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Resumo 
 
 

A administração transdérmica de fármacos constitui uma via de administração de 

moléculas activas através da pele, inovadora, não invasiva, permite contornar o 

efeito de primeira passagem hepática, promove a adesão à terapêutica e reduz os 

efeitos adversos quando comparada com as vias mais tradicionais. Apesar das 

inúmeras vantagens, a sua aplicação encontra-se limitada pela grande resistência 

da pele à penetração de fármacos. De facto, a pele não é apenas mais uma 

membrana biológica simples. Pelo contrário, trata-se the uma estrutura 

extraordinariamente selectiva, cerca de 100 vezes menos permeável que as outras 

membranas biológicas e, para além disso, possui um sistema imunitário potente, 

capaz de reagir imediatamente contra qualquer agressão exterior. Em face destas 

características, os objectivos deste trabalho são a investigação da organização 

estrutural da camada exterior da pele (camada córnea) e o desenvolvimento de 

uma nova forma farmacêutica para a administração transdérmica de fármacos.  

 

No Capítulo I encontra-se uma introdução geral a todos os conceitos principais 

necessários para seguir o trabalho desenvolvido e que serão discutidos ao longo da 

tese. O trabalho iniciou-se pela investigação das transições de fase induzidas pela 

temperatura na camada córnea (CC) e seus componentes, ilustrando a importância 

da análise térmica na compreensão do respectivo arranjo molecular e do papel 

deste na permeabilidade selectiva da pele (Capítulo II). Os resultados 

demonstraram que pelo menos oito transições de fase podem ser detectadas na CC 

desde a temperatura ambiente até cerca de 120ºC, em vez das quatro transições 

de fase geralmente descritas na literatura científica. Também foi possível confirmar 
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a existência de transições térmicas a baixas temperaturas que, muito 

provavelmente, afectam a permeabilidade da pele a temperaturas fisiológicas. Os 

resultados indicam que os lípidos da CC dos seres humanos se encontram 

organizados de forma heterogénea e que existe coexistência de fases a 

temperaturas fisiológicas e não fisiológicas. 

 

A CC encontra-se sujeita a diferentes gradientes, tais como o conteúdo em água, 

temperatura e pH, que influenciam as suas funções e a sua permeabilidade. Após 

ter sido estudado o efeito da temperatura e sabendo-se que a permeabilidade da 

CC responde de forma não linear a variações no grau de hidratação, foi 

considerado relevante investigar o comportamento de fase da CC e seus 

componentes em condições isotérmicas e com diferente conteúdo em água 

(Capítulo III). Observou-se um intumescimento substancial da CC intacta assim 

como dos seus componentes isolados. Foi ainda detectada a presença de lipídos 

numa fase fluida, tanto na amostra de lípidos extraídos como na CC intacta, mesmo 

quando o contéudo em água é muito baixo. Foi possível detectar três novas 

transições de fase exotérmicas nos lípidos isolados, a humidades relativas entre 91-

94%, que poderão estar relacionadas com a resposta não linear da permeabilidade 

da CC à hidratação. 

 

Após a maior compreensão da estrutura e natureza físico-química da pele, uma 

nova forma farmacêutica constituída por complexos de polielectrólitos à base de 

quitosano foi desenvolvida e optimizada de forma a obter filmes com propriedades 

funcionais óptimas para serem aplicados na pele: flexibilidade, resistência, taxa de 

transmissão de vapor de água, bioadesão (Capítulo IV). A interação entre o 

quitosano e dois polímeros diferentes de ácido poliacrílico foi maximizada através 

do controlo do pH. O glicerol foi o plastificante utlizado que demonstrou ter a melhor 

influência nas propriedades funcionais dos filmes, com um nível óptimo a 30%. A 

aplicação de um adesivo sensível à pressão aumentou significativamente a 

capacidade bioadesiva dos filmes, apenas com um efeito mínimo na resistência e 

flexibilidade dos filmes. O filme obtido exibiu propriedades muito adequadas para a 

aplicação na pele e representa uma formulação muito promissora para a 
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incorporação de fármacos e subsequente administração por via tópica ou 

transdérmica. 

 

De forma a avaliar o potencial do filme optimizado como veículo para a 

administração eficaz de fármacos através da pele, quatro princípios activos 

(paracetamol, ibuprofeno, galantamina HBr e galantamina base) com diferentes 

propriedades físico-químicas foram incorporados nos filmes (Capítulo V). A sua 

eficácia foi avaliada através da determinação do perfil de libertação e permeação de 

cada um dos fármacos. As propriedades bioadesivas e o potencial de induzir 

irritação do filme sem fármaco foram objecto de investigação em voluntários. Os 

filmes demonstraram ser permeáveis à água, não irritantes e capazes de aderir 

firmemente à pele. Para além disso, asseguram a libertação tanto de fármacos 

hidrofílicos como lipofílicos de forma fidedigna, reprodutível e sustentada, seguindo 

uma cinética de libertação aproximadamente de ordem zero. A forma dos perfis de 

permeação apresenta no início uma permeação invulgarmente rápida que é seguida 

por uma zona de fluxo de fármaco constante. Este perfil é extremamente benéfico 

na medida em que permite um início rápido da acção terapêutica do fármaco no 

organismo. De acordo com os resultados de permeação, bioadesão e irritação, os 

filmes desenvolvidos são uma opção viável para a administração eficaz de 

fármacos através da pele. 

 

O objectivo final do trabalho aqui apresentado centrou-se na optimização de um 

filme para a administração transdérmica de galantamina, um fármaco 

terapeuticamente relevante, inibidor da colinesterase e usado no tratamento da 

doença de Alzheimer (Capítulo VI). Esta doença constitui a forma mais comum de 

demência nos idosos e, embora actualmente não existam fármacos capazes de a 

curar ou reverter a sua progressão, o tratamento dos seus sintomas pode atrasar a 

evolução da doença bem como melhorar significativamente a qualidade de vida dos 

doentes e suas famílias. O filme final representou uma melhoria da permeação 

percutânea da galantamina de cerca de 7 vezes comparativamente com a solução 

saturada do fármaco. Considerando estes resultados, o filme transdérmico final de 

galantamina constitui uma opção muito promissora para o tratamento eficaz da 

doença de Alzheimer. 

 



 
 

Abstract 
 
 

The transdermal drug delivery is an innovative and non-invasive route of drug 

administration through the skin, which circumvents the first-pass metabolism in the 

liver, offers higher patient compliance and reduces adverse effects when compared 

with the more traditional routes of drug delivery.  Nevertheless, its applications are 

limited by the skin high resistance to the transport of drugs. The skin is not just 

another simple biological membrane. Instead, it is about 100 times less permeable 

than the other biological membranes, remarkably selective and has a powerful 

imune system that readly reacts to any agression. Therefore, the aim of this work is 

to investigate the structural organization of the outer layer of the skin, the stratum 

corneum (SC), as well as the development of a novel transdermal  drug delivery 

system. 

 

In Chapter I it is given a general introduction to all the main concepts that are 

needed for the development of the work and are explored throughout the thesis.  

Considering the importance of the thermal analysis for the understanding of the SC 

and SC lipids molecular structure and their role in the selective permeability of the 

skin, the present work has been initiated by the investigation of the phase transitions 

induced by temperature in the both SC and SC lipids (Chapter II). The results have 

shown that at least eight transitions are detected in the SC from room temperature 

to ca. 120ºC, instead of the usual four described in literature. Also, it has been 

confirmed the existence of low temperature transitions that are likely to affect the SC 

permeability at physiological temperatures. These results indicate that human SC 
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lipids are organized heterogeneously, with coexisting phases at physiological and 

non-physiological temperatures. 

 

The SC is subjected to several different gradients such as water level, temperature 

and pH that influence its functions and permeability. After studying the influence of 

temperature and with the knowledge that the SC permeability has a non-linear 

response to variations in the degree of hydration, it was considered relevant to 

investigate the phase behavior of the SC and SC components at different water 

contents under isothermal conditions (Chapter III). A substancial swelling of the SC 

and SC components and the presence of lipids in a fluid phase in both extracted 

lipids and intact SC was observed, even at remarkably low water contents. Three 

new exothermic phase transitions were detected in the SC lipids at RH=91-94% that 

may be related to the non-linear response of SC permeability to hydration. 

 

After increasing the understanding of the structure and physicochemical nature of 

the skin, novel chitosan based polyelectrolyte complexes (PEC) were developed and 

optimized in order to obtain films possessing the optimal functional properties 

(flexibility, resistance, water vapour transmission rate and bioadhesion) to be applied 

on skin (Chapter IV). The interaction between chitosan and two polyacrylic acid 

polymers was maximized by pH control. Glycerol was the plasticizer with the best 

influence in the film functional properties at 30%. The application of a pressure 

sensitive adhesive significantly improved the films bioadhesion properties, with only 

a negligible effect in their resistance and flexibility. The optimized film exhibited very 

good properties for application in the skin and represented a very promising 

formulation for further incorporation of drugs for topical and transdermal drug 

administration. 

 

In order to evaluate the drug delivering potential through the skin of the optimized 

chitosan based films, four drugs (paracetamol, ibuprofen, galantamine HBr, 

galantamine free base) with different physicochemical properties were incorporated 

in the films and the drug release as well as the skin permeation were evaluated. A 

second purpose of the work presented in Chapter V was the in vivo evaluation of the 

bioadhesive properties and irritation potential of the placebo film. The films 
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demonstrated to be water permeable, non-irritating and capable of firmly adhere to 

the skin. They also assure the release of both hydrophilic and lipophilic drugs in a 

reliable, reproducible and sustained manner following a quasi-zero order release 

kinetics. The shape of the permeation profiles reveals in the early stages an 

unusually fast permeation, followed by a region of constant flux. This behavior is 

most beneficial because it enables to rapidly attain the pharmacological action. 

According to the in vitro permeation results, bioadhesive properties and non-irritating 

potential, the developed films are a viable option for the effective delivery of drugs 

through the skin 

 

The final purpose of the present work was the optimization of a film for the 

transdermal administration of galantamine, a therapeutically relevant cholinesterase 

inhibitor used in the treatment of the Alzheimer’s disease, the most common form of 

dementia among older people (Chapter VI). Although at present there is no drug that 

cures or reverses the progression of the disease, the treatment of its symptoms can 

delay the evolution of the illness and, therefore, significantly improve the quality of 

life of the patients and their families. The optimized film exhibits an improvement of 

the percutaneous permeation of galantamine of ca. 7 times relative to the 

performance of the saturated solution of the drug. On the basis of these results, the 

final film is a very promising option for the effective treatment of Alzheimer’s 

disease. 
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 I  
General introduction 

 
 
 
 
 
1. Introduction and objectives of the work 
 

Over the past 30 years there has been a significant amount of research in the 

dermal and transdermal delivery of drugs and the transdermal devices have become 

a recognized technology for the variety of relevant clinical benefits that offers [1, 2]. 

Transdermal delivery systems are currently available to treat illnesses such as 

motion sickness, cardiovascular diseases, male hypogonadism, menopause and 

nicotine dependence [2-4].  

The transdermal devices market is growing at an annual revenue rate of ca 12% for 

a worldwide market in 2005 of about US$12.7B and is expected to increase to 

$21.5B and $31.5B by the years 2010 and 2015, respectively [5]. About 50 new 

products candidate for dermal or transdermal delivery are being evaluated [3, 6]. 

These include formulations for the transdermal administration of drugs for the 

treatment of Parkinson’s disease, Alzheimer’s disease, skin cancer or depression 

[3]. 
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In order to optimize the formulation of transdermal devices and broaden the number 

of drug candidates for administration through the skin, it is necessary to increase the 

understanding of the skin structure along with the mechanisms of percutaneous 

permeation. In fact, the exact nature of the skin lipid organization at the molecular 

level still possesses many unanswered questions. It constitutes a field of intensive 

research and development due to the advent of sophisticated instrumentation with 

increasing precision and sensitivity. Understanding the physicochemical and 

biological nature of the skin is necessary for a better understanding of the drug 

transport through the skin and for the continuous growth of the transdermal 

technology. 

 

The purpose of the present work is to investigate the organization of the outer layer 

of the skin, the Stratum corneum (SC), and to develop a novel delivery system for 

the skin. Emphasis is laid on the investigation of the phase transitions induced by 

temperature and water in the SC components (e.g. lipids and proteins) and their role 

in the selective permeability of skin. A variety of techniques is used in this study. 

The novel dosage form consists in a hydrogel film composed by chitosan and 

polyacrylic acid. In a first step, the desirable functional properties for film application 

on the skin will be optimized. Secondly, the potential of the films as universal 

transdermal drug delivery systems is evaluated by the incorporation of drugs with 

different lipophilicities. Finally, the film is optimized for the transdermal delivery of 

galantamine, an anti-Alzheimer’s drug. 

 

 

 

2. Skin functions 
 

The human skin (Figure 1.1) is the most extensive organ of the human body with an 

area of 1.5-2 m2, an average thickness of 0.5 mm, accounting for approximatelly 

16% of the total body weight [7-9]. It constitutes the interface between the body 

internal enviroment and the external atmosphere, and is also responsible for 

protective, sensory and metabolic functions [10-12]. The skin barrier function is 

related with its multilayered structure (Figure 1.1) [13].  
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The skin protects the body against physical, chemical, microbial, electrical and 

thermal injuries, as well as UV radiation. The skin restricts the amount of water that 

is loss from the body preventing dehydration [12, 14]; limits the absorption of 

xenobiotics from the enviroment and prevents microbial infections [15]. Moreover, 

besides constituting a physical barrier for the penetration of microorganisms, several 

other processes make the skin surface very unfavourable for the microbial 

proliferation. The sebaceous and sweat glands (Figure 1.1) produce the acidic 

mantle (pH~5) that is a complex mixture of lipids with bacteriostatic and fungistatic 

activities [10, 14, 16]. The dry skin surface also accounts for this antimicrobial 

protection. 
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Figure 1.1 Schematic representation of the skin structure, modified from reference [17]. 
 

 

The skin also plays a protective role against ultraviolet (UV) rays due to the 

prodution of the pigment melanin in the melanocyte cells. Melanin has the ability to 

absorb and diffract the UV rays minimizing the sun induced trauma [7, 10, 12, 15, 



Skin Structure and Drug Permeation 
           

                            

4 

16]. However, the UV rays are necessary for the chemical reactions that result in the 

synthesis of vitamin D, which is important for the absorption of calcium in the 

gastrointestinal tract and to the normal growth of bones and teeth [9, 14, 16]. 

 

The skin mechanisms of thermoregulation involve the sweat glands, the circulatory 

system and the hypodermis [10, 14]. The evaporation of sweat and water in the skin 

surface as well as the vasodilatation of blood vessels leads to a more rapid cooling. 

On the contrary, the vasoconstriction of blood vessels prevents the heat loss from 

the body [12, 14]. 

 

The skin is also a sensory organ: through the nerve endings and receptors the 

human being is able to perceive touch, pain and thermal stimuli [12, 14, 16]. 
 

 

 

 
3. Anatomy and physiology of the skin 
 
The skin is divided in three functional layers, the epidermis, the dermis, and the 

hypodermis and each layer has different levels of cellular and epidermal 

differentiation [13].  
 

 
3.1 Epidermis 
 
The epidermis consists of stratified squamous keratinizing epithelial tissue, with an 

approximate thickness of 100-150 μm and is also avascular. The epidermis forms 

the outermost layer of the skin [14, 18, 19]. 

The epidermis is divided in four main layers, from the interior to the exterior, the 

Stratum basale (SB), the Stratum spinosum (SS), the Stratum granulosum (SG) and 

the Stratum corneum (SC) (Figure 1.2) [7, 14, 19, 20]. The Stratum lucidum (SL) is 

only present in the palms and soles, the areas of the body where the skin is very 

thick [7, 12, 18, 19].  
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Keratinocytes correspond to ca. 95% of the epidermal cells, although specialized 

cells such as Langerhans, melanocytes and Merkel cells are also present [7, 9, 12, 

19]. The Langerhans cells are dendritic immune cells located in the SG that play a 

major role in the immunological defense [7, 14, 18]. They begin to process antigens, 

which is followed by the setting up of the inflammatory response [7, 12, 14, 16] 

(Figure 1.2). These cells also participate in the mechanism of contact allergy [7, 14]. 
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Figure 1.2 Structure of the human epidermis. On the left is shown a histological cut and on the right 
there is a schematic representation of the different epidermal layers and specialized cells. 
 

 

 

Melanocytes are dendritic cells located in the SB and are also present in hair and 

eyes [12, 14, 18]. Their main function is to produce the pigment melanin that has the 

ability to absorb and diffract the UV rays minimizing the sun induced trauma and are 

also responsible for the skin color [7, 10, 12, 15, 16, 18]. Melanin is produced in the 

melanossomes of the melanocytes in response to a UV exposure and is then 
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transferred to the keratinocytes by a process that envolves phagocytosis [7, 14]. In 

this way, the pigment is uniformly distributed and conferes to the skin a protective 

role against UV rays [7, 10, 12]. 

Merkel cells are located in the SB, being tactile epithelioid cells associated with 

nerve endings (Figure 1.2) [12, 14].  

Several skin appendages are specializations of the epidermis: the hair, sweat and 

sebaceous glands and nails (Figure 1.1) [14]. 

 

Keratinocytes undergo a process of proliferation, differentiation and keratinization 

during their migration from the SB to the skin surface, and give rise to the four major 

layers of the epidermis (Figure 1.3) [14]. During their migration, the cells flatten and 

the protein and lipids that constitute the SC are synthesized [10, 15]. The complete 

renewal of normal human skin takes approximately 1 month [12, 14, 21].  

 

The SB is composed by a single layer of keratinocytes that are columnar, cuboidal  

and mitotically active with 6 to 8 μm in diameter [19]. The basal cells are connected 

to each other by desmossomes, and are attached to the basement membrane by 

hemidesmossomes [12, 14, 19, 22]. The basement membrane or epidermal dermal 

junction is an extracellular matrix that separates the dermis from the epidemis [14, 

23]. 

The majority of the basal cells are stem cells that continuously undergo mitosis 

generating a daughter cell that is displaced from the older cells towards the 

epidermis surface (Figure 1.3) [12, 14, 18]. The basal cells exhibit a large nucleous, 

cell organelles and keratin filaments (tonofilaments) [19]. The major function of the 

remaining keratinocytes of the basal layer is to anchor the epidermis to the 

basement membrane [12].  

 

The next layer is the SS as referred before and is the thickest layer of the epidermis 

(Figure 1.2) [19]. It consists of several layers of irregular polyhedral keratinocytes 

attached to each other and to the basal cells by desmossomes.  They arise from the 

migration of the daughter cells generated in the basal layer [14]. These cells have a 

larger cytoplasm, a higher amount of keratin filaments, numerous organelles, a more 

flattened shape and lamellar bodies rich in lipids (Odland bodies) in its outer layers 
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(Figure 1.4) [12, 14, 19, 24]. The Odland bodies collect the lipids synthesized during 

the process of migration and differentiation of keratinocytes [10]. 

 

 

 

 

 
 
Figure 1.3 Schematic representation of the process of epidermis regeneration showing the 
keratinocytes proliferation, differentiation and keratinization (1-4). Reprinted from reference [25]. 
 

 

 

The SG consists of 3-5 layers of flattened keratinocytes that exhibit distinct 

keratohyalin granules, which usually appear darkly stained in the histological 

preparations (Figure 1.2) [14, 19]. The keratohyalin granules contain profilaggrin a 

precursor of the protein fillagrin that has the ability to aggregate and align the keratin 

filaments [14, 19, 21]. The keratinocytes of this layer are the last cells with nuclei. 

The Odland bodies are present in a higher number and size, and are filled with 

lipidic lamellar subunits, as well as some hydrolytic enzymes (proteases, lipases, 

glycosidases) (Figure 1.4) [11, 12, 14, 19, 26].  The stacked lipid lamellae are 

composed of precursors of the SC intercellular lipids: phospholipids, cholesterol and 
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glucosylceramides [11, 12, 21]. The Odland bodies migrate towards the cell 

membrane and in the interface between the SG and the SC they fuse with the 

cytoplasmatic membrane and extrude their content into the intercellular space [11, 

12, 14, 15, 19, 21, 24, 27]. More recently, it has been proposed that this process 

may take place via a “continuous process of intersection-free membrane unfolding” 

without membrane fusion [28]. 

When the lipidic content is secreted, the co-secreted enzymes break down the 

phospholipids and convert the glucosylceramides to ceramides, the lipids that form 

the final epidermal barrier [11, 15, 19, 21].  The short lamellar stacked disks are also 

reorganized to form the typical lamellar sheets that are observed in the SC 

intercellular space [11, 29]. These processes are fundamental for the formation of 

the SC extracellular lamellae [19].  

 

In the palms and soles where the skin is particularly thick and without hair, the next 

layer is the SL. It consists of several layers of flattened and compacted keratinocytes 

devoided of nuclei and cytoplasmatic organelles (Figure 1.2). 

 

 

 

a ba b

 
 

Figure 1.4 (a) Electron micrograph of a Odland body or lamellar granule of mouse skin. (b) Schematic 
representation of a Odland body according to the model of Landmann [30]. This figure is adapted from 
reference [11]. 
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3.1.1 The skin barrier: stratum corneum 
 

The outermost layer of the epidermis is the SC. It represents the end product of the 

differentiation process and the keratinocytes are now dead, fully keratinized, 

devoided of nuclei and cytoplasmatic organelles and are denoted as corneocytes. 

The corneocytes continuously undergo desquamation due to the action of the 

secreted proteases, which regulate the corneodesmosome cleavage (Figure 1.3) 

[11, 12, 14, 15, 19]. 

 

 

 

 

 
 

Figure 1.5 Schematic representation of the SC structure. 
 
 

The SC consists of 10-15 layers of corneocytes with about 0.5 µm of thickness, 40 

µm of diameter and 900 μm2 in area, see Figure 1.5 [15, 19, 31]. The corneocytes 

dimensions, their keratin filaments packing and the number of corneodesmosomes 

depends not only on the anatomical site, but also on their specific location in the SC 

and the age of the subject [19, 31].  
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The corneocytes are embedded in a matrix of stacked lipid lamellae in an array 

similar to "bricks and mortar" [32]. The intercellular lipid matrix represents 

approximately 20% of the total SC weight and constitutes the sole continuous region 

of the SC [31]. Due to this fact, the molecules that pass through the skin barrier must 

be mainly transported through this tortuous pathway [33-35]. 

The corneocytes have a protective function against physical and chemical injuries 

from the external environment, while the intercellular lipid lamellae provides the 

barrier for water diffusion, thus preventing dehydration [31, 36]. 

 

 

Corneocytes are filled with an insoluble protein complex mainly composed by  highly 

organized keratin fibrills, aligned parallel to the corneocytes width and cross-linked 

by intermolecular disulfide bridges [12, 31, 36-38]. Keratin contributes to the 

mechanical properties of the SC, and is encapsulated by highly specialized 

structure, the cornified cell envelope (CE), with an approximate thickness of 15-20 

nm (Figure 1.6) [31, 39-41]. The CE consists of a 15 nm thick interior layer of cross-

linked proteins, an external 5 nm thick layer mainly composed by covalently bound 

long chain ceramides and represents 7-10% of the SC dry weight [12, 37, 39-44]. 

The lipid envelope represents ca 1.4% of the SC dry weight and has important 

functions such as acting as a permeability barrier as well as a template to orient 

intercellular lipid lamellae [31, 37, 39, 43-46].  
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Figure 1.6 Schematic representation of the cornified cell envelope, adapted from reference [47]. 
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The major components of the lipid matrix are long-chain ceramides (ca. 50-60% by 

mass), free fatty acids (ca. 10-20% by mass), cholesterol (ca 20% by mass) and 

cholesterol sulphate (ca. 5% by mass). They are responsible for the skin barrier 

function and its regulation [11, 31, 48-50]. The lipid composition differs considerably 

from most other biological membranes, having longer and more saturated lipids and 

basically no phospholipids [48, 51].  

 

Nine subclasses of CER have been identified in the human SC and their structure 

can be found in Figure 1.7.  

 

 

 

 
 
Figure 1.7 Subclasses of ceramides identified in human SC with the two conventions currently used. 
For details about the nomenclatures see text. From reference [11]. 
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Two different conventions are currently used for naming ceramides, a numbering 

system from 1-9 and other related to structure. The latter was initially developped by 

Motta el al [52] and is based in the general form CER FB. B stands for the type of 

base: sphingosine (S), phytosphyngosine (P) or 6-hydroxysphingosine (H). On the 

contrary, F is related with the type of fatty acid: normal fatty acids (N), alpha-hydroxy 

fatty acids (A) or omega-hydroxy fatty acids (O). The letter E is used when there is 

an ester-linked fatty acid [11]. The two conventions are used in Figure 1.7 

 

 

Free fatty acids are mainly saturated varying in chain lenght between C16 and C24 

[49]. The long carbon chain lengths of the free fatty acids and ceramides contribute 

to a tight lateral packing that result in less fluid and less permeable lipid domains 

than the liquid crystalline organization of phospholipds in the biological membranes 

[11]. On the contrary, cholesterol seems to increase the fluidity of the extracellular 

lipid lamellae [11]. 

The extracellular lipid lamellae are clearly observed by electron microscopy using 

ruthenium tetroxide fixation [19, 31] or cryo-fixation [24, 53].  

 

At physiological temperatures, the SC lipids in human, pig and mouse SC are 

arranged in a lamellar structure with two typical repeating units, a long lamellar 

structure or long periodicity phase (LPP) with a repeat length of ca. 134 Å and a 

short lamellar structure or short periodicity phase (SPP) with a repeat lenght of ca. 

60 Å [54-57]. The LPP is not observed in phospholipid systems and is present in the 

SC of all species examined, being considered crucial for the permeability of the SC 

[54, 55, 58].  The LPP formation depends on the presence of long chain  ceramides: 

CER1, CER4, CER9. On the contrary, free fatty acids promote the formation of the 

SPP, induce the transition from an hexagonal lateral sublattice to the predominant 

orthorhombic lateral sublattice and increase the fraction of SC lipids forming a liquid 

phase [59-64]. The existence of SC lipids in a fluid phase probably accounts for the 

non-negligible transepidermal water loss (TEWL) of about 100-150 ml per day and 

square meter of skin surface through the intact healthy skin [15], which appears 

difficult to explain on the basis of the solid SC lipids alone. It could also allow for the 
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high elasticity of the skin, and for the enzymatic activity in the SC intercellular space 

that is unlikely to take place in a crystalline phase [65].  

A normal TEWL is necessary for the hydration of the outer layers of the skin [66, 67]. 

 

The organization of the intercellular SC lipids has been depicted in different models 

and is still under debate. The domain mosaic model of the SC organization 

proposed by Forslind [68] suggests that the lipids are organized in predominant 

crystalline/gel domains surrounded by grain boundaries where the lipids are in a 

fluid crystalline state and form a continuous pathway (Figure 1.8) [69].   

 

 

 

 
 

Figure 1.8 The domain mosaic model for the SC extracellular lipid organization, modified from [70]. 
 

 

Other models of the lipid matrix of SC emphasize the molecular arrangements of the 

lipids [70, 71]. One of thee, the sandwich model [71], also postulates the 

coexistence of crystalline and liquid crystalline lipid domains, while it describes a 

complex structure of connected bilayers for the LPP where lipids are organised in 3 

layers: two broad crystalline layers on the sides and a narrow discontinuous fluid 

phase located in the center. 

The discontinuous fluid phase is mainly composed by the fatty acid tail of the long 

chain ceramides (CER1, CER4, CER9) and cholesterol (Figure 1.9). 
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More recently, the single gel phase model [70] assumes an arrangement of lipids in 

the lower half of the SC in a single and coherent lamellar gel phase, excluding non-

lamellar structures  in  continuous  or  bicontinuous  arrangements  - cubic, reversed 

hexagonal, reverse micelles or phase separation (Figure 1.10).  

 

 

 

 
 

Figure 1.9. Schematic representation of the sandwich model for the extracellular lipid organization of 
human SC. From reference [72]. 
  

 

The SC integrity and cohesion is mainly attributed to the existence of 

corneodesmossomes that join corneocytes together in the plane of the SC and to 

adjacent layers [7, 31]. The desquamation process is one of the most important 

defensive process of the SC where the corneodesmossomes must be digested by 

proteolytic enzymes (corneodesmolysis) that are present within the extracellular lipid 

lamellae [16]. The activity of these enzymes is controlled by pH and water [31]. 

 
The water content in SC is important in regulating the SC permeability [73, 74], and 

it is also a determinant factor to other vital function of healthy skin in, e.g., its relation 

to the mechanical properties, the appearance and the enzymatic activity [66, 75] of 

the SC. The normal water content in SC is about 30 ± 5% [76] and depends on three 
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main mechanisms. First of all, the very unusual lamellar organization and 

composition of the intercellular lipids provide a very tight barrier to water diffusion. 

On the other hand, the corneocytes themselves increase the tortuosity and the 

diffusion pathlenght for the water across the SC. Finally, the water-holding capacity 

of the SC is intimately related to the presence of the so-called Natural Moisturizing 

Factor (NMF), a complex mixture of low molecular weight water-soluble compounds 

located in the intercellular as well as in the intracellular space [20].  

The NMF is produced inside the corneocytes as a result of the hydrolysis of fillagrin 

[31, 65, 66]. After inducing the aggregation and alignment of the keratin filaments 

[14, 19, 21], fillagrin is converted by proteases in its amino acids: histidine, glutamic 

acid and glutamine [20, 65, 77]. Histidine is further converted to urocanic acid, while 

glutamic acid and glutamamine are converted to pyrrolidone carboxylic acid [20, 65, 

77]. Additionally, NMF is also composed by lactic acid, urea, citrate and sugars [66]. 

The high concentration of these very hygroscopic components results in a high 

osmotic strength that has the ability to retain water [20, 66]. 

 

More recently, the involvement of aquaporin-3 in the skin physiology as well as the 

major role of glycerol in the SC water holding capacity has been also discovered [78, 

79].  
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 Figure 1.10 Schematic representation of the single gel phase model for the SC intercellular lipid 
organization. Modified from [70]. 
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3.2 The dermis 
 
The dermis is the main structural support and mechanical barrier of the skin [10, 12, 

14]. It consists in a matrix of dense irregular connective tissue, ca. 0.1-0.5 cm thick 

and composed of collagen, elastin and reticular fibers embedded in a amorphous 

ground substance of mucopolysacharides (Figure 1.1) [10, 12, 14, 18]. The 

predominant cells present are the fibroblasts that produce the components of the 

connective tissue while the mast cells and macrophages are related with the 

immune and inflammatory responses [10, 12, 14, 18]. It contains an extensive 

circulatory system and lymphatic network, sensory nerve endings, hair follicles, 

sweat and sebaceous glands [10, 12, 14, 18].  

The dermis vascular system provides the nutrients and oxygen to the skin while 

playing an important role in the body temperature regulation and in the removal of 

waste. The vasodilatation of the blood vessels leads to a rapid cooling while the 

vasoconstriction of the blood vessels prevents the heat loss from the body [12, 14]. 

 

 
3.3. The hypodermis 
 
The hypodermis is the deepest layer of the skin, composed of loose connective 

tissue that connects the dermis to the underlying muscles or bones (Figure 1.1) [14, 

18]. The main cells, adipocytes, are specialized in storing energy in the form of fat 

but it also contains fibroblasts and macrophages [12, 18]. 

The hypodermis is a heat insulator, protects against shock, enables the slide of the 

skin over the joints and carries the neural and vascular systems for the skin [12, 14].   

 
 

3.4. Skin appendages 
 
There are four types of skin appendages: the hair follicles, the nails, the sebaceous 

and the sweat glands (Figure 1.1). The hair follicles are located in all the body with 
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the exception of the palms, soles, lips and external genitalia. They always possess a 

sebaceous gland that produces the sebum which protects and lubricates the skin 

and helps to maintain the pH of the skin surface at around 5 [10, 12, 14].  

The sweat glands are located in most of the body with the exception of the lips and 

genitalia. They secrete a hypotonic solution, with an approximate pH of 5 in 

response to the body overheat or emotional stress [10, 12, 14]. 

The nails have protective and manipulative functions [12, 18].  

 

 

 
4. Drug delivery across the skin 
 
The percutaneous absorption of drugs corresponds to the drug delivery across the 

skin into the systemic circulation. The percutaneous absorption involves three 

sequential processes. The penetration is the first process and corresponds to the 

entry of the drug in the skin. After the penetration, it follows the permeation of the 

drug that is defined as the passage of the active ingredient from one skin layer to 

another. The final process is the absorption that consists in the uptake of the drug 

into the systemic circulation. 

  

Pharmaceutical active ingredients can be applied on the skin in a formulation to 

have a local or regional action (topical delivery) or to pass through the skin into the 

bloodstream or lymph system and develop a systemic action at the target site 

(transdermal delivery). 

 

 

4.1. Advantages 
 

The transdermal delivery of drugs offers a variety of well documented advantages 

over conventional routes of drug administration. These benefits include the 

maintenance of constant drug levels in the blood that reduces or eliminates the 

systemic side effects particularly for the drugs with short half-lives and/or a narrow 
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therapeutic window. Additionally, it increases the patient compliance due to simpler 

dosage regimens. 

In addition, with the transdermal delivery, it is avoided the drug first pass metabolism 

in the gastrointestinal tract and liver, as well as other variables that influence gastro-

intestinal absorption (e.g. changes in pH, food-intake, gastric emptying time and 

intestinal motility). These effects reduce the dose to be administered and, 

consequently, side effects [4, 12, 80, 81]. The drug administration is also easy to 

discontinue by removing the formulation from the skin, which is very advantageous 

in the case of adverse drug reactions. 

The drug delivery across the skin constitutes a convenient, non-invasive and 

painless administration. Furthermore, it can be the route of drug delivery in 

circumstances where oral administration is compromised (e.g. unconscious or 

nauseated patients) [4, 12, 80, 81]. 

 
 

4.2 Limitations 
 

Drug delivery across the skin has also some limitations [12, 13]. The main one is the 

very good barrier provided by the skin for the permeation of wanted, as well as 

unwanted molecules, as previously discussed. There is also intra and inter-variability 

in the skin permeability between different subjects that may produce different 

biological responses [12, 13].  

The active pharmaceutical compounds may activate allergic reactions and be 

inactivated before entering the bloodstream, due to the activity of the bacterial flora 

in the skin surface or the enzymes present in the skin [12, 13, 82]. 
 

 

The function of the skin as a very effective barrier to the permeation of chemicals 

has been discussed in the previous sections. In spite of this action, the 

percutaneous absorption of drugs for local or systemic delivery can be a desirable 

process. For this reason, it is important to understand the mechanisms by which the 

drugs and other chemicals penetrate the skin and how the skin permeation can be 

modulated.   
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4.3 Routes of permeation  
 
When a formulation is applied on the skin, the drug partition into the SC and go 

accross it by a mechanism of passive diffusion [12]. After transversing the highly 

lipophilic SC, the molecule has to partition to the water rich viable epidermis and 

after that to the dermis before it can enter the systemic circulation. 
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Figure 1.11 Possible routes for the drug delivery across the skin. (1) through the hair follicles with the 
associated sebaceaous glands, (2) via the sweat glands or (3) across the intact SC.  
 

 

There are two possible pathways for a penetrant to cross the skin barrier: through 

the transappendageal route or the transepidermal route [10, 12, 83].  

The transappendageal route includes the transport via the sweat glands as well as 

the transport through the hair follicles and associated sebaceous glands (Figure 
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1.11) [6, 10]. On the contrary, the transepidermal route comprises the diffusion of 

drugs across the intact SC and can be subdivided in transcellular and intercellular 

routes (Figures 1.11 and 1.12) [10].  

Any chemical that penetrates the skin will diffuse through the path of least 

resistance, which is also dependent on both the physicochemical properties of the 

drug and the skin condition at the time [10]. 

 

 

 

1 21 2

 
 
Figure 1.12 Transpidermal routes for drug permeation. (1) Intercellular route and (2) transcellular 
route. 
 

 

The area available in the skin surface for the transappendageal transport is only ca. 

0.1% in areas with less pilosebaceous units per area of skin and ca. 10% in the face 

and scalp where the density of pilosebaceous units is higher [12, 84-86]. This route 

of permeation circumvents the penetration of the SC because the openings of the 

pilosebaceous units conduct to an epithelial membrane more permeable than the 

SC [6, 12, 85, 87]. It seems to be important for large polar molecules and ions that 

are difficult to diffuse across the SC, and also some kind of delivery systems such as 

liposomes, nanoparticles and colloidal particles [6, 12, 85, 88, 89]. 

The drug diffusion through the transcellular route involves the sequential partition of 

the molecule between the lipophilic intercellular matrix and the hydrophilic 

corneocytes. The intercellular route concerns the diffusion of molecules through the 

continuous and tortuous pathway composed by the intercellular lipid lamellae. It is 
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generally accepted that the intercellular route provides the main pathway for most of 

the chemicals [6, 12, 33].  

 
 
 
4.4 Factors affecting the percutaneous permeation 
 
The transport of a molecule across the SC occurs by a process of passive diffusion. 

The steady-state diffusion through the SC can be described by Fick’s first law  [12]: 

 

L
tCvKDQ ...=                                                         (1.1) 

 

 

where Q is the cumulative amount of drug permeated per unit of skin area, D is the 

drug diffusion coefficient in the SC, K is the partition coefficient of the drug between 

the formulation and the SC, Cv is the drug concentration in the vehicle, L is the drug 

diffusion pathlength and D.K.C/L is the steady state flux (J). 

 

It is thus clear that the percutaneous permeation of a drug depends on the: 

• physicochemical properties of the drug; 

• physicochemical properties of the vehicle; 

• skin condition and physiological factors; 

• application conditions. 

 

 
 
4.4.1 Physicochemical properties of the drug 
 

The ideal properties for the percutaneous absorption of a molecule are not the same 

as for the improved gastrointestinal absorption or other routes of drug 
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administration. The molecules that more easily permeate through the skin are small 

and have a moderate lipophilicity [90, 91].  

