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Abstract 

Oxygen saturation (    ) is a key parameter for assessing a patient condition, mainly in 

critical care and anaesthesiology. Its fusion with other physiological measurements, such 

as pulse wave analysis or arterial blood pressure, may lead to new ways of detecting 

cardiovascular diseases. 

The current work aims to develop a stand-alone pulse oximeter and a 

photoplethysmographic (PPG) system with measurements of the contact force and height 

of the finger relatively to the heart. This module, together with other measurements (e.g. 

electrocardiogram and pulse wave velocity), will be part of a multichannel platform that 

will be taken to clinical environment. 

The project comprises the design of hardware for signal conditioning, as well as the 

development of firmware to implement in a microcontroller unit (the Arduino™). The 

latter is used to control the system, acquire data and compute     , heart rate (  ), 

contact force and height. 

Currently, the system is able to retrieve a stable PPG waveform and compute the      in 

real time through the PPG signal peaks and valleys. Signals acquired in a healthy subject 

lead to a value of                . Moreover, the subject arm and forearm 

orientation is retrieved by the use of accelerometers and used to compute the offset of the 

finger relatively to the heart. Contact force between the finger and the probe is also 

measured. 

 

 

Keywords: pulse oximetry, photoplethysmography, contact force, accelerometry, 

Arduino™. 
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Resumo 

A saturação de oxigénio (    ) é um parâmetro indispensável para avaliar a condição de 

um paciente, principalmente em cuidados intensivos e em anestesiologia. A sua fusão 

com outras medidas fisiológicas, como a análise da onda de pulso ou a pressão arterial, 

poderá levar a novas formas de detectar doenças cardiovasculares. 

O presente trabalho pretende desenvolver um oxímetro de pulso automático e um sistema 

de fotopletismografia (PPG) com medição da força de contacto e da altura do dedo em 

relação ao coração. Este módulo, juntamente com outras medidas (e.g. 

electrocardiograma e velocidade da onda de pulso), fará parte de uma plataforma 

multicanal que será levada para ambiente clínico. 

O projecto inclui o design do hardware para condicionamento de sinal, bem como o 

desenvolvimento do firmware a implementar num microcontrolador (o Arduino™). Este 

é usado para controlar o sistema, adquirir dados e calcular a     , o ritmo cardíaco (  ), 

a força de contacto e a altura. 

Actualmente, o sistema é capaz de adquirir uma onda de PPG estável e de calcular a 

     em tempo real através dos picos e vales do sinal de PPG. Sinais adquiridos em 

sujeitos saudáveis levaram a um valor de                . Além disso, a orientação 

do braço e antebraço do sujeito é estimada através do uso de acelerómetros e usada para 

calcular o desnível do dedo em relação ao coração. A força de contacto entre o dedo e a 

ponta de prova é igualmente medida. 

 

 

Palavras-chave: oximetria de pulso, fotopletismografia, força de contacto, acelerometria, 

Arduino™. 
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Chapter 1  

Introduction 

The first chapter of this thesis aims to introduce this work, explaining the motivations 

behind it and the goals it purposes to achieve. Afterwards, the work developed previously 

under this field is referred. Subsequently, the team of Electronics and Instrumentation 

Group is presented. Finally, the thesis structure is outlined. 
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1.1 Motivation 

The lack of oxygen to the brain or heart is the ultimate reason for a patient death. 

Therefore, monitoring of oxygen supply has always been a focused field of investigation. 

This motivated the search for methods for non-invasive and continuous monitoring of 

oxygen saturation (    ), which was achieved with the development of pulse oximetry 

[1]. Consequently, the technique has spread rapidly from the labs to the hospitals. 

Currently, it is a standard practice in many clinical fields such as anaesthesia, intensive 

care and neonatal care units, along with its use in many diagnostic tests. Nowadays, it is 

also gaining importance in home care. Developments in microprocessors, as well as in 

light-emitting diodes (LEDs) and photodiodes, now with improved accuracy and reduced 

size and cost, were a strong driving force to the expansion of pulse oximetry [2]. 

This work emerged with the request of cardiologists from the Hospitais da Universidade 

de Coimbra (H.U.C.) for a way of non-invasively measure the arterial blood pressure 

(ABP) over a large period of time (e.g. 24 hours) using a photoplethysmographic (PPG) 

system. This has been a studied field, especially in an ongoing investigation of the 

Massachusetts Institute of Technology (MIT) [3-7] but also in other groups [8-10] and 

moreover, there have been registered patents under this theme [11]. 

Moreover, a new project called ―New Methodology for Hemodynamic Assessment. 

Clinical Validation‖ is about to start at the Electronics and Instrumentation Group (GEI) 

and aims to be a new paradigm in hemodynamic assessment. It will consist of a 

multichannel systems that incorporate some conventional sensors (including pulse 

oximetry and photoplethysmography) allied with pioneer sensors developed at the group 

[12-15]. 

1.2 Main contributions 

The interest in the multichannel platform defined a new goal for this work: to develop a 

stand-alone photoplethysmographic system and pulse oximeter that would be 

incorporated in a multichannel system and that could, in the future, be used to measure 

the ABP. A commercial probe will be used at finger site, but all the signal condition and 

acquisition tasks are to be done during the present work. The system will also comprise 
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the contact force between the finger and the probe and the finger height measurements. 

As a data acquisition system and control unit, an Arduino™ will be used. 

The current work is focused mainly in the hardware. Though, some algorithms for oxygen 

saturation and heart rate computation will be developed. Those algorithms are to be 

implemented in a microcontroller unit (MCU) for real time assessment. Nevertheless, 

data is to be sent to MATLAB for saving and eventually further analysis. 

In the future, the system is expected to be implemented in the multichannel system that is 

being developed and will be taken to clinical environment for hemodynamic studies. 

1.3 Previous work 

The development of a stand-alone pulse oximeter has been an addressed issue at GEI. 

Namely, two projects were done in this area: ―Projecto de um Sistema Digital de Medida 

para Aplicações Biomédicas‖ [16] for the Licence degree in Engineering Physics of Rita 

Pereira in 1995 and ―Development of a Stand-Alone Pulse Oximeter‖ for the MSc 

degrees in Biomedical Engineering of Ana Rita Domingues [17] and Sérgio Brás [18] in 

2009. 

These works provided knowledge about the principles of operation of pulse oximetry. 

However, implementation in a MCU was not fully accomplished. Besides, the developed 

system was not in a phase of being capable of making      calculations. So, the present 

work aims to acquire all the data with a microprocessor unit (MCU) and reach results that 

may allow for its use in clinical validation, provided the controller is programmed. 

1.4 Team 

The project was developed at the Electronics and Instrumentation Group (GEI), which is 

part of the Instrumentation Centre (CI), at the Physics Department of the University of 

Coimbra. The main scientific interests of the group are the hemodynamics, bioimpedance 

and eye-tracking. In the particular case of hemodynamics, pulse wave characterization, 

augmentation index, pulse wave velocity, pulse oximetry and blood perfusion in 

microcirculation are the main focus. Piezoelectric, optical and accelerometric sensors are 

currently employed for these measurements. Table 1.1 shows the team members 

associated with this work. 
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Table 1.1 – Team members of the current work. 

Team Members 
Contribution 

Main area of research 

PhD Professor Carlos Correia 
Scientific and Technical advisors 

PhD João Cardoso 

  

PhD student Vânia Almeida 
Scientific and technical supervisor 

Study of hemodynamic parameters 

  

MSc student Pedro Santos Pulse Oximetry 

1.5 Contents by chapter 

The present thesis summarises all the work done during this year. It is divided in six 

chapters. 

In Chapter 2 – Theoretical Background, the fundamentals for the understanding of 

photoplethysmography (PPG) technique are described. The mathematical formulas that 

allow for the      computation are also derived. Finally, a summary of contact force and 

height measurement is also done. 

Chapter 3 – Hardware presents an overview of the developed hardware, including the 

PPG circuit, as well as the accelerometric and force sensor module. Special interest will 

be given to the signal conditioning techniques employed. 

In Chapter 4 – Firmware, synchronisation between the LEDs switching and the signal 

acquisition is described. Besides, the control tasks of some parts of the conditioning 

circuit are also presented. Finally, computations used for     , heart rate (  ), height 

and contact force measurements are also referred. 

Chapter 5 – Results presents the results of the complete system, from details of 

intermediate steps of signal conditioning to the final      computation. Results from the 

accelerometry module as well as the contact force (and its calibration process) are also 

shown. 

Chapter 6 – Final Remarks summarises the work developed and the results achieved. 

Possible approaches to proceed with this work are also presented. 
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Chapter 2  

Theoretical Background 

In this chapter, the theoretical fundamentals needed for understanding the goal and 

applications of this work are overviewed. First, a physiological introduction will be done, 

presenting the human body need for oxygen and how it is carried from the atmosphere to 

the cells. Special focus will then be given to haemoglobin, the protein responsible for 

oxygen transport in blood stream. An understanding of light attenuation in the tissues, 

mainly due to haemoglobin, will lead to the concept of pulse oximetry and consequently, 

to oxygen saturation measurements. These physical concepts and their mathematical 

derivation are also described. Finally, a general idea of the force sensor and working 

principles of accelerometers will be given. 
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2.1 Physiological introduction 

The human being has a permanent need for oxygen     , as it is the ultimate need for cell 

functioning. As an extremely complex but yet well adapted ―machine‖, the human body 

has developed a way of effectively taking    from its environment and deliver it to the 

cells, where it is used in metabolic reactions. In the following three subsections, these 

concepts will be revised. 

2.1.1 Oxygen needs 

Living organisms require energy for cellular movements (e.g. muscle contraction), active 

transport of molecules and ions and synthesis of biomolecules. As chemotrophus, the 

human being obtains energy from the oxidation of electron donors, such as carbohydrates, 

lipids and proteins. 

Metabolic paths start with glycolysis. Then, if    is available, i.e. in aerobic conditions, 

pyruvate oxidation, the citric acid cycle (Krebs cycle) and respiratory chain (electron 

transport chain) occur, being carbon dioxide (   ) and water the end products. When no 

   is available, i.e. in anaerobic conditions, the pyruvate is directly metabolized to lactate 

or ethanol. Both processes transform part of the energy into adenosine triphosphate 

(ATP), the cell common energy currency. However, aerobic paths produce 18 times more 

ATP, and that is why    is so essential for metabolism. Without it, life as we know it 

would not be possible [19-21]. 

2.1.2 Respiration 

For cellular respiration to be carried out, a constant    concentration must be supplied to 

the tissues and the produced     must be eliminated. This is the role of respiratory and 

circulatory systems. 

Due to lung contraction and expansion, the air flows through the respiratory tree to the 

alveoli and from there to the outside. 

At the alveoli, the    partial pressure of the gas mixture is higher than the partial pressure 

in blood of alveolar capillaries. This way,    tends to diffuse across the alveolar 

membrane and dissolve into the blood. On the contrary, the     partial pressure is higher 
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in blood, which means that     tends to cross the membrane from the blood side to the 

alveoli. 

This is the same force that drives gas exchanges between blood and cells. Since the cells 

consume   , the capillary partial pressure is higher than the tissue partial pressure. This 

forces    to diffuse from the blood to the tissue. Conversely, the     partial pressure 

inside the cells is increased due to metabolism. Therefore,     diffuses from the tissue 

into the capillaries [22, 23]. 

2.1.3 Transport of gases in blood – the haemoglobin 

Since    cannot diffuse in tissues over distances greater than a few millimetres, it is 

carried from the alveoli to the tissues in the blood stream. However, the solubility of    

in the plasma is very low. Therefore, a method other than plasma dissolution must be 

used to carry it. That method is an oxygen-binding protein contained within the red blood 

cells – the haemoglobin [23]. 

The role of haemoglobin is to bind oxygen in the lungs, where the    partial pressure is 

            , and release it in the tissues, where             . A high-affinity 

protein would bind    efficiently in the lungs, but would not release a significant quantity 

in the tissues. In contrast, a low-affinity protein would release the    in the tissues, but 

would not bind a considerable quantity in the lungs [19]. 

However, haemoglobin has a way of dealing with this. It has two states. Initially it is in 

the low-affinity state (called T state) but as more    molecules are bound, it changes to 

the high-affinity conformation (called R state). This way, haemoglobin has a sigmoid 

curve for oxygen binding, also called oxyhaemoglobin dissociation curve (shown in 

Figure 2.1). The first    molecule binds weakly to haemoglobin, because it is in the T 

sate. This binding leads to conformational changes (T → R) that are communicated to the 

adjacent subunits, making the next binding easier. This process repeats and when the last 

(forth) molecule binds, haemoglobin is already in the high-affinity state [19, 20]. 

Different species of haemoglobin exist in human blood. The most important ones are 

oxyhaemoglobin (    ) and reduced haemoglobin (  ). The first one is the 

haemoglobin saturated with oxygen, while the second one is the haemoglobin without 

bound oxygen. 
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Figure 2.1 – Oxyhaemoglobin dissociation curve. Conformational changes allow the haemoglobin to 

bind O2 in the lungs where partial pressure is high (red bar) and release it in the tissues, where partial 

pressure is low (blue bar). Adapted from [20]. 

These are called the functional haemoglobin species, since they are the ones that fulfil the 

haemoglobin main purpose – oxygenation of tissues. Functional oxygen saturation 

(functional    ) is a measure used in clinical practice and is defined by equation (2.1). 

 
               

    
       

     
     

         
     

(2.1) 

where      and    are the amount of oxyhaemoglobin and reduced haemoglobin, 

respectively and       and     are their concentrations. 

In addition to the functional haemoglobin, other species are present in blood, such as 

methaemoglobin (     ), which has iron in      oxidized state, and 

carboxyhaemoglobin (    ), that results from binding of carbon monoxide. These two 

forms are called dysfunctional haemoglobin because they do not bind    [24]. 

2.2 Measuring oxygen saturation 

Oxygen saturation is a critical physiological parameter. It has been essential for many 

clinical applications, such as during anaesthesia, surgery, critical care, recovery or 

hypoxemia screening. It is also very used in neonatal care. Its most important clinical 

uses are present in [25].  
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There have been several methods for monitoring arterial oxygen content. The first one 

used the Clark electrode either in vitro or in vivo (implemented in a catheter). 

Spectrophotometry was also used, allowing for measurements of light absorbed for each 

wavelength, which is dependent of the molecular extinction coefficient. A known device 

is the CO-oximeter, a specialized spectrophotometer with four wavelengths to analyse 

haemoglobin concentrations. As these are analytical methods, they provide information 

about a determined instant, with no real time follow-up. Some in vivo and non-invasive 

techniques were based on transcutaneous measurements where the skin surface was 

heated to increase blood flow and then the    content was measured with a Clark 

electrode. Moreover, chemical sensors based on fluorescent dyes and optical fibres were 

also employed [26]. 

Based on spectrophotometry, other techniques arose, such as the in vivo optical 

oximeters. These make use of light to measure the concentration of different types of 

haemoglobin, in particular    and     . Pulse oximeters make use of the pulsatile 

nature of arterial blood to measure haemoglobin concentrations. By measuring the light 

absorbance as blood pulsates, it is now possible to measure the oxygen saturation in 

arterial blood without affecting the measurements with the absorbance of venous blood 

[24]. 

2.2.1 Optical properties of the tissues 

The Beer-Lambert‘s law describes the attenuation of light travelling through an absorbing 

medium. It states that the light intensity decreases exponentially with the distance, as 

equation (2.2) expresses. The equation refers only to the transmission and absorption of a 

single wavelength and does not account for reflections or scattering. 

      
        (2.2) 

where   is the intensity for a given optical path length  ,    is the incident intensity,      

is the extinction coefficient or absorptivity of the medium for a particular wavelength and 

  is the concentration of the absorbing substance. 

The absorbance (A) is defined as the product of the extinction coefficient by the 

concentration and the optical path length, according to equation (2.3). 

      
  
 
         (2.3) 
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When more than one substance is present, each absorber contributes to the total 

absorbance, according to equation (2.4). 

 
                                             

 

   

 
(2.4) 

where       is the extinction coefficient of substance  ,    is its concentration and    is 

the optical path length trough that substance. 

With this, concentrations of   different substances can be measured provided that   

different wavelengths are used and their extinction coefficients and optical paths length 

are known [24]. 

For the choice of the emitting wavelengths, some considerations must be taken into 

account. Namely, the tissue must be reasonably transparent and the absorption must be 

different for both of them, i.e. the extinction coefficients must be different. Besides, the 

production and detection of those wavelengths must be easy to accomplish [27]. 

The absorption spectra of biological tissue from the far ultraviolet (UV) to the middle 

infrared (IR) is depicted in Figure 2.2. Water is the main absorber in tissues for UV light 

(up to 100 nm) and also for IR light (from 1 µm). Since it is the major constituent of all 

tissues, wavelengths in this range would easily be attenuated and would not reach the 

photodetector. In the middle UV range (from 200 to 300 nm), some proteins and DNA 

also absorb a significant amount of light while in the middle IR (from 5 µm) that is 

accomplished by collagen. In the visible and near IR, water absorption is minimal and 

haemoglobin along with melanin are the main absorbers. 

 

Figure 2.2 – Absorption spectra of biological tissues from 0.1 to 10 µm [28]. 
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Therefore, measurements must be done with visible or near infrared light. Moreover, 

means for both emitting and detecting these wavelengths are commercially available, 

with light emitting diodes (LEDs) and silicon photodiodes [27]. 

Another requirement is the difference between the extinction coefficients for 

haemoglobin species. Significant differences are found in the region from 600 nm to 1 

µm for the functional haemoglobin species. The extinction coefficients for this range and 

for the 4 major haemoglobin species (  ,     ,       and     ) are depicted in 

Figure 2.3. 

 

Figure 2.3 – Extinction coefficients of the four most common species of haemoglobin at the wavelengths 

of interest on pulse oximetry. Adapted from [26]. 

As it can be seen, reduced haemoglobin is more absorbed in the red light region than 

oxyhaemoglobin. At 805 nm, there is a point where both species have the same extinction 

coefficients – the isobestic point. Thereafter, the oxyhaemoglobin is more absorbed than 

the reduced haemoglobin. Regarding carboxyhaemoglobin, it has almost the same 

extinction coefficient of oxyhaemoglobin at the 660 nm, reason why this method is not 

good for assessing levels of carboxyhaemoglobin. The same happens with 

methaemoglobin that has an extinction coefficient similar to the one of reduced 

haemoglobin [24]. 

Considering all this, manufactures use a wavelength below the isobestic point (typically 

660 nm) and one above (905 nm or 940 nm) [29]. The commercial probe used in this 

system has a 660 nm and a 905 nm wavelength and their extinction coefficients are 

presented in Table 2.1. 
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Table 2.1 –Molar extinction coefficients for Hb, HbO2, MetHb and COHb at λ = 660 nm and λ = 905 nm 

[30]. 

Wavelength (nm) 
Extinction coefficient (L mmol

-1
 cm

-1
) 

                   

660 0.81 0.08 0.06 0.81 

905 0.21 0.30 0.01 0.63 

2.2.2 Photoplethysmography 

Plethysmography is a technique used to measure volume changes of a given object or, in 

clinical practice, in an organ. Those changes are usually caused by inflows and outflows 

of gases or liquids when the organ shows an elastic behaviour. That is the case of the 

thorax during breathing, the bladder in micturition or the heart and arteries during the 

cardiac cycle. Mechanical, impedance and photoelectric techniques are commonly used in 

various physiological applications. The latter technique – photoplethysmography (PPG) – 

has particular interest for blood oxygenation measurements. It consists of a light source 

that is targeted to the tissue and a light detector that receives the transmitted or reflected 

light [31]. 

When blood pressure waves are generated by the heart during the cardiac cycle, they 

travel along the arteries, causing a local increase followed by a decrease of blood volume 

in tissues. The heart cycle is composed of two phases: diastole and systole. During the 

diastole, the cardiac chambers are relaxed and blood flows inside the heart, which causes 

a decrease in the blood vessels pressure. Afterwards, the heart contracts, ejecting the 

blood to the arteries, causing an increase in blood vessels pressure [23]. 

Those pressure changes and the consequent blood flow in the arteries cause a variation of 

blood volume that alters the amount of light that reaches the detector [31]. That variation 

is depicted in Figure 2.4. There is a strong constant light attenuation that is due to non-

pulsatile arterial blood, venous blood and other tissues, such as muscle, bone, skin or fat. 

That is usually called the DC component. Over that, there is a variable attenuation, which 

is function of the cardiac cycle. More precisely, it is function of the optical path length 

changes. In the systolic phase the pressure is maximal and so is the amount of blood. 

Therefore, the transmitted light is minimal (IL). Conversely, at the end of the diastole, the 

pressure is minimal and consequently, the blood volume is minimal too. Thus, the 

transmitted light is maximal (IH). 



 

 

2.2 – Measuring oxygen saturation 13 

 

 

 

Figure 2.4 – Absorbed and transmitted light in pulse oximetry. A constant amount of attenuation is due 

to the muscle, bone, skin and other tissue plus the venous and the non-pulsatile arterial blood. The 

varying light attenuation is due to the arterial pulsatile blood: during the systole the light transmitted is 

minimal (IL) while at the end of the diastole it is maximal (IH). Adapted from [24]. 

The varying component is called AC. Although it seems large in the figure, it is only      

1-2% of the whole signal amplitude. PPs signal has also some low frequency oscillations 

due to physiological responses. Sympathetic outflow and local auto regulation impose 

changes in capillary density, while respiration induces changes in central venous pressure 

and consequently in venous blood volume. Moreover, temperature, metabolic state 

changes or drug effects may cause blood flow changes [32, 33]. 

