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RESUMO 

 

A poluição da água e a sua escassez são dois grandes problemas que a humanidade 

está a enfrentar hoje em dia. Neste contexto, o tratamento de efluentes bio-refractários por 

processos avançados de oxidação (PAOs) destaca-se devido à geração de espécies muito 

reactivas, como é o caso dos radicais hidroxilo. Entre estes sistemas químicos, a ozonólise e o 

processo de foto-Fenton, operando em condições normais de pressão e temperatura, são de 

especial interesse na medida em que envolvem menores custos de operação. Portanto, com o 

objectivo de promover o desenvolvimento destes dois processos utilizou-se e analisou-se um 

efluente sintético envolvendo seis ácidos fenólicos comummente encontrados em agro-

efluentes, ou seja, os ácidos gálico, protocateutico, trans-cinamico, 3,4,5-trimetoxibenzóico, 

verátrico e 4-hidroxibenzóico. 

A fim de avaliar os processos de ozonólise simples e catalítica (catalisador – 

Pt/Al2O3), estudou-se o efeito do pH verificando-se que este parâmetro afecta a decomposição 

do ozono, assim como a formação de radicais hidroxilo. A utilização do catalisador a pH 7 

mostrou ser o sistema catalítico mais interessante na depuração deste efluente, obtendo-se 

93.0 % e 47.7 % para a remoção de TPh e CQO, respectivamente, após 120 minutos de 

oxidação. Para pH 3, a ozonólise catalítica foi afectada pela presença de radical scavengers 

revelando que a reacção ocorre principalmente pela formação de radicais hidroxilo produzidos 

pela decomposição do ozono sobre a superfície do catalisador. Não foram observadas 

diferenças significativas a nível morfológico e estrutural entre o catalisador fresco e usado 

pelas análises de SEM e XRD. Após 120 minutos de reacção, o catalisador recuperado não 

apresentou quaisquer problemas de lixiviação quando comparado com metais de transição. 

Além do mais, uma sequência de ensaios feed-bacth envolvendo o reaproveitamento do 

catalisador demonstrou que a sua actividade se manteve praticamente constante durante o 

tempo de operação, 120 minutos em cada batch. De acordo com os testes de eco-toxicidade 

verificou-se uma redução do impacte ecológico por parte do efluente inicial, após tratamento. 

O catalisador Pt/Al2O3 parece ser um sólido promissor a nível industrial, podendo conduzir a 

um processo mais económico, embora careça de uma análise económica aprofundada. 

No processo de foto-Fenton foram realizados ensaios preliminares que ainda não 

permitiram inferir acerca da eficiência do mesmo. 
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ABSTRACT 

 

Water pollution and its scarcity are the main problems that humankind is facing 

nowadays. In this regards, great attention is being given to the removal of these pollutants 

from groundwater and wastewater by advanced oxidation processes (AOPs) that are based on 

generation of highly reactive species, especially hydroxyl radicals. Among them, ozonation 

and photo-Fenton’s processes, operating at room conditions of pressure and temperature, are 

of special interest involving lower operational costs. Therefore, aiming to give a contribution 

in the development of these two processes, a synthetic effluent involving major phenolic 

compounds typically found in olive oil mill wastewaters namely: gallic, protocatechuic, trans-

cinnamic, 3,4,5-trimethoxybenzoic, veratric, and 4-hydroxybenzoic acids was used and 

analysed.  

In both single and catalytic ozonation over Pt/Al2O3, the medium pH affected the rate 

of ozone decomposition and the formation of hydroxyl radicals. The optimum values were 

achieved for the catalytic system - pH 7 with 93.0 % and 47.7 % of TPh and COD removal, 

after 120 minutes. For pH 3, the catalytic ozonation was strongly affected by the presence of 

radical scavengers meaning that the reaction pathway developed mainly through hydroxyl 

radicals produced by the decomposition of ozone over the catalyst surface. No significant 

morphological or structural differences were observed between the fresh and used solid by 

SEM and XRD analysis. After 120 minutes of reaction, the recovered catalyst showed 

negligible aluminium leaching behaviour. Moreover, a sequence of feed-batch trials involving 

the catalyst reutilization exhibited almost constant activity during the operation time, 120 

minutes. According to eco-toxicological tests, ecological impact was reduced after the 

treatment of the initial effluent. Pt/Al2O3 seems to be a promising catalyst at industrial scale, 

which possible leads to lower operational costs, although a depth economic analysis is 

needed. 

Preliminary experiments were carried out using photo-Fenton’s process; however it 

was not possible to conclude about its efficiency. 

 

 

 

  



XII 

  



XIII 

LIST OF CONTENTS 

 

RESUMO .................................................................................................................................... IX 

ABSTRACT ................................................................................................................................ XI 

LIST OF CONTENTS ................................................................................................................. XIII 

LIST OF FIGURES ..................................................................................................................... XV 

LIST OF TABLES ...................................................................................................................... XVI 

1 INTRODUCTION ................................................................................................................... 1 

1.1 WATER AND POLLUTION ............................................................................................. 1 

1.2 OLIVE MILL WASTEWATERS AND ENVIRONMENTAL IMPACTS ...................................... 2 

1.3 WASTEWATER’S TREATMENT BY AOPS AT AMBIENT CONDITIONS ............................. 3 

1.3.1 OZONATION ..................................................................................................... 5 

1.3.2 PHOTO-FENTON’S PROCESS ............................................................................ 6 

1.4 MOTIVATION AND SCOPE OF THE THESIS ................................................................... 10 

1.5 THESIS STRUCTURE ................................................................................................... 11 

2 STATE OF THE ART ............................................................................................................ 13 

2.1 CATALYTIC OZONATION ............................................................................................ 13 

2.2 PHOTO-FENTON’S PROCESS ....................................................................................... 20 

2.3 CONCLUSIONS ........................................................................................................... 25 

3 EXPERIMENTAL ................................................................................................................. 27 

3.1 WASTEWATER PREPARATION .................................................................................... 27 

3.2 OXIDATION PROCEDURE ............................................................................................ 27 

3.2.1 CATALYST CHARACTERIZATION AND OZONATION PROCESS .......................... 27 

3.2.2 PHOTO-FENTON´S PROCESS ........................................................................... 28 

3.3 ANALYTICAL TECHNIQUES ........................................................................................ 30 

3.3.1 TOTAL PHENOL CONTENT (TPH) ................................................................... 30 

3.3.2 CHEMICAL OXYGEN DEMAND (COD) ........................................................... 30 

3.3.3 BIOCHEMICAL OXYGEN DEMAND (BOD5) .................................................... 31 

3.3.4 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) .......................... 32 

3.3.5 ACUTE TOXICITY LUMISTOX BIOASSAY ..................................................... 32 

3.3.6 ACTINOMETRY .............................................................................................. 33 



XIV 

4 RESULTS AND DISCUSSION ................................................................................................ 35 

4.1 CHARACTERIZATION OF THE SYNTHETIC EFFLUENT .................................................. 35 

4.2 SINGLE OZONATION ................................................................................................. 37 

4.3 CATALYTIC OZONATION ........................................................................................... 39 

4.3.1 EFFECT OF PH ............................................................................................... 39 

4.3.2 INFLUENCE OF THE PRESENCE OF FREE RADICAL SCAVENGERS ..................... 40 

4.3.3 CATALYST STABILITY ................................................................................... 41 

4.3.4 FRESH AND USED CATALYST CHARACTERIZATION ........................................ 43 

4.3.5 ROLE OF THE CATALYST OVER CATALYTIC OZONATION PATHWAY ............... 48 

4.4 COMPARISON BETWEEN SINGLE AND CATALYTIC OZONATION .................................. 50 

4.5 PHOTO-FENTON´S TREATMENT: PRELIMINARY RESULTS ........................................... 54 

5 CONCLUSIONS AND FORTHCOMING WORK ...................................................................... 55 

5.1 CONCLUSIONS .......................................................................................................... 55 

5.2 FORTHCOMING WORK ............................................................................................... 57 

6 REFERENCES ..................................................................................................................... 59 

 

  



XV 

LIST OF FIGURES 

 

Figure 3.1. Photo-reactor scheme. ............................................................................................ 29 

Figure 3.2. The amount of effluent sample to be used in the BOD5 experimental procedure. 31 

Figure 4.1. The structure of the six phenolic acids that performed the synthetic effluent. ...... 35 

Figure 4.2. Effect of the medium pH on TPh (a) and COD (b) degradation by single 

ozonation. (20 gO3/Nm
3
). ......................................................................................................... 38 

Figure 4.3. Effect of the medium pH on TPh (a) and COD (b) degradation by catalytic 

ozonation over Pt/Al2O3. (10 g/L of catalyst and 20 gO3/Nm
3
). .............................................. 39 

Figure 4.4. Effect of the presence of radical scavengers on the efficiency of catalytic 

ozonation over Pt/Al2O3 regarding TPh (a) and COD (b) removal. (10 g/L of catalyst, 20 

gO3/Nm
3
 and pH 3). ................................................................................................................. 40 

Figure 4.5. Al leached from the Pt/Al2O3 catalyst after 120 minutes of catalytic ozonation at 

different pH values. .................................................................................................................. 41 

Figure 4.6. Effect of the catalyst reuse on TPh (a) and COD (b) degradation by catalytic 

ozonation over Pt/Al2O3. (10 g/L of catalyst, 20 gO3/Nm
3
 and pH 3). .................................... 42 

Figure 4.7. Al leached from Pt/Al2O3 as function of time for a sequential batch experiment 

with phenolic mixture injection each 120 minutes (10 g/L of catalyst, 20 gO3/Nm
3
 and pH 3).

