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Resumo

Esta dissertação aborda o tema da utilização de planos inerciais para registo de

dados tridimensionais de objetos observados por uma rede de camaras dotadas de

sensores inerciais. Cada câmera está rigidamente ligada a um sensor inercial (SI).

Utilizando as informações provenientes de cada um dos sensores é proposto um

método de reconstrução tridimensional, sem necessidade de partir do pressuposto

que o chão é plano. Para além disso, em cada par (câmera-SI), o SI é utilizado

para definir uma câmera-virtual cujo plano da imagem é horizontal e alinhado

com a gravidade terrestre (direções cardinais terrestres). O SI é também utilizado

para definir um conjunto de planos Euclidianos inerciais. O plano da imagem de

cada câmera virtual é projetado sobre este conjunto de planos-inerciais, que são

paralelos e horizontais; usa-se para tal transformações homográficas. Os mode-

los geométricos são apresentados e a sua visualização é feita em tempo real pela

utilização de um algoritmo de reconstrução implementado por um sistema de pro-

cessamento gráfico. Foram para tal investigadas as relações geométricas entre os

diferentes planos de imagem projetados e os planos inerciais Euclidianos, e para

cada caso particular foi obtida uma função homográfica paramétrica. Foi ainda

proposta uma rquitetura de processamento paralelo a fim de executar em tempo

real a reconstrução volumétrica. A capacidade de se processar em tempo real é

obtida através da implementação do algoritmo de reconstrução em uma unidade de

processamento gráfico (GP-GPU), utilizando Compute Unified Device Architec-

ture (CUDA). Nós aproveitamos o facto de termos cada câmera ligada a um sensor

inercial, e propusemos um método para estimar os parâmetros extŕınsecos entre

as câmeras dentro da rede. Devido à imperfeição das observações provenientes
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dos sensores ou dos algoritmos de estimação, os dados obtidos contêm algumas

incertezas. Estar ciente de tais incertezas é muito importante na fase de fusão da

informação proveniente de diferentes nós de uma rede de sensores, e também em

outras aplicações que utilizam os dados recolhidos. Para este efeito, nós usamos

a geometria estat́ıstica, e modelizamos as incertezas em todas as transformações

homográficas envolvidas no âmbito do processo, e também na propagação de erro

sobre os dados recolhidos. Além disso, alguns aspetos importantes, tais como uma

configuração apropriada da rede de câmeras, filtragem de baixo ńıvel dos dados,

e integração de visão móvel com sensores de laser dentro da rede de câmeras,

foram também alvo de pesquisa nesta dissertação. Para este estudo existe uma

variedade de aplicações práticas, diferentes áreas podem beneficiar da estrutura de

registo de dados tridimensional aqui proposta. Estas áreas incluem: vigilância de

movimentos humanos, captura e modelos de comportamento humano, realidade

virtual, jogos, teleconferências, interação humano-robô, indústrias médicas.



Abstract

This dissertation explores the use of inertial planes for the purpose of scene 3D

data registration. The scene is observed by a network of cameras and inertial

sensors where each camera is rigidly coupled to an inertial sensor. Taking ad-

vantage of inertial sensor (IS), a 3D reconstruction method is proposed with no

planar ground assumption. Moreover, IS in each couple is used to define a vir-

tual camera whose image plane is horizontal and aligned with the earth cardinal

directions. The IS is furthermore used to define a set of Euclidean inertial planes

in the scene. The image plane of each virtual camera is projected onto this set of

parallel-horizontal inertial-planes, using homography transformations. Geometric

relations among different projective image planes and Euclidean inertial planes of

the framework are investigated and for each particular case a parametric homog-

raphy function is obtained. A parallel processing architecture is proposed in order

to perform real-time volumetric reconstruction. The real-time characteristic is

obtained by implementing the reconstruction algorithm on a graphics processing

unit (GP-GPU) using Compute Unified Device Architecture (CUDA). We take the

advantage of having each camera coupled to IS and proposed a method to estimate

the extrinsic parameters among the cameras within the network. Due to the im-

perfectness of the sensor observations or estimation algorithms the obtained data

are corrupted and contain some uncertainties. To be aware of such uncertainties

can be of importance for the fusion stage of the information coming from different

nodes in a sensor network and as well for further applications which will use the

registered data. For this purpose we use statistical geometry and modelize the un-

certainties in all involved homography transformations within the framework and
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their error propagations on the registered data. Moreover, some relevant issues,

such as an appropriate camera configuration in the sensor network, low-level data

filtering of the scene’s dynamic and integration of mobile vision and laser sensor

within a camera network, are also investigated in this dissertation. There is a

variety of applications from different areas which can benefit from the proposed

3D data registration framework. These areas include surveillance, human mo-

tion capturing and behaviour modelling, virtual-reality, games, tele-conferencing,

human-robot interaction, medical industries, and scene and object understanding.
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2 Chapter 1. Introduction

In the context of computer vision, three-dimensional (3D) data registration

refers to the process of fusing two-dimensional (2D) images, captured by cameras,

in order to retrieve 3D coordinates of a scene. A camera captures the visible space

as a 2D digital image plane. Inertial sensor (IS) is an electronic device which is able

to measure 3D orientation between a rigid body coordinate system and the earth-

fixed coordinate system using a combination of magnetometer and accelerometer.

In this dissertation, we study the subject of 3D reconstruction of a scene using

2D images of cameras accompanied by 3D orientation provided by inertial sen-

sors. Recovering 3D information is demanded by a variety of applications from

different areas including surveillance, human motion and behaviour modelling,

virtual-reality, smart-room, health-care, games, teleconferencing, human-robot in-

teraction, medical industries and scene and object understanding.

1.1 Motivation

One of the primary tasks in many of the aforementioned applications is to register

3D data of the scene. Performing 3D data registration and scene reconstruction

using a set of planar images is still one of the key challenges of computer vision.

A network of cameras, whose usage and ubiquitousness have been increasing in

the last decade, can provide such planar images from different views of the scene.

Recently, IS has been becoming much cheaper and more available so that nowadays

most smart-phones are equipped in both IS and camera sensors. 3D earth cardinal

orientation (North-East-Down) is one of the outputs of an IS. The mentioned

demand for 3D data registration and availability of cameras already coupled with

IS motivated us to investigate how availability of a network of such camera-IS

couples can give benefit for the purpose of multi-sensor 3D data registration.
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1.2 Related works

Previous works related to the scope of this thesis fall into five categories. First,

3D reconstruction using vision. Second, the use of IS to accompany computer

vision. Third, related works to real-time implementation of the computer vision

algorithms using GP-GPU. Forth, the modelization of uncertainties of homogra-

phy transformations and eventually some works related to the issue of extrinsic

parameters estimation.

1.2.1 Multi-view 3D reconstruction

There have been many works in the area of 3D reconstruction. Some researchers

used homography transformation for this purpose. Khan in [KYS07] proposed a

homographic framework for the fusion of multi-view silhouettes. They estimate

homographies using the three vanishing points of the reference plane in the scene.

In a similar approach, Michoud et al. [MGB07] introduced a marker-less 3D human

motion capturing approach using multiple views. Zhang in [ZWW03] introduced

an algorithm for 3D projective reconstruction based on infinite homography. Their

contribution is improvement of 4 points based method of Hartley and Rother et

al. They proposed a linear algorithm based on 3 points on a reference plane which

is visible in all views. Homography-based mapping is used to implement a 3D

reconstruction algorithm by Zhang and Hanson in [ZH96]. Khan in [Kha08] pro-

posed some algorithms to track, reconstruct and object classification by using a

homographic occupancy constrain. Wada et al. [WWTM00] studied a 3D recon-

struction method using homography transformation. They presented a parallel

volume intersection method based on plane-to-plane homography for real-time 3D

volume reconstruction using active cameras where the focus is on the acceleration

of back-projection from silhouette images to 3D space. Lai and Yilmaz in [LY08]

used images from uncalibrated cameras for performing projective reconstruction of

buildings based on Shape From Silhouette (SFS) approach where buildings struc-

ture is used to compute vanishing points. The achieved reconstruction is a metric
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recovery up to a scale factor and homography transformations are used. Lee et

al. in [LY10] applied a 3D reconstruction method using photo consistency in im-

ages taken from uncalibrated multiple cameras. A dynamic calibration and 3D

reconstruction using homography transformation is proposed by Zhang and Li in

[ZL05]. Metric 3D reconstruction for large structures from uncalibrated images

and using homography techniques is investigated by Tang et al. [TWH+07]. They

used structure lines to obtain vanishing points.

Some researchers use non-homography methods for perform 3D reconstruction.

Sorman et al. in [SZB+07] presented a multi-view reconstruction method based

on volumetric graph-cuts. A multi-resolution volumetric 3D object reconstruction

has been proposed by Guerchouche et al. in [GBZ08]. 3D object reconstruction

of an object using uncalibrated images taken by a single camera is proposed by

Azevedo et al. in [ATV09]. They used active computer vision method for the

3D reconstruction of objects from image sequences. In their work Structure From

Motion (SFM) is used to recover the 3D shape of an object based on the rela-

tive involved motion and photo-consistency (voxel coloring) is used to perform the

volumetric reconstruction. Jethwa in [Jet04] proposed a method to perform effi-

cient voxel-based reconstruction of urban environments using a large set of images.

Color and silhouette information from multiple views are fused by Khan and Shah

[KS08] for reconstructing articulated objects in monocular video. Sinha in [Sin09]

studied how silhouettes extracted from images and video can help both multi-view

camera calibration and 3D surface reconstruction from multiple images. Maitre

et al. [MSD08] investigated a method to perform multi-view reconstruction of a

scene by using camera arrays. Ruwwe et al. in [RKR+08] proposed an approach

for image registration based on reconstructed 3D octrees by voxel carving.

Michoud in [MSEH08] proposed a method to eliminate appearing ghost object

in SFS-based 3D reconstructions. Ghost is an extra object which does not exist in

the real scene but when there are some cases of visual ambiguities in the silhouettes

it can be seen in the reconstructed scene [MSEH08].

There are some related surveys on the different 3D reconstruction techniques.
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Kordelas et al. in [KAHD] provided a survey for existing 3D model reconstruction

algorithms where the approaches are categorized by the devices by which the data

are acquired (laser range finder and camera). Different 3D reconstruction meth-

ods based on visual hull approach are compared and evaluated by Fredriksson

in [Fre11]. A survey on motion-parallax-based 3-D reconstruction techniques is

provided by Lu et al. in [LZWnL04]. Some efficient methods for the 3D recon-

struction of static and dynamic scenes from stereo images, stereo image sequences,

and images captured from multiple viewpoints are explored in [Leu05] by Leung.

Different multi-view stereo reconstruction algorithms are compared and evaluated

on a common ground truth by Seitz et al. [SCD+06]. A Comparison between

different computer vision methods for real-time 3D reconstruction for the use in

mobile robots has been done by Dornauer et al. in [DKBN08].

As mentioned before, 3D reconstruction can be useful for many applications.

Feldmann et al. [FMS+10] utilized the volumetric 3D reconstruction for the aim

of on-line body motion tracking system. Brice et al. [BES05] investigated the

use of multi-view geometry to human model and pose reconstruction. Luo et al.

[LBTV10] introduced a method to estimate human pose for multiple persons based

on volume reconstruction. The use of 3D information in the field of cultural her-

itage is investigated by Vergauwen [VVG06] where a web-based 3D reconstruction

service is proposed. Capturing of complex human movements from multiple views

is studied in [Keh05] by Kehl. 3D reconstruction of natural underwater scenes

using an stereo-vision is studied by Brandou et al. [BAP+07]. A human body

posture estimation method based on back projection of human silhouette images

is proposed by Takahashi et al. [KT07]. Uriol [Uri05] used a camera network to

reconstruct human and synthesis an avatar. A system for real-time 3D human

visual hull reconstruction and skeleton voxels extraction is proposed by Yang et

al. [YZL+09].

Some researchers used more modalities rather than just images for performing

3D reconstruction. Guomundsson et al. in [GPC+10] investigated the improve-

ment of 3D reconstruction in an smart-room by using ToF imaging. Jiang and
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Lu [JL06] fused color intensity images and laser range data to perform panoramic

3D reconstruction of scene. A hybrid surface reconstruction method that fuses

geometrical information acquired from silhouette images and optical triangulation

is presented in [YW07] by Yemez and Wetherilt. Kim et al. in [KTD+09] pro-

pose a multi-view sensor fusion approach that combines information from multiple

color cameras and multiple ToF depth sensors for the sake of 3D reconstruction.

Fusion of laser range and image for the purpose 3D reconstriction is studied by

Bok et al.[BHK07]. Guan et al. [GFP08] proposed a method to perform 3D

reconstruction by fusion of data from camera and ToF.

1.2.2 Using IS to accompany vision

The use of inertial sensors to accompany compute vision applications is recently

attracting attentions of the researchers. Nowadays, IS has become much cheaper

and more available. Thanks to the availability of MEMS chipsets, there are many

smart-phones which are equipped with this sensor and camera as well. Dias et

al. [DLA02, LAAD03] investigated the cooperation between visual and inertial

information. Lobo and Dias [LD07] proposed an efficient method to estimate the

relative pose of a camera and an IS. The use of IS with a stereo camera for the

purpose of world feature detection is investigated in [LQD03] by Lobo and Dias.

Mirisola in [MDdA07] used a rotation-compensated imagery for the aim of trajec-

tory of an airship by aiding inertial data. Fusion of image and inertial data is also

investigated by Bleser et al. [BWBS06, BS08] for the sake of tracking in the mobile

augmented reality. Ababsa in [Aba09] used inertial sensor orientation and GPS

position for performing 3D reconstruction of urban scenes. Zendjebil and Ababsa

in [ZADM10] investigated the use of GPS-IS-camera for 3D localization of an out-

door mobile robot and moreover provided some calibration methods among these

sensors. In [HGJ07] IS and stereo vision are used for underwater environment

reconstruction. In [HYWH10] IS is used to calibrate a camera network with no

overlapping FOV (field of view) by Hsieh. Inertial data is augmented with monoc-

Micro-Electro-Mechanical-Systems
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ular video to perform 3D environment reconstruction in [CLT06] by Clark et al.

Fusion of image data with location and orientation sensor data streams for the pur-

pose of camera trajectory recovering and scene reconstruction is investigated by

Gat et al. [GKN10]. Gat et al. [GKN10] fused inertial information together with

geographical data and images from a video stream recorded by a mobile camera in

order to reconstruction the camera trajectory for the purpose of consumer video

applications. Besdok in [Bes09] proposed a method to calibrate a pair of cameras

using IS attached to a calibration pattern, where RBF neural networks are used

for training the system. Randeniya et al. [RGSN08] proposed a method to esti-

mate the intrinsic parameters for a camera and the extrinsic parameters among

the camera and IS. Their approach is mentioned to be effective and precise for In-

telligent Transportation Systems applications with large filed of view and capable

of functioning in manoeuvres. In [MR08] a Kalman filter-based algorithm to cali-

brate an IS and camera couple is proposed by Mirzaei et al. . In [OD02] Okatani

et al. demonstrated that how the translation of camera between two images can

be robustly estimated by using IS. Based on Okatani’s work, Labrie and Hebert in

[LH07] showed that how the camera 3D motion recovery can be improved by the

using inertial data. Brodie et al. in [BWP08] proposed a re-calibration method

for IS in order to noticeably reduce its 3D orientation error. Kalantart et al. in

[KHJG11] proposed a solution to the relative orientation problem between two

cameras where the accaracy of IS is improved less that 0.001◦.

1.2.3 Real-time implementation using GP-GPU

In order to have a real-time processing time many researchers have already started

to use GPU-based (GP-GPU and CUDA) parallelization of their algorithms. Joao

Filipe and Lobo et al. in [FLD10] proposed a real-time implementation of Bayesian

models for perception through multi-modal sensors by using CUDA. Camera cal-

ibration and real-time image distortion correction are performed in [MBF12] by

Melo and Barreto et al. for the medical endoscopy applications. Almeida and

Menezes et al. implemented the stereo vision head vergence using GPU-based
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cepstral filtering [AMD11]. A GPU-based background segmentation algorithm

is proposed in [GRNG05] by Griesser et al. Ziegler in [Zie10] proposed a GPU

data structure for graphic and vision. Real-time space carving using CUDA is

investigated in [NNT07] by Nitschke et al. In [SHT+08] CUDA is used to accel-

erate advanced MRI reconstructions. GPU-based method is used in [WFEK09]

by Waizenegger for the purpose of high resoulution and real-time reconstruction

using visual hulls. A GPU-based shape from silhouette (SFS) algorithm is im-

plemented in [YLKC07] by Yous et al. An approach for volumetric visual hull

reconstruction, using a voxel grid that focuses on the moving target object, is

proposed by Knoblauch et al. [KK09]. A real-time 3D reconstruction system is

presented in [LBN08] by Ladikos et al. to achieve real-time performance. Yguel

et al. in [YAL06] implemented a GPU-based construction of occupancy grids us-

ing several laser range-finders. Brisc [Bri08] investigated the issue of Image-based

Rendering and Modeling (IBMR) and its implemetation on GPU, where the cap-

turing, geometric and photometric aspects of an IBMR system were studied. A

photo consistency based 3D reconstruction is proposed and implemented on GPU

by Hornung et al. [HHK06]. Kuhn and Henrich [KH09] proposed a method for

reconstructing multiple objects within a known environment which presence of

occlusions, where the implementation was done on GPU.

1.2.4 Uncertainty modelling of homography transformations

In the context of modelling the uncertainty in a homography transformation there

exist a few works. To the best of our knowledge, all of the carried researches on

this subject are for cases where the homography transformation is estimated by

using point correspondences.

Criminisi et al. in [CRZ99] discussed about the uncertainty of homography

mapping applied for measuring device. In their work the uncertainty is analysed

in cases such as number of used point correspondences or the uncertainties in

localization of those points. A general geometric reasoning with uncertain 2D point
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and lines is mathematically defined in [MBF09] by Meidow et al. Negahdaripour

et al. in [NPG05] studies the accuracy of planar homography in applications such

as video frame-to-frame homography. Ochoa and Belongie in [OB06] presented an

approach to determine a search region for use in guided matching under projective

mappings. The problem of finding optiomal point correspondences between images

related by homography transformation is addressed by Chum et al. in [CPS05].

They studies that given an homography transformation and a pair of matching

points, how to determine a pair of points that are exactly consistent with the

homography and also minimize the geometric error. Baker et al. in [BDK06]

studied the parametrization of homography to maximize the plane estimation

performance. They compared their method with the usual estimation method with

a parametrization that combines 4 fixed points in one of the images with 4 variable

points in the other image. A method to estimate planar projective transformation

is introduced by Chi et al. in [CHY11]. In their work they proposed a method to

register 2D points set which reduces the search space for the homographies from

eight-dimensional space to a three-dimensional case.

1.2.5 Extrinsic parameters estimation

Estimation of extrinsic parameters in a sensor network is a crucial and demanded

issue for many applications such as 3D data registration, tracking, mobile robotics,

Human-Computer Interaction (HCI), human behaviour understanding and surveil-

lance. Vasconcelos and Barreto et al. in [VBN12] proposed an algorithm for the

extrinsic calibration of a camera and an 2D laser range finder (LRF). The problem

of estimating the rigid displacement between the two sensors is formulated as the

one of registering a set of planes and lines in the 3D space. The authors proved

that the alignment of 3 plane-line correspondences has at most 8 solutions. Images

of planar mirror reflections are used to estimate camera pose by Rodrigues and

Barreto et al. in [RBN10]. Barreto et al. in [BRSF09] proposed an algorithm to

calibrate cameras with lens distortion using a single image of a planar chessboard

pattern acquired in general position.
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In [WS95] a calibration process based upon a specific calibration pattern is

used to identify the transformation between laser range finder and camera. An

approach for the extrinsic calibration of a camera with a 3D laser range finder is

proposed in [SHS07] by Scaramuzza. Mei in [MR06] presents some methods for

estimating the relative position of a central catadioptric camera and a laser range

finder in order to obtain depth information in the panoramic image. Schweiger

in [SBS08] introduced a plane based approach to calibrate a LRF-camera system

in order to determine both intrinsic and extrinsic parameters. Lobo and Dias

in [LD07] proposed a novel approach to estimate the relative pose calibration

between visual and inertial sensors. Ferreira and Dias in [FPD08] investigated

the implementation and calibration of a Bayesian binaural system for the aim

of 3D localization. Homographies among image planes of a camera network are

used to calibrate a camera network by Cao and Foroosh in [CF04]. The issues

of multi-camera calibration and object tracking are jointly investigated by Porikli

and Divakaran [PD03] and by Meingast et al. [MOS07]. Localization of a network

of non-overlapping surveillance cameras using an optimization method is investi-

gate by Micusik et al. in [MP10]. Similar topic is also studied by Esquivel et al.

in [EWK07] and by Kumar et al. in [KIFP08]. Auto-calibration of a network of

PTZ cameras with non-overlapping field of view as well is investigated by Ashraf

and Foroosh in [AF08]. Beriault in [BPC07] proposed a method for multi-camera

network calibration for the sake of human gesture monitoring. In their approach,

the relative cameras positions are estimated through waving a red light in a syn-

chronized setup. Chen in [CPMH03] introduced a method to estimate epipole

under a pure camera translation. Hu and Tan in [HT06] proposed an approach

for depth recovery and affine reconstruction under pure camera translation. In

[HL07] vanishing points are used for camera calibration in a vision system by He

and Lei. Svoboda in [SMP06] proposed a method for camera network calibration.

His method works by waving a bright spot through the working volume in order to

make a set of virtual 3D points. Spaan and Lima in [SL09] proposed an approach

to dynamic sensor selection in a camera networks. Barreto and Daniilidis in [BD04]

investigated the problem of multiple camera calibration and estimation of radial
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distortion. Their approach is based on finding correspondences between views.