PPG is useful to non-invasively study a set of physiological conditions. In particular, it is 

useful in three major fields: clinical physiological monitoring, vascular assessment and 

autonomic function study. Blood saturation, heart rate, blood pressure and cardiac output 

measurements, as well as arterial disease and arterial compliance assessment are also 

possible with this technique. In addition, vasomotor function, thermoregulation, blood 

pressure and heart rate variability can be studied [33]. 

2.2.3 Pulse oximetry 

Pulse oximetry is a technique that combines the basic principles of PPG and 

spectrophotometry. Its name derives from the fact that pulse oximeters make use of the 

pulsatile nature of arterial blood. By measuring the light absorbance as blood pulsates, it 

is possible to determine haemoglobin concentrations and thus estimate the oxygen 

saturation. Pulse oximeters usually make the assumption that blood has only      and 

   and therefore, make use of only two wavelengths (red and infrared). This introduces 
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an error in the measurements. However, since those two totalize more than 97% of all 

haemoglobin species, the error is small [24]. 

As referred above, during the systole the received light intensity is minimal (  ) because 

the optical path length is maximal (    ). Conversely, at the end of the diastole the 

received light is maximal (  ) because the optical path length is minimal (    ). 

Grouping venous blood and all tissue (such as bone, muscle and skin) and representing 

them by       ,     and    , the following expressions for the diastolic (equation (2.5)) 

and systolic (equation (2.6)) transmitted light are obtained. 

 
      

                                             (2.5) 

 
      

                                             (2.6) 

Assuming      as        , the systolic attenuation can be expressed as a function of 

the diastolic intensity (  ) and the change in optical path length during the cardiac cycle 

(  ), as equation (2.7) expresses. 

 
      

                             (2.7) 

Light attenuation during the cardiac cycle is schematized in Figure 2.5. 

 

Figure 2.5 – Beer Lambert’s law in pulse oximetry. The incident light is attenuated by the DC 

component (muscle, bone, skin and other tissue plus the venous and non-pulsatile arterial blood) over 

an optical path length of dDC. At the end of the diastole, light intensity is IH and the optical path length 

through the arteries is dmin; during the systole, light intensity decreases to IL and the optical path length 

through the arteries increases to dmax. On air, light absorption is negligible. Adapted from [24]. 
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This manipulation is useful because ‗raw‘ signals cannot be directly compared since the 

LEDs emit light with different intensities. Besides, the DC components have different 

attenuations for both wavelengths. Moreover, the optical path length differs from patient 

to patient and with probe positioning. Therefore, it is useful to ―normalize‖ light 

intensities, making a ratio between the systolic light intensity (  ) and the diastolic (  ) 

one, as equation (2.8) demonstrates. 

   
  
  

                               (2.8) 

This way, the value is independent of LEDs intensity, photodetector spectral response and 

tissue and non-pulsatile blood attenuation. 

Now, to compare the attenuation for both wavelengths, a ratio between the ratio R of red 

and infrared light intensity is done. That ratio is called the Ratio of Ratios (   ) and is 

computed according to equation (2.9). 

     
  

   
 

   
  
 

  
  

   
  
  

  
   

 (2.9) 

In practical terms, to compute    , the maximum and minimum of light intensity 

reaching the photodiode must be measured. Therefore, this method for oxygen saturation 

measurement is called the peak and valley method. Other methods can be used, some of 

which are described in [24], although this is the simplest and the most commonly used. 

Recalling equation (2.8) one can derive the theoretical meaning of the      

 
    

                                       

                                          
 

(2.10) 

From equation (2.1), we can rewrite     and       as: 

                        
(2.11) 

 
                     (2.12) 
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Thus, assuming that the optical path length is equal for both wavelengths, and 

substituting equations (2.11) and (2.12) on equation (2.10), the following expression is 

achieved for    : 

 
    

                              

                                 
 (2.13) 

Rewriting equation (2.13), one can compute the indirect measure of oxygen saturation 

(    ) based on the calculated    : 

 
     

                    

                                           
 

(2.14) 

Taking the values from Table 2.1, a theoretical curve can be obtained. That curve is 

shown in Figure 2.6. 

The Beer-Lambert‘s law considered takes into account only the absorption and 

transmittance of light. Moreover, it assumes a single path between the LEDs and the 

photodiode. However, red and near IR light is scattered in human tissue and that leads to 

an ensemble of incident photon paths. The scatter is consequence of discontinuity in the 

index of refraction at the cell-plasma interface. Besides, the scattering effects are also 

dependent on red blood cell concentration. As a consequence of scattering, some photons 

deviate from the straight path. Therefore, some are absorbed in the tissue and some 

escape without being detected. 

 

Figure 2.6 – Theoretical curve for pulse oximetry: oxygen saturation (SpO2) vs. Ratio of Ratios (ROS). 

Curve changes with different wavelengths: 660nm and 905 nm were used. 
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Due to this, the Beer-Lambert‘s law should make use of the effective mean path length for 

each wavelength (which is not equal for both) [34]. Some scattering models have been 

proposed for whole blood interaction. Though, commercial pulse oximeters compensate 

this by an empirical calibration in studies conducted on healthy subjects. Values of     

are computed and blood samples are taken and analysed with the CO-oximeter in order to 

measure the      [34, 35]. 

2.3 Height measurement 

The initial purpose of the work was to develop a photoplethysmographic system for 

arterial blood pressure assessment (ABP). The technique is based in the oscillometric 

measurement method. It consists in relating the PPG waveform amplitude with the 

transmural pressure (   ).     is the difference between the pressures in the external and 

internal sides of the arteries, as equation (2.15) shows. 

 
                    (2.15) 

where      is the proximal aortic pressure,   is the blood density,   is the acceleration of 

gravity,   is the height offset between the measured site and the proximal aorta and      

is the pressure created on the outer surface of the blood vessel, as it is the case of a cuff or 

PPG probe. 

It is known that the PPG signal amplitude varies with    , being the greatest amplitude 

reached when     is zero, i.e. when the internal and external pressures compensate each 

other. This is the point when the artery is most compliant and that leads to an increased 

signal amplitude [3]. Therefore, initially, hydrostatic pressure was an important variable 

to be measured. Despite the change in the course of the work, it was decided that height 

still was a variable of interest, since it affects PPG signal amplitude and base level. 

2.3.1 Module architecture 

The developed system has an acceleration module composed by two accelerometers: one 

on the arm and other on the forearm, near the wrist. Their orientation is depicted in Figure 

2.7. These accelerometers are used to retrieve the height of the finger relatively to the 

heart. In a posterior stage, if the system is to be used to measure the ABP, this 

information will be indispensable, since it strongly influences ABP measurements [3]. 
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Figure 2.7 – Accelerometers positioning in the arm and forearm and their axes orientation. The arm 

and forearm lengths are indicated, as well as the increase in height due to the orientation of these 

segments (h2 and h1, respectively). The distance between the heart and the shoulder is also shown. All 

this lead to the wanted variable: the total height between the finger and the heart. 

Moreover, the acceleration measurement may also be very useful to handle with motion 

in the PPG probe. The accelerometer output is a powerful tool that can be used in 

algorithms for dealing with motion artifacts [36-39]. 

To facilitate the apparatus, an approximation has been made: the orientation of the hand 

and the finger is assumed to be the same as of the forearm. If not, one would have to 

place an accelerometer on the hand and, in the limit, on each phalange of the finger in 

which the PPG probe is used. 

However, as these are segments of small length, one may ignore that they can have 

different orientations and assign the length of the hand and finger to the forearm. 

Assuming 19 cm as the average length of the hand (from the wrist to the end of the 

middle finger) [40], one can estimate a maximum error of ± 0.38 m in the height of the 

finger relatively to the heart. This is the limit situation in which the forearm is vertical 

and the hand makes an angle of 180º with it (e.g. if the forearm is pointing upwards and 

the hand and finger is pointing downwards). However, as this position is very unnatural, 

this error tends to be less than those 0.38 m. 
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2.3.2 Working principles 

In this work, MicroElectroMechanical System (MEMS) accelerometers were used. Their 

major advantage is system integration, since no more external components are needed. 

All the required apparatus is integrated in the same PCB and all the signal conditioning is 

internally done [41]. 

MEMS accelerometers can have different transducer types: electrostatic, with a movable 

mass attached to springs; electromagnetic, with a magnet attached to a flexible beam; and 

piezoelectric, with a mass placed over a piezoelectric cantilever [42]. The most used type 

is the electrostatic, composed of movable proof masses attached to springs and sensing 

plates. This is the case of the accelerometer used in this work [43]. 

The proof mass has some ―fingers‖ that are placed between the sensing plates. Each pair 

of sensing plates with a proof mass in the middle can be seen as a capacitor, as shown in 

Figure 2.8. The principle behind these devices is that the movement of a proof mass can 

be measured as a change in capacitance. Whenever there is a gravitational field or a linear 

acceleration of the sensor package, the proof mass moves to one side. Consequently, there 

is a change of capacitance due to the change in distance between the capacitor plates. 

That change is very small, but the association of all the capacitors of the accelerometer 

makes the value possible to be measured by the internal circuitry [44]. 

 

Figure 2.8 – MEMS Accelerometer: movable and fixed plates make capacitors; acceleration produces a 

change in distance between plates and thus changes the capacitance. Adapted from [44]. 
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2.3.3 Height computing 

An accelerometer can measure the local gravitational field through the projection of the 

gravity field on each axis. Thus, it is possible to compute the angle the arm is tilted from 

the accelerometer measurement [43, 45]. Knowing the angle and measuring the arm and 

forearm lengths, one can determine the height of the PPG sensor relatively to the heart. 

The used accelerometers have 3-axis. However, conceptually it would be possible to 

retrieve results with just one axis. This would be enough provided that the axis is 

perfectly aligned with the axis of the arm and forearm, as it is the case of the y-axis. The 

measured output is related with the angle θ between the arm and the gravity (vertical 

direction). Thus, a perfectly vertical orientation pointing downwards gives an output of    

-1, a horizontal orientation results in an output of 0 and a vertical direction pointing 

upwards produces an output of +1. 

Figure 2.9 schematizes the orientation of the y-axis. Applying basic trigonometry, 

equation (2.16) can be derived. 

 
         

(2.16) 

where    is the output of the y-axis of the accelerometer and θ is the arm orientation 

relatively to the vertical (gravity field). 

In a more convenient way, one can express the orientation of the arm in terms of the 

accelerometer output: 

              (2.17) 

 

Figure 2.9 – Representation of the arm orientation (θ) related to the earth gravity (g) and the 

accelerometer y-axis output (y). Acceleration projection is also shown (ay). 
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However, this equation has a significant drawback. Due to the derivative of the cosine 

function, sensor sensitivity is not constant. In fact, the sensor has low sensitivity when the 

axis is close to the vertical line (either pointing upwards or downwards). When the axis is 

perpendicular to the gravity field, the sensitivity is maximal [46, 47]. 

Therefore, 2- or 3- axis accelerometers are used for better accuracy and sensitivity. In 3-

axis accelerometers, the three Euler angles are used: pitch (ρ) is defined as the angle 

between the x-axis and the ground; roll (φ) is the angle between the y-axis and ground 

and theta (θ) is the angle between z-axis and ground. In our case, the required angle is 

roll, since it gives the tilt of the subject arm (y-axis of the accelerometer). That angle can 

be computed by equation (2.18) [48]. 

 
         

  

   
    

 
  

(2.18) 

where   ,    and    are the accelerometer output of the three axis. 

This new expression allows for a constant sensitivity over a 360º rotation [43, 45]. 

Therefore, it will be used for the height measurements with the accelerometry module. 

The height h is then computed using the vertical projection of the angle φ over a known 

distance L (the arm or forearm length), as equation (2.19) demonstrates. 

            (2.19) 

2.4 Contact force measurements 

Again, the external applied force measurement is an inheritance of the initial purpose of 

the system: to measure ABP. Though, as this variable also influences the PPG signal 

(recall section 2.3) it persisted in the system, which was equipped with a way of 

measuring externally applied force at the finger tip. In order to retrieve that force, a Force 

Sensing Resistor
®
 (FSR

®
) from Interlink Electronics was used [49]. This section presents 

its working principles. 

FSR
®
 are made by a thick film of a polymer which responds to an increase in applied 

force with a decrease in resistance [50]. The sensor is schematised in Figure 2.10. The 

sensing film is made up of both conductive and non-conductive nanoparticles suspended 

on a matrix. 
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Figure 2.10 – FSR® construction: the sensor has a layer with electrodes and a layer with a 

semiconductor material that touch each other when force is applied over the sensor [50]. 

When a force is applied over the sensing area, the particles touch the conducting 

electrodes and the overall resistance is altered [51]. The advantages of this type of sensors 

are related with their reduced size, low cost and good mechanical resistance. However, 

they have relative low accuracy, with ± 5% to ± 25% of full scale error, depending on the 

consistency of the measurement and actuation systems as well as the use of part 

calibration [50]. Therefore, this sensor is used just to test the concept and a better sensor 

will have to be included in the future for better accuracy. 

The FSR
®
 does not have a linear response to the applied force. Its response is plotted in 

Figure 2.11. A turn-on threshold (which varies from sensor to sensor) is visible for low 

forces, with the resistance decreasing from greater than 1 MΩ to about 30 kΩ. Before that 

threshold, the response does not follow any known tendency. Afterwards, it 

approximately follows an inverse power law (1/F). For higher forces, the response 

deviates from this tendency and eventually saturates. Each individual FSR
®
 may not have 

the same behaviour and to reduce this error, a calibration is recommended for each 

individual sensor [50]. This calibration will be detailed later on (section 6.2.7). 

  

Figure 2.11 – FSR® resistance vs. force for the range of the sensor [50]. 
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The FSR
®
, as its name suggests, is a resistor that varies its value according to the force 

that is being exerted on it. Therefore, conditioning circuitry is needed to convert that 

resistance into voltage, the typical measured parameter. That conditioning will be referred 

in the following chapter (section 3.3). 
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Chapter 3  

Hardware 

As previously referred, the developed system has three main units: the pulse oximeter 

sensor and its signal conditioning circuitry to retrieve pulsatile blood signal; the 

accelerometers to compute the finger probe height relatively to the heart; and a force 

sensor to measure the external force applied by the finger probe. Each of these units has 

some functional components related to transduction, amplification and acquisition of 

each variable of interest (light intensity, force and height). In addition, there is a 

microprocessor responsible for the tasks of controlling the other components and 

acquiring all the data. Besides, it has to compute some physiological parameters – 

oxygen saturation and heart rate. Although the computation of these parameters might 

seem a firmware task, part of the work is done by hardware, namely the signal extrema 

identification. 
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3.1 Pulse oximeter 

The probe used in this work is a commercial model (S0076B-L from BCI) composed of 

two light emitting diodes (LEDs) – one red (R) (        ) and another infrared (IR) 

(        ) – and a photodiode. The reason to choose a commercial device rather than 

developing one is related to the proved quality of the standard commercial sensors as well 

as the time saving that this choice allowed. 

As the commercial sensor has no more hardware than the two LEDs and one 

photodetector, some circuitry needs to be implemented. Namely, the LEDs have to be 

correctly polarised and the photodiode signal must be conditioned and acquired. For that, 

the system has the following 5 modules: LED driver, photodetection, sample-and-hold, 

signal conditioning and peak and valley detector. Each of these modules will be described 

in the following sections. 

3.1.1 LED driver module 

Pulse oximetry employs two wavelengths at which the tissue (in this case, the finger) is 

illuminated. To do so, and since there is only one photodetector, two LEDs are used is 

opposite phase, i.e. when the red one is ON, the infrared is OFF and vice-versa. The 

LEDs bright is controlled by their forward current. That control can be done in one of two 

ways. The first one consists in supplying a fixed voltage across the LED. According to 

the LED voltage-current curve, this produces a determined current and thus, light power. 

However, this has a major drawback: little variations in voltage cause major variations in 

the LED current, causing significant LED power changes. Therefore, another way is used 

to regulate the LED: a constant current source. By doing this, forward current variations 

do not occur and consequently, the LED intensity is constant [52]. To achieve constant 

current, a LED driver was developed in a previous work in the Electronics and 

Instrumentation Group (GEI) [16] and used afterwards in [17, 18]. The same circuit was 

employed in this work and it is shown in Figure 3.1. 

LED_power1 and LED_power2 are the logic inputs generated by the microcontroller unit 

(MCU) and used to define which LED is ON and which is OFF. To polarize just one of 

the LED, these signals are opposite, i.e. if LED_power1 is high (5V), then LED_power2 

is low (0V) and vice-versa.  
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Figure 3.1 – Driver to polarize red and infrared LEDs alternately with controlled current. LED_power1 

and LED_power2 define which LED is ON and which is OFF at each time. Adapted from [16]. 

Although the circuit seems to be complex, it can be easily explained. Diodes D1 and D2 

are used to fix a 1.4V potential at Q3 emitter. Thus, Q3 base voltage is 2.1V and when 

LED_power2 is high, a positive base current is established. Therefore, Q3 is in the linear 

region and draws current from the collector. 

By drawing that current, a positive current appears at Q1 base and it becomes active. 

Consequently, current is drawn from     to Q5 collector through the red LED. 

Since Q5 base voltage is 1.4V, it is active and in linear mode and an emitter current is 

established. Assuming the emitter voltage as 0.7V (    is 0.7V) and emitter resistor as 

       , from equation (3.1) it follows that the emitter current is 4.4 mA. 

    
  
  

 (3.1) 

As the common-emitter current gain (β) is high (typically above 100), one can ignore 

base current and assume that collector current is also 4.4 mA. This means that through the 

red LED are passing 4.4 mA.  
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Since LED_power2 is high, LED_power1 is low (0V). That means that Q4 is cutoff. And 

so are Q2 and Q6, because no current flows at their bases, since those currents could only 

flow to Q4 collector and from Q4 emitter, respectively. Therefore, when digital pin 

LED_power2 is high and LED_power1 is low just one of the LEDs is driven (the red one 

in the case). 

When half of the period of operation is reached, LED_power1 and LED_power2 switch. 

That induces Q1, Q3 and Q5 into cutoff mode and Q2, Q4 and Q6 into active operation. 

All the analysis is analogous and from equation (3.1) it can be computed that 3.5 mA 

flow through the infrared LED. 

This driver could be simplified but since it was already developed, no alterations were 

made. In an upcoming version, this module can be improved. 

3.1.2 Photodetection module 

The photodetection module has two main components: the photodiode to sense the light 

that crosses the finger, and a transimpedance amplifier, to convert the photodiode current 

into voltage. The photodiode is encased in the finger probe in the opposite side of the 

LEDs while all the circuitry is in the printed circuit board (PCB). 

3.1.2.1 Photodiode 

The central sensing element of the system is a silicon photodiode. Other different devices 

could be used, such as photocells, phototransistors or integrated circuit sensors. However, 

for reasons related with sensitivity, linearity, speed, size and cost, photodiodes are the 

most used for this applications [24]. 

Photodiodes can be operated in either photoconductive or photovoltaic mode (Figure 3.2). 

Photoconductive mode is reverse biased (i.e. the anode is negative and the cathode 

positive) and is used for applications where speed is required. However, this 

configuration introduces noise by adding a dark current. The photovoltaic mode on the 

other hand, is used for very low light level applications since there is no dark current (and 

thus the noise is reduced) [53]. 
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Figure 3.2 – Photodiode operation modes: photoconductive (left) and photovoltaic (right). Adapted 

from [53]. 

As it can be seen from the current-voltage characteristics of a photodiode (Figure 3.3), 

when     and no light reaches the photodiode (curve 1 ), no current is produced. When 

light reaches the photodiode, a photocurrent    directly proportional to incident light is 

produced [54]. Conversely, when a voltage exists between the photodiode terminals, even 

with no incident light, a current exists. The current magnitude increases with increasing 

light, but in a non-linear manner. Therefore, as this application requires no fast 

measurements but high sensitivity, the photovoltaic mode was used. Moreover, this 

configuration presents much less variations with temperature [53]. 

 

Figure 3.3 – Current-voltage characteristics for a typical photodiode: curve 1  shows the response for 

no incident light; light intensity is increasing from curve 2  to 3 . Adapted from [54]. 

Some practical considerations must be taken into account when choosing the photodiode. 

Namely, the photodiode capacitance should be as low as possible, since it affects 

bandwidth and noise. Moreover, photodiode active area must be small because 

photodiode capacitance is proportional to it. Besides, diode shunt resistance must be high 

to prevent noise, voltage offset and drift that are amplified [55]. As a commercial probe 
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was used in this work, it is already adapted to this purpose. However, it is important to 

remember these features when choosing these components, since they will lead to an 

increase in signal-to-noise ratio (SNR). 

Another important characteristic of photodiodes is its spectral sensitivity. However, due 

to the signal normalisation (seen in section 2.2.3), this is not so important in this context, 

as the sensitivity will cancel in the peak and valley ratio. 

3.1.2.2 Transimpedance amplifier 

As referred before, when light reaches the photodiode, a photocurrent is produced. 

However, as typical analogue-to-digital converters (ADC) sample voltages and not 

currents, a transimpedance amplifier must be used to convert the current into voltage. As 

seen above, the photovoltaic mode requires zero diode voltage, which is accomplished 

with the virtual ground [56]. The basic configuration of the transimpedance amplifier is 

shown in Figure 3.4. 

 

Figure 3.4 – Basic transimpedance amplifier configuration to measure photodiode output current. 

Adapted from [56]. 

The feedback resistance (  ) determines bandwidth as well as gain. Since there is ideally 

no current on the op-amp inputs, current flows through the feedback resistor creating an 

output voltage given by equation (3.2). 