 .................................................................................................................................................. 43 

Figure 4.8. SEM photographs showing different scales/magnifications of fresh (a) and used 

(b) Pt/Al2O3 catalyst. ................................................................................................................ 44 

Figure 4.9. X-ray diffraction of fresh and used Pt/Al2O3 catalyst. ........................................... 45 

Figure 4.10. X-ray diffraction of Pt/Al2O3 catalyst, with Pt, γ-Al2O3 (50-0741), χ-Al2O3 (04-

0880) and gibbsite identified. ................................................................................................... 46 

Figure 4.11. Fresh and used Pt/Al2O3, BET isotherm (a) and Pore size distribution with 

mercury (b) and nitrogen (c) porosimetry. ............................................................................... 47 

Figure 4.12. Evolution of COD removal, during single ozonation, catalytic ozonation over 

Pt/Al2O3 and adsorption on catalyst at pH 3 (a), pH 5 (b), pH 7 (c) and pH 9 (d). .................. 49 

Figure 4.13. Parent phenolic acids (gallic acid, protocatechuic acid, 4-hydroxybenzoic, 

veratric acid, 3,4,5-trimethoxybenzoic acid and trans-cinnamic acid) removal profile by single 

(a) and catalytic ozonation (b), for pH 3. ................................................................................. 51 

Figure 4.14. TPh (a) and COD (b) removal profile along single and catalytic ozonation, for 

pH 3. ......................................................................................................................................... 52 

Figure 4.15. TPh (a) and COD (b) removal along photo-Fenton's process operating time. ..... 54 

  



XVI 

LIST OF TABLES 

 

Table 2.1. Reviews on Catalytic Ozonation. ............................................................................ 14 

Table 2.2. Literature overview of the application of noble metals on supports and the 

utilization of alumina either as catalyst or a supported metal. ................................................. 17 

Table 2.3. Reviews on photo-Fenton's process. ....................................................................... 21 

Table 2.4. Literature on homogeneous photo-Fenton's process. .............................................. 23 

Table 3.1. Photo-Fenton's process experiences. ....................................................................... 29 

Table 4.1. The main characteristics of synthetic effluent. ....................................................... 36 

Table 4.2. Values of EC20 and EC50 along the depuration time by single and catalytic 

ozonation. ................................................................................................................................. 53 

 

 



CHAPTER 1. INTRODUCTION 

TREATMENT OF LIQUID EFFLUENTS BY CATALYTIC OZONATION AND PHOTO-FENTON’S PROCESSES 1 

1 INTRODUCTION 

The first chapter of this dissertation refers to environmental problems related to water 

and wastewaters. Special attention is given to the lack of drinking water and the high 

generation of wastewaters leading to non-sustainability of our planet. Thus, modern 

civilization has to find new and practical ways to lessen the impact that we are causing in 

Earth. In this context, advanced oxidation processes (AOPs) are described as being a viable 

alternative to traditional wastewater treatment. Among them, ozonation and photo-Fenton’s 

processes are emphasized. Finally, the motivation and scope of the thesis, as well as its 

outline are presented at the end of this section. 

 

1.1 WATER AND POLLUTION 

Man has always interacted with the surrounding environment, modifying it according 

to his needs. In this evolutionary process, domestic, industrial and agricultural activities 

acquire an essential meaning to the welfare of the modern society, leading to an exponential 

consumption of raw materials that contribute to the dramatic increase of the amount of 

pollutants discharged into water streams. Indeed, one of the major problems that humanity is 

facing today is related with water quantity and mostly to issues related with its quality. 

Water is a substance indispensible for life, without which no living being could 

survive. It represents a linkage between all the planet´s ecosystems. Only 3 % of water 

resources are fresh and, still 2 % of this is trapped in form of ice, located mainly in the Polar 

Regions or in deep aquifers, not available for our use. The remaining 97 % are formed by sea 

water and sea ice (Carapeto, 1999). Less than 1 % of the planet’s water is available for human 

consumption and according to the World Health Organization, one quarter of the world’s 

population has a lack of adequate sanitation facilities and poor hygienic practices which are 

related to the lack of safe drinking water. So it is needed to secure access to clean water and 

the improvement of sanitation conditions, in order to eradicate all kinds of diseases such as 

malaria, typhoid and diarrhoea (Pera-Titus et al., 2004; Inglezakis and Poulopoulos, 2006; 

Schwarzenbach et al., 2010). 

In the eighties, the increase of social and political concern gave place to the emerging 

and strengthening of new environmental policies, whose primary aim was to stop the 

exponential attacks to the environment (Teixeira, 2000). Recently, the European Parliament 

through the directive 2000/60/EC reflected a new awareness, accentuating the need of new 

measures against the water pollution, in order to achieve a progressive reduction of pollutants 
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(Lucas, 2009). Pollution can be defined as a result of human activity, which change chemical, 

physical and biological characteristics of land, water and air that can affect human health and 

the ecosystems (Iglesias, 2002).  

Within this context, new techniques have been developed to remediate effluents and 

purify wastewaters to achieve the final desired characteristics. From simple dilution to the 

environment in the industrial revolution, to end-of-pipe treatment technologies and finally the 

application of the “Clean Processes” philosophy, the depuration processes should promote the 

complete mineralization of potentially toxic compounds, with viable and low cost 

implementation. In recent times, advanced oxidation processes are considered very promising 

alternatives to conventional effluents treatments due to their efficiency to oxidize a wide 

variety of organic contaminants by the generation of highly oxidative hydroxyl radicals 

(Nogueira et al., 2002; Peñarroya, 2007). 

 

1.2 OLIVE MILL WASTEWATERS AND ENVIRONMENTAL IMPACTS 

This work focuses on agro-industrial effluents, particularly on olive mill wastewaters 

(OMW).  

Portugal and other Mediterranean countries are olive oil producers; together they 

produce 97 % of worldwide olive production (Paraskeva and Diamadopoulos, 2006). 

Nowadays, high quantities of water are necessary for oil extraction techniques, therefore high 

volumes of olive mill wastewaters are also produced. The composition of these effluents 

varies and depends on the extraction process, olive variety, olive seed maturity, cultivation 

parameters, and geological-climatic conditions (Mert et al., 2010). Olive oil mill wastewaters 

are characterized by high concentrations of several organic compounds (chemical oxygen 

demand values up to 220 gO2/L), consisting of organic acids, sugars, polysaccharides, 

polyphenols, polyalcohols, proteins and oil (Mantzavinos and Kalogerakis, 2005). Phenolic 

compounds include many organic substances that all have in common an aromatic ring with 

one or more substituent hydroxyl groups and a functional side chain responsible for the 

toxicity towards bacteria, plants and animals (Kapellakis et al., 2008). 

The OMW treatment has always been considered a challenging issue for scientists, 

due to its high organic loading hard to biodegrade, seasonal production (occurs typically 

between December and March) and high territorial scattering with small localized mills. A 

common way of dealing with the OMW in many Mediterranean countries is to discharge 

directly into sewer network, convey it to a central lagoon or store in a small pond beside the 

mill where it is left to evaporate until next season. With these measures, OMW generate 
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important environment impacts such as colouring of natural waters, threat to aquatic life, 

pollution in surface and ground waters, alterations in soil quality, phytotoxicity and bad 

odours (Kapellakis et al., 2008; El-Gohary et al., 2009; Mert et al., 2010). By this way, 

several treatment options have been search, and gained a lot of attention to obtain a suitable 

cost-effective depuration system (Mantzavinos and Kalogerakis, 2005; Paraskeva and 

Diamadopoulos, 2006).  

 

1.3 WASTEWATER’S TREATMENT BY AOPS AT AMBIENT CONDITIONS 

The treatment processes of different types of effluents must guarantee the elimination 

or recuperation of the pollutant in order to reach the strict authorized levels for the discharged 

of these effluents. In general, the elimination of organic pollutants in aqueous solution needs 

one or various basic depuration techniques, depending on the concentration, volume flow of 

the stream to be treated and not least important the cost of the process. 

Traditional methods used for water and wastewater treatment can be broadly 

categorized by the nature of the process operation into biological, thermal, physical and 

chemical methods (Paraskeva and Diamadopoulos, 2006). The former one is the most 

widespread due to its low maintenance costs and simplicity. It may involve anaerobic, anoxic, 

aerobic, combined (anaerobic, anoxic, aerobic processes) and pond processes which degrade 

the pollutants present in the municipal wastewater and some agro-effluents. However, despite 

advances in biotechnology, biological systems are unable to remove effectively low 

biodegradable and toxic compounds. Their applicability is limited on highly contaminated 

pollutants, such as agro-effluents rich in phenolic compounds that are recalcitrant to 

biodegradation and inhibitory to microorganisms. Concentrations above 70 mg/L of phenol 

are considered toxic to microbial population (Paraskeva and Diamadopoulos, 2006; Britto and 

Rangel, 2008; Kapellakis et al., 2008; Bianco et al., 2011). 

Normally, the water contaminated with volatile compounds is treated with thermal 

processes (combustion, co-combustion and pyrolysis). It reduces the waste volume and 

provides energy recovery. Nevertheless, this process has low efficiency for removal of 

phenolic compounds and besides that requires expensive facilities, has high fuel costs and 

provides possible emission into the atmosphere of some dangerous substances (Paraskeva and 

Diamadopoulos, 2006; Britto and Rangel, 2008). 

Physical treatment techniques, filtration, coagulation/flocculation and adsorption, are 

considered non-destructive methods. These processes only separate the waste from the water 

either by means of a support system or by transferring it to another phase and do not involve 
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chemical transformations of the pollutants. The main membrane filtration technologies 

applied to OMW treatment are ultrafiltration, nanofiltration and reverse osmosis. This type of 

treatment is widely used, but initial investment and the maintenance costs associated to the 

membranes are very high (Curinha, 2008; Kapellakis et al., 2008). The 

coagulation/flocculation process is used as a pre-treatment or as a post-treatment stage, 

because is not very efficient when used alone since most of the organics found in OMW are 

difficult to precipitate (Kapellakis et al., 2008). Adsorption techniques using activated carbon 

are successful in the treatment of wastewater contaminated with low concentrations of 

phenolic compounds. In relatively high adsorption temperatures, long contact times and high 

concentrations of oxygen, the phenolic compounds tend to be irreversibly adsorbed on the 

coal surface. This process has the disadvantage of requiring a step of regeneration, during 

which the contaminant is concentrated in the vapour phase. None of these physical processes 

alone is able to reduce the organic load and toxicity of OMW to acceptable limits. They are 

very expensive and do not solve the problem of the need to dispose the sludge and/or the by-

products that derive from their application (Paraskeva and Diamadopoulos, 2006; Duarte et 

al., 2010).  