The correspondences are obtained by deliberately moving an LED in thousands

of unknown positions in front of the cameras. Meijer in [MLM07] investigated the

multi camera calibration problem applied to localization. In his approach a LED

is used as calibration object. Faria and Aliakbarpour et al in [FAD09] performed

a calibration method to estimate the extrinsic parameters among a Polhemus

Tracker and an stereo camera. Calibrating a distributed camera network is deeply

investigated in [DR04, DRC06, DR07, Dev07] by Devarajan.

In this thesis the use of inertial planes for the purpose of 3D data registration

is explored. The scene is observed by a network of cameras and inertial sensors

where each camera is rigidly coupled to an inertial sensor. Taking advantage of

inertial sensor (IS), a 3D reconstruction method is proposed with no planar ground

assumption. Moreover, IS in each couple is used to define a virtual camera whose

image plane is horizontal and aligned with the earth cardinal directions. The IS

is furthermore used to define a set of Euclidean inertial planes in the scene. The

image plane of each virtual camera is projected onto this set of parallel-horizontal

inertial-planes, using homography transformations. Geometric relations among

different projective image planes and Euclidean inertial planes of the framework

are investigated and for each particular case a parametric homography function is

obtained. A parallel processing architecture is proposed in order to perform real-

time volumetric reconstruction. The real-time characteristic is obtained by im-

plementing the reconstruction algorithm on a graphics processing unit (GP-GPU)

using Compute Unified Device Architecture (CUDA). Due to the imperfectness of

the sensor observations or estimation algorithms the obtained data contain some

uncertainties. To be aware of such uncertainties can be of importance for the

fusion stage of the information coming from different nodes in a sensor network

and as well for further applications which will use the registered data. For this

purpose we use statistical geometry and modelize the uncertainties in all involved

homography transformations within the framework and their error propagations

on the registered data. We take the advantage of having each camera coupled to IS

and proposed a method to estimate the extrinsic parameters among the cameras
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within the network. Moreover some relevant issues, such as an appropriate camera

configuration in the sensor network, low-level data filtering of the scene’s dynamic

and integration of mobile vision and laser sensor within a camera network, are

investigated in this dissertation.

1.3 Contributions

This thesis provides a number of novel contributions to the multi-sensor 3D data

registration field of research. The primary contributions of this research are as

follows:

A homographic framework is developed for 3D data registration using a net-

work of cameras and inertial sensors. Geometric relations among different

projective image planes and Euclidean inertial planes involved in the frame-

work are explored. [AD12a] [AD11c] [AD10b] [AD11b] [AD10a] [AFKD10]

[AFQ+11].

A real-time prototype of the framework is developed which is able to perform

fully reconstruction of human body (and objects) in a large scene. The real-

time characteristic is achieved by using a parallel processing architecture on

a CUDA-enabled GP-GPU [AAMD11].

A two-point-based method to estimate translations among virtual cameras in

the framework is proposed and verified [AD12a] [AD11a] [AD10a] [AFQ+11].

The uncertainties of the homography transformations involved in the frame-

work and their error propagations on the image planes and Euclidean planes

have been modelized using statistical geometry.

Within the context of the proposed framework, a genetic algorithm is devel-

oped to provide an optimal coverage of the camera network to a polygonal

object (or a scene) [AD12b].
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A method to estimate extrinsic parameters among camera and laser range

finder is developed [ANP+09]. A related toolbox is prepared.

SLaRF; available to download at http://paloma.isr.uc.pt/˜hadi

http://paloma.isr.uc.pt/~hadi
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1.4 Publications

Most of the thesis is based on the following publications and achievements:

1.4.1 Peer-reviewed journal articles

Multi-sensor 3D Volumetric Reconstruction Using CUDA. Hadi Aliakbar-

pour, Luis Almeida, Paulo Menezes, and Jorge Dias. Journal of 3D Research,

Springer, 2:1-14, 2011.10.1007/3DRes.04(2011)6, 2011 .

3D Reconstruction based on Multiple Virtual Planes by Using Fusion-based

Camera Network. Hadi Aliakbarpour and Jorge Dias. Journal of Computer

Vision (IET), 2012 (accepted).

Geometric Exploration of Inertial-planes for Multi-layer 3D Data Registra-

tion. Hadi Aliakbarpour and Jorge Dias. ACM Transactions on Sensor

Networks (TOSN), 2012 (under review).

1.4.2 International awards

Best Runner-up Paper Award for the paper ”IMU-aided 3D Reconstruction

based on Multiple Virtual Planes”, at DICTA’10 (the Australian Pattern

Recognition and Computer Vision Society Conference), IEEE Pr., December

2010, Sydney, Australia.

1.4.3 Peer-reviewed international conference papers

As the first author

Volumetric 3D reconstruction without planar ground assumption, Aliakbar-

pour, H. and Dias, J., Distributed Smart Cameras (ICDSC), 2011 Fifth

ACM/IEEE International Conference on , pp. 1 -2 , 2011.
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Multi-resolution Virtual Plane based 3D Reconstruction using Inertial-Visual

Data Fusion. Aliakbarpour, H. and Dias, J., International Conference on

Computer Vision, Imaging and Computer Graphics Theory and Applica-

tions (VISAPP 2011), 5-7 March 2011, Algarve, Portugal. , 2011.

Mobile Robot Cooperation with Infrastructure for Surveillance: Towards

Cloud Robotics. Hadi Aliakbarpour, João Quintas, Paulo Freitas and Jorge

Dias. Accepted by Workshop on Recognition and Action for Scene Un-

derstanding (REACTS) in the 14th International Conference of Computer

Analysis of Images and Patterns (CAIP), September 2011, Spain.

Inertial-Visual Fusion For Camera Network Calibration. Aliakbarpour, H.

and Dias, J., IEEE 9th International Conference on Industrial Informatics

(INDIN 2011), July 2011. , 2011.

Human Silhouette Volume Reconstruction Using a Gravity-based Virtual

Camera Network, Aliakbarpour, H. and Dias, J., Proceedings of the 13th

International Conference on Information Fusion, 26-29 July 2010 EICC Ed-

inburgh, UK , 2010.

IMU-aided 3D Reconstruction based on Multiple Virtual Planes. Aliakbar-

pour, H. and Dias, J., DICTA’10 (the Australian Pattern Recognition and

Computer Vision Society Conference), IEEE Pr., 1-3 December 2010, Syd-

ney, Australia, 2010.

A Novel Framework for Data Registration and Data Fusion in Presence of

Multi-modal Sensors. Aliakbarpour, H.; Ferreira, J. F.; Khoshhal, K. and

Dias, J., in Proceedings of DoCEIS2010- Emerging Trends in Technological

Innovation, IFIP AICT 314-2010, Springer. , Vol. 314/2010 , pp. 308-315 ,

2010.

HMM-based Abnormal Behaviour Detection Using Heterogeneous Sensor

Network. Hadi Aliakbarpour, Kamrad Khoshhal, João Quintas, Kamel

Mekhnacha, Julien Ros, Maria Andersson and Jorge Dias. DoCEIS 2011,

Technological Innovation for Sustainability, IFIP, Volume 349/2011, Springer.
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An Efficient Algorithm for Extrinsic Calibration between a 3D Laser Range

Finder and a Stereo Camera for Surveillance. Aliakbarpour, H.; Nunez,

P.; Prado, J.; Khoshhal, K. and Dias, J., 14th International Conference on

Advanced Robotics (ICAR 2009) , 2009.

As a co-author

Parametrizing Interpersonal Behaviour with Laban Movement Analysis; Kam-

rad Khoshhal, Luis Santos, Hadi Aliakbarpour and Jorge Dias. Accepted at

Workshop on Socially Intelligent Surveillance and Monitoring. The 25th

Conference on Computer Vision and Pattern Recognition, CVPR, 2012,

USA.

LMA-based Human Behaviour Analysis Using HMM; Kamrad Khoshhal,

Hadi Aliakbarpour, João Quintas, Kamel Mekhnacha, Julien Ros and Jorge

Dias. DoCEIS 2011,Technological Innovation for Sustainability, IFIP, Vol-

ume 349/2011, Springer.

Fusion of Multi-Modal Sensors in a Voxel Occupancy Grid for Tracking

and Behaviour Analysis. Martin Hofmann, Moritz Kaiser, Hadi Aliakbar-

pour and Gerhard Rigoll. International Workshop on Image Analysis for

Multimedia Interactive Services (WIAMIS 2011), University of Delft, 2011,

Netherlands.

Probabilistic LMA-based HumanMotion Analysis by Conjugating Frequency

and Spatial based Features, Kamrad Khoshhal Roudposhti, Hadi Aliakbar-

pour, João Quintas, Martin Hofmann and Jorge Dias. In the proceeding of

International Workshop on Image Analysis for Multimedia Interactive Ser-

vices (WIAMIS 2011), University of Delft, Netherlands.

Probabilistic LMA-based Classification of Human Behaviour Understanding

Using Power Spectrum Technique, Kamrad Khoshhal, Hadi Aliakbarpour,

João Quintas, Paulo Drews and Jorge Dias. In the Proceedings of the 13th
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International Conference on Information Fusion, 26-29 July 2010 EICC Ed-

inburgh, UK.

Geneva Brain computer Interface for robot steering in virtual and real envi-

ronments. Rolando Menendez, Jorge Dias, Jose Prado, Hadi Aliakbarpour

and Sara Gonzalez Andino. 16th Annual Meeting of the Organization for

Human Brain Mapping (HBM2010), June 2010, Barcelona, Spain.

Using Concurrent Hidden Markov Models to Analyse Human Behaviours in

a Smart Home Environment, João Quintas, Kamrad Khoshhal Roudposhti,

Hadi Aliakbarpour, Martin Hofmann and Jorge Dias. International Work-

shop on Image Analysis for Multimedia Interactive Services (WIAMIS 2011),

University of Delft, Netherlands.

Grasping Movements Recognition in 3D Space using a Bayesian Approach,

Diego R. Faria, Hadi Aliakbarpour and Jorge Dias. 14th International Con-

ference on Advanced Robotics (ICAR 2009), Munich

Multi-class Brain Computer Interface Based On Visual Attention, Rolando

Menendez, Jorge Dias, Jose Prado, Hadi Aliakbarpour and Sara Gonzalez.

European Symposium on Artificial Neural Networks Advances in Computa-

tional Intelligence and Learning Bruges, Belgium 2009.

1.5 Dissertation outline

In the next chapter we present the concept of using inertial sensors for 3D data

registration. A framework is proposed where 3D orientation provided by IS and

the concept of homography transformation are used to define virtual image planes

and Euclidean planes for the purpose of data registration.

Chapter 3 specific geometric relations among different Euclidean virtual planes

and projective virtual image planes are explored and a parametric equation for

each particular case is obtained. Moreover a method to estimate the translation
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vectors among virtual cameras within the network is proposed. After that, the

uncertainties of the involved homographies and mapped points through them on

the planes are modelized in this chapter.

In chapter 4 we present a real-time implementation of the framework proposed.

It introduces an architecture where the task of 3D reconstruction for a scene

is carried out by implementing the algorithm on GP-GPU (CUDA). It includes

several related experiments and a set of performance analysis.

Chapter 5 discusses about topics related to the sensor configurations and their

geometry which includes the problem of camera coverage in the network (in the

context of the proposed framework) and estimation of extrinsic parameters among

cameras and laser range finder. The last discussed issue in this chapter is to

consider the scene’s dynamic by applying Bayesian techniques.

The overall conclusion, discussions and future works are presented in chapter

6.

After this chapter, the used convention for mathematical notations is presented

in appendix A. The next appendix (Appen. B) is provided to extend the issue of

multi-sensor calibration for a case where a camera network with no overlap in the

field of view can be calibrated jointly with a laser range finder.
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2.1 Introduction

This chapter presents a method for volumetric 3D reconstruction of an object

inside a scene using inertial planes. In order to observe the scene, a sensor net-

work is employed. Each node in the network is comprised of a couple of Inertial

Sensor (IS) and camera. In each couple, the IS is used to define a virtual camera

whose plane is horizontal and its axes are aligned to the earth cardinal directions.

Moreover, a set of inertial-planes, which are parallel to each other and horizontal,

is defined in the scene for the purpose of 3D data registration. The image planes

of virtual cameras are projected onto these inertial-planes using a method based

on the concept of homography. After describing the method, at the end a set of

experiments will be presented to demonstrate the practicability and effectiveness

of the proposed approach.

2.2 Three dimensional data registration using inertial planes

This section introduces and explains a framework to map and register the 3D

data of a scene on to a set of inertial planes. In the next sub-sections we discuss

the details of the framework staring by introducing the used camera model in

Sec. 2.2.2, following by the basic concept behind homography transformation in

sub-Sec. 2.2.3. In sub-Sec. 2.2.4 the problem is stated by showing the schema

of a network of cameras and inertial sensor, where the involved reference frames

are defined. A macro-view of the approach to map a 3D point from the scene

onto an inertial plane is introduced in this section as well, where the details are

provided in the sub-Sec. 2.2.5 and sub-Sec. 2.2.6. Eventually the volumetric 3D

reconstruction in sub-Sec. 2.2.7 closes this section by providing an algorithm to

perform the 3D reconstruction.
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Figure 2.1: Overall scheme of the proposed 3D volumetric reconstruction: 3D
orientation from IS and image from camera are fused (using the concept of infinite
homography) to define a downward-looking virtual camera whose axes are aligned
to the earth cardinal direction (North-East-Down). 3D orientation from IS is as
well as used to define a set of inertial-planes (Euclidean) in the scene. The 3D
reconstruction can be obtained by projecting the projective virtual images onto
this set of parallel inertial planes.

2.2.1 Overall 3D reconstruction scheme

An overall scheme of the proposed volumetric reconstruction approach is depicted

in Fig. 2.1. Two types of sensors are used: camera, for image grabbing and IS, for

obtaining 3D orientation. Each camera is rigidly coupled to an IS. The outputs of

each couple are fused using the concept of infinite homography and leads to have

a downward-looking virtual camera whose axes are aligned to the earth cardinal

direction (North-East-Down). Moreover, the 3D orientation of IS is used to define

a set of inertial planes that are all virtual and parallel. The projective image
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Figure 2.2: Pinhole camera model.

planes of virtual cameras are projected onto this set of inertial-planes (Euclidean)

and the 3D volumetric reconstruction of the person (or generally an object) is

obtained.

2.2.2 Camera model

Regarding the camera model, we use the pinhole camera model [HZ03]. In the

pinhole camera model (Fig. 2.2), a homogeneous 3D point X= [ X Y Z 1 ]T in

the scene and its corresponding projection x =[ x y 1 ]T on the image plane are

related via a 3×4 matrix A, called camera projection matrix, through the follow-

ing equations (assuming the camera’s coordinate frame as the world’s coordinate

frame):

x = AX (2.1)

A defined as

A = K
�
I3×3|03×1

�
(2.2)
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where K is the camera calibration matrix [HZ03]. The camera matrix K, which is

also referred as intrinsic parameter matrix, is defined by:

K =





f 0 u0
0 f v0
0 0 1



 (2.3)

in which f represents the camera’s focal length. u0 and v0 are the elements of

the principal point P. In a pinhole camera model it is assumed that the image

coordinates are Euclidean coordinates whose scales in both axes are equal. But

normally in CCD cameras this assumption might not be satisfied or in other words

the pixels can be non-square [HZ03]. In this case one should consider different focal

lengths for x and y directions. Assuming the number of pixels per unit distance in

the coordinates of image are respectively mx and my for x and y directions, then

fx = f mx and fy = f my respectively denote the camera’s focal lengths in the scale

of pixels for the x and y directions [HZ03]. Based on this the camera matrix of

Eq. (2.3) will be updated as following:

K =





fx 0 u0
0 fy v0
0 0 1



 (2.4)

As mentioned, the camera projection matrix in Eq. (2.3) was for a case where

the coordinate frame of camera is assumed as the world coordinate frame but for

a general case we should consider a rotation R and translation t among the two

coordinate frames (Fig. 2.3). Considering this, the general camera projection

matrix A is expressed [HZ03] as

A = K [R| t] (2.5)
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Figure 2.3: Transformation among the coordinate frames of the camera and world.

2.2.3 Multi-view geometry: homography

In order to map points from one plane to another plane (with preserving the

collinearity) the concept of homography [HZ03, YMS04] is used. As illustrated in

Fig. 2.4, suppose a 3D plane π is observed by two cameras with A = K [I|0] and
A
�
= K

�
[R|t] (concerning first camera center as world reference frame) where K and

K
�
are the calibration matrices of the cameras. Also assume that x1 and x2 are

the imaged points of a 3D point x lying on the plane π. Then x1 and x2 are called

a pair of corresponding points and the relation between them can be expressed as

x2 = H x1 in which H is a 3×3 transformation matrix called planar homography

induced by the plane π [YMS04] and is equal to (up to scale)

H = K� (R+
1
d

tn
T )K−1 (2.6)

where R and t are respectively rotation matrix and translation vector between the

two cameras centres, n is normal of the 3D plane and d is the orthogonal distance

between the 3D plane and the camera center. It it worth to mention that for a
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Figure 2.4: Homography among two image planes induced by a plane. π is a
plane in the scene. x is a 3D point on π observed by two cameras C1 and C2. x1

and x2 are the images of x on the image planes of the first and second cameras,
respectively. H is a 3×3 transformation matrix, called homography matrix, which
is able to map x1 to x2. Generally such a homography matrix maps all points
from the first image plane to the second one where the image points are induced
by a plane like π.

point like x lying on the plane π, its imaged point x2 on the second camera is

uniquely obtained via x1 as x2 = H x1. However for a point like x
� not lying on the

plane π (or off-the-plane), then using the homography matrix H as x2 =H x1 yields

to have the point x
�
2 which is just a point lying on l2 (l2 being the epipolar line

passing through the actual corresponding point x
�
2 and the epipole e2). Whereas

the actual imaged point corresponding to x
� on the second camera is x

�
2.

2.2.4 Network of cameras and inertial sensors

Fig. 2.5 shows a sensor network setup with a number of cameras. πre f is an

Euclidean inertial plane , defined by the 3D orientation of IS, and is common

It might appear just as π in the equations
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for all cameras. Here {W} is the world reference frame (a detailed specification of

this reference frame shall be introduced in Sec. 2.2.5). In this setup, as mentioned

before, each camera is rigidly coupled with an IS. The intention is to register a

3D point X, observed by camera C, onto the reference plane πre f as π
x (2D),

by the concept of homography and using inertial data. A virtual image plane is

considered for each camera. Such a virtual image plane is defined (using inertial

data) as a horizontal image plane at a distance f below the camera center, f being

the focal length[MDdA07]. In other words, it can be thought that beside of each

real camera C in the setup, a virtual camera V exists whose center, {V}, coincides
to the center of the real camera {C} (see Fig. 2.8). The transformation matrix

among these two reference frames is

vTc =

�
vRc v

tc
01×3 1

�
(2.7)

where vRc is the rotation matrix and v
tc is equal to 03×1.

In order to register a 3D point X onto the πre f as π
x, three steps can be taken:

First, the 3D point X is projected on the camera image plane by c
x = AX

(A is the projection matrix of the camera C).

Second, c
x (the imaged point on the camera image plane) is projected to

its corresponding point on the virtual camera’s image plane as v
x. In-

deed this operation is a homography transformation among two projective

planes and can be expressed as v
x = vHc c

x, vHc being a 3×3 homography

matrix[HZ03].

Third, the projected point on the virtual image plane, v
x, is reprojected to

the world virtual plane, πre f . This operation is among a projective plane

and an Euclidean plane and again can be expressed as π
x = πHv v

x, where
πHv is a 3×3 homography matrix[HZ03].
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Figure 2.5: A network of sensors observes a scene. The sensor network is com-
prised of a quantity of IS-camera couples. The inertial and visual information in
each couple are fused using the concept of infinite homography which leads to
define a virtual camera. πre f is a virtual reference plane (Euclidean) which is
defined by using 3D orientation of IS and is common for all virtual cameras.

The first step is done considering the pinhole camera model (previously intro-

duced). The second and third steps are described in the following two sub-sections.

Assuming to already have vHc and πHv, the final equation for registering a 3D

point X onto the reference plane πre f will be (see Fig. 2.9):

πre f x = πHv vHc A X (2.8)

The way of obtaining vHc (homography matrix between the real camera image

plane and virtual camera image plane) and πHv (homography matrix between the

virtual camera image plane and the world 3D plane πre f ) is discussed in the next

sub-sections by starting to describe the conventional coordinate systems.
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Figure 2.6: Involved coordinate references. {C}: The local coordinate system of
a camera C. {E}: Earth fixed reference frame having its X axis in the direction of
North, Y in the direction of West and Z upward. {IS}: Local reference frame of the
IS sensor which is defined w.r.t. to the earth reference frame {E}. {V}: indicates
the reference frame of the virtual camera corresponding to C. The centers of {C}
and {V} are coincident.

2.2.5 Image plane of virtual camera

The definition of virtual camera is introduced in this sub-section. We start by

presenting the coordinate systems. As seen in Fig. 2.6 and Fig. 2.7, there are four

coordinate systems involved in this approach to be explained here:

Real camera reference frame{C}: The local coordinate system of a camera

C is expressed as {C}.

Earth reference frame {E}: Which is an earth fixed reference frame having

its X axes in the direction of North, Y in the direction of West and Z upward.

Inertial sensor reference frame {IS}: This is the local reference frame of IS

sensor which is defined w.r.t. to the earth reference frame {E}.
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Figure 2.7: Graphical view of virtual camera definition. A virtual camera, whose image
plane is horizontal and its axes are aligned to the earth cardinal direction, is defined
through using 3D orientation provided by IS. The transformation among {C} and {V}
has a rotation vRc and a translation equal to 03×1.

Virtual camera reference frame {V} : As explained, for each real camera C,

a virtual camera V , is considered by the aid of a rigidly coupled IS to that.

{V} indicates the reference frame of such a virtual camera. The centers of

{C} and {V} coincide and therefore there is just a rotation between these

two references.

