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1. Abstract  

Diabetes induces changes in neurotransmitter release in central nervous system, which 

depend on the type of neurotransmitter and region studied. In this study, we evaluated 

the effect of diabetes (two and eight weeks duration) on basal and evoked release of 

[14C]glutamate and [3H]GABA in hippocampal and retinal synaptosomes. We also 

analyzed the effect of diabetes on the protein content of vesicular glutamate and GABA 

transporters, VGluT-1, VGluT-2 and VGAT, and on the α1A subunit of P/Q type calcium 

channels, which are abundant in nerve terminals. 

The protein content of vesicular glutamate and GABA transporters, and of the α1A 

subunit, was differently affected by diabetes in hippocampal and retinal synaptosomes. 

The changes were more pronounced in the retina than in hippocampus. VGluT-1 and 

VGluT-2 content was not affected in hippocampus. Moreover, changes occurred early, 

at two weeks of diabetes, but after eight weeks almost no changes were detected, with 

the exception of VGAT in the retina. Regarding neurotransmitter release, no major 

changes were detected. After two weeks of diabetes, neurotransmitter release was 

similar to controls. After eight weeks of diabetes, the basal release of glutamate slightly 

increased in hippocampus and the evoked GABA release decreased in retina.  

In conclusion, diabetes induces early transient changes in the content of glutamate 

and/or GABA vesicular transporters, and on calcium channels subunit, in retinal or 

hippocampal synaptosomes, but only minor changes in the release of glutamate or 

GABA. These results point to the importance of diabetes-induced changes in neural 

tissues at the presynaptic level, which may underlie alterations in synaptic 

transmission, particularly if they become permanent during the later stages of the 

disease.  
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2. Introduction 

Diabetes mellitus is a metabolic disease resulting from impairment in insulin secretion 

and/or insulin resistance leading to hyperglycemia. Diabetes is associated with several 

diseases, such as diabetic encephalopathy and retinopathy (ADA, 2010), which are 

characterized by functional and structural alterations in brain and retina, respectively. 

Several studies have demonstrated that diabetes impairs synaptic structure and 

function in hippocampus at presynaptic (Grillo et al., 2005; Gaspar et al., 2010) and 

postsynaptic levels (Biessels et al., 1996; Kamal et al., 1999), which can somehow 

underlie the development of cognitive impairments. In diabetic animals, changes in the 

content of exocytotic proteins and receptors involved in neuromodulation in 

hippocampal nerve terminals (Duarte et al., 2006; Duarte et al., 2007; Duarte et al., 

2009; Gaspar et al., 2010), and a depletion of synaptic vesicles in hippocampal mossy 

fiber terminals (Magarinos and McEwen, 2000), have been detected. At the 

postsynaptic component, impairments in synaptic plasticity (Biessels et al., 1996; Artola 

et al., 2005) and in NMDA receptor subunit composition (Trudeau et al., 2004) were 

also observed. Furthermore, Chabot et al. (1997) reported a deficit in calcium-

dependent processes modulating postsynaptic AMPA receptors during synaptic 

potentiation. Diabetes also triggers changes in neurotransmitter release in various 

brain regions, which depend on neurotransmitter and brain region studied (Guyot et al., 

2001; Morris and Pavia, 2004; Miyata et al., 2007; Satoh and Takahashi, 2008). For 

instance, diabetes decreases the basal release levels of serotonin and dopamine in 

hippocampus (Yamato et al., 2004) and of glutamate in the dentate gyrus, but basal γ-

aminobutyric acid (GABA) release is not affected (Reisi et al., 2009). 

In the retina, the presynaptic component is also affected under diabetic conditions, 

since a decrease in the levels of several exocytotic proteins in retinal nerve terminals 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

5 

 

was recently reported (Vanguilder et al., 2008; Gaspar et al., 2010). In the retina of 

diabetic animals and in retinal neural cell cultures exposed to elevated glucose, we 

found an increase in the evoked release of [3H]D-aspartate (marker of the glutamate 

transmitter pool) (Santiago et al., 2006a) and ATP (Costa et al., 2009). Moreover, 

elevated levels of GABA and glutamate were detected in the vitreous of patients with 

proliferative diabetic retinopathy (Ambati et al., 1997). We also reported that diabetes 

changes the content of ionotropic glutamate receptor subunits in the retina, which may 

account to retinal dysfunction (Santiago et al., 2009). In addition, it has been suggested 

that changes in GABA signalling may underlie the alterations in electroretinogram 

(ERG) responses in streptozotocin (STZ)-induced diabetic rats (Ramsey et al., 2006) 

and diabetic patients (Ambati et al., 1997). Diabetes modulates the properties of 

GABAC receptors in retinal bipolar cells, probably through alterations in the gene 

expression of GABA receptor subunits, which might therefore underlie changes in ERG 

of diabetic patients (Ramsey et al., 2007). In the retina of diabetic animals, changes in 

the content and localization of GABA are evident, with both amacrine and Müller cells 

accumulating high concentration of GABA (Ishikawa et al., 1996; Takeo-Goto et al., 

2002). Moreover, diabetes leads to a generalized attenuation in the content of free 

amino acids in the retina and to a decrease in the uptake of aspartate, while GABA 

uptake is enhanced (Vilchis and Salceda, 1996). However, by nuclear magnetic 

resonance spectroscopy, we recently showed that the levels of the majority of the 

intermediate metabolites and amino acids present in retina is not affected by diabetes 

(Santiago et al., 2010). 

