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Abstract 

 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder 

affecting almost 2% of people over 65 years of age. The primary neuropathological 

hallmark of PD is the degeneration of the nigrostriatal dopaminergic pathway which, by 

depleting dopamine in the brain, initiates abnormal motor symptoms including resting 

tremor, bradykinesia, postural instability, gait difficulty and rigidity. A second relevant 

hallmark is the presence of intracellular inclusion bodies, known as Lewy bodies that 

mainly contain aggregated α-synuclein.  

 While the etiology involved in the development of PD is unknown, 90-95% of PD 

cases occurs sporadically and correlates, in part, with mitochondrial dysfunction and 

oxidative stress. Furthermore, the identification of single genes associated to the familial 

forms of PD has revolutionized this field of research, providing unique opportunities to 

pursue novel mechanisms and clues to the pathogenesis of PD. The sustained study of 

the cellular functions of each PD-related gene indicates that protein misfolding and 

aggregation, as well as, dysfunction of their quality control systems may play a crucial 

role in the cascade of deleterious events implicated in the neurodegenerative process of 

PD. Thus, clear insights into how mitochondrial dysfunction, oxidative stress and protein 

homeostasis systems interconnect, overlap or converge to produce nigral neuronal 

degeneration is essential to understand the pathogenesis of sporadic PD (sPD). 

 In this thesis, we initially addressed the potential implications of an altered 

structural and functional crosstalk between mitochondria and the endoplasmic reticulum 

(ER), two important metabolic organelles for the maintenance of cellular protein 

homeostasis. We reported that mitochondrial dysfunction induced by an acute stimulus 

of the neurotoxin MPP+ renders cells more susceptible to develop an ER stress 

response. We found that MPP+ was able to evoke a sustained flux of Ca2+ from the ER to 

mitochondria which subsequently triggered ER- and mitochondria-dependent apoptotic 

pathways. Our findings highlight the inevitable role of ER to mitochondria Ca2+ fluxes and 

their requirement for a mitochondria-dependent cell death induction, enclosing a 

feedback loop whereas mitochondria signals ER and ER induces further mitochondrial 

alterations, leading to the activation of cascade of signals that culminates in apoptotic 

cell death. 

 Furthermore, we also found that ER stress response strengthens mitochondrial 

stress-induced abnormalities. We demonstrated that sustained ER stress caused by 

accumulation of unfolded or misfolded proteins potentiated Ca2+ overload and impairment 



 
xiv 

of mitochondrial function mainly characterized by dissipation of mitochondrial membrane 

potential and substantial decline in the mitochondrial respiratory chain complex I activity. 

These cumulative events led to induction of apoptotic cell death.  

 In addition, we assessed the role of mitochondrial metabolism in the regulation of 

the autophagy-lysosomal pathway, a major cellular homeostatic process that mediates 

the degradation of long-lived proteins and dysfunctional or superfluous organelles in 

eukaryotic cells. We demonstrated that prolonged metabolic failure due to mitochondrial 

dysfunction, either in cellular models harboring sPD subjects mtDNA (sPD cybrids), cells 

depleted of all mtDNA (Rho0 cells), or in MPP+-treated rat cortical neurons causes a 

functional decline in the activity of the autophagic system. This defect is a consequence 

of alterations in microtubules (MT) assembly that hamper mitochondria and 

autophagosome transport along the MT network toward the lysosomal compartment. 

Consequently, deficient autophagic turnover potentiates the accumulation of α-synuclein 

oligomers and, ultimately, prompts apoptosis. Our data identify for the first time the PD-

associated defects in mitochondrial dysfunction as the basis for the selective transport 

abnormalities and highly characteristic pattern of neuritic dystrophy associated to the 

autophagic pathology in PD. 

 Finally, we dissected the molecular mechanisms by which mitochondrial 

metabolism in sPD can affect MT-directed autophagic turnover that, in turn, regulates 

intracellular protein homeostasis. We demonstrated that sirtuin 2 (SIRT2), a NAD+ 

dependent protein deacetylase, controls the functional ability of the autophagic system 

by modulating the acetylation status of the MT cytoskeleton. 

 The studies presented here provide novel insights into the multiple mechanisms 

that dictate the association between mitochondria, intracellular metabolism and 

proteotoxicity in sPD, and contribute with new findings that could have important 

therapeutic implications to halt or retard the progression of sPD pathology. 

 

  



 
xv 

Resumo 

 

A doença de Parkinson (DP) é a segunda doença neurodegenerativa mais comum, 

afectando cerca de 2% dos indivíduos com idade superior a 65 anos. A marca 

neuropatológica primária desta doença é a disfunção da via dopaminérgica 

nigroestriatal, da qual resulta a depleção de dopamina no cérebro, conduzindo aos 

principais sintomas motores que caracterizam a clínica da doença e que incluem tremor 

de repouso, bradicinesia, instabilidade postural e rigidez muscular. Outra característica 

neuropatológica da DP é a presença de corpos de inclusão intracelulares, designados 

de Corpos de Lewy, que são maioritariamente constituídos por α-synucleína na forma 

agregada.  

 Embora a etiologia da doença permaneça por esclarecer, sabe-se que 90-95% 

dos casos de DP ocorrem de uma forma esporádica e pensa-se que, em parte, se 

correlacionam com a disfunção da mitocôndria e com o stresse oxidativo. A identificação 

de genes associados às formas familiares da DP revolucionou a forma de pensar dos 

investigadores da área, proporcionando oportunidades únicas para estudar novos 

mecanismos envolvidos na etiopatogenia da DP. O estudo continuado das funções 

celulares de cada um dos genes relacionados com a DP indica que o misfolding e a 

agregação proteica, bem como a disfunção dos sistemas de controlo de qualidade 

proteica, desempenham um papel crucial na cascata de eventos implicada no processo 

de neurodegeneração da DP. Assim, uma visão clara de como e quando a disfunção 

mitocondrial, o stresse oxidativo e os mecanismos de homeostase proteica se 

entrecruzam, sobrepõem ou convergem para produzir degeneração nigorestriatal é 

essencial para a compreensão da fisiopatologia da DP do tipo esporádico (sDP). 

 Nesta tese, abordámos, inicialmente, as potenciais implicações das alterações na 

interação estrutural e funcional entre a mitocôndria e o retículo endoplasmático (RE), 

dois organelos importantes envolvidos na manutenção da homeostase proteica celular. 

Reportamos que a disfunção mitocondrial induzida por um estímulo agudo da 

neurotoxina MPP+ aumenta a susceptibilidade das células para o desenvolvimento de 

uma resposta ao stresse do RE. Verificámos que o MPP+ foi capaz de evocar um fluxo 

contínuo de Ca2+ entre o RE e a mitocôndria, desencadeando, subsequentemente, a 

activação de vias apoptóticas dependentes do RE e da mitocôndria. Os resultados 

obtidos destacam o papel inevitável dos fluxos de Ca2+ entre o RE e a mitocôndria, e a 

sua relevância para a indução de morte celular dependente da mitocôndria, 

estabelecendo-se um ciclo de retrocontrolo em que a mitocôndria sinaliza o RE e o RE 
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induz alterações posteriores na mitocôndria, conduzindo à activação de uma cascata de 

sinalização que culmina na morte celular por apoptose. 

 Do mesmo modo, observámos que o stresse do RE potencia alterações ao nível 

da função mitocôndrial. Demonstramos que stresse do RE prolongado devido à 

acumulação de proteínas mal processadas no seu interior conduz a um fluxo excessivo 

de Ca2+ para o interior mitocôndria e a um comprometimento da função mitocondrial, 

caracterizada principalmente pela dissipação do potencial de membrana e por um 

decréscimo substancial da actividade da cadeia respiratória mitocondrial. 

Cumulativamente, estes eventos desencadeam a indução de morte celular por 

apoptose. 

 Por outro lado, avaliámos o papel do metabolismo mitocondrial na regulação da 

via autofágica-lisossomal, um processo homeostático celular que medeia a degradação 

de proteínas de longa duração e organelos disfuncionais em células eucarióticas. 

Demonstramos que uma falência metabólica prolongada devido a disfunção mitocondrial 

quer em células híbridas portadoras de ADN mitocondrial de doentes de sDP (cíbridos 

sDP), em células depletadas do seu ADN mitocondrial (células Rho0) ou em culturas 

primárias de neurónios corticais de rato tratados com MPP+, provoca um declínio 

funcional na actividade do sistema autofágico. Este defeito é uma consequência de 

alterações estruturais na rede microtubular (MT), comprometendo o transporte de 

mitocôndrias e autofagossomas para o compartimento lisossomal, onde ocorre 

degradação. Consequentemente, um ineficaz turnover autofágico potencia a 

acumulação de oligómeros de α-sinucleína e, em última análise, desencadeia apoptose. 

Assim, os dados obtidos identificam pela primeira vez os defeitos na função mitocondrial 

associados à DP como a base para alterações específicas no transporte intracelular e 

no padrão característico da distrofia neurítica associado à patologia autofágica na DP. 

 Por fim, analisámos os mecanismos moleculares através dos quais o metabolismo 

mitocondrial em sDP pode afectar o turnover autofágico dependente da rede MT, o qual, 

por sua vez, regula a homeostase proteica intracelular. Demonstramos que a sirtuina 2 

(SIRT2), uma desacetilase citoplasmática dependente do NAD+, controla a capacidade 

funcional do sistema autofágico, modulando o estado de acetilação do MTs. 

 Os estudos apresentados fornecem novas pistas relativamente aos múltiplos 

mecanismos que determinam a associação entre mitocôndria, metabolismo intracelular 

e proteotoxicidade e contribuem com novas perspectivas que poderão ter importantes 

implicações terapêuticas no sentido impedir ou retardar a progressão da sPD. 
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1.1 Parkinson’s disease: a single disorder? 

Parkinson disease (PD) is a chronically progressive, age-related neurodegenerative 

disease considered the most common movement disorder that is estimated to affect 

1.5% to 2% of the population older than 60 years of age (Lang and Lozano, 1998b, a). 

This disorder was first described in 1817 by James Parkinson in his seminal monograph 

“An Essay on the Shaking Palsy” where the core clinical features were presented 

(Parkinson, 2002). However, after almost two centuries since its description, PD remains 

an idiopathic disorder without cure and with limited symptomatic treatment. While the 

etiology of PD is still unknown, remarkable research advances have shed light on what 

fails in this disorder, and how those failures might be overcome. In addition to the motor 

symptoms primarily described by Parkinson, one has come to realize that this disorder is 

much more complex and includes panoply of convergent factors that may concur to the 

pathophysiology and pathologic biochemistry of PD. 

 Clinically, PD presents with four cardinal motor manifestations: tremor at rest, 

rigidity, bradykinesia (or slowing of movement), and postural instability. Many patients 

also suffer from non-motor symptoms, including disturbances of autonomic functions and 

deterioration of cognition (Poewe, 2008). These symptoms result from the progressive 

and selective degeneration of dopaminergic neurons in the substantia nigra pars 

compacta (SNpc), visible in brain sections as depigmentation of the SNpc in the 

midbrain, which constitutes a major signature of PD (Figure I.1). The loss of inhibitory 

dopaminergic innervation causes overactivity of the subthalamic nucleus and globus 

pallidus, which causes the movement symptoms (Hirsch et al., 2000; Obeso et al., 

2000). Neuroimageing reveals a typically asymmetric loss of dopamine terminals in the 

striatum. However, it is now clear that other neurons are also affected, and there are 

even suggestions that PD may initiate in other brainstem, subcortical and cortical 

structures or elsewhere in the central nervous system (CNS) and spread to the nigral 

neurons by, perhaps, noncell autonomous processes (Braak et al., 2003; Ilieva et al., 

2009; Bosco et al., 2011). PD surviving neurons exhibit the formation of round 

eosinophilic intracytoplasmic protein inclusions termed Lewy bodies (LBs), when they 

are present in cell bodies, and dystrophic neurites (Lewy neurites), when they are 

present in neuronal processes (Forno, 1996). These LBs comprise a dense core of 

different proteins, such as α-synuclein, parkin, synphilin-1, tubulin and other cytoskeletal 

proteins, components of the ubiquitin-proteasome system (UPS) and molecular 

chaperones, and lipids (Halliday et al., 2005; Uryu et al., 2006; Uversky, 2007) (Figure 

I.1).  
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Figure I.1. Neuropathology of Parkinson's disease. 

A. Schematic representation of the normal nigrostriatal pathway (in red). It is composed of 

dopaminergic neurons whose cell bodies are located in the substantia nigra pars compacta 

(SNpc; see arrows). These neurons project (thick solid red lines) to other basal ganglia and 

synapse in the striatum (i.e., putamen and caudate nucleus). The photograph demonstrates the 

normal pigmentation of the SNpc, produced by neuromelanin within the dopaminergic neurons. B. 

Schematic representation of the PD nigrostriatal pathway (in red). In PD, the nigrostriatal pathway 

degenerates. There is a marked loss of dopaminergic neurons that project to the putamen 

(dashed line) and a modest loss of those that project to the caudate (thin red solid line). The 

photograph demonstrates depigmentation (i.e., loss of dark-brown pigment neuromelanin; arrows) 

of the SNpc due to the marked loss of dopaminergic neurons. C. Photographic images of Lewy 

bodies stained with antibodies against α-synuclein and ubiquitin [Adapted from (Dauer and 

Przedborski, 2003)].  

 

 

Although the constituents of LBs have been characterized, few insights into the formation 

and function of LBs within cells have been achieved. The localization of LBs to regions of 

the CNS undergoing neuronal cell death further suggests a key role for protein 

misfolding and aggregation in the PD pathogenesis. For example, the number of LBs-

containing neurons was positively correlated with the expression of clinical symptoms 

(Kovari et al., 2003). 
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 In the outline of the protein misfolding and aggregation hypothesis for midbrain 

degeneration in PD, a crucial question is: why those proteins are prone to misfold, 

aggregate and accumulate in these selective brain regions, thereby leading to such 

specific patterns of neurodegeneration?  

 Actually, we can speculate about the answer. Local changes in expression or in 

post-translational modifications of the proteins that are misfolded might explain the 

selectivity of protein aggregation. Also, local alterations in the concentration or activity of 

chaperone proteins, or organelles that specifically control the folding of certain proteins, 

such as the endoplasmic reticulum (ER), might also be involved. Another potential 

mechanism involves selective alterations in clearance pathways that will remove different 

misfolded and aggregated proteins, such as the autophagy-lysosomal system. Finally, 

SNpc dopaminergic neurons might be more vulnerable to toxic stimuli, which in turn 

contribute to an accumulation of protein aggregates in these cells. But, a basic question 

arises: Does a unifying event trigger and account for all of these potential alterations?  

 An emerging concept is that SNpc homeostasis is vulnerable to different genetic, 

cellular and environmental factors that independently or concomitantly promote neuronal 

cell death over time (Perier et al., 2007; Sulzer, 2007). However, one factor that most 

strongly relates to the onset of PD is age or the ageing process. Indeed, epidemiological 

studies have identified age as the greatest risk factor for PD, and mitochondria through 

accumulation of mitochondrial DNA (mtDNA) mutations and production of reactive 

oxygen species (ROS) as the driving force of that process (Thomas, 2009). Accordingly, 

experimental data indicate that dopaminergic neurons are particularly sensitive to 

mitochondrial impairment and oxidative damage (Jenner, 2003). This can be due to their 

reliance on a high metabolic demand and should mean that they age more rapidly than 

other types of neurons. Consistent with this hypothesis studies on normal ageing-related 

cell death have suggested that SNpc dopaminergic neurons are lost at a considerably 

higher rate (5–10% per decade) than many other types of neurons (Stark and 

Pakkenberg, 2004). Functional measurements have shown that the nigrostriatal system 

activity is reduced with normal ageing (Backman et al., 2000), although not as rapidly as 

neuron loss, presumably because of the capacity of the remaining neurons to 

compensate (Zigmond et al., 1990). 

 Over the course of a lifetime, the rate of cellular ageing might have a significant 

effect on the time at which cell loss reaches the threshold necessary for the appearance 

of the first PD symptoms. Obviously, causative factors may differ among individuals 

determining different clinical subtypes of the disease or no disease at all. These 

differences might arise from diverse genetic backgrounds (genetic mutations or 

polymorphisms) that discreetly change the efficiency of the mitochondrial oxidative 
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phosphorylation system and the rate of generation of ROS. Indeed, some mutations or 

polymorphisms in mtDNA have been associated with different incidence of PD (Ghezzi et 

al., 2005; Huerta et al., 2005; Pyle et al., 2005; Larsson, 2010) and at least nine nuclear 

genes have been identified as causing or affecting the risk of PD. These include α-

synuclein, parkin, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), DJ-1, phosphatase 

and tensin homologue (PTEN)-induced kinase 1 (PINK1), leucine-rich-repeat kinase 2 

(LRRK2), the nuclear receptor related-1 (NURR1), heat transfer requirement 2 

(OMI/HTRA2), and tau. Among the nuclear genes, mutations in α-synuclein, parkin, DJ-

1, PINK1, LRRK2, and HTRA2 are either directly or indirectly associated with 

mitochondrial dysfunction (Thomas and Beal, 2007). However, the genetic burden of 

actual mutations in PD is small, accounting for only 5–10% of the overall PD population.  

 The rate of ageing and neuronal cell loss could also be accelerated by secondary 

factors arising from exposure to environmental toxins that compromise mitochondrial 

function or that of cellular systems dealing with the consequences of oxidative stress. 

These factors might per se be fairly inoffensive but, due to their potential to synergise 

with the intrinsic vulnerabilities of SNpc dopaminergic neurons, might become relevant.  

 Thus, cumulative “normal” stress over a long period of time, such as the ageing 

process, or exposure to toxins could further tip the balance from a genetically determined 

cellular state to programmed cell death culminating in neuronal cell loss. This explains 

why several distinct molecular mechanisms may converge to a final common 

pathological and clinical phenotype in different individuals, unifying the molecular 

pathways implicated in the familial forms of PD into a “puzzling” multifactorial profile for 

sporadic PD (sPD), making it a “single disorder”. 
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1.2 Mitochondria: the trigger of Parkinson’s disease?  

Mitochondria are intracellular membrane enclosed organelles exceptionally primed to 

play a key role in cell biology. The intrinsic properties of mitochondria make them 

essential integrators of cellular functions, such as pyruvate oxidation, the citric acid or 

tricarboxylic acid (TCA) cycle, the metabolism of amino acids, fatty acids, steroids, and 

most importantly, the generation of energy as adenosine triphosphate (ATP).  

 Structurally, each mitochondrion comprises a matrix delimited by two membranes, 

the mitochondrial inner membrane (MIM) and the mitochondrial outer membrane (MOM), 

which occasionally came together to form junctional complexes or contact sites. The 

space between the two membranes is referred to as the intermembrane space (IMS), 

housing some proteins which play major roles in cell physiology, in mitochondrial 

energetics and in cell death, particularly cytochrome c. The convoluted and invaginated 

MIM includes multiple enzymes of oxidative phosphorylation system, the cofactor 

coenzyme Q1 or ubiquinone, the F0-F1-ATP synthase and some ion channels and carrier 

proteins [e.g., the voltage-dependent anion channel (VDAC-1) and the translocase of 

outer mitochondrial membrane (TOM20)]. In the matrix, surrounded by the MIM, there 

are many enzymes for different metabolic pathways, including the TCA cycle, fatty acid 

oxidation and the urea cycle, peptidases and chaperones (e.g., heat shock protein 60, 

Hsp60).  

 Mitochondria are the only organelles of the cell besides the nucleus that contain 

their own DNA (i.e., mtDNA), and their own machinery for synthesizing RNA and 

proteins. A given mitochondrion contains several copies of its genome (2–15 copies, 

termed “polyplasmia”), within its matrix, which codes for a small (12S) and large (16S) 

ribosomal RNA (rRNA), 22 transfer RNAs (tRNA) and 13 polypeptides that are all 

components of the oxidative phosphorylation system. The majority of proteins required to 

assemble and regulate mitochondrial function are therefore encoded by nuclear DNA, 

synthesized in the cytosol, and imported into mitochondria, where they are targeted to 

one of the four mitochondrial compartments. An example is NDUFA2, a subunit of the 

hydrophobic protein fraction of the NADH:ubiquinone oxidoreductase (complex I), which 

is thought to be involved in regulating complex I activity or its assembly via assistance in 

redox processes. 

 In addition to their role as ATP suppliers, mitochondria are critical as calcium 

buffers and as transducers of intracellular signaling pathways which integrate 

programmed cell death, marking the point of no return in apoptosis. Furthermore, 

mitochondria are highly dynamic organelles and are actively transported throughout 

axons and dendrites in neurons to facilitate their recruitment to critical subcellular 



Chapter I 

 
8 

compartments distant from the cell body. Therefore, mitochondrial function has a critical 

role in the brain physiology and, alterations in any of these mitochondrial features can 

potentially be associated to the pathogenesis of PD. 

 

1.2.1 Mitochondrial metabolism and the oxidative phosphorylation system 

Mitochondria are usually considered to be “the powerhouses of the cell” and to be 

responsible for the aerobic production of ATP, via the combined efforts of the TCA and 

the respiratory chain/oxidative phosphorylation system. 

 The mitochondrial respiratory chain is implanted in the MIM and consists of five 

enzyme complexes and cofactors, arranged functionally according to the electrochemical 

hierarchy based on their redox potentials: reduced nicotinamide adenine dinucleotide 

(NADH) dehydrogenase-ubiquinone oxidoreductase (complex I, approximately 46 

subunits), succinate dehydrogenase- ubiquinone oxidoreductase (complex II, four 

subunits), ubiquinone-cytochrome c oxidoreductase (complex III, 11 subunits), 

cytochrome c oxidase (complex IV, 13 subunits), and ATP synthase (complex V, 

approximately 16 subunits). 

 The TCA cycle maintains the coenzymes NADH and flavoproteins in a reduced 

state to supply reducing equivalents for the electron transport chain (ETC). The transfer 

of electrons occurs due to the oxidation of NADH (at complex I) or FADH2 (at complex III) 

by ubiquinone to complex IV where they react with molecular oxygen (O2) to reduce it to 

H2O. The transport of electrons down the ETC releases favorable energy that is used by 

Complex I, III, and IV to pump protons from the matrix to the mitochondrial IMS, thus 

creating a proton gradient (basic inside) and an electrochemical gradient (negative 

inside) across the MIM. The electrochemical gradient (known as mitochondrial 

membrane potential, m) is used by the F1F0-ATP synthase for running the endoergonic 

reaction of adenosine diphosphate (ADP) phosphorylation (Figure I.2). 

  



Introduction  

 
9 

 

Figure I.2. Mitochondrial compartimentalization and the oxidative phosphorylation system.  

The mammalian oxidative phosphorylation system consists of five enzyme complexes. 

Complexes I–IV constitute the respiratory chain, whereas complex V is the ATP synthase. 

Complex I (NADH dehydrogenase) and complex II (succinate dehydrogenase) receive electrons 

(e−) from intermediary metabolism and translocate them to coenzyme Q, which, in turn, delivers 

the electrons to complex III (cytochrome c reductase). The electron shuttling protein cytochrome c 

then transfers the electrons to complex IV (cytochrome c oxidase), which constitutes the final step 

in the electron transport chain that reduces molecular oxygen (O2) to water (H2O). The electron 

transport is coupled to proton (H
+
) pumping across the inner mitochondrial membrane by 

complexes I, III, and IV. The resulting proton gradient drives ATP synthesis, and there is thus a 

coupling between electron transport and ATP synthesis. Protons can be translocated from the 

intermembrane space to the mitochondrial matrix through the activated uncoupling protein or by 

other uncoupling mechanisms, which leads to a dissociation (uncoupling) of electron transport 

and ATP synthesis. The mtDNA encodes critical subunits of complexes I, III, IV, and V (orange 

dots). Electrons may also exit the respiratory chain at the level of complex I or III to form the 

reactive oxygen species superoxide (O2
·−

) as a result of the one-electron reduction of O2 [Adapted 

from (Larsson, 2010)]. 

 

 

 Defective mitochondrial function, in particular at the level of complex I, has long 

been associated with the pathogenesis of PD. Indeed, the first report comes in 1975, 

when Ahlqvist et al. showed ultrastructural abnormalities in mitochondria of muscle 

biopsies from PD patients (Ahlqvist et al., 1975). However, the most compelling evidence 

of mitochondrial complex I involvement PD emerged following the human accidental 

exposure to the synthetic meperidine analogue 1-methyl-4-phenyl-1,2,3,6-

tetrahydrodropyridine (MPTP) which induced a parkinsonian syndrome (Langston et al., 

1983; Burns et al., 1985). Mitochondrial association with idiopathic PD was first 
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established when a mitochondrial complex I activity deficit was identified in the SNpc of 

post mortem PD patients brains (Schapira et al., 1989) and in PD patient platelets 

(Parker et al., 1989). Further evidences suggested a similar complex I deficiency in PD 

patients lymphocytes (Yoshino et al., 1992; Barroso et al., 1993) and skeletal muscle 

(Penn et al., 1995), although some studies failed to demonstrate consistent changes 

between healthy individuals and idiopathic PD patients (Mann et al., 1992; Taylor et al., 

1994; Hanagasi et al., 2005). In addition, cell lines engineered to contain mitochondria 

derived from platelets of PD patients (cybrids) were also shown to exhibit a stable 

decrease in complex I activity, increased ROS production, proton leak and decreased 

maximum respiratory capacity (Swerdlow et al., 1996; Cassarino et al., 1997; Esteves et 

al., 2008; Esteves et al., 2010c).  

 Supporting a functional role of complex I dysfunction in PD-related 

neurodegeneration, the feeding of mitochondrial ETC directly at complex II by infusion of 

the ketone body D-b-hydroxybutyrate was shown to bypass complex I blockade, 

enhance oxidative phosphorylation, and confer protection against the structural and 

functional deleterious effects of MPTP in mice (Tieu et al., 2003). In addition, viral 

injection of the alternative single polypeptide NADH-quinone oxidoreductase of 

Saccharomyces cerevisiae mitochondria (Ndi1), which is insensitive to complex I 

inhibitors, has been shown to protect against neurodegeneration and behavioral deficits 

of acute MPTP and rotenone mouse models of PD (Seo et al., 2006a; Richardson et al., 

2007; Marella et al., 2008). Also, methylene blue, an alternative electron carrier which 

accepts electrons from NADH and transfers them to cytochrome c and bypasses 

complex I/III blockage, was shown to dramatically reduce behavioral, neurochemical, 

and neuropathological impairments induced by rotenone in a PD rat model (Wen et al., 

2011). Reinforcing the involvement of respiratory chain dysfunction in PD, most of the 

pesticides which have been epidemiologically associated to an increased risk of PD are 

able to induce complex I dysfunction (Sherer et al., 2002; Schuh et al., 2005; Richardson 

et al., 2009; Schuh et al., 2009). However, the finding that the knockout (KO) mice for the 

Ndufs4 gene, encoding a subunit required for the complex I assembly and activity, are 

not protected from MPTP, rotenone, and paraquat-induced dopaminergic neuron death 

(Choi et al., 2008) raised the possibility that they can cause parkinsonism by acting also 

on different targets or that other complex I subunits are involved in toxicity. In fact, 

Ndufs4-deficient dopaminergic neurons are even more sensitive to rotenone, and 

complex I-independent mechanisms have been reported to contribute to the toxicity of 

rotenone, such as microtubule depolymerization (Ren et al., 2005; Choi et al., 2011). 

However, it was recently shown that complex I activity is only partially decreased but not 

abolished in Ndufs4 KO mice due to the formation of respiratory supercomplexes with a 
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stabilizing effect of complex III (Calvaruso et al., 2012; Sterky et al., 2012). This finding 

can explain why Ndufs4-deficient neurons are still sensitive to MPTP and rotenone 

toxicity. Dopaminergic neuron-specific conditional Ndufs4 KO mice do not show overt 

nigrostriatal degeneration, only a mild decrease (7.5%) in tyrosine hydroxylase-positive 

neurons at 24 months of age (Sterky et al., 2012). Nevertheless, striatal dopamine 

turnover is increased and dopamine release is decreased in Ndufs4-deficient mice, 

which may reflect an early consequence of mitochondrial impairment. These findings 

support the notion that complex I deficiency can contribute to the pathogenesis of PD. 

 

1.2.2 Mitochondrial DNA (mtDNA) and the energetic threshold effect 

The human mitochondrial genome (mtDNA) is a circular double-stranded molecule 

containing 37 genes (16,569 base pairs), 13 of which encode protein subunits of the 

mitochondrial respiratory apparatus (seven subunits of NADH:ubiquinone 

oxidoreductase, one subunit of cytochrome c reductase, three subunits of cytochrome c 

oxidase, and two subunits of ATP synthase) (Figure I.3).  

 The rules of inheritance of mtDNA differ considerably from Mendelian inheritance. 

In fact, a peculiar characteristic of mtDNA is that it is inherited almost exclusively through 

the mother, and may exist in many different copies in the oocyte cytoplasm. This implies 

that no mtDNA recombination occurs at fertilization and only a sequential accumulation 

of mutations from the maternal lineage account for mtDNA variations. Moreover, mtDNA 

is particularly prone to mutations, being estimated as 10 times greater than nuclear DNA, 

due to the absence of protective proteins (such as histones) and of a high-efficiency 

repair system, although short and long-patch base excision repair systems are now well 

documented. Thus, mutant mtDNA can coexist with normal mtDNA, a condition referred 

to as heteroplasmy, and the levels of mutant mtDNA could vary dramatically during 

ageing. It was also discovered that pathogenic mtDNA mutations only cause 

mitochondrial respiratory chain dysfunction if they are present above a certain threshold 

level, which is >60% for single large mtDNA deletions and >90% for certain point 

mutations in tRNA genes (“threshold effect”). Single large mtDNA deletions, which 

always remove one or several tRNA genes, as well as point mutations of tRNA genes, 

lead to impaired mitochondrial translation and respiratory chain deficiency (Figure I.3).  
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Figure I.3. Mitochondrial DNA (mtDNA) and the energetic threshold effect. 

A. Mammalian mtDNA is a double-stranded circular molecule. The two strands are denoted the 

heavy (H) andlight (L) strand due to different buoyant densities. The only longer noncoding 

region, the displacement loop (D loop), contains a triplex structure with a nascent H strand. The D 

loop contains the promoters for transcription of the H and L strand (HSP and LSP) as well as the 

origin of replication of the leading strand of mtDNA (OH). The origin of replication of the lagging 

strand (OL) is located in a cluster of tRNA genes.Transcription from HSP produces 2 rRNAs (12S 

and 16S rRNA), 12 mRNAs (ND1–5, ND4L, Cyt b, COI–III, ATP6, and ATP8), and 14 tRNAs (F, 

V, L1, I, M, W, D, K, G, R, H, S1, L2, T). Transcription from LSP has a dual function. First, it 

produces RNA primers needed for initiation of replication at OH. Second, it is needed to produce 

one mRNA (ND6) and eight tRNAs (P, E, S2, Y, C, N, A, Q). B. Clonal expansion of mutated 

mtDNA molecules. In a normal situation, all mtDNAs within a cell are identical (homoplasmy). In a 

pathological situation linked to pathogenic mtDNA mutations, cells can harbor both normal and 

mutant mtDNA (heteroplasmy). Somatic mtDNA mutations tend to undergo clonal expansion and 

thereby cause focal respiratory chain deficiency and clinical signs (“threshold effect”) [Adapted 

from (Perier and Vila, 2012)]. 

 

 

The threshold for disease is lower in cells with high energy demands, such as neurons 

and muscle cells, rendering them particularly vulnerable to the effects of pathogenic 

mtDNA mutations (Perier and Vila, 2012). SNpc neurons seem to be especially 

vulnerable to mtDNA mutations, since hippocampal neurons or pyramidal cortical 

neurons of aged individuals did not contain high levels of mtDNA mutations. 

 Evidence regarding inherited “damaged” mtDNA that could explain mitochondrial 

dysfunction observed in PD patient brains and blood peripheral models is still 

inconsistent, but several studies have suggested an association between mtDNA 
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mutations and PD (Parker and Parks, 2005; Winkler-Stuck et al., 2005). As mentioned in 

the section 1.2.1, cybrids generated with mitochondria harvested from PD patient 

platelets exhibit complex I deficiency similar to patient cells, showing direct inheritance of 

the biochemical abnormality through mitochondria. Cybrids are produced by fusing cells 

previously deprived of their endogenous mtDNA (called Rho0
 

cells) with mitochondria 

from patient samples, resulting in a hybrid with a constant nuclear background and a 

transfered mitochondrial gene complement. In this way the influences of the 

mitochondrial genome on the physiology of a cell can be separated from nuclear factors, 

and direct comparisons can be made between the functional properties of mtDNA from 

various sources. Since this complex I deficiency is stable over tens of cell doublings, any 

protein or membrane components transferred with mtDNA become diluted and removed, 

leaving only mtDNA as the carrier of information causing complex I dysfunction. In 

addition to complex I deficiency, PD cybrids exhibit a number of other physiological 

alterations found in PD patient tissues, including abnormalities of calcium homeostasis 

(Sheehan et al., 1997; Esteves et al., 2010b), increased antioxidant enzymes, increased 

ROS production (Cassarino et al., 1997; Esteves et al., 2009), and protein aggregation in 

the form of LBs, the histopathological hallmarks of PD (Trimmer et al., 2004a; Esteves et 

al., 2009, 2010a). These observations suggest that PD-derived mtDNA encodes 

pathogenic information and highlight the possibility that mitochondrial abnormalities in 

PD may be inherited from mtDNA or related to somatic mtDNA alterations acquired 

during the ageing process. In fact, Swerdlow et al. found that cybrid cell lines prepared 

using platelet mitochondria from PD-affected kindred members and the young, 

asymptomatic descendents of PD mothers had lower complex I activity, increased ROS 

production and more abnormal mitochondrial morphologic features than cybrid cell lines 

containing mtDNA from paternal descendants (Swerdlow et al., 1998). These results 

support a precedent for inherited mtDNA as causative of mitochondrial dysfunction in PD 

sporadic cases. Accordingly, analysis of multiple PD subject databases found sex ratio 

differences between PD probands and the PD-affected parents of those probands 

(Swerdlow et al., 2001). While the proband sex ratio showed more men than women, the 

PD-affected parental generation showed more women than men. This finding is 

consistent with a maternal inheritance bias [reviewed in (Swerdlow, 2011)]. Also, the 

existing defect of complex I activity in PD patient platelets, a non-degenerating tissue, 

represents a systemic dysfunction, which is more compatible with inherited rather than 

somatic mtDNA alterations.  

 There is, however, considerable evidence showing that mtDNA acquires mutations 

during ageing, more prevalent in the brain, composed of long-lived postmitotic neurons, 

which have a great rate of oxidative metabolism, with increased ROS production 
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(Terman et al., 2010). Consistent with this observation, a new conditional KO mouse 

modeling PD was generated by disruption of the gene for mitochondrial transcription 

factor A (TFAM) in dopaminergic neurons, termed “MitoPark” mouse. This is the first 

animal model showing slow progressive degeneration of dopaminergic neurons similar to 

PD patient brains. This mouse show reduced mtDNA expression, reduced respiratory 

chain function in midbrain dopaminergic neurons which, in turn, lead to a parkinsonian 

phenotype, with adult onset of slowly progressive impairment of motor function 

associated to the formation of intraneuronal inclusions and dopamine nerve cell death, 

suggesting that impaired mtDNA expression may primarily contribute to the 

pathogenesis of PD (Ekstrand et al., 2007). Similarly, expression of mitochondrially 

targeted PstI endonuclease in dopaminergic neurons, which induces double-strand 

breaks in mtDNA, causes progressive neuronal degeneration and striatal dopamine 

depletion (Pickrell et al., 2011). Moreover, transgenic mice expressing a proofreading-

deficient version of the mtDNA polymerase γ (POLG) accumulate mtDNA mutations and 

display features of premature ageing (Trifunovic et al., 2004; Kujoth et al., 2005). 

Remarkably, cosegregation of parkinsonism with mutations in the human POLG1 gene 

has been reported in several families [reviewed in (Orsucci et al., 2011)]. 

 An age-dependent increase in mtDNA deletions have been observed in individual 

dopaminergic neurons dissected from the SNpc of post mortem human brains from 

normal individuals and idiopathic PD patients (Bender et al., 2006; Kraytsberg et al., 

2006). Different types of mtDNA deletions were found in the same individual, but each 

neuron contained only a single mtDNA mutation, indicating that the mutation was 

acquired and clonally expanded. In comparison with age-matched controls, the amount 

of mtDNA mutations was slightly higher in dopaminergic neurons from PD patients 

(Bender et al., 2006). 

 Therefore, either by inherited mtDNA mutations or by somatic mutations which 

initially occurs in a single DNA molecule but can clonally expand, mtDNA mutational 

burden ultimately might exceed the phenotypic threshold, resulting in focal ETC defects. 

 

1.2.3. Mitochondrial motility: an on track sliding-dependent cellular process 

Mitochondria are extremely dynamic organelles that undertake constant changes in 

shape and distribution into the cell in order to achieve their exact assignment at the 

suitable time and site. Therefore, mitochondria accumulate in subcellular regions with 

high metabolic energy demands and/or where calcium buffering is required (Morris and 

Hollenbeck, 1993) and reallocate in response to changes in the local energy state 
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(Hollenbeck, 1996). Proper functioning of mitochondria depends on their intracellular 

location which is decisively governed by aspects of mitochondrial spatial arrangement 

and motility beyond fusion and fission. Mitochondria apparently maintain their identity as 

discrete organelles through long travels that involve frequent stops and re-starts and 

some changes in direction (Fahim et al., 1985). Their movement is, to varying degrees, 

saltatory and bidirectional, and this sets them apart from small vesicles, endosomes and 

most other axonally transported organelles (Hollenbeck, 1996; Ligon and Steward, 

2000a). These aspects are critically important when we look to neurons (Hollenbeck and 

Saxton, 2005) which require mitochondria at sites distant from the cell body. Throughout 

their traffic in the axon, mitochondria can quickly switch between anterograde and 

retrograde movement, and their net direction has been shown in isolated neurons to 

result primarily from modulation of the fraction of time spent moving anterogradely 

(Morris and Hollenbeck, 1993). 

 Neuronal populations particularly vulnerable to PD, such as SNpc dopaminergic 

neurons, have common features as they have long and thin axons, which have little or 

no myelination (Braak et al., 2004). Neurons with these features are more vulnerable to 

degeneration and require high energy demands and so they are particularly dependent 

on suitable mitochondrial trafficking. Indeed, the evidence of reduced cytoplasmic 

mitochondrial mass and size (Liang et al., 2007; Kim-Han et al., 2011) and impaired 

axonal transport (Kim-Han et al., 2011) in mice SNpc dopaminergic neurons when 

compared with non-dopaminergic neurons suggests selective vulnerability of 

dopaminergic neurons as a result of a mitochondrial dysfunction. 

