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Abstract 

Analytical potential energy functions were developed for interactions of SiNCS+ and 

(CH3)2SiNCS+ ions with perfluorinated self-assembled monolayer (F-SAM) surfaces. 

Two model compounds were used to represent an F-SAM: CF4 and nine chains of 

perfluorobutane forming a miniSAM structure. Density functional theory plus 

dispersion (DFT-D) calculations were carried out to compute intermolecular potential 

energy curves (IPECs) for these systems. The applied DFT-D method (specifically, 

B97-D) was successfully tested against high-level wavefunction calculations performed 

on the smallest system investigated. The IPECs calculated at the B97-D level were 

fitted to analytical potentials of the Buckingham type. The calculations show that the 

parameters obtained from the fits involving CF4 are transferable to the miniSAM 

system, provided the fittings are conducted with caution, thus corroborating that CF4 is 

a good model for parameterizing intermolecular potentials for interactions of gases with 

F-SAM surfaces. 

 

Key words: silyl ions, perfluorinated self-assembled monolayer, intermolecular 

potential energy curves, analytical potentials, density functional theory plus dispersion 

(DFT-D)
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1. Introduction 

More than one decade ago, Cooks and co-workers [1] described a method for 

preparing modified surfaces, in which intact polyatomic ions were deposited from the 

gas phase onto a self-assembled monolayer surface of fluorinated alkanethiols, 

CF3(CF2)7(CH2)2SH, on a polycrystalline gold surface (F-SAM). This intact deposition 

of projectile ions impinging on surfaces at low collision energies (<100 eV) was 

referred to as soft-landing, and this process may occur with or without retention of the 

initial ion charge [2-4]. Experiments of soft-landing have involved a wide variety of 

projectile ions, including small and medium-size polyatomic ions [1,5-12], clusters [13-

24], peptides [11,23,25-30], proteins [25,31,32], a nucleotide [33], and intact viruses 

[34,35]. SAMs were used in many of these experiments because their well-characterized 

structure, controllable surface properties and biocompatibility make them convenient 

targets for biological and medical applications [36].  

Collisions of polyatomic ions with surfaces may lead to several physical and 

chemical processes that compete with soft-landing [3]. Examples are inelastic scattering 

of the projectile ion, surface-induced dissociation (SID), and reactive landing resulting 

in covalent modification of the surface. Experimental observations show that the 

efficiencies of these competing processes depend on the nature of the ion, the physical 

and chemical properties of the surface, the collision energy, and the incident angle. Soft-

landing takes place when the amount of translational energy of the projectile ion that is 

transferred to the surface and to the internal degrees of freedom of the ion is such that 

there is insufficient recoil translational energy for the ion to escape from the surface 

attraction. 
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Silyl ions are among the smallest projectile ions selected by Cooks and co-

workers for experiments of soft-landing [1,5,12]. They observed soft-landing for 

(CH3)2SiNCS+, but not for the lighter H2SiNCS+ and SiNCS+ ions, and found evidences 

that the (CH3)2SiNCS+ projectiles trapped in the monolayer retain the charge. The 

analysis of the accumulated data for various classes of compounds led Cooks and co-

workers to conclude that successful soft-landing of polyatomic ions is favored by 

relatively bulky steric groups. The inclusion of methyl groups in the silyl ion can be 

expected to increase the attractive intermolecular interaction with the monolayer, and 

may also facilitate entrapment of the ion within the F-SAM chains [1,5]. 

Trajectory chemical dynamics simulations provide a valuable complement to 

experimental determinations, as they allow for the study of certain features that may be 

difficult, if not unfeasible, to be explored by experiment. Actually, classical trajectory 

calculations have been successfully employed for the investigation of the dynamics of 

energy transfer of collisions of gases, including protonated peptide ions, with self-

assembled monolayers [37-60]. These simulations are usually conducted using analytic 

potential energy functions of the molecular mechanics type, written as a sum of an 

intramolecular potential for the projectile gas (in case of polyatomics), an 

intramolecular potential for the SAM surface, and a gas/surface intermolecular 

potential. The gas/surface interaction term is frequently described by a sum of two-body 

functions based on the Buckingham potential [61], which seems to be more realistic 

than the Lennard-Jones potential [62] from a physical point of view [63]. The latter, 

however, is commonly employed in molecular dynamics simulations due to its 

advantage in terms of CPU-time consumption. The parameters of these potential 

functions have been derived from fits to intermolecular potential energy curves (IPECs) 
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obtained by high-level ab initio calculations for interaction between the gas and a model 

compound representing the SAM surface.  