Otherwise, advanced oxidation processes (AOPs) are gaining acceptance in 

wastewater remediation field. In addition, AOPs involve the generation of hydroxyl radicals 

(   ), a powerful non-selective chemical oxidant which has a high oxidation potential and 

reacts very quickly with most organic compounds. This capability of exploiting the strong 

reactivity of radicals in oxidation processes is suitable to achieve the complete abatement and 

mineralization of the pollutants through even less contaminant groups and without a 

secondary waste stream being formed. Mineralization end products generally are carbon 

dioxide, water and inorganic ions. 

The AOPs may be classified according to the reaction phase (homogeneous or 

heterogeneous) or depending on the source to generate the oxidizing species, such as 

ozonation, Fenton-type reactions, wet oxidation, photochemical oxidation, sonochemical 

degradation and irradiation of water by high energy electron beams or γ-rays. Each of them 

offers different ways for hydroxyl radicals production. The wide variety of techniques 

available, together with little selectivity of hydroxyl radical attack allows a better compliance 

with the legal requirements for most pollutant treatments (Glaze et al., 1987; Moya, 2001; 

Peñarroya, 2007).  

These processes, although often encompassing high capital and operating costs, are the 

only viable treatment methods for effluents containing refractory, toxic and non-

biodegradable materials. Combining environmental and economic advantages of AOPs and 
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biological treatments, respectively, it could be a practical solution for the removal of toxic 

compounds from water. The initiative of coupling is to apply an AOP to a toxic and/or non-

biodegradable effluent during a short time, optimizing chemicals and energy consumption, 

and generating an intermediate stream that is fully biodegradable, thus opening the possibility 

of a subsequent biological treatment for the complete removal of organic matter (Pera-Titus et 

al., 2004; Azabou et al., 2010). 

The two main AOPs methods approached in this work to treat olive oil mill 

wastewaters are ozone and hydrogen peroxide chemical oxidation, which will be further 

explained below. 

 

1.3.1 OZONATION 

In the last two decades, ozone has been recognized as a powerful oxidizing agent (E° = 

2.07 V), which is able to participate in a high number of reactions in wastewater treatments 

with organic and inorganic compounds. Among the most common oxidizing agents, ozone is 

only exceeded in oxidation power by fluorine, hydroxyl radicals and atomic oxygen. Ozone is 

an unstable molecule and it should be generated at the point of application for use in treatment 

purposes. It is formed combining an oxygen atom with an oxygen molecule (Moya, 2001, 

Lucas, 2009). The byproducts obtained from ozonation process are more or less complex 

organic substances; they can be aldehydes, carboxylic acids and other aliphatic, aromatic or 

mixed oxidized forms. These substances are often quite easy biodegradable; therefore have no 

significant toxic effects (Gottschalk et al., 2000). 

Ozonation chemistry is complex and it is characterized by driving the oxidation in two 

possible mechanisms: the direct reaction with the dissolved molecular ozone (O3) and the 

indirect reactions with the radical species     or    
 
, that are formed when ozone 

decomposes in water. Molecular ozone can directly react with dissolved pollutants mainly by 

electrophilic attack of the major electronic density positions of the molecule. This mechanism 

will take place with unsaturated pollutants such as phenols, phenolates or tiocompounds. The 

radical mechanism is the only path that joins ozonation in AOPs group, and can be promoted 

by hydroxyl ions (alkaline pH) or other substances like transition metal cations (ferrous and 

ferric ions or by alumina), that act as oxidizing agents promoting ozone decomposition into 

hydroxyl radicals. This method predominates in less reactive molecules, like aliphatic 

hydrocarbons or carboxylic acids. The combination of both pathways for the removal of a 

compound will depend on its nature, the medium pH and the ozone dose. This explains the 

difference between the results obtained when ozonation is applied under various conditions to 

the same pollutant. As pH increases, so does the rate of decomposition of ozone in water 
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(Peñarroya, 2007, Lucas, 2009, Micó et al., 2010). Usually under acidic conditions (pH < 4) 

the direct pathway dominates, above pH 9 it changes to the radical. In range of 4 – 9, both 

pathways are present (Lucas, 2009). 

Ozone generation requires a large amount of electrical energy and its lonely use can be 

uneconomical in industrial wastewater applications due to its low mineralization of organic 

compounds. Therefore, this treatment can be enhanced by the addition of hydrogen peroxide 

and/or UV radiation, and even with catalysts or photo-Fenton reaction (Montaño, 2007; 

Peñarroya, 2007). 

For the depuration of difficult wastewaters, catalytic ozonation has been gaining 

interest within the last few years. Using an adequate catalyst has already shown satisfactory 

results (Martins and Quinta-Ferreira, 2009a). This process can be divided into homogeneous 

and heterogeneous, depending on the types of catalysts used. The first process is, generally, 

based on ozone activation by metal ions present in aqueous solution. Heterogeneous catalytic 

ozonation occurs in the presence of metal oxides or metals/metal oxides on supports. Both 

methods promote either hydroxyl radicals production or improve molecular ozone reactions. 

The major advantage of a heterogeneous over a homogeneous catalytic system is the ease of 

catalytic retrieval from the reaction media. However, the stability and durability of the 

catalyst under operating condition is important. Leaching of the catalytic active species or 

poisoning of the active sites or fouling of the catalyst surface by intermediate reaction 

products are important factors, which determine the stability and durability of the catalyst, 

being key aspects to its industrial application (Kasprzyk-Hordern et al., 2003; Li and Qu, 

2009; Liotta et al., 2009). 

 

1.3.2 PHOTO-FENTON’S PROCESS 

Hydrogen peroxide is a safe, efficient and easy to handle reactant suitable for a wide 

usage on contamination prevention. However, since hydrogen peroxide itself is not an 

excellent oxidant for many organic pollutants, it must be combined with other substances, 

such as metal salts or ozone, or apply energy, as UV light to produce the desired degradation 

results. Among these techniques, are noteworthy the classical Fenton and the photo-Fenton 

processes (Peñarroya, 2007), both will be largely commented below. 

As it is traditionally described, Fenton’s process is based on hydroxyl radicals 

generation by the decomposition of hydrogen peroxide when reacting with iron ions (Fe
2+

 

and/or Fe
3+

) acting as homogenous catalyst at acidic pH (2-4) and ambient conditions, 

according to the generic reaction (1.1) (Moya, 2001; Montaño, 2007; Bautista et al., 2008). 

Fenton’s process has been in use for more than a century and is employed to degrade organic 
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pollutants present in wastewaters, in the dark, in a relatively short reaction time. The main 

organic target pollutants of Fenton´s process are water soluble, nucleophilic and aromatic 

substances (Bautista et al., 2008; Droguel et al., 2009). 

 

            
           (1.1) 

 

Generated Fe
3+

 can be reduced by reaction with exceeding H2O2 to form again ferrous 

ion and more radicals according to equations (1.2) - (1.5). This second process is called 

Fenton-like, it is slower than Fenton reaction and allows Fe
2+

 regeneration in an effective 

cyclic mechanism. Whether iron is added in small amounts, it acts as a catalyst while 

hydrogen peroxide is continuously consumed (Nogueira et al., 2002; Montaño, 2007; Bautista 

et al., 2008; Martins et al., 2010a). 

 

            
         

  (1.2) 

 

                (1.3) 

 

                  (1.4) 

 

             (1.5) 

 

Both the Fe
2+

/H2O2 and Fe
3+

/H2O2 reagents are able to destroy organic pollutants. The 

starting material is partly transformed to some intermediated products, which generally appear 

to resist further oxidation reactions (Safarzadeh-Amiri et al., 1996).  

The efficiency of Fenton’s oxidation process depends, among other factors, on 

temperature, pH, hydrogen peroxide and catalyst concentrations. In principle, increasing the 

temperature should enhance the kinetics of the process but also favours the decomposition of 

hydrogen peroxide towards oxygen and water. The maximum catalytic activity is considered 

to occur in the pH range of 2 – 4 and drastically diminishes with an increase or a reduction of 

this pH value. The concentrations of hydrogen peroxide and iron must be carefully select, 

according to the type of the effluent (Bautista et al., 2008). When the catalyst is in excess, 

scavenge reactions (equation (1.6)) can happen between the iron species and the hydroxyl 

radicals which reduce the system oxidation efficiency over the pollutants. Furthermore, above 

certain hydrogen peroxide concentration, this reactant behaves as a hydroxyl radical 

scavenger (equation (1.7)) withdrawing the efficiency of wastewaters depuration (Martins et 

al., 2010a).  

                  (1.6) 
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  (1.7) 

 

It is desirable for the ratio of hydrogen peroxide to Fe
2+

 and Fe
3+

 to be as low as 

possible, so recombination can be avoided and iron complex production reduced. An optimal 

hydrogen peroxide/iron molar ratio between 10 and 25 has been proposed (Muñoz, 2003). 

Compared to other AOPs, Fenton’s process presents some advantages. No energy 

input is necessary to activate hydrogen peroxide because the reaction takes place at 

atmospheric pressure and room temperature. Furthermore hydrogen peroxide is 

environmentally friendly, since it slowly decomposes into oxygen and water. Therefore, this 

method is easy to apply and offers a cost effective source of hydroxyl radicals, using easy-to-

handle reagents. The generation of harmful byproducts is too low compared with other AOPs 

(Bautista et al., 2008; El-Gohari et al., 2009; Mert et al., 2010). 

The major drawback of this process is the high amount of iron sludge created at the 

end of the reaction, which needs further treatment and disposal as solid waste. In order to 

avoid the continuous loss of homogeneous catalyst and the need of removing iron after 

treatment, heterogeneous catalyst can be used (Jeong and Yoon, 2005; Bautista et al., 2008; 

Vinita et al., 2010). 

Photo-Fenton’s process is an improvement of the classical Fenton’s reagent through 

the addition of ultraviolet radiation or visible light. Fenton reaction rates and the extent of 

mineralization with the Fe
2+

, Fe
3+

/H2O2 reagent are strongly increased by irradiation with 

UV/visible light (Safarzadeh-Amiri et al., 1996; Lucas, 2009). 