 The main mechanism to deliver cellular components to their action site is the long-

distance microtubule (MT)-based transport. In turn, fast, long distance, axonal transport 

of mitochondria is accomplished through the MT network. MTs are one of the main 

constituents of the cytoskeleton, constituting parallel polymers of α- and β-tubulin dimers 

which have nearly all of their plus ends directed towards the nerve terminal (Heidemann, 

1996; Baas, 2002). Essential to the function of MTs is their rapid and time-sensitive 

growth and shortening dynamics (dynamic instability) and this stochastic switch from 

growth to shrinking involves the binding and the hydrolysis of guanosine 5’- triphosphate 

(GTP) by tubulin. Also implicated in mitochondrial transport and distribution are the motor 

proteins of the kinesin superfamily in anterograde organelle transport and those of the 

dynein family in retrograde transport (Hollenbeck, 1996). For short range transport, 

mitochondria can also move along actin filaments which serve as tracks to areas where 

the MTs do not reach (Kuznetsov et al., 1992; Morris and Hollenbeck, 1995; Ligon and 

Steward, 2000b; Langford, 2002; Bridgman, 2004). Kinesins and dyneins are typical 

molecular motors as they convert the energy of ATP in their work. So, it seems that the 

http://en.wikipedia.org/wiki/Tubulin
http://en.wikipedia.org/wiki/Dimers
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ATP/ADP and GTP/GDP recycling and bioavailability through functional active 

mitochondria control their proper motility and localization into the cell and that distribution 

is exquisitely regulated. In fact, it has been shown that mitochondrial movements depend 

on respiration (Katayama et al., 2006) and stop if respiration is inhibited or under 

extreme energetic conditions, i.e., in the presence of high ATP and high ADP 

concentrations in the cytoplasm. Inhibition of mitochondrial migration by ADP has been 

considered to be the mechanism by which mitochondria become trapped at sites with 

high energy demand (Katayama et al., 2006; Riva et al., 2006). Part of the mechanism 

underlying this trapping could be a lack of ATP for binding and activity of the motor 

molecules driving the organelles along cytoskeletal structures. Inhibition of motility by 

high cytoplasmic ATP is supposed to follow similar principles. Motor molecules lose their 

connection to the cytoskeletal fibrils at increased ATP concentrations, as shown for the 

dynein-microtubule interaction (Johnson, 1983).  

 Relevant to PD, MPP+ (1-methyl-4-phenylpyridinium) and rotenone were shown to 

affect MT dynamics (Cappelletti et al., 2005; Ren and Feng, 2007). Moreover, MPP+ was 

found to impair anterograde and increase retrograde transport of both mitochondria and 

other vesicles in isolated squid axoplasm (Morfini et al., 2007), and overall axonal motility 

of mitochondria but not of other moving particles in mouse dopaminergic neurons (Kim-

Han et al., 2011). Supporting the concept that mitochondria has a main role on the 

control of the microtubule dynamics and microtubule-dependent trafficking, cells 

harboring mitochondrial deficits (PD cybrids) were found to exhibit ATP-dependent 

cytoskeletal changes (Esteves et al., 2009, 2010a). Accumulation of functionally 

impaired mitochondria and MT network destabilization can be counteracted by the 

formation of new mitochondria, degradation of non-functional organelles and/or 

aggregated proteins within a cell, as will be further discussed in the sections 1.4.2 and 

1.4.3. 

 

1.2.4 Mitochondria and cellular signaling  

Mitochondria have long been considered as crucial organelles, primarily for their roles in 

biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly 

apparent that mitochondria are intimately involved in cell signalling pathways. 

Mitochondria perform various signalling functions, serving as platforms to initiate cell 

signalling, as well as acting as transducers and effectors in multiple processes.  
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1.2.4.1 Mitochondria and calcium homeostasis 

The calcium ion (Ca2+) is one of the most important elements in cellular signaling 

because Ca2+ binding is involved in a great number of cellular processes ranging from 

the modulation of enzyme activity and gene expression to programmed cell death. 

Particularly in neurons, Ca2+ fluxes across the plasma membrane and between 

intracellular compartments play significant roles, including the regulation of neurite 

outgrowth and synaptogenesis, synaptic transmission and plasticity, and cell survival 

(Mattson, 2007). The concentration of cytosolic free Ca2+  in resting neurons (100 nM) is 

10,000-fold lower than the concentration of Ca2+  in the extracellular space (1.2 mM) 

(Berridge et al., 2000; Rizzuto, 2001). This steep Ca2+ concentration gradient creates a 

huge driving force allowing a rapid increase in intracellular Ca2+ when Ca2+ channels 

located in the plasma membrane open. Therefore, it is critical to regulate the 

mechanisms governing Ca2+ entering neurons, as Ca2+ can be either a physiological 

messenger or a very toxic element when its concentration dynamics is deregulated. Ca2+ 

entering neurons is rapidly sequestered in intracellular organelles such as mitochondria 

or ER, or pumped back out of the cell across plasma membrane after interaction with 

mobile buffering proteins within the cytosol. These processes require energy stored in 

ATP or ion gradients that are maintained through ATP-dependent pumps. The major 

intracellular storage site of Ca2+ is the ER, and there is a significant interplay between 

mitochondria and ER regarding Ca2+ homeostasis, which will be further discussed in the 

section 1.3.3.1. 

 Ca2+ sequestration by mitochondria is based on their ability to uptake Ca2+, through 

a uniporter located in the MIM, and to accumulate it in the matrix, a process driven by 

Δm. Ca2+ accumulation in the mitochondrial matrix starts when extramitochondrial Ca2+ 

concentration exceeds 400 nM and results from the balance between the low-affinity 

Ca2+ uptake and the efficient Ca2+ extrusion from the mitochondrial matrix, occurring via 

Ca2+/Na+ or Ca2+/H+ antiporters. Intramitochondrial Ca2+ concentration within the 

physiological range leads to the activation of mitochondrial catabolic processes due to 

stimulation of three mitochondrial dehydrogenases: pyruvate-, NAD+-isocitrate- and 2-

oxoglutarate-dehydrogenase (Duszynski et al., 2006). Therefore, mitochondrial 

metabolism and Ca2+ homeostasis are mutually coupled, thus sustaining the energy 

requirements associated with neuronal activity. 

 During normal physiological activity, the intracellular Ca2+ concentration increases 

only transiently (seconds to a few minutes) and has no detrimental effects on the 

neurons. However, unlike most neurons in the brain, SNpc dopaminergic neurons are 
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autonomously active, generating action potentials at a clock-like 2–4 Hz in the absence 

of synaptic input (Grace and Bunney, 1983) (Figure I.4). 

 

 

Figure I.4. Mitochondria, ER and Ca
2+

 transport in SNpc dopaminergic neurons.  

The steep concentration gradient for Ca
2+

 enables it to cross the plasma membrane readily into 

cells through open pores such as L-type Ca
2+

 channels. Once inside neurons, it is either 

transported back across the plasma membrane or sequestered in intracellular organelles. Ca
2+

 is 

transported across the plasma membrane through either the Ca
2+

-ATPase or through a Na
+
/Ca

2+
 

exchanger that relies upon the Na
+
 gradient. Ca

2+
 is rapidly sequestered either by ionic 

interactions with buffering proteins or by transport into cytosolic organelles (i.e. the mitochondria 

and the ER). The ER uses high-affinity smooth ER Ca
2+

 (SERCA) pumps that depend upon ATP 

to take Ca
2+

 from the cytoplasm into the ER lumen. Ca
2+

 flows back into the cytoplasm after the 

opening of inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) studding the ER 

membrane. Mitochondria are often found in close apposition to the ER and plasma membrane, 

creating a region of high (but localized) Ca
2+

 concentration that drives Ca
2+

 into the matrix of 

mitochondria through a Ca
2+

 uniporter [Adapted from (Chan et al., 2009a)].  
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In this regard, they are much like cardiac pacemakers, relying on a peculiar class of L-

type channels, characterized by the presence of Cav1.3 pore forming subunit that 

confers to this type of Ca2+ channels the property to be open at relatively hyperpolarized 

potentials and thus exposing SNpc dopaminergic neurons to larger Ca2+ influxes than 

other neurons (Wilson and Callaway, 2000). The high magnitude of Ca2+-influx through 

plasma membrane L-type channels in SNpc dopaminergic neurons ultimately 

compromises mitochondrial function, resulting in mitochondrial oxidative stress and 

oscillations in mitochondrial potential, the latter being associated with impaired ATP 

production (Guzman et al., 2010). Supporting the pathogenic role for Ca2+ overload 

associated to the pacemaking activity in SNpc dopaminergic neurons, the L-type Ca2+ 

channels antagonist iraspidine protects striatal dopaminergic terminals and parent SNpc 

cell bodies to both acute and chronic challenges with MPTP (Chan et al., 2007) or 6-

hydroxydopamine (6-OHDA) (Ilijic et al., 2011). These observations suggest that 

prolonged Ca2+ overload in SNpc dopaminergic neurons may render these cells 

particularly vulnerable to PD. In accordance with this, dopaminergic neurons in the 

ventral tegmental area (VTA), which do not rely upon L-type Ca2+ channels for 

pacemaking, are relatively intact in PD patients and in animal models of PD (Kish et al., 

1988; Chan et al., 2007). Another supportive observation is the resilience of selected 

SNpc dopaminergic neuronal populations that express Ca2+-buffering proteins: 

expression of calbindin, calreticulin or parvalbumin is negatively correlated with 

degeneration in PD (Yamada et al., 1990; German et al., 1992; Mouatt-Prigent et al., 

1994; McMahon et al., 1998). 

 Other evidences further support a role for alterations in mitochondrial Ca2+ 

homeostasis in PD. A dramatic reduction in calbindin levels has been described in brains 

of PD patients (Iacopino and Christakos, 1990). In addition, PD cybrid cells exhibit lower 

mitochondrial Ca2+ uptake ability relatively to control cells (Esteves et al., 2010b), even 

following carbachol-induced Ca2+ entering (Sheehan et al., 1997). Similarly, cybrid cell 

lines expressing mtDNA polymorphisms have alterations in intracellular Ca2+ dynamics 

(Kazuno et al., 2006). In addition, MPP+, 6-OHDA and rotenone were found to stimulate 

mitochondrial Ca2+ release and cause increased cytosolic free Ca2+ levels in cultured cell 

lines (Frei and Richter, 1986; Sousa et al., 2003; Wang and Xu, 2005). Also, some 

oligomeric forms of α-synuclein exogenously applied to dopaminergic neurons evoked 

Ca2+ influx from the extracellular milieu through a pore-forming mechanism, leading to 

mitochondrial Ca2+ overload and apoptotic cell death (Danzer et al., 2007). Other studies 

have shown that α-synuclein can be associated to mitochondria and its accumulation is 

directly related to an increase in mitochondrial Ca2+ levels (Parihar et al., 2008), which in 

turn lead to increased levels of nitric oxide, oxidative stress, and cytochrome c release 
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(Parihar et al., 2009). However, these observations failed to be consistently reported, as 

further studies have shown no alterations in cellular Ca2+ homeostasis following 

overexpression of wild-type or mutant α-synuclein (Hettiarachchi et al., 2009). Moreover, 

evidence has suggested a role for PD-linked protein PINK1 in the regulation of 

mitochondrial Ca2+, although data is controversial. Initially, it was proposed that PINK1 

ablation in dopaminergic neurons causes an impairment of mitochondrial Ca2+ efflux, 

probably by affecting the mitochondrial Na+/Ca2+ exchanger activity, resulting in 

mitochondrial Ca2+ overload, increased production of mitochondrial ROS and impaired 

mitochondrial respiration (Gandhi et al., 2009). Afterward, PINK1 depletion has instead 

been shown to impair mitochondrial Ca2+ uptake, and consequently to affect energy 

metabolism (Heeman et al., 2011). Coherently, some reports have demonstrated that 

lack of PINK1 in cells impairs Δm and increases susceptibility to mitochondrial 

neurotoxins (Wood-Kaczmar et al., 2008) as well as enhances vulnerability to Ca2+ 

(Akundi et al., 2011). Supporting a role for Ca2+ overload in PD-related cell death, 

pharmacological or genetic inhibition of Ca2+-sensitive proteases, such as calpains, has 

been shown to attenuate caspase-3 dependent cell death in mitochondrial deficient cells 

(Esteves et al., 2010a) and overall dopaminergic neurodegeneration in a MPTP mouse 

model of PD (Crocker et al., 2003). 

 

1.2.4.2 Mitochondria and programmed cell death 

Programmed cell death, or apoptosis, is a naturally occurring process of cell “suicide” 

that plays a crucial role in the development and maintenance of all pluricellular 

organisms by eliminating superfluous or unwanted cells. However, massive or abnormal 

activation of apoptosis in adulthood can lead to neurodegeneration. Because apoptosis 

is involved in the maintenance of tissue and organ homeostasis, it is strictly controlled at 

multiple levels (Green and Kroemer, 2004). 

 In numerous models, mitochondria represent a central checkpoint of apoptosis 

control by integrating various signals, including endogenous factors (e.g., cytosolic and 

organellar concentrations of protons Ca2+, Mg2+, K+, and Na+, metabolites such as ATP, 

ADP, NADP+, glutathione, lipid second messengers, and multiple proteins including 

kinases and phosphatases) as well as exogenous factors (e.g., specific viral proteins or 

xenobiotics) (Kroemer et al., 2007). These organelles integrate the sum of death-

inducing and life-preserving signals at the level of their membranes and, when the lethal 

signals predominate over the vital ones, mitochondria proceed with “its intrinsic” or 

mitochondrial pathway. Here, in response to an apoptotic stimuli, the initiator caspase-9, 

is activated by multimerization on the adapter molecule apoptosis protease activating 
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factor 1 (APAF-1) and assemble within a multiprotein complex called apoptosome. The 

release of cytochrome c (which normally resides only in the IMS) into the cytosol 

following mitochondrial outer membrane permeabilization (MOMP) is crucial for the 

generation of the apoptosome and subsequent processing and activation of effector 

caspases such as caspase-3. Hence, MOMP is the critical event responsible for caspase 

activation and represents the point of no return in a cell's commitment to die, being 

regulated by many proteins of the Bcl-2 family which either prevent (e.g., Bcl-2 and Bcl-

xL) or promote (e.g., Bax and Bak) the apoptotic cascade of cell death. 

 Relevant to PD pathology, dopaminergic cell death appears to occur, at least in 

part, through the activation of mitochondria-dependent apoptotic pathways. Analysis of 

PD patient post mortem brains revealed a great increase in apoptotic neuronal nuclei 

accompanied of raised immunoreactivity to caspase-3 and Bax (Tatton, 2000). In 

addition, data from transmitochondrial cybrids have shown that PD mitochondria are 

more likely than healthy mitochondria to activate the intrinsic apoptotic cascade, when 

exposed to a mitochondrial toxin, such as MPP+ (Swerdlow et al., 1996; Esteves et al., 

2008). Similarly, MPTP-treated mice were found to develop marked apoptotic features, 

as caspase-3 and caspase-9 activation (Hartmann et al., 2000), calpain activation 

(Crocker et al., 2003), downregulation of Bcl-2 levels and strong upregulation of Bax 

levels in nigrostriatal dopaminergic neurons (Vila et al., 2001). Further supporting the 

involvement of mitochondria-dependent apoptotic pathway in PD, nigrostriatal 

degeneration in MPTP-treated mice can also be prevented by targeting some molecules 

of this pathway, such as caspase-9 or APAF-1 (Mochizuki et al., 2001; Viswanath et al., 

2001), or by overexpressing Bcl-2 (Offen et al., 1998; Yang et al., 1998).  

 In addition, some mutated genes associated with familial forms of PD were found 

to affect mitochondria-dependent cell death. For instance, overexpression of α-synuclein 

in vivo and in several cell types triggered apoptosis (Saha et al., 2000; Stefanova et al., 

2001; Kim et al., 2004). Several apoptotic markers were also observed in yeast models 

of α-synuclein toxicity (Flower et al., 2005). α-Synuclein toxicity can be rescued by 

caspase inhibitors or knock down of caspase-12 (Smith et al., 2005). Activation of 

caspase-3 has been observed in transgenic mice (Martin et al., 2006) and caspase-9 

has been reported in viral models in mice (St Martin et al., 2007) and rats (Yamada et al., 

2004). In cell lines, PD-associated mutant LRRK2 led to mitochondria-dependent 

apoptosis through the release of cytochrome c and caspase-3 activation (Iaccarino et al., 

2007). The genetic ablation of Apaf1 abrogated the caspase-3 activation and the 

neuronal death. In addition, overexpression of wild-type PINK1, but not of mutant PD-

linked PINK1, reduced cytochrome c release, caspase activation, and apoptosis induced 

by mityochondrial neurotoxins in cultured cells (Petit et al., 2005). Likewise, 
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overexpression of Parkin was shown to prevent ceramide-induced mitochondrial swelling 

and subsequent cytochrome c release, caspase-3 activation, and apoptotic cell death in 

vitro (Darios et al., 2003). Together, these data suggest that activation of mitochondria-

dependent apoptotic pathways contributes to SNpc dopaminergic neuronal cell death in 

PD. 

 

1.3 ER, protein folding and misfolding 

The ER is a subcellular organelle comprised of a reticular membranous network that 

extends throughout the cytoplasm and that can be contiguous with the nuclear envelope. 

In highly elongated and polarized cells such as neurons, ER spreads from the cell body 

throughout the dendrites and axons (Aridor et al., 2004). The ER organizes its large 

amount of membrane by folding it into tubular or lamellar structures, generating a 

complex architecture that varies in response to functional requirements (Borgese et al., 

2006). This complex architecture makes ER a primed site for protein folding, and 

supports a variety of other key activities including Ca2+ storage, and steroid, cholesterol 

and lipid biosynthesis.  

 Proteins enter the ER as unfolded polypeptide chains and are then correctly folded 

and assembled prior to transit to the cell surface or to intracellular organelles. The 

acquisition of the native structure of a protein in vivo takes place within the crowded 

environment of the ER. In principle, crowding could interfere with folding by favouring the 

aggregation of unfolded proteins. This effect can be overcome by the action of a complex 

and dynamic network of protein chaperones, foldases and cofactors that assist the 

folding and maturation of proteins, preventing their abnormal aggregation or misfolding. 

Nonetheless, protein folding in the ER is inherently imperfect and errors made at any 

step on the way to the final product decrease the fraction of proteins that reach their 

proper conformation. Transient accumulation of unfolded proteins initiates an adaptive 

coordinated signaling cascade known as the unfolded protein response (UPR). 

Appropriate adaptation to misfolded protein accumulation within the ER requires 

regulation at all levels of gene expression including transcription, translation, 

translocation into the ER lumen or induction of protein degradation in a process termed 

ER-associated degradation (ERAD) or through autophagy (Malhotra and Kaufman, 

2007). Synchronized regulation of these processes is required to restore proper protein 

folding and ER homeostasis. On the other hand, if protein folding is not repaired, 

persistent activation of UPR signaling occurs, which eventually induces an apoptotic 

response. 



Introduction  

 
23 

1.3.1 ER, protein folding and quality control 

ER protein folding consists in a complex interplay between a polypeptide primary 

structural information and associated cellular networks. Folding begins as protein 

synthesis initiates on ribosomes and ends when native proteins are packaged for ER exit 

(Brodsky and Skach, 2011).  

 Relative to cytosol, ER is an oxidizing environment which facilitates several co-

translational and post-translational modifications that do not occur in the cytosol 

[disulfide bond formation, glycosylation and glycophosphatidylinositol (GPI) anchor 

addition], further stabilizing and conferring specific functionality to proteins (Dorner et al., 

1990; Braakman et al., 1992). Thus, secreted and membrane proteins, which transit 

through the secretory pathway, must first complete their folding in the ER. The ER 

therefore constitutes a protein folding factory that entails an exquisite quality control (QC) 

on its products, ensuring that only properly assembled and functional proteins are 

delivered to their final destinations in the cell (Ellgaard and Helenius, 2003). 

Consequently, proteins entering the ER immediately encounter a network of chaperone 

systems that minimize aggregation, facilitate native structure conformation and ensure 

the fidelity of oligomeric assembly (Jonikas et al., 2009) (Figure I.5). 

 Chaperones and folding enzymes reside in the ER in high concentrations and 

participate in all steps of folding and in QC. Key chaperones and folding sensors include 

the glucose regulated protein GRP78, also known as immunoglobulin binding protein 

(BiP) and 94 (GRP94), the lectins calnexin and calrecticulin, and the thiol-disulfide 

oxidoreductases. BiP/GRP78 belongs to the heat shock protein (Hsp)70 family and is 

one of the molecular chaperones first encountered by most newly synthesized 

polypeptides (Figure I.5). In mammalian cells, BiP is present at the translocon where it 

serves to maintain the permeability barrier of the ER during the early stages of targeting 

nascent chains into the translocon. BiP binds to the hydrophobic patches of unfolded 

proteins via a substrate-binding domain and facilitates folding through conformational 

changes evoked by the hydrolysis of ATP by the ATPase domain. 
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Figure I.5. Protein folding in the ER.  

Schematic overview of a nascent polypeptide entering the ER lumen cotranslationally, where it 

engages folding machinery to obtain its final conformation (folding cycle). Quality control 

checkpoint(s) establish the folding status of the polypeptide which then either proceeds to its final 

destination or is selectively degraded, either via the dislocation pathway or via a bulk degradation 

mechanism (e.g. autophagy) [Adapted from (Claessen et al., 2012)]. 

 

 

1.3.2 Protein misfolding and the ER stress response in Parkinson’s disease 

As mentioned above, disturbance in the function or loss of integrity of ER therefore 

disrupts folding and leads to the accumulation of unfolded proteins. Unfolded or 

misfolded proteins expose amino-acid residues that should be located inside the protein 

and became prone to form aggregates in the ER as well as in the cytosol. As small 

aggregates are highly toxic, this potentially leads to ER stress. To alleviate such a 

stressful condition, cells activate a series of self-defense mechanisms referred 

collectively to as the ER stress response or UPR (Mori, 2000; Patil and Walter, 2001; 

Harding et al., 2002; Schroder and Kaufman, 2005).  

 In mammalian cells, ER stress response consists of four different pathways. The 

first is attenuation of protein synthesis that prevents any further accumulation of unfolded 
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proteins. The second is the transcriptional induction of ER chaperone genes to increase 

folding capacity, and the third is the transcriptional induction of ERAD component genes 

to increase ERAD ability. The fourth is the induction of apoptosis to safely dispose of 

cells injured by ER stress to ensure survival of the organisms. 

 Accumulating evidence strongly suggests the involvement of ER stress in PD. The 

parkinsonism-inducing neurotoxins 6-OHDA, MPP+, and rotenone have been shown to 

induce many genes involved in various aspects of the UPR including ER chaperones 

such as BiP, protein disulfide-isomerase (PDI) and calreticulin, the inositol requiring 

enzyme 1 alpha (IRE1-α), and the protein kinase RNA-like endoplasmic reticulum kinase 

(PERK) in neuronal cells (Ryu et al., 2002; Holtz and O'Malley, 2003). These effects 

were specific for these PD mimetics but not for other agents (Ryu et al., 2002). In 

addition, the expression of ER chaperones, such as PDI, was found to be up-regulated in 

the brain of PD patients and PDI accumulated in LBs (Conn et al., 2004). According with 

these observations, accumulation of polyubiquitinated proteins and UPR activation have 

also been observed in the SNpc dopaminergic neurons of post mortem tissue from 

sporadic PD patients (Hoozemans et al., 2007; Slodzinski et al., 2009), and in Multiple 

System Atrophy patients, other synucleinopathy (Makioka et al., 2010), indicating that 

UPR activation may be induced to prevent neurotoxicity associated with ER stress and 

protein misfolding. Also, PDI inactivation occurs in PD brains through oxidative 

modifications (Uehara et al., 2006).  

 More substantial evidence for a role of ER stress in PD pathogenesis comes from 

the study of juvenile onset forms of genetic PD that is caused by mutation in the Parkin 

gene, which compromise the ubiquitin ligase function of the protein (Shimura et al., 

2000). PD-related mutations in Parkin results in the accumulation of its substrate, Pael-

R, in the ER of SNpc dopaminergic neurons, leading to ER stress and cell death (Imai et 

al., 2001). On the other hand, Parkin expression has a prosurvival activity against ER 

stress due to modulation of ERAD/proteasome pathway (Imai et al., 2000; Wang et al., 

2007). In addition, overexpression of wild-type (Shimazawa et al., 2010) or mutant 

(Smith et al., 2005) α-synuclein induces chronic ER stress activation, inducing cell death. 

Reports in the complementary model of yeast demonstrated that the earliest effect 

following α-synuclein expression is a block in the ER to Golgi vesicular trafficking. 

Notably, the inhibition of the ER-Golgi trafficking by α-synuclein expression triggers ER 

stress (Cooper et al., 2006; Gitler et al., 2008) possibly due to the accumulation of cargo 

vesicles, triggering the accumulation of immature proteins at the ER (Ding and Yin, 

2008). α-Synuclein phosphorylation at serine 129 was found to be responsible for UPR-

mediated cell death in neuroblastoma cells even before any detectable mitochondrial 

dysfunction is observed (Sugeno et al., 2008). Similarly, downregulation and mutations in 
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DJ-1 have been shown to trigger ER-stress, thus suggesting that loss of DJ-1 protein 

activity makes neurons more vulnerable to ER-stress (Yokota et al., 2003). Furthermore, 

mutations in the P5 ATPase (ATP13A2, PARK9), responsible for an autosomal recessive 

form of early onset parkinsonism, were associated with its retention in the ER, where it 

may exert neurotoxicity (Ramirez et al., 2006). Finally, LRRK2 deficiency in C.elegans 

triggers hypersensitivity to ER stress (Samann et al., 2009). 

 

1.3.3 ER-mitochondria interorganelle crosstalk 

The ER and mitochondria are endowed with several functionalities, and among them is a 

recently emerged concept of a direct line of communication between these two 

organelles. Interestingly, mitochondria and the ER are physically and functionally 

interconnected, as the MOM can associate with the ER membrane, in a structure called 

mitochondrial-associated membrane (MAM), allowing some important cellular functions 

(Giorgi et al., 2009). For example, the exchange of metabolites between mitochondria 

and the ER that occur continuously during the life span of the cell is crucial for cellular 

functions. Here, ATP produced by oxidative phosphorylation is used by ATPases located 

in the ER (i.e. Ca2+ ATPases); in the opposite direction, products of ER metabolic 

pathways, such as phospholipids, are transferred continuously to the mitochondrial 

membranes. However, the best characterized aspect of functional interconnection 

between these organelles is undoubtedly the regulation of intracellular Ca2+ 

homeostasis. This is because Ca2+ exchange between ER and mitochondria not only has 

a role in regulating physical interactions between the two organelles, but also regulates 

different fundamental biological processes, including cell survival and apoptosis. 

 

1.3.3.1 The ER and mitochondria partnership in Ca2+ homeostasis 

The ER has taken a center stage in the machinery responsible for Ca2+ homeostasis 

(Berridge, 2002). As in other neurons, the ER network in SNpc dopaminergic neurons 

extends throughout the somatodendritic tree (Choi et al., 2006). High-affinity ATP-

dependent transporters move Ca2+ from the cytoplasm into the ER lumen and pump it 

back to the cytoplasm. The absence of high-affinity, anchored intraluminal Ca2+ buffers 

and the physical continuity of the lumen within the cell (Mogami et al., 1997; Park et al., 

2000) enables the ER to rapidly (~30 µm/s) redistribute Ca2+ between intracellular 

compartments, thus avoiding pro-apoptotic accumulations in the cytosol (Choi et al., 

2006). Thus, Ca2+ sequestered in the ER by sarco(endo)plasmic reticulum Ca2+ATPase 



Introduction  

 
27 

(SERCA) is further released at sites where it can be pumped back across the plasma 

membrane or where it can be used to modulate cellular functions (Rose and Konnerth, 

2001; Verkhratsky, 2005; Park et al., 2008).  

 However, the storage capacity of the ER is limited. Ca2+ released from the ER 

through inositol-1,4,5-triphosphate receptor (IP3R) or ryanodine receptors (RyR) can 

enter mitochondria at points of close apposition between the organelles which form 

functional Ca2+ microdomains (Csordas et al., 2006; Rizzuto and Pozzan, 2006). 

Therefore, mitochondria play an important role in shaping the Ca2+ fluxes released from 

the ER. Mitochondria assist with the recovery phase by rapidly sequestering Ca2+ and 

then later returning it to the ER. During normal signaling, there is a continuous ebb and 

flow of Ca2+ between these two organelles. The normal situation is for most of the Ca2+ to 

reside within the ER lumen, except during Ca2+ signaling when a small part is periodically 

released to the cytoplasm and is then recaptured by mitochondria. Because the channels 

through which Ca2+ enters mitochondria are of low affinity, it has been proposed that 

regions of close proximity between mitochondria and the ER are necessary for Ca2+ entry 

into the mitochondrial matrix (Rizzuto et al., 1998). Thus, a major determinant of the ER-

mitochondria interface is the distance between their surfaces, controlled by the 

movement of these organelles along the cytoskeleton (Hollenbeck and Saxton, 2005; 

Boldogh and Pon, 2006). Ca2+ modulates this distance, as its release from ER channels 

is a signal that locally arrests mitochondrial motility and promotes their docking at the ER 

surface, enhancing Ca2+ transfer (Yi et al., 2004). Mitochondria respond promptly to 

physiological rises in Ca2+ with very rapid and large increases in their matrix Ca2+, as 

shown clearly in different cell types [reviewed in (Rizzuto and Pozzan, 2006)]. Thus, no 

kinetic limitations are apparent in the capacity of mitochondria to uptake and release 

Ca2+ rapidly. The uptake of Ca2+ released from the ER into the mitochondrial matrix has 

important regulatory roles, such as the modulation of the spatio-temporal pattern of Ca2+ 

signaling within the cell and therefore many Ca2+-dependent cellular processes, 

matching aerobic metabolism to energy demand. In addition, by buffering local Ca2+ 

and/or by returning it back to the cytosol after sequestration, mitochondria have a 

fundamental role in enabling the maintenance of cytosolic Ca2+ oscillations (Ishii et al., 

2006; Vay et al., 2007). Also, by functioning as high-capacity Ca2+-sinks, mitochondria 

modulate the propagation of Ca2+ waves and act in restricted microenvironments 

influencing the allosteric modulation by Ca2+ of the ER-release channels, such as the 

IP3R and the RyR (Rizzuto and Pozzan, 2006)  
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1.3.3.2 The ER-mitochondria coupling in apoptosis 

Numerous studies point to the ER as a third subcellular compartment implicated in 

apoptotic execution (Rao et al., 2004). Indeed, several molecules either present on the 

ER surface or in the soluble compartment have been implicated as effectors that cause 

cell death in response to prolonged ER stress. Caspase-12 (a murine caspase 

unequivocally identified in human tissue as caspase-4), which is associated with the ER, 

was implicated in apoptosis triggered by ER stress (Nakagawa et al., 2000; Rao et al., 

2001; Rao et al., 2002). However, further studies demonstrated that caspase-12/capase-

4 are not required for ER-stress induced apoptosis and that caspase-4-like activity is not 

always associated with an initiating event (Obeng and Boise, 2005). Caspase 2, which 

appears to be partially in the ER, has been proposed to have an important role in the 

initiation of ER-induced apoptosis, integrating the ER and the Golgi complex with the 

apoptotic pathway, acting as an upstream trigger to permeabilize the MOM (Cheung et 

al., 2006). 

Similar to mitochondria, the ER is also a repository of apoptotic and antiapoptotic 

molecules. The known antiapoptotic molecules include GRP78, calreticulin, PDI and the 

150-kDa oxygen-regulated protein (ORP-150) (Liu et al., 1997; Ozawa et al., 1999; 

Tanaka et al., 2000). Also, a significant fraction of endogenous Bcl-2 family members 

including Bcl-2, Bcl-xL, Bax, Bak and Bik have been shown to be associated with the ER, 

suggesting that Bcl-2 family proteins operate at the ER (at least in part) to regulate Ca2+ 

homeostasis and apoptotic cell death (Wei et al., 2001; Germain et al., 2002; Germain 

and Shore, 2003; Scorrano et al., 2003). For example, Bcl-2 overexpression results in a 

decrease of ER luminal Ca2+ content and this effect has been attributed to an increase in 

the Ca2+ leak from the organelle (Foyouzi-Youssefi et al., 2000; Pinton et al., 2000; 

Palmer et al., 2004; White et al., 2005). Moreover, knockdown of Bax and Bak increases 

the interaction of Bcl-2 with the type-1 IP3Rs and promotes both the phosphorylation of 

the IP3R and a constitutive Ca2+ leak through the IP3Rs under basal conditions (Scorrano 

et al., 2003; Oakes et al., 2005). A reduced ER Ca2+ content, as in the case of Bcl-2 

overexpression or knockdown of Bax/Bak, reduces the amount of Ca2+ that can be 

released from the ER owing to an apoptotic stimulus and thus decreases the probability 

of a Ca2+-dependent MPTP opening (reviewed in (Oakes et al., 2006; Pinton and 

Rizzuto, 2006; Giacomello et al., 2007). In addition, released Ca2+ from the ER, acting on 

mitochondria fusion/fission proteins [dynamin-related protein 1 (DRP-1), hFis1, optic 

atrophy 1 (OPA1) and mitofusins (MFNs)], can also influence mitochondrial cristae 

remodeling and thus the amount of cytochrome c that can be released in the cytosol 

(Breckenridge et al., 2003a). 
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 The ER–mitochondria crosstalk therefore amplifies ER-initiated apoptotic pathways 

or other pathways. In any case, the balance between these various Bcl-2 family 

members determines an “apoptotic rheostat” that modulates ER-mitochondria-dependent 

cell survival versus death (Korsmeyer et al., 1993). 

 

 

Figure I.6. Local ER–mitochondria interactions and apoptotic signalling at the ER–

mitochondria interface.  

A representation is depicted of ER–mitochondria relationships and of some of the proteins 

involved in the crosstalk between the organelles. Ca
2+

 released from the ER through IP3Rs is 

taken up by mitochondria through the mitochondria Ca
2+

 uniporter (MCU). Within mitochondria, 

Ca
2+

 modulates mitochondrial dehydrogenase activity and thus ATP production. Moreover, 

mitochondrial Ca
2+

 uptake regulates the spatio-temporal pattern of the cytosolic Ca
2+

 signal and, 

therefore, many Ca
2+

-dependent cellular processes. Massive and/or a prolonged accumulation of 

Ca
2+

 in the mitochondria can lead to the opening of the permeability transition pore (PTP) in the 

MIM and swelling of the organelle or, acting on mitochondria-shaping proteins [DRP-1, hFis1, 

OPA1, mitofusins (MFNs)], to mitochondrial cristae remodeling and modulation of apoptosis. The 

concerted action of the two organelles in cell death is further supported by the presence on both 

the ER membrane and the MOM of different components of the Bcl-2 family that have either a 

pro- (BIK, BAX, BAK) or an anti-apoptotic role (Bcl-2, Bcl-XL) [Adapted from (Pizzo and Pozzan, 

2007)]. 
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1.4 Autophagy and protein homeostasis: more than just a 

cellular cleaning mechanism in Parkinson’s disease 

Autophagy refers to a set of evolutionarily conserved and strictly regulated process 

whereby intracytoplasmic material of any kind is delivered to lysosomes (Mizushima et 

al., 2008; Yang and Klionsky, 2010). This pathway was first described by Christian De 

Duve in the 1960’s as a simple cellular process in which a double-membrane vesicle, the 

autophagosome, delivers cytoplasmic constituents to lysosomes for degradation and 

recycling (De Duve, 1963). A substantial progress on the molecular dissection of 

autophagy has taken place during only the past 15 years, uncovering the main 

components that are involved in the different autophagic processes, their regulation and 

contribution to different cellular functions. Autophagy is induced by different adverse 

conditions such as limited nutrients, low oxygen levels, and decreased energy supply, 

and its action results in the release of degradation products, especially amino acids, 

back into the cytoplasm to be used in essential biosynthetic pathways. According to the 

different pathways by which cargo is delivered to the lysosome, autophagy can be 

divided into three major distinct types in mammalian cells: macroautophagy, 

microautophagy, and chaperone-mediated autophagy (CMA) (Figure I.7). 

 Macroautophagy involves the sequestration of a complete region of the cytosol, 

including whole organelles, by a double-membrane vesicle known as the 

autophagosome. The latter acquires the enzymes required for the degradation of its 

content after fusion with a lysosome. Macroautophagy is activated in response to nutrient 

deprivation, where degradation of intracellular components by this pathway provides 

cells with the amino acids no longer obtained by the diet, but required for the synthesis of 

proteins essential for survival (Mizushima et al., 2004). Physical and chemical stressors, 

as well as infectious agents, have also been shown to activate macroautophagy (Levine 

and Klionsky, 2004). Activation of autophagy under these conditions is aimed at the 

removal of the aggressor itself (i.e., invading microorganisms) or of the intracellular 

components that were damaged during exposure to stress. However, some level of 

basal macroautophagy is detected in almost all cells, and this basal activity plays an 

important role in the continuous turnover of organelles and clearance of misfolded and 

damaged proteins (Komatsu et al., 2005; Hara et al., 2006; Komatsu et al., 2006). 
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Figure I.7. Autophagic pathways.  

Cytosolic proteins can reach the lysosomal lumen for degradation via autophagy through three 

different mechanisms. A. In macroautophagy, a whole region of the cytosol is sequestered into a 

double membrane vesicle that fuses with lysosomes for cargo delivery. B. In microautophagy, the 

lysosomal membrane invaginates to trap regions of the cytosol that are internalized into the 

lysosomal lumen as single membrane vesicles. C. In chaperone-mediated autophagy (CMA), a 

targeting motif in the substrate proteins is recognized by a cytosolic chaperone that delivers it to 

the surface of the lysosome. Once there, the substrate protein binds to a lysosomal receptor that 

multimerizes to form a translocation complex. A luminal chaperone mediates the translocation of 

the substrate protein into the lumen where it is rapidly degraded [Adapted from (Wong and 

Cuervo, 2010)]. 

 

 

 Microautophagy is somewhat similar to macroautophagy, but in this case the 

lysosomal membrane invaginates or generates protrusions and tubulations to sequester 

the cytosolic content “in bulk.” Microautophagy is a constitutively active pathway that 

contributes to the continuous, slow turnover of cytosolic proteins (Mortimore et al., 1988). 

 In contrast to “in bulk” degradation, cytosolic proteins can also be transported one-

by-one into lysosomes for degradation by CMA. The intrinsic selectivity associated with 

this pathway permits the removal of damaged proteins without affecting normal proteins 

in the vicinity. Through CMA just cystosolic proteins containing the pentapeptide 

targeting motif KFERQ (Dice, 1990) are selectively recognized by a chaperone complex 

in the cytosol, including the heat shock cognate (HSC70) and its associated co-
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chaperones (Chiang et al., 1989). This complex is targeted to the lysosome-associated 

membrane protein type 2A (LAMP-2A), the lysosomal receptor for this pathway (Cuervo 

and Dice, 1996). After unfolding, substrate proteins cross the lysosomal membrane and 

are assisted by a luminal chaperone (Lys-hsc70) to be degraded within the lysosomal 

lumen. Although some level of basal CMA activity is detectable in almost all cell types, 

this pathway is maximally activated under conditions of stress. Stressors known to 

activate this pathway include prolonged starvation, mild oxidative stress, and exposure to 

toxic compounds that alter the conformation of particular proteins (Massey et al., 2004). 

 Among the three main types of autophagy, macroautophagy is the best 

characterized process and will henceforth be referred to as autophagy. 

