authors followed ligand-binding effects on aromatic chromophores
by ultraviolet fluorescence and, since the perturbation was very different for the two
binding sites, suggested that the binding of the first ligand produces the same conforma-
tional effect, thus maintaining the symmetry of TTR [384]. More than a decade later,
Neumann et al. presented a notable attempt to shade light on the structural basis of co-
operativity by comparison of distances between corresponding p-strands on each bind-
ing site [385]. Despite the authors’ claims, given the limited size of their sample (10 TTR
apo+holo structures) and the lack of experimentally-determined atom coordinates of the

full biological unit, their results look statistically inconsequential.

All these aspects will be covered in greater detail in Chapters 2 and 3 of this thesis.
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3.4.1. Endogenous binders

Thyroid hormones and retinol-binding protein are the major endogenous binders of TTR.
Thyroxine (T4), or 3,5,3",5'-tetraiodothyronine (Figure 1.23), is the principal hormone
secreted by the follicular cells of the thyroid gland. It is synthesized via the iodination
and covalent bonding of the phenyl group of tyrosine residues found in a primary pep-
tide, thyroglobulin, and then secreted into thyroid granules. These iodinated biphenyl
compounds are cleaved from their peptide backbone when stimulated by thyroid-
stimulating hormone. T4 is transported in blood mainly bound to thyroxine-binding
globulin (TBG), to an extent of near 99.95%, and, to a lesser extent, to transthyretin and
serum albumin. The half-life of thyroxine once released into the blood circulatory system

is approximately 1 week.
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Figure 1.23. Chemical formulae of thyroxine (T4) the major endogenous binder of
TTR.

TTR-T4 interactions are directed by non-polar contacts between the central hydrophobic
portion of T4 and the side chains of Leu-17, Ala-108, Leu-110, Thr-119 and Val-121, and
between the charged groups of the ligand'’s tail and the side chains of Lys-15 and Glu-54.
Binding site complementarity, in terms of shape, is far from ideal: even though the crystal
structures of TTR-T4 complexes show that one T4 molecule binds deeper to one of the
sites than the other, T4 does not bind deep in TTR binding sites (PDB entry 2rox). This is
due to steric hindrance of the four iodine atoms that render T4 a bulky molecule. In fact,
the reported affinity of T4 for TTR is modest (Ki's of 1 x 108 and 9.6 x 105 M-, negative
cooperativity) compared to its affinity for thyroxine binding globulin (K. = 6 x 10° M-1),

the main carrier of T4 in the plasma.

3.4.2. Natural products

Some natural products have been shown to bind TTR and reduce TTR fibril formation.
Resveratrol, or trans-3,4',5-trihydroxystilbene, is an antioxidant found in red wine and

grape juice that was shown to inhibit platelet aggregation and play a role in the preven-
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tion of congestive heart failure due to coronary thrombosis [386,387]. The anti-apoptotic
activity of resveratrol is mediated by direct inhibition of the main arachidonate me-
tabolizing enzymes 5-lipoxygenase, 15-lipoxygenase and cyclooxygenase (COX) [388].
The X-ray structure of TTR in complex with resveratrol shows good binding site com-
plementarity at a minimum energy ligand pose (PDB entry 1dvs). Due to the two-fold
symmetry of TTR’s binding sites, resveratrol presents two binding modes that are related
by 180° rotation along the channel. TTR-resveratrol interactions are dominated by non-
polar contacts between the stilbene moiety and the side chains of Lys-15, Leu-17, Ala-
108, Leu-110, Thr-119 and Val-121. The apparent rigidity of the stilbene scaffold pro-
vides a minimum entropic penalty upon binding, favouring association. Yet, the strong
potency of resveratrol derives from the enthalpic contribution of two hydrogen-bonding
interactions between its hydroxyl groups and the side chain Ne of Lys-15 and the hy-
droxyl side chain of Ser-117. Because resveratrol extensively reduces TTR fibril forma-
tion, stilbene derivatives may be regarded as promising leads for the development of new

drugs against TTR-associated amyloid diseases.
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Figure 1.24. Chemical formulae of four natural products identified to bind TTR and

inhibit fibril formation.

Genistein is the major isoflavone present in soy and has been evaluated in preliminary
trials for the treatment of breast, prostate and uterine cancers, osteoporosis, cardiovas-
cular disease and menopausal symptoms. Genistein was shown to bind TTR (K41 = 40 nM,
Kaz = 1.4 uM), prevent tetramer dissociation and reduce acid-mediated fibril formation to
< 10% of that exhibited by TTR alone, including the V30M and V122] variants respon-
sible for FAP and FAC, respectively [389]. Moreover, this natural product displays high
selectivity for TTR in the human plasma. Based on this discovery, it is plausible to hy-
pothesize that FAP and FAC patients could benefit from just increasing their intake of soy

products.
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In a recent study, Ferreira et al. studied the modulation of TTR fibrillogenesis by selected
polyphenols [390]. In specific, they showed that both nordihydroguaiaretic acid (NDGA)
and curcumin bind to TTR and stabilise the tetramer. Yet, while NDGA reduces TTR ag-
gregation only to a limited extent, curcumin sturdily suppressed TTR amyloid fibril for-
mation. The authors proposed that this strong inhibition is due to the generation of small
“off-pathway” non-toxic oligomers. This is in line with curcumin’s chemical structure (see
Figure 1.24), which more easily resembles that of compounds shown to interfere with
TTR intermediate species (see on page 52) rather than the structure of a classic TTR tet-

ramer stabiliser.

3.4.3. Pollutants

The halogenated aromatic hydrocarbons, such as chlorinated dioxins, furans, biphenyls,
naphthalenes and benzenes are amongst the most relevant environment pollutants,
mostly due to their widespread occurrence and persistence in the environment and con-
centration in the food chain. In particular, the polychlorinated biphenyls (PCBs) are sur-
rounded in concerns about their accumulation in the human body. The study of the inter-
actions of PCBs with TTR started even before the effect of tetramer stabilization due to
ligand binding became known. Rickenbacker et al. used computer graphics and predic-
tions regarding binding affinities, and showed, through competition binding studies with
labelled thyroxine, [1251]-L-Ts4, that the PCBs could bind TTR more effectively than T4
[391]. Ironically, certain hydroxylated PCBs are today amongst the strongest TTR binders
and fibril formation inhibitors [219]. In fact, the most potent inhibitor known to date,
4,4'-dihydroxy-3,3',5,5'-tetrachlorbiphenyl (PDB entry 2g5u), binds to TTR with the
highest affinity (K41 # Ka2 = 3.2 nM) and displays positive cooperativity [378].

Cl Cl OH
Cl ! ! Cl Cl ! Cl
Cl
Cl I Cl Cl I Cl Cl I Cl

OH OH OH

PCB16 PCB17 PCB18

Figure 1.25. Chemical formulae of three polychlorinated biphenyls (PCBs) with high
affinity for TTR. PCB18 is the most potent TTR amyloid inhibitor found to date and one of
the few compounds known to exhibit positive cooperativity. The numbering is in accord-

ance with reference [219].
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TTR’s “sweet and sour” attraction for the PCBs epitomises an important lesson in the
field of drug discovery. Potency is not everything and safety should be well bear in the

mind of chemists and modellers from the early stages of any drug design program.

3.4.4. Non-steroidal anti-inflammatory drugs

The non-steroidal anti-inflammatory drugs (NSAIDs) comprise a wide group of structur-
ally diverse drugs that share the ability of controlling inflammatory processes, pain and
fever. This is accomplished via the inhibition of different forms of an enzyme called cyc-
looxygenase, responsible for the production of prostanoids (protaglandins, prostacyclins
and thromboxanes) involved in the inflammatory response. Flufenamic acid (FLU) and
diflunisal were the first NSAIDs discovered to stabilise TTR against tetramer dissociation
and amyloid fibril formation [212]. Soon after, Klabunde et al. showed that other NSAIDs,
including diclofenac, flurbiprofen, fenoprofen and indomethacin, could also halt TTR fib-
rillogenesis, though to a smaller extent [215] (Figure 1.26). Later on, Miller et al. tested
several NSAIDs along with a few designed analogs, for their ability to prevent acid-
induced fibril formation and chaotrope-induced tetramer dissociation of the most com-
mon disease-associated TTR variants - V30M, V122, T60A, L58H and 184S [289]. All
these were significantly stabilised by flufenamic acid and one of its analogs, and to a

lesser extent by diflunisal.
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Figure 1.26. Chemical formulae of six nonsteroidal anti-inflammatory drugs (NSAIDs)
identified to bind TTR and inhibit fibril formation.

In general, the crystal structures of TTR-NSAID complexes show that these ligands medi-

ate inter-subunits hydrophobic interactions and hydrogen bonds, and that the additional
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van der Waals contacts stabilise the tetrameric fold of TTR (PDB entries 1bm7, 1dvx,
1dvt, 3d2t). Interestingly, besides the two binding modes related by 180° rotation along
the TTR binding channel, FLU exhibits two distinct binding conformations defined by
rotation about one of its two aryl-amino bonds (PDB entry 1bm7). In spite of what may
be seen as an entropic penalty to ligand binding, of all NSAIDs found to interfere with
amyloid formation by TTR, FLU is the most potent binder (K41 = 30 nM, Kgz = 255 nM)
[377]. Thus, it was subsequently taken as a reference lead compound to the design of

new inhibitors.

3.4.5. NSAID derivatives and designed inhibitors

Like with most NSAIDs, a prolonged intake of flufenamic acid would cause gastrointesti-
nal ulcers, due to inhibition of isoform 1 of the enzyme cyclooxygenase (COX-1). COX-1 is
responsible for the synthesis of prostaglandin, a substance with a critical role in gastric
mucosal protection. Therefore, Klabunde et al. set out to discover new TTR amyloid in-
hibitors with specific binding to TTR and high gastric tolerability [215]. They used mo-
lecular modelling to study the interaction between TTR and flufenamic acid in crystal
structures, and thus put forward a modified FLU (an ortho isomer) and a number of tri-
cyclic scaffolds with high affinity for TTR - the dibenzofurans [215] and the phenoxa-
zines [392] (Figure 1.27).

Even though o-FLU has shown better binding site complementarity than FLU (PDB entry
1dvs), it did not offer higher affinity for TTR than its isomer. It did however show higher
selectivity and inability to inhibit COX-1 [215]. Modelling studies based on the TTR-FLU
complex led to the hypothesis that tricyclic compounds could mimic the interaction of the
two symmetry-related binding modes of FLU simultaneously. To test it, dicarboxydiben-
zofuran-4,6-dicarboxylic acid (DDBF) was evaluated and displayed excellent inhibitor
activity. The tricyclic ring system of DDBF binds between residues Lys-15, Val-17 and
Ala-108, stretching across the outer region of TTR binding sites (PDB entry 1dvu). These
promising results encouraged Klabunde et al. to design similar compounds with a substi-
tuted-phenyl ring that could fill the inner cavity of the sites. A series of 15 N-phenyl-
substituted phenoxazine-4,6-dicarboxylate were synthesized and tested, and m-
trifluoromethyl-substituted N-aryl phenoxazine (PHENOX) was found to be the most
promising inhibitor: Kq1 = 78 nM, Kq2 = 235 nM (PDB entry 1dvy) [215].

Isothermal titration calorimetry (ITC) studies revealed an interesting difference between
PHENOX and FLU. The binding of FLU to wild type TTR is mainly enthalpically driven: for
the first binding event, AG= -10.25 #0.25 kcal mol!, AH= -11.4 * 0.7 kcal.mol-1. As ex-
pected though, given the observed multiple binding modes of FLU, the entropy associated
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with binding and the conformational changes in the protein is unfavourable (TAS= -1.15
+ 0.7 kcal.mol-1). Conversely, there is an important favourable entropic contribution for
PHENOX binding: for the first binding event, AG= -9.67 +0.14 kcal mol!, AH=-4.52 + 0.4
kcal mol't, TAS = 5.15 £0.45 kcal mol-L. This can be due to the lower flexibility and larger
size of PHENOX, which result in a minor conformational entropy penalty and in the abil-

ity to displace more water molecules from TTR binding sites, respectively [215].

Additional studies conducted in Kelly’s group used structure-based principles to syn-
thesize and evaluate several dibenzofuran derivatives, focusing more on the ability to
bind TTR in the plasma with high affinity and selectivity [222]. In the meanwhile, other
research groups have joined the race. Saraiva’s group has proposed the use of iodine in
compounds like diflunisal, as a means to attain more specific and effective drugs
[393,394]. Surolia’s group reported a new class of inhibitors based on biphenyl ethers
(BPE) [395]. It is noteworthy that besides stabilizing TTR tetramer, the strongest BPEs
were also shown to inhibit fibril elongation and disrupt pre-formed fibrils [395]. More
recently, the mechanisms behind this polyvalent action were further investigated in Su-
rolia’s group, using quantum dots (QD) technology [396]. According to the authors, the
exceptional optical properties of BPE-QD nanoparticles allowed following the slow asso-
ciation of the small organic molecules with mature amyloid fibers and a new mechanism

of disruption was proposed.
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Figure 1.27. Chemical formulae of six TTR amyloid inhibitors inspired by the struc-

ture of flufenamic acid. Top row: from left to right, ortho-tri-fluoromethylphenyl an-
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thranilic acid (differs from FLU in the positioning of the CFs substituent); DDBF is dicar-
boxydibenzofuran-4,6-dicarboxylic acid (a lead compound); PHENOX is N-meta-
trifluoromethylphenylphenoxazine-4,6-dicarboxylic acid. Bottom row: three DDBF deriva-
tives representing 3 sub-families: DDBF 36, a biarylamine with high inhibitory activity;
DDBF 47, a biaryl ether with the highest affinity for TTR in plasma, DDBF 64, a biaryl show-

ing good compromise between affinity for TTR in plasma and inhibitory activity.

One decade after the release of the crystal structure of flufenamic acid in complex with
TTR, more than one hundred effective TTR amyloid inhibitors have been reported, a few
of which have been protected by patent laws. The majority of the potent and selective
amyloid inhibitors identified to date can be clustered into three main structural families:
bisaryloxime ethers [397], biphenyls, and 1-aryl-4,6-biscarboxydibenzofurans [215]
(~20, 30 and 40%, respectively). The remaining 10% are based on 2-phenylbenzoxazole
[378], biphenylamine and biphenylether substructures [395] or others [398]. The most
potent and selective bisaryloxime ethers display poor chemical stability [397]. On the
other hand, the biphenyl system has been referred to as one of the most promiscuous
moieties in nature (personal communication by Bernard Testa, 2009, Porto) and several
biphenyl derivatives have been associated with rodent toxicity and presumed toxicity in
humans [219]. The dibenzofuran inhibitors and 2-phenylbenzoaxole inhibitors are there-
fore the most promising candidates identified to date and notable lead optimisation ef-
forts have been taken [222,378]. The benzoxazole shown in Figure 1.28, in particular, is
worth highlight. Initially referred to as FX-1006A4, today this compound is better known
as Tafamidis and represents the very first amyloid inhibitor to successfully complete all

phases of clinical trials and reach the European drug market.
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Figure 1.28. Chemical formulae of the latest and strongest TTR amyloid inhibitors ra-
tionally developed to date. The compound on the left represents a family of bisaryloxyme
inhibitors affected by chemical instability; the compound in the middle represents a recent
class of oxazole inhibitors; the compound on the right is Tafamidis, the first and sole anti-

amyloid compound to have reached the drug market.

3.4.6. Exotic TTR stabilisers

Imagination knows no limits and over the last decade some unconventional approaches

to TTR tetramer stabilization have been explored. Both Kelly’s and Mark Pepys’ groups
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have reported interesting results obtained with palindromic? bivalent ligands that bind
TTR prior to full tetramer assembly [399,400] (see Figure 1.29). These selective “super-
stabilisers” were shown to be irreversibly trapped within the native TTR tetramer and,
besides its unusually high molecular weight, display oral availability in mice. Curiously,
according to Kolstoe et al. the presence of chlorine atoms in both mds84 and 4ajm15 is

essential for the binding of the bivalent ligands by TTR [400].

Recently, a new family of designed stilbenes that covalently modify TTR has been pre-
sented [401]. When bound, these compounds chemoselectively react with the e-amino
group of Lys-15, yielding an amine bond. As stressed by the authors, however, in order to
be translated into potency in vivo, the integration of covalent binding into the TTR sta-
bilization mechanism requires ligands to be highly selective for TTR in plasma (which
has been demonstrated), to react with TTR very rapidly comparative to its short half-life
(which has also been demonstrated in vitro), and to exhibit a plasma distribution, con-
centration and half-life that sustain a near-quantitative conjugation yield (yet to be dem-

onstrated) [401].
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Figure 1.29. Chemical formulae of representatives of two compound families explor-
ing unconventional mechanisms of binding to TTR tetramer. On the left, two bivalent
ligands that bind TTR before its full tetrameric unit is assembled, filling both binding sites
simultaneously. On the right, a designed stilbene that selectively and covalently modifies

TTR in the human plasma.

4. Objectives of the project

Before July 2011, there were no approved dugs for the treatment of familial amyloid
polyneuropathy (FAP) or familial amyloid cardiomiopathy (FAC) in the market. Until

then, the only treatment of established efficacy was orthotopic liver transplantation. The

1 The term “palindromic”, deriving from “palindrome”, refers to a word, phrase, number or other
sequence of units that can be read in the same way in either direction.
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results of phase II/IIl placebo-controlled clinical trials, released in late 2010, confirmed
the therapeutic efficacy of tafamidis meglumine (FX-1006A), by halting the progression
of FAP in approximately 60% of the treated patients. These results highlight the success
of the followed strategy - the stabilization of the tetrameric form of transthyretin (TTR)
through the non-covalent binding of small organic molecules - but disclose room for im-
provement. Tafamidis represents today the very first pharmacological solution for FAP,
yet evidence on its efficacy and safety is still limited. The central motivation of this pro-
ject was to identify new functional lead compounds, combining TTR amyloid inhibitory
activity and adequate drug-like properties, which could open avenues for the develop-

ment of alternative therapeutic solutions for this impairing disease.

From the viewpoint of the design of organic molecules to interfere with amyloid forma-
tion, TTR is both an appealing target and a challenging one. The elucidation and charac-
terization of novel, structurally diverse and selective binders can also shade light on
some of the most intriguing idiosyncrasies surrounding ligand-binding to TTR that re-
main poorly understood: first, the negative cooperativity observed for most known bind-
ers and, second, its propensity to bind biphenyls and molecules bearing multiple halogen

atoms.

The availability of structural data of TTR bound to a number of ligands is extensive, with
more than 60 complexes of human TTR at 2 A resolution (or better) deposited in the Pro-
tein Data Bank (as of July 2010). This strongly encourages the exploitation of structure-
based virtual screening (SBVS) methods like molecular docking and receptor-site phar-
macophore models to identify compounds establishing optimal interactions within the
receptor sites of TTR. However, ligand-based VS (LBVS) approaches such as 2D finger-
print similarity searches, 3D shape-matching or 3D pharmacophore searches have pro-
vided good results, often outperforming molecular docking, and may be valuable to iden-
tify compounds with appropriate shape, chemical topology and electrostatic properties
similar to those of reference TTR stabilisers, yet with potentially better affinities and/or

ADME/Tox profiles.

As a means to reach the central end of discovering novel and safe TTR stabilisers, the key
objectives of this project were to evaluate the performance of a wide battery of state-of-
the-art in silico methods and, through the combination of multiple computational algor-

ithms, to develop a technology for the virtual screening of amyloid inhibitors.
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Chapter 2

Evaluation of docking methods
against TTR: where quality

meets accuracy

“All that glisters is not gold.”

[William Shakespeare, in The Merchant of Venice]



1. Introduction and theory

Structure-based drug design (SBDD) has been actively sought ever since the emergence
of structural biology. With the ever-growing availability of detailed three-dimensional
structures of target proteins determined by X-ray crystallography and NMR, the design of
highly selective drugs should become tractable. As illustrated in Figure 2.1, when the
structure of a given target of pharmaceutical interest is available, a structure-based de-
sign approach is often pursued. Amongst SBDD methods, virtual screening based on mo-
lecular docking, i.e., high-throughput docking (HTD), is the most popular choice and
many different programs and protocols are in use and active development [33,34,402-
406]. Another promising approach that has been increasingly explored with some suc-
cess is that of structure-based pharmacophore modelling and searches, wherein struc-
tural data of the target receptor sites are used to derive 3D representations (pharma-
cophore hypothesis) of a set of features (and their spatial relationships) defining the
interactions with ligands. Models thus generated can be used to screen chemical data-

bases and retrieve compounds that fit them.

YES A\ NO

target(s) known/
available?

NO

Crystal structure of
related target(s)
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Structure-based
approach
Dock Create phar phore YES
ligands of binding site

Ligand-based
approach

Comparative protein
homology modeling

Structure of
igand(s) available?

Use networks and
databases to understand
biology

Dock ligands

Test ligands from
similar targets

High-throughput
screening

IDENTIFY FURTHER |,
LIGANDS

Search
databases

Figure 2.1. Rational in silico drug design workflow. In this Chapter, molecular dock-
ing is explored. In Chapter 3, receptor- and ligand-based pharmacophore approaches are

considered and tested. This figure was adapted from reference [407].

Transthyretin (TTR) was extensively reviewed across the third section of the introduc-
tory chapter. This protein is implicated in the deposition of amyloid fibrils in the periph-
eral nerves and heart tissue. The formation of insoluble TTR fibrils in FAP and SSA in-

volves an intermediate step whereby the native tetramer dissociates to monomers with
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altered tertiary structure. This step is believed to be rate-limiting for fibril formation and
can be modulated by the binding of thyroxine-like compounds to the two equivalent
pockets of TTR. Over the last decade, several small molecules were screened for their
ability to stabilise the protein and thereby prevent amyloid fibril formation, but the un-
desirable side effects associated with the discovered binders are still a major obstacle. In
the present chapter, the application of molecular docking to the study of transthyretin-

ligand interactions is explored.

The Protein Data Bank (PDB) is an important repository of biological macromolecular
structures [408]. In 2000, Hornberg et al. compared all 23 TTR structures available in the
PDB by then, including three wild-types, three non-amyloidogenic mutants, seven amy-
loidogenic mutants and nine complexes [409]. Besides putting forward a new high-
quality TTR structure, this study demonstrated that the structural differences found
amongst several X-ray structures of TTR variants, claimed to be of significance for amy-
loid formation, to be statistically non-significant. As of March 2008, 101 entries could be
found for “Transthyretin” in the PDB, of which 42 corresponded to protein-ligand com-
plexes. Thirty-five of these complexes have 2.0 A resolution or better and, of these, 26
complexes correspond to the human form of the protein. The significant amount of struc-
tural data of TTR in complex with a number of ligands renders this protein an appealing
target for structure-based design of small organic molecules to interfere with amyloid
fibril formation. On the other hand, underneath this thrilling parade of structural infor-
mation, several questions remain unanswered: Are there consistent structural differ-
ences between the two binding sites of TTR and across multiple TTR-ligand complexes?
Does the available information account for the negative cooperativity phenomena ob-

served for most binders?

In the work presented in this chapter, 30 high-quality X-ray structures of TTR in complex
with ligands were selected upon structural quality evaluation and studied using a multi-
ple structural alignment algorithm. The main goals of this effort were (i) to derive a logi-
cal annotation for the four TTR chains enclosing the two equivalent binding sites of each
tetramer, based on their structural similarity, and (ii) to gain insights about the coopera-
tivity effects observed for most TTR binder compounds. Perhaps more importantly, this
study has also paved the way to the identification of the most appropriate docking pro-
grams to handle TTR, by providing a common spatial reference for the comparison of
docked poses on each TTR binding site. Thus, each cognate ligand was docked back into
its respective TTR complex and binding site using five docking programs (AutoDock 4,
AutoDock Vina, eHiTS, FRED, and GOLD) and their respective scoring functions. More-
over, every X-ray ligand was docked into every X-ray receptor available, allowing the

identification of a set of TTR structures that perform better against a variety of ligands.
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The results presented in this chapter are also at the foundation of the work presented in
Chapters 5, 6 and 7 of this thesis, where several docking-based virtual screening proto-
cols are respectively evaluated against TTR, against multiple targets of pharmaceutical

interest, and utilised for large-scale virtual screening campaigns.

1.1. Structural information on TTR

Hornberg et al. offered a remarkable analysis of 23 relevant TTR structures available as
of mid-2000 [409]. More than ten years later, there are more than 110 PDB entries for
TTR complexes (as of March 2011). The vast majority of these structures (more than 80)
were resolved from orthorhombic crystals (mostly in the P 21 2; 2 symmetry space
group), where the asymmetric unit comprises only half of the full functional structure of
the native TTR tetramer (i.e. a dimeric unit). Only a small portion of the complexes avail-
able in the PDB was determined from mono-clinic crystals (P 2, P 21 or C 2 space groups),
and mostly at lower resolutions. Oddly enough, this aspect alone hinders the structural
analysis of TTR complexes, and limits our understanding of the subtle structural re-

arrangements happening in the binding sites upon ligand binding,.
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Figure 2.2. Two-dimensional structure-diagram for a TTR-T4 complex (PDB entry
2rox), showing hydrogen bonds and polar interactions in dashed black lines, and hydro-

phobic/apolar interactions as green contour lines. The diagram was created with PoseView.

Given the symmetry of the native homotetrameric protein, the two binding sites of TTR
are identical and each site itself has two-fold symmetry [410]. Each site can be subdi-
vided into subtle sub-pockets (see Figure 2.2 and Figure 2.3). Thyroxine is one of the few
TTR binders that can mediate interactions with both Lys-15 and Glu-54 residues at the
entrance of the channel, ion-paring its carboxyl and amino groups, respectively. The hy-
droxyl group at the inner aryl ring is buried deep in the binding sites, possibly establish-
ing a hydrogen-bond network with a water molecule conserved in one of the sub-pockets

and the hydroxyl groups of Ser-117 and Thr-119. A specific water molecule is indeed ob-
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served in TTR complexes where the ligand holds a hydroxyl group at the para position of
the inner aryl ring. In the majority of TTR structures, the hydroxyl groups of Ser-117
residues are pointing away from the binding site and towards the neighbouring serines.
However, in these complexes the Ser-117 hydroxyls adopt two alternative (yet equally
favourable) rotamer conformations that permit hydrogen bonding with the phenol of the
ligands through the conserved water molecule. Through its four iodine atoms, thyroxine
can also occupy four out of the five remaining sub-pockets on each site: the inner ring
iodines fit identical hydrophobic sub-pockets lined with the methyl groups of Leu-17,
Ala-108, Val-121 and the polymethylene side chain of Lys-15; the outer ring iodines oc-
cupy sub-pockets formed by the side chains of Ala-108, Leu-17 and the hydroxyl groups
of Thr-119 and Ser-117. Interaction between one of the iodines and the backbone car-
bonyl oxygen of Ala-109 was suggested as an important feature, as close intermolecular
contacts between oxygen and iodine atoms were observed in several X-ray structures

[411].
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Figure 2.3. Two-dimensional structure-diagram for TTR in complex with a bivalent
amyloid inhibitor. TTR’s quaternary structure assembles around bivalent inhibitors when
they interact with the protein before assembly occurs. Under this circumstance, strong
inhibition of amyloid formation is produced. PDB accession code: 2fbr. The 2D structure

diagram was generated using PoseView.

1.2. Structural alignment of TTR complexes using geomet-

ric hashing

As for sequence analysis in Bioinformatics, achieving a good alignment between two or
more protein structures can be of critical importance for structural analysis in Structural
Bioinformatics and Biology. For example, this procedure can allow a direct visualization

of the impact of mutations on the structure of a protein. Furthermore, it can allow a de-
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tailed comparison of the binding modes of dissimilar ligands to the same protein. In
order to obtain a common spatial reference for the structural analyses carried out in this
chapter and in Chapter 3, multiple structural alignment was performed with all 30 TTR
complexes. As will be shown below, this procedure was also indispensable for the cross-

docking studies reported in this chapter.

Brakoulias and Jackson developed a geometric matching method, known as GH8 [412],
which constituted the basis for SitesBase (http://www.bioinformatics.leeds.ac.uk/sb), a
database for structure-based protein-ligand binding site comparisons [413]. GH8 was
extensively used throughout this project. It will be described in this subsection and men-
tioned further in Chapters 3 and 5. The algorithm works by detecting common atomic
features through the identification of a maximum common clique, and producing an
atom-to-atom similarity match for any two protein binding sites (see Figure 2.4). It pro-
ceeds by generating all possible atom triplets for each binding site, where each triplet
consists of three atoms forming a triangle. A discretised 3D image of the reference bind-
ing site is created by storing atom identities at their nearest grid points on a 1 A spaced
grid. The atom triplet set of the reference binding site then acts as a template against
which the atom triplet set of the query binding site can be compared. All possible atom
triplets between the two structures are compared, and those with the same atom types at
triangle vertices and similar interatomic distances are defined as a match. Corresponding
triangle edges must differ by no more than 1.5 A i.e. matched atoms must be within 0.5 A
of one another. On finding a match, a least-squares fitting routine is used to determine
the translation and rotation matrix that maps the query atom triplet onto the reference
atom triplet. The total number of atoms of the query binding site that are co-incident
with the reference binding site, upon applying this transformation matrix, are counted
(‘atom-atom score’). This is then repeated for all possible atom triplets, and the trans-
formation that results in the greatest number of co-incident atoms (i.e. the highest atom-
atom score) is selected to perform the structural alignment of the query binding site onto

the reference binding site.
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Figure 2.4. Schematic representation of the methodology used by GH8, a geometric
hashing algorithm. A list of all atom triplets from each binding site is generated and each
triplet from the query is rotated and translated for superimposition onto the reference.
Matching triplets have the same atom types and inter-atomic distances. The maximal clique

is determined by identifying multiple triplets that share the same transformation matrix.

1.3. Docking and Scoring

Generally, molecular docking uses the three-dimensional structure of the target protein
to search for plausible binding modes for a putative ligand in a virtual protein-ligand
complex (docking). It then compares different binding modes to predict the most favour-
able, and hence attempts to estimate the ligand's binding affinity (scoring). This proced-
ure can be applied to rank each ligand in a sizeable compound library and thus filter out
those that are less likely to binding to the protein and exert a beneficial function. The
main advantage of docking-based VS methods over ligand-based methods is its search
specificity, deriving from the explicit use of the structural information on the target re-
ceptor. This is a critical aspect for target selectivity, and is also associated with higher

search flexibility, which is important for the elucidation of new scaffolds.

There are important hurdles and challenges in the docking field, not only to the method-
ology itself but also to the critical evaluation and application of different methods to dif-
ferent protein targets [414-421]. The vast majority of the docking programs use rigid
receptor structures, performing conformational sampling on the ligands. In many cases,
however, the dynamics of the protein receptor site is important to ligand binding. Over
the last decade, a few docking methods have been developed to allow a certain degree of

receptor flexibility, and thus predict induced fit effects, either by using ensembles of
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structures instead of a single conformation or by explicitly modelling flexibility [422-
428]. Alternative approaches to account receptor flexibility integrate the use of more
complex conformational search techniques, such as geometry-based sampling [429], mo-
lecular dynamics simulations [430,431], and other mixed techniques [432]. However,
flexible docking approaches are too computer intensive to be used in virtual screening,
and the increase in docking accuracy resulting from their use does not seem to compen-
sate the significant additional burden in terms of computing costs. Indeed, some of the
faster rigid-receptor docking approaches perform rather well at mimicking the na-
tive/experimental ligand pose in protein-ligand complexes of many targets, even though

discarding the natural flexibility of the receptor structure [433].

While the generation of relevant binding geometries (the “docking problem”) is believed
to be solved in the case of rigid receptors, the recognition of the correct ligand pose and
the assignment of an accurate binding affinity (the “scoring problem”) are still major
challenges to structure-based VS. Basically, this is related to the limited ability of the
scoring functions to discriminate active ligands from inactive ones across different pro-
tein targets, which is a fundamental requirement of VS. In particular, binding sites mainly
comprised of non-polar residues and lacking an adequate number and/or placement of
hydrogen bonding groups or other specific pharmacophore features are frequently asso-
ciated with poor predictions of binding affinities by docking scoring functions [415].
Multiple approaches and combinations of docking and scoring have been attempted, but

it has become clear that a universal solution is still far from sight [89,434].

1.4. Docking programs

In this work, five molecular docking packages were selected for evaluation against TTR.
The selection was primarily based on availability, but preference was given to open
source solutions and packages distributed through free licensing to academics. AutoDock
4 and AutoDock Vina are quite unique in this respect, because they are available to any
user free-of-charge and as open-source codes. At the time these studies were conducted,
a free academic licensing scheme was still available for eHiTS. Therefore, both eHiTS and
FRED were obtained through free academic licenses. In fact, GOLD was the only software
escaping this premise, being tested under a pre-existing protocol between the University

of Leeds and the Cambridge Crystallographic Data Centre.

The five docking programs use quite dissimilar approaches to solve the docking problem.
The details of each algorithm are described across the following subsections, but Table

2.1 summarizes their basic differences.
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Table 2.1. Summary description of the docking programs evaluated for pose fidelity

against TTR.
Program AutoDock 4 AD Vina eHiTS FRED GOLD
Gradient-
Docking Lamarckian ge- | based iter- Incremental Shape fittin Genetic algo-
algorithm netic algorithm | ated local construction p & rithm
search
-ChemGauss2
. . . . . -ChemGauss3 -GoldScore
Scorlpg Free E_nergy Vina S_cormg eHlTS_ scoring -ChemScore -ChemScore
function Function Function function
-PLP -ASP
-ScreenScore
-Includes pre- -Many exam-
-Successful ap- | -Relatively S -Consensus scor- ples of accu-
D docking filter- | . ST
plications re- new tool ine tools ing rate binding
Main ported, including| -Inherits —U%ed to be -Requires good mode predic-
features blind docking AD4 phi- academic-free shape comple- tion
-Widely used losophy (not ) mentarity -Medium to
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Based on the assumption of no previous experience on the part of the user of the soft-
ware under evaluation, all programs were tested employing their default settings, thus

providing baseline performance.

1.4.1. AutoDock 4

AutoDock has been developed by the laboratory of Arthur Olson and was first presented
to the scientific community in 1990 [435]. It stands today as one of the most popular
docking programs worldwide [436]. The program had the original goal of providing an
automated procedure for studying the interaction of ligands with macromolecular tar-
gets. To accomplish that goal, it combines conformational search methods with a grid-
based method for energy evaluation. Rapid energy evaluation is achieved by pre-
calculating ligand-protein pairwise interaction energies through atomic affinity poten-
tials for each atom type present in the ligand on a grid (see Figure 2.5). This procedure is
carried out by the AutoGrid program and follows the principles of the Molecular Interac-
tion Fields first described by Peter Goodford [39] (introduced in Chapter 1). The energet-
ics of a given ligand conformation is then computed by tri-linear interpolation of affinity
values of eight grid points surrounding each ligand atom. Electrostatic interactions are
assessed independently but equally by interpolating the values of the electrostatic poten-

tial and multiplying by the charge on the atom.
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Figure 2.5. Schematic representation of the main features of a grid map. A grid map is
composed of a 3D lattice of periodically spaced points centreed on a site of interest of the
protein, encompassing it (partially or completely). Typically, the spacing between grid
points varies between 0.2 and 1.0 A, but the default value in AutoDock 4 is 0.375 A (ap-
proximately a quarter of the length of a carbon-carbon single bond). The grid map points

store the potential energy of probe atoms relative to all atoms in the protein.

The early versions of AutoDock made use of a Monte Carlo (MC) simulated annealing
(SA) technique for ligand configuration space exploration, where global searches were
performed at higher temperatures (allowing transitions over energy barriers) and local
searches took place at lower temperatures (allowing a local optimisation on the current
energy valley) [435,437]. With the protein held static during the simulation, the ligand
performs a random walk in the space around the protein. At each MC iteration, a small
random displacement is applied to all degrees of freedom of the ligand: translation of its
centre of gravity; orientation; and rotation around each of its flexible internal dihedral
angles. AutoDock 3.0 introduced the use of genetic algorithms (GAs) for global searching
as an alternative to SA, combined with an adaptive local search (LS) method to perform
energy minimization. The LS method can adapt the step size based upon the latest his-
tory of energies: a customizable number of successive failures (i.e. increases in energy)
cause the step size to be doubled, whereas a customizable number of repeated successes
(i.e. decreases in energy) cause the step size to be halved [34]. This hybrid and adaptive
global-local search method performs better than SA and GA alone and is best known as

the Lamarckian genetic algorithm (LGA).
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The basic principles behind GAs were explained above in the introductory chapter. In
AutoDock, the chromosomes are composed of strings storing the ligand’s translation (in
three Cartesian coordinates), orientation (in four variables defining a quaternion) and
torsions (one real-value per torsion). The GA starts by creating a random population of
individuals, whose size is controlled by the user. Each random individual is then given a
random value between the minimum and the maximum %, y and z extents of the grid
maps, producing a translation move; in turn, the four genes defining the orientation are
given a random quaternion: a random unit vector and a random rotation angle between -
180° and +180°. The random number generator is used in the LS, GA and LGA search en-
gines. The creation of the random initial population is followed by a loop over genera-
tions, repeating until the maximum number of generations or the maximum number of

energy evaluations is reached. A generation consists of five sequential stages:

1. Mapping and fitness evaluation - mapping decodes individual genotypes to their
respective phenotypes, allowing fitness to be evaluated, which is the sum of the
intermolecular interaction energy between the ligand and the protein, and the

intramolecular interaction energy of the ligand;

2. Selection - individuals that have better-than-average fitness receive more off-

spring (proportionally);

3. Crossover - two-point crossover is applied, with breaks occurring only between

genes, not within one gene;

4. Mutation - a random real number that follows a Cauchy distribution is added to

the variables defining translational, orientational and torsional genes;

5. Elitist selection - determines how many of the top individuals automatically sur-

vive into the next generation (this is an optional, user-defined parameter).

The GA iterates over generations until one of the termination criteria is met. Most GAs
imitate the key features of Darwinian evolution and employ Mendelian genetics. This is
represented on the right side of the diagram shown in Figure 2.6, where a one-way trans-
fer of information from the genotype to the phenotype is evident. By contrast, an inverse
mapping function (genotypes deriving from phenotypes) would allow finishing a local
search by replacing the individual with the result of the local search (left side of Figure
2.6). In the case of molecular docking the local search is carried out by constant conver-
sion of the genotype into the phenotype, rendering the use of inverse mapping unneces-
sary. Still, the genotype of the parent is swapped with the resulting genotype in agree-

ment with the Lamarckian principles.
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Figure 2.6. Illustration of the differences between Darwinian and Lamarckian
searches, showing both the genotypic and phenotypic spaces. Genotypes are mapped to
phenotypes by a developmental mapping function. f(x) represents the fitness function. On
the right-hand side, the result of applying the genotypic mutation operator to the parent’s
genotype is shown, along with the respective phenotype. The left-hand side of the diagram
illustrates a local search performed in phenotypic space employing knowledge on the fit-

ness landscape. Extracted from reference [34].

AutoDock 3.0 and later versions use a five-term force field-based scoring function based
on the AMBER force field and on a comprehensive thermodynamic model that allows
incorporation of intramolecular energies into the predicted free energy of binding. This
so-called Free Energy Function (FEF) comprises a Lennard-Jones 12-6 dispersion term, a
directional 12-10 hydrogen term, a Coulombic electrostatic potential, an entropic term,

and an intermolecular pairwise desolvation term (see Equation 2.1).
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The scaling factor of each of the five terms in FEF was empirically calibrated using sev-
eral protein-inhibitor complexes for which both structure and inhibition constants (K;)
were known. For a detailed description of how FEF was derived and parameterized, I

refer the reader to reference [34].

The main advances in AutoDock 4 (AD4) in respect to its predecessor versions are (i) the
ability to account for receptor-site flexibility and (ii) the introduction of a new method
for covalent docking. Receptor flexibility is particularly important in many protein-ligand
interactions, but handled in a rather limited way in AD4: the user selects specific side-
chains in the protein that are then moved by rotation around torsional degrees of free-
dom, yet applying the exact same methods used for the sampling of flexible ligand’s con-
formational space [438]. Although this new mechanism may be effective in some cases, it
also poses important problems, such as the extra computational burden in the calculation
of the receptor energy (a full pairwise energy evaluation must be carried out for the flex-
ible regions of the protein) and a higher potential for yielding false positives (due to the

larger conformational space).

1.4.2. AutoDock Vina

AutoDock Vina operates in a very similar way to AutoDock 4. However, and even though
their search algorithms and scoring functions share similarities in overall form, their im-

plementations are distinct.

In terms of the search algorithm, both programs employ hybrid global-local search; the
key difference is in the local optimisation. While the local search in AD4 uses small ran-
dom steps to seek more favourable conformations, Vina makes use of derivatives of the
scoring function with respect to its arguments (position, orientation and torsions of the
ligand), altogether composing a gradient, and performs optimisation accordingly. Inter-
estingly, coupled with a more efficient use of CPU resources through multithreading, this
difference renders Vina calculations faster than those performed by AD4 by orders of
magnitude, particularly when handling large ligands holding several rotatable bonds.
Moreover, although Vina does not offer a cluster analysis of all generated ligand poses (a
helpful feature in AD4), the authors have reported superior performance over AD4 re-
producing experimentally observed binding modes as the number of rotatable bonds

increases [439].

The scoring functions of AD4 and Vina are both empirically weighted, enclosing similar
terms for values such as hydrogen bonding and rotatable bond penalties. However, they

have been calibrated differently. The Vina Scoring Function (Vina SF) attempts to merge
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the advantages of knowledge-based potentials and empirical scoring functions, by mining
the empirical information from both conformational preferences found in receptor-

ligand complexes and experimental affinity data [439].

To sum up, Figure 2.7 illustrates the key differences between AD4 and Vina.

Molecular
representation
AutoDock 4 Vina
+ van der Waals * hydrophobic interaction
Scorin - electrostatic (van der Waals)
functi o?1 - hydrogen bond - hydrogen bond
- torsional penalty - torsional penalty
+ desolvation
:Z ?)rr(i:tlplm stochastic
I0Ge search gradient-based
local search
L genetic | L iterated |
algorithm local search

Figure 2.7. AutoDock 4 versus AutoDock Vina: a comparison of both methodologies.

Extracted from reference [440].

1.4.3. eHiTS

Originally developed at the University of Leeds, eHiTS is an exhaustive docking program
that employs the so-called divide and conquer approach to map the interaction of ligands
within the binding sites of proteins. Firstly, a cavity description of the binding site is built,
consisting of thousands of polyhedra. The ligand is then broken down into rigid frag-

ments and connecting flexible linkers. Each rigid fragment is independently docked into
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all possible places in the cavity. A clique detection algorithm is then used to carry out
exhaustive matching of compatible rigid fragment pose-sets, resulting in anywhere from
a few hundred to several million combinations of acceptable poses. The flexible linkers
are then fitted to the specific rigid fragment poses that comprise a matching pose-set. The
resulting reconstructed solutions represent approximate binding poses. Finally, a local
energy minimisation, driven by the scoring function, is used to refine these solutions

within the binding site. Figure 2.8 illustrates the methodology employed by eHiTS.

Reconnected
Ligand Pose:

Figure 2.8. Schematic representation of the method used by eHiTS for ligand docking.

Three different scorings are used by eHiTS throughout the docking procedure. The initial
scoring stage uses a simple surface map-based statistical function, whereby molecular
surface contacts between the ligand and receptor are counted and scored based on the
compatibility of chemical features (e.g. hydrogen bond donor, acceptor, hydrophilic,
metal). During the optimisation phase of the eHiTS process, a more sensitive, empirical
scoring function is employed. It consists of the following terms; hydrophobicity, aromatic
m-stacking, electrostatic potential, van der Waals contact energy, metal ion interactions,
and a penalty for incompatible contacts. The final binding poses are evaluated by a third,
more time-consuming scoring function, which attempts to provide a more accurate esti-
mation of the binding free energy for ranking the generated solutions. It is similar to the
empirical scoring function except that it includes additional grid-based geometrical
terms determined by the distance of the surface points from one another and the angle of
the surface normal vectors, as well as the following additional terms: total surface con-
tact area between the receptor and ligand, hydrophobic surface area of the receptor that

is not buried by the ligand, exposed hydrophobic surface area of the ligand, and sum of
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pocket depth values for all ligand atoms. The statistical score, all empirical terms, and the
additional terms from the third scoring function are combined with an adjustable set of
weights to produce the final energy score. The default weights provided by eHiTS have
been calibrated using 133 receptor-ligand complexes for which both high-resolution X-
ray crystal structures and corresponding experimental binding energy values were pub-

licly available [402,441].

1.4.4. FRED

FRED (Fast Rigid Exhaustive Docking) is a shape-based protein-ligand docking program
distributed by OpenEye Scientific Software, which takes a multi-conformer li-
brary/database - often generated by OpenEye’s OMEGA [442] - and a receptor structure
as input and outputs molecules of the input database most likely to bind to the receptor.
A schematic of the FRED docking process is shown in Figure 2.9. FRED docks molecules

using an exhaustive search algorithm throughout the following steps:

1. Enumeration of all possible poses by systematically searching rotations and transla-

tions of each conformer of the ligand within the active site at a specified resolution.

2. Filtering of the pose ensemble by discarding poses that do not fit within the larger of
two volumes specified by a customisable receptor shape potential grid and a con-

tour level.

3. Filtering of the pose ensemble by discarding poses that do not hold at least one
heavy atom within the smaller of the two volumes specified by the receptor shape

potential grid and a contour level.

4. Ranking of all surviving poses using one of the following scoring functions:

Shapegauss, PLP, Chemgauss2, Chemgauss3 or CGO.

Following the exhaustive search, the 100 top scoring poses are subject to systematic solid
body optimisation (a local exhaustive search at a finer resolution than the global exhaus-
tive search). This step can be carried out using one of the abovementioned scoring func-
tions and, additionally, Chemscore, OEChemscore, Screenscore or CGT. Finally, the best
scoring pose is used to rank the ligand against other ligands in the screening database.
This can be accomplished by one or several of the abovementioned scoring functions, by
employing weighting schemes or consensus scoring. During the docking process the pro-
tein is held rigid, as are the conformers of the ligand. Ligand flexibility is implicitly in-

cluded by docking the previously generated conformer ensemble of each molecule.
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Figure 2.9. Schematic representation of the FRED docking process. Extracted from re-
ference [443].

1.4.5. GOLD

GOLD (Genetic Optimisation for Ligand Docking) uses a genetic algorithm (GA) to explore
full ligand flexibility, along with rotational flexibility for receptor polar hydrogens. GOLD
features three scoring functions to evaluate and rank generated solutions: the force field
based GoldScore, the regression-based ChemScore and ASP. In addition, there is an op-
tion that allows using a user-specific scoring function. The GOLD scoring function, Gold-
Score, uses a set of empirical parameters from a modifiable parameter file. Some correla-
tion was found with experimental binding affinities [444], although it was originally de-
signed for optimal pose-selection [445]. The function uses a 6-12 Lennard-Jones poten-
tial for the intramolecular (internal) vdW score and a “soft” 4-8 potential for the intermo-
lecular (external) score. Equation 2.2 shows the components of GoldScore as output in

GOLD.

GoldScore = 1.375-vdWexiemal + HBexternal + SEinternal

Equation 2.2

VAW external is the intermolecular van der Waals score of the protein-ligand complex, HBex-

ternal 1S the intermolecular hydrogen bonding score of the protein-ligand compleX, SEinternal
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is the ligand strain energy (vdW and torsional energy). The vdW term is multiplied by an

empirical weight factor of 1.375 to promote hydrophobic protein-ligand contacts.

The GOLD implementation of Chemscore (Chemscoregorp) differs from the original scor-
ing function [91], since a clash penalty (Pcasn) and an internal torsion term (Pinternal) are
added to the final score to penalise bad contacts and poor conformations. Equation 2.3

shows the components of Chemscore as implemented in GOLD.

