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Abstract

Oxygen saturation (Sp0,) is a key parameter for assessing a patient condition, mainly in
critical care and anaesthesiology. Its fusion with other physiological measurements, such
as pulse wave analysis or arterial blood pressure, may lead to new ways of detecting

cardiovascular diseases.

The current work aims to develop a stand-alone pulse oximeter and a
photoplethysmographic (PPG) system with measurements of the contact force and height
of the finger relatively to the heart. This module, together with other measurements (e.g.
electrocardiogram and pulse wave velocity), will be part of a multichannel platform that

will be taken to clinical environment.

The project comprises the design of hardware for signal conditioning, as well as the
development of firmware to implement in a microcontroller unit (the Arduino™). The
latter is used to control the system, acquire data and compute SpO,, heart rate (HR),

contact force and height.

Currently, the system is able to retrieve a stable PPG waveform and compute the Sp0O, in
real time through the PPG signal peaks and valleys. Signals acquired in a healthy subject
lead to a value of Sp0O, = 91.5 + 1.1%. Moreover, the subject arm and forearm
orientation is retrieved by the use of accelerometers and used to compute the offset of the
finger relatively to the heart. Contact force between the finger and the probe is also

measured.

Keywords: pulse oximetry, photoplethysmography, contact force, accelerometry,

Arduino™,
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Resumo

A saturacdo de oxigénio (Sp0,) € um parametro indispensavel para avaliar a condi¢éo de
um paciente, principalmente em cuidados intensivos e em anestesiologia. A sua fuséo
com outras medidas fisioldgicas, como a analise da onda de pulso ou a presséo arterial,

podera levar a novas formas de detectar doencas cardiovasculares.

O presente trabalho pretende desenvolver um oximetro de pulso automatico e um sistema
de fotopletismografia (PPG) com medigéo da forca de contacto e da altura do dedo em
relacio ao coracdo. Este moddulo, juntamente com outras medidas (e.g.
electrocardiograma e velocidade da onda de pulso), fard parte de uma plataforma

multicanal que seré levada para ambiente clinico.

O projecto inclui o design do hardware para condicionamento de sinal, bem como o
desenvolvimento do firmware a implementar num microcontrolador (o Arduino™). Este
é usado para controlar o sistema, adquirir dados e calcular a Sp0,, o ritmo cardiaco (HR),

a forga de contacto e a altura.

Actualmente, o sistema é capaz de adquirir uma onda de PPG estavel e de calcular a
Sp0, em tempo real através dos picos e vales do sinal de PPG. Sinais adquiridos em
sujeitos saudaveis levaram a um valor de Sp0, = 91.5 + 1.1%. Além disso, a orientagdo
do brago e antebraco do sujeito é estimada através do uso de acelerdmetros e usada para
calcular o desnivel do dedo em rela¢do ao coracdo. A forca de contacto entre o dedo e a

ponta de prova é igualmente medida.

Palavras-chave: oximetria de pulso, fotopletismografia, forca de contacto, acelerometria,

Arduino™,
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Chapter 1

Introduction

The first chapter of this thesis aims to introduce this work, explaining the motivations
behind it and the goals it purposes to achieve. Afterwards, the work developed previously
under this field is referred. Subsequently, the team of Electronics and Instrumentation

Group is presented. Finally, the thesis structure is outlined.
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1.1 Motivation

The lack of oxygen to the brain or heart is the ultimate reason for a patient death.
Therefore, monitoring of oxygen supply has always been a focused field of investigation.
This motivated the search for methods for non-invasive and continuous monitoring of
oxygen saturation (Sp0,), which was achieved with the development of pulse oximetry
[1]. Consequently, the technique has spread rapidly from the labs to the hospitals.
Currently, it is a standard practice in many clinical fields such as anaesthesia, intensive
care and neonatal care units, along with its use in many diagnostic tests. Nowadays, it is
also gaining importance in home care. Developments in microprocessors, as well as in
light-emitting diodes (LEDs) and photodiodes, now with improved accuracy and reduced

size and cost, were a strong driving force to the expansion of pulse oximetry [2].