 

1.4.1 Molecular orchestration of autophagy 

1.4.1.1 Autophagy-related proteins: the basic core machinery  

The molecular understanding of autophagy was initiated by the pioneering work in yeast 

utilizing genetic screenings that led to the discovery of more than 30 autophagy-related 

(Atg) genes, followed by the identification of homologs in mammals (Noda et al., 2002; 

Nakatogawa et al., 2009). Although autophagy occurs at basal levels in all cells, basal-

level autophagy is very low under normal conditions, therefore an efficient mechanism of 

induction is crucial for organisms to adapt to stress and extracellular signals (He and 

Klionsky, 2009).  

 A central negative regulator of autophagy is the serine/threonine protein kinase 

mTOR (mammalian target of rapamycin) (Kamada et al., 2004; Neufeld, 2010). mTOR 

integrates input information from multiple upstream signal transduction pathways and 

negatively regulates other downstream serine/threonine kinases. Thus, under nutrient-

rich conditions, mTOR inhibits autophagy through phosphorylation and inactivation of 

key targets, the Unc-51-like kinase 1 (ULK1) and -2 (ULK2) (Atg1 in yeast), mammalian 

Atg13 (mAtg13), and the focal adhesion kinase family-interacting protein of 200 kD 

(FIP200, Atg17 in yeast), which seem to form a stable complex regardless of nutritional 

conditions in mammalian cells (Kamada et al., 2000; He and Klionsky, 2009; Hosokawa 

et al., 2009). In contrast, upon mTOR inhibition by starvation or rapamycin, ULK1 and 

ULK2 undergo autophosphorylation that is conducive to a conformational change 

essential for their activation (Chan et al., 2009b), and further phosphorylate mAtg13 and 

FIP200, forming a complex essential for autophagy activity (Hosokawa et al., 2009; Jung 

et al., 2009) (Figure I.8). 
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Figure I.8. Basic molecular machinery of autophagy. 

There are at least three steps in the formation of autophagosomes: initiation, nucleation, and 

elongation/closure. Autophagy is initiated by the ULK1 complex. This complex is formed by ULK1 

Ser/Thr protein kinase, Atg13, and FIP200. Among the initial steps of vesicle nucleation is the 

activation of the phosphatidylinositol 3-kinase class III (Vps34) to generate phosphatidylinositol 3-

phosphate (PtdIns(3)P). This activation depends on the formation of a multiprotein complex that 

includes Beclin-1, p150 (Vps15), mAtg14 (Atg14-like protein), and Ambra1. Beclin-1 constitutively 

interacts with Bcl-2 or its close homolog Bcl-XL and autophagy induction requires the dissociation 

of Beclin-1 from its inhibitors Bcl-2 or Bcl-XL. The membrane formed elongates and closes on 

itself to form an autophagosome. Two conjugation systems are successively involved. The first 

involves the covalent conjugation of Atg12 to Atg5, with the help of Atg7 and Atg10. This 

conjugate is organized into a complex by associating with Atg16 to form the Atg16–Atg5–Atg12 

complex. The second involves the conjugation of phosphatidylethanolamine (PE) to LC3 by the 

sequential action of the Atg4, Atg7, and Atg3. This lipid conjugation leads to the conversion of the 

soluble form of LC3 (named LC3-I) to the autophagic vesicle-associated form (LC3-II), allowing 

for the closure of the autophagic vacuole. Abbreviations: Ambra1, activating molecule in Beclin-1-

regulated autophagy; Atg, autophagy genes; Bcl, B-cell leukemia/lymphoma; FIP200, 200-kDa 

focal adhesion kinase family-interacting protein; LC3, microtubule-associated protein light chain 3; 

mTOR, mammalian target of rapamycin; PI3K, phosphatidylinositol 3-kinase; ULK1, 

uncoordinated 51-like kinase 1; Vps, vacuolar protein sorting. [Adapted from (Rautou et al., 

2010)].  
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In addition, the activation of autophagy in response to starvation requires the dissociation 

of Beclin-1 (Atg6 in yeast) from its binding partner Bcl-2 in the cytosol (Wei et al., 2008). 

Beclin is then free to complex with the phosphatidylinositol 3-kinase class III (Vps34 in 

yeast), p150 (Vps15 in yeast) and mAtg14 (Atg14 in yeast) to form the active class III 

phosphatidylinositol 3-kinase (PtdIns3K) complex (Backer, 2008; Itakura et al., 2008). 

The lipid kinase activity of the class III PtdIns3K produces phosphatidylinositol 3-

phosphate (PtdIns(3)P) and is involved in the targeting of a number of Atg proteins 

essential to generate the nucleation complex or the phagophore (in yeast), which gives 

rise to the pre-autophagosomal membrane. Various sources, including the ER, 

mitochondria, the plasma membrane, and the Golgi complex have been proposed to be 

the origins of the autophagosomal membrane (Arstila and Trump, 1968; Geng et al., 

2010; Hailey et al., 2010; Ravikumar et al., 2010; Bodemann et al., 2011). The PtdIns3K 

complex, in part together with the above Atg proteins, further recruits two interrelated 

ubiquitin-like (Ubl) conjugation systems, the mAtg12–Atg5-Atg16 and the light chain-3 

(LC3, Atg8 in yeast), to the autophagosomal membrane (Suzuki et al., 2007; Geng and 

Klionsky, 2008; Sou et al., 2008), which play an essential role in regulating the 

membrane elongation and expansion of the forming autophagosome. Then, both Atg12 

and LC3 undergo conjugation and are activated by the ubiquitin E1-like ligase, mAtg7. In 

addition, the shuttling and self-multimerization of mAtg9, the only identified integral 

membrane protein required for autophagosome formation, to the site of autophagosome 

formation facilitates membranes supply for the elongation of the limiting membrane (Mari 

et al., 2010). When autophagosome formation is completed, LC3 attached to the outer 

membrane is cleaved from phosphatidylethanolamine (PE) by Atg4 and released back to 

the cytosol (Kirisako et al., 2000). The mechanism of autophagosome formation is such 

that the sequestering membrane can accommodate basically any sized cargo. After 

fusion, degradation of the inner vesicle components and cargo is dependent on a series 

of lysosomal acid hydrolases, including cathepsins B, D, and L (Tanida et al., 2005). The 

resulting small molecules from the degradation, particularly amino acids, are transported 

back by permeases to the cytosol for de novo protein synthesis and maintenance of 

cellular functions under starvation conditions. 
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1.4.1.2 Microtubule network: a crucial component required for autophagy 

Besides the aforementioned Atg proteins, certain subcellular systems, including the MT 

network, may also carry out essential functions during autophagy, such as facilitating 

autophagosome transport and enabling clearance of autophagic substrates. 

 Within neurons, autophagosomes are actively formed in synapses and along 

neurites but the proper clearance of these compartments involve their retrograde 

transport towards the neuronal cell body, where lysosomes are concentrated. Several 

lines of evidence suggest that, in mammals, autophagosomes associate with MT tracks, 

move towards the microtubule-organizing centre (MTOC), and fuse with endosomes or 

lysosomes, and the dynamic process is driven by the dynein motors. Indeed, pioneering 

studies demonstrated that autophagic flow is MT-dependent since disruption of MT 

network using agents such as nocodazole and vinblastine, which interfere with MT 

polymerization, blocks fusion of autophagosomes with endosomes and lysosomes (Aplin 

et al., 1992; Seglen et al., 1996; Webb et al., 2004). Also, disruption of the MT network 

results in a decreased clearance of autophagy substrates (Ravikumar et al., 2005). 

However, a number of more recent studies revealed that, in mammalian cells, 

compromised functional integrity of MTs provoke a delay in autophagy rather than a 

complete block in this process (Fass et al., 2006; Kochl et al., 2006). In addition, it was 

shown that knockdown of dynein leads to similar effects (Jahreiss et al., 2008) 

corroborating that dyneins are the key motor proteins that mediate the transport of 

autophagosomes along MTs towards lysosomes (Kimura et al., 2008). 

 In addition, proteins associated to familial forms of PD, such as α-synuclein, 

LRRK2, PINK1 or Parkin have been reported to interact with, and potentially impair MT-

mediated trafficking (Schon and Przedborski, 2011). In fact, misfolded and aggregated 

proteins are also transported to, and deposited in the pericentriolar region via the MT 

system (Johnston et al., 1998; Kopito, 2000). These MT dependent deposits of 

aggregates are called aggresomes and may explain the biogenesis of the LBs found in 

PD. Therefore, impairment of MT system is being increasingly associated with abnormal 

accumulation of α-synuclein (Lee et al., 2006). Although the mechanism whereby α-

synuclein accumulates in LBs is not fully understood, evidence suggests that defective 

axonal transport of α-synuclein itself may contribute to the process. Mutant forms of α-

synuclein but not wild-type were found to exhibit reduced axonal transport in transfected 

cultured neurons (Saha et al., 2004). Further evidence revealed that overexpression of 

α-synuclein causes disruption of MT network and impairment of MT-dependent trafficking 

(Lee et al., 2006). In addition, Kim et al. demonstrated that exposing yeast cells to a MT 

assembly inhibitor or by deleting genes involved in MT biogenesis, α-synuclein 
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aggregation and toxicity increases, suggesting that tubulin can stimulate α-synuclein 

fibrillization in yeast (Kim et al., 2008a). Therefore, there are two possible mechanisms 

underlying the crosstalk between α-synuclein and MT function and, interestingly, they 

seem to be not exclusive from each other. Consistent with this observation, wild-type α-

synuclein has also been considered a functional MT-associated protein able to induce 

the polymerization of purified tubulin into MTs whereas mutant forms of α-synuclein lose 

this potential (Alim et al., 2002; Alim et al., 2004).  

 With long axons and elaborated dendrites, neurons require a more coordinated 

and widespread regulation of the MT network and membrane trafficking system. 

Potentially important mechanisms for controlling MT dynamics are the post-translational 

modifications of tubulin subunits. Acetylation is the major post-translational modification 

of α-tubulin and occurs on Lys40 (L'Hernault and Rosenbaum, 1985; LeDizet and 

Piperno, 1987; Edde et al., 1991) which, according to structural data, is localized to the 

luminal face of the microtubule (Nogales, 1999; Draberova et al., 2000). The acetylation 

of α-tubulin could regulate the presence of MTs in specific intracellular spaces by 

selective stabilization, promoting the scafold indispensable for an efficient mobilization of 

cargos within neurons. Indeed, α-tubulin acetylation results from dynamic processes 

targeting a MT subset that may restrict to stable MTs (Webster and Borisy, 1989) in most 

cell types, but that may also extend to the whole MT network (Belmadani et al., 2004). 

Like other post-translational modifications of α-tubulin, the level of acetylation is 

regulated by the balance of tubulin acetyltransferase and tubulin deacetylase activities 

(Laurent and Fleury, 1996). As acetylation of tubulin most often compartmentalizes on 

the stable MT subset, it was widely accepted that deacetylases would act preferentially 

on soluble tubulin and that acetylases operate on stable polymers.  

 Although α-tubulin acetylation was firstly described more than 25 years ago, the 

enzymes that control α-tubulin deacetylation and acetylation were identified only in the 

past decade. The first discovery came from the finding that histone deacetylase 6 

(HDAC6), a member of the class II histone deacetylases, which is mainly cytoplasmic 

(Bertos et al., 2004), associates with MTs and deacetylates α-tubulin both in vitro on 

preassembled MTs and in cells (Hubbert et al., 2002; Matsuyama et al., 2002; Zhang et 

al., 2003) Interestingly, and in contrast with the “classical” view of α-tubulin post-

translational modifications, HDAC6 does not deacetylate soluble tubulin dimers in vitro 

(Hubbert et al., 2002). HDAC6 was also found to deacetylate Hsp90, a chaperone that 

was known for a long time to associate with MTs (Redmond et al., 1989; Bali et al., 

2005) and with soluble tubulin (Garnier et al., 1998), and was recently described to bind 

MTs in a tubulin acetylation-dependent manner (Giustiniani et al., 2009). The links 

between HDAC6 and the cytoskeleton also extend to actin microfilaments as HDAC6 



Introduction  

 
37 

binds to and deacetylates cortactin (Zhang et al., 2007; Lee et al., 2010b; Lee and Yao, 

2010). Its deacetylation has an impact on actin dynamics by enhancing the interaction of 

cortactin and F-actin thus leading to an increased actin polymerization (Zhang et al., 

2007). Therefore, HDAC6 is seen as a cytoplasmic regulator of cell motility and protein 

transport. 

 A recently emerging aspect is the direct involvement of HDAC6 in autophagy 

progression and clearance, which is of great interest for revealing disease mechanisms 

in neurodegeneration. HDAC6 facilitates the MT and dynein motor-based transport of 

ubiquitinated proteins to aggresomes (Kawaguchi et al., 2003; Pandey et al., 2007). A 

central role for HDAC6 for misfolded protein clearance is further supported by the recent 

study of Lee et al., which shed some light on the question how HDAC6 is linked to 

autophagic clearance mechanistically, and described the fusion of the autophagosome 

with the lysosome as a HDAC6-dependent step in autophagy, depending on the HDAC6 

substrate cortactin and assembly of the actin network (Lee et al., 2010b). In addition, the 

crucial role of HDAC6 in manageing cytotoxic protein overload was also demonstrated in 

a Drosophila model where ectopic expression of HDAC6 could rescue proteasome 

impairment as well as a neurodegenerative phenotype in an autophagy-dependent 

manner (Pandey et al., 2007). The role of HDAC6 in the degradation of protein 

aggregates suggests its involvement in the formation of LBs in PD. In fact, HDAC6 was 

found to colocalize with α-synuclein and ubiquitin in brain sections of PD patients, 

demonstrating that HDAC6 is also a component of LBs (Kawaguchi et al., 2003). In cell 

culture, the association of HDAC6 with polyubiquitinated mutant DJ-1, a protein involved 

in an early onset form of PD, promoted the formation of aggresomes containing DJ-1 

upon proteasome inhibition (Olzmann et al., 2007). This study further demonstrates that 

HDAC6 preferentially binds K63-linked polyubiquitinated DJ-1 in vivo. DJ-1 ubiquitination 

recruits HDAC6, which facilitates the transport of DJ-1 to the MTOC, forming the 

inclusion body. This observation suggests that K63-linked polyubiquitination of DJ-1 may 

act as a novel signal for the dynein-mediated transport and sequestration of misfolded 

proteins in the aggresome. Moreover Parkin, an ubiquitin E3 ligase (often mutated in 

PD), tightly binds to HDAC6 and is also transported by HDAC6 in a MT motor-dependent 

manner to the forming aggresome. There may be ongoing Parkin-mediated ubiquitination 

of misfolded proteins during transport along the MTs (Jiang et al., 2008). 

 The second tubulin deacetylase that was identified is the sirtuin SIRT2, a class III 

histone deacetylase which depends on NAD+ as a cofactor (North et al., 2003). Like 

HDAC6, it mainly resides in the cytoplasm as a result of an active nuclear exportation 

mechanism (North and Verdin, 2007). In contrast to HDAC6, it may use both soluble and 

polymerized tubulin as substrates (North et al., 2003). HDAC6 and SIRT2 do not only 
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share tubulin as a common substrate but they were found to interact in a complex that 

also comprises α-tubulin (Nahhas et al., 2007). Like HDAC6 does, SIRT2 may also 

deacetylate non-tubulin substrates like the transcription factors FOXO1(Jing et al., 2007; 

Wang and Tong, 2009) and p53 (an activity that also requires SIRT1) (Peck et al., 2010) 

or it may control the self-acetylation of the histone acetylase p300 that functions as a 

broad coactivator in regulating gene expression (Black et al., 2008). Conversely, p300 

may also acetylate SIRT2 to down-regulate its enzyme activity (Han et al., 2008). 

 Relevant to PD, inhibition of SIRT2 prevented α-synuclein cytotoxicity and 

modulated its aggregation in cultured cells; ameliorated mutant α-synuclein neurotoxicity 

in rat primary dopamine-positive neurons and rescued degeneration of dopaminergic 

neurons from α-synuclein toxicity in a Drosophila animal PD model (Outeiro et al., 2007). 

However, the mechanisms by which SIRT2 inhibition protects neurons from cell death 

remain uncertain. In addition, it was demonstrated that SIRT2-mediated tubulin 

deacetylation abolished degeneration resistance in the Wallerian mouse model 

subjected to axonal injury induced by MT depolymerizing drugs, suggesting that tubulin 

deacetylation promotes axonal MT destabilization (Suzuki and Koike, 2007). 

 

1.4.2 Selective autophagy and protein turnover 

Although autophagy had been primarily considered a nonselective degradative pathway 

induced by starvation, constitutive basal autophagic activity has now emerged as a main 

QC process that selectively dispose aberrant protein aggregates and damaged 

organelles for degradation (Lee et al., 2010b; Lee et al., 2010a). In fact, several 

autophagy selective processes have been described in recent years based on the nature 

of the cargo degraded by each of them: mitophagy (autophagy of mitochondria), 

pexophagy (autophagy of peroxisomes), lipophagy (autophagy of lipid droplets), and 

aggregophagy (autophagy of aggregates). A specific subset of proteins, known as cargo-

recognition proteins, is involved in each of these subtypes of autophagy, concurring for 

their selectivity (Klionsky et al., 2003; Yang and Klionsky, 2010). All of these proteins, 

including among others p62, the neighbor of Brca1 gene (NBR1) and NIX, contain a 

region that binds to components of the autophagic system (LC3) and a second region 

that recognizes specific tags in the cargo (Lamark et al., 2009). In addition, ubiquitin can 

target organelles such as mitochondria, peroxisomes and protein aggregates for 

autophagic degradation (Bjorkoy et al., 2005; Kim et al., 2008b), making autophagy an 

alternative mechanism to degrade superfluous material that cannot be processed by the 

proteasome. Thus, it is not surprising that malfunction of autophagy could contribute to 

neurodegeneration associated to PD as efficient sequestration and clearance of 
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unneeded or damaged cellular or nonself components is crucial for cell survival and 

function. 

 The most compelling evidence supporting a significant role for autophagy 

dysfunction in PD came from the demonstration that α-synuclein is degraded either by 

macroautophagy and CMA (Webb et al., 2003; Cuervo et al., 2004; Vogiatzi et al., 2008; 

Xilouri et al., 2009). Actually, although α-synuclein can be degraded by the UPS, it also 

contains the KFERQ targeting motif that mediates its degradation through CMA (Webb et 

al., 2003; Cuervo et al., 2004). However, A53T and A30P α-synuclein mutants, that 

cause autosomal dominant PD, are unsuccessfully degraded by CMA because they 

cannot be internalized into lysosomes, despite their higher binding affinity to the 

lysosomal receptor LAMP-2A compared with wild type α-synuclein (Cuervo et al., 2004). 

In addition, due to their tight binding to the lysosomal receptor, α-synuclein mutants often 

end up clogging the CMA translocation system and inhibit their own degradation and that 

of other CMA substrates, leading to a “wide-range” CMA blockage (Cuervo et al., 2004). 

Inhibition of CMA by α-synuclein mutants is accompanied by a compensatory activation 

of macroautophagy that could help alleviate that conditions (Wong and Cuervo, 2010), 

although the physiological significance of this event is not completely understood. In 

addition to the rare α-synuclein mutations, phosphorylated, ubiquitinated, nitrated and 

oxidized forms of α-synuclein impair, to some extent, further degradation of α-synuclein 

by CMA, but not degradation of other substrates (Cuervo et al., 2004; Engelender, 

2008). However, modification of the protein via a noncovalent interaction with oxidized 

dopamine gives a phenotype that more closely resembles the point mutations (Maguire-

Zeiss et al., 2005; Norris et al., 2005). Dopamine-modified α-synuclein is not only poorly 

degraded by CMA, but also blocks degradation of other substrates, thereby increasing 

cellular vulnerability to stressors (Martinez-Vicente et al., 2008). This is especially 

relevant because oxidized metabolites of dopamine such as dopamine quinone 

derivatives are thought to play a critical role in the preferential loss of dopaminergic 

neurons in PD (Martinez-Vicente et al., 2008). The blockage of CMA activity with mutant 

forms of α-synuclein not only results in the direct buildup of toxicity in the neuron through 

the formation of aggregates, but it also prevents the protective activity of the protein 

myocyte enhancer factor 2D (MEF2D), a transcription factor required for neuronal 

survival, and CMA substrate (Yang et al., 2009). Interestingly, it was demonstrated that 

both wild-type and A53T mutant α-synuclein interfere with the binding of MEF2D to the 

chaperone HSC70 in the CMA degradation machinery. Consistent with this observation, 

the cytoplasmic pool of MEF2D is increased in A53T α-synuclein transgenic mice and in 

postmortem brain tissue from PD patients (Smith et al., 2006), and a similar increase of 

inactive MEF2D in the cytoplasm has been found in neurons upon inhibition of CMA 
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(Yang et al., 2009). These findings rise up two interesting possibilities: (1) α-synuclein 

promotes neuronal cell death through the formation of aggregates, but also by the 

inhibition of cell survival proteins; (2) compromised neuronal viability observed in PD 

results, at least in part, from CMA dysfunction. 

 As abovementioned, inhibition of CMA by aberrant α-synuclein leads to an 

increase in autophagy. This appears to be a compensatory response, but rather than 

leading to cell survival, the induction of autophagy can be detrimental causing 

autophagic cell death. For example, alterations in macroautophagy have been 

associated with wild-type α-synuclein accumulation, suggesting that this lysosomal 

pathway is also involved in normal α-synuclein turnover (Vogiatzi et al., 2008). 

Nevertheless, blocking autophagy by knocking down the autophagy protein Atg5 in cells 

expressing the A53T a-synuclein mutant can rescue the cell from toxicity-induced cell 

death (Xilouri et al., 2009). More recently, it was also demonstrated that α-synuclein 

overexpression not only impairs CMA but also macroautophagy through RAB1A and 

omegasome formation as observed in both cell and mouse models (Winslow et al., 

2010). α-Synuclein blocks autophagy by inhibiting the activity of RAB1A, a GTPase 

involved in the early secretory pathway, specifically in the ER-to-Golgi transport. These 

data show an Atg9 mislocalization and consequent inhibition of autophagosome 

formation (Winslow et al., 2010). 

 

1.4.3 Mitophagy: the autophagic mitochondria removal 

The role of autophagy dysfunction in PD is not restricted to the removal of cytosolic PD-

related or other damaged proteins but also involve removal of dysfunctional organelles, 

such as mitochondria. Accumulating data suggests that mitochondrial dysfunction by 

itself triggers mitophagy. Changes in the MPT that result in loss of mitochondria 

membrane potential were initially found to be a selective marker for mitochondria 

degradation (Lemasters et al., 1998; Kim et al., 2007). More recently, a predicted 

mitochondrial targeting signal (MTS) was identified in the N-terminus of PINK1 after 

mitochondria depolarization (Jin et al., 2010), which can determine the selective 

recruitment and the binding of cytosolic proteins to the surface of the dysfunctional 

mitochondria (Narendra et al., 2008; Narendra et al., 2010). Additionally, other studies 

have also revealed the involvement of α-synuclein, Parkin, PINK1 and LRRK2 in the 

regulation of mitochondrial degradation and homeostasis. Overexpression of α-

synuclein, Parkin and PINK1 results in enhanced mitochondrial fragmentation, followed 

by activation of mitophagy (Kamp et al., 2010; Kawajiri et al., 2010; Vives-Bauza et al., 

2010), supporting an essential role of autophagy in the clearance of defective 
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mitochondria in PD. In cells expressing the A53T α-synuclein mutant, an increased 

colocalization of autophagosomes with normal and polarized mitochondria occurs. In 

addition, there is a decrease in the number and length of mitochondria in these cells 

(Choubey et al., 2011). The increase in mitochondria clearance in these cell lines is 

dependent on mitochondrial fragmentation and on the protein Parkin. Parkin is 

selectively recruited to dysfunctional mitochondria with low membrane potential in 

mammalian cells (Narendra et al., 2008) and relies on the expression of wild-type PINK1, 

but not PD related PINK1 mutants, due to a decreased physical binding of PINK1 to 

Parkin (Geisler et al., 2010b). This occurs via phosphorylation-dependent regulation of 

Parkin (Sha et al., 2010), suggesting a pathogenic role of PINK1 and Parkin loss-of-

function mutations in PD. Once in mitochondria, Parkin activates the UPS, that will 

mediate the ubiquitination of VDAC-1 (Geisler et al., 2010a), mitofusins Mfn1 and Mfn2, 

among other mitochondrial proteins (Gegg et al., 2010), and serve to recruit the 

ubiquitin-binding histone deacetylase HDAC6 and p62, which assemble the autophagic 

machinery (LC3) for efficient degradation of impaired mitochondria (Geisler et al., 2010a; 

Chan et al., 2011). In addition, Parkin was recently shown to interact with Ambra 1, an 

autophagy/Beclin-1 regulator, that critically determines the final step of Parkin-mediated 

mitochondrial clearance (Van Humbeeck et al., 2011) 

 The role of LRRK2 in regulating autophagy was also addressed. Interestingly, it 

was demontrated that LRRK2 specifically localizes to specific membrane subdomains 

and endosomal-autophagic structures, suggesting a functional relationship between 

LRRK2 and mitophagy (Alegre-Abarrategui et al., 2009). Furthermore, increased 

autophagic activity upon LRRK2 knockdown was observed, which indicates that LRRK2 

may normally act as a negative regulator of autophagy (Alegre-Abarrategui et al., 2009). 

Alternatively, LRRK2 regulation in neurite blunting and remodeling requires autophagy 

(Plowey et al., 2008). Thus, by impairing this pathway, mutations in parkin, PINK1, and 

LRRK2 may alter autophagy-dependent mitochondrial turnover which, in turn, may cause 

the accumulation of defective mitochondria and, ultimately, neurodegeneration in PD.   
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1.5 Aims and thesis outline 

Understanding the molecular basis of sPD has proven to be a major challenge in the 

field of neurodegenerative diseases. Although several hypotheses have been proposed 

to explain the molecular mechanisms underlying the pathogenesis of sPD, growing 

evidence has highlighted the role of mitochondrial dysfunction and the disruption of 

mechanisms which rely on mitochondrial bioenergetics in sPD. But the role of 

mitochondria in sPD extends beyond defective mitochondrial respiratory chain and may 

involve mitochondrial dynamics, intracellular trafficking, protein quality control, or redox 

homeostasis. 

 Data from human genetics and studies in model organisms, as well as from 

biochemical and biophysical characterization of the proteins involved in PD, have 

demonstrated that most cases of PD can be considered as arising from protein 

misfolding, protein aggregation, or defective degradation and clearance, and that 

proteostasis network pathways are also altered in sPD. However, it remains an open 

question whether alterations of these pathways lead to different aspects of PD or 

whether they converge at a point that is the common denominator of sPD pathogenesis. 

In addition, clear insights of exactly how and when mitochondria and proteostasis 

network pathways interconnect, overlap or converge to produce nigral neuronal 

degeneration will be crucial to understanding the pathogenesis of sPD. 

 In this work, we aim to address the potential implications of an altered structural 

and functional crosstalk between mitochondria and the ER, two important metabolic 

organelles for the maintenance of cellular protein homeostasis. In addition, we will 

assess the role of mitochondrial metabolism in the regulation of the autophagy-lysosomal 

pathway, a major cellular homeostatic process essential for bulk and/or selective 

degradation of cytoplasmic contents. 

 The data obtained will be presented according with the following specific aims: 

 

- Address the molecular mechanism underlying the interplay between 

mitochondria and ER dysfunctions under particular stressfull conditions of 

sPD; 

 

- Investigate whether the modulation of ER-mitocondria interaction, as well as 

the Ca2+ shuttling between ER and mitochondria, has repercursions to the 

intracellular homeostasis and consequently to lowering the cell's threshold to 

survival; 
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- Establish a molecular framework between deregulation of the autophagy 

pathway observed in PD patients brains and mitochondrial dysfunction; 

 

- Explore the hypothesis that dysfunctional mitochondria lead to impaired 

vesicular trafficking and protein turnover; 

 

- Unravel the mechanistic link between mitochondria-, autophagy-, and 

microtubule network dysfunctions. 
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2.1 Materials 

2.1.1 Chemicals and cell media  

The most common chemicals and media used were as categorized in the Table II.1. 

Table II.1 Chemicals and cell media, with the corresponding company. 

 

CHEMICAL COMPANY 

Antibodies  

Alexa Fluor
®
 488-conjugated goat anti-rabbit Molecular Probes (Eugene, OR, USA) 

Alexa Fluor
® 

594-conjugated goat anti-mouse Molecular Probes (Eugene, OR, USA) 

Goat alkaline phosphatase-conjugated anti-

mouse 

GE Healthcare (Buckinghamshire, UK) 

Goat alkaline phosphatase-conjugated anti-

rabbit 

GE Healthcare (Buckinghamshire, UK) 

Mouse mAb* anti-Beclin BD Biosciences (San Diego, CA, USA) 

Mouse mAb anti-BiP/GRP78 BD Biosciences (San Diego, CA, USA) 

Mouse mAb anti-class III β -tubulin (clone TU-

20) 

Cell Signaling (Danvers, MA, USA) 

Mouse mAb anti-class III β-tubulin (clone TUJ) Covance Inc. (Princeton, NJ, USA) 

Mouse mAb anti-GAPDH AbCam (Cambridge, UK) 

Mouse mAb anti-Hsp60 Millipore (Billerica, MA, USA) 

Mouse mAb anti-LAMP-1 (clone H4A3) Developmental Studies Hybridoma Bank 

(University of Iowa, Iowa, USA) 

Mouse mAb anti-MAP2 Sigma-Aldrich Co. (St. Louis, MO, USA) 

Mouse mAb anti-TATA binding protein TBP AbCam (Cambridge, UK) 

Mouse mAb anti-α-synuclein (clone LB509) Invitrogen Corporation (Camarillo, CA, USA). 

Rabbit mAb anti-LC3B (D11) XP
®
 Cell Signaling (Danvers, MA, USA) 

Rabbit mAb anti-α-tubulin (clone 11H10) Cell Signaling (Danvers, MA, USA) 

Rabbit pAb* anti-Bcl-2 Cell Signaling (Danvers, MA, USA) 

Rabbit pAb anti-Beclin Cell Signaling (Danvers, MA, USA) 

Rabbit pAb anti-COX IV Cell Signaling (Danvers, MA, USA) 

Rabbit pAb anti-LC3B Cell Signaling (Danvers, MA, USA) 
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Rabbit pAb anti-NDUFA2 Generous gift of Dr. Leo Nijtmans (Radboud 

University Nijmegen Medical Center, The 

Netherlands) 

Rabbit pAb anti-SIRT2 Cell Signaling (Danvers, MA, USA) 

Rabbit pAb anti-SQSTM1/p62 Cell Signaling (Danvers, MA, USA) 

Rabbit pAb anti-TOM20 Santa Cruz Biotechnology (Santa Cruz, CA, 

USA) 

Rabbit pAb anti-VDAC/Porin AbCam (Cambridge, UK) 

Rabbit pAb anti-Vimentin Cell Signaling (Danvers, MA, USA) 

  

Cell culture chemicals and media  

5-fluoro-2’-deoxyuridine (FUdR) Sigma-Aldrich Co. (St. Louis, MO, USA) 

all-trans retinoic acid (ATRA) Sigma-Aldrich Co. (St. Louis, MO, USA) 

B-27 supplement Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

Bovine serum albumin (BSA) fatty acid free Sigma-Aldrich Co. (St. Louis, MO, USA) 

Cytosine β-D-arabinofuranoside (araC) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Deoxyribonuclease I (DNAse I) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Dialyzed fetal bovine serum (FBS) Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

Dulbecco's Modified Eagle (DMEM) Medium Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

L-glutamine Sigma-Aldrich Co. (St. Louis, MO, USA) 

Minimum Essential Medium (S-MEM) Gibco
TM

, BRL, Life Technologies (Scotland, 

UK) 

Neurobasal medium Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

Non-dialyzed FBS Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

Opti-MEM
®
 I Reduced Serum Medium Gibco

TM
, BRL, Life Technologies (Scotland, 

UK) 

Penicillin Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 

Poli-D-lysine, Sigma-Aldrich Co. (St. Louis, MO, USA) 

Poli-L-lysine Sigma-Aldrich Co. (St. Louis, MO, USA) 

Polyethylene glycol 1000 (PEG 1000) Merck (Darmstadt, Germany) 

Sodium pyruvate solution Sigma-Aldrich Co. (St. Louis, MO, USA) 

Streptomycin Gibco
TM

, Invitrogen Corporation (Camarillo, 

CA, USA). 



Materials & Methods  

 
49 

Trypsin/Ethylenediamine tetraacetic acid 

(EDTA) solution 

Sigma-Aldrich Co. (St. Louis, MO, USA) 

Uridine (Urd) Sigma-Aldrich Co. (St. Louis, MO, USA) 

  

Enzyme inhibitors  

3-Methyladenine (3-MA) Sigma-Aldrich Co. (St. Louis, MO, USA) 

AK-1 Sigma-Aldrich Co. (St. Louis, MO, USA) 

Chymostatin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Leupeptin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Pepstatin A Sigma-Aldrich Co. (St. Louis, MO, USA) 

Phenylmethylsulfonyl fluoride (PMSF) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Rapamycin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Trypsin inhibitor type-II soybean Sigma-Aldrich Co. (St. Louis, MO, USA) 

Tubastatin A BioVision Inc. (Milpitas, CA, USA) 

  

Enzyme substrates  

N-Ac-Asp-Glu-Val-Asp-pNA (NAc-DEVD-pNA) Calbiochem, Merck KGaA (Darmstadt, 

Germany) 

N-Ac-Leu-Glu-His-Asp-pNA (NAc-LEDH-pNA) Calbiochem, Merck KGaA (Darmstadt, 

Germany) 

N-Ac-Leu-Glu-Val-Asp-pNA (NAc-LEVD-pNA) MBL International Corporation (Woburn, MA, 

USA) 

N-Ac-Val-Asp-Val-Ala-Asp-pNA (NAc-VDVAD-

pNA) 

Sigma-Aldrich Co. (St. Louis, MO, USA) 

  

Fluorescent dyes  

Acetoxymethyl ester of Fura-2 (Fura-2, AM) Molecular Probes
®
, Invitrogen (Eugene, OR, 

USA) 

Acetoxymethyl ester of Rhod-2 (Rhod-2, AM) Molecular Probes
®
, Invitrogen (Eugene, OR, 

USA) 

Hoechst 33342 Molecular Probes
®
, Invitrogen (Eugene, OR, 

USA) 

Mitotracker Green Molecular Probes
®
, Invitrogen (Eugene, OR, 

USA) 

Rhodamine 123 Sigma Chemical Co (St. Louis, MO, USA) 

  

Western blotting purpose  

Enhanced chemifluorescence (ECF) reagent 

Hybond
TM

-P PVDF membrane 

GE Healthcare (Buckinghamshire, UK) 

GE Healthcare (Buckinghamshire, UK) 

Immobilon
TM

-P PVDF membrane Millipore (Billerica, MA, USA) 

http://www.sigmaaldrich.com/catalog/ProductDetail.do?lang=pt&N4=P5318%7CSIGMA&N5=SEARCH_CONCAT_PNO%7CBRAND_KEY&F=SPEC&cm_sp=Customer_Favorites-_-Detail_Page-_-Text-P5318
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Low range all blue prestained protein standard Bio-Rad (Hercules, CA, USA) 

  

Others  

1-methyl-4-phenylpyridinium (MPP
+
) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Ammonium chloride (NH4Cl) Merck KGaA (Darmstadt, Germany) 

Brefeldin Sigma-Aldrich Co. (St. Louis, MO, USA) 

BSA (Fraction V, Low heavy metals) Calbiochem
TM

, Merck (Darmstadt, Germany) 

Calimycin (A23187) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Carbonyl cyanide-p 

trifluoromethoxyphenylhydrazone (FCCP) 

Sigma-Aldrich Co. (St. Louis, MO, USA) 

Dantrolene Sigma-Aldrich Co. (St. Louis, MO, USA) 

Dithiothreitol (DTT) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Histopaque – 1077 Sigma-Aldrich Co. (St. Louis, MO, USA) 

Nocodazole Sigma-Aldrich Co. (St. Louis, MO, USA) 

Oligomycin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Paclitaxel (Taxol) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Pluronic F-127 Molecular Probes
®
, Invitrogen (Eugene, OR, 

USA) 

Potassium cyanide (KCN) Sigma-Aldrich Co. (St. Louis, MO, USA) 

Thapsygargin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Tunicamycin Sigma-Aldrich Co. (St. Louis, MO, USA) 

Ubiquinone Sigma-Aldrich Co. (St. Louis, MO, USA) 

*mAb: monoclonal antibody; pAb: polyclonal antibody 

 

All other chemicals were of the best analytical grade and were purchased from Merck 

(Darmstadt, Germany) or Sigma-Aldrich Co. (St. Louis, MO, USA). 

 

2.1.2 Biological materials 

2.1.2.1 Human subjects’ characteristics 

Sporadic PD (sPD) patients and healthy individuals were all recruited after approval by 

the University of Kansas School of Medicine Institutional Review Board. Individuals in the 

PD group were followed regularly in a tertiary referral movement disorders clinic at the 

Kansas University Medical Center and met criteria commonly used to diagnose PD in 

clinical and research settings (Litvan et al., 2003). None of the patients were believed to 

have alternative diagnoses, degeneration of related systems, drug-induced 

Parkinsonism, or any other serious medical illness. Enrollment was also contingent on 

the absence of a diagnosis for another neurodegenerative disease. 
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 The control (CT) subjects were participants of a longitudinal “normal ageing” cohort 

that is characterized serially by the Brain Ageing Project at the University of Kansas 

School of Medicine. These CT subjects have not been diagnosed with a 

neurodegenerative or pre-neurodegenerative disease condition. The age of the PD 

subjects who participated in this study was 64±12.8 years, and for the CT subjects it was 

74.3±5.5 years.  

 After informed consent was given, sPD (n=9) and age-matched CT (n=5) subjects 

underwent a 10 ml phlebotomy using tubes containing acid-citrate-dextrose, as an 

anticoagulant, to provide the platelets needed for cell fusions. 

 

2.1.2.2 Animals 

Experiments involving animals were approved by and performed in accordance with the 

University of Coimbra Institutional Animal Care and Use Committee guidelines and 

European Community Council Directive for the Care and Use of Laboratory Animals 

(86/609/ECC). 

 

2.2 Cell Culture 

2.2.1 Human Cell Lines Culture 

2.2.1.1 Parental Teratocarcinoma (NT2 Rho+) cell line  

The NT2 (Ntera2/ clone D1) cells, from a neuronally committed human teratocarcinoma 

cell line (Pleasure and Lee, 1993; Sodja et al., 2002), were purchased from Stratagene 

Cloning Systems (La Jolla, CA, USA) and were cultured as described previously 

(Cardoso et al., 2001). Briefly, cells were grown in 75 cm2 tissue culture flasks in Opti-

MEM® medium (a modification of Eagle's Minimum Essential Medium) supplemented 

with 10% heat-inactivated fetal bovine serum (FBS), 10,000U/mL penicillin and 10 µg/mL 

streptomycin. Cells were maintained under a humidified atmosphere of 95% air, 5% CO2, 

at 37ºC and and were split by incubating them in 0.05% (v/v) trypsin solution whenever 

flasks were 80-100% confluent. In early passages, cells were split 1:4; at later passages, 

cells were split 1:5 or 1:6 because cell growth rate increase at later passages. 
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2.2.1.2 mtDNA depleted (NT2 Rho0) cell line  

The mtDNA-free Rho0 cell-line used for these studies was kindly provided by Dr. RH 

Swerdlow (University of Kansas School of Medicine, Kansas City, Kansas, USA). This 

cell line was created in the NT2 cells background by long-term exposure (at least 150 

days) to 5 µg/mL ethidium bromide (Sigma-Aldrich Co., St. Louis, MO, USA) in growth 

medium to deplete selectively mitochondrial DNA (mtDNA) (Swerdlow et al., 1996).  