In previous studies, parameterizations of gas/F-SAM interaction potentials were 

carried out using the CF4 molecule as a model of F-SAM surfaces [48,64-66]. A similar 

approach was followed for the development of interaction potentials of gases with self-

assembled monolayers of alkanes (H-SAM), where CH4 was utilized as a model of the 

surface [37,41,44,47,49,55,58,66-68]. These simplifications are made under the 

assumptions that the electron densities around the C and F(H) atoms in CF4(CH4) are 

similar to those in the fluorocarbon chains of F-SAM (alkane chains of H-SAM), and 

that non-additive effects, associated mainly with polarization interactions, are 

negligible. Calculations of quantum theory of atoms in molecules [69,70] predict a 

slight but significant variation of the atomic properties (e.g., partial charges) of the C 

and F or H atoms when going from CF4 or CH4 to long-chain perfluoroalkanes [71,72] 

or long-chain alkanes [73-75]. However, Troya and co-workers have shown that 

parameters of pair potentials derived from calculations on the Ar/CF4 and Ar/CH4 

systems are transferable to Ar/C2F6 and Ar/C2H4 [68], thus suggesting that the 

differences between the electron densities in CF4 and CH4 with respect to those in long 

chains are not significant as far as interaction potentials are concerned. Also, 

parameterizations performed on the NH4
+/CH4 and CH3NH3

+/CH4 systems led to 

essentially the same intermolecular potentials in the sense that NH4
+ and the -NH3

+ 

group of CH3NH3
+ behave the same way [67]. 

In the first step of a typical parameterization, ab-initio IPECs are calculated for 

different orientations of the gas and CF4 molecules, usually employing the 

supermolecule approach with frozen intramolecular geometries and correcting the 

energy for the basis set superposition error (BSSE) by the counterpoise method [76,77]. 
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If the size of the projectile species is small, the molecular structure calculations may be 

performed using coupled cluster theory with singles, doubles, and perturbative triples 

excitations [CCSD(T)] [78], together with one of the various schemes reported in the 

literature for extrapolating the total energy to the complete (one-electron) basis-set 

(CBS) limit [79-88]. However, as the size of the system increases, less expensive 

computational methods may be required as, for example, the focal point approach of 

Allen and co-workers [89-91]. With this approach, highly accurate energies obtained by 

second-order Møller-Plesset theory (MP2) [92,93] may be combined with coupled 

cluster energies to give approximations to CCSD(T)/CBS energies. For large systems, 

even this level of calculation may be computationally prohibitive, and the practical 

alternatives may be reduced to one of the new generation of density functional theory 

(DFT) methods [94] that have been adapted to describe long-range dispersion 

interactions (e.g., see Ref. [95]). In this case, however, it may be highly recommended 

to test the performance of the selected DFT method on the system under study or on 

related systems.  

The main objective of the work reported in this paper was to develop accurate 

intermolecular potentials for interactions of SiNCS+ and (CH3)2SiNCS+ ions with F-

SAM surfaces. An additional aim of our study was to assess the reliability of using CF4 

as a model of an F-SAM surface for parameterizations of intermolecular potentials. For 

these purposes, we performed molecular structure calculations to evaluate IPECs for 

different orientations of the silyl ion with respect to a CF4 molecule and, separately, to a 

model of F-SAM composed by nine chains of perfluorobutane, which has a large 

enough size to ensure its validity. Pairwise potentials of the Buckingham and Lennard-

Jones types were subsequently parameterized as described in section 2.2. 
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2. Computational details 

2.1. Molecular structure methods 

 Except otherwise stated, all the molecular structure calculations were performed 

with the TURBOMOLE 5.10 program [96]. For the smallest system investigated here, 

SiNCS+/CF4, a series of scan calculations were performed for the relative orientations 

shown graphically in Fig. 1. Cartesian coordinates for a representative point of each 

orientation are given in the supplementary data. Two levels of theory were employed to 

compute the IPECs. One was the aforementioned focal point approach [89-91]. 

Specifically, we first carried out a series of MP2 calculations using the resolution of the 

identity (RI) approximation [97,98] and the correlation-consistent basis sets aug-cc-

pVXZ, where X =  D, T, and Q [99], together with the corresponding auxiliary basis sets 

derived by Weigend et al. [100]. The following scheme of Peterson and co-workers [88] 

was utilized to extrapolate to the CBS limit: 

        (1) 

where n = 2, 3, and 4 for the MP2 energies obtained with the DZ, TZ, and QZ basis sets, 

respectively. Then, CCSD(T)/CBS estimates were determined with the focal-point 

energy relationship: 

 fp-CCSD(T)/CBS = MP2/CBS + [CCSD(T)/DZ − MP2/DZ]  (2) 

where fp stands for focal point and DZ refers to the aug-cc-pVDZ basis set. The 

interaction energies calculated with this approach were corrected for the BSSE using the 

counterpoise method [76,77].  

 The second level of theory involved one of the DFT methods that include 

empirical, pairwise atomic dispersion corrections of the form −C6r
−6. Specifically, we 
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used the B97-D method of Grimme [101,102] with the RI approximation [103] and with 

the TZVPP (orbital and auxiliary) basis sets included in the TURBOMOLE basis set 

library [96]. The interaction energies calculated at this level of theory were not 

corrected for the BSSE, thus following the recommendations reported in the literature 

[101,102,104].  