The enhancement of organic decomposition is believed to be due to photolysis of 

aqueous complex Fe(OH)
2+

 to provide an additional source of     radicals. Further, the 

photolysis of Fe(OH)
2+

 regenerates Fe
2+

 ions (equation (1.8)), enabling the use of lower iron 

catalyst dosages compared with conventional Fenton process (Feitz et al., 2002; Goi and 

Trapido, 2002; Arslan-Alaton et al., 2009). 

 

  (  )  
  
→          (1.8) 

 

Organic contaminants and their degradation intermediates may also form photo-active 

complexes with Fe
3+

, which may also undergo a photo-induced ligand-to-metal charge 

transfer reaction resulting in the reduction of Fe
3+

 and oxidation of the ligand (Feitz et al., 

2002). 
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The main advantage of the photo-Fenton process is the light sensitivity up to a 

wavelength of 600 nm. The depth of light penetration is high and the contact between 

pollutant and oxidizing agents is close, since homogeneous solution is used. 

As well as for Fenton’s process, several parameters governing or influencing the 

kinetics of the photo-Fenton’s system have been studied: pH, iron concentration, iron species, 

hydrogen peroxide concentration, initial pollutant concentration, temperature, the irradiation 

source, and the presence of radicals scavengers (Muñoz, 2003; Arslan-Alaton et al., 2009). 

Photochemistry is important to establish the reactivity of substances under light 

excitation. Therefore, actinometry is a very useful and efficient method developed in the 

chemistry field to determine the amount of photons entering and being absorbed in a reaction 

cell filled with a well-known reacting system, at a defined spectral domain. The most 

favourable case is when the incident light is monochromatic. The term actinometer commonly 

indicates devices used in the UV and visible spectral range. In absolute actinometric 

measurements, a physical device converts the energy or the number of the incident photons in 

a quantifiable electrical signal. However, the most commonly utilized method is based on a 

chemical actinometer, a reference substance undergoing a photochemical reaction whose 

quantum yield is known, calibrated against a physical device, well studied actinometers or by 

calorimetric methods. In theory, any photoactive compound whose quantum yield is known 

could be used as an actinometer. To be a good actinometer, this quantum yield should be, as 

much as possible, independent of excitation wavelength, temperature, concentration, trace 

impurities, and oxygen. In addition, the number of reacted molecules must be determined with 

a convenient and quick analytical method. 

The most used and cited chemical actinometers are uranyl oxalate and potassium 

ferrioxalate. The first actinometer referred was during many years, the standard actinometer 

solution, but showed lack of sensitivity for two reasons: the long path lengths needed for 

complete light absorption in the visible and near UV, and the differential titrimetry method to 

determine the oxalate consumption implies a significant loss of the reactant needed. 

Subsequently, in 1956, it was introduced the potassium ferrioxalate actinometer by Hatchard 

and Parker. This is the most reliable and practical actinometer for UV and visible light up to 

500 nm (Zalazar et al., 2005; Montalti and Murov, 2006; Ion et al, 2008). Under light 

excitation this actinometer decomposes according to the equations (1.9) and (1.10): 

 

  (    ) 
  

  
→          

         
   (1.9) 

 

  (    ) 
       

   
 
                

   (1.10) 
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1.4 MOTIVATION AND SCOPE OF THE THESIS 

Water is an essential element to a healthy lifestyle. Nowadays, an in vogue theme is 

the impact that water pollution causes in the environment, so its protection is an important 

concern. Efforts should be made to develop and implement new efficient and economical 

methods treatment. As previously mentioned, the high cost derived from the use of AOPs can 

make attractive the possibility of coupling these effective technologies with less costly 

biological treatments. In fact, in the case of low biodegradable compounds, the oxidation of 

organic compounds by AOPs usually produces oxygenated organic products and low 

molecular weight acids that are more amenable to microorganisms. With toxic compounds, 

the AOPs will be extended until the point that no inhibition due to toxicity will be observed.  

In this context, the main goal of this Master thesis is thus to explore new 

methodologies of remediation of agro-industrial wastewaters by AOPs methods. Therefore, a 

simulated effluent, involving six phenolic acids usually present in agro-industrial effluents 

such as OMW, was selected. These acids degradation was studied by single and catalytic 

ozonation with Pt/Al2O3 catalyst, and photo-Fenton’s process. Both processes are an example 

of recent methods used in the wastewater treatment, which obtain efficient results in the 

clearance of various pollutants and have the advantage of being performed at room 

temperature and pressure. 

In ozonation system, it was investigated the influence of pH and the presence or 

absence of heterogeneous catalyst. Heterogeneous catalytic ozonation, though less studied 

than the homogeneous process, is more attractive as it provides greater oxidation efficiency, 

costs less and is more feasible for practical applications when compared to traditional 

processes. Moreover, recently in our research group several catalysts based on transition 

metals were tested in this field (Martins and Quinta-Ferreira, 2009a, b, c). However, the main 

drawback of these catalytic systems was the leaching of active metals. In this ambit, it is our 

goal to study the applicability of noble metals which are less acquiescent to elution. 

Furthermore, the acute toxicity evolution of the pollutant effluent was considered in sequence to 

evaluate the viability of the integration of chemical-biological depuration processes. Photo-

Fenton’s process is a new route taken in the Fenton’s area and just preliminary tests were 

done to analyse the effect of the several inlet parameters.  
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1.5 THESIS STRUCTURE 

Aiming to contextualize the reader with the present thesis, the current chapter has an 

introductory role on the environmental problems associated to agro-industrial wastewaters 

and on the role that ozonation and photo-Fenton’s processes can play in this field. The state of 

the art is outlined in Chapter 2 and presents an overview of scientific literature in catalytic 

ozonation involving heterogeneous catalysts focused on noble metals on supports and alumina 

either as catalyst or a supported metal. Besides catalytic ozonation, literature about photo-

Fenton’s process was also reviewed.  

Chapter 3 describes the methodology of the whole research activity involved in the 

study. The description of the experimental rig, the procedures of the experiments and method 

of analysis are presented in this chapter. Others indirect methods for the determination of 

degradation using TPh, COD and BOD5 and acute toxicity LUMIStox bioassay, apart from 

using HPLC and the methods of characterization of the catalyst are also described. Not 

forgetting the actinometry procedure used in the photo-Fenton’s process. 

Chapter 4 presents the results and discussion on the degradation of a mixture 

comprising six major phenolic pollutants usually presents in OMW (gallic, protocatechuic, 

trans-cinnamic, 3,4,5-trimethoxybenzoic, veratric and 4-hydroxybenzoic acids). This model 

effluent is used for depuration by ozonation and photo-Fenton’s process. It was studied the 

pH effect on the efficiency of single and catalytic ozonation over Pt/Al2O3 catalyst. In 

catalytic ozonation, the role of the catalyst, its stability and metal leaching was also addressed. 

As well as the analysis of treatment process regarding the effluent toxicity removal 

considering its impact over the ecosystems. A comparative study between single and catalytic 

ozonation strategies for the depuration of the synthetic effluent closes ozonation part. This 

chapter ends up with the discussion about preliminary results attained by photo-Fenton’s 

process. 

The main conclusions achieved with whole work are presented in chapter 5, 

culminating with recommendations on future work. 
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2 STATE OF THE ART 

In this chapter current literature about catalytic ozonation and photo-Fenton’s process 

is described. An overview of the recent reviews of catalytic ozonation is initially performed. 

Then, recent works published on the application of noble metal catalysts or alumina 

supported, are described. Afterwards, the same procedure was applied to photo-Fenton’s 

process. Selected papers in homogeneous photo-Fenton’s process were taken into account. 

 

2.1 CATALYTIC OZONATION 

Ozone is a strong oxidant agent used in the disinfection of water and wastewater 

treatment. The ozonation process is complex and contributes to colour and taste improvement, 

as well as to remove both organic and inorganic pollutants which are resistant toward 

conventional methods. This process has several advantages, but it has also few disadvantages 

related with the high costs of ozone production and the possibility of achieving only partial 

oxidation of organic compounds. The potentially of developing cost-effective treatment 

schemes for drinking water and wastewater depends on parameters, such as ozone dose, pH, 

the use of catalyst and temperature (Gottschalk et al., 2000; Kasprzyk-Horden et al., 2003; 

Kestioĝlu et al., 2005; Lee et al., 2007). In aqueous solution, ozone acts over various 

compounds either by a direct reaction of molecular ozone or else through radical type 

reactions involving hydroxyl radicals induced by the ozone decomposition in water. 

Molecular ozone reacts selectively with organic compounds comprising multiple bonds or 

groups with high electronic density. Compounds that do not have any strong nucleophilic sites 

are not easily directly oxidized by ozone. To destruct these compounds, ozonation system 

should be able to form highly reactive radical species from the decomposition of molecular 

ozone in water via free radical chain reactions (Pines and Reckhow, 2003). 

The application of ozonation technology may be restrained due to kinetic limitations 

and incomplete oxidation. Thus, in recent years, studies using catalysts of transition and noble 

metals have been applied for the degradation of organic pollutants, since the presence of a 

catalyst may significantly improve the oxidation rate of these compounds compared to the 

non-catalytic process (Álvarez et al., 2007; Liu et al., 2007).  

Catalytic ozonation can be classified in two main groups, homogeneous and 

heterogeneous. The first group is based on ozone activation by metals present in aqueous 

solution, while heterogeneous catalytic ozonation occurs in the presence of metal oxides or 

metals on supports. The main disadvantage of using homogeneous catalysts relies in the fact 
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that the metal ions remain in the solution and are not easy to be recovered or removed. Solid 

catalysts which are usually packed in the fixed beds are able to be recycled and regenerated.  

Catalytic ozonation was found to be effective for the removal of several organic 

compounds from drinking water and wastewater. In this context, Table 2.1 summarizes 

interesting studies reviewed about catalytic ozonation. 

 

Table 2.1. Reviews on Catalytic Ozonation. 