 Cells were grown in 75 cm2 tissue culture flasks in Opti-MEM® medium, 

supplemented with 10% heat-inactivated FBS, 10,000 U/mL penicillin and 10 µg/mL 

streptomycin, 150 µg/mL uridine and 200 µg/mL pyruvate. Cells were maintained under 

a humidified atmosphere of 95% air, 5% CO2, at 37ºC and and were split by incubating 

them in 0.05% (v/v) trypsin solution whenever flasks were 80-100% confluent. In early 

passages, cells were split 1:2; at later passages, cells were split 1:4 because cell growth 

rate increase at later passages. 

 

2.2.1.3 Generation of transmitochondrial hybrid (cybrids) cell lines  

Cybrid approach consists of the transfer of sPD or healthy subjects’ platelet mitochondria 

to mtDNA-depleted recipient cells (Rho0 cells), generating hybrid cell lines (cybrids). 

Platelets (which contain mtDNA but not nDNA) from PD subjects are known to have 

reduced complex I activity relatively to control subjects’ (Parker et al., 1989). We used 

platelet mitochondria to generate cybrid cell lines from both sPD and disease-free control 

subjects. Thus, the resulting cybrid cell lines express the nuclear genes of the recipient 

Rho0 cell line and the mitochondrial genes of the platelet donor (Figure II.1). 
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Figure II.1 Generation of cybrid cell lines.  

Tumor or immortalized cell lines are grown in the presence of ethidium bromide, which effectively 

eliminates functional mtDNA to result in a Rho0 cell line. Rho0 cells are then fused with patient 

platelets, which contain mitochondria but not nuclei. This creates cytoplasmic hybrid (cybrid) cells 

that can be isolated and expanded. The expanded cybrid cell cultures are biochemically analyzed. 

Differences in function between cell lines mostly likely arise through differences in their mtDNA. 

 

 

 The preparation and fusion of donor and host cells and selection of repopulated 

cybrid cell lines was as detailed subsequently: 

 

 Isolation of platelets 

Previously, platelets were isolated from the individual blood sample which was drawn 

aseptically into a tube containing 2.2% citrate, 0.8% citric acid, and 2.45% dextrose. Ten 

milliliters of blood were separated over three mL of Histopaque-1077-1 in a 12 mL 

AccuspinTM tube (Sigma-Aldrich Co., St. Louis, MO, USA) by centrifugation at 1000 ×g 

for 10 min, at room temperature. The platelet (top) layer was washed with 15 mL of 

Minimum Essential Medium (S-MEM). Platelets were counted, then washed again, and 

resuspended to 1×108 cells/mL. Aseptic blood drawing and sample collection were 

essential to eliminate the propagation of mycoplasma and other organisms. 
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 Fusion 

Fusion of human platelets with NT2 Rho0 cells was facilitated by the presence of dilute 

polyethylene glycol 1000 (PEG 1000). Autoclaved PEG was melted and mixed 1:1 (w/v) 

with S-MEM and pH was adjusted to 7.2 with sterile 0.1 N NaOH. Then, one mL of 

platelets (1×108) and one mL Rho0 cells (1.5×106) were mixed and allowed to adhere at 

room temperature for 10 min. The mixture was then centrifuged at 200 ×g for 5 min and 

supernatant was removed. To fuse cells, 150 µL S-MEM-diluted pH 7.2 PEG solution 

was added to the pellet and allowed to penetrate for 10 s. This mixture was then gently 

ressuspended 10 times with a wide bore pipet tip until smooth. At 90 s, 12 mL growth 

medium was added to the pellet and the whole content was transferred to a 75 cm2 flask. 

Media were changed at 24 h after cells have adhered to the flask. As a control, “mock 

fusions”, in which NT2 Rho0 cells were not co-incubated with platelets, were performed 

in parallel with the proper fusions. The resulting cybrids were maintained for one week or 

until cells were 90% confluent in Rho0 growth medium, that was changed every 2–3 

days. 

 

 Cybrid selection 

NT2 Rh0 cells lack intact mtDNA, do not possess a functional mitochondrial electron 

chain, and are auxotrophic for pyruvate and uridine. Maintaining cells in selection 

medium removes Rh0 cells that have not repopulated their mtDNA with platelet mtDNA.  

The cybrid selection process began by substituting Rho0 growth medium (with pyruvate 

and uridine) for the selection medium (growth medium that lacked pyruvate and uridine 

and contained dialyzed heat-inactivated serum). After 4 days in selection medium, Rho0 

cells that had not fused with platelets began to die. Cybrids were typically split every 5 

days. Cells in the mock fusion were always split 1:1 and decreased in numbers over 

time. Selection was considered complete when the mock fusion flask contained fewer 

than 20 cells. 

 After selection was complete, the cybrids were changed to cybrid growth medium. 

Flasks were maintained in this medium at 37ºC, 5% CO2 for 24 hours prior to harvesting. 

Afterward, cybrids were maintained in growth medium under a humidified atmosphere of 

95% air, 5% CO2 at 37ºC and were split by incubating them in 0.05% (v/v) trypsin 

solution whenever flasks were 80-100% confluent. In early passages, cybrids were split 

1:4; at later passages, cells were split 1:6 or 1:8 because cell growth rate increase at 

later passages. 
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2.2.1.4 Cybrid cell line neuronal differentiation and culture 

Cybrid cell lines with an NT2 background present a commited neuronal precursor stage 

of differentiation. NT2 precursor cells can be induced by all-trans retinoic acid (ATRA) to 

differentiate in vitro into post mitotic central nervous system neurons. 

 Cybrid cell lines were induced to form process-bearing neuronal cells according to 

the procedure of Paquet-Durand et al. (Paquet-Durand et al., 2003). Cells were allowed 

to form free floating conglomerates in non-tissue culture plastic, 10 cm diameter dishes 

in growth medium supplemented with 10 µM ATRA, renewed every 2 days. After 8 days 

in culture, the conglomerates were seeded in 75 cm2 cell culture flasks and cultures were 

kept for 10 days to completely generate a large number of cell aggregates. A single-cell 

suspension was then derived from the conglomerates by trypsinization and transferred to 

175 cm2 culture flasks. Cells were cultured for 4 days to expand the culture and to further 

obtain conditioned medium. After that, cells were selectively trypsinized and transferred 

again to 75 cm2 culture flasks, where they were kept for 2 weeks to eliminate persistent 

undifferentiated cells by adding mitotic inhibitors (AraC 1 μM, FudR 10 μM, Urd 10 μM) in 

the growth medium. Finally, neuron-like cells (1×105 per coverslip) were plated onto 

glass coverslips (16 mm diameter) pre-coated with poly-D-lysine in 50:50 conditioned 

medium and were allowed to improve neurite outgrowth for 4 days for further 

immunocytochemical experiments.  

 The enrichment and purity of neuronal-like cultures was evaluated by comparing 

the number of cells staining positively with antibodies directed against neuronal marker 

β-tubulin III (clone TU20), with the number of nuclei stained with Hoechst 33342 dye. 

The number of β-tubulin III-positive cells and Hoechst 33342-positive nuclei were 

counted in 10 randomly selected visual fields. This was performed for two independent 

experiments. 

 

2.2.2 Isolation of human peripheral blood mononuclear cells (PBMCs)  

Data obtained using cell lines were corroborated in human PBMCs obtained from control 

and sPD patients. PBMCs were composed of 90% of lymphocytes and 10% monocytes 

and in this study were considered as a lymphocytic population. 

 For this purpose, 20 ml of venous blood from both sPD and disease-free CT 

subjects were collected by venipuncture in K2EDTA-containing tubes. PBMCs were 

isolated by Histopaque-1077 density gradient centrifugation, according to the 

manufacturer’s instruction. Briefly, blood samples were diluted with the same amount of 

Hanks's balanced salt solution (HBSS), layered on Histopaque-1077-1 and centrifuged 
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for 30 min at 300 ×g, at room temperature. PBMCs were collected from the interface 

between serum and Histopaque-1077-1 gradients and washed once with HBSS.  

 

2.2.3 Mouse primary cortical neurons isolation and culture 

Primary neuronal cultures were prepared as described previously (Agostinho and 

Oliveira, 2003), with minor modifications. Cerebral cortices were removed from 

embryonic day 15-16 of Wistar rats and were aseptically dissected and combined in 

Ca2+- and Mg2+-free Krebs buffer [10 mM HEPES (pH 7.4), 1.2 mM KH2PO4, 120 mM 

NaCl, 4.8 mM KCl, 13 mM glucose] and then incubated in Krebs solution supplemented 

with 0.3 g/L BSA containing 0.5 g/L trypsin and 0.04 g/L DNase I for 10 min, at 37ºC. 

Tissue digestion was stopped by the addition of trypsin inhibitor (type II-S; 0.75 g/L) in 

Krebs buffer containing 0.04 g/L DNase I, followed by a centrifugation at 140 ×g for 5 

min. After washing the pellet once with Krebs buffer, the cells were dissociated 

mechanically and resuspended in fresh Neurobasal medium supplemented with 2 mM L-

glutamine, 2% (v/v) B-27 supplement, 100,000 U/L penicillin, and 100 mg/L 

streptomycin. The cells were seeded on poly-L-lysine (0.1 g/L)-coated dishes at a 

density of 0.75×106 cells/mL for Western blotting. For immunofluorescence studies, 

neurons were mounted on poly-L-lysine-coated glass coverslips at a density of 1.6×106 

cells/mL. The cultures were maintained in serum-free Neurobasal medium supplemented 

with B-27 at 37ºC in a humidified atmosphere of 5% CO2, 95% air for 6 days before 

treatment, in order to allow neuronal differentiation. After 6 days in vitro (6 DIV), cultured 

neurons were treated with 50 µM MPP+, 24h before fixation or harvesting. Where 

indicated, 20 mM ammonium chloride and 20 μM leupeptin, and 10 mM 3-MA or 10 nM 

rapamycin were added in the culture medium in the last 4 h of MPP+ treatment. The 

composition of the cultures was determined by immunolabeling in addition to 

physiological characterization. The majority of cells (90–95%) were positive for neuronal 

markers (MAP2, TUJ1), whereas <10% of cells showed immunolabeling for the 

astrocytic marker glial fibrillary acidic protein (GFAP). 
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2.3 Evaluation of mitochondrial structure and function 

2.3.1 Mitochondrial ultrastructure  

Cybrids and Rho0 cells were grown in 75 cm2 culture flasks till 90% confluence and 

growth medium was changed 1–3 h before harvesting. Then cellular suspensions from 

each cell lines were obtained and were fixed with 2.5% gluteraldehyde/2% 

paraformaldehyde in 100 mM sodium cacodylate (SC), pH 7.43, and post-fixed in 1% 

osmium tetroxide in SC followed by 1% uranyl acetate. After ethanol dehydration and 

embedding in LX112 resin (LADD Research Industries), ultrathin sections were stained 

with uranyl acetate followed by lead citrate. Grids were viewed on a JEOL JEM 1400 

transmission electron microscope operated at 80 kV. For the quantification of 

mitochondria in cells, 10-15 different electronmicrographs for each cell line were 

analyzed. 

 

2.3.2 Mitochondrial morphology 

Cybrid cells growing in 75 cm2 flasks were replated on treated glass coverslips (16 mm 

diameter) in 12-well plates at the concentration of 1.0×105 cells/mL. After 24 h, cells were 

washed twice with serum-free growth medium and once with (1:1) serum-free growth 

medium: 4% (v/v) paraformaldehyde in PBS solution, for 10 min. Then cells were fixed 

with 4% (v/v) paraformaldehyde in PBS solution for 20 minutes, at room temperature. 

The fixed cells were washed again with PBS, permeabilized with 0.2 % (v/v) Triton X-100 

in PBS and incubated with 3% (w/v) BSA in PBS, for 30 min, to prevent nonspecific 

binding. Then, cells were incubated with the primary rabbit polyclonal anti-TOM-20 

(1:200) antibody overnight followed by washing with PBS and incubation with the 

secondary antibody Alexa Fluor® 488-conjugated goat anti-rabbit for 1 h. After washing 

twice with PBS, nuclei were counterstained with 5 µg/mL Hoechst 33342 dye in PBS. 

After a final wash, the coverslips were immobilized on a glass slide with mounting 

medium (DakoCytomation, Dako, Glostrup, Denmark). Negative CTs omitting primary 

antibody were performed in each case, and no staining was seen (data not shown). 

Images were acquired on a Zeiss LSM 510 meta-confocal microscope (63 × 1.4NA plan-

apochromat oil immersion lens) by using the Zeiss LSM510 v3.2 software (Carl Zeiss, 

Inc., Thornwood, NY, USA) and analyzed using Zeiss LSM Image Examiner. 

 Fluorescence microscopy images were optimized by adjusting the contrast and 

afterwards binarized by conversion to 8-bit images. After unspecific noise of the 
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fluorescence signal was reduced, a spatial filter (convolution filter) as well as a threshold 

was applied to the images to define mitochondrial structures. Using a custom-written 

macro containing plug-ins (Dagda et al., 2009) from ImageJ1.46e software (Wayne 

Rasband; National Institutes of Health, USA), every single mitochondrion of the 

investigated cells was marked to analyze morphological characteristics such as its area, 

perimeter, major and minor axes. The area/perimeter ratio was employed as an index of 

mitochondrial interconnectivity, and inverse circularity was used as a measure of 

mitochondrial elongation. 

 

2.3.3 Mitochondrial content 

Cybrid cell lines growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. After 24 h in culture, individual cell lines were washed 

once with ice-cold PBS, scraped and harvested on ice with a 1% (v/v) Triton X-100 

containing hypotonic lysis buffer [25 mM HEPES (pH 7.5), 2 mM MgCl2, 1 mM EDTA and 

1 mM EGTA, supplemented with 2 mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a 

protease inhibitor cocktail]. The cellular suspension was frozen/thawed three times on 

liquid nitrogen and centrifuged at 20,000 ×g, for 10min at 4ºC. The resulting supernatant 

was collected and assayed for protein concentration using the Bio-Rad Protein Assay 

(Bio-Rad, Hercules, CA, USA). 

 For each sample, 50 µg of protein were separated under reducing conditions on 

12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) after 

denaturation at 100ºC, for 5 min, in a 6 × concentrated sample buffer [100 mM Tris-HCl 

(pH 6.8), 100 mM DTT, 4% (w/v) SDS, 0.2% (w/v) bromophenol blue and 20% (v/v) 

glycerol]. Proteins were then transfered to a ImmobilonTM-P PVDF (polyvinylidene 

difluoride) membrane, which was further blocked with 5% (w/v) non fat milk in Tris-

buffered saline buffer [50 mM Tris (pH 7.6), 150 mM NaCl], 0.1% (v/v) Tween 20 (TBS-

T), for 1h, at room temperature. After blocking, membranes were subjected to an 

overnight incubation with the anti-Hsp60 (1:1000), anti-VDAC/Porin (1:800), anti-COXIV 

(1:1000), anti-TOM20 (1:1000), anti-NDUFA2 (1:200) or anti-α-tubulin (1:10,000) primary 

antibodies, at 4ºC. Membranes were further washed three times with TBS-T and then 

incubated with the corresponding alkaline phosphatase-conjugated secondary antibody 

(1:15,000) for 1h, at room temperature. The membranes were washed again three times 

and bound antibodies detected using the enhanced chemifluorescence reagent (ECF) 

according to the manufacturer’s instructions.  
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 Blots were visualized using a VersaDoc imageing system (Bio-Rad, Hercules, CA, 

USA) and protein bands densitometry quantified using the Quantity-One software (Bio-

Rad, Hercules, CA, USA). 

 

2.3.4 mtDNA screening 

Total DNA was extracted from three PD and three CT cybrids by using standard 

methods and quantified by UV spectrophotometry (λ=260 nm). Automated sequencing 

analysis was used, according to the manufacturer's instructions (3130 ABI Prism 

sequencing system), with BigDye® Terminator Ready Reaction Mix v3.1 (Applied 

Biosystems), for the investigation of the seven mtDNA genes coding for complex I 

subunits, corresponding to ND1, ND2, ND3, ND4L, ND4, ND5 and ND6, allowing the 

screening of confirmed pathogenic mutations, reported mutations, polymorphisms and 

novel sequence variations in these genes, according to MITOMAP (www.mitomap.org). 

All sequences were analysed using Sequencing Analysis v5.4 and SeqScape v.2.5 

software, by comparison with reference sequence obtained from GenBank database. 

 In silico analysis was performed for unpublished sequence variations found, using 

PolyPhen-2® and ClustalW2® for evolutionary conservation analysis among species. 

 

2.3.5 Analysis of mitochondrial membrane potential 

NT2 Rho+ cells growing in 75 cm2 flasks were replated into 24-well plates at the 

concentration of 2.1×105 cells/mL. Where indicated, cell treatment conditions included 1 

mM MPP+; 2 M brefeldin A and 2 M tunicamycin added to the growth medium for 2, 4, 

6 and 24 h. For all experimental procedures, controls were performed in the absence of 

the stress agents. 

 The distribution and subsequent quenching of the fluorescent lipophilic cation 

rhodamine 123 (Rh123) was used to monitor changes in Δm. An increase in Rh 123 

fluorescence indicates depolarization of Δm, as shown by the observation that 

mitochondrial uncouplers increase the Rh123 fluorescence signal (Duchen, 1992; 

Duchen and Biscoe, 1992). This is interpreted in terms of the well-established biophysics 

of a variety of lipophilic cations in response to partitioning into negatively charged 

organelles. The concentration of the dye by mitochondria leads to the forced aggregation 

of dye molecules and to an associated quenching of the fluorescence signal (Emaus et 

al., 1986; Bunting, 1992). Some dye must remain in the cytosol, prevented from leaving 

the cell by the plasma membrane potential. Thus, hyperpolarization of Δm will increase 

the partitioning of dye into the mitochondria, and increase the concentration-dependent 

http://www.mitomap.org/
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quenching. Depolarization of Δm allows dye to redistribute from the mitochondria into 

the cytosol, increasing the signal. 

 Cells were loaded with 0.5 μM Rh123 in Krebs buffer [10 mM HEPES, 10 mM 

NaHCO3 (pH 7.4), 132 mM NaCl, 4 mM KCl, 1.4 mM MgCl2, 6 mM glucose, 1 mM CaCl2] 

at 37°C, in the dark. Simultaneously, the fluorescence (λex = 505 nm and λem= 525 nm) 

was recorded for 45 min before, and 10 min after mitochondrial depolarization, using a 

Spectramax Plus 384 spectrofluoremeter (Molecular Devices, Sunnyvale, CA, USA). 

Maximal mitochondrial depolarization (Δm collapse) was performed in every individual 

experiment by adding 1 µM carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone 

(FCCP, protoionophore), which was always preceded by oligomycin (2 µg/mL) to prevent 

ATP synthase reversal. 

 Rh123 retention was determined by the difference between total fluorescence 

(after depolarization) and the initial value of fluorescence. Since positively charged 

Rh123 is retained by functional mitochondria with a high Δm, a decrease of cellular 

retention of Rh123 has been associated with a decrease in Δm. 

 

2.3.6 Evaluation of mitochondrial respiratory chain NADH–ubiquinone 

oxidoreductase activity 

NT2 Rho+ cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. Cell treatment conditions were as mentioned in the 

section 2.3.2. 

 The activity of mitochondrial NADH-ubiquinone oxidoreductase (complex I: EC 

1.6.99.3) was determined by using a modified version of the method of Ragan et al. 

(Ragan, 1987). Briefly, after treatments, cells were harvested on ice with a low 

stringency lysis buffer [20 mM HEPES (pH 7.4), 250 mM sucrose, 1 mM EDTA, 1 mM 

EGTA]. Then, protein lysates of homogenated cells were prepared using a Teflon-fitted 

glass hand homogenizer and assayed for protein concentration using the Bio-Rad 

Protein Assay (Bio-Rad, Hercules, CA, USA). Complex I activity was measured by 

following the decrease in NADH absorbance at 340 nm (=6.81mM-1cm-1) that occurs 

when ubiquinone is reduced to form ubiquinol. The reaction was initiated by adding 50 

µM ubiquinone to the reaction mixture, containing 30 µg of protein lysate suspended in 

potassium phosphate buffer [25 mM K2HPO4, 25mM KH2PO4 (pH 7.2)], in the presence 

of 2.5 mg/mL BSA (which increases rotenone sensitivity), 4 mM MgCl2, and 1 mM KCN 

at 30ºC. After 5 min, 10 µM rotenone was added and the reaction was monitored for a 
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further 5 min period. Complex I specific activity was expressed in nanomoles per minute 

per milligram of protein and represents the rotenone sensitive rates. 

 

2.3.7 Quantitative determination of total NAD levels 

Total nicotinamide adenine dinucleotide (NAD+ plus NADH) levels were determined 

using the NAD+/NADH colorimetric assay kit (MBL International Corporation, Woburn, 

MA, USA) according to the manufacturer's instructions. Standard curves generated with 

known amounts of purified NADH were used to whole cell concentrations. 

 

2.3.8 Evaluation of mitochondrial Ca2+ uptake ability 

NT2 Rho+ cells growing in 75 cm2 flasks were replated into 12-well plates at the 

concentration of 2.1×105 cells/mL. Cells treatment conditions included 1 mM MPP+, 2 M 

brefeldin A and 2 M tunicamycin added to the growth medium for 2, 4, 6 and 24 h. 

 To monitor mitochondrial Ca2+ levels we used the fluorescent cell permeant probe 

Rhod-2, AM (λex= 552 nm and λem= 581 nm). In its AM form, Rhod-2 carries a 

delocalized positive charge that causes preferential accumulation of this probe in 

mitochondrial matrix driven by Δm according to the Nernst equation. After 

deesterification, this dye remains trapped in the mitochondria and reports Ca2+ levels 

variations in the mitochondrial lumen. 

 Treated and CT cells were washed twice with Krebs buffer [10 mM HEPES, 10 mM 

NaHCO3 (pH 7.4), 132 mM NaCl, 4 mM KCl, 1.4 mM MgCl2, 6 mM glucose, 1 mM CaCl2] 

and loaded with 10 μM Rhod-2 in Krebs buffer, supplemented with 0.01% (v/v) Pluronic 

F-127 (Molecular Probes, Eugene, OR, USA) and 1% (w/v) BSA, for 40 min, at 37 °C. To 

assure a selective loading of Rhod-2, AM into mitochondria, probe loading procedure 

was performed at low temperature followed with warm incubation at 37ºC. After loading, 

cells were washed three times in calcium-free Krebs buffer and were kept in Ca2+ and 

dye free-medium at 37°C, for 30 min, thereby permitting the cells to hydrolyze the 

acetoxymethyl ester completely. From the entire loading process onwards, cells were 

shielded from ambient light. Then, recordings were carried out. After establishment of a 

stable fluorescence baseline, mitochondrial maximal Ca2+ uptake ability was further 

assessed by challenging mitochondria with the subsequent addition of 5 µM Ca2+ 

ionophore A23187 as described previously by Deniaud et al. (Deniaud et al., 2008). The 

variations of fluorescence were monitored using a Spectramax Plus 384 

spectrofluorometer (Molecular Devices, Sunnyvale, CA, USA).  

 The ratio between mitochondrial matrix Ca2+ before and after challenging with 

A23187 was taken as an indirect measure of mitochondrial Ca2+ content. 
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2.3.9 Evaluation of mitochondrial distressing on cell-death related events 

Induction of apoptic cell death mechanisms was determined by caspase activation 

assays that were performed by using the method described by Cregan et al. (Cregan et 

al., 1999), with minor modifications.  

 NT2 Rho+ cells growing in 75 cm2 flasks were replated into 6-well plates at the 

concentration of 2.5×105 cells/mL. Where indicated, cells were treated with 1 mM MPP+ 

added in the culture medium for 24 h. In another set of experiments, cells were 

preincubated for 1h with 10 M dantrolene, an inhibitor of ryanodine receptors of ER. 

After treatments, cells were washed once in ice-cold PBS and harvested on ice with a 

hypotonic lysis buffer [25 mM HEPES (pH 7.5), 2 mM MgCl2, 1 mM EDTA and 1 mM 

EGTA, supplemented with 2 mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a protease 

inhibitor cocktail]. The cellular suspension was frozen/thawed three times on liquid 

nitrogen and centrifuged at 20,000 ×g, for 10min, at 4ºC. The resulting supernatant was 

collected and assayed for protein concentration using the Bio-Rad Protein Assay (Bio-

Rad, Hercules, CA, USA).  

 To evaluate caspases activation, in parallel sets of assays, whole cellular extracts 

containing 50 μg or 100 μg of protein were individually incubated, for 2 h, at 37ºC in a 

reaction buffer [25mM HEPES (pH 7.5), 0.1% (w/v) 3[(3-cholamidopropyl) 

dimethylammonio]-propanesulfonic acid (CHAPS), 10% (w/v) sucrose, 2 mM DTT] with 

100 M Ac-VDVAD-pNA, 100M Ac-DEVD-pNA, 50 M Ac-LEVD-pNA and 50 M Ac-

LEDH-pNA, specific colorimetric substrates for caspase-2, -3, -4 and -9, respectively. 

 The enzymatic cleavage of the chromophore p-nitroaniline (pNA) from the 

substrate was detected at 405 nm using a Spectramax Plus 384 spectrophotometer 

(Molecular Devices, Sunnyvale, CA, USA). 

 

 

2.4 Evaluation of ER stress and UPR activation 

2.4.1 Analysis of Bip/GRP78 levels  

NT2 Rho+ cells growing in 75 cm2 flasks were replated into 6-well plates at the 

concentration of 2.5×105 cells/mL. Cells treatment conditions included 1 mM MPP+, 2 M 

brefeldin A and 2 M tunicamycin added to the growth media for 2, 4, 6 and 24 h. 

 After treatments, cells were washed once in ice-cold PBS and harvested on ice 

with a 1% (v/v) Triton X-100 containing hypotonic lysis buffer [25 mM HEPES (pH 7.5), 2 

mM MgCl2, 1 mM EDTA and 1 mM EGTA, supplemented with 2 mM DTT, 0.1 mM PMSF 
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and a 1:1000 dilution of a protease inhibitor cocktail]. The cellular suspension was 

frozen/thawed three times on liquid nitrogen and centrifuged at 20,000 ×g, for 10min at 

4ºC. The resulting supernatant was collected and assayed for protein concentration 

using the Bio-Rad Protein Assay (Bio-Rad, Hercules, CA, USA). 

 For each sample, 40 µg of protein were separated under reducing conditions on 

12% SDS-PAGE gel after denaturation at 100ºC, for 5 min, in a 6 × concentrated sample 

buffer [100 mM Tris-HCl (pH 6.8), 100 mM DTT, 4% (w/v) SDS, 0.2% (w/v) bromophenol 

blue and 20% (v/v) glycerol]. Proteins were then transfered to a Hybond-P PVDF 

membrane, which was further blocked with 5% (w/v) non fat milk in TBS-T, for 1 h, at 

room temperature. After blocking, membranes were subjected to an overnight incubation 

with the anti-BiP/GRP78 (1:500) or anti-α-tubulin (1:10,000) primary antibodies, at 4ºC. 

Membranes were further washed three times with TBS-T and then incubated with the 

corresponding alkaline phosphatase-conjugated secondary antibody (1:20,000) for 2 h, 

at room temperature. The membranes were washed again three times and bound 

antibodies detected using the enhanced chemifluorescence reagent (ECF) according to 

the manufacturer’s instructions.  

 Blots were visualized using a VersaDoc imageing system (Bio-Rad, Hercules, CA, 

USA) and protein bands densitometry quantified using the Quantity-One software (Bio-

Rad, Hercules, CA, USA). 

 

2.4.2 Evaluation of ER Ca2+ content 

Measurement of ER Ca2+ content was assessed according to the method described by 

Nutt et al. (Nutt et al., 2002), with some modifications. Briefly, 2.1×105 cells/mL were 

seeded in 12-well plates and treated with 1 mM MPP+, 2 M brefeldin A and 2 M 

tunicamycin added in the growth medium for 2, 4, 6 and 24 h. 

 Afterward, treated and control cells were washed twice in Krebs buffer [10 mM 

HEPES, 10 mM NaHCO3 (pH 7.4), 132 mM NaCl, 4 mM KCl, 1.4 mM MgCl2, 6 mM 

glucose, 1 mM CaCl2] and loaded with 5 μM Fura-2, AM in Krebs buffer, supplemented 

with 0.01% (v/v) Pluronic F-127 and 1% (w/v) BSA, for 40 min, at 37 °C. After loading, 

cells were washed three times in Ca2+-free Krebs buffer and they were kept in Ca2+ and 

dye free-medium at 37°C, for 30 min, thereby permitting the cells to hydrolyze the 

acetoxymethyl ester completely. From the entire loading process onwards, the cells were 

shielded from ambient light. Then, recordings were carried out. After fluorescence 

baseline stabilization, cells were stimulated with 5 μM thapsigargin, in the absence of 



Chapter II 

 

 
64 

extracellular Ca2+, to empty Ca2+ from ER. Fura-2, AM fluorescence was recorded at 

340/380 nm excitation and 512 nm emission.  

 The variations of fluorescence were monitored using a Spectramax Plus 384 

spectrofluoremeter (Molecular Devices, Sunnyvale, CA, USA). The peak amplitude of 

Fura-2, AM fluorescence (ratio at 340/380 nm) was used to evaluate ER Ca2+ levels.  

 

2.4.3 Evaluation of ER stress on apoptosis induction 

NT2 Rho+ cells growing in 75 cm2 flasks were replated into 6-well plates at the 

concentration of 2.5×105 cells/mL. Cells treatment conditions included 2 M brefeldin A 

and 2 M tunicamycin added in the growth media for 24 h.  

 Induction of apoptic mechanisms was determined by caspase -2, -4 and -9 

activation assays performed as described in the section 2.3.9. 

 

2.5 Assessment of the autophagy-lysosomal pathway  

2.5.1 Autophagic vacuole ultrastructural analysis 

Cybrids and Rho0 cells were grown in 75 cm2 culture flasks till 90% confluence and 

growth medium was changed 1–3 h before harvesting. Then cellular suspensions from 

each cell line were obtained and were fixed with 2.5% gluteraldehyde/2% 

paraformaldehyde in 100 mM sodium cacodylate (SC), pH 7.43, and post-fixed in 1% 

osmium tetroxide in SC followed by 1% uranyl acetate. After ethanol dehydration and 

embedding in LX112 resin (LADD Research Industries), ultrathin sections were stained 

with uranyl acetate followed by lead citrate. Grids were viewed on a JEOL JEM 1400 

transmission electron microscope operated at 80 kV. For the quantification of autophagic 

vacuoles in cells, 10-15 different electronmicrographs for each cell line were analyzed. 

Autophagic vacuoles were identified using previously established criteria (Nixon et al., 

2005). 

 

2.5.2 Evaluation of autophagic flux and turnover  

2.5.2.1 Western blotting 

NT2 Rho+, Rho0 and cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-

dishes at the concentration of 3.0×105 cells/mL. Cell lines treatment conditions included 

normal-nutrient (serum +) and serum-starvation (hereafter simply starvation) by culturing 
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cells in serum-free medium (serum -) for 6 h before harvesting. Compounds included 1 

mM MPP+, 5 µM AK-1 or 10 µM Tubastatin A added in the growth medium for 24 h 

before harvesting. Where indicated, 20 mM ammonium chloride and 100 μM leupeptin 

were added in the culture medium in the last 4 h of fed/starved cells. 

 Regarding primary neuronal cultures, after 6 DIV, cultured cortical neurons were 

treated with 50 µM MPP+, 24 h before harvesting. Where indicated, 20 mM ammonium 

chloride and 20 μM leupeptin, 10 mM 3-MA or 10 nM rapamycin were added in the 

culture medium in the last 4 h of MPP+ treatment. 

 After cell treatments, individual cell lines or cultured cortical neurons were washed 

once with ice-cold PBS, scraped and lysed on ice in RIPA buffer [50 mM Tris-HCl (pH 

7.4), 150 mM NaCl, 1% (v/v) NP40, 0.1% (v/v) SDS, 0.5% (v/v) sodium deoxicholate 

(DOC), supplemented with 0.1 mM PMSF, 2 mM DTT and a 1:1000 dilution of a 

protease inhibitor cocktail]. Cell suspensions were incubated on ice for 15 min and 

centrifuged at 20,000 ×g for 15 min. Cleared lysates were assayed for protein 

concentration using the Pierce® BCA Protein Assay Kit (Thermo Fisher Scientific Inc., 

Rockford, IL, USA).  

 Regarding PBMCs, protein extracts were obtained by using 1% Triton X-100 

containing hypotonic lysis buffer [25 mM HEPES (pH 7.5), 2 mM MgCl2, 1mM EDTA and 

1mM EGTA, supplemented with 2 mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a 

protease inhibitor cocktail]. The cellular suspension was frozen/thawed three times on 

liquid nitrogen and centrifuged at 20,000 ×g, for 10 min at 4ºC. The resulting supernatant 

was collected and assayed for protein concentration using the Bio-Rad Protein Assay 

(Bio-Rad, Hercules, CA, USA). 

 For each sample, equal amounts of protein (50 µg) were separated under reducing 

conditions on 15% SDS-PAGE gels. Following electrophoretic transfer onto a 

ImmobilonTM-P PVDF membrane and blocking with 5% (w/v) BSA in TBS-T solution, 

membrane was incubated overnight with the rabbit polyclonal anti-LC3B (1:1000) 

antibody, at 4ºC with gentle agitation. Membranes were further washed three times with 

TBS-T and then incubated with the corresponding alkaline phosphatase-conjugated 

secondary antibody (1:15,000), for 2h at room temperature. The membranes were 

washed again three times and bound antibodies detected using ECF according to the 

manufacturer’s instructions.  

 Blots were visualized using a VersaDoc imageing system (Bio-Rad, Hercules, CA, 

USA) and protein bands densitometry performed using the Quantity-One software (Bio-

Rad, Hercules, CA, USA). 
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2.5.2.2 Immunocytochemistry 

Rho0 and cybrid cells growing in 75 cm2 flasks were replated on treated glass coverslips 

(16 mm diameter) in 12-well plates at the concentration of 1.0×105 cells/mL. Cybrid 

neuron-like cells (1×105 per coverslip) were plated onto glass coverslips (16 mm 

diameter) pre-coated with poly-D-lysine in 50:50 conditioned medium and were allowed 

to improve neurite outgrowth for 4 days, for further immunocytochemical experiments. 

Cortical neurons were mounted on poly-L-lysine-coated glass coverslips (16 mm 

diameter) at a density of 0.75×106 cells/mL. Cell treatment conditions were as mentioned 

in the section 2.5.2.1.  

 Following treatments, cells were analyzed by indirect immunofluorescence as 

described in the section 2.3.2, using the primary rabbit polyclonal anti-LC3B (1:200) 

antibody overnight and the secondary antibody Alexa Fluor® 488-conjugated goat anti-

rabbit for 1 h. LC3 puncta number and size were quantified using the ‘analyze particles’ 

function of the ImageJ v1.46e software (Wayne Rasband; National Institutes of Health, 

USA) after thresholding of images with size settings from 0.2–10 pixel2 and a circularity 

of 0–1. At least 20 cells were examined for each condition. 

 

2.5.3 Autophagy induction and nucleation complex 

2.5.3.1 Beclin and Bcl-2 levels 

Cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. Cell line treatment conditions included normal nutrient 

(serum +) and starvation for 6 h before harvesting. Where indicated, 20 mM ammonium 

chloride and 100 μM leupeptine were added in the culture medium in the last 4 h of 

fed/starved cells. 

 Following treatments, individual cell lines were washed once with ice-cold PBS, 

scraped and lysed on ice in RIPA buffer [50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% 

(v/v) NP-40, 0.1% (v/v) SDS, 0.5% (v/v) sodium deoxicholate (NaDOC), supplemented 

with 0.1mM PMSF, 2 mM DTT and a 1:1000 dilution of a protease inhibitor cocktail]. Cell 

suspensions were incubated on ice for 15 min and centrifuged at 20,000 ×g for 15 min. 

Cleared lysates were assayed for protein concentration using the Pierce® BCA Protein 

Assay Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA). For each sample, equal 

amounts of protein (50 µg) were separated under reducing conditions on 12% SDS-

PAGE gels. 

 Following electrophoretic transfer onto a ImmobilonTM-P PVDF membrane and 

blocking with 5% (v/v) non fat milk TBS-T solution, membrane was incubated overnight 



Materials & Methods  

 
67 

with the rabbit polyclonal anti-Bcl-2 (1:1000) or the mouse monoclonal anti-Beclin 

(1:1000) primary antibodies, at 4ºC, with gentle agitation. Membranes were further 

washed three times with TBS-T and then incubated with the corresponding alkaline 

phosphatase-conjugated secondary antibody (1:15,000) for 2 h at room temperature. 

The membranes were washed again three times and bound antibodies detected using 

ECF, according to the manufacturer’s instructions.  

 Blots were visualized using a VersaDoc imageing system (Bio-Rad, Hercules, CA, 

USA) and protein bands densitometry performed using the Quantity-One software (Bio-

Rad, Hercules, CA, USA). 

 

2.5.3.2 Beclin and Bcl-2 subcompartmentalization 

Cybrid cells were grown in 75 cm2 flasks and were treated under the conditions 

mentioned in the section 2.5.3.1. Following treatments, mitochondria- and cytosol-

enriched fractions were obtained by using the ProteoExtract Subcellular Proteome 

Extraction Kit (CalbiochemTM, Merck KGaA, Darmstadt, Germany). Cells were harvested 

and subcellular fractions were prepared according to the manufacturer’s specifications. 

To prepare samples for Western blotting, protein concentrations were determined using 

the Pierce® BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA) 

according to the manufacturer’s instructions for plate reader. 

 For each sample, equal amounts of protein (20 µg) were separated under reducing 

conditions on 12% SDS-PAGE gels and analyzed by Western blotting using the rabbit 

polyclonal anti-Bcl-2 (1:1000) and the rabbit polyclonal anti-Beclin (1:1000) primary 

antibodies, as described in the section 2.5.3.1. The rabbit monoclonal anti-α-tubulin 

(clone 11H10) (1:1000) and the rabbit polyclonal anti-TOM20 (1:1000) primary 

antibodies were used as loading controls for cytosol- and mitochondria-enriched 

fractions, respectively. 