 
        (3.2) 

Concerning the circuit noise, and since there is no dark current, the main source is the 

thermal (Johnson–Nyquist) noise which has the following root mean square value: 

 
                 (3.3) 

where    is the Boltzmann‘s constant,   is the absolute temperature,    is the 

bandwidth and    is the feedback resistance. 
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Analysing equations (3.2) and (3.3), it can be seen that signal increases with    while 

noise increases with    . This means that SNR increases with the square root of 

feedback resistance. Thus, it should be as high as possible [55]. 

However, high resistances lead to gain peaking effects and instability so, a feedback 

capacitor (  ) has to be used [56]. It can be proved [57] that the appropriated feedback 

capacitance (  ) to ensure stability is given by equation (3.4). 

    
 

      
                

(3.4) 

where    is the feedback resistance,    is the unity gain frequency of the op-amp and    

is the total input impedance (photodiode junction and op-amp input capacitances). 

The signal bandwidth in calculated by: 

        
  

           
 (3.5) 

As the pulse oximeter probe is a commercial model and no technical information was 

given, feedback capacitance was not computed by these formulas. Instead, by 

experimental tests, a 30 pF capacitor was found to be a good choice. 

From equation (3.5) it is obvious the requirement of small photodiode capacitance that 

was presented in the previous topic, since capacitance affects the bandwidth. Moreover, it 

also affects stability. 

Due to the high feedback resistance, the transimpedance amplifier is very susceptible to 

noise coupling. Some techniques to reject noise are based on differential measurements. 

In particular, a very common circuit for pulse oximeter photodiode measurements 

integrates two transimpedance amplifiers whose outputs are fed into a differential 

amplifier [24, 56]. The circuit is shown in Figure 3.5. 

With this circuitry, photodiode current flows through two equal resistances. Therefore, 

both will receive equal electrostatic noise coupling. Therefore, there will be a differential 

output on the resistors, but the noise coupling is common-mode signal and will be 

cancelled. 
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Figure 3.5 – Differential photodiode current sensing: transimpedance amplifier for pulse oximetry. 

Adapted from [24]. 

And as required, there is no voltage across the diode as both terminals are virtually 

connected to ground [24, 56]. The output voltage is given by equation (3.6). 

 
      

  
        

 
(3.6) 

This configuration also has the advantage of needing half-value feedback resistors to have 

the same amplification which reduce thermal noise and increase bandwidth [24]. 

Op-amp input bias currents are a major limitation of the transimpedance module since 

they cause voltage offset errors with large feedback resistors [55]. Therefore, FET op-

amps are generally used since they have less bias currents. In this system, the OPA129 

[58] was used. The reason to use this op-amp is that it was previously used in a work at 

this group [59] and proved to be a good choice for photodiode signal measurements, even 

after some other op-amps had been tested. It has dielectrically-isolated FET (Difet
®
) 

inputs to greatly reduce the bias current (typically 30 fA). It also has low voltage (15 

nV/   ) and current noise (0.1 fA/   ) and a low offset (± 0.5 mV) [58]. All of these 

features make it good for amplifying photodiode signals, which have very low currents 

(at most a couple of hundred nA). 
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3.1.3 Sample-and-Hold 

The system operates on a basis of a pulsed LED signal, i.e. red and infrared LEDs turn 

ON alternately. And since there is only one photodetector, our signal is modulated. 

Voltage at the transimpedance amplifier output is proportional to the light acquired by the 

photodetector when the finger is illuminated by the red LED during a time period of T/2 

and by the infrared LED during the following T/2. However, as LEDs have different 

optical power and the extinction coefficients of the involved tissues are different for both, 

it is desirable that the two channels are separated. This will allow for different 

amplification gains, as well as different DC level shifts. 

To do so, a sample-and-hold circuit (S/H) is used. A S/H is designed to sample the 

voltage of an analogue signal and hold that voltage for a certain period of time. The basic 

components are an input voltage buffer, an interrupt, a capacitor and an output buffer, as 

Figure 3.6 shows [60]. 

 

Figure 3.6 – Sample-and-hold basic circuit: two buffers and a capacitor. Adapted from [60]. 

The choice of the capacitor value is a trade-off. If the value is too small, the leakage 

current causes the voltage to drop significantly and the system is not accurate. If the 

capacitor is too large, it may not charge during the time the switch is on [61]. Nowadays, 

many integrated circuit (IC) S/H are available in the market. In this work, the LF398 [62] 

was used. The choice of the capacitor value was based on its performance characteristics, 

namely the acquisition time, hold step and output droop rate, presented in Figure 3.7. 

+

- Vout

Vin

Switch 

driver

+

-

Switch

CH



 

 

34 Chapter 3 – Hardware 

 

Figure 3.7 – LF398 typical performance characteristics: acquisition time, hold step and output droop 

rate [62]. 

Regarding hold step and output drop, for better performance, a big capacitance must be 

used. As the pulsed signal of the system is expected to run at 500 Hz, each LED will be 

ON for 1 ms. This way, a capacitor of 100 nF will be a good choice, as it requires less 

than 300 µs to settle to 0.01%. This will lead to an output droop rate of ~0.3 mV/s and a 

hold step of ~0.1 mV. The LF398 has both FET buffer amplifiers with high impedance 

(~10 GΩ) and small input currents (~10nA), as well as a small gain error (~0.004%) and 

leakage current during the ―hold‖ phase (~30 pA) [62]. 

3.1.4 Signal conditioning 

Now that each signal is separated into different channels, all the signal condition as 

filtering, amplification and offset removal can be done separately in order to adjust each 

signal to the dynamic range of the ADC. 

As the signal from the transimpedance amplifier was modulated with a square wave of 

500 Hz, at that time the signal could not be low-pass filtered. Now that the channels are 

separated by the S/H, it is possible to filter the signal to remove unnecessary components, 

typically noise. Common cutoff frequencies present in literature range from 8 to 30 Hz 

[63-68]. After analysing the PPG signal and testing some different frequencies, 20 Hz 

was chosen as a good value for cutoff frequency. For that, a second order Butterworth 

filter was implemented. This is the most common filter design since it provides the 

maximum pass-band flatness and a good roll-off in frequency response (although not as 

good as Chebyshev filters) and little overshoot and ringing in step response [69]. 

For low quality factors (  
 

  
 for Butterworth filter) and low gains (unitary gain was 

desired), the Sallen-Key topology is the most used for second-order filters [70]. 

Acquisition Time Hold step Output Droop Rate
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Figure 3.8 – Butterworth filter: generic Sallen-Key topology [71]. 

The general configuration is shown in Figure 3.8 and it is up to the designer to choose the 

values of resistors and capacitors to achieve the desired frequency response. Deriving the 

transfer function of the Sallen-Key, equation (3.7) is obtained. 

 
    
   

 
    

                   
 (3.7) 

For a low-pass filter,    and    are resistors (designated    and   , respectively) and    

and    are capacitors (designated    and   , respectively). Therefore, the low-pass filter 

transfer function is given by equation (3.8). 

 

    
   

 

 
        

   
     
      

  
 

        

 
(3.8) 

Making some simplifications (        and    
 

 
    ), equation (3.9) can be 

used to set resistor and capacitor values. 

    
 

      
 (3.9) 

This way, the capacitance   is chosen and then   is calculated in order to obtain the 

desired cut frequency (  ). A more detailed mathematical analysis is present in the 

literature [70, 71]. 

In order to obtain a cut frequency of 20 Hz, the following values were chosen:            

         ,          ,          and           . 

From here, it was decided to split the signal in two ways. First, a signal with both DC 

level and AC variations must be obtained to compute the     . This will be referred as 

the DC+AC component from now on. Then, an AC signal with just the pulsatile 

component is useful for display, as this is much more stable then the DC+AC signal. Both 

paths will be explained in more detail in the following two topics. 
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3.1.4.1 DC conditioning 

To obtain the     , some calculations with the PPG signal maxima and minima from 

both red and infrared LEDs are required. For that reason, it is fundamental that these 

signals match the dynamic range of the ADC (0 to 5V) in order to get the best SNR, 

reducing the quantization error. As the PPG signal is composed by a small AC signal 

imposed on a large DC baseline, it is not desirable that the dynamic range is almost 

completely occupied by the DC level. This way, an instrumentation amplifier was used to 

remove the DC level. Also, that small AC component must be amplified, which can be 

accomplished with the same instrumentation amplifier, as they have two pins for defining 

the gain. 

The circuit designed to accomplish the DC conditioning is shown in Figure 3.9. To 

remove the DC level, the original signal is fed to the non-inverting input and a DC 

voltage is fed into the inverting input. A DC voltage is set by a digital potentiometer 

(digipot), which allows the system to self-adapt to changes in this DC value that are 

common in natural physiologic conditions [32]. Another digipot is used to set a resistance 

between the gain pins, thus allowing for gain control. 

 

Figure 3.9 – DC conditioning circuitry: a digital potentiometer is used to set gain and level shift of each 

channel. 

A digipot has two configurations: potentiometer and rheostat. For level shift, a DC 

potential must be generated, which can be done with the potentiometer mode. It is 

basically a voltage divider, where one terminal is connected to 5V and the other to the 

ground (or other wanted potential). This way, when the signal is either rising of falling to 

values outside the ADC range, the MCU can change the DC level by shifting the digipot 

wiper position. 

Concerning, the rheostat mode is used. It is a variable resistor whose resistance is set by 

the wiper terminal position. Therefore, gain can be set by changing the wiper value, 

which, again, is done by the MCU. 
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The chosen amplifier was the AD623 [72] from Analog Devices, a very used 

instrumentation amplifier in this type of applications. For its choice greatly contributed 

the possibility of unitary gain which is not presented in all instrumentation amplifiers. Its 

gain is defined according to the gain resistor (  ) as equation (3.10) expresses. 

     
     

  
 (3.10) 

Programmable gain amplifiers were discarded due to their very discrete gain selection. In 

this work, a more dynamic and continuous gain was desired to better control the system. 

Furthermore, as the dynamic range of the ADC was from 0V to 5V and all the 

instrumentation was to be power supplied by 5V from the Arduino™, a rail-to-rail 

amplifier was valued. 

The digipot used for both DC level generation and gain setting was the AD5252 [73]. 

This is a dual 256-position non-volatile digital 100 kΩ potentiometer that communicates 

by I
2
C. Its settling time is 14 µs from the value of 0 to 255 [73]. In the rheostat 

configuration, the output resistance is given by equation (3.11). The 75 Ω are due to the 

wiper contact resistance, as it is a non-ideal switch. D is the wiper position, which can 

vary between 0 and 255. 

 
    

 

   
        (3.11) 

In the potentiometer configuration, if the wiper resistance is ignored, the output voltage 

on the wiper is given by equation (3.12) [73]. 

    
 

   
        (3.12) 

The 256 steps allow for a 390 Ω step in rheostat mode and 19.5 mV steps in 

potentiometer mode. As the digipot has a total resistance of 100 kΩ, according to 

equation (3.10), it is not possible to get a gain lower than 2 on the AD623. With no 

resistor, the gain would be 1 and with 100 kΩ rheostat the gain will be 2 

(1+100kΩ/100kΩ). A gain higher than 2 is accomplished reducing the rheostat value. The 

AD623 gain is not linear and thus, there is a much better gain resolution for gains near 2 

while resolution gets worst for higher gains. This can be improved in the future with a 

non linear digipot. A higher resistance range can also be considered, but for the first 

prototype, this seemed enough. 
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3.1.4.2 AC conditioning 

AC filtering produces a good signal for waveform since it intrinsically removes the DC 

level which constantly changes even under normal physiological conditions [32]. This 

makes the signal much more stable and easier to present in a waveform monitor. Though, 

it cannot be used to make calculations, since      computations need the absolute 

voltages for both signals (red and infrared). 

To filter the signal, a 2
nd

 order Butterworth high-pass filter was used because roll-off was 

important to reject DC value, but not small AC components. This way, a first-order filter 

was not suitable. However, higher orders were not used because of the increasing delay 

they add and that could invalidate the subsequent extrema identification (section 3.1.5). 

The choice of the Butterworth was the same as before: flatness of passband. 

It is worth of notice that a low-pass filter was also tested. The low-pass filtered signal was 

then subtracted to the original signal. However, in this case, a delayed filtered signal was 

being subtracted to a real time signal, which could introduce distortions in the PPG 

signal. Therefore, it was concluded that the high-pass filter would be a better choice.  

The high-pass Butterworth Sallen-Key topology is the same as Figure 3.8 but now,    

and    are capacitors (designated    and   , respectively) and    and    are resistors (   

and   , respectively). From equation (3.7), and again making some simplifications 

(        and    
 

 
    ), the components value can be set according to 

equation (3.13), which is the same as the low-pass filter. 

    
 

      
 (3.13) 

After some experimental tests conducted to choose the best cutoff frequency (Appendix 

A), it was decided that the filter that better conciliated DC removal with little signal 

distortion was with          . 

It was found that for lower frequencies, the output signal still had much DC level 

variations, indicating that the low frequency oscillations were not fully removed. 

Conversely, for higher frequencies, the AC component significantly differed in shape 

from the original signal. Therefore, 0.2 Hz was found to be a good trade-off, not 

presenting significant oscillations and reasonably preserving the PPG waveform. Thus, 

filter components were chosen as following:          ,          ,           

and          . 
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After the signal has been AC filtered, its DC value is ideally 0V, i.e. the signal varies 

around 0V having both positive and negative voltage segments. As the dynamic range of 

the ADC is 0V to 5V, it is necessary to shift the filtered signal. To do so, an 

instrumentation amplifier is used. It has a pin to define the zero output voltage, thus 

providing a direct means of injecting a precise offset to the output [72]. The same AD623 

[72]used before for DC conditioning was employed here. This way, providing 2.5V into 

the reference pin, the filtered signal will swing between 0V and 5V, provided the right 

gain is set. This gain is defined, as above, via a digital potentiometer (AD5252 [73]) 

controlled by the MCU (section 4.5). 

3.1.5 Peak and valley detector 

Maxima and minima voltages of each channel are required to compute the     . 

However, real time identification of extrema is extremely heavy to do recursively in the 

MCU. It would be much more efficient – and less processor time consuming – to know 

the temporal location of each extrema. This way, no real time search algorithms would be 

needed. 

To solve this issue, a circuit was implemented in the system to ―tell‖ the MCU that a 

maximum or minimum has occurred and to present that voltage for an ADC conversion. 

For that, two stages are needed: first, the maximum and minimum voltage has to be held 

in order to the MCU to digitalize it; then, a signal is sent to the MCU to ―tell‖ that the 

peak or valley voltage is ready for ADC conversion and a reset is done so that a new peak 

voltage can be stored. This module is based in a circuit previously developed at GEI [13]. 

3.1.5.1 Peak and valley voltage holding 

In order to store the peak and valley voltages, a peak and valley detector was 

implemented. The basic peak detector consists of a diode and a capacitor (Figure 3.10). 

When the signal increases, the diode conducts and the capacitor is charged. When the 

input starts to decrease the diode becomes reverse biased and the capacitor remains at the 

peak voltage until a higher peak is input. 

Although being a simple configuration, it yields an important problem: the output is one 

diode drop below the input. By placing the diode in the negative-feedback loop of an op-

amp, this effect can be avoided. 
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Apparently, the capacitor has no route to ground to discharge so, it should hold the peak 

voltage forever. However, both the capacitor leakage current and the load of the circuit 

may discharge it, causing inaccurate voltage readings when the MCU samples the signal. 

The introduction of a buffer after the first stage reduces this discharge, especially if high 

input impedance and low input bias current op-amps are used [61, 74, 75]. 

                

Figure 3.10 – Peak detector: Basic configuration (left) and two stage active peak detector (right) 

Adapted from [74]. 

Following the op-amp output voltage equation (3.14), as the input signal     (which is 

equal to   ) raises above      (which is equal to   ), the op-amp sees a positive voltage 

difference between the input terminals and the voltage    increases. As soon as the 

voltage across the diode is greater than   , it starts to conduct and a feedback path 

between the op-amp negative input and output terminals is established. Therefore, a 

virtual short cut appears between    and   , which guarantees that      is equal to     – 

the circuit acts as a follower. However, unlike the basic configuration where the input 

signal had to rise the whole   , with this configuration the input signal has to rise just 
  

 
, 

as can be seen from equation (3.15). Since the open-loop gain A is very high, the output 

voltage      follows     almost immediately and with virtually no drop [61, 74]. 

 
            (3.14) 

 
            (3.15) 

When the input signal     decreases, a negative voltage difference between the input 

terminals (     ) is seen and the voltage    decreases, which causes the diode to stop 

conducting. Therefore, there is neither charge nor discharge of the capacitor and      

remains the same [61, 74]. 

The circuitry described above is used to detect signal maxima, i.e. the most positive point 

of each pulse – physiologically called the systolic peak. However, minima of the signal – 

the end of the diastolic period – are also required. 
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Therefore, a similar circuitry was designed for minima detection. It consists of a summing 

amplifier that subtracts 5V to the signal and then inverts it for positive voltage levels. 

This transforms minima of the original signal in maxima and the same peak detector 

configuration described in Figure 3.10 can be used to hold that value. It should be noticed 

that an instrumentation amplifier like the AD623 [72] used in previous hardware could be 

employed here. To do that, the non-inverting input would be tied to ground and the signal 

input to the inverting one; then, the reference pin would be used for level shift. 

As said above, the capacitor has no direct route for discharging. Though, it is desired that 

each peak voltage is sampled so, the capacitor must be discharged after each peak. To do 

so, a resistor of small value could be placed in parallel with the capacitor. This would 

give a way for the capacitor to discharge quickly. However, it is desirable that the charge 

is held until the ADC conversion is done and, just after that, the capacitor can be 

discharged. Therefore, an analogue switch is used to control when the resistor is 

connected to the capacitor terminal. 

The complete peak and valley circuitry is depicted in Figure 3.11. The first stage is used 

to invert the signal and is used just for valley detection. The rest of the circuitry is 

common to both maxima and minima detection. 

 

Figure 3.11 – Peak and valley detector module. Peak detector circuitry (B), analogue switch used for 

capacitor discharge (C) and inverting op-amp for signal inversion required for valley detection (A). 

As referred before, bias current discharges the capacitor and causes the voltage to drop. 

Equation (3.16) gives the voltage drop due to bias input current of the buffer. Also, diode 

reverse current may discharge the capacitor. To overcome this drawback, more advanced 

circuits are described in literature [61, 75] but they were not found necessary for this 

system, at least in this first prototype. 
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Also, when     is lower than     , the diode does not conduct and the op-amp feedback 

loop is broken. This cause the op-amp output to saturate (due to the open-loop gain) and 

thus, when a new peak appears, the op-amp has to go all the way from negative saturation 

to the new peak voltage, which takes time. From equation (3.17), this delay can be 

estimated. To avoid this fact, alternative circuits could be employed but again, this was 

not found as an important shortcoming [61, 74, 75]. 

 

  

  
 
    
 

 (3.17) 

Therefore, the choice of the capacitor value greatly depends on these two factors: 

discharge by the input bias current and system response time. Besides, the period for 

which it is required that the system holds the voltage also influences the choice – the 

earlier the sample signal is given, the smaller the capacitor can be. After some 

experimentation, the ideal value was found to be 5 µF. 

For this capacitor, and knowing that for the chosen op-amp – the TL082 — the bias 

current is typically 20pA [76], the voltage drop due to this current is expected to be 0.008 

mV/s. Experimentally, the sample signal delay was found to be around 680 ms which 

would give an output drop of about 0.005 mV. However, the analogue switch leakage 

current (0.1 nA [77]), but mainly the diode reverse current (25 nA [78]) significantly 

increase these effect to 5 mV/s. For the signal delay referred, it gives a drop 3.4 mV. This 

seems a reasonable value, at least for the first prototypes. 

The TL082 output current (40 mA [76]) defines the global slew-rate for the peak detector, 

which is 8 V/ms, i.e. much lower than the TL082 slew-rate – 13V/µs [76]. However, 

since the PPG signal is relatively slow and the time between maxima and sampling signal 

is of the order of hundreds of milliseconds, this value is adequate for the purpose. 

3.1.5.2 Sample and Reset signal 

In the preceding topic, the concept of peak detector reset was introduced. It consists in 

creating a temporary route for capacitor discharge. That is accomplished by the closing of 

the analogue switch, creating a path to ground trough the resistor. The reset signal timing, 

i.e. the signal used to close the analogue switch, must be given only after the peak has 

been held and sampled. For that, a circuitry was designed to detect when maxima and 

minimum of the signal occurs. 

 
  

  
 
     
 

 (3.16) 
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The essence of that circuitry is to differentiate the PPG signal to identify its extrema – the 

points where the signal reverses the direction, meaning that its derivative is zero. 

However, as the signal has noise, a multiple number of zero crossings would be expected. 

Besides, as the signal usually has two peaks – the systolic and the dicrotic – another 

unwanted zero would appear. To solve that, an initial filtering step is performed. 

The PPG waveform has a strong frequency component around the heart rate, i.e. between 

1 and 1.6 Hz (60 to 100 BPM). Therefore, a low-pass filter around this frequency would 

give an approximated sinusoidal wave with this fundamental frequency. This means that 

information about the dicrotic wave is lost and a single sinusoidal period for each heart 

beat is kept. Since an AC filtered signal is available, this is used as the filter input. The 

reason to chose these AC signal rather than the DC+AC signal is related to the greater 

stability of the AC signal since it does not have the DC level changes present in the 

original signal, as previously referred. This promotes the stability of the sample and reset 

signals, preventing false signalling. 