Chemscoregoip = Chemscore + Pgash + Pinternal

Equation 2.3

1.5. Docking accuracy evaluation

Docking techniques are commonly evaluated using one or more of the following criteria:
(1) their ability to reproduce the correct bound conformation of the ligand (often referred
to as “pose-prediction” or “pose fidelity”), (ii) their ability to assign scores that correlate
well with the binding affinities measured for known ligands, and (iii) their ability to dis-
criminate active molecules seeded in a data set of decoys (“enrichment”). While existing
methods tend to predict correct binding poses and often provide reasonable enrichment,
docking scores notoriously show poor correlation with experimentally-determined bind-
ing affinities across compounds series. This limitation may be linked to the simplicity of

the scoring functions, which are mostly optimised for high throughput analyses [80].

The majority of docking failures is due to the inability of the scoring function to reliably
rank optimal “native-like” ligand conformations above “non-native” orientations. Thus,
although the correct binding mode can be retrieved in most cases, assigning the lowest
energy score to the correct binding pose has proven to be more challenging. Over the
years a wide range of studies have been conducted to compare different docking tools,
and from their outcome it is clear that there is not one docking tool that outperforms all
others over a wide range of targets [415,416,446-449]. Indeed, the success of docking
scoring functions has been shown to be highly target dependent [89]. Target dependency
is an issue for docking because ligand binding can either be dominated by enthalpic or
entropic contributions, the latter of which is generally poorly represented by scoring
functions. The quest for a scoring function that is both highly accurate and generally ap-

plicable is ongoing.

In this chapter, the docking accuracy of selected docking programs is evaluated for pose
fidelity and binding affinity prediction, through the study of their ability to reproduce the

experimental ligand poses found in TTR X-ray complexes - a study often referred to as
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“redocking” or “self-docking”. This evaluation is critical to any structure-based design
studies. The ability of docking scoring functions to discriminate actives from inactives is
assessed later on (in Chapter 5) under the scope of the evaluation of programs for the

virtual screening of new TTR amyloid inhibitors.

2. Computational methods

In the following subsections I provide details about the computational methods used to
evaluate the structural quality of TTR complexes available in the PDB and to dock small

molecules into TTR binding sites.

2.1. Structural quality analysis

Structures deposited in the Protein Data Bank (PDB) are the result of experimental work.
Therefore, they are prone to experimental errors. Errors in PDB files span from viola-
tions of nomenclature, through slight inaccuracies in bond geometry, wrong side chain
rotamers or badly modelled loops, all the way to gross errors that may render some of
them inadequate for molecular modelling projects. In this work, we used both the
WHAT_CHECK module [450] of WHAT IF [451] and PROCHECK [452] to evaluate the
structural quality of 50 TTR high-resolution X-ray structures deposited in the PDB and
thus select 30 complexes for docking evaluation (see Table 2.2). These programs provide
indications of how likely certain residue geometries in a structure/model are compared
to a set of high quality structures. They yield detailed reports on structural quality valida-
tion for each input molecule. The reports include Ramachandran plots and the secondary
structure as described by DSSP, along with the description of problems that are detri-
mental to structural quality and to structural quality validation itself (e.g. space group

problems, missing atoms, etc.).

The selection of TTR structures for redocking and crossdocking studies took the follow-
ing three main criteria into consideration:

* Resolution: only structures with resolution < 2.00 A were included;

¢ R-factor: only structures with an R-value < 0.25 were included;

*  WHAT_CHECK structural quality indicators: only structures displaying appropri-
ate structure Z-scores (first and second generation packing quality, Ramachand-

ran plot appearance, chi-1/chi-2 rotamer quality and backbone conformation)
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and RMS Z-scores (bond lengths and angles, omega angle restraints, side chain

planarity, improper dihedral distribution and B-factor distribution).

Table 2.2 Thirty X-ray complexes of transthyretin used in redocking and cross-

docking studies.

PDB

Resolution

code A) R-value Description

1bm?7 2.00 0.189 (work) | Transthyretin in complex with flufenamic acid

1dvt 1.90 0.197 (work) | Transthyretin in complex with flurbiprofen

1dvu 1.90 0.198 (work) | Transthyretin in complex with dibenzofuran-4,6-dicarboxylic acid

ldvy 1.90 0.202 (work) | Transthyretin in complex with phenoxazine-4,6-dicarboxylic acid

ldvz 1.90 0.192 (work) | Transthyretin in complex with o-trifluoromethylphenyl anthranilic
acid

le4h 1.80 0.193 (work) | Transthyretin in complex with pentabromophenol

le5a 1.80 0.214 (obs.) | Transthyretin in complex with 2,4,6-tribromophenol

leta 1.70 0.184 (obs.) | Transthyretin in complex with 3,5,3",5'-tetraiodo-1-thyronine (T4)

letb 1.70 0.163 (obs.) | Transthyretin in complex with thyroxine

186 1.10 0.140 (obs.) | Transthyretin (t119m variant) in complex with 4-(2,6-diiodo-4-
methylphenoxy)-2,6-diiodophenol

1tlm 1.90 0.173 (obs.) | Transthyretin in complex with milrinone

1tt6 1.90 0.188 (obs.) | Transthyretin in complex with diethylstilbestrol

1tz82 1.85 0.198 (obs.) | Transthyretin in complex with diethylstilbestrol (monoclinic crystal)

lyld 1.70 0.198 (obs.) | Transthyretin in complex with iododiflunisal

2b15 1.70 0.190 (obs.) | Transthyretin in complex with 2,4-dinitrophenol

2b16 1.75 0.191 (obs.) | Transthyretin (y78f variant) in complex with 2,4-dinitrophenol

2b9a 1.54 0.231 (obs.) | Transthyretin in complex with 3',5'-difluorobiphenyl-4-carboxylic
acid (diflunisal analogue)

2f7i 1.60 0.234 (obs.) | Transthyretin in complex with 2',6'-difluorobiphenyl-4-carboxylic
acid (diflunisal analogue)

218i 1.54 0.217 (work) | Transthyretin in complex with a benzoxazole derivative

2fbra 1.46 0.211 (obs.) | Transthyretin in complex with a bivalent ligand

2g5u 1.80 0.180 (work) | Transthyretin in complex with 3,5,3',5'-tetrachloro-biphenyl-
4,4'-diol

2g9k 1.85 0.216 (obs.) | Transthyretin in complex with 2',3,3',4',5-pentachloro-biphenyl-4-ol

2gab 1.85 0.211 (obs.) | Transthyretin in complex with 3,3",4',5-tetrachloro-biphenyl-4-ol

2rox 2.00 0.170 (work) | Transthyretin in complex with thyroxine

1dvxb 2.00 0.192 (work) | Transthyretin in complex with diclofenac

2b77v 1.70 0.210 (obs.) | Transthyretin in complex with a diflunisal analogue

2qgcb 1.30 0.154 (work) | Transthyretin in complex with 2-(3,5-dimethyl-4-
hydroxyphenyl)benzoxazole

2qgd® 1.50 0.162 (obs.) | Transthyretin in complex with 2-(3,5-dibromo-4-
hydroxyphenyl)benzoxazole

2qgeP 1.45 0.166 (obs.) | Transthyretin in complex with 2-(3,5-dimethylphenyl)benzoxazole

3b56P 1.55 0.190 (obs.) | Transthyretin in complex with 3,5-diiodosalicylic acid

2 Removed from the pool of structures in crossdocking studies. » Added to the pool of structures in crossdocking

studies.
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Because most TTR structures deposited in the PDB were determined in the P 21 21 2
space group and the asymmetric unit of all orthorhombic crystal lattices contains only
the structure of one TTR dimer, the full biological units corresponding to the selected

PDB entries were downloaded from the Protein Quaternary Structure (PQS) server [453].

2.2. Binding site and chain annotation via clustering

Clustering of similarity scores matrix resulting from multiple structural alignment of TTR
binding sites was performed with CLUTO, a family of data clustering software tools
[454,455]. CLUTO provides multiple classes of clustering methods such as partitioning,
agglomerative and graph partitioning, and is useful for clustering low and high dimen-
sional data sets. Amongst the clustering criterion functions available are single criterion
functions and hybrid criterion functions. While the single criterion includes functions
that tend to either maximise similarities within a cluster or minimize dissimilarities be-

tween clusters, the hybrid criterion simultaneously optimises multiple single criterions.

Here, both partitioning and agglomerative clustering algorithms were explored. The di-
rect method is recommended over the repeated bisection method when the number of
desired clusters is less than 10 [454]. Since clustering was performed to investigate the
possibility of splitting the data set into two, corresponding to the two binding pockets of
TTR, the direct partitioning method was used. When using the agglomerative algorithm,
the recommended H2 clustering criterion was employed. The degree of agreement be-
tween the results from the two clustering algorithms was determined through the RAND

index using the e1071 package in R [456].

2.3. Ligand energy calculations and conformational ran-

domisation

Ligand structures of all complexes were verified visually, to ensure that no atom-atom
clashes were present in the X-ray complexes. A calculation of conformational energies
was performed - using the MMFF94 force-field [30] within SYBYL [457] - to ensure that

no ligand structures had high strain energies.

Openeye's OMEGA version 2.2.1 [458] was used to randomise all ligand conformations
prior to crossdocking studies (the lowest energy 3D conformations were retained). In
OMEGA, molecular energies were calculated using the Merck Molecular Force-Field [30],

and any conformations above a 10 kcal.mol-! energy threshold (in relation to the lowest
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energy state), or less than an 0.8 A RMSD threshold (in relation to all other conforma-
tions), were discarded. This randomisation procedure removes any bias towards the in-
itial positional and conformational information of the ligand. Therefore, it recreates the
typical virtual screening setting more accurately, where the “bioactive” conformation of

the molecules in the database is unknown.

2.4. Docking runs parameters

Each cognate ligand was individually redocked into its respective TTR binding site using
AutoDock version 4.0.1 [34], AutoDock Vina version 1.1.2 [439], eHiTS version 6.2 [441],
FRED version 2.2 [459] and GOLD version 3.2 [33]. With very few exceptions, the results
reported over the following section were obtained using the default docking parameters,
considered by the respective developers as an optimal setup for a good compromise be-
tween speed and accuracy. Given their convoluted structure, examples of AD4 and GOLD

docking parameter files are given in Section A of the Appendix.

AutoGrid version 4.0.1 was used to generate atom-specific affinity maps, electrostatic and
desolvation potential maps for AD4, employing the default grid spacing of 0.375 A and a
distance-dependent dielectric of -0.1465. AD4 calculations then were carried with the
default Lamarckian genetic algorithm, involving populations of 150 individuals, a maxi-
mum number of 27,000 of generations and a maximum of 2,500,000 energy evaluations,
over a total of 10 LGA-LS runs. As output, the top 10 best-ranked docking poses were re-

tained.

Vina was run with the default exhaustiveness (for the global search) of 8, a value that is
roughly proportional to the minimum time spent searching for a global minimum of the
scoring function. The number of binding modes to generate was adjusted to 10, and the
maximum energy difference between the best and the worst binding modes was kept at 3

kcal.mol-1.

Like with AD4, all GOLD parameters affecting the performance of GA searches were kept
as default (see an example in Section A of the Appendix). Automatic atom-type as-
signment was switched on for the ligands and the protein. Each ligand was docked ten

times (default).

In eHiTS, the default accuracy parameter was changed from 3 to 4, in order to promote a
more thorough search. The default select parameter was kept unchanged, resulting in the
selection of a representative subset of 32 solution poses for each ligand, but the toprank

parameter was set to 10, so that only the top 10 ranked solutions were reported.
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In FRED, exhaustive scoring and solid body optimisation of the generated poses were
carried out with Chemgauss3. The num_poses parameter, reflecting the number of poses
to generate per ligand was kept as default (100), but the num_alt_poses parameter, was
set to 10, corresponding to the number of alternate poses to be output. All FRED calcula-
tions were run after a preliminary step of ligand conformational search performed with

OpenEye’s OMEGA (generating up to 400 possible conformations per ligand).

Docking poses generated by AD4, Vina and eHiTS were scored using the scoring functions
implemented as objective functions in the programs - FEF, Vina SF and eHiTS SF, respec-
tively. Docking poses generated with GOLD were scored with GoldScore [33] and re-
scored with ChemScore [91] and ASP [460]. Poses generated by FRED upon exhaustive
scoring and optimisation with Chemgauss3 were scored with Chemgauss2 and Chem-

gauss3 [459], Chemscore [91], PLP and Screenscore [461].

Finally, it is worth noting that eHiTS and GOLD were the only programs allowing the ex-
plicit inclusion of crystallographic water molecules in the docking calculations in a
straightforward manner. For the sake of a fair comparison, all results reported in the fol-
lowing section were obtained upon exclusion of water molecules. Docking calculations
including crystallographic water molecules were performed with eHiTS and GOLD, but
no visible gains in docking accuracy were detected, not even in complexes where water-

mediated interactions appear to be relevant for ligand binding.

2.5. Quantitative comparison of docking accuracy

The accuracy of docking generated poses was inspected visually with VMD [462] and
quantified by the root-mean-square deviation (RMSD) from experimentally determined
ligand coordinates (Equation 2.4). All RMSD values were calculated with a script written
in-house based on the smart rms utility supplied with the GOLD package (CCDC).
Smart_rms calculates the RMSD between two conformations of the same structure, taking
into account ligand topology symmetry (to accommodate effects such as the flipping of a
phenyl ring by 180 degrees). Using a graph isomorphism algorithm, an RMS score is cal-

culated for each way of mapping the molecule onto itself.

RMSD =

Equation 2.4

As explained above, the contents of the asymmetric unit of most TTR complexes require

crystallographic symmetry operations to generate the complete macromolecule. How-
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ever, these operations produce an unfortunate effect over the ligands, which sit along one
of TTR’s symmetry axes: for several ligands, principally the asymmetric ones, an alterna-
tive (and yet plausible) binding mode is inherited from the symmetry operations (see
Figure 2.10). To handle this problem during RMSD calculations, the angles between the
planes intersecting the ligands in their two binding modes were determined on each of
the two TTR binding sites of every TTR complex downloaded from the PQS server. This
was accomplished using the Structure Measurements panel of UCSF Chimera [463]. Based
on the angle value distribution for ligands showing very similar symmetry-related bind-
ing modes (hence, non-alternative), such as the strongest TTR binder (PDB/PQS entry
2g5u), all binding modes showing a difference of 7 degrees or more between their re-
spective intersecting planes were labelled as alternative. In these cases, two RMSD values
were calculated against each of the alternative binding modes, and the RMSD value used

for comparisons corresponds to the lower value found.

Exceptional cases requiring an even tighter control are the TTR complexes of flufenamic
acid (PDB/PQS entry 1mb7), wherein 4 alternative binding modes had to be considered
(2 symmetry-related binding modes times 2 alternative ligand conformations), and of a
bivalent ligand (PDB/PQS entry 2fbr), where the 2 alternative binding modes resulting
from symmetry operations apply to the 2 alternative binding modes across the entire
TTR channel. In these cases, visual inspection of the docked poses became even more

critical to the selection of RMSD values to use for comparison.

Figure 2.10. Crystal structure of the TTR:T4 complex showing two alternative binding
modes for Ts resulting from the symmetry operations required to generate the com-
plete TTR binding sites. The planes that intersect the ligand structures on each binding
mode are displayed for one of the binding sites. In this case, these planes form an angle of

about 24 degrees between each other. This figure was produced using UCSF Chimera [463].
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3. Results and discussion

Structural quality analysis was followed by an exhaustive structural similarity analysis
towards a logical systematization of TTR chain and binding site annotations. This was
accomplished through the coupling of a geometric hashing algorithm with hierarchical
clustering. Next, to identify a program capable of providing accurate predictions for the
interactions between TTR and a multitude of chemical compounds, we tested five dock-

ing programs that employ one or several scoring functions.

3.1. Structural quality evaluation

All TTR complexes selected from the PDB were subjected to structural quality evaluation
with WHAT_CHECK and PROCHECK. Sixteen complexes with near-zero or negative Z-
scores for overall Ramachandran plot appearance were rejected; 4 complexes were re-
jected due to poor (or worst) chil/chi2 rotamer normality of the binding site residues (as
classified by WHAT_CHECK). Thirty complexes were retained. Overall, the quality of
these 30 complexes is acceptable, with no more than 10 outliers, on average, populating
their Ramachandran plots. Moreover, most of these outliers are located on the surface of

the protein, thus not affecting binding site residues.

A more careful analysis of WHAT_CHECK reports was enforced for the best-performing
complexes at docking accuracy evaluations (see the “Crossdocking studies” section
below). The idea was to ensure that structures to be used for further computational stud-
ies (such as virtual screening) met most structural quality requirements that can be ex-
pectable. Table 2.3 presents Z-scores reported by WHAT_CHECK for critical quality pa-
rameters, namely the Ramachandran plot appearance, chil/chi2 rotamer normality,
backbone conformation, side chain planarity, improper dihedral distribution and B-factor
distribution. Of all parameters, the most upsetting results concern the chil/chi2 rotamer
normality, with all three best crossdocking performing structures (see subsection 3.4 of
this chapter) scoring negative. However, it is worth mentioning that, although negative,
the magnitude of the scores is small, meaning that, globally, the side chain conformations
of structures differ only slightly from the global rotamer distribution within
WHAT_CHECK database of known reliable structures. Results for the worst crossdocking
performing structures are also given in Table 2.3, for comparison purposes. Interestingly,
although the Ramachandran plot appearance parameter discloses higher quality for
1bm?7 and 2g5u, overall, it was not possible to identify a quality indicator showing a clear

correlation between structural quality results and docking accuracy results.
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Table 2.3. Selected quality indicators from the WHAT_CHECK summary report for two
TTR structures performing best and worst against a variety of ligands. WHAT_CHECK

uses experimental evidence from known reliable structures for comparisons.

Structure Z-scores(?) RMS Z-scores(b)
PDB hil/chi2 I
entry | Ramachandran chil/chi Backbone Side chain mproper B-factor
plot appearance rotamer conformation planarity dihedral distribution
normality distribution
Crossdocking best-performing TTR structures
1bm?7 2.2 -0.5 13 0.882 1.257 0.888
2g5u 21 -0.2 1.8 0.779 0.946 0.521
Crossdocking worst-performing TTR structures
le4h 1.5 0.6 1.2 0.363 (tight) 0.910 0.588
1tlm 1.4 -1.0 0.2 1.534 1.809 (loose) 0.926

@ Positive values mean better than average. ® Values should be close to 1.0.

Figure A.1 of the Appendix reports the Ramachandran plots for the best performing TTR

structures selected through the crossdocking analyses reported below.

3.2. Receptor site analysis: structural overlap and chain

annotation

In order to derive logical annotations for the four TTR chains (and, thus, for the two bind-
ing sites they comprise), the 30 TTR complexes were first screened through an even
tighter quality cut-off: only TTR structures holding resolution of 2.0 A or better and R-
factor of 0.2 or lower were retained. More importantly, redundancy was avoided through
the selection of structures with highest quality from amongst a group of closely related
structures, resulting in a total of 21 complexes. Multiple structural alignment of these 21
complexes was then performed with GH8. The similarity scores were calculated by com-
parison of all C. atoms of the protein in an all-against-all basis. TTR in complex with 4-
hydroxy-2',3,3',4',5-pentachlorobiphenyl (PDB entry 2g9k) was found to hold the highest
similarity score amongst the data set (illustrated in Figure A.2 of the Appendix). This
complex was thus used as the reference template for the structural alignment of the 30
TTR complexes listed in Table 2.2. Figure 2.11 illustrates the structural overlap resulting

from this multiple structural alignment.

Chains [A,C] and [B,D] enclosing ligand binding sites of TTR, were segregated for the 21
selected complexes. Coordinates of TTR binding site residues (Glu 54, Lys 15, Leu 17, Thr
106, Ala 108, Ala 109, Leu 110, Ser 117, Thr 119 and Val 121) were extracted from their
respective complexes and aligned with GH8. Since the differences between two binding

pockets may be solely based on the arrangement of a few atoms in the structure, two dis-
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tinct analyses were carried out for the extracted active site residues: (i) comprising only
the C. atoms and (if) comprising all side chain atoms. Minor, yet systematic, structural
differences between the two pocket domains were identified in the protein backbone
across the complexes, using clustering (see Figure A.4 of the Appendix). Conversely, no
systematic (nor significant) differences were found for the residue side chains composing
the binding sites. TTR binding site in complex with 2',6'-difluorobiphenyl-4-carboxylic
acid (PDB entry 2f7i) was the highest scoring structure resulting from the all-atom side
chain alignment, disclosing the highest overall similarity amongst all TTR binding site
side chains (illustrated in Figure A.3 of the Appendix). Visual analysis also revealed that
the binding site of 2f7i presents well-defined side chain conformations for residues Ser-
117 and Thr-119, with their side-chain hydroxyls pointing away from the binding site
and possibly establishing hydrogen bonds with Ser-115 residues of the flanking mono-
mer. In fact, this configuration is common to most TTR complexes, which can influence

the outcomes of docking and scoring,.

Guided by these results, the arrangements of chains A, B, C and D and their respective
geometric centres in PDB entry 2g9k were inspected using VMD [462]. The above pro-
cess was repeated one-by-one for the remaining 29 complexes and their arrangement
was compared to that of 2g9k. Any complex that did not conform to the 2g9k chain layout

had its chains appropriately renamed.
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Figure 2.11. Structural overlap resulting from the multiple structural alignment of 30
TTR complexes performed with GH8. (A) Representation of the full tetramer assembly.
(B) A view from TTR binding pockets, with one dimer at the bottom (far from the plane of
the viewer’s eye) represented by its molecular surface and the superimposed side chains at
the top (closer to the plane of the viewer) represented in sticks. The molecular surface is
coloured by residue type (white for apolar, green for polar, blue for positively charged and

red for negatively charged residues). The sticks are coloured by atom type.
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3.3. Redocking studies

The basic postulates of structure-guided molecular design emphasize the value of a thor-
ough understanding of the structural aspects driving the association between two inter-
acting molecules. Accordingly, the utility of a docking program in structure-based design
is mainly determined by its ability to recognize ligand poses that are close to those re-
vealed by experimentally determined complexes. PDB accession codes and details of the
24 TTR X-ray complexes used in the redocking studies can be found in Table 2.2. The na-
tive form of TTR is a tetramer comprised by four identical chains, whose assembly pro-
duces a central channel with two equivalent binding sites. As illustrated in Figure 2.2 and
Figure 2.11, these tunnel-shaped binding sites are mostly comprised of apolar residues,
such as alanine, leucine and valine, featuring two lysine and two serine residues respec-
tively at their external and internal ends. Besides its natural penchant for hydrophobic
moieties and halogen bearing organic molecules, TTR displays cooperativity in ligand
binding, i.e. the binding of a first molecule to one of the sites affects the affinity of binding
for a second molecule. Even though the structural grounds of this effect remain elusive to
date, given the full correspondence in amino acid composition between the two binding
sites, it prompted us to study both sites individually. Thus, each cognate ligand was indi-
vidually docked back into its respective TTR binding site using AD4, Vina, eHiTS, FRED
and GOLD.

The results of redocking studies show that, in general, docking programs performed well
at sampling near native poses, all of them being able to produce at least one ligand con-
formation whose root-mean-squared deviation (RMSD) is equal to or below 2.0 A,
amongst the top ten docking solutions. Programs using genetic algorithms for conforma-
tional sampling (namely, AD4/Vina and GOLD) performed marginally better than those
using incremental construction (eHiTS) or shape fitting (FRED) algorithms (see an exam-
ple in Figure 2.12). However, the true impact of the more efficient sampling of GAs was
noticeable only in the case of a bivalent amyloid inhibitor (PDB code 2fbr), a palindromic
ligand containing 12 rotatable bonds that fills the entire TTR channel], i.e. both binding
sites simultaneously (see Figure 2.3 and reference [400] for details). This suggests that,
even though programs employing GAs tend to be slower than those using other ap-
proaches, especially when handling highly flexible ligands, the extra time cost (and CPU

burden) seems to pay off and result in higher docking accuracy.
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Figure 2.12. Score versus RMSD plots illustrating the pose fidelity of four docking
programs while handling a polychlorinated biphenyl against TTR. Results obtained
with GOLD v3.2, FRED v2.2, eHiTS v6.2 and AutoDock v4.0.1 are shown. For each program,
the top 10 best-ranked poses are shown as circles in the plots. The pose holding the lowest
RMSD is coloured in cyan and shown in licorice representation against the reference X-ray

pose (coloured in green).

The real challenge to the docking programs was only uncovered when trying to identify
native-like ligand poses through the adequate scoring of each predicted pose. As seen in
Figure 2.12, little discrimination between correct (RMSD = 2 A) and wrong poses (RMSD
> 2 A) occurs in most cases. For example, while GOLD was able to sample a near native
pose (RMSD = 0.55 A, Score = -30.1), GOLD’s implementation of Chemscore assigned an
incorrect pose (RMSD = 6.53 A) with the best score (Score = -30.6; see the top left pane).
On the other hand, while some discrimination between correct and wrong poses is wit-
nessed with FRED’s implementation of Chemscore and the eHiTS scoring function, the
difference between scores assigned to correct/wrong poses is small. Interestingly, in this
case all top 10 ranked poses scored by AD4’s FEF correspond to correct poses (with
RMSDs < 1 A). A more challenging example in terms of conformational sampling is pro-

vided in Figure 2.14.

Figure 2.13 summarizes the results of the 48 redocking operations performed with TTR
complexes (24 complexes times 2 binding sites). Most scoring functions failed to identify

the best poses from the pool of generated ligand conformations. More than 70% of the
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highest ranked solutions had RMSD values above 2.0 A in both TTR binding sites. With-
out doubt, the free energy function (FEF) implemented in AD4 outperformed all other
docking and scoring schemes (with 63% accuracy), yet closely followed by Vina (56 %
accuracy), revealing an acceptable discriminative power at pose prediction in both TTR
binding sites (see Figure 2.14 as well). Surprisingly, FRED and its built-in scoring func-
tions presented the worst docking accuracy for TTR amongst all tested algorithms. Con-
sensus scoring of the docked poses was attempted, employing several combinations of
weighting/voting, but no visible improvements were witnessed. The results obtained
with eHiTS and GOLD disclose a higher dependence on a correct placement of the ligands

directed by hydrogen bonds and charge interactions, respectively.
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Figure 2.13. Pose prediction accuracy for five docking programs on 24 TTR X-ray
complexes. Results of 48 redocking operations performed on the two binding sites of each
TTR complex are shown. The rows are sorted according to the ligands' molecular weight
(MW column), with the exception of entries 2fbr, a complex of a bivalent ligand, and 1bm?7,
a complex with two correct ligand poses per binding site (last two separate rows). The top-
scoring docking solution provided by each docking/scoring scheme is compared with the
native X-ray pose. The colours represent a correct prediction (defined as a top-scoring pose

with ligand RMSD < 2.0 A) in both TTR binding sites (green cells), in one of the pockets

Chapter 2 99



(orange cells) and in none of the pockets (red cells). Exceptional predictions (defined as a

correct prediction in both sites with RMSD < 0.5 A) are shown in dark green.

In terms of ligand molecular weight, all programs seemed to perform better in the range
between 230 and 310 Daltons. However, it should be noted that in the case of TTR bind-
ers this was most likely related to added difficulty in handling exotic species (particularly
iodine) rather than in handling larger ligands. In fact, only AutoDock 4 was able to cor-
rectly predict the binding mode of thyroxine, TTR's natural endogenous ligand (contain-
ing 4 iodine atoms and 5 rotatable bonds), in one of the binding sites (PDB codes 1eta,

letb and 2rox).

Qq

Energy (Kcal.mol")

RMSD (A)

Figure 2.14. Score versus RMSD plot illustrating the pose fidelity of AutoDock 4 while
handling a more flexible ligand (T4) against TTR. The top 10 best-ranked poses are
shown as circles in the plots. An acceptable correlation between score and RMSD is dis-
closed (RZ = 0.72). The pose holding the lowest RMSD is coloured in cyan and shown in li-

corice representation against the native X-ray pose (coloured in green).

3.4. Crossdocking studies

Crossdocking is a valuable analysis to understand receptor and ligand specificities, allow-
ing the identification of protein structural models that perform best against a wide vari-
ety of ligands. The procedure is very similar to that of redocking, but every X-ray ligand is
docked not only to its respective receptor structure but also to every other receptor
structure available. To do so, and to quantify the accuracy of the predicted ligand poses
through the calculation of an RMSD, all protein-ligand complexes need to be structurally
aligned before docking operations take place. As explained in subsection 1.2, in the case
of TTR structures, the alignment was produced using a geometric hashing algorithm
available in-house [412]. AutoDock 4 was chosen for the crossdocking study, since it was

the program showing the highest docking accuracy in redocking tests. Six new complexes
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were added to the pool, increasing redundancy (and thus evidence) at the receptor level,
and two complexes were removed: 2fbr, due to the lack of two independent ligands oc-
cupying TTR’s binding sites (in 2fbr, TTR’s binding sites are occupied by a unique biva-

lent ligand), and 1tz8, due to problems during the alignment to the reference structure.

The results of the cross-docking experiments are shown in Figure 2.15. The docking accu-
racy of native ligand pose prediction on each of the 28 TTR receptors was dissected
across nine RMSD intervals. It is interesting to notice that despite their structural simi-
larity, the results obtained for the two binding sites differed considerably. As can be veri-
fied by contrasting the heat map's diagonal intersection (Figure 2.15) with the redocking
results in Figure 2.13, randomisation of initial ligand coordinates did not produce im-
portant loss in docking accuracy. Overall, better predictions were obtained for the bind-
ing site designated as “AC” than for the “BD” binding site (designations were taken from
PDB chain annotations and dictated by the resulting structural alignments). TTR receptor
structures with PDB accession codes 1bm7, 2f8i and 2g5u had the best crossdocking suc-
cess rates, all with 6 correct predictions (RMSD < 2.0 A) out of 28 structures of TTR “AC”
binding sites. 1bm?7, in particular, had the highest overall success (results of both TTR
binding sites combined) with 12 correct predictions out of the 56 TTR binding site do-
mains. 2g5u, in turn, corresponds to the complex of TTR bound to the strongest amyloid
inhibitor known to date, a polychlorinated biphenyl, and one of the few TTR binders dis-

playing significant positive cooperativity.
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Figure 2.15. Heat maps for cross-docking results on each binding site over 28 TTR
complexes. The pool of TTR complexes was refined to make it more diverse and appropri-
ate for cross-docking studies. Six new entries were added in (PDB codes 1dvx, 2b77, 2qgc,
2qgd, 2qge and 3b56) and two entries were removed (1tz8 and 2fbr). The receptor struc-
tures are disposed vertically and ligands horizontally. The colour code corresponds to in-
tervals of RMSD values (in Angstroms) determined for the top-ranked poses. For each re-
ceptor, the success rate is defined as the number of top-ranked poses with an RMSD < 2.0 A

and is represented in the dark grey horizontal bars.
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3.5. Binding affinity predictions

The ability to predict the affinity (or energy) of binding events involved in protein-ligand
and protein-protein interactions is a long sought goal in the field of molecular modelling,
particularly by the developers of docking programs. However, and as explained in the
introductory section, docking scoring functions are mostly tailored for speed of calcula-
tion, which largely results from criteriously discarding or simplifying certain elements of
reality - such as polarization effects, or any effects involving electrons for that matter.
Still, while many scoring functions quantify the strength of P-L and P-P interactions using
an undefined metric (e.g. GoldScore, Chemscore, ASP, etc.), others actually attempt to
estimate known measures of affinity, such as inhibition constants (e.g. early versions of

eHiTS), or the change in Gibbs free energy upon binding (e.g. AutoDock 4 and Vina).

The comparison of experimentally derived binding affinities with the calculated docking
scores typically shows weak correlations [448]. Nevertheless, it would be interesting to
verify whether binding affinities predicted by AutoDock 4 and Vina correlate with known
experimental data of known TTR ligands. Unfortunately, the large amount of structural
information on TTR-ligand complexes can only be contrasted with the lack of publically
available binding affinity data for TTR ligands. Indeed, no more than 5 association con-
stants (Ki's) could be retrieved from the literature and/or public resources, which
greatly prevented meaningful comparisons to be made or significant conclusions to be
drawn. Other experimental affinity measures were sporadically found, such as IC50s and
pKi’s, but these are known to vary significantly with the test assay conditions, limiting
their use in this type of study. Figure 2.16 provides a very brief illustration of an evalu-
ation of AD4’s and Vina’s scoring function, based on the reported K.'s for T4, genistein,
flufenamic acid, phenox and PCB18 (a detailed description of these compounds was pro-
vided in subsection 3.4 of the introductory chapter). While based on very limited evi-
dence, the plot suggests a systematic failure by AD4 and Vina to assign stronger binders
(higher K.'s) with stronger scores (more negative scores) and thus to correctly guess ex-
perimental binding affinities. In fact, in both cases positive correlation coefficients were
found showing that the FEF scoring function tends to favour ligands with higher molecu-
lar weight, over ligands showing stronger experimental binding affinities, such as the

PCB18.

Even though this study is based on little evidence, the results provide a clear indication
that binding affinity predictions of TTR-ligand interactions are unreliable and that great
care should be taken when using them in drug design studies such as virtual screening.
Alternative methods can be envisaged in order to withdraw more reliable predictions,

but these methods are often very slow and unpractical for VS. A viable approach to tackle
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this problem would be to identify an alternative scoring function to complement AD4’s
and Vina’s good performance at pose prediction, by correctly scoring and ranking ligand

poses. This approach will be pursuit in Chapter 5.
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Figure 2.16. Comparison of binding affinities predicted by AutoDock with experi-
mental binding affinities. The diamonds correspond to affinity values determined by AD4
(A), whereas the triangles correspond to affinities predicted by Vina (B). Correlation co-
efficients of 0.24 (blue regression line) and of 0.35 (green regression line) were found for
AD4 and Vina, respectively. In both cases, the positive correlations suggest failure to assign

stronger binders (higher Ka's) with stronger scores (lower, i.e. more negative scores).

4. Concluding remarks

In this chapter we conducted structural quality evaluation for a number of TTR X-ray
complexes deposited in the PDB, in order to identify a set of high-quality structures for
structure-based drug design approaches. The selected complexes were then studied
using geometric matching and the complex with PDB code 2g9k was identified as the
structure holding highest overall structural similarity amongst a set of 30 TTR com-
plexes. This structure was thus used as reference template both for alignment and for
chain renaming. The structural similarity scoring matrix resulting from the multiple
structural alignments were clustered and minor, yet systematic, structural differences in
Ca atom coordinates were detected and used as guidance to derive new chain annota-

tions and, hence, logical binding site nomenclature.

Furthermore, five well-known docking programs were tested for pose fidelity against
TTR. AutoDock 4 and its native free energy scoring function was the program providing
the best overall predictions, despite the low speed of its algorithms. AutoDock 4 was fur-
ther used to conduct crossdocking studies that allow the identification of a narrow set of
TTR X-ray receptor structures performing better against a variety of ligands. In general,

TTR binding sites annotated as AC seem to provide better results than binding sites BD.
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However, given the more or less subjective nature of the binding site annotation, the re-
sults in both binding sites were considered. With this in mind, TTR structures with PDB
codes 1bm?7, 2f8i and 2g5u offered the most reliable crossdocking results, with 2g5u

holding the best structural quality indicators.

In spite of the careful design of the analyses carried out in this chapter, the implications
of some results should be taken with a grain of salt. My self-criticism mainly goes to the
metrics used for quantification of docking accuracy. Although every redocked pose was
visually inspected throughout the redocking studies, in order to ensure that the com-
puted RMSD value mirrored the quality of the predictions, the same could not hold for
the crossdocking analysis, wherein approximately 1500 docking calculations were per-
formed. Often, RMSD values do not reflect the quality of a solution provided by a docking
program. Most frequently, they can be unrealistically high, simply because a small part of
the ligand adopted a wrong conformation, while most of the ligand structure was cor-
rectly docked. Lately, a few approaches have been proposed to tackle this problem, such
as IBAC [464] and RSR [465]. While the real value of these metrics as practical solutions
still needs to collect the consensus of experts in the field of docking, the RMSD still stands
as the most widely used metric allowing a direct comparison with most results published

in the literature.

No sensible correlations between experimental binding affinities and docking-based pre-
dictions could be withdrawn from this study. While the limited information on experi-
mental binding affinities for TTR ligands does not permit broad conclusions to be drawn,
the obtained results seem to corroborate an increasing view that docking scoring func-
tions are poor predictors of small-molecule affinities for protein targets. Nevertheless,
AutoDock’s ability to correctly predict native ligand poses on TTR-ligand complexes was
a major find of this work, which was taken advantage of in subsequent stages of my PhD

project.
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Chapter 3

Receptor- and ligand-based
pharmacophore models of TTR:

questions of symmetry

“The man who sees both sides of a question is a

man who sees absolutely nothing.”

[Oscar Wilde]



1. Introduction and theory

Several approaches exist to search small molecule structure databases for novel lead
compounds, depending on the presence or absence of an experimental protein structure
[466]. Pharmacophore modelling and searches are widely utilised to identify common
functional groups between a set of known active molecules aligned in 3D space and to
screen large databases for molecules that fit the models thus obtained [99]. The pharma-
cophore concept was originally defined by Paul Ehrlich, more than one hundred years
ago, as “a molecular framework that carries (phoros) the essential features responsible
for a drug’s (pharmacon) biological activity” [467]. The modern definition by IUPAC
states that a pharmacophore is “the ensemble of steric and electronic features that is ne-
cessary to ensure optimal supramolecular interactions with a specific biological target
structure and to trigger (or to block) its biological response” [95]. Indeed, the pharma-
cophore entails the features reflecting one molecule’s ability to participate in interactions
such as electrostatic and hydrophobic interactions, charge transfer and hydrogen bond-
ing. These features may then be translated into a query for database searching and to

identify new active compounds [96,466,468-470].

Receptor-based pharmacophore models, in particular, provide an excellent alternative to
docking-based virtual screening, while still representing specific protein-ligand interac-
tions. As mentioned in the introductory chapter, the exploitation of available experi-
mental protein structures is a relatively new feature in the long history of the develop-
ment and application of the pharmacophore concept. Nonetheless, a number of studies
show enhanced performance of combined receptor- and ligand-based approaches in
pharmacophore modelling: I point the reader to references [100,101]. Several programs
have been recently developed for the automatic construction and visualisation of phar-
macophore models derived from protein structures. An example is the LigandScout soft-
ware, developed in Thierry Langer’s laboratory [103]. LigandScout automates the pro-
cess of protein and ligand perception and interpretation (hybridization states, bonds),
followed by deduction of the pharmacophore. Pharmacophore models thus produced can
be exported for VS with other programs, often proprietary software, such as Catalyst
(developed by Accelrys), MOE (developed by Chemical Computing Group) and Phase (de-
veloped by Schrodinger).

In fact, and in spite of the increasing popularity of pharmacophore modelling and
searches, access to this type of methodologies has been seriously hindered to the aca-
demia by the outrageous prices of the license fees charged by most software providers.

Some but not all are open to negotiate academic licenses at reduced rates, but too often
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these are still above the budget of most academic researchers. Only very recently have
two novel approaches for 3D pharmacophore elucidation and searching been proposed
as freely accessible to the academic community [471-473], and even implemented as
web resources [473,474]. While these tools may represent a turning point in the thus far
restricted utilisation of pharmacophore-based virtual screening at the academia, exam-

ples of their experimental validation and of success cases are still missing.

In the previous chapter I have underlined the limitations known to docking and scoring
programs in common use. In the current chapter, a first alternative strategy for the ra-
tional design of new TTR amyloid inhibitors is envisaged, relying on a combination of
both receptor-based and ligand-based virtual screening. This strategy can be developed
with the support of the vast information on the structure of TTR and on strong TTR amy-
loid inhibitors. To the best of our knowledge, to date no study has reported on the devel-
opment or use of pharmacophore-based approaches towards the virtual screening of
new TTR amyloid inhibitors. Here, we attempt to identify systematic differences in ligand
binding modes across the two equivalent TTR binding sites leading to the definition of
five training sets for pharmacophore modelling. Molecular Interaction Field (MIF) ana-
lyses were conducted in order to identify hot spots of strong interaction with several
probe atoms within TTR binding sites. Pharmacophore perception resulted from the
combination of all conducted analyses and was translated into five pharmacophore mod-
els: three models for TTR binding site AC and two models for binding site BD. Each model
was evaluated for selectivity against a benchmark set comprised of known TTR stabilis-

ers and inactive (decoy) molecules.

1.1. Pharmacophore modelling techniques

Figure 3.1 illustrates a general workflow for the generation of pharmacophores from
multiple ligands. The creation of correct compound structures to use as input for analysis
is the first key step to any pharmacophore modelling project, in which several elements,
such as atomic valences, correct bond orders and appropriately defined aromaticity need
to be accounted cautiously. Moreover, the correct stereochemical flags have to be in-
serted for a correct treatment of stereochemistry. Most pharmacophore generation pro-
grams in common use include compound builders, but the modellers can also import the
ligands from external sources using common file formats (e.g. SMILES, MOL, SDF, MOL2,
etc.).
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Figure 3.1. A workflow describing the most common procedures used for pharma-

cophore modelling. Adapted from reference [475].

The representation of pharmacophore models varies significantly from one program to
another. However, most representations comprise the nature of the pharmacophore
points (fragments, chemical features) and the geometric constraints connecting these

points (distances, torsions, 3D coordinates constraints).

Feature Analysis (see Figure 3.1,), i.e. the interpretation of the chemical structures of the

molecules, can be accomplished at two main levels:

1. Substructural, where molecules are dissected into multiple fragments, each

fragment holding certain specifications (e.g. basic nitrogen or aromatic ring).

2. Functional, wherein each molecular fragment of the compounds is translated
into the general property it conveys. In this stage, the properties mapped on the
fragments are chemical properties, e.g. hydrophobic or ionic interactions or hy-

drogen bonding features.

The description of the chemical properties of compounds requires their functions to be
accessible for the interaction with the binding partner (receptor, enzyme or nucleic acid),
so in case the bioactive conformation of the ligand is not known, a conformational expan-
sion analysis is a necessary step in order to identify a conformation that prepares those

functions for interaction with the target.
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The consideration of ligand flexibility is probably the most demanding task in pharma-
cophore modelling. Methods to account for this problem are generally subdivided into
four classes: systematic search in torsional space, optionally followed by clustering, sto-
chastic methods (e.g. Monte Carlo), sampling (e.g. Poling [476]) and molecular dynamics.
The goal is not only to have the most representative coverage of the conformational
space of the ligands, but also to have either the bioactive conformation as part of the set
of generated conformations or at least a cluster of conformations that are close enough to
the bioactive conformation. Back in the mid-1980s, Marshall et al. presented the so-called
Active Analog Approach [52] that still forms the basis of some of the most prominent
automated pharmacophore modelling techniques: the conformational space of flexible
molecules is constrained to the geometry of a reference molecule (generally active and as
rigid as possible) and pharmacophore models are then derived from the set of resulting
alignments. At this point I refer the reader to reference [475] for a comprehensive review

of the methods for automated molecular/pharmacophore alignment and generation.

The comparison step shown in Figure 3.1 corresponds to the actual pharmacophore cre-
ation process itself. Most pharmacophore generation programs generate qualitative
pharmacophores that do not account for the potency of the ligands. Thus, equipotent
compounds should be used. The majority of methods are based on minimizing the RMS
superposition error between conformations of several molecules, while attempting to
improve the 3D overlay of pharmacophores. Typically, the result is a small set of pharma-

cophore solutions, ranked according to different metrics depending on the program used.

1.2. Combinations of pharmacophore models

Strategies based on the combination of multiple pharmacophore models are often pur-
suit with two principal (yet very distinct) objectives: (i) to improve the specificity and the
selectivity of the models for one single target, by combining their strengths and diluting
their weaknesses; (ii) to discover new ligands that bind to multiple targets. While the
idea behind objective (i) seems easy to grasp and will be explored in this chapter, the
motivation underlying objective (i) may look more surprising. Without any doubt, many
highly specific mono-target drugs have proven the value of mono-target medicine. How-
ever, clinicians have been increasingly convinced that modulating an array of targets can
be advantageous in treating a range of pathologies. Nowadays, it is already broadly rec-
ognized that high specificity for a single target may not deliver the necessary effective-
ness versus adverse-effects ratio and, in many cases, a balanced activity at multiple tar-
gets may yield better results. Morphy et al. weighed the opportunity and the advantages

associated to the design of drugs acting on two (or more) targets, as opposed to seren-
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dipitous promiscuous ligands [477]. A growing number of publications reflect an awak-
ening of interest in the rational design of “promiscuous” drugs and may imply an ongoing
re-assessment of the “one target, one drug” concept that has dominated thinking in the

pharmaceutical industry over the last decades [478-480].

Certainly, computer-aided drug design strategies combining multiple pharmacophore
can lead to the identification of novel chemical entities merging in one molecule the

fundamental elements of multiple partners.

1.3. Validation of pharmacophore models

Following analysis on a training set of compounds, multiple pharmacophore hypotheses
are often generated and the careful selection of model(s) with biological and/or statisti-

cal relevance becomes a critical necessity prior to any further research endeavours.
Typically, the validation methods can be gathered around three groups:

1. Statistical significance analysis, randomisation tests.

2. Enrichment measurements. These measurements quantify the recovery of active
molecules from a benchmark data set in which a small number of known actives
is seeded amongst selected decoys. The utilisation of receiver operating charac-
teristic (ROC) curves fits in this group and will be extensively discussed in

Chapter 5.

3. Experimental evaluation of a selection of hits.

In the work presented in this chapter, database searches were conducted with Tripos
data mining utility UNITY 3D, which retrieves/discards database compounds on a
pass/fail basis. Since no scoring or ranking of the compounds takes place, the perform-
ance of the pharmacophore models can only be assessed by an overall measure of en-

richment, which will be explained in the “Results and discussion” section of this chapter.

The validation of methods and models is indeed a critical part of pharmacophore model-
ling and searches, in particular, and of virtual screening, in general. A review of the per-
formance metrics used for validations applicable to the field of pharmacophore searches

and virtual screening is given in Chapter 5.
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2. Computational methods

In the following subsections, I will present and discuss the computational methods em-
ployed throughout this chapter to study, at the atomic level, the available structural in-
formation on the TTR receptor and known active ligands, which will serve as input to the

construction of pharmacophore models of TTR.

2.1. Receptor-based pharmacophore perception

Once again driven by the significant amount of structural information available in the
PDB for TTR, we decided to incorporate receptor knowledge in the construction of a set
of pharmacophore models. Besides using structural data alone, MIF analyses were car-
ried out with two main objectives: (i) the detection of hot spots in TTR binding sites and
(if) the detection of consistent differences between the two equivalent TTR binding sites.
The idea was to map and make use of energy minima corresponding to highly favourable
points of interaction of certain probe types within TTR sites during the construction of
pharmacophore models. To this end, the X-ray complexes of four reference TTR stabilis-
ers were studied in great detail: thyroxine (T4), the endogenous thyroid hormone carried
by TTR in the blood plasma and the cerebrospinal fluid, bearing four iodine atoms;
diethylstilbestrol (DES), a synthetic non-steroidal estrogen with affinity for TTR and de-
void of halogens; flufenamic acid (FLU), a non-steroidal anti-inflammatory drug holding
three fluorine atoms and one of the first compounds found to potently inhibit amyloid
fibril formation by TTR; and one particular polychlorinated biphenyl (PCB), PCB18, hold-
ing four chlorine atoms and the strongest TTR amyloid inhibitory activity known to date
(Figure 3.2). The respective coordinates and structure factors were downloaded from the
PDB and evaluated for structural quality. When relevant, the corresponding re-refined
and conservatively optimised structure was obtained from the PDB_REDO [481]. PDB
accession numbers are as follows: TTR:T4 complex, 2rox; TTR:DES complex, 1tt6 and

1tz8; TTR:FLU complex, 1bm7; TTR:PCB complex, 2g5u.
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Figure 3.2. Chemical formulae of the TTR stabilisers bound in the complexes studied
in greater detail throughout this chapter. Ligand 1, thyroxine (T4), the endogenous thy-
roid hormone carried by TTR; ligand 2, diethylstilbestrol (DES), a synthetic non-steroidal
estrogen with affinity for TTR; ligand 3, flufenamic acid (FLU), one of the first non-steroidal
anti-inflammatory found to potently inhibit TTR amyloid; and ligand 4, a polychlorinated
biphenyl (PCB), the strongest inhibitor discovered to date.