 As shown later in the paper, the IPECs calculated by B97-D were found to be in 

reasonably good agreement with the fp-CCSD(T) interaction curves. For this reason, 

only the DFT-D method was applied to the remaining model systems considered in this 

work. These are (CH3)2SiNCS+/CF4 as well as SiNCS+ and (CH3)2SiNCS+ interacting 

(separately) with a model of F-SAM formed by nine chains of perfluorobutane, which, 

for the sake of simplicity and convenience, will be referred to as miniSAM. The 

orientations selected to calculate IPECs for (CH3)2SiNCS+/CF4 are detailed in Fig. 2, 

while those considered for interaction curves of SiNCS+ and (CH3)2SiNCS+ with the 

miniSAM are depicted in Figs. 3 and 4, respectively. The scan axis was considered to 

be perpendicular to the miniSAM, except for orientation H in Figs. 3 and 4. In all the 

molecular structure calculations, the geometries of the SiNCS+, (CH3)2SiNCS+, and CF4 

molecules were constrained to their B97-D equilibrium values. For the geometry of the 

miniSAM, we used the equilibrium bond lengths and bond angles of a force field of 

perfluoroalkanes [105], and the tilt angle and inter-chain separation determined from an 

optimization of an F-SAM, using the Venus 2005 program [106,107] and a force field 

described in detail elsewhere [48,105]. 
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2.2. Analytical potentials and parameterization scheme 

 Two analytical potentials were considered in this paper to model the interaction 

between the silyl ion and CF4 or the miniSAM. The first one is written as a sum of two-

body Buckingham potentials [61] plus an additional term, which was necessary to 

include in order to increase the flexibility of the function: 

       (3) 

where the subscripts i and j refer to atoms of different interacting species. Parameters A 

to F were obtained by fits of the B97-D IPECs to this equation. Parameters D and F 

were treated as real numbers rather than as integers. The fits were conducted with the 

help of a genetic algorithm fully described in the literature [108]. Two different 

parameterizations were done. One, referred to as fit 1, was controlled by imposing the 

following constraints: C ≥ 0, E ≥ 0, 3 ≤ D ≤ 5, and 5 ≤ F ≤ 7. The constraints on D and 

F were established in order to avoid values that are too far from typical exponents for 

long-range interaction terms. The other parameterization, named fit 2, was guided 

without constraining the parameter limits. As shown later in this paper, the latter 

parameterization criterion leads to a set of parameters that are not transferable to the 

SiNCS+/miniSAM system, and therefore that cannot model SiNCS+/F-SAM interactions 

accurately.  

 The second potential function employed here to model the SiNCS+/CF4 

interactions consists of a sum of Lennard-Jones type potentials and electrostatic terms, 

that is, the common representation of nonbonded interactions in most force fields 

employed in molecular dynamics simulations: 
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        (4) 

where parameters A and C are positive and qi and qj are the partial charges of atoms i 

and j obtained by B97-D/TZVPP calculations using the Merz-Singh-Kolman scheme 

[109,110], which produces charges fitted to the electrostatic potential. These 

calculations were performed with the Gaussian 03 package [111]. To increase the 

flexibility of the function, parameter B was allowed to vary between 8.0 and 13.0, and D 

between 5.0 and 7.0. As discussed in the next section, the potential function of Eq. 4 did 

not give a good representation of the intermolecular interactions in SiNCS+/CF4. 

Consequently, for the remaining systems investigated here, that is, (CH3)2SiNCS+/CF4, 

SiNCS+/miniSAM, and (CH3)2SiNCS+/miniSAM, we used Eq. 3 with the parameter 

constraints indicated above (i.e., fit 1). For the systems involving the miniSAM model, 

orientation H was not used for the parameterization but for a test of the reliability of the 

parameterized potential function. In addition, and in order to improve the fittings, two 

different types of C and F atoms in the perfluorobutane chains were considered and 

denoted by C3 and F3 (perfluoromethyl atoms), and C2 and F2 (perfluoromethylene 

atoms). 

 

3. Results and discussion 

3.1. Molecular structure calculations 

The IPECs calculated for the SiNCS+/CF4 system at the B97-D/TZVPP level of 

theory are compared in Fig. 5 with those obtained by fp-CCSD(T) computations as 

described previously. The inset graphs, displaying the attractive wells in an expanded 

scale, show well depths in the range 0.8-2.8 kcal/mol. Values of the well depths for all 
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the orientations and systems investigated here are collected in the supplementary 

information. The most favorable orientation for attractive interaction is G, for which the 

fp-CCSD(T) and B97-D calculations give well depths of 2.4 and 2.8 kcal/mol, 

respectively, at RN-C distances around 3.6 Å. In this orientation, the silyl ion approaches 

a face of CF4 perpendicularly to the scan axis and with the N atom in line with the C-F 

bond that is parallel to that axis.  