Importantly, the synaptic level of GABA and glutamate is determined by two important 

factors: the integrity of the release and re-uptake systems. In nerve terminals, specific 

vesicular transporters (VGluT1-3 for glutamate, and VGAT for GABA) allow the 
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incorporation of neurotransmitters into synaptic vesicles. These transporters have an 

essential role in transmitter recycling and homeostasis in the CNS, and several studies 

evidence their role in neurological disorders (Vemuganti, 2005; Benarroch, 2010).  

Other key elements involved in neurotransmitter release are voltage-dependent 

calcium channels which mediate the entry of Ca2+ ions into nerve terminals. Calcium 

channels are multisubunit complexes composed of α1, β, α2/δ, and γ subunits. The 

channel activity is directed by the pore-forming α1 subunit, whereas the others act as 

auxiliary subunits regulating this activity. The α1A subunit is predominantly expressed in 

neuronal tissues (Evans and Zamponi, 2006). N- and P/Q-type Ca2+ channels are 

important in the presynaptic control of amino acid release in the hippocampus (Meir et 

al., 1999). These channels have an important contribution for endogenous glutamate 

release from hippocampal synaptosomes, being the contribution of P/Q-type channels 

for the release of glutamate more relevant than the contribution of N-type (Ambrósio et 

al., 1997).  

Thus, our previous observations showing that diabetes changes the protein content of 

several exocytotic proteins in rat hippocampal and retinal nerve terminals (Gaspar et 

al., 2010) has prompted us to detect further alterations that occur at the presynaptic 

level and mapping the effect of diabetes on basal and evoked glutamate and GABA 

release in hippocampus and retina. In this study, we focused on retina and 

hippocampus not only because they are prone to diabetic neuropathy, but also based 

on our previous results, where we observed presynaptic changes and where one would 

expect impairment at the synaptic level. Moreover, since the release of glutamate and 

GABA depend on the transport of the amino acids into synaptic vesicles, we also 

evaluated the content of VGluT-1, VGluT-2 and VGAT, searching for possible 
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impairments in these proteins under diabetic conditions, and aiming to correlate 

possible changes with alterations in neurotransmitter release.  

 

2. Results 

2.1 Animal weight and glycemia 

Before diabetes induction, the body weight of animals assigned for control and diabetic 

groups was similar (289.9 ± 5.1 g for control and 284.6 ± 7.8 g for diabetic animals). 

The glucose levels were also similar in both groups (91.5 ± 2.4 mg/dL for controls and 

86.0 ± 3.5 mg/dL for diabetic animals). Average weight and blood glucose levels for 

both diabetic and aged-matched control rats at the time of death are given in Table 1. A 

marked impairment in weight gain occurred in diabetic rats comparing with age-

matched controls in both time points analyzed. Diabetic animals also presented 

significantly higher blood glucose levels comparing to age-matched controls (Table 1). 

 

2.2 Diabetes changes the protein content of vesicular glutamate transporters in 

retinal synaptosomes 

The protein levels of vesicular glutamate transporters were evaluated by 

immunoblotting in synaptosomes and total extracts of hippocampus and retina from 

both diabetic and age-matched control animals. In hippocampal synaptosomes, VGluT-

1 and VGluT-2 content was not affected after two and eight weeks of diabetes (Figures 

1A and 1B, respectively). In retinal synaptosomes, the protein content of VGluT-1 and 

VGluT-2 significantly decreased after two weeks of diabetes (reduction to 69.5 ± 8.8% 

and 77.5 ± 8.2%, respectively, compared to age-matched controls; Figures 2A and 2B). 

However, after eight weeks of diabetes no significant changes were observed in retinal 

synaptosomes. In total extracts from hippocampus (Figures 1C and 1D) and retina 
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(Figures 2C and 2D) no significant differences were detected in the protein content of 

both vesicular transporters between diabetic and age-matched control animals. 

 

2.3 Diabetes changes the protein content of vesicular GABA transporter in 

hippocampal and retinal synaptosomes 

The protein content of VGAT significantly decreased after two weeks of diabetes, both 

in hippocampal and retinal synaptosomes (reduction to 75.8 ± 6.4% and 44.7 ± 3.3%, 

respectively; Figures 3A and 3B,). However, eight weeks after the onset of diabetes, 

the protein levels of VGAT in hippocampal synaptosomes were similar to those found 

in age-matched controls. Surprisingly, the protein levels of VGAT significantly 

increased in retinal synaptosomes (143.2 ± 3.9%; Figure 3B). In total extracts from 

hippocampus and retina, no significant differences were observed in the protein levels 

of VGAT between diabetic animals and age-matched controls (Figures 3C and 3D, 

respectively). 