 

The chemical structure of the drug influences its ability to diffuse through the skin. In 

fact, low molecular weight molecules (< 500 Da) have a higher diffusion coefficient 

(D) in the SC [3, 6, 92-95]. On the contrary, molecules with hydrogen bonding 

groups tend to diffuse slowly due to an increased ability to interact with the polar 

head groups of the intercellular SC lipids [81, 92, 94, 96].  

 

The logarithm of the octanol-water partition coefficient (log P) is a good predictor of 

the partition behavior of the drugs within the skin [91, 95]. Generally, molecules with 

log P ranging from 1-3 have a good partition behavior due to their good solubility in 

both the lipophilic SC as well as in the hydrophilic and water-rich viable epidermis [3, 

81, 90, 92, 95]. If the drug is too hydrophilic, the partition to the SC will be small and 

in the case of a very lipophilic drug, there will be a good partition to the SC but the 

drug tends to be retained there [97]. 

 

The concentration gradient influences the drug flux within the skin and is mainly 

determined by the K of the drug [Equation (1.1)] [81]. The solubility characteristics 

of the molecule have also a high influence in its ability to penetrate a membrane.  A 

low melting point of the drug is related with a good solubility and is beneficial for the 

permeation [6, 90]. 

 

The ionization potential is another important property that influences permeation. 

The degree of ionization influences the drug solubility in the membrane as well as 

the partition (K) into the skin [6, 90]. Although unionized molecules partition better to 

the SC, the ionized species may permeate the skin through the transappendageal 

route (Figure 1.11) or may form ion pairs with ions present in the skin forming 

neutral compounds [6, 90].  

 

Along with the physicochemical properties of the drugs, the pharmacokinetic 

parameters are also very important when analyzing the suitability of an active 

compound as candidate for transdermal drug administration. The drug must be 
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pharmacologically potent so that the therapeutic dose is small enough to 

compensate the limited amount that can enter the skin through a reasonable area 

[97]. Furthermore, the drug should not be directly irritant to the skin or prone to 

stimulate immune reactions [4]. 

 
 

 
4.4.2 Physicochemical properties of the vehicle 
 

The first step in the transdermal drug delivery is the drug partition between the 

vehicle and the skin [1]. The vehicle can influence drug release from the formulation, 

change the barrier function of the skin and increase the dug solubility in the SC [1, 

12, 98-100]. The alteration of the barrier function includes the interaction with the 

intercellular lipid lamellae, as well as with the protein components, and the increase 

of the SC hydration by an occlusive effect [10, 12].   

The rate of vehicle evaporation, the dissolution kinetics, the solvent flux through the 

SC and the alteration of the vehicle composition with time are other important effects 

that affect the molecules permeation through the skin [1, 12, 81]. 

In general, it is favourable to select vehicles that have a low affinity to the permeants 

and in which the drug is less soluble [1, 12].  

 

 
 
4.4.3 Skin condition and physiological factors 
 

Several physiological factors are known to influence the percutaneous permeation of 

drugs: age, hydration, surface microflora, pH, surface lipids, metabolism, the body 

site, race, gender, temperature, blood flow [1, 10, 12, 101, 102].  

 

The aging of the skin induces structural and biophysical alterations such as the 

decrease in the SC hydration, global deficiency in SC lipids, increased size of 

individual corneocytes, decreased blood flow, TEWL and epidermal turnover [12, 

103-107]. All these alterations can modify the skin permeability and it has been 
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demonstrated the reduction of the permeability of hydrophilic compounds in aged 

skin [12, 103]. Moreover, premature neonates have an imperfect barrier that is very 

permeable and the absorption of exogenous chemicals is a matter of concern [1, 12, 

101, 107, 108].  

 

The percutaneous absorption varies according to the anatomical site due to 

differences in the skin thickness, lipid content, blood flow or density of the hair 

follicles [12, 48, 102, 104, 109]. It is generally accepted that the skin permeation 

tends to increase in the following order: genitals > head and neck > trunk > arm > 

leg [101, 103]. 

 

There are no significant differences between the skin permeability in the same body 

site of males and females, although there are marked differences in the appearance 

[10, 12, 101, 104].  

 

The skin permeability changes between human races due to differences in the 

physicochemical properties of the skin [101-103], but this relation is not unequivocal. 

The SC of the blacks have more cell layers and higher density which justifies the 

smaller permeability [10, 103]. 

 

The skin hydration has a pronounced effect on drug permeation. An increase in the 

water content of the SC always produces a concomitant increase in the permeation 

[73]. In fact, occlusion is one of the most widely used techniques to improve the 

permeation of drugs due to its effect in the increase of the amount of water in the 

skin by preventing TEWL [12, 101, 110-112]. 

 

The skin has a significant metabolic activity due to its enzymes and the natural 

surface microflora that can transform many molecules that enter the skin [12]. This 

metabolism can inactivate the drugs or can be used to overcome the problem of 

drugs with disadvantageous physicochemical properties for the transdermal delivery. 

A prodrug with suitable physicochemical properties can be synthesized and within 

the skin this molecule is metabolized into the active form [12]. 
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The temperature also modifies the skin permeability, and an increase in the skin 

temperature is accompanied by a non-linear increase of the skin permeability [12, 

35, 113-118]. The temperature increases the fluidity of the intercellular lipids [119-

121], it also changes the blood perfusion due to the mechanisms of 

thermoregulation, increases the drug solubility and contributes to the activation 

energies for the diffusion of molecules across the SC [1, 10, 12, 117]. 

 

In the case of the skin disorders or damaged SC, the barrier properties are 

compromised and the skin permeation is normally increased [122, 123]. Some 

examples of skin disorders with impaired barrier include psoriasis [124], eczema, 

dermatitis, infections, ichthyoses and tumours [10, 125-127]. 

 

 

 
4.4.4 Conditions of application 
 

The most determinant application conditions for the percutaneous permeation of 

drugs are: the application method, dose level, exposure time, area of application and 

method for removing the dosage form when necessary [12, 14, 102]. 

 

There are two main application methods: the infinite and the finite dose technique 

[12, 128]. The infinite dose technique consists in the application of an amount of 

permeant high enough so that the variations in the donor concentration during the 

time of the experiment can be considered negligible [12, 14]. The infinite dose 

technique enables the determination of the steady-state flux according to Fick’s first 

law of diffusion. 

The finite dose technique consists in the application of a small dose in order to 

mimic the in-use conditions. There is a marked depletion of the dose during the time 

of the experiment that is reflected in a permeation profile with a characteristic  

plateau [12, 14].    
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5. Skin penetration enhancement 
 

The equation of Fick’s first law of diffusion can also be written as follows, in order to 

describe the flux (J) of a molecule through the SC [129]: 

 

 

L
mCsD

vCs
CvJ ,

,
×

×=                                                (1.2) 

 

 

where Cv is the drug concentration dissolved in the vehicle, Cs,v and Cs,m are the 

drug solubility in the vehicle and in the membrane, respectively, Cv /Cs,v corresponds 

to the degree of saturation of the drug in the formulation, D is the diffusion coefficient 

of the drug in the SC, and L is the drug diffusion pathlength through the membrane. 

 

Most of the times, in order to achieve the required therapeutic level it is necessary to 

improve the amount and the rate of the transdermal drug delivery. Based on 

Equation (1.2), three evident enhancement strategies can be used to improve the 

drug flux through the skin: 

• increasing D; 

• increasing Cs,m; 

• increasing Cv /Cs,v . 

 

 

Several penetration enhancing techniques have been developed based on these 

enhancement strategies and can be divided in passive  and active (physical) 

methods [13]. In Figure 1.13 there is a schematic diagram of the principal strategies 

used for the optimisation of the transdermal drug delivery. 
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Figure 1.13 Principal strategies for the enhancement of the drug delivery across the skin. 

 
 
5.1 Passive methods 
 
The passive methods are the most widely used approach to overcome the SC 

barrier. They include chemical penetration enhancers, drug modification and the 

manipulation of the formulation (e.g. supersaturated systems, liposomes, 

microemulsions). 

 
 
5.1.1 Chemical penetration enhancers 
 

The chemical penetration enhancers are molecules that have the ability to reversibly 

reduce the barrier function of the SC and in that way improve the penetration of the 

molecules in the skin and into the bloodstream [14, 81, 97]. They are also known as 

sorption promoters or accelerants and include an extensive list of diverse classes of 
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chemicals such as water, sulphoxides, terpenes, pyrrolidones, fatty acids, alcohols, 

azone, surfactants. The desirable properties for an ideal skin penetration enhancer 

are shown in Table 1.1 [4, 14, 130].  

 

 

 

Table 1.1 Desirable properties for the chemical penetration enhancers. 

 
Absence of pharmacological action within the body. 
 
Non-toxic, non-irritant and non-allergenic. 
 
Action: rapid onset, predictable, reproducible, reversible and suitable duration according 

with the drug. 

 
The mechanism of action should allow the penetration of the drugs while preventing the 

efflux of endogenous substances from the body. 

 
After being removed from the skin the barrier properties of the skin should recover rapidly 

and entirely. 

 
Chemically and physically compatible with the drug and excipients of the formulation. 

 
Odorless, colorless, inexpensive as well as pharmaceutically and cosmetically acceptable. 

 

 

 

There are several potential mechanisms of action of the skin penetration enhancers 

[3, 6, 12, 97, 130-133]. They can interfere with the normal SC structure by disrupting 

the intercellular lipid lamellae, through the interaction with the SC proteins inside the 

corneocytes and/or by the disruption of the cornified envelope. Some penetration 

enhancers have the ability to promote the partition of the drug to the SC while, in 

others cases, the enhancing effect is related with modifications in the dosage form 

such as the increase of the effective concentration of the drug in the vehicle. 

Most of the chemical penetration enhancers combine more than one of these 

mechanisms of action.  
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The penetration enhancers can interfere with the intercellular lipid domains in 

several ways as depicted in Figure 1.14 and, in that way, they are able to increase 

the drug diffusion coefficient (D). 

 

 

 
 

Figure 1.14 Chemical penetration enhancers mechanisms to disrupt the intercellular lipid domains. 
Modified from [134]. 
 

 

The sorption promoters can induce a fluidizing effect by insertion in two different 

zones of the intercellular lipid lamellae of the SC, the lipid tail regions (e.g. 

phospholipids, azone, sefsols) or the polar headgroups region (e. g. polar solvents) 
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[12, 130, 135]. Other accelerants, rather than being homogeneously distributed in 

the intercellular lipid lamellae, phase separate in the membrane  [12, 130]. This is 

the case of fatty acids such as oleic acid [136]. 

 

In the case of some solvents (e.g. DMSO, alcohols, acetone) they are able to 

solubilise and extract part of the lipids, inducing a disorganization of the intercellular 

lipid domains  [12, 130, 137]. 

 

The last mechanism known to disrupt the intercellular lipid domains of the SC is the 

formation of water pools in the region of the polar head groups, contributing for the 

creation of a facilitated polar pathway. That is the case of DMSO [12, 134].  

 

 

 

. 

 
Figure 1.15 Interaction of the chemical penetration enhancers with the SC proteins. (a) Disruption of 
the corneodesmosomes with the consequent separation of corneocytes into the individual cells. (b) 
Within the corneocytes, the sorption promoters induce swelling, keratin denaturation and vacuolation. 
Modified from [134]. 
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In Figure 1.15 it is shown the mechanisms by which the chemical penetration 

enhancers interact with the SC proteins. Some molecules such as ionic surfactants 

or sulphoxides have the ability to interact with the SC intracellular keratin. This 

interaction produces a decrease of the corneocytes density, which makes them 

more permeable [3, 12, 131, 134].  On the other hand, caustic solvents, phenols and 

acids can break the corneodesmosomes, which promotes the separation of the 

individual corneocytes [12, 134]. These two mechanisms produce an increase of the 

diffusion coefficient of the drug within the SC and hence the permeability. 

 

The majority of the penetration enhancers that are able to increase both the drug 

partitioning between the vehicle and the SC [K in Equation (1.1)] and the solubility 

of the drugs in the SC [Cs,m in Equation (1.2)] are solvents. Some examples of such 

solvents are ethanol, propyleneglycol, transcutol, N-methyl pyrrolidone [3, 131, 132].  
 

 

In terms of safety and effectiveness, water is the best penetration enhancer. One of 

the most common approaches to improve the transdermal drug delivery is by 

increasing the water content of the SC [130, 138]. The normal water content is ca. 

20% (of the dry weight of the skin) but this value can be increased by soaking the 

skin with water, in high relative humidity or by occlusion [3, 6, 130, 138].  

Occlusion with plastic films, paraffins, oils, ointments or others can increase the SC 

water content up to 400% of its dry weight [130, 138]. It prevents the normal TEWL 

and can cause a 10-100 fold increase in drug percutaneous permeation [4]. The 

main disadvantage is the possibility to cause local skin irritation [4, 111, 112, 139]. 

An increase in the SC hydration results in a higher elasticity and permeability of the 

SC for hydrophilic as well as for some lipophilic molecules [3, 6, 112, 130, 140-142]. 

The water produces the swelling of the compact structure of the SC and the texture 

becomes softer [3, 6, 112, 130, 138, 140, 141]. 

Despite the extensive number of studies, the exact mechanism by which the water 

increases the percutaneous permeation of drugs is still unclear. It is also unclear if 

water has the ability to disrupt the intercellular lipid lamellae [130, 143, 144]. 
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5.1.2 Drug modification 
 

The synthesis of drugs or prodrugs with physicochemical properties more desirable 

for the transdermal drug delivery is another possible strategy for the skin penetration 

enhancement [145]. More lipophilic molecules can be obtained by esterification of 

carboxylic groups or acetylation of amines [3, 97, 146]. When considering the 

prodrug approach, it should be taken into consideration that the metabolic capacity 

of the skin is very limited when compared with the liver [146, 147]. This strategy 

have been well succeeded in drugs such as buprenorphine [148], propranolol [149], 
5-aminolevulinic acid [150] or morphine [151]. 

 

As discussed in Section 4.4.2, ionized drugs have generally a small partition 

coefficient between the vehicle and the SC [3]. Two different strategies can be used 

to increase the skin permeation of charged species, the ion-pair approach or the 

conversion of the drug to its free base [3, 152, 153].  

The ion-pair approach consists of the addition of an oppositely charged specie to the 

ionized drug, forming a neutral ion-pair that has a more favourable K for the skin 

permeation. After passing through the SC, the ion-pair dissociates in the epidermis 

releasing the ionized drug [3]. An increase in the flux of ca. 7.3 and 11 times has 

been described for diclofenac and salycilates, respectively, due to the ion-pair 

formation [154, 155]. 

 

Most of the drugs were designed for oral drug delivery and for this reason only the 

salt forms are commercially available for the majority of the actives. The conversion 

of the salt form of a drug to the corresponding base (free base form) can render 

molecules with more desirable properties for the drug delivery across the skin such 

has higher log P, lower MW and lower MP. The benztropine free base exhibited a 2-

60 times higher flux, in comparison with its mesylate salt, when delivered from the 

neat solvents [152], while the steady-state flux of primaquine free base was 75-230 

times higher than the value obtained with the salt form [156]. 
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5.1.3 Formulation approaches  
 
5.1.3.1 Supersaturation 
 
The supersaturation of the drug in the vehicle increases the driving force for the 

release and penetration of the drug in the skin without alteration of the SC structure 

[3, 157]. Looking again to Equation (1.2), it is clear that the mechanism of 

enhancement via drug saturation is due to the increase of the fraction Cv /Cs,v.  

 

In a saturated solution, the fraction Cv /Cs,v (thermodynamic activity or degree of 

saturation) is equal to unity; thus, in a supersaturated system the degree of 

saturation is higher than the unity [12, 138]. Several strategies are used to prepare 

supersaturated systems [12, 138], as discriminated below. 

 

Alteration of the vehicle composition 
A widely used technique is to dissolve the drug in a solvent system composed by 

one volatile solvent combined with less volatile or non-volatile solvents. When the 

formulation is applied on the skin, the volatile solvent evaporates leading to the 

supersaturation of the drug in the skin surface. 

 

Preparation of supersaturated systems of amorphous forms of the drug 
Amorphous states of the drugs can be prepared by grinding with carrier or 

deposition on carrier. Skin permeation is higher from the amorphous states than 

from the crystalline forms. 

 

Use of a binary cosolvent system 
In these formulations the drug is dissolved in two solvents. Immediately before the 

administration, one of the solvents is added to the formulation in order to decrease 

the drug solubility in the vehicle and produce a supersaturated system. 

The major problem of the supersaturated formulations is that they are 

thermodynamically unstable and recrystallization tends to occur over time [12, 138]. 

Supersaturated systems can be stabilized by the addition of antinucleant polymers 

(e. g. PVP, HPMC, CMC) that have the ability to delay recrystallization [158-160].  
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5.1.3.2 Eutectic Systems 

 
An eutectic system consists in a mixture of two components that do not react to form 

a new molecular entity but, at certain ratios, inhibit the crystalization of each other. 

The eutectic system has a single melting point that is lower than the melting point of 

each component isolated  [3, 161].  

As previously described in Section 4.4.2, the lower the melting point of the drug, the 

greater is the solubility of that molecule in the solvents, including the SC lipids [3].  

Most of the eutectic systems prepared for the skin permeation enhancement are 

formed by a drug and a known penetration enhancer (e.g. menthol, fatty acids, 

thymol) as the second component [161-163]. In these cases not only the melting 

point depression is contributing for the increase in skin permeation but is also likely 

that the interaction between the sorption promoter and the SC lipids accounts for the 

improvement of the drug flux. 

 

 

 

 
 

Figure 1.16 Structure of some colloidal carriers used as vehicles for skin penetration enhancement. 
 
 
5.1.3.3 Colloidal carriers 
 

Liposomes [89, 164, 165], niosomes [165, 166], transfersomes [165], ethosomes 

[167, 168], proniosomes [169, 170], nanoemulsions [171-173], solid-lipid 

nanoparticles [171, 174] are some examples of colloidal carriers with entrapped 
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active pharmaceutical ingredients used with the aim of increasing the actives 

percutaneous permeation (Figure 1.16) [3, 6, 131].   

 

These carriers accumulate in the SC, without penetrating further into the viable 

epidermis, where they seem to interact with the SC lipids and release the 

encapsulated drugs [3, 6, 131]. The effectiveness of these carriers is debatable and 

further research is needed. 

 

 

 
5.2 Active methods 
 
In the active methods, an input of external energy is necessary as driving force for 

improving the drug permeation or to reduce the barrier properties of the skin [4]. 

These type of methods are generally employed in large (> 500 daltons), hydrophilic 

and polar molecules, with low potency, such as proteins [4, 13].  

A variety of active methods have been evaluated, including those discriminated 

below. 

 

Iontophoresis  
In the iontophoresis technique, a small electric current is applied on the skin and 

works as the driving force to increase the delivery of charged drugs through the skin 

[6, 138, 175]. The charged molecules are forced to enter the skin by electrical 

repulsion although other mechanisms also contribute to the drug penetration 

enhancement, such as the flow of electric current that may increase the skin 

permeability and the electroosmosis which induces a solvent flow across the 

membrane [6, 138, 176, 177]. 

 

Phonophoresis or sonophoresis 
An ultrasonic energy of low frequency is applied over the skin where the drugs are 

going to be delivered. The energy induces a perturbation in the SC due to cavitation, 

heating, radiation pressure and acoustic microstreaming effects which produce the 

increase of the drug percutaneous permeation [6, 138, 178-180]. 
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Electroporation 
The electroporation acts by the application of short pulses of high voltage current on 

the skin that transiently opens hydrophilic pores in the SC intercellular lipid lamellae 

[3, 6, 181, 182]. These hydrophilic pores constitute new pathways for drug 

permeation. 

 

Photomechanical wave   
A drug formulation applied on the skin is irradiated with a laser pulse that generates 

photomechanical waves. This technique produces alterations on the SC that 

increase the percutaneous permeation of drugs [6, 183]. 

 
 
6. In vitro permeation experiments 
 

The in vitro permeation studies using diffusion cells are routinely conducted in order 

to evaluate the percutaneous permeation of drugs [184]. The data obtained from 

these experiments are predictive of the in vivo percutaneous absorption, since the 

barrier properties of the SC are essentially maintained in excised skin [184]. 

 

Franz diffusion cells are one of the most widely used diffusion cells and consist of a 

donor and a receptor compartment (Figure 1.17) [185, 186]. The excised skin is 

placed between the two compartments and the system is closed with a clamp. The 

formulation is applied in the donor chamber, and the drug permeation rate through 

the skin is determined by measuring the amount of drug in the receptor 

compartment over time with an appropriate analytical method (e.g. HPLC, 

spectropothometric detection, scintillation). 

The design of the diffusion cells should ensure a good seal around the skin 

membrane, an easy sampling technique, a proper mixing of the receptor solution 

and a rigorous temperature control of the system [184, 187, 188]. 

 

In vitro methods offer several advantages over the in vivo methods. In the former, 

the experimental conditions are controlled with precision in order to closely mimic 

the normal in vivo exposure, and the only variables are the skin membrane and the 
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formulation under study [14]. The permeation of the compound is directly evaluated 

by collecting the samples immediately beneath the skin, instead of quantifying the 

amount of drug in the systemic circulation or urine [12]. These methods also avoid 

the expensive and time consuming in vivo experiments with animals or humans. 

 

 
 

 

  
 

Figure 1.17 Franz diffusion cells. 

 
 
6.1 Excised skin 
 
Several studies have examined the differences in the percutaneous absorption of 

chemicals between different animal species and human skin, mainly due to the 

difficulties in obtaining human skin [189-193]. Animal skin is easier to obtain and is 

more uniform [12, 80]. The major differences between animal and human skin are 

the number of hair follicles, sebum and SC thickness [12, 80]. 

From all the species evaluated (e.g. pig, mouse, rat, guinea pig, rabbit, dog, 

monkey), the pig ear skin seems to have the closest resemblance to human skin in 

terms of permeability characteristics [12, 189, 191, 194], SC thickness, lipid 

composition, biochemical properties and histological appearance [12, 192-194]. Rat, 

mouse, rabbit and guinea skin are not predictive of the drug permeation through 
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human skin [12, 191, 194]. Pig skin is also the recommended in vitro model for 

human skin according to the reference guidelines [187, 188, 195, 196]. 

 

The number of skin layers used can also significantly affect the results of the 

permeation experiments. Different methods can be used to prepare the skin 

membranes. The full-thickness skin is composed by the epidermis and dermis while 

the dermatomed skin consists in a slice of skin cut with a dermatome in order to 

remove the lower dermis.  The epidermal membranes are composed by the viable 

epidermis and a membrane composed exclusively by the SC can also be used in in 

vitro permeation experiments [12, 187, 188]. 

Dermatomed skin and epidermal membranes are the most widely used and the 

more appropriate. Full-thickness skin is not indicated in lipophilic drugs because the 

drug permeation is artificially prevented, in vitro, by the dermis [12, 187, 188]. 

 

It is recommended to check the integrity of all skin samples used in the permeation 

studies in order to avoid abnormally high values of permeability. Skin integrity may 

be qualitatively assessed by visual inspection or through quantification of the TEWL, 

the flux of low MW markers or by measuring the electrical conductivity [12, 184, 187, 

188]. 

 

 
6.2 Receptor solution 
 

The receptor solution must provide the sink conditions for the test chemical during 

the entire time of the experiment so that it does not act as a barrier to absorption. 

Furthermore, it must not damage the skin membrane, alter the physicochemical 

properties of the drug to be tested or interfere with the analytical method [184, 188, 

194].  

The receptor fluid must be maintained at a constant temperature because variations 

in the temperature may affect the drug absorption process. When the receptor 

solution is kept at 37ºC the temperature at the skin surface is approximately 32ºC 

which is considered to be the normal temperature of human skin [12, 184, 188, 194]. 
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Generally, a buffer solution such as phosphate buffered saline (PBS) or a similar 

physiological buffer (pH 7.4) is suitable for conducting the in vitro permeation studies 

[14, 194]. 

 
 
7. Hydrogels 
 

Hydrogels are three dimensional networks of linear hydrophilic polymers that absorb 

large amounts of water or biological fluids, while remaining insoluble and 

maintaining their 3D structure [197-200]. The network insolubility is due to the 

presence of chemical or physical crosslinks between the polymer chains. Due to 

their high water content, the soft consistency and resemblance with natural living 

tissues, hydrogels possess excellent biocompatibility [199]. The main advantage of 

hydrogels in the controlled drug delivery lies in the near constant release rates 

obtained [200]. 

 

Hydrogels can be classified in chemical and physical gels based on the crosslinking 

nature.  

Chemical hydrogels are obtained by radical polymerization in the presence of 

crosslinking agents which results in the formation of irreversible covalent crosslinks 

between the polymeric chains [197, 199, 201, 202]. They are characterized by a 

permanent network, good mechanical properties and are very resistant to dissolution 

even in extreme conditions [202]. However, the use of crosslinking agents originates 

several disadvantages. Most of them are toxic compounds that must be removed 

from the hydrogels by an additional purification step before they can be safely 

administered [203]. In fact, there is a small amount of data concerning their 

biocompatibility and their fate in the human body. Moreover, free unreacted 

crosslinkers can affect the integrity of the drugs to be incorporated in these 

hydrogels [197, 202, 204]. 

 

 On the contrary, physical hydrogels have reversible crosslinks between the 

polymeric chains. Physically crosslinked hydrogels can be formed by ionic 
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interactions, secondary interactions or be grafted or entangled hydrogels [197, 199, 

201, 202].  

 

 

 

 
 

Figure 1.18 Schematic representation of a polyelectrolyte complex interaction between two oppositely 
charged polymers, according to the pH of the medium. 
 

 

Polyelectrolyte complexes (PEC) are physical hydrogels in which ionic interactions 

are established between two polymers with opposite charges and a broad MW 

distribution (Figure 1.18) [197, 199, 201, 202]. These type of hydrogels offer several 

advantages over the chemically crosslinked ones. The reaction occurs in aqueous 

solution and mild conditions [201] which enables the direct incorporation of the drug 

in the formulation during the preparation of the PEC. The electrostatic interactions 

are strong enough to prevent dissolution in water, and PEC films are capable of 
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maintaining their mechanical strength [201, 202]. They are biocompatible, offering a 

wider range of potential medical and pharmaceutical application than covalently 

linked hydrogels [202]. The swelling of PEC hydrogels is sensitive to both pH and, in 

minor extent, to ionic strength; therefore they are very versatile drug delivery 

systems that can be used in pH controlled drug delivery [201].  

 

The properties that were discussed justify the increased interest in the development 

and optimization of physical hydrogels. The main limitations are the moderate 

mechanical stability, the risk of dissolution in extreme pH conditions and their 

complex preparation method [201, 202]. 

 

The high water content of hydrogels is important in the skin moisturization and 

elasticity providing a better feeling when applied on the skin. For these reasons, 

hydrogels are a good alternative to more conventional dosage forms used in the 

transdermal delivery of drugs such as creams, ointments and patches [199]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

II  

Thermal behavior of human stratum corneum 
 
 
 
 
 
1. Introduction 
 
The characterization of the thermal behavior of the SC and SC lipids has been done 

over the past 3 decades [64, 116, 205-211]. It still constitutes a field of intensive 

research due to the development of more sensitive and precise instrumentation. 

 

The information obtained from thermal analysis is crucial for understanding the SC 

and SC lipids molecular structure and their role in the selective permeability of the 

skin, which is still a matter of large debate [28, 70, 212, 213]. The structural 

arrangement of SC lipids at different temperatures can be directly correlated to 

water permeability [35] and, in a more practical sense, thermal analysis allows to 

assess the enhancing or retarding effect of specific molecules [214-221], that are 

used to reversibly alter the barrier properties of the skin. The presence of these 

molecules affects the temperatures at which phase transitions occur, and the 

temperature shift may be easily correlated to the effect upon the skin barrier, e.g. the 

lipids degree of fluidization. This gives the possibility of optimizing transdermal drug 
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delivery. 

These studies have resorted to several techniques, such as differential scanning 

calorimetry (DSC) [205, 216, 217, 221-223] and differential thermal analysis (DTA) 

[214, 224, 225]. The information obtained concerns the thermal alterations in the SC 

that may be correlated with phase-transitions in the lipid lamellar-structures and also 

to modifications in other skin components, such as proteins or the interaction 

between lipids and these components. 

Four endothermic transitions between 40 ºC and 115 ºC have been identified in a 

significant number of previous studies on the SC matrix and have been assigned 

essentially to lipid, lipid-protein and protein alterations [225]. Most results from other 

authors reflect this trend. The thermal transition at approx. 40°C has been ascribed 

to a change in the lateral lipid packing of the intercellular SC lipids from 

orthorhombic to hexagonal [121]. Between 65 and 75ºC the SC intercellular lipid 

structure evolves from lamellar to disordered and the lateral packing from hexagonal 

to liquid [55, 225, 226]. When the temperature is further increased until approx. 

80°C, the lipids associated to proteins evolve from gel to liquid, and at temperatures 

above 90°C the skin upper layers suffer irreversible protein denaturation [206, 207, 

225, 227]. More recently, a new transition has been detected in the SC thermogram 

at about 55ºC and is probably related with the covalently bound lipids of the 

corneocyte envelope [64, 216]. At the same time, it has been shown that proteins do 

not play a major role in the SC lipid phase behavior. This behavior is, to a large 

extent, observed in extracted lipids [71].  

 

Other techniques, usually based in spectroscopy, may also be used in conjunction 

with temperature variations. A correlation between structural or conformational 

changes and temperature could, in principle, be readily obtained, but it is difficult to 

establish an uncontroversial interpretation of the data. This interpretation is usually 

made from indicators (such as specific vibrational frequencies) of transitions that 

result from alterations in some degrees of freedom of the constituting molecules. 

Different techniques originate complementary information. Examples are Fourier 

transform infrared spectroscopy (FTIR) [221, 228] and Fourier transform Raman 

spectroscopy (FT-Raman) [222, 223, 229], where effects of fluidization are assessed 

through shifts in the frequencies of certain vibrational modes. Similarly, electron 

paramagnetic resonance (EPR) [210, 230] inspects rotational degrees of freedom, 
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while electron diffraction (ED) [211] or wide-angle X-ray diffraction (WAXD) [121] 

techniques look more directly into structural aspects. 

A variety of techniques has also been employed in selected lipid components of SC 

and simplified models for SC lipids. These include atomic force microscopy (AFM) 

[231, 232], small angle X-ray diffraction (SAXD) [59], transmission electron 

microscopy (TEM) [233], electron spin resonance (ESR) [127] and many others. 

These studies intend to mimic the behavior observed on the skin in order to give 

valuable information related to SC structural organization [59, 233-235] and the role 

of specific molecules in the barrier function [60, 61, 236, 237]. 

 In spite of the above mentioned studies and many others, the SC system and the 

respective structure and behavior are still controversial. This can be seen from the 

number of different models suggested for the SC organization and discussed in 

more detail in the general introduction of this thesis [68, 70, 212]. Recent work have 

shed light directly on the organization of the repeat units in the intercellular lamellar 

structure [237], without detailing the thermotropic phase behavior. It is therefore 

extremely important to carry out new studies to obtain additional information. 

 

 

The existence of a significant amount of irrelevant amorphous material in SC makes 

most transitions almost negligible from the energetic standpoint. The lipids are only 

a part of the whole matrix and large quantities of the SC layer are necessary to 

obtain quantitatively significant results. Even the identification of actual transitions is 

sometimes difficult both due to peak overlap and to less well-defined transitions. 

When resorting to human skin, obtaining large samples is not an easy task, and it is 

thus extremely important to employ less material-consuming techniques.  

 

High-speed differential scanning calorimetry (Hyper-DSCTM) has been reported to 

have high sensitivity when operation takes place at very high scanning rates, clearly 

above 100 °C/min  [238]. Using high scanning rates significantly increases sensitivity 

and resolution because it leads to a higher heat-flow and also facilitates throughput. 

Transitions that are difficult to discern using conventional DSC can be more easily 

identified [239]. It is also to be stressed that these higher rates provide a better 

picture of the original sample as reorganization during the heating process is greatly 

reduced. It allows not only the detection of very weak transitions, but may 
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additionally avoid changes often induced by classical heating rates, such as 

recrystallization and decomposition [238]. This technique is used with sample 

masses well below those of conventional DSC, emphasizing the heterogeneity in the 

analysed material.    

 

Although DSC is a technique widely used in studies of the skin, the coupling with 

polarized light thermal microscopy (PLTM) is not yet properly explored in this area. 

DSC is a method that allows the detection of the sign, temperature, rate of change 

and magnitude of phase transitions. However, in the study of multiphase systems 

we can often obtain very complex DSC curves with different superimposed signals 

that have a very difficult interpretation. The association with optical methods such as 

PLTM enables the observation of texture [240], partial melting, segregation, eutectic 

formation, decomposition [241], the distinction between solid-solid, solid-liquid or 

liquid-liquid transitions. In conclusion, the association of these two methods 

facilitates the elucidation of the type of transition in very complex systems such as 

those under study [242-244]. 

   

In what follows, we present results concerning phase transitions starting at room 

temperature, and including physiological and higher temperatures. The latter provide 

information on the organization of lipids and other components that may indirectly be 

associated to the behavior of the skin barrier at physiological temperatures. 

    

   

 

2. Materials and Methods 
 

2.1 Isolation of the stratum corneum 
 

Human skin from the thigh was obtained after reconstructive surgery, and from post-

mortem collection.  The dermatomed skin is placed dermal side down on filter paper 

soaked with a 0.1% trypsin (type IX-S, Sigma Chemical Company, St.  Louis, MO), 

in phosphate buffer saline (PBS) solution, pH 7.4. Digestion occurs during the night 

at 37ºC [214], see Figure 2.1. The SC is separated from the underlying tissue and 
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rinsed with ultrapure water, dried and stored in a desiccator with P2O5 for 24 hours.  

It is then hydrated in the presence of a 27% NaBr solution for a period of 2 days, 

before analysis [225]. 

 

 

 

 
 
Figure 2.1 Schematic representation of the stratum corneum isolation.  It can be seen the (a) 
dermatomed skin and the (b) stratum corneum. 
 

 

2.2 Extraction and preparation of SC lipids 
 

The SC is briefly rinsed with hexane to remove contaminating substances [206]. For 

the actual extraction we have followed the procedure described in [43]. The samples 

are sequentially immersed for 2h in three different HPLC-grade chloroform/methanol 

mixtures (2:1, 1:1, 1:2) each at room temperature. The extractions are then repeated 

for 1h each, and the sample is extracted overnight with methanol. All the extracts 
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are combined and re-covered by filtration through a Whatman grade 44 fillter. The 

final extract is dried under vacuum in a rotary evaporator. 

Samples were prepared with two degrees of hydration. For obtaining the dehydrated 

lipids they are kept in a desiccator in the presence of P2O5. The more hydrated lipids 

are, in turn, stored in the presence of a NaBr solution (27g /100 ml) solution; it 

should be noted that the latter procedure is considered appropriate for obtaining the 

water content in the SC that is found in normal healthy skin [225]. The minimum 

residence time in the desiccator is 48h in both cases. 

 

 
2.3 DSC measurements 
 

A DSC Pyris 1 calorimeter from Perkin-Elmer, equipped with a Cryofill cooling 

system, was used.  Samples of SC weighing 2-9 mg and samples of extracted lipids 

weighing 1-4mg were encapsulated in 10L aluminium pans adequate for volatile 

samples. The calorimeter was calibrated for temperature [245] with 99.9% pure 

cyclohexane, Tfus=6.66±0.04ºC, 99.9% naphtalene, Tfus=80.20±0.05ºC, and 

99.99% indium, Tfus=156.6 ºC. A 20 ml/min helium purging flow was used. 

Typically, samples initially cooled to -170ºC, are subjected to heating and cooling 

cycles between -170ºC and 160ºC at 400, 200 and 100ºC/min (heating) and 

50ºC/min (cooling) rates. 

0

Results for no less than three replicates were obtained from each sample. 

 

 

2.4 Polarized light thermal microscopy 
 

A slightly modified version of the original skin surface biopsy (SSB) technique [246] 

was employed for obtaining thin layers of the SC, approximately two to three cells 

thick, so as to be used in PLTM observations. A layer of cyanoacrylate is placed 

directly on the skin. After drying, the slide is rolled off the skin removing the SC 

layer. The technique is used in skin obtained from living donors, which has not 
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suffered any treatment or even washing in the previous 2h. The SC structure is 

maintained and the collected sample is immediately subjected to observation. 

The hot stage/DSC video microscopy analysis was performed using a Linkam 

system DSC600. The optical observations were conducted resorting to a Leica 

DMRB microscope and registered using a Sony CCD-IRIS/RGB video camera. The 

image analysis used a Linkam system software with the Real Time Video 

Measurement System (Figure 2.2). The images were obtained combining the use of 

polarized light with wave compensators, at a 200x magnification. 
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Figure 2.2 Schematic representation of the Linkam system DSC600.  A: DTA cell, B: microscope, C: 
video camera, D: PC, E,F,G: central unit, H: video recorder, I: monitor and J: liquid nitrogen. 
 

 

Samples consisted of SC layers, placed face down, and SC extracted lipids. The 

latter were prepared by dispersing a small amount of the material at the bottom of a 

covered 7 mm quartz crucible. In some experiments, the cover is placed directly 

over the sample in a thin flat preparation.  
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The behavior of the lipids was studied in heating/cooling cycles between 20 ºC and 

120 ºC, at scanning rates of 10 ºC/min. The scans were made under a nitrogen 

atmosphere through the use of nitrogen flow. 

 
 
3. Results 
 

In this section we present the results obtained from thermoanalytical measurements 

using DSC, and observations from thermomicroscopy under polarized light.  

 
 
3.1 High scanning rate DSC 
 

The thermal transitions that are difficult to discern using conventional DSC are more 

easily identified using high scanning rate DSC or Hyper-DSCTM. The higher rates 

provide also a better picture of the original sample, once reorganization during the 

heating process is greatly reduced. Hyper-DSCTM is used with sample masses well 

below those of conventional DSC, emphasizing the sample heterogeneity in the 

analyzed material.  