This work emerged with the request of cardiologists from the Hospitais da Universidade
de Coimbra (H.U.C.) for a way of non-invasively measure the arterial blood pressure
(ABP) over a large period of time (e.g. 24 hours) using a photoplethysmographic (PPG)
system. This has been a studied field, especially in an ongoing investigation of the
Massachusetts Institute of Technology (MIT) [3-7] but also in other groups [8-10] and

moreover, there have been registered patents under this theme [11].

Moreover, a new project called “New Methodology for Hemodynamic Assessment.
Clinical Validation” is about to start at the Electronics and Instrumentation Group (GEI)
and aims to be a new paradigm in hemodynamic assessment. It will consist of a
multichannel systems that incorporate some conventional sensors (including pulse
oximetry and photoplethysmography) allied with pioneer sensors developed at the group
[12-15].

1.2 Main contributions

The interest in the multichannel platform defined a new goal for this work: to develop a
stand-alone photoplethysmographic system and pulse oximeter that would be
incorporated in a multichannel system and that could, in the future, be used to measure
the ABP. A commercial probe will be used at finger site, but all the signal condition and

acquisition tasks are to be done during the present work. The system will also comprise
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the contact force between the finger and the probe and the finger height measurements.
As a data acquisition system and control unit, an Arduino™ will be used.

The current work is focused mainly in the hardware. Though, some algorithms for oxygen
saturation and heart rate computation will be developed. Those algorithms are to be
implemented in a microcontroller unit (MCU) for real time assessment. Nevertheless,
data is to be sent to MATLAB for saving and eventually further analysis.

In the future, the system is expected to be implemented in the multichannel system that is

being developed and will be taken to clinical environment for hemodynamic studies.

1.3 Previous work

The development of a stand-alone pulse oximeter has been an addressed issue at GEI.
Namely, two projects were done in this area: “Projecto de um Sistema Digital de Medida
para Aplicacdes Biomédicas” [16] for the Licence degree in Engineering Physics of Rita
Pereira in 1995 and “Development of a Stand-Alone Pulse Oximeter” for the MSc
degrees in Biomedical Engineering of Ana Rita Domingues [17] and Sérgio Brés [18] in
20009.

These works provided knowledge about the principles of operation of pulse oximetry.
However, implementation in a MCU was not fully accomplished. Besides, the developed
system was not in a phase of being capable of making Sp0, calculations. So, the present
work aims to acquire all the data with a microprocessor unit (MCU) and reach results that

may allow for its use in clinical validation, provided the controller is programmed.

1.4 Team

The project was developed at the Electronics and Instrumentation Group (GEI), which is
part of the Instrumentation Centre (Cl), at the Physics Department of the University of
Coimbra. The main scientific interests of the group are the hemodynamics, bioimpedance
and eye-tracking. In the particular case of hemodynamics, pulse wave characterization,
augmentation index, pulse wave velocity, pulse oximetry and blood perfusion in
microcirculation are the main focus. Piezoelectric, optical and accelerometric sensors are
currently employed for these measurements. Table 1.1 shows the team members

associated with this work.
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Table 1.1 — Team members of the current work.

Contribution
Team Members )
Main area of research

PhD Professor Carlos Correia
Scientific and Technical advisors
PhD Jodo Cardoso

Scientific and technical supervisor

FhD student Vania Almeida Study of hemodynamic parameters

MSc student Pedro Santos Pulse Oximetry

1.5 Contents by chapter

The present thesis summarises all the work done during this year. It is divided in six

chapters.

In Chapter 2 — Theoretical Background, the fundamentals for the understanding of
photoplethysmography (PPG) technique are described. The mathematical formulas that
allow for the Sp0, computation are also derived. Finally, a summary of contact force and

height measurement is also done.

Chapter 3 — Hardware presents an overview of the developed hardware, including the
PPG circuit, as well as the accelerometric and force sensor module. Special interest will

be given to the signal conditioning techniques employed.