 

2.5.3.3 Beclin/Bcl-2 physical interaction  

Cybrid cells were grown in 75 cm2 flasks and were treated under the conditions 

mentioned in the section 2.5.3.1. After starvation conditions, cells were scraped and 

lysed on ice in a non-denaturing lysis buffer [20 mM Tris-HCl (pH 7.0), 100 mM NaCl, 2 

mM EDTA, 2 mM EGTA, supplemented with 0.1% (v/v) SDS, 1% (v/v) Triton X-100, 2 

mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a protease inhibitor cocktail]. Cellular 

suspensions were centrifuged at 20,000 ×g, for 10 min at 4ºC and whole lysates were 

assayed for protein concentration as mentioned in the section 2.5.3.1.  

http://wolfson.huji.ac.il/purification/PDF/Protein_Expression_Extraction/Calbiochem_SubcellularProtExtrKit.pdf
http://wolfson.huji.ac.il/purification/PDF/Protein_Expression_Extraction/Calbiochem_SubcellularProtExtrKit.pdf


Chapter II 

 

 
68 

 Afterward, 500 μg of each sample were precleared with Protein A Sepharose 

beads (GE Healthcare Bio-Sciences, Uppsala, Sweden) for 1 h, at 4ºC, and then 

incubated with the primary rabbit polyclonal anti-Beclin (1:100) antibody, overnight at 4ºC 

and with nutation. Protein A-Sepharose beads were then added to samples followed by 2 

h incubation. The beads were spun down and washed seven times with the previously 

referred washing buffer (each time centrifuging at 4°C and discarding the supernatant). 

For the first two washes the buffer was supplemented with 1% (v/v) Triton X-100. For the 

next three washes the buffer was supplemented with 1% (v/v) Triton X-100 and 500 mM 

NaCl. The final two washes were performed using unsupplemented buffer. The last 

supernatant was collected and 25 μl of 2 × concentrated sample buffer was added. The 

samples were boiled at 95-100°C for 5 min to denature the protein and to separate it 

from the protein-A beads. The boiled proteins were centrifuged at 20,000 ×g for 5 min at 

room temperature and the supernatants collected. Samples including the input, flow 

trough and immunoprecipitated complex, were separated by SDS–PAGE and analyzed 

by Western blotting using the rabbit polyclonal anti-Bcl-2 (1:1000) and the rabbit 

polyclonal anti-Beclin (1:1000) primary antibodies, as mentioned in the section 2.5.3.1. A 

shift < 5 kDa is observed in the molecular weight of Bcl-2 in the IP, which might be due to 

different salt concentrations between the lysis buffer and the IP buffer. 

 

2.5.4 Clearance of autophagic substrates  

2.5.4.1 p62 levels  

Cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. Cell lines treatment conditions included normal 

nutrient (serum +) and starvation for 6 h before harvesting. Where indicated, 20 mM 

ammonium chloride and 100 μM leupeptin were added in the culture medium in the last 4 

h of fed/starved cells.  

 Following cell treatments, cells were harvested and samples were processed and 

subjected to SDS-PAGE and immunoblotting analysis using the rabbit polyclonal anti-

SQSTM1/p62 (1:1000) antibody, as described in the section 2.5.2.1. 
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2.5.4.2 α-Synuclein oligomerization patterns  

Cybrid cells were grown in 75 cm2 flasks and were treated under the conditions 

mentioned in the section 2.5.2.1. 

 For the analysis of α-synuclein oligomerization patterns, a detergent solubility 

fractionation was performed by using 1% (v/v) Triton X-100 containing hypotonic lysis 

buffer [25 mM HEPES (pH 7.5), 2 mM MgCl2, 1 mM EDTA and 1 mM EGTA, 

supplemented with 2 mM DTT, 0.1 mM PMSF and a 1:1000 dilution of a protease 

inhibitor cocktail] and incubating cells suspensions for 15 min on ice followed by 

ultracentrifugation (163,400 ×g, 15 min, 4°C). The supernatant was designated Triton X-

100-soluble fraction, and the pellet was redissolved in 1% (v/v) SDS-containing lysis 

buffer and sonicated for 10 s (Triton X-100-insoluble fraction). Seventy-five micrograms 

of each cell lysate was loaded onto 10% SDS-PAGE gels under non-reducing and non-

denaturating conditions and subjected to SDS-PAGE and immunoblotting analysis using 

the mouse monoclonal anti-α-synuclein [clone LB509, (1:100)] antibody, as described in 

the section 2.5.2.1. 

 

2.5.4.3 Autophagosome-lysosome fusion 

Autophagosome-lysosome fusion can be visualized via immunofluorescence imageing 

as the co-localization of LC3 positive vesicles with a lysosome marker (e.g., LAMP-1) 

(Bains and Heidenreich, 2009).  

 Cybrid cells growing in 75 cm2 flasks were replated on treated glass coverslips (16 

mm diameter) in 12-well plates at the concentration of 1.0×105 cells/mL. To modulate 

microtubule dynamic instability 5 nM taxol and 1 µM nocodozole were added in the 

culture medium for 24 h, and 20 mM ammonium chloride and 100 μM leupeptin in the 

last 4 h.  

 Following treatment, cells were analyzed by indirect immunofluorescence as 

mentioned in the section 2.3.2, using the rabbit monoclonal anti-LC3 XP® (1:400) and the 

mouse monoclonal anti-LAMP-1 [clone H4A3, (1:100)] primary antibodies. Colocalization 

of the two antibodies (LC3/LAMP-1) was quantified in thresholded images with the 

JACoP plug-in of the ImageJ software, according to Bolte and Cordelières (Bolte and 

Cordelieres, 2006).  
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2.5.5 Evaluation of autophagy modulation on cell death-related events 

NT2 Rho+, Rho0 and cybrid cells growing in 75 cm2 flasks were replated into 6-well 

plates at the concentration of 2.5×105 cells/mL. Cells treatment conditions included 20 

mM ammonium chloride and 100 μM leupeptin, 10 mM 3-MA or 0.5 μM rapamycin added 

in the culture medium in the last 4 or 6 h before harvesting, respectively. 

 Induction of apoptic cell death related mechanisms was determined by the 

caspase-3 activation assay as described in the section 2.3.9. 

 

 

2.6 Microtubule network status and intracellular trafficking 

 

2.6.1 Microtubule network morphology  

Cybrid cells growing in 75 cm2 flasks were replated on treated glass coverslips (16 mm 

diameter) in 12 well plates at the concentration of 1.0×105 cells/mL. Where indicated, 

cells were treated with 5 µM AK-1 and 10 µM Tubastatin A added in the culture medium 

for 24 h. Following treatment, cells were analyzed by indirect immunofluorescence as 

described in the section 2.3.2, using the mouse polyclonal anti-α-tubulin (1:1000) primary 

antibody. 

 

2.6.2 Microtubule network postranslational modifications: acetylation 

Cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. Cell line treatment conditions were as described in the 

section 2.6.1. Following cell treatments, cells were harvested and samples were 

processed and subjected to SDS-PAGE and immunoblotting analysis using the mouse 

polyclonal anti-acetyl-α-tubulin (1:2000) primary antibody, as described in the section 

2.5.2.1. 

 

2.6.3 Microtubule network structural integrity 

Cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×105 cells/mL. Cell lines treatment conditions were as described in 

the section 2.6.1.  

 Following cell treatments, soluble and polymeric fractions of cell tubulin were 

prepared according to the method described by Joshi and Cleveland (Joshi and 

Cleveland, 1989), with slight modifications. Cells were washed twice, very gently, with a 
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microtubule stabilizing buffer (0.1 M N-morpholinoethanesulfonic acid, pH 6.75, 1 mM 

MgSO4, 2 mM EGTA, 0.1 mM EDTA, 4 M glycerol). Soluble proteins were extracted at 

37°C for 4-6 min in 100 μl of microtubule stabilizing buffer containing 0.1% Triton X-100. 

The soluble extract was removed and centrifuged for 2 min in order to pellet any 

cytoskeletal material dislodged from the culture dish during extraction. The remaining 

cytoskeletal fraction in the culture dish was scraped in 100 μl of 25 mM Tris (pH 6.8) and 

0.5% SDS. This suspension was frozen three times in liquid nitrogen. Then, samples 

were processed and subjected to SDS-PAGE and immunoblotting analysis using the 

mouse polyclonal anti-α-tubulin (1:10,000) primary antibody, as described in the section 

2.5.2.1. 

 

2.6.4 SIRT2 tubulin deacetylase subcompartmentalization 

Cybrid cells were grown in 75 cm2 flasks and were treated under the conditions 

mentioned in the section 2.6.1. Following treatments, mitochondria-, cytosol-, nuclei-, 

and cystoskeleton-enriched fractions were obtained as described in 2.5.3.2.  

 For each sample, equal amounts of protein (50 µg) were separated under reducing 

conditions on 12% SDS-PAGE gels and analyzed by Western blotting using the rabbit 

polyclonal anti-SIRT2 (1:1000) antibody, as described in the section 2.5.2.1. The rabbit 

monoclonal anti-α-tubulin (clone 11H10, 1:1000), the rabbit polyclonal anti-TOM20 

(1:1000), the mouse monoclonal anti-TATA binding protein (1:1000), and the rabbit 

polyclonal anti-Vimentin (1:1000) primary antibodies were used as loading controls for 

cytosol-, mitochondria-, nuclei-, and cystoskeleton-enriched fractions, respectively. 

 

2.6.5 Intracellular transport of mitochondria and autophagosomes 

2.6.5.1 Modulation of microtubule-dependent trafficking of autophagosomes 

Cybrid cells growing in 75 cm2 flasks were replated into 10 cm petri-dishes at the 

concentration of 3.0×106 cells/mL. To modulate microtubules dynamic instability 5 nM 

taxol and 1 µM nocodozole were added in the growth medium in normal nutrient 

conditions for 24h. Following cell treatments, cells were harvested and samples were 

processed and subjected to a SDS-PAGE and immunoblotting analysis using the rabbit 

polyclonal anti-LC3B (1:1000) antibody, as described in the section 2.5.2.1. 
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2.6.5.2 Live-cell imaging of mitochondria movement 

Cybrid cells growing in 75 cm2 flasks were replated into ibidiTreat µ-Slide eight-well 

plates at the concentration of 2.0×104 cells/mL. Cells treatment conditions included 

normal nutrient (serum +) and starvation for 6h. To modulate microtubule dynamic 

instability 5 nM taxol and 1 µM nocodozole were used in normal nutrient conditions for 24 

h. Where indicated, 20 mM ammonium chloride and 100 μM leupeptin, were added in the 

culture medium in the last 4h of fed/starved cells.  

 Following treatments, cells were washed twice with HBSS, and to label 

mitochondria, cells were then incubated with 100 nM MitoTracker Green in HBSS for 30 

min, at 37°C, in the dark, according to Du et al. (Du et al., 2010). After a gentle wash 

cells were kept in HBSS, and were imaged for mitochondrial movements. Time-lapse 

images were captured under a Zeiss LSM 510 meta confocal microscope with a stage-

based chamber (5% CO2, 37°C). The inverted microscope was driven by the LSM 

software and images were taken every 2 s for a total of 4 min under 63 × magnification 

(Zeiss Plan-ApoChromat 63 ×, 1.4NA). 

 For transport analysis, mitochondria were considered not mobile if they remained 

stationary for the entire recording period. Movement was counted only if the 

displacement was more than the length of the mitochondrion (~2 μm). 

 For each time-lapse movie, mitochondria were manually tracked and transport 

parameters of mitochondria movements were generated using the ImageJ software plug-

in Multiple Kymograph, submitted by J. Rietdorf and A. Seitz (European Molecular 

Biology Laboratory, Heidelberg, Germany). Mitochondrial movement velocity data were 

determined from the kymographic images and were calculated based on the slope 

(v=dx/dt) obtained for each mitochondrion movement profile along the recording time. 

Each series of images was recorded for at least three randomly selected MitoTracker 

Green-labeled cells per culture and three independent cultures per condition. 

 

2.6.5.3 Live-cell imaging of autophagosome movement 

Cybrid cells growing in 75 cm2 flasks were replated into ibidiTreat µ-Slide eight-well 

plates at the concentration of 2.0×104 cells/mL. To modulate microtubule dynamic 

instability 5 nM taxol and 1 µM nocodozole were used in normal nutrient conditions for 24 

h. Where indicated, 20 mM ammonium chloride and 100 μM leupeptin, were added in the 

culture medium in the last 4h.  

 Following treatments, cells were washed twice with HBSS and late 

autophagosomes and earlier vacuoles in the autophagy pathway were labeled using the 

Cyto-ID™ Green detection reagent provided in the Cyto-ID™ Autophagy detection kit 
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(Enzo, Lausen, Switzerland) according to the manufacturer’s instructions. After a gentle 

wash, cells were kept in HBSS and were imaged for autophagosome movements. Time-

lapse images acquisition and transport analysis were performed as described in the 

section 2.6.5.2. Movement was counted only if the displacement was more than the 

length of the autophagosome (~500 nm). Each series of images was recorded for at 

least three randomly selected Cyto-ID™ Green-labeled cells per culture and three 

independent cultures per condition. 

 

 

2.7 Data Analysis 

All data were expressed as mean ± SEM of at least three independent experiments. 

Statistical analyses were performed using GraphPad Prism 5 (GraphPad Software, San 

Diego, CA, USA). Differences between two data sets were evaluated by two tailed 

unpaired Student’s t-test. Statistical tests between multiple data sets and conditions were 

carried out using a one way or two-way analysis of variance (ANOVA) followed by 

Bonferroni post hoc test or the Newman-Keuls multiple comparison test to determine 

statistical significance, as appropriate. A P-value<0.05 was considered statistically 

significant. 
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3.1 Summary 

Sporadic Parkinson’s disease (sPD) is a progressive neurodegenerative disease 

characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta. 

Many cellular mechanisms are thought to be involved in the death of these specific 

neurons in sPD, including oxidative stress, changes in intracellular calcium (Ca2+) 

homeostasis, and mitochondrial dysfunction. In addition, recent studies have revealed 

that also the endoplasmic reticulum (ER) stress in conjunction with abnormal protein 

degradation can contribute to the sPD pathophysiology. 

 Here, we investigated the molecular mechanisms underlying the interplay between 

the ER and mitochondria and its relevance for the control of neuronal cell death in sPD. 

We observed that 1-methyl-4-phenylpyridinium (MPP+) induces changes in the 

mitochondrial function, affecting the mitochondrial membrane potential and the electron 

transport chain function. Likewise, it was also evident the activation of the unfolded 

protein response by the overexpression of the chaperone BiP/GRP78. 

 Moreover, MPP+ stress stimuli caused the release of Ca2+ from the ER, which 

consistently induced mitochondrial Ca2+ uptake, with a rise in the mitochondrial matrix 

free Ca2+. Besides, inhibition of Ca2+ release from the ER prevented the activation of 

mitochondria-dependent caspases induced by MPP+.  

 Our findings show that the ER and mitochondria are in a close communication, 

establishing a dynamic ER-Ca2+-mitochondria interconnection that can play a prominent 

role in the neuronal cell death induction under particular stressful circumstances of sPD 

pathology. 
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3.2 Introduction 

 

Sporadic Parkinson’s disease (sPD) is a severe and progressive neurodegenerative 

disease of unknown cause, characterized by a selective and profound loss of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) and 

norepinephrinergic neurons of the locus coeruleus. The most prominent histopathological 

hallmark of sPD is the intracellular accumulation of insoluble fibrous material, named 

Lewy bodies (LBs), found in the cytoplasm of neurons (Cardoso et al., 2005). LBs are 

formed by aggregates of several proteins, including α-synuclein, ubiquitin, synphilin and 

tubulin (Shimura et al., 2000).  

 Several reports support a link between the endoplasmic reticulum (ER) stress and 

sPD. Thus, it has been demonstrated the up-regulation of ER chaperones, such as 

protein disssulfide isomerase (PDI), in postmortem brain tissues and cell culture models 

of sPD, and the accumulation of PDI in LBs (Conn et al., 2004). Other evidences come 

from studies of certain neurotoxins that are used as model compounds to mimic the 

disease process both in neuronal cells and in vivo (Ryu et al., 2002; Holtz and O'Malley, 

2003). Compounds, such as 6-hydroxydopamine (6-OHDA) and N-methyl-4-phenyl-

1,2,3,6 tetrahydropyridine (MPTP), or its active metabolite, 1-methyl-4-phenylpyridinium 

(MPP+), induce oxidative stress and impair mitochondrial respiration and energy 

metabolism. Recent studies in cultured cells, including dopaminergic neurons, have 

demonstrated that these compounds trigger ER stress and are also involved in the up-

regulation of diverse components of the unfolded protein response (UPR) (Ryu et al., 

2002; Holtz and O'Malley, 2003). It has also been well-established that mitochondrial 

function is altered in the course of sPD, particularly at the mitochondrial NADH-

ubiquinone oxidoreductase (complex I) level (Cardoso et al., 2005). The complex I 

deficiency in the SNpc and platelets of patients with sPD has been consistently noticed 

(Parker et al., 1989; Schapira et al., 1989; Mann et al., 1994; Haas et al., 1995). 

Accordingly, it seems that sPD has a mitochondrial component and that probable factors 

which directly or indirectly modulate normal mitochondrial functions could compromise 

neuronal survival.  

 The fundamental contribution of mitochondria and ER to the cellular fate has been 

increasingly recognized. Moreover, mitochondria are often closely associated with the 

ER providing the conditions for a local and privileged communication between the two 

organelles (Csordas et al., 2006).  
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 Therefore, it seems worthwhile to unveil the molecular mechanisms that coordinate 

the interplay between mitochondrial dysfunction and the ER stress and its relevance for 

the control of neuronal cell death in a sPD context. 

 In the present work, we report that an altered mitochondrial function renders cells 

more susceptible to develop an ER stress response. We propose that calcium (Ca2+) is 

the main intervenient in the ER and mitochondria crosstalk, functioning as a key 

modulator of cell death signals triggered by the ER and mitochondria. 
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3.3 Results  

3.3.1 Characterization of mitochondrial function  

Concentrations of high micromolar or millimolar range of MPP+ are usually used to study 

its neurotoxic effects and apoptosis induction (Bando et al., 2005; Domingues et al., 

2008a; Esteves et al., 2008). We have previously reported that MPP+ triggers apoptotic 

cell death, upon 24 h, in different PD cellular models (Arduino et al., 2008; Domingues et 

al., 2008a; Esteves et al., 2008).  

 In this study, to characterize the mitochondrial function in the NT2 cell line after 

short- (2, 4, 6 h) and long-term (24 h) periods of MPP+ exposure, we have evaluated the 

mitochondrial respiratory chain complex I activity and changes in the mitochondrial 

membrane potential (Δm). As expected, results detailed in Table III.1 demonstrate that 

MPP+ induced a statistically significant decrease of this mitochondrial respiratory chain 

complex activity.  

 

Table III.1. Mitochondrial respiratory chain NADH-ubiquinone oxidoreductase (complex I) 

activity (nmol.min
-1

.mg
-1

). Data represent mean ±SEM. 

 

Condition Complex I activity (nmol.min
-1

.mg
-1

) 

 2h 4h 6h 24h 

Control 5.60±0.232 5.32±0.521 5.23±0.547 4.72±0.540 

MPP
+
 1.44±0.155*** 1.45±0.084*** 1.35±0.119*** 1.21±0.014*** 

*** p<0.001 relative to the corresponding control. 

  

 

Nevertheless, as shown in the Figure III.1, we were unable to observe a significant 

alteration in rhodamine 123 (Rh123) retention induced by MPP+ for the first 6 h.  

 These results suggest that, although NT2 cells harbour deficits in mitochondrial 

respiratory chain complex I and show an increase in reactive oxygen species (ROS) 

production during the first 6 h period (Domingues et al., 2008b), they are able to maintain 

m until 24 h. 



Mitochondria – ER interplay in Parkinson’s disease 

 
81 

 

Figure III.1. Mitochondrial function is affected in NT2 neuron-like cells after long-term 

exposure to MPP
+
.  

Changes in mitochondrial membrane potential (Δm) induced by MPP
+
 were estimated using the 

fluorescent cationic dye Rh123 as depicted in Chapter II. Rh123 retention was determined by the 

difference between total fluorescence (after mitochondrial membrane depolarization) and the 

initial value of fluorescence. Data are expressed as a percentage of the untreated cells values 

(control) and are mean±SEM (n=3; *** p<0.001, relative to control). 

 

 

3.3.2 MPP+ activates UPR in an early phase 

Our next step was to clarify the effect of a decreased activity of the mitochondrial 

respiratory chain complex I on the ER stress induction. The initial cellular response 

following ER stress, also called UPR, protects the cell through adaptive mechanisms that 

re-establish normal ER function (Xu et al., 2005; Boyce and Yuan, 2006). For this 

purpose, we have analyzed the expression levels of a specific UPR marker, BiP/GRP78, 

a chaperone known to be localized in the ER lumen and that function in Ca2+ 

sequestration or that assist to the correct folding and assembly of nascent proteins 

(Nigam et al., 1994; Lievremont et al., 1997). 

 Overall, Figure III.2 shows a representative BiP/GRP78 immunoblot (Figure III.2A) 

and the corresponding protein levels (Figure III.2B) in cells treated with MPP+ for the 

different time points (2, 4, 6 and 24 h) . 
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Figure III.2. The unfolded protein response is activated in an early phase by MPP+ in NT2 

neuron-like cells.  

A. Whole-cell lysates from untreated and MPP
+
-treated cells were prepared as described in 

Chapter II and the levels of BiP/GRP78 were determined by immunobloting analysis for 2, 4, 6 

and 24 h. The blots were reprobed for α-tubulin to confirm equal protein loading. The data are 

from representative blots. B. Quantification of BiP/GRP78 levels by densitometric analysis of each 

time point corresponding blots. Data are reported as the fold increase over the untreated cell 

values (control) (n=3-10; ***p<0.001, relative to control). 

 

 

Surprisingly, the levels of this ER chaperone was extensively up-regulated by MPP+ 

treatment upon 2 h, being observed a suppression of its expression pattern along the 

time course studied. 

 We suggest that, eventually, an increase in ROS production elicited by 

mitochondrial deficits at respiratory chain level potentiated this ER stress response. 
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3.3.3 Ca2+ is the mediator in the ER and mitochondria communication 

Mitochondria and the ER form two intertwined endomembrane networks and their 

dynamic physical interactions control metabolic flow, protein transport and intracellular 

Ca2+ homeostasis (Ferri and Kroemer, 2001; Berridge et al., 2003; Levine and Rabouille, 

2005). Therefore, we appointed Ca2+ as a potential mediator in the communication 

between these two organelles in the context of sPD pathology.  

 To investigate this point, we determined the ER Ca2+-content after cell treatment 

with MPP+ for the different time points studied. The ER Ca2+-content was evaluated by 

changes in cytosolic Ca2+, monitored using the Fura-2AM probe. Cytosolic Ca2+ was 

measured before and after the addition of thapsigargin (TPG), which evokes Ca2+ release 

from the ER (Figures III.3A-D). Overall, Figure III.3E shows that MPP+ promoted a 

gradual and sustained decrease of Ca2+ content in the ER.  

https://www.google.com/search?hl=pt-PT&client=firefox-a&hs=qUp&rls=org.mozilla:pt-PT:official&channel=s&biw=1296&bih=647&sa=X&ei=U7UFT_74N9DR8QOS85SnAQ&ved=0CBcQvwUoAA&q=thapsigargin&spell=1
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Figure III.3. MPP
+ 

triggers Ca
2+

 release from ER stores.  

Untreated (control) and MPP
+
-treated cells were loaded with 5 µM of Fura-2,AM for the 

fluorescence measurement of the ER Ca
2+

-content. A-D Representative traces of the fluorometric 

measurement of cytosolic Ca
2+ 

levels for the indicated time points. Cytosolic Ca
2+ 

was measured 

before and after the addition of 5 µM thapsigargin (TPG) to evoke ER Ca
2+ 

release (denoted as an 

arrow on the graphs). E. Measurement of ER Ca
2+

 released after TPG stimulation. The 

measurement of Ca
2+

 released was obtained by subtracting the fluorescence after to the 

fluorescence before TPG addition (n=4; *p<0.05, relative to control).  
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 We further investigated whether the observed ER Ca2+ changes are accompanied 

by changes in mitochondrial Ca2+-content. Mitochondria, by virtue of their membrane 

potential (Figure III.1) provide a sink for the buffering of cytoplasmic Ca2+ after the 

ionophore calimycin (A23187) stimuli. Therefore, we have also evaluated Ca2+ clearance 

by mitochondrial uptake and subsequent Ca2+ accumulation in the mitochondrial 

compartment following MPP+ treatment. After establishment of a stable baseline, cells 

were challenged with A23187, which rapidly increased the Rhod-2AM fluorescence, 

demonstrating Ca2+ accumulation in the mitochondrial matrix (Figures III.4 A-D).  

 We have also abserved that MPP+ led to an accumulation of Ca2+ in the 

mitochondrial matrix after 4 h treatment, which is in accordance with the decrease in the 

ER compartment for the same time point (Figures III.3E and III.4E). 
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Figure III.4. MPP
+ 

triggers Ca
2+

 uptake by mitochondria from cytosolic pools.  

Untreated (control) and MPP
+
-treated cells were loaded with 10 µM of Rhod-2, AM for the 

fluorescence measurement of mitochondrial Ca2+
-content. A-D Representative traces of the 

fluorometric measurement of mitochondrial matrix Ca
2+ 

levels for the indicated time points. 

Mitochondrial matrix Ca
2+ 

was measured before and after the addition of 5 µM of calimycin 

(A23187, A23) to take the mitochondrial maximal uptake ability (denoted as an arrow on the 

graphs). E. Measurement of Ca
2+ 

uptake by mitochondria. The measurement of mitochondrial 

Ca
2+

 uptake was obtained by the ratio of fluorescence before over total fluorescence after A23187 

addition (n=4; *p<0.05, relative to control). 
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 Taken collectively, these results demonstrate that Ca2+ release from the ER incited 

by MPP+ invariably induces mitochondrial Ca2+ uptake with a rise in mitochondrial matrix 

free Ca2+ after MPP+ treatment for 4 h. This suggests a qualitative inverse relationship 

between Ca2+ changes in the ER and mitochondria compartments. 

 Besides, these findings are consistent with the m data (Figure III.1), which 

pointed that m is not affected by the presence of MPP+ until 24 h and that there is a 

correlation between the maintenance of m and the ability of mitochondria to take up 

Ca2+. 

 

3.3.4 Mitochondria stress initiates ER and mitochondria caspase-dependent 

cell death 

We next decided to examine the mechanisms that the ER and mitochondria use to 

initiate and propagate cell death signals and its involvement in the control of neuronal 

death in a sPD context. 

 Firstly, following the cascade of death signalling downstream of the ER, we have 

analyzed the involvement of caspase-4 induced by MPP+. As shown in Figure III.5A, an 

increase in Ac-LEVD-pNA cleavage (caspase-4 activation) was only observed upon 

treatment with MPP+ for 24 h.  

 We have also analyzed caspase-2 and caspase-9 activities, which are thought to 

be involved in the cell death signals propagation triggered by mitochondria (Slee et al., 

1999; Susin et al., 1999; Guo et al., 2002). As shown in Figures III.5B and C, the 

activation pattern of caspase-2 (Ac-VDVAD-pNA cleavage) was similar to caspase-9 

(Ac-LEDH-pNA cleavage) and it was more marked in later stages following the 

treatments with MPP+.  

 Additionally, since caspase-3 is an effector caspase in the apoptotic process, and 

to better characterize the cell death mechanisms mediated by MPP+, it was also our 

interest to analyze its effects on caspase-3 activation. We observed an increase in Ac-

DEVD-pNA cleavage (caspase-3 activation) within 6 h, which was detectable till to 24 h 

treatment with MPP+ (Figure III.5D). To confirm the involvement of the ER Ca2+ in the 

activation of this caspase-cascade, we analyzed caspase-3 activation by MPP+ in cells 

exposed previously to dantrolene. We have observed that dantrolene, which blocks the 

ER Ca2+ release, was able to prevent MPP+-mediated caspase-3 activation (Figure 

III.5E). 
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Figure III.5. MPP
+
-induced ER and mitochondria stress activates ER and mitochondria-

dependent apoptotic pathways. A-D Effect of MPP
+
 on caspase 4-like activity (Ac-LEVD-pNA 

cleavage) (A), caspase 2-like activity (Ac-VDVAD-pNA cleavage) (B), caspase 9-like activity (Ac-

LEDH-pNA) (C), and caspase 3-like activity (Ac-DEVD-pNA cleavage) (D), respectively. Caspase 

activation was evaluated spectrophotometrically at 405 nm as described in Chapter II. Data are 

expressed relative to the basal activity observed in the untreated NT2 cells (n=4-8; **p<0.01, 

***p<0.001 relative to control). E. Protective effect of dantrolene on MPP
+
-induced caspase-3 

activation. Data are expressed relative to the basal activity observed in the untreated NT2 cells 

(n=3; **p<0.01; ***p<0.001, relative to control; 
###

p<0.001, relative to MPP
+
-treated cells). 
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3.4 Discussion 

In this study, we have investigated the molecular mechanisms underlying the crosstalk 

between the ER and mitochondria and their relevance to the sPD pathology. We provide 

some lines of direct evidence indicating that mitochondria and the ER can establish a 

dynamic signaling pathway, which is crucial for the activation of a cascade of cellular 

signals that culminates in apoptotic cell death.  

 First, we have characterized mitochondrial function upon MPP+ treatments. Our 

results demonstrate that MPP+, as expected, led to a steady decrease in the complex I 

oxidoreductase activity as soon as 2 h, but only induced considerable changes in Δm at 

24 h. Second, our results also indicate that an altered mitochondrial respiratory chain 

complex I activity seems to play an essential role in the ER-induced stress response. 

UPR as a consequence of ER stress was elicited by MPP+ at 2 h, indicating that 

mitochondria complex I activity may regulate an ER response. These results are in 

agreement with previous ones that reported the activation of UPR induced by 6-OHDA 

and MPP+ in cellular models of PD and in dopaminergic neurons of the SNpc of PD 

patients (Ryu et al., 2002; Holtz and O'Malley, 2003; Cooper et al., 2006; Hoozemans et 

al., 2007). MPP+ is thought to induce oxidative stress by mitochondrial function inhibition. 

The consequent accumulation of oxidized proteins that hinder the cellular protein 

degradation mechanisms leads to an accumulation of misfolded proteins into the ER 

(Friedlander et al., 2000). Interestingly, we have previously demonstrated, in the same 

cellular model, that MPP+-treatment for 2 h induces an increased generation of ROS 

(Domingues et al., 2008).  

 Moreover, changes in the redox state and the presence of ROS also affect the 

Ca2+ homeostasis by modulating the functionality of ER-based channels and buffering 

chaperones [for review see (Gorlach et al., 2006)]. In such instance, we suggest that a 

close relationship exists between ROS generation mediated by MPP+ and the ER stress, 

further contributing to the disruption of the mitochondrial function. 

 Our hypothesis is that the ER and mitochondria communicate via Ca2+ exchanges 

facilitated by the close proximity of their membranes that easily exchange lipids, Ca2+ 

and glycoproteins (Chandra et al., 1998; Rizzuto et al., 1998). 

 Ca2+ is one of the most important elements in cellular signaling. The ER, besides 

playing a major role in regulating synthesis, folding and transport of proteins, functions 

also as a dynamic Ca2+ store. The dynamic changes in free-cytosolic and in the ER Ca2+ 

are regulated by a number of factors including intracellular Ca2+ buffers (Ca2+ binding 

proteins, nucleotides and phosphate) and Ca2+-transporting systems (Ca2+ channels and 

Ca2+-ATPases). Moreover, mitochondria have been postulated to play an important role 
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as Ca2+ buffers participating in the intracellular Ca2+ handling machinery in stimulated 

cells (Hoth et al., 1997; Hajnoczky et al., 1999; Hoth et al., 2000). More recently, 

mitochondria have been considered not only as high-capacity Ca2+ buffers but also as 

active elements of the intracellular signaling system (Parekh, 2003; Butow and Avadhani, 

2004).  

 In this work, we have found that MPP+ evokes a gradual decrease in the ER Ca2+ 

content, concomitantly to an Ca2+ increase into the mitochondrial matrix. These results 

demonstrate that a net flux of Ca2+ from the ER to mitochondria occurs under ER and 

mitochondria stress conditions.  

 In fact, Ca2+ release from the ER has been implicated as a key signaling event in 

many apoptotic models and it may sensitize mitochondria to trigger apoptotic cell death. 

Furthermore, a growing number of ER proteins have been described to influence 

apoptosis by either interacting with Bcl-2 family members or altering ER Ca2+-responses, 

whereas several ER proteins are caspase substrates that may regulate the execution 

phase of apoptosis [for review see (Breckenridge et al., 2003b)]. 

 Our results revealed that stress in the ER and the subsequent ER Ca2+-release 

triggers a caspase-4 dependent pathway and also a mitochondrial-dependent apoptotic 

pathway, which leads to the activation of caspase-2 and -9. We propose that these two 

components of the ER and mitochondria stress can apparently work together to activate 

caspase-3, an executer caspase of the apoptotic process. Moreover, we proved, by 

inhibiting ryanodine receptors-mediated Ca2+ release with dantrolene, that ER Ca2+ 

fluxes evoked by MPP+ were able to induce caspase-3 activation. 

 Our results highlight the inevitable role of ER to mitochondria Ca2+ fluxes and their 

requirement to mitochondria-dependent cell death induction, enclosing a feedback loop 

whereas mitochondria signal ER, ER induces further mitochondrial alterations, like Δm 

loss, leading to the activation of a cascade of signals that culminates in apoptotic cell 

death. 
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4.1 Summary 

Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in 

the pathophysiology of neurodegenerative disorders contributing to the activation of the 

ER stress-mediated apoptotic cell death pathway.  

 Here, we investigated the molecular mechanisms underlying the interplay between 

the ER and mitochondria, focusing on calcium as a potential mediator and its relevance 

for the control of cell death signals. 

 Using NT2 cells treated with brefeldin A or tunicamycin, two ER stressors, we 

observed that ER stress induced changes in the mitochondrial function, affecting the 

mitochondrial membrane potential and the electron transport chain function. Moreover, 

stress stimuli at ER level evoked calcium fluxes between the ER and mitochondria. 

Under these conditions, ER stress activated the unfolded protein response by the 

overexpression of BiP/GRP78, although this chaperone was unable to prevent 

mitochondria-dependent caspases activation.  

 Our findings show that ER and mitochondria interconnection play a prominent role 

in the neuronal cell death induction under particular ER stress circumstances. 
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4.2 Introduction 

The endoplasmic reticulum (ER) has several important functions including the regulation 

of intracellular calcium (Ca2+) homeostasis, protein glycosylation, and formation of 

disulfide bounds and folding and assembly of newly synthesized secretory proteins.  

 Under various conditions, ER function is disturbed leading to the accumulation of 

unfolded proteins and activation of a sporadic ER stress response, also known as 

unfolded protein response (UPR). In an attempt to survive, cells develop self-protective 

mechanisms, whereby conditions within the ER are communicated to the protein 

translation machinery and to the nucleus in order to restore cellular homeostasis. When 

cells are subjected to severe or prolonged ER stress, the transcriptional factor 

CHOP/Gadd153 is activated and apoptotic cell death may occur (Kaufman, 1999a, b; 

Paschen et al., 2001). ER stress has been implicated in many important diseases, 

including neurodegenerative disorders. We have recently demonstrated that the 

Alzheimer’s disease-associated amyloid-β peptide induces ER stress contributing to Ca2+ 

release through ryanodine (RyR) and inositol 1,4,5-triphosphate (IP3R) receptors, with 

subsequent increase in intracellular Ca2+ levels and induction of apoptosis (Ferreiro et 

al., 2006). Moreover, it has been demonstrated the up-regulation of ER chaperones, 

such as protein disulfide isomerase (PDI) in postmortem brain tissues and cell culture 

models of Parkinson’s disease (PD), accumulating preferentially in Lewy bodies (Conn et 

al., 2004). Recent studies in cultured cells, including dopaminergic neurons, have 

demonstrated that PD-related neurotoxins, such as 6-hydroxydopamine (6-OHDA) and 

N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) or even its active metabolite 1-

methyl-4-phenylpyridinium (MPP+), trigger ER stress and are also involved in the up-

regulation of diverse components of the UPR (Ryu et al., 2002; Holtz and O'Malley, 

2003; Arduino et al., 2009a). Moreover, mitochondria are often closely associated with 

the ER providing the conditions for a local and privileged communication between the 

two organelles (Csordas et al., 2006).  

 Therefore, it seems worthwhile to unveil the molecular mechanisms that coordinate 

the interplay between the ER stress and mitochondrial function and their relevance for 

the control of cell death.  

 In the present work, we report that mitochondrial function is sensitive to ER stress 

stimuli and identify Ca2+ fluxes in the ER and mitochondria axis as key factors for cell 

death signals triggered by the ER and mitochondria stress. 
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4.3 Results and Discussion 

 

4.3.1 Brefeldin A and tunicamycin activate the unfolded protein response 

To induce ER stress, we used two pharmacological agents, employed as ER stress 

inducers, that block ER to Golgi protein trafficking (brefeldin A, BFA) or that inhibit N-

linked glycosylation reactions (tunicamycin, TUN).  

 Upon stress induction, ER activates the UPR by the induction of ER resident stress 

proteins, referred to as the glucose-regulated proteins (GRPs) (Lee, 1992). GRPs are 

Ca2+-binding chaperone proteins with protective properties. The best characterized GRP 

is GRP78, a 78-kDa protein also referred to as BiP. BiP/GRP78 is an essential regulator 

of the ER function due to its role in protein folding and assembly, ER Ca2+ binding and 

controlling the activation of transmembrane ER stress inducers (Little et al., 1994; Lee, 

2001). The cytoprotective function of BiP/GRP78 has been well recognized in several 

experimental systems (Rao et al., 2002; Reddy et al., 2003; Lee, 2005). 

 Figure IV.1 shows a representative BiP/GRP78 immunoblot (Figure IV.1A) and 

the corresponding protein levels (Figure IV.1B) in cells treated with BFA or TUN. Results 

show that the levels of this protein were up-regulated by BFA and TUN, indicating that 

BFA and TUN elicit ER stress.  
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Figure IV.1. Induction of UPR after exposure of NT2 cells to ER stress.  

A. Expression of BiP/GRP78 was determined by immunoblot analysis from untreated (control) 

and ER stressors (BFA, TUN)-treated cells. The blots were reprobed for α-tubulin to confirm equal 

protein loading. The data are representative blots. B. Quantification of BiP/GRP78 levels by 

densitometric analysis of the corresponding blots. Data are reported as the fold increase over the 

untreated cell values (n=8; ***p<0.001, relative to control).  
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as high-capacity Ca2+ buffers but also as active elements of the intracellular signaling 

system (Parekh, 2003; Sadek et al., 2004).  

 Therefore, we appointed Ca2+ as a potential mediator in the communication 

between these two organelles. To investigate this point, we determined ER Ca2+ content 

after cell treatment with ER stressors. ER Ca2+ content was assessed by changes in 

cytosolic Ca2+, monitored using Fura-2, AM. Cytosolic Ca2+ was measured before and 

after the addition of thapsigargin to evoke ER Ca2+ release. The difference in cytosolic 

Ca2+calcium before and after thapsigargin addition was taken as a measure of ER Ca2+ 

store. As shown in Figure IV.2, both ER stressors were able to induce Ca2+ release from 

the ER lumen (Figure IV.2A), demonstrated by the very low levels of ER Ca2+ content 

(Figure IV.2B).  
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Figure IV.2. Cellular Ca
2+

 fluxes upon ER stress in NT2 cells.  