 

 
3.1.1 Stratum corneum 
 
Thermograms for hydrated SC were obtained at three scanning rates, i.e. 400, 200 

and 100°C/min. For the higher, intermediate and lower rates, 18, 16 and 6 traces 

were registered, respectively.  Samples were obtained from 6 donors, as seen in 

Table 2.1. The Figure 2.3 exhibits the results obtained in the samples at these three 

heating rates. These particular thermograms were selected on the basis that they 

display a significant number of concomitant transitions.   
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Table 2.1 Characterization of the donors and number of determinations, for each scanning rate. Samples from 

donors 1-6 were hydrated, while those from donors 7 and 8 correspond to the dehydrated SC and delipidized 
matrix determinations, respectively.  

  number of determinations 
  per scanning rate (ºC/min) 

 Donor gender, age 100 200 400 
1 female, 42   4 

2 female, 65  9 7 

3 female, 19  2 2 

4 male, 20  2 1 

5 male, 47 3 1 1 

6 male, 51 3 2 3 

7 male, 45  4  

8 male, 50  5  
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Figure 2.3 Examples of DSC traces, for the first heating run, obtained for hydrated human SC at 
different scanning rates (400, 200 and 100°   C/min).  
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At least eight transitions were found in the 20-120ºC range, instead of the usual four. 
Table 2.2 summarizes the transition temperatures detected in the present work, 

labelled from A to H and taken as the peaks maxima in the curves. It also includes a 

number of those found in previous studies by other authors and the literature data 

are organized in columns according to the similitude to processes identified in this 

work.  Relevant sample and operational conditions are indicated in the order:  

scanning rate, temperature range, mass (or area) of SC, pre-treatment.  All data 

were obtained from DSC, except where indicated. The temperature ranges 

correspond to the spread in peaks maxima (Tm).  

 
The observation of the thermograms indicates, as usual, a broad endothermic peak 

starting slightly above 0°C, with the internal structure corresponding to transitions A-

F, reaching its maximum near transitions E and F, then decreasing and raising again 

near H. The initial four peaks are placed in the ascending part of the overall peak 

and are thus clearly less visible. The first and second derivatives of the original 

traces (Figure 2.4) facilitate the location of less marked features. Zeros in the first 

derivative, from positive values, were assigned to definite Tm. In the cases where 

peak overlap is significant the zeros of the first derivative were used to identify the 

temperature in the Tm of the thermal transitions. Inflection points and inverted peaks 

given by the second derivative were used for confirmation.  

 

The labelling of transitions was based on the fact that all these transitions were 

individually detected, i.e., they were present in some thermograms in conjunction 

with contiguous ones. They were also frequently detected, as shown in Table 2.3. 

The labels were based on an elementary cluster analysis that grouped values of 

peaks maxima obtained in different determinations. These groups are shown as a 

temperature range in Table 2.2, limited by the extreme values for each group. To 

avoid further subdivision, low temperature peaks were grouped under A, but 

correspond to a set of different transitions as clearly seen in some thermograms. 

Structure corresponding to higher temperature processes (temperature >120°C) can 

also be discerned. 
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Table 2.2 Transitions found in hydrated human SC, in ºC. Literature data are organized in columns 
according to the similarity to processes identified in this work.   
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Figure 2.4 DSC trace shown in Figure 2.3 for 400ºC/min (a), and the respective first (b) and second 
derivatives (c). Approximate peaks maxima are shown in the top panel, for the labelled transitions. See 
corresponding zeros in the first derivative (b) and inverted peaks (c) for the second derivative used in 
identification. 
 

 

The two highest scanning rates have produced similar results for the amounts of 

sample material employed, with a slightly enhanced resolution for 200° C/min. Effect 

of mass or donor is not detectable in the experiments. In fact, a variable number of 

groups (3-6) were organized with samples, each sample defined by a binary variable 

in which the presence of each of the eight transitions considered is marked with 1 
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and absence with 0. Using a centroid method [249]  and Euclidean distance, it could 

be seen that each group of most similar samples had a tendency to include different 

scanning rates, masses and donors. This result was obtained irrespective of the 

number of groups tested.  

      

 

Table 2.3 Data for hydrated SC concerning reproducibility for each transition temperature identified in 
this work.  All three scanning rates tested are considered. 

Transition Frequency 
 Thermograms Different donors 

A 16 5 
B 11 6 
C 20 5 
D 22 6 
E 37 6 
F 36 6 
G 28 6 
H 30 6 

 
                                     

 

In the lowest scanning rate, transition B has not been detected, and a significant 

subdivision in transitions for temperatures higher than 100°C was observed, with 

sharp peaks that apparently result from the deconvolution of broader ones.  

Reheating the samples (Figure 2.5), after cooling at a rate of 50°C/min, produces 

results that complement previous work from other authors such as Duzee [206]  and 

Cornwell et al. [216]. The lowest transition, A, is essentially absent in the 2nd heating 

run. The transition B cannot be found in most samples either, although in some 

samples there are still signs of its presence. For higher temperatures, transitions C 

and D are scarce and transitions E-G, although not as well-defined or frequent, are 

still detectable in a significant number of samples. In summary, peaks obtained upon 

reheating are broader, transitions are less frequent, but partial reversibility may be 

associated to most transitions, except for very low temperatures (<30°C). 
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Figure 2.5 Thermograms of the 2nd heating run, corresponding to those samples previously depicted in 
Figure 2.4. The corresponding heating rates are indicated in the figure. 
 

 

Additional tests were conducted in dehydrated and delipidized SC of two donors, at 

the heating rate that gave the best results (200°C/min)and the results are presented 

in the last entries of Table  2.1. Values for transition temperatures found in these 

samples are gathered in Table 2.4, with other values obtained from the literature. 

The dehydrated SC presents peaks slightly more defined than the hydrated 

counterpart. Transitions A-H are all detected; transition D was found in all samples, 

while transition C was only determined in 1/5 of the samples. For the other cases, 

the frequency was similar to that corresponding to the hydrated SC.  

In the delipidized SC matrix, two major endothermic signals are found, 

corresponding to transitions D, G and H, close to 55ºC and 100ºC. Traces of 

transition E were also detected in two of the samples and F in one sample. 

Transition A was also found in only one of the samples. 
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Table 2.4 Transitions found in dehydrated human SC and in the respective delipidized matrix, in ºC, for 
a scanning rate of 200ºC/min. All data are organized according to Table 2.2.  

 A B C D E F G H Reference 
          

Dehydrated  16, 22 30 49 52-60 76-78 83-89 91-102 105-115 This work 
   41 57 73 86   [205] 
          

Delipidized    52-60   96-99 103-116 This work 
       95  [207] 
       90  [206] 
       100  [216] 

 
 

 

 
3.1.2 Extracted SC lipids 
 
 

Two sets of lipids, hydrated and dehydrated as described above, have been 

subjected to the DSC study. Both originated from the same living donor and were 

extracted from SC that was part of a larger sample. 

The DSC heating curves of both sets (see the examples displayed in Figures 2.6. 
and 2.7.) display as a major feature a pronounced peak with a maximum close to 

60ºC, starting at ≈40ºC and extending up to 80ºC. 

The degree of hydration does not seem to affect the position of the transitions, but 

there is a significant alteration in the relative peak heights. For instance, high 

temperature transitions (T >90ºC) are much more emphasized in the less hydrated 

lipids. As a consequence, the general appearance of the corresponding 

thermograms is quite different.  However, resorting to the second derivative (see 

bottom panels in Figures 2.6 and 2.7) it is shown that the thermograms display 

much more similar characteristics than visible at first glance, and confirms that the 

positioning of peaks maxima (Tm) does not differ significantly at these two hydration 

levels. However, transitions are broader and slightly less defined in the hydrated 

lipids.  
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Figure 2.6 Thermogram obtained in one of the hydrated samples of lipids extracted from human SC, 
top, and respective second derivative, bottom. Both were used for the identification of the position of 
the Tm.                 
 

 

These results are compiled in Table 2.5, that also gathers the results from hydrated 

human SC described in the previous section for easier comparison. The data 

indicates that essentially the same transitions are found in hydrated SC and in the 

extracted lipids, even if the degree of hydration is varied in the latter. Additionally, 

both sets of lipids lack the transition close to 55 ºC.  
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Figure 2.7 Thermogram obtained in one dehydrated sample of lipids extracted from human SC, top, 
and respective second derivative, bottom. Both were used for the identification of the position of the Tm.     

 

 

High temperature transitions (T > 90 ºC) are found in these samples consisting of 

lipids only. Interestingly, and in spite of the presence of broader peaks, the interval 

corresponding to the various values of Tm, the maximum value in the peak, is 

narrower in the more hydrated set of lipids. The values found in SC and extracted 

lipids do not have systematic deviations, except for transition E, that occurs for 

higher temperatures in the SC matrix. 
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Table 2.5 Thermal transitions in ºC, for a scanning rate of 200ºC/min, labelled from A to H, detected by 
DSC in the systems studied. All data are organized according to Table 2.2.  

System A B C D E F G H 
SC (NaBr, 27g/100ml) 19,24 30-37 40-49 50-60 68-79 81-88 91-108 111-118 

Extracted lipids (P2O5) 20-22 32-34 41-48  61-65 87 93-103 107-117 

Extracted lipids  
(NaBr, 27g/100ml)  

21-22 38 41-43  63-64 80-86 96-106 117-120 

 
 

 

3.2 Thermomicroscopy 
 
 

The thermal behavior of SC layers and extracted SC lipids was followed by PLTM. 

This technique is a valuable tool to study phase transformations since the visual 

follow-up gives important information to help their understanding. The association of 

PLTM results with information obtained by DSC allows a deeper insight into the 

organization of lipids in the SC layer and on the thermal transitions that takes place 

when the system is subjected to thermal cycles.            

 

 
3.2.1 Stratum corneum layer 
 
The direct observation of the SC layer, previously separated from the dermatomed 

skin using a trypsin solution, as previously described, allows the visualization of the 

most relevant structural features. Samples obtained from SSB correspond to layers 

of 1/5 to 1/4 of the whole SC thickness (Figure 2.8). In this Figure, the corneocytes 

borders are clearly seen, and marked with arrows. This layer displays different 

regions, also illustrated in Figure 2.9 for which a higher contrast was imposed. 

These regions, or domains, result from differential lipid organization, since 

corneocytes are essentially amorphous. In Figure 2.9, the brighter areas correspond 

to more crystalline structures. 
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Figure 2.8 Intermediate layers of the SC (two to three cells thick), obtained from surface skin biopsy, 
observed under PLTM at room temperature. The corneocytes are easily discerned, and some of the 
respective borders are marked with arrows. The amount of amorphous material prevents the 
identification of clear domains. Bar= 100 μm. 
 
 
As the temperature increases, the domains that are visible in the upper panel of 

Figure 2.9, tend to fade. At higher temperatures an almost uniform texture is 

observed (centre panel), which is compatible with the disruption of the lamellar 

structure. The sample does not retain the original appearance on lowering the 

temperature, lower panel, but the contours are similar. The amount of amorphous 

material in these samples prevents, however, a clear-cut identification of domains 

existent in the intercellular lipid matrix, and suggests the direct observation of SC 

lipids alone, especially if phase changes are to be associated to definite ranges of 

temperature. 

 

 

3.2.2 Extracted lipids 
 
Samples comprising extracted SC lipids possess at room temperature an overall 

appearance in which different regions are distinctly present. When heated from 20ºC 

to 120ºC, a sluggish fusion process of part of the material is the first observed 

alteration, slightly above 20ºC. This is particularly evident as there is a visible 

movement of the solid mass in the material that melts. Observations correspond to 
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the fusion of small subsets of the lipids (note that the lower temperature transition 

consistently detected by DSC is also slightly above 20ºC). 

 

 

 
T= 29ºC 

 

 
T=125ºC 

 

 
T=27ºC 

 

Figure 2.9 SC obtained from SSB observed under PLTM, with cross polarization at the indicated 
temperatures. Note the areas of different contrast, more homogeneous at higher temperatures. 
Brighter areas correspond to more crystalline structures. The appearance upon cooling also differs 
from that of the original sample. Bar = 100 μm. 
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The lipid sample suffers no visible alterations up to temperatures close to 35ºC, in 

which similar changes can be discerned. This low temperature behavior is not 

clearly illustrated resorting to static pictures, for which they are omitted.  

 

 

 

 
T=43ºC 

 
T=56ºC 

 
T=60ºC 

 
T=70ºC 

 
T=73ºC 

 
T=77ºC 

Figure 2.10 PLTM images for a heating process in extracted lipids, without cover slip. An almost 
continuous evolution is seen up to ca. 60ºC. At the latter temperature, the system undergoes a process 
of overall fluidization into an isotropic liquid lipid mixture. Above 70ºC there is a very reduced mobility 
within the system, and two immiscible liquids are visible. Bar = 100 μm. 
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From above 40ºC to close to 55ºC a continuous disappearance of portions of lipids 

 

igure 2.11 Extracted lipids observed under PLTM at the indicated temperatures, in a heating process. 
Characteristic phases (X and Y) are marked. Bar = 100 μm. 

contrasting to the background and fluidization of the domain borders is visible, see 

Figures 2.10 and 2.11. Figure 2.11 also exhibits the initial appearance of a sample.  

 

 

 

 
T=24ºC 

 
T=58ºC 

 
T=100ºC 

F
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It should be noted that these pictures correspond to the observation of the sample 

under polarized light with the combination of whole and quarter-wave compensators. 

60ºC almost all the material is involved in a rapid transition 

 a liquid state, but different isotropic immiscible phases coexist. The fusion process 

In this way, instead of a dark visual field as it would be the case if using crossed 

polarizers, the background image is colored. Therefore, the anisotropic region 

corresponds to the same color as the background, while anisotropy results in 

several different colors.  

 

At temperatures close to 

to

apparently promotes the segregation of different lipid domains but, simultaneously, 

more similar ones tend to coalesce. This phenomenon is particularly evident as the 

temperature reaches 75ºC. At this point the floating material aggregates and some 

isotropic crystals present in the complex mixture become evident. These are 

preferentially distributed in the phase denoted as X (see Figure 2.11, bottom panel).  

 

 

 

 
 
Figure 2.12 Appearance of the hydrated lipids sample of Figure 2.11 after cooling, at room 

mperature. Bar = 100 μm. 

hase X is viscous, as indicated by the respective contours, in comparison to Y. 

hen the temperatures reaches 90ºC, the immiscibility between these two “liquid 

phases“ of apparently different viscosity, becomes even more noticeable. In the 

te
 

 

P

W
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cooling process the number of isotropic crystals tends to increase, and the existing 

ones grow in size. At the temperature of 55ºC a transition from isotropic to 

anisotropic material is observed in the more fluid regions (phase Y). At the same 

time, domains X alter to what seems an amorphous solid phase. The crystallization 

takes place through the slow formation of small crystalline aggregates, giving rise to 

a heterogeneous globular solid texture. The crystallization determines a striated 

texture in the frontiers of the floating material (see Figure 2.12, obtained 

immediately after cooling the sample).  

 

     

 

 

 

 Evolution for ca. 1 week of a dehydrated lipids sample, after being subject to
Top and bottom panels correspond to different field views, and

 
 Figure 2.13  heating and 
cooling cycles.  are obtained without 
nd with the use of cross polarizers, respectively. Bar = 100 μm.            

 

a
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The cooling process additionally evidences different domains of the SC lipids; a 

complex mixture of colored crystalline material with a globular texture, at least one 

isotropic non crystallizable phase X, isotropic crystals, and some 

morphous/isotropic material. This appearance is particularly evident after some 

 the second heating run (not shown) phase Y shows some 

tructural transformation, and crystal growth is apparent. As the temperature 

ssion 

ost studies consider four main transitions in human SC, above room temperature. 

eratures was first determined almost 30 years ago [206]. That 

tudy added an additional transition to those found earlier through differential 

ermal analysis (DTA) [248], due to the deconvolution of the lower temperature 

a

days, Figure 2.13.  

 

The observation of the sample through the use of crossed polarizers gives support 

to the idea that phase Y is formed by small anisotropic crystals together with some 

isotropic material. In

s

reaches approximately 60ºC, the small crystalline aggregates tend to melt, but the 

process is much more subtle than that occurring in the first heating run. At this time 

the fusion appears almost as a fading of the globular texture. In the remaining 

phases no transformation could be detected. The heating run was followed up to 

T=120ºC, and up to that temperature no fusion of the isotropic crystals was 

observed. 
 
 
 
4. Discu
 
 

M

This set of four temp

s

th

peak. Peaks at 40 and 75°C are seen to be reversible, with a clear decrease in the 

intensity of the former, but those transitions detected at around 85 and 107°C were 

not detected upon reheating and were considered irreversible. In contrast, high 

temperature transitions in dry SC were partly reversible. These results are similar to 

those found 10 years later [207], which however presented transitions that were 

lower by 5-12°C. After that, a new transition was presented at 23ºC from results in 

normal human scale, with no posterior confirmation [127]. Transition D was 
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determined at least three times [64, 205, 216] and received a new label, Tx, as it was 

found in conjunction with the usual four.  
Considering only four peaks (T1-T4) and the data present in Table 2.2 from other 

authors, the first one would thus be located in the interval 35-42°C and the 3 others 

ed in the present work results essentially from 

e higher scanning rates; discrepancies may also result from sample treatments 

esses detected by DSC 

 this work are, at least partially, reversible. This seems to come as a result of the 

at 65-75, 78-86 and 90-115°C. These are clearly large intervals, almost overlapping 

in some cases. Assuming 8 transition temperatures labelled from A to G, and 

making the correspondence to previous assignments, we have A as a new group, B 

and C as subdivisions of T1, D as Tx, G and H as subdivisions of T4. Transition T1 

spans an interval of 7 °C in the literature, which is reduced to 2°C both in B (except 

for one value [127]) and C. From the data present in the literature (Table 2.2), 

transition T4 varied 25°C. That span was reduced to 10°C with the new label G 

(again, except for the value in Duzee  [206]) and to 5°C in the transition denoted as 

H. This reinforces the idea that one is dealing with different transitions, difficult to 

deconvolve.                                    

 

The higher number of peaks determin

th

and different levels of hydration. In fact, it is very usual to perform a variety of pre-

treatments in the skin layer from which the SC is isolated as can be seen in the 

experimental conditions described on Table 2.2. Rinsing with organic solvents, 

acetone and hexane, and heat separation of dermis and epidermis are the most 

common. As the presence of sebum has previously been discarded as responsible 

for inducing additional transitions [64], washing with organic solvents was not 

deemed necessary. In fact, these solvents have frequently been used in 

delipidization tests (see, e.g., Grubauer et al. [67]), resulting in disruption of the skin 

barrier. The use of a trypsin solution directly on the whole dermis, after removing the 

subcutaneous fat, was also sufficient to obtain the SC layer. The samples 

undergoing analysis in this work were therefore not subject to pre-treatment, which 

may also partially account for the differences encountered.  

 

We would also like to point out the fact that most of the proc

in

use of higher scanning rates, both in the heating and cooling processes, which 

makes reorganization of microdomains more difficult in the correspondingly shorter 
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time scale. Consequently, processes associated to reversible lipid behavior are 

emphasized and may be visible in spite of concurrent phenomena ascribed to SC 

proteins.  

 

Results concerning the dehydrated SC have confirmed previous observations that 

e thermotropic behavior is not dramatically affected by the degree of hydration 

f 

e lipid organization in human SC. The number of temperature induced transitions 

only a small 

ermal transitions labelled as B and C 

sult from the deconvolution in two different transitions of the phase transformation 

th

[64]. A higher level of hydration has been associated to an increase in the sharpness 

of the transition peaks [206, 207]. We have found, however, a slight enhancement in 

the resolution of a number of transition peaks. The relative intensity of the peak at 

55°C clearly increases for dry SC, in agreement with other observations in dry SC 

[64] and with the fact that the intensity of D tends to decrease with hydration [216].  

 

Our DSC and PLTM results are, overall, consistent with the heterogeneous nature o

th

in the 0-120ºC range detected by DSC, and the clear distinction between coexisting 

domains, both in the SC matrix and extracted lipids, observed in thermomicroscopy 

are in accordance with the perspective that tightly packed lipids [237], gel phases, 

crystalline cholesterol and possibly also liquid-crystalline structures coexist at normal 

skin temperatures [62, 216, 250]. Different transition temperatures are, obviously, 

associated with different processes involving or not all visible phases. 

Both hydrated SC and extracted SC lipids present low temperature transitions at ca. 

20ºC (transition A). They correspond to textural changes affecting 

portion of the observed material, that occur in a definite interval spanning about 2-

3ºC. Values of Tm are consistent for dry or hydrated SC and SC lipids. Transition A 

probably corresponds to the melting of low-molecular-weight lipids, a process that 

have been previously attributed to a transition detected at ca. -9°C [224]. Although 

rare, previous works reported changes in a similar temperature range in dehydrated 

human SC lipids [206] and human SC [127]. 

 

The present results also indicate that the th

re

that has been denoted in the literature as T1 [216]. The fact that these two transitions 

are simultaneously detected in the same sample by DSC determinations in both SC 

and SC lipids may thus shed some light on the conflicting results concerning 
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transition T1, obtained from FTIR at ca 35ºC [64] and WAXD at approximately 40ºC 

[121]. In fact, determinations by FTIR closer to the temperature of B [64] indicate 

that the phase transformation has no direct relationship to an orthorhombic to 

hexagonal transition, which is the usual explanation for transition T1. These 

experiments detected at ca 35ºC an inflexion for higher values in the CH2 symmetric 

stretching, which is associated to a solid to fluid transition [64, 251]. Moreover, in the 

vicinity of the temperature associated with transition C, WAXD results [121] have 

shown a clear change in the packing lattice of the lipid alkyl chains from 

orthorhombic to hexagonal, while the lamellar repeat distance is not affected [55]. 

The fact that both transitions seem to be very sensitive to the degree of hydration 

[216], makes them very difficult to deconvolve and explains why they have been, 

until now, related with only one thermal transition (T1). 

PLTM observations show an almost continuous evolution of the system starting at 

about 40ºC. This is consistent with the progressive transformation in the lateral 

havior that is 

ore directly associated to lipids covalently linked to proteins and proteins, since the 

ture becomes isotropic and liquid. Again, this is 

consistent with observations in model systems [252] and SC [216, 221, 228] that 

packing. Evidence from FTIR [64] and ED [211] have shown that this transformation 

may start, in some cases, at temperatures as low as 30ºC. However, above 40-45ºC 

there is a significant increase in the rate of transformation and at temperatures close 

to 60ºC most of the system is already in the hexagonal lateral packing. 

 

The study of the SC delipidized matrix served to pinpoint the thermal be

m

type of extraction employed in this work does not remove the former. Transition D 

has been found in SC thermograms, delipidized SC but is not detected in our 

determinations with extracted lipids (see Table 2.5). To the best of our knowledge, it 

is the first time that this transition is detected in delipidized SC samples. In a 

previous work, it was only been detected in 1/5 of the SC samples and the phase 

transformation was attributed to another “solid-to-fluid” phase change in a subset of 

lipids [64]. More recently, transition D has been associated to lipids covalently bound 

in the corneocyte envelope [230], resorting to EPR, which is corroborated by the 

present observations by the fact that it is seen in the SC delipidized matrix and its 

absence in the extracted SC lipids.  

When the temperature reaches 60ºC, an almost overall fluidization is visible in 

PLTM, see Figure 2.10. The lipid mix
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suggest the transformation of the lamellar structure in a disordered phase and, 

concerning the lateral packing, a hexagonal to liquid transition as explanation for 

transition E [225]. Also, 60ºC marks an abrupt increase in the water vapor 

permeation through porcine SC [35]. At this point it should be also noted that SAXS 

scattergrams obtained by the authors in dehydrated extracted lipids have shown 

structures very similar to those found in human SC, consisting of short and long 

periodicity stacked lipid lamellae (SPP and LPP) [34]. 

Observations of SC lipid model systems above 60ºC, and up to approximately 80ºC 

have indicated that the lamellar phase may be followed by a hexagonal one, HII 

[253-255]. The PLTM observations in this work show a much reduced mobility within 

ºC, 

ansition F, was explained on the basis of a further gel to liquid phase change [216], 

 may be 

entified in the 90-118°C range (transitions G and H). These transitions are 

the system, after transition E is completed, where two liquids are visible. The relation 

of these observation to those in model mixtures is not, however, straightforward. 

 

DSC results indicate that the same transitions, F to H, are present in extracted lipids 

and SC for temperatures above 70ºC. The transition in SC slightly above 80

tr

in lipids bound to the corneocytes [225]. Our results in the delipidized SC samples 

indicate that transitions E [116] and/or F [221] are most likely not related to the 

above covalently linked lipids. They are detected in these samples, but they are 

infrequent and characterized by low intensity, which suggests incomplete extraction 

in a minute number of instances. Other authors [221] have suggested that transition 

F can also be explained in terms of disruption in the arrangement of the polar head 

groups of the lipids. A mixture of cholesterol and polar lipids is probably involved in 

this process [256]. 

It is clear from our results that this high temperature thermal behavior of SC is not 

associated exclusively to proteins or to covalently bound lipids, Table 2.5.  

 

The transitions observed at higher temperatures have been grouped under T4. The 

data from the present work show that at least two different processes

id

generally related to irreversible protein denaturation, and have been frequently 

detected in the delipidized SC matrix [206, 207, 216], like in the present work. Early 

work in SC has also shown that denaturation of epidermal keratin may occur above 

180ºC [257]. Also, no major structural changes seem to occur at 157ºC, and heating 
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up to 190ºC has shown a reversible pattern [248], although color changes may 

occur if samples are heated for long periods. We have subjected a SC sample, 

obtained from SSB, to a heating cycle from room temperature to 170ºC and cooling 

to room temperature again. Three indicative temperatures in this cycle are depicted 

in Figure 2.9. It is seen that the sample looses its texture, slightly shrinks (from 

120ºC), in part due to dehydration, but maintains its overall appearance. PLTM 

observations on lipids above 90ºC indicate essentially the fluid behavior of the 

mixture, and do not provide further information (Figure 2.11). 

The existence of lipid transitions, not involving proteins, for higher temperatures is 

not surprising. Mixtures consisting of polar lipids and cholesterol display transitions 

above 70ºC [216], which may be as high as 108ºC [253]. Also, some segregated 

. The main 

he importance of the identification of the SC thermal transitions, and of a careful 

ible nature, is twofold. First, they provide information on the 

tructural organization of the skin barrier. Second, they are used to correlate with 

ceramides may have points of fusion clearly above 90ºC [209, 258, 259]. 

Note that higher temperature transitions have also been associated to the loss of 

bound water [257]. Some major differences are detected if we compare 

thermograms obtained from hydrated SC, dehydrated and hydrated lipids

feature in the lipid traces corresponds to the peak centered at 60ºC. This contrasts 

with results for SC, in which peaks at 60ºC and 80ºC are very similar. In fact, 

although the transition at 80ºC is still visible in extracted lipids, it is much less 

pronounced. It is apparent, thus, that proteins do play a definite role close to that 

temperature.  

 

 
5. Conclusions 
 

T

check on their revers

s

other properties (e.g. permeation of substances) and as a previous assessment of 

the degree of fluidization induced by permeation enhancers. The present results 

show that the number of transitions is higher than usually determined and that the 

thermal transitions significantly overlap, i.e., instead of being sequential, some of the 

processes result directly from the existence of segregated phases and are thus 

almost concomitant. PLTM observations clearly showed the existence of domains 
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resulting from phase segregation. All these data strongly indicates that human SC 

lipids are organized heterogeneously, with coexisting phases at physiological and 

higher temperatures and allows rationalizing discrepancies resulting from the use of 

different techniques (usually at slightly different temperatures).  

 

This work has confirmed the existence of a low temperature transition previously 

found in SC only, and now determined in the corresponding extracted lipids. Except 

r one transition (≈55ºC), we have corresponding results in SC and extracted lipids. 

 

ight above 60ºC is displaced to lower temperatures in the lipids, 

tion as the disruption of the 

astic change in 

fo

The transition T1 of the literature has been shown to correspond to one phase 

transformation at about 35ºC and to another one above 42ºC, corresponding to 

different physical changes, according to previous results from different techniques. 

The transition at 55ºC is absent in both sets of extracted lipids (dehydrated and 

hydrated in the presence of NaBr) and is present in the SC delipidized samples, 

which substantiates an EPR study that relates this transition with the corneocyte

lipid envelope. 

High temperature transitions are, at least partially, associated with lipids. They can 

be found in samples consisting of extracted lipids only. 

The transition r

relative to SC. Also it is, in relative terms, much more intense with hydrated lipids 

than dehydrated, which is compatible with its interpreta

lamellar structure. This structure is partially supported by the corneocyte envelope in 

the SC matrix, and is also more structured in the presence of water. 

PLTM observations of extracted lipids illustrate most of the behavior depicted above. 

Gradual variations are visible at temperatures corresponding to most transitions, but 

the disruption of the lamellar structure at ≈60ºC is illustrated by a dr

the texture of the sample. Alterations are visible at high temperatures, thus 

reinforcing that the thermotropic behavior of lipids extends to this high temperatures 

without the direct participation of proteins. 

There is an appreciable correspondence between what is found through DSC both 

in the SC matrix and in extracted lipids, and what is observed by PLTM in the latter. 

 

 

 



 
 

III 
Stratum corneum hydration: phase 

transformations and mobility  
 

 
 

 

 

1. Introduction 
 

The most important function of the skin is probably its ability to serve as an efficient 

barrier to molecular diffusion, which is assured by the very outer epidermis layer, the 

SC as explained in detail on the general introduction of this thesis [122]. It is 

however important to bear in mind that, even though SC has a very low permeability, 

it is not totally tight. As an example, there is the TEWL of about 100-150 ml per day 

and square meter of skin surface through intact healthy skin [15].  

The SC is exposed to large variations in the chemical surroundings, which are able 

to affect its structure and functions. Furthermore, the SC is subjected to several 

different gradients in, e.g. water level, temperature and pH, which can also influence 

its function. Important examples are the observations of a non-linear response in SC 

permeability to variations in the degree of hydration, and that the barrier properties 

can be regulated by, e.g., the relative humidity (RH) of the environment [35, 73, 74, 

260, 261]. In a theoretical model for transport in responding lipid membranes in the 
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presence of a water gradient, this non-linearity was explained by structural 

transformations induced by this water gradient, which largely affects the overall 

permeability [262].  

 

The normal water content in SC is about 30% ± 5% [76], it establishes the SC 

permeability [73, 74], and is also a determinant factor to other vital function of 

healthy skin in, e.g., its relation to the mechanical properties, the appearance and 

the enzymatic activity in SC [66, 75]. This intimate coupling between structure, 

function and hydration of SC motivates the investigations of the SC ultrastructural 

organization and how it responds to variations in the environment. Several studies 

on the hydration of human SC indicate a swelling limit in the interval 22-33 wt% 

[263-267].  

 

It is important to remember at this point that the extracellular SC lipids constitute the 

sole continuous regions of the SC, the molecules that pass through the skin barrier 

must be mainly transported through them [33-35]. Here, the multilamellar 

arrangement of the lipids represents an almost ideal barrier towards strongly polar 

as well as non-polar substances. Due to its direct impact on the barrier properties, 

the organization and composition of these lipids have been extensively studied [50, 

119, 120, 268]. Most of these studies concern the phase behavior at various 

temperatures. However, when considering the skin system, it is equally relevant to 

consider the phase behavior at different RH/water contents under isothermal 

conditions, which is the aim of the present work. 

The majority of the SC intercellular lipids are in a solid state at normal RH and 

ambient temperature [61, 63, 68, 269-271]. However, there are several indications 

that a small fraction of the lipids is in a fluid state [59, 63].  The existence of fluid 

lipids could account for the non-negligible TEWL, which appears difficult to explain 

on basis only of the solid SC lipids. It could also allow for the high elasticity of the 

skin and for the enzymatic activity in the SC intercellular space that is unlikely to 

take place in a crystalline phase [65]. Several models that combine the structural 

information with the chemical and physical properties of the SC have been 

developed: the domain mosaic model [68], the sandwich model [71] and the single 

gel phase model [70]. A detailed description of these three models was provided on 

the general introduction of this thesis. 
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Taken together, it is well recognized that the mobility (fluidity) of the different SC 

components, as well as the SC hydration, is very important to several aspects of the 

vital functions of SC. However, the actual mechanisms of the SC-water interaction, 

how it is related with the hydration of the individual building-blocks (lipids and 

corneocytes) and whether these components have independent or cooperative roles 

in the hydration of SC are still unresolved issues whose solution forms the goal of 

the present study.  

 

Extracted SC lipids, isolated corneocytes and whole SC were investigated at 

different RH/water contents by means of isothermal sorption microcalorimetry, and 

relaxation and wideline 1H NMR. The sorption calorimetric technique allows for 

simultaneous measurement of the sorption isotherms and sorption enthalpies. The 

combination of the thermodynamic characterization of the hydration process and the 

structural information from the 1H NMR measurements provides deeper molecular 

insight in the SC response to hydration. The characterization of this process is 

crucial to the understanding of skin structure and physiology, as well as for the 

development of new therapies for the prevention and correction of dermatological 

disorders related with low water content (e.g. eczema, psoriasis), and to the 

development of new pharmaceutical formulations for transdermal drug delivery and 

new cosmeceutics. 

 

 
 
2. Materials and methods 
 

2.1  Isolation of the stratum corneum 

 
The pig skin from two different animals was a kind gift from “Slakteriprodukter i 

Helsingborg AB”. The hair was removed with an electric shaver and the dermatomed 

skin was placed dermal side down on filter paper soaked with a 0.2% trypsin (Sigma 

Chemical Company, St. Louis, MO) in PBS solution, pH 7.4. Digestion occurred 

during the night [214]. In order to remove any traces of viable epidermal cells, the 
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SC is rubbed and extensively rinsed with ultrapure water [Durapore (0.22 µm), 

Millipore, Bedford, MA], dried under vacuum and stored at -20ºC until used.  

 

 
2.2  Extraction of SC lipids 
 
The SC was rinsed with hexane to remove any lipids which might have 

contaminated the SC surface, such as sebaceous or subcutaneous fat [206]. For the 

actual extraction we have followed the procedure described in reference [43]. Briefly, 

the samples are sequentially immersed in three different HPLC-grade 

chloroform/methanol mixtures (2:1, 1:1, 1:2) for 2 hours each at room temperature. 

The extractions are then repeated for 1 hour each, and the sample is extracted 

overnight with methanol. Methanol is used to extract any polar lipids that are still 

remaining in the SC after the previous extraction steps [43]. All the extracts are 

combined and recovered by filtration through a filter paper. The final extract 

composed by the SC free lipids is dried under vacuum in a rotary evaporator and 

stored at -20ºC. 

 

 
2.3  Isolation of corneocytes 
 
The SC membranes recovered after extraction of SC lipids, are suspended in 1 M 

NaOH in 90% methanol and heated at 60ºC for 1 hour in order to extract the 

covalently linked lipids of the cornified cell envelope. The mixture is acidified to pH 4 

by addition of 2M HCl and agitated with chloroform [43]. After filtration, the remaining 

SC material is washed with chloroform to eliminate residual lipids. In order to 

eliminate NaCl resulting from the extraction procedure, isolated corneocytes are 

extensively rinsed with ultrapure water, dried under vacuum and stored at -20ºC until 

used. Earlier studies demonstrated that the bulk keratin conformation is not modified 

by the delipidation procedure [272] nor by the treatment with solutions with a pH < 

12 [273].  
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2.4 Sample preparation 
 

After isolation and freeze-drying, all samples (intact SC, extracted SC lipids and 

isolated corneocytes) are dried in vacuum at room temperature in contact with 3Å 

molecular sieves during 24 hours. This procedure is necessary to remove all traces 

of water and organic solvents as confirmed by self-diffusion NMR experiments.  

The transfer of the samples to the calorimetric cell and to the NMR tubes takes 

place in a dry nitrogen atmosphere. H2O is added to each sample used in the NMR 

experiments after the samples being transferred into 4-mm diameter NMR tubes in 

N2 atmosphere, in order to achieve the desired hydration. To avoid evaporation the 

sample tubes are flame-sealed.  

The samples were allowed to equilibrate for at least 1 week at constant agitation 

before the measurements. Condensation of water was never observed in the tubes 

in any of the samples.  

 

 
2.5  Sorption microcalorimetry 
 
A double twin isothermal microcalorimeter was used to study the water vapor 

sorption of the SC and its components. A detailed description of the instrument is 

presented elsewhere [274]. The method of sorption calorimetry was used to monitor 

the water activity aw and the partial molar enthalpy of mixing of water,  . A two-

chamber calorimetric cell (diameter 20 mm) with the sample chamber on the top and 

water chamber on the bottom was used. The calorimetric cell was inserted into the 

double-twin microcalorimeter [274]. Water evaporated in the bottom chamber 

diffused through the tube connecting the two chambers and was absorbed by the 

studied sample in the top chamber, see Figure 3.1. The thermal powers 

corresponding to the evaporation of water in the vaporization chamber and to the 

sorption of water vapor in the sorption chamber were used to calculate the   with 

the sample. For the calculations of the   , the sorption calorimeter was calibrated 

using magnesium nitrate hexahydrate as a standard substance [275]. Water activity 

was calculated from the thermal power measured in the vaporization chamber as 

Hw
m

Hw
m

Hw
m
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described in ref [276]. The experimental set-up could be looked upon as a 

continuous titration of an initially dry lipid with water vapor. The rate of water 

diffusion in the vapor is controlled by the geometry of the vessel and the boundary 

conditions. We have confirmed that sorption process takes place under quasi-

equilibrium conditions by conducting separate experiments with samples of different 

size. The complete sorption calorimetry experiment in the present study took 

approximately 13 days for the SC lipid samples, 3 days for the corneocyte samples 

and 7 days for the intact SC.  