The differences between the IPECs obtained by the B97-D and the fp-CCSD(T) 

calculations are only apparent in the inset graphs. In general, the B97-D potential 

energy curves are slightly more attractive than those obtained by the fp-CCSD(T) 

calculations. The largest discrepancies (in absolute values) in the well depths occur for 

orientations G and C (0.4 kcal/mol in both cases); the latter corresponds to SiNCS+ 

approaching perpendicularly to one face of the CF4 molecule and with Si as the 

attacking atom. On average, the relative deviation between the fp-CCSD(T) and the 

B97-D well depths is 17.8%. For the repulsive part, we calculated average relative 

deviations of 6.2% and 8.9% for the energy ranges 10-100 and 100-1500 kcal/mol, 

respectively. Although these deviations are significant, the quality of the B97-D IPECs, 

as compared with the fp-CCSD(T) curves, is satisfactory, at least from a 

semiquantitative point of view. Also, as shown later, the errors in the fittings, in the best 

cases, are rather close to these values. For these reasons, we only employed the B97-D 

method for the (CH3)2SiNCS+/CF4 system, as well as for the systems involving the 

miniSAM model and for the parameterizations of the analytical potentials.  

Figure 6 depicts the B97-D potential energy curves for (CH3)2SiNCS+ 

interacting with CF4 in the 12 different orientations described in Fig. 2. The most 

attractive interaction occurs for orientation G; this is one of the orientations in which 

(CH3)2SiNCS+ approaches the CF4 molecule with its symmetry axis perpendicularly to 
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the scan axis. The well depth of the corresponding IPEC is 4.0 kcal/mol and the 

minimum is located at a N-C separation of ca. 3.5 Å. Similarly, the IPECs of 

orientations C and D have well depths close to 4 kcal/mol. The IPECs of orientations A 

and B are very similar to those of the corresponding orientations (i.e., A and B) in the 

SiNCS+/CF4 system. This result could be anticipated because methyl groups are, in 

general, rather weak electron donors, and because in both orientations the silyl ion 

approaches the CF4 molecule with its symmetry axis collinearly to one C-F bond and 

with the sulfur as the attacking atom. 

The IPECs obtained by the B97-D/TZVPP calculations for the SiNCS+ and 

(CH3)2SiNCS+ ions interacting with the miniSAM are shown in Figs. 7 and 8, 

respectively. The intermolecular distance employed to picture the IPECs in most plots 

(A-G, see also Figs. 3 and 4) is defined as the distance between a selected atom of the 

silyl ion and the plane formed by the closest F-atom layer of the miniSAM. The selected 

atom is the one which is closest to the miniSAM, excluding hydrogen atoms in the case 

of (CH3)2SiNCS+. For orientations in which the molecular axis of the silyl ion is 

perpendicular to the scan axis, all the atoms (except hydrogens) are at the same distance 

from the miniSAM. Negative values of R indicate penetration into the miniSAM. The 

distances used to depict the IPECs for orientation H in Figs. 7 and 8 do not follow the 

above definition. In Fig. 7, we considered the distance between the carbon atom of the 

silyl ion and the first carbon atom of the central chain of the miniSAM (see Fig. 3), and 

in Fig. 8 we used the distance between Si and the second C atom of the central chain 

(see Fig. 4). As indicated before, we used the IPECs of orientation H for tests to assess 

the quality of the potentials but not for the fittings. For several orientations, the IPECs 

undulate in the region corresponding to negative values of R, which is associated with 

partial or even complete penetration of the silyl ion into the miniSAM structure. This 



  

13 

 

type of behavior takes place especially in the SiNCS+/miniSAM system because the 

shape of the ion facilitates the entrance into the miniSAM. For (CH3)2SiNCS+, this 

feature occurs only for orientation D, in which the symmetry axis of the ion is collinear 

to the direction of attack and the sulfur atom approaches the surface first, so that partial 

penetration of the silyl ion into the surface is facilitated. 

The well depths of the IPECs calculated at the B97-D/TZVPP level for the 

SiNCS+/miniSAM system are in the range 2.8-8.8 kcal/mol. The highest depth (8.8 

kcal/mol) is found for the test orientation H and occurs at a distance RC-C of 6.6 Å. The 

IPEC of orientation C has also a substantial depth (7.9 kcal/mol at R = 1.4 Å).   This 

orientation corresponds to SiNCS+ directed toward a hole of the miniSAM, with the 

molecular axis collinear to the scan axis, and with Si as the attacking atom. Orientation 

D is similar, but the ion attacks the surface with the sulfur atom. The corresponding well 

depth is 4.6 kcal/mol (at R = 1.8 Å). Orientations E, F, and G, in which the ion 

approaches the surface with the molecular axis perpendicularly to the surface normal, 

have IPECs with depths in the range 6.6-6.9 kcal/mol and located at distances around 

2.8 Å.    

For (CH3)2SiNCS+ interacting with the miniSAM, the B97-D calculations 

predict IPECs with well depths ranging from 2.2 kcal/mol, for orientation B, to 9.9 

kcal/mol, for orientation E. Orientation G has also an IPEC with a significant depth (9.6 

kcal/mol). Both orientations E and G involve configurations in which the ion 

approaches the surface with its symmetry axis perpendicular to the surface normal. 