2.1.1. Receptor site analysis using MD simulations

Two 30 nanoseconds(ns)-long equilibrium Molecular Dynamics (MD) simulations of the
TTR tetramer were performed in explicit water with two goals: (i) to ensure that no im-
portant conformational changes occur within TTR binding sites in the equilibrium state,
motivated by possible structural clashes caused by the symmetry operations required to
assemble the full tetramer from the X-ray coordinates of the dimer; (ii) to contrast the
MD analysis of receptor site flexibility with the picture provided by the X-ray B-factors of
the crystalline state. The TTR structure holding the highest degree of overall structural
similarity amongst the pool of TTR complexes presented in Table 2.2 of Chapter 2, was
selected as input for the construction of the model system (PDB entry 2g9k). The initial
coordinates of the full quaternary assembly of TTR were obtained from the correspond-
ing entry in the Protein Quaternary Structure (PQS) server [453]. The missing N- and C-
termini were added and subjected to simulated annealing with the rest of the protein
held fixed. All minimization, equilibration and MD production steps were carried out

with NAMD [482], version 2.6, using the all-atom CHARMM 27 force field [483]. All calcu-

114 Receptor- and ligand-based pharmacophore models of TTR



lations were run on a cluster of 130 Sun Fire X4100 nodes with a total of 520 Opteron

275 CPU cores and using up to 64 cores (Milipeia at the University of Coimbra).

Briefly, a strict protocol was followed to set up the model system. Besides preserving
crystallographic water molecules that looked meaningful, additional water molecules
were inserted in hydrophilic cavities of the tetramer with the program Dowser [484],
after stripping out the bound ligands. Hydrogen atoms were added to the protein struc-
ture using the psfgen plug-in in VMD [462]. The tetramer was then embedded in a large
box of TIP3P water molecules [485] with the solvate plug-in, ensuring that a layer of at
least 12 A was comprised between the protein and the edges of the box. The simulation
box was forced to assume a “perfect” cubic shape, thus ensuring that the rotation of the
protein about itself would not compromise the minimum distance between the solute
and the box boundaries. Sodium and chloride ions were included to bring the net electric
charge of the system to zero and an average ionic concentration of 145 nM was reached

in order to better reproduce the physiological environment.

The system was then subjected to three cycles of 2000 energy minimization steps: a first
cycle applied to all hydrogen atoms of the system, followed by a second cycle applied to
the solvent and the protein side chains, and a third cycle applied to the whole system.
The system was equilibrated up to the target temperature of 310 K using an integration
time step of 1 femtosecond (fs) and under Langevin dynamics (with a Langevin damping
coefficient of 5). During the initial 50 picoseconds (ps), the protein backbone was held
fixed. The equilibration proceeded for another 50 ps to bring the system to the target
pressure of 1 atm using the Langevin piston method [486]. The equilibration continued
at constant pressure, for 20 ps, with strong harmonic restraints placed on the C. carbon
atoms, and another 20 ps with weak restrains on the same atoms. Finally, a short 10 ps
run of unrestrained classical MD was performed to test the stability of the system, com-
pleting an overall equilibration of 150 ps. To avoid biases taking place throughout the

equilibration stage, each production run was independently equilibrated.

The two independent 30-ns long MD simulations were performed at 310 K, in the iso-
thermal-isobaric ensemble (normal pressure and temperature conditions), and using
periodic boundary conditions (PBC). The particle mesh Ewald summation method [487]
was used for the quantification of long-range electrostatic interactions at every step. A 12
A cut-off with a switching function applied at 10 A was used for the treatment of the van
der Waals interactions, with the pair list distances being evaluated every 10 steps. Hy-
drogen-heavy atom bond lengths were constrained with the SHAKE algorithm [488]. An
integration time step of 2 fs was used during the production runs, and the coordinates of

the system were recorded every 500 steps (i.e. at each ps of simulation).
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2.1.2. Detection of hot spots with programs GRID, MINIM and FILMAP

The GRID software (version 22c) [39] was used for the detection of regions of favourable
interaction (hot spots) within TTR binding sites, using the four model complexes pre-
sented above. After removal of ligand and solvent atoms, a grid of dimensions 40x14x14
A and 4 grid points per Angstrom (i.e. a resolution of 0.25 A) was constructed, encom-
passing the entire tunnel formed by both TTR binding sites. The effective dielectric con-
stant of the macro-molecular matrix was kept at 4 and the dielectric constant of the envi-
ronment surrounding TTR was kept at 80. Several grid maps were produced for each
complex by computing the energies of interaction between 13 types of probes, placed at
each grid point, and the protein (see Table 3.1). In order to study the presence of disfa-
voured regions of interaction with certain probe/atom types in TTR binding sites by
competition with water molecules, the so-called Reverse Mode of GRID was explored by
setting the LEAU directive to 3 and re-computing all grid maps for every probe type and
each TTR complex.

The GRID module MINIM was used to identify energy minima in the grid maps, which are
grid points surrounded by points of higher (more positive) energy. Different energy
thresholds (measured in kcal.mol-!) were used for 6 main probe types: -1.5 for DRY; -3
for C3; -9 for OH; -3 for F; -6 for Cl; -7 for I. The module FILMAP was then utilised to
populate the energy minima in the grid maps, by annealing successive probes of each
type into the list of minima produced by MINIM. This procedure refines the map of en-
ergy minima by discarding minima of probe types that repel each other and retaining

minima of probe types that interact favourably.

Table 3.1. List of probes used for MIF analyses with the program GRID.

Probe Notation | Probe Name Probe Type

F Fluoride Halogen

Cl Chloride Halogen

BR Bromide Halogen

[ lodide Halogen

N1 Amide Hydrogen Bond Donor

0 Carbonyl Hydrogen Bond Acceptor
0:: Carboxyl Hydrogen Bond Acceptor
N1+ Cationic amide Positive Charge Centre

0- Anionic phenolate | Negative Charge Centre
OH Hydroxyl Hydrogen bond donor/acceptor
C3 Methyl Non-polar/hydrophobic
DRY Hydrophobic Hydrophobic

OH2 Water Water binding
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2.2. Ligand-based pharmacophore perception

In order to carry out ligand-based pharmacophore perception, the 30 high-quality TTR

complexes selected for docking studies (see Table 2.2 of Chapter 2) were screened

through tight quality cut-off and ligand redundancy was removed through selection of

structures with highest quality from amongst a group of closely related structures. A set

of 21 aligned protein-ligand complexes resulted (Table 3.2) and was used to define train-

ing sets for the modelling of 3D pharmacophore models.

Table 3.2. Twenty-one X-ray complexes of transthyretin used for ligand-based phar-

macophore perception.

PDB | Resolution I
code &) R-value Description

1bm7 2.00 0.189 (work) | Transthyretin in complex with flufenamic acid

1dvs @ 2.00 0.199 (work) | Transthyretin in complex with resveratrol

1dvt 1.90 0.197 (work) | Transthyretin in complex with flurbiprofen

ldvu 1.90 0.198 (work) | Transthyretin in complex with dibenzofuran-4,6-dicarboxylic acid

ldvy 1.90 0.202 (work) | Transthyretin in complex with phenoxazine-4,6-dicarboxylic acid

ldvz 1.90 0.192 (work) | Transthyretin in complex with o-trifluoromethylphenyl anthranilic
acid

le4h 1.80 0.193 (work) | Transthyretin in complex with pentabromophenol

1tt6 1.90 0.188 (obs.) | Transthyretin in complex with diethylstilbestrol

lyld 1.70 0.198 (obs.) | Transthyretin in complex with iododiflunisal

2b15 1.70 0.190 (obs.) | Transthyretin in complex with 2,4-dinitrophenol

2f7i 1.60 0.234 (obs.) | Transthyretin in complex with 2',6'-difluorobiphenyl-4-carboxylic
acid (diflunisal analogue)

2f8i 1.54 0.217 (work) | Transthyretin in complex with a benzoxazole derivative

2g5u 1.80 0.180 (work) | Transthyretin in complex with 3,5,3",5'-tetrachloro-biphenyl-4,4'-diol

2g9k 1.85 0.216 (obs.) | Transthyretin in complex with 2',3,3",4',5-pentachloro-biphenyl-4-ol

2gab 1.85 0.211 (obs.) | Transthyretin in complex with 3,3",4',5-tetrachloro-biphenyl-4-ol

2rox 2.00 0.170 (work) | Transthyretin in complex with thyroxine

1dvx 2.00 0.192 (work) | Transthyretin in complex with diclofenac

2b77 1.70 0.210 (obs.) | Transthyretin in complex with a diflunisal analogue

2qgd 1.50 0.162 (obs.) | Transthyretin in complex with 2-(3,5-dibromo-4-
hydroxyphenyl)benzoxazole

2qge 1.45 0.166 (obs.) | Transthyretin in complex with 2-(3,5-dimethylphenyl)benzoxazole

3b56 1.55 0.190 (obs.) | Transthyretin in complex with 3,5-diiodosalicylic acid

@ Even though this entry was excluded from the original selection for structure-based docking studies, it was
selected for ligand-based pharmacophore perception given resveratrol’s significance as an important TTR

stabiliser.
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2.2.1. Ligand mapping using a Java script

The X-ray TTR ligands were subjected to an all-atom comparison using the coordinates
resulting from the superimposition of the 21 complexes. This comparison was accom-
plished using a simple Java script written in-house: coordinates found to be identical (or
lying within 1 A distance) in two bound ligands were considered a “hit”; the total number
of hits was computed and used to calculate pair wise Tanimoto Indexes (T.I.) for all lig-

ands on each of the two TTR pockets, according to the formula:

Tl = NAB / (NA + NB - NAB)

Equation 3.1

Na corresponds the total number of ligand atom coordinates found in the first complex;
Ng corresponds to the total number of atom coordinates in the second complex, and Nag
expresses the number of atom coordinates found to be identical in both complexes (the
so-called “hits”). A T.I. was calculated for every ligand bound to the AC and BD binding
sites of TTR and combined to produce a similarity score matrix for each pocket. Then,

each similarity score matrix was clustered using the program CLUTO [454].

2.2.2. Ligand preparation with QuacPac

The appropriate preparation of ligands is a critical ingredient to any pharmacophore
modelling project. The calculation of partial charges and the enumeration of tautomers
(followed by canonicalisation) affect the way ligand features (such as H-bond donors and
acceptors including tautomers; anions and cations, including resonance forms and hy-
drophobic and aromatic regions) are encoded into the resulting pharmacophore models.
For each of the 21 ligands of the selected TTR complexes, the lowest energy tautomer
was enumerated with the tautomers program, part of OpenEye’s QuacPac suite [489], just
after the calculation of AM1-BCC partial charges using the molcharge program. The AM1-
BCC method first determines partial charges derived from the AM1 wave-function. Then,
bond-charge corrections (BCC) are applied to the partial charges on every atom to create

the final partial charges [490].

2.3. Training and validation sets

The pharmacophore models devised in this chapter were calibrated and tuned with the
help of 5 separate training sets. Twenty-one known TTR actives were split across each set

according to their spatial occupation of TTR binding sites (as will be explained below)
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and seeded amongst 20 known TTR inactive molecules. Thus, each training set is com-
prised of 4 to 7 actives (presented in subsections 3.2 and 3.3) and 20 inactives. All TTR
actives were compounds experimentally proven to bind and stabilise TTR, whereas the

inactives were compounds exhibiting low or null (experimental) binding affinity for TTR.

For the purpose of validation, the generated pharmacophore models were run against a
validation test set comprised of 22 potent and structurally dissimilar TTR actives, seeded
amongst 738 carefully-selected decoy molecules, sharing similar physicochemical prop-
erties with the TTR actives, yet dissimilar chemical topologies. Details about the con-
struction of this validation test set, particularly in what concerns the selection of decoys,

are given in Chapter 4.

2.4. Pharmacophore model generation using UNITY and

SYBYL

SYBYL 8.0, a molecular modelling and computational informatics platform provided by
Tripos, was used to develop pharmacophore models for TTR binding sites. SYBYL allows
user-friendly visualization and definition of pharmacophore features for a set of ligands,
and the models thus developed are referred to as queries. SYBYL’s UNITY module allows
the addition of features and constraints to a query, which may then be screened against a
virtual library of compounds. UNITY allows 3D searching using queries not only from
pharmacophores but also using surface and excluded volumes, queries derived from re-
ceptor binding sites and 2D substructure and similarity searching. The 3D flexible
searching is based on the Directed Tweak method [491]. Conformational flexibility dur-

ing searching with UNITY is handled on-the-fly.

Ligands grouped in five training sets were imported to SYBYL in the MOL2 format. Since
the alignment of the ligands was obtained as a result of the multiple structural alignment
of TTR complexes, no automated features were used to generate ligand alignment under-
lying the pharmacophore query. Moreover, since all ligand structures were determined
by X-ray crystallography in complex with TTR, it was assumed that their pose corres-
ponded to the bioactive conformation. Thus, ligand coordinates were taken as is and no

structure optimisation was performed.

Amongst the constraint options available in UNITY, the most relevant are distance con-
straints, angle constraints, spatial constraints and bond path constraints. Distance and
angle constraints define the allowed distance separating two features and the angle be-
tween the features respectively. Spatial constraints in the form of spheres, limit the geo-

metrical position of a feature to within a sphere. Bond path constraints define the maxi-
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mum and minimum number of bonds between two features. All generated pharma-
cophore queries include a spatial constraint of 1.80 A on aromatic features covering all
ring atoms. A higher spatial constraint, when added, was either to accommodate addi-
tional ligand atoms or to account for greater flexibility of receptor site residues. Receptor
site information was used to define exclusion spheres with volumes directly proportional
to a normalized scale of residue flexibility. This scale was empirically parameterized

using insights extracted from B-factor analysis and MD simulations.

3. Results and discussion

In this section, the results of receptor- and ligand-based analyses leading to the construc-
tion of five pharmacophore models for TTR are presented, along with a detailed descrip-

tion of the generated models and respective selectivity analysis.

3.1. Receptor-based pharmacophore modelling

Here, we present the results of a set of studies centred on the structure of TTR, allowing
for a full characterisation of the target receptor site and the modelling of receptor-based

pharmacophore features (such as receptor site volume spheres).
3.1.1. Receptor site flexibility

Receptor site flexibility is a critical aspect in drug design, given the dynamic nature of
biomolecules in solution. Additionally, the explicit consideration of receptor flexibility
can allow the construction of dynamic pharmacophore models instead of static ones. This
is of the utmost importance when the receptor undergoes significant structural changes
upon ligand binding (e.g. induced fit effects). Receptor flexibility can be accounted in sev-
eral different ways, from the use of experimental data to the application of simulation
methods, such as conformational searches and MD simulations. In this work, we made
use of the large amounts of structural data on TTR deposited in the PDB and carried out
statistical analysis of the temperature factors (also referred to as B-factors) associated
with each atom of the receptor side chains and bound ligands. The B-factors are linearly
related to the mean square displacement of an atom and provide an indication of struc-
tural flexibility in the crystalline state. It has been suggested that, in general, active site
residues predominantly occur in regions of low B-factors, whereas non-active site resi-

dues at the protein surface have a tendency to exist in the high B-factor regions [492].
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Visual comparison of the B-factor values for all entities involved in ligand binding to TTR
is facilitated using the box plots from Figure 3.3 to Figure 3.5. As expected, residues lining
the outer end of the binding sites possess the highest median values, namely Lys 15, Glu
54 and, to a lesser extent, Val 121. While it could be expected that, by contrast, atoms of
the inner residues had lower median B-factor values, the analyses show that, except for
the TTR:FLU complex, Ser-117 and Thr-119 residues have slightly higher flexibility than
residues comprising the centre channel of TTR binding sites (Ala 108 and Leu 110). In-
terestingly, of the 4 complexes studied, FLU is the only compound who does not hold an
hydroxyl group at the para position of the inner aromatic ring, thus not being able to

interact with Ser 117 or Thr 119, via hydrogen bonding, either directly or mediated by

water molecules.

B-factors for TTR binding site residues
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Figure 3.3. Box plots of the B-factor values for all heavy atoms of each TTR binding
site residue of monomers A and B of the crystallographic dimer (box region providing a
graphical view of the median and quartiles of the distribution; dotted lines extending to
maximum and minimum values of the data set). The B-factor values of the protein atoms
composing the data set were extracted from the structure of TTR complexed with (a) T4, re-
solved at 2.00 A (PDB entry 2rox), (b) DES, determined at 1.80 A (PDB entry 1tt6), (c) FLU,
solved at 2.00 A (PDB entry 1bm?7), and (d) PCB18, determined at 1.80 A (PDB entry 2g5u).
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Furthermore, the median B-factor values of the ligands correlates reasonably well with
their molecular weight, which may in turn be linked to their ability to diffuse along TTR
binding sites. As depicted in Figure 3.5, PCB18 holds the highest B-factors values com-

pared to any other binder under study.

B-factors for TTR ligands and water molecules
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Figure 3.4. Box plots of the B-factor values for each reference ligand bound to each
TTR pocket and for water molecules found within 7 A of any ligand atom (box region
providing a graphical view of the median and quartiles of the distribution; dotted lines ex-
tending to maximum and minimum values of the data set). The B-factor values of the ligand
atoms composing the data set were extracted from the respective TTR complex: (a) Ta, re-
solved at 2.00 A (PDB entry 2rox); (b) DES, determined at 1.80 A (PDB entry 1tt6); (c) FLU,
solved at 2.00 A (PDB entry 1bm?7); and (d) PCB18, determined at 1.80 A (PDB entry 2g5u).

Water molecules seem to play a role in the interaction of PCB18 with TTR. Unlike in other
complexes, two water molecules appear “strategically” placed at the inner end of the
pocket, mediating interactions between the compound and the hydroxyl side chains of
Ser 117. In fact, this is the only structure where these side chains adopt three alternate
positions with equal values of occupancy (0.33). In most other structures, the hydroxyl

groups of Ser-117 residues are either hiding from any interaction site or just exchanging
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between the site of interaction with ligands and site of interaction with an adjacent Ser

117 of the neighbour TTR monomer.

Figure 3.5. Three-dimensional (3D) representations of TTR-ligand complexes deter-
mined by X-ray crystallography and coloured according with their B-factors. The
asymmetric unit dimers are drawn as ribbons; the binding site residues are represented as
molecular surfaces; the ligands and their neighbouring water molecules (within 7 A of any
ligand atom) are shown in licorice representations. The colour scale goes from blue to green
and from green to yellow as the B-factor values increase. (a) T4, resolved at 2.00 A (PDB en-
try 2rox); (b) DES, determined at 1.80 A (PDB entry 1tt6); (c) FLU, solved at 2.00 A (PDB en-
try 1bm?7); and (d) PCB, determined at 1.80 A (PDB entry 2g5u).

Remarkable cases are known where medicinal chemists have been deceived by incom-
plete experimentally-determined structures and/or by “deleterious” modelling oper-
ations. One good example relates to the design HIV integrase inhibitors [493], where the
authors used the so-called Relaxed Complex method based on MD simulations [494] to
take protein flexibility into account during the docking procedure. Eventually, they found
out that the original structures had been strongly affected by crystal packing effects
[495].

Because all TTR complexes used in project were obtained (indirectly) via symmetry op-

erations to assemble the full biological unit, equilibrium MD simulations of TTR tetram-
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ers were carried out both to detect possible problems with X-ray derived models (for
instance, due to crystal packing effects) and to study the structure and flexibility of TTR
tetramers. The main focus of our analyses was put on the structure of TTR binding sites
throughout the simulations, to ensure that no major conformational rearrangements oc-
curred. Visual inspection of the MD trajectories did not reveal any important conforma-
tional changes in TTR, no significant rearrangements in the binding sites were witnessed
and no consistent differences, neither in the structure nor in the dynamics, could be de-
tected across the two binding sites. These results suggest that the static biological unit of
TTR - obtained through symmetry operations - represents well the structure of the equi-

librium state.

Root mean square fluctuations (RMSF) were determined over 50 ns of the MD simula-
tions (see Figure 3.6) and contrasted with the B-factor distributions. The first 5 ns of each
of the two trajectories were discarded. Small variations were observed for the C. atoms of
the residues composing TTR’s binding pockets (the first pane of Figure 3.6 should be in-
terpreted with caution, due to the reduced scale of the y-axis). The RMSF values suggest
that the most flexible side chains in the binding sites are those belonging to Lys 15 and
Glu 54 (Arg 104 is a neighbouring residue, but does not participate in protein-ligand
interactions). Amongst the residues composing the inner portion of TTR binding sites,
Ser-117 residues are the most flexible. By contrast, Ala 108 and Leu 110 show the lowest

RMSFs. These results are in good agreement with our B-factor analyses.
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Figure 3.6. RMSF plots derived from 50 ns of MD simulations of an apo structure of
TTR. The top panels refer to C. atom fluctuations whereas the lower panels refer to all side-
chain atoms. The left panels refer to residues comprised in TTR binding sites and the right

panels refer to all protein residues.
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In Section B of the Appendix, the C.-RMSD variation from the crystal structure throughout
one MD trajectory provides a picture of the consistency of the simulations (Figure B.1).
The RMSD values vary mostly below the 2 A threshold, disclosing an adequate stability.
Further analyses and insights could have been extracted from the trajectories. However,
because of the intricate nature of MD simulations, their extensive analysis falls outside

the scope of this thesis. The results of these studies will be reported elsewhere.

3.1.2. Detection of hot spots within TTR binding pockets

Besides identifying favourable regions of interaction within a protein binding site, it is
also important to know if specifically-unfavourable places exist on the target, because
they can influence the affinity and selectivity of drug-receptor interactions, and the orien-
tation of a ligand at its receptor site. Often, at a later stage of the research when the X-ray
structure of the protein-inhibitor complex has been determined, it sometimes turns out
that the ligand does not bind as predicted but has found an alternative binding mode.
This can happen because there are positions, which may be called disfavoured sites in
some receptor clefts from which a specific chemical group seems to be excluded because
water would interact better. Figure 3.7 shows the isocontours for five probes and at dif-
ferent energy thresholds (adjusted to each probe), determined on the X-ray structure of
each of the four model complexes. The solid surfaces represent the most favourable re-
gions of interaction, whereas the dots disclose the regions were water molecules could
displace a probe atom of the respective type. The FILMAP program takes these disfa-
voured sites into consideration while selecting only the relevant minima for interaction

(Figure 3.8).

Chapter 3 125



(a)

" P
¢ Ala108A|

JY 3 ‘

(c)

(d)
Ala108A
N Ser117A | ’

Lys15B » Ser117B |
4

Figure 3.7. MIF analysis of TTR binding sites in four model complexes with several
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probes computed by the program GRID. (a) TTR-T4 complex versus the iodine probe:
while strongly favourable interaction fields are ubiquitous across the sites, the strongest
region for interaction (countered as solid surfaces in magenta at an interaction energy of -
14 kcal.mol-1) map well onto an inner halogen binding pocket that is occupied by one of the
iodine atoms of T4. Hydrogen bonds and polar interactions are indicated as yellow broken
lines. (b) TTR-DES complex versus the methyl (C3) and aromatic (DRY) probes: while the
strongest sites of interaction with DRY (countered as yellow solid surfaces at an interaction
energy of -1.8 kcal.mol-1) map well onto the regions where the aromatic rings of DES sit, the
most favourable sites of interaction with C3 (countered as silver solid surfaces at an inter-
action energy of -4 kcal.mol-1) highlight regions which are only dimly explored by the ethyl
groups of DES. (c) TTR-FLU complex versus the fluorine probe: favourable interaction fields
(countered as solid green surfaces at an interaction energy of -3.5 kcal.mol-1) are found at
the inner and the outer ends of TTR pockets, where the Ser-117 residues and the Lys-15
residues respectively sit. While the most prominent surface maps well onto one carboxyl
oxygen of FLU near the Lys-15 residues, the inner fields highlight the lack of a hydrogen
bond acceptor to interact with the hydroxyl side-chains of Ser-117 residues. (d) TTR-PCB
complex versus the chlorine probe: favourable interaction fields (countered as solid violet
surfaces at an interaction energy of -7 kcal.mol-1) are found near the regions where the two
chlorine atoms attached to the PCB’s inner ring sit. In all panes, the small dots represent
disfavoured sites of interaction, from which a probe atom would be excluded because water
would interact better. This figure was produced using the perspective view mode of VMD to

provide better notion of depth in 3D.

Figure 3.8 provides a brief summary of the most relevant energy minima detected within
TTR binding sites, contrasting the positioning of the four model ligands along the differ-
ent panes. For a detailed list of all minima and respective energy values, see Table B.1 of

the Appendix.
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Figure 3.8. Three-dimensional representation of the affinity grids’ energy minima for
various probe types (yellow for aromatic, silver for methyl, red for phenolic hydroxyl,
green for fluorine, violet for chlorine and magenta for iodine). The minima were populated
by annealing successive probes on each grid map, and only those that are energetically ap-
propriate for interaction with a probe of its own type were retained. The sphere radii are
proportional to the respective binding energies, which are reported in Table B.1. The grid
maps and their minima were computed for each X-ray structure (after striping the ligand
from the structure): (a) T4, resolved at 2.00 A (PDB entry 2rox); (b) DES, determined at 1.80
A (PDB entry 1tt6); (c) FLU, solved at 2.00 A (PDB entry 1bm?7); and (d) PCB, determined at
1.80 A (PDB entry 2g5u). Grid isocontours for the water (polar) probe and the methyl

(sticky) probe are displayed in ice blue and silver solid surfaces, respectively.

The knowledge (and the exact positioning) of the predicted minima was proven useful
during the modelling stage of the pharmacophore queries presented below. As illustrated
in Figure 3.9, the fact that all GRID calculations were performed on structurally aligned
complexes, using a common reference structure (PDB entry 2g9k), has enabled the visual
mapping of the energy minima grid points inside TTR binding sites, thus leveraging the

combination of receptor-based pharmacophore perception with ligand-based perception.

Figure 3.9. Representation of TTR binding sites along with their predicted hot spots

for interactions with fluorine (green), chlorine (purple), iodine (magenta), hydroxyl
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groups (red), aromatic groups (yellow) and methyl (silver). The size of the spheres cor-
responds to the magnitude of the interaction, according to the values computed by the pro-
grams GRID, MINIM and FILMAP for the energy minima. On the left binding site, the struc-
ture of thyroxine is shown in sticks; on the right binding site, the structure of PCB18, the

strongest TTR binder known to date, is represented.

3.2. Ligand-based pharmacophore modelling

In this subsection, we present the results of ligand-centric analyses carried out to charac-

terise in detail the interaction between TTR and the known stabiliser compounds.

3.2.1. X-ray ligand mapping and clustering

Ligands extracted from the 21 high-quality TTR complexes were subjected to an all-atom
comparison: atom coordinates of any two specified ligands (ligand A and ligand B) were
compared. Atom coordinates found to be identical or lying within 1 A difference in the
two ligands were considered a “hit” and the total number of hits was used to calculate
Tanimoto Indexes (T.I.) to quantify the spatial relationship between the two ligands. The
tanimoto indexes for all ligands bound to TTR binding site AC and binding site BD were
calculated and combined to produce similarity score matrices for each pocket. Figure 3.10

illustrates a similarity score matrix produced for TTR binding site AC.

3.2.2. Cluster analysis

The similarity matrices produced for each TTR binding site were then clustered to iden-
tify underlying groups of ligands that occupied similar geometrical positions in the bind-
ing sites. This was accomplished using the CLUTO tool [454], described in Chapter 2. The
rational behind this approach is that ligands with similar binding site location are able to
establish similar receptor site interactions. Figure 3.10 shows the clustering dendrogram
obtained for the similarity score matrix of ligands bound to TTR binding site AC. Three
main clusters were identified on this basis: cluster A (PDB entries 1e4h, 1dvu, 1dvy, 2rox,
1dvt and 1tt6), cluster B (1dvx, 1bm7, 1dvz, 1y1d, 2f8i and 2f7i) and cluster C (2qgd,
2gab, 2b77, 2g9k, 2g5u, 1dvs and 2qge). Given the fragment-like nature of ligands cor-
responding to the last two rows (3b56 and 2b15), their structures were considered outli-
ers of this analysis. The exact same analysis was applied to ligands bound to TTR binding
site BD, yielding the following clusters: 2qgd, 2f8i, 2f7i, 1tt6 and 1dvs (cluster D) and
2qge, 2g9k, 2g5u, 2gab, 1dvz and 1bm?7 (cluster E).
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Figure 3.10. Illustration of a similarity score matrix for the spatial occupation of lig-
ands bound to TTR binding site AC, along with the cluster analysis. The coloured map
provides an indication of the degree of similarity between the ligands in terms of their posi-
tioning within TTR binding site: from white to red with increasing similarity. The dendro-
gram represented on the left of the matrix shows the result of the clustering procedure, dis-

closing three distinct clusters of ligands exploring slightly different regions of site AC.

Each of the five clusters of ligands identified in this subsection was used to devise five

pharmacophore models for TTR, as explained in the following subsection.

3.3. Selectivity analysis: evaluation of multiple pharma-

cophore queries

Five different pharmacophore queries (QRY) were devised for TTR binding sites by com-
bining all data resulting from the analysis of (i) structural information on TTR receptor
sites, (ii) MD-derived information on TTR receptor flexibility, (iii) hot spots within TTR
binding sites, and (iv) ligand mapping information. Three queries were generated for the
AC binding site using information from each cluster identified amongst the 21 known
TTR active compounds (training sets). Figure 3.11, Figure 3.12 and Figure 3.13 show the
three final models developed for the AC binding site. Likewise, two queries were created
for the BD binding site using information from two clusters (Figure 3.14 and Figure 3.15).
A detailed description of all models and their global performance, including information

of applied constraints, is provided in Table 3.3.
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Figure 3.11. UNITY 3D pharmacophore query QRY AC1 generated with SYBYL for TTR
pocket AC. (A) Training set of TTR amyloid inhibitors comprising cluster A. (B) 3D model of
the common pharmacophore features. The alignment of the ligands resulted from the struc-
tural alignment of the respective TTR complexes with GH8. The colour of the spheres repre-
sents the type of pharmacophore feature, whereas their radius corresponds to the applied
spatial tolerance: aromatic (AR, yellow), halogen atom (X, violet) and negative charge centre
(NC, red). For the sake of clarity and ease of visualisation, receptor site and exclusion vol-

ume spheres are not displayed.

By visual analysis of the models and respective underlying ligand alignments, it can be
recognized that the mapping of overlapping pharmacophoric features was a demanding
task. In fact, except for cluster C, none of the automated routines within SYBYL was able
to suggest queries that could reasonably capture the specificities of the alignments. Ac-
counting for this is not only the high structural diversity found amongst the known in-
hibitors, but also the fact that the superimpositions of the ligands resulted from the
structural alignment of the TTR complexes (and not from an automated procedure ex-
ploring different ligand conformations to bring similar functional groups into proximal
locations, such as in the case of the GALAHAD module of SYBYL). Consequently, the dif-
ferent pharmacophoric features and constraints were manually assigned onto the
alignments and calibrated in order to obtain the best possible enrichments with the test
set. As can be seen in Figure 3.12 and Figure 3.13, the applied spatial tolerances (equiva-
lent to the sphere radii) are higher than commonly employed in this type of 3D models. It
is also worth noting that, despite sharing features that are known to be essential for bind-
ing at the TTR receptor, the AC and BD models present distinctive pharmacophore ar-
rangements reflecting the alternative binding modes observed for the two pockets in the

X-ray complexes.
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Figure 3.12. UNITY 3D pharmacophore query QRY AC2 generated with SYBYL for TTR
pocket AC. (A) Training set of TTR amyloid inhibitors comprising cluster B. (B) 3D model of
the common pharmacophore features. The colour of the spheres represents the type of
pharmacophore feature, whereas their radius corresponds to the applied spatial tolerance:
aromatic (AR, yellow), halogen atom (X, violet) and hydrogen-bond acceptor (HBA, green).

For the sake of clarity, receptor site and exclusion volume spheres are not displayed.

As mentioned in the introductory section, since UNITY 3D searches retrieve/discard lig-
ands in the database on a pass/fail basis (without scoring or ranking), the virtual screen-
ing performance of these pharmacophore queries was assessed by an overall measure of
enrichment. Although this hinders the direct performance comparison with other VS
methods that perform ranking of compound databases, the enrichment values provide an
indication of the specificity of each query. A detailed explanation about ligand enrich-
ment is provided in Chapter 5. Here, we used a global ROC Enrichment metric to quantify
the specificity of the models (Table 3.3), which expresses the fraction of active molecules
retrieved by one given model as a proportion of the fraction of decoy molecules retrieved
by that model from the entire test data set (containing both actives and decoys). It has
been shown that, to hold a reasonable chance of identifying true hits, VS meth-

ods/models should provide at least a 10-fold increase in enrichment [496].
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Figure 3.13. UNITY 3D pharmacophore query QRY AC3 generated with SYBYL for TTR
pocket AC. (A) Training set of TTR amyloid inhibitors comprising cluster C. (B) 3D model of
the common pharmacophore features. The colour of the spheres represents the type of
pharmacophore feature, whereas their radius corresponds to the applied spatial tolerance:
aromatic (AR, yellow), halogen atom (X, violet) and hydrogen-bond acceptor (HBA, green).

For the sake of clarity, receptor site and exclusion volume spheres are not displayed.

In most cases, the models are able to retrieve all of the actives contained in their respec-
tive training set. However, it should be noted that only distinct chemotypes were inte-
grated into the test set (to avoid redundancy as possible), causing a slight decrease in the
enrichment values. Queries AC2 and AC3 offer a fair representation of the global pharma-
cophore of ligand binding to TTR, characterized by two aromatic rings, one hydrogen
bond acceptor feature at the outer ring (to pair with one or two side chains of Lys-15
residues), and at least one halogen substituent at the inner ring. QRY AC3 includes a hy-
drogen bond acceptor feature at the inner ring, accounting for ligands that can interact
with Ser 117. Both queries retrieve a high number of false positives, disclosing a low
specificity of the models (enrichment values of 7.1 and 3.8 for QRY AC2 and QRY AC3,

respectively).
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Figure 3.14. UNITY 3D pharmacophore query QRY BD1 generated with SYBYL for TTR
pocket BD. (A) Training set of TTR amyloid inhibitors comprising cluster D. (B) 3D model
of the common pharmacophore features. The colour of the spheres represents the type of
pharmacophore feature, whereas their radius corresponds to the applied spatial tolerance:
aromatic (AR, yellow), halogen atom (X, violet), hydrogen-bond acceptor and/or donor
(HBA/D, green), and negative charge centre (NC, red). For the sake of clarity, receptor site

and exclusion volume spheres are not displayed.
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Figure 3.15. UNITY 3D pharmacophore query QRY BD2 generated with SYBYL for TTR
pocket BD. (A) Training set of TTR amyloid inhibitors comprising cluster E. (B) 3D model
of the common pharmacophore features. The colour of the spheres represents the type of
pharmacophore feature, whereas their radius corresponds to the applied spatial tolerance:
aromatic (AR, yellow), halogen atom (X, violet) and hydrogen-bond acceptor (HBA, green).

For the sake of clarity, receptor site and exclusion volume spheres are not displayed.
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Except in QRY AC1, which contains three aromatic features, the two aromatic rings
stands as the core feature in all models. As mentioned early in the introductory chapter
of this thesis, the biphenyl motif is a central determinant in ligand binding to TTR. A stat-
istical analysis of NMR-derived binding data on 11 protein targets has revealed that the
biphenyl moiety is a preferred substructure for protein binding [497]. We believe that
the low specificity of our models can be linked not only to an inherent low specificity of
the (highly symmetric) TTR receptor sites but also to the lack of an appropriate number
of specific pharmacophoric features around the biphenyl motif (to disrupt its symmetry).
QRY AC1, however, offers a better compromise between sensitivity and specificity,
achieving the highest enrichment (33.1) and retrieving some of the strongest TTR amy-
loid inhibitors: phenox, all dibenzofuran derivatives, flufenamic acid and a diflunisal ana-

logue.

Table 3.3. Description of 5 pharmacophore queries based on 3 clusters of ligands
bound to pocket AC of TTR and 2 clusters of ligands bound to pocket BD. A global ROC

enrichment is reported for each query.

Template .
ligands Hyp(.)th.e SIS # Constraints # Tl:ue ROCE
(PDB IDs) description(® feats. hits hits
Query TTR pocket AC
Distance constraints:
QRY ;‘g;‘g‘gg‘ﬁm‘ AR1-AR2 (5.14 +/- 1.00 A)
AC1 2rox, 1tt6, Exdusion AR1-AR3 (5.42 +/- 1.00 &)
_ 1dvt, 1dvy spheres AR2-NC2 (2.95 +/- 1.00 A) 12 6 331
Figure (cluster A) Receptor Partial match constraint:
3.11 spheres NC1/NC2 and AR1/AR2 (min.
2 and max. 4 matches)
QRY 1y1d, 2f7i, HBA-AR-AR-X
AC2 ;?qul‘g(vz’ Exkcllusion Distance constraint:
A ) spheres
Figure 1021 Rp . AR1-ARZ (1.81 +/- 1.00 A) 34 6 71
eceptor
3.12 (cluster B) spheres
Distance constraint:
HBA-AR1-AR2- AR1-AR2 (4.30 +/- 1.50 A]
gggy ;2;:’ gggg’ X1-X2-HBA Partial match constraint:
Zgab: 2g9k: Exclusion X1/X2 (min. 1 and max. 2 49 5 3.8
Figure 28 spheres matches) ’
353 (cluster C) Receptor Bond path constraint:
spheres AR1-AR2 (min. of 1 and max.
of 2)
Combination of the 3 AC queries 77 13 6.7
Query TTR pocket BD
HBD-NC-AR1-
QRY AR2-X1-X2- Distance constraint:
BD1 2qgd, 218}, HBD AR-AR (4.78 +/- 1.00 &)
2{7i, 1tt6, 1dvs  Exclusion Partial match constraint: 30 9 142
Figure (cluster D) spheres HBD1-NC-X1-X2-HBD2 (min.
3.14 Receptor 2 and max. 5 matches)
spheres
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Template

ligands dzgg«?tl:ﬁ,s:ja) fe:ts Constraints h?ts 'Il‘lrlltlse ROCE
(PDB IDs) P :
HBA-AR1-AR2-

QRY 2qge, 2g9Kk, X-HBA
BD2 2g5u, 2gab, Exclusion Distance constraint:

. 1dvz, 1bm7 spheres 5 AR-AR (4.25 +/- 1.00 A] 19 8 24.1
Figure luster E
3.15 (cluster E) Receptor

) spheres

Combination of the 2 BD queries 37 10 123

Winning combinations
QRY AC1 / QRYBD1 42 14 16.5
QRY AC1 / QRY BD2 30 12 221

@ The features are described in sequence from the external region to the internal region of TTR pockets:
aromatic (AR), halogen atom (X), hydrogen-bond acceptor (HBA), hydrogen-bond donor (HBD) and negative
charge centre (NC).

Summing up, three out of the five pharmacophore models derived for TTR binding sites
offer an acceptable (or even good) VS performance, with more than 10-fold increase in
enrichment. The combination of queries devised for pocket AC and for pocket BD is
clearly a desirable approach to follow, given our interest in identifying compounds to
target both TTR binding sites. We have tested all possible combinations between AC and
BD queries and identified two winning combinations, retrieving more than half of the
actives in the test set and mostly corresponding to the strongest inhibitors. As will be
described in Chapter 7, along with the individual queries, these combinations can be used
as a post-screening tool to assess the compliance of VS hits (identified by several VS pro-

tocols) with the postulated pharmacophoric features for TTR binding.

4. Concluding remarks

In the work presented in this chapter, several analyses were performed towards an ex-
haustive characterisation of TTR binding sites, in an attempt to identify consistent struc-
tural and/or physicochemical differences between its two binding sites. A careful analy-
sis of the X-ray B-factors deposited in the PDB for several TTR complexes offered insights
about receptor site flexibility based on experimental evidence, which were comple-
mented by the results of MD simulations of the TTR tetramer. Receptor-based pharma-
cophore perception was further aided by the use of algorithms for the detection of en-
ergy minima (hot spots) of favourable interaction with multiple probes within TTR bind-
ing sites. While the attempt to attain a tangible differentiation of the sites was mostly
unsuccessful at the receptor level, ligand mapping followed by clustering analyses has
evidenced systematic differences in ligand binding modes across the two TTR binding
sites. The differential positioning (and alignment) of ligands in the two sites were cap-
tured into an ensemble of five pharmacophore models characterising the determinants of

ligand binding to TTR. The models incorporate knowledge on the shape of TTR binding
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sites in the form of exclusion volume spheres, at the cost of a high computational burden

during the searches.

Limited chemical space coverage, due to the small size of the training sets used to derive
the models, is considered today an important problem of ligand-based approaches. In
this chapter we attempted to address this problem by combining multiple models gener-
ated from multiple training subsets comprising several TTR stabilisers with differential
binding modes on TTR’s binding sites. Selectivity analysis revealed poor selectivity for
two pharmacophore models, but three models and two winning combinations (including
models derived on both TTR binding sites) offered promising enrichment in the strong-
est TTR stabilisers. Further validation of the models will be carried out in Chapter 7.
While the use of our receptor- and ligand-based pharmacophores in the screening of very
large libraries of compounds may be hindered by the computing time costs associated
with UNITY 3D searches, we regard our models as a promising post-screening tool for

prioritising VS hits for biological evaluation.

In this chapter, my self-criticism goes to what I regard as an abridged use of the magnifi-
cent amount of information provided by MD simulations. A careful analysis via clustering,
focused on TTR binding sites throughout the MD trajectories, either in the apo or bound
forms of the protein, could have helped putting forward a set of previously-undetected
conformations and provided a more dynamic picture of the TTR pharmacophore. Unfor-
tunately, time is always a strong opponent and priorities need to be set. Without doubt,
however, the experimental evidence provided by the X-ray complexes of TTR clearly sug-
gests a more or less inert/static structure of the funnel-shaped binding sites, with minor
conformational changes taking place on the side chain groups of no more than three resi-
dues. It is therefore reasonable to believe that, albeit interesting from an academic view-
point, such analysis would not have a direct impact in the modelling of our pharma-

cophore queries of TTR.
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Chapter 4

Molecular similarity and
similarity search methods:

surfing the chemical space

“(...) But I'm an optimist. We will reach out to the stars.”

[Stephen Hawkins, in The Daily Telegraph, October 2001]



1. Introduction and theory

Fundamentally, every small molecule-based strategy to either identifying or designing a
novel active compound focuses on the exploration of molecular similarity, albeit often
from different viewpoints. For example, pharmacophore analysis and QSARs concentrate
on local similarities when studying the molecular determinants of biological activity,
such as functional groups and their specific geometric arrangements and/or resulting
chemical properties. The modern understanding of molecular-similarity analysis stems
from the Similar Property Principle, which states that molecules that are generally similar
should display similar biologic activity. Even though the concept of similarity and com-
parison is ordinary to humans, a formal definition with unambiguous criteria and con-
straints is required to allow automatic decision-making. Equally, only through a rigour-

ous description of molecules can meaningful comparisons be made.
Molecular descriptors are typically grouped in the following fundamental categories:

* 1D-representation: physicochemical properties, molecular codes, linear descrip-

tors, etc.

* 2D-representation: connection tables, topological descriptors, (sub)graphs,

(sub)structure descriptors, digital imaging processing, etc.

* 3D-representation: molecular shapes, quantized surface complementarity di-
versity (QSCD), molecular quantum similarity (MQS) and, in general, molecular

surfaces and volumes.

* Merging representations: fingerprints, pharmacophores, and other merging ap-

proaches.

Chemical diversity increases with the growing number of molecules daily discovered or
synthesized. Therefore, determining an underlying order and defining classes are de-
manding tasks. Several methods exist today to classify molecules, descriptors and even

databases. They are generally grouped into two main categories:

* Supervised classification methods: neural networks, maximum likelihood classi-
fication (MLC), support vector machines (SVM), k-nearest neighbours (k-NN)

classifiers, etc.

* Unsupervised classification methods: clustering, partitioning, self-organising

maps (SOMs), principal component analysis (PCA), etc.
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The analysis of molecular databases involves the calculation of (dis)similarities between
all molecule pairs comprised in a data set. For practical reasons, it is sometimes useful to
consider a reduced group of molecules, representatives of the whole population. Gener-
ally, the measures of similarity and/or diversity involve three main components: the de-
scriptors (exemplified above), the coefficients and the weighting schemes. The similarity
coefficients (or indexes) are functions that transform pairs of compatible molecular rep-
resentations into real numbers (typically lying on the unit interval), while the weighting
schemes are used to assign different levels of importance to the various components of

the molecular representations.

In this chapter, the reader is introduced to the concepts of chemical space and molecular-
properties (and descriptors) space, and to ways of mapping them and restricting them to
biologically relevant subspaces. One- and two-dimensional similarity search methods are
explained as tools to surfing the chemical space in pursuit of molecules with lead- and
drug-like properties, safe ADMET profiles, and both ability and inability to bind TTR. It
will be explained how the knowledge extracted from the known TTR stabilisers was used
to select a set of decoy molecules (i.e. molecules with high likelihood of being inactive)
and thus build a benchmarking set for the evaluation of VS methods against TTR amyloid.
[t will also be shown how the physicochemical properties of the active TTR amyloid in-
hibitors were integrated as filtering criteria leading to the assembly of a tailored screen-
ing set of approximately 2.3 million compounds for virtual screening against TTR amy-

loid.

1.1. Chemical libraries

Chemical space can be compared to cosmic space, where chemical compounds, instead of
celestial objects, reside in space. The number of carbon-based compounds that populate
chemical space has been estimated to exceed 106° [498]. However, most of this “space” is
biologically irrelevant. Restricting the number of compounds that are searched to bio-
logically relevant and synthetically accessible molecules is a field of active research.
Rarely, and often by serendipity rather than design, “stars” that can modulate biological

processes have been found.

Virtual screening circumvents the problem of broad searches in chemical space by con-
fining itself to libraries of specific, accessible (purchasable) compounds. There were
times wherein an important barrier to entry into structure-based virtual screening was
the lack of a suitable, easy to access database of purchasable compounds. Yet, nowadays,
several resources have emerged that ease the access to compounds in the shelves of

chemical suppliers around the world.

Chapter 4 139



Several databases of already existing compounds have been released over the last de-
cade, such as PubChem [136], ACX [499] and the NCI Open Database [500]. In 2005, Irwin
et al. prepared a database of commercially available molecules, each with an associated
3D structure, using catalogues of compounds from multiple vendors [137]. By that time,
the size of the library was no larger than 727,842 molecules. Nowadays, ZINC has become
a truly established database that contains over 13 million purchasable compounds. All
molecules have been assigned biologically relevant protonation states and are annotated
with properties such as molecular weight, calculated LogP, and number of rotatable
bonds. Moreover, each molecule in the library contains vendor and purchasing informa-

tion, and is ready for docking using several popular docking programs.

Making use of its database facilities and compound annotations, ZINC also offers access
by several subsets, assembled by following various criteria. Subsets can be defined as
catalogs, with each subset corresponding the compound collection of one particular ven-
dor. Perhaps more importantly, subsets can also be defined by physical properties. Pre-
defined subsets available for download include fragment-like, lead-like and drug-like
compounds, loosely following the filtering criteria proposed by Teague et al. [501], Carr
et al. [128] and Lipinski [502], respectively. As explained by Irwin et al., these criteria
have been deliberately relaxed to include a number of molecules at the periphery of what
many investigators might consider desirable [137]. By doing so and allowing a small
number of violations of Lipinski’s rules, they accommodate for the uncertainties in the

calculated property values.