Reference Title Main topics covered/comments 

Legube and Karpel 

Vel Leitner (1999) 

Catalytic ozonation: a promising 

advanced oxidation technology for 

water treatment 

This paper focus on the efficiency of catalytic 

ozonation versus ozonation alone. And refers to the 

activation of ozone with metals in solution and the use 

of solid catalysts to test catalytic ozonation. 

Kasprzyk-Horden et 

al. (2003) 

Catalytic ozonation and methods of 

enhancing molecular ozone reactions in 

water treatment 

In this study authors reviewed literature about catalytic 

ozonation and methods of enhancing molecular ozone 

reactions in water treatment. 

Li and Qu (2009) 
The progress of catalytic technologies 

in water purification: A review 

This review emphasizes the recent development of 

heterogeneous catalytic ozonation, electrocatalysis in 

respect of novel electrodes and electro-Fenton method, 

photoelectrocatalysis process and photoelectron-Fenton 

in water purification.  

Liotta et al. (2009) 
Heterogeneous catalytic degradation of 

phenolic substrates: Catalyst activity 

In this paper is explored the catalytic degradation of 

phenol substances by catalytic wet peroxide oxidation, 

catalytic ozonation, catalytic wet oxidation and 

heterogeneous photocatalysis. 

Nawrocki and  

Kasprzyk-Hordern 

(2010) 

The efficiency and mechanisms of 

catalytic ozonation 

This work is based on catalytic ozonation processes 

used in water and wastewater treatment.  

 

According to Legube and Karpel Vel Leitner (1999) numerous metals, like Fe, Mn, 

Ni, Co, Zn, Ag, Cr, have been used under various forms to improve ozonation process 

efficiency towards the removal of organic compounds in wastewater treatment. Nowadays, 

this catalytic system can be categorized according to ozone activation by metals in solution 

(homogeneous catalytic ozonation) and in the presence of metal oxides or metals on supports 

(heterogeneous catalytic ozonation). These authors underline fundamental aspects that need 

more research, such as mechanisms of reaction of ozone with reduced metals, identification 

and quantification of oxidation by-products in solution and at the surface of catalyst. Other 

main aspects are the effect of reaction parameters (pH, temperature and presence of radical 

scavenger), the life-time of catalyst, the engineering design and economic studies. 

Kasprzyk-Horden et al. (2003) reviewed catalytic ozonation mechanisms with the 

production of active free radicals and methods to enhance molecular ozone reactions in water 

treatment. So as the previous authors, Kasprzyk-Horden and co-authors revised several homo 

and heterogeneous catalysts, in order to study their activity and the parameters that influence 

water and wastewater purification by this technology. 
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Li and Qu (2009) reported the advances of catalytic technologies in water treatment 

through various methods, heterogeneous catalytic ozonation, electrocatalysis in respect of 

novel electrodes, electro-Fenton, photoelectrocatalysis and photoelectron-Fenton. This paper 

also proposes general ideas about mechanisms and principles to enhance the catalytic 

efficiency for the degradation and the mineralization of organics in water. These ideas are, 

mainly, for the development of novel catalytic materials, the use of visible light and the 

combination of different processes. In the past few years, successful results have been 

achieved in this area and they should be used in industrial scale, however this is not 

happening. 

Liotta et al. (2009) explored the heterogeneous catalytic degradation of phenolic 

compounds, and focused on catalytic wet peroxide oxidation of these substances over metal-

exchange zeolites, hydrotalcites, metal exchanged clays and resins. The authors used cobalt-

based catalyst, hydrotalcite-like compounds and activated carbons in the catalytic ozonation. 

The activity of transition metal oxides, activated carbons and supported noble metals catalysts 

was investigated in the catalytic wet oxidation of phenol and acetic acid. In conclusion, the 

authors stated that combining AOPs, as preliminary treatment, with biological ones, could be 

an economically feasible and promising process to achieve complete degradation of pollutants 

containing refractory compounds. Therefore, in this field is desired the development of more 

active and robust catalysts, in which metal leaching is minimized. 

Nawrocki and Kasprzyk-Hordern (2010) summarized the recent directions taken in the 

knowledge of the mechanisms governing catalytic processes and revealed which of them are 

really used in water and wastewater treatment. At the end of their research, they check that the 

crucial parameters studied are the pH of solution and catalyst nature which governs ozone and 

pollutants adsorption. It should be emphasized that with all these parameters, the major 

problem in catalytic ozonation processes lies on the apparently contradictory mechanisms 

governing catalytic process proposed by different research groups.  

 

Throughout all literature reviewed is mentioned the great lack of knowledge about the 

mechanisms that govern catalytic ozonation and is highlighted the non-use of the information 

acquired over the recent years to industrial scale. Interesting depuration results are presented 

in the articles regarding the performance of this process. Both homogeneous and 

heterogeneous catalytic ozonation are being used in the water depuration at laboratorial scale. 

Due to the retrieval of the catalysts from the solution and its further reuse, heterogeneous 

catalysis seems an interesting alternative to overcome the limitations of ozone processes. 
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Heterogeneous catalytic ozonation had its beginning in 1970. However, it was only in 

the 1990s that different research groups started documenting their findings in this field of 

ozone application, due to its higher capacity for the degradation and mineralization of 

refractory organic pollutants lowering the negative effects on water quality (Li and Qu, 2009; 

Liotta et al., 2009; Perez, 2010; Martins and Quinta-Ferreira, 2011). The efficiency of this 

process depends on the catalysts nature and properties (surface area, density, pore volume, 

porosity, pore size distribution, mechanical strength, purity and chemical stability), as well as 

the pH of the solution. The main catalysts applied in this field are metal oxides, metal on 

supports, zeolites modified with metals and activated carbon. These catalysts enhance 

ozonation through the transformation of ozone into more reactive species and/or through 

adsorption and reaction of the pollutants on the surface of the catalyst (Kasprzyk-Hordern et 

al., 2003; Nawrocki and Kasprzyk-Hordern, 2010). The     radicals produced from the 

ozone decomposition, may be trapped by impurities called radical scavengers present in the 

effluent matrix, which do not allow the pollutants elimination. Minimizing, thus the process 

efficiency.  

The catalysts used are mostly transient metals, although in recent literature, various 

noble metals such as Ru, Pt, Rh, Ir, and Pd have also been applied in heterogeneous ozonation 

reactions in gaseous and in aqueous-phase. Supporting metal catalysts on oxide surfaces has 

been reported to improve their activity and stability by immobilizing the active species. The 

support has three main functions, which are to increase the surface area of catalytic material; 

to decrease sintering and to improve hydrophobicity and thermal, hydrolytic, and chemical 

stability of the catalytic material; and at last to govern the useful lifetime of the catalyst 

(Pirkanniemi and Sillanpää, 2002; Kasprzyk-Hordern et al., 2003; Chang et al., 2009a). 

The application of noble metals on supports and the utilization of alumina either as 

catalyst or a supported metal are widely spread in literature, as can be seen in Table 2.2. 
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Table 2.2. Literature overview of the application of noble metals on supports and the utilization of alumina either as catalyst 

or a supported metal. 

Pollutant Catalyst 
Operational 

Conditions 
Main Conclusions Reference 

Formic acid 
Pt/C, Pt/Al2O3 and 

Pd/Al2O3 

[O3] = 9 mg/L 

t = 60 min 

Best activity Pt/Al2O3 > 

Pd/Al2O3 > Pt/C 

Lin et al.  

(2000) 

Succinic acid Ru/CeO2 

pH = 3.4 

[catalyst] = 0.8 – 3.2 

g/L 

t = 120 min 

Pollutant removal = 40 – 

100 % 

TOC removal = 30 – 100 

% 

Delanoë et al.  

(2001) 

p-Chlorobenzoic 

(p-CBA) 

Ru/Al2O3, Pt/Al2O3,  

and 

Pt/activated carbon 

pH = 7 

[catalyst] = 43 mg/L 

[O3] = 0.1 mM 

p-CBA removal: 

Ru/Al2O3 > Pt/activated 

carbon > Pt/Al2O3 

Pines and Reckhow 

(2003) 

Succinic acid Ru/CeO2-TiO2 

pH = 3.1 – 10 

[catalyst] = 0.8 g/L 

[O3] = 81.7 mg/L 

t = 100 min 

Pollutant removal > 90 % 

TOC removal > 50 % 

Karpel Vel Leitner 

and Fu (2005) 

Pyruvic acid 
Ru/Al2O3 and  

Ru/CeO2 

pH = 6 

[O3] = 12 g/L 

t = 180 min 

Pollutant removal by: 

Ru/Al2O3 = 30 % 

Ru/CeO2 = 50 % 

Carbajo et al. 

(2006) 

Natural organic 

matter (NOM) 
Al2O3 

pH = 8.17 

[catalyst] = 75 g/L 

[O3] = 0.4 mg/(L.min) 

t = 180 min 

DOC removal = 50 % 
Kasprzyk-Horden et 

al. (2006) 

Pyruvic acid Co/Al2O3 

pH = 2.5 

[O3] = 40 mg/L 

t = 120 min 

Pollutant removal = 94 % 

DOC removal > 90 % 

Álvarez et al.  

(2007) 

Oxalic acid Pt-graphite 

pH = 2.98 

[catalyst] = 100 mg/L 

t = 30 min 

Oxalic acid removal = 

99.3 % 

Liu et al.  

(2007) 

Dimethyl 

phthalate (DMP) 
Ru/Al2O3 

pH = 6.6 

t = 120 min 

Pollutant removal = 95 % 

TOC removal = 72 % 
Yunrui et al. (2007) 

n-Hexadecane 

Pd/γ-Al2O3,  

Ni/γ-Al2O3 and 

V/γ-Al2O3 

[O3] = 20.41 mg/L 

t = 1440 min 

% conversion increased 

with time. 

Pullabhotla et al.  

(2008) 

Atrazine Pt-catalyst 

pH = 5.2 

[O3] = 2.6, 4.1, 17.2 

mg/m3 

t = 20 min 

Toxicity removal = 50 % 

TOC removal = 6 % 

Tepuš and Simonič 

(2008) 

Dimethyl 

phthalate (DMP) 

Ru/Al2O3 with Ce 

doping 

[catalyst] = 10 g/L 

t = 100 min 
TOC removal = 75.1 % 

Zhou et al. 