 

 

 

 
 
Figure 3.1 Schematic representation of the double twin microcalorimeter reprinted from [277]. (1) 
Tubes to charge the calorimeter; (2) steel can; (3) and (4) top and bottom reference ampoule position, 
respectively; (5) and (6) top and bottom measuring ampoule position, respectively; (7) heat flow 
breaker.  
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2.6  NMR 
 
1H NMR spectra were obtained on samples of extracted SC lipids, isolated 

corneocytes and intact SC with different water contents. Wideline 1H NMR 

measurements were performed on a Bruker DMX-200 spectrometer using a Bruker 

DIFF-25 gradient probe at a temperature of 25 ± 0.5ºC. The 1H resonance frequency 

for this system is 200 MHz. The probe is equipped with a home made 5 mm saddle-

coil RF insert with negligible 1H background signal. Free induction decays (FIDs) 

were recorded after a 4 µs 90º pulse using a dwell time of 1 µs and a receiver dead 

time of 4.5 µs. The FIDs were both analysed in the time-domain, to extract 

solid/liquid ratios, and Fourier transformed to obtain frequency domain NMR spectra. 

Transverse relaxation time (T2) measurements were performed with the spin echo 

pulse sequence (90°- tE/2-180°-tE/2-acquire) using 64 logarithmically spaced echo 

times tE between 0.1 ms and 0.5 s. For a single component the signal I decays 

according to I = I0exp(-R2tE), where R2 = 1/T2 and I0 is the signal at tE = 0. 

Multicomponent signal decays can be deconvoluted to yield relaxation probability 

distributions P(R2) using an inverse Laplace transform algorithm [278]. 2D relaxation 

- chemical shift correlation spectra were obtained by Fourier transform in the 

chemical shift dimension, and subsequent inverse Laplace transform in the 

relaxation dimension in a manner analogous to the DOSY method for analysis of 

NMR diffusion experiments [279]. In this way overlapping peaks in the 1D NMR 

spectra can be separated according to their relaxation times. 

 

 
2.7 Optical microscopy 
 

The sample composed by individual corneocytes was observed with a Leica DMIL 

inverted microscope (Leica Microsystems, Inc., Germany) under transmitted light 

and the images, at 200x magnification, were captured using a Canon Power Shot 

S45 digital camera with a microscope adaptator. 
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3. Results 
 
Three independent properties related to the hydration of the SC, extracted SC lipids 

and isolated corneocytes were investigated: the water sorption, the partial molar 

enthalpy of mixing of water, and the molecular mobility. Samples obtained from two 

different animals (1 & 2) were investigated, and all measurements were performed 

at 25ºC. Below, we first present separate descriptions of the measured physical 

parameters. The results are then collected into a unified discussion on the hydration 

of SC and its components.  

 

 
3.1  Sorption measurements 
 
The calorimetric sorption measurement provides a relation between the water 

content and the aw, which can also be expressed in terms of the relative humidity 

(RH=aw⋅100%) or the osmotic pressure Πosm= - RT/Vw ln(aw). The sorption isotherms 

(water content, wt%, given as the mass of water divided by the mass of the whole 

system including the water, as a function of RH) are presented in Figure 3.2. Data 

from sample 1 are shown as dashed lines and data from sample 2 as solid lines. 

 

 
3.1.1 Extracted SC lipids 
 

The sorption isotherms for the samples composed of extracted SC lipids are shown 

in Figure 3.2(a). The calorimetric measurements show a minor uptake of water until 

ca. 60 - 80% RH, followed by a more pronounced swelling at higher RH. In the latter 

region, three small steps at ca. 91%, 92% and 94% RH are visible in the isotherms. 

These are better shown in the magnification in Figure 3.3 (lower curve, arrows), 

representing RH vs. water content. The steps, which can be interpreted as 

transitions in a fraction of the extracted SC lipids, are associated with a small uptake 

of ca. 1 wt% water at almost constant RH, where the smallest uptake is seen for the 

transition at 91% RH. 

 82 



III. Stratum corneum hydration: phase transformations and mobility 
 
 

 83 

 

 

 
 
Figure 3.2 Microcalorimetric sorption data (water content [wt%] versus RH) at 25ºC for (a) extracted 
SC lipids, (b) isolated corneocytes and (c) SC. Key: dashed lines - sample 1; solid line - sample 2. 
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There is a continuously increasing rate of water uptake at RH > 60%. When 

comparing the sorption data from the different animals, there is a similar response at 

high RH, while the water uptake is slightly higher in the lipids extracted from animal 

1 compared to animal 2. Furthermore, a kink at ca. 60% RH is observed in the 

isotherms from sample 1, although it was not observed in the sample from animal 2.  

 

 

 

 
 
Figure 3.3 Magnifications of both the enthalpy curve (upper line, right y-axis) and the sorption isotherm 
(lower line, left y-axis) obtained from the extracted SC lipids from animal 1. In this regime, the sorption 
data suggest the presence of three phase transitions that coincide with small exothermic peaks in the 
enthalpy curves at the same water contents (indicated by arrows). 
 
 

The extracted lipid samples were prepared by drying in vacuum and freeze-drying 

without special precautions taken to ensure the formation of equilibrium crystals. 

The discrepancy between the sorption curves at low RH might therefore be related 

to the presence of different amorphous states in the dry lipids, as well as normal 

biological variation in the lipid composition.  
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3.1.2 Isolated corneocytes 
 
Isolated corneocytes with normal size and shape were recovered after the extraction 

of the lipids covalently linked to the cornified cell envelope as confirmed by optical 

microscopy (Figure 3.4). 

 

 

 

 
 
Figure 3.4 Optical microscopy image showing an isolated corneocyte, with normal size and shape. 
Original magnification: 200x. 
 

 

The sorption curve for the isolated corneocytes [Figure 3.2(b)] shows a gradual 

swelling over the whole range of RH without pronounced steps that would indicate 

phase transitions. The shape of the sorption isotherm is similar to that of hen egg 

lysozyme studied previously using the same calorimetric method [280], although 

corneocytes take up slightly less water than lysozyme. The sorption isotherm of 

corneocytes can be roughly divided into three regimes: the initial sorption below 

20% RH, the regime between 20-70% RH that features almost linear sorption 

isotherm, and the final regime above 70 % RH where water uptake increases. 

 

 



 Skin Structure and Drug Permeation 
                                                                                                                                       

3.1.3 Stratum corneum 

 
Sorption data for SC are shown in Figure 3.2(c). The isotherms show a continuous 

uptake of water over the entire range of RH, and no phase transitions are detected. 

At RH<60%, there is an almost linear relation between the water uptake and RH. At 

higher RH, there is an increase in the slope of the isotherm, implying a higher 

uptake of water. Finally, at RH>90%, there is again a large increase in water uptake. 

Figure 3.2(c) shows three data sets obtained for SC from two different animals. 

There is a very good agreement between the data from the two pieces of SC from 

animal 1, and there is a qualitative agreement between the sorption isotherms from 

the samples from the two different animals. 

 

 

 
3.2  Enthalpy of sorption 
 
A great advantage of the double twin calorimeter system is the simultaneous 

monitoring of the water activity and the partial molar enthalpy of mixing of water 

(  ) during the hydration process at constant temperature [281]. The enthalpy 

curves obtained at 25 ºC for the three types of samples are shown in Figure 3.5 

(   as a function of water content). 

Hw
m

Hw
m

 

 
3.2.1 Extracted SC lipids 
 

The enthalpy data for the extracted SC lipids is shown in Figure 3.5(a). The values 

of enthalpy effects measured in experiments with two samples are close to zero in 

almost the whole concentration range studied. At very low water contents the 

enthalpy effect was slightly exothermic for the sample from animal 1, and slightly 

endothermic for the sample from animal 2. The enthalpy data obtained at higher 

water contents provide further information on the transitions observed in the sorption 

isotherms. 
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Figure 3.5 The partial molar enthalpy of mixing of water at 25ºC measured by sorption 
microcalorimetry. (a) Extracted SC lipids (b) Isolated corneocytes (c) SC. Key: dashed curves - sample 
1; solid curves - sample 2. 
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Figure 3.3 shows the magnifications of the enthalpy curve (upper curve) together 

with the corresponding sorption isotherm (lower curve) at high water contents. In this 

regime, the sorption data suggest the presence of three phase transitions. We see 

that these are all coinciding with small exothermic peaks in the enthalpy curves at 

the same water contents (Figure 3.3, arrows). The data shown in Figure 3.3 were 

obtained from animal 1. The transitions indicated by arrows in the figure were also 

observed for the samples from animal 2, and are therefore judged as real and 

reproducible effects. Due to the quasi-equilibrium conditions in the experiments and 

the reproducibility of these transitions, it is unlikely that they arise from, e.g., 

heterogeneities in the sample. The low transition energies are consistent with the 

involvement of just a small fraction of the lipids and low enthalpy transformations.  

 

3.2.2 Isolated corneocytes 
 
The enthalpy curve obtained from the isolated corneocytes from SC from animal 2 is 

shown in Figure 3.5(b). The curve can be divided into four regimes: strongly 

exothermic regime with water contents 0-5 wt%, two moderately exothermic regimes 

with water contents 5-11 wt% and 11-17 wt% and the last regime (endothermic) with 

water contents above 17 wt%. The shape of the curve and the values of the 

enthalpy of mixing  are close to those observed in the sorption calorimetric study 

of hen egg lysozyme [280]. 
 Hw

m

 

3.2.3 Stratum corneum 

 
Figure 3.5(c) shows the enthalpy data obtained for the complete SC of the different 

animals at 25ºC. There is a very good agreement between the enthalpy curves at 

water contents for which comparisons can be made. At low water contents,    is 

negative, implying an exothermic primary hydration of the SC. At higher water 

contents,    is small and negative and it increases towards zero when approaching 

a water content of 20 wt%. Finally, when the water content exceeds 20 wt%, there is 

again a large exothermic enthalpy. The latter effect was only observed for SC from 

animal 2, as the experiment for SC from animal 1 was interrupted at lower water 

Hw
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m

 88 



III. Stratum corneum hydration: phase transformations and mobility 
 
 

 89 

contents, and therefore the reproducibility of this exothermic effect at high water 

contents was not studied.  

 

 
3.3  NMR measurements 
 
The mobility in different fractions of the SC as well as in the extracted lipids and the 

isolated corneocytes was investigated by means of relaxation and wideline 1H NMR. 

Static dipolar interactions for molecules located in a solid environment result in fast 

T2 relaxation and broad 1H resonance lines - on the order of 10 kHz [282]. The 

dipolar interactions are averaged by molecular motions in a liquid environment 

leading to slow 1H NMR relaxation and narrow resonance lines. Thus, NMR is a 

sensitive method to estimate if molecules are located in a solid or liquid 

environment. With sufficiently sharp resonance lines, different fluid components can 

be resolved in the chemical shift dimension. Even without chemical shift resolution, 

different components can be resolved utilizing their different relaxation rates. For 

microheterogeneous systems containing both solid and liquid domains, the ratio 

between these domains can be determined from the FID as described e.g., in ref. 

[283]. The terms “fluid” and “solid” used for the description of the NMR data should 

be interpreted in terms of the degree of averaging of the dipolar interactions. 

Molecular rotation and translational diffusion averages the couplings in a liquid 

crystal. If the system is anisotropic, such as for a hexagonal or a lamellar phase, the 

averaging of the intramolecular couplings is not complete, leading to the 

characteristic super-Lorentzian lineshape of the 1H NMR spectrum [284]. The NMR 

data shown are all obtained for samples from animal 2.  

 

 
3.3.1 Extracted SC lipids 
 
The extracted SC lipids were studied at different water contents. Figure 3.6 shows 

the 1H NMR spectra for the extracted SC lipids with (a) 1.4 wt%, (b) 29.2 wt% and 

(c) 37.3 wt% water.  
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Figure 3.6 Wideline 1H NMR spectra for the extracted SC lipids with (a) 1.4 wt%, (b) 29.2 wt% and (c) 
37.3 wt% water at 25ºC (sample 2). 
 

 

The 1H NMR spectra contain two liquid-like components with chemical shifts 

corresponding to water and methylene groups in a hydrocarbon chain. The spectrum 

is too broad to observe individual peaks originating from other parts of the lipids, 

such as the headgroups and the methyl at the end of the hydrocarbon chain. 

Nevertheless, these peaks make non-resolved contributions to the liquid-like part of 

the spectrum. The liquid peaks are located on top of a broad peak originating from 

solid material. This latter component is more easily observed in the FID data (Figure 
3.7) as a component with fast decay. The more slowly decaying part of the FID 
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arises from mobile protons. Extrapolation of the components to the time origin (the 

center of the excitation pulse) gives the ratio between the number of protons in liquid 

and solid environments [283]. The extrapolation was performed by fitting a bi-

exponential function to the data as shown in Figure 3.7.  
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Figure 3.7 Free induction decay for the extracted SC lipids with (a) 1.4 wt%, (b) 29.2 wt% and (c) 37.3 
wt% water at 25ºC (sample 2). 
 

 

Monte Carlo error estimation was applied to assess the uncertainty in the analysis, 

including the noise contribution from the extrapolation. It is more difficult to get an 

estimate of the error originating from the choice of functional form for the signal 

decay. However, it should be noted that a sum of a Gaussian and an exponential 

decay produced a significantly low quality fit. Both solid and fluid lipids are detected 

in the lipid mixtures at all water contents investigated. T2 relaxation experiments (log 

R2=log1/T2) were performed with the purpose of improving the resolution between 

the liquid components and getting further information about the environment in 

which the molecules are located. The T2 distribution plot of the mobile protons in the 

hydrated samples is multicomponent, but it is not possible to distinguish aqueous 

protons from non-aqueous protons (see Figure 3.8, for 37.3 wt% water). If present, 

excess bulk water would be detected as a component with a T2 of about 1 s. This 
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was not the case for any of the studied samples. Since the water contents of the 

samples are known, it is possible to make an estimate of the fraction of the non-

aqueous protons that are mobile from the NMR FID experiments, assuming an 

approximate proton content in lipids of 11.9g H/100g dry weight [285]. The 

calculated values of the fraction of fluid lipids in the extracted SC lipids at different 

water contents are summarized in Table 3.1. For very low water content the value of 

the fluid lipid fraction is small. In the range 14.9-43.7 wt% water, the fraction of fluid 

lipids is clearly higher and no variation in fluid fraction with hydration could be 

detected within the resolution of the measurements.  

 

 

 
Figure 3.8 2D relaxation - chemical shift correlation spectra for extracted SC lipids with 37.3 wt% water 
at 25ºC (sample 2). 
 

 

Finally, we note that the 1H NMR spectra do not exhibit the characteristic lineshape 

of an anisotropic liquid crystalline phase [284]. This could be explained by molecular 

exchange between regions with different orientation of the lamellar director occurring 

on a time scale that is short with respect to the inverse NMR line width in the 
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absence of exchange (app. 0.1 ms). Alternatively, the environment of the fluid lipids 

are much more disordered and dynamic than in a typical bilayer, resulting in almost 

complete averaging of the anisotropic spin interactions. 

 
 

Table 3.1  Estimate of the fraction of non-aqueous protons 
arising from lipids in the mobile state (nnon-aq mobile/nnon-aq total), 
as derived from NMR FID experiments.     

Water content (%) nnon-aq mobile /nnon-aq total 

1.4 0.24 

14.9 0.36 

29.2 0.35 

37.3 0.35 

43.7 0.38 

   

 

 

3.3.2 Isolated corneocytes 
 
The isolated corneocytes were investigated at different degrees of hydration. The 1H 

NMR spectra and T2 relaxation experiments indicate the presence of only one liquid-

like component while the major part of the sample is solid. With increasing water 

content, there is a continuous decrease in the fraction of the solid component (from 

0.91 until 0.36) and a increase in the value of T2 for the liquid component (from ca. 

0.13 ms to a maximum value of 10 ms) - an indication that the mobile protons are 

those of water. An estimate of the fraction of mobile protons arising from the non-

aqueous part of the sample based on the NMR FID experiments, assuming a proton 

content in keratin of 5.8 g H/100 g of dry weight [285] shows that the fraction of the 

fluid component in the non-aqueous part of the sample is zero and that it is not 

affected by the water content. The 1H spectra shown in Figure 3.9 further indicate 

that no significant change of the mobility of the solid component occurs upon 

hydration. 



 Skin Structure and Drug Permeation 
                                                                                                                                       

-80 -60 -40 -20 0 20 40 60 80

0.0

0.4

0.8

1.2

1.6

2.0

(c)

(b)

 

 

 Frequency / KHz

(a)

 
Figure 3.9 Wideline 1H NMR for the isolated corneocytes with (a) 5.8 wt%, (b) 15.1 wt% and (c) 31.2 
wt% at 25ºC (sample 2). 
 

 
3.3.3 Stratum corneum 

 
Samples of intact SC were investigated at different water contents. For all 

compositions, both fluid and solid material is present. Only one liquid-like peak can 

be observed in the chemical shift dimension. Using the relaxation-chemical shift 

correlation experiment, the liquid-like peak is resolved into two components as 

shown in Figure 3.10 for 12.8 wt% water. In contrast to the case of extracted lipids, 

the aqueous and non-aqueous fluid components cannot be resolved in the chemical 

shift dimension (Figure 3.8) for the intact SC, presumably because of peak 

broadening originating from magnetic susceptibility differences between the different 

domains in the microheterogeneous system. The intensity of the peak with higher T2 

value did not change with different water contents, therefore it is probably related 

with the non-aqueous mobile component of the sample and the lipid hydrocarbon 

tails. This result shows that lipids in a fluid state are also present in the intact SC 

and not only in the isolated lipids. The rather fast T2 relaxation of the water is typical 

for water in close proximity (<1 nm) to solid components [286]. Upon hydration the 

value of T2 is continuously increasing. This fact can be explained by fast exchange 
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occurring between a perturbed surface layer with fast relaxation and a slowly 

relaxing pool of free water without direct contact with the solid surface. At 44 wt% 

water content a considerable part of the sample remains solid. As was also the case 

for the extracted SC lipids and the isolated corneocytes, excess bulk water was not 

detected in the investigated samples.  

 

 

 
 

Figure 3.10 2D relaxation - chemical shift correlation spectra for SC with 12.8 wt% water at 25ºC 
(sample 2). 
 

 

 
4.  Discussion 
 
The data presented in this work were obtained from measurements with two 

complementary techniques, NMR and sorption microcalorimetry. NMR is a very 

powerful tool to detect minor fractions of fluid components in complex mixtures, 
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which is more difficult to reach with, e.g., X-ray diffraction techniques. NMR has also 

some advantages over, e.g., fluorescent techniques and ESR, in that it does not 

require any labeling of the molecules or the presence of fluorescent probes that 

might affect the (local) phase equilibria. The sorption microcalorimetry 

measurements provide almost complete thermodynamic description of the hydration 

process in the different systems. By combining these techniques, the 

thermodynamic events can be related to the local mobility, and thereby molecular 

interpretations on the process of SC hydration can be made.  

 

 
4.1 Solid and fluid SC lipids 
 
It is well established that the extracellular SC lipids form a lamellar structure [55, 58, 

63, 121].  Still, the molecular organization of the SC lipids within this lipid lamellar 

matrix is not fully understood. Several models based on large amount of 

experimental data have been proposed, including structures of connected bilayers 

[71, 233, 237] and the formation of domains within the bilayers [68]. These models 

take into account the coexistence of fluid and solid lipids, although the relative 

amounts have not been quantified experimentally. The NMR data in the present 

study clearly show such coexistence of fluid and solid lipids. It is also shown that a 

small fraction of the lipids remain in the fluid state at water contents as low as 1.4 

wt% water. The existence of fluid lipids is considered crucial to the barrier properties 

of the SC because these are lipids likely to constitute a major transport route. 

Presumably, water and other small molecules that penetrate the SC diffuse through 

the fluid lipid regions, as the permeability is considerably higher in the fluid phase 

than in the solid phase.  

From values of the fraction of fluid lipids estimated from the NMR FID experiments 

(Table 1), we conclude that a rather substantial fraction of the lipids are in the liquid 

state. This confirms previous results pointing to the existence of fluid SC lipids at 

ambient temperatures [59, 63, 64, 287-290], and it is the first time that a numerical 

value is assigned. The amount of fluid lipids is significantly lower at a water content 

of 1.4% than at water contents of 15% or higher. Within the resolution of our 

method, we are not able to demonstrate any variation within the fraction of fluid 
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lipids at 25ºC and water contents above 14.9 wt% of water. Previous IR studies 

have shown that the acyl-chain order in the intercellular lipids increases with 

hydration at low water contents, while it is independent of the degree of hydration at 

higher water contents [64, 291]. On the other hand, ESR studies have shown that, at 

a slightly higher temperature, there is an increase in the membrane fluidity with 

increasing water content up to the fully hydrated state [261, 287]. Taken together, 

this implies that both temperature and hydration influence the SC phase behavior. It 

is also likely that, e.g., pH affect the SC lipid phase behavior. The hydration process 

can effect the degree of ionization of the fatty acids [292] in the SC lipids, and it is 

possible that the proton concentration between the lamellae can vary between the 

swollen and the dry sample. However, it is not possible to control pH in the sorption 

calorimetry measurements.  

 

From the sorption data we conclude that there is a substantial swelling of the 

extracted SC lipids upon hydration. At RH approaching 100%, the lipid phase 

contains more than 40 wt% water (Figure 3.2). This is consistent with the presence 

of liquid crystalline lipids, as solid lipids generally have a much lower ability to take 

up water. The sorption isotherm in Figure 3.2(a) can be analyzed in terms of 

interlamellar forces in bilayer systems because the osmotic pressure of water is 

equal to the interbilayer force in a lamellar system. At RH>65%, the sorption data 

show an exponential relation between the osmotic pressure and water content, 

which is typical for the swelling of lamellar lipid systems [293]. There exists a debate 

in the literature on whether the SC lipids are able to swell in water or not. This 

discussion is mainly based on data obtained from SAXS measurements on SC and 

SC lipid models that in fact, have shown somewhat contradictory results. In some of 

these studies, no swelling was detected in human and mouse SC [55, 57, 121], 

while minor swelling has been reported for the lipid bilayers in pig SC [54] and SC 

lipid models [62], and a rather pronounced swelling was shown for the short lamellar 

repeat distance structure in the SC of hairless mouse from 5.8 nm at 12 wt% water 

to 6.6 nm at 50 wt% water [58]. More recently, also neutron scattering results [294] 

indicated swelling of the lipid lamellar regions of human SC. An explanation for why 

the swelling was not observed in some of the studies might lie in the inherent 

limitations of the X-ray techniques, e.g. the second order peak for the long repeat 

distance lies very close to the first peak of the short one, which might lead to 
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overlapping. In fact, the most clear observation [58] of swelling in the short lamellar 

repeat distance was detected for SC from hairless mouse, which apparently gives 

sharper diffraction peaks than that from human or pig SC. The previous data 

displaying swelling of the short lamellar phase [54, 58], together with the present 

NMR and sorption data, indicate that swelling fluid lipids are present in the short 

lamellar structure of the SC lipids. From the present data, we cannot judge whether 

fluid lipids are also present in the non-swelling long repeat distance lamellar 

structure, which has been previously suggested [71, 237]. 

The NMR data show a significant increase in the fraction of fluid lipids between 1.4 

wt% and 14.9 wt% water. In the calorimetric sorption measurements we did not 

observe pronounced phase transitions between solid and fluid lipids during the 

hydration process of the SC lipids at 25ºC, but the narrow endothermic regime seen 

for the sample from animal 2 may indicate the melting of some ordered domains at 

low water contents. We also note that the initial hydration of the SC lipids from 

animal 1 features exothermic heat effect, which is typical for the hydration of glassy 

materials [295]. The glassy materials are disordered like liquids but exhibit solid-like 

dynamic properties. The increase of the fraction of the lipids in the mobile state can 

thus be caused by melting or by a glass transition in a fraction of the lipids. The 

difference between the values of enthalpies of hydration of two samples of SC lipids 

at very low water contents can be explained by biological variations and by effects 

due to the preparation procedure. Even small differences in the drying procedure 

can lead to different degrees of crystallinity of the dry lipid samples. However, after 

the uptake of the first water molecules, the hydration process is very similar for the 

samples from the different animals, and the possible variations in the degree of 

crystallinity in the dry sample does not appear to affect the hydration process at 

water contents above 4 wt%. 

 

The calorimetric data demonstrate three exothermic phase transitions in the 

extracted lipids at high RH (Figure 3.3). These transitions cannot be associated with 

chain melting, as that would give rise to an endothermic heat effect, and the 

molecular explanations for the observed transitions are not fully understood. The 

exothermic transition is compatible with a transition between different liquid 

crystalline phases, e.g. from a phase with lower curvature to a phase with a higher 

curvature, has been observed for other lipid systems [296]. However, there are no 
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evidences in the literature of non-lamellar structures in the SC at ambient 

temperatures, although there are indications of a reversed hexagonal phase in 

ceramide mixtures at high temperatures [297, 298]. The exothermic heat effect could 

also be related to an increase in the local curvature at the boundaries between the 

domains of different lamellar structures. Previous SAXS data showed that the 

swelling limit of the short lamellar structure coincides with the water content (ca. 50 

wt%) where two repeating units seems to match the repeat unit of the long lamellar 

structure [58], and it was suggested that further swelling is constrained due to the 

structural restriction put up by the domains of the non-swelling long lamellar 

structure. The curvature at the domain interface would then go from a negative value 

to zero, which could give rise to an exothermic heat effect, in accordance to the 

discussion above [296]. A related explanation for the exothermic transitions at high 

RH lies in the reorganization of the lipid domains within the lamellar structure, e.g., 

fusion of fluid domains at increasing the water content. It should be noted that the 

domain reorganization and domain swelling are not to be considered as phase 

transitions from a thermodynamic point of view. Still, it could give rise to the type of 

enthalpy effects detected in the calorimetric measurements. The proposed 

explanations for the exothermic phase transition have in common that they are not 

expected to give rise to any large enthalpy effects. They are also consistent with the 

very minor uptake of water associated with the transitions, while much larger effect 

would be expected for a transition between a solid and a fluid phase. However, it is 

hard to estimate the relative amount of lipids that are involved in the transitions, 

which also means that we cannot judge exactly how large these effects really are. 

 

Finally, we recall that the properties of the extracellular SC lipids are crucial to the 

barrier properties of the skin, as these lipids constitute the only continuous route for 

molecular transport. It is therefore important to relate the lipid structure to barrier 

properties. In fact, the exothermic transitions at RH=91-94% coincide with the region 

in RH where previous studies shown on a distinct change in water permeability of 

the SC [73, 261]. We therefore speculate that the hydration-induced lipid re-

organization observed could be responsible for the alteration in SC permeability, and 

thereby partly explain the non-linear transport behavior of the SC. 
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4.2 Swelling of the isolated corneocytes 
 
The major components of isolated corneocytes are the keratin filaments [299], and it 

is reasonable to assume that measured properties are related to the hydration of 

these.  The wideline 1H spectra (Figure 3.9) do not exhibit any changes in the 

mobility of the non-aqueous components of the corneocytes when increasing the 

water content, leading to the conclusion that the keratin filaments remains solid 

throughout the whole hydration process The increase in the value of T2 for the 

aqueous component with hydration, and the gradually increasing component in the 

sorption isotherm, are both consistent with a continuous swelling of the solid keratin 

filament with hydration without any major structural rearrangements. There is 

evidence in the literature of unspecified protein conformation change induced by 

hydration [263], and both α and β forms have been identified as predominant 

secondary structures in SC proteins [300, 301]. The present measurements cannot 

distinguish between these different protein conformations, although the different rigid 

conformations are both consistent with the wideline 1H NMR measurements. 

According with what was pointed out above, the sorption isotherm of corneocytes 

has similar shape to that of lysozyme. This reflects the fact that both substances 

consist of aminoacid residues. Different amino acids have different hydrophilicities, 

the most hydrophilic ones hydrate first, the most hydrophobic ones hydrate after, 

which gives rise to a smooth sorption isotherm. The observation that lysozyme takes 

up more water, at the same RH, can reflect differences in the structures of the two 

protein materials (globular vs. fibrillar), as well as the difference in their aminoacid 

compositions. The gradual swelling profile is in good agreement with previously 

reported sorption data for SC samples depleted of intercellular lipids from sorption 

microbalance measurements [264, 302]. The enthalpy measurements show a 

strongly exothermic enthalpy effect at low water contents and endothermic effect at 

high water contents [Figure 3.5(b)]. The observed effects indicate that in the 

beginning of sorption the material is in the glassy state, which is typical for proteins 

at low water contents [280]. We also note that previous studies have also 

demonstrated a brittle to ductile transition in rat SC [299] upon hydration, which was 

explained by a glass transition in the keratin molecules. The exact position of the 
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glass transition in corneocytes is difficult to determine because in proteins this 

transition can be stretched over a wide range of compositions and temperatures 

[280]. We suggest that the glass transition occurs in the third regime on the curve of 

enthalpy (i.e. between 11 and 17 wt% of water). The straight lines in the Figure 
3.5(b) correspond then to the second glassy regime (5-11 wt%) and to the elastic 

regime (above 17 wt%). 

 

 
4.3 Hydration of stratum corneum 
 
A major finding in the present study is the presence of fluid lipids in the intact SC. 

This is considered crucial to the barrier properties of SC as the fluid lipids likely 

constitute a major transport route for molecular diffusion. The fact that fluid lipids are 

detected in both the extracted lipids and in the intact SC further strengthens the link 

between the findings for the SC components to the complete SC. By reducing the 

complexity and studying the different components separately, it is possible to 

achieve more detailed information that would not be accessible for the complex 

system. One example of this is the transitions detected for the extracted SC lipids at 

high RH, which are not observed for the intact SC. The lipids constitute only a small 

fraction of the complete SC (ca. 15%) and the exothermic transitions are difficult to 

detect even in the sample composed exclusively by lipids (Figure 3.3). Due to the 

low signal we cannot expect to detect these transitions in the sorption calorimetry 

data for the intact SC. Still, the observed transitions might have important 

implications to the non-linear transport properties of the SC as discussed above. 
 

The sorption isotherms of intact SC are similar to previous observations for human, 

porcine or neonatal rat SC [73, 260, 261, 263, 267], although we were able to 

provide a more accurate description of the SC sorption behavior, especially at high 

RH. The sorption data are also accompanied by the thermodynamic description of 

the whole hydration process. This value is higher than the swelling limit of SC 

previously reported for human SC (22-33 wt%) [263-267]. The enthalpy data for 

intact SC also show a large exothermic heat effect at the end of hydration process 

[Figure 3.5(c)]. Such exothermic heat effects at high water contents have not 
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previously been observed in any other materials studied by the method of sorption 

calorimetry. We suggest that the exothermic heat effect is a kinetic effect related to 

“delayed” hydration of the SC lipids and corneocytes in the glassy states due to very 

slow hydration (water diffusion) of the extracellular SC lipids and the protective 

corneocyte envelope [303]. Still, as the time of the experiment evolves and RH 

increases, water penetrates through the lipids and the cornified envelope, hydrates 

the sample which produces a “delayed” exothermic effect. Note that the beginning of 

the final exothermic effect also corresponds to a large increase in water uptake by 

SC at ca. 90 % RH [Figure 3.2(c)]. 
 

The capacity of SC to take up water has been attributed to swelling of the 

corneocytes and to the formation of water-pools in the extracellular SC lipids [54, 

143] rather then swelling of the extracellular SC lipids. The formation of water-pools 

indicate excess solution conditions, or in other words, water contents above the 

swelling limit (100% RH), and this is not considered relevant to the present 

experiments (RH<100%). The combination of the presented calorimetric data for 

intact SC and its components at varying water contents can be used to further 

explore the different mechanisms of SC swelling.  

 

In Figure 3.11 we present combined data on sorption isotherms of SC and its 

components. This plot shows that the sorption isotherms are approximately additive, 

i.e., the sorption isotherm of SC lies between sorption isotherms of its components 

and may roughly be approximated as their sum. All three sorption isotherms cross at 

RH slightly higher than 80%. Below 80% RH, the hydration of corneocytes is more 

pronounced than that of lipids, while at high RHs, the lipids take up much more 

water than corneocytes do. This is also consistent with previous observations [304, 

305], and this implies that the swelling and the water holding capacity of the SC 

lipids cannot be ignored. In this comparison one should, however, be aware that the 

sorption isotherm for the intact SC might include non-equilibrium effects due to a 

“delayed” hydration, which might complicate the analysis. Still, we believe that the 

results presented here reflect the general trends of hydration behavior of SC and its 

components.  
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Figure 3.11 Sorption isotherms of extracted SC lipids (dashed curve), isolated corneocytes (solid 
curve) and stratum corneum (thick curve). 
 

 

5. Conclusions 
 
The SC is exposed to large variations in the chemical surroundings that can affect 

its structure, and thereby also its function. An important example is that the transport 

properties can be regulated by the water content in SC, which is related to the RH of 

the environment. Furthermore, the water content has profound influence on other 

vital functions of the SC, e.g., the mechanical properties and the enzymatic activity. 

In this study, we explore the process of hydration in intact SC as well as in extracted 

SC lipids and isolated corneocytes, and we conclude that there is a substantial 

swelling of SC as well as of its components at high RH. At low RHs, corneocytes 

take up more water than SC lipids do, while at high RHs swelling of SC lipids is 

more pronounced than that of corneocytes. This implies that uptake of water in SC is 

strongly dependent on the hydration of both the lipids and the corneocytes. 

Lipids in a fluid state are present in both extracted SC lipids and in the intact SC. 
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At water contents ranging from 1.5-40 wt%, there is a coexistence of fluid and solid 

SC lipids. This coexistence is considered crucial to the barrier properties of the SC, 

as these phases have totally different diffusion characteristics. 

There is an increase in the fraction of the fluid lipids at water contents below 15 wt%, 

whereas the fraction of fluid lipids remains virtually constant when the water content 

is further increased.   

Three exothermic phase transitions are detected in the SC lipids at RH=91-94%. 

These transitions coincide with the region in RH where previous studies have shown 

a distinct change in water permeability of the intact SC, and it is possible that this 

hydration-induced lipid re-organization is partially responsible for non-linear 

transport behavior of the SC.  

The hydration causes swelling of the corneocytes, while it does not affect the 

mobility of solid components (keratin filaments). 



 
 

IV 
Films based on chitosan polyelectrolyte 

complexes for skin drug delivery 
 
 
 
 
 
1. Introduction 
 

Chitosan (Figure 4.1) is a cationic natural copolymer consisting of β-[1→4]-linked 2-

acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose [201]. 

This linear polysaccharide is generally prepared by alkaline deacetylation of chitin, 

which is found in the exoskeleton of crustaceans, insects, yeasts and fungi [201, 

306]. 

Chitosan is non-toxic, biocompatible and non-antigenic [201, 307], it is also very 

abundant [308], ecologically interesting and is a promising carrier for sustained drug 

release [309]. All these important properties make chitosan a very interesting 

component of hydrogels in the medical and pharmaceutical fields. In the present 

work, and since this formulation is intended to be applied to the skin, chitosan was 

selected as a starting material additionally due to its good film-forming properties, 

wound-healing benefits, bacteriostatic effects and bioadhesive properties [307, 309-

313].  
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Figure 4.1 Chitosan structure. 
 

 

Hydrogels composed of chitosan alone are limited by their poor tensile strength 

(TS), poor elasticity due to its intrinsic chain rigidity and lack of an efficient control of 

drug delivery [201, 202, 314]. The addition of other polymers is necessary to achieve 

PEC films with improved mechanical strength and elasticity while maintaining all 

chitosan properties after PEC formation. These systems are biocompatible, well 

tolerated, suitable as drug delivery systems, for wound management and tissue 

reconstruction [201, 315]. In this work, PEC are based on chitosan and poly(acrylic 

acid) polymers (PAA). Hydrogels prepared with a wide range of ratios between 

chitosan and PAA have been successfully prepared for different applications such 

as the amoxicillin site-specific delivery in stomach [310, 316] or the buccal delivery 

of acyclovir [309]. The PAA polymers (Figure 4.2) are water insoluble, have the 

ability to swell in water and its low glass transition temperature reflects a non rigid 

structure [317]. Chitosan, in combination with other polymers and molecules, has 

been used in several studies of PEC for the controlled delivery of drugs through 

different routes of administration, e.g., oral [310, 318], buccal [309], subcutaneous 

[319], colonic [320, 321], transmucosal [322] and ophthalmic [323].  

 

The properties of the PEC are strongly influenced by two features: the global charge 

densities of the polymers involved and their relative proportion in the film that is 

directly related to the degree of interaction between the polymers. The suitability of a 

hydrogel to work as a drug delivery system and its performance also largely 

depends on its bulk structure. The main disadvantage of physically crosslinked 
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hydrogels over chemically crosslinked is the lower mechanical stability and the risk 

of dissolution due to highly pH-sensitive swelling. 

 

 

 
 

Figure 4.2 Polyacrylic acid monomer structure. 
 

 

In the present work, the interaction between the oppositely charged polymers was 

optimized in order to circumvent this issue. In a first step, the degree of ionization of 

chitosan and the polyanions was determined as well as the stoichiometry of the 

polycation/polyanion interactions sites according to the pH by potentiometric and 

turbidimetric titrations. The pH and the amount of each polymer was imposed so as 

to obtain a ratio of one between the positively charged groups of chitosan and the 

negatively charged groups of the PAA and thus maximize the number of potential 

sites for electrostatic interaction. This value of pH was used to prepare all PEC films, 

considering that highly crosslinked hydrogels have a tighter structure, improving the 

stability of the network, which  is reflected in a decreased swelling and drug release 

[310]. Increased crosslinking density and lower degree of swelling also tend to 

decrease the degree of burst release, minimizing the risk of dose dumping that can 

be potentially harmful to patients  [324, 325]. 

 

Selection of the polymers is very important in the PEC design, since as referred 

earlier PEC performance will depend on its bulk structure. In this work, two different 

PAA polymers that have been crosslinked to different extents with allyl 

pentaerythritol (Carbopol 71G NF®) and divinylglycol (Noveon AA-1®) were 

selected to investigate the influence of the crosslinker in the PEC formation and 

functional properties. Further, two well known plasticizers, namely, glycerol and 
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PEG200, a moisturizing agent (Hydrovance®) and the additive trehalose were 

added to the PEC at a fixed concentration in order to study their effect on the film 

properties.  

Glycerol and PEG200 have demonstrated in earlier studies the ability to increase the 

flexibility of chitosan films [326, 327], while Hydrovance® was chosen due to the 

higher water sorption capacity when compared with glycerol as claimed by the 

manufacturer. After selecting the plasticizer with the best performance, its 

concentration was changed in order to determine the ideal content.  