According to the values of the calculated well depths (given in the supplementary 

information) it appears that the interaction between (CH3)2SiNCS+ and the miniSAM in 

the attractive region is slightly stronger than that between SiNCS+ and the miniSAM. 

This is qualitatively in line with the conclusion of Cooks and co-workers [1,5], 
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mentioned in the Introduction, that inclusion of methyl groups increases the attractive 

intermolecular interaction with the monolayer. However, the differences in the strengths 

of the interactions of these two silyl ions with the miniSAM do not seem to be 

sufficiently marked to justify their different behavior for soft-landing observed 

experimentally. 

 

3.2. Analytical potentials 

The IPECs of the SiNCS+/CF4 system calculated at the B97-D/TZVPP level of 

theory were fitted to Eqs. 3 and 4. The fits are shown graphically in Fig. 9, in which the 

DFT data are represented as open circles. The solid lines in red correspond to the IPECs 

obtained with Eq. 3 and the parameters derived from fit 1, which are collected in Table 

1. The lines in cyan were computed with the parameters derived from fit 2, which are 

listed in Table 2. The black lines are the interaction curves obtained from the fit to Eq. 

4; the corresponding parameters are listed in Table 3 and the partial charges calculated 

with the Merz-Singh-Kolman approach [109,110] are shown in Fig. 10. Errors 

associated with the fits are tabulated in the supplementary data. They were calculated as 

average values of energy deviations for the energy ranges of 10-100 and 100-1500 

kcal/mol, and for the well depths. The most remarkable result is that the latter potential 

energy function, that is, the combination of a Lennard-Jones type potential and an 

electrostatic term, is unable to accurately model the whole range of interaction energies 

investigated in this study. Specifically, the average errors for the well depths and for the 

energy ranges 10-100 and 100-1500 kcal/mol are 58.4%, 92.1%, and 58.6%, 

respectively. For fit 1, the average errors for the well depths and for the energy range 

10-100 kcal/mol are about 9%, and that for the energy range 100-1500 kcal/mol is 
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6.2%. As seen in Table 3, the values of the parameters obtained for Eq. 4 correspond to 

limit values imposed in the parameterization procedure. Specifically, all B values are 

equal to 8, the lower limit considered in this work; all C values are zero, except for the 

N-C and C-C pair potentials but the associated D values are 5, which is the lower limit 

set for this exponent. This result suggests that there is an intrinsic limitation in the 

applicability of Eq. 4 to the systems investigated here. The performance of this type of 

potentials could be improved if an electrostatic damping factor is introduced to correct 

the unphysical behavior of the electrostatic term at short distances [112]. We notice that 

electrostatic damping factors are not used in most force fields implemented in molecular 

dynamics programs because the conditions employed in typical simulations do not lead 

to configurations of high energy repulsions. In fact, the usual force fields are 

parameterized to represent as accurately as possible the attractive regions only. Because 

potentials written in the form of Eq. 3 give good agreement with the B97-D IPECs, as 

shown in Fig. 9, we decided to use them here rather than using potentials based on Eq. 

4. It is interesting to note that the fit to Eq. 3 performed under the constraints detailed in 

section 2.2 (i.e., fit 1) is practically as good as that conducted without constraints. The 

errors for fit 2 are only slightly (≈2%) smaller than those of fit 1. Also worth noting is 

the result that the fit made without constraints led to some parameters whose values are 

far from typical ranges of exponents in analytical functions representing intermolecular 

interactions. The most acute example is the value of 19.791 obtained for the D 

parameter corresponding to the S-F pair potential.  

One of the objectives of this study was to test whether CF4 can be used as a good 

model of an F-SAM surface for parameterization purposes. To this end, we calculated 

IPECs for the eight orientations of the SiNCS+/miniSAM interacting system, using the 

analytical function given by Eq. 3 and the parameters listed in Tables 1 and 2, and we 
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compared them with the IPECs predicted with the B97-D method, shown as open 

circles in Fig. 7. Two remarkable results are apparent from this comparison. First, the 

parameters obtained from fit 1 (Table 1) are transferable to the SiNCS+/miniSAM 

system, since the IPECs calculated with them (red lines in Fig. 7) agree reasonably well 

with the B97-D curves; the largest deviations (25.5%), obtained for the energy range 

10-100 kcal/mol, are acceptable for qualitative or semiquantitative purposes.  And 

second, the IPECs calculated with the parameters obtained from fit 2 in the SiNCS+/CF4 

system (cyan lines) show significant disagreement with the B97-D curves. In particular, 

the average deviation for the well depths amounts 62.5%, whereas that for fit 1 is 8.4%. 