The idea is to use the 3D orientation provided by IS to register image data on

the Euclidean reference plane πre f defined in {W} (the world reference frame of

this approach). The reference 3D plane πre f is defined such a way that it spans

the X and Y axes of {W} and it has a normal parallel to the Z (See Fig. 2.6). In

this proposed method the idea is to not using any real 3D plane inside the scene for
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Figure 2.8: Geometrical view of a virtual camera: The concept of infinite ho-
mography is used to fuse inertial-visual information and define an earth cardinal
aligned virtual camera. Moreover using the inertial information, πre f is defined as
a virtual world plane which is horizontal and parallel to the image plane of virtual
camera.

estimating homography. Hence we assume there is no a real 3D plane available in

the scene so that our {W} becomes a virtual reference frame and consequently πre f
is a horizontal virtual plane on the fly. Although {W} is a virtual reference frame

however it needs to be formally specified and fixed in the 3D space. Therefore

here we start to define {W} and as a result πre f . With no loss of generality we

place OW , the center of {W}, in the 3D space such a way that OW has a height

d w.r.t the first virtual camera, V0. Again with no loss of generality we specify

its orientation the same as {E} (earth fixed reference). Then as a result we can

describe the reference frame of a virtual camera {V} w.r.t {W} via the following

homogeneous transformation matrix
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Figure 2.9: One projection and two consecutive homographies are needed to
register a 3D point X from the scene on an Euclidean virtual plane πre f using

IS. vHc: Homography from real camera image plane to the virtual one, πHv:
Homography from the image plane of virtual camera to the reference inertial-plane
πre f .

W TV =

�
W RV t

01×3 1

�
(2.9)

where wRv is a rotation matrix defined as (see Fig. 2.6):

W RV =
�

î −ĵ −k̂

�
(2.10)

î, ĵ and k̂ being the unit vectors of the X , Y and Z axes, respectively. Also t

is a translation vector between the centres of {V} and {W}. Obviously using

the preceding definitions and conventions, for the first virtual camera we have

t = [ 0 0 d ]T .
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We continue the discussion to obtain a 3× 3 homography matrix vHc which

transforms a point c
x on the real camera image plane I to the point v

x on the

virtual camera image plane I
�
as v

x =v Hc c
x (see Fig. 2.8). As described, the

real camera C and virtual camera V have their centers coincided to each other, so

the transformation between these two cameras can be expressed just by a rotation

matrix. In this case vHc is called infinite homography since there is just a pure

rotation between real camera and virtual camera centers [HZ03, Mir09]. Such an

infinite homography can be obtained using a limiting process on Eq. (2.6) by

considering d → ∞ (as described in [YMS04, HZ03, MD07]):

V HC = lim
d→∞

K (V RC +
1
d

tn
T )K−1 = K V RC K−1 (2.11)

where K is the camera matrix and vRc is the rotation matrix between {C} and

{V}. vRc can be obtained through three consecutive rotations which is mentioned

in Eq. (2.12) (see the reference frames in Fig. 2.6) as following:

V RC = V RE
ERIS

ISRC (2.12)

The first one is to transform from real camera reference {C} to the IS local

coordinate {IS}, the second one transforms from the {IS} to the earth fixed ref-

erence {E} and the last one is to transform from {E} to virtual camera reference

frame {V}:

ISRC can be obtained through an IS-camera calibration procedure. We use Camera

Inertial Calibration Toolbox[LD07] is used in order to calibrate a rigid couple of

a IS and camera. Rotation from IS to earth, or ERIS , is given by the IS sensor

w.r.t {E}. Since the {E} has the Z upward but the virtual camera is defined to

be downward-looking (with a downward Z ) then the following rotation is applied

to reach to the virtual camera reference frame:
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V RE =
�

î −ĵ −k̂

�
(2.13)

2.2.6 Projection of 3D data onto a world inertial plane

In this section we describe a method to obtain homography matrix πHv that

transforms points from a projective virtual image plane I
�
(the image of virtual

camera V ) to an Euclidean inertial plane πre f (recalling that these two planes

are defined to be parallel. See Fig. 2.9). A 3D point X on πre f is expressed in

{W} as X = [ X Y 0 1 ]T in its homogeneous form (recalling that XY-plane of

{W} corresponds to πre f and therefore any points on this plane has Z = 0). For a
general case (pinhole camera), X is projected on the image plane as following:

x = K [ r1 r2 r3 t ]





X
Y
0
1




= K [ r1 r2 t ]





X
Y
1



 (2.14)

where r1, r2 and r3 are the columns of the 3×3 rotation matrix, K is the camera

calibration matrix (defined in Eq. 2.4) and t is the translation vector between

πre f and camera center [HZ03]. As can be seen Eq. (2.14) indicates a plane

to plane projective transformation and therefore can be expressed like a planar

homography:

x = vHπ π
x (2.15)

where

vHπ = K [ r1 r2 t ] (2.16)
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, πHv denoting a 3× 3 homography matrix and π
x = [ X Y 1 ]T . We recall

that for each camera within the network a virtual camera is defined (using inertial

data). All such virtual cameras have the same rotation w.r.t world reference frame

{W}. In other words one can think that there is no rotation among the virtual

cameras. W RV or the rotation matrix between a virtual camera and {W} was

described through Eq. (2.10). Then considering W RV from Eq. (2.10), πre f as

the interesting world plane and t = [ t1 t2 t3 ]T as the translation vector and

eventually K as camera calibration matrix (K is defined in Eq. 2.4), Eq. (2.16)

can be formalized as :

πH−1
v = K [ î −ĵ t ] =





fx 0 fx t1+u0 t3
0 − fy fy t2+ v0t3
0 0 t3



 (2.17)

In the same way the homography matrices for other inertial planes parallel to πre f
can be obtained by using appropriate value for t3 (the z element of t) in Eq.(2.17).

Fig. 2.10 shows a case where a 3D point X is registered on different Euclidean

inertial-planes by using homography transformations.

2.2.7 Volumetric reconstruction

The geometric models for projecting 3D data onto a set of virtual horizontal

planes based on the concept of homography was previously introduced. Indeed

here the homography transformation can be basically interpreted as shadow on

each inertial-based virtual plane created by a light source located at the cam-

era position. Considering several cameras (remembering light sources) which are

observing the object then different shadows will appear on the inertial planes.

Conceptually, the intersection between each one of these planes and the observed

object can be obtained by using the intersections of all shadows. This interpreta-

tion is illustrated in the Fig. 2.11.
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Figure 2.10: Using a set of inertial planes and homography for multi-layer 3D data
registration: A 3D point X in the scene is registered on each one of the inertial
planes using an appropriate homography matrix.

There is a geometrical explanation to support this interpretation. Fig. 2.12

demonstrates a person being observed by two virtual cameras V1 and V2. π� is an
inertial plane which passes across the person. X and Y are two 3D points from the

person surface. X lies on the plane π� and Y is off the plane. The 3D points X and

Y are imaged as x1, y1, x2 and y2 on the image planes of V1 and V2, respectively

(using the proposed homography methods). Suppose π�
x1,

π�
y1,

π�
x2 and π�

y2
are respectively the projections of the imaged points x1, y1, x2 and y2 onto π�.
As seen in Fig. 2.12, for an on the plane point such as X, all three points X, π�

x1,
π�

x2 are coincident and meet on π�. In contrary, for the point Y which is off the

plane, the three points Y, π�
y1,

π�
y2 are distinct. y

�
2 denotes the image of π�

y1 on

the image plane of V2. The vector between y
�
2 and y2 is called parallax. Indeed
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(a)

(b)

Figure 2.11: Illustration of the registration using homography concept. (a): A
scene including a human is depicted. πk is an inertial-based virtual world plane.
Three cameras are observing the scene. (b): The registration layer (top view of
the plane πk of figure(a)). Each camera can be interpreted as a light source and
the person causes to have a shadow for each camera. Intersection of all shadows
on this Euclidean plane gives the cross section of the plane and the person.
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Algorithm 1: 3D reconstruction algorithm using a set of inertial based horizontal
planes.

for each c involved in {camera} begin

consider v as corresponding virtual camera for c

obtain projection I
�c from c to v

obtain t for each v // translation vector

end

for h = hmin to hmax step ∆h begin

for each v involved in {virtual camera} begin

obtain projection I”v from v to πh

end

for each i ∈ {1..height(I”v)} begin

for each j ∈ {1..width(I”v)} begin

nc = card({virtual camera}) //cardinality

R(h, i, j) = ∏nc
v=1 I”v(i, j)

end

end

end

return R // as volumetric 3D reconstruction of the object

the line through y
�
2 and y2 is the image of the ray passing through the center of

V1 and Y (which is also an epipolar line). For all points off the inertial plane π�,
the norm of their parallax is bigger than zero and for those points which are on

π�, there is no parallax (or in other words their parallax’s norm is zero).

Based on this explanation, the proposed multi-layer 3D data registration method

can be used to perform volumetric 3D scene reconstruction. Such a reconstruction

approach is encapsulated and described as an algorithm in Alg. 1. Here {camera}
and {virtual camera} are respectively the sets of all cameras and virtual cameras

, I indicates the image plane of a real camera, I
�
indicates the image plane of a
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Figure 2.12: Geometric interpretation of the intersection among a person and an
inertial plane π�: X and Y are two exemplary 3D points belonging to the person’s
body, being observed by two virtual cameras V1 and V2. X lies on π� and Y is off
the plane π�. The 3D points get projected on π�using the proposed homographic
method. The homographic projections of the point which are on π� such as X

are coincident (π
�
x1,

π�
x2) whereas for 3D points off the plane (such as Y) their

projections on π� are distinct (π
�
y1 and π�

y2). In other words, for the points off
π� there is a parallax (like the vector through y2 and y

�
2).

virtual camera and I” indicates a virtual world plane. The algorithm returns a set

of Euclidean 2D registration planes. 3D volumetric reconstruction of a human or

object is obtained by stacking these virtual planes. ∆h can be interpreted as the

horizontal resolution for the algorithm.

2.3 Experiments

A set of experiments has been carried out using the proposed 3D reconstruction

method. In these experiments, a portable IS-camera couple is placed in different

positions and used for data acquisition. The obtained data in these two experi-
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Figure 2.13: An example to demonstrate virtual images. Lefts: Real image planes
(grabbed by a real camera within the setup). Rights: Obtained virtual image
planes corresponding to the real images shown in the left. These images (right
column) are obtained by applying an appropriate homography transformation,
described in Sec. 2.2.5, on the original images (left column). As can be seen all
three virtual images at the right column seem parallel to the floor (horizontal) and
moreover there is no rotation among them.
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Figure 2.14: A couple of IS-camera sensors used in the experiments

Figure 2.15: Left: Cat statue. Right: An snapshot of the scene.
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Figure 2.16: Steps to register the cross section of the cat statue on an Euclidean
inertial plane. This plane is an exemplary inertial plane among totally 47 Eu-
clidean planes used for 3D reconstruction of the statue. The height of this plane
is 380 mm with respect to the first camera position. f1: Extracts silhouettes. f2:
Reprojects black and white images to virtual camera image plane. f3: Reprojects
virtual image plane onto a 2D world virtual (horizontal) plane at a height=380
mm. f4: Merging of three views (outcome of f3) : The areas coloured in red
indicate that there are overlaps between all three projections. f5: Final virtual
registration plane which is obtained by keeping just the intersections.
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Figure 2.17: Results of 3D reconstruction of the cat statue in true scales. 47
inertial planes with an internal distance equal to 5mm are used to cross the object
for the aim of reconstruction.

ments are used for 3D volumetric reconstruction of a cat statue and a mannequin.

The implementations are performed in Matlab (off-line).

The IS-camera setup used in the experiments is demonstrated in Fig. 2.14.

Fig. 2.15 shows a cat statue and an snapshot of the setup. The used camera is

a simple FireWire Unibrain camera . The 3D orientations are obtained using a

MTi-Xsens[xse] (as IS). Firstly the intrinsic parameters of the camera is estimated

using Bouguet Camera Calibration Toolbox[Bou03]:

K =





750.9819 0 367.5754
0 751.8286 292.6940
0 0 1



 (2.18)

http://www.unibrain.com
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Figure 2.18: Experiment on human silhouette reconstruction using the proposed
approach. F1: Background subtraction process. F2: Image planes of virtual cameras.

and then Camera Inertial Calibration Toolbox [LD07] is used for the sake of ex-

trinsic calibration between the camera and IS (to estimate ISRC in equation 2.12):

CRIS =





0.0032 −0.9996 −0.0286
0.0179 0.0286 −0.9994
0.9998 0.0027 0.0179



 (2.19)

Fig. 2.13 demonstrates some examples of virtual images. Real image planes

(grabbed by three a real camera within the setup) are shown at the left column.

Images at the right column show the obtained virtual image planes corresponding

to the real images shown in the left. These images (right column) are obtained
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Figure 2.19: Volumetric 3D reconstruction of a mannequin using the proposed
multiple virtual parallel planes approach.

by applying an appropriate homography transformation, described in Sec. 2.2.5,

on the original images (left column). As can be seen all three virtual images at

the right column seem parallel to the floor (horizontal) and moreover there is no

rotation among them.

The couple of IS-camera is placed in different positions. In order to estimate

the translation among two virtual cameras, we use an approach which is proposed

and explained in chapter 3 (Sec. 3.3). This method needs to have the relative

heights of two arbitrary 3D points in the scene with respect to one of the cameras

within the network. To do so, a simple and thin string is hanged near to the

object. Two points of the string are marked. Then the relative heights between

these two marked points and the first camera (indeed here the IS-camera couple

in the first position) are measured manually. The relative heights can also be
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measured using some appropriate devices such as altimeters. Note that these two

points are not needed to necessarily be on a vertical line, but since we did not

have altimeter available, then we used two points from a vertically hanged string

in order to minimize the measuring error. Afterwards, in each position a pair

of imagery-inertial data is grabbed (3D orientation of the IS w.r.t earth cardinal

direction). Fig. 2.16-a show three exemplary images taken from three different

views. Firstly, the silhouettes are interactively extracted (see Fig. 2.16-b). After

background subtraction, the corresponding virtual images are obtained based on

the method described in 2.2.5. Fig. 2.16-c. shows the mentioned virtual image

planes. Using the proposed 2-point-height method (shall be introduced in chapter

3) the translations between cameras in three position are estimated. By now we

have the images from the views of virtual cameras (see Fig. 2.16-c). The next

step is to consider a set of inertial-based parallel 3D planes in the world and then

reproject the virtual camera images onto these horizontal virtual planes. Here 47

horizontal world planes are used. The height of lowest one is 480mm w.r.t first

camera and the highest one is 250mm. The interval distance between the inertial-

based virtual planes is considered as 5mm. As an example, Fig. 2.16-d indicates

the reprojection of the three virtual camera images onto a virtual world plane at

height=380mm. In Fig. 2.16-d, the cells with a red color indicate points where all

projected virtual cameras have intersection. In other words, in these cells all three

images have reported foreground observation. Cells with a color near to green

indicate that there are just two foreground observations. Cells with a lighter color

means that there is no observation by any of the cameras.

After obtaining the intersection of all projected silhouettes on each each iner-

tial plane, such an intersection is indeed the registration of the cross section of

the object and the inertial plane. The result is depicted in Fig. 2.16-e. After

performing appropriate operations for all 47 virtual 3D planes and stacking them

over together, the result becomes the 3D volumetric reconstruction of the object.

Fig. 2.17 shows the result of the 3D reconstruction algorithm. This experiment

is implemented in Matlab. It should be mentioned that for the sake of using less

memory just the boundaries of the images are fed to the plot (using “bwperim”
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Matlab function). Another experiment is also implemented on a mannequin, for

the sake of human 3D reconstruction. Fig. 2.18 shows the image planes of real

cameras and then image planes of the corresponding virtual cameras. The same

algorithm (Alg. 1) is applied for this experiment. The result is shown in Fig. 2.19.

2.4 Conclusion

This chapter presented a method to perform volumetric 3D reconstruction of an

object or human inside a scene using a network of cameras and inertial sensors.

A set of experiments has been carried out for the proposed volumetric reconstruc-

tion algorithm where 3D reconstructions for a cat statue and a mannequin were

demonstrated. The data acquisition was done by placing a couple of IS-camera

in different places around the object while collecting inertial-image data for each

place. Regarding the background subtraction method it should be mentioned that

in this work having a good enough background subtraction is assumed. Depends

to each application, a suitable background subtraction method should be tailored.

In these experiments, the background subtraction was performed interactively.



Chapter 3
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3.1 Introduction

In this chapter we present three topics, parametric homography among different

virtual planes, estimation of translation vectors among cameras and uncertainty

modelling of the points mapped through homography transformations.

Geometric relations among the Euclidean virtual planes from the scene and

the projective virtual image planes are more specifically explored for the purpose

of 3D data registration. A set of mathematical equations are obtained which are

capable of parametrically generate homography matrices to transform 2D points

from one virtual plane to another within the registration framework.

The proposed use of inertial data in synergy with image from camera in each

IS-camera couple within the sensor network leads to relax the rotations among

the virtual cameras. From the perspective of extrinsic parameters what remains

is the translation among them. We take the advantage of the defined framework

to propose a method to estimate the translation vectors among virtual cameras

within the network.

In the introduced homographic framework, the data are registered using the

homography transformations which are directly obtained by the coupled IS to the

camera and the estimated translation vector. Due to imperfection of both the

IS observation and the used estimation algorithm for translation (or imperfection

of GPS in case of using for outdoor scenario), the obtained geometric entities

(2D points) might be corrupted. Therefore it is of importance to be aware of the

certainties of the registered data. As the last section of this chapter, the certainties

of the homography transformations and their error propagations to the image and

Euclidean planes are modelled using statistical geometric analysis.
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Figure 3.1: Extending homography for planes parallel to πre f .
πHV is the already

available homography matrix among virtual image plane I
�
and the reference plane

πre f . π
�
is another Euclidean virtual plane, parallel to πre f . ∆h is the distance

among π and π
�
. The idea is to obtain π�HV , the homography between the image

plane and π
�
as a function of πHV and ∆h (see Eq. (3.2) ).

3.2 Parametric homographies among different planes in the

framework

In chapter 2, the primary models to perform 3D data registration were presented

and supported by presenting some experimental results. Nevertheless, in this sec-

tion we explore the geometric relations among different involved inertial planes,

more specifically. We achieve a set of equations which express the transformations

among different Euclidean planes, independent of the cameras intrinsic parame-

ters.
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3.2.0.1 Parametric homography between an image plane and Euclidean planes

In chapter 2 the homography matrix from the image plane of a virtual camera V
to the world 3D plane πref was obtained as πHV (see Eq. (2.17)) as following:

πH−1
v =





fx 0 fx t1+u0 t3
0 − fy fy t2+ v0t3
0 0 t3



 (3.1)

It is also desired to obtain the homography matrix from a virtual image to another

world 3D plane parallel to πref once we already have πHV . Lets consider π
�
as a

3D plane which is parallel to πref and has a height ∆h w.r.t it (see Fig. 3.1). π
�
HV

denotes the homography transformation which maps points of the image plane of

V onto π
�
. By substituting t3 in the equation (2.17) with t3 +∆h, π

�
HV can be

expressed as a function of πHV and ∆h as follows:

π
�
H−1

V (∆h) = πH−1
V +∆hP k̂

T (3.2)

where P = [ u0 v0 1]T is the principal point of the camera V and k̂ is the unit

vector of the Z axis.

3.2.0.2 Parametric homography relation among Euclidean inertial planes

Suppose π
�
is an inertial-plane with an Euclidean distance �h to the reference

inertial plane πre f .
π
�
Hπ denotes the homography transformation among the two

inertial-planes, induced by the image plane of a virtual camera, and is desired to

be obtained (see Fig. 3.2). Such a homography transformation can be expressed

by the following equation:

π�Hπ = π�HV
πH−1

V (3.3)
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Figure 3.2: Parametric homography among an inertial-plane π
�
and the reference

inertial-plane πre f : The homography transformation π
�
Hπre f , induced by image

plane of virtual camera V , which maps points from πre f onto π
�
can be expressed

as a function of ∆h, ∆h being the Euclidean distance among two inertial-planes.

where π�HV is the homography transformation among the image plane of a virtual

camera V and the inertial-plane π
�
, and πHV is the homography transformation

between the image plane ofV and the reference inertial-plane πre f . By substituting
π�HV with Eq. (3.2), Eq. (3.3) becomes:

π
�
Hπ = (πH−1

V +∆hP k̂
T )−1πH−1

V (3.4)

The term (πH−1
V +∆hP k̂

T )−1 in above equation can be written in an equivalent

form using the Sherman-Morrison-Woodbury formula [Bjo96, Hag89] as follow-

Considering A as a square matrix and U and V as two column vectors, the Sherman-
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Figure 3.3: Parametric homography among two consecutive inertial-planes in-
duced by a virtual image: The image shows a set of Euclidean inertial-planes
where the distance among two consecutive planes is equal to ∆h0. In this case,
the homography transformation among any two consecutive inertial-planes can be
expressed as a function of ∆h0 and the index of the plane (see Eq. (3.13) ).

ing:

(πH−1
V +∆hP k̂

T )−1 ≡ πHV −
πHV P k̂

T πHV
α+ k̂T πHV P

(3.5)

where α = 1
�h . Eventually, Eq. (3.4) after simplifications can be expressed as a

function of the distance between two inertial-planes:

π
�
Hπ(α) = I3×3− f (α)ΓΓΓ (3.6)

Morrison-Woodbury formula gives (A+UV T )−1 = A−1 − A−1UV T A−1

1+V T A−1U .
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where f (α) is an scalar function of the vertical distance between two inertial plane

as following:

f (α) = 1
α t3+1

(3.7)

and ΓΓΓ is a 3×3 matrix equal to

ΓΓΓ = [ −t1 t2 1 ]T k̂
T (3.8)

Note that ΓΓΓ is constant for all inertial planes induced by the camera V (assuming

no movement for the cameras) and also independent of the camera intrinsic pa-

rameters. Eq. (3.6) is interesting in the sense that once a basic homography πHV
to project an image to the reference inertial plane πre f is obtained, a direct pro-

jection, which is independent to the intrinsic parameters, can be performed from

πre f to any arbitrary inertial plane namely π� with just knowing the Euclidean

distance (∆h) among them for the purpose of 3D data registration.