Again, the filtering was accomplished with a 2
nd

 order Butterworth low-pass filter to have 

a good roll-off but not considerable delay. In fact, a good roll-off is appreciated in order 

to actually remove the signal components other than the fundamental heart beat. This 

way, it can be assured that no dicrotic peak is left, which would give us unwanted double 

sample and reset signals. No higher orders were used since signal delay increases with 

increasing order. A considerable delay would be unusable because the reset signal could 

be generated so late that the system would not be ready for detecting the new peak, 

resulting in erroneous peak voltage measurements. In fact, this is even more crucial if one 

considers that the AC signal used as the input for all this signal generation module has 

already some delay – due to the 2
nd

 order AC filter employed before. Moreover, the low-

pass characteristic of the filter itself delays the signal, since the higher frequencies are 

cut, thus making the output signal to increase and decrease slower than the input signal. 

Some different cutoff frequencies were tested to ensure the performance of the system. A 

few simulations done in OrCAD from Cadance
®
 are shown in Appendix B. It was 

concluded that a cutoff frequency of 0.5Hz produced a reset signal for peak detector later 

than the subsequent systolic peak for every heart rate. Thus, every two peaks, one would 

be missed. For a cutoff frequency of 1.0 Hz, this still happened for a signal with a heart 

rate of 100 bpm and the same almost happened for 1.5 Hz. At the opposite extreme, a 

cutoff of 3.0 Hz produces multiple reset signals for all heart rates, meaning that the 

dicrotic peak was not fully filtered. With a cutoff of 2.5 Hz, the 60 bpm differentiated 



 

 

44 Chapter 3 – Hardware 

trigger almost crossed the zero multiple times, having a plateau very close to 0V. 

Therefore, as a matter of safety, and since signals with heart rates close to 60 bpm are 

more likely to happen than with 100 bpm, a cutoff frequency of 1.5 Hz was chosen. Using 

equation (3.9), the values for the filter components were computed as:          , 

         ,           and          .  

If this signal was now differentiated, it could be used to detect extrema of the sinusoidal 

signal since these are the points where the derivative crosses 0V. A differentiator circuit 

can be designed placing a capacitor in the feed-in path of an op-amp, as Figure 3.12 

shows. 

 

Figure 3.12 – Differentiator circuit [74]. 

When the input is a time varying function      , and since the inverting terminal of op-

amp is a virtual ground, the current that flows through a capacitance C is given by 

equation (3.18). 

 
      

      

  
 (3.18) 

This current will flow through the feedback resistor R producing an op-amp output 

voltage given by equation (3.19). 

 
         

      

  
 (3.19) 

This means that the output is proportional to the derivative of the signal, being the 

differentiator time-constant RC the proportionality constant. 

A capacitor was connected in parallel with the resistor R to limit the signal bandwidth as 

the differentiator is, by definition, a noise amplifier [61]. By practical experimentation, a 

capacitance of 33 nF was found to be a good choice. 
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Apart from a slight (and expected) delay, maxima and minima of the sinusoidal wave 

occur approximately at the same time of those of the original signal, as Appendix B 

shows. This means that with this circuitry, one can detect where an extrema has occurred 

by analysing the sign of the differentiator. For that a voltage comparator was used – the 

LM311 [79]. 

Comparators usually use ―open collector‖ output with grounded emitter and pulled-up 

collector (5V in our case), as Figure 3.13 shows. This way, the output swings from 5V to 

0V [61]. When the voltage on the non-inverting input is higher than the voltage on the 

inverting input, there is no current. Therefore, there is no voltage drop across the pull-up 

resistor and the comparator output is 5V. On the contrary, when the non-inverting input is 

lower than the inverting one, a current appears and, as the emitter is connected to the 

ground, the comparator output is around 0V. In fact, that voltage is 230 mV, which is the 

collector-to-emitter voltage of the transistor. When both inputs voltages are similar, the 

comparator tends to oscillate, triggering multiple logic changes. This can be avoided by 

positive feedback, the so called Schmitt triggering that introduces hysteresis in the system 

[61]. This fact was not observed by the PPG signal, but this technique can be employed in 

the future, if needed. 

              

Figure 3.13 – LM311 configuration: positive derivative (left) and negative (right) positive identification. 

The LM311 [79] has a response time of 115 ns when going from low to high level and of 

165 ns when going from high to low level [79]. This makes it suitable for the desired 

application, since this is a negligible delay for a cardiac wave which has a period of 

around 1 second. 

The output from the comparators can be used to ―tell‖ the MCU that a new peak or valley 

has been detected and that the digitalization must start. For that, these outputs are used as 

interrupts that call a sampling routine. This will be explained in more detail in section 4.2. 

After the peak or valley voltage has been digitalized, the analogue switch on the peak 

detector must be closed in order to let the capacitor discharge and then re-opened so that 

it can charge again to the new peak voltage. 
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The comparator signal could be a good choice for peak reset as it is synchronised with the 

peak occurrence. However, it must be considered that in just a fraction of the period 

(when the signal is decreasing for maxima sampling and while it is increasing for minima 

sampling) an interrupt has to be generated, the signal must be acquired and the peak 

detector must be reset. This is particularly important in the case of the systolic peak 

detection, since the ascending phase of the cardiac wave is much shorter than the 

descending one. Therefore, a short reset control would be appreciated. 

To overcome this, a timer was used. The renowned LM555 [80] was employed to 

generate a one-shot signal each time the LM311 output swings from 5V to 0V (Figure 

3.14).  

 

Figure 3.14 – LM555 monostable mode for one-shot signal used for peak detector reset. Adapted from 

[80]. 

In the stable state, the LM555 output is low. When the LM311 output goes from high to 

low, i.e. when the signal in the trigger pin falls below 1/3 VCC, the LM555 output goes 

high. A capacitor is used in this pin to differentiate the square wave of the comparator and 

ensure that the LM555 is triggered. The high state is held for a time determined by the 

capacitor   and the resistor   according to equation (3.20). 

           (3.20) 

This means that choosing the appropriate values of   and   one can have the desired 

pulse duration for closing the analogue switch and thus resetting the peak detector. The 

chosen values provided a 10 ms pulse width, which is adequate for discharging the peak 

and valley detectors capacitor. 
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3.2 Accelerometers 

As referred before (section 2.3) an accelerometry module is employed in the system to 

retrieve arm and forearm orientation and thus, offset in height of the finger relatively to 

the heart. 

In this work, the Freescale‘s digital accelerometer MMA8451Q [81] was used. It is a 3-

axis accelerometer with 14-bit resolution and a selectable full-scale of ± 2g, ± 4g and ± 

8g. It communicates through I
2
C (Inter-Integrated Circuit) with and output data rate of 

1.56 to 800 Hz. It has some embedded functions as freefall, motion, tap, jolt and 

orientation detection. This functions are configurable to two interrupt pins which may be 

helpful in a more advanced stage of this work, allowing power saving and wakeup 

interrupts to be generated whenever there is a significant change in the accelerometer 

readout, i.e. if the arm moves significantly [81]. 

For its choice contributed the high sensitivity and selectable acceleration ranges. Since is 

not clear at this point which is the ideal sensitivity, this accelerometer allows great 

flexibility. Besides, the ± 2g range is close enough to the ± 1g range needed for static 

measurements but if greater accelerations are needed in the future (such as for artifacts 

detection), ± 4g or ± 8g can be selected. With ± 2g range, the sensitivity is 4096 counts/g 

with an accuracy of ± 2.5%. 

The accelerometer has to be interfaced with the MCU. Namely, the logic levels of SDA 

and SCL lines have to be converted from the 5V logic level of the Arduino™ to the 3.3V 

of the MMA8451Q. That is done with a voltage-level translator, the PCA 9306 [82]. This 

is a bidirectional translator adapted for I
2
C SDA and SCL lines. It can be operated to 

translate voltages from 1.8V – 5.5 V to voltages from 1.2V – 3.3V. The 3.3V are supplied 

directly from an Arduino™ pin. 

3.3 Force sensor 

As referred before (section 2.4), the PPG signal amplitude depends on the applied force 

over the measured finger. Therefore, a force sensor was introduced in the system, a Force 

Sensing Resistor
®
 (FSR

®
) that has been previously referred. The FSR

®
 is a variable 

resistance based on the applied force. Therefore, it requires a few signal conditioning, 

which will be overviewed in this section. 
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The FSR
®
 data sheet [50] presents two basic electrical interfaces: (1) a voltage divider 

followed by a buffer and (2) a current-to-voltage converter. The first option is 

schematised in Figure 3.15. With this, the output voltage increases with increasing 

applied force. However, swapping      with   , it is possible to have a voltage decrease 

with force increase. The value of resistor    must be adequately chosen for maximum 

force sensitivity range. It is also used to limit the current that passes through the FSR
®
, 

which should not exceed 1mA/cm
2
 of applied force. Further resistances can be used to be 

used to define the rest voltage, i.e. a zero-force intercept value [50]. 

 

Figure 3.15 – FSR® voltage divider. Adapted from [50]. 

As an ordinary tension divider, the output is related to the FSR
®
 resistance (    ) 

according to equation (3.21). 

      
  

       
     (3.21) 

Alternatively, it is possible to use a current-to-voltage converter consisting of an inverting 

operational amplifier, being the FSR
®
 the input resistor. This strategy is schematised in 

Figure 3.16. VREF can either be positive or negative. Although, since the ADC inside the 

Arduino™ expects a positive voltage, a negative reference voltage is used. 

 

Figure 3.16 – FSR® current-to-voltage converter. Adapted from [50]. 

The output is inversely proportional to the FSR
®
 resistance, according to equation (3.22). 

       
  
    

     (3.22) 
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Again, the maximum current through the FSR
®
 should be 1 mA/cm

2
 and it is also 

possible to add a resistor in parallel with      to define the rest voltage [50]. 

As stated before, the response of the FSR
®
 is not linear. However, some configurations 

may help to make the output more linear with the applied force. Hall et al. [83] proposed 

the configuration shown in Figure 3.17. 

 

Figure 3.17 – FSR® conditioning circuit to improve the output linearity. Adapted from [83]. 

The output is not linear and is given by the following equation (3.23) [83]. 

 
     

         

           
     (3.23) 

Resistors    and    can be adjusted to the wanted gain of the system. Therefore,      is 

proportional to 
  

       
. Given that, resistor    is crucial to output linearization. 

Two extreme cases can occur: (1) if        , this equation tends asymptotically to 

       

  
    , i.e. the output saturates at a constant level which is independent of the 

applied force; (2) if        , this equation tends to the hyperbola 1/    . Thus, value 

of    must be chosen according to the output range one wants to linearize. 

This configuration was not tested due to lack of time, but it can be a good choice if the 

FSR
®
 is to be used in further versions of the system. The other two were tested and the 

best one was chosen to calibrate the sensor (section 5.9).  
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3.4 Microcontroller – the Arduino™ 

The MCU is the ―heart‖ of the system. It controls all the other components, such as the 

LEDs ON/OFF, the gain and level shifts of the signal conditioning, the acquisition of the 

PPG signal, as well as the accelerometer and force sensor readings. Furthermore, the 

MCU is responsible for the computation of    and     . Finally, it sends all the 

information to the computer, where it is displayed in MATLAB. For these tasks, an 

Arduino™ was employed. 

The Arduino™ is an embedded computing platform that consists of a single-board 

hardware for an Atmel
®
 AVR

®
 microprocessor and a software suite for its programming. 

The board (Figure 3.18) integrates the microprocessor, a crystal that works as a clock, a 

5-volt regulator for power supply, a USB socket to connect it with a computer and an I/O 

interface with the pins exposed to facilitate integration with other hardware [84]. 

The Arduino™ programming is done in a computer in an Integrated Development 

Environment (IDE) where programs (called sketches) are written in C/C++ language and 

then upload to the microprocessor. Moreover, it has a serial monitor to visualize 

information sent by the serial port of the Arduino™ [84]. Figure 3.18 shows the aspect of 

the Arduino™ IDE window. 

Both Arduino™ hardware and software are open source which makes it a very used 

platform for all kind of applications. That leads to a huge amount of information, 

hardware schematics and firmware sketches available on the internet. Also, the 

Arduino™ language reference has a variety of built-in functions for communication, 

ADC reading, timer configuration, interrupt routines and so on, which makes it real easy 

to use. Moreover, the ease of developing stand-alone devices or connecting it to a 

computer or network for further processing makes the Arduino™ an ideal choice for the 

developmental versions of the system. 

The first two versions of the system had an Arduino™ Duemilanove with the ATmega 

328. However, for reasons related with the number of analogue input ports (ADC 

channels), this was replaced. Thus, the current version uses an Arduino™ Mega 2560 

with the ATmega2560. With this, the number of input pins increased from 6 to 16. 
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Figure 3.18 – Arduino™: the Mega 2560 board with the ATmega2560 (left) and the IDE window with a 

piece of a used sketch (right). 

3.4.1 Processor 

The Duemilanove and the Mega 2560 are very similar. Both are 8-bit Atmel
®
 AVR

®
 

microcontrollers with RISC (reduced instruction set computers) architecture and 16 MHz 

of system clock. They have 32 8-bitworking registers directly connected to the Arithmetic 

Logic Unit (ALU) which can be accessed in one single instruction executed in one clock 

cycle [85, 86]. 

3.4.2 I/O Ports 

The significant difference between them is the number of I/O pins. The Duemilanove has 

only 20 I/O pins, being 6 of them analogue inputs for the ADC. Conversely, the Mega 

2560 has a total of 70 I/O pins and 16 of them are analogue. However, both devices have 

the same 10-bit ADC, i.e. there are 1024 quantization levels [85, 86]. 

Analogue ports are used as inputs from AC and DC+AC components of both LEDs. The 

photodiode output is also sampled as a control signal. Maxima and minima voltages held 

by the peak and valley detector are also sampled for posterior      calculation. Besides, 

the FSR
®
 is acquired via an analogue pin. Digital pins are used to control LEDs ON/OFF 

as well as the S/H. A digital pin is also available for synchronisation purposes, as all the 

sensors of the multichannel system will need to be temporally matched. Some digital pins 

are also used as external interrupts, namely from the peak and valley detector (to receive 

the sampling command) and eventually from the accelerometers (to indicate movement). 
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3.4.3 Timer/Counters 

The Mega 2560 has 2 8-bit and 4 16-bit Timer/Counters with separate prescalers and 

Capture and Compare modes. Currently, a 16-bit timer is being used to control the LEDs 

timing sequence, as well as the signal sampling. This way, the synchronisation between 

finger illumination and signal detection is assured. Another 16-bit timer is used to 

determine the signal periodicity, and thus the   . 

3.4.4 Interrupts 

The Arduino™ has two types of interrupts: external and pin change. There are six 

external interrupts on Mega 2560, although two of them are also dedicated to I
2
C. These 

trigger an interrupt on rising edge, falling edge, level change or low state. The number of 

pin change interrupts is bigger, with the Mega 2560 having 24 grouped into 3 ports. 

However, there are only 3 interrupt vectors (one for each port). Whenever one of the 8 

pins of the port changes its state, the corresponding interrupt vector is triggered. Thus, it 

is up to the programmer to figure out which pin has changed and to what state [85, 87]. 

In the designed system, four external interrupts were used to trigger the peak and valley 

detector sampling – maxima and minima signal of each wavelength. Moreover, two 

external interrupts are connected to accelerometers to eventually detect movement. 

3.4.5 Communication 

The Arduino™ has an Universal Synchronous and Asynchronous Serial Receiver and 

Transmitter (USART), a master and slave Serial Peripheral Interface (SPI) and Inter-

Integrated Circuit (I
2
C) [85, 86]. 

The simplicity of I
2
C makes it very useful for connecting I/O devices since it just requires 

two wires. This is the reason why I
2
C is also called 2-wire Serial Interface (TWI). Those 

two wires are the serial data (SDA) and serial clock (SCL) lines. They are bidirectional 

and are connected to positive power supply by pull-up resistors. Each device is 

recognised by its unique address and can act as a master or as a slave. The number of 

allowed devices depends only on the bus capacitance, which must not exceed 400 pF, and 

of course the number of allowed addresses (usually, 7-bit addresses are used). The master 

sets the clock and initiates the data transfer. I
2
C allows for transfer rates of 100 kbit/s in 

the standard mode or 400 kbit/s in the fast mode [88]. 
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I
2
C was used to interface all the digital peripherals (accelerometers and digipots) due to 

the ease to connect many devices on the same bus. The configuration is schematized in 

Figure 3.19. 

 

Figure 3.19 – Connection of I2C-bus devices to the I2C bus. Configuration used in the system, with the 

Arduino™ acting as master and the accelerometers and digital potentiometers as slaves. 

SPI is a full duplex bus, thus allowing for faster transfer rates (up to 12 MHz). Unlike 

I2C, SPI makes use of three wires common to all the devices and one wire dedicated to 

each device. The common wires are the Serial Data Clock (SCLK), the Master 

Output/Slave Input (MOSI) and Master Input / Slave Output (MOSI). The dedicated line 

is the Slave Select (SS), which is only active (low) for one device to which the 

communication is intended. This makes the SPI much more complex if many devices are 

wanted, due to the number of SS needed [89]. Some configurations allow for the use of a 

single SS for all devices, creating a daisy-chain topology [90]. However this is a much 

more complex strategy than the use of I
2
C and is not needed for this system. 

3.4.6 Shields 

Some extra modules (called shields) are available for Arduino™. They include other 

devices that can be used for easily extend its capabilities (as the GPS or the LCD display 

shields), communication (as the Ethernet and Wi-Fi shields) or data storing (as the SD 

card shield) among many others. Shields are simply plug in the top of the Arduino™ and 

are ready to use. Still, they leave all the pins in sight, allowing for the normal use of I/O 

pins [84]. When the system evolves for the stand-alone arterial blood pressure (ABP) 

storing, the SD card shield may be useful to store the acquired signals and parameters. 
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Chapter 4  

Firmware 

For the system to be a stand-alone pulse oximeter, some requirements must be fulfilled. 

Accordingly, it must compute oxygen saturation and present the photoplethysmographic 

curve in real time. Therefore, it is obvious the need for some component with calculus 

capability. That component is the microcontroller unit. Besides, for the pulse oximeter to 

present correct values, all the components must be synchronized, mainly the light 

emitting diodes switching and the signal sampling. Thus, a component capable of 

communicating and even controlling the remaining ones adds immeasurable value to the 

system. Nevertheless, for all of this to work properly, the microcontroller needs to be 

programmed for the desired tasks. In this chapter, the firmware employed in the 

Arduino™ is explained. 
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4.1 LEDs timing 

Since the system employs two light emitting diodes (LEDs) and just one photodiode, the 

LEDs must work in opposite phase. This means that while one is ON, the other should be 

OFF. In the previous work [17], a LM555 timer was used. A square wave with a duty 

cycle close to 50% and a frequency equal to the sampling rate was used. Though, in this 

work, the potentialities of microcontroller units (MCUs) were exploited. So, a 

Timer/Counter was used to generate the squared waves needed to feed the LEDs driver 

(section 4.2) in order to have periodic and alternated LEDs lighting. 

The Arduino™ Timer/Counters have several modes of operation: normal mode, diverse 

Pulse-Width Modulation (PWM) modes and Clear Timer on Compare Match (CTC). It 

has also several interrupt flags: 3 Compare Match and 1 Overflow. Theoretically, the 

CTC mode would be the most appropriated, as one could define the desired TOP value in 

which the Timer/Counter would be reset, thus allowing for fixed frequency operation. 

However, this mode does not allow for the Compare Match interrupts, which will be 

useful for sampling command [91]. Therefore, the normal mode was chosen. 

Normal mode is the simplest mode of operation. It counts in the up direction 

(incrementing) and, unlike CTC, has no reset. This way, the Timer/Counter starts at 

BOTTOM (0x0000) and increments until MAX (0xFFFF). In the following timer clock 

cycle, it restarts from BOTTOM again and the Timer/Counter Overflow Flag (TOV) is 

set. 

The Timer/Counter allows for the choice of the clock frequency via 5 different prescalers 

(    /1,     /8,     /64,     /256 and     /1024) to divide the CPU clock frequency or 

via an external clock. 

The desired frequency for the LEDs sampling was 500 Hz, i.e. the Timer/Counter should 

restart each 2 ms. The prescaler value must be chosen according to equation (4.1). 

 
           

    
          

 (4.1) 

where      is the clock frequency (16 MHz),        is the desired overflow frequency 

and     is the maximum value of the Timer/Counter (0xFFFF on 16-bit timers).  
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Computing the prescaler value, one gets 0.49, i.e. the     /1 prescaler must be used. The 

overflow frequency is given by equation (4.2). 

 
        

              

   
 (4.2) 

With the     /1 prescaler, the overflow frequency is              . However, 500 

Hz are desired. To achieve this specification, the Timer/Counter value register (TCNT) 

must be set to a value higher than 0 on each restart. That value is computed according to 

equation (4.3). 

 
           

              

      
    (4.3) 

With timer clock frequency of 16 MHz, a 500 Hz cycle requires                   

        counts. Therefore, for each Timer/Counter restart (after TOV flag) TCNT must 

be set to 33537 in order to reach an overflow each 500 Hz, i.e. with a period of 2ms from 

that value to MAX. 

Since each LED should be ON for half of the period (i.e. 1 ms), the MCU must toggle 

two digital pins each millisecond. That is accomplished by two interrupt routines: one 

triggered by a Compare Match B (OCRnB) in the middle of the Timer/Counter range and 

the other triggered by the TOV. On each routine both pins are toggled. Those pins are the 

LED_power1 and LED_power2 inputs for the LED driver described in section 3.1.1. 

The values set for the registers to configure interrupts are shown in Table 4.1. 

Table 4.1 – Timer/Counter 5 registers used for interrupt routines to control LEDs lighting and signal 

sampling timing. 