 

2.4 The protein content of the subunit α1A of P/Q calcium channels decreased 

after two weeks of diabetes in hippocampal and retinal synaptosomes 

The protein content of α1A subunit of P/Q type calcium channels significantly decreased 

in hippocampal and retinal synaptosomes (reduction to 77.6 ± 6.4% and 55.2 ± 3.0% of 

age-matched controls, respectively) after two weeks of diabetes (Figures 4A and 4B). 

Conversely, eight weeks after the onset of diabetes, the protein levels of α1A subunit in 

synaptosomes from both tissues were similar to those found in controls. In total 

extracts from hippocampus and retina, no significant changes were observed in the 

protein levels of this subunit (Figures 4C and 4D). 
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2.5 The basal release of [14C]glutamate increased in hippocampal synaptosomes 

after eight weeks of diabetes, but [3H]GABA release was not affected by diabetes 

The effect of diabetes on [14C]glutamate and [3H]GABA release from hippocampal 

synaptosomes was also evaluated. After two weeks of diabetes, no differences were 

found in the basal release of [14C]glutamate between diabetic and age-matched control 

animals (Figure 5A). However, after eight weeks, a small but significant increase in the 

basal release of [14C]glutamate was found in diabetic animals (2.42 ± 0.02 FR% for 

control and 2.74 ± 0.02 FR% for diabetic animals; Figure 5B). The amplitude of the 

repeated KCl-evoked release of [14C]glutamate (S1 and S2) in synaptosomes isolated 

from two and eight weeks diabetic and control animals was not significantly different 

(Figures 5C and 5D). The S2/S1 ratio was also determined, but no differences were 

found between diabetic and control animals for both time points (Figure 5E). 

Regarding [3H]GABA release, no changes were observed in diabetic animals, either in 

basal or evoked release, as well as for S2/S1 ratio, at two and eight weeks of diabetes 

(Figure 6).  

 

2.6 [3H]GABA release decreased after eight weeks of diabetes in retinal 

synaptosomes 

In retinal synaptosomes, we only measured the release of [3H]GABA because the 

radioactive levels obtained for [14C]glutamate release experiments were too low. The 

basal release of [3H]GABA before the first stimulus was similar in both control and 

diabetic animals after two and eight weeks of diabetes (Figures 7A and 7B). After two 

weeks of diabetes, the KCl-evoked [3H]GABA release (S1 and S2) was similar to the 

one observed in age-matched control animals (Figure 7A and 7C). However, after eight 

weeks of diabetes there was a significant decrease in [3H]GABA release after the 
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second stimulus (4.68 ± 0.26 FR% for control and 3.96 ± 0.31 FR% for diabetic 

animals, respectively; Figures 7B and 7D). Consequently, the S2/S1 ratio at eight 

weeks of diabetes, but not at two weeks of diabetes, was significantly decreased 

compared to control (Figure 7E). 

 

3. Discussion  

In the present study, we demonstrated that diabetes induces transient changes in the 

protein content of vesicular glutamate and GABA transporters and also in the α1A 

subunit of P/Q type calcium channels. Hippocampal and retinal nerve terminals, were 

differently affect by diabetes, however no changes were observed in total extracts. 

Moreover, our results show that after eight weeks of diabetes there is a slight increase 

in the basal release of glutamate in hippocampal synaptosomes and a slight decrease 

in the evoked release of GABA in retinal synaptosomes. A fine balance between GABA 

and glutamate is essential for a proper brain and retinal function and any imbalance 

may lead to physiological alterations. Although these changes, particularly those 

related with neurotransmitter release, are only slight changes, this study shows that 

diabetes can affect the pre-synaptic compartment in neuronal issues, and also that the 

balance between glutamate and GABA might be affected early under diabetic 

conditions in both tissues. 

Alterations in memory and cognitive deficits (Biessels et al., 1996), and contrast 

sensitivity and color perception (Roy et al., 1986; Daley et al., 1987), induced by 

diabetes, might be due, at least in part, to changes in neurotransmission, at pre- and/or 

post-synaptic level. Recently, we demonstrated that diabetes induces changes in the 

content of several synaptic proteins involved in exocytosis in both hippocampal and 

retinal synaptosomes (Gaspar et al., 2010), suggesting that diabetes might impair 
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neurotransmitter release early in the course of the disease. However, there are only 

three studies exploring the impact of diabetes on transmitter release in hippocampus. 