(2008) 

Phenol Pt/γ-Al2O3 

pH = 7.2 

[O3] = 60 mg/L 

t = 80 min 

TOC removal = 90 % 
Chang et al.  

(2009a) 

Dimethyl 

phthalate (DMP) 
Pt/Al2O3 

pH = 7.5 

[O3] = 25 mg/L 

t = 60 min 

DMP removal ≈ 100 % 

TOC removal = 57 % 

Chang et al.  

(2009b) 

2,4,6-

Trichloroanisole 

γ-AlOOH,  

γ-Al2O3 and 

α-Al2O3 

pH = 5.8 

[catalyst] = 200 mg/L 

[O3] = 0.5 mg/L 

t = 10 min 

Pollutants removal by: 

γ-AlOOH = 80.3 % 

γ-Al2O3 = 60.0 % 

α-Al2O3 = 60.0 % 

Qi et al.  

(2009) 

Pharmaceuticals 

MnOx/γ-Al2O3 

(MA), 

MnOx/γ-Al2O3 

(CMA) and 

MnOx/α-Al2O3 (CA) 

pH = 7 

[catalyst] = 1.5 g/L 

[O3] = 30 mg/L 

t = 60 min 

Pollutants removal = 70 – 

90 % 

TOC removal by: 

MnOx/MA = 84 %, 

MnOx/CMA = 65 % 

MnOx/CA = 54 % 

Yang et al.  

(2009) 

Dimethyl 

phthalate (DMP) 
Ru/active carbon 

[catalyst] = 2 g/L 

[O3] = 6.6 mg/L 

t = 100 min 

TOC removal = 66 % 
Wang et al.  

(2009) 

Pharmaceuticals Co3O4/Al2O3 

pH = 5 – 9 

[catalyst] = 20 g/L 

[O3] = 20 mg/L 

t = 120 min 

Pollutant removal = 100 

% 

TOC removal = 85 % 

Pocostales et al.  

(2011) 
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Among literature and based on Table 2.2, it is observed that noble metals catalysts 

employed in catalytic ozonation are mainly supported on metal oxides, especially on alumina 

(Al2O3). Therefore, initially will be approached the application of alumina alone, and after, its 

interaction with other metals, in particular the noble metals. 

Alumina (Al2O3) has been explored due to the possibility of its enforce in catalytic 

ozonation either as catalyst or support. Kasprzyk-Hordern et al. (2006) results shows the high 

activity of alumina over a long period of time, for the removal of natural organic matter 

(NOM) from drinking water. This substance doubles the efficiency of NOM removal from 

water when compared with ozonation alone. Furthermore, the by-products formed display 

high biodegradable character. The influence of aluminium oxides (γ-AlOOH, γ-Al2O3 and α-

Al2O3) surface properties on ozone decomposition was studied by Qi et al. (2009). The 

presence of these oxides can substantially enhance the removal efficiency of 2,4,6-

trichloroanisole (TCA) by ozonation, however displaying a different catalytic activity. Their 

role on the TCA degradation was γ-AlOOH > γ-Al2O3 > α-Al2O3. It was checked that     

were the main active species during ozonation and it was also reported that the highest 

activity of alumina takes place at pH = pHzpc, which indicates that ozone decomposition 

occurs on non-charged surface hydroxyl groups. The density of surface hydroxyl groups and 

the surface Brønsted acidity determined the difference of the catalytic activity of aluminium 

oxides.  

Alumina is also commonly used as support of several metals. Among the catalysts 

tested by Lin et al. (2000), Pt/Al2O3 was the most effective for formic acid removal by the 

ozonation system. The application of Pt/γ-Al2O3 clearly enhanced the mineralization of 

phenol and intermediates (TOC removal = 90 %) and in less extent the dimethyl phthalate 

(TOC removal = 57 %) under the experimental conditions taken by Chang et al. (2009a,b). 

The mechanism of heterogeneous catalytic ozonation in water was explained by Legube and 

Karpel Vel Leitner (1999). Based on mechanism, the noble metal Pt on Al2O3 surface acts as 

an active site, which has the ability to adsorb organic molecules (phenol, dimethyl phthalate 

and intermediates). These molecules are rapidly decomposed due to the presence of the 

catalyst that promotes the dissolved O3 to form high reactive     radicals. Pines and Rechow 

(2003) evaluated ozonation catalysts activity, of Ru/Al2O3, Pt/Al2O3, and Pt/activated carbon 

through the decomposition of p-chlorobenzoic acid. This is a non-adsorbing pollutant that 

does not react directly with molecular ozone. It was pointed out that Ru/Al2O3 had an 

enormous potential on ozonation because of its stability, suggesting that its surface sites 

reacted directly with ozone. Yunrui et al. (2007) studied the optimal Ru/Al2O3 catalyst 

preparation conditions for dimethyl phthalate ozonation, being concluded that the highest 
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depuration was attained for the solid involving 0.1 wt % Ru content, 600 ºC for calcination 

temperature and 0.5 – 1.0 mm particle diameter. For the same organic compound 

decomposition, Zhou et al. (2008) verified that Ce doping of Ru/Al2O3 remarkably enhanced 

the activity of the catalyst besides reducing the constituents leaching. Among the metals 

supported over alumina (Pd, Ni and V) for n-hexadecanone catalytic ozonation, the usage of 

Pd/Al2O3 led to the highest percentage conversion in n-hexadecanone ozonation with 0.5 % 

metal loaded γ-Al2O3 catalyst (Pullabhotla et al., 2008). Alumina is also used as support of 

other metals and metal oxides. For example, Co/Al2O3 improved the conversion of pyruvic 

acid and DOC values. This catalyst showed good stability as the percentage of cobalt leached 

out was rather low (Álvarez et al., 2007). Lately, pollution from pharmaceutical compounds 

in surface and ground water is an environmental concern in many countries. Co3O4/Al2O3 

(Pocostales et al., 2011) and MnOx/γ-Al2O3 (Yang et al., 2009) catalysts were both studied in 

catalytic ozonation treatment of these pollutants (diclofenac, sulfamethoxazole and 17α-

ethynylstradiol with Co3O4/Al2O3; phenazone, ibuprofen, diphenhydramine, phenytoin, and 

diclofenac sodium with MnOx/γ-Al2O3), and both achieved good enhanced results in terms of 

pollutant and TOC removal. The catalytic activity of alumina supported catalysts is mainly 

based on the catalytic decomposition of ozone and the enhanced generation of hydroxyl 

radicals. However, the results obtained from different studies suggested different ozonation 

mechanisms. The efficiency of the catalytic ozonation process depends to a great extent on the 

catalyst and its surface properties, as well as, on the pH of the solution that influences the 

properties of the surface active sites and ozone decomposition reactions in aqueous solutions. 

Knowledge about alumina interaction with organic/inorganic molecules in aqueous solution 

is, therefore crucial in order to understand the mechanism of catalytic ozonation on 

heterogeneous surfaces (Kasprzyk-Horden, 2004). 

Noble metals can be supported not only over alumina, but also over other metal oxides 

such as CeO2 or TiO2, and even over activated carbon. Ceria constitutes another interesting 

alternative in the catalysis of oxidation reactions. Delanöe et al. (2001) studied the influence 

of Ru/CeO2, catalyst preparation method, support pre-treatment and surface area. It was 

reported that the method of catalyst preparation plays a vital role in its catalytic activity. 

Ruthenium deposited on a support via impregnation was found to be much more efficient than 

ruthenium deposited via ion exchange and revealed high efficiency in the decomposition of 

succinic acid in water, and additionally resulted in high mineralization of organic matter. 

Carbajo et al. (2006) reported high catalytic activity of Ru/CeO2 during ozonation of pyruvic 

acid in water. Ru/CeO2–TiO2 reflected to be a promising catalyst for the ozonation of succinic 

acid (Karpel Vel Leitner and Fu, 2005). Tepuš and Simonič (2008) verified that experiments 
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involving atrazine by ozone treatment over Pt/TiO2 were not very successful; however, there 

was an abatement of 50 % on water toxicity. Activated carbon (AC) was extensively 

investigated as catalyst or catalyst support in heterogeneous ozonation processes and showed 

activity towards the enhancement of ozone decomposition into the formation of highly 

oxidant species like hydroxyl radicals and surface oxygenated active species (Nawrocki and 

Kasprzyk-Horden, 2010). Ru/AC was an active catalyst in the catalytic ozonation of dimethyl 

phthalate and improved greatly the mineralization when compared with ozonation alone. As 

an alternative of activated carbon, Liu et al. (2007) used graphite as support of Pt-noble metal, 

which promoted 99.3 % of oxalic acid removal. The optimal catalytic performance was 

obtained when 1.0 platinum loading and 623 K of reduction temperature was adopted. 

 

2.2 PHOTO-FENTON’S PROCESS 

The most important advanced oxidation treatments based on the use of H2O2 are 

Fenton and photo-Fenton processes, due to their efficiency in oxidizing a great variety of 

organic contaminants. The Fenton oxidation process is one of the oldest AOPs which is being 

increasingly used in the treatment of industrial wastewaters. Although the Fenton reagent has 

been known for more than a century and is shown to be a powerful oxidant, the mechanism of 

the Fenton reaction is still under intense and controversial discussion. However, it is generally 

accepted that the reaction between H2O2 and Fe
2+

 in an acidic aqueous medium (pH   3) 

produces     radicals and causes the creation of a lot of iron sludge at the end of the reaction, 

which needs further treatment. An enhanced version of the classical Fenton reaction, the 

Photo-Fenton process is based on the generation of hydroxyl radicals due to the interaction 

between H2O2 and Fe
2+

 as catalyst, with the action of UV radiation in the ferrous ion 

recovering cycle. The global reaction has been already reported in the literature as successful 

for the treatment of polluted water. Iron is a very abundant and non-toxic element, hydrogen 

peroxide is easy to handle and environmentally safe and, as main advantage, photo-Fenton 

process has operational simplicity and the possibility of using solar light as source of 

radiation, in order to reduce the operating costs and making it very attractive for industrial 

application. However, the disadvantages have also to be taken into account, like H2O2 be an 

expensive raw material and a low pH is required (Lee et al., 2003; Jeong and Yoon, 2005; 

Paterline and Nogueira, 2005; Lofrano et al., 2009; Micó et al., 2010).  