Therefore, for parameterization purposes, CF4 may be used as a model of F-SAM, 

provided some care is taken in the parameterization conditions. For completeness, we 

fitted the B97-D curves calculated for the SiNCS+/miniSAM system to Eq. 3, using the 

same constraints imposed in fit 1 for SiNCS+/CF4. The fit led to the set of parameters 

listed in Table 4 and the black lines depicted in Fig. 7. For this fit, the largest average 

deviation (12.2%) was obtained for the energy range 10-100 kcal/mol. It can be seen 

that the IPECs computed with this potential agree quite well with those obtained with 

the set of parameters of Table 1 (red lines), derived using the SiNCS+/CF4 system. The 

most significant deviations appear in regions, at negative values of R, where undulations 

are exhibited. 

For the (CH3)2SiNCS+/CF4 system, the fit of the B97-D data to Eq. 3 is shown 

graphically in Fig. 6 and the parameters are listed in Table 5. As can be seen, for all the 

orientations described in Fig. 2, the analytical potential gives IPECs (red lines) in good 

agreement with the B97-D curves (open circles). The largest average error of the fit is 

14.3%, and corresponds to the energy range 10-100 kcal/mol. Using the parameters of 

Table 5, we calculated IPECs for (CH3)2SiNCS+ interacting with the miniSAM for all 
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the orientations of Fig. 4, and we compared them, in Fig. 8, with the IPECs determined 

at the B97-D level of theory. We also performed a fit of the B97-D curves of the 

(CH3)2SiNCS+/miniSAM system to Eq. 3 (orientation H was not used in the fitting), 

which led to the black lines in Fig. 8 and the parameters reported in Table 6. From the 

comparison, it is clear that the analytical potential derived from the (CH3)2SiNCS+/CF4 

fit is in rather good agreement with that obtained from the (CH3)2SiNCS+/miniSAM fit, 

and both potentials reproduce the B97-D IPECs of the (CH3)2SiNCS+/miniSAM system 

reasonably well. The largest differences between the well depths computed with Eq. 3 

and the parameters of Table 5 and those calculated at the B97-D level are less than 2 

kcal/mol, and correspond to orientations E, F, and G. These results, therefore, 

corroborate that CF4 may be a valid model for developing intermolecular potentials for 

interactions of gases with F-SAM surfaces. 

 

4. Conclusions 

Molecular structure calculations were performed to compute intermolecular 

potential energy curves for interaction of SiNCS+ and (CH3)2SiNCS+ ions with CF4 and 

with nine chains of perfluorobutane, which constitute a reliable model of an F-SAM 

surface for parameterizing intermolecular potentials. For the SiNCS+/CF4 system, the 

B97-D/TZVPP level of theory gives IPECs in reasonable agreement with fp-

CCSD(T)/CBS calculations, which validates the use of the DFT-D method for the 

purposes of the present investigation. 

The comparison between the B97-D IPECs calculated for the SiNCS+/miniSAM 

system and those computed for (CH3)2SiNCS+/miniSAM shows, as expected, that 

inclusion of the methyl groups results, on average, in a slightly more attractive 
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interaction in the well region. However, because the differences in the interaction 

strengths are rather small, there may be other factors that account for the contrasting 

behavior of these two ions for soft-landing onto F-SAM surfaces. For example, (i) 

entrapment of (CH3)2SiNCS+ ions due to the methyl groups, as suggested by Cooks and 

co-workers [1,5]; (ii) additional degrees of freedom for (CH3)2SiNCS+ (in particular the 

two rotors) may result in it receiving more internal energy and thus decreasing the 

amount in the projectile’s translation as it scatters off the surface, which will increase 

the soft-landing efficiency; (iii) a much higher probability of ion neutralization for 

SiNCS+, provided the ions can easily penetrate into the monolayer and approach the 

gold surface. All these possible factors will be investigated in future work. 

Intermolecular pairwise potentials were parameterized by fits to the B97-D 

IPECs. The present study shows that, for the whole range of energies investigated, the 

B97-D IPECs calculated for interactions of silyl ions with CF4 and the miniSAM cannot 

be accurately fitted to a combination of a Lennard-Jones type of potential and an 

electrostatic term for point charges. The analytical potentials given by Eq. 3 and the 

parameters obtained from the fits performed on the SiNCS+/CF4 and (CH3)2SiNCS+/CF4 

systems can reproduce the B97-D IPECs calculated for the interaction of the silyl ions 

with the miniSAM. This supports the use of CF4 as a simple, yet valid model of F-SAM 

for developing intermolecular potentials for interactions of gases with F-SAM surfaces. 