In Chapter 4 — Firmware, synchronisation between the LEDs switching and the signal
acquisition is described. Besides, the control tasks of some parts of the conditioning
circuit are also presented. Finally, computations used for Sp0,, heart rate (HR), height

and contact force measurements are also referred.

Chapter 5 — Results presents the results of the complete system, from details of
intermediate steps of signal conditioning to the final SpO, computation. Results from the
accelerometry module as well as the contact force (and its calibration process) are also

shown.

Chapter 6 — Final Remarks summarises the work developed and the results achieved.

Possible approaches to proceed with this work are also presented.



Chapter 2

Theoretical Background

In this chapter, the theoretical fundamentals needed for understanding the goal and
applications of this work are overviewed. First, a physiological introduction will be done,
presenting the human body need for oxygen and how it is carried from the atmosphere to
the cells. Special focus will then be given to haemoglobin, the protein responsible for
oxygen transport in blood stream. An understanding of light attenuation in the tissues,
mainly due to haemoglobin, will lead to the concept of pulse oximetry and consequently,
to oxygen saturation measurements. These physical concepts and their mathematical
derivation are also described. Finally, a general idea of the force sensor and working

principles of accelerometers will be given.
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2.1 Physiological introduction

The human being has a permanent need for oxygen (0,), as it is the ultimate need for cell
functioning. As an extremely complex but yet well adapted “machine”, the human body
has developed a way of effectively taking 0, from its environment and deliver it to the
cells, where it is used in metabolic reactions. In the following three subsections, these

concepts will be revised.

2.1.1 Oxygen needs

Living organisms require energy for cellular movements (e.g. muscle contraction), active
transport of molecules and ions and synthesis of biomolecules. As chemotrophus, the
human being obtains energy from the oxidation of electron donors, such as carbohydrates,
lipids and proteins.

Metabolic paths start with glycolysis. Then, if 0, is available, i.e. in aerobic conditions,
pyruvate oxidation, the citric acid cycle (Krebs cycle) and respiratory chain (electron
transport chain) occur, being carbon dioxide (C0,) and water the end products. When no
0, is available, i.e. in anaerobic conditions, the pyruvate is directly metabolized to lactate
or ethanol. Both processes transform part of the energy into adenosine triphosphate
(ATP), the cell common energy currency. However, aerobic paths produce 18 times more
ATP, and that is why 0, is so essential for metabolism. Without it, life as we know it
would not be possible [19-21].

2.1.2 Respiration

For cellular respiration to be carried out, a constant 0, concentration must be supplied to
the tissues and the produced C0O, must be eliminated. This is the role of respiratory and

circulatory systems.

Due to lung contraction and expansion, the air flows through the respiratory tree to the

alveoli and from there to the outside.

At the alveoli, the 0, partial pressure of the gas mixture is higher than the partial pressure
in blood of alveolar capillaries. This way, 0, tends to diffuse across the alveolar

membrane and dissolve into the blood. On the contrary, the CO, partial pressure is higher
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in blood, which means that CO, tends to cross the membrane from the blood side to the

alveoli.

This is the same force that drives gas exchanges between blood and cells. Since the cells
consume 0, the capillary partial pressure is higher than the tissue partial pressure. This
forces 0, to diffuse from the blood to the tissue. Conversely, the CO, partial pressure
inside the cells is increased due to metabolism. Therefore, CO, diffuses from the tissue
into the capillaries [22, 23].

2.1.3 Transport of gases in blood — the haemoglobin

Since 0, cannot diffuse in tissues over distances greater than a few millimetres, it is
carried from the alveoli to the tissues in the blood stream. However, the solubility of 0,
in the plasma is very low. Therefore, a method other than plasma dissolution must be
used to carry it. That method is an oxygen-binding protein contained within the red blood

cells — the haemoglobin [23].