Photo-Fenton’s process is a new field that is getting interesting to the scientific 

researchers for wastewaters treatments. Table 2.3 resumes the recent reviews published about 

this topic.  
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Table 2.3. Reviews on photo-Fenton's process. 

Reference Title Main topics covered/comments 

Sýkora et al. (1997) 
Homogeneous photo-oxidation of 

phenols: influence of metals. 

In this study the role of metal ions and their complexes 

in the photo-oxidation of phenols in homogeneous 

solution is highlighted. 

Pera-Titus et al.  

(2004) 

Degradation of chlorophenols by means 

of advanced oxidation processes: a 

general review. 

This work is based on the degradation of chlorophenols 

by means of processes based on hydrogen, photolysis, 

photocatalysis and processes based on ozone. Half-life 

times and kinetic constants for chlorophenols 

degradation are reviewed and the different mechanistic 

degradation pathways are taken into account. 

Ikehata and El-Din 

(2006) 

Aqueous pesticide degradation by 

hydrogen peroxide/ultraviolet 

irradiation and Fenton-type advanced 

oxidation processes: a review. 

In this paper, the hydrogen peroxide-based advanced 

oxidation treatment of eight major groups of pesticides 

is reviewed. The degree of pesticide degradation, 

reaction kinetics, identification and characterization of 

by-products and intermediates degradation are covered. 

Possible degradation pathways are also discussed. 

Malato et al. (2009) 

Decontamination and disinfection of 

water by solar photocatalysis: Recent 

overview and trends. 

This paper reviews the use of sunlight to produce     
radicals by TiO2 photocatalysis and photo-Fenton’s 

process. Summarizes most of the research carried out 

related to solar photocatalytic degradation of water 

contaminants. 

Herney-Ramirez et 

al. (2010) 

Heterogeneous photo-Fenton oxidation 

with pillared clay-based catalysts for 

wastewater treatment: A review. 

This review discusses the use of pillared clays in 

heterogeneous photo-Fenton-like advanced oxidation 

for wastewater treatment, employing either 

model/synthetic effluents or real streams. Particular 

attention is given to the effect that the main operating 

conditions have on process performance. Emphasis is 

given to the type of catalyst used, its synthesis and its 

stability. Simple mechanistic studies are summarized, 

as well as modelling works. 

Umar et al. (2010) 

Trends in the use of Fenton, electro-

Fenton and photo-Fenton for the 

treatment of landfill leachate. 

The authors reviewed the use of Fenton and related 

processes in terms of their increased application to 

landfill leachate treatment. The efficiency of Fenton 

process showed to be highly reliant on reaction 

conditions and on the active metal leaching behaviour. 

Appropriate molar ratio of Fenton reagents and initial 

pH are the two most important factors to achieve 

maximum COD removal performance. 

 

Sýkora et al. (1997) reviewed the influence of metal ions and their complexes in the 

homogeneous photo-oxidation processes of phenols. It was verified that the presence of these 

metal ions profoundly influences the course and effectiveness of phenol phototransformation. 

Moreover, the mechanistic role of the process was summarized. 

According to Pera-Titus et al. (2004), advanced oxidation processes (AOPs) constitute 

a promising technology for the treatment of wastewaters containing non-easily removable 

organic compounds, such as chlorophenols. Among the AOPs, the following techniques were 

studied: processes based on hydrogen peroxide (H2O2+UV, Fenton, photo-Fenton and Fenton-

like processes), photolysis, photocatalysis and processes based on ozone (O3, O3+UV and 

O3+catalyst), in terms of half-life and kinetic constants. All methods investigated seemed to 

be suitable for the treatment of aqueous solutions containing chlorophenols. 

Ikehata and El-Din (2006) reviewed the hydrogen peroxide-based advanced oxidation 

treatment processes for the removal of aqueous pesticides. Photo-assisted Fenton and 
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electrochemical Fenton processes revealed remarkable performances for the degradation of 

those compounds. These studies also emphasize that the acute toxicity of the effluents can be 

reduced, generally through treatment with various Fenton-type AOPs. However, the formation 

of more toxic intermediates was suggested during the advanced oxidation treatment of 

pesticides. Thus, monitoring of the evolution of toxic intermediates as well as toxicity during 

treatment is recommended to ensure the quality of treated water and wastewater. Another 

important aspect in the AOP application to contaminated water and wastewater treatment is 

the process efficiency based on their energy consumption to achieve a certain level of 

contaminant degradation or TOC removal although this is often overlooked. Such information 

is particularly useful for utilities to evaluate the cost-effectiveness of the processes; therefore 

the authors proposed that this theme should be assessed and included in future studies. 

In recent years, has been a significant amount of research and development in the area 

of photocatalysis (heterogeneous and homogeneous), an example is Malato et al. (2009) that 

reported the use of sunlight to produce the    radicals by TiO2 photocatalysis and photo-

Fenton’s process. This paper also summarizes most of the research carried out related to solar 

photocatalytic degradation of water contaminants, and how it could significantly contribute to 

the treatment of persistent toxic compounds. And it outlines how to enhance the process 

efficiency by integration with biotreatments. Various solar reactors for photocatalytic water 

treatment mainly based on non-concentrating collectors, built during the last few years, were 

described in detail in this review. The use of the solar photocatalytic processes to inactivate 

microorganisms present in water is discussed as well, placing special importance on 

experimental systems to optimize this disinfection technique. 

Herney-Ramirez et al. (2010) appraised the use of pillared clays as heterogeneous 

catalysts in photo-Fenton’s reactions and a meticulous analysis of the effect of each 

operational condition on the process performance was conducted. The use of integrated 

processes that combine AOPs with biological treatments of wastewaters containing refractory 

compounds was mentioned as effective to achieve complete degradation of pollutants and 

seems to be attractive from an economical point of view. Nevertheless, the opposite assembly 

was also considered where the AOP would be used as a final polishing stage. To define the 

better strategy it was required to evaluate the final impact of the integrated process, and thus 

the toxicity of the intermediate and final products should be accounted for. 

Umar et al. (2010) verified that Fenton and related processes are effective and 

competitive with other technologies for degradation of refractory organics from landfill 

leachate. There are certain drawbacks of the process namely production of sludge and 
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operational and safety hazards associated with high acid requirements but these can be 

mitigated by choosing optimum quantities of Fenton reagents. 

An overview on published literature regarding the application of homogeneous photo-

Fenton’s process for the depuration of liquid effluents is shown in Table 2.4. 

 

Table 2.4. Literature on homogeneous photo-Fenton's process. 

Pollutant 
Operational 

Conditions 
Main Conclusions Reference 

1, 2, 9, 10- 

Tetrachlorodecane 

pH = 2.8 

[Fe2+] or [Fe3+] = 1.0 10-3 

M 

[H2O2] = 1.0 10-2 M 

Lamp 

Pollutant removal = 70 – 90 % El-Morsi et al. (2002) 

Nitrophenols 

pH = 3 

[Fe2+] = 0.004 – 1.0 mM 

[H2O2] = 1.0 – 10 mM 

Lamp = 10 W 

Pollutant removal = 85 – 90 % Goi and Trapido (2002) 

Phenolic 

compounds 

pH = 2.8 

[Fe2+] = 0.05 – 1.00 mM 

Lamp (40 W) and  

solar light 

Pollutant removal ≈ 100 % 

TOC removal ≈ 100 % 
Gernjak et al. (2003) 

2,4-Dichlorophenol 

pH = 3 – 9 

[Fe2+] = 10 – 45 mg/L 

[H2O2] = 15 – 75 mg/L 

Lamp = 4 W 

t = 60 min 

COD removal = 45 – 84 % 

TOC removal = 31 – 78 % 

Optimal conditions: 

[Fe2+] = 1.5 mM 

[H2O2] = 35 mM 

Al Momani et al. (2004) 

Phenol 

pH = 3 

[Fe2+] = 0.8 mM 

[H2O2] = 30 mM 

Lamp (150 W) and solar 

light 

t = 60 min 

Pollutant removal = 95 – 99 % 

TOC removal = 96 % 

Kavitha and Palanivelu  

(2004) 

Acid Blue 193 

pH = 3 

[Fe2+] = 0.5 – 4.5 mM 

[H2O2] = 25 – 65 mM 

Lamp = 150 W 

t = 60 min 

Pollutant removal = 75 – 100 % 

TOC removal = 8 – 10 % 

Optimal conditions: 

[Fe2+] = 10 mg/L 

[H2O2] = 75 mg/L 

Arslan-Alaton et al. (2009) 

Catechol 

pH = 3 

[Fe2+] = 500 mg/L 

[H2O2] = 75 – 700 mg/L 

Lamp = 125 W 

t = 30 min 

COD removal = 98 % 

UV280 removal = 96 % 

Optimum H2O2/Fe2+ = 600/500 

(w/w) 

Lofrano et al. (2009) 

 

The destruction and mineralization of persistent organic compounds in waste liquid 

streams are possible by utilizing advanced oxidation processes, such as photo-Fenton’s 

process. UV-radiation alone would attack and decompose some organic molecules by bond 

cleavage and free radical generation, but usually it occurs at very slow rates. The combination 

of UV-light and various oxidants can decompose pollutants very effectively (Goi and Trapido, 

2002).  