The intermolecular potentials derived here will be used, in future work, for exploring 

the dynamics of collisions and soft-landing of these silyl ions with a self-assembled 

monolayer surface of perfluorinated alkanethiols. Finally, we emphasize that, due to the 

complexity of this kind of systems, the use of fitting tools based on genetic algorithms 

are extremely valuable to obtain a good set of potential parameters. 
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Table 1. Parameters of Eq. 3 obtained from fit 1 for the SiNCS+/CF4 system.a  
 

 A B C D E F 
Si-C 6538.188 2.434 - - - - 
Si-F 18138.253 3.131 -196.303 4.368 - - 
N-C 101627.865 4.648 - - -1466.543 5.908 
N-F 33037.375 3.463 -113.072 5.000 -452.264 5.546 
C-C 4463.786 2.274 - - -671.679 7.000 
C-F 6979.581 3.018 - - -8.469 6.012 
S-C 8789.758 2.525 -8.005 5.000 -49.946 5.215 
S-F 27383.103 3.308 -163.076 4.652 -115.340 5.000 

aThe units are such that the potential is in kcal/mol and distances in Å. 
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Table 2. Parameters of Eq. 3 obtained from fit 2 for the SiNCS+/CF4 system.a  

 
 A B C D E F 

Si-C 11154.135 2.602 1693.381 11.737 -1767.434 8.623 
Si-F 14675.277 2.966 299.087 13.523 -339.363 4.679 
N-C 8259.926 4.153 2864.545 11.736 -729.107 5.456 
N-F 23014.401 3.212 1055.419 5.765 -1493.217 5.302 
C-C 16148.397 3.159 8807.686 4.860 -10507.434 5.179 
C-F 10273.754 3.031 504.412 6.811 -688.895 5.936 
S-C 184993.405 8.015 2379.662 4.972 -1783.814 6.017 
S-F 33002.435 3.241 156.028 19.791 -667.150 4.782 

aThe units are such that the potential is in kcal/mol and distances in Å. 
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Table 3. Parameters of Eq. 4 obtained for the SiNCS+/CF4 system.a  

 A B C D 
Si-C 1082.545 8.000 - - 
Si-F 1547.894 8.000 - - 
N-C 5560.997 8.000 -800.000 5.000 
N-F 1010.489 8.000 - - 
C-C 12764.578 8.000 -1143.714 5.000 
C-F 245.054 8.000 - - 
S-C 1470.957 8.000 - - 
S-F 1062.301 8.000 - - 

aThe units are such that the potential is in kcal/mol and distances in Å. 
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Table 4. Parameters of Eq. 3 derived for the SiNCS+/miniSAM system.a  

aThe units are such that the potential is in kcal/mol and distances in Å. Subscripts 2 and 3 refer 

to perfluoromethylene and perfluoromethyl atoms, respectively. 

 

 
 A B C D E F 

Si-C3 18534.817 2.382 -564.543 4.537 -22.199 6.405 
Si-C2 64855.770 3.008 -223.620 4.486 -437.059 5.522 
Si-F3 23491.237 3.496 -126.166 4.800 -448.122 6.137 
Si-F2 23913.193 3.488 -89.798 4.581 -0.205 6.888 
N-C3 27551.371 3.687 -65.528 4.567 -956.760 5.760 
N-C2 31397.593 3.982 -313.098 4.935 -1038.343 6.187 
N-F3 35624.283 3.672 -150.146 4.953 -293.498 6.225 
N-F2 68943.696 4.558 -93.177 4.999 -229.920 6.328 
C-C3 18372.699 3.152 -37.022 4.751 -554.617 5.635 
C-C2 22315.273 3.481 -8.033 4.090 -381.924 5.992 
C-F3 5311.952 2.710 -7.966 4.574 -0.819 5.955 
C-F2 30400.976 3.348 -0.884 4.928 -600.325 5.829 
S-C3 34713.238 3.849 -125.240 4.518 -580.811 5.893 
S-C2 66403.057 4.485 -609.191 4.974 -1709.718 6.957 
S-F3 22734.176 3.083 -78.161 4.767 -238.581 5.252 
S-F2 73637.242 4.036 -2.673 4.848 -472.422 6.108 
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Table 5. Parameters of Eq. 3 derived for the (CH3)2SiNCS+/CF4 system.a  

 
 A B C D E F 

Si-C 13513.187 2.462 -3.163 4.342 -6.819 5.210 
Si-F 28382.750 3.868 -45.367 3.938 - - 
N-C 162748.891 4.302 -169.184 4.801 -2022.234 5.407 
N-F 35890.509 3.603 -39.288 4.936 -302.611 5.452 
C-C 4331.934 2.279 -1.030 4.847 -1699.847 6.721 
C-F 6942.115 2.924 - - - - 
S-C 7848.930 2.419 -64.457 4.837 -99.473 5.209 
S-F 31990.682 3.427 -106.739 4.487 -70.368 5.002 

C(Me)-C 29243.460 3.024 -1.766 3.980 -1475.676 5.856 
C(Me)-F 35473.244 3.631 -42.585 4.763 -269.543 5.293 

H-C 2338.852 2.891 - - - - 
H-F 5405.861 4.137 - - - - 

aThe units are such that the potential is in kcal/mol and distances in Å. 

 



  

29 

 

 

Table 6. Parameters of Eq. 3 derived for the (CH3)2SiNCS+/miniSAM system.a  

aThe units are such that the potential is in kcal/mol and distances in Å. Subscripts 2 and 3 refer 

to perfluoromethylene and perfluoromethyl atoms, respectively. 