Register Value 

TCNT5
*
 33537 

OCR5A 41537 

OCR5B 49536 

OCR5C 57535 

TOV5
**

 65535 

* TCNT5 is set on each restart (when TOV5 flag is set) 

** TOV5 is not set, it is the MAX value and was presented just for information 
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4.2 Photoplethysmogram 

As far as signal sampling is concerned, two major aspects are controlled by the MCU 

firmware: the sampling rate (i.e. when the signal is sampled) and the sampling routine 

(i.e. the instructions to actually sample the signal). In this section, questions related to the 

signal acquisition are discussed. Aspects related with signal conditioning are not 

considered as they will be addressed later (section 4.5). 

In order for the system to work properly, the signal must be acquired when each LED is 

ON. Therefore, synchronisation between signal sampling and LED lighting is critical. 

Since a Timer/Counter was used to control LEDs ON/OFF timing, and given that it is 

possible to set interrupt flags during the timer running cycle, it is logical that one takes 

benefit of that. This way, two interrupt flags are used to trigger sampling routines (one for 

each wavelength). 

As deduced in section 2.2.3, oxygen saturation (    ) measurements require just the 

extrema of the signal. Its identification is accomplished by hardware with the peak and 

valley detector (section 3.1.5). For displaying purposes, it was decided to use also the AC 

component per si, since it is more stable and easy to display in a waveform monitor. 

Therefore, continuous sampling of the DC+AC component is not needed and just the AC 

component would be sampled at Timer/Counter interrupt flags. However, as a matter of 

system testing, in these first prototypes, the DC+AC component will be sampled. 

Therefore, when an interrupt routine is called, it first samples the AC channel and then 

samples the DC+AC channel of the respective LED. 

As a matter of stability, the signal must be sampled at the middle of ON period of each 

LED. This avoids transitory regime of the LEDs and the sample-and-hold (S/H) which 

could introduce noise. As seen above, the Timer/Counter has 3 Compare Match registers 

(OCRnx) that can be used to trigger interrupts. OCRnB was already used to toggle LEDs 

power lines. Thus, OCRnA and OCRnC can be used here to trigger the sampling routines. 

Table 4.1 shows the register values chosen in order to assure correct timing. 

Figure 4.1 presents an overview of the Timer/Counter operation, evidencing the 

usefulness of this kind of devices in synchronization. As it can be seen, on each restart 

and at the middle of the operation range, LED_power1 and LED_power2 are toggled, thus 

inverting the LED polarity. This ensures that the when one LED is ON the other is OFF 

and no mixed signals are obtained. 
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Figure 4.1 – LEDs lighting and signal sampling scheme. Timer/Counter increases in normal mode and 

has 4 interrupt counter values (middle). In the middle and at the end of the Timer/Counter, OCR5B 

and MAX interrupt flags whose routines are toggling LEDs power lines are triggered (bottom). In the 

middle of each LED ON period (OCR5A and OCR5C), interrupts whose routines are to sample the 

respective LED signal are triggered (top). 

Then, in the middle of each half of period, interrupt flags are set in order to sample the 

respective LED signal. This guarantees that the signal is sampled in a stable region of 

operation, avoiding noise from transient regimes. 

The code flow starts when the OCR5A flag is set. It will trigger the sampling routine for 

infrared signal. First, infrared AC component is read by the ADC. Afterwards, data is 

stored in a variable for posterior calculations and finally, it is sent to the computer. Then, 

the infrared AC+DC signal is sampled, stored and sent. On OCR5C flag, red sampling is 

triggered. Likewise, red AC channel is read, stored and sent and the same is done to the 

AC+DC channel. 

The sampling command is done by a built-in function of Arduino™, the AnalogRead. 

The ATmega2560 has a 10-bit successive approximation Analogue-to-Digital Converter 

(ADC) of 16 channels. Therefore, every conversion is done by comparing the analogue 

input with the possible 2
10

 (i.e. 1024) quantization levels. The AREF (Analogue 

Reference pin for the ADC) indicates the input range for the ADC. It can be defined 
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externally by applying a voltage to the AREF pin. By setting the REFSn bits in ADMUX 

Register, external or internal 1.1 V / 2.56 V may be selected. 

As data sampling is not the main goal of Arduino™, it has a relatively low default 

sampling rate. As any ADC, the maximum reachable sampling rate is limited by the time 

the ADC takes to digitalize a continuous waveform (analogue variable) to a digital code 

discrete time (digital variable). The ATmega2560 ADC requires a clock frequency 

between 50kHz and 200 kHz for maximum resolution and accuracy [92]. However, from 

200 kHz to 1MHz, ADC resolution is not significantly affected [46]. 

The ADC clock frequency is generated by a prescaler from the CPU clock frequency. 

Different ADC clock frequencies can be defined, setting the ADC Prescaler Select Bits 

(ADPS) in ADC Control and Status Register A (ADCSRA) according to Table 4.2 [92]. 

Considering that the default prescaler is set to 128 and the Arduino™ clock frequency is 

16 MHz, the ADC clock frequency is set to 125 kHz. Now, taking into account that a 

normal conversion takes 13 ADC clock cycles, a conversion will take 104 µs to be 

completed. Whenever a shorter conversion period is required, one may change the 

prescaler. If the prescaler is set to 16 for example, the ADC clock frequency is 1 MHz 

and a conversion takes 13 µs, thus 8 times faster. However, it is recommended to keep 

this clock frequency as low as possible in order to maximize the ADC accuracy and 

resolution. Furthermore, prescaler values under 16 would give ADC clock frequencies 

above 1 MHz, which were not characterized by Atmel
®
 and thus are not recommended 

[92]. 

Table 4.2 – ADPS [2:0]: ADC Prescaler Select Bits. These bits determine the division of the system 

clock to set the ADC clock [92]. 

ADPS2 ADPS1 ADPS0 Division factor 

0 0 0 2 

0 0 1 2 

0 1 0 4 

0 1 1 8 

1 0 0 16 

1 0 1 32 

1 1 0 64 

1 1 1 128 
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4.3 SpO2 computation 

For      to be computed, maxima and minima of the PPG signal must be known. In this 

section, some approaches for their computation will be discussed, namely the previous 

developed and the currently implemented. 

In the previous work of Brás [18], an algorithm was developed to search for maxima and 

minima through iterative and continuous search of higher and lower values in the signal. 

First, the algorithm computed the signal mean. Then, it searched a maximum during the 

time in which the signal was higher than the mean. Likewise, a minimum was searched 

when the signal was lower than the mean. It also incorporated a time threshold to discard 

false peaks due to noise or even to the dicrotic peak and valley. 

However, this task was done offline, with the algorithm running upon stored data of prior 

acquisitions. As the purpose of this work is to have a real time oximeter, this solution was 

not acceptable. Besides, the iterative search of a new extrema is too time consuming and 

thus, it is not suitable for the current work. This way, another approach was used and the 

peak and valley were identified via hardware (section 3.1.5). 

As far as the MCU is concerned, it ―knows‖ when a new extrema has occurred by an 

interrupt signal provided by the hardware. The interrupt is generated on the rising edge of 

each LM311 output signal, which occurs once in each cardiac cycle. 

The LM311 output signal is connected to two external interrupt pins. One signals an 

available maximum while the other signals an available minimum. This way, the 

Arduino™ knows exactly if there is a maximum or a minimum ready to sample. Once 

their voltages are sampled, they are stored in the MCU memory and used to compute 

    . For now, just the last value is being used. However, some algorithms are based in 

prior values to deal with periods of increasing or decreasing oxygen saturation, which are 

misestimated when just instantaneous readings are used [24]. 

Recalling the Ratio of Ratios (   ) equation (2.9), it can be noticed that any gain prior to 

DC shift is irrelevant to the computation, since it cancels in the numerator and 

denominator. However, when a voltage is subtracted to the signal,     is changed since a 

subtraction is not cancelled. Therefore, when the offset value is generated by the digipot, 

is must be stored. The same happens with the subsequent gain. Those values are used for 

posterior signal reconstruction, in order to get an accurate    . The procedure is depicted 

in Figure 4.2. 
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Figure 4.2 – PPG signal reconstruction algorithm. The output of the instrumentation amplifier is 

sampled and then the signal is reconstructed in order to retrieve its original amplitude. 

As seen in section 2.2.3, commercial pulse oximeters have a calibration step that requires 

blood samples to be taken. However, this was not possible to do during this work. An in 

vitro calibration procedure may be done using finger models. Blood with variable oxygen 

content may be used to retrieve a calibration curve. This would be extremely useful to 

improve accuracy and can be done in the future. 

For now, as no calibration was done, the best that can be done is using the theoretical 

Beer-Lambert‘s law. Assuming the signal reconstruction,     is computed according to 

equation (4.4). 

 
    

   
    
        

 

    
        

  

   
    
          

  

    
          

   

 (4.4) 

where    and     are the instrumentation amplifier gain for the red and infrared 

channels,    
  and    

   are the offset shifts,      are the systolic voltage levels 

and      are the diastolic values. 

That computation is done after each minimum has been sampled. Subsequently, the     

value is used to compute      following equation (4.5). 
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4.4 Heart Rate computation 

Technically, Heart Rate (  ) is the heartbeat frequency. Therefore, an obvious source of 

information to compute    is the signal from extrema identification. In fact, the peak and 

valley detector (section 3.1.5) generates an interrupt signal on each systolic peak and 

dicrotic valley. This means that if one makes use of that signal, the cardiac period can 

easily be determined. This way, the signal from the LM555 that is used to signal the PPG 

maximum is used to restart a Timer/Counter. That Timer/Counter measures the time 

interval between systoles, thus measuring the cardiac period. Maximum signal interrupt 

was used in detriment of the minimum interrupt, since this is the one that requires less 

computation associated to its routine. It only has to sample the maximum, reconstruct the 

amplitude and store it. The diastolic interrupt, on its side, besides those functions, has to 

compute     and      (section 4.3). 

It is expected that the cardiac cycle period in resting conditions lasts between 0.67 

seconds (for 90 bpm) 1.2 seconds (for 50 bpm) [93]. Therefore, the overflow time should 

happen within these values. Using again one of the available 16-bit Timer/Counters, and 

following equation (4.1), it comes that the only prescaler that allows for 1.2 seconds of 

overflow timer is the 1024. 

Therefore, the interrupt routine triggered by the LM555 includes reading the TCNT4 

register (Timer/Counter 4 count) and restart it. The TCNT4 is then used to compute the 

   according to equation (4.6). 

 
   

       

              
 
       

     
 

(4.6) 

The    value is then store. For now, just the last value is used. Nevertheless, previous 

values are useful to compute a weighted average in order to handle with eventual 

incorrect readings. Also, it would be useful to have thresholds for heart cycle period. That 

would allow for automatic rejection of incoherent values, such as very large values 

(driven by a missed pulse) or very small (driven by noisy multiple pulses). 
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4.5 Gain and level shift control 

All the previous sections assumed a well behaved signal. However, this is not an easy 

presuppose to achieve. In fact, some conditioning circuitry addressed before (section 

3.1.4) requires some control from the MCU, namely, the signal gain and level shift. In 

this section an overview of the tried approaches will be addressed. Then, a possible 

approach to design an automatic controller to the systems is discussed. 

4.5.1 Approaches 

None of the previous developed works had controllable level shift or gain. The reason is 

that the work of Pereira [16] was just a project and did not reach practical tests. The work 

of Domingues [17] and Brás [18], on its turn, did reach experimental tests but the 

acquisition was done with a NI USB-6009 from National Instruments™, a 14-bits data 

acquisition system. As it has a very good resolution, this means that the need for sampling 

just the AC component was not discovered. In this work, however, as the Arduino™ has 

just 10 bits, it is required that the DC level is removed in order to have acceptable signal 

quality. The remaining AC component must then be amplified in order to match the ADC 

range. 

The first version of the current system did not have a manner of systematically adapt the 

signal level. Instead, it had an initial calibration process which recorded the signal 

amplitude over a period of time (for instance, 1 minute). After, the signal maximum and 

minimum were computed. A fraction of the minimum was used to subtract to the original 

signal, thus allowing for DC removal trough an instrumentation amplifier. The fact of 

using a fraction (e.g. 0.85) and not the entire value was a safety margin to account for 

eventual signal variations. In an equivalent manner, a factor greater than 1 was also 

applied to the maximum (e.g. 1.15). The value                    was used as a 

measurement of signal amplitude and was input to the AREF pin to set the ADC dynamic 

range. Figure 4.3 shows the flowchart of this calibration procedure. 

However, the PPG signal has slow fluctuations due to physiological conditions [32, 33]. 

In practice, these fluctuations were very pronounced and this calibration was not enough. 

In fact, after the signal calibration the signal rapidly went outwards the defined range, 

making it invisible to the Arduino™ ADC. Therefore, a different approach was then 

implemented. 
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Figure 4.3 – Calibration procedure in the first version of the system. 

In the current version, the system is provided with several AD5252 [73] digital 

potentiometers (digipot) that are used in signal condition (section 3.1.4). Namely, they are 

used to shift the signal in order to remove the strong DC component that would fill almost 

the entire range of the ADC and to set the gain for AC component in order to match it to 

the that range. 

To set the DC level shift, a constant DC voltage must be generated and fed to one of the 

inputs of an instrumentation amplifier. Therefore, the digipot is used in the potentiometer 

mode, with one terminal at GND and the other at +5V. To change the DC level, the 

digipot wiper must be moved towards GND terminal towards the +5V terminal, 

depending on the desired voltage. The wiper position is digitally controlled by the RDAC 

registers. The AD5252 is a dual digipot, so it has two RDAC registers: RDAC1 (0x01) 

for channel 1 wiper and RDAC (0x03) for channel 2 register. Since this is an 8-bit 

digipot, a value between 0 and 255 must be set. Recalling equation (3.12), and since the 

potential across the digipot is 5V, the output voltage is given by equation (4.7). 

 
   

 

   
   (4.7) 

where   is the wiper value, between 0 and 255. 
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To set gain, the digipot is used in the rheostat mode, whose resistance is fed between the 

pins 1 and 8 of the instrumentation amplifier (section 3.1.4). To define the resistance 

value, the wiper is moved in the same way used for the potentiometer mode: changing the 

RDAC1 and RDAC3 registers. Using equation (3.11) and knowing that the total 

resistance is 100 kΩ, the resistance is given by equation (4.8) according to the wiper 

position   (between 0 and 255). 

   
 

   
           (4.8) 

Digipots are controlled by I
2
C. So, the first thing to do is to write the corresponding 

address in the Serial Data line (SDA). That address is unique and is used to specify for 

which digipot is the information intended for. The AD5252 has 4 different I
2
C addresses 

configurable via 2 external pins that can be held at 0V or 5V, allowing for 4 digipots on 

the same bus (Table 4.3). This is useful as the system has 3 dual digipots: a 

potentiometers for DC level shift and a rheostat for DC+AC gain setting of red channel; 

the same for infrared channel; and two rheostats for AC gain of both channels [73]. 

Table 4.3 – AD5252 I2C 7-bit address, according to AD1 and AD0 pin voltages [73]. 

Device AD1 AD0 I
2
C Address 

DC+AC 

IR conditioning 
0V 0V 0 1 0 1 1 0 0 

DC+AC 

R conditioning 
0V 5V 0 1 0 1 1 0 1 

AC conditioning 5V 0V 0 1 0 1 1 1 0 

– 5V 5V 0 1 0 1 1 1 1 

 

Now that each device is uniquely identified, information can be exchanged between the 

digipots and the MCU. The communication commands will be referred in section 4.8.1. 

4.5.2 Controller 

This later conditioning approach allows for real time system adaptation. However, it 

requires a much more complex controller. Signal must be kept between constant levels to 

ensure good resolution and to avoid saturation. This controller is not implemented yet. 

Nevertheless, a theoretical solution was already idealised and will be described in this 

section. This possible approach is to define a few thresholds to control the signal 

amplitude. Figure 4.4 shows those thresholds. 
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Figure 4.4 – Representation of the desired signal ranges and threshold values for gain and offset shift 

update. 

The ideal condition is when signal maximum is between U1 and U2, while its minimum is 

between L1 and L2. When the signal exceeds U1, it is too close of the ADC upper limit, 

which means that it is dangerously close to fall outside ADC range and the digital output 

will be saturated. Conversely, when it decreases below L1, it is dangerously close to reach 

the ADC lower limit. Therefore, periodic checks must be done in order to detect when the 

signal falls outside the ideal ranges. Otherwise, comparators and logic gates may be 

combined and connected to the interrupts pins of the MCU to automatically detect these 

events without spending processor time. A possible controller to accomplish this is the 

one schematised in Figure 4.5. 

When the signal exceeds U1, three possible conditions can occur: (1) the signal minimum 

is below L1, meaning that the signal amplitude is too high – therefore, the gain must be 

reduced and the signal shifted upwards; (2) the minimum is above L2 and the signal has to 

be shifted downwards; (3) the minimum is inside the desired range, indicating a large 

amplitude and thus the gain must be reduced – however, this will lead to a drop in the 

signal voltage and it must be shifted upwards. 

If the signal maximum decreases below U2, other three situations may happen: (1) the 

signal minimum is below L1 so, it must be shifted upwards; (2) the minimum is above L2, 

meaning that the amplitude is too low and the gain must be increased – to account for 

signal amplification, it must be shifted downwards; (3) the minimum is in the expected 

range, implying that the gain must be increased and consequently, the signal shifted 

downwards. 
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Figure 4.5 – Flowchart of a possible approach of a controller to adjust signal gain and DC level. 
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When the signal falls below L1, just one non-verified condition must be happening: (1) 

the maximum is inside the desired range, meaning that the amplitude must be decreased 

and hence, the signal must be shifted upwards. The case of having a maximum above U1 

or below U2 was already accounted for. 

If the signal minimum rises above L2, one condition must be occurring: (1) the maximum 

is inside the desired range and thus, the gain must be increased and a downwards shift 

must be imposed. The cases of having the maximum outside the desired range, either 

above or below, were already referred. 

All the cases detailed above are illustrated in Appendix C. It is worth to notice that some 

of these rules are not unique. As an example, when both gain and level shift are changed, 

it may be better to accomplish just one of the tasks at a time. Or when one of the extrema 

is inside the desired range, a gain adjustment may be enough, instead of both gain and 

offset change. Different strategies may allow for different system reactions, allowing for 

a more flexible or a harder control. Moreover, quantization of the rules must also be 

defined for the desired corrections.  

It must be taken into account that no practical implementation of this controller was done. 

This scheme is simply a sketch of the controller. Much work is still to be done, being this 

an important task for the future work. For now, the digipots settings are done by software. 

Six sliders exist in a graphical user interface (GUI) that was designed and is explained in 

more detail in section 5.10. It is up to the user to regulate the values of the digipot looking 

to the signal and changing the sliders, which requires some practice and knowledge about 

the system. 

4.6 Height measurement 

A parameter that this system proposes to measure is the finger height. That is 

accomplished by the use of two accelerometers to register the arm and forearm 

orientations and, knowing the length of those segments, compute the height variation 

(section 2.3). 

To start, the accelerometers must be configured to accomplish the needs. Since speed is 

not an important issue, Output Data Rate of 1.56 Hz is selected in the CTRL_REG1 

register. The same register is used to set the Low Noise option. Moreover, High-Pass 

Filtering can be activated with different cut-frequencies if it proves to be useful (although 
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it was not tested yet). Then, to work in the High Resolution mode (14 bits), CTRL_REG2 

is written accordingly. In addition, as a static acceleration is required to know the 

orientation, the ± 2g range is selected in the XYZ_DATA_CFG register. The 

communication with the accelerometers (reading and writing) is done by I
2
C, according 

to the commands that will be referred later in section 4.8. 

Taking into account that the used accelerometers have 3 axis of 14 bits each, a total of 6 

bytes must be read, i.e. the value of six registers must be read: OUT_X_MSB (0x01), 

OUT_X_LSB (0x02), OUT_Y_MSB (0x03), OUT_Y_LSB (0x04), OUT_Z_MSB (0x05) 

and OUT_Z_LSB (0x06). As these registers have sequential register addresses, a multi-

byte read can be done, with the MMA8451Q automatically incrementing the register 

address after each reading [81]. 

One can retrieve the three measurements following equations (4.9), (4.10) and (4.11). 

 
                                      

(4.9) 

 
                                      

(4.10) 

 
                                      

(4.11) 

Since the accelerometer has 14 bits and the range is ± 2g, the sensitivity is 4096 counts/g, 

i.e. the reading must be multiplied by 1/4096. 

As referred in section 2.3, the orientation can be determined trough the roll angle (φ) 

according to equation (4.12). 

              
        

    
      

(4.12) 

To compute the height, the length of the arm and forearm segments (including the hand 

and finger) segments must be measured for each subject as well as the distance between 

the shoulder (the rotation point of the arm) and the heart. Those values are then used to 

compute the finger offset relatively to the heart according to equation (4.13). 

                                              (4.13) 

where      and      are the length and roll of the arm segment,          and          

are those variables for the forearm and        is the vertical distance between the heart 

and the shoulder. 
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As the digipots, the MMA8451Q has 2 different I
2
C addresses that are configured by the 

SA0 pin. That addresses are expressed in Table 4.4. This way, two accelerometers can 

coexist in the same I
2
C bus, as it is required. 

Table 4.4 – MMA8451Q I2C 7-bit address, according to SA0 pin voltage. 

SA0 I
2
C Address 

0V 0 0 1 1 1 0 0 

5V 0 0 1 1 1 0 1 

 

Unlike PPG signal, which requires high sampling rate, or the      and    computation, 

which must be computed once in a second, the accelerometers reading may require much 

less sampling rates. As the accelerometers are used to measure the finger height, it is 

reasonable to consider that it does not change with high frequency. However, a means of 

periodically acquire the accelerometers data is still required. 