 

In order to fulfil the therapeutic goals, films designed for skin drug delivery must 

assure a controlled delivery of the drug. For this purpose the delivery system is 

required to be bioadhesive [328, 329], to maintain an intimate and prolonged contact 

with the skin in the application site so as to provide a continuous drug supply; 

flexible and elastic to follow the movements of the skin and provide a good feel. At 

the same time, it must have enough strength to resist abrasion. In the absence of all 

or some of these physical and mechanical properties it is difficult to assure a 

controlled drug release to the skin.  

 

Several key properties for the films daily use on the skin and therapeutic efficacy 

were evaluated: water vapor transmission rate (WVTR), tensile strength (TS), 

elongation to break (EB %), thickness, water sorption and in vivo bioadhesion. Thus, 

the aim of this study is the development and characterization of PEC films based on 

chitosan and PAA with good functional properties and cosmetic attractiveness for a 

potential application as a universal skin drug delivery system. 

 

Due to the small bioadhesive properties of the formulations, an additional layer of a 

hydrophilic pressure-sensitive adhesive (PSA) composed of long chain 

polyvinylpyrrolidone (PVP) and PEG400 was applied to the film with the best 

functional performance and the properties of the resulting formulation were equally 

evaluated. This PVP-PEG400 PSA has been designed for enhanced transdermal 

delivery of drugs, is compatible with drugs of different physicochemical properties, 

does not act as a barrier to drug diffusion and is non-toxic [330-332]. We have 

decided to apply a hydrophilic PSA in order to keep the hydrophilic nature of the skin 

delivery system. Furthermore, this type of adhesives offer several advantages over 
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the hydrophobic ones: improved skin adhesion, compatibility with a higher variety of 

drugs and excipients, and expanded capability to control/manipulate adhesion-

cohesive properties [333]. The PSA exhibits all the ideal properties for the 

development of an universal matrix for the skin delivery of drugs 

 

The interaction between chitosan and PAA was investigated by DSC, Fourier 

Transform Infrared – Attenuated Total Reflectance (FTIR-ATR) and molecular 

dynamics simulations. 

 

 

 
2. Materials and methods 
 

2.1 Materials 
 

Low molecular weight chitosan was purchased from Sigma-Aldrich. Noveon AA-1® 

and Carbopol 71G NF® were a gift from Noveon Inc. (Cleveland, USA) and 

Hydrovance® was kindly provided by the National Starch & Chemical Company 

(Switzerland). Trehalose, PEG200, PEG400 and polyvinylpyrrolidone K90 (PVP 

K90) were obtained from Fluka.  All other chemical reagents were of pharmaceutical 

grade. 

 

 

2.2 Potenciometric titration 
 
Solutions with a concentration of 0.1% (w/v) of noveon and carbopol and a solution 

of 0.1% (w/v) of chitosan in 2% lactic acid were acidified by adding 2 mL of 1 M HCl. 

The solutions were titrated with standardized 0.5 M NaOH in a thermostatted vessel 

at 25.0 (± 0.1) ºC with a microburette in the presence of an inert atmosphere. 

Potenciometric titrations were conducted with a 665 DOSIMATE (Metrohm) 

microburette with minimal volume increments of 0.001 mL, recorded with a pHM 95 

(Radiometer) potentiometer (± 0.1 mV). Potentiometric titration end point was 
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estimated by the inflection point of the titration curve [334]. Overall ionization 

constant was estimated using highest buffering capacity of respective solutions. The 

pH values were obtained via a 3 standard buffers calibration (pH 4.00, 6.86 and 

10.0) under similar experimental conditions. 

 

 

2.3 Turbidimetric titration 
 
Turbidimetric measurements were carried out with a UV spectrophotometer 

(Shimadzu UV visible 1603) at the wavelength λ=420nm [309, 318, 335]. Solutions 

of 0.05% (w/v) of carbopol and noveon in distilled water and 0.1% of chitosan in 0.1 

% lactic acid solution were prepared. The titrant (HCl 1M and NaOH 1M, 

respectively) was delivered with a microsyringe into the solution with gentle 

magnetic stirring at ambient temperature, until a stable reading was obtained. The 

pH was monitored with a digital pH meter and changes in turbidity are reported in 

arbitrary units as 100-%T, linearly proportional to the true turbidity for T>0.9 [318]. 

Turbidity values are given as a function of the pH of the solutions. 

 

 

2.4 Preparation of the films based on chitosan-polyacrylic acid 
polyelectrolyte complexes 
 
Chitosan solutions (1%, w/v) were prepared by dispersing chitosan in 0.5 % (w/v) 

aqueous lactic acid solution [336, 337] and stirring overnight. Lactic acid was used 

to solubilize chitosan because it has been proven to be non-irritating relative to other 

alternatives, such as acetic acid, on rabbit skin and has the ability to improve the 

flexibility of the film due to a plasticizing action [336, 337]. Low molecular weight 

chitosan was chosen because it has been suggested to react more completely with 

polyanions compared with chitosan of higher MW and originates films with smoother 

surfaces [338]. PAA polymers  were dissolved in ultrapure water (Durapore (0.22 

µm), Millipore, Bedford, MA) and the pH of the solutions was adjusted by addition of 

1M HCl until the degree of ionization was less than 0.1% in order to avoid 
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precipitation when mixing the solutions of the polymers, and obtain a homogeneous 

mixture [201].   

The chitosan solution is dropwise added to the PAA suspensions and mixed with a 

mechanical stirrer. The relative amount of both polymers was determined by the 

potenciometric titrations in order to obtain charge neutralization between the 

positively charged and negatively charged polymers at the pH where the ratio 

between the positive charges and negative charges is approximately one.  

The concentration of each additive incorporated is given in percentage (%) and is 

related to the total dry weight of the polymers. Table 4.1 summarizes the PEC 

compositions, and the coding used to describe the formulations.  

 
 

Table 4.1 Composition, % w/w, and coding for each PEC film prepared in this work. The percentage 
(%) of plasticizer is given in relation to the total dry weight of the polymers. 

 Chitosan Carbopol Noveon Glycerol PEG200 Hydrovance Trehalose PSA 
FC 67.6 32.4       

FCG 67.6 32.4  20     

FCP 67.6 32.4   20    

FCH 67.6 32.4    20   

FCT 67.6 32.4     20  

FN 65.4  34.6      

FNG 65.4  34.6 20     

FNP 65.4  34.6  20    

FNH 65.4  34.6   20   

FNT 65.4  34.6    20  

FN30G 65.4  34.6 30     

FN40G 65.4  34.6  40    

FNa 65.4  34.6 30    1 

layer 

 

 

After addition of the plasticizers, the suspension was neutralized with NaOH 1M to 

reach a pH of 6.1. The film forming solutions were magnetically stirred for 3 hours, 

cast on Petri-dishes and dried at 35 ºC for about 48 h. Dried films were conditioned 

at 75% RH and 25 ºC prior to testing. 
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An adhesive solution composed of 67 wt % PVP K90 and 33 wt % PEG400 was 

applied to the PEC film with the best functional performance (see Section 3.2) by 

solvent casting technique. PVP and PEG400 are miscible in a very wide composition 

range but only display adequate PSA properties between 30-40 wt% PEG400 [339]. 

PVP-PEG400 blends with 36% PEG400 showed in earlier studies the best adhesion 

performance [333, 339] but in pre-formulation studies in our lab for this particular 

type of film, the best adhesion/cohesive properties were obtained for 33 wt% 

PEG400. 

 
 

2.5 Mechanical properties 
 

Tensile strength (TS) and elongation to break (EB %) were measured on test strips 

after their equilibration for at least 72h hours in a desiccator containing a saturated 

solution of NaCl at 25ºC (75% RH) [340] using a TA.XTPlus Texture analyzer 

(Stable Micro Systems, UK) equipped with a tension grip system (Figure 4.3).  

 

 

 

 
 

Figure 4.3 TA.XTPlus Texture analyzer equipped with a tension grip system for the evaluation of the 
TS and EB (%) of the films. 
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All samples were cut with scissors into bars of 15x50 mm before equilibration. In this 

experiment, at least four determinations were performed for each film type. 

The TS is calculated by dividing de maximum breaking force (N) by the cross-

sectional area (mm2) of each film. EB (%) is the ratio between the final length at the 

point of rupture and the initial length of the sample and is expressed in percentage.  

Film thickness was measured with a hand-held micrometer and six replicates were 

taken on each specimen in different places. Mean values and mean standard 

deviations were calculated for the film TS. 

 

 

2.6 Water sorption (%) 
 
Water sorption was assessed gravimetrically. The films were freeze-dried (Freeze-

Drier Labconco FreeZone 4.5) and after drying the weight of each film was 

measured. The films were successively transferred to vacuum desiccators over 

saturated salt solutions of LiCl (11% RH),  NaBr (60% RH), NaCl (75% RH) and 

ultrapure water (100% RH) at 25ºC [340]. All the salts were of reagent grade. 

The samples were left to equilibrate for a minimum of 3 days before new weight 

measurement with an analytical balance and three replicates were tested for each 

type of film. 

Water sorption of the film is given in what follows as the increase in weight, 

expressed as a percentage.  

 
 

2.7 Water vapor transmission rate 
 
The water vapor transmission rate (WVTR) (g.m-2.h-1) was measured using a 

Vapometer® (Delfin Technologies Ltd, Finland). Briefly, films specimens were 

mounted and sealed in the top of open specially designed cups filled with distilled 

water up to 1.1 cm from the film underside and left to equilibrate for one hour at 

room temperature (22-23ºC, 42-46% RH), see Figure 4.4. The Vapometer® has a 

closed measuring chamber not sensitive to external airflows with a humidity sensor 
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that enable measurements in normal room conditions [341]. Three film samples 

were tested for each type of film. 

 

 

 
 

Figure 4.4 Illustration of the measurement of WVTR through the films, using the Vapometer®. 
 
 
 

2.8 In vivo bioadhesive properties 
 
The in vivo evaluation of the bioadhesion properties of the films, including peak 

adhesion force (PAF) and work of adhesion (WA), was performed using a 

TA.XTPlus Texture analyzer (Stable Micro Systems, UK).  

The film is fixed by means of a double-sided adhesive tape on the movable carriage 

of the apparatus. The carriage is moved until contact between the skin of the subject 

forearm and the movable carriage is established (Figure 4.5).  

A preload of 3N was applied and the contact time of the holder and the skin was 60 

s. After that time, the movable carriage is moved forward at a constant speed test of 

10 mm/sec until complete separation of the two surfaces. The curves of 

displacement (mm) versus adhesive force (mN) are recorded simultaneously. The 

WA is given by the integral on the range of positive force. 

The force required to detach the attached film from the human forearm skin was 

used to represent the magnitude of bioadhesive force of the tested film specimen. 
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Figure 4.5 In vivo evaluation of the films bioadhesion to human skin using a TA.XTPlus Texture 
analyzer. 
 

 

2.9 Differential Scanning Calorimetry (DSC) analysis 
 

The DSC analysis was used to characterize the thermal behavior of the polymer 

powders and the interactions between the polymers in the films. DSC thermograms 

were obtained using a Shimadzu DSC-50 System (Shimadzu, Kyoto, Japan) with 

nitrogen at a rate of 20 mL/min as purge gas. Approximately 2-5 mg of each freeze-

dried sample was accurately weighted into aluminium pans and hermetically sealed. 

The DSC runs were conducted from room temperature to 400ºC at a heating rate of 

10ºC/min. Each sample was run in triplicate. 

 

 

2.10 Fourier Transform Infrared – Attenuated Total Reflectance 
(FTIR-ATR) analysis 
 

The FTIR-ATR spectra of the dried pure polymers and the films were recorded with 
a Magna-IR™ spectrophotometer 750 (Nicolet, USA) using the ATR sampling 
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technique on a ZnSe crystal. Samples were scanned 64 times over the wavenumber 

range of 400 to 4000 cm-1 with a resolution of 4 cm-1. 

 

 
 
2.11 Molecular dynamics simulations 
 
 
Simulations were performed using the GROMACS software package with the 

standard GROMACS force field [342, 343],  which is a modified version of the 

GROMOS87 force field [344]. Topology files were generated from initial structures, 

in Cartesian coordinates, resorting to the PRODRG server [345]. The polymers were 

added to a box and solvated with SPC (single point charge) model water [346], with 

the structure constrained by the SETTLE algorithm [347]. The SPC model for water 

considers three interaction sites centered on the atomic nuclei; the intramolecular 

degrees of freedom are frozen, while the intermolecular interactions are described 

by a conjunction of Lennard-Jones 12-6 potential and Coulombic potentials between 

sites with fixed point-charges.  

The molecular dynamics simulation was performed with periodic boundary 

conditions, using the Berendsen coupling algorithm (P= 1bar, τp=0,5 ps; T=300K, 

τt=0,1 ps) [348] for ensuring NPT conditions (constant number of particles N, 

pressure P, temperature, T). The Particle Mesh Ewald method [349] was used for 

computation of long range electrostatic forces. 

A molecular dynamics simulation was conducted with a chitosan polymer made up 

of 6 monomers and a polyacrylic acid polymer made up of 12 monomers, present in 

the simulation box with 2779 water molecules and 6 Na+ counter-ions in order to 

keep the whole system neutral.  Previous to each molecular dynamics (MD) 

simulation, an energy minimization was performed. This was followed by a MD 

equilibration run under position restraints for 1 ns. An unrestrained MD run was then 

carried out for 1 ns, as a further equilibration simulation. Finally, a MD trajectory with 

a total length of 12 ns was generated with a time step of 2 fs. 

 

 

 116 



IV. Films based on chitosan polyelectrolyte complexes for skin drug delivery  
 
 

 117 

2.12 Statistical analysis 
 
Results are expressed as mean ± standard error. The significance of the differences 

between values was assessed using a two sample t-test with a statistical 

significance level set at P = 0.05. 

 

 

 
3. Results and discussion 
 

3.1 Potenciometric and turbidimetric titrations 
 
Potenciometric titrations were performed in order to evaluate the pH-dependent 

ionization degree of chitosan, noveon and carbopol, the stoichiometry of the 

polycation/polyanion interactions and the chitosan degree of deacetylation [334, 

350].  

The pKa values obtained from the potentiometric titration curves were 6.22, 6.11 e 

6.09 for chitosan, carbopol and noveon, respectively and the number of 

miliequivalents acids per gram of polymer (meq.g-1) are 5.45, 12.86 and 11.48, 

respectively. The values determined for carbopol and noveon are very close, as 

could be expected since they only differ in the type of crosslinker and crosslinking 

extent. The degree of ionization of each polymer was calculated in order to 

determine the stoichiometry of the chitosan/carbopol and chitosan/noveon 

interactions according to the pH and is depicted in Figure 4.6.  

 

It is well known that the charge densities of the polycation (chitosan) and the 

polyanions (carbopol and noveon) are mainly controlled by the pH. The pH value at 

which the ionization curve (Figure 4.6) of the polycation intercepts the ionization 

curves of the polyanions was considered the ideal pH for the preparation of the 

polyelectrolyte complexes due to the maximization of the number of potential 

electrostatic interaction sites. In both carbopol and noveon the ideal pH found for the 

interaction with chitosan was 6.1. With this value it is possible to calculate the 
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amount of the polycation and polyanion that should be mixed in order to impose a 

charge ratio of one, see Table 4.1.  

 

 

2 4 6 8 10 12 14

0

20

40

60

80

100

 

 
de

gr
ee

 o
f i

on
iz

at
io

n 
(%

)

pH

Chitosan Noveon AA-1
Carbopol 71G NF

 
 
Figure 4.6 Degree of ionization of chitosan, carbopol and noveon according to pH. The ionization 
curves of carbopol and noveon are superimposed.  
 

 

The potentiometric titration also enabled the calculation of the degree of 

deacetylation of chitosan. It corresponds to 88% in the polymer used in the present 

work. 

 

The maximum degree of swelling in each PEC is determined by the balance 

between repulsion and contractile forces within the network. If there is a high degree 

of swelling, the complex can be dissolved. If we are maximizing the grade of network 

complexation we are reducing the swelling and the network exhibits properties that 

allow the controlled release of drugs without the need of crosslinkers [310]. 

 

Turbidimetric titrations consist in the measurement of the decrease in the intensity of 

a light flow passing through a solution with particles in suspension and is 

proportional to both molecular weight and the concentration of the particles in the 
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solution [351]. High turbidity indicates a high precipitation of the particles that occurs 

when the polymers are neutralized. In Figure 4.7 we can see the results of the 

turbidimetric measurements for the three polymers. These results are in very good 

agreement with the degree of ionization calculated from the results of the 

potentiometric titrations. Turbidity of carbopol solutions is less influenced by pH 

when compared with the noveon solution and at pH 6.1 all three polymers exhibit a 

small turbidity indicating a high degree of ionization. 
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Figure 4.7 Turbidity of chitosan,carbopol and noveon as a function of pH. Values are reported in 
arbitrary units as 100-%T. 
 

 

 
3.2 Characterization of the films 
 
The PEC films prepared are thin (Table 4.2), smooth, transparent and slightly yellow 

due to the high content of chitosan, see Figure 4.8. 
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Figure 4.8 General aspect of the polyelectrolyte complex films based on chitosan and PAA after 
drying. 
 
 

3.2.1 Mechanical properties 
 
The TS and the EB% are important mechanical properties for the characterization of 

PEC films in terms of their resistance to abrasion and flexibility, respectively. Films 

intended for skin drug delivery must be flexible enough to follow the movements of 

the skin and provide a good feel, and at the same time resist the mechanical 

abrasion caused, for example, by clothes. For simplicity we consider that a film for 

skin drug delivery should be hard (high TS) and tough (high EB%) [352]. 

The TS values of the PEC films with 20% plasticizer are shown in Figure 4.9(a). The 

values range from 2.7 to 5.8 N/mm2 and are referred to films FCH and FNG, 

respectively. Comparison with the values found by other authors is difficult due to 

the different techniques used to determine TS and lack of standardization.   

 

It is found that 20% PEG200 in the case of FNP and 20% Hydrovance in FCH films 

adversely affect the TS with statistical significance (P< 0.05) when compared with 

the films in the absence of plasticizer [Figure 4.9(a)]. 
 

The EB% values measured for the films at constant (20%) plasticizer content are 

shown in Figure 4.9(b) and range from 9.2-76.4%, being FCT and FNG the films with 

the smallest and the highest EB% values. For the case of chitosan/noveon films the 

values of EB% increased in the following order  FNT < FNP < FN < FNH < FNG while for 
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the case of chitosan/carbopol films the EB% values increased in the following order 

FCT < FCP < FC~FCH < FCG , see Figure 4.9(b). This indicates that trehalose and 

PEG200 always decrease the flexibility of the films and that glycerol is the plasticizer 

that produces the highest increase in the EB%.  
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Figure 4.9 Mechanical properties of the films prepared in this work. Results of TS (a) and EB% (b) for 
the PEC films formed by the electrostatic interaction between chitosan/carbopol and chitosan/noveon 
prepared with 20% of glycerol, PEG200, Hydrovance and trehalose. Results of TS (c) and EB% (d) for 
the PEC films composed of chitosan and noveon prepared with different amounts of glycerol and an 
additional layer of the PSA. Mean (± SEM), n= 4, The symbol * signals statistically significant 
difference in comparison with the film in the absence of the additive (P< 0.05). 
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In the case of Hydrovance® it can be seen that only in the FNH film it can significantly 

increase (P< 0.05) the EB%. It should also be noticed that chitosan/carbopol films 

exhibit a lower flexibility when compared with chitosan/noveon films with the same 

plasticizers. According with the presented results of TS and EB%, FNG is the film that 
presents the best functional properties for the skin drug delivery because it exhibits 

the highest values of TS and EB%.  

 

Glycerol was then selected to proceed the study and its concentration was further 

changed. Figures 4.9(c) and (d) depict the influence of the glycerol content in the 

TS and EB% of the films. It is clear that increasing amounts of glycerol tend to 

increase the mean values of both TS and EB% with the maximum effect at 30% 

glycerol. In other study glycerol also demonstrated the capacity to increase the TS 

and EB% of  chitosan films [353] but in most of the studies glycerol exhibits the 

typical plasticizing effect (decreases TS while increases EB%) [326, 354, 355]. 

 

Glycerol reduces the rigidity of the bulk polymer network, originating films with 

increased polymer chain movements (increases EB%) probably due to the higher 

water content determined in the water sorption measurements (see below) in 

comparison with the films without glycerol. The increased TS may be explained by a 

negligible influence in the polymer-polymer interactions and possibly by the 

interaction with the polymers chains through the formation of hydrogen bonds. 

 

The expected effect of a plasticizer is a decrease in the TS and an increase in the 

EB% [327, 352]. It is shown that trehalose exhibits an “antiplasticization” effect [327] 

because it increases TS and decreases EB% and none of the molecules tested acts 

as a true plasticizer [327, 352]. A strong interaction between trehalose and the 

polymers might be occurring, decreasing the molecular mobility of the polymers. 

Another explanation may be a reduced moisture uptake capacity of the films with 

trehalose that is observed in the water sorption isotherms (Section 3.2.2), such that 

we observe a reduced plasticizing effect due to a smaller amount of water present in 

the films.  

 

FN30G was considered the film with the best functional performance and an additional 

layer of a hydrophilic PSA was applied due to the small bioadhesive properties 
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determined for the PEC films alone (Section 3.2.4). The influence of this new layer 

in the TS and EB% of the formulation was also investigated and can be seen in 

Figures 4.9(c) and (d). It is seen that the adhesive layer induces a minimum 

decrease of both TS and EB% when compared with FN30G but the values measured 

in the bilayer film (FNa) still show a significant improvement when compared with the 

film in the absence of plasticizer (FN). 

 

In summary, chitosan/noveon films are shown to be more flexible than the 

correspondent chitosan/carbopol films. PEG200 and trehalose decrease the 

flexibility of the films and glycerol improves both flexibility and resistance, with a 

maximum effect at 30% w/w. The properties of the optimized film (FNa) are thus 

extremely adequate for application in the skin. 

 

 
 
3.2.2 Water sorption (%) 
 
 
Water sorption isotherms are important for providing some understanding in what 

concerns the interaction mechanism between water and film components and were 

also determined in order to know the water content of the films used in the tensile 

experiments. Considering that these films are intended to be applied on the skin for 

a long time, the water sorption isotherms reflect how the water content of the films 

changes with the ambient RH, a determinant parameter for the mechanical 

properties of the films. An ideal patch should keep its mechanical properties over a 

wide range of RH. 

Water sorption in hydrophilic polymers is usually a non-linear process. PAA and 

chitosan are hydrophilic polymers that are able to retain a considerable amount of 

water that depends on the RH. In chitosan we can find at least three main sites for 

water absorption: hydroxyl groups, the amino group and the polymer chain end (a 

hydroxyl or an aldehyde group) [356]. 

 

The uptake of water increases in all films with increasing RH and is more 

pronounced at high RH, Figure 4.10. 
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Figure 4.10 Water sorption curves of chitosan/carbopol films (a) and chitosan/noveon curves (b) 
according to RH and type and amount of additive incorporated. Data points are connected by spline 
lines. 
 

In the case of films with or without 20 % of additives we can find two types of water 

sorption curves. Films FCH, FCT, FN, FNH and FCT exhibit a slightly sigmoidal shape 

typical of polymers and films, including chitosan [355, 357, 358]. The water sorption 
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curve can be divided in two regimes, at low RH there is a low amount of water 

absorbed followed by a regime where the amount of water uptake increases 

exponentially.  Films FC, FCG, FCP, FNP and FNG show a different and atypical sorption 

curve that can be divided in three different regimes: at low RH (< 40% RH) there is a 

small amount of water absorbed, followed by a second regime where there is an 

exponential increase in the water sorption rate and finally, for RH higher than 75% 

RH the water sorption rate has a small decrease. 

In the second type of sorption curve what is probably happening is the saturation of 

the surface available for water sorption at RH higher than 75% RH and higher RH 

produces a smaller increase in the water sorption rate. The first type of sorption 

curve is associated with trehalose and Hydrovance®, while the second sorption 

behavior is seen in films plasticized with PEG200 and glycerol at 20%. 

 

Except for FCH at 100% RH and FCT at 75% RH, there is no statistical difference 

between the water amounts in the films composed of chitosan and carbopol, see 

Figure 4.10(a). It is concluded that chitosan/carbopol films are less sensitive to the 

influence of the additives than chitosan/noveon films. 

 

 

FCH absorbed an amount of water significantly higher than the respective control 

while FCT had absorbed less water than the control, a characteristic that may in part 

justify the decrease in the values of EB% produced by trehalose [Figure 4.10(a)] as 

discussed in Section 3.2.1. The decrease in the water sorption may be explained by 

the replacement of strongly immobilised water in the polymer chains by trehalose 

and is in accordance with the low hygroscopic nature of the molecule itself [359].  

 

The exact same behavior was observed for FNH and FNT, suggesting that 

Hydrovance® has only a significant influence (P< 0.05) at very high RH in the 

increase of the water content while trehalose induces a decrease of the water 

content at 75% RH. 

 

With respect to the influence of 30% and 40% glycerol content in the water sorption 

curves it can be seen in Figure 4.10(b) that there is a higher amount of water 

absorbed in all the range of RH (P<0.05). Also the shape is not typical but it is 
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important to emphasize that the water content is much less influenced by the RH 

than in the other films. This is a very important characteristic for a film that is 

intended to be applied on the skin and subjected to variations in the ambient 

humidity during application. Higher amounts of plasticizer increase the affinity of 

films to water, a result that can be attributed with the presence of hydroxyl groups in 

glycerol that are capable of strongly interact with water [357]. At low water contents 

glycerol interacts with the polymers via hydrogen bonds and as the amount of water 

is increased a higher percentage of the hydroxyl groups of glycerol became 

available for interacting with water [355]. Already, at 20% glycerol (FNG), the films 

absorbed more water than FN between 60-75% RH and the same behavior was 

observed for FNP. 

 

These results clearly indicate that the water sorption of the chitosan/carbopol PEC is 

much less influenced by the incorporation of the additives than the chitosan/noveon 

PEC. The incorporation of an amount of glycerol equal or higher than 30% in the 

chitosan/noveon PEC gives rise to films with a water uptake less affected by the RH. 

This implies that the mechanical properties of the optimized formulation (FNa) will be 

relatively stable over a wide range of ambient humidity, as is desirable for such a 

film. 

 

 

3.2.3 WVTR 
 
As referred before, there is a normal TEWL of about 5-10 g.m-2.h-1 in healthy human 

skin [15, 122, 360] that is necessary to hydrate the outer layers, to maintain its 

flexibility, for temperature control and to allow enzymatic activity [66]. Occlusion of 

the skin interferes with the normal TEWL causing profound effects on the skin 

barrier such as increasing the percutaneous absorption of applied chemicals and the 

alteration of epidermal lipids, DNA synthesis, surface pH and bacterial flora [112, 

139, 141]. The investigation of the permeability to moisture (WVTR) of the films to 

be applied in the skin is of major importance. WVTR also serves to indirectly 

evaluate the density of PEC and it is simultaneously dependent on the solubility 

coefficient and diffusion rate of water in the film [355].    
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WVTR of the films can be found in Table 4.2. Values range from 13.4 g.m-2.h-1 (FCH) 

to 20.1 g.m-2.h-1 (FN30G) and should be noticed that all the values measured are 

higher than the normal TEWL in healthy human skin [15, 122, 360]. These values 

are much higher than the values measured in crosslinked chitosan films that ranged 

from 0.12 to 0.42 g.m-2.h-1  [361].  

 

 

Table 4.2 Bioadhesion, WVTR and thickness of the different PEC films according to the coding of 
Table 4.1. Results are expressed as mean (± SEM),n>3 (bioadhesion), n=9 (WVTR), n= 6 (thickness). 

 In vivo bioadhesion 

 PAF (mN/cm2) WA (mJ/cm2) 

WVTR 
(g.m-2.h-1) 

Thickness 
(µm) 

FC 71.5 ± 8.23 6.4 x10-5  ± 1.4 x10-5 14.5 ± 0.3 95 ± 4.5 

FCG 105.8 ± 8.34* 13.0 x10-5  ± 1.3 x10-5 * 14.4 ± 0.2 92.5 ± 3.1 

FCP 64.1 ± 4.5 5.2 x10-5   ± 4.4 x10-5 14.5 ± 0.4 120 ± 9.7* 

FCH 65.2 ± 4.9 6.4 x10-5   ± 9.0 x10-6 13.4 ± 0.3 * 100 ± 5.9 

FCT 105.0 ± 6.6 * 12.1 x10-5   ± 3.7 x10-5 14.3 ± 0.1 102.5 ± 1.1 

FN 68.9 ± 9.4 5.7x10-5 ± 1.2 x10-5 14.2 ± 0.2 90.8 ± 2.4 

FNG 127.4 ± 15.2* 14.3 x10-5 ± 1.8 x10-5* 18.1 ± 0.3 * 100.8 ± 2.7* 

FNP 69.1 ± 2.4 7.8 x10-5  ± 9.2 x10-6 14.8 ± 0.2 107.5 ± 6.7* 

FNH 62.5 ± 3.4 5.3 x10-5  ± 8.5 x10-6 15.3 ± 0.3 * 96.7 ±2.5 

FNT 57.9 ± 4.2 4.9 x10-5 ± 4.3 x10-6 14.2 ± 0.2 98.3 ± 3.3 

FN30G 64.0 ± 2.3 6.2 x10-5  ± 8.6 x10-7 20.1 ± 0.2* 105.8 ±  2.4 

FN40G 117.2 ± 14.4* 13.6 x10-5  ± 1.0 x10-5* 19.2 ± 0.3* 89.3 ± 1.7 

FNa 885.4 ± 62.2* 311.2 x10-5  ± 1.5 x10-4* 14.2 ± 0.3 102.5 ± 4.8 

* Statistically significant difference in comparison with the film in the absence of the additive 
(P< 0.05) 
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PEG200 and trehalose do not have a significant influence (P<0.05) in the WVTR of 

the films and only Hydrovance® induces a significant decrease in the WVTR of FCH. 

This decrease is probably due to same reduction of the film porosity since this is not 

related with a smaller amount of water in the films compared with the unplasticized 

film as depicted in Figure 4.10(a). 
Interestingly, Hydrovance® and glycerol increased the WVTR of chitosan/noveon 

films in the following order: FN<FNH<FNG<FN40G<FN30G. This behavior follows exactly 

the increase in the EB% of the same formulations and may be related with a higher 

amount of water sorbed in the films with Hydrovance® and glycerol, Figure 4.10(b). 
 
Films with higher water content show increased capacity to water diffusion since it 

contains more water. Probably, an increase in the WVTR values reflects a less 

compact structure, a higher mobility of the polymer chains and thus an increased 

flexibility. In earlier studies glycerol also induced an increase in the WVTR of films 

composed of N-carboxymethylchitosan and chitosan [362] and potato starch-based 

films [355]. 

With respect to the influence of the adhesive layer in the WVTR of the films, it can 

be seen that this layer reduces the WVTR when compared with the FN30G, although 

there is no significant difference between FNa and FN. We can conclude that since 

the WVTR of the FNa is 14.2 g.m-2.h-1 and higher than the normal TEWL in human 

skin this film is suitable for application in the skin for a long time without a significant 

interference in the barrier function of the skin or causing skin sensitization. 

 

 

3.2.4 Bioadhesion 
 

The adhesion to the skin is one of the most important functional properties for a skin 

drug delivery system [328] and should be evaluated in all formulations in 

development for this purpose. The in vitro conditions do not represent the 

performance of a film under in vivo conditions due to skin properties, such as 

moisture and elasticity that are not possible to reproduce in the in vitro test. Most of 

the in vivo bioadhesive tests are based on subjective observations resorting to 

scoring systems [328, 363]. We used skin in vivo as the substrate for testing 
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adhesive properties and a quantitative evaluation is made by measuring the peak 

adhesion force (PAF) and the work of adhesion (WA).  

 

Acrylate polymers are well known skin adhesives [328, 329, 364]. Our films are 

composed of chitosan and a PAA but the amount the PAA is only approximately one 

third of the total polymer weight, a fact that justifies the small values measured for 

the PAF and WA, see Table 4.2.  

The values of PAF in the pure films range from 57.90 mN/cm2 (FNT) to 127.43 

mN/cm2 (FNG) while the values of WA range from 4.94x10-5 mJ/cm2 (FNT) and 

14.30x10-5 mJ/cm2 (FNG). The plasticizers Hydrovance®, PEG200 and 30% glycerol 

do not significantly influence (P>0.005) influence the values of PAF and WA of the 

films. Trehalose increases the PAF (P<0.05) and the WA of FCT film, while no 

difference is observed in the PAF and WA values of FNT when compared with the 

film in the absence of plasticizer. Glycerol at 20% and 40% induced an increase in 

the PAF and WA in the fims. In a study performed on piroxicam-loaded Eudragit E 

films the plasticizer was also able to increase the adhesion strength of the films 

[352]. 

 

The additional layer of the hydrophilic PSA applied to a FN30G film produced a 

dramatic increase in the values of both PAF and WA, 885.45 mN/cm2 and 311.2x10-5 

mJ/cm2, respectively. These values represent approximately a 7-fold and 22-fold 

increase, respectively, when compared with the values measured in the film with the 

best bioadhesive properties (FNG). 

 

 

3.3 Characterization of the polymer-polymer interactions 
 
DSC, FTIR-ATR and MD simulations were used for the examination of the 

interactions between the polymers in the films. 

 

The DSC thermograms of pure chitosan, noveon, carbopol and the films prepared in 

this study are shown in Figure 4.11, while Table 4.3 presents the endothermic and 

exothermic peaks detected and the values of enthalpies associated.  
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Figure 4.11 DSC thermograms of chitosan, carbopol (a), noveon (b) and PEC films determined at the 
same analytical condition. The coding used to designate the PEC films are in accordance with Table 
4.1. 
 

 

Pure chitosan exhibits one endothermic peak at 112 ºC associated to the 

evaporation of absorbed water, a glass transition at 243ºC and an exothermic peak 

at about 311ºC ascribed to the polymer degradation, including saccharide rings 

dehydration, depolymerization and decomposition of deacetylated and acetylated 

chitosan units [354, 365]. These peaks have been reported in several other studies 

[327, 366].  

 

Both forms of PAA exhibit two endothermic peaks with onset temperatures at ca. 

103ºC and 243ºC for noveon while for carbopol the onset temperatures are ~80ºC 

and ~200ºC, see Table 4.3 and Figure 4.11. The first endothermic peak has been 

assigned to the evaporation of water from hydrophilic groups in the polymers and 
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the second one corresponds to a thermal degradation through intramolecular 

anhydride formation and water elimination [367-370]. After the second endothermic 

peak, the onset of a broad exothermic peak (~300 ºC) is visible in the thermograms 

(Figure 4.11). It is probably related with to a second degradation process involving 

the destruction of carboxylic groups with CO2 elimination and chain scission [368, 

369]. 

Several glass transitions (Tg) were detected in the DSC curves of the two forms of 

PAA at ca. 41ºC and 65ºC for noveon and ca. 37ºC, 68ºC and 140ºC for carbopol 

that have been also reported by other authors [317, 367-370]. The Tg detected 

below 100 ºC are probably related with the presence of residual amounts of solvents 

used in the polymer synthesis that may act as plasticizers. The glass transition of 

carbopol detected at ca. 140ºC may be explained by the disruption of the hydrogen 

bonds between carboxylic acid groups [317, 371]. 

 

The PEC films prepared in the present study exhibit two endothermic peaks. The 

first one is associated with the vaporization of water and the onset temperature is 

situated between ~53ºC (FN30G) and ~82ºC (FN) in the case of chitosan/noveon films 

and between ~61ºC (FCH) and ~82ºC (FCT) in the chitosan/carbopol films.  

The second endothermic peak is probably related with the cleavage of the 

electrostatic interactions between the oppositely charged polymers, since it is not 

observed in the pure compounds [366]. The onset temperature of this new transition 

increases in the following order FN40G< FN30G< FNG< FNP ~FN< FNH< FNT for the 

chitosan/noveon films and FCG< FC~ FCH< FCT< FCP for chitosan/carbopol films, 

Figure 4.11 and Table 4.3.  

 

From these results, we can conclude that increasing amounts of glycerol tend to 

decrease the thermal stability of the polyelectrolyte complexes probably by insertion 

between the polymeric chains.  

 

Hydrovance® has little influence in the thermal stability of the films and PEG200, in 

the other hand, does not influence the thermal stability of chitosan/noveon films, but 

increases the stability of chitosan/carbopol polyelectrolyte complexes. Trehalose 

always increases the thermal stability of the polyelectrolyte complexes as depicted 

in Figure 4.11 and Table 4.3. 
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Table 4.3 Peak temperatures and enthalpy changes detected in the DSC 
thermograms of the pure polymers and the PEC films.  

Temperature / ºC ∆H / J.g-1Sample 
Onset Peak Endset  

85.3 112.0 133.9 -180.3  
291.8 311.0 322.6 336.3 

Chitosan 

    
102.6 128.3 153.2 -54.6  
242.7 265.1 287.3 -150.6 

Noveon AA-1 

 
79.6 102.3 121.2 -51.1 

200.0 246.3 280.0 -239.5 
Carbopol 71G NF 

 
82.1 95.4 122.8 -117.9 FN 191.8 221.0 241.3 -38.0 

 
78.3 107.6 145.6 -139.6 

 
FNG 186.1 219.1 248.7 -62.5 

52.5 76.8 110.1 -273.9 
 

F30NG 181.2 219.2 247.7 -126.7 

62.1 88.7 114.6 -304.2 
 

F40NG 178.8 231.6 278.1 -182.1 
 

63.6 99.0 140.1 -211.1 
 

FNP 191.0 216.8 240.4 -42.4 
 

59.4 84.8 134.1 -162.4 
 

FNH 195.7 218.8 262.6 -47.4 
 

77.4 111.1 143.8 -124.4 
 

FNT 196.7 223.1 252.7 -36.9 
 

73.5 104.1 154.0 -142.4 
 

FC 193.7 219.2 279.7 -35.8 
 

75.1 103.8 147.7 -187.6 
 

FCG 181.2 211.5 252.7 -53.6 
 

62.0 92.1 121.1 -309.4 
 

FCP 201.6 223.7 253.8 -32.4 
 

61.2 94.5 148.7 -249.4 
 

FCH 193.9 219.7 260.5 -61.4 
 

81.9 110.4 154.7 -128.4 
 

FCT 199.3 218.9 237.2 -19.6 
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The FTIR-ATR spectra of chitosan, noveon, carbopol and the PEC films are shown 

in Figure 4.12. The FTIR-ATR spectrum of chitosan shows a weak band at 2871 

cm-1 attributed to the C-H stretching and the absorption band due to the carbonyl 

group stretching of the secondary amide (C=O-NHR) appears at 1651 cm-1 

indicating that chitosan is not totally deacetylated in accordance with the results 

obtained in the potentiometric titration [337, 366, 372]. The peaks at 1585, 1421 and 

1321 cm-1 correspond to the N-H bending vibration (amine I band), N-H stretching of 

the amide and ether bonds and the amide III band, respectively [337, 366, 372, 373]. 