While Eq. (3.6) expresses the projective relation among the reference plane

πre f and other inertial planes, we are interested to obtain some equation which

could express the projective relation among any two consecutive inertial planes,

namely πkHπk−1 . Fig. (3.3) depicts a set of inertial planes where the Euclidean

distance among any two consecutive planes is equal to ∆h0. Suppose πkHπ ex-

presses the homography projection, induced by a virtual image, from the reference

plane πre f to kth inertial plane. Such a transformation can be written as:

πkHπ = ( πkHπk−1)(
πk−1Hπ) (3.9)

and then

πkHπk−1 = ( πkHπ)(
πk−1H−1

π ) (3.10)
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Figure 3.4: Homography between image planes of two virtual cameras.

In Eq. (3.10), by substituting the terms πkHπ with its equivalence from Eq. (3.6)

and πk−1Hπ with Eq.(3.4) we have (considering α0 = 1/∆h0) :

πkHπk−1 = (I3×3−
k

α0 t3+ k
ΓΓΓ)

�
(πH−1

v +
k−1
α0

P k̂
T )−1 πH−1

v

�−1
(3.11)

= (I3×3−
k

α0 t3+ k
ΓΓΓ)(I3×3+

k−1
α0 t3

ΓΓΓ) (3.12)

after simplification:

πkHπk−1(k,α0) = I3×3−g(α0,k)ΓΓΓ (3.13)

where g(α0,k) is an scalar function whose inputs are the index of inertial plane

πk and the vertical resolution factor α0 as following:
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g(α0,k) =
1

α0 t3+ k
(3.14)

As previously mentioned, ΓΓΓ is a constant 3× 3 matrix which is independent of

the camera intrinsic parameters. Therefore the obtained homography πkHπk−1 in

Eq. (3.13) expresses a homography matrix which transforms the 2D points from

inertial plane πk−1 to its consecutive inertial plane πk, independent of the camera

intrinsic parameters (as expected), and is a function of k and α0.

3.2.0.3 Parametric homographic among image planes of virtual cameras

In the previous section, the homography transformation between image plane of a

virtual camera and an Euclidean virtual plane (π) was obtained. Here we continue
to explain what would be the homography transformation between the images of

two virtual cameras in a parametric form. Fig. 3.4 depicts two virtual cameras Vi
and Vj with their reference frames. With no lose of generality, we consider Vi as

the world reference frame here. The idea is to obtain jHπ
i , the homography matrix

among Vi and Vj, induced by an inertial plane such as π. Based on equation (2.6),
jHπ

i can be expressed as:

jHπ
i = Kj (R+

1
d

∆tn
T )K−1

i (3.15)

where Kj and Ki are the camera calibrations matrices, respectively for Vj and Vi.

Since there is no rotation among the virtual cameras then R becomes equal to

the identity matrix (I3×3) . ∆t is a 3-elements vector describing the translation

from Vi to Vj. n = [ 0 0 −1 ]T is the normal of plane π and d is the distance

between π and {Vi} along the Z axis of {Vi}. Therefor, after substitutions and

simplifications, Eq. (3.15) can be expressed as:

jHπ
i = Kj [ î ĵ (k̂− ∆t

d ) ]K−1
i (3.16)
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Figure 3.5: Homography between the image planes of two virtual cameras, induced
by an inertial plane π� parallel to the reference inertial-plane πre f .

where î, ĵ and k̂ are the unit vectors for X, Y and Z axes, respectively. Assuming

no changes in camera parameters, Eq. (3.16) generates the homography matrix

related to the parameter d, the Euclidean distance between the inertial-plane and

{Vi}.

Eq. (3.16) expresses the homography relation among the image planes of two

cameras, induced by the reference inertial plane πre f . It is interesting to obtain the

homography among two image planes induced by another inertial plane (π�) using
the basic relation from Eq. (3.16). Such a homography matrix can be notated as
v2Hπ�

v1 and is depicted in Fig. (3.5). One can write this homography as:

v2Hπ�
v1 = (v2Hπ�)(

π�Hv1) = (π
�
H−1

v2 )(π
�
Hv1) (3.17)

The terms π�H−1
v2 and π�Hv1 can be replaced by their equivalences using from Eq.
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(3.2) and (3.5), respectively:

v2Hπ�
v1 = (πH−1

v2 +
1
α

P2 k̂
T )(πHv1 −

πHv1 P1 k̂
T πHv1

α+ k̂T πHv1 P1
) (3.18)

where P1 and P2 are respectively the principal vectors of the virtual cameras V1
and V2. α is equal to the inverse of ∆h (the distance among the two inertial planes

πre f and π�). After simplification and replacing πH−1
v2

πHv1 with v2Hπ
v1 we will

have:

v2Hπ�
v1 = v2Hπ

v1 ( I3×3− f (α) P1 k̂
T ) + f (α) P2 k̂

T (3.19)

where f (α) was previously defined in Eq. (3.7) and is an scalar function of the

distance among two inertial planes:

f (α) = 1
α t3+1

(3.20)

As one can see, the Eq. 3.19 expresses the homography among two virtual cameras

induced by an inertial plane π� parallel to πre f , by using a linear equation of the

homography among the same virtual cameras but induced through the reference

inertial plane πre f .

3.2.1 Volumetric reconstruction: a recursive form

In previous chapter an algorithm to perform 3D data registration of object or hu-

man was already proposed. Here, by having the new parametric functions which

generate the homographies among different projective and Euclidean planes, we

introduce a new version of the algorithm in Alg. 2 which is capable of performing

the 3D reconstruction task in a recursive manner. k is the index of inertial plane



58 Chapter 3. Parameter estimation and uncertainty modelling

Algorithm 2: 3D data registration using inertial-planes in a recursive form.
k is the index of inertial plane and α0 is the inverse of the Euclidean distance
between two consecutive inertial planes.
Function ThreeDimRegistration()

begin
/* Initialization */
for i ← 1 to Nc do

viHci ← Ki
viRci K−1

i
Ivi ← viHci Ici
πre f Hvi ← inv(Kci [ î −ĵ tci ] ) Eq. (2.17)

π(vi)
re f ← πre f Hvi Ivi

main function ΓΓΓvi ← [ −t1 t2 1 ]T k̂
T Eq. (3.8)

/* Performing recursive registration for each camera */
for i ← 1 to Nc do

π[vi]
Nπ−1 ← RegisterRecursive (Nπ −1 , π[vi]

Nπ−1)

/* Performing cell-wise intersection, see Fig. 4.5 */
for i ← 0 to Nπ −1 do

πi ← ∏Nc
j=1 π[ j]

i

end

Function RegisterRecursive (k,π(vi))

begin
if k == 0 then

return π(vi)
re f

Recursively registering else
πk Hπk−1 ← GenerateNextHomography(k−1)
π(vi)

k ← Warp(H , RegisterRecursive (k−1,π(vi)
k−1))

return π(vi)
k

end

Function GenerateNextHomography(k)
begin

πk Hπk−1(k,α0) = I3×3 −g(k,α0)ΓΓΓ Eq. (3.13)
return H

end

inline Function g(k,α0) return 1
α0 t3+k Eq. (3.14)
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and α0 is the inverse of the Euclidean distance between two consecutive inertial

planes. In this algorithm, ThreeDimRegistration() is the main function in which

firstly the variables are initialized. After initialization, for each camera, Regis-

terRecursive() function is called. This function recursively projects and registers

the image data onto the consecutive inertial planes in the scene. In this function,

Warp() is a function which performs the operation of usual homography warping.
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Figure 3.6: Translation between two virtual cameras. X1 and X2 are two arbitrary
3D point in the scene. Z1 and Z2 are the relative heights of X1 and X2 w.r.t. first
camera, V0. t is the translation vector among two virtual cameras which can be
estimated using the proposed method.

3.3 Translation estimation among two virtual cameras

Estimation of extrinsic parameters in a camera network is one of the prerequisites

for many computer vision algorithms, including the proposed data registration

framework. Extrinsic parameters are comprised of a rotation matrix and a trans-

lation vector. Having an IS already coupled with each camera within the network

leads to relax the rotation among them. In terms of extrinsic parameters what

remains is the translation part. Here we take the advantage of having IS and cam-

era coupled and propose an efficient method to estimate the translation vector t

among virtual cameras.

Our approach is based on having the heights of two arbitrary 3D points in the

scene such X1 = [ X1 Y1 Z1 ]T and X2 = [ X2 Y2 Z2 ]T (see Fig. 3.6) with

respect to a camera (namely V0) within the network and then to have just their
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correspondences in the images (Note that a real camera and its correspondent

virtual camera have the same centres). Suppose 0
X1 = [ 0X1

0Y1
0Z1 ]T and

0
X2 = [ 0X2

0Y2
0Z2 ]T are coordinates of the two 3D points X1 and X2 ex-

pressed in the first virtual camera center, respectively. Based on the assumption,

the parameters 0Z1 and 0Z2 which indicate the heights of X1 and X2 in {V0} are

known. Recalling that V0 is downward-looking and has its optical axis parallel

to the gravity. Therefore the term height here is equal to the Z component of

the 3D point. Then using projective property of a camera we can have all three

components of 0
X1 and 0

X2 numerically obtained in a metric scale:






0
X1 = 0Z1 (K−1

1
0
x1)

0
X2 = 0Z2 (K−1

1
0
x2)

(3.21)

where 0
x1 and 0

x2 are respectively the imaged points of X1 and X2 in the first

virtual camera image plane. The same can be considered for the second virtual

camera. Suppose 1
X1 = [ 1X1

1Y1
1Z1 ]T and 1

X2 = [ 1X2
1Y2

1Z2 ]T are

respectively coordinations of the 3D points X1 and X2 expressed in the second

virtual camera center ({V1}). Then likewise using projective property of a camera

we can have the following equation:






1
X1 = 1Z1 (K−1

2
1
x1)

1
X2 = 1Z2 (K−1

2
1
x2)

(3.22)

In contrary to the Eq. (3.21), Eq. (3.22) can not be numerically obtained yet,

since it has two unknown values for 1Z1 and 1Z2 (the heights of the 3D points

w.r.t {V1}). The terms (K−1
2

1
x1) and (K−1

2
1
x2) in Eq. (3.22) as well express

the 3D position of the points 1
X1 and 1

X2 however up to scale factors 1Z1 and
1Z2. Here it is desirable to rewrite the Eq. (3.22) as the following:
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




1
X1 = 1Z1

1
X̂1

1
X2 = 1Z2

1
X̂2

(3.23)

where 1
X̂1 = (K−1

2
1
x1) and 1

X̂2 = (K−1
2

1
x2). Then the Eq. (3.21) and Eq.

(3.23) can be related through the translation vector between {V0} and {V1} as:






0
X1 = R1

X1+ t = R1Z1
1
X̂1+ t

0
X2 = R1

X2+ t = R1Z2
1
X̂2+ t

(3.24)

where R is the rotation matrix between two cameras and t = [ t1 t2 t3 ]T . Since

we are considering the virtual cameras and there is not rotation among them then

we can simply consider R as an 3×3 identity matrix. In Eq. (3.24) there are five

unknown parameters including 1Z1,
1Z2, t1, t2, t3. Nevertheless there are also six

linear equations which are adequate to obtain the unknowns. In order to estimate

the five unknowns Eq. (3.24) can be arranged in the form of

Ax = B (3.25)

where

A =

�
1
X̂1 03×1 I3×3

03×1
1
X̂2 I3×3

�
(3.26)

x =
�

1Z1
1Z2 t1 t2 t3

�T
(3.27)

B =

�
0
X1

0
X2

�
(3.28)
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Therefore x in Eq. (3.25) can be estimated using the least square approach as

follows:

x = (AT A)−1 AT B (3.29)

and consequently the translation vector between the two virtual cameras’ refer-

ences, {V0} and {V1}, are estimated. Using the same mentioned method, the

translation between other virtual cameras can be estimated.

3.3.1 Error analysis of the translation vector estimation

Here we analyse the accuracy of the proposed method in different cases such as

noise in IS observation, error of height measurement of two 3D points, error in

extraction of pixel coordinates of two 3D points in the images and effects of relative

height (distance) of 3D points w.r.t. camera. In order to have enough data for

the analysis, a simulator is prepared which can generate thousands of samples

based on the given criteria. The simulated volume has a dimension equal to

500×500×1000 cm3. In each generated sample, two virtual cameras are randomly

placed on the ceiling of the volume with a maximum height of 200cm from the

ceiling. Moreover, in each generated sample, two 3D points are randomly selected

from the volume. One common criterion for selecting two 3D points is that they

need to be inside the visible area by two cameras as well as having a maximum

height of 1000cm to the ceiling. The estimation error has been evaluated under

the following conditions

3.3.1.1 IS noise in 3D orientation sensing

An IS has several kind of outputs which among them we use just its 3D orientation

output. Normally in MEMS -IS the accuracy of the rotation angle around the

Microelectromechanical systems
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Algorithm 3: Simulation to evaluate affect of IS noise on translation estima-
tion. 500,000 samples are generated. In each sample an appropriate Gaussian
noise is considered for roll, pitch and yaw angles of IS observation. The result
of the simulation is the error distributions for three elements of estimated t.
The distributions for the input noise (IS observation) and the estimation are
shown in Fig. 3.7.

K1,2 ←




500 0 300

0 505 280
0 0 1



 /* Extrinsic parameters of two cameras */

for i ← 1 to 500,000 do
/* Gaussian random noise for IS orientation */
εroll ← N(0,0.5/3) /* Noise of roll (of IS observation) */
εpitch ← N(0,0.5/3) /* Noise of pitch (of IS observation) */
εyaw ← N(0,1.0/3) /* Noise of yaw (of IS observation) */
R ← Eulor2RotationMatrix(εroll,εpitch,εyaw)
/* translation between two cameras */

t ←




100+400∗RND
100+400∗RND

200∗RND



 ; /* 0 <= RND <= 1 (random function)

/* two random 3D points (ground truth as well) */

0
X

g
0 ←




−500+1000∗RND
−500+1000∗RND

50+600∗RND



 ; 0
X

g
1 ←




−500+1000∗RND
−500+1000∗RND

50+600∗RND





1
X

g
0 ←0

X
g
0 + t

1
X

g
1 ←0

X
g
1 + t

/* heights of 3D points w.r.t. the first camera reference frame */
0h0 ←0

X
g
0(3)

0h1 ←0
X

g
1(3)

/* applying the IS’ noise on two generated 3D points */
1X0 ← R∗0

X
g
0 + t

1X1 ← R∗0
X

g
1 + t

/* points on image planes */
0
x0 ← K1 ∗0

X
g
0

0
x1 ← K1 ∗0

X
g
1

1
x0 ← K2 ∗1 X0

1
x1 ← K2 ∗1 X1
/* estimating t */
0�X0 ←0 h0 ∗K

−1
1 ∗0

x0
0�X1 ←0 h1 ∗K

−1
1 ∗0

x1
1�X0 ← K

−1
2 ∗1

x0
1�X1 ← K

−1
2 ∗1

x1

A =

�
1�X1 03×1 I3×3

03×1
1�X2 I3×3

�

B =

�
0�X1
0�X2

�

X ← lscov(A,B) /* Least-squares solution for AX = B */
�t(1)← X(3);�t(2)← X(4);�t(3)← X(5);
E

i
XY Z ←�t− t /* error in X,Y and Z axes in estimated translation */

hist(E) /* plot the distribution histogram of E */
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vertical axis (heading direction) is less rather than the other two angles [KHJG11].

For example, an inertial sensor such as Xsens-MTi [xse] has a precision around

0.5◦ on the roll and pitch angles, and 1.0◦ on the heading directions. Of course one

can use some techniques to improve the accuracy of IS. For example, Kalantart

et al. in [KHJG11] discussed this subject and proposed a method to improve the

accuracy of IS better than 0.001◦. Nevertheless, in the following we discuss the

impact of the accuracy of IS observation (orientation sensing) on the proposed

method to estimate the translation, where a Xsens-MTi [xse] is used to measure

the orientation. Fig. 3.7-top shows the noise distributions for the three angles of

IS (roll, pitch and yaw). 500,000 random samples are generated in the simulation.

The noise distributions are considered as Gaussian white noise N(µ = 0,δ). The

standard deviation value (δ) for each one of the angles (roll, pitch and yaw) is

supposed as 1
3 of its corresponding maximum error value (0.5◦, 0.5◦ and 1.0◦,

respectively), which yields to have δroll = 0.17◦, δpitch = 0.17◦ and δyaw = 0.33◦.
These IS measurement noise are applied to the generated data in the simulation

and the translation vector t = [ X Y Z ]T for each sample is estimated (see Alg.

3)). Fig. 3.7-bottom depicts the error distributions for the three components of

t. One can see that the error distributions along three axes have Gaussian shapes

as well.

3.3.1.2 Height measurement noise

Error in measurement of the relative heights of two 3D points in the scene can

also affect the accuracy of the translation estimation process. Fig. 3.8 depicts

an analysis on 110,000 simulated data for this purpose. In this experiment, some

noise in measuring the relative heights of two 3D points w.r.t. first camera are

injected. By assuming the maximum error value in the height measurement of

3D points in the scene as 10cm, a Gaussian white noise N(µ = 0,δ = 10
3 = 3.33) is

applied (plotted in purple) to the proposed algorithm. The error distributions for

three elements of the estimated translation vector t are plotted in blue, red and

green.
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Figure 3.7: Analysis of noise impact in IS orientation for estimating translation
among two virtual cameras: Left figure shows the noise distribution for the three
angles (roll, pitch and yaw) observed by an IS. 500,000 samples are simulated
where the distributions are considered as Gaussian white noise N(µ = 0,δ). For
a typical IS such as Xsens-MTi the maximum error values for roll, pitch and
yaw are 0.5 , 0.5 and 1.0 , respectively [KHJG11]. Thus the value of δ for each

angle is considered 1
3 of its corresponding maximum error value, which yields to

have δroll = 0.17, δpitch = 0.17 and δyaw = 0.33. The bottom image indicates the
error distributions in cm for the three elements (X ,Y and Z) of estimated t using
simulated data (with the noise distributions shown in the top figure).
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Figure 3.8: Analysis of noise impact in measurement of the heights of two 3D
points for estimating translation among two virtual cameras: 110,000 samples
are generated in the simulation. By assuming the maximum error value in the
height measurement of 3D points in the scene as 10cm, a Gaussian white noise
N(µ = 0,δ = 10

3 = 3.33) is applied (plotted in purple). The error distributions for
three elements of the estimated translation vector t is plotted in blue, red and
green.

3.3.1.3 Noise in image coordinate extraction of 3D points:

In the proposed translation recovery method, the positions of the 3D points in

the image coordinate system (pixel) need to be extracted. Fig. 3.9 demonstrates

how errors in extraction of the imaged points can affect the accuracy of the re-

sult. 100,000 samples are simulated where the maximum error value in the image

coordinates (x and y) of the two 3D points is assumed 5 pixels. The purple plot

indicates a Gaussian white noise N(µ = 0,δ = 5
3 = 1.67) applied to image coor-

dinates. The error distributions for three elements of the estimated translation

vector t is plotted in blue, red and green (in cm).
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Figure 3.9: Analysis of noise impact in extraction of the image coordinates (in
pixel) of the two 3D points for estimating translation among two virtual cameras:
100,000 samples are simulated. The maximum error value in the image coordinates
(x and y) of the two 3D points is assumed 5 pixels. A Gaussian white noise

N(µ = 0,δ = 5
3 = 1.67) is applied (plotted in purple) to the proposed algorithm.

The error distributions for three elements of the estimated translation vector t is
plotted in blue, red and green (in cm).

3.3.1.4 Distance of 3D points to the cameras

In the proposed translation estimation algorithm, two 3D points in the scene need

to be selected and their relative heights w.r.t. one camera must be measured. It

is worth to analyse the effect of the distances on the accuracy of the result in

order to consider it in selection of 3D points from the scene. Fig. 3.10 shows the

related analysis when the 3D points are selected from different height w.r.t. first

camera in the simulation. The height range is from 250 cm to 1050 cm with the

interval of 100 cm yielding totally 9 height values. In each height 10,000 random

samples are generated by taking into account the IS noise distributions presented

in Fig. 3.7-top. The diagrams of standard deviation and average for the three

elements (X , Y and Z) of the estimated translation vector t are presented in Fig.

3.10 (in cm). As one can see, the distance of the 3D points w.r.t. the cameras has
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Figure 3.10: Analysis of the relation between the distances of the two 3D points
with respect to the first camera and the accuracy of the result in the proposed
algorithm to estimate the translation among two virtual cameras: 3D points are
placed in different heights with respect to the cameras. The height range is from
250 cm to 1050 cm with the interval of 100 cm yielding totally 9 height values. In
each height 10,000 random samples are generated by taking into account the IS
noise distributions shown in Fig. 3.7-left. Standard deviation and average for the
three elements of the estimated translation vector t are plotted (in cm).

no significant effect on the accuracy of Z component of the estimated t. However

there is an almost linear relation between the distance and the error values for X
and Y components of t.
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3.4 Uncertainty modelling of inertial-based homography

To be aware of the uncertainties of the registered data in a 3D data registration

is important for applications which will use the data, specially when the data are

registered by fusion from different sources. The introduced 3D data registration

framework uses homography transformations in order to map a 3D point onto

an inertial plane as a geometric 2D entity. Such geometric transformations are

directly obtained through the principal formula of Eq. (2.6):

H = K� (R+
1
d

tn
T )K−1 (3.30)

The determinant parameters in this formula are the rotation matrix and trans-

lation vector. The rotation matrix, R, is obtained from the inertial sensor’s ob-

servation using Eq. (2.12) and the translation vector can be obtained either by

recently introduced two-point-based method or by using a GPS (e.g. in outdoor

scenarios). Due to imperfection of measuring device or estimation algorithms the

obtained geometric entities (2D points) might be corrupted. In this section we

represent the uncertainty of registered data using statistical geometry. Following,

first we modelize the uncertainty for the image plane of a virtual camera, then the

uncertainties of the points registered on an Euclidean inertial plane are modelized.