One shows that the basal release of monoamines is impaired in both STZ-injected and 

spontaneously diabetic rats (WBN/Kob rats) (Yamato et al., 2004). (Ramakrishnan et 

al., 2005)) reported an increase in the levels of dopamine. Other work shows that the 

basal release of glutamate in dentate gyrus is decreased after twelve weeks of 

diabetes (Reisi et al., 2009). Similarly, in the retina, there are a few studies where the 

effect of diabetes or hyperglycemic conditions on neurotransmitter release was 

analyzed. In the retina of diabetic animals and in high glucose-treated retinal neural cell 

cultures, we showed that the release of [3H]D-aspartate is increased (Santiago et al., 

2006a). Similarly, we found that the release of ATP in retinal cell cultures exposed to 

high glucose is also increased (Costa et al., 2009). 

VGluT-1 and -2 are specific markers for glutamatergic neurons, and changes in their 

content may underlie changes in glutamatergic transmission (Benarroch, 2010; Phillips 

et al., 2010). The content of VGluT-1 and -2 was differently affected by diabetes in both 

tissues. No changes in VGluT-1 and -2 were detected in hippocampal synaptosomes, 

but a significant decrease in the content of both transporters was observed in retinal 

synaptosomes after two weeks of diabetes. The content of VGAT decreased in both 

hippocampal and retinal synaptosomes after two weeks of diabetes. These 

observations suggest that the retina appears to be more affected than hippocampus by 

diabetes, concerning the transport of neurotransmitters, namely glutamate and GABA, 

into the vesicles. The decrease in VGAT and VGluT-1 and -2 content in synaptosomes 

could lead to a slower packaging of GABA and glutamate which can contribute to 

changes in synaptic transmission. However, our results suggest that although the 

protein content of VGAT and P/Q proteins is affected at two weeks, the loading 
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capacity of vesicular transporters appears not to be changed by diabetes, since the 

uptake of [3H]GABA into synaptosomes was not affected. However, the decrease in the 

levels of the vesicular transporters was transient, at least in the early stages of 

diabetes, suggesting that after the initial stress conditions induced by diabetes both 

tissues are somehow able to react against diabetes-induced stress. In a previous work, 

we found that the content of synaptic proteins in retinal synaptosomes is affected 

mainly after two weeks of diabetes, recovering to control levels for longer periods 

(Gaspar et al., 2010), suggesting that changes can be plastic and reversible, and 

neural tissues are able to react against stress conditions, at least temporarily. 

The P/Q type voltage-gated calcium channels are abundant in nerve terminals and play 

a predominant role in neurotransmitter release at central synapses (Ambrósio et al., 

1997). P/Q type calcium channels co-localize densely with syntaxin-1 at the 

presynaptic nerve terminals (Westenbroek et al., 1995) and can be isolated as a 

complex with SNARE proteins (Bennett et al., 1992; Leveque et al., 1994). As for 

vesicular transporters, hippocampus and retina recovered the levels of α1A subunit after 

eight weeks of diabetes, supporting the fact that both tissues are able to recover from 

changes occurring in synaptic proteins induced by diabetes, at least temporarily. 

Impaired Ca2+ regulation may result in synaptic dysfunction, impaired plasticity and 

neuronal degeneration (Mattson, 2007). Elevated glucose impairs calcium homeostasis 

in retinal neural cells, which may have implications for the mechanisms of vision loss in 

diabetic retinopathy (Santiago et al., 2006b). The observed decrease in the levels of 

α1A subunit in diabetic animals might be considered a protective strategy against Ca2+ 

overload.  

A few studies have demonstrated that diabetes induces changes in neurotransmitter 

release. In this study, after two weeks of diabetes, no differences were found in 
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neurotransmitter release in hippocampus and retina. However, after eight weeks of 

diabetes, the evoked release of GABA is slightly, but significantly, decreased in retinal 

synaptosomes, and the basal release of glutamate is slightly, but also significantly, 

increased in hippocampal synaptosomes. We are aware of only three studies reporting 

changes in transmitter release in the diabetic hippocampus: while (Yamato et al., 2004)  

found a decrease in the basal levels of serotonin and dopamine, (Ramakrishnan et al., 

2005) reported an increase in the levels of dopamine. The apparent contradiction may 

be explained by the different time-points of the disease investigated. Altogether, a 

growing body of evidence suggests that diabetes impairs hippocampal 

neurotransmission. 

The accumulation of glutamate in the synaptic cleft can lead to excitotoxic neuronal 

damage due to excessive activation of glutamate receptors (Dong et al., 2009). The 

small increase in the basal release of glutamate can be responsible for glutamate 

accumulation in the synaptic cleft. If this small increase in basal glutamate release 

occurs during long periods, it may eventually contribute to neurotoxicity. In 

experimental models, it has been shown that diabetes does not induce 

neurodegeneration in the brain at early time points (eight weeks) of diabetes (Grillo et 

al., 2005). However, after longer periods of diabetes (eight months), neuronal 

apoptosis can occur (Li et al., 2002). In fact, small changes for longer periods of time 

might progressively conduct to neuronal cell dysfunction and death, as observed in the 

hippocampus of diabetic animals (Li et al., 2002; Jafari Anarkooli et al., 2008), which in 

turn might be associated with cognitive impairments. Reisi and colleagues (2009) 

recently reported that the basal glutamate release decreases in the dentate gyrus of 