The peaks at 1149, 1057, 1025 and 893 cm-1 correspond to the bridge oxygen (C-O-

C) stretching bands [372]. The assignment of the main chitosan IR bands can be 

found in Table 4.4. 

 

The FTIR-ATR spectrum of noveon in Figure 4.12(b) exhibits a broad band at ca 

3100 cm-1, a weak band at 2939 cm-1 and a strong band at 1697 cm-1 assigned to 

the O-H stretching (hydrogen-bonded), asymmetric CH2 stretching and C=O 

stretching (hydrogen-bonded), respectively [371, 372, 374]. The weak band at 1412 

cm-1 is due to the symmetric stretching of carboxylate anion (COO-), bands 1228 and 

1165 cm-1 are attributed to the C-O stretching and, finally, the bands located at 924 

and 796 cm-1 are assigned to the C-O-H out-of-plane bending and CH2 twisting, see 

Figure 4.12(b) [317, 371, 372, 374, 375]. The same bands with minor shifts and the 

same assignments can be observed in the FTIR-ATR spectrum of carbopol in 

Figure 4.12(a). 
 

When two immiscible polymers are brought together, it is expected that the resulting 

infrared spectrum will be the sum of the spectra the individual compounds because 

the polymers will have the same environment of the pure state [374]. When the 

polymers are by contrary miscible, intermolecular interactions may occur and will be 

reflected in changes on the infrared spectra of the mixture such as wavenumber 

shifts, band broadening and new absorption bands that are evidence of the 

polymers miscibility [374]. Furthermore, the films are prepared at pH 6.1 and, at this 

point, the degree of ionization of the polymers is approximately 50%, see Figure 
4.6. For this reason it is expected to find the characteristic absorption bands of the 

NH3
+ and COO- groups in the FTIR-ATR spectra of the films. 
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Figure 4.12. The FTIR-ATR spectra of chitosan, carbopol (a), noveon (b) and PEC films. 
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A new and strong peak located between 1552-1562 cm-1 in the chitosan/noveon 

films and 1556-1560 cm-1 in the chitosan/carbopol films can be observed in the 

FTIR-ATR spectra of each film in Figure 4.12. This band can be attributed to the 

overlapping of the peaks due to the asymmetric COO- stretching vibration of PAA 

and the NH3
+ asymmetric bending vibration of chitosan that are reported in the 

literature to be located between 1550-1610 cm-1 and  1570-1620 cm-1, respectively 

[372, 375, 376]. 

 

This result clearly indicates the formation of the polyelectrolyte complex between 

chitosan and the PAA in the absence and in the presence of additive contents as 

high as 40%.  Another peak detected in all films at approximately 1402 cm-1 is a 

further evidence of the interaction because it is attributed to the symmetric COO- 

stretching vibration [317, 372, 374, 376].  

 

 

Table 4.4 Main FTIR bands of chitosan and respective assignments. 

Sample Peak position (cm-1) Vibrational mode 

 

Chitosan 
 

893,1025, 1057, 1149 

 

C-O-C stretching (cyclic ether)  

 1321 Amide III band (chitin): N-H stretching 

 1375 C-H bending 

 1421 N-H stretching of the amide and ether bonds 

 1585  Amine I (chitosan): N-H  bending 

 1651  Amide I band (chitin): C=O stretching  

 2871 C-H stretching 

 3280 OH stretching vibration 

 3361 Amide I (chitin): NH2 asymmetric stretching 

 

 

In order to obtain a better insight into the complexation behavior in these systems, a 

chitosan oligomer and a polyacrylic acid oligomer made up of 6 and 12 monomers, 

respectively were placed in a simulation box with water and  6 Na+ counter-ions in 

order to keep the whole system neutral (Figure 4.13).   
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Figure 4.13 Snapshot of the initial simulation box with chitosan on the center and PAA on the left. The 
two polymer chains are separated from each other and are represented as sticks. The water is 
depicted with points and the sodium conteriuns represented as blue spheres. 
 
 
There is a clear propensity for complexation between the –NH3

+ in the chitosan and 

the –COO- groups in the PAA chain, as can be seen from the fact that they were 

initially placed in positions significantly separated in the simulation box (Figure 4.13) 

and they are driven together during the equilibration run (Figure 4.14).  
In order to obtain a general idea of the Coulombic interactions, the radial distribution 

function [g(r)] for the positivelly charged –NH3+ group in chitosan and the negativelly 

charged –COO- group in the PAA is presented (Figure 4.15). The g(r) gives the 

probability of finding a particle anywhere in the distance r of another particle. The 

g(r) on Figure 4.15 presents two main peaks located at 0.33 nm and 0.55 nm. The 

maximum of g(r) at 0.33 nm suggests a close proximity between the oppositelly 

charged groups of the polymers due to strong electrostatic interactions. The 

attractive interchain interactions between chitosan and PAA were further confirmed 

by the calculation of the minimum distance between the centers of mass of both 

polymers. The average minimum distance is small (0.23 ± 2.7x10-4 nm) and tends to 

decrease during the MD run (Figure 4.16). 
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The results of the MD simulations confirm the electrostatic nature of 

polymer/polymer interactions within the network, between the cationic and anionic 

groups. 

 
 

 
 
Figure 4.14 Snapshot of the molecular dynamics simulations box showing the interaction between the 
–NH3+ groups (blue) in chitosan and the –COO- groups in the PAA marked by the yellow circles. 
Chitosan chain is shown using the van der Waals radii and the PAA is depicted in sticks for clarity. 
Sodium counterions are depicted in blue. 
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Figure 4.15 Radial distribution function for the positivelly charged –NH3+ group in chitosan and the 
negativelly charged –COO- group in the PAA. 
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Figure 4.16 Minimum distance (nm) between the centers of mass of the two polymers during the MD 
run. 

 
 

4. Conclusions 
 
PEC films with maximized electrostatic interactions were successfully prepared from 

chitosan and two PAA polymers with different crosslinkers and crosslinking density. 

The formation of the PEC was confirmed by FTIR-ATR, DSC, MD simulations and it 

is possible to incorporate additives up to 40% of the dry polymer weight without 

disturbing the formation of the PEC.  

Chitosan/noveon films are shown to be more flexible and more permeable to water 

than the correspondent chitosan/carbopol films. PEG200 and trehalose decreased 

the flexibility of the films and glycerol was the additive with best influence in the film 

properties improving the flexibility, resistance and WVTR with a maximum effect at 

30%. The PSA significantly improved bioadhesion without a significant effect upon 

the resistance and flexibility of the films. 

The optimized film (FNa) has shown very good flexibility, resistance and bioadhesion 

which make it a very promising film for application in the skin. Also, the WVTR 

measured is higher than the normal TEWL so this film can be applied on skin 
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without the risk of a significant interference in the barrier function or causing 

sensitization due to occlusion. 

The development of this film continues in Chapter V, with the incorporation of 

different drugs and by the determination of the drug release profiles and drug 

permeation through the skin in order to evaluate the feasibility of using these films 

as versatile skin delivery systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 
 

V 

Polyelectrolyte complexes as universal skin 
drug delivery systems  

 
 
 
 
 
1. Introduction 
 

A thin, bioadhesive and transparent film based on chitosan and PAA with functional 

properties (e.g. tensile strength, elongation to break, water vapor transmission rate) 

optimized for skin drug delivery has been developed and the results were presented 

on Chapter IV. The aim of the present work is to test the release and delivery 

performance of the drug-loaded films in order to evaluate the feasibility of using 

these films as versatile transdermal delivery systems capable of including different 

drugs.  

For this purpose, four drugs with different physicochemical properties were 

incorporated in the films: ibuprofen (IBU), galantamine free base (GB), galantamine 

HBr (GS) and paracetamol (PAR). The structures and physicochemical properties of 

the drugs [377, 378] are given in Figure 5.1. IBU and PAR were used as model 

lipophilic and hydrophilic drugs, respectively, but we note that a patch containing 

either of these can offer several advantages for pediatric use.  
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Galantamine is a therapeutically relevant cholinesterase inhibitor used in the 

treatment of Alzheimer’s disease (AD), with a relatively short half-life (5-7 h), 88.5% 

oral bioavailability and doses ranging from 4-12 mg twice a day [379, 380]. The most 

common adverse effects reported in clinical trials include nausea, vomiting, 

diarrhoea and weight loss [379, 381].  

 

 

 
Ibuprofen 

 

MW 206.285 

MP (ºC) 75-77 

Log P  3.48 [377] 

 
Galantamine base 

 

 

MW  287.35 

MP (ºC) 127-128 

Log P  2.369 [378] 

 
 

Galantamine HBr 

 

 

MW 368.27 

MP (ºC) 269-270 

Log P  1.09 [377] 

 
Paracetamol 

 

 

MW 151.163 

MP (ºC) 169-171 

Log P   0.5 [377] 

 

Figure 5.1 Structure and physicochemical properties of the drugs used in this study, from the 
references [377] and [378] as indicated. 
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AD is a fatal and progressive neurodegenerative condition characterized by 

increasing cognitive deficits (e.g. memory loss) as well as progressive functional and 

behavioral disorders that result in the inability to perform basic activities of daily 

living and the need for constant caregiver assistance [379-382]. Prevalence studies 

indicate that the percentage of persons with AD increases with age and since it is 

expected a high and continuous increase in the life expectancy in the next 50 years 

it is urgent to find new ways to delay the onset of AD [379-382]. AD therapy involves 

long-term administration, and the physicochemical and pharmacokinetic 

characteristics of galantamine predict an effective penetration through the SC. 

Considering all these features, the transdermal route of drug administration seems 

to be a feasible option for AD treatment and more advantageous than the 

conventional dosage forms [4, 92]. On the basis of the above observations, 

galantamine is a very good candidate for transdermal drug administration. 

 

Two forms of galantamine were used in the present study, the commercially 

available galantamine HBr (GS), and GB. The conversion of the hydrobromide salt 

to the corresponding free base increases the lipophilicity of the drug, as indicated by 

the increase in the log P from 1.09 to 2.369. It also decreases the respective 

molecular weight (MW) and reduces the melting point (MP), as shown in Figure 5.1.  

These changes in the physicochemical properties favor the permeation of the new 

entity through the skin and make GB a potentially more satisfactory candidate for 

skin drug delivery than GS [4, 92]. 

 

Another strategy, apart from chemical modification, to improve the flux of drugs 

through the skin is the selection of an appropriate solvent capable of permeating into 

the skin and improving drug partition to the SC [383, 384]. In the present study we 

assess the ability of the solvents PG, transcutol and glycofurol to increase the 

percutaneous absorption of the drugs. The structure of the solvents is depicted in 

Figure 5.2.  

PG is widely used as cosolvent of drugs [385] and penetration enhancers [386, 387] 

in dermatological formulations and has been described to increase the permeation 

of drugs alone or in combination with other penetration enhancers [388-391]. PG 

seems to increase the uptake of drugs by the SC [388, 389] although results from 

other authors suggest that PG may be incorporated in the head group regions of 
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lipids by replacing bound water [227] or may induce a protein conformational change 

from α- to β-keratin [392]. 

 

 

 
 

 

 
 

  

 Propylene glycol Transcutol Glycofurol 
 
 

Figure 5.2 Structure of the solvents used in the present study. 
 

 

 

 

Transcutol is another solvent extensively used in the study of the permeation of 

chemicals through the skin and able to enhance the penetration of several 

compounds probably by altering the solubility of the permeant in the SC [393-396]. 

In other studies, transcutol decreased the permeation of caffeine and sumatriptan 

[397, 398] and appeared to be inefficacious in the permeation of testosterone [399]. 

Transcutol is thus a non universal penetration enhancer, and it is relevant to study 

its influence in the permeation of drugs with different physico-chemical properties. 

Glycofurol is a widely used solvent in parenteral formulations in concentrations up to 

50% v/v, nontoxic, non-irritating with a tolerability similar to propylene glycol [400]. 

Its potential as penetration enhancer in nasal formulations [401, 402] was studied 

and it does not induce irritation on nude mouse skin [403]. Its potential to increase 

the skin permeation of drug is also evaluated in the present work.  

 

It should be remembered that the optimized film includes a thin layer of a hydrophilic 

PSA composed of long chain PVP and PEG400. PVP-PEG400 PSA has been 

designed for enhanced transdermal delivery of drugs. It has been demonstrated to 

be compatible with drugs of different physicochemical properties, does not act as a 

barrier to drug diffusion and it is non-toxic [330-332]. A further objective of the 
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present study is to evaluate the effect of the PSA in the drug release rate from the 

chitosan-PAA drug-loaded films. 

 

Drug release studies and in vitro skin permeation where performed using Franz 

diffusion cells. Moreover, several functional properties important to fulfill the 

therapeutic goals such as WVTR, in vivo bioadhesion and irritation potential were 

also object of study [328, 329]. 

Finally, the polymer/polymer and polymer/drug interactions were investigated by 

DSC and FTIR-ATR. 

 

 

 
2. Materials and methods 
 
 

2.1 Materials 
 

Chitosan of low molecular weight, transcutol 99% (diethylene glycol monoethyl 

ether) and glycofurol (tetrahydrofurfuryl alcohol polyethyleneglycol ether) were 

purchased from Sigma-Aldrich. Noveon AA-1® (PAA) was a gift from Noveon Inc. 

(Cleveland, USA) and Galantamine HBr was kindly provided by Grunenthal 

(Germany). PG and PVP K90 were obtained from Fluka. All other chemical reagents 

were of pharmaceutical grade. 

 
 
 
2.2 Preparation of galantamine free base (GB) 
 
 
Galantamine free base can be prepared from galantamine HBr (GS) by chemical 

treatment followed by solvent extraction. A sample composed of six grams of GS 

was dissolved in 200 mL of ammonia 0.1 M in an Erlenmeyer flask. The GB 

liberated is then extracted with successive portions of chloroform. The organic 

extracts are combined and the solvent is removed by rotary evaporation under 

reduced pressure at 35ºC [404]. The sample obtained by this procedure is then 
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freeze-dried and stored in the dark. The conversion of the GS to the corresponding 

free base was confirmed by DSC and FTIR-ATR. 

 
 

2.3 DSC analysis 
 

DSC analysis was used to confirm the conversion of GS into its free base. DSC 

thermograms were obtained using a Shimadzu DSC-50 System (Shimadzu, Kyoto, 

Japan) with nitrogen at a rate of 20 mL/min as the purge gas. Aproximatelly 2-5 mg 

of freeze-dried samples were accurately weighed into aluminium pans and 

hermetically sealed. The DSC runs were conducted from room temperature to 

400ºC at a heating run of 10ºC/min. Each sample was run in triplicate. 

 
 
 
2.4 Preparation of drug saturated solutions and solubility 
determination 
 
The saturated solutions of each drug were prepared by stirring a suspension of 

ultrapure water, propylene glycol, transcutol or glycofurol with an excess of drug 

over a period of at least 24 h at 20 ± 0.1ºC. The saturated solutions were filtered 

through a 0.45 µm filter and were then analyzed by UV-absorption by means of 

calibration curves previously validated according to the reference guidelines [405-

407]. For details about the validation procedures consult the Appendix. Each 

experiment was performed with a minimum of 3 replicates.  
 
 
 
 
2.5 Preparation of drug-loaded PEC formulations 
 
 

Five chitosan-PAA polyelectrolyte complexes (PEC) were prepared for each drug 

according to Table 5.1.  
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Table 5.1 Composition (% w/w) and coding for each film prepared in this work. Note that the 
percentage (%) of plasticizer and solvents is given from the corresponding ratio to the total dry weight 
of the polymers. All films were prepared for each drug. 

 F Fa Fap Fat Fag 

Chitosan 65.4 65.4 65.4 65.4 65.4 

PAA 34.6 34.6 34.6 34.6 34.6 

Glycerol 30 30 30 30 30 

Propylene glycol   10   

Transcutol     10  

Glycofurol     10 

PSA  1 layer 1 layer 1 layer 1 layer 

 

 
The chitosan solution (1%, w/v) was added by dropwise addition to the PAA 

suspension and mixed with a mechanical stirrer. The plasticizer (glycerol) 

concentration was fixed at 30% of the total dry weight of the polymers according to 

the previous work. After the addition of the plasticizer, 6% and 10% (w/dry polymer 

weight) of each drug and solvent, respectively, were added prior to the neutralization 

of the suspension with NaOH 1M until pH of 6.1.  

Film forming solutions were cast on Petri-dishes and dried at 35ºC for about 48 h. 

An adhesive solution composed of 67 wt % PVP K90 and 33 wt % PEG400 was 

applied to the films by the solvent casting technique and the solvent was evaporated 

again at 35ºC according to the previous work. 

 
 

2.6 FTIR-ATR analysis 
 

FTIR-ATR spectra of the dried drugs and film samples were recorded with a Magna-

IR™ spectrophotometer 750 (Nicolet, USA) using the ATR sample technique on a 

ZnSe crystal. Samples were scanned 64 times over the wavenumber range of 400 

to 4000 cm-1 and a resolution of 4 cm-1. 
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2.7 Film thickness 
 

The thickness of each film was measured at six different places using a micrometer. 

Mean and SEM values were calculated. 

 

 

2.8 WVTR 
 
Three film samples were tested for each type of film. The WVTR (g/m2.h) was 

measured using a Vapometer (Delfin Technologies Ltd, Finland). Briefly, the film 

specimens were mounted and sealed in the top of open specially designed cups 

filled with distilled water up to 1.1 cm from the film underside and left to equilibrate 

four one hour at room temperature (22-23ºC, 42-46% RH). The Vapometer has a 

closed measuring chamber not sensitive to external airflows with a humidity sensor 

that enables measurements of the films water permeability in normal room 

conditions [341]. 

 

 
2.9 In vivo skin bioadhesion and irritation 
 
Eight volunteers, 2 males and 6 females, aged 27 to 52 years old participated in this 

study. After being fully informed about the nature and procedures of the study, they 

provided their written informed consent. The volunteers had normal healthy skin and 

none had any earlier history of skin disease. Circular films of the placebo formulation 

were manually attached to the skin of different zones of the body, see Figure 5.3. 

During the 24 h of the study, all volunteers were allowed to carry out normal day 

activities. The in vivo skin bioadhesion and skin irritation potential were evaluated 

according to the scoring systems of the reference literature [408, 409].  
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Figure 5.3 Circular placebo film attached to the arm of a volunteer. 
 
 
 
 
2.10 In vitro drug release studies 
 
 

In vitro drug release tests were performed by means of modified Franz diffusion cells 

with a diffusion area of 1.327 cm2. The receptor chamber is kept at 37 ± 0.1 ºC and 

filled with acetate buffer pH 5.5 in order to simulate the skin surface pH. The buffer 

was previously filtered in vacuum through a 0.45 µm Millipore filter, followed by 15 

minutes at 40ºC in ultrasounds in order to prevent the formation of air bubbles 

between films and receptor medium during the release experiments. 

 

Each film is sandwiched between the donor compartment and the receptor 

compartment. The drug release was determined by spectrophotometric detection at 

221 nm for IBU, 289 nm for GB and GS, and 243 nm for PAR. The UV/Vis 

spectroscopical methods for the quantification of the drugs were successfully 

developed and validated. For the details concerning the validation procedures 

consult the Appendix. 

 

The in vitro drug release studies were also conducted using for the saturated 

solutions of each drug but in this case the donor and the receptor compartment are 

separated by a non-rate-limiting dialysis membrane (Visking Co., Chicago, USA) 

[410] and the solutions are applied in the donor compartment. 

 

Drug release studies were conducted during 4 hours and the measurements were 

recorded each 5 minutes. The exact volume of the receptor chamber was measured 
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at the end of each experiment so as to accurately calculate the cumulative drug 

release of each drug. 

 

In order to analyze the drug release mechanism, two mathematical models were 

tested, the zero order and Higuchi models [411, 412]:  

 

                Qt=Q0 + K0t                                            (5.1) 

               Qt= Q0 + KHt1/2                                         (5.2) 
 

where Qt is the amount of drug released in time t, Q0 is the initial amount of drug in 

solution (e.g. as result of a burst effect), K0 is the zero-order release constant and KH 

is the Higuchi release constant. Values of the coefficient of determination (R2) were 

also calculated.  

 

 
2.11 In vitro drug permeation studies 
 
The permeation experiments were conducted using pig epidermal membranes 

prepared by the heat separation technique. Pig ears were obtained from a local 

slaughterhouse and the skin free from hairs is separated from the ear.  The whole 

skin is immersed in water at 60ºC for two minutes, after which the epidermis is 

peeled off from the underlying tissue according to the recommendations of the 

guidelines [184, 187, 188, 413], see Figure 5.4.  

Epidermal membranes are stored at -20ºC in an aluminium foil until use. It was 

previously shown that no changes occur in the skin permeability with these 

conditions when compared with fresh skin [414, 415].    

The epidermal membranes are mounted in Franz diffusion cells with the dermal side 

in contact with isotonic PBS, pH 7.4, as receptor fluid that is continuously stirred and 

maintained at 37 ± 0.1 ºC during the time of the study [187], see Figure 5.5. This is 

a physiologically adjusted buffer used to mimic the permeation through the skin into 

the systemic blood system. Sink conditions are maintained during the study. 
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The procedures described for the in vitro drug release studies to avoid the formation 

of air bubbles in the receptor medium and for the quantification of the drugs are also 

applied in these drug permeation studies. 

 

 

 
 

Figure 5.4 Illustration of the epidermal membranes preparation by the heat separation technique. 
 

 

 
 

Figure 5.5 Integrated system used in the in vitro drug release studies and in vitro permeation studies.  
 

 

Prior to each test, the integrity of all epidermal membranes is evaluated as required 

by the reference guidelines [184, 187, 188] through the measurement of the TEWL 

using the Vapometer described above. The measurements of TEWL are performed 
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under standardized conditions in order to assure the reliability of the results [416]. 

The epidermal membranes with high TEWL values are considered damaged and are 

discarded prior to the study. 

 

The in vitro drug permeation studies were conducted using the saturated solutions of 

each drug, and the drug-loaded films. In the case of the saturated solutions the 

donor compartment was covered with parafilm in order to avoid the evaporation of 

the solvent.  

 

The cumulative amount of drug permeated (Q) is plotted against time (t) and the flux 

is determined from the linear portions of the plots according to Fick’s first law of 

diffusion [Equation (1.1)]. 
 

The enhancement ratio of the formulation (ERf) is determined by dividing the flux, 

the cumulative drug permeated at 24 h and 48h (Q24h and Q48h) of each drug-loaded 

film by the respective value determined for the saturated solutions.  

 

 

2.12 Statistical analysis 
 

Results are expressed as mean ± standard error. The significance of the differences 

between values was assessed using a two sample t-test with a statistical 

significance level set at P = 0.05. 

 

 

3. Results and Discussion 
 

3.1 Preparation of GB 
 

The conversion of GS to its free base form was confirmed by DSC, as can be 

observed in Figure 5.6 and from the FTIR-ATR spectra of the molecules in Figure 
5.7(a).  
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Figure 5.6 DSC thermograms of the two forms of galantamine conducted in the same analytical 
conditions. 
 

In the DSC thermograms of Figure 5.6 it is possible to observe a reduction of ca. 

140ºC in the onset temperature of melting, from 270ºC in GS to 130 ºC in GB. These 

values are in accordance with those found in the literature for these molecules [377].   

 

In the FTIR-ATR spectra of GS and GB [Figure 5.7(a)] it is possible to observe the 

characteristic absorption bands of galantamine at 1624/1619 cm-1, 1587/1595 cm-1, 

1512/1508 cm-1, 1437/1441 cm-1 and 1282/1279 cm-1, respectively [417]. The FTIR-

ATR spectrum of GS displays additional bands characteristic of tertiary amine salts 

between ~2600 and 2400 cm-1 [418], see Figure 5.7(a). 
 

 

 

3.2 Solubility studies 
 
The solubilities of IBU, GB, GS and PAR in the three solvents tested are listed in 
Table 5.2. It is seen that the water solubility of the drugs does not follow the log P 

values of the drugs (Figure 5.1). Instead, it increases in the order IBU << PAR ~ GB 

< GS. The water solubility of IBU is much smaller than the values determined for the 

other drugs being PAR, GB and GS, respectively, 13, 14 and 34 times more soluble.  

When analyzing the relative solubility of the four drugs in propylene glycol, transcutol 
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and glycofurol the solubility in the three solvents increases in the same order, GS < 

GB < PAR < IBU.   

 

 

Table 5.2 Solubility of the drugs in the different solvents under study, in (mg/ml) at 20 ± 0.1ºC (n=3). 

Solubility (mg/ml)  
Solvent Paracetamol Galantamine HBr Galantamine base Ibuprofen 

Water 12.2 31.3 12.8 0.93  

PG 53.1 4.7 51.4 153.1 

Transcutol 180.7 1.0 146.4 364.1 

Glycofurol 193.8 0.9 108.5 441.1 

 
 
 
 
Table 5.3 WVTR and thickness of the different drug-loaded films according to the coding of Table 5.1. 
Results are expressed as mean (± SEM), n=9 (WVTR), n= 6 (thickness). 

  F Fa Fap Fat Fag 

IBU 12.9 ± 0.3 21.5 ± 0.6 16.6 ± 0.4 12.5 ± 0.4 19.6 ± 0.7 

GB 13.1 ± 0.4 13.5 ± 0.3 13.3 ± 0.63 13.0 ± 0.7 14.4 ± 0.4 

GS 15.1 ± 0.5 13.5 ± 0.3 15.8 ± 0.6 15.1 ± 0.4 13.1 ± 0.5 

WVTR 
(g/m2.h) 

 
PAR 9.2 ± 0.2 11.0 ± 0.4 14.7 ± 0.3 13.7 ± 0.5 13.8 ± 0.7 

 
IBU 

 

125.0 ± 2.2 

 

112.5 ± 2.8 

 

128.3 ± 3.8 

 

115.8 ± 3.0 

 

123.3 ± 6.1 

GB 148.3 ± 5.6 110.0 ± 4.8 119.2 ± 5.5 127.5 ± 2.8 128.3 ± 9.0 

GS 132.5 ± 3.3 113.3 ± 3.3 121.7 ± 4.9 134.2 ± 3.5 140.0 ± 5.2 

 
Thickness 

(µm) 
 

PAR 114.2 ± 0.8 135.8 ± 2.0 123.3 ± 4.6 123.3 ± 2.1 125.8 ± 3.3 

WVTR Thickness 
IBU: p<0.05 for F/Fa, Fa/Fap, Fa/Fat  
GB: p>0.05  
GS: p<0.05 for F/Fa, Fa/Fap, Fa/Fat 
PAR: p<0.05 for F/Fa, Fa/Fap, Fa/Fat, Fa/Fag 

IBU: p<0.05 for F/Fa, Fa/Fap 
GB:  p<0.05 for F/Fa, Fa/Fat 
GS: p<0.05 for F/Fa, Fa/Fat, Fa/Fag 
PAR: p<0.05 for F/Fa, Fa/Fap, Fa/Fat, Fa/Fag 
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3.3 Characterization of the drug-loaded films 
 

The drug-loaded films prepared are thin (110-140 μm of thickness, Table 5.3), 

uniform, smooth, transparent and pale yellow. Before the application of the PSA by 

the solvent casting technique, the films are less transparent, indicating that the 

drugs are not totally soluble in the polymers. After the application of the PSA the 

films became clear and transparent, indicating that the drugs are solubilized in a 

higher percentage.  

A possible explanation is that the ethanolic solution of the PSA when applied to the 

drug-loaded films penetrates the film and dissolves part of the drug. The drug 

crystallization is probably inhibited by the PVP, since this polymer has shown before 

to be a very effective crystallization inhibitor [419-421].  

The uniformity of the films can be inferred from the low standard error values in the 

thickness measurements (see Table 5.3). 

 

The infrared spectrum of pure IBU and PAR are depicted in Figure 5.7(a) and 

exhibit the characteristic absorption peaks at 1699, 1269, 1230, 1184, 866 and 779 

cm-1 for IBU [377], and at 3321, 3159, 1651, 1608, 1562, 1504 and 1435 cm-1 for 

PAR [377, 422].  

 

From comparison of the ATR-FTIR spectra of the F films in Figure 5.7(b) in the 

absence and in the presence of the drugs, no interaction is detected between the 

polymers and PAR, GS and IBU. It is observed the strong peak located between 

1556 and 1560 cm-1, attributed to the overlapping of peaks due to the asymmetric 

COO- stretching vibration of PAA and the NH3
+ asymmetric bending vibration of 

chitosan that are reported in the literature to be located between 1550-1610 cm-1 

and  1570-1620 cm-1, respectively [372, 375, 376]. This result confirms the formation 

of the complex between chitosan and PAA, in spite of the incorporation of the drugs 

in the films.  Another peak detected in all films at approximately 1402 cm-1 is a 

further evidence of the polymer/polymer interaction, since it can be attributed to the 

symmetric COO- stretching vibration of PAA [317, 372, 374, 376]. 

In the ATR-FTIR spectrum of GB loaded-film the characteristic bands of the 

polyelectrolyte complex are masked by the typical infrared peaks of galantamine 
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[Figure 5.7 (a) and (b)]. This is probably due to the drug crystallization with 

formation of agglomerated crystals and a non-homogeneous distribution of GB 

within the film [423]. 
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Figure 5.7 FTIR-ATR spectra of the (a) drugs and (b) drug-loaded films. 
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The investigation of the permeability to moisture vapour (WVTR) of films that are 

intended to be applied on skin is of major importance, because this property serves 

to assess the respective occlusive properties. Skin occlusion interferes with the 

normal TEWL causing profound effects on the skin barrier. These include increasing 

the percutaneous absorption of applied chemicals and the alteration of epidermal 

lipids, DNA synthesis, surface pH and bacterial flora [112, 139, 141]. 

WVTR also serves to indirectly evaluate the density of PEC and it is simultaneously 

dependent on the solubility coefficient and diffusion rate of water in the film [355].   

The values of the WVTR of the films can be found in Table 5.3. The first observation 

is that no significant differences are observed between GB-loaded films.  

The adhesive layer increases the WVTR of films loaded with IBU and PAR, while it 

decreases this value in the case of the GS-loaded films. Transcutol and PG have a 

similar effect and both increased the WVTR value of films loaded with GS and PAR, 

and decreased the permeability to water vapour in the films containing IBU. 

Glycofurol is the solvent with less effect in the WVTR, it only increased the value of 

this parameter in the films with PAR according to Table 5.3.  

 

All the values measured are higher than the normal TEWL in healthy human skin 

[15, 122, 360], which means that the films display a low potential to interfere with 

TEWL and cause irritation. 

 

 

3.4 Skin bioadhesion and skin irritation 
 
The evaluation of bioadhesion to the skin is very important in any transdermal 

delivery system due to the fact that in order to provide a continuous drug supply it is 

necessary to maintain an intimate and prolonged contact with the skin during the 

entire time of application [328, 329]. The evaluation of skin irritation is equally 

relevant because it affects the safety and efficacy of the formulation as well as the 

patient compliance [409].  

In vitro conditions do not allow the assessment of the performance of a film under in 

vivo conditions. Some properties of the skin, such as moisture and elasticity, cannot 

be accurately reproduced in the in vitro tests. In the previous chapter, a quantitative 
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evaluation of the peak adhesion force and the work of adhesion of this formulation in 

the absence of drugs have been carried out in vivo. In the present study the 

objective is to evaluate the bioadhesive properties and the skin irritation of the same 

placebo film in the normal day life activities. The scoring systems [408, 409] used to 

evaluate the performance of the placebo film concerning bioadhesion and irritation 

potential are defined in Table 5.4. All volunteers reported no signs of irritation (score 

0) or discomfort. We conclude that the film is safe for using on the skin during the 24 

h application time, and that the patient compliance is predicted to be high.  

 
 
Table 5.4 Scoring system for the evaluation  of skin bioadhesion and irritation of the placebo film 
reproduced from ref. [409]. 

Bioadhesion performance 
 
0. ≥ 90% adhered (essentially no lift off from the skin) 
1. ≥ 75% to < 90% adhered (some edges only lifting off from the skin) 

2. ≥ 50% to < 75% adhered (less than half of the system lifting off from the skin) 

3. ≤ 50% adhered but not detached (more than half the system lifting off from 

the skin without falling off) 
4. patch detached (patch completely off the skin) 

 

Irritation potential 
 
0. no evidence of irritation 

1. minimal erythema 

2. definite erythema, readily visible; minimal edema or minimal popular 

response 

3. erythema and papules 

4. definite edema 

5. erythema, edema, and papules 

6. vesicular eruption 

7. strong reaction spreading beyond test site 
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In relation to the bioadhesion performance, 6 volunteers reported that the placebo 

film adhered more than 90% (score 0), one subject declared that the film adhered 

between 75-90% (score 1) and only one volunteer stated score 2.  It is thus possible 

to conclude that the film will be able to assure the fixation of the system during the 

24 h application time without lifting off and will be able to provide the desired 

continuous drug supply. 

 

 
 
3.5 Drug release studies 
 

In hydrogels formed by ionic interactions the pH of the release medium influences 

the crosslinking density and by consequence the degree of swelling [201, 202, 424]. 

For this reason, it is very important to conduct the release studies in the normal pH 

of the skin. In the present study, the drug release studies were performed in acetate 

buffer at pH 5.5, reflecting the physiological skin conditions as advised by reference 

guidelines [425]. Moreover, drug release from polymer films is also influenced by the 

physicochemical properties of the drug such as the MW, solubility [318] and by the 

drug concentration within the polymer network [426, 427]. 

 

Figure 5.8 shows the cumulative drug release profiles of PAR, GS, GB and IBU 

from the saturated solutions, and films F, Fa, Fap, Fat and Fag.  

The first observation is that the films of all drugs exhibit an initial quick release (burst 

effect) that is followed by a linear portion indicating a region of constant drug 

release. The burst effect may be produced by two different effects, the rapid swelling 

of the films in contact with the release medium and the presence of a high 

concentration of drug in the surface of the films. 

A comparable burst release has been reported in other PEC based on chitosan and 

PAA [310]. The initial burst release can be beneficial in the sense that it helps to 

rapidly achieve the therapeutic plasma concentration, and the constant drug release 

that follows would then provide a sustained and controlled drug release.  

The drug release profile of the saturated solutions is clearly related with the 

lipophilicity of each drug, i. e. the amount of drug released increases as the log P 

decreases. Except for the case of IBU that is very slightly soluble in water, the 
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cumulative drug released from the saturated solutions is higher than those 

determined for the drug-loaded PECs. 
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Figure 5.8 Drug release profiles from the saturated solutions and drug-loaded films of (a) paracetamol, 
(b) galantamine HBr, (c) galantamine free base and (d) ibuprofen. All films are loaded with 6% of drug. 
Mean (± SEM); n ≥ 3. 
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3.5.1 Ibuprofen release 
 
The cumulative drug release profile of IBU in the films with adhesive is very unusual, 

Figure 5.8(d). After an initial burst release that is higher than in the F film, there is a 

decrease in the total amount of drug in the receptor solution. This effect is more 

marked in the films with solvents, particularly propylene glycol, as shown in Figure 
5.8(d). Although IBU is very slightly soluble in water, the sink conditions are 

maintained during the entire time of the drug release study so this behavior is not 

induced by a saturation of the receptor medium. 

 

We believe that the fraction of IBU that is dissolved in the PSA is rapidly released to 

the receptor medium due to the water solubility of the adhesive, producing the 

observed burst effect. A decrease in the hydrophilic nature of the films by the 

inclusion of the solvents and PEG400 from the PSA could explain a higher affinity of 

the drug to the film partially devoided of PSA in comparison with the release 

medium. This increased affinity could produce the migration of the drug from the 

receptor medium to the film. A similar drug release profile has also been observed in 

our laboratory, from gel formulations loaded with another very lipophilic drug, 

metronidazole (unpublished data). 

 
 
3.5.2 Drug release kinetics 
 
The drug release mechanism of hydrogels prepared by mixing the polymer solutions 

and the drug before the network formation, such as those in the present study, can 

be influenced by one or more of the following factors: drug diffusion, swelling, 

reversible drug-polymer interactions and degradation [428]. In order to understand 

the release mechanism of the films, the released data was fitted to the zero-order 

release kinetics and Higuchi’s square root of time [411, 412, 429]. The in vitro kinetic 

release parameters are presented in Table 5.5. Due to the atypical IBU release 

profile from the films with the PSA layer, only the IBU release data from the F films 

was adjusted to the mathematical models. 
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Table 5.5 In vitro release kinetic parameters of drug-loaded films. 
 