Untreated (control), BFA or TUN treated cells were loaded with 5 μM Fura-2, AM for the 

fluorescence measurement of ER Ca2+
 content. A. Representative trace of the fluorometric 

measurement of cytosolic Ca
2+ 

levels for the indicated time points. Cytosolic Ca
2+ 

was measured 

before and after the addition of 5 µM TPG to evoke ER Ca
2+ 

release (denoted as an arrow on the 

graph). B. Measurement of ER Ca2+
 released after TPG stimulation. The measurement of Ca

2+
 

released was obtained by subtracting the fluorescence after to the fluorescence before TPG 

addition Data are reported in relation to untreated cells values (control) (n = 4, ***P ＜0.001, 

compared to control). 
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We further investigated whether the observed ER Ca2+ changes are accompanied by 

changes in mitochondrial Ca2+ content. The mitochondria, by virtue of their sustained 

membrane potential, provide a sink for the buffering of cytoplasmic Ca2+ after the calcium 

ionophore calimycin (A23187) stimuli. Thus, we evaluated Ca2+ clearance by 

mitochondrial uptake and subsequent Ca2+ accumulation in the mitochondrial 

compartment following the treatments indicated before. After establishment of a stable 

baseline, as a measure of basal mitochondrial Ca2+ stores, cells were challenged with 

the A23187, which rapidly increased the Rhod-2, AM fluorescence, demonstrating a 

mitochondrial matrix calcium accumulation (Figure IV.3A). The ratio between 

mitochondrial matrix calcium before and after challenging with A23187 was taken as an 

indirect measure of mitochondrial calcium content.  

In accordance with calcium fluxes release from ER (Figure IV.2), we detected a 

significant increase in mitochondrial calcium content induced by both ER stressors 

(Figure IV.3B).  
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Figure IV.3. Mitochondrial Ca
2+

 uptake fluxes upon ER stress induction in NT2 cells. 

Untreated (control) and BFA or TUN treated cells were loaded with 10 µM Rhod-2, AM for the 

fluorescence measurement of mitochondrial calcium content. A. Representative trace of the 

fluorometric measurement of mitochondrial matrix Ca
2+ 

levels. Mitochondrial matrix Ca
2+ 

was 

measured before and after the addition of 5 µM A23187 (A23) to take the mitochondrial maximal 

uptake ability (denoted as an arrow on the graph). B. Measurement of Ca
2+ 

uptake by 

mitochondria. The measure of mitochondrial Ca
2+

 uptake was obtained by the ratio of 

fluorescence before over the total fluorescence after A23187 addition (n=4; *p<0.05, compared to 

the control). 
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 These results lead us to presume that ER and mitochondria are in a close 

communication, establishing a dynamic signalling pathway. 

 

4.3.3 Brefeldin A and tunicamycin-evoked Ca2+ fluxes affect mitochondrial 

function 

Although we have demonstrated that ER induced stress potentiates mitochondrial Ca2+ 

uptake, we hypothesized that ER and mitochondria communication via Ca2+exchanges 

could stimulate alterations in mitochondrial function. 

 Therefore, we have investigated the functional significance of ER stress induction 

on mitochondrial function and its contribution to the initiation of cell death. We evaluated 

changes on m. As shown in Figure IV.4A, a slight decrease in rhodamine 123 (Rh123) 

retention induced by ER stress inducers was observed, suggesting that these 

compounds did not incite a substantial mitochondrial depolarization.  

In addition, we have also evaluated the mitochondria respiratory chain NADH-ubiquinone 

oxidoreductase (complex I) activity. Results shown in Figure IV.4B demonstrate that 

both BFA and TUN provoked a statistically significant decrease in mitochondrial 

respiratory chain complex I activity.  
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Figure IV.4. Effects of BFA and TUN on mitochondrial function.  

A. Changes in mitochondrial membrane potential induced by BFA and TUN stressors were 

estimated using the fluorescent cationic dye Rh123. Data are expressed as a percentage of the 

untreated cells values (control) (n=3; *p<0.05, relative to control). B. Mitochondrial respiratory 

chain complex I activity was determined as described in Chapter II. Data are reported in 

nmol/min/mg as the mean±SEM (n=4; ***p<0.001, relativel to control).  

 

 

Overall, these results indicate that mitochondrial respiratory chain activity is sensitive to 

the effects induced by brefeldin A and tunicamycin at ER level. 

 

 

4.3.4 Brefeldin A- and Tunicamycin-induced stress activates ER- and 
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Ca2+ release from the ER has been implicated as a key signaling event in many 

apoptotic models and it may influence the sensitivity of mitochondria to apoptotic 

alterations. Moreover, a recent discovery that a subpopulation of BiP/GRP78 can exist as 

an ER transmembrane protein implies that it can potentially interact directly with the 

cytosolic components of the apoptotic pathway and regulate their activity (Rao et al., 

2002; Reddy et al., 2003). For instance, GRP78 has been reported to form complexes 

with procaspases, such as mouse caspase-12, which associates with the outer ER 

membrane (Reddy et al., 2003). The protective function of BiP/GRP78 against a wide 

variety of stresses suggests that BiP/GRP78 may also interfere with the activity of key 

upstream regulators of apoptosis. 
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 Thus, we decided to examine the mechanisms through which ER-induced stress 

initiate and propagate cell death signals and its involvement in the control of cell death. 

Firstly, following the cascade of death signalling downstream of ER, we analyzed the 

involvement of caspase-4. As shown in Figure IV.5A, a significant increase in Ac-LEVD-

pNA cleavage by activated caspase-4 was observed upon BFA treatment only.  

 Previously, it has been demonstrated that BFA and TUN promote the translocation 

of cytochrome c from the mitochondrial matrix to the cytosol (Elyaman et al., 2002; Izuta 

et al., 2008). In line with this, we further analyzed the caspase-2 activity, which appears 

to act upstream of cytochrome c release and to be involved in the ER stress-mediated 

death (Guo et al., 2002; Lassus et al., 2002; Seo et al., 2006b), and caspase-9 activity, 

which is thought to be involved in the cell death signals propagation triggered by 

mitochondria (Slee et al., 1999). As shown in Figure IV.5B, only TUN activated caspase-

2 (Ac-VDVAD-pNA cleavage). Both ER stressors activated caspase-9 (Ac-LEDH-pNA) 

(Figure IV.5C). 
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Figure IV.5. Effects of ER stress on caspase activation in NT2 cells.  

Effect of brefeldin A (BFA) and tunicamycin (TUN) on caspase 4-like activity (Ac-LEVD-pNA 

cleavage) (A), caspase 2-like activity (Ac-VDVAD-pNA cleavage) (B), and caspase 9-like activity 

(Ac-LEDH-pNA cleavage) (C). Data are expressed relative to the basal activity observed in the 

untreated NT2 cells (control) (n=3-6; **p<0.001, ***p<0.001, relative to control). 

 

 

Interestingly, BFA and TUN differentially regulated the activation of caspase-4 and -2. 

BFA, by preventing anterograde transport and leading to the backflow of Ca2+ into the 

ER lumen, can activate caspase-4, but TUN, as an inhibitor of the N-glycosylation 

reactions of proteins in ER membrane, cannot. In support of this hypothesis, caspase-4 

was shown to be activated by ER stress in a specific-manner and not by membrane- or 

mitochondria-targeted signals (Hitomi et al., 2004). 

 Our results revealed that stress in the ER and the subsequent ER Ca2+ release 

triggers a caspase-4 dependent pathway and also a mitochondrial-dependent apoptotic 
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pathway, which leads to the activation of caspase-2 and -9. We suppose that these two 

components of the ER and mitochondria stress can apparently work independently. 

These results are consistent with a previous study which showed that BFA induces 

typical apoptosis features, such as mitochondrial breach and cell shrinkage, in follicular 

lymphoma cells (Guo et al., 2002). 

 First, our results demonstrated that ER stressors induced ER Ca2+ release to the 

cytosol. Second, perturbations at ER level by BFA and TUN potentiated Ca2+ uptake by 

mitochondria. Third, ER stress led to a low decrease of mitochondria membrane 

potential, with a substantial decline in the rotenone sensitive NADH oxidation.  

 Taken together, these results led us to infer the inevitable role of Ca2+ fluxes 

between the ER and mitochondria and subsequent caspase activation, representing a 

link between ER deregulation and mitochondria-dependent apoptotic pathways. 

 



 

 

 

  



 

 

 

 

 

 

 

 

 

CHAPTER V 

Mitochondrial metabolism in Parkinson’s disease 

impairs quality control autophagy by hampering 

microtubule-dependent traffic 
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5.1. Summary 

 

Abnormal presence of autophagic vacuoles is evident in brains of patients with 

Parkinson’s disease (PD), in contrast to the rare detection of autophagosomes in a 

normal brain. However, the actual cause and pathological significance of these 

observations remain unknown. 

Here, we demonstrate a role for mitochondrial metabolism in the regulation of the 

autophagy-lysosomal pathway in ex vivo and in vitro models of PD. We show that 

transferring mitochondria from PD patients into cells previously depleted of mitochondrial 

DNA is sufficient to reproduce the alterations in the autophagic system observed in PD 

patient brains. Although the initial steps of this pathway are not compromised, there is an 

increased accumulation of autophagosomes associated with a defective autophagic 

activity. We prove that this functional decline was originated from a deficient mobilization 

of autophagosomes from their site of formation toward lysosomes due to disruption in 

microtubule-dependent trafficking. This contributed directly to a decreased proteolytic 

flux of α-synuclein and other autophagic substrates. 

Our results lend strong support for a direct impact of mitochondria in autophagy 

as defective autophagic clearance ability secondary to impaired microtubule trafficking is 

driven by dysfunctional mitochondria. We uncover mitochondria and mitochondria-

dependent intracellular traffic as main players in the regulation of autophagy in PD. 
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5.2. Introduction  

 

Parkinson’s disease (PD) is a common neurodegenerative movement disorder, 

characterized by a dramatic loss of midbrain dopaminergic neurons in the substantia 

nigra pars compacta (SNpc), and the presence of ubiquitylated α-synuclein-containing 

intracytoplasmic inclusions called Lewy bodies (LBs) in surviving SNpc neurons (Forno, 

1996). 

 Ageing is considered the greatest risk factor for sporadic PD (sPD). Accumulation 

of mitochondrial DNA (mtDNA) mutations and mitochondria-driven oxidative stress is 

thought to represent a bridge between sPD and the natural ageing process. 

Mitochondrial association with sPD was established when a mitochondrial NADH 

dehydrogenase (complex I) activity deficit was identified in the SNpc of post-mortem PD 

patient brains (Schapira et al., 1989) and in PD patient platelets (Parker et al., 1989). In 

addition, mtDNA involvement in complex I defects observed in PD platelets was further 

recognized after transference of platelet mitochondria into mtDNA-deficient cell lines and 

validated in the resultant cell lines known as ‘‘cybrids’’ (Swerdlow et al., 1996). Data 

obtained using this ex vivo cellular model have shown that several pathogenic features 

observed in PD subject brains are actually recapitulated by PD cybrids (Cardoso, 2011; 

Swerdlow, 2011). Moreover, the generation of fibrillar and vesicular protein inclusions in 

sPD cybrids replicating most antigenic and structural features of LBs was reported 

(Trimmer et al., 2004b; Esteves et al., 2009). 

 The presence of LBs-like structures in sPD cybrids suggests that mitochondrial 

dysfunction associated with defective protein handling may account for PD 

pathogenesis. Relevant to PD pathology, autophagy represents a major mechanism by 

which intracellular long-lived proteins, protein aggregates (such as α-synuclein 

oligomers) and entire cytoplasmic organelles (such as mitochondria) are directly 

degraded within lysosomes. It is now considered that constitutive basal autophagic 

activity is a main quality control (QC) process that selectively disposes aberrant protein 

aggregates and damaged organelles for degradation (Lee et al., 2010b; Lee et al., 

2010a). Thus, the regulation of QC autophagy may be critical to restrain the 

neurodegenerative process (Wong and Cuervo, 2010; Arduino et al., 2011b).  

 In line with this, growing evidence has suggested a role for autophagy deregulation 

in PD. Increased number of autophagosomes has been observed in cultured cells 

treated with mitochondrial complex I inhibitors such as 1-methyl-4-phenylpyridinium 

(MPP+), rotenone and 6-OHDA (Chen et al., 2007; Dagda et al., 2008), and in 

postmortem PD patient brains (Anglade et al., 1997). Although these changes have been 
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commonly interpreted as an abnormal induction of autophagy, the actual origin and 

significance of these observations for the disease pathogenesis remain elusive. 

 Here, we investigated cause-and-effect relationships between mitochondrial 

dysfunction, microtubule network disruption and accumulation of autophagosomes and 

autophagy substrates. Using sPD cybrid cells, mtDNA-depleted cells and MPP+-treated 

primary cortical neurons, we characterized basal and induced autophagic responses and 

the clearance of autophagy cargos. We found that changes in mitochondrial function per 

se have a severe impact on autophagy since autophagosomes are actually actively 

formed but inefficiently cleared in sPD cells. Molecular dissection of each of the steps 

revealed that microtubule disruption rather than abnormal induction of autophagy gives 

rise to the characteristic patterns of autophagic pathology observed in PD. 
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5.3. Results 

5.3.1. Hybrid cells harboring sPD patient mitochondria and mtDNA-depleted 

cells accumulate morphologically abnormal mitochondria and nonfused 

autophagic vacuoles 

To directly explore the functional consequences of an altered mitochondrial function over 

the autophagic-lysosomal system in the context of sPD, we modeled PD by creating 

transmitochondrial cytoplasmic hybrid cell lines (cybrids) in which endogenous 

mitochondrial DNA (mtDNA) from sPD or control (CT) subject platelets was transferred to 

human teratocarcinoma (NT2) cells after complete depletion of endogenous mtDNA 

(Rho0 cells). By this approach, it is possible to follow the effects of mtDNA heteroplasmy 

within a nuclear and environmentally controlled context, thus providing a rational basis 

for the propagation of PD-related mitochondrial dysfunction, including a decline in 

mitochondrial ATP synthesis capacity and other mitochondria-dependent processes. 

 In this study, we used the same cohort of cybrids that was previously characterized 

in terms of mitochondrial bioenergetics (Esteves et al., 2010c). In this cohort, sPD 

cybrids were found to have a reduced complex I function, though citrate synthase 

activity, a commonly used quantitative mitochondrial enzyme marker, was not altered. In 

addition, basal oxygen consumption between sPD and CT cybrids was comparable. 

However, when mitochondria were challenged via chemical-induced uncoupling into a 

state of maximum oxygen consumption, sPD cybrids revealed an increase in proton leak 

in conjunction with a reduced respiratory reserve capacity and ATP production, 

compared with CT cells. In addition, pathways influenced by aerobic metabolism were 

also altered in these sPD cybrids. sPD cybrids showed reduced sirtuin-1 (SIRT1) 

phosphorylation, reduced peroxisome proliferator-activated receptor-gamma coactivator-

1alpha (PGC-1α) levels and increased NF-kB activation (Esteves et al., 2010c). 

 In this study, to investigate potential sequence variations that may be functionally 

relevant and cause mitochondrial dysfunction in sPD, we sequenced cybrid mtDNA 

derived from three sPD patients and three CT subjects and performed an mtDNA 

screening analysis of seven mtDNA genes coding for complex I subunits. As shown in 

Table V.1, we identified different patterns of mtDNA variations, in both CT and sPD 

patients.  
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Table V.1. Summary of mtDNA investigation results. 

Sample mtDNA sequence 
variations 

Status (according to MITOMAP) Gene 

CT2 

3915G>A CRP MTND1 

4727A>G CRP MTND2 

11253T>C CRP; PM reported in LHON and PD MTND4 

CT3 

3915G>A 

4727A>G 

CRP 

CRP 

MTND1 

MTND2 

11253T>C CRP; PM reported in LHON and PD MTND4 

CT8 

10685G>A CRP MTND4L 

11467A>G CRP; PM reported in altered brain pH MTND4 

11719G>A CRP MTND4 

12070G>A CRP MTND4 

12372G>A CRP; SM in prostate tumor; PM reported in altered 

brain pH 

MTND5 

13617T>C CRP MTND5 

PD4 14470T>A CRP MTND6 

PD5 

3992C>T CRP; SM in thyroid tumor MTND1 

4025A>G CRP MTND1 

5004T>C CRP MTND2 

14365C>T CRP MTND6 

14582A>G CRP MTND6 

PD6 

3652A>G* UnP in Congenital Non-syndromic Deafness MTND1 

4216T>C CRP; SM in acute leukemia platelets, leukocytes 

and bone marrow; PM-haplogrup marker JT in 

LHON/Insulin Resistance 

MTND1 

4917A>G CRP; PM reported and haplogroup T marker in 

LHON/Insulin Resistance/AMD/NRTI-PN 

MTND2 

11251A>G CRP MTND4 

11719G>A CRP MTND4 

11812A>G CRP MTND4 

13368C>A CRP MTND5 

13965T>C CRP MTND5 

14233A>G CRP MTND6 

Notes: the nomenclature of genes is presented according to MITOMAP; CRP: coding region polymorphism; 

*heteroplasmy; SM: somatic mutation; PM: point mutation; UnP: unpublished polymorphism; LHON: Leber 

Hereditary Optic Neuropathy; AMD: Age-Related Macular Degeneration; NRTI-PN: Antiretroviral Therapy-

Associated Peripheral Neuropathy. 

However, no consistent differences were found in terms of mutation patterns or 

localizations and no PD-related mtDNA variations were detected in sPD cybrids. Our 

results do not rule out the possible involvement of mtDNA on mitochondrial dysfunction 

observed in sPD cybrids since other genes outside the regions investigated may be 

involved in the disease or that mtDNA involvement is related to either deletion events or 

copy number alterations. We then decided to evaluate whether the phenotypic 

biochemical changes found earlier in these cybrids are correlated with the mitochondrial 

content. We performed a comparative analysis for different mitochondrial markers in 
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order to assess the total mitochondrial pool of CT versus sPD cybrids. As shown in 

Figures V.1A and B, we have found variability among the levels of the proteins studied, 

but no statistically significant differences in sPD cybrids in comparison with CT cells were 

detected in the most significant structural proteins of mitochondria.  

 We have also evaluated complex I activity, and, as previously characterized by our 

group (Esteves et al., 2008; Esteves et al., 2010c), sPD cybrid cell lines show a stable 

decrease in this mitochondrial activity (Figure V.1C).  

 

Figure V.1. Mitochondrial deficits are related with an altered ETC complex I activity.  

A. Immunoblot for mitochondrial markers (Hsp60, VDAC/Porin, TOM20, COXIV, NDUFA2) from 

CT and PD cybrids. B. Densitometric analysis of mitochondrial marker levels (n=8, *p<0.05, 

versus CT cybrids). C. Mitochondrial respiratory chain complex I activity. Data are reported in 

nmol/min/mg as the mean ± SEM (n=12; **p<0.01, versus CT cybrids).  
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To evaluate mitochondrial distribution and morphology, we used TOM20 staining and 

determined indices of mitochondrial interconnectivity and mitochondrial elongation. 

Mitochondrial interconnectivity is calculated as the mean area/perimeter ratio and is 

consistent with the degree of mitochondrial branching, namely the connectivity/dynamics 

between mitochondria (Koopman et al., 2005b; Koopman et al., 2005a). A higher 

mitochondrial interconnectivity means a higher access and communication between 

mitochondria. We have found that, in PD cybrids, mitochondrial distribution was more 

perinuclear than in CT cybrids (Figure V.2). Moreover, PD cybrids showed a decrease in 

mitochondria elongation and interconnectivity, both features correlating with increased 

mitochondrial fragmentation. In fact, in PD cybrids, mitochondria appear as small dots 

instead of a mitochondrial interconnected net.  

 

 

Figure V.2. Mitochondrial distribution, elongation and interconnectivity are altered in sPD 

cybrids. 

A. TOM20 immunostaining (green) of CT and PD cybrids showing alterations in mitochondria 

distribution, elongation and interconnectivity in PD cybrids. Hoechst 33342-stained nuclei are in 

blue. Scale bar: 20 µm. B. Mitochondrial elongation (n=3, ***p<0.001, PD versus CT cybrids). C. 

Mitochondrial interconnectivity (n=3, *p<0.05, mitochondrial interconnectivity PD versus CT 

cybrids).  
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 The aforementioned alteration in sPD cybrid morphological and biochemical 

features is in agreement with an altered mitochondrial ultrastructure and may account for 

the clinical phenotype of the patients included in this study. Accordingly, in this study, we 

have examined 15 cell profiles of each cell line and categorized them as to whether they 

contained predominantly normal or abnormally shaped mitochondria and autophagy-

related structures. Regarding mitochondrial structure, we have found that sPD cybrids 

had many morphologically abnormal mitochondria comparative to CT cybrids. In general, 

Figure V.3A shows that mitochondria in CT cybrids were small and round or rod-like and 

elongated (as shown in Figure V.3Aa-d). The matrices were dark and uniform and the 

cristae were homogeneously distributed (as shown in Figure V.3Ab-d). sPD cybrid 

mitochondria were mostly found enlarged with oval rather than rod-like profiles (as 

shown in Figure V.3Ah). These abnormal mitochondria contained pale and patchy 

matrices and disrupted cristae (as shown in Figure V.3Ai-k). Some of sPD cybrid 

mitochondria contained inclusions of electron-dense amorphous substances within 

matrix that are thought to represent deposits of calcium and inorganic phosphates 

(denoted as filled triangles in Figure V.3Aj and k) (Lloreta-Trull and Serrano, 1998; 

Ghadially, 2001; Trimmer et al., 2004b).  

 In order to verify whether these changes in sPD cybrid mitochondrial ultrastructure 

are exclusively due to the transferred sPD patient mitochondria, we have extended our 

analysis to the cybrid parental cell line (Rho0 cells). These cells, which lack functional 

mitochondria due to mtDNA depletion, were found to have high accumulation of swollen 

pale mitochondria with discontinuous cristae (denoted as arrows in Figure V.3Ba). In 

addition, mitochondrial shape showed a rather circular or oval contour and mitochondria 

were found apart from each other (Figure V.3B). Cristae-like structures were perfectly 

discernible in Rho+ cell line mitochondria (Figure V.3A), whereas in Rho0 cells (Figure 

V.3B) we observed few cristae-like structures with an atypical structure going from one 

point to another of the mitochondrial peripheral contour (denoted as filled triangles in 

Figure V.3Bb and c). Indeed, these observations suggest that abnormal mitochondria 

features found in sPD cybrids are clearly due to the transferred mitochondria. 
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Figure V.3. Mitochondrial deficits induced the accumulation of morphologically abnormal 

mitochondria and nonfused autophagic vacuoles.  

A. Electron micrographs of CT and sPD cybrids. Lower inserts show higher magnification images 

to illustrate morphological features of mitochondria and individual examples of autophagic 

vacuoles in both CT and sPD cybrids. Black arrows, autolysosomes; white arrows, 

autophagosomes; arrows heads, electron-dense amorphous inclusions within mitochondria. Scale 

bars: 2 µm (top) and 0.5 µm (middle and bottom). B. Electron micrographs of NT2 Rho0 cells. 
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Higher magnification fields show morphological features of mitochondria and autophagic vacuoles 

in Rho0 cells. (a) Dark arrows: swollen pale mitochondria with discontinuous cristae; Dark arrow 

heads: enlarged autophagosome enclosing mitochondria and other materials; (b and c) dark 

arrow heads: abnormal membranous structures. Scale bars: 2 µm (top) and 0.5 µm (bottom). C. 

Quantification of autophagosomes (APG) and autolysosomes (APGL) in cybrid cell lines and 

mtDNA depleted (Rho0) cells. The total number of vesicles was quantified from 15 cell profiles for 

each cell line (n=3, *p<0.05, ***p< 0.001, versus APG CT cybrids; *p<0.05, **p< 0.01, versus 

APG+APGL CT cybrids;
 ##

p<0.01, versus APG+APGL sPD cybrids). 

 

 

 In addition, ultrastructural analysis revealed that sPD cybrid cells also contain 

cytosolic vesicles (denoted as arrows in Figure V.3Ah) that appear to be autophagic 

vacuoles enclosing dark bodies and other cytoplasmic inclusions identical to the 

cytoplasm surrounding the vacuoles, which are compatible with autophagosomes 

(Figure V.3Al-n). In contrast, vesicles containing amorphous materials looking total or 

partially degraded similar to autolysosomes and/or lysosomes were more prominent and 

easily detectable in CT cybrids comparative to sPD cybrids (denoted as arrows in 

Figure V.3Aa versus h). Quantitative analysis of the electron micrographs showed an 

increase in the number of autophagosomes (APG) in those cells compared with CT 

cybrids (Figure V.3C). 

 Similarly, Rho0 cells accumulated a large number of autophagic vacuoles (Figure 

V.3C), but apparently no lysosomes or cytoplasmic inclusions (Figure V.3Ba). 

Interestingly, for these cells, we have also detected a great number of mitochondria 

inside “giant” autophagosomes, indicating a relatively high index of autophagic 

sequestration (denoted filled triangles in Figure V.3Ba and d). 

 Since newly formed autophagosomes mature and eventually fuse with lysosomes, 

thereby delivering their contents to lysosomes for degradation, the exacerbated 

accumulation of autophagosomes observed in sPD cybrids and more evident in Rho0 

cells prompted us to assess the effects of sPD-mitochondrial dysfunction on the 

autophagic activity. 
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5.3.2 Mitochondrial deficits in cells harboring PD patient mitochondria or in 

mtDNA-depleted cells compromise quality control autophagic response  

We next evaluated autophagosome formation by directly measuring the cellular 

distribution of endogenous LC3B and by monitoring the autophagic flux, as determined 

by comparing the accumulation of autophagosomes after the inhibition of lysosomal 

proteolysis with NH4Cl/leupeptin (NL) relative to the steady-state levels of 

autophagosomes (Rubinsztein et al., 2009)  

 Under basal conditions, sPD cybrids show an increase in both the number and size 

of endogenous LC3B puncta relative to CT cybrids. (Figure V.4Aa versus c, and B), but 

when lysosomal degradation was inhibited this number increased more markedly in CT 

cybrids (Figure V.4Ab versus d, and B), indicating a higher basal autophagic activity for 

CT cybrids. Removal of serum further activated autophagy in a higher extent in CT 

cybrids than in sPD cybrids, as depicted by the higher increase in the number of bright 

puncta without treatment (Figure V.4Aa versus e, compared with c versus g, and B). 

Similar results were obtained when lysosomal degradation ability was inhibited (Figure 

V.4Ab versus f, compared with d versus h, and B). 
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Figure V.4. QC autophagic response is impaired in cells harboring PD patient 

mitochondria.  

A. LC3B immunostaining (green) of CT and PD cybrids maintained in the presence [Serum (+)] or 

absence [Serum (−)] of serum and inhibitors of lysosomal proteolysis [NL(+); NL(-)]. Hoechst 

33342-stained nuclei are in blue. Scale bar: 10 µm. B. Mean number of LC3B-positive vesicles 

per cell profile (n=3, *p<0.05, ***p<0.001 versus S+ CT cybrids; 
##

 p<0.01, versus S- CT cybrids).  

 

 

 These immunofluorescence results were confirmed by determining the autophagic 

flux by immunoblot. By this approach, we have also detected an increase in the basal 

levels of LC3B-II, a phosphatidylethanolamine-conjugated form that is localized to 

autophagosomes, in sPD cybrids when compared with CT cybrids (Figure V.5A and B). 
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degradation was higher for CT cybrids under normal nutrient conditions as well as upon 

induction of autophagy by starvation [serum (-) conditions]. Accordingly, we observed 

that, although the basal levels of autophagic vacuoles are increased in sPD cybrids, their 

rate of autophagic degradation is significantly lower when compared with CT cybrids 

(Figure V.5C and D, respectively). Also, when compared with CT cybrids, sPD cybrids 

showed increased basal levels of the autophagic substrate p62 which were not 

potentiated after lysosomal inhibition, demonstrating an impaired lysosomal turnover of 

protein cargo via autophagy in these cells (Figure V.23A and B). 

 

 

Figure V.5. QC autophagic activity is impaired in cells harboring PD patient mitochondria.  

A. Immunoblot for endogenous LC3B from CT and PD cybrids after culture in serum (+) or serum 

(-) conditions and treatment with NL. B. Densitometric analysis of endogenous levels of LC3B 

(n=18, ***p<0.001 versus S+ CT cybrids; ### p<0.001, versus S+ PD cybrids; $$$p<0.001, versus 

S- CT cybrids; &&& p<0.001, versus S- PD cybrids). C. Determination of autophagic vacuole (AVs) 

levels. Values of LC3-II in the absence of NL represent the steady-state AV content (n=18, 

*p<0.05, ***p<0.001, versus S+ CT cybrids). D. Assessment of autophagic flux, calculated as the 

ratio of LC3-II densitometric value of NL-treated samples over the corresponding untreated 

samples (n=18, **p<0.01, versus S+ CT cybrids).  
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 We obtained similar results with the parental cell line NT2 when treated with MPP+ 

(1 mM, 24 h), a classic inhibitor of complex I (Figure V.6A-D).  

 

 

Figure V.6. Mitochondrial dysfunction mediates autophagic stress in MPP
+
-treated cells.  

A. Immunoblot for LC3B from NT2-Rho+ cells treated with or without lysosomal inhibitors (NL). B. 

Densitometric analysis of LC3B levels (n=3, **p<0.01, ***p<0.001, versus untreated cells; 

##
p<0.01, versus MPP

+
-treated cells). C. Determination of autophagic vacuole (AVs) basal levels. 

Values of LC3-II in the absence of NL represent the steady-state AV content (n=3, *p<0.05, 

versus untreated cells) D. Assessment of autophagic flux, calculated as the ratio of LC3-II 

densitometric value of NL treated samples over the corresponding untreated samples (n=3, 

**p<0.01, versus untreated cells). 

 

 

These results were also corroborated in differentiated PD cybrid cell lines that exhibit 

processes similar to neuronal cells (Figure V.7A and B). Consistent with our results in 

cybrid cells and MPP+-treated NT2 cells, LC3B content increased significantly more in 

neuronal-like CT (nCT) cybrid cells when exposed to lysosomal inhibition for 4 h, 

indicating that these cells were more prone to develop an autophagic response rather 

than nPD cybrids (Figure V.7A and B). 
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Figure V.7. Autophagic abnormalities are evident in neuronal-like cybrid cell lines.  

A. Immunofluorescence for LC3B (green) in neuronal-like CT and PD cybrids treated with or 

without lysosomal inhibitors (NL). Beta-tubulin III (red) and Hoechst 33342 (blue) co-stainings 

were used as neuronal and nuclei markers, respectively. Scale bars: 10 µm. B. Mean number of 

LC3B-positive vesicles per cell profile (n=2, ***p<0.001 versus nCT cybrids). 
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The increased accumulation of LC3-II obtained for all those cellular models was also 

evident in sPD patient peripheral blood lymphocytes (Figure V.8A and B). Moreover, 

under serum starvation conditions, CT cybrids activated nonselective “bulk” autophagy in 

a greater extent than PD cybrids, although no alterations were observed in the 

autophagic flux.  

 

 

Figure V.8. PBMCs from sporadic PD patients exhibit increased levels of LC3B-II.  

A. Immunoblot image for LC3B in PBMCs from control subjects (CT) and sporadic PD patients 

(sPDs). B. Densitometric analysis of LC3B levels (*p<0.05, versus CT subjects). 

 

 

 Similar results were obtained for cells lacking the mitochondrial genome (Rho0 

cells) and thereby a dysfunctional mitochondrial respiratory system. In the absence of 

such system, these cells require alternative mechanisms for the maintenance of an 

appropriate redox state and energy supply. If sufficient pyruvate and uridine are 

provided, these cells can grow without a functional mitochondrial electron transport chain 

and oxidative phosphorylation. Theoretically, this would increase the glycolytic pathway 

flux for continual regeneration of NAD+, including that regenerated by the plasma 

membrane oxidoredutase (Larm et al., 1994), ensuring that glycolytic pathway will 

provide sufficient ATP to sustain essential cellular metabolic activities and cell viability 

(Morre et al., 2000).  

 In agreement with the EM data in Figure V.3B , Rho0 cells showed a higher 

number of autophagic vacuoles in comparison with their parental counterpart cell line 

containing a full complement of mtDNA (Rho+ cells), distinguished as LC3B-positive 

puncta by immunofluorescence (data not shown) and by autophagic vacuole basal levels 

(Figure V.9A and B). However, this was not accompanied by an increase in the number 

of these organelles in response to lysosomal inhibition (Figure V.9A and B), supporting 

a lower autophagic flux in Rho0 cells (Figure V.9C).  
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Figure V.9. Autophagic stress is increased in mtDNA-depleted cells relative to full 

complement mtDNA-containing cells.  

A. Immunoblot for LC3B from mtDNA-depleted cells (Rho0) and their parental cells containing a 

full complement of mtDNA (Rho+) treated with or without lysosomal inhibitors (NL). B. 

Densitometric analysis of LC3B levels (n=3, *p<0.05, versus Rho+-untreated cells). C. 

Determination of autophagic vacuole (AVs) basal levels. Values of LC3-II in the absence of NL 

represent the steady-state AV content (n=3, *p<0.05, versus Rho+-untreated cells). D. 

Assessment of autophagic flux, calculated as the ratio of LC3-II densitometric value of NL-treated 

samples over the corresponding untreated samples (n=3, *p<0.05, versus Rho+-untreated cells). 
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punctuate pattern of LC3B upon inhibition of lysosomal-degradative ability was not 

statistically different between cells subject to both types of pyr/urd treatment, under both 

normal growing (Figure V.10Ab versus d, and B) and serum removal conditions 

(Figure V.10Af versus h, and B).  

 

 

Figure V.10. QC autophagic response is impaired in mtDNA-depleted cells.  

A. LC3B immunostaining (green) of Rho0 cells maintained in serum (+) or serum (−) conditions 

and NL treatment, following growth in the presence [pyr/urd (+/+)] or absence [pyr/urd (-/-)] of 

pyruvate and uridine. Hoechst 33342-stained nuclei are in blue. Scale bar: 10 µm. B. Mean 

number of LC3B-positive vesicles per cell profile [n=3, **p<0.01, versus S+ pyr/urd (+/+); 
### 

p<0.001 versus S- pyr/urd (+/+)].  

 

 

A

a b

e f

c d

g h

S
e
ru

m
(+

)
S

e
ru

m
(-

)

pyr/urd (+/+) pyr/urd (-/-)

NL (-)               NL (+)               NL (-)               NL (+)               

0

1

2

3

8

16

24

pyr/urd
(+/+)

pyr/urd
(-/-)

pyr/urd
(+/+)

pyr/urd
(-/-)

Serum (+) Serum (-)

**

###

None

NL

L
C

3
 p

u
n

c
ta

/c
e

ll

(r
e

la
ti

v
e

 t
o

 C
T

)

B



Mitochondrial metabolism dictates the autophagic outcome 

 

 
127 

We also checked the effect of growing cells in pyr/urd (-/-) medium for 48 h on the 

autophagic response, but no significant changes were observed (data not shown). These 

results were supported by our biochemical data showing significantly higher LC3B-II 

levels only upon serum withdrawal (Figure V.11A-C), which was correlated with an 

impaired autophagic response/activity (Figure V.11D). 

 

 

Figure V.11. QC autophagic activity is impaired in mtDNA-depleted cells.  

A. Immunoblot for endogenous LC3B from Rho0 cells maintained in serum (+) or serum (−) and 

NL treatment following growth in pyr/urd (+/+) or pyr/urd (-/-) conditions. B. Densitometric analysis 

of LC3B endogenous levels [n=5, *p<0.05, **p<0.01, versus S+ pyr/urd (+/+); 
##

 p<0.01, versus 

S+ pyr/urd (-/-); 
&&

 p<0.01, versus S- pyr/urd (+/+); 
$$

p<0.01, versus S- pyr/urd (-/-)] C. 

Determination of autophagic vacuole (AVs) levels. [n=5, *p<0.05, versus S+ pyr/urd (+/+)]. D. 

Assessment of autophagic flux (n=5). 

 

 

 Overall, these data supports that the defect on both QC and “bulk” autophagy 

observed in PD cells was not due to changes on ATP availability through glycolysis. 
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5.3.3. Autophagic degradation is impaired in MPP+- treated primary cortical 

neurons  

To extend these findings and further confirm our previous observation that mitochondrial 

deficits can compromise the degradative ability of the autophagic system, we used 

MPP+-treated primary cortical neurons, a well-established in vitro model of PD-

associated neuronal dysfunction directly caused by mitochondrial impairment (Beal, 

2001; Nicotra and Parvez, 2002; Martinez and Greenamyre, 2011). In this model, we 

have also found a rapid accumulation of LC3B-positive vesicles within 4 h after blocking 

of lysosomal proteolysis, indicating a constitutive autophagic flux in primary cortical 

neurons (Figure V.12Aa versus b, and e versus f). However, we could not observe an 

increase in the number of LC3B-positive vesicles in MPP+-treated cells (50 µM, 24 h) 

when compared with CT cells (Figure V.12Aa versus c, and B), both in CT conditions 

or in the presence of rapamycin, an mTOR inhibitor that induces autophagy (Figure 

V.12Ae versus g, and B).  
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Figure V.12. MPP
+
-induced mitochondrial dysfunction mediates autophagy-lysosome 

pathway impairments in primary cortical neurons. 

A. LC3B immunostaining (green) of primary cortical neurons treated with MPP
+ 

for 24 h. In the 

last 4 h, cells were co-treated with or without rapamycin and lysosomal inhibitors (NL). Beta-

tubulin III (red) and Hoechst 33342 (blue) co-staining was used as a neuronal and nuclei marker, 

respectively. Scale bar: 10 µm. B. Mean number of LC3B-positive vesicles per cell profile (n=3, 

**p<0.01, ***p<0.001, versus CT; 
###

 p<0.001, versus MPP
+
-treated cells;

 &
p<0.05; 

&&
p<0.01, 

versus rapamycin (Rap)-treated cells; 
$$$

p<0.001, versus Rap+MPP
+
-treated cells). 
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accompanied by a significant reduction on the autophagic flux (Figure V.13F), similar to 

the results obtained using cellular models of mitochondrial dysfunction. Rapamycin was 

able to develop an autophagic response, which indicates that the decreased flow 

observed by MPP+ treatment is specific. Even in the presence of rapamycin, MPP+-
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treated cortical neurons were unable to develop an efficient autophagic response, since 

autophagic flux is decreased when compared with rapamycin treatment and did not 

reach CT values.  

 

 

Figure V.13. MPP
+
-induced mitochondrial dysfunction mediates autophagy-lysosome 

pathway impairments in primary cortical neurons.  