3.4.1 Uncertainty of image plane of virtual cameras

The image plane of a virtual camera is obtained by fusion of real camera’s image

plane and IS observation (orientation) using the concept of infinite homography.

We first represent the uncertainty for such a homography and then its uncertainty

propagation on the image plane of virtual camera.

The infinite homography presented by Eq. (2.11) depends to the 3D orientation

measured by IS. Such an orientation can be presented by a random vector
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s =
�

θr θp θy
�T

(3.31)

where θr, θp and θy denote the three elements of the Euler angles (respectively

roll, pitch and yaw). We assume that s has a mean equal to zero and a covariance

of

ΣΣΣs = diag{δ2
r ,δ2

p,δ2
y} (3.32)

where δr, δp and δy are respectively the standard deviations for θr, θp and θy. In

the homography formula of Eq. (2.11), vHc, can be expressed as a linear function

of the orientation vector:

f : s �→v Hc (3.33)

where it maps the input three angles into the 9-elements homography matrix (R3

into R9). For simplicity, we express the homography matrix H as

H =





h1 h2 h3
h4 h5 h6
h7 h8 h9



 (3.34)

and assume h as a vector form of H. Then we consider v
hc as a random vector and

are interested to model its uncertainty. Using a first-order Taylor approximation,

as presented in [Fau], the uncertainty of H can be obtained as:

ΣΣΣh = Jh,s ΣΣΣs J
T
h,s (3.35)

where J is a Jacobian matrix:
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Jh,s =





∂h1/∂θr ∂h1/∂θp ∂h1/∂θy
∂h2/∂θr ∂h2/∂θp ∂h2/∂θy

...
...

...

∂h9/∂θr ∂h9/∂θp ∂h9/∂θy




(3.36)

The homography transformation vHc maps points from real camera to virtual

camera’s image plane. Having the uncertainty of the homography matrix vHc, we

consequently can characterize the uncertainty for the mapped points. The points

on virtual camera’s image plane, v
x, are obtained by the following mapping:

v
x = vHc x (3.37)

x being a point from real camera’s image plane. Assuming no uncertainty in real

camera’s image, the uncertainty of the points on the virtual image plane can be

expressed as following (according to [Heu04]):

ΣΣΣvx = (I ⊗ v
x

T ) ΣΣΣh (I ⊗ v
x) (3.38)

where I is a 3×3 identity matrix and ⊗ denotes Kronecker product.

3.4.2 Uncertainty of Euclidean inertial-planes

Earlier, we used Eq. (2.17), π
x =π Hv v

x, in order to project points from image

plane of virtual camera onto Euclidean inertial planes. The uncertainty for such

projected points is influenced by first the uncertainty of the points from virtual

image, and then by the uncertainty of the homography transformation πHv. We

continue to firstly assume the points on virtual image as certain points and just

consider uncertainty for the homography matrix πHv. Afterwards, we take into

account the uncertainties of the virtual image’s points and propagate them.
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3.4.2.1 Uncertainty of homography from virtual image to Euclidean plane

Previously the uncertainty of homography matrix from real camera image plane

onto virtual camera image plane was obtained. In the same way, the uncertainty

of πHv (Eq. (2.17)) can be modelled. Such a homography can be considered

as a linear function of the translation vector t = [ t1 t2 t3 ]T . We assume the

uncertainty of t with following covariance matrix:

ΣΣΣt = diag{δ2
t1 ,δ

2
t2 ,δ

2
t3} (3.39)

where δt1 , δt2 and δt3 denote the standard deviations for the three elements of

the translation vector. Again we use the first-order of Taylor approximation [Fau]

and express the uncertainty of π
hv (the vector form of πHv) as

ΣΣΣπhv = Jπhv,t ΣΣΣt J
Tπhv,t

(3.40)

where Jπhv,t is a Jacobian matrix:

Jπhv,t =





∂h1/∂t1 ∂h1/∂t2 ∂h1/∂t3
∂h2/∂t1 ∂h2/∂t2 ∂h2/∂t3

...
...

...

∂h9/∂t1 ∂h9/∂t2 ∂h9/∂t3




(3.41)

After simplification, Eq. (3.40) becomes as
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ΣΣΣπhv =
1
t43





0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 δ2

t1
t23 +δ2

t3
t21 0 0 −δ2

t3
t1t2 0 0 −δ2

t3
t1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −δ2

t3
t1t2 0 0 −δ2

t2
t23 +δ2

t3
t22 0 0 δ2

t3
t2

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −δ2

t3
t1 0 0 δ2

t3
t2 0 0 δ2

t3





(3.42)

Having the uncertainty of the homography transformation πHv, the uncertainty

for points to be mapped via this homography becomes:

ΣΣΣ�πx
= (I ⊗ v

x
T ) ΣΣΣπhv (I ⊗ v

x) (3.43)

provided that the points v
x are certain.

3.4.2.2 Propagation of uncertainties on Euclidean inertial planes

Previously the uncertainty of the homography transformation πHv was obtained

by assuming that the points from virtual camera image plane are certain. Now we

continue to take into account the uncertainties for these points and their propaga-

tions on the Euclidean inertial plane π. In this case, the two covariance matrices,

ΣΣΣπhv and ΣΣΣvx get augmented [Heu04] and the uncertainty for a registered point

on the Euclidean inertial plane, π
x, becomes as following:

ΣΣΣπx
= πHv ΣΣΣvx

πHT
v + ΣΣΣ�πx

(3.44)
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3.4.3 Experiments

In this part we introduce some experiments which have been carried out in order to

demonstrate the uncertainty values in different situations. In these experiments

we simulate a set of IS-camera couples where the cameras have the following

calibration matrix:

K =





150 0 250
0 150 250
0 0 1



 (3.45)

3.4.3.1 Analysing uncertainty in virtual camera’s image plane

Some experiments are carried out for an exemplary IS-camera couple in order to

analyse the uncertainty of the imaged points on the virtual image plane, when the

homography transformation is obtained using the inertial sensor.

Fig. 3.11-a,b and c indicate the variation for the elements of the covariance

matrix (ΣΣΣvx.xx, ΣΣΣvx.yy and ΣΣΣvx.xy) for an exemplary pixel [ 800 200 1 ]T of

the image plane of virtual camera. They are for a case where the homography

matrix is obtained from the attached IS with the angles roll = 0, pitch = π/4
and yaw = 0. The standard deviation for the roll angle, is assumed zero (δr = 0)
and the elements of the covariance matrix for the mentioned pixel is plotted with

respect to the variations to the values of standard deviations of the other two

angles (δp and δy). As expected, the uncertainties of the point get increased with

increasing uncertainties of the IS observation.

In another experiment, Fig. 3.11-d,e and f represent the uncertainty for all the

points of the virtual image plane, where its dimension is considered as 500×500
pixels. In this case the IS’s observation vector (Eq. (3.31)) is as following

s = [ π/4 0 π/8 ]T (3.46)
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(a) ΣΣΣvx.xx (d) ΣΣΣvx.xx

(b) ΣΣΣvx.yy (e) ΣΣΣvx.yy

(c) ΣΣΣvx.xy (f) ΣΣΣvx.xy

Figure 3.11: Plots for the elements of the covariance matrix of a virtual camera’s
image plane. (a), (b) and (c): Depict the covariance matrix’s elements of for an
exemplary pixel [ 800 200 1 ]T . They correspond to a case where the homogra-
phy matrix is obtained from the attached IS with the angles roll = 0, pitch = π/4
and yaw = 0. The standard deviation for the roll angle (δr) is assumed zero.
The elements of the covariance matrix for the mentioned pixel (ΣΣΣvx.xx, ΣΣΣvx.yy
and ΣΣΣvx.xy) are plotted with respect to the variations to the value of standard
deviations of the other two angles (δp and δy). (d),(e) and (f): The covariance
matrix’s elements for the different pixels of the virtual image plane. They corre-
spond to a case where the homography matrix is obtained from the IS with the
angles roll = π/4, pitch = 0 and yaw = π/8. The dimension of the image plane is
assumed as 500×500 pixels. The covariance matrix of IS observation is considered
as ΣΣΣs = diag{0.25,0.25,1.0} in degrees.
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Figure 3.12: The covariance matrices, ΣΣΣvx, for different pixels of the virtual cam-
era’s image plane (related to Fig. 3.11-d,e and f) are demonstrated by ellipses,
where they are scaled 100 times for clarity.

Based on [KHJG11] we assume the covariance matrix of IS observation as ΣΣΣs =

diag{0.25,0.25,1.0} in degrees. One can see that the uncertainties for the pixels

close to the center of the image (principal point) is minimum and they increase in

the other image coordinates with respect to the configuration. The same image

uncertainties are shown by ellipses in Fig. 3.12 where the values are scaled 100
times for clarity.

The changes of uncertainties on the image plane of two other IS-camera couples

have been analysed. Fig. 3.14 shows the progress of the uncertainties on an

exemplary point, x = [ 450 450 1 ]T , on the virtual camera’s image plane. The

IS’s observation is as following:
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Figure 3.13: The covariance matrices, ΣΣΣπx
, for different registered points on the

Euclidean inertial plane, demonstrated by ellipses. The blue and red ellipses stand
for points registered by the first and second camera, respectively. For the sake of
clarity the covariance values are scaled 500 and 600 times, respectively for the first
and second cameras.

s = [ 0 π/4 π/8 ]T (3.47)

Six incremental covariance matrices for IS observation are considered, starting

from ΣΣΣs = diag(0,0,0) and finishing by ΣΣΣs = diag(0.162,0.162,0.332). The uncer-

tainty matrices for the particular point x of the virtual plane are shown by some

ellipses in Fig. 3.14-lefts. Also the values for each element of the same covariance

matrices are plotted in Fig. 3.14-rights. Similar experiment is carried out for the

same IS-camera couple, where the IS observation is as following:
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(a) (b)

(c) (d)

Figure 3.14: Uncertainties for an exemplary pixel, x = [ 450 450 1 ]T , of a
virtual image plane. The first and second rows correspond to two different values
of IS observation: s = [ 0 π/4 π/8 ]T and s = [ π/2 −π/2 0 ]T , respectively.
For each of these two cases, the pixel uncertainties related to different noise level
(of IS) are shown.

s = [ π/2 −π/2 0 ]T (3.48)

As can be seen, the uncertainties of the mapped point increase with increasing the

uncertainties in IS observation.
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3.4.3.2 Analysing uncertainty in Euclidean inertial plane

Another experiment is performed to analyse the uncertainties of the points reg-

istered on an Euclidean inertial plane. Two couples of IS-camera are used. The

camera calibration matrices are as previously defined. The translations for first

camera and second camera respectively are:

t1 = [ 100 −100 500 ]T (3.49)

and

t2 = [ −1500 7000 6500 ]T (3.50)

in mm. The uncertainty covariances for these two translation vectors are assumed

as ΣΣΣt1 = diag{2002,3002,5002} and ΣΣΣt2 = diag{1002,5002,3002} again in mm.

The observation vectors for the first and second inertial sensors are respectively

as following

s1 = [ π/4 0 π/8 ]T (3.51)

and

s2 = [ π/4 π/2 0 ]T (3.52)

where the covariance matrices for both IS1 and IS2 are assumed as ΣΣΣs1 = ΣΣΣs2 =

diag{0.25,0.25,1.0} in degrees [KHJG11].

For this experiment, the uncertainty values for the registered points on the

Euclidean plane are calculated by using Eq. (3.44). The obtained uncertainties

are presented by covariance ellipses in Fig. 3.13. The blue ellipses are for points

which are mapped though the first IS-camera couple and the red ones are for the
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point mapped through the second couple. The covariance ellipses for the first

and second cameras are respectively scaled 500 and 600 times for clarity. The

Euclidean plane is also scaled to 104 times and is shown in mm.

3.5 Conclusion

In this chapter the geometric relations among different projective and Euclidean

virtual planes involved in the framework have been more specifically explored.

A set of mathematical equations was obtained which are able to generate the

homography matrix among two inertial planes for different cases. Majority of

the obtained equations express the relation between two Euclidean planes without

an explicit involving of intrinsic parameters of the cameras. They show that the

point mapped onto only one of the inertial planes (particularity πre f ) is sufficient

to propagate the mapping on the other Euclidean planes which are parallel to

the reference plane, independent of involving the camera intrinsic parameters (as

expected). Using the obtained models, an alternative version of the 3D data

registration algorithm was introduced which recursively registers the data on the

virtual planes.

Translation among two virtual cameras is one of the prerequisite for many

computer vision applications including the proposed data registration framework.

Thus we took the advantage of having an IS coupled to each camera and proposed a

method to estimate the translation vectors among the cameras within the network.

A set of experiments to evaluate the quality of the translation estimation method

was performed.

The uncertainties of the involved homography transformations in the frame-

work and their propagation of errors onto the registered data have been modelled

using statistical geometric analysis. The obtained achievement can be of impor-

tance for fusion of information which are coming from different nodes in a sensor

network.





Chapter 4

Real-time implementation using

GPU-CUDA

83



84 Chapter 4. Real-time implementation using GPU-CUDA

Figure 4.1: A distributed network of cameras and inertial sensors. An inertial
Euclidean plane, πre f , is defined as a virtual reference plane in the scene.

4.1 Introduction

This chapter presents a full-body volumetric reconstruction of a person (or object)

in a scene using a sensor network. The concept used in chapter is based on the

previous chapters, however a brief summarization is presented here. The sensor

network is comprised of couples of camera and inertial sensor (IS), as seen in

Fig. 4.1. Taking advantage of IS, the 3D reconstruction is performed using no

planar ground assumption. Moreover, IS in each couple is used to define a virtual

camera whose projective image plane is horizontal and aligned with the earth

cardinal directions (see Fig. 4.2). The IS is furthermore used to define a set of

Euclidean inertial planes in the scene. The image plane of each virtual camera is

projected onto this set of parallel-horizontal inertial-planes, using some adapted

homography functions. A parallel processing architecture is proposed in order to

perform human real-time volumetric reconstruction. The real-time characteristic

is obtained by implementing the reconstruction algorithm on a general purpose

processing unit (GP-GPU) using Compute Unified Device Architecture (CUDA).

In order to show the effectiveness of the proposed algorithm, a variety of human
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Figure 4.2: Schematic of a virtual camera: A virtual camera is created from a
IS-camera pair by using infinite homography. Different coordinate systems are
involved in this definition. {Earth}: Earth cardinal coordinate system, {IS}:
Inertial reference frame expressed in {Earth}, {W}: world reference frame of the
framework, {C}: camera reference frame, {V}: reference frame of the virtual
camera corresponding to {C}. Based on the definition, the virtual camera has a
horizontal image plane (projective), parallel to the Euclidean inertial plane πre f .

postures and some objects in the scene are reconstructed and demonstrated. Some

analysis have been carried out to measure the performance of the algorithm in

terms of processing time in different configurations.

4.2 Parallel processing using GPU

CUDA and GPU Hardware Architecture

In CUDA terminology, the GPU is called the device and the CPU is called the

host (see Fig. 4.4). A CUDA device consists of a set of multi-core processors.
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Figure 4.3: The architecture corresponding to the proposed algorithm. First in
each IS-camera couple the 3D rotations provided by the IS is fused with the camera
image to create a horizontal virtual image plane. The projective image planes get
projected onto different Euclidean inertial planes in the scene. By performing the
intersection of the projected silhouettes the registration on each inertial plane is
obtained. The parts coloured in yellow are implemented on GP-GPU.
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Figure 4.4: CUDA architecture [AMD11].

Each multicore processor is simply referred to as a multiprocessor. Cores of a

multiprocessor work in a single instruction, multiple data (SIMD) fashion. All

multiprocessors have access to three common memory spaces (globally referred

to as device memory but with different access time). The CUDA program is

organized into a host program, consisting of one sequential thread running on the

host CPU, and several parallel kernels executed on the parallel processing device

(GPU). A kernel executes a scalar sequential program on a set of parallel threads.

The program organizes these threads into a grid of thread blocks.

3D reconstruction using GPU-CUDA

Normally a full-body volumetric reconstruction of human is time consuming due

to the huge amount of data to be processed. In order to have a real-time processing

(which is necessary for many applications) we propose a parallelizing of the 3D

reconstruction algorithm. The previously proposed 3D volumetric reconstruction
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approach is adapted for this implementation and described as an algorithm in

Alg. 4. First, the image plane of each virtual camera is obtained. Then the

image of each virtual camera is projected onto a set of inertial-planes. Nc and Nπ
indicate the number of cameras and number of inertial-planes, respectively. Ici
and Ivi respectively are the image plane of camera Ci and its corresponding virtual

camera Vi. ∆h is the Euclidean distance among inertial-planes which also can be

interpreted as the vertical resolution of the algorithm. The labels ’Gpu Warping’,

’Gpu Project2VirtualPlane’ and ’Gpu Plane Intersection’ correspond to the labels

in the flow-chart of Fig. 4.6.
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Algorithm 4: Algorithm of 3D data registration using inertial-planes:

First, the image plane of each virtual camera is obtained. Note that the

background-subtracted images are binary. Then the image of each vir-

tual camera is projected onto a set of Euclidean inertial-planes. Nc and

Nπ indicate the number of cameras and number of inertial-planes, respec-

tively. Ici and Ivi respectively are the image planes of camera Ci and its

corresponding virtual camera Vi. ∆h is the Euclidean distance among the

inertial-planes which also can be interpreted as the vertical resolution of

the algorithm. (The labels ’Gpu Warping’, ’Gpu Project2VirtualPlane’ and

’Gpu Plane Intersection’ correspond to the labels in flowchart of Fig. 4.6).

At the end the algorithm returns a set of inertial planes with data registered

over them.
/* generating image planes of virtual cameras */

for i ← 1 to Nc do
viHci ← Ki

viRci K−1
i

”Gpu Warping” Ivi ← viHci Ici

viHπre f ← Kci [ î −ĵ tci ] /* Eq. (2.17) */

/* projecting virtual images onto inertial-planes */ h ← 0

for j ← 0 to Nπ −1 do

for i ← 1 to Nc do

”Gpu Project2VirtualPlane” πhHvi ← inv(viHπre f +hPi k̂
T ) /* using Eq. (3.2) */

π(vi)
h ← πhHvi Ivi

h ← h + ∆h

/* obtaining intersection of the projected virtual images for each inertial plane */

for j ← 0 to Nπ −1 do
”Gpu Plane Intersection” /* cell-wise binary AND. Please see Fig. 4.5 */

π j ← ∏Nc
i=1 π(vi)

h

return {π0, π1 · · · π(Nπ−1)}

For each Euclidean inertial plane in the framework a set of temporary planes

(also Euclidean) is considered. For instance for πh (the inertial plane at the

height h) a set of temporary planes {π(v1)
h , π(v2)

h · · · π
(vNc)
h } is defined. π(vi)

h in-
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Figure 4.5: Cell-wise intersection of the projections of the virtual images onto an
exemplary inertial-plane πh: Firstly the images of all virtual cameras get projected

onto a temporary inertial plane. π(vi)
h indicates the temporary inertial-plane cor-

responding to the virtual camera Vi. Then the corresponding cells of all temporary
inertial-planes are fused using an AND operator in order to provide the final reg-
istration on the inertial-plane πh. (m and n indicate the indices of a cell). Note
that the silhouettes are considered as binary.

dicates the temporary inertial-plane corresponding to the virtual camera Vi. The

images planes of each virtual camera Vi initially gets projected onto π(vi)
h , for

the inertial plane πh (see Fig. 4.5). Then the corresponding cells of all tem-

porary planes (belonging to the same inertial plane) are fused using an AND

operator in order to provide the final registration on the inertial-plane πh. Note

that the images are considered as binary. This part of the algorithm is labelled

as ’Gpu Plane Intersection’ and illustrated in Fig. 4.5. In this figure, m and n
indicate the indices of a cell.

Fig. 4.3 depicts an architectural view corresponding to the algorithm. The

parts colored in yellow are implemented on CUDA. Fig. 4.6 demonstrates the
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Figure 4.6: Flowchart of CUDA implementation of the proposed inertial-based
3D reconstruction. The left block (coloured in aqua) is the processes which are
executed in CPU in a traditional serial fashion. The right block (coloured in
yellow) indicates the processes which are implemented on GP-GPU using parallel
processing. The corresponding algorithm is presented in Alg. 4.
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Figure 4.7: CUDA implementation of inertial plane projection. The process la-
belled by GPU Project2VirtualPlane in Fig. 4.6 and Alg. 4 is performed on
CUDA. V 1 denotes a virtual camera and I� is its corresponding virtual image.
The homography transformation πHv1 is applied on each pixel thread (of I�), in-
dependently. The results are stored on a temporary inertial plane (see Fig. 4.5).

flowchart of the parallel implementation using CUDA. In the beginning the images

are grabbed and then the silhouettes are extracted. After that the silhouettes are

loaded on the GPU memory in order to be processed by CUDA. The loaded images

on GPU memory are warped to generate the images of virtual cameras (labelled

as VirImgGen). After having the images of the virtual cameras generated, the

images are projected on different inertial-planes in order to register the 3D data

on them (labelled as GPU Project2VirtualPlane). Once images of all cameras

get projected onto the inertial-planes, a pixel-wise AND operator is applied to

them in order to obtain the intersections (labelled as Gpu Plane Intersection). In

this point the 3D volumetric reconstruction has been obtained. Eventually the

registered data are passed to a visualizer to show the result.