Code Drugs Kinetic models  
 

Zero-order kinetics Higuchi model   
Q0 K0 (μg/h) R2 Q0 KH (μg/h1/2) R2 

 
F 

 
IBU 

 
246.8 ± 1.1 

 
26.1 ± 4.9 

 
0.985 

 
166.0 ± 10.6 

 
92.6 ± 15.2 

 
0.992 

 GB 640.8 ± 102.0 67.0 ± 19.4 0.974 451.6 ± 152.0 227.4 ± 63.7 0.988 
GS 579.7 ± 56.2 64.8 ± 9.5 0.973 356.6 ± 59.9 242.3 ± 18.6 0.982 

 PAR 580.7 ± 42.6 108.7 ± 1.8 0.991 368.1 ± 38.3 313.3 ± 14.7 0.998 

 
Fa 

 
IBU 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 GB 402.8 ± 48.0 37.2 ± 2.9 0.980 292.5 ± 52.6 129.3 ± 8.3 0.989 
GS 371.2 ± 55.9 41.2 ± 8.7 0.973 232.0 ± 66.9 152.6 ± 28.1 0.989 

 PAR 326.1 ± 42.8 98.4 ± 5.5 0.988 185.4 ± 18.3 245.8 ± 25.8 0.983 

 
Fap 

 
IBU 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 GB 321.4 ± 17.4 28.7 ± 7.2 0.982 250.1 ± 31.1 91.8 ± 20.6 0.994 
GS 241.7 ± 11.2 30.5 ± 5.5 0.983 149.0 ± 11.2 107.2 ± 21.0 0.995 

 PAR 469.0 ± 40.4 75.5 ± 18.3 0.984 341.2 ± 49.2 202.0 ± 36.5 0.974 

 
Fat 

 
IBU 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 GB 376.4 ± 26.1 23.5 ± 0.5 0.980 308.8 ± 23.6 80.4 ± 3.2 0.993 
GS 543.5 ± 45.7 32.5 ± 1.0 0.973 414.7 ± 69.5 131.5 ± 15.6 0.981 

 PAR 332.7 ± 46.6 82.3 ± 10.4 0.988 172.2 ± 26.8 230.5 ± 35.5 0.983 

 
Fag 

 
IBU 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 
n.d. 

 GB 287.8 ± 8.0 41.1 ± 3.0 0.987 187.9 ± 6.9 130.3 ± 11.2 0.998 
GS 245.3 ± 9.0 44.9 ± 3.6 0.979 131.4 ± 6.1 145.3 ± 7.4 0.993 

 PAR 311.6 ± 33.4 110.9 ± 16.3 0.989 51.4 ± 46.0 343.0 ± 67.2 0.992 

 
 
 

The zero order (K0) and Higuchi (KH) rate constants are established from a linear 

least square procedure. Points pertaining to the burst release are discarded through 

direct inspection of the plots. In Figure 5.9 it can be seen the data points of the GB 

release from Fag films and the zero order and Higuchi’s fit as illustration of the 

procedure. The drug release data from the films show a good fit to both 
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mathematical models (high R2) although in most cases the mathematical expression 

best describing the drug release after the initial burst release is Higuchi’s profile 

(Table 5.5).  

 

Residual analysis confirms this conclusion. In fact, the zero order model does not 

display a frequent alternation of the sign of residuals [Figure 5.9]. Analyzing the 

values determined both for KH and K0, we observe that the drug release rates always 

increases in the order IBU < GB < GS < PAR. The increase of drug release 

constants are in accordance with the decrease of the log P values of the drugs 

(Figure 5.1). 
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Figure 5.9 Cumulative GB release from Fag films and zero order as well as Higuchi’s fitted models. 
 
 

Analyzing the effect of the adhesive layer and the three solvents tested in the drug 

release mechanism it is clear that the drug release mechanism is not changed. 
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Furthermore, the main effect induced by the PSA and the solvents consists of a 

decrease in the values of the drugs release constants. Note that this is a very 

beneficial feature, since the main objective is to obtain a formulation with prolonged 

and sustained drug release over time.  

 

These results indicate that the drug release from the films is mainly controlled by 

diffusion and follows a quasi-zero order release kinetics. Moreover, the PEC films 

with maximized electrostatic interactions between chitosan and PAA are able to 

assure the release of both hydrophilic and lipophilic drugs in a reliable, reproducible 

and sustained manner.  

 
 
3.6 In vitro drug permeation across pig ear skin 
 
The permeation profiles obtained for each drug are presented in Figure 5.10 and 

the calculated parameters are shown in Table 5.6.  

 

From Figure 5.10 it is clear that the drug permeation profiles from the films do not 

exhibit the typical profile with an initial lag time. Instead, in the early stages of the 

permeation studies there is an unusually fast permeation followed by a region of 

constant flux. This effect is maximal in the case of IBU films. 

 

In the evaluation of the film with the best performance, the initial burst effect has to 

be taken into account. The cumulative drug release at 24 h (Q24h) will be a result of 

the flux determined in the steady-state and the amount of drug permeated in the 

early stages of the permeation. The burst effect becomes obviously less important 

when analyzing, for example, the values of Q48h (see Table 5.6, and Figures 5.10 

and 5.11). 

Another important observation is that the IBU permeation from all formulations is 

much higher than the permeation of the other three molecules under study. Despite 

the different physicochemical properties of PAR, GS and GB illustrated in Figure 
5.1, the flux values determined for the three drugs are very similar, as shown in 

Table 5.6 and Figure 5.11.  
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Figure 5.10 Permeation profiles of the drugs from (a) saturated solutions and from the drug-loaded 
films for (b) paracetamol, (c) galantamine HBr, (d) galantamine base and (e) ibuprofen. All films are 
loaded with 6% of drug. Mean (± SEM); n ≥ 3. 
 

 

The cumulative amount of each drug released over time, Figure 5.8, is always 

higher than the amount of drug permeation which indicates that drug release is not a 

rate-limiting step. The initial “burst” effect in permeation is most probably a 

consequence of the initial higher drug release rate depicted in Figure 5.8. Although 

unusual, this type of drug permeation profile has been observed before, especially in 

film formulations [390, 426, 427, 430, 431] but also in HPMC gels [432].  
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3.6.1 Galantamine HBr and paracetamol 
 
In order to evaluate the drug delivery potential of the films, the permeation of each 

drug from the respective saturated solutions was considered as reference due to the 

fact that an equivalent commercial formulation is absent for some of the drug 

molecules.  
The results indicate that there is no significant improvement in the drug permeation 

in the Fa films of the most hydrophilic drugs (PAR and GS, Figure 5.1) when 

compared to the respective saturated solutions, see Table 5.6. 
 

In the case of PAR the drug with the lower log P, glycofurol was the only solvent that 

produced a significant improvement (P<0.05) of the flux and Q48h both in relation to 

the values determined for the saturated solutions and Fa film [see Table 5.6 and 

Figure 5.11(a) and (b)]. Although PG and transcutol did not produce a significant 

improvement in PAR permeation some degree of increase is visible for the flux, Q24h 

and Q48h.  

In the case of GS, the flux of the drug in Fa films displayed, rather than an increase, 

a significant decrease (P<0.05). Analyzing the effect of the solvents in comparison 

with the Fa films, we can see that glycofurol and transcutol induce a significant 

(P<0.05) increase in the flux, Q24h and Q48h while PG produces only a significant 

increase of Q24h and Q48h (see Table 5.6 and Figure 5.11). The PG result is 

explained by a higher amount of the drug permeated in the early stages from Fap 

films, that is reflected in the higher values of Q24h and Q48h [Figure 5.10(c)] rather 

than a significant increase of the flux. Transcutol is the solvent with the best 

performance, followed by glycofurol. 

 

The results from the films loaded with PAR and GS confirm that glycofurol can act 

as a skin penetration enhancer, and we believe that the respective mechanism of 

action should be the object of further research. This result is even more important 

when taking into consideration that glycofurol produces a better result than PG, a 

reference molecule known to act as a “universal” skin penetration enhancer [388-

391]. 
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Table. 5.6. Permeation parameters of the drugs across pig ear skin. Results are expressed as mean 
(± SEM), n ≥ 3. 
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* Statistically significant difference in comparison with the saturated solution (P< 0.05) 

# Statistically significant difference in comparison with the film Fa (P< 0.05) 
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3.6.2 Galantamine base and Ibuprofen 
 
The results indicate that there is a significant improvement (P<0.05) in the drug 

permeation in the Fa films of the most lipophilic drugs (IBU and GB, Figure 5.1), see 

Table 5.6.  

The results of the GB permeation from Fa, Fap and Fag films were significantly higher 

than the results from the saturated solutions; see Table 5.6 and Figures 5.10(d) 
and 5.11. The solvents do not induce a significant increase in the permeation of GB 

comparing with the Fa films, although PG and glycofurol exhibit a tendency to induce 

some degree of improvement of permeation with the highest value observed for Fap 

films.  

Comparing the results of the two forms of galantamine (GB and GS) we can 

conclude that the conversion of the hydrobromide salt to the free base generates a 

molecule with a higher potential for skin permeation, as expected. Although when 

analyzing the results for the two molecules in Table 5.6, it may seem that the 

permeation of GS from Fat and Fag is higher, if we convert the values obtained to 

galantamine equivalents, we realize that GB still permeates more easily through the 

skin in these films. 

 

From the analysis of the permeation profiles from the IBU-loaded films we conclude 

that, although the drug release from the films show an atypical behavior this fact 

does not seem to affect the permeation of the drug through the skin. Moreover, the 

permeation results indicate that transcutol, PG and glycofurol produce a significant 

decrease in the drug flux, when comparing with values obtained for Fa films, see 

Table 5.6 and Figure 5.11.  

 

 

3.6.3 “Supersaturation” effect 
 
It is important to note that, although the concentration of the four drugs is the same 

in all films (6%), the respective degree of saturation is not, due to the different 

physicochemical properties of each molecule (Figure 5.1).  
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In the saturated solution, the ratio Cv /Cs,m [Equation (1.2)] is equal to one; in 

situations of supersaturation in the films this ratio will exceed one and, as a 

consequence, the value of the flux increases. The flux is directly proportional to the 

degree of saturation and this means that the flux of a permeant will be, in principle, 

the same from different vehicles which do not alter the barrier of the skin, at the 

same degree of saturation. Moreover, the flux is also determined by the 

physicochemical properties of the permeant, influencing both D and Cs,m.  

 

In the present work, the films have a hydrophilic nature. As a consequence, more 

lipophilic drugs will have a smaller solubility in the films, and consequently, a higher 

degree of saturation. Moreover, in order to be able to make a direct comparison 

between the permeation of the different drugs they should be in the same saturation 

degree on each film. Since this is a very difficult parameter to correctly determine in 

solid formulations, we prepared films with the same drug concentration.   

 

A “supersaturation” effect could explain the statistically significant improvement of 

the flux from Fa films of the most lipophilic drugs (IBU and GB) in comparison with 

the saturated solutions. Furthermore, the higher ERf observed in the case of the Fa 

films of IBU, than the corresponding value for the GB case (Table 5.6) could also be 

justified by the same effect.  

 

In fact, not only the log P of IBU is higher than GB, also the major difference is 

observed in the water solubility, that increases by ~14 times from IBU to GB as 

discussed earlier (see Table 5.2). The water solubility rather than the log P may also 

explain the approximate ten-fold difference between the IBU flux from Fa films, and 

the very similar values of the flux of GB, GS and PAR in the corresponding films.  

 

Glycofurol and PG produce a significant decrease (P<0.05) of the IBU flux when 

comparing with values obtained from the Fa film (see Table 5.6 and Figure 5.11). 

The three solvents dramatically increase the solubility of IBU, as discussed earlier, 

in the following order: PG < transcutol < glycofurol (Table 5.2). The incorporation of 

these solvents in the films loaded with IBU, most probably reduces the 

supersaturation degree of the drug in the formulation (Equation 1.2), which in turn 
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reduces the amount of drug permeated over time. This is probably the major effect 

accounting for the results but is not the only one because the reduction in 

permeation does not follow the increase in the IBU solubility discussed before.  

Instead, the IBU permeation increases in the order Fat < Fap < Fag, according to 

Table 5.6 and Figure 5.11. This leads us to conclude that the solvents may be also 

interfering with the skin barrier and influencing the drug diffusion coefficient (D in 

Equation 1.2) within the SC. 

 

On the contrary, it seems that the supersaturation effect is not the most important 

factor influencing the drug permeation of the most hydrophilic drugs (GS and PAR). 

In fact, not only there is no improvement of the permeation of PAR and GS from the 

Fa films, in comparison with the saturated solutions, but also in the case of GS it was 

verified a significant decrease (see Table 5.6). This may indicate that the degree of 

the saturation in Fa films loaded with GS can be smaller than the unity, explaining 

this reduction. This explanation is also in accordance with the results of the drugs 

water solubility that indicate that GS is the drug more soluble in water (see Table 
5.2). 
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Figure 5.11 Permeation parameters of the drugs calculated from the results of the in vitro permeation 
studies. (a) Flux (μg/cm2.h), (b) Q24h (μg) and (c) Q48h (μg). The symbol * signals statistically significant 
difference in comparison with the saturated solution (P< 0.05) while the symbol # signals statistically 
significant difference in comparison with the Fa films. Mean (± SEM). 
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4. Conclusions 
 
From the data obtained we have demonstrated that the bioadhesive film is water 

permeable, safe, non-irritating and capable of firmly adhere to the skin for at least 

24h. The PEC films with maximized electrostatic interactions between chitosan and 

PAA are able to assure the release of both hydrophilic and lipophilic drugs in a 

reliable, reproducible and sustained manner. The PSA decreases the release rate 

constant that is very advantageous in formulations for sustained drug delivery. 

Furthermore, the drug release from the drug-loaded films is mainly controlled by 

diffusion and follows a quasi-zero order release kinetics. 

The shape of the permeation profiles reveals in the early stages an unusually fast 

permeation followed by a region of constant flux. This behaviour is most beneficial 

because it enables to rapidly attain the pharmacological action.  

Glycofurol can work as a skin penetration enhancer and, in some cases, produces a 

better result than PG, a reference molecule known to act as a “universal” skin 

penetration enhancer [388-391]. 

 On the basis of the in vitro permeation results of four molecules with different 

lipophilicity the film developed is a viable option for the effective delivery of drugs 

through the skin. Finally, it was shown that it is possible to modulate the drug 

permeation from the films by adding different solvents. 

 



 
 

VI  

Optimization of an anti-Alzheimer’s transdermal 
film 

 
 
 
 
 
1. Introduction 
 

In the previous chapter, two forms of galantamine were tested in order to evaluate 

the molecule with the higher potential for skin permeation: the commercially 

available galantamine HBr (GS) and galantamine free base (GB). GB demonstrated 

a higher capacity to permeate the skin and will be used in the present study.  

 

The selection of an appropriate vehicle is very important for the percutaneous 

absorption of drugs, along with a proper choice of the physicochemical properties of 

the permeant. The screening study previously carried out to evaluate the ability of 

different solvents (PG, transcutol and glycofurol) to enhance the permeation of 

galantamine showed that PG is, among the solvents tested, the one that induced the 

maximum GB flux. PG is widely used as cosolvent of drugs [385] and penetration 

enhancers [386, 387] in dermatological formulations, and has been described to 

increase the permeation of drugs alone or in combination with other penetration 

enhancers [388-391]. PG seems to increase the uptake of drugs by the SC [388, 

389], although it is also suggested that it may be incorporated in the head group 
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regions of lipids by replacing bound water [227], or may induce a protein 

conformational change from α- to β-keratin [392]. 

 

The aim of the present work is to determine the ability of Azone and NMP (N-methyl 

pyrrolidone), alone and in combination with PG, to improve the in vitro skin 

permeation of GB. Azone and NMP were selected on the basis of their penetration 

enhancing properties, different mechanism of action and the synergistic effect 

demonstrated in other studies with PG [138, 433-435].  

Azone has the ability to partition into the lipid lamellae of SC, where it produces a 

fluidizing effect responsible for the enhancement of drug permeation [219, 436]. 

NMP acts directly on the aqueous regions of the SC, altering the solubilizing ability 

of these regions to the drugs. This action favours skin permeation by increasing the 

partition coefficient of the drugs into the SC [130, 389, 434]. The structure as well as 

some physicochemical properties of PG, Azone and NMP can be found in Figure 
6.1.  

 

 

 

            PG Azone NMP 

 

   
N

O

 
 

MW 76.09 281.48 99.13 
MP (ºC) -42.4 -7 ºC -24ºC 
Log P -0.47 6.21 -0.38 

 
Figure 6.1 Structure and physicochemical properties of the penetration enhancers. 

 

 

In the present study, the effect of Azone, NMP, PG and their interaction effects were 

evaluated using experimental design techniques, namely factorial design and 
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surface response methodology [437, 438], in order to optimize the GB permeation 

through the skin. The application of factorial design to the optimization of 

pharmaceutical formulations enables the simultaneous evaluation of the relative 

importance of several factors and the respective interactions [439, 440]. A simple 

mathematical model is derived from the experimental results, and it can be used to 

predict the response to a combination of factors not tested experimentally, inside the 

experimental domain [439]. This model is also used to build response surfaces that 

enable the visualization of the influence of the variables in the response [439-441]. 

In a first step, nine drug-loaded films were prepared with different penetration 

enhancers and different levels, one enhancer at a time or in combinations of two. 

The GB flux and the Q24h were used as responses to evaluate the penetration 

enhancers performance. After assessing the effect of the independent variables on 

the responses and the formulation limitation in terms of the amount of additives that 

can be incorporated, a new optimized film was prepared. The GB flux and Q24h were 

also evaluated for this new film in pig epidermal membranes as well as in human 

epidermis. 

GB release profiles from all the films are determined using modified Franz diffusion 

cells. The influence of the incorporation of penetration enhancers in the films on the 

GB release kinetics release is also evaluated. Moreover, several functional 

properties important to fulfil the therapeutic goals such as water vapor transmission 

rate (WVTR) and bioadhesion of the films are equally examined [328, 329]. 

 
 
 
2. Materials and methods 
 
 
2.1 Materials 
 
 

Chitosan of low molecular weight and NMP (N-methyl pyrrolidone) were purchased 

from Sigma-Aldrich. Noveon AA-1® (PAA), GS and Azone (1-

dodecylazacycloheptan-2-one) were kindly provided by Noveon Inc. (Cleveland, 

USA), Grunenthal (Germany) and Bluepharma (Portugal), respectively. PG and 

polyvinylpyrrolidone K90 (PVP K90) were obtained from Fluka. All other chemical 

reagents were of pharmaceutical grade. 
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2.2 Preparation of the GB-loaded film formulations 
 
 
The films consist of chitosan-PAA polyelectrolyte complexes (PEC), and were 

prepared according to a description given in the last chapters. Briefly, a chitosan 

solution (1.5 %, w/v) in 0.75 % (w/v) aqueous lactic acid is dropwise added to the 

PAA suspension, and mixed with a mechanical stirrer. The plasticizer (glycerol) 

concentration is fixed at 30% of the total dry weight of the polymers according to the 

work of Chapter IV. After the addition of the plasticizer, 10% of GB (w/dry polymer 

weight) and the appropriate amount of each penetration enhancer (PG, Azone and 

NMP) are added prior to the suspension neutralization with NaOH 1M. The latter 

allows to obtain a pH of 6.1. 

Film forming solutions are cast on Petri-dishes and dried at 35ºC for about 48 h. An 

adhesive solution composed of 67 wt % PVP K90 and 33 wt % PEG400 is applied to 

the films by solvent casting technique, and the solvent is evaporated again at 35ºC 

as previously described in previous chapters. 

 

 
 
2.3 In vitro drug permeation studies 
 
 
Permeation experiments were conducted using pig epidermal membranes prepared 

by heat separation technique and human epidermis in the final optimized film. Pig 

ears were obtained from a local slaughterhouse and the areas of skin free from hairs 

are separated from the ear. The human skin was obtained from post-mortem 

collection.  The whole skin is immersed in water at 60ºC for two minutes, after which 

the epidermis is peeled off from the underlying tissue according to the guidelines 

recommendations [184, 187, 188, 413]. Epidermal membranes are stored at -20ºC 

in an aluminium foil until use. It was demonstrated that no changes occur in the skin 

permeability kept in these conditions when compared to fresh skin [414, 415].    

The epidermal membranes are mounted in modified Franz diffusion cells with the 

dermal side in contact with a PBS, pH 7.4, as receptor fluid that is continuously 

stirred and maintained at 37 ± 0.1 ºC during the time of the study [187]. This is a 

physiologically adjusted buffer used to mimic the permeation through the skin into 
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the systemic bloodstream. The amount of GB permeated at each time is determined 

by spectrophotometric detection at 289 nm, using a previously validated calibration 

curve, in agreement with the reference guidelines, see Appendix [405-407]. Sink 

conditions are maintained during the study. 

The buffer is previously filtered in vacuum through a 0.45 µm Millipore filter, followed 

by 15 minutes at 40ºC in ultrasounds in order to prevent the formation of air bubbles 

between the skin and the receptor medium during the GB permeation experiments. 

Prior to each test, the integrity of all epidermal membranes is evaluated as required 

by the reference guidelines [184, 187, 188] through the measurement of the TEWL 

using a Vapometer (Delfin Technologies Ltd, Finland). The measurements of the 

TEWL are conducted under standardized conditions in order to assure the reliability 

of the results [416]. Epidermal membranes with high TEWL values are considered 

damaged and discarded prior to the study. 

 

The in vitro drug permeation studies were conducted for the drug-loaded films during 

20h. The cumulative amount of drug permeated per cm2 of skin (Q) is plotted 

against time (t) and the flux is determined from the linear portions of the plots 

according to the Equation (1.1). 
 

 
 
2.4 In vitro drug release studies 
 
 

In vitro drug release tests were performed by means of modified Franz diffusion cells 

with a diffusion area of 1.327 cm2. The receptor chamber is kept at 37 ± 0.1 ºC and 

filled with acetate buffer, pH 5.5, in order to simulate the pH of the skin surface and 

the sink conditions are maintained during the time of the study. All precautions were 

taken in order to avoid the formation of air bubbles between the films and the 

receptor medium during the release experiments. 

Each film is sandwiched between the donor compartment and the receptor 

compartment. The GB release is determined by spectrophotometric detection at 289 

nm. 

Studies were conducted during 6 hours and the measurements were recorded each 

5 minutes. The exact volume of the receptor chamber was measured at the end of 
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each experiment, in order to accurately calculate the cumulative drug release of 

each drug. 

 

 

2.5 Drug release kinetics 
 
In order to analyze the drug release mechanism three mathematical models were 

used, the zero order, Higuchi and Korsmeyer-Peppas models [411, 412, 442], 

respectively given by:  
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where Qt /Q∞ is the fraction of drug released at time t and Q0/Q∞ the initial fraction of 

drug in the release medium as a result of burst effects. K0, KH and KKP are the zero-

order, the Higuchi and the Korsmeyer-Peppas release constants, respectively.  

 

In the Korsmeyer-Peppas model, KKP is a constant related with the structural and 

geometric properties of the formulation, while the n value depends on the drug 

release mechanism from the formulation and the shape of the matrix tested [412, 

442]. In the case of a slab, n=0.5 indicates a Fickian diffusion, while 0.5<n<1 when 

there is a superposition of diffusion-controlled and swelling-controlled drug release 

and, finally, n=1 for zero-order release kinetics [412, 442]. For the determination of 

the n exponent only the data points of the release curves up to 60% of drug release 

are considered [412, 442].  



VI. Optimization of an anti-Alzheimer’s transdermal film 
 
 

181 

The models were analyzed according to a previous work employing a least squares 

procedure based on the Marquardt algorithm [429].  

 
 

2.6 Comparison of GB release profiles 
 

A model-independent method that includes the calculation of the difference factor 

(f1) and the similarity factor (f2) is used to compare the GB release profiles from the 

different drug-loaded films. The f1  is a measure of the relative error between the two 

curves, while the f2 is a measurement of the similarity in the percent release 

between the two release profiles [412, 443]: 
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being n is the sampling number, Rj and Tj the percentage (%) of drug release from 

the reference and from the test formulations at each time point j,and wj is an optional 

weight factor.  

 

The f1 and f2 are recommended by the FDA and EMEA as a valid method to assess 

the similarity of in vitro drug release profiles [412, 444, 445]. Two in vitro drug 

release curves are considered similar when f1 values are lower than 15 and f2 values 

are higher than 50 which corresponds to an average difference of no more than 15% 

and 10%, respectively  [412, 443, 446]. 
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2.7 Film thickness 

he thickness of each film was measured at six different sites using a micrometer. 

.8 Surface morphology 

he film surfaces were observed with a Leica DMIL inverted microscope (Leica 

.9 WVTR 

hree samples were tested for each type of film. The WVTR (g/m2.h) is measured 

.10 In vitro bioadhesive properties 

he in vitro evaluation of the bioadhesion properties of the films, including peak 

 

T

Mean and standard error values are calculated. 

 

 

2
 
T

Microsystems, Inc., Germany) under transmitted light and the images at 400x 

magnification were captured using a Canon Power Shot S45 digital camera with a 

microscope adaptator. 

 

 

2
 
T

using a Vapometer (Delfin Technologies Ltd, Finland). Briefly, film specimens are 

mounted and sealed in the top of open specially designed cups, filled with distilled 

water up to 1.1 cm from the film underside and left to equilibrate for one hour at 

room temperature (22-23ºC, 42-46% RH). The vapometer is equipped with a 

humidity sensor, inside a closed measuring chamber not sensitive to external 

airflows that enables measurements of the films water permeability in normal room 

conditions [341]. 

 

 
2
 
T

adhesion force (PAF) and work of adhesion (WA) is performed using a TA.XTPlus 

Texture analyzer (Stable Micro Systems, UK). The film is fixed by means of a 

double-sided adhesive tape on the movable carriage of the apparatus, while the pig 
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skin is fixed in the test rig. The carriage is moved until the contact between pig skin 

and the movable carriage is established. A preload of 3N is applied and the contact 

time of the holder and the skin was 60s. After that time, the movable carriage is 

moved forward at a constant speed test of 10 mm/sec until complete separation of 

the two surfaces. The curves of displacement (mm) versus adhesive force (mN) are 

recorded simultaneously. The WA is given by integration on the range of positive 

force.The force required to detach the film from the pig skin is used to represent the 

magnitude of bioadhesive force of the tested film specimen. 

 

 

2.11 Experimental design 

 the present study, two experimental designs were performed, each with two 

                    (6.6) 

 

here Z is the response variable, X and Y are the independent variables, and a, aX, 

.12 Statistical analysis 

esults are expressed as mean ± standard error (SEM). The significance of the 

differences between values is assessed using a two sample t-test with a statistical 

significance level set at P = 0.05. 

 
In

factors at three levels: PG/azone and PG/NMP. The penetration enhancers 

(independent variables) and the respective levels, coded and in absolute values are 

shown in Tables 6.1 and 6.2. The flux and the Q24h of GB were considered the 

responses or dependent variables. From the response surface of a partial 32 

factorial design, a non-linear quadratic model can be extracted and calculated 

according to: 

 

XYaYaXaYaXaaZ XYYXYX +++++= 22
22

w

aY, aX2, aY2 and aXY, the regression coefficients corresponding to the constant, the 

main effects, quadratic terms and interaction, respectively. 

 
 
2
 
R
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In order to evaluate the validity of the quadratic models of the partial factorial 

designs, the analysis of variance (ANOVA) was used. F-ratios and the correlation 

coefficients were the criteria for validation. 

. Results and discussion 

.1 In vitro skin permeation studies 

wo different partial 32 factorial designs were used in order to evaluate the effect of 

zone and PG/NMP in the permeation 

f GB through pig epidermis. Based on Table 6.1, the first nine drug-loaded films in 

 respective levels used in 
the construction of a partial 32 factorial design. 

Levels 

 

 
 

3
 

3
 

T

PG, Azone, NMP and the combination of PG/A

o

Table 6.2 were initially prepared by varying each factor individually and using 

combinations of two factors at the respective levels.  

 

 

Table 6.1 Dependent and independent variables and

Variables 

Low  (-1) Medium (0) High (1) 

Concentration of PG (%) 0 20 40 

Concentration of Azone (%) 0 5 10 

Concentration of NMP (%) 

Flux 24h 

0 5 10 

Responses and Q

 

 

 

fter conducting the in vitro permeation studies, the GB flux and the Q24h were 

alculated and are also included in Table 6.2. The GB permeation profiles are 

resented in Figure 6.2, and the enhancement ratios (ER) obtained from the 

A

c

p
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incorporation of penetration enhancers in the GB-loaded films are depicted in Figure 
6.3.  

 

 

Table 6.2 Formulations prepared in the present work, and the respective flux and amount of GB 
ermeated per unit of area of pig skin at 24h (Q24h). Results are expressed as mean (± SEM), n ≥ 3. 

Concentration (%) Responses 

p

Formulation

PG Azone NMP Flux (μg/cm2.h) Q24h (μg) 

F 0  0  0  2.8 ± 0.6 73.6 ± 13.5 

F  20P 20  3.7 ± 0. .0 ± 7.8 

P 40 0  

 0 5  0  2.1 ± 0.7 66.3 ± 12.8 

F10A 0  10  0  2.0 ± 0.1 72.3 ± 3.0 

20P10A 

5N 0  0  5  4.1 ± 0.6 98.3 ± 10.0 

7.3 ± 1.2* 197.7 ± 23.8* 

F  20  0  10  7.9 ± 0.6* 223.7 ± 27.1* 

F  0  0  20 9.0 ± 0.8* 216.9 ± 17.0* 

0 0  4 95

F40 0  3.7 ± 0.5 97.3 ± 13.6 

F5A

F 20 10  0  3.0 ± 0.4 80.0 ± 14.7 

F  

F  10N 0  0 10  

20P10N

20N

  lly signific rence in comp n with the  0.05) 
 

 

l profile with an 

itial lag time. Instead, in the early stages of the permeation studies there is an 

nusually fast permeation followed by a region of constant flux. This initial “burst” 

* Statistica ant diffe ariso film F (P<

The GB permeation profiles from the films do not exhibit the typica

in

u

effect is most probably a consequence of an initially higher GB release rate from the 

films, probably as a result of the film swelling and a “supersaturation” of the drug in 

the film surface. Although unusual, this type of drug permeation profiles have been 

observed before, mostly in film formulations [390, 426, 427, 430, 431] but also in 

HPMC gels [432]. This initially higher permeation rate of the drug is advantageous 

because it enables to rapidly attain the pharmacological action, contrary to the usual 

lag-time that delays the onset of the therapeutic effect. The magnitude of this burst 

effect also depends on the amount and type of penetration enhancer incorporated in 
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the formulations, as it is clear from Figure 6.2 and from the ER of Q24h on Figure 
6.3. 
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Figure 6.2 The in vitro permeation profiles of the GB from the drug-loaded films in the absence and 
after the incorporation of the penetration enhancers. All films are loaded with 10% of GB. Mean (± 

EM); n ≥ 3. 
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Figure 6.3 Enhancement ratio of the flux and Q24h of GB produced by the incorporation of the 
penetration enhancers in the drug-loaded films.  
 

 

he combinations of PG/NMP and PG/Azone, 

spectively. They were obtained, using a standard approach [447], as a function of 

e concentrations of PG and NMP, and as a function of the PG and Azone 

flux=3.1–0.4[Azone]+0.5[PG]+0.3[Azone]2 -0.5[PG]2+0.1[Azone][PG]            (6.9)  

he regression we used coded (-1 for the lower and +1 for the higher) levels of the 

terpretation of the relative importance, avoiding potential misleading deductions 

The flux and Q24h results allowed the calculation of the response surface models that 

are depicted in Figures 6.4 and 6.5 for t

re

th

concentrations, respectively:  

 

Zflux=4.9+2.1[NMP]+0.3[PG]+0.9[NMP]2 -0.5 [PG]2-0.1[NMP][PG]                    (6.7) 
ZQ24h=122.0+64.4[NMP]+14.2[PG]+37.7[NMP]2-9.5[PG]2+2.3[NMP][PG]         (6.8) 
    

Z
ZQ24h=80.9-7.5[Azone]+5.0[PG]+6.7[Azone]2-9.5[PG]2-6.8[Azone][PG]         (6.10) 
 

In t

independent variables, in order to obtain regression coefficients that can be directly 

compared with each other [439]. Also, the use of coded data facilitates the 

in

from raw data [448]. 

. 
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Figure 6.4 Estimated response surface plot illustrating the effect of the concentration of NMP and the 
concentration of PG in the (a) GB flux and (b) GB Q24h. 
 

 

interactions affect the responses (Flux 

nd Q24h). The coefficients with only one independent variable represent the main 

ffect of that variable; the regression coefficients with more than one process 

The polynomial equations display the quantitative effect of the process variables 

(NMP, Azone and PG) and indicate how their 

a

e

variable and those with second order terms are related with the interaction effects 

and the quadratic contribution to the response, respectively. A positive sign indicates 



VI. Optimization of an anti-Alzheimer’s transdermal film 
 
 

189 

an increase in the response produced by that independent variable or a synergistic 

effect produced by the combination of the two independent variables. A negative 

sign indicates the opposite. A larger regression coefficient is an indication of a 

higher importance of the independent variable on the response [448]. 
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Figure 6.5 Estimated response surface plot illustrating the effect of the concentration of Azone and the 
concentration of PG in the (a) GB flux and (b) GB Q24h. 
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A standard analysis using ANOVA [441] was also carried out on the designs and the 

statistical parameters for each response variable can be found in Table 6.3.  

The results show that Fcalculated  is higher than the critical value of F, for a probability 

of 99%, indicating that the responses (flux and Q24h) are significantly affected by the 

independent variables of Equations 6.7 and 6.8 [441, 449]. On the contrary, 

Fcalculated is smaller than Fcritical, for a probability of 95%, in Equations 6.9 and 6.10, 

indicating that the independent variables (Azone and PG) do not significantly affect 

the flux and Q24h of GB [441, 449]. These findings are in accordance with the results 

of the statistical analysis of the flux and Q24h data obtained from the permeation 

studies, which indicate a statistically significant difference only in the films with 10% 

NMP or more.  

 

 

Table 6.3 Statistical parameters of the responses variables studied in this 
work.  

ANOVA DF SS MS F-ratio 

Zflux  (NMP)     

Total 17 125.5   

Regression 5 91.8 18.4  

Residual 17 33.7 2.0 9.4# 

ZQ24h  (NMP)     

Total 17 1.1 x 105   

Regression 5 8.2 x 104 1.6 x 104  

Residual 17 2.5 x 1 4 1.5 x 103 10.9# 

Zflux (Azone)     

0

Total 14 21.0   

Regression 5 9.4 1.9  

Residual 14 11.6 0.8 2.3& 

ZQ24h (Azone)     

Total 14 9.1 x103   

Regr 2.8 3 5. 2  

6.2 x 103 4 x 102 1.3& 

ession 5  x 10 7 x 10

Residual 14 4.

# lated > Fcritical bab 9%) 
& Fcalculated < Fcritical (probability of 95%) 

 Fcalcu  (pro ility of 9
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Ta lues of the regression s, and the respective t and 
pro entage, fo  Student’ t-test. 

fficient lu t Pr babil  (%) 

ble 6.4 Va  coefficient
bability, in perc r a s 

Coe Va e o ity

Zflux  (NMP) 
a 4.9 4.9 99.

N 2.1 4.5 99.97 

aP 3 0.4 32.90 

0.9 1.0 67.32 

 .5 -0.5 38.

-0.1 -0.2 14.32 

ZQ24h  

99 

a  
0.

aN2 

aP2 -0 26 

aNP 

 (NMP)
a 122.0 4.4 99.96 

N 4.4 4.9 99.

51.74 

85.54 

a  -9.5 -0.4 29.10 

flux

a 6 99 

aP 14.2 0.7 

aN2 37.4 1.5 

P2

aNP 2.3 0.1 9.14 

Z  (Azone) 
a 3.1 4  

-0.4 -1.1 68.86 

ZQ24h (Azone) 

.5 99.95 

aA 

aP 0.5 1.0 65.02 

aA2 0.3 0.4 32.57 

aP2 -0.5 -0.8 55.57 

aAP 0.1 0.1 7.95 

a 80.9 5.1 99.98 

aA -7.5 -0.9 63.06 

aP 5.0 0.4 32.48 

aA2 6.7 0.5 36.76 

aP2 -9.5 -0.7 50.42 

aAP -6.8 -0.6 42.83 
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The values of the regression coefficients of the models, as w  the values of t 

and the pe ity for the significance of each coefficient in a Student’s t-

test [448] are gathe  in Table 6.4 gher the probability associated with the 

regression coefficient, the greater  that the independent variable 

has a significant effect on the respon 448].  

 

Analyzing all the polynomial equatio nd Table 6.4, it is cle  the regression 

coefficients of NMP are higher t re sion coeff  of any other 

independe rmined. Also, their percent probability for the significance 

is greater than the observed for other r ssion coe ts (Table 6.4). 

Therefore, NMP is the netration ncer w st in the increase 

of both flux of GB through the skin  respec Q24h. This observation is clearly 

depicted in Figures 6.3 and 6.4
 

It can also be con ed that in order to obt  statistica ificant (P<0.05) 

provement of the GB flux and Q24h, it is necessary to incorporate more than 5% of 

 producing an increase in the GB 

artitioning coefficient into the SC. Our results confirm the NMP ability to increase 

 A

 with the reference film (Table 6.2), there is a 

onsistent decrease of these responses when Azone is incorporated in the films. 

the results on Table 6.2. 

ell as

rcent probabil

red . The hi

is the confidence

se [

ns a ar that

han the gres icients

nt variable dete

the egre fficien

 pe enha ith the large impact 

and tive 

 6.2, .  

clud ain a l sign

im

NMP in the films according to Table 6.2. The ER obtained by the incorporation of 

5% NMP and 10% NMP in comparison with the control film (F) was 1.5 and 2.6 for 

the flux and 1.3 and 2.7 for the Q24h, respectively.  

The improvement of the GB permeation can be due to the NMP action on the 

aqueous regions of the SC [130, 389, 434],

p

the percutaneous permeation of drugs as demonstrated in several other works [389, 

434, 435, 450]. 

 

On the contrary, by the analysis of Figures 6.2, 6.3, 6.5 and Equations 6.9 and 

6.10, we see that Azone causes a decrease of the transdermal permeation of GB. 

Although the values of the flux and Q24h of films with zone cannot be considered 

statistically significant when compared

c

Also, the regression coefficients pertaining to the Azone concentration are 

associated with a small probability for the significance (Table 6.4), which also 

indicates that Azone has not a significant effect on the responses, in agreement with 
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The regression coefficients associated with the main effect of Azone have a 

negative sign, reflecting the tendency to decrease of the GB flux and Q24h with the 

Azone in our films has a detrimental effect on the percutaneous 

ermeation of GB. 

uations 6.7-6.9 and Figures 6.3 and 6.4 the results of 

nly 

 the GB transdermal permeation (Table 6.2 and Figure 6.3). 