The ZINC database is, as of October 2011, on its eleventh version and is available for free

download in several common file formats including SMILES, MOL2, 3D SDF, and DOCK
flexibase format (http://zinc.docking.org).

1.2. Library filtering: surfing the physicochemical-

properties space

Filters may be applied to ensure that the chemical libraries used for screening meet some
standards of biological relevance or drug-likeness. At this stage, molecular similarity is
mostly sought at the level of one-dimensional descriptors (also known as bulk descrip-
tors) that commonly associate a compound to a single value (describing a physicochemi-
cal property like its molecular weight, dipole moment, etc.). The filtering and assembly of
a chemical library is indeed a very important step in any screening campaign, including
the ones carried out “in silico”. It dictates, amongst other things, what will be the extent

of chemical space covered during the screenings and also how much (computing) time
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will take to screen an entire library. Even though often overlooked, the choice of criteria
during the filtering procedure is critical to ensure that no important chemical entities are
missed out during the database filtering. Different types of filters are suitable under dis-

tinct situations.

In the early stages of a project, when little or no SAR is accessible, stringent drug-like
filters are often employed. This precludes spending of chemistry resources pursuing in-
tricate compounds that may not be customizable by adding desirable properties. Never-
theless, when considering compounds to acquire for HTS, different filters can be applied.
As denoted by Oprea, the best molecules for early HTS campaigns are smaller and less
functionalised than drugs, yet retaining some activity [503]. Thus, strict lead-like filters
are used to guarantee that the HTS hits have enough room for expansion into larger and
more functionalised leads. On the other hand, when SAR implies that certain compounds
(or series) may produce valuable information, the filtering criteria are usually loosened,
because the secondary screens (e.g. QSAR models, similarity to known actives) that are

being applied are effective in detecting useful compounds.

Library filtering is only possible when appropriate descriptions of the molecular features
of database compounds are available. Commonly used chemoinformatics packages like
the Chemistry Development Kit (CDK) [504], CODESSA [505], Dragon [506], MOLCONN
[507], Molecular Operating Environment (MOE) [508], Pipeline Pilot [509], and SYBYL
[457] provide a multitude of molecular descriptors that span several descriptor classes.
However, although molecular descriptors comprise a wide range of 1D, 2D and 3D fea-
tures, from straightforward heavy atom counts to more complex fingerprints and shape
representations, the notion behind library filtering is usually tied to simple (and compu-

tationally inexpensive) one-dimensional descriptions of molecules.

Amongst the most relevant one-dimensional descriptors are the molecular weight (MW),
the number of hydrogen bond acceptors and donors, the octanol-water partition coeffici-
ent (logP), and the number of rotatable bonds. Albeit rudimentary in nature, a number of
examples have shown how these physicochemical descriptors alone can be extremely
useful in drug design and development. In 1997, Christopher Lipinski famously derived a
set of principles based on the observation that most orally active drugs are small and
lipophilic molecules [510]. These principles describe the molecular properties that are
critical for an adequate pharmacokinetic profile in the human body (namely absorption,
distribution, metabolism and excretion). Lipinski defined a rule that states that, in gen-

eral, an orally active drug holds no more than a single violation of the following criteria:

* <10 hydrogen bond acceptors (nitrogen or oxygen atoms);
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¢ <5 hydrogen bond donors (nitrogen or oxygen atoms with one or more hydro-

gen atoms);
¢ MW <500 Da;

* JlogP<5.

This rule of thumb soon became known as Lipinski’s Rule-of-Five, given the fact that all
numbers are multiples of five. Even though there are many exceptions to the rule, it still
represents one of the most well-known and applied indicators of drug-likeness. Over the
last decade, further investigations have spawned many extensions to the original rule

[502,511,512].

In this chapter, the program FILTER [513] was used to compute several molecular de-
scriptors within two large libraries of virtual compounds. First, the program aided the
selection of molecules holding physicochemical properties matching those of known TTR
stabilisers during the construction of a benchmarking set. Then, FILTER was used to trim
down a library of more than 11 million compounds, based on a combination of (i) a set of
empirical rules for drug-likeness and bioavailability (pharmacokinetics), (if) knowledge
of toxic and reactive functional groups, dyes and aggregator molecules, and (iii) know-
ledge of the physicochemical properties of known TTR amyloid inhibitors. A detailed ex-
planation of the molecular descriptors and the similarity search methods employed in

the subsequent chapters of this thesis is provided in this chapter.

1.3. 2D searches in chemical space

While one-dimensional descriptors may be adequate to evaluate the drug-likeness of a
molecular database, they are intrinsically related to the molecular structure and do not
depict single specific (sub)structural components. Therefore, they are not suitable to cap-
ture the essence of molecular functions required for biological activity. Conversely, and
as explained in the introductory chapter, two-dimensional (2D) descriptors encode topo-
logical information between the atoms of a molecular graph as binary vectors, often re-
ferred to as fingerprints (see Figure 1.8). Most 2D descriptors can be calculated rapidly,

allowing hundreds of thousands of structures to be processed in an hour.

The fundamental idea underlying similarity-based VS is simple and was originally enun-
ciated by Johnson and Maggiora based on their (aforementioned) Similar Property Prin-
ciple [104]. If this principle holds, database compounds that are structurally similar to a
reference molecule but have not been tested for biological activity are more likely to be

active. The ranking of a database in order of decreasing similarity was first reported in
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two papers published in the 1980s [514,515], both centred on the use of 2D fingerprints
for the measurement of inter-molecular structural similarity. This strategy was quickly

taken up and is now supported by a large body of evidence [515-522].

Over the past decades, several 2D fingerprint technologies have been developed and suc-
cessful used, including hashed connectivity pathways [108], structural dictionary-based
[109] and layered atom environment fingerprints [110]. Daylight fingerprints, in particu-
lar, have been used as a standard for benchmarking [108]. Indeed, compared to more
sophisticated descriptors (like 3D pharmacophore patterns), simple 2D fingerprints per-
sist as representations of choice for similarity-based VS. This is due not only to its high
computational efficiency, but also to its demonstrated effectiveness against more com-

plex approaches to similarity searches [120,516,517,523-528].

In this subsection, fingerprints methods that have been exploited throughout this PhD

project will be described comprehensively.

1.3.1. 2D chemical fingerprints

A Chemical Hashed Fingerprint (CHF) is a bit string encoding the topological structure of
a small molecule [529]. Atoms and bonds (linear patterns) and rings (cyclic patterns) are
detected for each ligand and assigned to strings of a given length that can be used to
characterize the molecule for full structure, substructure and similarity searches. The
length of the strings (and thus their resolution) is defined by the user. The first step of
the descriptor generation corresponds to the creation of the atom pair descriptor and the
so-called start-end-short-path (SESP) vector descriptor - wherein all paths of a given
length are counted using the shortest path algorithm [514,530]. The atom types are de-
fined by the elements, and the possible walks between all atoms on the molecular graph
are calculated and encoded as a binary vector. Thus, each possible walk is represented by
a bit pattern that is added to the descriptor with a logical OR operation. By doing so,

overlaps between different bit patterns are possible (recall Figure 1.8).

Similarly to CHF, 2D UNITY Fingerprints (or UNITY 2D-FP) are binary representations of
the common features and groups in a structure (such as all fragments of length 2-7,
phenyl rings, etc.). These fingerprints are specified in simple ASCII files, by following a set
of rules pre-defined in a screen definition file within the program SYBYL [457]. Two
types of definitions are included in a UNITY 2D screen definition file - BY_SLN and
BY_LENGTH - dictating the class of fingerprint to be used - Fragment Based Fingerprints
(FBFP) and/or Fragment Length Based Fingerprints (FLBFP), respectively. On a nutshell,

FBFP simply characterise a molecule based on the particular fragment types it contains,
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whereas FLBFP take into consideration aspects that help optimising the rules for the
length of the typical fragments that are used in queries. This is particularly important for

screening purposes.

1.3.2. 2D pharmacophore fingerprints

By contrast to CHF and UNITY 2D-FP, 2D-Pharmacophore Fingerprints (2D-PF) take into
account only the chemical features related with binding and believed to be responsible
for a particular pharmacological action, which are defined as follows: hydrogen bond
donor (d); hydrogen bond acceptor (a); positive charge (+); negative charge (-); hydro-
phobic (h), and aromatic (r) [531]. Moreover, instead of a one-dimensional construct
where no spatial relations are included (like in a bit string description), the relative posi-
tion of pharmacophore points is represented by a topological distance (Figure 4.1). This
distance is defined by the length of the shortest path between two nodes (atoms) of the
chemical graph, i.e. the smallest number of graph edges (bonds) connecting the two
atoms. As for CHF and UNITY 2D-FP, similarity searches using 2D-PF do not require the
computation of 3D coordinates and were shown to be very fast and efficient for the vir-

tual screening of large databases.
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ha=[431332212 2|
hd=|[220001100 0]
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ra=|134334420 0|
rd= 012210000 0|
rh=0269963100 0|
rr=|663000000O0|

Figure 4.1. Example of a 2D-PF descriptor histogram. Dist.: Topological distance, a: hy-
drogen bond acceptor, d: hydrogen bond donor, h: hydrophobic, r: aromatic. Adapted from

reference [531].

1.3.3. Similarity search metrics

At the heart of any system for similarity-based VS is the metric that is used to quantify
the degree of resemblance between the reference molecule and each of the structures in

the database of compounds to be screened.
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Focusing more on the similarity coefficients that are employed for comparing finger-
prints, the Tanimoto coefficient (Tc) is the metric of choice in both in-house and com-
mercial software for chemical information management. However, the Tc is also associ-
ated with a few problems. One of its shortcomings is that it is known to yield low simi-
larity values when the reference molecule has just a few bits set in its fingerprint [532].
Moreover, this has been linked to an inherent bias towards specific similarity values

[533].

Several alternative metrics have been explored in order to address the limitations of the
Tc, and Holliday et al. conducted a comparison of 22 coefficients in searches of the NCI
AIDS database using 2D UNITY fingerprints [534]. Table 4.1 provides examples of some

of the coefficients that were tested in the study.

Table 4.1. Examples of some similarity/diversity coefficients commonly used with 2D

fingerprints.
Coefficient Expression
. 4
Tanimoto a+b—c
Squared Euclidean a—l—/;l——ZC
_c
Cosine /ab
Hamming a+b—2c
c
Russel-Rao m
b m
Forbes ab
Two compounds, A and B, are encoded by binary fingerprints with a
total of m bits. The fingerprint for compound A (or B) has a (or b) bits
set to one, and there are c bits set to one in both fingerprints (i.e. the
logical and of the two bit-strings). The Hamming coefficient is in fact a
distance, so that large values represent dissimilar pairs of molecules,
and not similar pairs of molecules as with the other coefficients.

The results obtained by Holliday et al. [534] and Salim et al. [535] imply that some of the
available coefficients quantify different types of structural resemblance. This realization
has inspired the use of multiple similarity coefficients and of data fusion methodologies
for combining the results of database searches. While initially developed for use in signal
processing (by combining the input of multiple sensors), data fusion is today applied to a
broad spectrum of domains. Its application in VS has been relevant, allowing the combi-
nation of results employing different metrics but also different reference (template) mol-

ecules.
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1.3.4. 2D similarity searches using multiple templates

The vast majority of similarity methods reported to date makes use of only a single tem-
plate ligand during one search run. However, by focusing on only a single molecule, it is
likely that molecules holding equivalent chemical and/or biological properties and ac-
tivity, yet with dissimilar structure, will be overlooked, leading to a high false negative
rate [536]. With the increasing awareness of the chemistry and availability of crystal
structures of multiple, structurally diverse, active compounds for a given purpose or tar-
get, there has been recent interest in the use of multiple template ligands, especially in
the field of VS [115,537]. Indeed, fingerprint searching is often more effective when
multiple template ligands are used due to an increase in the amount of information avail-
able for the calculations [116,538]. Accordingly, several different approaches have been
applied to multiple template-based fingerprint searching, including consensus finger-
prints [539], centroid fingerprints [114,116,538], bit-scaling techniques [113] and near-
est-neighbour methods [113,116,537,538,540,541]. A number of studies comparing
these different search strategies have shown that the nearest-neighbour methods and the
centroid methods often give the best performance [114,537]. Consensus fingerprints,
centroid fingerprints, and bit-scaling techniques emphasise bit positions that are shared
by all template ligands and are, therefore, likely to account for their observed bioactivity
[116]. Although they are powerful methods, they may be of less use when applied to the
structurally diverse molecules that are typical of high-throughput screening experiments
[115,537]. Indeed, they are more likely to rediscover the common features of known bio-
active molecules rather than discover new chemotypes, which is a desirable feature of
scaffold-hopping approaches. Conversely, the nearest-neighbour method individually
calculates the similarity of each compound in the database to all of the template ligands,
and then either the largest observed similarity score is selected to represent each data-
base compound (MAX fusion rule) or the mean of the similarity scores is taken for the k
nearest neighbours (SUM fusion rule) [116]. Both Hert et al. [115] and Whittle et al. [540]
showed that the best recovery of active compounds was achieved when ranking the

database molecules according to the MAX fusion rule.

2. Computational methods

In this section, I describe the computational methods and the parameters that have been
used during the assembly of (i) a benchmarking set for the evaluation of VS methods
against TTR (explored in Chapter 5) and (ii) a tailored screening set for VS against TTR
amyloid (explored in Chapter 7).
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2.1. Assembly of a benchmarking set for TTR

The ultimate goal of this PhD project is to evaluate the application of a large battery of
virtual screening methodologies to the identification of novel, functional and safe TTR
amyloid inhibitors. To evaluate the power of the different methods to discriminate be-
tween active TTR binders/stabilisers and inactive compounds, we compiled a bench-
marking set composed of active and decoy compounds. All collected data on known TTR
binders reported in the literature and deposited in the PDB were re-analysed [206,214-
220,222,397]. Twenty-two diverse compounds were selected as “actives” making use of
the available binding affinity data and clustering by maximum common substructure
(MCS) [542] to ensure maximal diversity and therefore avoid the inclusion of compounds

coming from the same series (see ligands marked with a t in Figure 4.2).
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Figure 4.2. TTR binders reported in the literature and/or deposited in the PDB, along
with the modelled composite ligands. Ligand mapping following an overlay of multiple
TTR complexes revealed three clusters of ligands occupying similar geometrical positions
within TTR binding pocket AC: red (cluster A), green (cluster B) and blue (cluster C) dashed
boxes. The orange dashed box comprises molecules from three classes of dibenzofuran-
based inhibitors: compound 5c¢ has the highest efficiency inhibiting fibril formation, com-
pound 5b shows the highest plasma binding stoichiometry, and compound 5a represents a
compromise between inhibition of fibril formation and binding stoichiometry. Compounds
highlighted by the dotted boxes were used as template queries for 2D and 3D similarity
searches in this work. The grey dashed box comprises four composite ligands that were
modelled using compounds 4 and 5c as reference. Ligands marked with a 1 were used as

actives in the benchmarking set.
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To select the decoys we followed a strategy similar to the one used to build the Directory
of Useful Decoys (DUD) [543], in three main steps (see Figure 4.3). The 22 TTR actives
were seeded amongst a library of 5.5 million Lipinski-compliant molecules deposited in
the ZINC database [137]. Two-dimensional dissimilarity analyses were performed using
UNITY fingerprints [457] and by computing Tanimoto similarity coefficients between
each active and every compound in the library. Compounds holding a Tanimoto coeffici-
ent equal or greater than a threshold of 0.5 to any of the annotated actives were excluded
and the initial library was thus reduced to approximately 4.5 million compounds topo-
logically dissimilar to the TTR binders. Secondly, for each active ligand we extracted from
the library approximately 100 ZINC compounds possessing similar physical properties.
This was carried out using the program FILTER [513] and by tightly defining property
ranges for the number of heavy atoms, number of hydrogen-bond acceptors, number of
hydrogen-bond donors, sum of formal charges, octanol-water partition coefficient
(XlogP) and number of rotatable bonds. Finally, we performed diversity analysis using
clustering by maximum common substructure (MCS) and by computing Tanimoto co-
efficients within each group of 100 ZINC compounds. Only cluster representatives hold-
ing highest dissimilarity were selected amongst each group of 100 compounds (in equi-
valent proportions). This way we ensured that, as far as possible, each decoy is represen-

tative of a unique chemical series when considered by the VS algorithms.

Annotated TTR ligands + ZINC (~5.5 million compounds)

2D dissimilarity
analysis

Annotated TTR ligands + ~4.5 million of ZINC
compounds (Tc < 0.5
against any known ligands)

1D similarity analysis
(MW, HBacc, HBdon, XLogP,
2+, RB)

Annotated TTR ligands + decoys (~100 decoys per ligand)

Clustering by MCS

Annotated TTR ligands + decoys (~34 decoys per ligand)

Figure 4.3. Schematic representation of the procedure followed to assemble a
benchmarking set tailored for the evaluation of VS methods against TTR. Molecular
weight (MW), number of hydrogen bond acceptors (HBacc), number of hydrogen bond
donors (HBdon), octanol-water partition coefficient (XLogP), sum of formal charges (}#),

number of rotatable bonds (RB). The Tanimoto coefficients (Tc) were computed with
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UNITY, using UNITY 2D fingerprints. This figure was inspired by a similar scheme pre-

sented in reference [543].

After removing all redundant entries from an initial set of 786 compounds, a final set of
738 decoys was obtained (approximately 34 decoys per active). The 22 annotated actives
were then seeded amongst these 738 decoys to constitute a final benchmarking set com-

prised of 760 compounds and tailored for the evaluation of VS methods against TTR.

2.2. Analysis of molecular diversity and properties

The molecular diversity and properties of the active and decoy molecules selected for the
benchmarking set have been analysed (and visualised) using multiple data mining tech-
niques, such as clustering and principle component analysis (PCA). In this subsection,
these techniques are briefly described within the context of the software packages used

to carry out the analyses.

2.2.1. Clustering via Maximum Common Substructure - LibraryMCS

LibraryMCS is a program provided by ChemAxon that clusters a set of chemical struc-
tures on a structural basis [544]. It clusters together structures sharing a common sub-
structure. The clustering engine recognizes the so-called Maximum Common Substruc-
ture (MCS), and it is always the largest one amongst all substructures found in the struc-

ture set. No predefined fragments are used while searching for the MCS.

The clustering technique employed by LibraryMCS is hierarchical, meaning that the clus-
ters of input structures are grouped into second level clusters, then these second level
clusters are grouped again and so forth, until a termination condition is reached (e.g.
there is only one cluster left). These higher-level clusters are also built on a structural

basis by identification of the MCS of the constituting clusters.

2.2.2. Molecular descriptors - The Chemistry Development Kit (CDK)

In post-filtering stages, the Chemical Development Kit (CDK) [504] was used as an alter-
native resource to analyse a number of basic descriptors for TTR stabilisers selected as
actives and the decoy molecules comprised in the benchmarking set. Amongst these are:
the molecular weight, the number of heavy atoms, the number of hydrogen bond accep-
tors and donors, the number of rotatable bonds, atomic polarizabilities, the calculated

octanol-water partition coefficient, and the topological polar surface area. Besides repre-
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senting an open source solution, the CDK has been successfully integrated in widely-used
workflow systems, such as the Konstanz Information Miner (KNIME) [545,546] and Tav-
erna [547], thus allowing a straightforward (and visual) pipelining of data and the auto-

mation of molecular descriptor analyses.

2.2.3. Analysis workflow - The Konstanz Information Miner (KNIME)

The Konstanz Information Miner (KNIME) is an open-source workflow software devel-
oped at the University of Konstanz [545,546]. KNIME provides an excellent data-mining
platform for chemoinformatics and drug discovery, and was used multiple times
throughout this PhD project to support the interoperability of its different stages. The
default implementation of KNIME can be complemented by several extensions dedicated
to chemistry and the life sciences. Important examples are the CDK-based and Open
Babel-based nodes, and other nodes deposited at the KNIME’s “Community Updates” site
such as the RDKit and Indigo nodes. KNIME can thus be used to transform molecular
structures, compute QSAR descriptors and fingerprints, and implement machine-learning

algorithms (Support Vector Machines, Regression and Bayesian Modelling, PCA, etc.).

Line Plot

Node 10

Histogram

Node 11

Molecular Lipinski's Parallel

SDF Reader Molecule to CDK Properties XLogP Rule-of-Five Column Filtel Coordinates
) s
sor >k D D> 2z D
E=9 EF=9 |G =9
Node 1 Node 2 Node 3 Node 4 Node 5 Node 7 Node 9
Histogram

(interactive)

Node 12

Statistics

Node 13

Figure 4.4. A simple KNIME workflow for the analysis of several molecular properties

throughout this chapter. This workflow makes use of CDK extensions designed for KNIME
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and was used to analyse the properties of active and decoy molecules comprised in the TTR

benchmarking set.

2.2.4. Principal component analysis - ChemGPS

Principal component analysis (PCA) is a multivariate analysis technique widely used to
study the relationships amongst a set of correlated variables. These variables are com-
pressed into a smaller number of new uncorrelated variables called the principal compo-
nents (PCs), while retaining as much information as possible. Thus, PCA filters out the
noise, provides a reduction of data multidimensionality (for instance, the properties of
the input molecules), offers a global overview of the data, and detects trends, groupings

and outliers.

In this work, the ChemGPS system was used to position chemical structures (namely, the
active and decoy molecules) in chemical space via PCA score predictions [548,549]. The
ChemGPS space map coordinates are t-scores from PCA based on a subset of 35 descrip-
tors that describe the size, shape, lipophilicity, polarity, polarizability, flexibility, rigidity,
and hydrogen bond capacity of molecules [548,549].

2.3. Library filtering for the assembly of a screening set

Filtering of chemical libraries was performed with two distinct objectives: (i) to select
compounds holding physicochemical properties similar to those of known TTR stabilis-
ers (yet topologically dissimilar) to be integrated in a benchmarking set (as explained
above), and (ii) to narrow down an initial library of approximately 11 million compounds
downloaded from the ZINC database to an amenable size for virtual screening, thus yield-

ing the screening set tailored for TTR.

2.3.1. FILTER - Program overview

FILTER is an extremely fast program provided by OpenEye Scientific Software that elimi-
nates unsuitable or undesirable compounds from large libraries for virtual screening.
FILTER’s high speed of calculation, which is critical at the database preparation stage,
results mostly from the strict use of two-dimensional and graph-based algorithms. The
program’s criteria for passing or failing a given molecule fall into three main categories:
(1) physical properties, (if) atomic and functional-group content, and (iii) molecular graph

topology. Examples of the simple physical properties calculated by FILTER include mo-
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lecular weight (MW), topological polar-surface area (TPSA) [550], XLogP [551], and
aqueous solubility. The filters also include absolute and relative content of heteroatoms,
as well as limits on the number of a very wide variety of functional groups. The graph
topology filters address issues concerning the number and size of ring systems, the
flexibility of the molecule and the size and shape of non-ring chains. Moreover, FILTER
includes a default filter that encapsulates many of the standard filtering principles, such

as the removal of unstable, reactive and toxic moieties.

Filter definitions are passed on to the FILTER program through a parameter file that
stores four types of statements: physical property limits, rules, new rules and selections.
For example, physical property limits include minima and maxima of simple properties:
MW, number of heavy atoms, carbon count, number of chiral atoms, number of hydrogen
bond acceptors and donors, sum of formal charges, halide fraction, TPSA and XLogP.
Solubility is also a filter, but different categories, rather than a quantitative cut-off, are
used. The six possible categories are: insoluble, poorly, moderately, soluble, very and
highly. Secondary filters impose pharmacokinetic constraints and are based on reported

combinations of the abovementioned simple properties.

2.3.2. Filter definitions

The choice of filter definitions was a paramount aspect in this project, considering our
goal of identifying small molecules that, besides being capable of inhibiting amyloid for-
mation, could represent promising leads towards the development of functional and safe
new drugs. The filtering of the 10,962,930 molecules downloaded from ZINC (version 8)
consisted of a combination of pre-defined FILTER rules for drug-likeness and bioavaila-
bility with knowledge of the physicochemical properties of the known TTR stabilisers.
The pre-defined rules included Lipinski’s Rule-of-Five [510], allowing up to one violation
and defining hydrogen bond donors and acceptors as outlined in the work of Mills and

Dean [552]. Other pre-defined rules included:

* Veber’s/GSK’s measure of bioavailability [553]: only compounds with (i) 10 or
fewer rotatable bonds or (ii) polar surface area equal or less than 140 A2 were

retained;

* Yvonne Martin’s/Abbott’s Bioavailability Score: this score assigns the probability
(ABS) that a compound will have permeability and bioavailability (F) higher than
10% in the rat [554]; only compounds with ABS equal to or greater than 0.5

were retained;
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¢ Egan’s/Pharmacopeia’s (“Egan egg”) measure of bioavailability [555]: only com-
pounds with (i) a calculated LogP equal or below 5.88 or (ii) a PSA equal or be-

low 131.6 A2 were retained.

Aggregators and predicted aggregators, i.e. small molecules known or predicted to ag-
gregate and sequester protein in solution [556,557] (thus interfering with assay results),
were also filtered out. Molecules predicted to be insoluble or poorly soluble in water

were discarded as well.

Furthermore, based on our analysis of various physicochemical properties of the known
TTR actives and their distributions, we customized filter definitions to ensure that no
redundant molecules were included and that no potential binders were missed at an
early stage of the virtual screening. Thus, the maximum sum of formal charges decreased
to 0 and the maximum XLogP increased to 6.5. Moreover, given TTR’s propensity to bind
halogen-bearing (electronegative) molecules, such as thyroxine, the maximum halide
fraction (percent of molecular weight from halides) was increased to 0.6. Finally, iodine

was added to the list of allowed elements.

The full list of parameters passed on to FILTER in order to carry out the filtering of the
initial library downloaded from ZINC is given in the Appendix (Section C).

2.4. Generation of three-dimensional conformers

While many of the virtual screening methods explored in this thesis can handle ligand
flexibility on-the-fly, usually by means of more or less complex functions (such as the
case of genetic algorithms in molecular docking and flexible pharmacophore searches),
some other methods are not able to do so. To provide meaningful results, these methods
must be coupled with other programs that perform searches in ligands’ conformational
space by generating ensembles of conformations and scoring each conformer with an
energy function. Many different algorithms have been developed to efficiently generate

low-energy conformer ensembles.

Drug-like molecules usually have multiple rotatable bonds and can adopt many different
conformations. Thus, molecular flexibility is a requirement of rigid ligand alignment
methods, such as GH8 (see on page 73). Remark that even though GH8 was originally
developed as a solution for the structural alignment of proteins, it can be used for the
superimposition of small molecules as well. The flexibility of ligands can be dealt with by
rigidly aligning pre-generated conformer libraries. The cost of generating the conformers
only needs to be incurred once, and the library can be subsequently scored quickly

against any target of interest.
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The determination of the bioactive conformation of a ligand is a critical step in computa-
tional drug discovery. A ligand conformer ensemble is a set of multiple 3D conformations
that is generated from a single starting conformation. Ideally the conformer ensemble
will contain a conformer that is close (< 1 A RMSD) to the correct solution. Since the bio-
active conformation is not usually found at the global energy minimum in the energetic
landscape, it is necessary to generate an ensemble of low-energy conformers that will
hopefully contain a conformer that is sufficiently similar to the bioactive conformation.
Studies evaluating the performance of several popular conformation search tools have
shown that for lead-like ligands with less than eight rotatable bonds, a conformer within
1 A of the bioactive conformation is generated in more than 80% of cases [98,558]. How-
ever, as the number of rotatable bonds increases, the chance of retrieving the bioactive

conformation decreases.

For reasons of speed and availability (in our Bioinformatics lab), Openeye’s OMEGA was

chosen for the generation of conformers throughout this project.

2.4.1. OMEGA - Algorithm overview

OMEGA employs a rule-based, depth-first deterministic method for conformer sampling.
Different ring conformations are enumerated using a fragment library, before the mol-
ecule is disassembled into fragments of up to five contiguous rotatable bonds. Different
conformations of each fragment are generated based on a library of predefined torsions,
and rotatable bonds are systematically adjusted using SMARTS (SMiles ARbitrary Target
Specification) matching. The fragments are subsequently reassembled based on the order
of their ascending energies, thereby generating a pool of alternative molecular conforma-
tions. Molecular energies are calculated using the Merck Molecular Force Field [30], and
any conformations above an adjustable energy threshold (in relation to the lowest en-
ergy state), or less than an adjustable RMSD threshold (in relation to all other conforma-
tions), are rejected. OMEGA has been shown to be very reliable and effective at reproduc-

ing bioactive conformations [442].

2.4.2. Selection of parameters for 3D sampling

Throughout this project, multiple ligand conformations were generated using OMEGA. An
energy window of 25 kcal.mol! was chosen since it was shown to be essential for best
conformer generation performance in a study by Kirchmair et al. [536]. A lower energy
window could cause valuable conformations to be discarded, whereas a higher energy

threshold could produce high-energy conformers unlikely to represent bioactive confor-
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mations. A diversity threshold (RMSD) of 1 A was also used to discard similar conforma-
tions, and a maximum of 100 conformers were generated per molecule. These param-
eters were used in the work by Sperandio et al. [559] because they represented an opti-
mal balance between speed and performance and agreed well with the study carried out

by Kirchmair et al.

3. Results and discussion

In this section, the results of the analyses leading to the assembly of a benchmarking set
and a screening set tailored for TTR are discussed. The two data sets are described as a
result of the modelling operations conducted in this chapter and under the light of their

relevance for the evaluation and application of VS methods.

3.1. Analysis of active TTR stabilisers using unidimensional

descriptors

Several one-dimensional descriptors and physicochemical features FILTER for the known
TTR stabilisers were computed with the program, in order to trace TTR binding propen-
sities in terms of the most basic molecular properties. Figure 4.5 shows a statistical an-
alysis for 26 compounds using four bulk descriptors: the molecular weight (MW), num-
ber of heavy atoms, octanol-water partition coefficient (determined as XLogP), and sum
of formal charges. As can be seen, TTR tends to bind molecules that are in the “lead-like”
range in terms of molecular weight (median MW of approximately 325 Da). With a MW
larger than 700 Da, the endogenous natural ligand of TTR, the thyroid hormone thyrox-
ine, represents a clear outlier amongst the distribution of MWs. The tendency to bind
relatively small ligands is further confirmed by looking to the median number of heavy
atoms in the known binders, which is no higher than 20, a figure that is also closer to the
lead-like range than to the drug-like range. Furthermore, molecules binding strongly to
TTR are most likely hydrophobic; the median XlogP for the known stabilisers is around 4,
a value that approximates the upper limit of drug-like properties (according to Lipiniski’s
Rule-of-Five). Another interesting feature characterizing the known TTR actives is their
tendency to be negatively charged. Indeed, the median value for the sum of formal

charges in TTR stabilisers is -1 and the maximum value 0.
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Figure 4.5. Box plots to compare selected physicochemical properties of all 26 TTR
stabilisers known to date. The box region provides a graphical view of the median and
quartiles of the distribution; the dotted lines extend to maximum and minimum values of

the data set).

This particular feature of TTR stabilisers seems to be in line with the electrostatic prop-
erties of TTR. Even though the surface of the protein is mostly negatively charged -
which is linked to its characteristic electrophoresis migration pattern; and hence its his-
torical name of “pre-albumin” - TTR binding sites seem to counteract this characteristic,

being mostly electron-depleted (Figure 4.6).
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Figure 4.6. Electrostatic properties of TTR determined by Poisson-Boltzmann calcula-

tions. Dielectric constants of 4 and 80 were employed for the protein and the solvent, re-
spectively. The electrostatic potential is represented as a colour scale (ranging from -1 to +1
kT/e) at the protein surface - top and central panels - and as isocontours at -1 kT/e (red
contours), 0 kT/e (white contours) and +1 kT/e (blue contours) - bottom panes. The left-
most panes show a side view of TTR, rotated 902 from the front view shown in the right-
most panes. The central pane shows a cross section of the tetramer taken at the binding
channel symmetry axis (here, the ligands bound to both pockets are displayed for refer-
ence). The Poisson-Botzmann calculations were carried out with MEAD [560] and the figure

was produced with PyMol [561].

3.2. Selection of templates for ligand-based screening

The choice of the active molecules to use as reference queries (or templates) for 2D and
3D similarity searches is a difficult one. Firstly, it is very unlikely that one single active
molecule can be representative of a whole series of actives or even hold all the ideal
pharmacophoric features required for optimal interaction with the target binding site.
Moreover, 3D similarity search methods would ideally take the bioactive conformation of

the reference ligand as a query for the searches, but sometimes this is unavailable.

In the case of TTR amyloid, a comprehensive selection of TTR stabiliser ligands was car-
ried out using criteria like potency, binding mode and state of development. On this basis,

four specific molecules were chosen as reference molecules (or template ligands) for the
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benchmarking (Chapter 5) and application (Chapter 7) of similarity-based virtual ligand

screening.

3.2.1. Known actives as templates

For the comparison of the different similarity-based VS methods described in this chap-
ter, we chose TTR’s cognate ligand, thyroxine (compound 1, see Figure 4.2) the most
prominent endogenous TTR binder [562]; phenox (compound 4) [215] a promising TTR
stabiliser and representative of cluster A; a benzoxazole acid (compound 10) [218] an-
other potent amyloid inhibitor representative of cluster B; a polychlorinated biphenyl
(compound 22) [219] the most potent TTR binder known so far and representative of
cluster C (Figure 4.2). In all cases, the structures of the template ligands were extracted
from the corresponding X-ray coordinates deposited in the PDB: 2rox for thyroxine (T4),
1dvy for phenox, 2f8i for the benzoxazole acid and 2g5u for the polychlorinated biphenyl
(PCB18). DBF47 (compound 5c) is a potent dibenzofuran derivative sharing structural
similarity with phenox [222]. Because no X-ray coordinates are publicly available for the
full structure of DBF47 (compound 5c), we took the coordinates of the dibenzofuran-4,6-
dicarboxylic acid moiety (compound 5) in the complex with TTR (PDB code 1dvu) and

modelled in the missing 3,5-dichloro aryl ether substituent.

3.2.2. Modelling of concatamers

To address the problem of representativeness affecting the use of single templates in VS,
we took the structures of both compound 4 and compound 5c (see Figure 4.2) and mod-
elled in missing features that are believed to be critical for both shape complementarity
with the receptor sites of TTR and interaction with the hydroxyl side chains of two serine
residues located at the inner portion of the pockets [215,216,220]. This resulted in four
new composite ligands that are concatamers of high affinity ligands: two ligands (com-
pounds 24 and 25) were based on the structure of DBF47 (compound 5c) and the other
two (compounds 26 and 27) were based on the structure of compound 4. X-ray coordi-
nates were used as template (PDB code 1dvy) and the hydroxyl and carboxyl groups
were added at the para position of the distal aryl ring. Since the trifluoromethyl group at
the meta position of this ring is rather bulky to favourably allow the presence of a sub-
stituent at the para position, we replaced it for a chlorine atom and added an extra chlor-
ine at position 5 (creating symmetry). This modification was inspired by the successful
substitution pattern of the corresponding ring in DBF47 [222]. The composite structures
were then energy minimized and conformational sampling was performed to identify low

energy conformations retaining the closest similarity to the X-ray reference models. All
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modelling procedures were carried out with ChemAxon’s MarvinSketch [563]. Conforma-
tional sampling was performed with OMEGA. The predicted lowest-energy conforma-

tions were evaluated as potential template queries for VS.

3.3. A benchmarking set for the evaluation of VS methods

The high structural diversity found amongst the strongest TTR stabilisers has been out-
lined throughout this thesis and even quantified in Chapter 3, where the presence of two
aromatic rings was revealed as the most unifying feature characterising TTR’s pharma-
cophore. Understanding this diversity is a key to the correct evaluation of VS methods
against TTR amyloid. Equally, the criteria for selection of inactive compounds (decoys) to
use in an evaluation of VS protocols are of fundamental importance and should be able to
mirror the structural diversity found amongst the active molecules. As will be further
explained in Chapter 5, in this project we seek to evaluate the VS algorithms’ perform-
ance at discriminating active molecules over inactive ones based on the compounds’
ability to establishing complementary interactions within TTR receptor sites, rather than
by inconsequential physicochemical properties, such as their molecular weight. There-
fore, despite possessing dissimilar chemical topologies to the known TTR ligands, the

selected decoys should share similar physicochemical properties.

To evaluate the discriminative power of different virtual screening methods, we com-
piled a benchmarking set comprised of TTR-active and decoy compounds. As with the
construction of pharmacophore hypotheses described in Chapter 3, the selection of
actives was accomplished upon knowledge of TTR binders reported in the literature and
deposited in the PDB [206,214-220,222,397]. On this basis, 22 binders were then selec-
ted as “actives” making use of the available binding affinity data and clustering by maxi-
mum common substructure [542] to ensure maximal diversity and therefore avoid the
inclusion of compounds coming from the same series. Subsequently, a mimetic set of 738
decoys was constructed by matching the physical properties of the actives within a data-
base of topologically dissimilar drug-like compounds. Details on the construction of this

set of decoys is presented in section 2.1 of this chapter.

3.3.1. Benchmarking set statistics

Table 4.2 reports global statistics for the benchmarking set. It is particularly useful to
contrast the number of compounds with the number of top-level clusters determined via
clustering by maximum common substructure (MCS), to get a picture of the diversity of

the data set. Indeed, diversity is critical to the quality of the benchmarking set. Even
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though there is no absolute definition of chemical similarity, several VS methods heavily
rely on this concept; particularly, the 2D and 3D similarity methods described in this
chapter, which will also be assessed in Chapter 5. Suggestions as to how to circumvent
this issue include the narrowing of the sets of actives to smaller sets of representative
structures, which we have attempted during the selection of TTR actives using clustering
by MCS, or giving more weight to the first compound discovered in a series (this ap-
proach will be explored in Chapter 6). Although decoys are less likely to come from con-
generic series, such approaches may also be important under the context of the protocols

followed to select them. This will be further discussed in the following subsections.

It is also worth noting that the proportion found between the number of active molecules
and the number of decoy molecules in the data set (34 decoys per ligand) is roughly iden-
tical to the average proportion found in the Directory of Useful Decoys (DUD): 36 decoys
per ligand. As will be discussed in Chapter 5, a high proportion between actives and de-
coys (such as the one found in the DUD) is critical when the purpose of the benchmarking

sets is to evaluate one VS method against other methods [564].

Table 4.2. Basic statistics for the benchmarking set assembled for TTR. The number of
compounds, the number of conformers generated by OMEGA and the number of top-level
clusters generated by maximum common substructure (MCS) are reported for the known

actives, the selected decoys and the entire data set.

# Compounds | # Conformers (by OMEGA) | # Top-level clusters (MCS)
Actives 22 119 14
Decoys 738 8857 387
TOTAL | 760 (~1A:34D) 8976 401

As mentioned above, a high similarity between actives and decoys in terms of physico-
chemical properties is an essential characteristic to a good benchmarking set. Figure 4.7
groups together descriptive statistics for several one-dimensional descriptors computed
for the actives and the decoys in our benchmarking set. The median values reveal close
similarity for properties like MW, number of heavy atoms, number of hydrogen bond
donors, number of rotatable bonds and atomic polarizabilities. Even though other prop-
erties have been included as criteria for the selection of decoys, less agreement was
found. This mostly applies to parameters reflecting the lipophilicity/hydrophobicity of
molecules: the XLogP and the TPSA. We believe these differences do not reflect limita-
tions in the size (and diversity) of the database from which the decoys were withdrawn
(comprised of approximately 4.5 million ZINC compounds), so much as the intrinsic
drug-like nature of the compounds within that database. In this context, however, it is
also important to bear in mind that the properties of the decoys should also mirror the
global properties of the databases typically used for VS, thus reproducing the setting

where the actual screenings take place. Still, looking at the upper quartiles of property
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distributions and their maxima it becomes clear that “greasier” decoys are certainly rep-

resented in the benchmarking set (though in a smaller extent).
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Figure 4.7. Box plots to compare a set of relevant physicochemical properties
amongst TTR actives and decoys. All descriptors were computed using the program CDK.
The box region provides a graphical view of the median and quartiles of the distribution;

dotted lines extend to maximum and minimum values of the data set.

3.3.2. Analysis of TTR actives

Figure 4.8 provides an illustration of the clustering analysis based on maximum common
substructure (MCS) performed on the 22 TTR amyloid inhibitors selected as actives. A
total of 14 top-level clusters are comprised in the dendrogram. The first cluster marked
in the intermediate level (cluster 1), for example, groups together three representative
structures of the three families of dibenzofurans (compounds 5a, 5b and 5c in Figure
4.2); grouped in cluster 3 are two benzoxazoles (compounds 16 and 17 in Figure 4.2);
and so forth. The common substructures highlighted in the marked nodes of the
branched trees correspond to fairly small portions of the entire structure of the com-
pounds that populate the clusters. Interestingly, though, 10 out of the 22 ligands form
unique clusters. Altogether, these observations provide an indication of the high struc-

tural diversity found amongst the selected TTR actives.
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Figure 4.8. Maximum common substructure-based clustering of the 22 representa-
tives of TTR amyloid inhibitors selected to integrate the benchmarking set as actives.
The tree nodes corresponding to the intermediate level of clusters were marked to show
the common substructures that are found amongst the active molecules of the data set. For
comparison, TTR’s natural ligand, thyroxine, was also marked, even though it integrates an
individual cluster (cluster 8). The figure was produced using LibraryMCS, provided by
ChemAxon [544].

Furthermore, in this chapter we devised a KNIME workflow, making use of CDK exten-
sions, to carry out a detailed analysis of physicochemical properties of the active mol-
ecules selected to integrate the benchmarking set. In Figure 4.9, the bar plots show the
number of compounds fitting each of several property intervals. For example, it is pos-
sible to realize that most TTR actives fall in the first two intervals of MW and number of
heavy atoms, disclosing a relatively low size compared with the central value of the drug-
like range (325 Dalton). Thyroxine (T4) clearly represents an outlier due to its four (high-
mass) iodine atoms. It is also evident that several of the known TTR amyloid inhibitors
tend to be lipophilic in nature, falling in XLogP ranges larger than 4. Molecular polari-
zability walks hand in hand with molecular refractivity, and both properties have been
linked with poor solubility [565]. It is interesting to note that some (but not the majority)
of the known TTR actives explore higher ranges of atomic polarizabilities. Equally inter-
esting is that this observation is in line with our groups’ wet lab experience with some of
the known actives: It has become clear that calculated octanol-water partition coeffici-
ents (such as cLogPs and XLogPs) alone are not foolproof predictors of solubility. Instead,
a combination of multiple descriptors, such as TPSA, molecular refractivity and polari-
zability, the energy gap between the highest occupied and lowest unoccupied molecular

orbitals, etc. seem to influence to different extent water solubility [565].
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Figure 4.9. Detailed characterization of the physicochemical properties of TTR
actives in the benchmarking set. The analysis and the plots were produced using the

KNIME workflow presented in the Methods section.

We went further to study the positioning of the known TTR amyloid inhibitors in chemi-
cal space and contrast their physicochemical properties with those of other therapeutic
drugs. This was accomplished via principal component analysis performed over 35 de-
scriptors using ChemGPS [548,549]. The perception of dimensionality takes in the weight
of individual variables in the data set, showing what molecular properties are explained
by the respective orthogonal components (the so-called principal components, or PCs;
see Figure 4.10). The four most significant PCs account for 77% of the variance: PC1 ex-
presses size, shape and polarizability; PC2 depicts aromatic- and conjugation-related
properties; PC3 represents lipophilicity, polarity and H-bonding capacity; PC4 discloses
flexibility and rigidity.
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Figure 4.10. Three-dimensional projection of the t-scores obtained via PCA predic-
tions based on 35 molecular descriptors for active compounds of 5 protein targets.
The two panes are equivalent, differing only by a slight rotation in order to facilitate visuali-
zation in 3D. The main influences in PC1 are molecular size and shape, in PC2 is aromaticity
and in PC3 is lipophilicity. Altogether, these three components explain 71% of the variance.
Molecules corresponding to TTR actives are coloured in green. For comparison, active in-
hibitors of the enzyme cyclooxygenase-1 are shown in red, estrogen receptor antagonists
are shown in orange, HMG-CoA reductase inhibitors are shown in light magenta and Heat

Shock Protein 90 inhibitors in violet. PCA was carried out using ChemGPS [548,549] and the

™

results were plotted with Apple™ system software Grapher 2.0.

Given their common “lineage”, it is interesting noting that the properties of the known
TTR actives map closely onto those of cyclooxygenase-1 inhibitors. Moreover, the high
aromaticity of TTR actives is only overcome by that of estrogen receptor antagonists and
matched by some of the Heat Shock Protein 90 (HSP90) inhibitors. Alongside with HMG-
CoA reductase inhibitors, TTR actives show the highest dispersion in the coordinate
space, showing that their diversity extends beyond their structural features to charac-

terize their physicochemical features alike.

3.3.3. Analysis of TTR decoys

We applied the same set of analyses to the selected decoys, thus providing a more com-
plete view of the characteristics of the benchmarking set and the degree of conformity
between active and decoy molecules, both in terms of structural and physicochemical

similarity/diversity.

Figure 4.11 illustrates the clustering analysis based on maximum common substructure
(MCS) performed for the 738 ZINC compounds selected as decoys for the benchmarking

set. A total of 387 top-level clusters are comprised in the dendrogram, which represents a
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ratio of 1 cluster per 1.9 compounds. Indeed, more than half of the decoys are clustered
individually, suggesting a reasonable degree of structural diversity in the data set. It can
be noted, nonetheless, that the nitrobenzene motif is conserved across 233 compounds.
This suggests that the selection the decoys may have suffered some bias caused by the
use of identical filtering definitions based on actives that share very similar physico-

chemical properties.

5MMMMWWWMMWMW(MMWMWWM

Figure 4.11. Maximum common substructure-based clustering of the 738 ZINC com-
pounds selected to integrate the benchmarking set as decoys. The tree nodes corres-
ponding to the top level of clusters were marked to show the common substructures that
are found amongst the decoys of the data set. The figure was produced using LibraryMCS,
provided by ChemAxon [544].

The bar plots in Figure 4.12 represent the number of decoys falling inside each of several
property intervals for the most relevant one-dimensional descriptors. It is interesting to
see that, in general, the property distributions disclose a compromise between the pat-
terns typically observed in general-purpose compound libraries [137] and those wit-
nessed for TTR actives (see Figure 4.9). Comparing both groups (actives versus decoys),
the more noticeable overlaps refer to the distributions of hydrogen bond donors and ac-
ceptors, and rotatable bonds. Looking into properties like the XLogP, TPSA and atomic
polarizabilities, the plots also confirm that the proportion of decoy molecules that are
likely to be soluble than insoluble is higher amongst the decoys than amongst the known

TTR actives.

Figure 4.13 shows the projection of the PCA scores obtained for both TTR actives and de-
coys of the benchmarking set. Clearly, the diversity found amongst the physicochemical
properties of the known TTR actives has been mirrored into the selected decoys, where
even some undue dispersion may be argued. However, it is remarkable to see that all
actives are closely surrounded in space by decoys holding similar physicochemical prop-

erties.
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Figure 4.12. Detailed characterization of the physicochemical properties of the de-
coys selected to integrate the benchmarking set. The analysis and the plots were pro-

duced using the KNIME workflow presented in the Methods sections.

PC1

e pPC2

Figure 4.13. Three-dimensional projection of the t-scores obtained via PCA predic-
tions based on 35 molecular descriptors for the entire TTR benchmarking set. The

two panes are equivalent, differing only by a slight rotation in order to facilitate visualiza-
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tion in 3D. Molecules corresponding to TTR actives are coloured in green, whereas decoys
are shown in smaller spheres coloured in blue. PCA was carried out using ChemGPS

[548,549] and the results were plotted with Apple™ system software Grapher 2.0.

We have contrasted these results with those obtained for some of the benchmarking sets
deposited in the DUD [543]. As can be seen in Figure 4.14, the scattering of physicochemi-
cal properties of the decoys in chemical space is considerably lower for each of the four
DUD targets analysed. In some cases this low dispersion in the decoy set is accompanied
by a lower coverage of the property space of the corresponding actives. For instance, this
seems to be the case of the benchmarking set deposited in the DUD for the target HMGA-
CoA reductase (Figure 4.14).