In Fig. 4.6 and Alg. 4, the processes labelled by VirImgGen, GPU Project2VirtualPlane

and Gpu Plane Intersection are the parts which are performed on CUDA using a

parallel implementation. As shown in Fig. 4.7, the virtual image plane is divided

into a set of blocks. Each block has a set of pixel threads which run in parallel. I�

is the image plane of virtual camera V 1. The homography transformation πHv1
is applied on each pixel thread (of I�), independently. The results are stored on a
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temporary inertial plane, as described in Fig. 4.5. I�, the image plane of virtual

camera, was obtained using a similar parallelization process.

As described in Fig. 4.5, the intersections of the obtained temporary inertial

planes need to be obtained by applying an ’AND’ operation. This part, which

corresponds to the process labelled by Gpu Plane Intersection in Fig. 4.6 and

Alg. 4, is also implemented on CUDA. As shown in Fig. 4.8, the ’AND’ operation

for each pixel thread is performed in parallel. It is for an exemplary case where

there are two virtual cameras. The result is the Euclidean inertial plane with the

data registered on.

4.3 Experiments

4.3.1 Infrastructure

Fig. 4.9 shows the smart-room of the laboratory of mobile robotic in the University

of Coimbra [MRL], used in our experiments. The superimposed area in this figure

is observed by a camera network. The cameras are AVT Prosilica GC650C GigE

Color [Proa], synchronized by hardware. Each camera is rigidly coupled with an

IS (we used Xsens MTx [xse]). Fig. 4.10 depicts an exemplary IS-camera couple.

The purpose of using IS is to have 3D orientation with respect to earth, obtain

virtual camera and define virtual horizontal planes. First the intrinsic parameters

of the cameras are estimated using Bouguet Camera Calibration Toolbox [Bou03]

and then Camera Inertial Calibration Toolbox [LD07] is used for the sake of ex-

trinsic calibration between the camera and IS (to estimateCRIS). After acquiring

image from each camera, a color-based background subtraction step is performed.

The human silhouette is separated from the background through color segmenta-

tion using the HSV (hue, saturation, value) model. This model is less sensible to

illumination changing conditions [KMB07, Bra98]. A 1-D Hue histogram is sam-

pled from the human area and stored for future use. During frame acquisition, the

stored color histogram is used as a model, or look-up table, to convert incoming
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video pixels to a corresponding probability of body image. Using this method,

probabilities range in discrete steps from zero (0.0) to the maximum probability

pixel (1.0). Later it is multiplied by a binary mask.

The reconstruction algorithm is developed using the C++ language, OpenCV

library [Ope] and NVIDIA’s CUDA software [Nvi] for Ubuntu Linux v10.10. The

visualization is carried out using openGL library. The processing unit responsible

for all the sensory and vision algorithm (including CUDA processing) is composed

by a PC (Intel Core2 Quad processor Q9400, 6 MB Cache, 4 GB RAM, 1333 MHz

and a PCI-Express NVIDIA GeForce 9800 GTX+).

4.3.2 Reconstruction results

Different sets of experiments have been carried out using the proposed inertial-

based 3D reconstruction method by a GPU-based implementation. 16 samples

are demonstrated in Fig. 4.12 and 4.13 where an acting person is fully recon-

structed in 3D. One of the samples is separately shown in Fig. 4.11 in order to

have a more detailed view. In these examples, 48 Euclidean inertial-planes are

used for the purpose of 3D data registration. The interval distance among two

consecutive inertial-plane is 5cm. Although the area of the scene in these experi-

ments is small however in the computation the area is considered as 384×384cm2

which is relatively large. Using a parallel implementation of the algorithm (using

GPU), we managed to have a frequency close to 2.5Hz for reconstruction of the

mentioned area (using the hardware stated in sub-section 4.3.1). The number of

layers and their intervals can be adjusted depending to the need of an application

and available hardware.
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Figure 4.8: CUDA implementation of temporary inertial planes intersection. The
process labelled by Gpu Plane Intersection in Fig. 4.6 and Alg. 4 is performed
on CUDA to be processed in parallel. π(v1) and π(v2) are two temporary inertial
planes which are obtained through using a parallel implementation described in
Fig. 4.7. Each ’AND’ operation is independently applied on a pair of correspond-
ing points, from two temporary planes. The results are the final data registration
for the Euclidean plane π.
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Figure 4.9: The scene used in the 3D reconstruction experiments. The superim-
posed area indicates where all cameras have overlap in their field of view.

Figure 4.10: The IS-camera couple used in the real-time 3D reconstruction exper-
iment.
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Figure 4.11: Results of 3D volumetric reconstruction using the proposed frame-
work: The camera images before and after background subtraction (silhouette)
are respectively shown in the left and right columns. The result of volumetric
reconstruction using the silhouettes is illustrated in the middle. A network of
IS-camera is used to observe the scene. 48 inertial-planes are used to register 3D
data from the scene. The interval distance among two consecutive inertial-plane
is 5cm.
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In order to demonstrate the applicability of the proposed framework for some

other applications such as scene understanding a set of experiments have been

carried out on some objects (see Fig. 4.14). In Fig. 4.14-(a) a semi rectangular

blue box object is reconstructed. Fig. 4.14-(b) demonstrates a case where an

cylindrical object, placed on the top of the box, is reconstructed. A chair which is

partially covered in red is registered (the red part) in Fig. 4.14-(c). Fig. 4.15-(a)

and Fig. 4.15-(b) show the result for a scene including a person and a mannequin.

The person seated on a chair is reconstructed and shown in Fig. 4.15-(c).

4.3.2.1 Statistical analysis on the processing times

Some performance statistics are carried out in order to show the time which each

part of the algorithm takes to run. In Fig. 4.6, processing time for each part of

the algorithm is imprinted. The times refer to the case where 48 inertial-planes,

each one having a size of 384×384cm2, have been used. The infrastructure and

hardware are as stated in sub-section 4.3.1. The total processing time for a full

3D reconstruction is 405ms which leads to have a frequency close to 2.5Hz.

Fig. 4.16 depicts the average processing time in ms for different size of inertial-

planes (the scale is 104 cm2). The number of inertial-planes in this experiments

is a constant equal to 48. The blue line demonstrates the processing time for

generating the images of virtual cameras. Since the number of cameras are fixed

in all tests, the execution time for that is almost constant. The red line indicates a

part where images of all virtual cameras get projected onto a set of inertial-planes.

Eventually the total processing time is shown in green color. As it is visible in

the diagram, the processing time has a linear proportion related to size (area) of

inertial-planes.

Another diagram showing the processing time versus number of inertial-planes

is shown in Fig. 4.17. The size of inertial-planes (they are equal in the sizes) is

considered as a constant equal to 384×384cm2. Similar to Fig. 4.16, the colors
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Figure 4.12: Results of 3D volumetric reconstruction using the proposed frame-
work: 12 samples have been illustrated. In each sample, the camera images before
and after background subtraction (silhouette) are respectively shown in the left
and right columns. The result of volumetric reconstruction using the silhouettes
is illustrated in the middle column for each sample. A network of IS-camera is
used to observe the scene. 48 inertial-planes are used to register 3D data from the
scene. The interval distance among two consecutive inertial-plane is 50mm.
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Figure 4.13: Results of 3D volumetric reconstruction using the proposed frame-
work: 12 samples have been illustrated. In each sample, the camera images before
and after background subtraction (silhouette) are respectively shown in the left
and right columns. The result of volumetric reconstruction using the silhouettes
is illustrated in the middle column for each sample. A network of IS-camera is
used to observe the scene. 48 inertial-planes are used to register 3D data from the
scene. The interval distance among two consecutive inertial-plane is 50mm.
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(a)

(b)

(c)

Figure 4.14: Results of the proposed multi-layer 3D data registration: Three
experiments, each one for an object, are carried out. (a) represents the result for
a semi-rectangular blue box. (b) depict the result for a small cylindrical green
object on top of a box. (c) demonstrates the result for the red covered parts of a
chair. In all these experiments a color-based background subtraction is performed
based.
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(a)

(b)

(c)

Figure 4.15: Results of the proposed multi-layer 3D data registration: The first
experiment, (a), stands for a scene where a person is hand-shaking with a man-
nequin. In the second one, (b), the person is seated in front of the mannequin.
(c) shows a case where the person is seated on a chair. A set of euclidean inertial
planes are used (with interval of 35mm) to register the data in 3D. The image at
the right demonstrate the visualized result.
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blue, red and green respectively indicate the processing time of virtual images

generation, projection of generated virtual imaged onto a set of inertial-planes

and the total algorithm cycle, respectively. Also in this diagram the processing

time has a linear proportion related to number of allocated inertial-planes.

From these two analysis, shown in Fig. 4.16 and Fig. 4.17, the slopes for

two cases are respectively 0.002 ms/cm2 and 6.43 ms/cm2. Having this, it can be

concluded that the performance of the system regarding the processing time much

more depends to the number of inertial planes than their areas.

As shown in Fig. 4.6, a big amount of running time of the algorithm is spent

where we project a virtual image plane onto a set of inertial planes. This part is a

bottleneck for the system. Such a time consumption can have two reasons. First

because of increasing number of planes and consequently the volume of data to be

processed. The second reason is due to number of block-copy actions which are

carried out between the host and the device.

As can be seen, for each Euclidean inertial plane, we once transfer the data

from host to the device memory (upload) and then after applying the homography

warping and intersection operations on the device the results get transferred on

the host memory (download). These operations are repeated for each one of the

inertial planes. In this particular implementation of the algorithm the unit which

displays (visualizes) the data runs on the host and needs to have the data on the

memory of the host. If there was not such a need, the processed (registered) data

on the device would not need to be downloaded to the host. Indeed this depends

too much to an application which will use the registered data. If the application is

also implemented on GPU and has the capability of using the registered data di-

rectly from the device memory, then the downloading operation can be eliminated

and leads to have a higher speed.
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Figure 4.16: Average processing times in ms for different size of inertial-planes.
The notations are related to the flowchart shown in Fig. 4.6. Number of 2D
inertial-planes used in this statistic is 48.

Figure 4.17: Average processing times in ms for different number of inertial-planes.
The notations are related to the flowchart shown in Fig. 4.6. The size of each 2D
inertial-planes used in this statistic is 384×384cm2.
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Figure 4.18: Mobile sensor experiment: Result of 3D reconstruction when just
two IS-camera couples are used. The other cameras are intentionally blinded. The
result is shown in the right column. Because of lack of views, the details are not
clear and moreover a ghost object has appeared.

Figure 4.19: Result of 3D reconstruction when a mobile sensor is augmented
to the network (corresponding to Fig. 4.18 ); In order to have more details of
the scene, a mobile sensor is navigated close to the mannequin and its view is
integrated as a new node in the network. The left two columns are the images
corresponding to the two fixed cameras and the third column from left is the image
corresponding to the mobile camera. The results of the 3D reconstruction by using
two fixed IS-camera couples and a new augmented couple is demonstrated in the
right column.
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4.3.3 Extension for mobile sensor

The previously shown experiments were carried out by using static sensors. In

some scenarios, it would be very useful to have a mobile sensor which could move

inside the scene and collect data from an arbitrary point of view. The data pro-

vided by it can be used as a regular node of the sensor network. Such a mobile

sensor has two main advantages: Firstly, always it is not possible to have many

cameras (specially in large areas) to have all details of the different parts of the

scene. Secondly, in some cases one of the main nodes (IS-camera couples) could be

occluded or in any reason stop to work. In such situations, a mobile sensor could

approach to an appropriate position in the scene, gather and transmit close-view

information to the infrastructure. The proposed framework has the ability to in-

tegrate the data coming from a mobile sensor. The localization and navigation of

a mobile sensor are the two old topics in the area of robotics and computer vision

and there can be found many papers in the literatures which proposed different

solutions for these problems. Therefore we do not enter in these areas and just as-

sume that we have these techniques already available. In following, an experiment

is provided to show the advantage of using a mobile sensor. In order to localize the

mobile sensor, the method proposed in [AD11a] is used. Fig. 4.18 shows a case

where just two cameras from the infrastructure is used for the 3D reconstruction

of a mannequin (we intentionally blinded the other cameras). As can be seen,

in such situations that there is not enough views to see the scene, the result of

3D reconstruction is not good enough. As seen, there is no enough detail about

the reconstructed person and moreover a ghost object [MSEH08] has appeared as

noise. In order to have more details of the scene, a mobile sensor is navigated close

to the mannequin. Then after localizing the mobile sensor, its view is integrated

as a new node in the network. The results of the 3D reconstruction by using two

fixed IS-camera couples and a new added couple is demonstrated in fig. 4.19. This

figure shows the advantage of having a mobile sensor which could cooperate with

the infrastructure.
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4.4 Conclusion

Having real-time volumetric reconstruction of scene (human and object) is de-

manding by many applications such as human motion and behaviour modelling,

teleconferencing, human-robot interaction, smart-room, health-care, medical in-

dustries, virtual reality, scene understanding, surveillance, game industries etc.

Nowadays, camera network is frequently deployed for public or even private ob-

servations for different purposes depending to the application. Recently, IS is be-

coming much cheaper and more available. Even many smart phones can be found

equipped in both IS and camera. Taking advantage of this, we used a network

of IS-camera couples to observe the scene and then a method for 3D reconstruc-

tion of a person using inertial data and with no planar ground assumption was

proposed. In order to achieve a real-time execution, a parallel processing architec-

ture was proposed and implemented on CUDA. Different real-time experiments

were provided in this chapter to demonstrate the applicability and effectiveness of

the proposed method for many applications. The experiments include 3D recon-

struction for a single person, a person and a mannequin and some objects. The

presented results are quite promising.
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5.1 Introduction

In this chapter first we discuss about the issue of having an appropriate coverage

for cameras within the proposed data registration framework and a genetic algo-

rithm is proposed to improve this issue. Synergy among several heterogeneous

sensors can provide more precise result specially when some sensors are mounted

on a mobile robot. On this context we discuss about how to estimate the extrinsic

parameters among cameras and laser sensor and propose a method for that. Af-

terwards we discuss about how the dynamic state of a scene can be considered in

the proposed framework and for this purpose the Bayesian techniques are applied

on the registration plane.

5.2 Edge visibility criteria and camera configuration

Algorithm 5: Criteria to check the edges visibility for a given polygon. k is
number of polygon’s edges and e j is the j’th edge. n j is the normal vector
corresponding to e j. bi is the bisecting vector for camera i. Each edge
is checked and will be labelled as either ’visible’ or ’invisible’. Labelled as
’invisible’ for an edge means that it is invisible for all the cameras.

for j = 1 to k do

if ∃bi, i ∈ 1..nc where ∠(n j,bi)>
π
2 then

consider the edge e j as < visible >

else
consider the edge e j as < invisible >

The proposed volumetric reconstruction method uses silhouettes of an object

and provides its volumetric reconstruction. The completeness of the reconstructed

volume depends to some parameters such as the positions of cameras within the

network, number of cameras and the shape of the object. Fig. 5.1-left shows an

exemplary case where a convex polygon is observed by two cameras (top view).

In this case, the polygon has five edges and five vertices (pentagon) however as
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Figure 5.1: Investigation of the criteria for visibility of a general convex polygon.
Left: An exemplary convex polygon is being observed by two cameras. The images
are shown from the top view of the inertial reference plane πre f . Right: The
registration of the polygon corresponding to left picture. The registration includes
the object and some extra areas (coloured in red) which does not belong to the
polygon. This red area has appeared because of not having visibility on the lowest
edge of the polygon.

Figure 5.2: Registration plane corresponding to Fig. 5.1. The figure shows the
involved vectors. Green vectors, li and ri, respectively indicate the left and right
tangents (bounding vectors) of a camera ci. The bisector vector for each camera
bounding pair (the tangents) of li and ri is shown in red (bi). ni stands for the
normal of the edge ei. After performing the registration process based on the
proposed algorithm, the area coloured in red also become registered as a part of
the object.
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is shown in Fig. 5.1-right it is registered on the inertial plane as a six edges

polygon, due to the effect of the mentioned parameters (number of cameras and

their positions). The extra part of the polygon after registration is shown in

red in the figure. As previously mentioned, registration of the cross section of

an object with an inertial plane can be thought as the intersection among all

shadows created by cameras, through considering each camera as a light source.

Based on this interpretation the appearance of the red part can be justified: the

red part is the area which can not be seen by any camera and is shadowed in

all views. We intend to introduce a geometric approach to realize the visibility

or invisibility of an edge. Assume a general convex polygon including k vertices

V = {v1, v2, ...vk} and k edges E = {e1, e2, ...ek} (e.g. consider Fig. 5.2 as an

exemplary polygon corresponding to Fig. 5.1). A normal vector can be considered

for each edge resulting to have N = {n1, n2, ...nk}. Moreover assume a set of nc
cameras {c1, c2, ...cnc}. Each camera ci has a pair of tangents (bounding vectors)

(li,ri) to the polygon and for each tangents pair a bisecting vector bi is considered.

Having this, the visibility criteria for the edges can be expressed as following: an

edge e j is visible if and only if there is a bi where ∠(n j,bi)>
π
2 (see Alg. 5).

5.2.1 Optimal Camera placement using Genetic Algorithm

The visibility criteria defined in Alg. 5 can be used for obtaining an optimal

solution for camera placement. The question to be solved is as following: given

a convex polygon with k vertices and k edges and nc number of cameras, what

would be an optimal solution for placements of cameras in order to have the

best observation of the polygon for applying the proposed reconstruction method.

This question can be considered in another form: Given a polygonal space to be

monitored by a camera network, what would be an optimal solution to place n
cameras around the space. GA is a bio-inspired algorithm which is known as an

appropriate mechanism to solve such a problem. We continue to describe our

GA-based algorithm to solve the mentioned problem.
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Algorithm 6: Algorithm to generate a valid gene. V is the matrix of ver-
tices of the polygon. max fov is the maximum possible FOV for each gene
(camera) and ’space’ is the search space. Having these as the inputs, the
algorithm generates a valid gene with its properties. The position of each
gene signifies the position of the corresponding camera. The function get-
TangentsToPolygon(V,p) receives the matrix of the vertices of the polygon
(V) and the position (p) of the camera (gene) and returns two vectors (l
and r) which are tangents to the given polygon. Then the angular bisecting
vector is stored in b. This bisecting vector will be used to compute the cost
value of the gene. It can be also interpreted as the looking direction of the
camera. Then the generated gene is returned as the result of the function
createGene()

Function createGene()

Input: {V, max fov, space}
Output: {gene}
begin

repeat

p ← random 2D position in space

[l,r] ← getTangentsToPolygon(V,p)

fov ← arccos(
l.r

|l||r|)

until fov <= max fov
gene ← generate an empty gene()

gene.p ← p

gene.fov ← fov

gene.b ← |l| r + |r| l

end
return gene
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Population in GA is a set of members called chromosome. Each chromosome

includes a number of elements named gene. In our case a gene is equivalent to a

camera and its properties and a chromosome is synonymous to a set of cameras.

The structure of a chromosome string is defined in the Fig. 5.3. In this structure

p and b stands for the vectors of position and bisector of the camera, fov is the

angle of FOV and cost is an scaler value corresponding to the gene’s cost. Based

on these definitions, an algorithm to generate a valid gene is provided in Alg. 6.

The inputs of the algorithm are the vector of vertices of the given polygon, V, the

search space of the camera positions and maximum possible FOV. Alg. 7 presents

a function to generate a chromosome including Nc genes (a chromosome string

with length=Nc).

Algorithm 7: Algorithm to generate a chromosome. V is the matrix of ver-
tices of the polygon. Nc indicates the chromosome’s length or in other words
the number of cameras. max fov is the maximum possible FOV for each gene
(camera) and ’space’ is the search space. Given these as inputs the algorithm
generate a chromosome with Nc genes and returns it (using Alg. 6).

Function generate chromosome()

Input: {V, max fov, Nc, space}
Output: {chromosome}
begin

// creating an empty chromosome with length=Nc

chromosome ← empty chromosome(Nc)

for i ← 1 to Nc do

gene(i) ← createGene(V, max fov, space) // from Alg. 6

getChromosomeCost(chromosome) // from Alg. 8

end
return chromosome

One of the crucial points in GA-based algorithms is to have a suitable cost

function in order to evaluate the fitness of a member in the population. In the

case of our coverage problem, a cost function f (α = ∠(b,n)) : [0..π] → [0..λ] is
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Figure 5.3: Structure of a chromosome string.
chromosome

gene(1) gene(2) ... gene(nc)

p fov b cost p fov b cost ... p fov b cost

Figure 5.4: Defined function to measure the cost between a camera and a polygon
edge. The maximum cost is equal to λ and happens when α <= π/2 or in other
words the edge is invisible by the camera.

defined (see Fig. 5.4) for a bisector b and the normal of an edge n as following:

f (α = ∠(b,n)) =






|2π(α−π)| ; π
2 < α ≤ π

λ ; others

(5.1)

where 1 < λ < 2 and α is the angle among the two vectors b and n. An algorithm

to compute the cost of each gene in a chromosome string using the defined cost

function in Eq.(5.1) is proposed in Alg. 8. Firstly the cost among each individual

gene of the chromosome and each edge of the polygon is computed (whole algo-

rithm except the lines 12-20). The primary costs for each gene and the polygon’s

edges were obtained regardless of considering the other genes in the chromosome.

Secondly, the cost of each gene gets updated by taking into account the previous

genes in the chromosome, in order to avoid getting trapped in a local minima (lines

12-20). Fig. 5.5 shows an exemplary case where a triangular polygon is supposed
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to be optimally observed by three cameras. Based on the cost function in Eq.

(5.1) (the second part of Alg. 8) an optimal arrangement for the cameras is when

all three cameras observe the edge e12 . In this situation the cost value for each

camera is close to zero (using Eq. (5.1), since the angle among the bisector vector

of the cameras and n1 (normal of e12) is straight (π). This case is considered as

a local minima for the camera placement. In order to avoid the GA algorithm to

fall into such a local minima, an update on the cost of each gene in a chromosome

with regards to the other genes in the same chromosome is proposed in the lines

12-20 of Alg. 8. In this part, the cost of each gene-edge gets increased (penalized)

if the same edge was previously observed by another antecedent gene in the chro-

mosome. In this case, the unidirectionality between the bisector vectors of such

two genes (bc and bp for the current gene and the antecedent one) determines the

penalty value to be augmented to the cost value of the second gene. The more

aligned in the same directions, the more penalty value is applied by using the

following equation:

aug(bc,bp) = |1−
∠(bc,bp)

π
| (5.2)

This causes the genes who are observing the same edges get far from each other

and converge other edges.