The role of haemoglobin is to bind oxygen in the lungs, where the 0, partial pressure is
p0, = 95 mm Hg, and release it in the tissues, where p0O, = 35 mm Hg. A high-affinity
protein would bind 0, efficiently in the lungs, but would not release a significant quantity
in the tissues. In contrast, a low-affinity protein would release the 0, in the tissues, but

would not bind a considerable quantity in the lungs [19].

However, haemoglobin has a way of dealing with this. It has two states. Initially it is in
the low-affinity state (called T state) but as more 0, molecules are bound, it changes to
the high-affinity conformation (called R state). This way, haemoglobin has a sigmoid
curve for oxygen binding, also called oxyhaemoglobin dissociation curve (shown in
Figure 2.1). The first O, molecule binds weakly to haemoglobin, because it is in the T
sate. This binding leads to conformational changes (T — R) that are communicated to the
adjacent subunits, making the next binding easier. This process repeats and when the last

(forth) molecule binds, haemoglobin is already in the high-affinity state [19, 20].

Different species of haemoglobin exist in human blood. The most important ones are
oxyhaemoglobin (Hb0O,) and reduced haemoglobin (Hb). The first one is the
haemoglobin saturated with oxygen, while the second one is the haemoglobin without

bound oxygen.
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Figure 2.1 — Oxyhaemoglobin dissociation curve. Conformational changes allow the haemoglobin to
bind O, in the lungs where partial pressure is high (red bar) and release it in the tissues, where partial
pressure is low (blue bar). Adapted from [20].

These are called the functional haemoglobin species, since they are the ones that fulfil the
haemoglobin main purpose — oxygenation of tissues. Functional oxygen saturation

(functional S0,) is a measure used in clinical practice and is defined by equation (2.1).

b0, CHbO
—  x100=—2—x100
Hb + Hb02 Cyp + CHbOZ (21)

Functional SO, =
where HbO, and Hb are the amount of oxyhaemoglobin and reduced haemoglobin,

respectively and cy;0, and cy), are their concentrations.

In addition to the functional haemoglobin, other species are present in blood, such as
methaemoglobin  (MetHb), which has iron in Fe3* oxidized state, and
carboxyhaemoglobin (COHb), that results from binding of carbon monoxide. These two

forms are called dysfunctional haemoglobin because they do not bind 0, [24].

2.2 Measuring oxygen saturation

Oxygen saturation is a critical physiological parameter. It has been essential for many
clinical applications, such as during anaesthesia, surgery, critical care, recovery or
hypoxemia screening. It is also very used in neonatal care. Its most important clinical

uses are present in [25].
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There have been several methods for monitoring arterial oxygen content. The first one
used the Clark electrode either in vitro or in vivo (implemented in a catheter).
Spectrophotometry was also used, allowing for measurements of light absorbed for each
wavelength, which is dependent of the molecular extinction coefficient. A known device
is the CO-oximeter, a specialized spectrophotometer with four wavelengths to analyse
haemoglobin concentrations. As these are analytical methods, they provide information
about a determined instant, with no real time follow-up. Some in vivo and non-invasive
techniques were based on transcutaneous measurements where the skin surface was
heated to increase blood flow and then the 0, content was measured with a Clark
electrode. Moreover, chemical sensors based on fluorescent dyes and optical fibres were
also employed [26].

Based on spectrophotometry, other techniques arose, such as the in vivo optical
oximeters. These make use of light to measure the concentration of different types of
haemoglobin, in particular Hb and HbO,. Pulse oximeters make use of the pulsatile
nature of arterial blood to measure haemoglobin concentrations. By measuring the light
absorbance as blood pulsates, it is now possible to measure the oxygen saturation in
arterial blood without affecting the measurements with the absorbance of venous blood
[24].

2.2.1 Optical properties of the tissues

The Beer-Lambert’s law describes the attenuation of light travelling through an absorbing
medium. It states that the light intensity decreases exponentially with the distance, as
equation (2.2) expresses. The equation refers only to the transmission and absorption of a

single wavelength and does not account for reflections or scattering.