A. LC3B immunoblot of primary cortical neurons treated with MPP
+ 

for 24 h. In the last 4 h, cells 

were co-treated with or without rapamycin (Rap) and lysosomal inhibitors (NL). B. Densitometric 

analysis of LC3B endogenous levels (n=13, *p<0.05, ***p<0.001, versus untreated cells; 

###
p<0.001, versus MPP

+
-treated cells; 

&&
p<0.01, versus Rap-treated cells; 

$$$
p<0.001, versus 

Rap+MPP
+
-treated cells). C. Determination of autophagic vacuole (AVs) levels. Values of LC3-II 

in the absence of NL represent the steady-state AV content (n=13, *p<0.05, versus CT). D. 

Assessment of autophagic flux, calculated as the ratio of LC3-II densitometric value of NL-treated 

samples over the corresponding untreated samples (n=13, *p<0.05, **p<0.01, versus CT; 

&
p<0.05, versus Rap-treated cells). 

 

 

 Although with minor differences between chronic and acute models, together these 

data suggest that mitochondrial impairment leads to alterations in the autophagy system, 

as mainly translated by a reduction in the autophagic flux. 
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5.3.4 Induction of autophagy is not primarily affected in sPD 

transmitochondrial cybrids 

We further tried to understand the nature of the changes in the autophagy-lysosome 

pathway found in the context of our sPD transmitochondrial cybrid model. Since this 

pathway encompasses multiple steps, changes not only in the clearance but also in the 

initiation could concur for the accumulation of autophagic vesicles observed. In order to 

clarify if an abnormal induction of autophagy could also be involved and contribute to the 

observed autophagic vesicles accumulation, we started by analyzing the rates of LC3B-II 

synthesis. We evaluated possible changes in synthesis in the presence of lysosomal 

proteolytic activity inhibitors at three different time points (Figure V.14A). The changes in 

LC3B-II levels when degradation is clamped would reflect the synthesis of 

autophagosomes in the experimental time frame if the autophagy system is under 

steady-state (Rubinsztein et al., 2009). According to our previous data on LC3B-II flux 

(Figure V.5A-D), the basal levels of LC3B-II were significantly higher in sPD cybrids in 

comparison with CTs (after 4 h). However, no significant differences between sPD and 

CT cybrids were observed for the levels of LC3B-II along this time course when 

lysosomal activity was inhibited (Figure V.14B). Since LC3B-II levels were maximal at 

the earliest time point considered (2 h), we also determined changes in LC3B-II 

formation between CT and sPD cybrids at earlier time points (30 min and 1 h). As 

expected, no changes were found between these two cell lines (data not shown). In 

addition, Figure V.14C shows that the rates of autophagosomes synthesis were similar 

in CT and sPD cybrids when comparisons were defined for 4 versus 2 h as well as 6 

versus 4 h, further supporting the notion that the system was under steady-state. These 

results indicate that the initiation step is not affected in sPD cybrids. 

  



Chapter V 
 

 
132 

 

Figure V.14. AV synthesis is not primarily affected in PD cybrid cells.  

A. LC3B immunoblot for autophagosome synthesis assessment in CT and PD cybrids treated 

with or without lysosomal inhibitors (NL) at three different time points (2, 4 and 6 h) (n=4). B. Time 

course for autophagic vacuole (AVs) levels. AV levels correspond to the densitometry values of 

LC3-II for each condition at each time point (n=4, ***p<0.001, versus CT cybrids; ###p<0.001, 

versus PD cybrids, for each time point). C. Assessment of autophagic synthesis. Rates of AV 

synthesis were determined by comparing LC3-II levels at two different time points after the 

addition of NL (4 versus 2 and 6 versus 4h) (n=4).  

 

 

 We next decided to explore some of the key proteins belonging to the PI3-kinase 

complex machinery that controls the nucleation of autophagic vesicles. One of these 

proteins is Beclin-1. Beclin-1 is a key autophagy protein that acts as an essential 

activator of autophagy and for this reason its cellular abundance has been correlated 

with autophagic activity (Shibata et al., 2006). Surprisingly, we did not find significant 

differences in the total cellular levels of this protein in sPD cybrids in comparison with CT 

cybrids (Figure V.15A and V.15B) in the presence of serum. However, when cells were 

challenged to induce autophagy by serum withdrawal, a large increase in the levels of 

Beclin-1 was observed for CT cybrids, which was not found for sPD cybrids, 

demonstrating the inefficient capability of these cells to efficiently prompt a “bulk” 

autophagic response, as previously observed in Figure V.5A and D.  

A

B C

2h

CT          PD        CT         PD         CT          PD

4h 6h

NL      - +      - +     - +      - +       - +      - +       

α-tubulin

LC3II
I

0.0

0.4

0.8

1.2

1.6
CT cybrids
PD cybrids

4h/2h 6h/4h

A
V

s 
sy

n
th

es
is

 (
re

la
ti

ve
 t

o
 C

T
 c

yb
ri

d
s)

2 3 4 5 6
0.0

0.4

0.8

1.2

1.6

2.0

CT cybrids
PD cybrids

CT cybrids + NL
PD cybrids + NL

***

***

***

***

###

###

###

Time (h)

A
V

s 
le

ve
ls

 (
a.

u
.)



Mitochondrial metabolism dictates the autophagic outcome 
 

 
133 

 Another hypothesis is that the cellular availability of Beclin-1, rather than just total 

cellular abundance, might be the key point to abnormal induction of autophagy (Wong 

and Cuervo, 2010). Beclin-1 interacts with the class III phosphatidylinositol 3-kinase 

(Vps34) to localize other autophagy proteins to the pre-autophagosomal membrane 

(Funderburk et al., 2010). In conditions in which autophagy is inhibited, Beclin-1 is 

inactivated by its interaction with Bcl-2, which functions as a brake to autophagy and 

autophagic cell death by affecting the interaction between Beclin-1 and Vps34. Thus, we 

sought to determine whether Bcl-2 has a role in modulating the autophagic response 

observed in our sPD models. Consistent with data from other study involving PD cybrids 

(Veech et al., 2000), we have found that our sPD cybrids exhibited significantly 

increased basal levels of Bcl-2 relatively to CT cybrids (Figure V.15C and D). 

Additionally, alterations in the total levels of Bcl-2 were also associated with lysosomal 

inhibition and serum removal, more remarkably in CT cybrids, which showed dramatic 

increases in the levels of this protein in such conditions (Figure V.15C and D). 

 

 

Figure V.15. Autophagic induction is not compromised in PD cybrid cells. 

A. Immunoblot for Beclin-1 from CT and PD cybrids after culture in serum (+) or serum (-) 

conditions and treatment with or without NL. B. Densitometric analysis of endogenous levels of 

Beclin-1. (n=8, ***p<0.001, versus S+ CT cybrids). C. Immunoblot for Bcl-2 from CT and PD 

cybrids after culture in serum (+) or serum (-) conditions and treatment with NL. D. Densitometric 

analysis of endogenous levels of Bcl-2. (n=6, *p<0.05, **p<0.01, ***p<0.001, versus S+ CT 

cybrids). 
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 We next assessed the cellular subcompartmentalization of Bcl-2 and Beclin-1 in 

cytosol and mitochondria-enriched fractions. We have observed that the content of Bcl-2 

was increased in the mitochondria-enriched fractions of sPD cybrids relative to CT 

cybrids (Figure V.16A and B), which is in accordance with the results obtained for the 

whole-cell lysates (Figure V.15C and D). Conversely, no major differences were 

detectable in the levels of Beclin-1 between subcellular fractions of CT and sPD cybrids 

(Figure V.16A and C). However, the changes in the total cellular abundance obtained 

for both proteins approximately match the sum of their cytosolic and mitochondrial 

enrichment. 

 

 

Figure V.16. Beclin-1 cellular availability is not compromised in sPD cybrid cells.  

A. Representative immunoblots for Bcl-2 and Beclin-1 cellular subcompartmentalization in 

mitochondria (M)- and cytosol (C)-enriched fractions. B. and C. Densitometric analysis of the 

levels of Bcl-2 (B) (n=3, **p<0.01, versus S+ CT cybrids; ##p<0.01, versus S- CT cybrids) and 

Beclin-1 (C) (n=3). 
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 As well, the targeting of Beclin-1 by Bcl-2 represents the crucial point to 

understand the mechanism of autophagy regulation. Therefore, we have also 

investigated the physical interaction Beclin-1/Bcl-2. When normalized to Beclin-1, the 

amount of Bcl-2 associated with Beclin-1 did not differ in sPD and CT cybrids (Figure 

V.17A and B). In addition, the anti-apoptotic protein Bcl-2 inhibits starvation-induced 

autophagy via targeting the BH3-like domain in Beclin-1 (Pattingre et al., 2005; Maiuri et 

al., 2007). However, the association Beclin-1/Bcl-2 was unchanged in sPD cybrids in 

comparison with CT cybrids in serum deprivation conditions, which indicates that “bulk” 

autophagy induction is not compromised in sPD cybrid cells. 

 

 

Figure V.17. Bcl-2/Beclin-1 physical interaction is not altered in sPD cybrid cells. 

A. Co-immunoprecipitation of Beclin-1 and Bcl-2 in CT and PD cybrids maintained in serum (+) or 

serum (-) conditions. Levels of Beclin-1 (top) and Bcl-2 (bottom) in the input, immunoprecipitate 

(IP) and flow through (FT) are shown. B. Determination of Bcl-2/Beclin physical interaction (n=3). 

 

 

 Taken together, these data strongly suggest that the defects in autophagic flux and 

more remarkably in the autophagic response under serum starvation conditions are not 

due to defects in the nucleation complex machinery, and the initiation step of autophagy 

is not primarily affected in our models of sPD. 
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5.3.5 Deficient intracellular traffic results in incomplete autophagosome 

degradation and reduced autophagosome and mitochondria movements in 

sPD transmitochondrial cybrids 

Autophagic failure found in our sPD cybrids model can begin from a delayed or 

interrupted traffic of autophagosomes along the microtubule system, which provides the 

tracks necessary for an efficient mobilization of cargos through the autophagy pathway. 

In support of this hypothesis, we have shown earlier that mitochondrial deficits induce 

alterations in microtubule network, mainly characterized by an increase in 

free/polymerized tubulin ratio that was responsible for high levels of α-synuclein 

oligomeric forms (Esteves et al., 2010a). 

 In order to correlate our previous findings with defective autophagic clearance, we 

have modulated microtubule-dependent trafficking of autophagosomes by using taxol (a 

microtubule polymerizing agent) and nocodazole (a microtubule depolymerizing agent) in 

concentrations that did not interfere with cell viability (data not shown), in the presence or 

absence of lysosomal inhibitors. Taxol was effective in promoting autophagy turnover in 

sPD cybrids, as reflected by decreased autophagosome content (Figure V.18A and B) 

and improved autophagic flux (Figure V.18A and C). In contrast, nocodazole 

considerably enhanced autophagosome accumulation in CT cybrids (Figure V.18A and 

B) associated with a decreased autophagic flux similar to what was observed in sPD 

cybrids (Figure V.18A and C).  
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Figure V.18. Disruption of microtubule network results in a deficient autophagic turnover in 

PD cybrid cells. 

A. Immunoblot for endogenous LC3B from CT and PD cybrids after treatment with Taxol (Tax) or 

Nocodazole (Noc) for 24 h. In the last 4 h, cells were co-treated with or without lysosomal 

inhibitors (NL). B. Determination of autophagic vacuole (AVs) levels. Values of LC3-II in the 

absence of NL represent the steady-state AV content (n=4, *p<0.05, ***p<0.001, versus CT 

cybrids; ##p<0.01, versus PD cybrids). C. Assessment of autophagic flux, determined as the ratio 

of LC3-II densitometric value of NL-treated samples over the corresponding untreated samples. 

(n=4, *p<0.05, **p<0.01, versus CT cybrids; ###p<0.001 versus PD cybrids). 

 

 

These findings suggest that autophagosomes clearance may be dependent on the 

functional status of the microtubule-dependent intracellular traffic. If so, the dynamic 

interaction of autophagic vacuoles with the microtubule system tracks may be altered in 

our sPD models hampering autophagosome transport and so the fusion with lysosome. 

Accordingly, we observed a decreased degree of co-localization between LC3-positive 

vacuoles and Lamp-1-positive vacuoles in sPD cybrids, an effect that was reversed by 

taxol treatment (Figure V.19A and B). This result may indicate an impairment of 

autophagosome-lysosome fusion, but could also point to a disruption in the 
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autophagosomal intracellular trafficking. In contrast, nocodazole treatment decreased 

LC3B/Lamp-1 co-localization in both CT and sPD cybrids (Figure V.19A and B).  
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 Moreover, changes in autophagy progression between CT and sPD cybrids were 

also addressed by measuring the vesicle size distribution profile in the absence and 

presence of lysosomal inhibition (NL) (Bains and Heidenreich, 2009). Comparing the 

vesicle size distribution in these conditions reveals a further increase in larger vesicles 

> 1.5 μm, which under normal autophagy conditions are supposed to be quickly 

degraded (Bains and Heidenreich, 2009). In addition, we observed that in sPD cells 

there is a significant increase of the largest size autophagic vacuoles (>2.25 μm) 

indicating an accumulation of these structures which positively correlates with a 

decreased vesicular trafficking (Figure V.20).  

 

 

Figure V.20. Accumulation of autophagic vacuoles in CT and sPD cybrid cells. 

LC3B immunostaining was used to determine AV size distribution from CT and PD cybrids after 

treatment with or without lysosomal inhibitors (NL). AV size distribution was graphed as percent 

of total vacuoles within the indicated size ranges. (n=4, *p<0.05, **p<0.001, versus CT cybrids). 
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In this context, we have also monitored autophagic vacuoles movements. For each 

observed autophagic vacuole, we recorded whether it moved or remained static 

(Figure V.21A), and subsequently the relative percentages of stationary or movable 

events were calculated (Figure V.21B). As shown in Figure V.21B, sPD cybrids 

exhibited a significant decreased number of movable autophagic vacuoles. In addition, 

microtubule disruption by nocodazole promoted a decrease in the number of movable 

autophagic vacuoles to similar values in both CT and sPD cybrids.  

 We have also determined autophagic vacuole transport velocity as described 

previously (Lee et al., 2011). Cumulative percentage data displayed a left shift in 

autophagic vacuole transport velocity in sPD cybrids compared with basal CT cybrids 

(Figure V.21C1 and 2). The shift in curve profiles was minimized when cells were 

treated with nocodazole or taxol (Figure V.21C1 and 2). Intriguingly, the effect of taxol 

was more pronounced for sPD cybrids, resulting in a deflection of the cumulative curve 

to a similar profile observed for CT cybrids (Figure V.21C2). Concerning average 

velocities, sPD cybrids demonstrated a significant reduction in autophagic vacuole 

movement velocity similar to what was observed for CT cybrids treated with 

nocodazole. On the other hand, taxol was able to restore autophagic vacuole velocity 

in sPD cybrids (Figure V.21D). 
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Figure V.21. Disruption of microtubule network results in reduced autophagic vacuole 

movements in PD cybrid cells. 

A. Representative kymograph images (out of three experiments) of AV movement in CT and PD 

cybrid cells treated with nocodazole (24 h), taxol (24 h). Scale bars: 5 µm. B. Number of 

movable AVs when compared with those of total AVs (n=3, *p<0.05, versus CT cybrids). C1. 

and C2. Cumulative data for AV transport velocity in CT and PD cybrid cells treated with Noc 

(C1) or treated with taxol (C2) (n=3). D. Average transport velocity of AVs (μm/s) (n=3, 

**p<0.01, versus CT cybrids; 
#
p<0.05, versus PD cybrids). 
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We believe that this process relies on a dynamic state of mitochondria at several levels 

of organization and interaction, such as the distribution of mitochondria within a cell, 

and the dynamic interaction with the vesicular trafficking and turnover mechanisms, as 

both autophagic vacuoles and mitochondria are driven by dynein and kinesin motors 

and depends on microtubule system tracks for transport within the cell (Arduino et al., 

2010; Arduino et al., 2011a).  

 This premise led us to analyze alterations in mitochondrial movements in sPD 

cybrids. Similar to what was performed for autophagic vacuoles, we recorded whether 

mitochondria moved or remained static (Figure V.22A), and subsequently the relative 

number of stationary or movable events was calculated (Figure V.22B). As shown in 

Figure V.22B, sPD cybrids exhibited a significant decreased number of movable 

mitochondria in the fields studied. In addition, microtubule disruption by nocodazole, 

disruption of vesicular traffic by neutralizing acidic vesicles with NH4Cl/leupetin (Strous 

et al., 1985), and serum removal further promoted a decrease in the number of 

movable mitochondria to similar values in both CT and sPD cybrids. In contrast, taxol 

was able to re-establish the number of movable mitochondria in sPD cybrid cells. 

 We have also measured mitochondrial transport velocity as described previously 

(Macaskill et al., 2009). Regarding average velocities, sPD cybrids demonstrated a 

significant decline in mitochondrial movement velocity. As expected, taxol promoted an 

increase in moving mitochondria velocity in both CT and sPD cybrids (Figure V.22C). 

A dramatic negative effect was found with nocodazole and even more remarkably 

following autophagic modulation (serum removal and lysosomal degradation inhibition) 

(Figure V.22C). As observed previously for autophagic vacuoles, cumulative 

percentage data displayed a left shift in mitochondrial transport velocity in sPD cybrids 

when compared with basal CT cybrids (Figure V.22D1-4). In addition, this difference in 

curve profiles was abolished when cells were treated with nocodazole (Figure V.22D1) 

and under starvation (Figure V.22D3). Interestingly, the effect of lysosomal 

degradation inhibition was more pronounced for CT cybrids, resulting in a cumulative 

curve that was left-shifted relative to the sPD cybrid subjected to the same treatment 

(Figure V.22D2). Such effects were completely counteracted by taxol, reflected by a 

pull-down change in the cumulative curve profile (Figure V.22D4). Surprisingly, this 

change was more obvious for sPD cybrids rather than for CT cybrids.  
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Figure V.22. Disruption of microtubule network results in reduced mitochondrial 

movements in PD cybrid cells.  

A. Representative kymograph images (out of three experiments) of mitochondrial movement in 

CT and PD cybrid cells treated with nocodazole (24 h), taxol (24 h) and lysosomal inhibitors 

(NL, 4 h) or subjected to starvation (starved, 6h). Scale bars: 5 µm. B. Number of movable 

mitochondria when compared with those of total mitochondria (n=3, *p<0.05, **p<0.01, 

***p<0.001, versus CT cybrids; 
##

p<0.01, 
###

p<0.001, versus PD cybrids). C. Average transport 

velocity of mitochondria (μm/s) (n=3, *p<0.05, ***p<0.001, versus CT cybrids; 
#
p<0.05, 

##
p<0.01,

 

###
p<0.001, versus PD cybrids). D1-4, Cumulative data for mitochondrial transport velocity in CT 

and PD cybrid cells treated with Noc (D1), NL (D2), subjected to starvation (D3) or treated with 

taxol (D4) (n=3).  

 

 

 Altogether, our data suggest that a correlation exists between mitochondrial 

motility and autophagic turnover, both processes being dependent on the dynamic 

stability and functional integrity of microtubule network.  

 

5.3.6 Alterations in autophagic activity and defective microtubule-

dependent transport result in a poor α-synuclein aggregate clearance 

Autophagy deregulation has long been implicated in cellular ageing and α-synuclein 

toxicity during PD. Indeed, in PD, α-synuclein accumulation has been linked to 

alterations in chaperone-mediated autophagy and lysosomal system functioning 

(Cuervo et al., 2004; Martinez-Vicente et al., 2008; Vogiatzi et al., 2008; Xilouri et al., 

2009). Therefore, we next investigated the impact of alterations in the autophagic 

activity due to mitochondrial deficits and altered microtubule transport in autophagy 

substrates and PD-related α-synuclein clearance.  

 We started by evaluating the levels of p62/SQSTM1, a selective substrate for 

autophagy as this protein is normally localized to the autophagosome via LC3 

interaction and is continuously degraded by the autophagy–lysosome system (Bjorkoy 

et al., 2005). According to our previous data on LC3B-II flux (Figures V.5A-D), we 

have verified that p62 levels were significantly increased in sPD cybrids relative to CT 

cybrids (Figure V.23A and B).  

 We then analyzed the α-synuclein solubility and its propensity for oligomerization 

in the presence or absence of lysosomal proteolytic activity inhibitors by performing a 

Triton X-100 detergent fractionation. Overall, Figure V.23C and E shows that Triton-

soluble and -insoluble a-synuclein band patterns, resulting from a-synuclein 

oligomerization, were comparable. However, it was clear that α-synuclein was 
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preferentially accumulated in oligomeric forms, in the detergent-soluble fraction (Figure 

V.23C and D). Interestingly, among them, we detected a band corresponding to the 

tetrameric form (denoted by an arrow in Figure V.23C) that has been recently shown 

as a helically folded structure in cells under physiological conditions (Bartels et al., 

2011). We have observed that the generation of SDS-resistant and high molecular 

weight-soluble species of α-synuclein was enhanced in sPD cybrids relative to CT 

cybrids (Figures V.23D and V.23F). Moreover, we have also detected in sPD cybrids 

that lysosomal inhibition did not potentiate α-synuclein oligomers accumulation within 

cells (Figures V.23C-V.23F). Likewise, activation of nonselective autophagy upon 

serum removal was not able to efficiently shift back to a completely soluble non-

oligomerized phenotype, further supporting the argument that the final steps of the 

autophagy-lysosome pathway are compromised in these cells.  
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Figure V.23. α-Synuclein and p62 degradation by autophagy is impaired in cells 

harboring mitochondrial dysfunction.  

A. Immunoblot for p62 from CT and PD cybrid cells cultured in S+ or S- conditions and treated 

with or without lysosomal inhibitors (NL). B. Densitometric analysis of p62 levels (n=6, **p<0.01, 

versus S+ CT cybrids; #p<0.05, versus S- CT cybrids). C. and E. Immunoblots for α-synuclein 

oligomeric forms from CT and PD cybrid cells cultured in S+ or S- conditions and treated with or 

without lysosomal inhibitors (NL). Representative blots of Triton X-100-soluble oligomeric 

species (C) and Triton X-100-insoluble, SDS-resistant oligomeric species (E). The arrow 

indicates a band of a tetrameric form of α-synuclein. D. and F. Densitometric analysis of α-

synuclein-soluble oligomers content (D) (n=12, *p<0.05, **p<0.01, versus S+ CT cybrids; 
##p<0.01, versus S+ PD cybrids) and α-synuclein-insoluble oligomers content (F) (n=12, 

***p<0.001, versus S+ CT cybrids).  
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5.3.7 Impairment of autophagic turnover prompts apoptosis in cells 

harboring mitochondrial dysfunction 

Autophagy is well recognized as a survival mechanism especially during conditions of 

nutrient limitation. Based on the “bulk” degradation of cytoplasmic material, autophagy 

is utilized to generate both nutrients and energy in starving cells. Under these 

conditions, autophagy is critical for maintaining cell survival. We have previously 

reported that, in our sPD cybrid model and MPP+-treated cells, both mitochondria and 

endoplasmic reticulum-dependent apoptotic pathways are initiated during particular 

stressful circumstances of PD pathology (Esteves et al., 2008; Arduino et al., 2009a; 

Arduino et al., 2009b).  

 Here, we examined whether autophagic degradation impairment observed in our 

cellular models is also related to the apoptotic events described formerly. In order to 

check whether autophagy could be activated in cells with mitochondrial deficits as an 

attempt to prevent cell suicide by apoptosis, we used pharmacological modulators of 

autophagy and determined their roles on caspase-3-mediated apoptosis. 

 We observed that treatment of our cells with 3-methyladenine (3-MA), a 

pharmacological compound that inhibits the early sequestration events in autophagy, 

further stimulated caspase-3 activation in all models studied (Figures V.24A-C). 

Interestingly, co-incubation with MPP+ significantly enhanced this activation in NT2 

cells (Figure V.24C).  

 



Mitochondrial metabolism dictates the autophagic outcome 

 

 
149 

 

Figure V.24. Impaired autophagic turnover triggers caspase-3 over-activation in cells 

harboring mitochondrial deficits.  

Caspase-3 activation was addressed by Ac-DEVD-pNA cleavage in CT and PD cybrids (A) (n= 

12; ***p<0.001, versus S+ CT cybrids); NT2 Rho0 cells (B) (n= 5; **p<0.01, ***p<0.001, versus 

untreated Rho0 cells) treated with or without lysosomal inhibitors (NL), 3-methyladenine (3-MA) 

or rapamycin (Rap) for 4 h; and in MPP
+
-treated NT2 Rho+ cells treated with or without 3-MA 

for 4 h (C) (n= 6-8; *p<0.001, versus untreated cells; 
###

p<0.001, versus MPP
+
-treated cells; 

&&
p<0.01, versus 3-MA-treated cells) or Rap for 6 h (D) as indicated (n= 6-8; ***p<0.001, versus 

untreated cells; 
#
p<0.01, versus Rap-treated cells; 

&&&
p<0.001, versus MPP

+
-treated cells).  

 

 

 Rapamycin-induced autophagy did not prevent caspase-3 activation in sPD 

cybrids, which indicates that the autophagy-lysosomal pathway is impaired in this 

model as described previously (Figure V.24A). However, rapamycin per se was able to 

further activate caspase-3 in Rho0 cells. (Figure V.24B). In MPP+-treated cells, 

rapamycin counteracted the deleterious effects of MPP+ on caspase-3 activation 

(Figure V.24D). Perhaps surprisingly, these results indicate different apoptotic 
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outcomes upon modulation of authophagy in the different paradigms of mitochondrial 

dysfunction. 

 In an acute model, such as MPP+-treated cells, activation of autophagy by 

rapamycin can still protect cells. In chronic models with great compromise of 

mitochondrial function (Rho0 cells), both activation of autophagy by rapamycin or 

inhibition by 3-MA could be harmful to cells. Additionally, in an intermediate chronic 

stage, such as cybrids, cells may eventually succumb to biochemical processes 

typically associated with apoptosis when autophagy is inhibited by 3-MA, in accordance 

with NT2 cells, but has no additive effect on sPD cybrids. Moreover, when autophagy is 

stimulated by rapamycin, sPD cybrids are unable to efficiently proceed with the 

pathway probably due to vesicular traffic impairment, and still activate apoptosis. The 

mechanisms underlying these differences in cellular responses are unclear but might 

be related with different capacities of the cell models to compensate for autophagic 

dysfunction. 
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5.4 Discussion  

In this study, we have demonstrated that a prolonged metabolic failure due to 

mitochondrial dysfunction, either in cellular models harboring sPD subjects mtDNA 

(sPD cybrids) or knock-down of all mtDNA (Rho0 cells) or in MPP+-treated cortical 

neurons, causes a functional decline in the activity of the autophagic system. 

Consistently, in our models, autophagosomes are actively formed but some of their 

structural components and autophagic substrates are unable to be efficiently degraded 

within lysosomes. We propose that these alterations in autophagosome clearance can 

originate from a decreased efficiency in the mobilization of autophagosomes from their 

site of formation toward lysosomal compartments along the microtubule network, 

thereby impeding the assumed neuroprotective functions of autophagy.  

 Progress in the understanding of autophagy has emphasized its importance in 

cellular homeostasis, with significant consequences for the development of new 

therapeutic strategies for neurodegenerative disorders such as PD. In fact, 

ultrastructural examination has revealed an abnormal presence of autophagic vacuoles 

in myelinized neurons of the SNpc in PD patients, in contrast to the rare detection of 

autophagosomes in normal brains during ageing (Anglade et al., 1997).  

 Although the presence of accumulating autophagosomes could represent an 

aberrant activation of autophagy, we provide evidence that autophagy is not over-

stimulated in our models and, instead, defective clearance of the autophagic vacuoles 

might account for those observations. In our study, the rapid accumulation of 

autophagosomes within a few hours after blocking of lysosomal proteolysis, even in 

primary cortical neurons, evidences a proper basal level of autophagic activity. 

However, and of significant relevance to PD pathology, the data on autophagic flux 

indicate that formed autophagosomes are not efficiently eliminated by lysosomal 

degradation. The situation in cortical neuron cultures treated with MPP+ was somewhat 

different than in other cellular models, but essential features of the effects of PD-related 

mitochondrial impairment in the lysosomal pathway were confirmed in this primary 

neuron setting. 

 The aforementioned results raise the possibility that alterations in mitochondrial 

energy metabolism play a role in the modulation of autophagy and, therefore, multiple 

defects in mitochondria-dependent metabolism might be the initial events in sPD-

related autophagy pathology.  

 Mitochondria are the site of many biochemical reactions fundamental for normal 

cellular functioning, particularly cellular energy production. Our data further confirm and 

extend prior studies demonstrating sPD cybrids ATP levels are reduced in sPD cybrids 
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relative to those of CT cybrids (Esteves et al., 2008; Esteves et al., 2009). In addition, 

mitochondrial respiration and pathways influenced by aerobic metabolism are also 

altered in sPD cybrids. sPD cybrids show reduced SIRT1 phosphorylation, reduced 

PGC-1α levels and increased NF-kB activation (Esteves et al., 2010c). In this context, 

although our findings indicate that ATP may be required to the autophagic response, 

especially during serum starvation, the lack of effect of the pyruvate/uridine deprivation 

on the autophagic response in Rho0 cells leads us to hypothesize that an imbalance in 

glycolytic ATP production is unlikely to represent a primary signal for autophagy 

deregulation, reinforcing the concept that mitochondrial dysfunction has a main role on 

the control of the autophagic response. In fact, it is well established that autophagy is 

an energy-sensitive process (Plomp et al., 1987; Schellens et al., 1988; Plomp et al., 

1989). Although the various steps of the autophagic process may differ in their 

response to the energy status of the cell, early evidence indicated that all steps of this 

pathway are responsive to relatively small changes of intracellular ATP (Schellens and 

Meijer, 1991). Whether or not autophagosomes accumulate under ATP-depleted 

conditions would depend on the relative effects of energy depletion on sequestration 

and post-sequestrational steps of the autophagic pathway. In view of that, it was 

described that rapid mitochondrial depolarization with ATP loss did not induce 

mitochondrial degradation by autophagy, implying that additional mechanisms may 

regulate mitophagy in neurons (Van Laar et al., 2011). 

 Our results clearly support the idea that autophagy failure stemming from 

mitochondrial dysfunction is not translated into defects in autophagosome formation but 

mainly in the autophagosomes trafficking along the microtubule network toward the 

lysosomal compartment. Accordingly, in all of our paradigms, LC3B was observed in 

punctuated structures in both basal or serum deprivation conditions, supporting that the 

recruitment to the pre-autophagosomal structure is not affected. In addition, we did not 

find significant differences in the total cellular levels and subcompartimentalization of 

Beclin-1, a principal regulator in autophagosome formation. However, sPD cybrids 

exhibited increased basal levels of Bcl-2 mainly associated with increased targeting to 

mitochondria. Thus, the anti-autophagic activity of Bcl-2 was not verified as the mild 

changes observed in the binding and sequestration of Beclin-1 by Bcl-2 were not 

expected to disturb the formation of the class III PI3-kinase complex that is critical to 

the induction of autophagy. Even under serum starvation conditions, Bcl-2/Beclin-1 

association in sPD cybrids was similar to that in CT cybrids allowing Beclin-1 to 

proceed with autophagy.  

 Autophagosome and lysosome movement relies on microtubules as tracks and 

dynein as a motor (Fass et al., 2006; Kimura et al., 2008). Thus, tubulin cytoskeleton is 
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fundamental to maintain the spatial organization of autophagy-lysosome pathway by 

conducting the trafficking of organelles and vesicles involved in different interactions 

during this process. We have previously described that sPD cybrids have mitochondria-

dependent cytoskeletal changes, which manifest as microtubule depolymerization and 

increase in free tubulin levels (Esteves et al., 2010a). In this study, our results using 

modulators of microtubules assembly and intracellular traffic point to the fundamental 

requirement of an efficient microtubule network for the transport and so the clearance 

of autophagic cargos.  

 We confirm that autophagic flux is microtubule-dependent as depolymerization of 

microtubules with nocodazole inhibited the degradation of autophagosomes within 

lysosomes and microtubule stabilization with taxol potentiated autophagosome 

clearance and cargos motility. In addition, our results on live-cell imageing of 

autophagic vacuoles and mitochondrial transport clearly demonstrate that 

mitochondrial deficits as the ones described in our sPD cybrids (Esteves et al., 2008; 

Esteves et al., 2009; Esteves et al., 2010c) significantly impair autophagic vacuoles 

and mitochondrial motility, which alter autophagic and mitochondrial dynamics due to 

disruption of microtubule network trafficking. Moreover, these findings are in 

accordance with previous observations involving dyneins as essential motors (Jahreiss 

et al., 2008; Kimura et al., 2008), as starvation induced a slight decrease in the 

autophagosome flux in CT cybrids and a substantial decline in mitochondria motility. 

However, it is well established in the literature that starvation induces “bulk” autophagy. 

A possibility is that those findings could be associated with an intracellular redistribution 

and specific alterations in the membrane binding ability of cytoplasmic dyneins to 

organelles (Lin and Collins, 1993; Lin et al., 1994), contributing to their defective 

transport, but further studies are needed to clarify this point. 

 Thus, the key role of mitochondria as ATP fuel suppliers for microtubule turnover 

and microtubule-based motor proteins implies that inherent mitochondrial dysfunction 

and/or related defects in their distribution in sPD cybrids will have a profound effect on 

the autophagy-related vesicular trafficking and, as a consequence, autophagy turnover 

maintenance and function. Interestingly, alterations in microtubules associated with 

deficient axoplasmic flow, altered mitochondrial turnover and loss of synaptic 

connectivity, was observed in vulnerable neurons in AD (Cash et al., 2003). 

 In conjunction with altered mitochondrial function and motility, tubulin 

cytoskeleton alterations may contribute to the accumulation of protein aggregates and 

autophagic vesicles, and/or associated substrates, as observed in our sPD cybrid 

model. The levels of p62 and α-synuclein oligomerization profiles were concomitantly 

altered in these cells. These findings strongly support the hypothesis that aggregate-
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prone proteins, such as α-synuclein, initially interact with p62, and then aggregation of 

the protein complex occurs in a p62-dependent manner but the aggregates are not 

efficiently degraded by autophagy. Our data show that the levels of autophagic activity 

and its efficiency in the clearance of specific substrates and/or aggregated α-synuclein 

are dependent on the metabolic status of the cell.  

 Under these circumstances, the resulting accumulation of -synuclein oligomers, 

other toxic protein products, and/or damaged organelles, such as dysfunctional 

mitochondria, will obviously be detrimental for cell functioning and survival. Intracellular 

accumulation of toxic protein oligomers might in turn contribute to further failure of the 

autophagic system in cells, as aggregates might physically block vesicular trafficking by 

secondarily interacting with or sequestrating key elements involved in this process. 

Interestingly, when neuronal cybrids are differentiated, the resultant neurites exhibit 

several characteristics of blocked axons, such as α-synuclein aggregates reminiscent 

of LBs (Trimmer et al., 2009) and accumulation of vesicles resembling nonfused 

autophagic structures. Moreover, an inefficient degradation of dysfunctional 

mitochondria due to a decreased autophagic activity will uphold a positive feedback 

loop that will further propagate the neurodegenerative pathway in PD (Chu, 2012). 

Accordingly, long-term accumulation of autophagic compartments within cytosol can 

also be harmful as autophagosomes can became leaky, and if enzyme leakage occurs 

after fusion, it can lead to lysosomal breakdown and release of lysosomal hydrolases, 

which frequently activates cell death (Wong and Cuervo, 2010).  

 In summary, data reported in this work support our hypothesis that a 

mitochondrial dysfunction induces an alteration in microtubules assembly that unable 

autophagy turnover which, in turn, potentiates the accumulation of α-synuclein 

oligomers and, finally, prompts apoptosis.  

 Although it is predictable that autophagy may be a new therapeutic target in PD, 

the results obtained in this study indicate that therapeutic modulation in the context of 

sPD should be aimed at improving autophagy intermediates “backing up”. For example, 

targeting trafficking proteins (Pandey et al., 2007) and proteins involved in promoting 

autophagosomes-lysosomes fusion, such as those regulating endosomal fusion and 

multivesicular bodies (Jager et al., 2004; Filimonenko et al., 2007), will likely improve 

the efficiency of autophagosome maturation into autolysosomes for subsequent 

substrate degradation. 
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6.1 Summary 

 

Sporadic Parkinson’s disease (sPD) is characterized by mitochondrial dysfunction and 

abnormal accumulation of protein aggregates in a specific subset of neurons. We have 

previously shown that defects in microtubule (MT)-based transport associated to an 

altered mitochondrial metabolism contribute to autophagic pathology and neuronal 

toxicity observed in this devastating disorder. However, the molecular mechanism(s) 

underlying how these various events are connected remains elusive. 

 In this study we demonstrate that SIRT2, a NAD+ dependent protein deacetylase, 

controls the functional ability of the autophagic system by modulating MT network 

acetylation dynamics and provide insights into the association between intracellular 

metabolism and proteotoxicity in sPD.  

 We used transmitochondrial cybrids that recapitulate pathogenic alterations 

observed in sPD patient brains. We observed that NAD+ metabolism is altered in sPD 

cybrids contributing to sirtuin 2 (SIRT2) deacetylase activation and subsequent 

decreased tubulin acetylation. Pharmacological inhibition of SIRT2 deacetylase activity 

selectively enhanced acetylation at Lys40 of α-tubulin, stabilized MTs and facilitated 

the clearance of misfolded proteins and autophagic substrates through the MT network, 

preventing the alterations observed in sPD cybrids cells. This increase in intracellular 

traffic improved the flux of autophagy cargos and promoted their lysosomal 

degradation.  

 Our data provide a strong evidence for a functional role of tubulin acetylation on 

autophagic vesicular traffic and cargos clearance. Moreover, we identify MTs and 

SIRT2 mediated-MT acetylation as therapeutic targets in disorders such as sPD in 

which intracellular transport is altered. 
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6.2 Introduction 

 

Parkinson’s disease (PD) is a devastating neurodegenerative disorder of unknown 

origin mainly characterized by the loss of dopaminergic neurons from the substantia 

nigra pars compacta (SNpc) and the presence, in the affected brain regions, of 

intraneuronal proteinacious cytoplasmic inclusions termed Lewy Bodies (LBs) (Forno, 

1996). The presence of LBs in vulnerable neurons affected by PD suggests that 

defective management of misfolded and aggregated protein may contribute to the 

pathogenesis of the disease. Cytoplasmic protein aggregates are carried by dynein 

motors and transported along the microtubule (MT) network to the microtubule-

organizing center (MTOC) in the pericentriolar region, where they are concentrated 

(Johnston et al., 1998; Kopito, 2000). These MT-dependent deposits of protein 

aggregates are called aggresomes and share with LBs some striking biochemical and 

molecular characteristics (McNaught et al., 2002), which may explain the biogenesis of 

these structures found in PD. Therefore, the impairment of the MT system has been 

increasingly associated with abnormal accumulation of α-synuclein, the major 

component of LBs (Lee et al., 2006).  