For now, the signal is being acquired once a maximum of PPG is detected. The reason for 

this is strictly related to the fact that this occurrence was already signalled by an interrupt 

(section 3.1.5). New sampling routines may be developed in order to not overload these 

interrupt routines. In particular, the MMA8451Q interrupt flags might be useful to detect 

movement and read the new arm and forearm orientations. Also, as data sending to 

MATLAB is not synchronized, the height is computed and stored in the MCU and not 

sent. Further work still needs to be done in this field. 

4.7 Contact force measurement 

Another variable measured by the system is the contact force between the finger and the 

probe. That is done using a Force Sense Resistor
®
 (FSR

®
), as seen in section 2.4. In 

opposition to the accelerometers, which give a calibrated output and communicate 

digitally with the MCU, the FSR
®
 is an analogue sensor. Therefore, calibration and ADC 

conversion are required. 

The calibration procedure will be detailed in section 5.9.1. Since the ADC reads the 

output voltage, its transfer function must then be used to retrieve the applied force. That 

transfer function is derived in section 5.9.2 and is expressed in equation (4.14). 
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                  (4.14) 

where   is the applied force on the finger probe and    is the output voltage of the FSR
®
 

conditioning circuitry. 

The timing control for the sampling routine is, as in the case of the accelerometer, still not 

ideal. Further experimentation is required to define the best sampling frequency or the 

best way to detect the need for a new sampling. Again, for now the sampling order is 

given by one of the existent interrupt from the peak detector (the dicrotic valley in the 

case). Besides, a manner of sending data to MATLAB in the middle of the PPG data is 

still required, since at this time, it is not possible to distinguish both data. Therefore, the 

contact force is computed by the MCU but not sent to MATLAB. 

4.8 Communication 

One of the advantages of having a MCU is the capability of communication with other 

devices, might that communication be to control them or to transfer data. In the case of 

communication for devices control (accelerometers and digipots), that is done by I
2
C. In 

the case of data transfer between the Arduino™ and MATLAB, that is done by serial 

communication. 

4.8.1 I
2
C 

As referred in section 3.4.5, the I
2
C requires two wires: serial data (SDA) and serial clock 

(SCL) lines. While the SCL is a pulsed wave that dictates the transmission rate, the SDA 

has a series of changes in voltage according to a defined set of commands that follow 

reading and writing protocols. This reading and writing protocols are schematized in 

Figure 4.6. 
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Figure 4.6 –I2C interface general description for writing (top) and reading (bottom) operations. 

Adapted from [81]. 

For the writing operation, the communication protocol initiates with a START condition 

written by the master, followed by the 7-bit slave address and the      bit set to 0. Then, 

the designated slave answers with an ACK (acknowledge) and the master sends the 

register address byte. Afterwards, another ACK is sent by the slave and the data byte is 

sent by the master. If the communication is succeeded, slave sends another ACK and the 

master ends the communication with a STOP. 

In the Arduino™, the I
2
C communication is done by the Wire library. First, the 

Wire.beginTransmission function is used to send the START condition and the device 

address. Then, the instruction and data bytes are sent using the Wire.write function. 

Finally, the STOP condition is sent by the Wire.endTransmission function. 

The reading operation starts, once again, with the START command sent by the master 

followed by the slave address and      bit set to 0. Then, the slave sends and ACK and 

the master sends the register address that it wants to read. The slave signals the reception 

with an ACK and the communication is restarted, now with the      bit set to 1. 

Subsequently, the slave sends the data from the requested register. In this case, the master 

do not sent and ACK, but sends the STOP command to end data transfer. 

In Arduino™, this is done by the Wire.requestFrom and Wire.read functions. The first 

one is used to send the slave address and define the number of bytes to read; the second 

one is used to read the data sent by the slave. 

4.8.2 Serial 

The Arduino™ board communicates with the computer (or eventually, other devices) 

through Serial communication via the USB cable. A few built-in functions are used for 

I
2
C – Master Reading Data from Slave

I
2
C – Master Writing Data to Slave

Legend
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the communication. First, the Serial.begin sets the data rate (also called baud rate) for 

communication. Typical values range from 300 to 115200 bits per second (bps). The 

sampled data has 10 bits, which are transmitted as two bytes: the high byte and the low 

bytes. Therefore, as there are 4 photoplethysmographic channels acquired with a 

sampling rate of 500 Hz, at least 32 000 bps are required. The selected baud rate was 115 

200. At the other end of the communication, MATLAB connects with the serial port 

through the function serial. 

To transmit data, the function Serial.write is used. This function writes binary data, i.e. 

one byte of 0s and 1s, to the serial port. MATLAB receives these data using the function 

fread. 

4.9 Data storage / sending 

When an analogue conversion is made, a digital value between 0 and 1023 is 

returned by the ADC. Although this value might be used to perform calculations within 

the MCU, it is useful to store it on a physical memory other than the Arduino™ Flash 

memory, which has only 248 Kbytes for variable storage. Two principal routes are of 

special interest in this context: (1) sending this information to a computer for processing 

and/or storage (e.g. for MATLAB); (2) keeping the information in the system for later 

visualization and/or processing (e.g. in a SD card). 

The first route is of special interest during all process of designing, building and 

testing the device. Moreover, since the system is to be integrated as a module of a 

multichannel device, sending information to the computer is crucial. That data can 

afterwards be analysed and synchronized with other modules in order to extract additional 

information that comes from that synergy. 

The second route is useful if the system is required to work as a stand-alone 

device to record the patient signal over a large period (e.g. 24 hours), since permanent 

connection to a computer is unsuitable. That was the initial objective of the project and 

some tests with the Arduino™ SD card shield were done. However, with the introduction 

of the multichannel concept, that idea was dropped. 
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Chapter 5  

Results 

The system hardware and firmware were already presented in Chapter 3 and Chapter 4, 

respectively. In this chapter, the results of those electronic circuits and microcontroller 

code will be overviewed. This will show if the system fulfils the requirements described in 

Chapter 2. First, a summary of the system versions will be done. Then, the signals from 

each module will be presented, including the accelerometers and force sensor. The 

resulting PPG signal acquired by the Arduino™ will be present at the end of the chapter. 
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5.1 System versions 

The system has had some developments due to practical results and to new requirements. 

Therefore, three major changes led to 3 system versions, from a breadboard to a PCB 

module of the multichannel system. In this topic a quick overview of those versions will 

be made, focusing its generic modules and the drawbacks of each previous version. 

5.1.1 Version 1 

The first version of the system consisted on the hardware implemented in a breadboard 

with the control being done by the Arduino™ Duemilanove. This version was focused on 

the photoplethysmographic (PPG) signal and thus, no force sensor or accelerometer 

conditioning nor complex firmware was implemented. Besides, it was power supplied by 

voltage sources. 

This version had no real time DC conditioning as the initial approach was to acquire the 

signal during a determined period of time for each subject (e.g. 1 minute) to determine the 

baseline. From that acquisition, two pulse-width modulation (PWM) waves were 

generated and filtered to yield their DC value. One of these signals was used as DC level 

shifting (to subtract to the signal in an instrumentation amplifier) while the other was 

used as external analogue reference (AREF pin) to limit the ADC range to the PPG signal 

amplitude. Moreover, there was no sample-and-hold (S/H) module and both channels 

were separated only by the Arduino™ sampling timing. However, this introduced a 

considerable limitation. As the signal was modulated over a squared pulse of 500 Hz 

(LEDs powering), an efficient low-pass filtering could not be implemented and the signal 

was too noisy. 

There was also no AC conditioning since it was assumed that the DC component with the 

constant level removal would lead to stable signals and no further hardware processing 

would be needed. However, this proved to be a false premise. 

The system also lacked the peak and valley detector module. Their determination and the 

subsequent      computation were not done by the MCU. Instead, they were done 

offline by in MATLAB. 
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5.1.2 Version 2 

For the second version, a printed circuit board (PCB) was designed and a new version of 

the system was developed. The Arduino™ Duemilanove was again the controlling unit. 

With the first version, it became obvious that the DC calibration of the first system was 

neither reasonable nor useful, since PPG signal continuously changed its DC level during 

acquisition. Therefore, a new approach was implemented. The idea of an initial 

calibration was left and the conditioning was done by AC filtering. This way, the level 

changing was no longer a problem since it was intrinsically removed by high-pass 

filtering. The PPG signal was now ready for display and the results were very good. 

However, with AC filtering, the DC level was no longer available. Thus,      

computation was not possible, as a manner of faithfully knowing the DC level was not 

implemented. Consequently, a new way of condition the DC level was still required. 

This new version already incorporated the force sensor and the accelerometers. Therefore, 

it had the FSR
®
 conditioning module and the I

2
C communication module, required to 

convert the 5V logic level of the Arduino™ to the 3.3 V of the accelerometers. Firmware 

was also implemented to acquire these variables. 

Peaks and valleys were still determined by software in an offline processing. However, it 

was desired that this could be done online. Nonetheless, constant comparison between the 

new sample and the stored peak and valley voltages was not desired to be done by 

firmware, given its huge processor time consume. Recall that there are 4 values to 

compare each two milliseconds. That means that in each second, 2000 comparisons are 

made but at the end just 4 points are needed, i.e. the processor waste is enormous. 

Besides, the system employed a power supply module with the +5V and GND supplied 

by the Arduino™ USB cable, making it energetically autonomous. That fed the circuitry 

with +5V, GND and -5V required for integrated circuits (ICs) operation. The +3.3 V 

required by the accelerometers were directly supplied by the Arduino™ 3.3 V pin. 

5.1.3 Version 3 

The current version is the third large modification of the system. It is also implemented in 

a PCB board, but the new goal of implementing it in a multichannel system led to the 

incorporation of the Arduino™ in the PCB itself. The multichannel module is shown in 

Figure 5.1. 
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Figure 5.1 – Current version of the system. The Arduino™ Mega 2560 is implemented in the board 

along with all the remaining hardware modules: LED driver, transimpedance, sample-and-hold, AC 

and DC signal conditioning, peak and valley detector, force sensor conditioning (below the Arduino™) 

and accelerometer conditioning (below the Arduino™). 

This new version has some improvements relatively to the previous one. To begin, the 

new requirements in the analogue sampling channels, dictated that the Duemilanove 

should be upgraded to the Mega 2560. Besides, the MCU is implemented directly in the 

PCB and not interfaced with wires, as before. 

All but the signal conditioning modules are similar to the ones in the preceding version. 

In this version, it was clearly divided into two routes: AC and DC (in truth, AC and 

DC+AC). Both AC and DC conditioning are done with the support of digital 

potentiometers (digipots) in order to allow for online control of the system. 

AC conditioning is conceptually the same as before, although the signal gain is given by 

digipots in order to be automatically adjustable to different subjects. 

DC conditioning is accomplished by a DC level shift, which is accomplished by creating 

a constant voltage with a digipot and input it into an instrumentation amplifier. Then, a 

gain is set, also with a digipot. Again, this allow for subject adjustment and, more 

interestingly, for DC level and amplitude corrections during acquisition procedure. This 

allows for the system to adjust the signal to best fit in the ADC dynamic range. 
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In addition, the power supply module was no longer needed since the system is to be 

supplied by batteries that are common to all multichannel modules. 

The system has now some connectors for external sensors, such as the PPG sensor, the 

two accelerometers and the force sensor (Figure 5.2). The first one is connected with a 

DB-9 and the others have circular connectors. The panel has also two LEDs, one that 

indicates power supply and the other indicates that Arduino™ is connected to the 

computer through the USB cable. A reset button for the Arduino™ is also present. 

 

Figure 5.2 – System front panel: external sensors connectors, indicating LEDs and reset button. 

The two accelerometers are attached to a wristlet and an armlet, respectively, in order to 

maintain it fix in the subject forearm and arm respectively, but in an easy way to be 

placed and removed (Figure 5.3). 

 

Figure 5.3 –Accelerometers are attached to a wristlet and an armlet and placed in a stable manner in 

the subject forearm and arm. 

The force sensor is attached to the PPG finger probe, over the inferior side and centred 

with the probe axis in order to be as normal to the applied force as possible (Figure 5.4). 
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Figure 5.4 –Force sensor is attached to the inferior side of the PPG probe centred with its axis. 

This last version seems to be adequate to the purpose, which is reinforced by the results 

acquired with it and that will be presented in the following sections. First, results of each 

module will be presented. In these intermediate results, data was acquired with an 

acquisition platform from National Instruments™, the NI-USB 6210 since central 

modules are not connected to the Arduino™ ADC. Besides, some signals have very low 

amplitudes and the 16-bits of the NI device are more adequate to the purpose. Then, final 

PPG signal will be acquired with the Arduino™ to prove that the system is functional. 

5.2 LED driver 

The first module of the system is the LED driver. Its intent is to give controlled current to 

the LEDs in an alternated way, i.e. when one LED is ON, the other should be OFF. This 

is done in order to not mix both attenuation signals in the photodetection module. Figure 

5.5 shows the signals generated by the MCU and supplied to the LEDs. 

As expected, both digital output signals from the MCU are square waves with 5 V of 

amplitude and 2 milliseconds of period: 1 ms ON and 1 ms OFF. They are in opposite 

phase, as they should for sequential LED supply. The slope of the transition is 

exaggeratedly slow because of the low acquisition rate. In practice, the rising time is 

about is about 0.125 V/ns. 
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Figure 5.5 – LED driver signals: MCU digital output (top) pins LED_power2 (shown in red) and 

LED_power1 (blue); and voltages across the LEDs terminals (bottom): red anode and infrared cathode 

(shown in red) and red cathode and infrared anode (blue). Signals were acquired with the NI-USB6210 

at 11 kHz. 

Across the LEDs terminals, the voltage is also a square wave. Again, as expected, they 

are in opposite phase: for 1 ms red anode is higher than red cathode, meaning that the red 

LED is ON and the infrared is OFF; for the other 1 ms the positions are inverted, being 

the infrared LED ON and the red OFF. The voltage difference across both terminals is 

1.86 V when the red LED is ON and 1.27V when the infrared LED is ON. These voltage 

differences are no more that the LEDs voltage drop, which is different for both 

components. 

5.3 Photodetection and Sample-and-Hold 

The following module is the photodetection and S/H module, which has the role of 

converting the PPG probe photodetector current to voltage and separate the signal into 

two channels: red and infrared. Figure 5.6 shows the voltage signals at the end of 

transimpedance and S/H modules. 

The voltage at the transimpedance module is modulated. Both edges of the signal show an 

evident PPG waveform. However, as it can be seen in the figure detail, the signal is 

almost a square wave. 
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Figure 5.6 – Transimpedance module and sample-and-hold: the voltage output of the transimpedance 

module, corresponding to the photodiode signal is visibly modulated (top). The modulation clearly 

matches each of the split channels (bottom): red channel (in red) and infrared channel (in blue). 

In fact, the signal stays at the lower edge when one LED is on and rises to the upper one 

when the other LED is switched ON. This is due to the LEDs intensity, which is different 

from both and to the efficiency of the photodetector, which changes with wavelength, as 

well as the attenuation of light in tissues that is also distinct. 

Imposing both red and infrared channels over that signal, it is possible to see that the 

transimpedance signal edges perfectly match the split channels coming from the sample-

and-hold module. The red channel is the upper envelope, while the infrared is the lower 

one. 

When the signals are split by the S/H circuit the square modulation disappears and the 

PPG waveform becomes visible on both channels, as Figure 5.7 confirms. Nevertheless, 

is has very small amplitude and much noise. For these reasons, subsequent conditioning 

is needed, namely filtering and gain adjustment. 
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Figure 5.7 – Sample-and-Hold: the signal from the transimpedance module is split into two channels – 

red (top) and infrared (bottom). 

5.4 Signal conditioning 

As referred before (section 3.1.4), two different ways were developed for the signal 

conditioning. One consists of the DC+AC component, which is required for      

computation, and the other is the AC component. Both components were sampled with 

the chosen 500 Hz of sampling rate and are presented below. 

5.4.1 DC conditioning 

As said before, the signal after the S/H module had small amplitude and large noise, so 

further filtering and amplification was needed. That is accomplished with the low-pass 

filter and instrumentation amplifier described in section 3.1.4. Signal was acquired after 

the instrumentation amplifier output and before the last inverting op-amp. This will make 

the sampled signal inverted when compared with the usual representation in commercial 

devices. The following inverting op-amp will the invert the signal to be display in the 

conventional way. Figure 5.8 shows the acquired PPG signal for both channels. 

0 2 4 6 8 10 12 14 16 18 20
0.86

0.88

0.9

0.92

0.94

0.96

0 2 4 6 8 10 12 14 16 18 20
0.42

0.43

0.44

0.45

0.46

0.47

0.48

Time (s)

A
m

p
lit

u
d
e
 (

V
)



 

 

84 Chapter 5 – Results 

 

Figure 5.8 – PPG DC+AC component: red channel acquired with a gain of 20.4 and an offset voltage of 

742 mV (top); infrared channel acquired with a gain of 28.8 and an offset voltage of 1.07 V (bottom). 

Both signals were acquired with the NI-USB 6210 with a sampling frequency of 500 Hz. On top of each 

channel, a detail of two pulses is shown with the PPG features: systolic peak (SP), dicrotic peak (DP), 

dicrotic notch (DN) and pulse foot (PF). 

The first thing to notice is the persistent change in voltage level. It is this change in the 

signal level that makes the PPG signal retrieval difficult. If the signal has high gain, it 

will rapidly fall outside the ADC range if no DC level shifting is done. If it has low gain 

to stay inside the ADC range, its resolution will be much lower and the SNR higher. That 

is why an automatic controller to account for these variations is crucial. 

The level changes led to the temporary saturation of the infrared channel near the 20 

seconds and the reduction in amplitude of both channels. However, that is not important 

for the current analysis.  
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To examine the PPG waveform, two pulses are detailed above each channel. As it can be 

seen, the main features such as the systolic peak, dicrotic peak and valley and the pulse 

foot are well defined. Moreover, the general shape is consistent with the described in 

literature [33]. 

As exploited in section 2.2.3, these sampled signals must be reconstructed, i.e. the offset 

level and the amplification gain that are different for both channels must be 

backpropagated in order to retrieve a faithful signal for      computation. The offset 

voltage is retrieved from the digipot potentiometer wiper position according to equation 

(4.7) while the gain is computed from the digipot rheostat wiper (equation (4.8)) 

according to equation (3.10). 

For the signal shown in Figure 5.8, these values are the following. For the red channel, 

the wiper position was 13, which means a 5.15 kΩ resistance, i.e. a gain of 20.4. For the 

offset level, the wiper position was 38, which means 742 mV. As far as the infrared 

channel is concerned, the gain was 28.8 (as the wiper position was 9, i.e. the resistance 

was 3.59 kΩ) and the offset level was 1.07 V (wiper position of 55). Using these values, 

the signal before the AD623 can be reconstructed. The result is shown in Figure 5.9. 

Before that point in the circuit, the gains are the same for both channels, which means 

that they cancel out in the Ratio of Ratios (   ) formula (equation (4.4)). 

This signal can now be used to compute the     , as it will be seen in the section 5.6. 

 

Figure 5.9 – Reconstruction of the PPG DC+AC component of red channel (top) and infrared (bottom) 

from the digipot voltage and resistance values. 
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5.4.2 AC conditioning 

For the analysis of the AC conditioning, the AC component corresponding to the signal 

depicted in Figure 5.8 is show in Figure 5.10. 

 

Figure 5.10 – PPG AC component of red channel (top) and infrared channel (bottom). Signals were 

acquired with the NI-USB 6210 at 500 Hz. On top of each channel, a detail of two pulses is shown with 

the PPG features: systolic peak (SP), dicrotic peak (DP), dicrotic notch (DN) and pulse foot (PF). 

Analysing the results, it becomes obvious that the AC component of the signal is much 

more stable than the DC+AC component. This is why this component is used for display 

and for the peak and valley detector. Even around 20 seconds, where the signal increased 

until saturation and then decreased (see Figure 5.8), the AC component stayed within the 

ADC dynamic range and with reasonable amplitude. 

As far as the PPG waveform is concerned, the results are similar to the ones obtained for 

the DC+AC component. All the features are well identified in the signal. However, it 

seems that the dicrotic notch and wave are not so marked, possibly as a result of the AC 

filtering that slightly distorts the signal. 
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In the future, cutoff frequency or filter order may be adjusted in order to have a higher 

roll-off. This may prevent important components from being removed. Though, 

alterations are not very significant and the waveform is still accurate enough for display. 

AC gain is not important since that component is used just for PPG display and is not 

used for computations. 

5.5 Peak and valley detector 

As referred before, the peak and valley detection by firmware is very heavy. So, hardware 

implementation was done to not overload the MCU (section 3.1.5). In this topic, the 

results of the peak detector will be analysed. 

In order to realise if what is happening in intermediate points is synchronised, 5 seconds 

of signal are depicted in Figure 5.11. All intermediate steps of peak detector are shown. 

First, the triggering signal, i.e. the AC component of the red channel, is depicted in row 1. 

In the same row, the filtering of this signal is also shown. Filtering was done in order to 

remove the higher components of the signal, as it is the case of the dicrotic peak and 

valley that would produce false reset and sampling signals. It is visible the effect of 

filtering in the trigger signal. First, it clearly removes the dicrotic peak, yielding only one 

peak per pulse, as it was desired. This way, it is assured that the dicrotic notch will not 

trigger any sampling or reset signal. Besides, it is also notorious the delay that the 

filtering imposes, which was 0.224 ± 0.015 s for the acquired signal. 

As the module needs the instants where the PPG signal inverts its tendency, the derivative 

of the filtered trigger is used and is show in row 2. As seen, the derivative is negative 

when the filtered trigger increases and positive when it decreases. This is a consequence 

of the inverting topology of the hardware filtering. However, this has no practical effect 

on the module, since there are two comparators and both sides will be needed. 