PC1 PC1

PC1 PC1

PC2 PC2

Figure 4.14. Three-dimensional projection of the t-scores obtained via PCA predic-
tions based on 35 molecular descriptors for four DUD benchmarking sets. Active in-
hibitors of cyclooxygenase-1 are shown in red (top-left pane), estrogen receptor antago-
nists are shown in orange (top-right pane), Heat Shock Protein 90 inhibitors in violet (bot-
tom-left pane), HMG-CoA reductase inhibitors are shown in light magenta (bottom-right
pane). In all panes, DUD-self decoys are shown in small blue spheres. PCA was carried out
using ChemGPS [548,549] and the results were plotted with Apple™ system software Gra-
pher 2.0.
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3.4. A screening set tailored for TTR

Finally, a tailored library of 2,259,573 compounds was assembled by filtering of an initial
database of 10,962,930 molecules downloaded from ZINC [137]. Approximately 30 mil-
lion conformers were generated with OMEGA [458] and populate the final data set to be

used for virtual screening (Chapter 7).

Even though we have used multiple models that attempt to filter out compounds holding
inappropriate ADMET profiles, some of the customized filter parameters used to gener-
ate our library may raise questions about the quality and safety of the included com-
pounds. An important example is solubility. We have set a high XLogP definition to reflect
the values found amongst the known TTR actives. It should be kept in mind, however,
that individual descriptors are unlikely to accurately predict measurable macroscopic
properties. The combination of multiple parameters and definitions is critical to obtain
the expected outcomes. Moreover, some of these variables can be compensated by other
alternative parameters. We have employed solubility definitions wherein all compounds

predicted to be insoluble or poorly soluble are discarded.

Further assessments of molecular properties can be conducted during the post-screening
stage, where screening hits predicted to hold inappropriate physicochemical features can
still be deprioritised or even eliminated during the selection of the subsets of compounds

to be tested experimentally.

4. Concluding remarks

“Shoot for the moon. Even if you miss, you'll land among the stars”, author Les Brown fa-
mously said. This may sound like close enough, but given the vastness of chemical space,

exploration and drug discovery need to be more meticulous and focused than that.

The concepts of molecular similarity and diversity were introduced in this central chap-
ter as a primer to the exploration of chemical space towards the identification of new
bioactive compounds. Several 1D, 2D and 3D similarity search methods were explained
as complementary tools in this exploration, allowing the assembly of targeted or focused

libraries of amenable size for virtual and/or experimental screening.

In this chapter, the molecular properties of the strongest TTR stabilisers were analysed
and used to tweak filter definitions towards the preparation of (i) a benchmarking set for

the evaluation of VS methods (in Chapter 5) and (ii) a tailored library for VS against TTR
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amyloid (in Chapter 7). Together, these data sets represent the hallmark results with-

drawn from this chapter.

The benchmarking set assembled for the evaluation of VS methods against TTR amyloid
comprises a total of 760 compounds, of which 22 are known TTR amyloid inhibitors and
738 are carefully selected decoys molecules. Diversity is the best term to characterize the
structural and physicochemical properties of both actives and decoys, resulting not only
from TTR’s intrinsic capacity to bind diverse compounds but also from an attempt to
identify challenging decoys that match such diversity. This benchmarking set will be ex-

tensively used in Chapter 5.

The compound library assembled for VS (screening set) comprises approximately 2.3
million lead- and drug-like molecules selected through a careful filtering process. Opin-
ions about the appropriate size of a screening library might diverge, but they should al-
ways take into consideration the type of virtual screening methods to be employed and
the amount of computer power available for screening. While 2.3 million compounds can
be screened overnight using 2D similarity searches, it could take years to screen using
more complex methods like molecular docking. These aspects will be further discussed in
Chapter 7, where the screening set prepared in this chapter will be screened by several

VS protocols and using several different types of computer resources and architectures.
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Chapter 5

Evaluation of Virtual Screening
methods against TTR amyloid:

what we know and when we know it

“You know the truth, the brick-hard, ir-

regular, slithery surface of truth.”

[Philip K. Dick, in Do Androids Dream of Electric Sheep?]



1. Introduction and theory

The idea behind in silico screening is to use computers and software to rank virtual libra-
ries of chemical compounds according to the probability of being active against a particu-
lar target of therapeutic interest. In principle, such prioritisation would permit that only
those molecules with a considerable likelihood of showing activity would be tested ex-
perimentally. Obviously, this would reduce the costs associated with the drug discovery
process [537]. With a number of success stories already reported [566], virtual screening
(VS) methods are increasingly playing an important role in the field of drug discovery

[559].

Traditionally, structure-based approaches are often pursuit when a crystal structure of
the target protein is available. Structure-based methods usually involve docking small
molecules into a receptor site of the target protein and predicting a score for the resul-
ting interactions. Several molecular docking approaches have been introduced in Chapter
1 (page 18) and in Chapter 2. Current docking scoring methods, however, are generally
poor predictors of binding affinity [419], and their ability to correctly rank candidates
has been questioned [567].

When the structure of the target protein is unavailable, a ligand-based approach must be
followed. There are numerous examples in the literature where ligand-based methods
have been shown to outperform docking algorithms [468,496,568,569]. Ligand-based
pharmacophore models and searches are perhaps the most commonly employed set of
methods, often providing good results. Pharmacophore modelling has been recently at-
tempted for the targeting of TTR through repurposing of flavonoid molecules [570]. The
experimental verification of this effort has not yet been revealed. We have also devised a
set of receptor- and ligand-based pharmacophore models for TTR [571]. As explained in
Chapter 3, while some of our models (and particularly their combinations) seem to cap-
ture the specificities of ligand binding to TTR, their correct validation is hindered by limi-
tations in database ranking that are intrinsic to the software available for pharma-
cophore-based searches. Accordingly, our pharmacophore models will be utilised only
during the analysis of the VS hits put forward by protocols offering quantifiable and ad-

equate performance (Chapter 7).

Other ligand-based approaches based on two- and three-dimensional similarity are
available and require one or more known active molecules as reference. This type of
methodologies was described in Chapter 4. When the structure of the target protein in

complex with a ligand is available, the 3D bioactive conformation of the ligand can be
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used as template, i.e. the reference molecule against which the database compounds are
compared. Various different structure-based, ligand-centric methods often use the bio-
active conformations of template ligands, including shape-matching algorithms [118],
molecular field descriptors [110,121], and pharmacophore fingerprints [572-574]. Al-
ternatively, low-energy conformations [568], or even 2D representations [117,575,576],
of the known actives may be used as template ligands when no structural information is

available.

One of the main challenges when using any ligand-centric approach is to find the appro-
priate balance between search specificity, which is required for target selectivity, and
search flexibility, which is necessary for removing any dependency on the template ligand
[559]. Indeed, ligand-based methods, particularly those based on simple molecular to-
pology, are often criticised for finding close structural analogues instead of discovering
novel structures (a concept known as scaffold hopping). Scaffold hopping is a highly de-
sirable outcome of VS because it not only provides ways of improving the pharmacologi-
cal properties of known lead compounds, but it also allows the exploration of unpatented

regions of chemical space.

VS methods are only truly useful for scaffold hopping if they are able to retrieve actives
that are both lead-like and structurally novel, and a major consideration when demon-
strating this in a retrospective validation is the data set of actives and decoys used. As
discussed in Chapter 4, it is important that the decoys have similar physicochemical
properties to the actives, otherwise the actives may simply be distinguished from the
decoys based on trivial differences, such as molecular weight (MW) or logP [577]. Huang
et al. recently constructed the Directory of Useful Decoys (DUD), in which the decoys
were specifically selected to be physicochemically similar yet topologically dissimilar to
the actives, thereby providing a more realistic scenario for the validation of ligand-based

VS [543].

The goal of this chapter is to test and compare the VS performance of several VS proto-
cols designed to discover active TTR stabilisers seeded in a benchmarking set of 738
carefully selected decoys. The proposed VS protocols employ four distinct types of VS
techniques: (i) 2D similarity searches using Chemical Hashed Fingerprints and Pharma-
cophore Fingerprints, and UNITY 2D fingerprints; (ii) 3D searches based on molecular
shape, chemical complementarity and electrostatic similarity; (iif) LigMatch, a new lig-
and-based method combining 2D pre-selection from multiple templates with 3D geomet-
ric hashing; (iv) molecular docking into consensus TTR X-ray structures selected through

the cross-docking studies presented in Chapter 2 (recall page 100).
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1.1. Benchmarking and performance evaluation in VS

Benchmark studies are essential to evaluate the accuracy of in silico methods aimed at
discriminating active molecules from inactive ones. As new VS methodologies, data min-
ing and machine learning methods are adapted for the ranking of compound databases,
the chemoinformatics and VS literature is being overwhelmed with performance evalu-
ations in reasonably unified settings. Nevertheless, problems in judging the relative per-
formance of one method on the basis of previously published reports are often encount-
ered. Jain and Nicholls noted that “a serious weakness within the field is a lack of stand-
ards with respect to statistical evaluation of methods, data set preparation, and data set
sharing” [578]. Moreover, Nicholls underlined the fact that standard procedures com-
monly used for the analysis of benchmarks in other fields are rarely followed in VS re-
ports [564]. The main issues mostly concern (i) the experimental design, (ii) the prepara-
tion of data sets, (iii) the performance metrics, and (iv) the variance of analysis. In the

author’s own words, benchmark studies often become “anecdotal instead of systematic”.

Given their relevance within the context of the present chapter, in this subsection the
first two issues are briefly addressed and, in the next subsection, some of the problems
surrounding the performance metrics in common use are reviewed. Point (iv) is more
relevant within the context of Chapter 6 and will therefore be covered in the next chap-
ter. Nonetheless, for a in-depth grasp of all these topics I highly recommend references

[564,578,579].

1.1.1. Experimental design

The very first question one needs to answer when designing a VS benchmarking exercise
is what it is going to demonstrate. Indeed, the hypothesis under investigation should be
clearly stated: are we trying to prove that one particular methodology is “better” than

others? What will we learn from the study?

The lack of a clear design goal in a retrospective VS evaluation is often reflected by the
somewhat subjective way in which the decoy molecules are selected. The ultimate goal of
VS boils down to a simple classification problem, holding an auspicious analogy to a pol-
ice line-up [564]. Is compound (subject) X an active (“guilty”) or an inactive (“innocent”)?
In a general assessment, there is a small set of known actives (the “suspects”) and one
intends to see if a method can discriminate them from a second set of presumed inactives
(the so-called “fillers”, or simply “innocent”). In order to ensure that arbitrary picking

does not compete with real recognition, a minimum number of decoys (or innocent) is
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required. On the other hand, this number cannot be so large that activity (or “guilt”) is

concealed within the statistical variance of the decoys (or the innocent).

Moreover, the inactivity (or “innocence”) of background subjects is most often assumed
through the lack of experimental activity data (or “evidence”). However, the utilisation of
nondrug or lead-like decoys that are easily segregated from drug-like compounds may
jeopardize the entire purpose of a benchmark. In fact, in such cases even rudimentary
techniques (e.g. molecular weight filters) might be able to produce artificial enrichments
of active compounds in database selection sets [107]. In other words, the “fillers” need to
be convincing: dissimilar to the guilty (normalized via structure-unaware descriptors like
molecular weight, hydrogen-bond acceptor/donor counts), but not too similar to the

guilty or between each other (thus yielding false false positives).

Nicholls classified VS experiments into four types, each with its own purpose and all in-
cluding the application of various filters, just before an ultimate step of random selection

of decoys [564]:

i. Universal. Any compound available to be screened, either from chemical suppliers

or corporate catalogues.
ii. Drug-like. Accessible and drug-like, often by employing simple filters.

iii. Mimetics. Accessible, drug-like and matched to known ligands by simple physical

properties.

iv. Modeled. Accessible, drug-like and derived through modelling techniques on

known ligands of the proposed targets.

The level of “challenge” posed by the decoys naturally increases from (i) to (iv).

The universal selection is based on a random withdrawal of decoys from a compound
collection of a particular vendor, thus testing a method’s ability to discriminate known
actives without prior knowledge of the determinants of activity. However, this approach
poses two problems. First, it is very unlikely that a particular vendor catalogue is able to
cover the vastness of chemical space; secondly, it is likely that a random selection will
include certain “characters” (in this case, decoys) that will hold idiosyncratic features and
thus stand out amongst the “crowd”. The latter problem has been portrayed as the ‘dog’
test [580]: if a dog could distinguish the known actives from the inactives what would be
proved? As denoted by Nicholls, potentially a lot, but only if the rest experiment is de-
signed with the choice of decoys in mind [564]. Indeed, the real problem is one of dy-
namic range. If the decoys are easily distinguishable, the only way of achieving sufficient

statistical power when assessing multiple methods is to repeat the same tests multiple
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times. Yet, how many times can one actually repeat the same test? The statistical error
associated with the performance metrics discussed below varies not only with the num-
ber of decoys but also with the number of actives. While it is easy to (randomly) find ex-
tra decoys (presumed inactives), the number of known actives is most often very limited.

This limitation hinders random decoys from being an effective experimental design.

The second approach (drug-like selection of decoys) is perhaps the most common and, as
the name implies, consists in (randomly) withdrawing decoys from a library of “drug-
like” compounds, typically assembled by following well-known rules of drug-likeness
such as the Lipinski’s Rule-of-Five. What really distinguishes this approach from the uni-
versal one is the idea of simulating modern drug screens that focus on compounds that
look like drugs. By doing so, it tries to circumvent the second problem, assuming that all
decoys look like drugs and are likely to be inactives, but the issue of limited chemical
space coverage remains. In fact, most drug-like libraries are strongly biased towards spe-

cific targets that may (or may not) be linked to the retrospective experiment at hand.

The third type of experiment consists in finding mimetic decoys, i.e. compounds that will
not be easily distinguishable from the known actives by “simple” means. The most com-
mon protocols to construct mimetic decoys include matching the physical properties of
the known actives, for example their molecular weight, number of hydrogen bond accep-
tors and donors, lipophilicity, flexibility, etc. [421]. Recently, Irwin et al. set off com-
munity-dedicated activities towards the standardization of decoy sets, giving rise to the
Directory of Useful Decoys (DUD) for docking and other VS methods [543]. Thirty-six
decoys were carefully selected for each known active of each proposed target, employing
a protocol identical to the one used in Chapter 4 for the assembly of a TTR-tailored
benchmarking set (recall Figure 4.3 on page 147). These decoys outline mimetic sets re-
ferred to as DUD-self, whereas the combination of all decoys across all targets form a
drug-like set referred to as DUD-all. It is interesting to notice that, even though the DUD-
self decoys are often frustratingly effective, they are not always harder to distinguish
than DUD-all decoys. The bottom line here is that mimetic decoys are not certain to prove
that expectations conform to reality for VS techniques that attempt to grasp the physics

of drug-target interactions [564].

The fourth approach to decoy set construction is based on the modelling of decoys di-
rectly against the VS method under evaluation. Taking docking and scoring as an exam-
ple, modeled decoys might try to reproduce a good shape complementarity with the tar-
get binding site, while avoiding electrostatics complementarity. This would of course
demand a rigorous protocol to be followed and described (i.e. details about protein and
ligand preparation, protonation, etc. must be given). Moreover, it is plausible to expect

that this approach would most often cause random performances to be observed, leading
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to the conclusion that docking scoring functions are worthless. Clearly, even more than
mimetic decoys, modeled decoys are meant to stress-test VS methods, not to measure

real-world performance. For all these reasons, this fourth approach is often avoided.

With the above in mind, what is then the most appropriate design to choose? If time and
computers resources (mainly, storage) are not an important part of the equation, there is
no reason why a retrospective evaluation cannot include all kinds of decoys. Researchers
can indeed report the performance of the VS methods under evaluation for multiple sub-
sets, clearly identifying the respective intent. If large sets are included, they can be pro-
vided as supplementary material and thus be compared or used by others. At this point, it
is critical to emphasize that the goal of this chapter is to assess and contrast the perform-
ance of multiple VS protocols against one particular target, rather than to extract broad
conclusions about the effectiveness of the methods against many targets in the VS realm.
By contrast, in Chapter 6 the application of specific docking and scoring protocols to
multiple targets is studied. Accordingly, specific subsets within the DUD data set will be

explored, providing multiple bases for comparison.

Perhaps as important as the abovementioned intensive properties (i.e. properties that are
intrinsic to the experimental design), are the extensive properties that include, for in-
stance, the number and the proportion of actives and decoys to be used. The key question
one again needs to ask is: what do we want to know? Indeed, if one intends to assess an
isolated VS method on a single target, these properties will significantly differ from a case
where broad assessments of the efficacy of several VS methods against multiple targets
are attempted. Nicholls illustrated this with basic error analysis, while attempting to ad-
dress the question of how variable the performance of VS methods is [564]. In a neat syl-
logism, the author demonstrates that the variances associated to the high variations in
performance across the 40 DUD targets are intrinsic properties to “targets”, “actives” and
“inactives”. In general, the observed variances linked to both actives and inactives are
identical, which also allows extracting insights about the adequate proportion of actives
and decoys. Moreover, following the Central Limit Theory and using the measure of the
performance (the area under the ROC curve, or AUC) of FRED (with the Chemscore scor-
ing function) across the entire DUD, Nicholls checked whether the source of the variance
across targets was due to inadequate sampling of actives and decoys, or just an intrinsic
property of four VS methods. The three main conclusions withdrawn from his study of

extensive properties were:

i. A proportion of 4:1 between decoys and actives is associated with small error in-
crease (11%) to the limiting value from an infinite number of inactives. Therefore,

even though the number of actives is very important when evaluating the per-
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formance of a VS method on a single system, the number of inactives does not need

to be significantly larger.

ii. The contributions to the variance from a limited number of actives is almost negli-
gible compared to inter-target variation. Thus, the number of systems required to
evaluate the performance of a particular VS method against other methods with a

95% confidence must be very large (even larger than DUD).

iii. The number of actives per target required to evaluate the performance of a par-
ticular VS method against other methods with a 95% confidence does not need to
be very large (a number of 10 actives might suffice), given the variance between
systems. Therefore, the inclusion of only representatives of chemical classes might

be statistically acceptable.

It is important to underline that there are no definite or “correct” answers to the design
of VS experiments, and very often their goals lie between the “standardized” examples
found in the literature. As aforementioned, the work reported in this chapter was not
fuelled by a need to extract generally applicable conclusions about the efficacy of the VS
protocols under study, but the need to evaluate their ability to discriminate TTR actives
from inactives. Above all, the results presented in this chapter allow us to identify which
protocols are more likely to enrich database selection sets with compounds (virtual hits)
that are able to stabilise the native form of TTR and thereby prevent amyloid fibril forma-
tion. Of course, to be “better” does not necessarily mean to be “good”. One of our goals
was that the results could also provide a clear indication of whether our VS protocols
could actually provide promising hits within reasonable size limits of the database selec-
tion sets. In order to achieve this goal, comparisons with successful examples reported in
the literature are not unavoidable but highly desirable. This prompted us to follow a mi-
metic approach similar to the one proposed by Huang et al. in the construction of DUD
[543], resulting in a benchmarking data set with identical proportion of actives and de-
coys (36 decoys per active). For more detail about the benchmarking set, recall page 159

and subsequent pages in Chapter 4.

1.1.2. Preparation of data sets

The choice of decoys is a critical aspect in the assessment of VS performance, but so is the
assignment of compound activity classes. Recently, VS artefacts related with certain ac-
tivity classes have emerged in the literature under terms like analogue bias and artificial
enrichment [581-583]. In order to illustrate this problem, let us imagine a scenario

wherein a decoy is repeated by mistake in the benchmarking data set. The gain of infor-
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mation is null, but the number of decoys has increased and the associated error virtually
decreased. However, the actual error has not been reduced. In the police line-up analogy,
this would roughly correspond to a situation where identical twins are used as innocent.
As surreal as this scenario may seem, it forces us to go back to the concept of molecular
similarity introduced in Chapter 4. Although there is no unique definition for molecular
similarity, it must be a critical aspect of the selection of the active population from con-
generic series. Accordingly, techniques that rely on chemical similarity (such as 2D and
3D ligand-based methods) are more likely to be affected by biases due to failure in mak-
ing independent measurements. Independence towards extensive variables is indeed a
critical characteristic to pursuit both during the preparation of a decoy set and when

choosing the metrics to report performance.

Good and Oprea proposed a solution to the problem of analogue bias, based on the nar-
rowing of active populations to a smaller set of representative compounds [583]. Clark,
on the other hand, suggested two weighting schemes (arithmetic and harmonic) for the
active compounds retrieved within a compound series, as a way of distinguishing biased
from unbiased screening statistics [584]. More recently, Rohrer and Baumann studied
the problem of artificial enrichment and developed a publicly available resource for
“Maximum Unbiased Validation” (MUV) of virtual screening methods [585]. Making use
of a bulk descriptor space based on simple atom counts and following the principle that
active-active distances in that descriptor space should be at least as large as active-decoy
distances, the authors built a number of benchmarking sets of active and inactive com-

pounds.

Besides analogue bias, more general sources of bias can contribute the phenomenon of
artificial enrichment. The Similar Property Principle introduced in Chapter 4 can be re-
garded, in concept, as a source of inductive bias. The link between chemical similarity and
similar activity is mirrored in compound libraries because molecules are synthesized in a
biased manner, in an attempt to be similar (e.g. bioisosteres) to chemotypes known to be
active. In a way, Medicinal Chemistry disseminates its basic principles to the creation of
compound series that are guided towards the biologically relevant chemical space. In
summary, Figure 5.1 illustrates the concepts of artificial enrichment, analogue bias and

inductive bias, showing how they relate to each other.
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Figure 5.1. Schematic representation of the distribution of sets of active compounds
in simple chemical space representations, illustrating the concepts of artificial en-
richment, analogue bias and inductive bias. (a) When the screening library does not re-
flect the chemical character of active compounds, as assessed using molecular descriptors,
the actives will only occupy a small fraction of the chemical space that is covered by the li-
brary. This makes it easy to separate active from inactive compounds, leading to artificial
enrichment in virtual screens. (b) When active compounds consist of analogue series, the
virtual screening using subsets of these analogs as reference compounds will easily detect
remaining analogs. This phenomenon is known as analogue bias. (c) Appropriate compound
data sets for virtual screening that mimic “real life” application scenarios should be com-
posed of diverse active compounds that are widely distributed over the space covered by
the screening library. (d) Inductive bias means that of the possible chemical space (blue
dots) and potentially available biologically relevant chemical space (black triangles), one
generally only explores regions already known to be activity relevant (black/red triangle)
and chemically extrapolates from such regions (red triangles). This figure was adapted from

reference [586].

In order to eschew the problem of artificial enrichment, in this project we have explored
the clues provided by Good and Oprea [583] to prepare a benchmarking set tailored for
TTR amyloid. Thus, instead of including all known potent TTR stabilisers in the active
population, clustering by maximum common substructure was employed to ensure that
only representatives of the active compounds were considered. Nevertheless, given the
high structural diversity characterising TTR ligands, the benchmarking set used in this
chapter contains 22 diverse actives, along with 738 property-matched decoys. For more

details about the benchmarking set, the reader should review page 159 in Chapter 4. Fur-
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thermore, in Chapter 6 we explore a weighting scheme similar to the arithmetic weight-
ing proposed by Clark [584], in order to circumvent artificial enrichment while reporting

results using the DUD data set.

1.2. Performance metrics

Assuming one particular experimental design, what quantities best describe the per-
formance of a VS method? A myriad of metrics has been suggested to quantify the per-
formance of VS models and protocols, some of which holding general application in quite
different areas of data mining and machine learning. In the following subsections, some
of the main metrics will be discussed. Emphasis will be given to the metrics that facilitate
the detection of active compounds at the top of a ranked data set - a concept known as

early performance or early behaviour.

1.2.1. Sensitivity and Specificity

Before delving into the metrics that are used to assess the performance of VS methods,
two important concepts must be first introduced - sensitivity and specificity. These con-

cepts are key characteristic qualities of any test that aims at classifying two populations.

In the context of VS, sensitivity (Se) corresponds to the fraction of true active molecules
selected by the VS protocol under evaluation, i.e. the number of true positive results (TP)

divided by the sum of true positives and false negatives (FN):

Se = Nselected actives __ TP

N - TP +FN

total actives
Equation 5.1

Se varies between 0 (when all actives are discarded) and 1 (when all actives are selec-
ted), thus providing insight on the active compounds that will be missed (FN). The lower
is the sensitivity of a method, the higher will be the number of FN and the worst will the

method at identifying actives.

By contrast, specificity (Sp) corresponds to the fraction of true inactive molecules cor-
rectly discarded by the VS protocol under evaluation, i.e. the number of true negative

results (TN) divided by the sum of true negatives and false positives (FP):
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_ Ndiscarded inactives __ TN

Sp="N, ~ TN + FP

otal inactives

Equation 5.2

Sp also varies between 0 (when all inactives are selected) and 1 (when all inactives are
discarded), thus providing indication about the inactive compounds that will be inappro-
priately classified (FP). The lower is the specificity, the higher will be the number of FP

and the worst will be the VS protocol at discarding inactive compounds.

TP:
TN:
FN:
FP:

true positives
true negatives

false negatives

false positives

Database
(N entries)

Selection (n)

Figure 5.2. A simple diagram to help understanding the concepts of sensitivity and
specificity. In a database comprised of a total of N entries, amongst which A molecules are
active on the investigated target, the VS protocol selects n compounds as being actives. This

figure was extracted from reference [475].

The diagram provided in Figure 5.2 illustrates the relationship between different classifi-
ers, which helps understanding the concepts of Se and Sp, and also facilitates the com-

parison between the most common metrics reported in Table 5.1.

Table 5.1. Metrics for performance evaluation commonly used in virtual screening.

Metric Expression
Sensitivi So— TP TP
ensitivity = A =TPTEN
o S TN TN
Specificity p = N_A TNLFP
Yield of actives Ya = TP
n
. TP/n
Enrichment = AN
2 (05
k n—k
Statistical significance S= —
&M
TP+TN A A
Accuracy Acc = + = NSe + (1 - N) -Sp
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Metric Expression
_ TP/A  Se
TN/(N—A) Sp
TP-TN — FN - FP
((TN + FN)(TN + FP)(TP + EN)(TP + FP))'/?

Discrimination ratio DR

“Matthews” correlation coefficient C=

Different metrics provide different pictures about the performance of a VS protocol at
identifying active compounds or discarding inactive ones. The enrichment and the yield
of actives are perhaps the most common: the enrichment discloses how many times the
VS protocol performs better than a random selection, whereas the yield of actives pro-
vides an indication of the hit rate one would get if n selected molecules were screened

(for a second time).

1.2.2. Properties of metrics used in VS evaluations

An obvious problem with the high diversity of the available metrics is incomparability,
or, as bluntly put by Nicholls, the “apples and oranges” problem [564]. There are always
two sides to a coin. On the one hand, one may agree that a good metric is the one that
everyone uses. A good example is the root-mean-square deviation (RMSD): everyone
knows there are problems and limitations to the use of the RMSD, but everyone con-
tinues using it as a standard measure (because it allows the comparison of results). On
the other hand, one may even recognize that the answer to the problem depends on the
complete sharing of all data, instead of the imposition of a specific standard, but a scen-

ario where screening data is openly shared is still far from sight.
Nicholls proposed a set of required properties for a good metric [564]:

i. independence to extensive variables (as formerly mentioned);
ii. robustness;
iii. straightforward assessment of error bounds;
iv. no free parameters;
v. easily understood and interpretable.

Some of these characteristics will be discussed on the following subsections while the

reader is introduced to the VS performance metrics used throughout this project.
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1.2.3. Early performance

The enrichment factor (EF) is commonly used to compare VS results [583], expressing
the proportion of active molecules retrieved by a VS method from a chemical database at

defined intervals (i.e. at X%) of the VS ranking:

EF x%) = (Fraction of Actives Recovered) / (X/100)

Equation 5.3

or

EF = (TP/TP+FP)) / (TP+FN)/(TP+FP+TN-+FN))

Equation 5.4

The EF is particularly useful to quantify the early enrichment provided by the method,
for example at the top 1 % and 2 % levels, which is more likely to reflect a drug discovery
process guided by VS, wherein only a very small percentage of the screening library
needs to be experimentally tested. It has been recognized that VS methods should pro-
vide at least a 10-fold increase in enrichment against a random selection in order to hold

a reasonable chance of identifying true hits [496].

Because of its functional form, however, a major shortcoming of the EF metric is that it
depends on the relative number of actives and decoys in the database: the enrichment
becomes smaller if fewer inactives are initially present in the benchmarking set. Indeed,

the “Fraction of Actives Found” term does not hold property (i) proposed by Nicholls.

To quantify early performance, in this project we used ROC enrichment (ROCE), which
avoids this dependency by expressing the percentage of actives recovered as a propor-
tion of the percentage of decoys recovered, rather than as a proportion of the percentage

of all compounds observed [587,588].

ROCE (x«) = (Fraction of Actives Recovered) / (Fraction of Decoys Recovered)

Equation 5.5

or

ROCE = (TP/FP) / (TP+FN)/(FP+TN))

Equation 5.6

This modification alone makes the enrichment independent of extensive quantities, more

robust, accessible to analytic error approximation, and suffering only a minor loss of in-
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terpretability. As with the EF, a ROCE greater than 1.0 represents enrichment relative to

arandom selection.

1.2.4. ROC curves and enrichment curves

The receiver operating characteristic (ROC) curve reports the evolution of Se as a func-
tion of (1 - Sp) as the detection threshold (i.e. the size of n) varies. In analogy to signal
detection theory developed during World War II (a pioneering use of the ROC curve), Se
is the perceived signal (here the activity) and (1 - Sp) relates to the detected background
“noise” emitted by inactive molecules. ROC curves have been recognized as an adequate
approach for characterizing the ability of a VS workflow to distinguish active molecules
from inactive ones [587,588]. Figure 5.3c provides an illustration of the construction of
one of such curves. The 45° diagonal rising from the origin to the upper-right corner rep-
resents a random selection of the molecules, whereas the ROC curve above the diagonal
illustrates the performance of a VS protocol capable of detecting the correct signal, i.e. of
discriminating active compounds over inactive ones. In an ideal distribution (where
actives are totally segregated from inactives) the ROC curve takes off vertically from the
origin towards the upper-left corner (Se = Sp = 1) and then migrates horizontally to the
upper-right corner. In other words, the more a ROC curve bows towards the upper left

corner of the graph, the clearer the signal looks.
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Figure 5.3. Receiver operating characteristic curves in a nutshell. (a) Theoretical dis-
tributions of scores obtained for both active (red) and inactive compounds (blue) using a
given VS protocol. For the sake of simplicity, it is assumed that the scores assigned to both
active and inactive compounds follow a Gaussian distribution, even though this is unlikely
to happen in a real setting. Typically, there is a certain amount of overlap between the two
distributions, revealing false predictions (coloured areas). Upon modification of the selec-
tion threshold (dashed line), the fractions of such erroneous classifications vary consider-
ably. (b) Confusion matrix illustrating the relationship between the elements of a computer
test attempting to classify two populations. Sensitivity (Se) and specificity (Sp) are also con-
textualized. (c) Construction of a traditional ROC curve: for all possible selection thresholds,
the progression of the inferred Se and Sp is reported on a ROC plot, Se as a function of 1 - Sp.
The area under the ROC curve is another commonly used metric to quantify the overall per-

formance of the VS protocol. This figure was adapted from reference [587].

In the context of VS, at least, Se and Sp can only assume discrete values, and the corres-
ponding confusion matrices are filled with integers. As a result, as the selection threshold
varies, the inclusion of a true positive will insert a vertical shift to the ROC curve, while
the inclusion of a false positive will produce a horizontal dislocation. As a result, the ROC
curves used to evaluate VS methods usually look rather serrated and “bumpy”, compared
with the one presented in Figure 5.3c. Nevertheless, because the relative positions of the
ROC plots provide indication of the accuracy of the method, the area under the ROC curve
(ROC AUC) is often used to measure the global performance of VS protocols. When the
ROC AUC is close to 0.5, the method under evaluation is accomplishing a near-random

selection and its discriminative power is poor. On the other hand, when the ROC AUC ap-
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proaches 1, the VS protocol efficiently discriminates actives from inactives, correspond-
ing to an ideal scenario. Caution should be taken, however, when interpreting the mean-
ing of AUC values. ROC plots disclose the intrinsic quality of a given VS protocol and not
the quality of any given molecules. For instance, an AUC value of 0.7 only implies that a
randomly selected active will have a better score than a randomly selected inactive 7

times out of 10.

Inspired by the ROC curve approach, VS researchers developed a useful graphical method
that represents the evolution of enrichment as the database selection threshold changes.
The resulting plots are known as cumulative recall curves (or simply enrichment curves)
and hold a similar outlook as the ROC plots (see Figure 5.4). Enrichment curves report the
yield of actives (i.e. the actual Se) as a function of the fraction of the ranked database, and

not as a function of (1 - Sp) as in “traditional” ROC curves.

% actives (Se x 100)

0 20 40 60 80 100
% screened database

- |deal curve with 10% actives

—o==|deal curve with 50% actives

—e— Enrichment curve with 10% actives

—o— Enrichement curve with 50% actives
Random

Figure 5.4. Enrichment curves for the same VS protocol using two alternative bench-
marking sets with different ratios of actives versus inactives. The plots illustrate the
difficulty that arises when comparing benchmarking sets holding significantly different
actives vs. decoys ratios, due to the fact that enrichment curves are influenced by this ex-

tensive property. This figure was extracted from reference [587].

Like with the enrichment factor (EF), enrichment curves show dependence to extensive
variables. Indeed, as disclosed in Figure 5.4 ideal enrichment curves directly depend on
the ratio of actives in the database. Consequentially, they are limited to narrower as-
sessment space between ideal and random performances, especially when the number of
actives becomes too close to the number of decoys. On the other hand, enrichment curves
are straightforward to plot and provide a real life view of both early and overall perform-

ance of the VS protocols under evaluation (when performing VS on a given screening data
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set in real life, investigators do not know at the outset which compounds are active or

inactive).

Since the main goal of this chapter is to evaluate multiple VS protocols in a real life case -
the screening of novel TTR amyloid inhibitors - we made use of enrichment curves to
assess and contrast both their early and overall behaviour, thus guiding the fine tuning
and the selection of the best VS protocols for large-scale VS campaigns. Because one
unique benchmarking set (comprised of known TTR stabilisers and carefully selected
mimetic decoys) was used, the dependence on extensive variables affecting enrichment
curves is not relevant to the interpretation of the results. The area under the enrichment
curves (AUC) was also calculated for each protocol, providing a measure of the VS per-
formance across the whole data set. Since the known TTR actives represent only 3% of
the entire data set, like with ROC curves ideal distributions of actives and inactives will

approach 1.0, whereas random behaviour will approach 0.5.

2. Computational methods

Ligand-centric VS methods based on 2D (along with their combinations) were introduced
in Chapter 4, starting from page 142. Molecular docking and scoring methods were
introduced earlier in the first two chapters of this thesis, within the context of receptor-
based studies of TTR-ligand interactions. In this chapter, we combine all insights ex-
tracted thus far to assemble a large set of VS protocols aimed at the identification of novel
TTR amyloid inhibitors. All protocols were submitted to successive rounds of perform-
ance evaluations, allowing not only their fine-tuning but also a rational selection of the
protocols with higher likelihood of detecting active TTR stabilisers. Throughout this sec-
tion, the key details about the tested protocols are succinctly described and the results of

their performance evaluation are provided in the next section.

2.1. 2D similarity searching with ScreenMD and UNITY

Thirty-two VS protocols based on 2D similarity were setup using ChemAxon’s ScreenMD
and Tripos’ UNITY data miner. First, chemical hashed fingerprints (CHF) and 2D pharma-
cophore fingerprints (2D-PF) were generated for all ligands in the TTR benchmarking
and screening sets, using GenerateMD. The two types of 2D descriptors were used to
compute compound similarities against the four query structures (or template ligands)
selected in Chapter 4 - phenox, benzoxazole, PCB18 and thyroxine (see page 158). Two

different metrics of similarity were employed: the Euclidean distance and the Tanimoto
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coefficient. Both GenerateMD and ScreenMD are part of ChemAxon’s JChem package
[542]. Additionally, UNITY was used within SYBYL [457] to generate 2D standard screens
(UNITY 2D fingerprints) and perform 2D similarity searches on the benchmarking and
screening sets. Moreover, the four concatamers assembled in Chapter 4 (see page 158)
were also used individually both for evaluation (in this chapter) and screening purposes

(in Chapter 7).

2D-similarity search parameters were passed on to program ScreenMD via XML-format
files defining the type and the characteristics of the fingerprints used in 2D similarity
searches (see Figure 5.5). These configuration files are relatively simple because they
only contain three critical fingerprint attributes: Length, BondCount and BitCount. The
Length parameter corresponds to the number of bits in the fingerprint (usually a multi-
ple of 32); BondCount sets the longest path taken into account, and BitCount defines the
number of bits to be turned into 1 for each identified feature. In this work, three different
fingerprint lengths were tested: 512 (the default length), 1024 and 2048. The BondCount

and BitCount parameters were kept at their defaults, respectively 7 and 3.

Besides fingerprint attributes, ChemAxon’s XML configuration file stores definitions of
the metrics to be used in the screenings, along with their corresponding dissimilarity
thresholds. Structures with a dissimilarity value below the defined threshold are retained
during the screening process, forming the so-called hit set. Because compounds holding a
dissimilarity value higher than this threshold are discarded from the list, we opted for
setting the threshold at its maximum allowable value (1.0 for the Tanimoto coefficient
and 100 for the Euclidean distance), so that every compound comprised in the sets could
be listed with an associated dissimilarity value. This is particularly important for the con-
struction of ROC and enrichment curves, where all database compounds must have an
associated score. In the case of ScreenMD, the scores were easily obtained by calculating
the inverse of the dissimilarity values (the scores thus expressing the level of similarity

to the template ligands and concatamers).

Chapter 5 189



<?xml version="1.0" encoding="UTF-8"?>

<ChemicalFingerprintConfiguration Version ="0.3"
schemalocation="cfp.xsd">
<Parameters Length="1024" BondCount="7" BitCount="3"/>
<StandardizerConfiguration Version ="0.1">
<Actions>
<Action ID="aromatize" Act="aromatize"/>
</Actions>
</StandardizerConfiguration>

<ScreeningConfiguration>
<ParametrizedMetrics>
<ParametrizedMetric Name="Tanimoto" Active Family="Generic
Metric="Tanimoto" Threshold="1.0"/>
<ParametrizedMetric Name="Euclidean" ActiveFamily="Generic"
Metric="Euclidean" Threshold="100" />
</ParametrizedMetrics>
</ScreeningConfiguration>
</ChemicalFingerprintConfiguration>

Figure 5.5. A 2D-similarity search parameters file given as input for 2D similarity
searches with ChemAxon’s ScreenMD. The three most important attributes are Length,
BondCount and BitCount. Illustrated in this example is the set of attribute values that pro-

vides best VS performance on TTR’s benchmarking set.

2.2. 3D similarity searches

The Similarity Property Principle introduced in Chapter 4 has been questioned by some
experiments [589,590]. Doucet et al, for example, performed search of similarity be-
tween compounds binding the adenosine Al receptor and reported conflicting results.
Even though the molecules in their study looked structurally similar, they exhibited sig-
nificant differences in terms of steric, hydrophobic and electrostatic features [590]. In-
deed, these differences are often exposed by means of 3D superimposition of the mol-
ecules under comparison. Pepperrell et al. conducted a comparison of a 3D search
method with a 2D similarity search method on a database of 4500 structures [591]. The
outputs differed significantly and highlighted some complementarities of the two sub-
structure searching systems. Several 2D hits showed little overall similarity to the query
(target) molecule, even though containing the same substructure. On the other hand, 3D
hits presented strong topographical resemblance yet showing great difference from the

target in terms of topology (see Figure 5.6).
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Figure 5.6. Difference in two top hits for the same template (target) molecule in 2D

and 3D searches conducted by Pepperrell [591].

In recent years, the problems of the Similarity Property Principle have been addressed
[592]. In this paper, the authors provided examples where a small modification in the
chemical structure leads to drastic changes in physicochemical properties and biological
activity. Their observations are in agreement with the so-called Similarity Paradox pro-
posed by Bajorath, who stated that even if similar structures have generally similar ac-
tivity, minor modifications can make active molecules lose their activities completely

[593].

Biological activity is usually the result of the interplay of several complex processes,
which cannot be easily depicted by a set of linear relationships. Non-linear variable map-
ping, where the activity is represented by a function of structural, topological and mo-
lecular descriptors, must often be used in order to describe those processes more accu-
rately. One of the first prospective application of a 3D search method in the virtual
screening of therapeutic compounds aimed at identifying novel scaffolds for inhibitors of
a bacterial protein-protein interaction of therapeutic interest [118]. The program used in
this study is called ROCS and, more recently, it was tested against a data set of 21 protein

systems and performed at least as well as the seven competing docking programs [568].

2.2.1. Shape and chemical similarity searching with ROCS

Shape complementarity is a crucial determinant of protein-ligand interactions. In this
project, 3D-similarity searches were performed using ROCS version 2.3.1 [594] (ROCS is
the acronym for “Rapid Overlay of Chemical Structures”). ROCS is a ‘ligand-centric’
shape-based fitting method that represents molecular volume using a set of atom-
centred Gaussian functions, and aligns molecules by optimising the overlap of their vol-
umes. [118]. In general, the overlap of shape between two molecules (or any two objects)

A and B, Oag, is given by
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0,8@*3" = [ [ [x*Fa% g™ a7
Equation 5.7

Here, r is a position in space, q is a set of variables that determine orientation and posi-
tion, and y is the characteristic volume function. The volume integral emerging from
equation x is over the entire space (dr = dx dy dz). Determining Oag allows for the calcu-
lation of a fundamental quantity between any two molecules: the shape distance, Dag

which is given by

Dpg = \/OA.A + Ogg — 20,8

Equation 5.8

This property is a true metric (obeying the triangle inequality) and predicts that shape is
actually an intrinsic, nota an extrinsic or relative property. One can also produce a related

property that has more familiarity, a Tanimoto, Tag:
Tap = Opp/(Opa+ Opp — Oup)

Equation 5.9

This shape Tanimoto (ST) has the recognizable quantity that it is 1.0 if two shapes are
identical, and 0.0 if completely different. Two shapes are never completely different, i.e.,

have zero overlap, but shapes may be identical for different molecular.

Figure 5.7. Schematic representation of the superposition of two molecules per-

formed by ROCS. The shape Tanimoto between the two molecules represented in the top
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panels is 0.78, and the shape overlap is portrayed by the exposed colour of one structure

against that of the other. This figure was extracted from reference [595].

Besides basing comparisons between molecules exclusively on shape overlap, ROCS uses
a colour score to take the chemical properties of overlapping groups, such as H-bond
donors, H-bond acceptors, etc., into consideration. Thus, we made use of the so-called
Combo Score, the sum of two measures of similarity: the shape Tanimoto and the Scaled
Colour score, the former being a measure of the shape similarity and the latter a measure

of the chemical match between two molecules.

Sixteen VS protocols were assembled making use of both the Combo Score and the Scaled
Colour score to carry out 3D similarity searches against all X-ray template ligands and the

composite ligands (concatamers).

2.2.2. Electrostatic similarity searching with EON

Electrostatics seems to play a particularly important role in the binding of ligands to TTR
[384]. Analyses of the electrostatic potential have shown that the surface potential is
more positive in the two binding sites than in other regions of the protein surface, due to
the influence of the ammonium groups of two Lys-15 residues [235,596]. In addition, the
median of the sum of formal charges for the 22 active ligands selected for the test set is
minus one (-1), disclosing a tendency to bind negatively charged molecules. This is also in
agreement with TTR’s well-known propensity to bind halogen-bearing (electronegative)
molecules. It is therefore tempting to search for small molecules holding electrostatic

properties similar to the template ligands.

The program EON takes the molecular overlays produced by ROCS as input and a field-
based measure of Tanimoto to compare the electrostatic potential of a target (database)
molecule with a template molecule. The electrostatic potential is calculated internally
using Zap, OpenEye’s Poisson-Boltzman (PB) electrostatics toolkit. The basic equation for
a the quantification of the overlap between the electrostatic potential for two molecules

AandBis

JA(T) * B(7)
JA() x A(7) + [ B(F) * B(T) — [ A(7) * B(F)

Equation 5.10

Tanimotos p =

In EON, two different Electrostatic Tanimoto (ET) measures are computed, based on the
outer dielectric used in the PB calculation: the ET_pb (an abbreviation of Poisson-

Boltzmann’s Electrostatic Tanimoto) uses an outer dielectric of 80, while ET_coul (an
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abbreviation of Coulomb’s Electrostatic Tanimoto) uses a value of 2.0. The rational for
using a PB electrostatic field is that the external potential is dampened by orientation of
the aqueous solvent. It is a common observation that proteins essentially act to repro-
duce the aqueous desolvation of well-bound ligands. As a result a PB electrostatic field is
more likely to correctly capture the essential elements of binding than that from the Cou-
lombic field. However, this would still seem to be a point to be proven. For the ranking of
hit lists, EON outputs both electrostatic Tanimoto measures (which typically track each
other closely) and an electrostatic Tanimoto combo (ET_combo), which is a sum of the

shape Tanimoto (ST) and the Poisson-Boltzmann Electrostatic Tanimoto (ET_pb).

pat A

Figure 5.8. Multiple representations of a dibenzofuran (DBF47), a strong TTR amy-

loid inhibitor, as processed by ROCS and EON. From left to right, the chemical formulae,
the shape, the chemical properties and the electrostatic properties are illustrated. The fig-

ure was prepared using OpenEye’s VIDA [597].

In this chapter, we assembled eight VS protocols that make use of ROCS’ alignments and
EON’s ET_combo score to perform 3D shape electrostatic similarity searches within the

benchmarking set against all X-ray templates and concatamers.

2.3. 3D geometric matching upon 2D selection from multi-

ple templates: LigMatch

Given the considerable structural diversity of the known TTR binders, it seems clear that
no single template can entirely represent a global pharmacophore for binding to TTR. In
this project, we explored a new method developed in our group at the University of Leeds
- LigMatch - that combines 2D pre-selection from multiple templates with 3D geometric

hashing [598].

In the first step, LigMatch uses a 2D fingerprint based method to calculate Tanimoto co-
efficients between each molecule in a database to be screened and each of the available
template ligands. Then, following the MAX fusion rule explained in Chapter 4 (page 146),
the 3D ligand template with the highest Tanimoto coefficient is selected as the template
against which all the conformers of that molecule are aligned to and scored using a modi-

fied version of the geometric hashing algorithm GHS8. Finally, the compounds are ranked
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according to a normalized mean 3D similarity score. If only one template is available, the

2D selection step is skipped (single template mode, or STM for short).

In this chapter, the atom-atom score was determined for every conformer of every mol-
ecule in the benchmarking set, and each molecule was assigned both a best (conformer)
and a mean atom-atom score (based on all conformers). To deal with the maximum pos-
sible number of matching atoms, these were then normalized by dividing by the number
of atoms present in that given molecule. The resulting lists were then ranked by both the
descending normalized best score and the descending normalized mean score. To allow
the direct comparison of the performance of LigMatch with the other similarity search
methods introduced above, we used the same X-ray templates to perform the searches on

the benchmarking set, resulting in a total of twelve VS protocols.

2.4. Docking and Scoring

The high number of deposited crystal structures of TTR complexes encourages the ex-
ploration of structure-based virtual screening methods. As shown in Chapter 2, molecu-
lar docking can be used to generate sensible geometries of TTR-ligand complexes. Auto-
Dock 4, Vina, GOLD and FRED were tested and all docking programs were able to gener-
ate near-native binding modes. However, it was also shown that, when sorted by score,
the position of the pose closest to the experimental one is often arbitrarily distributed
within the pool of generated poses. Moreover, the inability to predict experimental bind-

ing affinities was clearly demonstrated.