 
 A B C D E F 

Si-C3 17465.327 2.427 -108.231 4.686 -571.057 6.558 
Si-C2 2299.708 4.010 -117.265 4.875 -58.430 6.478 
Si-F3 32868.276 3.352 -169.112 4.614 -822.938 6.010 
Si-F2 25024.365 2.237 -4.114 4.811 -1549.042 6.793 
N-C3 27551.371 3.687 -65.528 4.567 -956.760 5.760 
N-C2 31397.593 3.982 -313.098 4.935 -1038.343 6.187 
N-F3 35624.283 3.672 -150.146 4.953 -293.498 6.225 
N-F2 68943.696 4.558 -93.177 4.999 -229.920 6.328 
C-C3 18372.699 3.152 -37.022 4.751 -554.617 5.635 
C-C2 22315.273 3.481 -8.033 4.090 -381.924 5.992 
C-F3 5311.952 2.710 -7.966 4.574 -0.819 5.955 
C-F2 30400.976 3.348 -0.884 4.928 -600.325 5.829 
S-C3 75661.708 4.015 -18.972 4.046 -446.308 5.855 
S-C2 39070.416 4.814 -172.163 4.860 -1143.539 6.634 
S-F3 33856.220 3.213 -16.978 4.748 -932.123 6.175 
S-F2 59061.975 3.906 -5.893 4.305 -368.737 6.128 

C(Me)-C3 18481.512 4.717 -79.827 4.548 -1688.458 6.224 
C(Me)-C2 75083.448 4.801 -148.959 4.987 -1021.178 5.948 
C(Me)-F3 35578.422 3.288 -20.297 4.997 -1679.091 6.451 
C(Me)-F2 48902.266 3.872 -0.801 4.070 -1681.831 6.564 

H-C3 2836.462 2.446 -7.255 4.874 -1022.163 6.637 
H-C2 16995.767 4.913 -32.338 4.483 -329.418 5.948 
H-F3 9090.716 4.573 -0.195 3.582 -5.986 5.404 
H-F2 3415.155 2.972 -6.437 4.300 -7.623 5.199 
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Figure Captions 

 

Figure 1. Orientations of  SiNCS+ and CF4 selected for the calculation of intermolecular 

potential energy curves.  

Figure 2. Orientations of  (CH3)2SiNCS+ and CF4 selected for the calculation of 

intermolecular potential energy curves. 

Figure 3. Orientations of  SiNCS+ and miniSAM selected for the calculation of 

intermolecular potential energy curves. Side and top views are shown for each 

orientation. The dotted lines indicate the direction of the scan axes. 

Figure 4. Orientations of  (CH3)2SiNCS+ and miniSAM selected for the calculation of 

intermolecular potential energy curves. Side and top views are shown for each 

orientation. The dotted lines indicate the direction of the scan axes. 

Figure 5. Comparison of the intermolecular potential energy curves of SiNCS+/CF4 

calculated at the B97-D (blue circles) and fp-CCSD(T) (red circles) levels of theory. 

Lines are included for visual clarity. 

Figure 6. Intermolecular potential energy curves of SiNCS+/CF4 calculated at the B97-

D/TZVPP level (open circles) and fit to Eq. 3 (red lines). 

Figure 7. Intermolecular potential energy curves of SiNCS+/miniSAM calculated at the 

B97-D/TZVPP level, fit to Eq. 3, and comparison with the IPECs obtained with Eq. 3 

and the parameters listed in Table 1 (fit 1 for SiNCS+/CF4) and Table 2 (fit 2 for 

SiNCS+/CF4). 

Figure 8. Intermolecular potential energy curves of (CH3)2SiNCS+/miniSAM calculated 

at the B97-D/TZVPP level, fit to Eq. 3, and comparison with the IPECs obtained with 

Eq. 3 and the parameters listed in Table 5 (fit for (CH3)2SiNCS+/CF4). 
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Figure 9. Intermolecular potential energy curves of SiNCS+/CF4 calculated at the B97-

D/TZVPP level and fits to Eqs. 3 and 4. See text. 

Figure 10. Partial atomic charges (in a.u.) calculated at the B97-D/TZVPP level and 

using the Merz-Singh-Kolman scheme.  

 

 



  

32 

 

 

 

 

 

 

 

 

Figure 1 
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34 

 

 

 

 

 

 

Figure 3 
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Figure 10 
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The figure shows intermolecular potential energy curves for interaction of (CH3)2SiNCS
+
 with a 

model compound of perfluorinated self-assembled monolayers. The silyl ion is approaching the 

surface perpendicularly. 
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> Intermolecular potentials are developed for interactions of SiNCS+ and (CH3)2SiNCS
+
 ions with 

perfluorinated self-assembled monolayers. > Pairwise potentials of the Buckingham type give 

good fits to intermolecular potential energy curves determined by DFT-D calculations. > 

Lennard-Jones potentials plus point-charge electrostatic terms give poor performance. > CF4 is 

found to be a good model of an F-SAM surface for parameterization purposes. 

 