STZ-induced diabetic animals, while we found an increase in whole hippocampus. This 

discrepancy may be due to the experimental approaches used. While we measured the 
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release of glutamate and GABA in hippocampal synaptosomes in a superfusion 

system, Reisi and colleagues (2009) measured the release using a microdialysis 

system and only in dentate gyrus. However, concerning GABA release, no differences 

were found, similarly to what was observed by Reisi and colleagues. Notwithstanding, 

Li et al. (2000) have shown that hyperglycemia exacerbates the ischemia-triggered 

increase of extracellular glutamate concentration in the hippocampus and cortex. This 

is important because the removal of the neurotransmitters by the transporter systems is 

highly energy dependent. We recently found that the cerebral glucose uptake and 

metabolism in STZ-induced diabetic rats is also compromised (unpublished 

observation). Thus, it is likely that highly energy-dependent processes such as the 

reuptake of neurotransmitters may also be affected in type-1 diabetes. Some studies 

suggest that the impairments in glutamatergic neurotransmission, at postsynaptic level, 

involving the reorganization of post-synaptic receptors underlie the functional changes 

in synaptic plasticity that occur in the hippocampus of diabetic animals (Di Luca et al., 

1999; Gardoni et al., 2002). Our findings suggest that diabetes can elicit alterations in 

excitatory neurotransmission, at presynaptic level, but additional experiments are 

needed to establish a clear correlation with changes in glutamatergic transmission and 

cell dysfunction or death in hippocampal neurons. 

In the retina, we found no changes in the release of GABA at two weeks of diabetes. 

However, at eight weeks of diabetes we found a small, but significant, impairment in 

the evoked release of GABA, during the second stimulus. Previously, we demonstrated 

that the evoked release of [3H]D-aspartate from the retina increases at four weeks of 

diabetes, increasing also in retinal neural cultures exposed to high glucose (Santiago et 

al., 2006a). These observations, namely the decrease in the evoked [3H]GABA release 

and the increase in the evoked release of [3H]D-aspartate (marker of glutamate 
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transmitter pool) in the diabetic rat retinas suggests that diabetes can lead to the 

impairment of neurotransmission. Moreover, if these alterations in transmitter release 

persist for longer periods, they can somehow contribute to neuronal apoptosis detected 

in the diabetic retina (Barber et al., 1998; Park et al., 2003), which may be correlated to 

the hypothesis of glutamate-induced retinal neurodegeneration in diabetic retinopathy. 

Taken together, and according to our previous findings, these results further 

demonstrate that diabetes induces molecular alterations in both retinal and 

hippocampal nerve terminals. We report changes in the density of vesicular glutamate 

and GABA transporters and of α1A subunit of P/Q type calcium channels. Moreover, the 

alterations were more pronounced in the retina, and the majority of these changes 

were transient, which also suggests that retina and hippocampus are able to react 

against stress conditions, at least temporarily. The changes detected in nerve terminals 

at two weeks of diabetes did not correlate with changes in glutamate and GABA 

release. Changes in transmitter release, which were not very pronounced, were only 

detected at eight weeks of diabetes. If these changes persist or become more 

prominent, an imbalance between excitation and inhibition might take place in both 

tissues, which may lead to neuronal dysfunction, and ultimately to visual and memory 

impairments detected in diabetic animals and humans. 

 

 

 

 

 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

16 

 

 

4. Experimental Procedures 

4.1 Materials 

Reagents were acquired from Sigma, St. Louis, MO, USA, with the exception of those 

described along the text. 

 

4.2 Animals 

Male Wistar rats (Charles River Laboratories, Barcelona, Spain), eight weeks-old, were 

randomly assigned to control or diabetic groups. All animals were handled according 

with the EU guidelines for the use of experimental animals (86/609/EEC). Diabetes was 

induced with a single intraperitoneal injection of streptozotocin (STZ; 65 mg/kg, freshly 

dissolved in 10 mM sodium citrate buffer, pH 4.5). Hyperglycemic status (blood glucose 

levels exceeding 250 mg/dL) was confirmed two days later with a glucometer (Elite, 

Bayer, Portugal). Before sacrifice under halothane anesthesia, rats were weighted, and 

blood samples were collected to measure glucose levels.  