 Although the mechanism whereby α-synuclein accumulates in LBs is not fully 

understood, evidence suggests that defective axonal transport of α-synuclein may itself 

contribute to the process. Supporting this observation, we have previously shown, in 

cellular models of sporadic PD (sPD) harboring mitochondrial dysfunction (sPD 

cybrids), cytoskeleton alterations which manifest as MT depolymerization and 

increased formation of α-synuclein oligomers (Esteves et al., 2009, 2010a). In addition, 

altered α-synuclein oligomerization pattern was further associated with decreased 

proteolytic flux through autophagy, resulting from a deficient mobilization of 

autophagosome cargos toward the lysosomal system due to disruption of MT-

dependent trafficking (Arduíno et al., unpublished data).  

 The discovery that chemical inhibitors of SIRT2 change the characteristics of 

protein inclusion body and are protective against α-synuclein-induced cytotoxicity 

(Outeiro et al., 2007) support the association between α-synuclein aggregation and MT 

stability. In fact, SIRT2 is a cytoplasmic class III histone deacetylase that interacts with 

and deacetylates MTs in vitro and in vivo (North et al., 2003; North and Verdin, 2007). 

Acetylation has been associated with stable MTs, although this relationship is not clear-

cut. Some studies have shown that acetylation enhances MT stability (Hubbert et al., 

2002; Matsuyama et al., 2002), whereas others have suggested that acetylation occurs 

only on stable and not dynamic MTs, but the acetylation itself does not stabilize MTs 
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(Haggarty et al., 2003). Interestingly, recent evidence indicates that α-tubulin 

acetylation promotes the recruitment of both cytoplasmic dynein and kinesin-1 

molecular motors to MTs, stimulating motor processivity on the cytoskeleton and 

anterograde and retrograde vesicle flux in neurons (Reed et al., 2006; Dompierre et al., 

2007), which suggests a possible mechanistic association between inhibition of 

deacetylase activity and the enhancement of MT-dependent trafficking.  

 Since MT-dependent intracellular trafficking is altered in sPD (Arduíno et al., 

unpublished data) and that SIRT2 inhibitors demonstrate a neuroprotective effect 

(Outeiro et al., 2007), we investigated whether MT acetylation could regulate 

intracellular transport and compensate for the observed autophagic deficits observed in 

our models of sPD.  

 We found that both SIRT2 and HDAC6 inhibitors enhance tubulin acetylation and 

prevent alterations in MT network stability and functional integrity observed in sPD 

cybrids. However, inhibition of SIRT2 and HDAC6 deacetylase activity differentially 

affects autophagic activity and cargos degradation through the autophagy-lysosomal 

pathway. We show that increased autophagy turnover and associated transport is 

determined exclusively by SIRT2 inhibition in our models.  

 Our data demonstrate that SIRT2 selectively controls MT acetylation and 

establish a functional mechanistic link between intracellular metabolism and 

proteotoxicity in sPD, by influencing both the formation and catabolism of altered 

proteins. 
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6.3 Results 

 

6.3.1 SIRT2 deacetylase activity is increased in the cytosol of hybrid cells 

harboring sPD patient mitochondria  

To gain insight into the metabolic status and mitochondrial function in sPD cybrid cells, 

we have previously performed a deep characterization of the mitochondrial oxidative 

phosphorylation system and mitochondrial respiration by using high resolution 

respirometry (Esteves et al., 2008; Esteves et al., 2010c). In these analyses, we have 

observed several defects in energy metabolism-dependent processes, including a 

decline in ATP synthesis capacity and a sustained reduction in mitochondrial complex I 

and IV activities in sPD cybrid cells relative to control (CT) cells. In addition, we have 

also found that although the whole cell basal oxygen consumption was comparable 

between sPD and CT cybrids, the mitochondrial maximum respiratory capacity was 

decreased in sPD cybrids. These observations on mitochondrial function and ATP 

production predict alterations on the steady state levels and redox state of pyridine 

nucleotides, such as NADt (NAD+ plus NADH), which constitute important indicators 

and regulators for cell state and metabolic signaling activity (Pollak et al., 2007). 

 As shown in the Figure VI.1, we observed that the total NAD+/NADt ratio was 

significantly increased in PD cybrids when compared to CT cybrids. 

 

 

Figure VI.1. NAD
+ 

metabolism is altered in sPD cybrid cells.  

Total nicotinamide adenine dinucleotide (NADt, NADH plus NAD
+
) levels were determined as 

described in Chapter II and NAD
+ 

levels were obtained subtracting NADH to NADt levels. 

NAD
+
/NADt ratios were then corrected for total protein levels. Values are mean±S.E.M (n=4, 

*p<0.05 versus CT cybrids). 
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 SIRT2 is activated by elevated NAD+ levels. In addition, NAD+/NADH intracellular 

pools (cytosolic, mitochondrial and nuclear) are distinct and not entirely interdependent, 

suggesting that NAD+ biosynthesis is compartmentalized and that NAD+ levels may be 

differentially regulated within each compartment (Magni et al., 2008). In line with this, 

we next assessed the cellular subcompartmentalization of SIRT2 in cytosol-, 

mitochondria-, nuclei and cytoskeleton-enriched fractions. We have observed that the 

content of SIRT2 was increased in the cytosolic fraction of sPD cybrids relative to CT 

cybrids (Figure VI.2A and B). 

 

Figure VI.2. SIRT2 is preferentially localized in the cytosolic pool in sPD cybrid cells.  

A. Cell lysates of cytosol-, mitochondria-, nuclei- and cystoskeleton-enriched fractions from CT 

and sPD cybrids were examined by immunoblotting using the anti-SIRT2, anti-α-tubulin, anti-

TOM20, anti-TATA box, and anti-vimentin antibodies. Representative immunoblot for SIRT2 

cellular subcompartmentalization in cytosol-, mitochondria-, nuclei- and cystoskeleton-enriched 

fractions. B. Densitometric analysis of the levels of SIRT2 normalized against to each fraction 

corresponding loading control. Values are mean±S.E.M. (n=6, *p<0.05 versus CT cybrids). 
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These results further confirm and extend prior observations demonstrating that SIRT2 

levels are, among the cellular subcompartments, higher in the cytosolic pool as well as 

in the nuclear pool where it can be located, regulating cell cycle as well (Afshar and 

Murnane, 1999; North et al., 2003; North and Verdin, 2007). 

 The increased total NAD+/NADt ratio in conjunction with high SIRT2 levels in sPD 

cybrids cytosolic pool led us to hypothesize that SIRT2 deacetylase activity may be 

enhanced in sPD cybrids. Indeed, we have observed a decrease in the cystosolic 

levels of acetylated α-tubulin in sPD cybrids when compared to CTs (Figure VI.3A and 

B), which constitutes an indirect evidence for an increased SIRT2 deacetylase activity 

over the tubulin cytoskeleton in those cells. 

Figure VI.3. Altered NAD
+ 

metabolism regulates SIRT2 activation in the cytosolic pool of 

sPD cybrid cells. 

A. Cell lysates of cytosol-enriched fractions from CT and sPD cybrids were examined by 

immunoblotting using the anti-acetyl-α-tubulin and anti-α-tubulin antibodies. Representative 

immunoblot for SIRT2 levels in cytosol-enriched fractions. B. Densitometric analysis of the 

levels of SIRT2. Values are mean±S.E.M. (n=3). 

 

 

Together, these data suggest that mitochondrial metabolism may regulate SIRT2 

deacetylase activity in a NAD+-dependent manner in our cybrid cell models and can 

physiologically correlate MT dynamics to energy status in PD milieu. 
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6.3.2 Promotion of tubulin acetylation levels by specific inhibition of 

SIRT2 and HDAC6 prevents MT network impairments in sPD cybrid cells 

We then decided to directly explore the actual role of SIRT2 deacetylase on the α-

tubulin cytoskeleton integrity in our cybrid cell models. 

 SIRT2 colocalizes with the MT network and deacetylates Lys40 of α-tubulin 

(North et al., 2003). The same residue of α-tubulin is also deacetylated by HDAC6, a 

class II HDAC, and deacetylation by HDAC6 leads to changes in cellular motility 

(Hubbert et al., 2002). SIRT2 and HDAC6 are found along MTs in a complex structure 

(SIRT2/HDAC6/α-tubulin complex), suggesting that the two proteins coordinately 

regulate the level of tubulin acetylation (North et al., 2003). In addition, tubulin only 

binds the SIRT2/HDAC6 complex and not individual HDAC6 or SIRT2 proteins 

(Nahhas et al., 2007).  

 Thus, we firstly determined the acetylation state of α-tubulin in our models by 

analyzing the effects of two deacetylase inhibitors, AK-1 and Tubastatin A, which 

specifically inhibit SIRT2 and HDAC6, respectively. Under basal conditions, sPD 

cybrids showed decreased acetylation levels at Lys40 of α-tubulin relative to CT 

cybrids (Figure VI.4A and B). Treatment with both AK-1 and Tubastatin A significantly 

restored the acetylation of α-tubulin in a dose-dependent manner. This effect was more 

obvious for Tubastatin A, which significantly enhanced the acetylation levels in both CT 

and sPD cybrid cells (Figure VI.4C and D). The total levels of α-tubulin in CT and sPD 

cybrids is not different (Esteves et al., 2009, 2010a), further supporting a specific 

decrease of tubulin acetylation in sPD cybrids. 
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Figure VI.4. Tubulin acetylation is selectively modulated by specific inhibition of SIRT2 

and HDAC6 tubulin deacetylases.  

A. Cell lysates from CT and sPD cybrids treated with or without AK-1 (1 µM and 5 µM, 24 h) 

were examined by immunoblotting using the anti-acetyl-α-tubulin and anti-GAPDH antibodies. 

Representative immunoblot for acetylated α-tubulin levels. B. Densitometric analysis of the 

levels of acetylated α-tubulin. Values are mean±S.E.M. (n=5, ***p<0.001, versus untreated CT 

cybrids; 
##

p<0.01, versus untreated sPD cybrids). C. Cell lysates from CT and sPD cybrids 

treated with or without Tubastatin A (Tub A, 5 µM and 10 µM, 24 h) were examined by 

immunoblotting using the anti-acetyl-α-tubulin and anti-GAPDH antibodies. Representative 

immunoblot for acetylated α-tubulin levels. D. Densitometric analysis of the levels of acetylated 

α-tubulin. Values are mean±S.E.M. (n=5, **p<0.01, ***p<0.001, versus untreated CT cybrids; 

###
p<0.001, versus untreated sPD cybrids). 

 

 

 Acetylation has been shown to increase MT stability. Therefore, we next 
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contribute to increased MT stability and structural integrity. 

 We have evaluated MT morphology at steady-state in CTs and AK-1- or 

Tubastatin A-treated cells by indirect immunofluorescence. We have found that similar 
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A induced a more extensive MT bundling (Figure VI.5) visualized as bright fluorescent 

foci appearing in MTOC and cell periphery.  

 

 

Figure VI.5. Inhibition of SIRT2- and HDAC6–dependent tubulin deacetylation improves 

MT network morphology.  

Cells from CT and sPD cybrids were treated with or without AK-1 (5 µM, 24 h) or Tubastatin A 

(Tub A, 10 µM, 24 h) and the MTs were visualized by indirect immunofluorescence using an 

anti-α-tubulin antibody (red). Hoechst 33342-stained nuclei are in blue. Scale bar, 10 µm.  

 

 

 In support, quantitative immunobloting of soluble (free) and 

cytoskeleton/microtubule bound (polymerized) tubulin confirmed an increased MT 

destabilization in sPD cybrids in comparison to CT cybrids. This was reflected by a 

higher free/polimeryzed tubulin ratio, as previously reported in another set of cybrid 

cells (Esteves et al., 2009). Notably, the proportion of total α-tubulin that is assembled 

significantly increased after both AK-1 and Tubastatin A treatments, evidenced by a 

decrease in the ratio free/polimeryzed tubulin ratio in sPD cybrids to values similar to 

CT cybrids (Figure VI.6 A-D). 
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Figure VI.6. Inhibition of SIRT2- and HDAC6-dependent tubulin deacetylation improves 

MT network structural integrity.  

A. Cell lysates containing soluble (free) and MT-bound (polymerized, polim) tubulin from CT and 

sPD cybrids treated with or without AK-1 (5 µM, 24 h) were examined by immunoblotting using 

the anti-α-tubulin and anti-GAPDH antibodies. Representative immunoblot for α-tubulin levels. 

B. Densitometric analysis of the levels of free and polymerized α-tubulin. Values represent the 

ratio free/polymerized tubulin calculated as the ratio of free α-tubulin densitometric value over 

the corresponding polymerized α-tubulin value. Values are mean±S.E.M. (n=4-8, ***p<0.001, 

versus untreated CT cybrids; #p<0.05, versus untreated sPD cybrids). C. Cell lysates containing 

soluble (free) and MT-bound (polymerized, polim) tubulin from CT and sPD cybrids treated with 

or without Tubastatin A (Tub A, 5 µM, 24 h) were examined by immunoblotting using the anti-α-

tubulin and anti-GAPDH antibodies. Representative immunoblot for α-tubulin levels. D. 

Densitometric analysis of the levels of free and polymerized α-tubulin. Values represent the ratio 

free/polymerized tubulin calculated as the ratio of free α-tubulin densitometric value over the 

corresponding polymerized α-tubulin value. Values are mean±S.E.M. (n=4-8, ***p<0.001, 

versus untreated CT cybrids; ##p<0.01, versus untreated sPD cybrids). 
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Together, these results show that the structural and functional defects related to MT 

depolimerization observed in sPD cybrids may be associated with reduced acetylation 

levels of their tubulin cytoskeleton. In addition, the MT network impairments observed 

in sPD cybrids can be overcome by enrichment in tubulin acetylation via inhibition of 

SIRT2 and HDAC6 catalytic activities. 

 

6.3.3 Specific inhibition of SIRT2 catalytic activity improves the 

autophagic turnover in sPD cybrid cells  

Autophagosome formation, sorting, and subsequent cargo transport towards 

lysosomes are regulated by MTs (Matteoni and Kreis, 1987; Fass et al., 2006; Kochl et 

al., 2006). Specifically, hyperacetylation of tubulin results in higher affinity of motor 

proteins to MTs (Reed et al., 2006; Dompierre et al., 2007), which lead to extended 

motor attachment and enhanced motor processivity on the cytoskeleton. 

 We have previously shown that in our sPD cybrid model autophagosomes are 

actively formed but not efficiently eliminated by lysosomal degradation. Defective 

autophagic clearance ability was associated with impairments in MT trafficking 

stemming from mitochondrial dysfunction (Arduíno et al., unpublished data). As SIRT2 

and HDAC6 regulate tubulin acetylation and MT assembling, we considered the 

possibility that the decreased autophagic degradation associated to the deregulation of 

MT-dependent vesicle trafficking may involve SIRT2 and HDAC6 deacetylase activity. 

To test this hypothesis, we evaluated autophagosome formation by directly measuring 

the cellular distribution of endogenous LC3B and the turnover of the lipid-conjugated 

form of the autophagosome marker light chain 3, LC3B-II, (autophagic flux), as 

determined by comparing the accumulation of autophagosomes after inhibition of 

lysosomal proteolysis with NH4Cl/leupeptin (NL) relative to the steady-state levels of 

autophagosomes (Rubinsztein et al., 2009).  

 As previously shown, under basal conditions, sPD cybrids demonstrate an 

increase in both the number and size of endogenous LC3B puncta relative to CT 

cybrids (Figure VI.7Aa versus c), but when lysosomal degradation was inhibited this 

number increased more markedly in CT cybrids (Figure VI.7Ab versus d). Treatment 

with AK-1 further activated autophagy in a higher extent in sPD cybrids than in CT 

cybrids, as depicted by the higher increase in the number of bright puncta (Figure 

VI.7e versus f, compared with g versus h). In contrast to the effects of SIRT2 inhibition, 

no effects were observed upon Tubastatin A treatment on autophagosome formation 

and autophagic activity (Figure VI.7i versus j, compared with a versus b, and k versus 

l, compared with c versus d). 
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Figure VI.7. Inhibition of SIRT2- and HDAC6-dependent tubulin deacetylation differentially 

regulates the autophagic turnover.  

Cells from CT and sPD cybrids were treated with or without AK-1 (5 µM, 24 h) or Tubastatin A 

(Tub A, 10 µM, 24 h), following culture in the presence or absence of lysosomal inhibitors (NL) 

for the last 4 h. LC3B (green)-positive vesicles were visualized by indirect imunofluorescence. 

Hoechst 33342-stained nuclei are in blue. Scale bars, 10 µm. 

 

 

 The induction of autophagy was also evaluated by examining the levels of LC3B-

II. Consistent with the LC3B puncta staining data, when compared with CTs, AK-1 

treatment led to a decreased autophagosome content (decreased LC3-II levels) 

associated to improved autophagic flux in sPD cybrid cells (Figure VI.8).  
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Figure VI.8. Inhibition of SIRT2-dependent tubulin deacetylation improves the autophagic 

turnover.  

A. Cell lysates from CT and sPD cybrid cells treated with or without AK-1 (5 µM, 24 h) in the 

presence or absence of lysosomal inhibitors (NL, last 4 h) were examined by immunoblotting 

using the anti-LC3B and anti-α-tubulin antibodies. B. Determination of autophagic vacuole (AVs) 

basal levels. Values of LC3-II in the absence of NL represent the steady-state AV content. 

Values are mean±S.E.M. (n=3-6, ***p<0.001, versus untreated CT cybrids; 
##

p<0.01, versus 

untreated sPD cybrids). C. Assessment of autophagic flux, determined as the ratio of LC3-II 

densitometric value of NL treated samples over the corresponding untreated samples. Values 

are mean±S.E.M. (n=3-6, **p<0.01, versus untreated CT cybrids; 
#
p<0.05, versus untreated 

sPD cybrids). 

 

 

Conversely, inhibition of HDAC6 by Tubastatin A induced a dramatic reduction on the 

autophagic flux in CT cybrids and no positive effects were observed for sPD cybrid 

cells (Figure VI.9), indicating that this effect may be related with the direct involvement 

of HDAC6 in the autophagic pathway (Kawaguchi et al., 2003). 
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Figure VI.9. Inhibition of HDAC6 catalytic activity declines the autophagic turnover. 

A. Cell lysates from CT and sPD cybrid cells treated with or without Tubastatin A (Tub A, 10 µM, 

24 h) in the presence or absence of lysosomal inhibitors (NL, last 4 h) were examined by 

immunoblotting using the anti-LC3B and anti-α-tubulin antibodies. Representative immunoblot 

for LC3B-I and II levels. B. Determination of autophagic vacuole (AVs) basal levels. Values of 

LC3-II in the absence of NL represent the steady-state AV content. Values are mean±S.E.M. 

(n=3-6, ***p<0.001, versus untreated CT cybrids). C. Assessment of autophagic flux, 

determined as the ratio of LC3-II densitometric value of NL treated samples over the 

corresponding untreated samples. Values are mean±S.E.M. (n=3-6, **p<0.01, versus untreated 

CT cybrids). 

 

 

Collectively, these data suggest that SIRT2-mediated tubulin acetylation is a major 

determinant for an efficient autophagic activity. 
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6.3.4 SIRT2-dependent tubulin deacetylation regulates α-synuclein protein 

inclusion clearance 

There is evidence that SIRT2 inhibitors ameliorate the neurodegenerative phenotypes 

of cell and animal models of PD by dramatically modulating the formation of α-

synuclein protein inclusion (Outeiro et al., 2007). Additionally, α-synuclein has been 

shown to interact with MTs (Iseki et al., 2000; Payton et al., 2001; Alim et al., 2004; 

Zhou et al., 2010), which prompted us to ask whether SIRT2 and HDAC6 inhibition 

might also modify the oligomerization pattern of α-synuclein previously observed in our 

sPD cybrid cells [(Esteves et al., 2009, 2010a) and Arduíno et al., unpublished data)]. 

 Treatment with AK-1 significantly reduced the presence of both soluble and 

insoluble high molecular weight oligomeric species of α-synuclein in both CT and sPD 

cybrids (Figure VI.10).  
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Figure VI.10. Inhibition of SIRT2-dependent tubulin deacetylation improves α-synuclein 

clearance. 

A. and B. Cell lysates from CT and sPD cybrid cells treated with or without AK-1 (5 µM, 24 h) in 

the presence or absence of lysosomal inhibitors (NL, last 4 h) were examined by 

immunoblotting using the anti-α-synuclein (LB509) and anti-α-tubulin antibodies to assess the α-

synuclein oligomeric form content. Representative blots of Triton X-100-soluble oligomeric 

species (A) and Triton X-100-insoluble, and SDS-resistant oligomeric species (B). C. and D. 

Densitometric analysis of α-synuclein-soluble oligomers content (C) (n=6-12, ***p<0.001, versus 

untreated CT cybrids ###p<0.001, versus untreated sPD cybrids) and α-synuclein-insoluble 

oligomers content (D) (n=6-12, *p<0.05, ***p<0.001, versus untreated CT cybrids; ###p<0.001, 

versus untreated sPD cybrids). Values are mean±S.E.M. 
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However, in contrast to the effects of SIRT2 inhibition, no effects were observed on α-

synuclein inclusion size in both soluble and insoluble fractions for Tubastatin A 

treatment in our cybrid cells (Figure VI.11). 

 

 

Figure VI.11. Inhibition of HDAC6-dependent tubulin deacetylation fails to promote α-

synuclein cleaning up. 

A. and B. Cell lysates from CT and sPD cybrid cells treated with or without Tubastatin A (10 µM, 

24 h) in the presence or absence of lysosomal inhibitors (NL, last 4 h) were examined by 

immunoblotting using the anti-α-synuclein (LB509) and anti-α-tubulin antibodies to assess the α-

synuclein-oligomeric form content. Representative blots of Triton X-100-soluble oligomeric 

species (A) and Triton X-100-insoluble, SDS resistant oligomeric species (B). C. and D. 

Densitometric analysis of α-synuclein-soluble oligomers content (C) (n=8-12, ***p<0.001, versus 

untreated CT cybrids) and α-synuclein-insoluble oligomers content (D) (n=8-12, ***p<0.001, 

versus untreated CT cybrids). Values are mean±S.E.M. 
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 The differential efficacy of these two distinct inhibitors against α-synuclein 

oligomerization in these cells is consistent with their differential effect on the 

autophagic flux. Thus, these data show that specific deacetylation by SIRT2 on Lys40 

of tubulin improves autophagy and thereby enhances α-synuclein clearance, 

preventing α-synuclein toxicity and consequently PD-related neurodegeneration. 
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6.4 Discussion 

 

In this study, we have demonstrated a role for deacetylation at Lys40 of α-tubulin in the 

impairment of the autophagic activity and protein cargo clearance in cellular models 

harboring sPD subject mtDNA (sPD cybrids). We show here that specific inhibition of 

SIRT2 deacetylase activity rescues MT-dependent autophagic transport alterations 

previously observed in sPD cybrids, thus providing a novel insight into how, 

molecularly, autophagic activity and inherent autophagic clearance are impacted by 

mitochondrial function.  

 Our previous work has raised the possibility that alterations in mitochondrial 

energy metabolism play a role in the modulation of autophagy and, therefore, multiple 

defects in mitochondria-dependent metabolism might be the initial events in sPD-

related autophagic pathology. Mitochondrial dysfunction and oxidative stress have 

been extensively associated with the majority of neurodegenerative diseases as well 

with sPD (Henchcliffe and Beal, 2008). In fact, we have previously reported that 

pathways influenced by aerobic metabolism are altered in sPD cybrids. sPD cybrids 

showed reduced SIRT1 phosphorylation, reduced peroxisome proliferator-activated 

receptor-gamma coactivator-1alpha (PGC-1α) levels and increased NF-kB activation 

(Esteves et al., 2010c). In addition, cellular ATP levels in sPD cybrids are reduced 

relatively to those of CT cybrids (Esteves et al., 2008; Esteves et al., 2009). Some of 

these redox-dependent changes may occur in part as a downstream consequence of 

increased oxidative stress, as sPD cybrids show enhanced generation of reactive 

oxygen species (ROS) and other free radicals, increased protein oxidation, and 

decreased glutathione pool, despite the presence of a presumably compensatory 

increase in the activities of the major antioxidant enzymes relative to CT cybrids 

(Swerdlow et al., 1996; Cassarino et al., 1997; Esteves et al., 2009). All of these 

defects result in a deregulation of mitochondrial energy metabolism, as revealed by a 

decreased mitochondrial respiratory capacity (Esteves et al., 2010c). Although basal 

oxygen consumption rate between sPD and CT cybrids was comparable, when 

mitochondria were challenged via chemical-induced uncoupling into a state of 

maximum oxygen consumption, sPD cybrids revealed increased proton leak in 

conjunction with a reduced respiratory reserve capacity and ATP production, when 

compared with CT cells. This means that under basal respiratory conditions sPD 

cybrids are respiring closely to their maximum respiratory capacity and that oxygen 

consumption is greatly due to proton leak (Esteves et al., 2010c). Given the decrease 

in the activity of complex I in sPD cybrids one could expect a decrease in the 
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NAD+/NADt ratio (Vemuri et al., 2007; Vinogradov, 2008). However, our results showed 

the inverse situation suggesting that other pathways dependent on mitochondrial 

function, but not directly associated to complex I activity, play a role. A possible 

explanation might be changes in glycolitic flux. A slow decline in glycolytic metabolism 

may occur, as persistent mitochondrial overfeeding possibly causes system overflow 

metabolism, and consequently a bioenergetic collapse under these conditions. In 

addition, because ATP is the principal carrier of energy in cells, this reduction is likely 

to interfere with many important ATP-dependent cellular processes. These hypotheses 

were confirmed by our findings that cellular levels of NADt (NAD+ plus NADH), whose 

generation is dependent on the levels of ATP (Magni et al., 1999), were significantly 

decreased and that the ratio NAD+/NADt was increased in sPD cybrid cells.  

 Cellular energy status, reflected in NAD+ levels and NAD+/NADH ratios, are 

thought to influence stress-protein synthesis (Westerheide et al., 2009), autophagic 

activity (Lee et al., 2008; Salminen and Kaarniranta, 2009), sirtuin-mediated protein 

deacetylation (Bordone and Guarente, 2005; Rodgers et al., 2008) and increased 

mitogenesis (Bonawitz et al., 2007; Cunningham et al., 2007), all of which impact upon 

the processes influencing proteostasis and related neurodegeneration. In this study, we 

report a new finding regarding the interplay between mitochondrial metabolism and 

SIRT2 and HDAC6 activities in the context of sPD with important consequences for the 

modulation of the autophagic system and MT-dependent intracellular trafficking. We 

confirm that both SIRT2 and HDAC6 are MT-associated proteins and active tubulin 

deacetylases whose inactivation leads to a dramatic accumulation of acetylated MTs 

(Hubbert et al., 2002; North et al., 2003) in our sPD cybrid cells.  

 Although α-tubulin acetylation is one of the most common post-translational 

modifications (Janke and Bulinski, 2011), its biological relevance remains uncertain. 

Here, we provide evidence that tubulin acetylation is functionally associated with 

intracellular trafficking and consequently with autophagic turnover maintenance. 

Elevation of MT acetylation resulting from the selective inhibition of SIRT2 catalytic 

activity enhanced MT-directed transport of autophagic vacuoles as evidenced by 

increased proteolytic flux through the autophagy-lysosome pathway. These data are 

consistent with previous reports demonstrating that α-synuclein-mediated neurotoxicity 

in several models of PD is due in part to deacetylation of α-tubulin by SIRT2 (Outeiro et 

al., 2007). Also, hyperacetylation of α-tubulin was found to trigger resistance to axonal 

degeneration in slow Wallerian degeneration mice, and this was overcome by SIRT2 

overexpression (Suzuki and Koike, 2007). 

 It is well established that α-tubulin is a substrate of both SIRT2 and its 

cytoplasmic interacting protein HDAC6 and, thus, one would expect a similar effect 

https://www.google.com/search?lr=&q=glycolytic%20metabolism&start=0&spell=1
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from inhibition of HDAC6. However, we found that inhibition of HDAC6 by Tubastatin A 

induces a dramatic reduction on the autophagic flux in CT cybrids and no positive 

effects were observed for sPD cybrid cells. Consistently, no significant effects were 

observed regarding the altered oligomeryzation pattern of α-synuclein observed in sPD 

cybrids. These results suggest that deacetylation of other substrates by HDAC6 may 

be essencial to the autophagic dependent protein degradation. In fact, HDAC6 tubulin 

deacetylase activity has been shown to be required for HDAC6 dependent aggresome 

formation and autophagic clearance of protein aggregates (Kawaguchi et al., 2003; 

Pandey et al., 2007). HDAC6 is involved in the transport process as an adaptor protein 

by binding to p150, a component of the dynein motor complex, and acts as a bridge 

between the dynein motors and the ubiquitinated proteins leading to aggresome 

formation (Hubbert et al., 2002). Nevertheless, given that MT stabilization and motor 

dependent transport is enhanced when MTs are acetylated one would expect that the 

deacetylase activity of HDAC6 is inhibited during these transport processes and that 

deacetylase deficient forms of HDAC6 should be able to rescue agressome formation 

and enhance autophagic turnover. Corroborating this assumption, HDAC6 inhibition in 

primary cultures of neurons resulted in an effective MT acetylation and stimulated 

axonal transport, compensating for the BDNF vesicle transport- and release-defect 

phenotypes that are observed Hungtinton’s disease (Dompierre et al., 2007). 

 However, despite the beneficial effects observed in some vesicular transport 

systems upon inhibition of HDAC6, in our study we have found a remarkable decrease 

in autophagic flux following the inhibition of this deacetylase. This apparently 

contradictory effect might be explained by the role of HDAC6 in the autophagy-

lysosome pathway, playing an essential role in the fusion between autophagosomes 

and lysosomes by recruiting and deacetylating cortactin, which in turn recruits actin 

filaments to tether the two vesicle populations (Lee et al., 2010b; Lee and Yao, 2010). 

In addition, it was found that protein aggregates and impaired mitochondria are 

processed by a common pathway involving HDAC6- and parkin-dependent ubiquitin-

selective autophagy and aggresomal machinery (Lee et al., 2010a), thus providing a 

unifying model toward understanding the two most common pathological features of 

PD: mitochondrial dysfunction and protein aggregation. 

 In summary, in this study we dissected the molecular mechanisms by which 

mitochondrial metabolism in sPD can affect MT-directed autophagic turnover that in 

turn regulates intracellular protein homeostasis by modulating aggresome formation 

and protein aggregates degradation. Our findings demonstrate the pathogenic role of 

α-tubulin deacetylation mediated by SIRT2 in sPD cybrid cell models and highlight the 

neuroprotective effects of HDAC6 in PD. This observation implies that the ability to 
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regulate α-tubulin deacetylase activity to modulate protein homeostasis may have 

important implications for the development of new therapheutic strategies for 

pathological conditions such as sPD.  
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Parkinson’s disease (PD) is a disabling neurodegenerative disorder that is strongly 

associated with ageing, increasing exponentially in incidence above the age of 65 (de 

Lau et al., 2004). The incidence of PD is expected to rise dramatically worldwide in the 

next 25 years with the extension of life expectancy by improved health care. Although 

there are signs of distributed neuropathology, as judged by Lewy bodies (LBs) 

formation (Braak et al., 2004), the motor symptoms of PD, including bradykinesia, 

rigidity and resting tremor, are clearly associated to the degeneration and death of 

SNpc dopaminergic neurons (Obeso et al., 2010). The determination that those 

cardinal manifestations are primarily due to a profound depletion of dopamine in the 

striatum led to the development of rational therapies aimed at correcting this deficiency 

(Calne et al., 1974; Gopinathan et al., 1981; Lieberman et al., 1981). However, despite 

several breakthrough discoveries in the symptomatic PD therapy, the current therapies 

are palliative at best and just provide effective control of symptoms, particularly in the 

early stages of the disease (Thomas, 2009). This is due to the development of motor 

complications including wearing-off (the return of PD symptoms too soon after a given 

levodopa dose), the presence of involuntary abnormal movements (dyskinesias and 

dystonia), and the emergence of treatment-resistant symptoms such as gait 

impairment, cognitive decline, autonomic dysfunction and medication-induced 

psychosis (Savitt et al., 2006). Clearly, the current symptomatic therapies cannot 

completely improve later-stage symptoms and fail to halt the degeneration process in 

the dopaminergic and nondopaminergic systems. This indeed emphasizes the urgency 

of developing a more effective therapeutic for PD patients. However, a major hurdle for 

the development of neuroprotective therapies is the restricted understanding of disease 

causes and mechanisms leading to death of dopaminergic neurons. 

 While the etiological factors involved in the development of PD are still uncertain, 

a combination of genetic susceptibilities and environmental factors seems to play a 

critical role. Nevertheless, over the course of the past decade, remarkable advances 

have been made in the identification of genes associated with familial forms of PD. 

Although familial PD is relatively rare compared with idiopathic disease, the associated 

genes provide an opportunity to gain important insights into molecular pathways that 

lead to Parkinsonism and that may be important in the sporadic forms of this disease 

(sPD) as well. Recent evidences seem to converge on mitochondria as a primary target 

in the process of dopaminergic neuronal loss observed in PD. Mitochondrial 

metabolism and energy production impairment are certainly two of important causes 

and the study of the protein products involved in genetic forms of PD profoundly 

contributed to extend our knowledge in this topic.  
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 Another organelle that has been widely linked to the pathogenesis of PD is the 

endoplasmic reticulum (ER). The ER is an integral component of the cellular machinery 

that coordinates protein synthesis, folding, degradation and transport to ensure 

accurate and efficient delivery of proteins to the compartments of the secretory 

pathway, a process generally known as proteostasis (Balch et al., 2008). One of the 

hallmarks of PD is the formation of LBs, which reflects a deficiency in proteostasis that 

is accompanied by signs of ER stress and an attempt to sequester cytotoxic proteins 

(Ryu et al., 2002). Indeed, in this work we demonstrated that in particular stressful 

conditions mimicking sPD, any alteration in the mitochondrial functionality seems to 

deeply affect the ability to support cellular stresses, thus making the cells more 

susceptible to additional insults. We observed that mitochondrial dysfunction induced 

by an acute stimulus of the neurotoxin MPP+ renders cells more susceptible to develop 

an ER stress response, which was mainly translated into a sustained flux of Ca2+ from 

the ER to mitochondria accompanied by the activation of ER- and mitochondria-

dependent apoptotic pathways (Chapter III).  

 Moreover, we also provide evidence that ER stress response may participate in 

mitochondrial stress-induced abnormalities. We demonstrated that sustained ER stress 

caused by accumulation of unfolded or misfolded proteins potentiates Ca2+-overload 

and impairment of mitochondrial function primarily characterized by dissipation of 

mitochondrial membrane potential and substantial decline in the mitochondrial 

respiratory chain complex I activity. These cumulative events also coursed in apoptotic 

cell death induction (Chapter IV). Our findings add on to the exciting concept that 

mitochondria and ER are actively networking which is fundamental for the maintenance 

of cellular homeostasis. However, they emphasize that in the context of sPD the close 

physical and functional association between ER and mitochondria may provide the 

opportunity for stress or dysfunction in one organelle to potentially disrupt homeostasis 

in the other organelle, triggering a cascade of deleterious events that culminate in 

neuronal degeneration. We propose that Ca2+ is the main intervenient in the ER and 

mitochondria crosstalk, functioning as a key modulator of cell death signals triggered 

by the ER and mitochondria. Ca2+-mediated cellular stress has long been thought to be 

important in neurodegeneration, but it usually is envisioned as a late stage 

consequence of organelle damage imposed by some other challenge (Surmeier, 2007). 

Relevant to sPD pathology, the unusual reliance of SNpc dopaminergic neurons on 

voltage-dependent L-type Ca2+ channels in autonomous pacemaking suggests that the 

mitochondrial stress created by sustained Ca2+ entry could be responsible for their 

selective vulnerability, rather than simply a late stage consequence. This hypothesis is 

consistent with the central role of mitochondria in the pathogenesis of sPD.  
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 Despite the unequivocal evidence for the involvement of mitochondria and ER in 

the sPD pathogenesis, it seems that sPD is distinctively characterized by an additional 

proteostasis burden that causes SNpc dopaminergic neurons to fail massively. 

Actually, LBs and other types of protein deposits found in PD patient brains are not 

merely neuropathological hallmarks of the disease, but rather putative effectors of sPD 

pathogenesis. A strict policy of quality control mechanisms acts to coordinate the rates 

of protein synthesis with degradation, preventing such intracellular aggregates from 

forming (Balch et al., 2008; Powers et al., 2009). Besides ER, cellular proteolytic 

systems, such as the autophagic-lysosomal pathway, are actively dedicated to protein 

quality control and their failures have severe negative consequences for cellular 

homeostasis and cellular functioning, which ultimately result in proteotoxicity. 

 We demonstrated that a prolonged metabolic failure due to mitochondrial 

dysfunction, either in cellular models harboring sPD subject mtDNA (sPD cybrids) or 

knock-down of all mtDNA (Rho0 cells), or in MPP+-treated rat cortical neurons causes 

a functional decline in the activity of the autophagic system. Consistently, in all of our 

paradigms, autophagosomes are actively formed but some of their structural 

components and autophagic substrates are unable to be efficiently degraded within 

lysosomes (Chapter V). Although the presence of accumulating autophagosomes 

could represent an aberrant activation of autophagy, we provided evidence that 

autophagy is not over stimulated in our models but, instead, defective clearance of the 

autophagic vacuoles might account for those observations. In addition, we established 

the proof of concept that autophagy failure stemming from mitochondrial dysfunction is 

a consequence of alterations in microtubules (MT) assembly that hamper mitochondria 

and autophagosomes transport along the MT network toward the lysosomal 

compartment. Consequently, deficient autophagy turnover potentiates the 

accumulation of α-synuclein oligomers and, ultimately, promotes apoptosis. These 

findings describe novel and important features in the neuropathological cascade of PD, 

connecting three important features of sPD: mitochondrial, autophagy and MT 

dysfunctions. 

 We further dissected the molecular mechanisms by which mitochondrial 

metabolism in sPD can affect MT-directed autophagic turnover that in turn regulates 

intracellular protein homeostasis. We demonstrated a role for the acetylation at Lys40 

of α-tubulin in the regulation of the autophagic activity and protein cargo clearance in 

cellular models harboring sPD subject mtDNA (sPD cybrids). In addition, we showed 

that specific inhibition of SIRT2 deacetylase activity rescues MT-dependent autophagic 

transport alterations previously observed in sPD cybrids, thus providing a novel insight 
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into how, molecularly, autophagic activity and inherent autophagic clearance are 

impacted by mitochondrial function (Chapter VI). 

 Collectively this thesis proposes a new conceptual foundation as to how 

mitochondrial dysfunction can affect intracellular protein quality control systems, the ER 

and the autophagy-lysosomal system, that in turn regulate cellular protein homeostasis 

(Figure VII.1).  

 

 

Figure VII.1. Intracellular pathways altered by mitochondrial dysfunction.  

Our rationale correlates intracellular events triggered by dysfunctional mitochondria, due to 

inherited mtDNA, with an accumulation of dysfunctional mitochondria and protein aggregates, 

leading to dopaminergic cell death. 

 

 

 While it may be difficult to decipher the individual contribution of the different 

molecular pathways affected by mitochondrial dysfunction, our findings reinforce the 

concept that restoration of Ca2+ homeostasis and of MT network function is indeed able 

to provide neuroprotection against PD-related dopaminergic neurodegeneration and 

may thus represent a potentially beneficial new therapeutic strategy for PD. 
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