A genetic algorithm (Alg. 9) to search for an optimal solution is proposed in

this section by using the defined cost function and the introduced sub-functions

(Alg. 6, Alg. 7 and 8). The inputs for this algorithm are: V , the matrix of

vertices; max f ov, maximum for the FOV of a camera (a gene ); Nc, number of

cameras (number of genes in a chromosome or chromosome’s length); and ’space’,

the space to be searched by GA for placing cameras (search space). Number of

population (number of chromosomes) is considered as 100. First a new generation

is initialized. After applying a fitness function on each individual (chromosomes)

in this population, 20% of them are selected as elites for the new generation.

e12 denotes the edge connecting vertix v1 to vertix v2
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Algorithm 8: Algorithm to compute the cost of a chromosome and its genes.
The inputs are V, the vertices’s matrix and chromosome. The cost value
among each individual gene in the chromosome and each edge of the polygon
is computed using the Eq. (5.1). The cost value gets penalized for the genes
which are visiting an edge that was previously visited by an antecedent gene
of the chromosome (lines 12-20). The penalty value is obtained using Eq.
(5.2).

Function getChromosomeCost() Input: {V, chromosome}
Output: {cost of chromosome}
begin1

λ ← 1.22

l ← length(chromosome) // number of genes in chromosome3

for i ← 1 to l do4

gene(i).cost ← 05

for j ← 1 to k do6

h ← mod( j,k)+17

b ← gene(i).b8

α ← arccos(
b.e jh
|b||e jh|

)
9

if α > π/2 and α <= π then10

gene(i).e jh.cost ← 2
π |α−π|11

//check if e jh was previously visited by an antecedent gene12

for prev gene ← 1 to i−1 do13

if gene(prev gene).e jh <= 1 then14

//yes visited, so penalize it!15

bi ← gene(i).b16

bp ← gene(prev gene).b17

α ← arccos(
bp.bi
|bp||bi|

)
18

augmented cost ← |1− α
π
|19

gene(i).e jh ← gene(i).e jh + augmented cost20

else21

gene(i).e jh.cost ← λ22

gene(i).cost ← gene(i).cost + gene(i).e jh.cost23

end24

return chromosome.cost25
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Figure 5.5: The local minima problem for a triangular polygon and three cameras.
Using just the cost value for each gene (camera) regardless of the other genes
(cameras) in the same chromosome (camera network) can leads to have one edge
perfectly observed by many cameras and other edges starving. In this case all three
cameras are observing the edge e12 (the line between v1 and v2) with cost values
are zero since n1 is opposite to their bisector vectors (b1, b2 and b3), whereas
the two other edges (e23 and e31) are not observed at all since their cost value
can not be zero. The second part of Alg. 8 is dedicated to eliminate this problem
using the penalty function in Eq. (5.2).

The rest of the population (80%) are created by applying crossover and mutation

operations on the elites. For doing so, every time two parents are selected randomly

from the elites. Then a crossover operation is applied in this selected couple and

as the result two children (new member of the society or chromosomes) are added

to the population. On some of the newly created children, a mutation is applied

as well. The probability of happening a mutation on the children is considered as

0.50. In each cycle, the cost value of the best member (best fitted chromosome)

of the elites is saved as the minimum cost value of that generation. If after a

nstop number of consecutive trials the cost value does not get improved, or the

algorithm reaches its maximum iteration (n trial max) then it stops. The answer

of the algorithm is an optimal chromosome. This optimal solution includes a set

of genes (Nc genes) and each gene signifies a camera with its properties such as

position, direction vector, etc.
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Algorithm 9: Genetic algorithm to search for an optimal solution for camera
placement problem.

Function GA()
Input: {V, max fov, Nc, space}
Output: {optimal chromosome}
begin1

/* Initialization */2

chrom length ← Nc //number of genes in a chromosome3

nelites ← 20 // number of elites to be selected4

npop ← 100 //number of population5

nstop ← 150 //stop after no change in a consecutive nstop iterations6

search space ← space7

f ovmax ← π/4 // maximum possible FOV for a camera.8

n trial max ← 2000 //maximum number of iterations9

/* First generation */10

for i ← 1 to npop do11

pop(i)← generate chromosome(V, f ovmax,chrom length) //Alg. 712

evaluate fitness() // using Alg. 813

elites ← pop(1..nelites)14

cost history(1)← getChromosomeCost(V ,elites(1)) //Alg. 815

t ← 016

nrepeated ← 017

/* Iterations */18

while t < n trial max and nrepeated < nstop do19

t ← t +120

pop(1 : nelites)← elites21

pop(nelites+1 : npop)← crossover and mutation on elites22

evaluate fitness() // using Alg. 823

elites ← pop(1..nelites)24

cost history(t)← getChromosomeCost(V ,elites(1)) //Alg. 825

if t > 1 and cost history(t) == cost history(t −1) then26

nrepeated ← nrepeated +127

else28

nrepeated ← 029

optimal chromosome ← elites(1)30

return optimal chromosome31

end32
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Although the proposed algorithm to optimize the camera coverage is discussed

in 2D as a case-study, however it has the potential to be used in 3D with some

small modifications. The first necessary modification in the algorithm to deal

with a 3D case is that instead of using the normal vectors of the edges, the normal

vectors of the faces have to be used. This counts all faces except the bottom face

which is not needed to be observed. The second needed modification is to consider

the camera position as 3D instead of 2D. E.g. in Alg. 6, the place where a camera

position in space is randomly created it should be generated as 3D vector. The

rest of the algorithm would be the same as the studied 2D case.

5.2.2 Camera placement optimization using GA: simulation

In this sub-section a set of experiments to demonstrate the efficiency and effective-

ness of the proposed GA-based algorithm for camera placement is demonstrated.

Totally nine samples are shown in Fig. 5.6, Fig. 5.7 and Fig. 5.8. In each sample a

convex polygon with k number of edges and nc cameras are considered. The poly-

gons are randomly generated and the space to be searched by camera placement

has a dimension equal to 1200×1200cm. The convergence plots of the algorithm

for the samples in each figure has been depicted in the corresponding (d) section.

The vertical axes in the plots show the cost value of the best fittest chromosome

in each iteration where the value is divided by number of genes for each sample

(number of cameras nc). The condition to stop the GA loop is when the cost

values of the found solution in 150 consecutive trials do not get improved. As

mentioned, the polygon can be either considered as an object to be reconstructed

or an area to be observed by the camera network, however for our case it is consid-

ered as the first case. The proposed GA-based algorithm tries to find an optimal

placements (position and direction) of the cameras within the network in such a

way that gives the best coverage on the polygon for the purpose of proposed 3D

reconstruction method.
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(a) k = 3,nc = 2 (b) k = 3,nc = 3

(c) k = 5,nc = 3 (d) Convergence plot

Figure 5.6: Results for camera placement optimization using the proposed GA
algorithm. (a), (b) and (c) depict three samples. In each sample a polygon with
k vertices is randomly generated and the purpose of the algorithm is to search
for an optimal coverage using nc number of cameras. The convergences for the
samples are plotted in (d). The vertical axis depicts the cost value for the fittest
chromosome in each iteration, once gets divided to the number of genes (nc). The
dimension of the search space is 1200×1200cm2.
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(a) k = 5,nc = 4 (b) k = 5,nc = 5

(c) k = 10,nc = 2 (d) Convergence plot

Figure 5.7: Results for camera placement optimization using the proposed GA
algorithm. (a), (b) and (c) depict three samples. In each sample a polygon with
k vertices is randomly generated and the purpose of the algorithm is to search
for an optimal coverage using nc number of cameras. The convergences for the
samples are plotted in (d). The vertical axis depicts the cost value for the fittest
chromosome in each iteration, once gets divided to the number of genes (nc). The
dimension of the search space is 1200×1200cm2.
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(a) k = 10,nc = 3 (b) k = 10,nc = 4

(c) k = 10,nc = 5 (d) Convergence plot

Figure 5.8: Results for camera placement optimization using the proposed GA
algorithm. (a), (b) and (c) depict three samples. In each sample a polygon with
k vertices is randomly generated and the purpose of the algorithm is to search
for an optimal coverage using nc number of cameras. The convergences for the
samples are plotted in (d). The vertical axis depicts the cost value for the fittest
chromosome in each iteration, once gets divided to the number of genes (nc). The
dimension of the search space is 1200×1200cm2.
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5.3 Integration of mobile vision and laser sensor within a

camera network - the estimation of extrinsic parameters

Earlier we proposed a data registration framework using a network of cameras and

inertial sensors. In this framework camera was used as the main passive sensor to

observe the scene. Although vision is one of essential modality in register and later

perception of a scene, however it has some weaknesses. In the context of 3D data

registration, cameras are capable of providing depth readings, with the further

advantages of being passive sensors and of yielding additional information, such as

surface colour. However, data registration using these sensors is highly dependent

on light conditions, shadows and homogeneous textures. Conversely, a precise

active sensor like laser range finder is able to provide 3D information of a scene

with a much lesser degree of dependency on texture, but they are more expensive

and less common than traditional cameras, and do not yield colour information.

Therefore fusion of these two different modalities in a synergistic manner removes

each of their individual shortcomings, while allowing for the overall harvesting of

their advantages. Thus, integrating a range sensor within the proposed framework

can be helpful. Before being able to integrate the range and image data, we have

to know the extrinsic parameters among the reference frames of these sensors

in order to perform data registration. Having this motivation, in this section

a method to estimate the extrinsic parameters among a 3D-LRF and an stereo

camera is proposed. It is worth to mention that depending to a further application

(which will be benefiting from the proposed data registration framework), having a

mobile sensor can grant some profits, as briefly discussed in Sec. 4.3.3. As another

application, a mobile robot can be used in a smart-room (see Fig. 5.9). Smart

rooms are sensor equipped areas that are able to perceive and understand what

is happening in them. These systems can be applied to homes, offices, factories.

Mobile robots appear as natural agents in the physical world to carry out smart

room actions. A mobile agent, within an intelligent space, comprises several tasks

such as his localization, localization and reconstruction of the person in front,

identification, interaction with human, etc. To carry out these tasks, the mobile
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Figure 5.9: Schematic of a smart-room including a mobile robot

robot needs to be equipped with many sensors and have high power computation

in order to achieve real-time performance. The information provided by the mobile

agent is egocentric (2D1
2) which limits the robot’s perception due to its field of

view’s constraint. This topic is far from the focus of our thesis and we do not go

through more details on this, however in this section we give the schemes in the

context of a mobile robot where the robot carries a set of heterogeneous sensors

(vision, range and orientation).

This sub-section introduces a method to estimate the extrinsic parameters

among a 3D-LRF and an stereo camera. A freely moving bright spot is the only

calibration object which is needed here to collect data. A set of virtual 3D points

is made by waving the bright spot through the working volume in three different

planes. Its projections onto the images are found with sub-pixel precision. The

same points are extracted according to the laser scan data and are corresponded

to the virtual 3D points in the stereo pair.
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5.3.1 LRF model

Our 3D laser range finder is built by moving a 2D LRF along one of its axes (tilt).

By rotating the 2D scanner around its tilt axes, α, it is possible to obtain the

spherical coordinates of the measured points. This type of configuration for the

3D laser can be modelled as following:





x
y
z



=





cic j cidx + sidz
s j 0

−sic j −sidx + cidz





�
ρi j
1

�

ci = cos(αi),c j = cos(θ j),si = sin(αi),s j = sin(θ j),

(5.3)

where ρi j is the j-th measured distance with corresponding orientation θ j in the

i-th scan plane, which makes the angle α j with the horizontal plane. The offset of

the rotation axis from the center of the mirror has components dx and dz. [x y z]T

is the coordinates of each point measured relative to the center of rotation of the

laser, with the x axis pointing forward and the z axis pointing up.

5.3.2 Problem definition

A setup with a LRF, a stereo vision system and inertial sensor is illustrated in

Fig. 5.10-(a). The goal is to estimate the homogeneous transformation between

the reference frames of the stereo camera and LRF. As shown in the figure, three

coordinate frames, namely stereo camera {C}, laser range finder {L} and the

center of the rotation axis {I} have been defined. The {C} is located in the left

camera center of the stereo pair. Furthermore, the IS is strongly coupled to the

laser range finder and is used in order to measure the angle αi. Let CTL(α) be

the homogeneous transformation between the stereo camera and the laser range

finder for each angle of the rotation axis α, which is described as:
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Figure 5.10: a) Schematic of the problem of calibration among a LRF and a stereo
camera. The goal is to estimate the rigid transformation between the reference
frames of the LRF and stereo camera. b) Sketch of the measurement system (dx
and dz are the offset distances from the rotation axis to the center of the laser
mirror).

CTL(α) =

�
CRL(α)

CtL(α)
01×3 1

�
(5.4)

where CRL(α) is the rotation matrix between the LRF and the stereo camera,

and CtL(α) is the translation vector. The coordinates of a 3D point P in {C} and

{L} are respectively denoted by cP and lP and the relation among them can be

expressed as

cP =CTL
lP (5.5)
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The intention is to estimate CTL(α). By having such a transformation matrix it

will be possible to transform 3D points between two coordinate systems {L} and

{C}.

5.3.3 Approach

The proposed calibration procedure, to estimate the extrinsic parameters between

a tilt 3D-LRF and a stereo camera, is divided into the following three consecutive

stages.

1. Estimating CTL(α0)
, CTL(α1)

and CTL(α2)
, which stand for the transforma-

tion matrices from the {L} to {C} when the LRF is placed in three different

orientations around its rotation axis, α0, α1 and α2, respectively.

2. Obtaining ITL(α). This matrix defines the transformation between {L(α)}
and the center of rotation, {I} ({I} is considered as an auxiliary intermediate

reference frame).

3. Calculating the final transformation CTL(α) as the extrinsic parameters be-

tween the tilt-LRF in any arbitrary angle and the stereo-camera.

These stages are explained in the next sub-sections.

A) Obtaining CTL(α j)
for three different values of α.

Firstly the LRF is placed in three different angles α0, α1 and α2 making three

reference frames for the LRF, namely {L(α0)}, {L(α1)} and {L(α2)} (see Fig.

5.11). The idea is to estimate CTL(α0)
, CTL(α1)

and CTL(α2)
(the transformation

matrices among each of these three reference frames and {C}).

For each one of the three angles, a set of 3-D corresponding points are collected. It

leads to have cPα j = {cP
α j
i | i = 1...N, j = 0...2} and lPα j = {lP

α j
i | i = 1...N, j =
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Figure 5.11: a) The LRF is placed (tilted) in three different angles α0, α1 and α2.
b) Using geometrical concepts in LRF and stereo camera calibration process: O0,
O1 and O2 denote the centers of LRF in these three angles. These three points
make a triangle whose circumcircle indeed is the center of rotation, {I}. Note that
the plane containing the triangle conventionally has a normal parallel to Y axis of
{I}.

0...2} where N is the number of points and j is the angle’s index. In each set the

corresponding points must satisfy the following equation:

cPα j =C RL(α j)
lPα j + C

tL(α j)
(5.6)

being CRL(α j)
the rotation matrix, and C

tL(α j)
the translation vector of the ho-

mogeneous transformation CTL(α j)
. In order to estimate CRL(α j)

and CtL(α j)
we

use Arun’s method [KSAB87]. This method tries to estimate the rotation matrix

and translation vector in such a way that the following equation gets minimized:

E =
N
∑
i=1

|cPα j − (CRL(α j)
lPα j +C

tL(α j)
)|2 (5.7)
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In order to perform the collection of some corresponding points between LRF

and camera, a simple laser pointer as a bright spot has been used. The idea of

using such as tool for the calibration is originally inspired from an auto-calibration

method between multi cameras by Svoboda in [SMP05] and by Barreto et al. in

[BD04]. Their methods are extended in the proposed approach for LRF-camera

calibration. The procedure is achieved in three steps for each α j angle:

1. LRF data acquisition and pre-processing. A simple method is used to dis-

tinguish the bright spot from the background. Let lP
α j
iback

= {P
α j
iback

(θ,ρ)i
| i = 1...nl} be the range data of the background (before putting the bright

spot inside the LRF view field) and lP
α j
i = {P

α j
i (θ,ρ)i | i = 1...nl} be the

range data at the moment, in which nl is number of point read by the LRF,

then to detect the laser pointer as a foreground abject we can use

|lP
α j
i − lP

α j
iback

|>=Uth (5.8)

where Uth is a threshold. Thus, in order to obtain the lP
α j
i set, the scan

data is acquired with the laser pointer located out of the LRF´s field of

view, which is considered to be planar. Therefore, meanwhile that the LRF

is capturing range signals, the bright spot is slowly raising until to hit the

LRF’s plane. More pairs of 3D points can be collected by repeating this

process.

2. Stereo-camera data acquisition and pre-processing. As soon as a foreground

point is detected by the LRF, the stereo-camera is triggered to take two

images (left and right) from the scene. Using triangulation the 3D position

of the point is obtained from its images in two cameras.

3. Homogeneous transformation estimate.

In this stage, firstly RANSAC can be used to remove outliers from the point

sets lP
α j
i and cP

α j
i . The valid lP

α j
i and cP

α j
i are used in the Eq. 5.7 which
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is a least-squares solution to find CRL(α j)
and CtL(α j)

based on singular

value decomposition (SVD) as is described in [KSAB87].

B) Obtaining ITL(α) :

In order to obtain the transformation between {L(α)} and the center of rotation

of the LRF, {I}, the following geometrical concepts have been used, which are

summarized in the Fig. 5.11-b. Consider the three points O0, O1 and O2 as the

origins for {L(α0)}, {L(α1)} and {L(α2)}, respectively. These points define a

triangle in a 3D space. As is shown in the figure, the center for the circumcircle of

such a triangle is as well the center of rotation for the LRF, which has been named

{I}. Therefore, the radius of this circle which is also the distance d between {I}
and {L(α)} can be obtained by

d =
|O0 O1| |O1 O2| |O2 O0|

4|�O0 O1 O2|
(5.9)

where � denotes the area of the triangle. Finally, the transformation matrix
ITL(α) can be described as

ITL(α) =





cos(α) 0 sin(α) d sin(α)
0 1 0 0

−sin(α) 0 cos(α) d cos(α)
0 0 0 1




(5.10)

C) Calculating L(α)TC:

Lets consider the transformation matrix from {L} to {C} as

CTL(α) =
C TI

ITL(α) (5.11)
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Figure 5.12: Setup used in the experiments

where CTI corresponds to the transformation between the {C} and the center

of rotation {I}. In order to obtain CTL(α), the transformation CTI has to be

beforehand obtained. Eq. (5.11) represents a homogeneous transformation which

is defined for each α angle. Therefore, CTL(α) can be replaced by the already

estimated CTL(α0)
(obtained in the previous subsection). On the other hand,

ITL(α) can be replaced by the matrix in Eq. (5.10) (by concerning α = α0 in this

equation). Having these the CTI is obtained as:

CTI =
CTL(α0)

IT−1
L(α0)

(5.12)

Once CTI has been obtained, the desired transformation CTL(α) can be estimated

according to Eq. (5.11).

5.3.4 Experiments

The proposed approach is tested using the sensor platform shown in Fig. 5.12.

The dimensions of the provided images by the cameras are 320×240 pixels. The

LRF mounted on the tilt unit is an Hokuyo URG-04LX [hok], a compact laser

sensor which has a resolution of 0.36 and the field of view of 240 . Furthermore,
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Figure 5.13: a) and (b) Real example (left and right images) for one step in
collecting corresponding points in stereo camera and tilt-LRF with the α = 23.2o.
(c) A simple laser pointer with a red-color plastic is the only calibration object.

an Xsens-MTi[xse] inertial sensor is strongly coupled to the LRF.

Based on the described procedure, a set of virtual 3D points has been generated

(using a low cost bright spot shown in Fig. 5.13-c) while the LRF is placed in three

different planes. These planes correspond to the angles α = 12.1o, α = 23.2o and

α = 50o for the tilt (the angles are measured using the IS). Fig. 5.13 illustrates a

real stereo capture, where the virtual point has been superimposed (α = 23.2o).

The acquired corresponding data set is used to estimate the extrinsic parameters

among the LRF and stereo camera based on the proposed method.

Fig. 5.15 shows the projection of the range data onto the camera image for

three exemplary tilt angles (green, red and blue points respectively correspond to

α0 = 2o, α1 = 12o and α2 = 23.2o). In another experiment, a full 3D range data

and also an image are taken from a mannequin and then the 3D laser range data

are reprojected on the image (see Fig. 5.16). The reprojection error values, in

pixels, according to the number of 3-D points used in the method are presented in

Fig. 5.14. As can be seen the error of the proposed calibration method decreases

when the number of corresponding points increases.
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Figure 5.14: Evaluation of LRF-stereo camera calibration method with respect to
number of used corresponding points in the experiments. The average of absolutes
and the standard deviations are plotted.

(a) (b)

Figure 5.15: Scan data acquired by the laser range finder in three different planes
(green, red and yellow points correspond to α0 = 2o, α1 = 12o and α2 = 23.2o,
respectively) are reprojected onto the left images of two different scenarios.
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Figure 5.16: Reprojection of 3D range data on the image using the proposed
calibration method between LRF and camera.