A reliable scoring function should be able to achieve three tasks: (i) correctly identify the
pose closest to the native conformation amongst a pool of docking-generated poses for a
given compound (docking power); (ii) provide a linear correlation between predicted
scores and binding affinities on a random set of protein-ligand complexes (scoring
power); and (iii) rank a set of different ligands binding to the same target according to
their binding affinities (ranking power). In an ideal world, a scoring function that could
reach perfection in terms of scoring power would also be perfect in terms of docking
power and ranking power. However, in reality, scoring functions are designed to be fast
and used in the context of high-throughput virtual screening. Thus, the simplifications of
the underlying biophysics render scoring functions in current use far from perfect at
binding affinity predictions. Aspects like desolvation and entropic effects (torsional,
translational and rotational degrees of freedom) and protein flexibility are not meticu-

lously considered.
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Mainly over the last two decades, some computational methods have emerged as being
able of providing accurate binding affinity predictions. These include free energy pertur-
bations [599,600], thermodynamic integration [601] and MM-PBSA calculations [602].
Nevertheless, the amount of computational power required to achieve an adequate con-
formational sampling for the systems under study hinder their utilisation in high-
throughput virtual screening campaigns. However, absolute affinities (which can be as-
certained experimentally for the most promising hits) are not a requirement, so much as
the relative ranking of a data set of ligands with respect to their affinity to one particular
target. In other words, scoring power has no direct relevance for rescoring [603]. Yet,

and in principle, a good ranking power cannot be achieved without a high docking power.

Alongside ligand-centric methods, in this chapter eighteen docking and scoring VS proto-
cols were assembled and evaluated for their ability to discriminate TTR actives. Based on
the results obtained in Chapter 2, AD4 and Vina were elected for the docking procedure
and, besides their built-in scoring functions, two additional knowledge-based scoring
functions, DrugScore [93,604] and DSX [603], were explored. For every ligand, the low-
est-energy pose was re-scored with both scoring functions. In DrugScore, only the dis-
tance-dependent pair-preferences derived from the Cambridge Structural Database
(CSD) were used (DrugScore€P). The pair potentials in DSX inherit the statistical phi-
losophy of DrugScore. However, the latest scoring function features a more detailed atom
type assignment and avoids problems associated with the reference state of no interac-
tion in DrugScore. In the next chapter, we provide a more detailed and comprehensive
description of DrugScore and DSX, to justify their choice over other freely available

stand-alone scoring functions.

3. Results

In the following subsections we report the results of performance evaluation obtained for
each of the VS protocols setup to identify TTR amyloid inhibitors. The results are

grouped and presented in increasing order of complexity of the underlying VS methods.
3.1. 2D similarity searches
Figure 5.9 shows the enrichment curves for the 2D fingerprint-based VS protocols em-

ploying different similarity metrics. Throughout this chapter, the x-axes are shown in

logarithmic scale in order to facilitate the analysis of early behaviour. Additionally, ROC
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enrichment (ROCE) values at 0.5, 1, 2 and 5% of the ranked benchmarking set are given

in Table 5.2.

Overall, the enrichment achieved using chemical hashed fingerprints (CHF) as molecular
descriptors and the Euclidean distance (ED) as the measure of similarity between the
benchmarking set molecules and the template ligands is the best of all VS methods ex-
plored for TTR. The use of the Tanimoto coefficient with CHF yields poor global enrich-
ments, as disclosed by the low area under the enrichment curve (AUC) for most tem-
plates. However, the results are highly template-dependent in terms of early enrichment.
In fact, when using CHF with the Tanimoto metric, the PCB18 template (compound 22 in
Figure 4.2) is an outstanding exception, attaining the best results of the whole benchmark

when compared to all other X-ray derived templates.

CHF 2D-PF UNITY 2D-FP

100 100 1009

754 754 754

50 50 50

% of actives found
% of actives found
% of actives found

254 25

0 T T

T 1
10 100 0.1

1 1 1
% of ranked database % of ranked database

Figure 5.9. Enrichment curves to compare the VS performance of three different 2D
fingerprint-based methods on a benchmarking set created for TTR: ChemAxon Chemi-
cal Hashed Fingerprints (CHF) and 2D Pharmacophore Fingerprints (2D-PF), and Tripos
UNITY 2D Fingerprints. For CHF and 2D-PF, the continuous lines represent the use of the
Euclidean distance as a measure of similarity, whereas the dotted lines represent the use of
a Tanimoto coefficient. For UNITY 2D-FP only the Tanimoto coefficient was used. The line
colours correspond to different templates as follows; phenox (1dvy) in red, benzoxazole
acid (2f8i) in green, PCB18 (2g5u) in blue, and T4 (2rox) in violet. Random performance is

depicted by the black line.

In contrast to CHF, the 2D Pharmacophore Fingerprints (2D-PF) seem to provide better
early enrichment when using the Tanimoto metric as opposed to the ED metric, although
similar AUC values are obtained for the two metrics. UNITY 2D Fingerprints provide the
best results using the Tanimoto coefficient, yielding high early enrichment with the
phenox template (compound 4) and high overall enrichment with the PCB18 template.
As verified for the CHF descriptors, the PCB18 template seems to hold the highest level of
similarity to TTR binders within the 2D descriptor space. This may relate to this com-

pound’s high affinity for TTR [219,378].
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Table 5.2. ROC Enrichment (ROCE) values at 0.5, 1, 2 and 5% false positive rates

(FPR) and AUC values of the enrichment curves for the VS protocols based on 2D

similarity tested on TTR. Grey shading identifies the best performing protocols.

Method / Similarity measure / Template OR;/CDZ ROCE 1% ROCE 2% ROCE 5% AUC

Euclid- Phenox (1dvy) 142.0 59.5 42.2 16.3 0.92

can dis- Benzoxazole (2f8i) 142.0 59.5 42.2 11.0 0.88

tance PCB18 (2g5u) Max. 59.5 42.2 12.9 0.90

CHF Thyroxine (2rox) 142.0 59.5 42.2 18.8 0.92
Phenox (1dvy) 94.8 38.0 13.6 7.9 0.61

Tanimoto Benzoxazole (2f8i) 5.9 5.2 2.6 2.5 0.44

PCB18 (2g5u) Max. 101.0 42.2 12.9 0.93

Thyroxine (2rox) 47.5 11.9 11.2 7.9 0.70

Euclid- Phenox (1dvy) 47.5 119 5.6 3.0 0.72

can dis- Benzoxazole (2f8i) 11.8 119 5.6 5.4 0.72

tance PCB18 (2g5u) 47.5 11.9 5.6 9.5 0.73

2D-FP Thyroxine (2rox) 47.5 11.9 8.9 6.6 0.73
Phenox (1dvy) 142.0 23.7 8.9 3.6 0.58

Tani- Benzoxazole (2f8i) 47.5 11.9 9.6 9.5 0.76

moto PCB18 (2g5u) Max. 38.0 25.8 11.0 0.76

Thyroxine (2rox) 11.8 5.2 2.6 4.1 0.70

Phenox (1dvy) Max. 59.5 333 12.5 0.80

UNITY Tanimoto Benzoxazole (2f8i) 47.5 11.9 5.6 5.3 0.66
2D-FP PCB18 (2g5u) 142.0 38.0 18.3 12.5 0.90
Thyroxine (2rox) 11.8 5.2 12.7 9.5 0.83

@ This percentage of the ranked benchmarking set of 760 ligands corresponds to only 4 ligands. When these

top-scoring ligands are all actives, the ROC enrichment value becomes the result of a division by zero. Accord-
ingly, the result is presented as “Max.”

3.2. 3D similarity searches and LigMatch

The enrichment curves for all single-template 3D similarity-based VS protocols are given

in Figure 5.10. For comparison purposes, we tested LigMatch’s single template mode

against each of the available templates.
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Figure 5.10. Enrichment curves to compare the performance of different single-

template 3D similarity-based VS protocols (ROCS, EON and LigMatch’s single template

mode) on the benchmarking set created for TTR. The performance of LigMatch’s multi-

ple template mode is also illustrated. For ROCS (leftmost panel), the continuous lines repre-

sent the use of the Combo Score as a similarity score, whereas the dotted lines represent the

use of the Scaled Colour score. In LigMatch, the line colours correspond to different tem-
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plates; for the single template methods: phenox (1dvy) in red, benzoxazole acid (2f8i) in
green, PCB18 (2g5u) in blue, and T4 (2rox) in violet; and for the multiple-template LigMatch
schemes: phenox + benzoxazole acid + PCB18 + T4 in maroon, phenox + benzoxazole acid +

PCB18 in orange, and phenox + PCB18 + T4 in turquoise.

In its multiple template mode, LigMatch employs a preliminary 2D selection from the
available templates prior to the 3D alignment and similarity comparison of the molecules
with the templates. We present its results along with those obtained from ROCS and EON
to illustrate the benefit of using multiple templates in a single VS run. ROCE values at 0.5,
1, 2 and 5% of the ranked benchmarking set and the area under the enrichment curves

are given in Table 5.3.

Table 5.3. ROCE values at 0.5, 1, 2 and 5% FPR and AUC values of the enrichment
plots for the 3D similarity methods and LigMatch. Grey shading identifies the best per-

forming VS protocols.

Method / Similarity measure / Template (550025] ROCE 1% ROCE 2% ROCE 5% AUC
Phenox (1dvy) Max. 36.2 12.9 4.0 0.54
Combo- Benzoxazole (2f8i) 11.3 5.0 2.5 1.9 0.51
Score PCB18 (2g5u) 136.0 36.2 12.9 5.2 0.61
ROCS Thyroxine (2rox) 11.3 11.3 6.9 4.0 0.65
Phenox (1dvy) Max. 36.2 12.9 4.0 0.58
ScaledColor Benzoxazole (2f8i) 11.3 5.0 2.5 1.9 0.51
PCB18 (2g5u) 11.3 5.0 25 4.0 0.56
Thyroxine (2rox) 45.0 22.7 12.9 5.2 0.66
Phenox (1dvy) Max. 36.2 22.7 9.1 0.73
Benzoxazole (2f8i) 11.3 5.0 8.5 4.0 0.68
EON  ET.combo  pipig(5050) 113 113 5.3 40 0.78
Thyroxine (2rox) 11.3 5.0 8.5 6.3 0.65
Singl Phenox (1dvy) 22.7 8.5 3.8 3.8 0.79
te"r‘f Tate Benzoxazole (2f8i) 51.5 14.7 7.3 3.7 0.74
modpe PCB18 (2g5u) 45.0 11.3 6.9 5.7 0.74
Thyroxine (2rox) 22.7 8.5 3.8 7.4 0.76
Phenox (1dvy) +
Benzoxazole (2f8i) +
Lig- PCB18 (2g5u) + Thy- Max. 56.8 36.1 15.6 0.84
Match i
atc Multiple roxine (2rox)
template Phenox (1dvy) +
mode Benzoxazole (2f8i) + 45.0 22.7 22.7 9.1 0.82

PCB18 (2g5u)

Phenox (1dvy) +

PCB18 (2g5u) + Thy-  45.0 23.7 22.7 14.7 0.83
roxine (2rox)

@ This percentage of the ranked benchmarking set of 760 ligands corresponds to only 4 ligands. When these
top-score ligands are all actives, the ROCE value becomes the result of a division by zero. Accordingly, the result
is presented as “Max.”

3.2.1. ROCS

The best overall enrichments for ROCS are obtained with the T4 template when using the
chemical complementarity descriptor alone (as implemented in the Scaled Colour scoring

function), with an AUC of 0.66, and when using the combination of the molecular shape
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and the chemical complementarity descriptors (as implemented in the Combo Score
function), with an AUC of 0.65. Interestingly, these results seem to agree with the binding
characteristics of T4 to TTR. T4 (compound 1) presents a more complete set of pharma-
cophoric features to interact with TTR binding sites (including a hydroxyl group at the
inner aromatic ring and a positively charged amino group at the outer tail), but the pres-
ence of the four iodine atoms renders it too bulky and may hinder its diffusion into TTR
binding sites (thus, decreasing its affinity). On the other hand, the best early enrichments
are attained with the phenox and the PCB18 templates when applying the Combo Score,
yet sharply decreasing beyond the 1% threshold and detecting no more than 25% of the
actives at 10% of the ranked database. Holding less bulky halogen atoms and fewer de-
grees of rotational freedom in their structure, these templates present the shape and the
chemical features that better represent the strongest TTR binders, therefore capturing
them at the top of the ranked lists. The results obtained with ROCS reveal poor overall
enrichments compared to all other methods tested in this study, which suggests that mo-
lecular shape and chemical complementarity descriptors alone may be insufficient to

capture the structural and chemical diversity of all TTR actives.

3.2.2. EON

The inclusion of a descriptor of the electrostatic properties of TTR binders was expected
to be beneficial, given TTR’s propensity to bind neutral to negatively charged molecules
or molecules bearing electronegative elements (halogens). EON takes molecular
alignments generated by ROCS and computes a Poisson-Boltzmann Electrostatic Tani-
moto (ET) score between each database molecule and the query template. In Figure 5.10
and Table 5.3 we report the results obtained with EON using the ET combo score, which

is a sum of the ET and a shape Tanimoto.

Analysing the differences between EON and ROCS we observe a slight improvement in
terms of over-all enrichment, with the PCB18 template showing the highest increase in
AUC. In terms of early enrichment, the only considerable improvement occurs for the
phenox template, specifically at 2 and 5% of the ranked database (ROCE of 22.7 and 9.1,
respectively). It is worth noting that 50% percent of the actives (11 hits) are retrieved
within 10% of the top-scored compounds. Indeed, this is the best result obtained with a
3D similarity search method using a single template derived from an X-ray complex. A
reasonable decline in early enrichment is observed for the PCB18 template. This is prob-
ably linked to this compound’s peculiar electronegative potential, which is due not only
to the presence of four halogen atoms but also to their electron-withdrawing inductive
effect over the two hydroxyl groups, which may even render them deprotonated at neu-

tral pH [605]. This distinctive feature seems to separate this template from actives with
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similar shape, namely compounds 6 and 19 (recall Figure 4.2), causing the loss of early
enrichment. However, potent inhibitors from cluster B (compounds 8, 9, 10 and 12) and
compounds 3, 4, 5b, 5¢, and 23, all receiving very weak scores by ROCS with the PCB18
template, are placed at much higher levels of the ranked list with EON, explaining the

increase in overall enrichment.

3.2.3. LigMatch: single template mode

The average AUC for the four single templates tested with LigMatch’s single template
mode is 0.76, a result that represents an improvement with respect to EON (average AUC
of 0.71) and ROCS (average AUC of 0.58), but not with respect to those obtained with the
2D CHF employing the Euclidean distance (average AUC of 0.91). In terms of early en-
richment, while other ligand-based protocols perform very well with at least one of the
templates, LigMatch’s single template mode offers a more modest/equilibrated perform-
ance. Interestingly, it performs better than any other 3D search methods when using the

benzoxazole (2f8i) template.

3.2.4. LigMatch: 2D selection from multiple templates

Given the considerable structural diversity amongst the TTR actives in the benchmarking
set, and the fact that these compounds explore different sub-regions of TTR pockets, we
explored LigMatch’s multiple template mode to assess the influence of adding extra lay-

ers of information in a single 3D search VS run.

Considerable improvements in terms of both early and overall enrichments are achieved
when using the 2D selection from multiple templates and employing the strongest inhibi-
tors of each of the three clusters as templates (PDB codes 1dvy, 2f8i and 2g5u). However,
further increase is attained by inclusion of T4 (2rox) as a fourth template (see Figure 5.10

and Table 5.3).

This observation supports the notion that, although T4 is neither a high affinity binder
nor a potent amyloid inhibitor, the endogenous TTR binder may hold specific features
that are critical to the interaction with TTR and/or to better represent the chemical space
of known TTR binders than other features presented by stronger inhibitors (whose bind-
ing may be merely more favourable entropically due to higher hidrophobicity). To test
this idea, we replaced the strong binder benzoxazole acid (compound 10), which lacks
some key substituent groups, by T4 (compound 1), in a third multiple-template scheme. A

slight increase in both early and overall enrichment was obtained (see Figure 5.10),
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though much more modest than that obtained with the four-template scheme (described
above). In all cases, and as pointed out in the LigMatch paper [598], ranking by the nor-

malized mean score provides better results than ranking by the normalized best score.

3.3. 2D and 3D similarity searches using concatamers

Another possible strategy to address the problem of low “representativeness” of single
templates and improve the performance of similarity searches would be to designate
certain features as being essential, for example, the negatively charged carboxylates
interacting with Lys-15 residues at the entrance of TTR pockets, or the ionizable hy-
droxyl interacting with Ser-117 residues at the opposite end of the pockets. Conceptually,
this would be equivalent to a 3D pharmacophore. Therefore we modelled four composite
templates (concatamers), by adding a few features believed to be essential to strong re-
ference templates, and tested them using all similarity search methods available. The

results are shown in Figure 5.11 and Table 5.4.
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Figure 5.11. Enrichment curves to compare the performance of different VS protocols
using four different composite ligands as single templates (panels in the left and
centre). The use of a 2D selection from the four composite ligands as implemented in Lig-
Match’s multiple template mode (panel in the right), is also compared with the single tem-
plate mode using a normalized best score (in dark green), a normalized mean score (in

green), and a 2D Tanimoto score (in brown) for ranking.

In spite of their very close similarity, the two families of concatamers provide slightly
different results in terms of early and overall enrichment. The templates derived from

the DBF47 (inhibitor 5¢) yield the highest enrichment profiles of the whole benchmark
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with the CHF method (and the Euclidean distance metric). Indeed, ROCE values of 142.5,
42.2 and 26.2 respectively at 1, 2 and 5% of the ranked benchmarking set, along with an
AUC of 0.95, are obtained with the DBF47-0OH template (compound 24), which are quite
impressive results. Conversely, significant improvement to 3D similarity searches is only
obtained with the phenox-derived templates. In particular, the phenox-OH template
(compound 26) positively influences the results of EON, yielding the highest early en-
richment at 1% achieved with a 3D similarity search protocol and an acceptable overall
enrichment. These results are only comparable with those obtained with the PCB18 and

the phenox templates.

With an average AUC of 0.82 across the four concatamers, the geometric hashing proced-
ure of LigMatch provides the best overall enrichment of all the 3D methods. However,
poor early enrichments are generally obtained using single templates, contrasting with
the results achieved using the 2D selection procedure from the more diverse templates
(as also seen in the previous subsection). To study the influence of these two factors (i.e.
the 2D selection step and the diversity amongst the template molecules) we re-ranked
the benchmark set using the multiple template protocol with 2D selection from the four
concatamers. Although considerable improvement in early enrichment is observed, the
values are still far below those obtained using the four templates 1dvy, 2f8i, 2g5u and
2rox (see last row in Table 5.3). These results confirm that, unlike the tested single-
template similarity search protocols, LigMatch (and particularly its single template

mode) does not benefit from the use of the composite templates.

Table 5.4. ROCE values at 0.5, 1, 2 and 5% FPR and AUC values of the enrichment
curves for four composite templates using different methods on TTR. Grey shading

identifies the best performing protocols.

Original template / Key R-group added / ROCE ROCE 1% ROCE 2% ROCE 5% AUC

Method 0.5%@
i]{)nCHF Euclid- Max. 142.5 422 26.2 0.95
2D PF Tanimoto  47.5 11.9 5.6 3.0 0.50
2D UNITY Tani- 142.0 59.5 33.3 9.5 0.87
moto
OH ROCS Combo- Max. 36.2 175 5.2 0.47
Score
ROCS Scaled- Max. 36.2 12.9 5.2 0.57
Color
EON ET_combo Max. 36.2 12.9 4.0 0.69
DBF47 I;Dgl\c/[;;cg STI% - - " - oo
T Max. 101.0 42.2 23.0 0.95
2D PF Tanimoto  47.5 11.9 5.6 2.0 0.49
2D UNITY Tani- 142.0 38.0 23.8 9.5 0.86
moto
COOH  ROCS Combo- Max. 36.2 12.9 5.2 0.45
Score
ROCS Scaled- Max. 36.2 12.9 4.0 0.53
Color
EON ET_combo Max. 36.2 22.7 9.1 0.69
LigMatch STM 11.3 5.0 12.9 6.3 0.84
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Original template / Key R-group added / ROCE ROCE 1% ROCE 2% ROCE 5% AUC

Method 0.5%@
gfnCHF Euclid- 142.0 38.0 33.3 20.8 0.92
2D PF Tanimoto ~ 47.5 11.9 7.2 3.0 0.52
2D UNITY Tani- o 23.7 18.3 11.0 0.84
moto
OH ROCS Combo- Max. 36.2 17.5 5.2 0.51
Score
ROCS Scaled- Max. 36.2 17.5 5.2 0.60
Color
EONET combo  Max. 113.5 17.5 6.3 0.75
LigMatch STM 11.3 5.0 2.5 1.9 0.82
Phenox 2D CHF Euclid
o uclhid- 94.8 38.0 18.3 20.8 0.93
2D PF Tanimoto ~ 47.5 11.9 5.6 3.0 0.51
2D UNITY Tani-  47.5 237 183 70 083
moto
COOH ROCS Combo- Max. 36.2 12.9 52 0.45
Score
ROCS Scaled- Max. 56.8 17.5 6.3 0.56
Color
EONET combo  Max. 56.8 17.5 5.2 0.75
LigMatch STM 11.3 5.0 2.5 1.9 0.79
LigMatch
All 4 concatamers Multiple Tem- 45.0 11.3 10.7 3.9 0.82
plate Mode

@ This percentage of the ranked benchmarking set of 760 ligands corresponds to only 4 ligands. When these
top-score ligands are all actives, the ROCE value becomes the result of a division by zero. Accordingly, the
result is presented as “Max.”

3.4. Docking and Scoring

Two best-performing X-ray structures of TTR identified through the crossdocking studies
- 1bm7 and 2g5u - were selected to devise docking and scoring VS protocols based on
AutoDock 4 (AD4) and Autodock Vina, with re-scoring of the predicted complexes with
DrugScoretsP [93,604] and DSX [603]. A third TTR structure was manually modelled on
top of the 1bm7 structure, to reproduce the optimal positioning of one of the three hy-
droxyl rotamers of Ser-117 residues found in 2g5u (and absent in the original 1bm?7).
This particular side-chain conformation facilitates interaction with ligands holding polar
features that can hydrogen-bond either with the protein or with a water molecule ar-
rested at the inner end of TTR's binding tunnel. This is a relevant aspect from the view-
point of ligand-binding thermodynamics, but can also have a great impact in the accuracy

and performance of docking programs. We call this structure 1bm?7opt.

Figure 5.12 shows the enrichment curves for both TTR binding sites found in 1bm7, 2g5u
and 1bm7opt, and with each docking and scoring protocol under evaluation. Since in
Chapter 6 we compare the performance of several docking-based VS protocols against
multiple DUD targets using the ROC curve approach, the corresponding ROC curves for
TTR’s benchmarking set are provided in Appendix (Figure D.1).
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The visual inspection of the curves indicates poor enrichments, in general, only margin-
ally better than random selection. This is confirmed by a mean AUC of 0.53 (* 0.17)
across all structures and protocols. Strikingly, even though no palpable structural differ-
ences were detected in the comparison of the two TTR binding sites, it is clear that most
docking and scoring protocols were able to capture minor structural discrepancies and
translate them into significant decreases in VS performance. In fact, the median AUC ob-
tained on TTR “AC” binding site was 0.63 against 0.46 obtained on the “BD” binding site.
The Vina Scoring Function and the Vina + DrugScore€SP protocols offered the most con-

sistent results on both binding sites across the three TTR structures.
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Figure 5.12. Enrichment curves comparing the VS performance of six docking and
scoring protocols against TTR. The results obtained with the 1bm7 X-ray structure are
shown in the left panels, the middle panels show the results with structure 2g5u, and the
right panels correspond to the results of the I7bm7opt model. In all cases, the results ob-
tained for the “AC” binding site of the protein are in the top panels and the bottom panels
show the results for the “BD” binding site. The protocols are coloured as follows: AD4 Free
Energy Function (yellow), AD4 + DrugScore¢P (orange), AD4 + DSX (red), Vina Scoring
Function (green), Vina + DrugScore¢sD (blue), Vina + DSX (purple), and random perform-

ance (black).

The influence of TTR’s Ser-117 residues on the affinity grids of grid-based methods (such
as AutoDock 4 and Vina) was previously evidenced in MIF analyses (Chapter 3). Because
no visible gains in enrichment were drawn from the use of the modelled 1bm7opt struc-
ture (see Figure 5.12 and Table 5.5), this experiment raised new doubts about the role of

Ser-117 residues in the binding and interaction of the known actives to TTR.
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Failures during the docking procedure are quite recurring, often motivated by inconsis-
tencies in the input files or just inability to handle specific atomic elements, tautomeric
forms, etcetera. These failures decrease the amount of information in the benchmarking
set, affecting the profiles of enrichment curves. At this point, it is worth mentioning that
both AD4 and Vina flawlessly handled the entire TTR benchmarking set of ligands. More-
over, all docking poses generated by AD4 and Vina were successfully re-scored with both

DrugScore®P and DSX.

Table 5.5. ROCE values at 0.5, 1, 2, and 5 % and AUC of the enrichment curves for
AutoDock 4 and AutoDock Vina against TTR using built-in scoring functions. The best

combinations of AUC and ROCE values are highlighted in bold and grey shades.

Early enrichment (ROCE) Early enrichment (ROCE)
AUC AUC
0.5% 1% 2% 5% 0.5% 1% 2% 5%

TTR TTR
structural  binding AD4 FEF Vina SF
template site

“AC” 0.74 113 5.0 5.3 2.9 | 0.63 5.6 5.0 2.5 0.9
1bm7

“BD” 0.28 0.0 0.0 0.0 0.0 0.58 0.0 5.0 2.5 0.9

“AC” 0.26 0.0 0.0 0.0 0.0 0.58 5.6 5.0 2.5 0.9
2g5u

“BD” 0.19 0.0 0.0 0.0 0.0 0.60 0.0 25 2.5 0.9

“AC” 0.65 11.3 11.3 8.5 3.9 0.65 0.0 0.0 0.9 1.9
1bm7opt

“BD” 0.32 0.0 0.0 0.0 0.0 0.68 0.0 0.0 1.3 1.4

Looking at the early enrichment profiles across Table 5.5, Table 5.6 and Table 5.7, it is
clear that the best performance was obtained with the AD4 + DrugScore®sP protocol using
the “AC” binding site of TTR structure 1bm7: ROCE of 11.8, 23.7, 13.6 and 7.9 at 0.5, 1, 2
and 5% of ranked data set. Along with an AUC of 0.78, these results confirm that the cou-
pling of the AD4 + DrugScore®sP protocol with the 1bm7 X-ray template provided the best
overall VS performance for TTR. Nevertheless, and as evidenced by the plots in Figure
5.12, other docking and scoring protocols offered respectable performance, such as the

Vina + DrugScoreCsP protocol with the “BD” binding site of the IZbm7opt template.
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Table 5.6. ROCE values at 0.5, 1, 2, and 5 % and AUC of the enrichment curves for
AutoDock 4 and AutoDock Vina against TTR upon re-scoring with DrugScorecsP, The

best combinations of AUC and ROCE values are highlighted in bold and grey shades.

Early enrichment (ROCE) Early enrichment (ROCE)
AUC AUC
0.5% 1% 2% 5% 0.5% 1% 2% 5%
TTR s
structural ’sIIeR binding AD4 + DrugScore¢sp Vina + DrugScore¢sP
template
“AC” 0.78 11.8 23.7 136 7.9 0.63 0.0 5.0 53 39
1bm7
“BD” 0.51 0.0 0.0 00 09 0.58 45.0 11.3 53 39
206 “AC” 0.67 11.3 5.0 5.3 39 0.75 0.0 0.0 00 29
g5u
“BD” 0.46 11.3 5.0 2.5 0.9 0.73 0.0 0.0 00 29
“AC” 0.73 0.0 5.0 5.3 7.8 0.73 0.0 0.0 25 52
1bm7opt
“BD” 0.31 0.0 0.0 2.5 09 | 0.75 0.0 50 85 7.6

Table 5.7. ROCE values at 0.5, 1, 2, and 5 % and AUC of the enrichment curves for
AutoDock 4 and AutoDock Vina against TTR upon re-scoring with DSX. The best com-
binations of AUC and ROCE values are highlighted in bold and grey shades.

Early enrichment (ROCE) Early enrichment (ROCE)
AUC AUC
0.5% 1% 2% 5% 0.5% 1% 2% 5%

TTR TTR
structural ~ binding AutoDock 4 + DSX Vina + DSX
template site

“AC” 0.55 0.0 0.0 0.0 1.9 0.30 0.0 0.0 0.0 0.0
1bm7

“BD” 0.42 0.0 0.0 0.0 0.9 0.36 0.0 0.0 0.0 0.0

“AC” 0.45 0.0 0.0 0.0 0.0 0.44 0.0 5.0 5.3 1.9
2g5u

“BD” 0.38 0.0 0.0 0.0 0.0 | 0.45 0.0 5.0 5.3 1.9

“AC” 0.51 0.0 0.0 25 1.9 0.39 0.0 0.0 0.0 0.0
1bm7opt

“BD” 0.50 0.0 5.0 2.5 0.9 | 0.38 0.0 0.0 0.0 0.0

Molecular weight (and more generally molecular size) is known to affect the scores as-
signed by docking scoring functions. This issue is particularly important in the case of
TTR, given its natural propensity to bind iodine-bearing molecules, whose molecular
weight may be considerably higher than that of the most common drug-like compounds.
To conclude our analysis, we delved deeper into the ranking produced by DrugScore®sP to
find the strongest amyloid inhibitor discovered to date, a polychlorinated biphenyl (PCB)
[378], ranked at the top 0.5% of the list. This was a compelling result because the mo-
lecular weight of this compound (322 Daltons) is amongst the lowest of all active inhibi-

tors in the benchmarking set.
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We tested this apparently low bias displayed by DrugScoretsP by plotting the scores as-
signed to each compound in our diverse decoy set against its respective molecular
weight, both for AD4 and DrugScore®P (Figure 5.13). In order to compare the two profiles
quantitavely, we computed Pearson correlation coeffiecients for each, providing a nor-
malized measurement of how the two variables (i.e. score and molecular weight) are lin-
early related. While the free energy function of AD4 shows a strong dependence on the
compounds' molecular weight, with a Pearson correlation coefficient of -0.40, DrugS-
core®sD exhibits a minor (and even positive) dependence, with a correlation coefficient of
0.11. This is another clear improvement offered by the DrugScore®P scoring function to

the quality of the ranking produced by our docking-based VS protocols.

AutoDock 4 DrugScore®sP
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Figure 5.13. Scatter plots to evaluate the influence of molecular weight (MW) on
docking scores. The data was based on the docking scores assigned by AutoDock 4 (left
panel) and DrugScore¢sP (right panel) to the 738 decoys of the TTR benchmarking set. A
least squares regression line fitting the data is shown on both plots, disclosing a negative
slope for AD4 and a near neutral slope for DrugScore®sb, allowing for a qualitative compari-

son of the scoring functions.

4. Discussion and concluding remarks

In this chapter we presented a comparative analysis of several virtual screening proto-
cols assembled to identify new inhibitors of amyloid fibril formation by TTR. Using a
benchmarking set comprised of the most important TTR stabilisers discovered to date
and property-mimetic decoy molecules, we compared the performance of several VS pro-
tocols ranging from simple 2D fingerprint-based methods, through more complex 3D
similarity searches, all the way to molecular docking and scoring. The performance of the
different protocols was assessed by carefully selected metrics of enrichment of known

actives at the top-levels of the ranked benchmarking set.
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Focusing only on the enrichment profiles obtained, ligand-based protocols performed
better than protein-based ones (i.e., docking into TTR structures). 2D similarity search
methods, in particular, were able to offer the best discrimination between the known
TTR actives and the decoy molecules. Given the reasonable structural diversity found
amongst the known actives, these methods provide a good balance between search speci-
ficity, a key aspect for target selectivity, and search flexibility, which is necessary for el-
iminating the dependency on the used templates. While producing worse enrichments
than 2D methods, 3D similarity search methods based on shape and chemical comple-
mentarity were able to retrieve more diverse scaffolds, with noticeable added value
when electrostatic similarity was included as a descriptor. Yet, because these methods
use one single bioactive template molecule per VS run they often overlook strong TTR
stabilisers with dissimilar structure. The use of concatamers to address the problem of
representativeness of single templates brought improvements to the performance of
similarity search methods, and even more balanced outcomes were attained using Lig-
Match, a method that can employ multiple templates and combine 3D geometric hashing
with a 2D pre-selection process. It would be very interesting to see whether the applica-
tion of the same 2D pre-selection protocol to other 3D similarity search methods (e.g.

ROCS and EON) would improve matters.

Several docking and scoring VS protocols were assembled and tested using the same
metrics of evaluation. Some of these protocols included a step of re-scoring of the com-
plexes predicted by docking, using knowledge-based scoring functions, and the im-
provements in the ability to correctly rank known ligands over decoys were clear. Never-
theless, their VS performance is still far from ideal and our results highlight limitations
when handling hydrophobic pockets such as TTR. We hypothesize that non-polar/non-
specific interactions may exhibit cooperative behaviour at “hidden” levels of phys-
ics/chemistry that is only linearly captured by the scoring functions (in their “tradition-
ally” additive form), or, most likely, not captured at all. Indeed, several recent studies
have emphasized the need for scoring functions that incorporate descriptors that model
cooperative effects [606-608]. Still, we have successfully identified at least one VS proto-
col that combines docking (with AutoDock 4) and re-scoring (with DrugScore¢sP) to pro-
vide encouraging enrichment profiles for TTR and minimal bias towards the molecular
weight of the ligands. This protocol will be explored under the aim of the screening of
new TTR amyloid inhibitors. Still, it would be interesting in the future to see whether the
use of machine learning techniques to train knowledge-based (statistical) potentials - as
others have attempted using Kernel PLS (partial least-squares) [609] and random forest
classifiers [610] - would provide more accurate binding affinity predictions and better

rankings.
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In this chapter, my self-criticism goes to the lack of complementary VS experiments em-
ploying alternative benchmarking data sets (of different sizes and characteristics) in
order to test the assembled VS protocols more exhaustively and obtain additional statis-
tical evidence. One possibility would be to use the DUD-all set, i.e. to seed the known TTR
amyloid inhibitors amongst the entire library of actives and decoys deposited in the Di-
rectory of Useful Decoys. Given that all molecules in the DUD have been screened through
drug-like filters, such VS experiment could (i) provide a picture of the behaviour of the
methods in a real life context, (ii) offer interesting clues on the propensity of the assem-
bled protocols to prioritize known actives against other targets (and thus retrieve hits
that are more likely to cause side effects). Once again, time is always against us, but these

are ideas to keep in mind and test in the near future.

To wrap up some of the key conclusions on the application of VS methods to TTR, the
increase in complexity of the protocols by inclusion (or combination) of additional layers
of information - such as molecular shape, electrostatic properties, the use of composite
templates or multiple templates, and receptor information in molecular docking - may be
accompanied by decreases in performance on a given benchmarking set. However, this
increase in complexity seems to be accompanied by an increase of the likelihood of re-
trieving new and promising scaffolds with distinctive physicochemical properties (at in-

creasing costs of false positives).

While the re-scoring of thousands of predicted protein-ligand conformations can be ac-
complished in a matter of CPU hours, the docking of a single ligand into a receptor struc-
ture itself can be a computationally intensive task. This, of course, depends on the types
of algorithms employed by the docking programs for conformational sampling, coupled
with the complexity/flexibility of the ligands to be docked. Unfortunately, AutoDock 4
has been shown to perform particularly slowly when compared with other programs
[440]. However, the promising results attained with the AD4 + DrugScoretP protocol,
along with the requirement of an enormous amount of computer power to screen over a
virtual library of approximately 2.3 million compounds, prompted us to port this proto-
col onto the Ibercivis volunteer computing platform, as a first implementation phase of
the AMILOIDE subproject in the Ibercivis volunteer computing platform. The details of
this effort will be described in Chapter 7.

In conclusion, this chapter highlights the importance of a thorough validation of VS pro-
tocols as an essential step to a VS campaign against any target of biological relevance. The
lessons learned in this study can be broadly considered in further attempts to identify
novel and safe TTR amyloid inhibitors. It should be stressed, however, that this study
does not provide an exhaustive comparison of all virtual screening techniques currently

available, and different or better results could have been obtained using other methods.
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This chapter does offer a practical discussion (and application) of many central aspects of
experimental design and performance metrics for virtual screening. Most importantly, it
reflects an attempt to implement well-sought “standards” in the relatively young fields of
molecular modelling and virtual screening, allowing reliable assessments to be made. It is
our belief that only through such standards can these fields prove how important they
really are in saving money and resources in the challenging (yet wonderful) effort of drug

discovery.

Application of the docking-based VS protocols tested in this chapter to multiple protein
targets will be discussed in the following chapter. Further validation of the best perform-
ing VS protocols through the experimental evaluation of virtual hits for their ability to

prevent TTR fibril formation in vitro is presented in Chapter 7.
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Chapter 6

Application of docking and scoring
protocols to multiple protein targets:

one recipe does not fit all

“I believe that the extraordinary should be pursued. But

extraordinary claims require extraordinary evidence.”

[Carl Sagan]



1. Introduction and theory

Even though TTR is associated with more than 90 amyloidogenic mutations (some of
which with distinctive ligand-binding characteristics), to engage in a laborious endeav-
our as the setting up of dedicated infrastructures for high-throughput docking of millions
of small molecules into one single pharmaceutical target soon appeared a short-sighted
perspective for a platform that could become useful to many academic researchers. This
realization incited us to test some of the docking and scoring protocols assembled for
TTR on a broader set of targets of pharmaceutical interest. It is important emphasising,
however, that the focus of this exercise was not the comparison of docking accuracy or
the VS performance of the protocols against other docking and scoring engines in com-
mon use, but to analyse their application to different targets and thus understand in
which cases can alternative scoring functions enhance/strengthen the discriminative
power of the docking methodologies. In this context, we attempt to identify, amongst a
limited group of academic-free tools, which docking and scoring-based protocols are
most suitable for a given protein target, providing examples of successful cases that in-

clude well-known “workhorses” in the drug discovery field.

As denoted by Chang et al. [440], amongst the large number of docking programs avail-
able, AutoDock 4 and Vina are unique in the sense that not only are they freely accessible
to academic and industrial researchers, hence being widely used, as they are also re-
leased under open source licenses (GNU General Public License and Apache Open Source
License). In their article, the authors provided a fairly comprehensive description of the
main differences between the methodologies used by the two programs, which have been
summarized in Chapter 2. A variation of particular importance to our work is in the local
search function: while AD4 employs stochastic search to generate random conformations
for evaluation, Vina generates a gradient to search for local minima. This difference alone
renders Vina a much faster program, which is a key aspect for high-throughput virtual
screening. Moreover, Vina's authors demonstrated that the program offers higher accu-
racy over a set of 190 protein-ligand complexes (78% of cases within 2 A RMSD) com-

pared to AD4 (49%).

The essential goal of virtual screening is the prospective prediction of active ligands. It is,
therefore, reasonable that one would like to evaluate docking by its ability to accurately
estimate ligand binding affinities, but this is now beyond the field. Realistically, and as
demonstrated in Chapters 2 and 5 of this thesis, the performance of docking and scoring
methods is assessed in retrospective calculations using two main criteria. The ability to

reproduce experimentally observed ligand poses within a certain tolerance limit (com-
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monly 2 A RMSD) - often referred to as pose-fidelity - is fundamental and well doc-
umented [416,418,421,447,448,611-615]. Just as important is enrichment, i.e. the ability
to prioritize actives from amongst a data set of decoys, where a decoy is a member of the
data set that does not bind to the target. Enrichment is critical for docking to be of any
use in virtual screening [89,421,616,617]. Indeed, no matter how neat certain poses may

be, the compounds that do not score well are unlikely to be experimentally tested.

In order to be meaningful while making comparisons between docking techniques,
benchmarking sets must have a sufficiently high proportion of decoys, challenging to
each of the methods when compared to active ligands. Property matching of decoys to
ligands can be a helpful rationale while building adequate benchmarking sets. As pointed
out in Chapters 4 and 5, if the ligands and decoys differ by physical properties alone, dif-
ferentiation of ligands from decoys by docking can result from trivial properties like mo-
lecular weight, hydrophobicity, polarity, etc. The Directory of Useful Decoys (DUD) repre-
sents an attempt to reduce these biases and to provide the community of modellers a
common touchstone by which to evaluate the performance of their docking and scoring

protocols.

Exploring some of the concepts explained in Chapter 5 with respect to the design of VS
experiments, in this chapter we make use of the DUD to evaluate the application of sev-
eral VS protocols based on high-throughput docking (HTD) to multiple protein targets of
pharmaceutical interest, and thus guide their selection and implementation on a large
computational resource comprised by the desktop computers of thousands of volunteer
citizens. Even though such effort is mainly fuelled by the high computational demands of
the docking-based VS protocols assembled for TTR, the work of this chapter will assert

its translational relevance in the realm of academic drug discovery.

1.1. The Directory of Useful Decoys (DUD)

The DUD (http://dud.docking.org/, accessed 06/06/2011) provides a publicly-available,
unbiased set of active and decoy molecules, which is a widely accepted standard for the
benchmarking of docking programs. The DUD includes a wide representation from sev-
eral protein families such as protein kinases and nuclear hormone receptors, and a rea-
sonable representation of other families such as metalloenzymes and serine proteases. In
total, it comprises 40 target proteins along with their (respective) known actives and
decoys that have been carefully selected in order to match the physicochemical proper-

ties of the actives, while holding dissimilar chemical topology.
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As useful as virtual screening benchmarks may be, there are a few caveats justifying a
very careful use. First and foremost, when training is to be carried out by selecting the
coefficients of a scoring function based on the best retrospective performance, the pro-
gram becomes trained to meet the benchmarks and there is a considerable risk of overfit-
ting. A second important issue has to due with the specificity of the benchmarks. As ex-
plained in Chapter 4, the DUD, for example, has been tailored to address the weaknesses
of docking methods and not those of any other virtual screening approaches, such as lig-
and-centric methods. Third, there are critical and hard-to-quantify biases in compounds
comprising any benchmark. The pool from which the compounds are drawn is very un-
likely representative of chemical space, and even the annotated actives are certainly an

incomplete index of what will bind to a target (see Figure 6.1).

DUD decoys \ “Pe‘rfect-knowledge” decoys

Biologically-relevant
chemical space /

All possible actives a Currently known actives

Figure 6.1. Schematic representation illustrating the problem of chemical space and
decoys drawn from the ZINC database or derived from known actives, in both cases

suffering from incompleteness bias.

Another known problem of the DUD is that of analogue bias (explained in Chapter 5, page
178), which can lead to deceptively high enrichment rates. Indeed, in its raw state, there
are many targets in the DUD for which almost every active is a trivial analogue of a cent-
ral structure [618]. To address this problem, Good and Oprea filtered the active mol-
ecules in the DUD using a loose lead-like cut-off (MW < 450 and AlogP < 4.5 for all targets
except the Nuclear Hormone Receptors (NHR); AlogP < 5.5 for NHR targets), before using
a reduced graph representation to cluster the molecules by chemotype. A more detailed
description of the clustering procedures employed for DUD can found at:
http://dud.docking.org/clusters/summary.pdf ,accessed 06/06/2011.

These procedures resulted in the removal of large molecules with inadequate physico-
chemical properties and in a clustered annotation of the DUD data set:
http://dud.docking.org/clusters/, accessed 06/06/2011.

In this chapter, we make use of this clustered annotation to employ an arithmetic weight-

ing scheme similar to the one proposed by Clark and Webster-Clark, wherein a weight is
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assigned to each active molecule to reflect the size of the cluster to which it belonged
[584]. The use of this procedure is particularly important when analysing subsets of tar-
gets with a high number of actives, where the problem of analogue bias is more signifi-

cant.

1.2. DUD - Description by protein family

The DUD incorporates 40 protein targets that have been chosen based on the availability
of known ligands, crystal structures and also former docking studies. The number of
known ligands varies from 12 (~ 0.01% of the data set) to 416 (~ 0.4% of the data set),
and, overall, a total of 2950 ligands are comprised. Except for the platelet-derived growth
factor receptor kinase and the vascular endothelial growth factor receptor, all proteins
have ligand-bound X-ray crystal structure deposited in the PDB. The targets were
grouped into 6 families: nuclear hormone receptors, kinases, serine proteases, metal-

loenzymes, folate enzymes, and other enzymes [543].

Each of the following subsections provides a brief description of these target protein
families, which were used in this chapter to test our VS protocols based on high-

throughput docking.

1.2.1. Nuclear Hormone Receptors

Nuclear hormone receptors (NHR) represent a family of ligand-activated transcription
factors that control multiple biological processes, such as lipid and glucose homeostasis,
detoxification, cellular differentiation, embryonic development and organ physiology
[619]. Accordingly, mutations in NHR affect these critical regulatory roles and cause sev-
eral pathologies, including cancer, diabetes, and osteoporosis. NHR are therefore re-
garded as highly relevant therapeutic targets for the pharmaceutical industry [620].
The NHR present in the DUD data set are:

* Androgen receptor (AR);

* Estrogen receptor (ER);

* Glucocorticoid receptor (GR);

¢ Mineralocorticoid receptor (MR);

* Peroxisome proliferator activated receptor y (PPARg);

* Progesterone receptor (PR);
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* Retinoic X receptor o (RXRa).

Of all these targets, the ER is perhaps the one that has been more explored to benchmark
docking methods and scoring functions [89,621-623]. A summary description of these
targets - including their PDB entry, X-ray structure resolution, number of annotated ac-

tive and decoy molecules - is provided in Table E.1 of the Appendix.

1.2.2. Protein Kinases

Protein kinases represent one of the largest protein families, comprising 518 genes and
approximately 1.7% of the human genome. These proteins share a conserved catalytic
domain of ca. 300 amino acids responsible for phosphorylation mechanisms. Phosphory-
lation is associated with conformational changes in proteins, activating or deactivating
them, which in turn can regulate key cellular processes, such as cell growth and differ-
entiation, apoptosis, metabolic pathways, and membrane transport. Protein kinases regu-
late the spatial and temporal control of phosphorylation and are regulated by cellular
regulatory mechanisms. Their constitutive activation, which can be caused by mutations,
overexpression or the failure of the appropriate regulatory mechanisms, is a critical fac-
tor behind pathologies like cancer, diabetes and inflammatory disorders. Therefore, the
targeted inhibition of kinases is a prominent strategy for the development of drugs to
treat a wide range of diseases, and has received a lot of attention of the pharmaceutical

industry [624-626].
The protein kinases comprised in the DUD data set are:
* Cyclin-dependent kinase 2 (CDK2);
¢ Epidermal growth factor receptor (EGFr);
* Fibroblast growth factor receptor kinase (FGFr1);
* Human heat shock protein 90 (HSP90);
* P38 mitogen-activated protein (P38 MAP);
* Platelet-derived growth factor receptor kinase (PDGFrb);
* Src(sarcoma)-family tyrosine kinase (SRC);
¢ Thymidine kinase (TK);
¢ Vascular endothelial growth factor receptor (VEGFr2).

TK, CDK2 and P38 MAP are perhaps the targets of greater focus and several docking and
enrichment studies have been published [416,627-629]. In our lab at the University of
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Leeds, Kinnings and Jackson conducted a large-scale structural comparison of protein
kinase ATP-binding sites using GH8 (introduced in Chapter 2, page 73), which resulted in
a functional classification of kinases based on the structural similarity of their binding

sites [630].

A summary description of all protein kinases present in the DUD data set is given in Table

E.2 of the Appendix.