This derivative is used to trigger the two LM311 comparators. One of the comparators 

(row 3) is responsible for generating the interrupt for valley sampling by the MCU in the 

rising edge and also triggers the LM555 timer on the falling edge. This LM555 is used for 

peak reset and its output is represented in row 4. Likewise, the other comparator (row 5) 

is used to generate the peak sampling interrupt signal on the ascendant flank and trigger 

the LM555 (row 6) on descendant flank for valley reset. 
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Figure 5.11 – Peak detector with intermediate steps. Raw AC component (in blue) and subsequent 

filtering (in red) used as triggering (row 1); derivative of the filtered trigger (row 2); LM311 

comparator for valley sampling (row 3) and the corresponding LM555 for peak reset (row 4); LM311 

comparator for peak sampling (row 5) and the respective LM555 valley reset (row 6); peak detection 

input (in black) and output (in blue) for red channel (row 7) and valley detection input (in black) and 

output (in red) for red channel (row 8); the same for infrared peak (row 9) and valley (row 10) 

detection. Dashed vertical lines show the instant when the interrupt signal for sampling is given to the 

MCU (descendant flank of the respective comparator output). 
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As shown, the descendant flank of the comparator signal does trigger the respective timer 

one-shot pulse. These one-shot pulses are used to temporarily connect the capacitor of the 

peak detector to ground and thus discharge it, making it ready to sample the subsequent 

pulse. The pulses of the first LM555 (row 4) are used to reset the peaks signal, as it can 

be seen by the abrupt decrease in voltage of the peak detector output (show in blue in 

rows 7 and 9). The pulses of the second LM555 (row 6) are used to reset the valleys 

signal, as they are synchronized with the down step of the valley detector (red in rows 8 

and 10). 

Both reset signals occur before the following peak or valley, as it is required. In the case 

of the valleys, the reset signal is given approximately in the middle of the pulse, which 

means that the module has plenty of time to sample the new valley. Conversely, in the 

case of peaks, the reset signal is given almost at the time of the new peak, letting less time 

for its sampling. This is a consequence of the asymmetry of the PPG signal, or rather, of 

the cardiac cycle. It has a fast pressure increase when the chambers close and a slower 

decrease in pressure as the blood propagates through the arterial tree [22]. However, this 

time interval seems to be adequate, at least for the acquired signal which had a heart rate 

(  ) of 58 bpm. Simulations done and shown in Appendix B reinforce the fact that the 

system is reliable. Though, some adjustments can be done. Namely, if the comparator 1 is 

used for both peak and valley sampling instead of just valley sampling, comparator 2 

rising edge could be used to reset the peak detector. Nevertheless, these alterations must 

be studied if further improvements are required, namely with different    and pulses of 

different subjects. 

The 4 outputs of the peak detector are shown below. The original red channel signal is 

shown in black in row 7 and the peak detector output is shown in blue. It is visible the 

reset signal immediately prior to a new peak, as the voltage rapidly decreases to a low 

value. Then, the voltage increases with the PPG pulse until a maximum has been reached. 

From there, the PPG signal decreases but the peak detector output is held to wait for 

signal sampling. The sampling routine is run by an interrupt signal coming from the 

rising edge of the comparator. That instant is shown as a dashed vertical line. When a 

new reset signal is given, the voltage decreases again in order to sample the new peak. 

The same is applied for infrared channel in row 9). 

The inverted PPG signal is depicted in black in row 8 and the respective valley detector 

output is shown in red. The procedure is similar to the one referred above: after a reset 

signal occurs the voltage increases with PPG inverted signal and is held at its maximum 
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for sampling (dashed line) before a reset signal is sent again. The same is done for 

infrared signal (row 10). 

It is notorious a slow decrease in peak and valley voltage steps. This is due to the 

capacitor discharge and cannot be eliminated. It is possible to adjust the capacitor to 

decrease that drop (increasing capacitance), but that will lead to slower slew rate of the 

peak and valley detectors. The decrease in voltage is around 4 mV but depends on peak or 

valley voltage and, of course, on pulse duration. For the acquired signals, the drop in 4 

mV is consistent with the value predicted in section 3.1.5.1. This value leads to a change 

of less than 0.1 % in     , but again this change is dependent both on signal DC level 

and amplitude. Therefore, if an improvement of this system is required, the capacitor 

value can be altered and the sampling signals can be given earlier. 

In order to realise that the system consistently detects the peaks and valleys, an 

acquisition of 100 seconds is shown in Figure 5.12. As it can be noticed, the signal does 

not have a constant level. In fact, it significantly changes over time. However, the system 

always follows the peaks and valleys, proving that it works well and with the desired 

synchronisations. Therefore, it is useful for peak and valley detection by hardware, 

eliminating the need to be done by firmware at the cost of processor time consume. 

 

Figure 5.12 – Peak and valley detection. Peak detection input (in black) and output (in blue) are shown 

for the red (row 1) and infrared channel (row 3); valley detection input (in black) and output (in red) 

are also shown for red (row 2) and infrared (row 4) channels. 
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5.6 Pulse oximetry 

The      computation relies on the reconstruction of the DC+AC component peaks and 

valleys. Those are to be sampled from the peak and valley detector described above. For 

now, and as a proof of concept,      will be computed from the reconstructed signal in 

Figure 5.9. This is due to the lack of online DC level adjustment and to the fact that the 

dynamic range of the Arduino™ ADC is not the best choice, having less SNR. Thus, 

maxima and minima of the signal are computed by the MATLAB function peakdet and 

the results are shown in Figure 5.13. 

Attention must be paid to the fact that the signal is inverted, i.e. the peaks (systolic peak) 

are marked with black stars, while the signal valley (the end of the cycle) is shown with 

green stars. 

 

Figure 5.13 – PPG signal peaks (black stars) and valleys (green stars) used for SpO2 computation. 

This peak and valley voltages can now be used to compute the     and consequently 

     according to equations (4.4) and (4.5), respectively. The resulting values are 

depicted in Figure 5.14. 

The first thing that comes with the analysis of the      evolution is the peak around 20 

seconds, which corresponds to a significant decrease in      – to about 80%. This is due 

to the saturation that occurred in the infrared channel and that was previously referred. 
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Figure 5.14 – SpO2 values computed from the peak and valley values of the PPG signal. 

Recalling that the DC+AC component is inverted, it is clear that the valley value of 

infrared channel is increased (since the signal did not reach its minimum value as it 

saturated). Therefore, its amplitude is assumed as lower than its actual value and that 

leads to a smaller     according to equation (4.4). From Figure 2.6, it is notorious that 

this fact leads to a decrease in     . Therefore, 4 pulses around 20 seconds will be 

discarded. That results in a      value of 87.8 ± 0.3 % for the remaining 75 pulses. This 

leads to two main conclusions: first, the value is lower than the expected and second, it is 

fairly stable. 

The low      value may be explained by the fact that no sensor calibration was 

performed. Actually, as referred before (section 2.2.3), when light scatter and nonlinear 

absorption are considered,      tends to increase. Moreover, the oscillations in the signal 

may somehow affect the      values since signal amplitude is wrongly overestimated as 

the signal decreases and underestimated when the signal increases. If these 

miscomputations are not similar in both channels,      values can be distorted. 

Furthermore, the results were taken just from one subject. Acquisitions with more 

subjects must be done to realise if this deviation is systematic. 

Although the value may be inaccurate, it remains quite constant, even with large 

fluctuations of the DC+AC component (which can exceed the 100% of signal amplitude), 

provided there is no signal saturation. This seems to mean that the system has good 

precision and repeatability, although still lacking accuracy. 
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5.7 Arduino™ acquisition 

All the results shown above were acquired with the NI-USB 6210 because intermediate 

points were not connected to the Arduino™ ADC. However, the system is functional and 

both AC and DC+AC components can be acquired with the MCU. Figure 5.15 shows 25 

seconds of the DC+AC PPG component acquisition done by the Arduino™ with a 

sampling frequency of 500Hz. 

  

Figure 5.15 – PPG DC+AC component for red channel (top) and infrared channel (bottom). Signals 

were acquired with the Arduino™ with a sampling frequency of 500 Hz. Many oscillations in the level 

voltage can be observed. 

As it can be seen, the signal has some oscillations in the DC level. That confirms the early 

statement and clearly demonstrates the need for an efficient controller to regulate offset 

level and gain. Since that controller is not developed yet, an ideal gain was not set. 

Therefore, for the signal to not saturate too often, gain was reduced. With this, a 

significant part of the ADC range is unused and the SNR is lower. 

Analysing each individual pulse, the signal quality is unexpectedly good. Each pulse has 

an amplitude around 1 V, which is just one fifth of the total range of the ADC. However, 
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the waveform is ―clean‖ with no visible noise and with all features present. This seems to 

indicate that this amplitude may be reasonable and that the controller may not have to be 

very aggressive. If it had to adapt the signal conditioning too often, the peak and valley 

voltages would be compromised since the DC level would change too much times at the 

middle of a cardiac pulse, thus invalidating the amplitude results. 

In part of the pulses, a second peak is observed for both the Arduino™ and NI 

acquisitions. That was not expected and can be owed to two factors. First, it can be due to 

some reflection at the patient finger arterial ramifications. The second explanation may be 

hand or finger tremor, which produces alterations like these in the signal [33]. To confirm 

this, signals need to be acquired for more subjects. 

As far as the      is concerned, the computed value was 91.5 ± 1.1 %, which means a 

better result than the previously computed, but still away from the typical healthy value 

(97% [47]). The lack of calibration may account for this deviation. 

The Arduino™ also samples the AC component. Figure 5.16 depicts the AC component 

corresponding to the PPG signal of Figure 5.15. 

 

Figure 5.16 – PPG AC component for red channel (top) and infrared channel (bottom). Signals were 

acquired with the Arduino™ at 500 Hz. The signal is much more stable than the DC+AC component. 
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Again, it can be noticed that this component is much more stable than the DC+AC signal. 

That corroborates the idea of using this component for PPG display. No gain change is 

usually required, which allows for a better exploitation of the ADC dynamic range. 

Consequently, the SNR is increased, as the quantization error is less significant. 

5.8 Height measurement 

To test the height measurement module, acquisitions of the PPG signals were done with 

varying finger heights relatively to the heart. The experimental protocol started with the 

subject holding his arm completely pointed downwards and then, increases of 20 cm were 

performed each 1 minute, up to the arm was completely vertical pointing upwards. The 

tested heights ranged from – 0.6m (60 cm below the heart) to + 0.8 m (80 cm above the 

heart). The accelerometers output is depicted in Figure 5.17. 

 

Figure 5.17 – Accelerometers 3-axis outputs for the forearm (top) and arm (bottom). The Y axis (shown 

in green) is aligned with the arm and forearm axis and is the best measure for height estimation. 

As it shows, the y-axis of accelerometer 1 is aligned with the arm axis while the y-axis of 

accelerometer 2 is aligned with the forearm axis. Therefore, these are the best axis to 

compute the height, since this is the one that define the increase or decrease in height 

when the subject moves the arm. Analysing Figure 5.17, it is possible to distinguish the 

different height levels as the y-axis output increases from -1 g (vertical pointing 

downwards) to +1 g (vertical pointing upwards). Both x- and z-axis are related with arm 

rotation and change as the subject rotated the arm when changing the height level. 
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To realise the alterations in the PPG signal as the finger height changes, both DC+AC and 

AC components were acquired during the procedure. Results are shown in Figure 5.18. 

 

Figure 5.18 – PPG signal (top and middle) with different finger heights (bottom). Red channel (shown 

in red) and infrared channel (shown in blue) are illustrated both for the DC+AC (top) and AC (middle) 

components. Vertical dashed lines show the instants when the height was increased. On top of DC+AC 

component, one pulse is depicted for each height level. 

Looking at Figure 5.18, it is notorious that the PPG signal significantly varies with finger 

height. The most notorious alteration is the DC level, which rises as the height increases. 

This can be explained, at least partially, by the decrease in the venous blood that occurs 

when the finger is lifted. In fact, the lower the finger, the more blood tends to accumulate 

in the veins, as well as in the arteries as non-pulsatile blood. When the arm is raised, the 

hydrostatic pressure decreases and less blood accumulates. This way, the light is less 

attenuated and the signal is stronger. 

Furthermore, it is possible to see that the signal amplitude also changes. This can be 

explained by the transmural pressure (   ), as seen in section 2.3. The change of height 

influences the hydrostatic pressure and with that, the    . PPG amplitude is maximal 

when     is zero and decreases when it leaves that region. The maximum amplitude was 

reached at +60 cm of finger height. Although, it is not possible to affirm that this is the 
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point of zero    , only, that probably, it is the closest one. However, that is not the goal 

of this work. 

As expected, this change in amplitude is also seen in the AC component. Besides, the 

PPG waveform also changes its morphology, namely being the dicrotic notch less 

prominent. When the arm is totally lifted, this feature is almost imperceptible. 

To realise the effect of height changes in     , its value for all pulses is depicted in 

Figure 5.19. 

 

Figure 5.19 – SpO2 values computed from the signal with variations in finger height shown in Figure 

5.18. Dashed lines show the instants of height change. Substantial variations are seen, especially after 

the height change and before signal stabilization in that step. 

As it can be seen, considerable fluctuations in      occur, especially after a step in 

height is changed and the signal has not established yet. It is even possible to get values 

of - 60 % of     , which clearly do not have any clinical significance. The value of      

for all the 522 detected pulses is 81.6 ± 24 %, showing a low accuracy and a low 

precision. However, if pulses below 60 % are assumed as miscomputed due to height 

change and discarded, the results improve to 87.3 ± 9 %. This shows a value very 

consistent with the one obtained for static height (Figure 5.14) although with 

comprehensive 30 times more variations. 

This means that height measurement is important to understand the values of     , since 

these values may be erroneous after a considerable change in height. This makes the 

accelerometers useful for the pulse oximetry system, in addition to their importance for 

an eventual blood pressure monitoring (as seen in section 2.3). 
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5.9 Contact force measurement 

The force sensor output strongly depends on the configuration and on the gain resistor, 

Moreover, part calibration is required if accuracy is needed [50], as it is the case of this 

system. Therefore, an experimental setup was developed to calibrate the sensor. 

Subsequently, a curve fitting was done in order to obtain a transfer function. That curve is 

stored in the MCU and used afterwards to compute the contact force. This section will 

overview this calibration and curve fitting, and will, at the end, present results related 

with the PPG signal evolution when contact force is altered. 

5.9.1 Calibration setup 

To test the repeatability of the sensor, a calibration setup was developed, using a 

computer controlled linear actuator. The actuator was a Zaber T-LA 28A, a linear 

actuator with 0.1µm resolution and 60 mm of maximum travelling distance. The actuator 

was placed over a linear stage. In order to obtain a force instead of a displacement, a 

spring with a known force constant was coupled to the end of the actuator. The other end 

of the spring was in touch with the FSR
®
, which was rigidly attached to a fixed platform. 

The calibration setup is shown in Figure 5.20. 

 

Figure 5.20 – FSR® dynamic calibration setup using the Zaber T-LA 28A linear actuator. The FSR® is 

fixed and the actuator pushes the spring against it, producing a determined force according to the 

displacement. 
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Via the RS 232 port, a command is sent by the computer to the actuator and the screw is 

turned to reach the desired position. As the linear actuator travels over the stage, the 

spring is compressed between the actuator and the FSR
®
, as Figure 5.21 shows. If the 

spring is compressed within its elastic limit, it is possible to compute the applied force by 

the Hook‘s law given by equation (5.1). 

        
(5.1) 

 

Figure 5.21 – Schematic of the FSR® dynamic calibration experimental setup. The linear actuator 

moves and compresses the spring against the FSR®. As the displacement and force constant are known, 

the applied force can be calculated. 

In order to obtain a better distribution of the applied force, a rigid coat with the diameter 

of the sensing area was added over the sensor [48]. That coat can be seen in Figure 5.20. 

As mentioned before (and seen in Figure 2.11), the FSR
®
 has a turn-on force, i.e. an 

activation threshold below which the sensor does not respond. Since that threshold is 

different from part to part, it must be determined. However, the previous experimental 

setup does not allow for its accurate determination. This is due to the difficulty of 

determining the exact point at which the actuator contacts with the sensor. 

In order to determine that threshold, another experimental setup was developed. The 

sensor was placed horizontally and small spheres of lead (with approximately 0.1 g) were 

placed over its active area. Thus, knowing the weight of the spheres (measured with a 

weighting scale), one can compute the force needed to activate the sensor. As before, a 

small coating was placed over the active area to have a uniform application of the force 

over that entire region. 
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5.9.2 Calibration curve 

To obtain a calibration curve, the FSR
®
 was tested with several values of resistor RG for 

each configuration. For each resistor, 25 repeated tests were performed. Each test 

consisted of 400 sequential steps of the linear actuator with 25μm each. This totalized 10 

mm of travelled distance, i.e. of spring compression. Figure 5.22 shows two of those 

tests, one for the voltage divider conditioning, and the other for the current-to-voltage 

converter. 

 

Figure 5.22 – FSR® output voltage of the calibration procedure for the voltage divider configuration 

with again resistance RG=56 kΩ (left) and with the current-to-voltage converter with a gain resistance 

RG = 5.6 kΩ (right). Values below zero mean that no contact with the sensor was made. 

To test the repeatability of the FSR
®
 response and the conditioning circuitry, the 

responses of the 25 trials were compared and a mean and a standard deviation for each 

displacement were computed. Figure 5.23 shows an example of that computation. As it 

can be seen, in general, the responses are consistent, although the accuracy of the sensor 

is known to be low. 

Table 5.1 shows the maximum standard deviation of all the 25 trials and all the 400 

different displacements. As different values of RG may or may not saturate the response, 

i.e., may or may not reach approximately 5 volts, to obtain a more truthful value, the 

FSR
®
 response was normalized between 0 and 1. 
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Figure 5.23 – Mean (black line) and standard deviation (red error bars) for one of the experimental 

tests (current-to-voltage converter with a gain resistance RG = 5.6 kΩ) with the actuator tip starting 

always in the same position. Values below zero mean that no contact with the sensor was made. 

As the maximum standard deviation means the biggest deviation of a specific 

displacement from the mean curve, this was the criterion to choose the best configuration. 

It is worth to notice from Table 5.1 that 4 of the 6 best results (including the first one) are 

for the current-to-voltage converter and that 5 of the 7 worst results (including the two 

worst) are for the voltage divider. Therefore, it can be concluded that the current-to-

voltage converter is the best configuration in terms of repeatability. This is in agreement 

with the information on the sensor datasheet [50]. A further improvement can employ 

better conditioning circuits, as the one referred in [83]. 

Table 5.1 – Maximum standard deviation of the 25 trials with 400 displacement points for different 

values of RG. Results for both configurations are shown. The FSR® response was previously 

normalized. 

Voltage divider Current-to-voltage converter 

                            

2.2 0.0453 2.2 0.0326 

3.3 0.0420 3.3 0.0354 

5.6 0.0418 5.6 0.0416 

8.2 0.0427 8.2 0.0327 

10 0.0504 10 0.0466 

16 0.0365 – – 

33 0.0347 – – 

56 0.0573 – – 
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To test the reproducibility of the FSR
®
 response, 25 trials were made with different initial 

positions, i.e. with the actuator tip acting in different points of the FSR
®
 sensing area. 

Some of these positions were purposely and exaggeratedly misaligned to simulate real 

incorrect positioning by the patient. Figure 5.24 shows the results of this calibration. 

 

Figure 5.24 – FSR® response for different misaligned contact positions: the raw results (left) show a 

large discrepancy; when the activation linear is superimposed for all trials (in 2 mm of step position), 

better results are achieved (right). The current-to-voltage converter with RG = 7.67 kΩ was used. 

As it can be seen, the 25 trials lead to very discrepant results. However, the initial 

position is different from trial to trial and so is the displacement for which the first 

contact with the sensor is made. That can explain part of that discrepancy. Therefore, it is 

reasonable to shift all the results to the same original position, e.g. for 2 mm. Somehow, 

this simulates the condition of having the contact point at the same displacement for all 

the 25 trials. The resultant responses are shown in the right side of Figure 5.24. A much 

less dispersion of the results is obtained. 

Even though, it is notorious that the point of application is important and can influence 

the output of the sensor. In fact, as Figure 5.25 shows, a much greater dispersion is 

obtained for this case when compared with the one for the trials with the same initial 

position (Figure 5.23). This is due to the fact that the initial position is not centred with 

the active area for all trials. Thus, it results in a shearing component of the applied force 

to which the sensor does not respond well [83]. This misalignment was sometimes 

exaggerated but aims to simulate real conditions where the subject finger may not be 

centred. 
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Figure 5.25 – Mean (black line) and standard deviation (red error bars) for one of the experimental 

tests (current-to-voltage converter with a gain resistance RG = 7.67 kΩ) with the actuator tip at 

different initial positions. 

Thus, the sensor must be placed on the PPG sensor case in a way that the applied force is 

not likely to be other than normal to its active surface. 

In order to obtain a value for the activation threshold, the signal of the sensor was 

measured when varying the weight placed upon it. The results for 10 trials are shown in 

Figure 5.26. 

 

Figure 5.26 – Calibration results for FSR® turn-on threshold. The dashed line shows the voltage 

threshold defined by visual inspection of the results. 
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The dashed line shows the voltage threshold, which was defined by visual inspection. As 

it can be seen, below that threshold the voltage is similar and almost zero for all mass 

values. However, when the output crosses the threshold, it significantly differs from zero 

and varies with the placed mass. The voltage does not always follow a monotonic 

behaviour, which is a consequence of the sensor low accuracy. Nevertheless, it is 

notorious the presence of a well-defined threshold. For the 10 trials, that threshold varied 

between 8.2 and 9.9 grams (Table 5.2). This means that the threshold is between 0.080 N 

and 0.097 N (since the force is the product of the mass by the gravity acceleration). The 

mean turn-on threshold for this part was computed as                 . 