 

4.3 Preparation of hippocampal synaptosomal extracts 

Percoll purified synaptosomes were isolated as previously described (Köfalvi et al., 

2007), with minor changes. The two hippocampi of each rat were dissected and 

homogenized in a sucrose-HEPES solution (0.32 M sucrose, 1 mM EDTA, 10 mM 

HEPES, 1 mg/mL BSA, pH 7.4). The homogenate was centrifuged at 3,000 x g for 10 

min at 4ºC. The supernatant was collected and centrifuged at 14,000 x g for 12 min at 

4ºC, and the resulting pellet was resuspended in 45% (v/v) Percoll solution prepared in 

Krebs–Henseleit Ringer (KHR) solution (in mM: 140 NaCl, 1 EDTA, 10 HEPES, 3 KCl, 

5 glucose, pH 7.4). After centrifugation at 16,100 x g for 2 min at 4ºC, the top layer was 
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removed (synaptosomal fraction). For release experiments, the synaptosomal fraction 

was collected and stored in a sealed container on ice until use. For synaptosomal 

extracts, pellet was resuspended in lysis buffer [RIPA: 150 mM NaCl, 50 mM Tris, 5 

mM EGTA, 1% Triton X-100, 0.5% sodium deoxycholate (DOC), 0.1% sodium dodecyl 

sulfate (SDS), supplemented with complete miniprotease inhibitor cocktail tablets 

(Roche, Basel, Switzerland) and 1 mM dithiothreitol (DTT)]. The samples were stored 

at -80ºC until use. 

 

4.4 Preparation of retinal synaptosomal extracts  

The two retinas of each diabetic and age-matched control rats were used for 

preparation of synaptosomes, as previously described (Vanguilder et al., 2008), with 

minor alterations. Immediately after animal sacrifice, both eyes were enucleated, and 

the two retinas were dissected and merged in 10 mL of ice-cold sucrose-HEPES 

solution. Retinas were washed three times combining gentle vortexing and buffer 

replacement to remove photoreceptor outer segments. Then, the retinas were 

homogenized in 4 mL of fresh sucrose buffer and then the homogenate was 

centrifuged at 200 x g for 10 min at 4ºC to pellet nuclear fraction. The supernatant was 

centrifuged at 800 x g for 12 min at 4ºC. The resulting supernatant was centrifuged at 

16,100 x g for 20 min at 4ºC to obtain the synaptosomal fraction used in release 

experiments. For synaptosomal extracts the pellet was rinsed in a detergent-based 

extraction buffer (20 mM Tris, 2 mM EDTA, 2 mM EGTA, 1% Triton X-100, 0.5% SDS, 

supplemented with complete miniprotease inhibitor cocktail tablets, pH 7.2), at 4ºC and 

stored at -80ºC until use. 

 

4.5 Preparation of hippocampal total extracts 
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After dissection, the two hippocampi were homogenized in lysis buffer (50 mM Tris-

HCl, pH 7.4, 0.5% Triton X-100, supplemented with complete mini protease inhibitor 

cocktail tablets and 1 mM DTT). The resulting homogenate was sonicated (4 pulses, 2 

seconds each) and then centrifuged at 16,100 x g for 10 min. All procedure was done 

at 4ºC. The supernatant was stored at -80ºC until use. 

 

4.6 Preparation of retinal total extracts 

The eyes of diabetic and age-matched control animals were enucleated and placed in 

cold phosphate-buffered saline [(PBS), in mM: 137 NaCl, 2.7 KCl, 10 Na2HPO4, 1.8 

KH2PO4, pH 7.4 at 4ºC]. The retinas were lysed in RIPA buffer supplemented with 

complete mini protease inhibitor cocktail tablets and 1 mM DTT, pH 7.2, at 4ºC. Then, 

the lysates were sonicated and centrifuged at 16,100 x g for 10 min at 4ºC. The 

supernatant was collected and stored at -80ºC until use. 

 

4.7 [3H]GABA and [14C]glutamate release assays for hippocampal synaptosomes 

Dual-label [3H]GABA / [14C]glutamate release experiments were performed as 

described by (Köfalvi et al., 2007), with some modifications. The synaptosomal pellet 

was ressuspended in 2 mL of Krebs solution [(in mM): 113 NaCl, 3 KCl, 1.2 KH2PO4, 

1.2 MgSO4, 2.5 CaCl2, 25 NaHCO3, 10 glucose, oxygenated with 95% O2 and 5% CO2, 

pH 7.4]. The radioalabeled compounds [1 μCi/mL [14C]glutamate and 2.3 μCi/mL 

[3H]GABA (Amersham Pharmacia Biotech, Piscataway, NJ, USA)] were added to the 

synaptosomes for 10 min at 37ºC. All solutions contained the GABA transaminase/ 

glutamate decarboxylase inhibitor, aminooxyacetic acid (100 µM). Aliquots (400 µL) of 

the preloaded synaptosomes were transferred to 1 mL of oxygenated Krebs solution 

and then to perfusion chambers, being trapped in Whatman GF/C filters and 
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superfused continuously at a rate of 0.75 mL/min until the end of the experiment. After 

a washout period (15 min), samples were collected (2 min perfusion) for liquid 

scintillation assay. The volume of sample (perfusate) that was collected in the vial for 

scintillation counting was 1.5 ml. All experimental procedures were performed at 37ºC. 

At the 4th and the 12th min of the sample collection period, release of transmitters was 

evoked with 20 mM KCl for 30 seconds each time (Köfalvi et al., 2007). 