1.2.3. Serine Proteases

Serine proteases are enzymes that catalyse the hydrolysis of peptide bonds in proteins.
They represent nearly one-third of all proteolytic enzymes and probably the most widely
studied group of proteins in biology. This particular mechanistic class was initially differ-
entiated by the presence of an Asp-His-Ser catalytic triad, which has evolved into at least
four different clans (epitomised by chymotrypsin, subtilisin, carboxypeptidase Y and Clp
protease). Serine proteases use the serine residue located in their active site for a nu-
cleophilic attack of the targeted peptidic bond. Due to this ability, they are involved in
several physiological functions in humans, such as digestion, immune response, blood
clotting and reproduction. Consequently, several disorders have been linked to serine
proteases. The most prominent examples include blood coagulation abnormalities, em-
physema and chronic bronchitis, cystic fibrosis and chronic obstructive pulmonary dis-

ease, and also hepatitis C and herpes [631,632].
The serine proteases comprised in the DUD data set are:
* (Coagulation factor Xa, also known as Stuart-Prower factor (FXa);
¢ Thrombin;
¢ Trypsin.
Several enrichment studies have been published on serine protease systems, mainly on

FXa [612,621] and thrombin [629,633]. A summary description of the DUD target subset

corresponding to the serine protease family is provided in Table E.3 of the Appendix.

1.2.4. Metalloenzymes

Proteins and enzymes that contain a metal ion cofactor are ubiquitous in biology and it is
estimated that nearly one-third of all proteins require metals to accomplish their func-
tions. Indeed, the so-called metalloproteome is extremely diverse: metalloproteins and

metalloenzymes are involved in numberless biological processes, from the catalysis of
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bioorganic reactions, through transport and storage functions, all the way to signal
transduction. One of the most prominent examples of a metalloprotein is that of
hemoglobin, along with myoglobin, one of the very first protein structures to be deter-
mined and studied. These proteins use their iron-containing prosthetic group (heme) to
bind and transport oxygen in red blood cells and muscle tissue (respectively). Another
important example to the drug discovery field is the cytochrome P450 superfamily (CYP),
which catalyses the oxidation of organic substances, from metabolic intermediates (e.g.
lipids, steroidal hormones) to xenobiotics (e.g. drugs, toxic compounds). Indeed, CYPs are
the major enzymes responsible for drug metabolism and bioactivation, being involved in

approximately 75% of the total number of metabolic reactions [634-636].

The records of involvement of metalloenzymes in human disorders and pathologies are
perhaps as vast as their repertoire of biological functions. Interestingly, one of the most
well-known and sought pharmaceutical targets is a metallopeptidase called angiotensin-

converting enzyme (ACE) that is involved in hypertension and heart disease [102,637].
The metalloenzymes comprised in the DUD data set are:

* Angiotensin-converting enzyme (ACE);

* Adenosine deaminase (ADA);

¢ Catechol O-methyltransferase (COMT);

* Phosphodiesterase 5 (PDES5).

Given the often important role of metals in protein-ligand interactions, there are several
examples in the literature suggesting that metalloenzymes are difficult to model
[638,639]. In a recent report, however, a statistic analysis demystified the presence of
metal ions as a major “brick wall” in the molecular modelling field [640] (which, by no

means, means they are easy to model).

A summary description of the protein targets listed as metalloenzymes in the DUD is

given in Table E.4 of the Appendix.

1.2.5. Folate Enzymes

Folate enzymes are involved in the conversion of folates (or more generally, folic acid
and its derivatives). Folic acid is itself inactive, but its derivatives are fundamental for
several biological functions across many organisms, namely DNA synthesis, repair and
methylation. In humans, it is particularly important during pregnancy and infancy, were

rapid cell division and growth must occur. The specific targeting of folate enzymes of

220 Application of HTD-based VS protocols to multiple targets



pathogenic organisms has been explored as forms of antibiotic and antiprotozoal thera-
pies (malaria being a outstanding example). Several antifolate agents have also been de-
signed for cancer chemotherapy [641,642].
The folate enzymes comprised in the DUD data set are:

* Dihydrofolate reductase (DHFR);

* Glycinamide ribonucleotide transformylase (GART).
DHFR is the most eminent folate enzyme target and some enrichment studies have been

reported [633,643]. A summary description of DHFR and GART is provided in Table E.5 of
the Appendix.

1.2.6. Other Enzymes

A few other enzymes that do not fall inside the previous categories are also included in
the DUD data set. These are also well-known cases, involved in different human disorders
and/or pathologies.
The “other” enzymes comprised in the DUD data set are:

* Acetylcholinesterase (AChE);

* Aldose reductase (ALR2);

* AmpC S-lactamase (AmpC);

* Cyclooxygenase-1 (COX-1);

* Cyclooxygenase-2 (COX-2);

* Glycogen phosphorylase (GPB);

¢ HIV protease (HIVPR);

¢ HIV reverse transcriptase (HIVRT);

* Hydroxymethylglutaryl-CoA reductase (HMGR);

* Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA);

* Neuraminidase (NA);

* Poly(ADP-ribose) polymerase (PARP);

* Purine nucleoside phosphorylase (PNP);

¢ S-adenosyl-homocysteine hydrolase (SAHH).
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Amongst the “other enzymes” group, HIV protease [447,628,643], neuraminidase [644],
aldose reductase [633], HIV-RT [645], AChE [621] and COX-2 [644,646] are the most well
studied cases with respect to the performance of VS methods. A summary description of

this group of enzymes is given in Table E.6 of the Appendix.

2. Computational methods

Molecular docking and scoring methods were introduced in the first chapter of this thesis
(from page 18 to page 22). Moreover, in Chapter 2 the docking programs AutoDock 4 and
AutoDock Vina were presented within the context of receptor-based studies of TTR-
ligand interactions (from page 77 to page 82). In this chapter, the DrugScore family of
stand-alone scoring functions is briefly described and we explore the application of a set
of docking-based VS protocols assembled for the identification of novel TTR amyloid in-
hibitors to the forty targets in the DUD data set. The protocols were submitted to succes-
sive rounds of evaluation, employing different weighting schemes and performance met-
rics. In this section, the main details of the modelling procedures are briefly described

and the results of the performance evaluation are provided in the next section.

2.1. Receptor and ligand preparation

Coordinates for all DUD protein targets were directly taken from the DUD website. All
protein structures were processed by the Dock Prep tool of UCSF Chimera [463,647] in
order to add hydrogen atoms and to fix problems, such as incomplete side-chains. The
prepare_receptor4.py script included in MGLTools 1.5.4 was used to prepare the PDBQT
format receptor files supported by AD4 and Vina [438,439]. All DUD decoys and ligands
were obtained from the DUD website in the MOL2 format. Open Babel 2.2.3 was used for
format conversion as required by the different docking packages [648,649]. PDB-
formatted ligand files were also converted to PDBQT files using the prepare_ligand4.py
script from MGLTools.

2.2. Docking and Scoring
All ligands in the DUD were docked into their respective receptor structures with Auto-

Dock 4 version 4.2.2 and AutoDock Vina version 1.0.2. Ten independent genetic algor-

ithm (GA) runs were executed on each AD4 run and processed using the native clustering
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analysis with a 2.0 A cut-off. The default exhaustiveness! of 8 was used in all Vina runs. A
detailed description of AD4 and Vina was respectively given in subsections 1.4.1 and
1.4.2 of Chapter 2. In order to stress-test the docking programs and provide comparable
results, we used docking simulation boxes of the exact same size of those employed by
the authors of DUD (when using the DOCK docking program) [543]. These simulation
boxes are fairly large, allowing not only for a full coverage of the target binding sites but
also for an inclusion of neighbouring regions where compounds lacking the appropriate

pharmacophore (decoys) may bind.

As in the previous chapter, the DrugScore®P and DSX standalone scoring functions were
used to re-score the lowest-energy poses generated by AD4 (LE) and Vina, and the low-
est-energy conformations in the largest clusters of poses generated by AD4 (LC). Given
the relevance of this re-scoring procedure within the context of this chapter, a deeper

description of the DrugScore and DSX scoring functions is given in this subsection.

2.2.1. DrugScore

Unlike empirical scoring functions that are trained by (and often biased towards) affinity
data, knowledge-based scoring functions make use of large amounts of crystallographic
data. Therefore, they are often more accurate at pose prediction and faster than empiri-
cal scoring functions. Knowledge-based scoring functions stem from the original concept
that led to knowledge-based potentials, which were in turn based on the Boltzmann dis-

tribution:

Equation 6.1

where n(i) is the number of particles in a set of states i with energy E(i), N is the total
number of particles in the system, T is the absolute temperature, k is the Boltzmann con-
stant, Z(T) is the partition function, and p(i) is a state-dependent density (probability)
function. Rearrangements of Equation 6.1 under the light of the theory of liquids [650]
lead to the concept of potential of mean force, which basically corresponds to the Helm-
holtz free energy of two particles or, alternatively, the mean force acting on two particles
due to the interactions with each other and their surroundings. The application of poten-

tials of mean force to protein folding prediction [651-653] and to the scoring of protein-

1 In Vina, the exhaustiveness parameter is linked to the time spent searching for the global mini-
mum of the scoring function, which is varied heuristically according to features like the number of
atoms and the flexibility of the ligand molecule.
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ligand complexes has been reported [654]. In these studies, contact data extracted from
structure repositories (e.g. PDB) are used to derive contact densities. However, the cor-
responding distribution functions are derived from particles that reside on different en-
vironments, and it has been stated that the derived statistical potentials are not poten-
tials of mean force per se [655,656]. Indeed, even if a complete protein system is at an
equilibrium state, two particular atoms may not inevitably be at thermodynamic equilib-
rium. This implies that the partition of the total free energy into pairwise atom-atom
contributions is not valid, and that the distribution of atom-atom contact distances does
not follow a Boltzmann-like distribution. As a result, terms like “potential of mean force”
or “energy” have been eschewed and replaced by terms like “preference” or “quantity”
[656]. Furthermore, since statistical potentials are not energies, the term “score” has re-
placed the term “energy, and the linear factor kT has been discarded in the master equa-

tion for knowledge-based scoring functions:

score(i) = —1In Pl

Pref
Equation 6.2

In pairwise distance-dependent contributions, the total score for a complex of protein

atoms ap and ligand atoms a is determined as

total scorepr = Y, Y, score(p(ay), l(a1), r(ap, ar))

a, a

Equation 6.3

P(P) l, ’”)

scorepir(p, 1) = —In| ————=
Pref

Equation 6.4

where p(ap) and I(a;) are the atom types and r(ap,a1) is the distance of ap and ai. This set of
equations can be applied to other structural features rather than distance dependent
atom-atom scores alone, but it should be kept in mind that statistical potentials are more
likely a class of heuristics and only through experiment can their meaning and utility be

demonstrated [603].

Most knowledge-based scoring functions, such as PMF [654] and ASP [460], use a state of
no interaction as reference state, prer, which can be seen as a weighting function for p(i)

while applying Equation 6.2. Instead, DrugScore uses a state of mean interaction:
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Equation 6.6

Here, np is the number of different protein atom types and n is the number of different
ligand atom types. Moreover, in DrugScore the density functions are also probability
functions. More important than the choice of the reference state, this difference is critical
because averaging over all density functions without normalization would cause the re-

ference to be dictated by contact types of high occurrence frequencies.

Another important advantage of the DrugScore reference state is the implicit inclusion of
a volume correction (see Equation 6.5), which compensates for the fact that fewer than
expected contacts are found at short distances. This fact is linked to the low accessibility
of space occupied by other ligand or protein atoms. By contrast, since the quality of all
DrugScore potentials is linked to one unique reference function, a possible disadvantage
of its reference state is the “contagious” effect of an inaccurate density function over all

resulting potentials.

Since all DrugScore potentials were derived from crystallographic information, only non-
hydrogen atoms are used within this scoring function, avoiding problems such as pKa
shifts of ionizable groups due to changes in the electrostatic field induced by ligand bind-
ing. Of course, this may be regarded as a loss of information about directionality of polar
interactions, but this is coped by the many-fold pair-preferences incorporated in the po-
tentials. The first set of DrugScore potentials were derived from crystallographic infor-
mation deposited in the Protein Data Bank, but important gains in accuracy were
achieved when the data stored in the Cambridge structural database [657] was used in-
stead. The two implementations are respectively referred to as DrugScorePP® and DrugS-
coreCsP, In this project, we have tested both versions. However, given the poor results
obtained with DrugScorePPB, only the results obtained with the latest version of DrugS-

core®sD are reported in this thesis.
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2.2.2. DSX

DrugScore eXtended (or simply DSX) extends the DrugScore formalism to a more de-
tailed atom type assignment. Indeed, the DSX pair potentials are based on Equation 6.5
and Equation 6.6, but instead of using Sybyl atom types (as in DrugScore) it uses fconv’s
158 atom types [658]. The importance and the impact of the inclusion of a wider reper-
toire of atom types in solving some of the problems associated to the reference state was
well demonstrated by Neudert et al. [603]. As mentioned by the authors, the more atom
types are available, the more the problem posed by particles residing in dissimilar envi-
ronments (that should be treated as particles of different types) is waived. However, this
strategy poses a possible shortcoming with respect to Equation 6.6: if a particular atom
type is now split into two atom types, these can be considered twice. This is a problem
when two contact types are equal in essence, in which case the effect of splitting up a par-

ticle is to double the weight of its interaction in the reference state.

To cope with this problem, the authors implemented a step of clustering of the density
functions through a similarity measure. The definition of the density functions of DSX

thus became

Z N@,l,r)

plec

or) = AV(r) Y YN(plr)/AV(r)

plecy

DSX (

P

Equation 6.7

ZP(C/) r)

Ne

Pt = Prt (1) =

Equation 6.8

where c defines a cluster of contact types and n the number of clusters.

Besides this key modification, DSX substitutes the former DrugScore statistical potential
to account for desolvation effects (based on “average” information about the changes in
solvent-accessible surface upon complexation) by more sophisticated “SR” potentials
derived from the PDB (scoresg), which account for the actual variations of SAS. Moreover,
DSX features a newly developed knowledge-based torsion angle-dependent potential
(scorewrs) that allows for a local relaxation of docking poses, while handling atypical tor-
sion angles produced by docking algorithms. This latter innovation will be explored later

in Chapter 6. Overall, the total DSX-score for a specific protein-ligand complex is given by

226 Application of HTD-based VS protocols to multiple targets



SCOT€oral = WpSCOI€pair 1 WiSCOI€iors + WsSCOresR

scorepy = Y, Y, scoregﬁf(c(ai, a;),r(ai, a;))
a; € Pa; €L
oo 3 3 ST, 800)
b Teb nr
scoresx = ), scoreby(c(a),SR(a))
ae€P
+ Y scorely*(c(a), SR(a))
a€l

Equation 6.9

where a is an atom from either the set of protein atoms P or the set of ligand atoms L, c is
a cluster type, b is a central bond of a torsion T, t is a torsion type, nr is the number of
torsions for a given bond, SR is the SAS-ratio for a protein or ligand atom, and the wy//s

are the weighting factors used [603].

Besides re-ranking by total score, the per-atom score (PAS) and per-contact score (PCS)
options implemented in DSX were also explored in this chapter. These correspond just to
the total score divided by the number of ligand atoms (PAS) or by the number of atom-
atom interactions (PCS), respectively. Moreover, the scoring of torsion angles option in
DSX was also tested to evaluate its ability to differentiate multiple poses generated by

AD4 during the redocking of DUD cognate ligands.

2.3. Analysis of docking and scoring results

The accuracy of docking generated poses was quantified by the root-mean-squared devi-
ation (RMSD) from experimentally determined ligand coordinates. All RMSD values were
calculated with fconv. This program employs clique-based graph matching (based on the
Bron-Kerbosch algorithm) to perform functional alignments between the molecules
under comparison, and thus circumvent problems associated with molecular symmetry
[658]. The VS performance of the docking and scoring protocols was assessed by plotting
ROC curves [564], both with the (traditional) harmonic and the arithmetic weight (aw)
scheme. Both the area under the ROC curves (ROC AUC) and area under the awROC
curves were calculated to provide a measure of the overall VS performance across the
entire data sets. Ideal distributions of actives and decoys yield AUC values near 1.0, while
random distributions yield AUC values near 0.5. Normality within the entire DUD data set
and each protein family was tested using the Shapiro-Wilk method. Given the levels of
variance detected in the AUC values, all confidence intervals were based on 10,000 boot-

strap replicates.
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ROC Enrichment (ROCE) and arithmetich weighted ROCE (awROCE) were used for quan-
tification of early active recovery. As described in the previous chapter (page 184), the
ROCE metric expresses the percentage of actives recovered as a proportion of the per-
centage of decoys observed. Therefore, and unlike the enrichment factor metric, the
ROCE is not affected by the ratio of actives to decoys in the benchmark sets [564]. This is
particularly important in this chapter, since the size of the benchmarking sets varies con-
siderable across the several DUD targets (even though the authors of DUD tried to keep
the ratio of actives to decoys fix). Like with the EF, ROCE values greater than 1.0 repre-
sent enrichment against random selection. ROCE values at different false positive rates
(FPR), corresponding to (top) fractions (0.5, 1, 2 and 5%) of the ranked list of decoys,
were reported to show the effectiveness of the methods in terms of early enrichment. In
some cases, the top fractions (i.e. the earliest stages of VS) correspond to a small number
of ligands, especially in smaller data sets. In the cases where the top-scoring compounds
are entirely (or almost entirely) populated by active molecules, the respective ROCE as-
sumes an infinite value (or unrealistically high values). Accordingly, besides the mean
values, median values were determined to describe early enrichment across the DUD
target families and the entire data set (see Table E.7 in the Appendix). All statistical data

and ROC analyses were produced with the R software package.

3. Results and discussion

In the following subsections we report the results of performance evaluation obtained for
each of the docking-based VS protocols applied to the DUD data set. Further information

is provided in Section E of the Appendix.

3.1. Evaluation of pose prediction accuracy

Each cognate ligand included with the DUD targets was docked back into its respective
protein structure using AD4 and Vina. Details about the protein structures, such as PDB
accession codes and experimental resolution, are provided in the Appendix, from Table
E.1 to Table E.6. As for TTR, the heavy atom RMSD was calculated against the X-ray ligand
conformation. Figure 6.2 briefly illustrates notable examples where both AD4 and Vina
performed well or failed at pose prediction, along with cases with differing success. All
results were tabulated for both the top-ranked poses and the best poses (lowest-RMSD)
generated by the docking programs. Since only one single experimental complex was
available for each target in the DUD (with the exception of PDGFrb, where no experi-

mental structure is available), and considering that many of the obtained RMSD values
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seemed unrealistically high and of limited meaning!, we were particularly wary while
generating descriptive statistics for our results on docking accuracy against the DUD tar-
gets. Therefore, instead of reporting what might be regarded as deceptive statistical av-
erages, Figure 6.3 shows the percentage of complexes over a distribution of RMSD values,

contrasting the redocking performance of AD4 and Vina.
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Figure 6.2. Comparison between experimental ligand binding modes of selected DUD
targets and the top-scoring poses generated by AD4 and Vina. Pane A: cases where both
AD4 and Vina offered good or exceptional predictions (RMSD values < 2.0 & or < 0.5 4, re-
spectively). Pane B: cases where AD4 and Vina had contrasting success at pose prediction.
Pane C: cases where both AD4 and Vina failed to predict correct ligand poses. The images
were generated using VMD. Abbreviations: androgen receptor (AR), thymidine kinase (TK),
phosphodiesterase 5 (PDE5) and enoyl-ACP reductase (InhA), retinoic X receptor o (RXRa),
cyclin-dependent kinase 2 (CDK2), trypsin, S-adenosyl-homocysteine hydrolase (SAHH).
peroxisome proliferator activated receptor y (PPARg), fibroblast growth factor receptor

kinase (FGFr1), angiotensin-converting enzyme (ACE) and cyclooxygenase-2 (COX2).

1 As discussed in Chapter 2, RMSD values can often be unrealistically high simply because a small
part of the ligand adopts an alternative, wrongly-placed conformation, even though a considerable
part of the ligand structure is correctly docked.
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Interestingly, the profiles obtained for the best-predicted poses suggest that the local
search algorithms of AD4 and Vina preformed very similarly, with both docking pro-
grams providing near-native ligand poses (RMSD < 2.0 &) for approximately 60% of the
complexes. Amongst the cases where both programs consistently failed to generate low-
RMSD poses are ACE, COMT, COX2, PPAR, PR and SRC. These failures may be the result of
insufficiencies of the sampling algorithms rather than of the scoring functions [417]. Less
success and more noticeable differences were found while analysing the discriminative
power of scoring functions towards the ranking of the generated poses. Indeed, low-
RMSD poses were not systematically scored favourably over high-RMSD poses. Com-
pared to the free energy function of AD4, the Vina scoring function was able to identify a
higher percentage of low-RMSD conformations by ranking them first: Approximately
53% of Vina's top-ranked poses were below 2.0 A, whereas only 43% of AD4's top-

ranked poses were below this reference threshold.
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Figure 6.3. Cumulative RMSD distribution plots for X-ray ligand re-docking with 40
DUD complexes. Pane A: the RMSD values refer to the best ligand poses generated by AD4
and Vina. Pane B: the RMSD values refer to the top-ranked poses scored by AD4 (in yellow),
Vina (in green) and DSX upon docking with AD4 (in red). Cumulative RMSD distributions
for the lowest energy conformations belonging to the largest clusters of poses generated by

AD4 are also plotted (in blue).

While considerably smaller than that found by Vina's authors for their test set of protein
complexes, this difference supports the global conclusion that Vina represents a promis-
ing compromise between docking accuracy and speed [439,440]. Globally, these results
also seem to corroborate the view that alternative docking conformations, rather than
just the lowest-energy ones, should be considered when evaluating docking programs.
Indeed, it has been suggested that better discrimination could be attained by considering
the lowest-energy conformation amongst the largest pool of generated poses [417], in-
stead of the lowest-energy conformation overall. To test this idea, RMSD values were
computed for the lowest-energy pose of the largest cluster of poses returned by AD4.
While better discrimination of correct poses was observed for certain targets (namely,

CDK2, FGFr1 and PARP), in general the results indicate that no real benefit is obtained
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from this strategy (see pane B in Figure 6.3). Finally, DSX's ability to discriminate correct
ligand poses was also evaluated, by turning on the scoring of torsion angles upon
minimization of the ligands to a close local minimum, but, again, no significant advanta-

ges were detected.

3.2. Virtual screening performance - Overview

Even though the protocol followed by the authors of the DUD attempted to yield bench-
marking sets with similar ratios of actives to decoys, differences in these proportions are
to be expected when comparing multiple sets, due, for example, to failures during the
docking of ligands/decoys into their respective target structures. Therefore, to eschew
biases associated to enrichment plots when the ratio of actives to decoys grows large, in
this chapter we used receiver operating characteristic (ROC) curves to compare the per-
formance of our docking-based VS protocols on multiple targets. For a deeper under-
standing of the differences between ROC and enrichment curves, recall subsection 1.2.4

in Chapter 5.

Figure 6.4 illustrates a group of cases where the correct prediction of bound ligand poses
(i.e. good pose fidelity by the docking algorithm), assessed against the available X-ray
ligand conformation, was accompanied by moderate or even good VS performances.
Here, a correctly predicted pose was defined as having an RMSD inferior to 2.5 A, and a
moderate (or good) VS performance was defined by a ROC AUC greater than 0.65. Worth
highlighting are the performance of AD4’s FEF against the estrogen receptor (ER) and the
poly(ADP-ribose) polymerase (PARP), and the perfomance of the AD4+DSX (PCS) proto-
col and the Vina+DSX (PCS) protocol respectively against the mineralocorticoid receptor
(MR) and against HIV protease (HIV protease). While still far from what may be per-
ceived as ideal VS performances (i.e. ROC AUCs approaching 1.0), these cases epitomise
the most expected outcome of a docking-based VS experiment, wherein good docking
accuracy is accompanied by reasonable or good discrimination of active over inactive

compounds.
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Figure 6.4. ROC curves illustrating the overall performance of docking and scoring
protocols against selected DUD targets. The plots shown correspond to cases of success-
ful docking pose prediction for the cognate X-ray ligand (here defined as having an RMSD <
2.5 A) that are associated with modest or good VS performances (ROC AUC > 0.65) within
their respective protein family. The six main protocols are coloured as follows: AD4 Free
Energy Function (yellow), AD4 + DrugScore¢P (orange), AD4 + DSX (red), Vina Scoring
Function (green), Vina + DrugScore¢sP (blue), Vina + DSX (purple) and random selection
(black). Variations to DSX scoring are shown in dotted lines (per-atom score) and in dashed
lines (per-contact score). Abbreviations: androgen receptor (AR), estrogen receptor (ER),
mineralocorticoid receptor (MR), thymidine kinase (TK), phosphodiesterase 5 (PDE5), di-
hydrofolate reductase (DHFR), glycinamide ribonucleotide transformylase (GART), HIV
protease (HIVPR), hydroxymethylglutaryl-CoA reductase (HMGR) and poly(ADP-ribose)
polymerase (PARP).

By contrast, Figure 6.5 presents cases where acceptable or even good overall VS perform-

ances did not depend on a correct docking prediction of the X-ray ligand conformation.
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Here, the most important examples are the peroxisome proliferator activated receptor vy
(PPAR), the retinoic X receptor o (RXRa) and the purine nucleoside phosphorylase
(PNP), where protocols using DrugScore®P, DSX and AD4’s FEF were able to offer rea-
sonable or even good enrichment in actives. In principle, these cases represent an unex-
pected outcome of a docking-based VS protocol, for its ability to discriminate active mol-
ecules over inactive ones should be coupled with its ability to identify the most favour-

able interactions between the active compounds and target’s active/binding site.
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Figure 6.5. ROC curves illustrating the overall performance of docking and scoring
protocols against selected DUD targets. The shown plots correspond to cases of unsuc-
cessful docking pose predictions for the cognate X-ray ligand (RMSD > 2.5 A) that are asso-
ciated with at least one VS protocol of acceptable or good VS performance (ROC AUC > 0.70)
within their respective protein family. The six main protocols are coloured as follows: AD4
Free Energy Function (yellow), AD4 + DrugScoreCsD (orange), AD4 + DSX (red), Vina Scoring
Function (green), Vina + DrugScore¢sD (blue), Vina + DSX (purple) and random selection
(black). Variations to DSX scoring are shown in dotted lines (per-atom score) and in dashed
lines (per-contact score). Abbreviations: peroxisome proliferator activated receptor y
(PPAR), retinoic X receptor a (RXRa), neuraminidase (NA), and purine nucleoside phos-

phorylase (PNP).

In Figure 6.6, an analysis focused on early enrichment rates is provided for cases where

higher discrepancy between early recovery rates and overall performance was verified.

Table 6.2 to Table 6.7 of the following subsections report the best performing docking
and scoring protocols for each target across five protein families in the DUD, including
different performance metrics such as the AUC and ROCE. Figure 6.8 reports the mean
area under the ROC curves obtained for all tested protocols broken down by protein

family, and a table comprising all mean AUC and median/mean ROCE values is provided
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in the Appendix (Table E.7). The mean AUC values for each docking and scoring protocol

across the entire DUD are tabulated in Table 6.11, along with the values of 95% confi-

dence intervals.
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Figure 6.6. ROC curves focusing on the early performance of several docking and
scoring protocols against selected DUD targets. The cases shown are associated with
some modest or poor overall VS performances (ROC AUC < 0.65) yet presenting some good
early recovery rates within their respective protein family. In order to facilitate the visuali-
zation of early performance, the x-axis is plotted on logarithmic scale. The six main proto-
cols are coloured as follows: AD4 Free Energy Function (yellow), AD4 + DrugScoreCsP
(orange), AD4 + DSX (red), Vina Scoring Function (green), Vina + DrugScore¢sP (blue), Vina
+ DSX (purple) and random selection (black). Variations to DSX scoring are shown in dotted
lines (per-atom score) and in dashed lines (per-contact score). Abbreviations: progesterone
receptor (PR), cathecol o-methyltransferase (COMT), aldose reductase (ALR2), cyclooxy-
genase-1 (COX1), HIV reverse transcriptase (HIVRT), hydroxymethylglutaryl-CoA reductase
(HMGR), enoyl-ACP reductase (InhA) and neurominidase (NA).
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The relative performance of each protocol varied considerably when compared with the
entire DUD data set, and even though all mean AUCs were above the 0.5 threshold (cor-
responding to no discrimination), several protocols yielded AUCs below this value for
many targets. Indeed, variability in the results was verified not only between docking and
scoring protocols but also between targets. Some targets gave distinct results with the
same set of VS protocols (COX1, COX2, NA, PNP, PR, RXR alpha, SRC, trypsin), whereas
some other targets had very similar results with all protocols (ACE, ALR2, AR, DHFR, MR,
SAHH, VEGFr2). Only a few targets yielded good or acceptable enrichment profiles for all
protocols (MR and DHFR), or consistently random or worst than random for all protocols
(EGFr, FGFr1, p38 MAP and PDGFrb). Most DUD targets returned a range of AUC values,
showing that at least some of the docking and scoring protocols were reasonably suc-
cessful for one of the targets. Variations to the default scoring of DSX were tested in this
study, whereby re-ranking was produced based on per-atom scores (PAS) and per-
contact scores (PCS). While no noticeable effects were observed in the case of TTR, sig-
nificant improvements in enrichment were witnessed for several DUD targets (particu-

larly for COMT, FXa, HIVPR, MR, PDES5 and PNP).

3.3. Performance analysis using arithmetic weighting

Although docking and scoring protocols are less affected by the analogue bias problem
than similarity-based methods, here we provide a complementary analysis by exploring
an arithmetic weighting procedure whereby a weight is assigned to each active molecule
to reflect the size of the cluster to which it belonged. For example, if a given cluster con-
tained seven actives of similar chemotypes, each of those molecules would be given a
weight of one-seventh. As explained in the methods section (subsection 1.1 starting on
page 215), this weighting procedure was based on the clustered annotation of the DUD
data set produced by Good and Oprea, which can be found at:
http://dud.docking.org/clusters/summary.pdf (accessed 06/06/2011).

From the viewpoint of performance analysis, the complementary view provided by the
arithmethic weighting procedure has an obvious advantage over the non-weighted pro-
cedure when analysing subsets of targets with a high number of actives and especially a
high number of clusters of actives. In these subsets, the problem of analogue bias may
contribute to an overestimation or an underestimation of the performance of a VS proto-
col: if one particular active compound (chemotype) is assigned with a favourable or dis-
favourable score, it is likely that all compounds that hold high similarity to that active will
be equally selected or discarded by the protocol. Compare to the non-weighted metric,
the arithmetic weighted metric provides more clear insights about the protocols’ ability

to prioritize structurally diverse actives, which is an expected outcome of virtual screen-
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ing. Table 6.1 and Figure 6.7 report results for proeminent examples of each target family
possessing a high number of clusters of actives (at least 10 clusters). The most distinctive

cases are CDK2 (32 clusters of actives), EGFr (40 clusters) and COX2 (44 clusters).

Table 6.1. Arithmetic weighted ROC AUC (awAUC) and ROC Enrichment (awROCE)
values at 0.5, 1, 2, and 5% for the best performing docking and scoring protocols

across selected DUD targets. The best protocols (awAUC 2 0.75) are marked in bold and

grey shade.
Overall Early Enrichment (awROCE)
Target Best performing protocol Enrichment

(awAUC) 0.5% 1% 2% 5%
ER agonist ~ AD4 FEF 0.82 47.5 79.3 45.8 17.2
CDK2 Vina SF 0.65 31.8 229 11.7 6.4
EGFr Vina + DrugScore¢sP 0.70 8.0 5.1 3.2 2.0
FXa Vina + DSX PAS 0.76 7.8 3.4 1.6 0.6
ACE Vina + DrugScore¢sP 0.58 21.7 15.4 8.1 3.2
PDE5S Vina + DSX PAS 0.76 38.3 21.9 16.8 8.5
DHFR AD4 FEF 0.75 17.3 15.6 11.8 8.9
ALR2 AD4 + DSX 0.65 153.0 48.0 16.4 8.4
COX2 Vina + DSX PCS 0.65 35 2.0 1.9 1.4
InhA Vina + DSX PCS 0.64 23.3 10.9 6.8 5.3

Over the following subsections, the results reported in Table 6.1 will be contrasted with
those obtained using non-weighted metrics. It is worth mentioning that, albeit rare, there
are a few cases where the two quantification approaches (arithmetic versus non-
arithmetic weighting) show disagreement. The clearest examples are EGFr and ACE,
where the non-weighted procedure seems to overestimate the protocols’ overall per-
formance, while the arithmetic weighting scheme reveals limited ability to select diverse
actives, and FXa, PDE5 and COX2, where the non-weighted procedure seems to under-
estimate the protocols’ overall performance, while the arithmetic weighting scheme sug-
gests some ability to select diverse actives. ACE and ALR2, on the other hand, are two
interesting examples were the non-weighted procedure clearly underestimates the early
performance of the protocols, and particularly their ability to populate the top fraction of

the ranked lists with structurally diverse actives.
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Figure 6.7. Arithmetic weighted ROC curves illustrating the performance of docking

and scoring protocols against selected DUD targets. The cases shown are subsets of each

protein family possessing at least 10 clusters of actives, according to the assignments by

Good and Oprea. The six main protocols are coloured as follows: AD4 Free Energy Function

(yellow), AD4 + DrugScore¢sP (orange), AD4 + DSX (red), Vina Scoring Function (green),

Vina + DrugScore¢sP (blue), Vina + DSX (purple) and random performance (black). Vari-

ations to DSX scoring are shown in dotted lines (per-atom score) and in dashed lines (per-

contact score). Abbreviations: estrogen receptor (ER), cyclin-dependent kinase 2 (CDK2),

epidermal growth factor receptor (EGFr), coagulation factor Xa (FXa), angiotensin-

converting enzyme (ACE), phosphodiesterase 5 (PDE5), dihydrofolate reductase (DHFR),

aldose reductase (ALR2), cyclooxygenase 2 (COX2) and enoyl-ACP reductase (InhA).
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3.4. Virtual screening performance broken down by pro-

tein targets

In this subsection, the results of the VS performance studies are contrasted across the
protein target families in the DUD data set, and particular emphasis is given to the most
interesting individual cases. Figure 6.8 presents the mean area under the ROC curve (ROC
AUC) for each docking and scoring protocol against each protein target family, along with

the respective 95% confidence intervals.
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Figure 6.8. Statistical results for docking and scoring protocols using the DUD, broken
down by protein family. Each bar represents the mean area under the ROC curve obtained
by each docking and scoring protocol across the six subsets of protein targets in each
family. Protocols are coloured as follows: AD4 Free Energy Function (yellow), AD4 + DrugsS-
coretD (orange), AD4 + DSX (red), Vina Scoring Function (green), Vina + DrugScorecsP
(blue) and Vina + DSX (purple). The point ranges in black express bootstrap-based 95%
confidence intervals of the mean. Abbreviations: nuclear hormone receptor (NHR), Auto-
Dock 4 (AD4), Free Energy Function (FEF), lowest-energy pose (LE), lowest-energy pose
belonging to the largest cluster (LC), per-atom score (PAS), per-contact score (PCS).

3.4.1. Nuclear Hormone Receptors

Consisting of eight protein targets, the nuclear hormone receptor (NHR) subset of the
DUD yielded the best results with most docking and scoring protocols. For 6 out of the 8

individual targets, the best performing protocol encountered obtained a ROC AUC above
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0.75 (see Table 6.2 and the first 4 plots in Figure 6.4). Of these, three targets (ER agonist,
MR and RXR alpha) yielded the highest AUC values across the entire DUD (0.85, 0.84 and
0.86, respectively) with AD4 and its Free Energy Function (FEF). The worse performan-
ces obtained for PR are likely to reflect the limited ability of the docking algorithms to
predict correct ligand poses - as verified by re-docking of the respective cognate X-ray

ligand.

It should be noticed, however, that poor docking predictions were also seen for PPAR
gamma (using both AD4 and Vina) and RXR alpha (using AD4), while good overall en-
richment and early recovery rates were obtained both for PPAR gamma, using Vina-
based protocols (Vina + DrugScore®P and Vina + DSX), and for RXR alpha, using AD4 FEF
(see the first two plots in Figure 6.5). As mentioned in subsection 3.2, this is an unex-
pected outcome of docking-based VS protocols. Therefore, these particular cases are sub-

ject to a deeper analysis in subsection 0.

The bar plots in Figure 6.8 show that, in general, the docking and scoring protocols per-
formed well amongst the NHR family, with AD4 offering slightly better results. Equally,
good results were obtained in terms of overall and early recovery of distinct active
chemotypes of ER agonists (10 clusters), as disclosed by an awAUC of 0.82 and awROCE
values of 47.5, 79.3, 45.8 and 17.2 respectively at 0.5, 1, 2 and 5% false positive rates (see
Table 6.1 and the first plot of Figure 6.8).

Table 6.2. Best performing docking and scoring protocols for the nuclear hormone
receptor targets in the DUD. Cases of high accuracy (RMSD < 2.0 A) and/or performance
(awAUC 2 0.75) are highlighted in grey shade and bold, respectively.

Accuracy at pose Early enrichment

e Best performing Overall
Target predlct;(/).n. AD4vs. screening protocol enrichment (ROCE)
ina . .
(RMSD in A) (docking + scoring) (ROC AUQ) 05% 1% 2% 5%

AR 0.39 / 0.46 AD4 + DrugScorecsP 0.75 54.0 22.5 144 5.8
ER agonist 0.54 / 0.61 AD4 FEF 0.85 52.0 79.3 43.1 16.2
ER . 0.97 / 1.25 AD4 FEF 0.76 39.0 36.8 36.8 12.4
antagonist
GR 0.58 /0.31 AD4 FEF 0.72 21.3 129 104 49
MR 0.57 / 17.67 AD4 + DSX PCS 0.84 133.0 88.7 30.3 14.4
PPAR .

9.78 / 9.54 Vina + DrugScorecsP 0.83 123.0 55.5 31.3 13.7
gamma
PR 17.85/18.13 AD4 FEF 0.65 247 159 123 69
RXR alpha 15.49 /0.21 AD4 FEF 0.86 12.5 30.0 31.8 14.8
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3.4.2. Protein Kinases

As shown in Figure 6.8, protein kinases yielded the lowest mean ROC AUC values, there-
fore representing the hardest challenge in the DUD for most docking and scoring proto-
cols. On average, Vina and its built-in scoring function performed better against the kin-
ases, with a mean ROC AUC of 0.58. This number is only slightly above the threshold of no
discrimination, mirroring the difficulties in identifying efficient protocols to handle this
group of targets, in general, but also the very poor results obtained with a few particular
targets (HSP90 and PDGFrb; see Table 6.3). PDGFrb, in particular, yielded the worst VS
performance results across the entire DUD data set, although it is worth noting that no
experimental structure is available for this target (a theoretical model is supplied in the

DUD).

Despite the fact that Vina performed poorly at cognate ligand pose prediction for CDK2,
the Vina + DrugScoreCP protocol performed very well in terms of early enrichment
(ROCE values of 145.0, 33.2, 12.5 at 0.5, 1 and 2% false positive rates; see Figure 6.6).
However, the protocol showed poor overall enrichment (AUC of 0.59). Amongst all pro-
tocols, Vina SF offered the highest AUC (0.65) and awAUC (0.65). Moreover, CDK2 is a
case where evaluation with the arithmetic weighting procedure provided very similar
results (awROCE values of 148.0, 34.0 and 12.7 at 0.5, 1 and 2% false positive rates for
Vina + DrugScore®P), which can be linked to the high diversity of the CDK2 set of active

molecules in the DUD (32 clusters amongst 50 active molecules).

Similar results were obtained for EGFr: although Vina SF offered the highest overall en-
richment, it provided weak early recovery compared to the Vina + DrugScore®P protocol,
which in turn provided worst overall enrichment. However, the EGFr target represents a
case where the analogue bias problem of the DUD allows for deceptive interpretations.
Indeed, the AUC value of 0.58 overshadowed Vina SF's real ability to discriminate active

EGFr chemotypes (awAUC of 0.71).

Table 6.3. Best performing docking and scoring protocols for the protein Kkinases in
the DUD. Cases of high accuracy (RMSD < 2.0 &) are highlighted in grey shade.

Accuracy at pose Early enrichment

N Best performing Overall
Target predlct‘lf(;:::Dll screening protocol enrichment (ROCE)

(R‘l(';.SD in A) (docking + scoring) (ROCAUCQ) 05% 1% 2% 5%
CDK2 0.44 / 7.44 Vina SF 0.65 311 225 114 6.7
EGFr 1.49 /5.90 Vina SF 0.58 0.8 0.9 14 15
FGFr1 5.66 / 5.64 Vina SF 0.53 0.0 0.4 04 1.0
HSP90 7.34/0.76 AD4 FEF 0.58 0.0 0.0 0.0 0.0
P38 MAP 15.10 / 0.66 Vina + DrugScore¢sP 0.64 5.8 5.8 52 28
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Accuracy at pose Early enrichment

Best performing Overall

Target predict‘i/(?n AD4 screening protocol enrichment (ROCE)
(R‘l('/f.SDlinnaA) (docking + scoring) (ROC AUQ) 05% 1% 2% 5%
PDGFrb 0.47 /9.73 Vina SF 0.53 0.0 0.4 04 1.0
SRC 3.65/3.26 Vina SF 0.69 3.0 2.1 23 32
TKa 0.62 / 0.46 AD4 + DSX PCS 0.68 15.0 5.6 53 19
VEGFr2 2.81/1.38 Vina + DrugScore¢sP 0.56 123.0 328 127 4.2

a This result was based on AD4 scores assigned to the lowest energy conformation of the largest cluster of con-
formations.

On these grounds, of all tested protocols Vina + DrugScore®P was considered the most
suited for the EGFr target (see Figure 6.7 and Table 6.1), offering the best compromise
between overall (awAUC of 0.70) and early enrichment (awROCE values of 8.0, 5.1 and
3.2 at 0.5, 1 and 2% FPR). Interestingly, the Vina + DrugScore®P also provided the best
overall enrichment for p38 MAP (AUC 0.65), but particularly poor outcomes were ob-
tained for this target with most protocols. SRC was another particularly challenging tar-
get for the protocols, with the highest overall enrichment being given by Vina SF (AUC of
0.69) at the cost of poor early enrichment of actives. Finally, the AD4 + DrugScore®sP pro-
tocol offered the best overall enrichment for the VEGFr2 target, but with very poor per-
formance at early stages of VS. In contrast and as evidenced in Figure 6.6, the Vina +
DrugScore®sP protocol showed exceptional performance at 0.5, 1 and 2% of false positive
rates (ROCE of, respectively, 123.0, 32.8 and 12.7), which suggests that the combined use

of both protocols should be considered.

3.4.3. Serine Proteases

Amongst the serine protease targets, FXa and thrombin are interesting cases where the
use of arithmetic weighting offered different perspectives of VS performance to the non-
weighted approach. The 146 FXa actives in the DUD cluster into just 19 dissimilar groups,

which is suggestive of significant chemical analogy within the set.

Equally, from the 68 thrombin actives only 14 clusters of diverse chemotypes are formed.
Interestingly, while only reasonable overall performance is revealed by the ROC AUC of
0.70 for FXa (Vina + DSX PCS protocol), the awAUC of 0.76 obtained with the Vina + DSX
PAS protocol reflects a good ability to discriminate diverse FXa active chemotypes (see
Figure 6.8 and Table 6.1). In contrast, the arithmetic weighted metric discloses worse per-
formance in terms of early enrichment. The Vina + DSX protocol offered the most consis-
tent early enrichments, yielding equal ROCE and awROCE values (18.7, 7.9 and 5.1 re-
spectively at 0.5, 1 and 2% FPR). Larger differences between the two metrics were ob-

served for thrombin, both in terms of overall enrichment (ROC AUC of 0.72 versus a ROC
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awAUC of 0.55, with Vina SF) and early recovery rates (ROCE values of 20.3, 14.2 and
13.3 at 0.5, 1 and 2% FPR versus awROCE values of 0, 2.3 and 2.2, respectively, with Vina
SF). Therefore, it is clear that caution should be taken while choosing the most appropri-
ate docking and scoring protocols for VS with serine proteases, in order to avoid mislead-

ing interpretations due to analogue bias in benchmark sets.

Table 6.4. Best performing docking and scoring protocols for the serine proteases in
the DUD.

Accuracy at pose Early Enrichment

e Best performing Overall
Target predlCt‘l;;EaAD4 VS. screening protocol Enrichment (ROCE)
(RMSD in A) (docking + scoring) (ROCAUCQC) 05% 1% 2% 5%
FXa 2.52 /1.56 Vina + DSX PCS 0.70 1.8 16 11 25
Thrombin 418 /5.93 Vina SF 0.72 203 142 133 58
Trypsin 4.28 /0.53 AD4 FEF 0.71 227 129 85 57

3.4.4. Metalloenzymes

Proteins containing metal ions and/or prosthetic groups represent difficult cases to han-
dle by computational methods. In time, and as more experimental information comes to
light, the integration of adequate parameters for metals and other exotic species in mo-
lecular mechanics-based force fields is becoming more common and efficient. As shown
in Figure 6.8, in general the metalloenzymes yielded poor enrichment profiles. Re-scoring
with DrugScore®P and the new DSX proved useful for this subset of the DUD (see Table
6.5).

The angiotensin-converting enzyme (ACE) was a particularly difficult case where little
distinction between actives and decoys was achieved by most docking and scoring proto-
cols. In fact, the difficulties with this metalloenzyme arised immediately at ligand pose
prediction. As seen in section 3.1, neither AutoDock 4 nor Vina were able to identify cor-
rect conformations for the cognate ligand included in the DUD using default settings. The
AD4 +DSX PCS protocol reached a ROC AUC of 0.64, a value that is above the line of no
discrimination. This number is slightly deceiving due to the analogue bias problem. Using
the arithmetic procedure, thus taking the 18 clusters of the ACE subset into consider-
ation, a poor selection of structurally diverse actives is verfied (ROC awAUC of 0.60). On
the other hand, the best early enrichment profile was given by the Vina + DrugScore¢sP
protocol, with ROCE values of 20.3, 14.6 and 10.2 at 0.5, 1 and 2% FPR, and awROCE
values of 21.7, 15.4 and 8.1 at the same levels and respectively, suggesting that a combi-

nation of protocols should be considered.
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The AD4 + DrugScoreC€SP protocol offered the best overall enrichment for ADA, while poor
early enrichment was verified for most docking protocols. An interesting exception was
the Vina + DSX PAS protocol, where ROCE values of 43.0, 21.7 and 7.6 were attained, re-
spectively at 0.5, 1 and 2% of the ranked decoys.

Finally, the best overall enrichment for PDE5 was obtained with the AD4 + DSX protocol
(AUC of 0.67), but best early enrichment was given by Vina + DSX protocol (ROCE of 19.3,
16.7 and 15.4 at 0.5, 1 and 2% FPR). Globally, these results can be regarded as satisfac-
tory, but the superior discriminative power of the Vina + DSX protocol towards the di-
verse active chemotypes of PDE5 in the DUD must be highlighted as well. This protocol
yielded an awAUC of 0.76 and awROCE values of 38.3, 21.9 and 16.8 at 0.5, 1 and 2% false

positive rates, which are promising results.

Table 6.5. Best performing docking and scoring protocols for the metalloenzymes in
the DUD. Cases of high accuracy (RMSD < 2.0 &) are highlighted in grey shade.