5.4 Low-level data filtering and tracking using Bayesian ap-

proach

The 3D data registration framework was previously introduced. The intention of

such a framework is to provide low-level data registration which could be used by

different applications. Rather than providing such a data in an static fashion, one

can also consider the dynamic of a scene using a filtering approach.
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5.4.1 Concept of Bayesian filtering

Bayesian technique is one of the classical approaches which is used to proba-

bilistically estimate the state of a dynamic system from noisy observations. Ba-

sically, signals obtained by sensors carry information related to some physical

phenomenon. As a matter of fact, the acquired signals are noisy and, moreover,

the relationship of mapping between the state and observations (the model of the

signal) is never known precisely. Hence, in order to infer the true state of nature,

it is necessary to find the most appropriate model to describe the obtained data,

and then estimate its parameters. The random nature of noise as well as uncer-

tainty associated with the model can make it extremely difficult to determine what

exactly is occurring. In order to deal with uncertainties and dynamic we turn to a

method which originates from the 18th century mathematician T. Bayes [Bay63]

[Pun99].

Suppose that I denotes all relevant background knowledge, “sensory input”
denotes the observations from the sensors and statei denotes the probability of

the state i , between the state space S, S = {state1, state2, . . . , staten}, which is

interesting to be known. Then based on the Bayesian theory we will have:

p(statei|sensory input, I) =
p(sensory input|statei, I).p(statei|I)

p(sensory input|I) (5.13)

in which p(sensory input|statei, I) stands for the likelihood, p(statei|I) comes from

the previous knowledge of the statei (without implying new sensors observations)

and p(sensory input|I) is known as the evidence and actually is a normalizing

constant which can be written as an integral and then:

p(statei|sensory input, I) =
p(sensory input|statei, I).p(statei|I)

∑n
j=1 p(sensory input|state j, I).p(state j|I)

(5.14)
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As can be seen in the equation 5.14, which is known as the Bayesian equation, one

can calculate the probability of a hypothesis (statei) based on both the observations

and the previous state of that hypothesis. This equation can be turned up in a

recursive form to perform a Bayesian filtering. Suppose xt is the state of our

system at the time t which can encompass e.g. the position of a person or an

object. Also suppose that z0:t denotes the observations of the system from the

times 0 to t . Then using Bayesian rule, the posterior distribution of xt can be

represented as:

p(xt |z0..t) = p(xt |z0..t−1,zt) =
p(zt |xt ,z0..t−1)p(xt |z0..t−1)

p(zt |z0..t−1)
(5.15)

in which p(zt |z0..t−1) can be considered as a normalization factor, α, then:

= αp(zt |xt ,z0..t−1)p(xt |z0..t−1) (5.16)

Using the Markov assumption in which xt has all of information of 0..t −1 , so the

observations z0..t−1 must be also inside xt , so:

p(zt |xt ,z0..t−1) = p(zt |xt) (5.17)

then:

p(xt |z0..t) = α p(zt |xt) p(xt |z0..t−1) (5.18)

where p(zt |xt) is the likelihood function and p(xt |z0..t−1) can be considered as a

predictive step to predict the current state of xt based on the all previous observa-

tions. Using marginalization we can insert the term xt−1in a part of the equation

5.18:

p(xt |z0..t−1) =
�

p(xt |xt−1,z0..t−1)p(xt−1|z0..t−1)dxt−1 (5.19)
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Figure 5.17: Two stages in BOF to estimate occupancy and velocity distribution

Here again using the Markov assumption we would have:

p(xt |xt−1,z0..t−1) = p(xt |xt−1) (5.20)

and consequently:

p(xt |z0..t−1) =
�

p(xt |xt−1)p(xt−1|z0..t−1)dxt−1 (5.21)

and finally using that to rewrite the equation 5.18:

p(xt |z0..t) = α p(zt |xt)
�

p(xt |xt−1) p(xt−1|z0..t−1)dxt−1 (5.22)

in which p(xt |xt−1) is the model of system (or the state transition model), p(xt−1|z0..t−1)

is the prior distribution (which can be considered as the posterior of the previ-

ous step) and p(zt |xt) is called perceptual model, likelihood function or sensor

model. The equation (5.22), which is a typical formulation of the Bayesian filter-

ing, presents how to compute the state of x at the moment t having the observations
from the period of [0 . . . t] by using just the previous state of x (xt−1), and the last

observation (zt), in a recursive way.
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5.4.2 Applying Bayesian Occupancy Filtering

2D Bayesian Occupancy Filter (BOF) is an approach suitable to perform low-

level data filtering. As mentioned earlier, the idea is to have a framework which

could be used by different applications. For this purpose the filtering process

should be applied in a low-level form in order to preserve the data as much as

possible for further applications. Thus we propose to apply a BOF [MMRL08]

on each Euclidean virtual plane after having the data registered on them. BOF

[CTML06, MMRL08, RM09] is a special implementation of the Bayesian filtering

approach. It represents the environment as a two dimensional planar grid based

decomposition. In such a grid, two probability distribution is considered for each

cell. One is to indicate the occupancy probability distribution and the other

to represent the velocity probability distribution of the cell. BOF recursively

estimates the probability distributions of each cell using the sensor observation

which can be thought as p(Xt |Z0..t) in which, as it was described before, X is

the system state and Z is the sensor observation. Analogue to the traditional

filtering algorithms, BOF has also two stages to obtain the posterior distribution

p(Xt |Z0..t) : prediction and estimation (see Fig. 5.17). In prediction stage a

priori prediction of the state is computed by using the defined model, without

counting on the current sensor observation. Then in the estimation stage, the

posteriori distribution of the state is computed using the priori distribution and

the current sensor observation. Here the used BOF model is based on the definition

in [CTML06, MMRL08, RM09]. For a cell cl in the l-th virtual plane of the

framework, lc ∈ y, we have the following variables:

Acl⊂y: represents antecedent set for the cell cl .

At
cl ∈ Acl⊂y : indicates the antecedent of the cell lc at the current step.

At−1
cl ∈ Acl⊂y: indicates the antecedent of the cell lc at the previous step.

Ot
cl : a boolean variable to indicate whether the cell cl at the time t is

occupied (Ot
cl = 1) or not (Ot

cl = 0).
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Z1, ... , Zs: represents measurements taken by S sensors.

Having these definitions, the joint distribution for the model is:

P(At−1
cl At

cl Ot
cl Zt

1...Z
t
S) =

P(At−1
cl )P(At

cl |A
t−1
cl )P(Ot

cl |A
t−1
cl )∏S

i=1 P(Zt
i |A

t
cl Ot

cl )

(5.23)

where

P(At−1
cl ) is the probability for a given neighbouring cell Acl to be antecedent

of the cell cl , belonging to the layer l, at the time t −1.

P(At
cl |A

t−1
cl ) : for a cell cl , it is the distribution over antecedents at time t.

P(Ot
cl |A

t−1
cl ): for a cell cl , it is the distribution over over occupancy given

the antecedents of cl .

P(Zt
i |A

t
cl Ot

cl ) is the observation model for sensor i.

As mentioned two main stages are involved in estimation of occupancy and ve-

locity of the cells in the BOF (see Fig. 5.17). In any time, t, a prediction P(Ot
cl At

cl )

of the system state’s probability distribution is made as a priori. Then the pre-

dicted distribution is updated by using the current observation ∏S
i=1 P(Zt

i |A
t
cl Ot

cl
which leads to have a estimation P(Ot

cl At
cl |Z

t) of the system state’s probability

distribution.

5.4.3 Experiments on BOF and tracking

A set of experiments has been carried out where to prove the applicability of BOF

in the registration framework. In Fig. 5.19, the left and right columns demonstrate
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Figure 5.18: Applying Bayesian Occupancy Filtering to deal with the dynamic of
scene in the proposed registration framework.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Applying Bayesian occupancy filtering and Tracking over the frame-
work: The two left and right columns demonstrate two moments of the scene and
system. The first row shows one of the three views . After performing background
subtraction, the obtained silhouettes are used as inputs for the data registration
framework. The output of the framework is the inertial-plane with registered data
over which. The second row show the BOF applied over the inertial plane. The
probabilities of being empty or being occupied for each cell is demonstrated by
an spectrum from blue to red. The third row depicts a tracking applied over the
BOF.
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two moments of a scene where a person is walking in. For each moment three

different views are used as the inputs to the data registration framework. After

performing background subtraction the obtained silhouettes are projected onto the

ground floor. Subsequently the binary intersections of the projected silhouettes are

obtained and the result is fed to the low-level filtering algorithm (BOF). Fig. 5.19-

c and Fig. 5.19-d depict the obtained occupancy grids respectively corresponding

to Fig. 5.19-a and Fig. 5.19-b. Blue colour means that the probability of the

corresponding cell to be occupied is zero and conversely the red color means that

the corresponding cell has the highest probability (close to one) of being occupied.

Moreover the movement direction for moving cells is characterized by red arrows

where the arrow’s size means the magnitude of the movement. Afterwards, using

ProBT library [prob] we have applied clustering and tracking algorithms over

previously obtained low-level occupancy grids and the results are shown in Fig.

5.19-e and Fig. 5.19-f. In these figures the yellow arrows characterize the overall

vector sum of the movement arrows of Fig. 5.19-c and Fig. 5.19-d.

5.5 Conclusion

In this chapter the coverage problem of cameras within a network was investi-

gated, in the context of the proposed method. Using a geometric cost function,

a genetic algorithm was proposed to find an optimal camera configuration in the

network. Integration of mobile vision and laser sensor within a camera network

was discussed and a method to estimate the extrinsic parameters among cameras

and LRF was proposed. Eventually in this chapter it was shown that how the

dynamic state of a scene can be taken into the account in the framework by using

a Bayesian filtering approach.
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In this thesis we investigated the use of IS for 3D data registration by using

a network of cameras and inertial sensors. 3D orientation provided by IS in each

IS-camera couple was used to define a virtual camera. Moreover, the IS was used

to define a set of Euclidean virtual planes in the scene. These Euclidean planes

were used to register the data in the scene in 3D. Based on these, we presented

a multi-sensor 3D data registration framework. A set of of experiments, in which

some objects were reconstructed in off-line mode, were proposed. Additionally,

geometric relations among different projective image planes and Euclidean inertial

planes in the framework were investigated and for each particular case a parametric

homography function was achieved.

Normally the volumetric reconstruction of a scene is time consuming due to

the huge amount of data to be processed. The speed of the reconstruction process

decreases with increasing the size and resolution of the volume to be reconstructed.

Having a real-time reconstruction system is demanding for many applications. In

order to achieve a real-time processing we proposed a parallelizing of the 3D re-

construction algorithm. Using GP-GPU and CUDA a prototype was built with

ability to perform 3D reconstruction process with high speed. A set of compar-

isons was performed to demonstrate the performance of the system for different

configurations. A large set of human postures and objects were reconstructed in

3D using this prototype.

In the proposed framework, thanks to IS, the rotations among all virtual cam-

eras are relaxed. Therefore in aspect of having extrinsic parameters of the camera

network, what remains is to have the translation vector among cameras. For an

outdoor scenario the translation part can be obtained using a GPS coupled to

each sensor. In this case, as mentioned in [KHJG11] the use of GPS can improve

the accuracy of IS in its orientation angle until 0.01◦. In this thesis, we took

the advantage of having IS coupled to camera and proposed a novel method to

estimate the extrinsic parameters (translation vector) among the cameras within

the network. The proposed method estimates translation vectors among virtual

cameras which can be used in cases of not having a coupled GPS available or us-
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ing an indoor scenario. This method is upon on having the relative heights of two

3D points in the scene with respect to one of the cameras. Normally IS is error

prone in sensing the 3D orientation. Effects of the IS noise in its 3D orientation

measurements were simulated and analysed in this thesis. Apart of IS 3D orien-

tation, some other parameters such as error in the height measurement of two 3D

points, error in extraction of the coordinates of two 3D points in the images and

the relative height (distance) of 3D points with respect to the cameras can effect

the accuracy of the proposed translation estimation method. Effects of all these

parameters were analysed by a generating thousands of data in simulation. The

proposed method to translation recovery is fairly accurate and fast and does not

need having a planar ground or a specific calibration pattern. This translation

estimation approach has two requirements: The selected two 3D points have to

be visible by all cameras and moreover their relative heights must be possible to

measure. For many cases the first requirement can be satisfied like by hanging a

simple string on the scene and marking two points on that. The second restric-

tion can be eliminated by grouping the cameras within the network. It should be

mentioned that in our experiments detection of the two points in the images has

been interactively done.

Regarding the 3D reconstruction, as discussed in [MSEH08], in some circum-

stances a phenomenon called ghost can appear in the result. Ghost is an extra

object which does not exist in the real scene but when there are some cases of visual

ambiguities in the silhouettes it can be seen in the reconstructed scene [MSEH08].

In our experiments such a phenomenon did not occur and since the focus of the

work was to prove the proposed concept we did not go through solving the prob-

lem of ghost phenomena. However one can refer to [MSEH08] where the authors

proposed a technique to eliminate ghost objects from the result. In case of having

possibility to segment silhouettes before feeding them to the algorithm, then for

each segmented silhouette a separate instance of the proposed reconstruction al-

gorithm can be ran. Another issue in the proposed 3D reconstruction algorithm is

that it requires having intersection among coverages in the field of the views of all

cameras. This drawback might be eliminated if instead of the proposed technique
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some more sophisticated ones could be prepared to find the intersection among

the views (e.g. using a probabilistic method instead of the proposed deterministic

one).

The quality of reconstruction using a camera network depends to mainly three

parameters: (1)-Number of cameras, (2)- The cameras configurations (e.g. posi-

tions) and (3)-The quality of the applied background subtraction technique. The

first parameter is upon to the application and also the budget. In this thesis, we

did not go through the details of background subtraction methods since we saw

it a bit far from our problem. However the second parameter, the camera config-

uration, specifically their positions in the scene was investigated and a geometric

method to find an optimal configuration was proposed using genetic algorithm.

Although vision is one of the essential modalities in data register and scene

perception, having the further advantages of being passive sensors and of yielding

additional information, such as surface colour, however it has some weaknesses

such as error prone being in range sensing and data registration using these sen-

sors is highly dependent on light conditions, shadows and homogeneous textures.

In the other hand a precise active sensor like laser range finder is able to provide

3D information of a scene with a much lesser degree of dependency on texture,

but they do not yield colour information. As a result, using range data as another

strong modality in a synergistic manner can improve the process of 3D data regis-

tration. Based on this we took a primary step toward using these two modalities

together and investigated the problem of extrinsic parameter estimation among

them. Integration of range data within the proposed inertial-based data registra-

tion framework, using probabilistic technique remains as our future work.

The proposed framework intends to provide low-level data registration which

could be used by different applications. Moreover than providing such a data in an

static fashion, one can also consider the dynamic of the 3D data of a scene using

a filtering approach. For the purpose of this framework we should perform the

filtering process in a low-level form in order to preserve the data as much as pos-

sible for further applications. Supporting this, we demonstrated the possibility of
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providing low-level data fusion by applying a Bayesian Occupancy Filtering which

is able to deal with the dynamic of the scene and be useful for some applications

such as tracking. As a future work we intend to investigate a multi-layer 3D track-

ing of articulated objects using Bayesian techniques. In this future investigation,

we will provide a scientific contribution to model, predict and recognize the state

of scene and to analyse the crowd behaviour using probabilistic approaches.

In the context of data registration it is important to have the uncertainty of

each registered geometric entity. In the introduced framework we used homog-

raphy transformations to map and register the data. For each IS-camera couple,

the 3D orientation acquired from the IS and the translation vector, obtained by

either an estimation method or GPS (in case of outdoor scenarios), are directly

used to compute the homography transformations. Due to imperfection of sensors

observation and estimation algorithms, the obtained homographies contain some

uncertainties. As a consequence these uncertainties (of homographies) will get

propagated to the points which are mapped through. To be aware of the degree

of uncertainty for each data which is registered by an IS-camera couple is very

important specially where a network of sensors is used. For this purpose, we also

modelized the uncertainties of the mapped points in the framework by using statis-

tical geometry analysis. In this thesis the fusion of the observations obtained from

different nodes was performed by using a simple multiplication of the values (see

Fig. 4.5). However having the uncertainties for the points, which are projected

onto the Inertial Euclidean planes through different nodes, grants the possibility

of using a more sophisticated and appropriate method, such as probabilistic ap-

proach, with ability of taking into the account the covariance matrix (uncertainty)

of each point. As our future work we intend to develop the probabilistic regis-

tration and fusion of heterogeneous 3D data using the concept of homography by

taking into the account the uncertainty of each hybrid-node.
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Throughout of this thesis, we use the convention listed in table A.1 for math-

ematical symbols:
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Table A.1: Mathematical notations.
d, u, v Scalars are typeset in regular lower-case

t, n , ... Vectors are typeset in regular lower-case

A, B, ... Matrices are typeset in boldface capitals.
The matrices for homographies and rotations
and also the camera calibration matrices are
excepted from this rule.

x, y Denote 2D points. If applicable, A right-sub-
script and a left-super-script denote the in-
dex and the system of reference, respectively.

X, Y Denote 3D points. If applicable, A right-sub-
script and a left-super-script denote the in-
dex and the system of reference, respectively.

bHa A homography matrix which transform from
system a to system b. It is typeset in regular
capitals

bRa A rotation matrix which transform from sys-
tem a to system b. It is typeset in regular
capitals.

K Camera calibration matrix, typeset in regu-
lar capital.

Im×n Identity matrix with m×n dimension.

0m×n Zero matrix with m×n dimension.

diag(a) Diagonal matrix composed by a vector a.

ΣΣΣ Covariance matrix.

J Jacobian matrix.

δ Standard deviation.

î, ĵ and k̂ The unit vectors of the X , Y and Z axes, re-
spectively.

π Denotes an Euclidean plane
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This appendix introduces a method to estimate geometric transformation among

a 2D-LRF and a camera using 3D-2D pose estimation approach. Afterwards, the

approach is extended for a case that a LRF is used to estimate the extrinsic pa-

rameters among a set of cameras within a network even with no overlap among

their FOV.

Fig. B.1 shows the reference frames of a 2D-LRF and a camera, {L} and {C},
respectively. The aim is to estimate the CRL and CtL which respectively indicate

the rotation matrix and translation vector between {L} and {C}. Given a set of

observed (non-collinear) 3D points LX = {LXi| i = 1..np} by LRF expressed in {L},
np being number of correspondences in the set, the corresponding points in camera

reference frame CX = {CXi| i = 1..np}, are related by a rigid transformation such

as:

CX = CRL
LX +C

tL (B.1)

where CRL = [ r1 r2 r3 ]t and t = tx ty tz are rotation matrix and transla-

tion vector, respectively. In the case of availability of corresponding 3D points in

camera reference frame, we will have a set of corresponding pairs such as (LX ,C X)

which are related by Eq. B.1 where CRL and C
tL can be solved by applying a

least-squares approach [KSAB87] to minimize the following function

minR,t
n
∑
i=1

���CRL
LXi+

C
tL
���

2
(B.2)

This is known also as 3D-3D pose estimation or absolute orientation problem

in the literatures[LHM00]. But the restriction in this approach is the need of

reconstructing the 2D image points to 3D, which is not always possible. Thus,

here we are interested to estimate the rotation matrix and translation vector by

considering 3D points in the LRF reference frame and just 2D corresponding

image points (mono-camera). This last case is known as 3D-2D pose estimation

[LHM00, AD03] and for which we use a solution from Lu et al. [LHM00]. Their
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Figure B.1: 2D-LRF and a camera

approach assumes to have a normalized image plane which is defined as a plane

with z= 1. Then the projection of 3D pointCXi (expressed in the camera reference)

on the image plane will be pi = (ui,vi,1)t . Using collinearity of the center of

projection, pi and
C1Xi we will have the following equations [LHM00]:

ui =
r
t
1

LXi+ tx
r
t
3

LXi+ tz
(B.3)

vi =
r
t
2

LXi+ ty
r
t
3

LXi+ tz
(B.4)

and the collinearity equation [LHM00] can be written as

vi =
1

r
t
3

LXi+ tz
(RLXi+ t) (B.5)

Then the line-of-sight projection matrix can be defined as [LHM00]
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Vi =
vi v

t
i

v
t
ivi

(B.6)

and an error vector can be defined as following [LHM00]

ei = (I−Vi)(R
LX + t) (B.7)

After, R and t can be estimated by minimizing the sum of the squared error over

them, based on Lu’s [LHM00]’s method:

E(R, t) =
n
∑
i=1

�ei�2 =
n
∑
i=1

���(I−Vi)(R
LX + t)

���
2

(B.8)

and therefore, the transformation among LRF reference frame and camera center

is estimated and it leads to have:

CTL =

�
CRL

C
tL

01x3 1

�
(B.9)

B.0.0.1 Extension: Synergy of LRF to estimate extrinsic parameters in a camera

network

This recently introduced method to estimate the transformation among a camera

and 2D-LRF, can be extended to jointly estimate the extrinsic parameters in a

network of cameras laser range finder. There is even an advantage that the cameras

can have no overlap in their FOV. Fig. B.2 shows coordinate references of a 2D-

LRF, {L} and two cameras, {C1} and {C2}. X1 indicates 3D points which are

observed by the LRF and C1, and X2 indicates 3D point which are visible and

common for the LRF and C2. This novel approach is suitable also for a camera

network even if there is not any overlap between cameras, provided that the 2D-

LRF could span its FOV to the cameras. Figure B.3 shows a exemplary scenario in
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Figure B.2: 2D-LRF and two cameras

which the LRF mounted on a mobile agent is used to calibrate a distributed camera

network where some of them do not have any overlap with the other cameras. Note

that the Fig. B.3 is for the case where having an overlap between cameras’ FOV

is not necessary. If the cameras C1 and C2 have a common FOV, then the 3D

points X1 and X2 can be coincided. Then the same early mentioned approach

can be used to estimate the transformations between LRF and C2, namelyC2TL.

Then the transformation between C2 and C1 can be easily expressed as:

C1TC2 = C1TL
C2T−1

L (B.10)

and obviously it can be repeated for any other cameras in the network. It means

that we already have performed the conjugate calibration of the camera network

and 2D-LRF.
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Figure B.3: Scheme of a camera network and a LRF equipped robot agent: As
seen, although C3 does not have any overlap with the rest of cameras, but thanks
to the proposed approach, the camera network and LRF can be calibrated.
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