 

4.8 [3H]GABA release assay for retinal synaptosomes 

Release experiments were performed as previously described by (Köfalvi et al., 2007), 

with some modifications. The synaptosomal pellet was resuspended in 1 mL of Krebs 

solution. The radioalabeled compound [4.2 μCi/mL [3H]GABA (Amersham Pharmacia 

Biotech, Piscataway, NJ, USA)] was added to the synaptosomes for 10 min at 37ºC. All 

solutions contained the GABA transaminase/ glutamate decarboxylase inhibitor, 

aminooxyacetic acid (100 mM). Aliquots (200 µL) of the preloaded synaptosomes were 

transferred to 1 mL of oxygenated Krebs solution and then to perfusion chambers, 

being trapped in Whatman GF/C filters and superfused continuously at a rate of 0.75 

mL/min until the end of the experiment. After a washout period (15 min), samples (2 

min perfusion) were collected for liquid scintillation assay. The volume of sample 

(perfusate) that was collected in the vial for scintillation counting was 1.5 ml. All 

experimental procedures were performed at 37ºC. At the 4th and the 12th min of the 

sample collection period, release of transmitters was evoked with with 30 mM KCl for 1 

min each time. In these release experiments, a 30 mM KCl stimulus was chosen 

because the evoked response triggered with 20 mM KCl in retinal synaptosomes was 

weak. 
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4.9 Western blot analysis 

The protein concentration of each sample was determined by the BCA protein assay 

(Pierce Biotechnology, Rockford, IL, USA). The samples were denaturated by adding 

6x concentrated sample buffer (0.5 M Tris, 30% glycerol, 10% SDS, 0.6 M DTT, 

0.012% bromophenol blue) and heating for 5 min at 95ºC. Equal amounts of protein 

were loaded into the gel and proteins were separated by sodium dodecyl sulphate-

polyacrylamide gel electrophoresis (SDS-PAGE), using 4%-8% gels. Then, proteins 

were transferred electrophoretically to PVDF membranes (Millipore, Billerica, 

Massachusetts, USA). The membranes were blocked for 1 h at room temperature, in 

Tris-buffered saline (137 mM NaCl, 20 mM Tris-HCl, pH 7.6) containing 0.1% Tween-

20 (TBS-T) and 5% low-fat milk. The membranes were incubated with the primary 

antibody VGluT-1 1:10,000 and VGluT-2 1:5,000 (Sigma Aldrich, St.Louis, MO, USA); 

VGAT (1:2,000 from Synaptic Systems, Goettingen, Germany) and α1A P/Q Type 

calcium channel (1:200 from Alomone Labs, Jerusalem, Israel) overnight at 4ºC. After 

washing for 1 h in TBS-T with 0.5% low-fat milk, the membranes were incubated for 1 h 

at room temperature with the respective alkaline phosphatase-linked secondary 

antibody (1:20,000; GE Healthcare, Buckinghamshire, UK), prepared in TBS-T with 1% 

low-fat milk. The membranes were processed for protein detection using the Enhanced 

Chemi-Fluorescence system (ECF; GE Healthcare, Buckinghamshire, UK) and a Storm 

device (Molecular Dynamics, GE Healthcare, Buckinghamshire, UK). Digital 

quantification of bands intensity was performed using ImageQuant 5.0 software 

(Molecular Dynamics, Inc., Sunnyvale. CA, USA). The membranes were then reprobed 

and tested for β-actin (1:20,000; Sigma, St.Louis, MO, USA) immunoreactivity to prove 

that similar amounts of protein were applied in the gels. 
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4.10 Radioactivity assay and calculations 

The radioactivity released from the synaptosomal preparations was measured with a 

Packard 2900 Tricarb (Canberra, Australia) liquid scintillation spectrometer, equipped 

with Dynamic Color Corrected DPM Option providing absolute activity (disintegrations 

per minute, DPM) calculation and correction for different color quenching. The release 

of the transmitters was calculated as the percentage of the amount of radioactivity in 

the tissue at the sample collection time point. We expressed the radioactivity value 

from each sample (perfusate) as the % of the filter content at the period of time 

corresponding to the release of each sample, which is called as fractional release 

(FR%). 

 

4.11 Statistical Analysis 

Results are presented as mean ± SEM. Statistical comparisons between diabetic 

animals and respective age-matched controls were performed using the unpaired 

Student’s t-test. Differences were considered significant for p<0.05.  
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Legends 

Figure 1: Diabetes does not affect the protein content of vesicular glutamate 

transporters in the hippocampus. The protein levels of VGluT-1 and VGluT-2 were 

analyzed by immunoblotting in extracts of hippocampal synaptosomes (A and B) and in 

hippocampal total extracts (C and D) isolated from control and STZ-induced diabetic 

animals. Representative Western blots are presented above the graphs, with the 

respective loading controls (β-actin), to confirm that identical amounts of protein from 

control and diabetic samples were loaded into the gel. The results are expressed as 

percentage of age-matched controls, and data are presented as the mean ± SEM of at 

least 5 animals. 