Accuracy at pose Early Enrichment

A Best performing .
Target prediction: AD4 screening protocol Overall Enrichment (ROCE)

vs. Vina (docking + scoring) (ROCAUC)

(RMSD in A) 05% 1% 2% 5%

ACE 16.98 / 8.92 AD4 + DSX-PCS 0.64 0.0 22 32 25
ADA 2.07 /7.03 AD4 + DrugScore¢sP 0.66 0.0 00 48 28
COMT 18.65 /10.19 AD4 + DSX-PAS 0.58 450 453 113 6.2
PDES5 1.56 / 0.79 AD4 + DSX 0.67 13.0 98 58 44

3.4.5. Folate Enzymes

The folate enzymes family consists of just two members, but it is worth noting it was a
group of targets for which most protocols produced exceptional results - exceptions
were Vina SF and protocols employing DSX-PCS and DrugScoreCP (re-scoring with
DrugScore®P was not possible for folate enzymes due to unhandling of their cofactors,
which participate in ligand binding). Both DHFR and GART obtained good results at cog-
nate ligand pose prediction, early and overall enrichment with most of the docking and
scoring protocols under evaluation (see Figure 6.4 and Table 6.6). With a number of 201
known actives grouped into 14 diverse clusters, DHFR represented a good challenge for
the protocols and the results were encouraging: the Vina + DSX protocol offered an
awAUC of 0.76 along with awROCE values of 24.7, 19.8 and 14.2 at 0.5, 1 and 2% FPR,

which are all indicative of good discriminative performance.
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Table 6.6. Best performing docking and scoring protocols for the folate enzymes in
the DUD. Cases of high accuracy (RMSD < 2.0 A) and/or performance (awAUC = 0.75) are
highlighted in grey shade and bold, respectively.

Accuracy at pose Early Enrichment

icti Best performing Overall Enrichment
Target Prediction AD4 screening protocol (ROCE)
vs. Vina (docking + scoring) (ROCAUC)
(RMSD in A) g & 05% 1% 2% 5%
DHFR 2.00 /0.47 Vina + DSX 0.76 24.7 19.8 14.2 6.8
GART 2.05/9.49 AD4 FEF 0.80 157 52 9.5 53

3.4.6. Other Enzymes

Despite lacking the functional metals present in the metalloenzymes, in general this
group of targets was also associated with weak enrichments for most docking and scor-
ing protocols (see Table 6.11). In fact, this is by far the largest group in the DUD data set
and, out of its 14 targets, only 3 yielded good or exceptional VS performances (HIVPR,
PARP and PNP). Overall, the AD4 + DSX-PCS protocol offered the best results across the
entire subset (mean ROC AUC of 0.59).

Even though the Vina SF offered the best overall enrichment for ALR2 (ROC AUC of 0.69),
the AD4 + DSX protocol should be considered as complementary because of its excep-
tional ability to discriminate diverse actives at early stages of virtual screening (awROCE
values of 153.0, 48.0, 16.4 and 8.4 respectively at 0.5, 1, 2 and 5 FPR). Moreover, Auto-
Dock 4 outperformed Vina at predicting the best pose for the ALR2 X-ray ligand provided
in the DUD.

COX1 is one of a set of cases where excellent docking accuracy was translated into
poor/weak VS performance. While both AutoDock 4 and AutoDock Vina excelled at pre-
dicting the native X-ray pose of the cognate ligand, all docking and scoring protocols per-
formed no better than random picks at discriminating COX1 actives from decoys. An in-
teresting exception was found by re-scoring AD4 predictions with DSX and re-ranking
results by per-contact score (ROC AUC of 0.61). In addition, this protocol yielded particu-
larly good early enrichments (ROC values of 40.0, 32.0 and 10.7 at 0.5, 1 and 2% of the
ranked decoys).

HIV reverse transcriptase is another example where, despite great docking accuracy for
both AD4 and Vina, poor VS performance was obtained. The built-in FEF of AutoDock 4
offered the best overall enrichment (ROC AUC of 0.59), but very poor early enrichment.
The Vina + DSX protocol, by contrast, provided reasonable enrichment in actives at early

stages of VS (ROCE values of 37.5, 20.8 and 9.4 at 0.5, 1 and 2% FPR, respectively).
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A final case where excellent pose predictions did not result in good overall VS perform-
ance was that of Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA).
The best performing protocol found for this target, AD4 + DSX-PCS, did not go beyond an
ROC AUC of 0.61, disclosing limited discrimination of actives over decoys overall. How-
ever, reasonable discrimination occurred at early intervals of the ranked data set, with
ROCE values of 23.3, 19.5 and 10.9 at 0.5, 1 and 2% FPR. Another interesting finding was
that even though Vina performed worst in terms of overall VS performance, it presented

exceptional early enrichment (ROCE of 129.0,42.8 and 20.8 at 0.5, 1 and 2% FPR).

Table 6.7. Best performing docking and scoring protocols for other enzymes in the
DUD. Cases of high accuracy (RMSD < 2.0 A) and/or performance (awAUC = 0.75) are high-
lighted in grey shade and bold, respectively.

Accuracy at pose Early Enrichment

e Best performing Overall
Target predlcti;).n. AD4vs. screening protocol Enrichment (ROCE)
ina ; ;

(RMSD in A) (docking + scoring) (ROC AUQ) 05% 1% 2% 5%
AChE 5.05 / 0.64 Vina SF 0.67 3.5 5.9 3.7 45
ALR2 1.33/3.44 Vina SF 0.69 9.5 4.8 44 79
AmpC 12,90 /3.73 AD4 + DSX-PCS 0.53 11.8 5.2 56 4.1
COX1 0.99/0.28 AD4 + DSX-PCS 0.61 40.0 320 10.7 34
COX2 2096 /21.71 Vina + DSX-PCS 0.59 3.5 2.8 24 19
GPB 0.62 /0.70 Vina + DSX-PCS 0.72 0.0 0.0 1.0 2.0
HIVPR 11.16 / 2.20 Vina + DSX-PCS 0.80 56.5 47.0 29.1 13.2
HIVRT 0.84 /0.73 AD4 FEF 0.59 0.0 2.8 26 1.0
HMGR 2.04 /1.72 Vina + DSX-PCS 0.71 1140 500 163 7.5
InhA 0.44 /0.22 AD4 + DSX-PCS 0.61 233 195 109 5.6
NA 23.73 /0.41 AD4 FEF 0.73 20.3 145 22.0 10.2
PARP 2.37/0.93 AD4 FEF 0.83 max. 303.0 649 13.0
PNP® 15.25 /20.63 AD4 + DSX-PCS 0.79 160.0 50.0 29.1 144
SAHH® 0.36 /20.13 AD4 + DSX-PAS 0.61 0.0 3.2 32 24

@ These results were based on AD4 scores assigned to the lowest-energy conformation of the largest cluster of
ligand poses, while the other results were calculated as in previous tables using the lowest-energy poses.

To contrast the former examples, neuraminidase (NA) was another peculiar case where,
even though AutoDock 4 failed at predicting the cognate ligand's native pose, AD4 FEF
outperformed all other protocols in terms of VS performance. In fact, all other protocols,
without exception, perform worse than random against NA. Thus, because NA represents
yet another example of an unexpected outcome of a VS experiment, it is analysed in

depth in the next subsection.
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3.5. In-depth analysis of unexpected cases

Throughout the analysis of the results of our VS experiments, we encountered a few
cases where reasonable or good discrimination of active molecules over inactive ones did
not seem to depend on the ability to discriminate correct ligand poses within the target’s
binding site. Simply put, these were cases where the VS performance of the employed
protocol was not linked to the docking accuracy (or pose fidelity) of the underlying dock-
ing algorithm. As mentioned before, this is an unexpected (and worrisome) outcome of a
docking-based VS experiment, because the ability of one given VS protocol to discrimi-
nate actives over inactives should be intimately linked to its ability to identify the most
favourable interactions between the active molecules and target’s active/binding site. We
selected four of the most important examples to carry out a more exhaustive analysis of
ligand and receptor properties that could be linked to such unexpected behaviour;

namely:

 peroxisome proliferator activated receptor y (PPARg) - with an RMSD of 9.54 A
for the lowest-energy (E) docked pose of the cognate X-ray ligand (generated by
Vina) and a ROC AUC of 0.83 with the Vina + DrugScore®P protocol;

* retinoic X receptor o. (RXRa) - with an RMSD of 15.49 A for the lowest-E docked
pose of the cognate X-ray ligand (by AD4) and a ROC AUC of 0.86 with AD4 FEF;

* neuraminidase (NA) - with an RMSD of 23.73 A for the lowest-E docked pose of
the cognate X-ray ligand (by AD4) and a ROC AUC of 0.73 with AD4 FEF;

 purine nucleoside phosphorylase (PNP) - with an RMSD of 15.25 A for the low-
est-E docked pose of the cognate X-ray ligand (by AD4) and a ROC AUC of 0.79
with the AD4 +DSX PCS protocol.

To contrast these examples with cases we believe fall in the category of expected out-
comes of VS, we selected four examples where the good VS performance (ROC AUC =
0.75) provided by a VS protocol followed from good docking accuracy (RMSD < 2.5 A)
provided by the respective docking program: androgen receptor (AR), estrogen receptor
agonist (ER agonist), mineralocorticoid receptor (MR) and glycinamide ribonucleotide

transformylase (GART).

Table 6.8 reports the number of heavy atoms, providing a depiction of the size of the
compounds, and the number of rotatable bonds, providing a picture of the compounds’
flexibility, for the cognate (X-ray) ligand in complex with the target receptor, and for the
active and decoy compounds in the respective data set (median values). For each group
of cases described above, overall median values are given to ease the direct comparison

of the properties between the two groups.
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Table 6.8. Ligand-centric properties of compounds in the DUD data set associated

with both unexpected and expected VS behaviour.

Heavy atom count Rotatable bond count
Target PDB id Cognate  Actives Decoys Co Actives Decoys
ligand (median) (median) gnate (median)  (median)

Poor docking accuracy + Good VS performance
PPARg 1fm9 41 41 37 12 12 9
RXRa 1mvc 28 28 28 3 5 7
NA ladg 23 21 22 6 6 5
PNP 1b8o 19 19 20 2 3 3
Median 25.5 24.5 25 4.5 5.5 6

Good docking accuracy + Good VS performance
AR 1295 21 22 21 0 1 3
ER agonist 112i 24 21 20 2 1 3
MR 2aa2 26 26 25 3 2 3
GART 1c2t 34 31 34 10 9 9
Median 25 24 23 2.5 1.5 3

From a ligand-centric viewpoint, the only significant difference that could be detected
between the two groups of case studies was in the number of rotatable bonds of the cog-
nate ligand, of the actives and of the decoy compounds. The most pronounced difference
found was in the number rotatable bonds of the actives, with a median value of 5.5 for
the first group (the unexpected cases) versus a median value of 1.5 for the second group
(the expected cases). Ligand flexibility is a well-known challenge posed to docking algor-
ithms: typically, difficulties increase with the number of flexible bonds in the compounds
to be docked. In principle, the higher flexibility of the cognate ligands of the first group
could justify the higher RMSD values obtained during the re-docking procedures. Indeed,
by looking at the lowest-energy docked poses generated for the cognate ligand of PPARg
(12 rotatable bonds) by AD4 and Vina, one can realise that both programs are able to find
the main binding site with precision, yet suggesting a reverse binding mode for the ligand
(recall Figure 6.2). In both cases, this results in RMSD values above 9 A. However, it can
be argued that high flexibility is also found among the respective benchmarking set
(actives and decoys), suggesting that similar difficulties were encountered by the docking
programs while docking the benchmarking compounds into the binding site of PPARg.
Moreover, looking at other examples in the first group individually, one can identify
compounds holding low flexibility (e.g. PNP), even as low as that of the compounds com-
prised in the second group. These counter-examples show that ligand flexibility alone

cannot explain all cases showing unexpected behaviour.

We went further to collect a number of receptor-related characteristics that could help us

shading light over this subject. Table 6.9 reviews features like the X-ray resolution at
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which each structure was determined, the size of the docking simulation box, and sum-
marizes the results of a set of analyses performed using two alternative binding site pre-
diction algorithms, Q-SiteFinder [260] and DoGSite [659]. These algorithms take both
geometric and energetic criteria into consideration (based on the grid approach ex-
plained in subsection 1.4.4 of the introductory chapter) to detect and characterise poten-
tial binding sites on protein structures. Besides analysing the predicted binding sites
(and subpockets) visually, we looked at measures like the volume and the depth of the

predicted sites.

Table 6.9. Collection of receptor-related features retrieved from the DUD data set or
determined by molecular modelling techniques for DUD examples associated with

both unexpected and expected VS behaviour.

Q-SiteFinder analysis DoGSite analysis

X-ray Docking
Target  resolution simglation box Pocket Precision( Pocket Depth®
A size (A3) volume o volume
A3 (%) A3 @A)
Poor docking accuracy + Good VS performance
PPARg 2.10 83333 804 66 1321 8.75
RXRa 1.90 82288 561 88.1 944 24.43
NA 2.20 85077 196 71.2 184 13.2
PNP 1.50 80190 476 73.7 645 19.24
Median 2.00 82811 518.5 72.5 795 16.22
Good docking accuracy + Good VS performance
AR 1.80 82240 556 91.5 632 2.33
Egonist 1.95 82288 485 87.3 509 1.65
MR 1.95 82924 472 94.4 497 0.89
GART 2.10 87814 589 79.4 505 16.33
Median 1.95 82606 520.5 89.4 821 1.99

@ In Q-SiteFinder, precision is a measurement of how well the predicted binding site maps onto the
ligand coordinates. It is defined as the percentage of (methyl) probe sites (as the ones explained in
Chapters 2 and 3) defined by a single cluster of probes that are within 1.6 A of an atom of a
particular ligand When a single ligand gives a success in two separate sites, only the higher ranking
site is counted, since they are part of the same binding site. (® In DoGSite, depth corresponds to the
maximal distance between a grid point located within the solvent exposed shell and the deepest grid
point of the buried shell. Thus, the depth is described by the maximal separation between the
solvent and the buried part of the binding site.

Q-SiteFinder and DoGSite provided reasonably distinct results in terms of pocket vol-
umes, with the former presenting more conservative (and precise) volumes around the
structure of the bound ligands; binding site volumes predicted by DoGSite were, in gen-
eral, larger. However, the two algorithms did agree in the comparison of the two groups
of cases under study, revealing little or no differences between the two. Interestingly,
according to the DoGSite analysis, all binding sites belonging to targets yielding unex-
pected VS outcomes are deeper (i.e. more buried), whereas most binding sites belonging

to targets yielding expected VS outcomes are more superficial. The only exception in the
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second group is GART, whose main binding site has a predicted depth of 16.33 A, a value
that is comparable to the median binding site depth of the first group (16.22 A).

These results led us to hypothesise that, besides ligand flexibility, the high depth of the
main binding sites could represent an additional hurdle (and source of bias) to the dock-
ing algorithms, driving the docking of cognate ligands and benchmarking set compounds

to alternative (and more accessible) receptor sites (see Figure 6.9).

Cognate ligand:
lowest-energy
docked pose

Main
binding site
and
cognate X-ray

Benchmarking set
compounds: lowest-E
docked poses

Main binding site,
cognate X-ray ligand
and lowest-E
docked pose

Benchmarking set
compounds: lowest-E
docked poses

Figure 6.9. Representation of the X-ray structure of two DUD targets providing biased
VS outcomes. Shown are the native (X-ray) pose of the respective cognate ligand (coloured
by element) and the lowest-energy poses generated by docking for that same cognate lig-

and (blue) and for randomly selected examples of actives (green) and decoys (red). (A) pur-
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ine nucleoside phosphorylase (PNP) and (B) glycinamide ribonucleotide transformylase
(GART).

Figure 6.9 provides a visual depiction of the docking results obtained for two case studies,
one belonging to the first group (unexpected VS outcomes) and the other belonging to the
second group (expected VS outcomes). Figure 6.9A illustrates the results for target PNP,
where it can be seen that AutoDock Vina docks the cognate ligand and most benchmark-
ing set compounds into alternative and more superficial binding sites. Considering that,
in principle, the decoy molecules lack the chemical topology required for interaction with
the main binding site, this result might be expected for inactive molecules. However, this
principle does not hold for molecules that are known to bind to the main binding site of
the target in order to produce its activity (i.e. the active compounds). This picture clearly
shows that, whatever discrimination between PNP actives and decoys may have occur-

red, it took place away from the main binding site of PNP.

Equally, most of the benchmarking set compounds of GART (shown by random choice in
Figure 6.9B) are docked into alternative and superficial receptor sites. To contrast with
the previous case, however, AD4 correctly binds the cognate ligand into the main binding
site of the protein (RMSD of 2.05 A). Still, these results suggest that the good overall VS
performance provided by AD4 FEF for GART may in fact derive not from a good docking
accuracy but from the scoring of ligand conformations docked away from the main bind-
ing site of the target. Furthermore, these results confirm that the DUD data set does not
provide enough experimental information to allow for meaningful evaluations of docking
accuracy. A reasonable number of crystal structures of ligand-bound conformations of
each target would be required in order to conduct the appropriate re-docking studies

and thus collect enough statistical evidence on the pose fidelity of the algorithms.

In order to quantify the problem of ligand docking into alternative receptor sites, we
computed the Euclidean distance between the centre of mass of all lowest-energy docked
poses and the centre of mass of the cognate X-ray ligand (determined from the experi-
mental coordinates provided in the DUD). Table 6.10 reports the median values for the
centre-of-mass distances between the active and decoys compounds of each benchmark-
ing set under evaluation and its respective cognate X-ray ligand. Globally, the values of
the first group are higher than those of the second group (both for the actives and the
decoys). However, inspecting each case individually, it can be found that the centre-of-
mass distances for targets RXRa and NA (belonging to the first group) are comparable to
the global median value of the second group. This suggests that, even though associated
with high RMSDs (and thus low docking accuracy), the good VS performances provided
by AD4 FEF for these two targets result from the scoring of active compounds correctly

docked into the main binding site of the respective target. Conversely, the table shows
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that most actives compounds of GART are docked into alternative receptor sites, and that
the good VS performance provided by AD4 FEF results from the scoring of wrong ligand

conformations.

Table 6.10. Median Euclidean distances computed between the centre-of-mass of the
benchmarking set compounds and the centre-of-mass of the respective cognate X-ray
ligand of the selected DUD targets.

Centre-of-mass distances between docked poses

and cognate X-ray ligand A
Target

Actives (median) Decoys (median)

Poor docking accuracy + Good VS performance

PPARg 6.22 8.70
RXRa 1.15 16.14
NA 1.36 16.70
PNP 12.53 12.69

Median 3.79 14.41

Good docking accuracy + Good VS performance

AR 1.13 11.92
ER agonist 0.76 7.73
MR 1.08 14.93
GART 10.74 6.51

Median 1.10 9.82

The results presented in this subsection clearly indicate that the unexpected VS outcomes
obtained for a number targets in the DUD data set result either from a misleading evalu-
ation of docking accuracy based on little evidence (particularly when the only cognate X-
ray ligand provided with a given benchmarking set is fairly flexible) or from the favour-
able scoring of active compounds in alternative (and more accessible) receptor binding

sites, thus providing an artificial notion of enrichment.

3.6. Virtual screening performance across the entire DUD

data set

In this section, we provide an analysis of the virtual screening performance of the dock-
ing and scoring protocols over the entire DUD data set. Despite the efforts that went into
the creation of the DUD, it retains important gaps. These include the dominance of en-
zymes among the target classes. Of the 40 targets in the data set, 30 are enzymes. The
inclusion of additional (and more diverse) binding sites to the DUD is an obvious way to
cover more “target space”. A comprehensive coverage of every possible binding site and

pharmaceutical target classes is, however, unworkable. Such a benchmark would be un-
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wieldy and unrealistic. First, no crystal structure is available for perhaps half of all
known drug targets. Second, for most ligand binding sites in the PDB, few if any ligands
are known that could be used as controls. With the above in mind, while the analysis pre-
sented in this section may be regarded as an expected exercise at this point, great care
should be taken in order to prevent misleading extrapolations to be made and misplaced

conclusions to be taken.

Table 6.11 reports the mean ROC AUC and mean ROCEs across the DUD benchmarking
sets. The statistics were based on the 40 DUD targets except for protocols employing
DrugScore®sP, with which only 30 targets could be re-scored. This was due to the limited
handling of proteins containing certain metals and/or prosthetic groups by DrugScore¢sb.
Since a significant variance was found for the mean ROC AUC of these relatively small-
sized samples, 95% confidence intervals were determined using a re-sampling (boot-
strapping) method. In general, the bootstrap-based confidence intervals were narrower
than parametrically estimated confidence intervals, thus facilitating the comparison of

the mean ROC AUC values.

Table 6.11. Statistical results for the docking and scoring protocols using the DUD

data sets, including mean AUCs and median/mean ROCEs.

i i Median/mean ROCE®
Pockingandscorng - MewROC ggppe - Medan/meanROCKD
AD4 FEF®) LE 0.58 0.52-0.61 49/132 4.4/156 43/85 3.5/4.4
LC 0.57 0.53-0.61 2.3/149 35/167 32/76 20/38
AD4 + DrugScoreCsP () 0.55 0.50-0.59 45/97 31/162 26/56 3.0/78
total 0.53 0.49-057 4.9/138 3.1/80 25/51 23/31
AD4 + DSX(9) PAS 0.54 0.50-057 4.8/15.8 3.4/114 24/45 21/31
PCS 0.59 0.56-0.62 3.5/157 32/97 23/59 20/3.0
Vina SF 0.57 0.53-0.61 6.5/22.89 4.7/21.5 34/80 29/39
Vina + DrugScoreCsP () 0.54 0.50-0.59 17.0/38.7 8.0/149 56/9.7 4.5/88
total 0.54 0.51-0.58 16.2/26.5 8.8/16.1 6.7/9.1 3.8/4.3
Vina + DSX( PAS 0.56 0.52-0.60 2.1/16.8 34/93 26/61 20/32
PCS 0.54 0.50-0.58 0.0/10.2 1.0/58 1.0/38 14/23

@ For AutoDock 4 free energy function, both ranking by lowest energy conformation scores (LE) and by largest
cluster conformation scores (LC) are shown. ® Results for DrugScore®P were based on 30 DUD targets, due to
failure in handling metals/co-factors. () For DSX, besides the total score, ranking by per-atom scores (PAS) and
per-contact scores (PCS) are reported. @ A mean AUC of 0.5 represents random performance. () Bootstrap-
based 95% confidence intervals. ® Median and mean ROC Enrichments (ROCE) were determined for four early
false positive rates.

Pearson correlation coefficients and p-values for the comparisons between mean AUCs
are shown in Table 6.12. These correlations only provide a measure of whether two dock-
ing and scoring protocols are likely to offer similar performance against a certain target,

not whether the same active molecules are likely to be recovered. As expected, correla-
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tion was small, in general, arising mostly amongst protocols employing the same docking
engine. For example, while weak correlation is found between AD4 FEF and Vina's Scor-
ing Function (0.52), good correlation is found between AD4 + DrugScore®P and Vina +
DrugScore®sP (0.76), and even higher between AD4 + DSX and Vina + DSX (0.83). This
result indicates that the overall performance of the protocols is more influenced by the

performance of the scoring functions than the performance of docking itself.

Furthermore, limited statistical significance was found for the difference of the means
across the entire DUD data set. While all mean AUC values were above 0.5, meaning that
all tested docking and scoring protocols tended to select active molecules over decoys in
a non-random way across the entire set of targets, this result may also suggest that no
particular protocol significantly outperforms another across a wide range of different
targets. It can be denoted, nonetheless, that AutoDock Vina and its native scoring func-
tion provide the most balanced results in terms of overall performance (mean AUC of
0.57) and early enrichment at 0.5 and 1% false positive rates (median ROCE of 6.5 and
4.7, respectively). Still, as off-putting as these results may seem, they emphasize the im-
portance of a careful and individual evaluation of customized (or tailor-made) protocols
for a given target. They also disclose the importance of gathering enough statistical evi-
dence before drawing any broad conclusions on the applicability of one particular proto-

col to multiple targets.
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Table 6.12. Global performance comparison between pairs of VS protocols, evaluated by the mean ROC AUCs for the DUD data set (2).

AD4 FEF AD4 + AD4 + DSX . Vina + Vina + DSX
DrugScore ¢SD Vina SF DrugScore ¢sD
LE LC total PAS PCS total PAS PCS
AD4 LE 0.95 0.52 0.62 0.58 0.54 0.52 0.29 0.45 0.41 0.23
FEF ¢ 0.026 0.62 0.66 0.61 059 061 0.39 0.50 0.43 0.24
+
AD4 0.100 0.209 0.62 0.50 0.68 0.58 0.76 0.56 0.37 0.48
DrugScorecsd
total 0.011 0.054 0.266 0.86 0.72 0.68 0.42 0.83 0.63 0.46
AD4 +
DSX PAS 0.029 0.128 0.289 0.537 0.73 0.47 0.32 0.67 0.76 0.43
PCS 0.795 0.223 0.212 1.72E-4 3.77E-4 0.60 0.32 0.60 0.60 0.52
Vina SF 0.545 0.845 0.147 0.020 0.118 0.306 0.58 0.75 0.46 0.20
ina +
Vina 0148  0.267 0.854 0.500 0.491 0335 0121 0.56 0.45 0.51
DrugScorecsd
total 0.104 0.318 0.825 0.225 0.627 0.009 0.080 0.995 0.78 0.43
Vina +
DSX PAS 0.343 0.799 0.874 0.087 0.083 0.080 0.647 0.972 0.219 0.45
PCS 0.124 0.318 0.084 0.693 0.926 0.011 0.243 0.248 0.791 0.313
@ The upper triangle comprises the Pearson correlation coefficients and the lower triangle comprises the p-values for paired t-test. High Pearson correlations
(>0.80) are highlighted in bold. Statistically significant (95%) p-values are also in bold.




Generally, re-scoring procedures did not produce improvement to the overall perform-
ance of AutoDock built-in scoring functions. The only exception was the per-contact
scores (PCS) of DSX in the re-rank AutoDock 4 docking results. In fact, the AD4 + DSX-PCS
protocol reaches the highest mean ROC AUC across the entire DUD data set (0.59). In con-
trast, re-scoring with both DrugScoretP and DSX produced significant increases in early
recovery rates of Vina docking results at all levels of false positive rate reported (median
ROCE of 17.0, 8.0, 5.6 and 4.5 for DrugScore®sP, respectively at 0.5, 1, 2 and 5% FPR, and
16.2, 8.8, 6.7 and 3.8 for DSX). Taken together, these results highlight the critical import-
ance of combining multiple docking and scoring protocols in the pursuit of a good bal-
ance between overall and early enrichment, and thus to achieve consensus towards the

best possible outcomes of docking-based virtual screening.

4. Conclusions

In this chapter we tested the application of several docking and scoring protocols to a set
of pharmaceutically relevant targets. Even though the detailed benchmark of docking and
scoring solutions against all target systems of interest falls outside the scope of this pro-
ject, we regard the testing of our docking-based VS protocols against the diversity of tar-
gets deposited in the DUD as a neat academic exercise to support the efforts of protocol
porting onto a large volunteer computing platform. Taken globally, the results of our ana-
lyses show that the protocols are reasonably effective, but highly inconsistent, tending to

perform well on a given system and weakly on the next.

We found no direct association between docking accuracy (or pose fidelity) and per-
formance (or enrichment) in virtual screening. In fact, our results can be grouped in four
possible scenarios (or outcomes): (i) the correct prediction of the cognate ligand binding
mode was followed by acceptable or good enrichment rates; (ii) the cognate ligand was
correctly docked, yet the VS performance was poor; (iii) the cognate ligand was poorly
docked and the enrichment rates were low; and (iv) an acceptable or even good VS per-
formance was not linked to the correct prediction of the cognate ligand binding mode.
While outcomes (i) and (iii) are somewhat expectable, outcome (ii) illustrates failures of
scoring functions to discriminate active from inactive molecules, despite correct ligand
poses being found - a frustrating scenario from the viewpoint of structure-based virtual
screening (SBVS), which reflects the limited ability to correctly predict binding affinites

of docking scoring functions. Cases falling under outcome (iv) are no less inconvenient
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and particularly hard to explain. The statistical evidence on the docking accuracy of AD4
and Vina against the DUD targets is not as high as one would like. Indeed, it would re-
quire additional structural information from multiple target-ligand complexes and ex-
haustive re-docking studies in order to draw more rigorous conclusions. Such discrepan-
cies between docking and ranking accuracies have been previously witnessed and re-
ported [89,419]. The five targets falling under outcome (iv) belong to three different
families and are largely unrelated. Indeed, our results show that these unexpected out-
comes are linked to a misleading evaluation of docking accuracy based on little evidence,
especially when the structures of cognate ligands are scarce and/or very flexible, or from
the favourable scoring of active compounds in alternative (and more accessible) receptor
binding sites. In fact, we believe that the latter scenario represents an additional source
of artificial enrichment, which is clearly linked to the limitations of scoring functions in
current use, and propose the exploitation of complementary measures (such as centre-of-
mass distances between the docked benchmarking set compounds and the respective

cognate X-ray ligands) when evaluating the performance of docking-based VS protocols.

Vina and its native scoring function provided the best overall docking accuracy against a
multitude of targets. While, in general, the use of alternative scoring functions was
proven unprofitable towards the discrimination of the top ligand poses generated by
AD4, the use of protocols based on re-scoring of the predicted complexes with either
DrugScore®P or DSX offered important improvements in terms of the ability to select
active molecules of certain targets. This was particularly visible/relevant in the case of
enzyme targets. It is worth emphasising that, in general, all tested docking and scoring
protocols were able to recognize actives better than random selection. Hence, in this
chapter, a best-performing docking and scoring screening protocol was highlighted for
each target of pharmaceutical interest in the DUD. Nevertheless, it is also worth noting
that more elaborate scoring functions or ranking approaches should be pursuit for par-
ticularly hard-to-handle targets: the androgen receptor (AR), adenosine deaminase
(ADA), the cyclooxygenase enzymes (COX-1 and COX-2), the enoyl ACP reductase (InhA),
the P38 mitogen-activated protein kinase, the human heat shock protein 90 kinase
(HSP90) or the platelet derived growth factor receptor kinase (PDGFrb). For example,
the use of machine learning methods (such as support vector machines, SVMs) trained by
associating sets of individual energy terms retrieved from docking scoring functions with
the known binding affinity of each compound, has shown very promising results in the

case of Mycobacterium tuberculosis InhA and other DUD targets [660].
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Despite no significant statistical differences were found in this study to support the idea
of one particular VS protocol outperforming all others, Vina and its native scoring func-
tion provided the most balanced results in terms of both docking accuracy and VS per-

formance against the set of targets deposited in the DUD.
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Chapter 7

Virtual high-throughput screening
and the discovery of new TTR amy-

loid inhibitors: from hits to leads

“It’'s not how hard you hit. It's how hard you get hit...

and keep moving forward...”

[Randy Pausch, in The Last Lecture]



1. Introduction

Given the undesirable features associated with many of the TTR amyloid inhibitors iden-
tified to date, the screening of new lead compounds with diverse properties is a critical
goal. At this stage, we are particularly interested in identifying potential inhibitors with
adequate solubility profiles, low propensity to aggregate in solution and reduced halide
fraction. In this chapter, we made use of the knowledge collected throughout this PhD
project and engaged in an unprecedented quest to discover novel, functional and safe

TTR amyloid inhibitors.

As disclosed throughout the previous chapters of this thesis, the use of virtual screening
(VS) has clear advantages over high-throughput screening (HTS). Indeed, VS can access
far more chemistry, much faster, and at a much lower cost. The top scoring compounds
from VS can then be tested rapidly, and although only a few of them are likely to actually
bind the target, even a couple of novel hits can be extremely useful. However, while cer-
tain VS techniques, such as docking and scoring, may be useful for the VS of a set of com-
pounds against a single target, large scale campaigns against multiple targets are often
hindered by their high computational complexity or lack of practical methodologies to

accurately estimate binding affinities.

Putting into perspective some of the ideas presented in the introductory chapter on the
importance of drug discovery in the academia, we have been compelled to explore a plat-
form that could foster the involvement of academic researchers in projects to leverage
drug discovery, simultaneously capturing the interest and participation of volunteer citi-
zens and society in general. We have felt fascinated by the concept and the outcomes of
volunteer computing projects such as the Folding@home project [661,662], the
Rosetta@home project [663], or the FightAIDS@home project [664] implemented at the
World Community Grid. Indeed, amongst several other feats, the use of large computer
grids has enabled a deeper understanding of the protein folding problem, aided the de-
sign of therapeutic peptides, and allowed the study of mutational effects on protein-
ligand binding. With the rapidly increasing availability of protein structures, the access to
such computational resources, accompanied by the development of multi-target efficient

VS protocols is becoming even more important.

In this final chapter, we present the results of a large-scale campaign comprising a total
of 22 VS protocols on a tailored library of approximately 2.3 million drug-like compounds
described in Chapter 4. We used the best-performing protocols against TTR (identified by

grey shading across multiple tables in Chapter 5 and summarized in Table 7.1), from the
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ones employing fast searches across the two-dimensional and three-dimensional simi-
larity space, all the way to methods using the knowledge of the TTR receptor structure to
perform complex searches in protein-ligand conformational space. We went further to
implement the most computationally-demanding VS protocols on a large volunteer com-
puting network, which are now available to academic researchers requiring high pro-

cessing capabilities.

Finally, in this chapter the top-scoring compounds retrieved by each VS protocol are ev-
aluated in terms of their molecular properties and compliance with 3D pharmacophore
models devised to differentiate the distinct binding modes observed for some of the
known binders on each TTR binding site. We further reveal the results of a biochemical
assay designed to evaluate the amyloid aggregation inhibitory activity of the selected
virtual hits. Forty-seven commercially available candidates were purchased from their
respective chemical suppliers. Of these, 38 have been experimentally tested for inhibition
of TTR fibril formation. Thirty-one compounds showed inhibitory activity to some extent,
of which five revealed to be good inhibitors, reducing amyloid fibril formation to less

than 40% in vitro at a protein-ligand concentration ratio of 1:2.

2. Materials and methods

Twenty-two virtual screening protocols presented in Chapters 5 and 6 were imple-
mented across different hardware resources in order to carry out multiple virtual screen-
ing campaigns using a screening set of approximately 2.3 million compounds. These 22
best-performing VS protocols are described in Table 7.1, along with the respective type of

hardware that was used to run them.

Table 7.1. Description of the 22 best-performing protocols used for large-scale VS

campaigns against TTR amyloid.

Virtual Screening protocol Ligand or Receptor template Hardware resources
2Dsim CHF Euclidean distance Phenox Macintosh laptop

2Dsim CHF Euclidean distance PCB18 Macintosh laptop

2Dsim CHF Euclidean distance Thyroxine (T4) Macintosh laptop

2Dsim CHF Tanimoto index PCB18 Macintosh laptop

2Dsim PF Tanimoto index PCB18 Macintosh laptop

2Dsim UNITY Tanimoto index Phenox Linux server
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Virtual Screening protocol

Ligand or Receptor template

Hardware resources

2Dsim UNITY Tanimoto index

ROCS Combo

ROCS Combo

ROCS ScaledColor

ROCS Scaled Color

EON ETcombo

LigMatch 2D+3D

2Dsim CHF Euclidean distance

2Dsim CHF Euclidean distance

EON ETcombo

EON ETcombo

FRED Chemgauss3

FRED Chemscore

AD4 + DrugScore¢sp

AD4 + DrugScore¢sp

AD4 + DrugScore¢sp

PCB18

Phenox

PCB18

Phenox

Thyroxine (T4)

Phenox

Multiple templates

DBF47-0H (concatamer)

DBF47-COOH (concatamer)

Phenox-OH (concatamer)

Phenox-COOH (concatamer)

TTR structure 2g9k (PDB id)

TTR structure 2g9k (PDB id)

TTR structure 1bm7 (PDB id)

TTR structure 2g5u (PDB id)

TTR structure 1bm7opt

Linux server

Parallel Virtual Machine

Parallel Virtual Machine

Parallel Virtual Machine

Parallel Virtual Machine

Parallel Virtual Machine

HPC cluster

Macintosh laptop

Macintosh laptop

Parallel Virtual Machine

Parallel Virtual Machine

Parallel Virtual Machine

Parallel Virtual Machine

Volunteer computing platform

Volunteer computing platform

Volunteer computing platform

2.1. Computer resources

In this subsection, emphasis is given to the setting up of hardware resources used to
carry out several computational screening campaigns against TTR amyloid. Subsection
2.1.5, in particular, provides a detailed description of the strongest efforts in terms of the

implementation of new resources employed throughout this project.

2.1.1. Virtual screening on a Macintosh laptop

All virtual screening runs employing ChemAxon'’s two-dimensional fingerprints and simi-
larity searches were performed on a Macintosh laptop (with an Intel Core 2 Duo CPU at

2.4 GHz) running Mac OS X Version 10.5.8 (Leopard). Each run took approximately 2.5
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hours to complete on a single CPU core, which illustrates not only the swiftness of 2D

similarity searches but also the ever-increasing power of computer hardware.

2.1.2. Virtual screening on a Linux server

All UNITY 2D-searches were performed on a Linux server running OpenSUSE 10.1 where
the SYBYL package was installed. The searches were run with for 4 CPU cores and com-

pleted in approximately 30 minutes (per VS protocol).

2.1.3. Virtual screening on a Parallel Virtual Machine

ROCS, EON and FRED calculations can be efficiently split up over computer networks tak-
ing advantage of a so-called parallel virtual machine (or PVM). PVM is a freely available
library for running processes on more than one processor on one or more machines (the
source code is freely available at:

http://www.csm.ornl.gov/pvm/pvm home.html).

PVM jobs involve some network traffic, sending multi-conformer molecules generated by
OMEGA from the master node computer to the slaves and retrieving results back to the
master. The single ROCS slave jobs are relatively fast compared to the network I/0 time,
so for scaling beyond 32 CPUs, additional considerations need to be taken during the set-

ting up of the jobs.

A PVM was established in our lab involving one Linux server with 8 Xeon CPU cores and
two quad-core machines, thus enrolling a total of 16 CPU cores on 3 computers.
Openeye’s toolkit was used to convert regular multi-conformer MOL2 files to rotor-
offset-compressed OEB files, which significantly reduced the I/0 on the master and al-
lowed ROCS, EON and FRED to “scale” to a larger number of CPUs. An additional variable
for PVM scaling (pvmpass) was used to modify the number of molecules sent to each

slave. The default setting was changed from 5 to 7 based on basic scalability tests.

2.1.4. Virtual screening on HPC clusters

All LigMatch calculations were run on the SeARCH cluster at University of Minho, in
Portugal. The runs used up to 24 CPU cores (Intel Xeon E5130) across 6 computing
nodes, employing a task-farming scheme (often referred to as false parallel). Overall, each
run took approximately 25 days to complete. The high CPU consumption is linked with
the relatively low speed of the program GHB8, part of LigMatch’s technology, which ap-
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proximately aligns a modest number of 130 conformers per minute on a single CPU core

(compared to the 600-800 conformers per second attained by ROCS).

All top-1000 virtual hits retrieved by each VS protocol were docked to TTR receptors
(1bm?7, 2g5u and 1bm7opt) using AutoDock 4 on the Milipeia cluster at University of
Coimbra, in Portugal. The runs used up to 16 CPU cores (AMD Opteron 275) across 4
computing nodes (Sun Fire X4100), employing a task-farming scheme. Each top-1000
series took approximately 70 hours to dock, and a total of approximately 1500 hours of

computation were used.

2.1.5. Virtual screening on a Volunteer Computing platform

Ibercivis is a volunteer computing platform launched in Spain with the goal of serving the
computing needs of multiple scientific research groups in the Iberian Peninsula and
bringing citizens worldwide to actively collaborate in the Science making process

(www.ibercivis.net, accessed 01/09/2011). Currently, the platform hosts ten scientific

projects coming from different countries and in various fields of research. It makes use of
the Berkeley Open Infrastructure for Network Computing (BOINC) middleware
(http://boinc.berkeley.edu/), whose framework operates under the client-server archi-
tecture. A client program runs on the volunteer's computer under client-predefined set-
tings. The local computer contacts with any of the project servers it is registered with to
retrieve a processing job (workunit). Once the processing of the downloaded workunit is
concluded, the client contacts the project server to upload the result and requests a new

job from the same or an alternative server.

During this PhD project, our docking-based VS protocols were ported onto Ibercivis
under the subproject (codename) AMILOIDE. Figure 7.1 shows an adaption of the general
BOINC scheme, illustrating how the protein-ligand docking and re-scoring pipelines inte-
grate in the architecture underlying Ibercivis. At the project back-end, the entire work-
flow is managed by a set of wrapper scripts and daemons, allowing researchers to easily
choose which protocols they wish to assign to a particular job queue. Given the computa-
tional costs associated to each task, only the protein-ligand docking procedure is exe-
cuted at the participant's computer. The preparation of receptor and ligand structures,
including the computation of 3D affinity maps for all possible ligand atom types, is done
in the server complex. Equally, the re-scoring pipeline takes place back in the server once
results are retrieved. This pipeline is only available to researchers holding valid licenses

for DrugScore€sP and/or DSX.
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Figure 7.1. Integration of the AMILOIDE project in the BOINC system architecture
underlying Ibercivis. Objects in green are part of the hosted project, whereas objects in
blue are part of the software suite comprising the BOINC system. At the participant's level, a
BOINC work unit is received containing one receptor structure with respective 3D maps of
atomic affinity potentials and one ligand from the virtual library of compounds. Then,
AutoDock 4 and/or AutoDock Vina perform docking. Back at the BOINC server, results re-

trieved are validated and submitted to re-scoring with DrugScore¢sP and/or DSX.

The implementation of the AMILOIDE subproject motivated the expansion of the Iber-
civis platform from Spain, where it was originally conceived under the name Zivis, to
Portuguese territory. Ibercivis has been developed by researchers at the Institute of Bio-
computation and Physics of Complex Systems (BIFI), in Spain. The expansion to Portugal
was carried out by our group at the Centre for Neuroscience and Cell Biology (CNC), in

Portugal, and comprised two branches of development. One branch involved the expan-

Chapter 7 265



sion of the Ibercivis backbone, providing a new scheduler (i.e. the program that coordi-
nates the work that is issued, making the best use of the available citizen computers) and
a Portuguese version of the corporate website, where citizens can retrieve information
about the projects, subscribe to the network and consult diverse statistics. The second
branch involved the expansion of the Ibercivis application development, with the training
of a local support group and installation of a server for application hosting. Two dedi-
cated blade servers were installed at the Foundation for National Scientific Computing
(FCCN), in Portugal, featuring 4 Xeon E7430 CPUs and 16 GB of RAM. Currently, the total

storage capacity available to the scientific applications is 10 terabytes.

The new BOINC system architecture underlying Ibercivis features two main hosts, one in
Portugal and one in Spain, that contain the feeder and the scheduler module, for sending
tasks to BOINC clients and for registering new ones. The servers also contain the scien-
tific subprojects' directories, hosting either the applications' signatures or the applica-
tions themselves. Auxiliary hosts contain additional functionalities: a few hosts in BIFI
(Zaragoza, Spain) and CSIC (Madrid, Spain) provide BOINC database redundancy; a host
at Rediris (Madrid, Spain) provides redirection proxies and auxiliary services, such as
database-purge and file deletion control. Templates and code for generating BOINC
workunits reside in research group hosts or in common facility hosts. The templates and
the transitioner daemon to generate results reside in the main host in Spain, and a re-
dundancy database is to be installed in the main host in Portugal. A common facility that
receives results and runs validation and assimilation is provided by CETA-CIEMAT (Mad-
rid, Spain) and ibercivis04 at FCCN (Lisbon, Portugal). Academic groups associated with
each subproject can volunteer new BOINC hosts, or they can use generic ones provided
by CETA-CIEMAT, FCCN and BIFI. Finally, a load balancer allows redirects towards alter-

nate hosts, in case of failure of upload/download services.

2.2. Biological evaluation

Under the aim of the discovery of novel TTR stabilisers and the validation of our VS pro-
tocols, we implemented an in vitro turbidity assay wherein partial unfolding and aggrega-
tion of recombinant TTR is promoted by acidification. Samples of purified WT-TTR (at a
concentration of 3.6 uM) were mixed with each of the compounds under evaluation (7.2
uM), incubated for 30 minutes at 25 °C, and then acidified to pH 4.4 to induce amyloido-
genesis. The samples were then incubated at 37 °C for 72 hours and turbidity measure-
ments were taken at 350 and 400 nm using a UV-visible spectrometer, and at 0, 24, 48
and 72 hours time points. Positive and negative control assays were performed in the

presenc of flufenamic acid and in the absence of ligand, respectively.
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3. Results and discussion

In this section, we present and discuss the most relevant outcomes of several VS cam-
paigns aimed at identifying new TTR amyloid inhibitors. Twenty-two VS protocols based
on 2D similarity, 3D (shape and chemical) similarity, 3D electrostatic similarity searches,
and docking and scoring, were exploited under four distinct computational envi-
ronments, from laptop and desktop computers, through a parallel virtual machine and an

HPC cluster, all the way to a volunteer computing plaform.

Of all types of methods, 2D similarity-search based methods were by far the fastest, tak-
ing only a couple of hours to screen the entire library of 2.3 million compounds on a lap-
top computer. 3D similarity search protocols based on OpenEye’s software were also
reasonably fast, taking approximately 2.6 hours to screen the library on 16 CPU cores
(enrolled on the PVM). LigMatch calculations were far more demanding, taking approxi-

mately one month (overall) to complete on an HPC cluster, using up to 24 CPU cores.

As expected, the most demanding calculations were those emplyoing VS protocols based
on AutoDock 4, which prompted us to use the volunteer computing platform Ibercivis.
Under the scope of AMILOIDE, we carried out three independent virtual screening cam-
paigns using the three TTR structures identified in Chapter 2 (1bm?7, 2g5u and 1bm?7opt)
and the AD4 + DrugScore®P protocol. Overall, the three campaigns took approximately
15 months to complete, consumed approximately 8 million hours of BOINC time, which
in turn corresponds to approximately 3.3 million hours of (continuous) CPU time. It
should be noted that this number is almost twice the estimated CPU time for the three
campaigns, which is due to the fact that not all participants' computers use 64-bit CPUs.
In fact, we verified that, on average, 32-bit CPUs take nearly three times as much as 64-
bit CPUs to complete a docking run with AutoDock 4. AMILOIDE workunits were pro-
cessed across almost 70,000 different CPU cores, running on an average of 10,000 CPU
cores per day. Approximately 95 million BOINC credits were granted to Ibercivis partici-
pants throughout the course of the first 1.5 years of activity. Of all results retrieved and
validated, 94% corresponded to successfully accomplished docking runs. All miss-
ing/aborted workunits were re-submitted until the full completion of the three screening

campaigns.

Inopportunely, however, none of the three VS campaigns running on Ibercivis was com-
pleted before the analyses presented in this chapter were performed. Therefore, of the
22 executed VS protocols, only 19 could be included in the following subsections at this

stage.
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3.1. Inspection of virtual screening hits

All top-1000 VS hits retrived by each VS protocol were compiled in SDF files and tabled in
linked spreadshits, where, for every entry retrieved by each protocol, all available scores
and similarity measures were stored. These spreadshits were studied in order to identify
trends and consensus amongst the different VS protocols. Throughout the following sub-
sections we present some of the main insights derived from the inspection of the top-

1000 and the top-100 VS hits.

3.1.1. Molecular properties

Figure 7.2 summarizes predicted physicochemical properties for the top-100 hits re-
trieved by each of the best-performing VS protocols. More detailed information is given
in Table F.1 of the Appendix. It is worth noting that despite the use of template queries
holding heavy halogen atoms, the median values for molecular weight across all sets of
hits is within the range of lead-likeness, typically defined between 150 and 440 Daltons.
This may relate back to the reduced halide fraction of our tailored screening set, trans-
lated into low halide fractions amongst the top hits (null median halide fraction for most
VS protocols). However, there are at least two noticeable exceptions to this trend (VS
protocols 2Dsim CHF Tanimoto PCB18 and 2Dsim UNITY Tanimoto PCB18; see Figure 7.2)
and a few outliers amongst the VS hits with near-maximum halide fraction allowance
(e.g. ROCS Scaled Color Ty see Figure 7.2), which shows that the chosen VS protocols can
themselves suggest molecules devoid of undesirable halogens. Equally, the predicted oc-
tanol/water partition coefficients (XlogP) and solubility profiles of the selected hits are
by far more favourable than those of the known actives. Eighteen out of the 26 known
actives (69%) fall in the insoluble, poorly soluble or modera<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>