Table 5.2 – FSR® calibration results: turn-on threshold determination. 

Trial 
Turn-on 

threshold (g) 

Turn-on 

threshold (N) 

1 9.6 0,094 

2 9.7 0,095 

3 8.3 0,081 

4 8.2 0,080 

5 9.9 0,097 

6 8.4 0,082 

7 9.1 0,089 

8 9.4 0,092 

9 8.9 0,087 

10 8.8 0,086 

 

Combining this with the previous results and knowing that the spring used had a force 

constant of 0.205 N/mm, it is possible to get a calibration curve for the FSR
®
. The 

calibration is done for the current-to-voltage converter (that was previously seen to yield 

best results) and for the 5.6 kΩ gain resistance (that was found to best fit the desired force 

range). 

Accordingly, the 25 trials shown in the right side of Figure 5.22 are shifted to the same 

initial position, as done above. That initial position is set to the 0.088 N computed above. 

Then, a curve is fit to data, ignoring the points below 0.088N. The curve that best 

matched data was a second order polynomial and the results are shown in Figure 5.27. 

The calibration curve is given by equation (5.2). 
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                  (5.2) 

where   is the applied force and    is the voltage measured at the output of the FSR
®
 

conditioning. 

The Root Mean Square (RMS) error for this fitting was             . A first order 

fitting would be expected, as the FSR
®
 has a hyperbolic resistance-force relation (Figure 

2.11). However, a very restricted range was used and that may explain this discrepancy. 

In fact, a first order fitting would give an RMS value of             , which is greater 

than the one obtained for second order fitting. 

 

Figure 5.27 – FSR® calibration results: mean response (black) and best quadratic fitting curve (red) for 

the current-to-voltage converter with a gain resistance RG = 5.6 kΩ. 

At the time of FSR
®
 calibration, the range of contact force was not defined. This is the 

reason why it was tested only up to 1.6N. In the future, the sensor can easily be calibrated 

to higher values since all the procedure has been described. The force range will 

determine the ideal gain resistance. 

In a later stage, if pressure calibration is required, using the definition of pressure – which 

is force per unit of area – and as the active area of the sensor is known, the pressure 

calibration curve can be obtained.  
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5.9.3 Results 

Now that the FSR
®
 response has been determined, PPG signals can be acquired with 

varying contact force to see how this variable affects the results. For that, acquisitions 

were made with a protocol to periodically change the force that the probe applies on the 

finger. Approximately every 20 seconds the contact force was altered by compressing the 

probe against the finger. The FSR
®
 output is show in Figure 5.28. A gain resistor of 5.6 

kΩ was used. 

 

Figure 5.28 – FSR® output of the contact force between the sensor probe and the subject finger: 

acquired signal (top) and filtered signal to remove signal spikes (bottom). 

As the signal has several spikes, probably due to bad contact between the sensor plates, a 

digital filtering was done. The chosen cutoff frequency was 10 Hz. It is thus evident that 

the hardware must accomplish some filtering for the FSR
®
 signal. After the filtering, 

there is still a visible spike, but the signal stability is significantly improved. 

To examine the alterations that contact force has over the PPG signal, both DC+AC and 

AC components were acquired simultaneously. Results are show in Figure 5.29. 

As it can be seen, contact force strongly influences PPG signal. First, in has effect in the 

DC level. Namely, an increase in exerted force leads to an increase in DC level. 

Conversely, a decrease in force leads to a decrease in DC level. 
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Figure 5.29 – PPG signal (top and middle) and corresponding contact force (bottom). Both DC+AC 

component (top) and AC component (middle) are shown for red channel (illustrated in red) and 

infrared channel (illustrated in blue). The instants when the contact force is altered are shown with 

vertical dashed lines. At the top of the DC+AC component, a detail of two PPG pulses for each force 

step are shown. 

This can easily be understood if we think that the compression of the finger reduces its 

thickness. Therefore, the light optical path length is reduced and more light reaches the 

photodetector. Other explanations might not be so obvious, such as alterations in 

scattering or some physiological responses. These are not well understood and were not 

object of this work. 

Moreover, there is also a notorious change in signal amplitude of PPG signal. That can be 

explained by the change in     that results from the change in external pressure (recall 

section 2.3). The maximum amplitude takes place around the 30 seconds, during the 

second step of contact force. Before and after that step, the signal amplitude is reduced, 

indicating that     is probably moving away from its null point. 

This change in amplitude is also seen in the AC component. However, this is very stable, 

with a constant level. Although some pulses around 40 seconds are saturated, this is not 

significant and could easily be accounted for with a change in signal gain through the 

digipot. 
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Another relevant issue is the magnitude of the contact force. For the acquired signal, the 

maximum contact force measured was around 1.5 N, which is a small force. Though, the 

applied force in the PPG probe was certainly higher than this. Analysing the results and 

the probe design, two explanations can be found. First, the actuation method is far from 

ideal. It was accomplished by manual compression of the PPG probe over the middle of 

the PPG probe length, in the alignment of the LEDs and photodiode. However, the probe 

rotation axis (that allows for its opening and closing) makes the force to be applied on the 

finger in the opposite end to that axis. This way, the force is exerted far from the 

photodiode, misrepresenting its real value. A more consistent actuation method, such as a 

screw at the middle of the PPG probe with the sensor over its tip would be more efficient 

and accurate. Moreover, the curvature of the PPG probe (seen in Figure 5.4) inhibits the 

contact point to be done on the inferior side of the finger, where the FSR
®
 is placed. 

Instead, a significant part of the force may be received by the lateral surface of the finger. 

A flat surface would be more appropriated to the force measurement. In the future, if 

force range is proved to be considerably higher, the turn-on threshold of the FSR
®
 may 

become insignificant considering the total range and thus, may be ignored from the 

calibration process. 

To understand if the contact force variations and the resulting PPG signal alterations 

affect the     , Figure 5.30 shows the computed values from the signal shown in Figure 

5.29. By its analysis it is possible to realise that the value of      varies in accordance 

with contact force changes. The mean      was 86.8 ± 1.4 %. This is similar to the value 

computed for the static contact force (Figure 5.14) but almost 5 times more disperse. 

 

Figure 5.30 – SpO2 values computed from the signal with variations in contact force shown in Figure 

5.29. Considerable variations are present, which indicate that contact force takes an active role in PPG 

signal quality. Dashed lines indicate the instants in which force contact changes. 
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5.10   Graphical User Interface 

Since the new course of the project is to make this a module of a multichannel system, a 

new question arises. Conversely to the initial approach, which was to develop an 

embedded device, this new configuration requires an interface for the operator to see 

what data is being acquired. Besides, as the system is not yet self-controlled, some 

settings are required, namely the choice of the signal gain and level shift described in 

section 3.1.4 and that was not implemented in the firmware, as discussed in section 4.5. 

This way, a graphical user interface (GUI) was developed in MATLAB in order to 

communicate with the MCU. 

The GUI has the task of initialising the system, as the creation of a serial port – trough the 

MATLAB function serial – forces the Arduino™ to reset. Whenever the Arduino™ 

resets, it tries to establish contact with MATLAB. That is done sending a specific 

character over the serial port that will be recognised by MATLAB. When it detects that 

Arduino™ is communicating, it returns another specific character. Then, the Arduino™ 

sends some variables, such as the sampling frequency for MATLAB to display the 

graphics properly. 

Afterwards, MATLAB sends a set of important variables to Arduino™, such as the 

digipots settings for adjusting the gain of AC component and both the gain and level shift 

of the DC+AC component. That is done by 6 sliders that the user must regulate in the 

GUI in order to correctly condition the signal. This is a temporary approach since an 

automatic controller is to be implemented. However, while it is not developed, this 

solution seemed the best. 

Some other information related with force and height measurements are sent by 

MATLAB to the Arduino™. Examples of that information are the arm and forearm 

lengths, which are used to compute the increase or decrease in height, according to the 

computed orientation of the arm (section 4.6). To finish the settings area, some 

information related to the data acquisition time is defined. 

The display area of the GUI contains 3 axis to show the PPG signal. Two of the axis are 

for display of the AC component of PPG (one axis for the red signal and other for the 

infrared). The remaining axis is for the DC+AC component display of both cannels. As 

referred before, this component will not be needed in the final version but is used here for 

testing purposes. 



 

 

110 Chapter 5 – Results 

There are also two boxes for      and    display. For now, these values are computed 

by the Arduino™ but are not sent to MATLAB. Further synchronisation is needed for this 

information to be exchanged. Height and force measure have also a dedicated space in the 

GUI. Although, like      and   , these parameters are not shown in real time, as 

synchronisation is still unsatisfactory. 

Nevertheless, all these parameters –     ,   , height and force – are currently computed 

by the MCU and sent to the MATLAB if continuous PPG signal is not send. The reason 

is that a manner of accurately distinguish the arrival of these values which are not 

periodic from the PPG signal which is sent periodically was not yet implemented. 
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Chapter 6  

Final Remarks 

In this chapter, the architecture of the developed system will be summarised. Moreover, 

the obtained results will be discussed in order to assess if the system fulfils its purposes. 

Furthermore, a set of proposals for future work will be presented. 
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6.1 Conclusions 

The continuous monitoring of oxygen saturation (    ) is a primary indicator of the 

patient physiological state and it is intensively used in critical care and anaesthesiology. 

The present work aimed to develop the hardware for a pulse oximeter that allowed for the 

determination of      of a subject and the display of the photoplethysmographic (PPG) 

waveform. Results obtained for the      show a slight deviation from the expected 

value, while PPG waveform is in agreement with the literature. Therefore, the developed 

system seems to be capable of fulfil its purposes. However, some firmware still needs to 

be programmed as this was not the goal of the present work. 

Regarding the hardware, two sample-and-hold (S/H) systems were employed to separate 

the red and infrared channels at the transimpedance module output. This allowed for the 

individual adjustment of the signal amplitude of both channels to the dynamic range of 

the ADC. Two different conditioning routes were used, one regarding the pulsatile (AC) 

component, which is used for PPG waveform display, and other regarding the complete 

signal (DC+AC) which is used for      computation. 

     was computed from peaks (systolic peak) and valleys (end of diastole) of the 

DC+AC signal which were retrieved by hardware – using a peak detector. The 

computation was done online by a microcontroller unit (MCU) each time a new pair of 

peak and valley was available. Interrupt flags were used to signal that availability. The 

results indicated a      value lower than the expected for a healthy subject (     

         ). Two possible explanations can be the non-calibration of the system and 

the varying signal level. Regarding the calibration, all commercial systems have an initial 

in vitro calibration, based on blood samples with varying oxygen content. This was not 

done in the current work and may allow for a better calibration curve of the pulse 

oximeter. Concerning the second explanation, algorithms can be used to deal with PPG 

signal variations avoiding its miscomputation. Heart Rate (  ) was also computed 

making use of the interrupts referred above. 

A set of two accelerometers was implemented in the system and used to retrieve the arm 

and forearm orientation and thus, the height of the finger relatively to the heart. The 

accelerometry module is fully functional and the concept seems adequate to the purpose. 

Changes in height are associated with changes in PPG signal, as it was expected. 
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A force sensor was also incorporated in the system to measure the contact force between 

the PPG probe and the finger. It responds to changes in force level, which are related to 

changes in PPG signal. However, the force value was miscomputed due to the non-planar 

positioning of the sensor and to the fact that a manner of consistently applying a force 

was not achieved. 

As far as cost is concerned, the developed system has an approximate cost of 250€. 

However, significant part of the cost is due to the Arduino™ (60 €) and to the PPG probe 

(45€). Regarding the Arduino™, a common MCU can be employed, allowing for a 

considerable cost saving. Concerning the PPG probe, the system does not need a special 

one and any probe existent at the hospital where the system is to be implemented can be 

used. This way, the module total cost may be reduced to 150€. In addition, it is worth to 

mention that the presented prices are unitary, meaning that buying in large quantities will 

significantly decrease the total price. Regarding commercial devices, experimental 

hardware modules with      and PPG display cost around 270€ [94], while modules 

with pulse artifact suppression can reach 380€ [95]. These modules include only the 

hardware PCB with a MCU responsible for system control and computation. The system 

does not include built-in display or encasement. Therefore, they are comparable to the 

module develop during the present work. When it comes to fully assembled clinical 

modules, prices can easily reach 1000€ [96, 97]. 

Nevertheless, it was never the goal of this work to develop a low cost pulse oximeter, but 

rather a pulse oximeter that could be implemented in a multichannel platform that is 

being designed at this group. The platform aims to be a new tool for cardiac condition 

assessment, with the integration of different sensors to evaluate different clinical 

parameters. It is believed that this synergy will bring added value over the traditional 

methods thus, being an important advance in cardiac diseases screening in the medium-

term. 

The system is currently implemented in a printed circuit board (PCB) module, along with 

the MCU. Although some firmware is not fully developed, the module is ready for the 

integration in the platform, which will be taken to clinical environment. These tests will 

allow for the assessment of the system reproducibility and will define the need for further 

adjustments or alterations. 
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6.2 Future work 

The work developed during this year was primarily centred on hardware for pulse 

oximetry. Though, some firmware was also implemented, mainly for PPG signal 

acquisition and for      and    computation, as well as for finger height and contact 

force measurements. 

Whereas hardware is working properly and fulfils the requirements, firmware (or 

software, depending on the course that the multichannel system will follow) still needs to 

be improved. Nevertheless, some enhancements can also be done to hardware. 

6.2.1 Power consumption 

One of the important aspects to take into account with a system like this is the power 

consumption. As seen before (Chapter 3), part of the hardware is supplied with ± 15V. 

This was used to ensure that the signal would not saturate within the ADC range. 

However, ADC range is from GND to +5V, which means that ± 15 V of supply is clearly 

an exaggerated option. In the future, this must be redesigned. Namely, instrumentation 

can be supplied with 5V if the ADC range is defined via the internal 1.1V reference, 

internal 2.56V reference or external reference on the AREF pin [91]. Moreover, wherever 

just positive potentials are at stage, some of the components could be single supplied. 

Besides, some pulse oximeter systems use a pulsed wave to drive the LEDs [98]. Instead 

of a constant 5V voltage during the ON period of the LED, a pulse-width modulation 

(PWM) signal with a low duty cycle and a considerably higher frequency is fed to the 

LED driver. This means that the LEDs are ON for a smaller period and therefore, the 

current consumed is reduced, allowing for power reduction. 

6.2.2 LED driver 

The LED driver used in the system is the one developed by Pereira [16]. It was then used 

by Domingues [17] and Brás [18]. However, 15 years of developments in electronics, 

certainly brought other solutions and this module may also be reformulated in the future. 

Namely, a driver that allows for both inputs to be LOW, i.e. for both LEDs to be OFF, 

could be implemented. This could be used for reading environment light or simply to 

reduce power consumption. 
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6.2.3 Digipot controller 

As said, the need for sampling the pulsatile signal of the DC+AC component of the PPG 

signal is essential. In the current approach, that is done though DC level shift and gain, all 

accomplished by digipots. However, an automatic controller does not exist, i.e. no rules 

are defined in order to control these parameters. Although a possible solution was 

discussed (section 4.5.2), it was never implemented or tested. Therefore, much work is 

still to be done in this field and other approaches might have to be introduced. 

6.2.4 Peak and valley detector 

The peak and valley detector module hardware includes analogue comparators and 

LM555 timers to send sampling and reset signals (section 3.1.5). However, taking 

advantages of the new MCUs, internal comparators and Timer/Counters could be 

employed instead. That would reduce the system hardware and consequently its costs and 

size. Size is of special interest, especially if the stand-alone device is to be continued. 

6.2.5 SpO2 computation 

The need for the absolute values of the peak and valley of the PPG wave determined the 

need for great part of the circuitry, namely the DC condition and all the circuitry used for 

peak and valley detector. However, some algorithms do not use the absolute voltage 

levels. Instead, they compute the      from the AC component [24]. These algorithms 

must be studied in order to know if they are accurate and suitable for the purpose of the 

system. Their implementation would allow for cost, space and power consumption 

reduction. The last two are of special importance if the system is to be used continuously 

by a patient during its daily life. 

In addition, system calibration must be performed in order to obtain better      results 

from the Ratio of Ratios (   ). 

6.2.6 Accelerometers 

Concerning accelerometers, the most important thing to do is to realise which is the ideal 

sampling frequency. Possibly, it may not be needed to have a fixed frequency and some 

approaches may allow for realising when significant changes occurred in the members 
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orientation in order to sample new acceleration values. Internal interrupts of the 

accelerometers may be useful. 

In addition, the accelerometers can be used to detect, and somehow correct, motion 

artifacts. 

6.2.7 Force sensor 

Regarding the force sensor, it was calibrated to a short force range. A better configuration 

procedure requires a better knowledge of the expected force range, a work that was not 

done yet. The conditioning circuit developed by Hall et al. [83] and referred in section 3.3 

that tries to linearise the sensor output may also be tested. 

Moreover, a consistent actuation method needs to be implemented, allowing for exertion 

of force over a constrained area and not in the sensor side surfaces. 

The timing control for the sampling routine is, as in the case of accelerometer, still not 

ideal. Further experimentation is required to define the best sampling frequency or the 

ideal way to detect the need for a new sampling. 

Besides, if this variable proves to be useful (as it seems to be), a better sensor must be 

employed, since the FSR
®
 has a very low accuracy. Probably, a digital sensor would be a 

good solution, as it would not require calibration. Besides, it would reduce the hardware, 

which can diminish the sensor size, since MEMS sensors are very small. Moreover, a 

digital sensor is more consistent with the system ideology, based on a MCU. 

6.2.8 Arduino™ / computer communication 

Synchronization between the Arduino™ and the MATLAB still needs improvement. 

Especially, information related with     ,   , height and force measurements needs to 

be detected among the information of PPG signal in order to be displayed in the GUI. The 

current limitation is that this information is not sent periodically, unlike the periodic PPG 

sampling. Therefore, it was difficult to realise when these variables were received by 

MATLAB. It was usual to assume them as part of the PPG signal. Specific start 

sequences or other signalling ways may be used. 
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Appendix A – PPG AC conditioning cutoff  

 

 

 

Figure A.1 – PPG signal AC conditioning – Results of the DC+AC component high-pass filtering with a 

cutoff frequency of 0.01 Hz (top), 0.05 Hz (middle) and 0.1 Hz (bottom). DC+AC original component 

(red), filtered AC component (blue) and the difference between them (black) are shown. 

0 10 20 30 40 50 60

0.8

0.9

1

1.1

0 10 20 30 40 50 60

-0.1

-0.05

0

0.05

0.1

0.15

Time (s)

A
m

p
lit

u
d

e
 (

V
)

32.5 33 33.5 34 34.5

0.9

0.95

1

32.5 33 33.5 34 34.5

0

0.05

0.1

Time (s)

32.5 33 33.5 34 34.5

0.9

0.95

1

32.5 33 33.5 34 34.5

0

0.05

0.1

Time (s)

0 10 20 30 40 50 60

0.8

0.9

1

1.1

0 10 20 30 40 50 60

-0.05

0

0.05

0.1

Time (s)

A
m

p
lit

u
d

e
 (

V
)

32.5 33 33.5 34 34.5
0.96

0.98

1

32.5 33 33.5 34 34.5

-0.04

-0.02

0

Time (s)
32.5 33 33.5 34 34.5

0.96

0.98

1

32.5 33 33.5 34 34.5

-0.04

-0.02

0

Time (s)

0 10 20 30 40 50 60

0.8

0.9

1

1.1

0 10 20 30 40 50 60

-0.05

0

0.05

Time (s)

A
m

p
lit

u
d
e
 (

V
)

32.5 33 33.5 34 34.5

1

32.5 33 33.5 34 34.5

0

Time (s)
32.5 33 33.5 34 34.5

1

32.5 33 33.5 34 34.5

0

Time (s)



 

 

120 Appendices 

 

Figure A.2 – PPG signal AC conditioning – Results of the DC+AC component high-pass filtering with a 

cutoff frequency of 0.2 Hz (top), 0.3 Hz (middle) and 0.4 Hz (bottom). DC+AC original component 

(red), filtered AC component (blue) and the difference between them (black) are shown.
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Appendix B – Peak detector trigger filtering cutoff  

 

Figure B.1 – PPG extrema identification – Results obtained with a cutoff frequency of 0.5 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Figure B.2– PPG extrema identification. Results obtained with a cutoff frequency of 1.0 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Figure B.3 – PPG extrema identification. Results obtained with a cutoff frequency of 1.5 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Figure B.4 – PPG extrema identification. Results obtained with a cutoff frequency of 2.0 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Figure B.5 – PPG extrema identification. Results obtained with a cutoff frequency of 2.5 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Figure B.6 – PPG extrema identification. Results obtained with a cutoff frequency of 3.0 Hz: AC 

component (red); its low-pass filtering of (blue); derivative of the filtered signal (black); peak reset 

signal (green); and valley reset signal (yellow). Data is shown for signals with heart rates of 57 (top), 80 

(middle) and 101 (bottom) beats per minute. Below each 10-seconds signal, 4 pulses are detailed. 
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Appendix C– DC conditioning controller – cases of 

interest 

 

 

 

 

Figure C.1 – DC conditioning: rules for gain and offset setting. A – decrease gain and shift upwards; B 

– shift downwards; C – decrease gain and shift upwards; D – shift upwards; E – increase gain and shift 

downwards; F – increase gain and shift downwards; G – decrease gain and shift upwards; H – increase 

gain and shift downwards. 
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