NMP [138]. In fact, the regression coefficients of 

e combinations are very small as well as their % probability for significance 

depicted in Equations 6.7, 6.8 and 6.9, while for the response of Equation 6.10 the 

incorporation of this compound in the films, see Tables 6.2 and 6.4.  In fact, the ER 

of films with 5% and 10% Azone are smaller than unity, as shown in Figure 6.3.  

 Despite of its well known ability to fluidize the lipid lamellae of SC [219, 436] and, in 

that way, increase the drugs permeation through the skin [393, 433, 440, 451], the 

incorporation of 

p

In a recent work, Azone also reduced the amount of ethinylestradiol permeated 

through human epidermis from polymeric films [390], and it was also shown that 

Azone has an unfavourable effect on the permeation of highly lipophilic compounds 

(log P>3) [452]. Probably, the partition of Azone from the films to the SC is very 

small, which prevents its fluidizing effect on the SC and the consequent increase in 

the permeation of GB. The decrease in the permeation may also be explained by a 

solubilizing effect of GB in the film. 

 

From the analysis of Eq
previous works in which PG has the capacity to increase the transdermal delivery of 

drugs are confirmed [138, 388, 389, 435, 453]. In fact, the regression coefficients 

associated with PG have a positive sign, although the effect of PG in the GB flux 

and Q24h is not statistically significant (P>0.05) and can thus be considered o

moderate, see Table 6.2. The small % probability for the significance associated 

with the regression coefficients of PG confirms this result (Table 6.4). It can also be 

observed that increasing the concentration of PG in the films from 20% to 40% does 

not further increase

Probably, this beneficial effect of PG is related with an increase of the uptake of GB 

by the SC as suggested by other authors [388, 389]. 

 

Analyzing the effect of combining PG with NMP and Azone, it is realized that it is not 

more beneficial to the GB permeation than the effect of PG or NMP alone. These 

findings contradict some results that indicate a synergistic action of the associations 

PG/Azone [138, 391, 433] and PG/

th
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negative value of the regression coefficient of the PG/Azone combination indicates 

an unfavourable effect of this association in the Q24h of GB. The association of 

PG/Azone is disadvantageous in relation to the GB Q24h due to the fact that the burst 

effect in the permeation profile of the films with Azone is high, but the addition of PG 

decreases its magnitude and by consequence, reduces Q24h [Figure 6.2]. 

 

After taking into consideration all the results discussed before and the limitation of 

the amount of additives that can be included in the polymer matrix, it was decided 

that the best option to further improve the permeation of GB was the increase of 

NMP concentration up to 20%. Since 20% of NMP is well beyond the experimental 

domain evaluated in the present work, the response surface methodology and the 

olynomial equations may not accurately predict the value of the responses of this 

e order of magnitude that the values determined in pig 

pidermal membranes (Table 6.2) although ca. 2 times smaller. These values 

p

new formulation [439]. 

 

The flux and Q24h of GB that resulted from this new film can be found on Table 6.2, 

and the permeation profile of the formulation is depicted in Figure 6.2(b). The F20N 

film improved the GB flux about 3.2 times and the Q24h 2.9 times when compared 

with the control (F film), see Figure 6.3. The ER of the Q24h is not so high when 

compared with the ER of the flux due to a significant reduction of the initial burst 

effect. If we compare the values of the GB flux (1.30 μg/cm2.h) and Q24h (35.2 μg) 

from saturated solutions of the drug obtained in the previous study, we realize that 

the F20N film represents an improvement of GB percutaneous permeation of 6.9 fold 

and 6.2 fold for flux and Q24h, respectively.  

 

In order to do a more accurate determination of the film size necessary to produce in 

vivo the pharmacological action in humans, the GB permeation from the F20N film 

was also evaluated in human epidermal membranes. The GB permeation profiles 

from the F20N film through human and pig epidermal membranes are depicted in 

Figure 6.6. The values of the GB flux and Q24h determined using human epidermal 

membranes were 4.10 ± 0.20 μg/cm2.h and 97.73 ± 4.58 μg, respectivelly. This 

values have the sam

e

indicate that pig epidermal membranes are a reasonable model when human 

epidermal membranes are not readilly available, specially if we compare with other 
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studies that indicate that, e.g. rat skin can be 10 times more permeable than human 

skin [454]. 

 

Considering an initial dose of 4 mg twice a day and a oral bioavalability of 88.5%, it 

is necessary that ca 7.08 mg/24h of GB passes through the skin in order to produce 

the therapeutic effect in vivo [377]. Since the determined GB Q24h value through 

human epidermal membranes was 97.73 μg, it is necessary a film size of ca. 72 cm2 

 deliver 7.08 mg of GB in 24h. to

 

The optimized formulation constitutes thus a very promising option for the effective 

delivery of GB through the skin and the transdermal drug delivery is a promising 

option for the effective treatment of the Alzheimer’s disease. 
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Figure 6.6 The in vitro permeation profiles of the GB from the F20N films through pig and human 
epidermis. The films are loaded with 10% of GB. Mean (± SEM); n ≥ 3. 
 
 

 
3.2 Evaluation of GB release from the films 
 

The films prepared in the present study are composed by a hydrogel formed due to 

lectrostatic interactions between chitosan and PAA, and also comprise a PSA 

yer. In this type of PEC, the pH of the release medium influences the crosslinking 

density and by consequence the degree of swelling [201, 202, 424]. For this reason, 

the GB release studies were performed in acetate buffer at pH 5.5 in order to reflect 

e

la
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the physiological pH of the skin as advised by reference guidelines [425]. Likewise, 

the drug release from polymer films is also influenced by the physicochemical 

properties of the drug such as the molecular weight (MW), solubility [318] and by the 

drug concentration within the polymer network [426, 427]. 

 

Figure 6.7 shows the cumulative GB release profiles from all drug-loaded films 

prepared. All the films exhibit an initial burst effect that is followed by a region of 

constant drug release. Two different mechanisms may be accounting for this initially 

the surface of the films. 

his effect was previously described, in systems with the same films loaded with 

ifferent drugs on Chapter V. Comparable burst releases have been reported in a 

ifferent PEC [310].  

in the F films and other 

hitosan/PAA films described in the literature is not possible, due to the different pH 

ration of the drug, and the 

onstant drug release that follows then provides a sustained and controlled drug 

 

fast GB release: a rapid swelling of the films when they enter in contact with the 

release medium, and a high concentration of the drug in 

T

d

d

The direct comparison of the burst effect observed 

c

and composition of the release media [310, 424, 455] as well as the different ionic 

strength of the hydrogel forming medium [316]. The incorporation of the penetration 

enhancers always increases the initial burst effect, probably due to a reduction of 

the percentage of the polymer matrix in the films that in turn reduces the ability to 

control the release of the drug.  

 

The initially higher drug releases have been proved to be very beneficial, because a 

related effect can be discerned in the drug permeation profiles through the skin. This 

enables to rapidly achieve the therapeutic plasma concent

c

release. However, as we cannot find a correlation between an increase in the 

magnitude of the burst effect in the drug release and a concomitant increase of the 

burst effect on the GB permeation, we conclude that also the type and concentration 

of the additives incorporated in the film play an important role. Additionally, the GB 

release from the films is always higher than the amount of drug that permeates the 

skin, so the drug release is not the limiting step of the percutaneous penetration of 

the drug through the epidermal membranes. 
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Figure 6.7 The in vitro drug release profiles from GB-loaded films. All films are loaded with 10% of 

rug. Mean (± SEM); n ≥ 3. 
 

 

The drug release mechanism from the hydrogels of the type evaluated in the present 

work, prepared by mixing the polymer solutions and the drug before the network 

formation, can be established by one or more of the following factors: drug diffusion, 

swelling, reversible drug-polymer interactions and degradation [428]. In order to 

clarify the GB release kinetics from the films, the release data were fitted to the zero-

order release kinetics [Equation (6.1)], Higuchi’s square root of time [Equation 
(6.2)] and Korsmeyer-Peppas models [Equation (6.3)] [411, 412, 429, 442]. The in 

vitro kinetic release parameters calculated, and the standard deviations of the 

regressions, are presented in Table 6.5. 

 

For the fit to the zero order and Higuchi models the points pertaining to the burst 

release are discarded through direct inspection of the plots. The zero order (K0) and 

Higuchi (KH) rate constants as well as the Q0/Q∞ of both models are established 

according to previous work [429]. 

d
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Table 6.5 In vitro release kinetic parameters of GB-loaded films. 
 
Film Kinetic models 

 Zero-order kinetics  Higuchi  Korsmeyer-Peppas  

 Q0/Q∞ (%) K0 (%/h) StdFit Q0/Q∞(%) KH (%/h1/2) StdFit n StdFit 

F 48.7 ± 0.3 1.9 ± 6.4x10-2 0.6 41.8 ± 0.3 7.3 ± 0.2 0.4 0.19 ± 5.2x10-3 1.6 

F20P 61.4 ± 0.5 2.4 ± 0.1 1.1 52.7 ± 0.6 9.3 ± 0.3 0.9 0.21 ± 5.0x10-3 0.6 

F40P 76.4 ± 0.3 1.7 ± 7.8x10-2 0.9 71.1 ± 0.4 6.2 ± 0.2 0.6 0.28 ± 1.3x10-2 0.7 

F5A 56.6 ± 0.3 1.9 ± 6.9x10-2 0.7 50.0 ± 0.3 7.2 ± 0.2 0.4 0.21 ± 4.1x10-3 0.7 

F10A 54.7 ± 0.3 2.1 ± 6.7x10-2 0.8 48.2 ± 0.2 7.6 ± 0.1 0.4 0.15 ± 3.2x10-3 0.6 

F20P10A 53.5 ± 0.2 1.0 ± 6.2x10-2 0.6 49.8 ± 0.4 4.0 ± 0.2 0.5 0.14 ± 6.2x10-3 2.1 

F5N 56.7 ± 0.4 3.2 ± 0.1 0.9 45.2 ± 0.5 12.2 ± 0.2 0.6 0.32 ± 7.4x10-3 1.0 

F10N 52.3 ± 0.3 2.0 ± 7.6x10-2 0.7 44.8 ± 0.4 8.0 ± 0.2 0.5 0.22 ± 5.1x10-3 1.1 

F20N 66.4 ± 0.1 0.6 ± 3.2x10-2 0.3 64.4 ± 0.2 2.1 ± 9.5x10-2 0.2 0.30 ±1.6x10-2 1.4 

F20P10N 64.4 ± 0.2 0.7 ± 5.2x10-2 0.6 62.0 ± 0.3 2.8 ± 0.1 0.5 0.30 ± 2.9x10-2 2.3 

 
  

 

The drug release data from the films show a good fit to both mathematical models 

he release exponent (n) of the Korsmeyer-Peppas model ranged from 0.14 (F20P10A 

 and solubilization of the polymer matrix as the 

according to the values of the standard deviation of the fit (StdFit) on Table 6.5. 

However, the function best describing the drug release after the initial burst release 

is Higuchi’s profile (Table 6.5). Residual analysis confirms this conclusion.  

The values of KH vary between 2.1 and 12.2 (% drug release per √t) in F20N film and 

in the F5N film, respectively. Simultaneously, the percentage of GB released in the 

initial burst effect (Q0/Q∞) ranged from ca. 42% in the F films to ca. 71% in the case 

of F40P formulation (see Table 6.5) which indicates that the incorporation of additives 

in the films always increases the magnitude of the burst effect. 

 

T

film) and 0.32 (F5N) as can be seen in Table 6.5. All the values determined for the n 

parameter are lower than 0.5, which is consistent with GB release from the films 

mainly determined by a Fickian diffusion mechanism [412, 442]. The small n values 

eliminate the possibility of erosion
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main mechanis stability of the 

lexes formed by maximizing the interactions between chitosan 

and poly(acrylic acid). s based on PEC of chitosan and PAA have 

previously exhibited the sa  release kin 4]. 

 

The GB rele ncers 

compared ease p ofile f the film i  the a c  

additives (F son en dru r

formulatio  be med  metho  m end

statistical an del ind used a model i endent 

eth d rs e nu scribe 

curves th st of ral data p r, f ors a e 

also com veral FDA a ce docu valid 

method to a ss th g s [41 5]. We 

cal ha in vitro relea e cu re con r whe

lower than 15 and f2 values are higher than 50, which corresponds to an average 

ifference of no more than 15% and 10%, respectively [412, 443, 446].  

s of the fit factors obtained from our drug-loaded films are shown on Table 
.  

m of drug release, and reinforces the idea of the 

comp  electrostatic 

 Other film

me type of etics [310, 316, 42

ase profiles of the films with penetration enha were further 
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Table 6.6 Fit factors values determined for the formulations with penetration 
enhancers in comparison with the control film. 

Formulation Fit factors 
 f1 f2 

F/F20P 27.8 42.0 
F/F40P 53.9 27.7 
F/F5A 16.3 53.5 
F/F10A 16.0 53.4 

F/F20P10A 4.8 74.7 
F/F5N 21.1 46.8 
F/F10N 7.8 68.8 
F/F20N 26.6 42.5 

F/F20P10N 25.5 43.3 
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From the results presented we can conclude that the GB release from the films F10N 

and F20P10A can be considered equivalent to the GB drug release from F films (f1<15 

and f2>50). This is in accordance with our previous findings that demonstrate that 

these two films possess burst release effects most similar to the F films. The results 

 Table 6.6 also show clear differences between the reference formulation (F film) 

 depicted in 

gh chitosan content. The uniformity of the films can be confirmed by the low 

EM values in the thickness measurements in Table 6.7.  

Before the that GB is 

not totally  application of the PSA, the films 

become clear a  indicating that solubilized in a higher 

percentage. We believe that when the ethano solution of the P  is applied to the 

drug-loaded films, it penetrates the film and lves part of t g, and then the 

drug crystallization i bly inhibited by the PVP, which ha ed to be a very 

effective crystallizat tor [419-421]. This hypothesis can upported by the 

images of optical m wn in Figure 6.8. In Figure n see the 

F film before the ap dhesive fact, the nce of large GB 

crystals within the p network is visibl greement wi suggestion that 

the higher opacity of the allization gure 6.8(b), we 

can see an image of the adhesive layer of the F film, where we can find several GB 

rystals much smaller than the ones observed in Figure 6.8(a). This fact 

in

and the films F20P, F40P, F5N, F20N and F20P10N (f1>15 and f2<50).  

We also observe that the difference factor f1 was more sensitive in finding 

dissimilarity between drug release profiles, than the similarity factor f2 for the present 

systems. This result contrasts with other studies, that indicate that f2 is more 

sensitive in finding dissimilitude between dissolution curves than f1 [429, 456].  In 

fact, the f1 factor show that the drug release profile of the films F5A and F10A are not 

equivalent to the reference film. 

 
 
 
3.3 Characterization of the drug-loaded films 
 

The thickness of the drug-loaded films ranged from 193 to 240 μm, as

Table 6.7. Moreover, they are uniform, smooth, transparent and pale yellow due to 

the hi
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substantiates the solubilizing effect of the PSA on the GB crystals present within the 

polymer matrix. The small size of the crystals is probably due to the crystallization 

inhibition produced by PVP. Furthermore, this concentration of small GB crystals on 

the PSA layer may be in part responsible for the burst effect observed in the drug 

release and permeation profiles. 

 

 

Table 6.7 Water vapor transmission rate (WVTR), thickness and bioadhesion of the different 
GB-loaded films. Results are expressed as mean (± SEM), n=9 (WVTR), n= 6 (thickness), n=4 
(bioadhesion). 

In vitro bioadhesion Formulation WVTR (g/m2.h) Thickness (µm) 

PAF (mN/cm2) WA (mJ/cm2) 

F 14.0 ± 0.5 200.0 ± 7.9 1164.6 ± 196.4 3.7 ± 0.3 
F20P 11.3 ± 0.5* 220.6 ± 5.9 1026.4 ± 199.1 1.0 ± 0.1* 

± 227.5 1.1 ± 0.2* 
F5A 11.6 ± 0.5* 201.7 ± 10.1 629.5 ± 48.4 1.5 ± 0.2* 

 500.6* 3.5 ± 0.2 
F20P10N 14.9 ± 0.4 210.0 ± 9.8 1428.5 ± 162.5 1.4 ± 0.1* 

F40P 12.0 ± 0.4* 211.7 ± 4.8 1487.6 

F10A 13.1 ± 0.4 206.7 ± 3.1 799.5 ± 54.8 1.8 ± 0.3* 
F20P10A 11.4 ± 0.3* 201.7 ± 5.6 1272.3 ± 190.6 1.5 ± 0.2* 

F5N 15.4 ± 0.6 193.3 ± 4.2 2032.7 ± 209.8* 2.3 ± 0.1* 
F10N 13.6 ± 0.5 197.5 ± 7.0 3304.5 ±

F20N 14.6 ± 1.0 240.8 ± 8.3* 1197.2 ± 101.4 2.6 ± 0.4 

     *Statistically significant difference in comparison with the film F (P< 0.05) 
 

 
 

The determination of the permeability to water (WVTR) of films that are intended to 

be applied on skin is of uppermost importance because this property serves to 

evaluate their occlusive properties. The WVTR also provides an indirect evaluation 

of the density of PEC and it is simultaneously dependent on the solubility coefficient 

and diffusion rate of water in the film [355].    
 

The WVTR of the drug-loaded films can be found in Table 6.7. The values range 

from 11.3 to 15.4 g/cm2.h, with the lower and upper limits pertaining to films F20P and 



VI. Optimization of an anti-Alzheimer’s transdermal film 
 
 

203 

F5N, respectively. The values of WVTR are in the same range of those previously 

described in Chapters IV and V.  

It was found that 5% Azone (F5N), 20% PG (F20P), 40% PG (F40P) and 10% Azone in 

combination with 20% PG (F10A20P)  adversely affect the WVTR with statistical 

significance (P< 0.05) when compared with the films in the absence of any 

enetration enhancer, see Table 6.7. Despite of this decrease, they all exhibit a 

igher value for the permeability to water than the normal TEWL in healthy human 

ski a 

low  o 

the

 

 

 

p

h

n [15, 122, 360]. This characteristic indicates that the drug-loaded films have 

 potential to interfere with the skin TEWL and cause sensitization when applied

 skin.  

 
 

 
 

Figure 6.8 Optical microscopy images of the F film loaded with 10% GB (a) before the application of 
the PSA and (b) PSA layer. The arrows indicate the GB crystals. Original magnification: 400x. 
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3.4 Bioadhesive properties 
 
Any transdermal drug delivery system must maintain an intimate and prolonged 

contact with the skin during the entire time of application in order to be able provide 

a continuous drug supply [328, 329]. There is no doubt that the adhesion to the skin 

is one of the most important functional properties that should be evaluated in all 

formulations designed to be applied on the skin [328]. 

In the previous chapter it was shown, from results in human volunteers that the 

placebo film is safe, non-sensitizing and capable of firmly adhere to the skin for at 

least 24h. In the present work, the objective is to make a quantitative evaluation of 

e bioadhesive properties of the drug-loaded films using excised pig ears skin. Due 

 the fact that the films have a drug incorporated, it is not advisable to perform 

ese studies directly in human volunteers.  

The results of the PAF and the WA can be found in Table 6.7. The values of PAF 

range from 629.5 mN/cm2 (F5A) to 3304.5 mN/cm2 (F10N), while the values of WA 

range from 0.95 mJ/cm2 (F20P) to 3.66 mJ/cm2 (F). The values of the PAF are in the 

same order of the results described for hydroxypropylcellulose topical films in human 

volunteers [457]. 

The NMP at 5% and 10% was able to significant increase (P<0.05) the PAF of the 

drug-loaded films and no statistical difference was found for the other films. Although 

did not produce a significant alteration in the values of the PAF, the values of 

the PAF of the films F5A and F10A display a tendency to decrease the adhesion force 

of the drug-loaded films. 

 

In what concerns WA, and except for the case of NMP in concentrations ranging 

from 5-20%, all other drug-loaded films display a significant decrease (P<0.05) in 

comparison with the situation in the absence of the drug.  

 

From all the above results, we conclude that NMP seems to improve the 

ioadhesive properties of the drug-loaded films, while PG and Azone adversely 

th

to

th

Azone 

b

affect bioadhesion to the skin. 
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4. Conclusions 
 
In this work we have shown that the shape of the permeation profiles reveals, in the 

early stages, an unusually fast permeation followed by a region of constant flux. This 

sequence is most beneficial because it enables to rapidly attain pharmacological 

action. The fast initial permeation is a result of the GB initial burst release, but is also 

affected by the type and concentration of the additive incorporated in the films.  

cant improvement of the percutaneous 

e GB release profiles revealed that the drug release kinetics from 

e of the burst release. In fact, the incorporation of the 

dditives always increases burst release. 

ly adhere to the skin.  

NMP is the penetration enhancer that produces the largest improvement on the 

permeation rate of GB, while PG induces only a moderate increase. Furthermore, 

the incorporation of 5% and 10% Azone in the films results in a decrease of flux and 

cumulative amount of GB permeated. The association between PG and Azone or 

NMP is not beneficial, contradicting some previous results.  

The optimized F20N film represents a signifi

penetration of GB. It amounts to about 6.9 fold when compared with saturated 

solution of GB.  On the basis of the in vitro permeation results, the F20N film is a very 

promising option for the effective delivery of GB through the skin. 

 

The analysis of th

the films is mainly determined by a Fickian diffusion mechanism. It is also 

concluded, from inspection of fit factors, that except for the films F10N and F20P10A, the 

GB release profiles are not equivalent to the drug release profile from the film in the 

absence of penetration enhancers. These dissimilarities can also be found in the 

analysis of the magnitud

a

 

Finally, GB-loaded films, both in the presence and absence of penetration 

enhancers, are water permeable and have the ability to firm

 

 

 

 

 



 
 

VII  

Concluding remarks 
 
 
 
 
 
1. Thesis highlights 
 

The complexity of the skin structure and functions, as well as the many factors that 

govern the successful transdermal delivery of drugs was clearly illustrated in this 

thesis. In fact, the research carried out in this work aimed to embrace the most 

important aspects that are required for the design, development and therapeutic 

efficacy of pharmaceutical products intended for transdermal drug administration. 

 

In a first step, the efforts were directed towards a further understanding of the 

physicochemical and biological nature of the skin, which holds an intimate 

relationship with the drug percutaneous permeation. The SC barrier function and its 

phase behavior are essentially determined by the lipid composition and physical 

conditions such as temperature and hydration. Focus was given on the investigation 

of phase transitions induced both by temperature and water in the SC and SC 

components (e.g. lipids and proteins), and their role in the selective permeability of 

skin.  Apart from the contributions extensively discussed in Chapters II and III, these 
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studies have determined an acute consciousness of the complexity of the skin 

biology and microanatomy, which clearly influenced the subsequent steps, including 

the formulation studies. This influence was determinant in terms of selecting a film 

as the transdermal device, in the choice of the type of film, the specific polymers and 

other excipients used, and it led to an identification of the properties relevant to the 

study.  

The main objectives in the first step of the development of the transdermal film were 

to create a non-occlusive film, in order to have the minimum influence in the normal 

functions of the skin (e.g. TEWL), and with good functional properties, so as to be 

comfortable and efficient when applied on the skin (Chapter IV). It should be 

stressed that these two aspects are critical for patient compliance. In fact, there are 

many factors that influence the effectiveness of a transdermal therapeutic system.  

The rate of drug permeation through the skin is crucial, since it determines whether 

or not the right amount of drug reaches the site of action within the body, in order to 

produce the pharmacological action. The system must be also bioadhesive in order 

to maintain an intimate and prolonged contact with the skin during the entire time of 

application. Finally, the potential for localized irritant and allergic cutaneous 

reactions must be negligible. As such, a major effort was made to reduce these 

adverse effects by the choice of non-irritant and non-allergenic excipients, gathered 

in a comfortable and non-occlusive film.  

 

After the development of the transdermal film, four drugs with different 

physicochemical properties where incorporated in the film. The objective was to 

assess the possibility of using these films as the basis for universal transdermal 

delivery systems, capable of including different drugs. Emphasis was, however, 

given to the optimization of a galantamine containing trandermal device. 

Galantamine is a therapeutically relevant cholinesterase inhibitor used in the 

treatment of Alzheimer’s disease, the most common form of dementia among older 

people that is progressive and fatal. The treatment of its symptoms can delay its 

progression, improving the quality of life both for the patients and their families. 

Chapters V and VI contain the contributions from this work to those goals.   
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2. Future work 
 

Chapter IV contains the description of a systematic approach for obtaining films 

based on polyelectrolyte complexes with maximized interactions between oppositely 

charged polymers. The films obtained were able to release both hydrophilic and 

lipophilic drugs in a reliable, reproducible and sustained manner. The respective 

release profiles follow a quasi-zero order kinetics, and the permeation profile is such 

that the pharmacological response is rapidly attained. It would be interesting in the 

future to test this approach for polyelectrolyte complexes composed by other 

polymers, e.g. with different linear charge densities and backbone rigidities, and to 

assess the type of release profile obtained. These new polyelectrolyte complexes 

could be tested as drug delivery systems not only for transdermal drug 

administration, but also for more conventional routes.  

 

It was also shown that the PSA applied on the PEC films has very good bioadhesive 

properties, does not induce irritation, is very easily applied onto the surface of the 

films and contributes for the prolonged drug release. Any future work involving the 

development of non self-adhesive transdermal delivery systems should further 

analyse the benefits of the use of this hydrophilic PSA, in alternative to the silicone 

based adhesives, that are costly, difficult to handle and occlusive. 

 

The study of the drug delivery potential of the PEC films and the ability of PG, 

transcutol and glycofurol to increase the percutaneous permeation of the four drugs 

tested was analyzed in Chapter V. PG is considered an almost universal skin 

penetration enhancer, while transcutol acts as a penetration enhancer only in some 

molecules. Glycofurol is a widely used solvent in parenteral formulations, non-toxic, 

non-irritating, with a tolerability similar to PG and acted as a penetration enhancer in 

nasal formulations. Due to their good properties and structure it was considered 

relevant to test its ability to act also as a penetration enhancer in the skin. Our 

results indicate that glycofurol is able to increase the percutaneous permeation of 

drugs and, in some cases, the enhancing effect is higher than with PG.  It would be 

very interesting and relevant to perform, in the future, a deep investigation about the 
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penetration enhancement ability of glycofurol, its mechanism of action and 

sensitization potential.  

  

The results described on Chapter VI concern the percutaneous permeation of GB, 

from the optimized film. They indicate that this formulation, per se, represents a very 

significant improvement when compared with the saturated solution. In future work, 

the GB flux should be further optimized by the addition of other penetration 

enhancers, in order to allow a reduction in the size of the film. Furthermore, the 

impact of the procedures used to obtain the films on the quality and stability of the 

drug should be carefully investigated.  

 

 
 



 
 

VIII 
Appendix 

 
 
 
 
 

1. Validation of the method for the quantification of drugs  
 

The quantification methods used for IBU, PAR, GS and GB in the studies presented 

on Chapters V and VI, were validated according to the reference guidelines [405-

407]. This validation is required in order to demonstrate that the method of choice is 

suitable for the intended use in terms of reliability and reproducibility of the results 

[458]. Linearity, sensitivity, accuracy, precision and the limit of detection and 

quantification were some of the determined parameters. 

 

The validation begins by establishing the preliminary working range, for each drug, 

in acetate buffer pH 5.5 and PBS pH 7.4. Six standard samples were prepared in 

three different days from a freshly prepared stock solution of each drug in the two 

buffers. The absorbance of the standard samples is measured at least three times 

and the values recorded. 
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1.1 Test for homogeneity of the variances 
 

The variance of the absorbance values determined for the drugs standard samples 

must be homogeneous and independent of the concentration, within the working 

range. 

The data sets of the concentrations x1 and x6 were used to calculate variances (s1)2 

and (s6)2. The F-test was performed in order to test if the variances have significant 

differences at the limits of the working range [406, 407]. The test value PW is 

determined from:  

 

PW= (s1)2 / (s6)2,    if    (s1)2> (s6)2 

(7.1) 

PW= (s6)2 / (s1)2,    if   (s6)2> (s1)2 

 

The value of PW is then compared to the values of the F-distribution.  

All the values determined for PW were smaller than F critical (99%) which means 

that the difference between the variances is not significant. The variances are 

homogeneous and a simple regression analysis may be performed.  

 

 

 
1.2 Linearity 
 

The linearity of an analytical method can be defined as its ability to obtain test 

results that are directly or, by means of well-defined mathematical transformations, 

proportional to the analyte concentration in the samples within a certain range [458]. 

The linearity was evaluated by the regression with least squares estimation [405], 

followed by graphic representation, determination of the R2 and inspection of the 

residuals. 

 

The linear calibration function is given by: 

                                              (7.2)                          

 
bxay +=
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where y is the signal (absorbance), x is the amount of analyte, a is the y-intercept 

and b the slope of the calibration curve.  
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Figure 7.1 Data points and linear calibration functions for (a) GB, (b) GS, (c) ibuprofen and (d) 
paracetamol, in acetate buffer, pH=5.5. 
 

 

The coefficients a and b provide an estimate of the true function. The slope (b) of the 

calibration functions is a measure of sensitivity and the ordinate intercept (a) is the 

calculated blank signal. The sensitivity is the ability of the analytical procedure to 

detect small changes of analyte concentration in the sample [458]. The quality of the 
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analytical procedures increases with sensitivity [406] and the standard error of the 

coefficients (a and b) is a measure of the method uncertainty due to indeterminate 

errors [459].  

 

The linear calibration functions obtained from the measurement of the absorbance of 

standard samples of each drug in the buffers are depicted in Figures 7.1 and 7.2 
and the values are summarized in Table 1.  
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Figure 7.2 Data points and linear calibration functions for (a) GB, (b) GS, (c) IBU and (d) PAR, in PBS, 
pH=7.4. 
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Table 7.1 Example of linear calibration functions for the drugs in the two buffers used and respective 
UV absorption maxima and R2. Value ± standard error. 

 Acetate buffer, pH 5.5 PBS, pH 7.4 

Galantamine base 
λ (nm) 289 212 

a -0.00043 ± 0.00082 0.01170 ± 0.00194 
b 0.01058 ± 0.00001 0.129385 ± 0.00040 
R2 >0.999 0.999 

Galantamine HBr 
λ (nm) 289 210 

a 0.00554 ± 0.00178 0.00675 ± 0.00158 
b 0.00817 ± 0.00001 0.10673 ± 0.00022 
R2 0.999 >0.999 

Ibuprofen 
λ (nm) 221 221 

a 0.00171 ± 0.00247 0.00785 ± 0.00157 
b  0.04593 ± 0.00016 0.04423 ± 0.00010 
R2 0.999 >0.999 

Paracetamol 
λ (nm) 243 243 

a 0.00451 ± 0.00240 0.00472 ± 0.00265 
b 0.06528 ± 0.00021 0.064591 ± 0.00028 
R2 0.999 0.999 

 

 

 

The residual errors for each drug standard solution were evaluated and it was 

verified that they were randomly distributed about an average residual error of 0, 

with no apparent trend toward either smaller or larger residual errors and with 

frequent alternation of signal. These features indicate that the regression models are 

valid [459]. An example of a residual plot is shown on Figure 7.3. 
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Figure 7.3 Typical plot of the residual errors for the values of absorbance determined as a function of 
GS concentration in PBS, pH 7.4.  
 

 

 

1.3 Performance characteristics 
 

The performance characteristics of the analytical methods used in the quantification 

of GB, GS, IBU and PAR were evaluated and the definitions are discussed in the 

next sections. The results are compiled in Tables 7.2-7.5. 

 

 

1.3.1 Residual standard deviation 
 

The residual standard deviation (Sy) is a measure of the scatter of the data values 

about the calibration function, and is a figure of merit to describe the precision of the 

calibration [406].  The quality of the analytical procedure increases as Sy decreases. 

The value of Sy is given by: 

 

2

)(
1

2*

−

−
=
∑
=

N

yy
S

N

i
íi

y                                             (7.3) 



VIII. Appendix 
 
 

217 

 where yi  corresponds to the signal at the ith replicate for the concentration xi, yi* is 

the predictive absorbance value calculated from the calibrated function for the 

standard concentration xi and N is the number of data points. 

 

 
Table 7.2 Example of the performance characteristics of the spectrophotometric 
method used for the quantification of GB, in acetate buffer and PBS. 

  Acetate buffer, pH 5.5 PBS, pH 7.4 

 Sy 0.00315 0.00655 
 Sxo 0.29733 0.05066 
 Vxo 0.00599 0.01175 
 DL 0.98119 μg/mL 0.16718 μg/mL 
 QL 2.97333 μg/mL 0.50659 μg/mL 

Accuracy (%) Standard 1 101.4 101.9 
 Standard 2 100.0 98.9 

 Standard 3 99.3 99.8 
 Standard 4 99.8 100.6 
 Standard 5 100.5 99.1 

 Standard 6 99.9 100.5 

RSD (%) Standard 1 0.89 0.03 

 Standard 2 0.45 0.01 
 Standard 3 0.03 0.02 
 Standard 4 0.18 0.02 
 Standard 5 0.10 0.01 
 Standard 6 0.02 0.09 
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1.3.2 Standard deviation of the method 
 

The standard deviation of the method (Sxo) is the figure of merit for the performance 

of the analytical method [406]. It is given by: 

 

b
S

S y
xo =                                                         (7.4) 

 

 
 
Table 7.3 Same as Table 7.2 relatively to the quantification of GS, in acetate buffer 
and PBS. 

  Acetate buffer, pH 5.5 PBS, pH 7.4 

 Sy 0.00573 0.00416 
 Sxo 0.70148 0.03900 
 Vxo 0.00802 0.00587 
 DL 2.31487 μg/mL 0.128716 μg/mL 
 QL 7.01477 μg/mL 0.39005 μg/mL 

Accuracy (%) Standard 1 100.9 100.7 
 Standard 2 99.5 99.6 

 Standard 3 99.8 100.1 
 Standard 4 99.8 99.9 
 Standard 5 100.4 99.6 

 Standard 6 99.9 100.4 

RSD (%) Standard 1 0.42 0.10 

 Standard 2 0.09 0.01 
 Standard 3 0.07 0.02 
 Standard 4 0.40 0.01 
 Standard 5 0.49 0.01 
 Standard 6 1.01 0.01 
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1.3.3 Coefficient of variation of the method 
 

The coefficient of variation of the method (Vxo) is used for the comparison of different 

standardized analytical methods [406] and is given by: 

 

 _
x

SV xo
xo =                                                    (7.5) 

where  is the mean value of x. 
_
x

 

 
Table 7.4 Same as Table 7.2 relatively to the quantification of IBU, in acetate buffer 
and PBS. 

  Acetate buffer, pH 5.5 PBS, pH 7.4 

 Sy 0.00951 0.00607 
 Sxo 0.20714 0.13724 
 Vxo 0.01604 0.01058 
 DL 0.68357 μg/mL 0.45289 μg/mL 
 QL 2.07143 μg/mL 1.37238 μg/mL 

Accuracy (%) Standard 1 99.8 99.8 
 Standard 2 99.1 100.0 

 Standard 3 100.9 99.5 
 Standard 4 99.9 100.6 
 Standard 5 99.8 100.0 

 Standard 6 100.1 99.9 

RSD (%) Standard 1 1.60 0.03 

 Standard 2 0.22 0.04 
 Standard 3 0.02 0.13 
 Standard 4 0.05 0.25 
 Standard 5 0.37 0.15 
 Standard 6 0.52 0.10 

 

 



Skin Structure and Drug Permeation 
                                                                                                                                      
                                     

220 

Table 7.5 Same as Table 7.2 relatively to the quantification of PAR, in acetate buffer 
and PBS. 

  Acetate buffer, pH 5.5 PBS, pH 7.4 

Sy  0.01044 0.01150 
Sxo  0.15987 0.17803 
Vxo  0.01595 0.01777 
DL  0.52758 μg/mL 0.58748 μg/mL 
QL  1.59873 μg/mL 1.78026 μg/mL 

Accuracy (%) Standard 1 101.1 100.1 
 Standard 2 98.8 98.8 

 Standard 3 99.9 101.0 
 Standard 4 100.4 99.9 
 Standard 5 100.2 100.1 

 Standard 6 99.8 99.9 

RSD (%) Standard 1 0.03 0.06 

 Standard 2 0.04 0.47 
 Standard 3 0.29 0.62 
 Standard 4 0.11 0.11 
 Standard 5 0.30 0.28 
 Standard 6 0.37 0.25 

 

 

 

1.3.4 Detection and quantification limit 
 

The detection limit (DL) of an analytical method can be defined as the lowest 

concentration of analyte that produces a signal detectable above the noise level of 

the equipment [460] and is usually given by [405]: 

 

b
S

DL y3.3
=                                                 (7.6) 
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The quantification limit (QL) can be defined as the lowest concentration of analyte 

that can be precisely and accurately measured [460] and  can be written as [405]: 

 

b
S

QL y10
=                                                 (7.7) 

 

 

1.3.5 Accuracy and precision 
 

The accuracy of the method can be assessed by recovery of the analyte from a 

given sample [461]. The accuracy of any analytical procedure expresses its ability to 

give results as close as possible to the theoretical value [458] and can be calculated 

according to [461]: 

 

100*
_

tx
xaccuracy =                                       (7.8) 

 

where xt is the value of x accepted as the true mean.  

 

The precision of an analytical procedure is defined as the degree of dispersion of the 

results around the mean value, and is considered an estimate of the random error of 

the method [458]. The precision varies according to the sources of variation. The 

repeatability is the designation of the precision when the method is carried out under 

the same conditions (e.g. same analyst, laboratory, instruments and reagents), like 

in the case of the present work [458]. The relative standard deviation (RSD) is the 

relative error term used to describe precision and can be given by: 

 

100*_
x

SRSD x=                                                 (7.9) 

 

where Sx is the standard deviation of the sample. 
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Values of Sy, Sxo, Vxo, DL, QL, accuracy and precision for each drug in the two 

buffers can be found in Tables 7.2-7.5. 
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