I = I,e sMed 2.2)

where [ is the intensity for a given optical path length d, I, is the incident intensity, (1)
is the extinction coefficient or absorptivity of the medium for a particular wavelength and

c is the concentration of the absorbing substance.

The absorbance (A) is defined as the product of the extinction coefficient by the
concentration and the optical path length, according to equation (2.3).
Iy

A=1n (7) — ¢(Ded 23)
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When more than one substance is present, each absorber contributes to the total
absorbance, according to equation (2.4).

n

Ay = es(Neydy + £, (MWepdy + -+ nDend = ) ai(Aeidy -

i=1

where ¢g;(4) is the extinction coefficient of substance i, c; is its concentration and d; is
the optical path length trough that substance.

With this, concentrations of n different substances can be measured provided that n
different wavelengths are used and their extinction coefficients and optical paths length
are known [24].

For the choice of the emitting wavelengths, some considerations must be taken into
account. Namely, the tissue must be reasonably transparent and the absorption must be
different for both of them, i.e. the extinction coefficients must be different. Besides, the

production and detection of those wavelengths must be easy to accomplish [27].

The absorption spectra of biological tissue from the far ultraviolet (UV) to the middle
infrared (IR) is depicted in Figure 2.2. Water is the main absorber in tissues for UV light
(up to 100 nm) and also for IR light (from 1 pm). Since it is the major constituent of all
tissues, wavelengths in this range would easily be attenuated and would not reach the
photodetector. In the middle UV range (from 200 to 300 nm), some proteins and DNA
also absorb a significant amount of light while in the middle IR (from 5 um) that is
accomplished by collagen. In the visible and near IR, water absorption is minimal and

haemoglobin along with melanin are the main absorbers.

108 T T T T T T

Protein

102 Melanin

Collagen

] Ol Hb
HbO,
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0.1 0.3 1 3 10
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Figure 2.2 — Absorption spectra of biological tissues from 0.1 to 10 um [28].
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Therefore, measurements must be done with visible or near infrared light. Moreover,
means for both emitting and detecting these wavelengths are commercially available,
with light emitting diodes (LEDs) and silicon photodiodes [27].

Another requirement is the difference between the extinction coefficients for
haemoglobin species. Significant differences are found in the region from 600 nm to 1
pum for the functional haemoglobin species. The extinction coefficients for this range and
for the 4 major haemoglobin species (Hb, HbO,, MetHb and COHb) are depicted in
Figure 2.3.
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Figure 2.3 — Extinction coefficients of the four most common species of haemoglobin at the wavelengths
of interest on pulse oximetry. Adapted from [26].

As it can be seen, reduced haemoglobin is more absorbed in the red light region than
oxyhaemoglobin. At 805 nm, there is a point where both species have the same extinction
coefficients — the isobestic point. Thereafter, the oxyhaemoglobin is more absorbed than
the reduced haemoglobin. Regarding carboxyhaemoglobin, it has almost the same
extinction coefficient of oxyhaemoglobin at the 660 nm, reason why this method is not
good for assessing levels of carboxyhaemoglobin. The same happens with
methaemoglobin that has an extinction coefficient similar to the one of reduced
haemoglobin [24].

Considering all this, manufactures use a wavelength below the isobestic point (typically
660 nm) and one above (905 nm or 940 nm) [29]. The commercial probe used in this
system has a 660 nm and a 905 nm wavelength and their extinction coefficients are
presented in Table 2.1.
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Table 2.1 —Molar extinction coefficients for Hb, HbO,, MetHb and COHb at A = 660 nm and A = 905 nm
[30].

Extinction coefficient (L mmol™ cm™)
Wavelength (nm)

Hb HbO, COHb MetHb
660 0.81 0.08 0.06 0.81
905 0.21 0.30 0.01 0.63

2.2.2 Photoplethysmography

Plethysmography is a technique used to measure volume changes of a given object or, in
clinical practice, in an organ. Those c