 

Figure 2: Diabetes induces changes in the protein content of vesicular glutamate 

transporters in the retina. The protein levels of VGluT-1 and VGluT-2 were analyzed 

by immunoblotting in extracts of retinal synaptosomes (A and B) and in retinal total 

extracts (C and D) isolated from control and STZ-induced diabetic animals. 

Representative Western blots are presented above the graphs, with the respective 

loading controls (β-actin), to confirm that identical amounts of protein from control and 

diabetic samples were loaded into the gel. The results are expressed as percentage of 

age-matched controls, and data are presented as the mean ± SEM of at least 5 

animals. * p < 0.05, compared to age-matched control animals. 

 

Figure 3: Diabetes induces changes in the protein content of vesicular GABA 

transporter in hippocampal and retinal synaptosomes. The protein levels of VGAT 

were analyzed by immunoblotting in hippocampal (A) and retinal (B) synaptosomes, 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

 

 

23 

 

and also in hippocampal (C) and retinal (D) total extracts, from diabetic animals and 

aged-matched controls. Representative western blots are presented above the graphs, 

with the respective loading controls (β-actin), to confirm that identical amounts of 

protein from control and diabetic samples were loaded in the gel. The results are 

expressed as percentage of age-matched controls, and data are presented as the 

mean ± SEM of at least 4 animals. * p < 0.05, *** p < 0.001, compared to age-matched 

control animals. 

 

Figure 4: The content of α1A subunit of P/Q type calcium channels decreases at 

two weeks of diabetes in hippocampal and retinal synaptosomes. The protein 

levels of α1A P/Q type calcium channels were analyzed by immunoblotting in 

hippocampal (A) and retinal (B) synaptosomes, and also in hippocampal (C) and retinal 

(D) total extracts, from diabetic animals and aged-matched controls. Representative 

western blots are presented above the graphs, with the respective loading controls (β-

actin), to confirm that identical amounts of protein from control and diabetic samples 

were loaded in the gel. The results are expressed as percentage of age-matched 

controls, and data are presented as the mean ± SEM of at least 4 animals. * p < 0.05, 

** p < 0.01, compared to age-matched control animals. 

 

Figure 5: Diabetes increases the basal release of glutamate after eight weeks of 

diabetes. Synaptosomes were simultaneously loaded with [14C]glutamate (besides 

[3H]GABA), and after 15 min of washout, 2 min perfusate samples were collected and 

radioactivity counted. Results are expressed as fractional release % (FR%). 

Synaptosomes were stimulated twice (S1 and S2) with 20 mM KCl for 30 sec each. (A) 

Glutamate release at two weeks of diabetes; (B) Glutamate release at eight weeks of 
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diabetes; (C-D) S1 and S2 at two and eight weeks time points for diabetic and age-

matched control animals; (E) S2/S1 ratio at two and eight weeks time points for 

diabetic and age-matched control animals. All data points represent the mean ± SEM 

of at least 8 animals; * p < 0.05, compared to age-matched control animals. 

 

Figure 6: Diabetes does not affect GABA release from hippocampal 

synaptosomes. Results were obtained from the same experiments shown in Figure 5. 

Synaptosomes were simultaneously loaded with [3H]GABA (besides [14C]glutamate), 

and after 15 min of washout, 2 min perfusate samples were collected and radioactivity 

counted. Results are expressed as fractional release % (FR%). Synaptosomes were 

stimulated twice (S1 and S2) with 20 mM KCl for 30 sec each. (A) GABA release at two 

weeks of diabetes; (B) GABA release at eight weeks of diabetes; (C-D) S1 and S2 at 

two and eight weeks time points for diabetic and age-matched control animals; (E) 

S2/S1 ratio at two and eight weeks time points for diabetic and age-matched control 

animals. All data points represent the mean ± SEM of at least 8 animals. 

 

Figure 7: Diabetes affects the release of GABA in retinal synaptosomes. 

Synaptosomes were loaded with [3H]GABA, and after 15 min of washout, 2 min 

perfusate samples were collected and radioactivity counted. Results are expressed as 

fractional release % (FR%). Synaptosomes were stimulated twice (S1 and S2) with 30 

mM KCl for 1 min each. (A) GABA release at two weeks of diabetes; (B) GABA release 

at eight weeks of diabetes; (C-D) S1 and S2 at two and eight weeks time points for 

diabetic and age-matched control animals; (E) S2/S1 ratio at two and eight weeks time 

points for diabetic and age-matched control animals. All data points represent the 

mean ± SEM of 11 animals. * p < 0.05 compared to age-matched control animals. 
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Table 1: Average weight and blood glucose levels of diabetic and aged-matched control rats. 

Diabetes duration Weight (g) Blood Glucose (mg/dL)

Control (n=15) 312.3±13.6 97.0±6.6

Diabetic (n=15) 240.1±8.2*** 467.8±26.9***

Control (n=15) 401.1±8.1 94.1±2.7

Diabetic (n=15) 278.5±7.9*** 431.0±19.9***

2 Weeks

8 Weeks

 

Measurements were made immediately before the sacrifice of the animals. ***p <0.001 
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