A number of studies on the degradation of phenolic compounds and phenols by photo-

Fenton have been reported. These substances are the most typical and common model 

compounds employed in the application of different advanced oxidation processes as a 

treatment method. Gernjak et al. (2003) used six model phenolic compounds (vanillin, 
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protocatechuic acid, syringic acid, p-coumaric acid, gallic acid and L-tyrosine) to demonstrate 

the degradation by photo-Fenton reaction, under artificial light in laboratory experiments in 

Vienna and under sunlight in pilot-plant experiments at the Plataforma Solar de Almería in 

Spain. All compounds were completely mineralized. No non-degradable intermediates were 

produced, either in experiments with single substances or in a more complex matrix of a 

mixture of phenolic compounds. The expected selectivity of the photo-Fenton reaction for 

aromatic compounds was proven by comparison of the decrease in total organic carbon with 

the removal of total phenolic content. Balancing the experiments with UV-lamp in the 

laboratory and with natural sunlight in the pilot plant, it was observed a superior performance 

under sunlight, an important fact for possible industrial application. Al-Momani et al. (2004) 

stated that photo-Fenton’s reaction in acidic conditions led to a successful 2,4-dichlorophenol 

degradation in a short time. It was also verified that the degradation rate can be influenced by 

many factors such as initial hydrogen peroxide, iron and 2,4-dichlorophenol concentration, as 

well as pH. The optimal conditions found for the degradation of this pollutant were [H2O2] = 

75 mg/L and [Fe
2+

] = 10 mg/L. Kavitha and Palanivelu (2004) commented the importance of 

photo-Fenton’s reaction (solar/UV light) in the phenol degradation. UV-Fenton offered a 

slightly better efficiency than solar-Fenton with respect to mineralization rates; however the 

intrinsic low-cost associated with solar energy turned out to be efficient in treating phenol as 

compared to UV light. Nitrated phenols (NPs) were likewise studied, by Goi and Trapido 

(2002), which demonstrated that UV-radiation improved the action of the Fenton system and 

at the same concentrations of hydrogen peroxide, photo-Fenton reaction led to a more rapid 

decomposition of all NPs than the Fenton treatment. Due to the regeneration of the consumed 

Fe
2+

 ions through the irradiation, the amount of catalyst can be reduced in photo-Fenton 

treatment. Nevertheless, the complete nitrogen mineralization was not achieved in their 

experiments.  

Apart from the treatment of phenols, more compounds are addressed through the 

photo-Fenton’s process, as n-alkanes (El-Morsi et al., 2002), dyes (Arslan-Alaton et al., 2009) 

and other pollutants occurring in wastewaters from of many industries (Lofrano et al., 2009). 

In all these studies, COD, TOC and pollutants removal were enhanced by this method.  
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2.3 CONCLUSIONS 

Chemical oxidation processes, such as catalytic ozonation and photo-Fenton’s process 

appear to be two acceptable solutions able to comply with the legislation with respect to 

discharge in a determined receptor medium. These processes can also be considered as an 

environmentally and economically viable preliminary stage to secondary treatment of 

biological oxidation for the destruction of non-biodegradable compounds which inhibit the 

bio-process. Within this context, seeking for optimal conditions to improve treatment 

efficiency regarding both mineralization and biodegradability enhancement is a matter of 

particular industrial and academic interest. As aforementioned, several works have been 

published in catalytic ozonation field for the development and enforcement of new catalysts; 

however, literature is still scarce in what regards the photo-Fenton’s application for the 

depuration of complex synthetic mixtures and real wastewaters. 

In this ambit, agro-food processing wastewaters will be undertaken as an example of 

non-biodegradable and phytotoxic effluents. Specifically, phenolic compounds: gallic, 

protocatechuic, trans-cinnamic, 3,4,5-trimethoxybenzoic, veratric, and 4-hydroxybenzoic 

acids typically found in olive oil mill wastewaters deserve particular attention in what 

concerns the process performance at different levels as follows: total phenol content (TPh), 

chemical oxygen demand (COD), biochemical oxygen demand (BOD5), high performance 

liquid chromatography (HPLC) and acute toxicity LUMIStox bioassay. In catalytic ozonation, 

special interest was dedicated to Pt/Al2O3 catalyst, regarding both catalytic activity and 

stability. The impact of operational variables and the pathway behind the catalytic ozonation 

was also investigated. Preliminary tests regarding homogeneous photo-Fenton’s process were 

performed aiming the depuration and biodegradability enhancement of the same phenolic 

mixture. 
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3 EXPERIMENTAL 

This chapter describes the experimental procedures and analytical methods used 

during the bench scale studies. 

 

3.1 WASTEWATER PREPARATION 

Six phenolic acids, typically found in olive mill wastewaters, namely gallic, 

protocatechuic, trans-cinnamic, 3,4,5-trimethoxybenzoic, veratric, and 4-hydroxybenzoic 

acids were used to prepare the synthetic effluent, with a concentration of 100 mg/L of each 

compound (Martins et al., 2008). The first two acids were obtained from Fluka and Acros 

Organics, respectively, and all the others from Sigma–Aldrich. The acids were used as 

received without further purification.  

 

3.2 OXIDATION PROCEDURE 

3.2.1 CATALYST CHARACTERIZATION AND OZONATION PROCESS 

Catalytic ozonation was carried out over a Pt/Al2O3 catalyst (1 % in Pt), gently 

supplied by industry and characterized before and after its utilization. The morphology of the 

catalyst and support were analysed at different scales/magnifications by scanning electron 

microscopy (SEM) with a JEOL JSM-5310 and by X-ray powder diffraction (XRD) analysis 

using Philips PW 3040/00 X’Pert analyser. The Brunauer–Emmett–Teller surface area (SBET) 

was determined using nitrogen (-196 ºC) with an accelerated surface area and porosimetry 

analyser (ASAP 2000, Micromeritics). Porosity and pore size distribution were determined by 

mercury porosimetry (Poresizer 9320, Micromeritics). Particle size distribution was assessed 

using a Malvern Mastersizer 2000 system. The catalyst stability in terms of Al leaching was 

evaluated by measuring its concentration in the liquid phase by atomic absorption (Perkin-

Elmer 3300, Waltham, MA). 

The determination of the pH of zero point charge (pHzpc) of Pt/Al2O3 was performed 

according to the procedure proposed by Rivera-Ultrilla et al. (2001).  

Single and catalytic ozonation were conducted at room conditions of pressure and 

temperature. The reactor consisted in a glass vessel (500 mL of capacity) operating in a semi-

batch mode with magnetic stirring (500 - 700 rpm). In every experiment, the reactor was 

charged with 500 mL of the model solution at the beginning of the test and the gas was 

continuously bubbled with an ozone concentration of 20 gO3/Nm
3
 measured by a BMT 963 
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vent ozone analyser (BMT Messtechnik, Berlin, Germany). Ozone was produced from a pure 

oxygen stream (99.999 % Praxair, Portugal) in a BMT 802 N ozone generator (BMT 

Messtechnik, Berlin, Germany) with a flow rate of 0.5 L/min. pH was continuously measured 

using a Crison micropH 2002 and adjusted using sodium hydroxide (Panreac) at 3 M or 

sulfuric acid (Panreac) at 2 M whenever necessary. The catalytic experiments were carried 

out in slurry conditions with 10 g/L of powder catalyst introduced into the reactor just before 

turning on the ozone generator. The catalyst particles were used with diameters in the range 

125 - 250 μm to ensure chemical regime (Martins and Quinta-Ferreira, 2009b). In addition, to 

evaluate the inhibition effect of the presence of radical scavengers, sodium carbonate at 0.01 

M (Riedel-de Häen) or tert-butanol (Fluka) at 0.005 M were used. Samples were withdrawn at 

specific intervals, and the solution was immediately separated from the catalyst by filtration 

through 0.45 μm disposable filters (Double Rings) for further analysis. The same procedure 

was adopted when the adsorption capacity of the catalyst was evaluated but without the 

introduction of ozone into the system. 

Throughout the experiences, the following parameters were evaluated: Total Phenol 

Content (TPh), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), 

High Performance Liquid Chromatography (HPLC) and Acute Toxicity LUMIStox Bioassay. 

The last three tests were only conducted on samples previously selected.  

Some experiments were randomly run in duplicate to check repeatability. 

 

3.2.2 PHOTO-FENTON´S PROCESS 

The Photo-Fenton’s installation consists on a magnetically stirred photoreactor (glass 

reactor of 3 L of capacity), with a black light blue lamp 9 W (Philips) placed axially inside a 

glass tube in the reactor. The glass tube with a double tube was used to cool the lamp; 

temperature was maintained at 25 ºC by a thermostatic bath. The lamp used preferably emits a 

wavelength between 350-400 nm. The equipment was covered with aluminium foil to prevent 

leakage of radiation and to avoid the external influences (Peñarroya, 2007). 

The operation occurred in a batch mode with 1 L of synthetic effluent. The solution 

pH was initially measured with Crison micropH 2002. A scheme of the photoreactor is shown 

in Figure 3.1.  
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Figure 3.1. Photo-reactor scheme. 

Adapted from Apolinário, 2006. 

 

It should be referred that only preliminary results will be shown due to the delay on 

the photoreactor installation. 

Experiments were prepared in order to determine which parameters most influence the 

process in question. Thus in Table 3.1 are outlined the experiences that were executed. 

 

Table 3.1. Photo-Fenton's process experiences. 

Experience Light [H2O2] mM [Fe
3+

] mg/L pH 

1 On 0 0 3 

2 On 69 0 3 

3 On 34.5 0 3 

4 On 138 0 3 

5 On 0 5 3 

6 On 0 15 3 

7 On 0 25 3 

 

In hydrogen peroxide experiences (2, 3 and 4), this substance was introduced 5 

minutes after starting the agitation and the UV lamp was turned on. In the Fe
3+

 experiences 

(FeCl3.6H2O), after the iron addition, the solution was vigorous mixing during 5 minutes, 

before the UV-light turns on. 

All experiments begun when the UV-light was switched on and last 180 minutes. 

Samples were withdrawn at specific times and in experiences 2, 3 and 4, NaOH (Panreac) at 3 

M was added to quench hydrogen peroxide in order to avoid interferences on the analytical 

methods. 

Analyses performed included Total Phenol Content (TPh) and Chemical Oxygen 

Demand (COD).  
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3.3 ANALYTICAL TECHNIQUES 

In this subsection are described the analytical methods used: Total Phenol Content 

(TPh), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD5), High 

Performance Liquid Chromatography (HPLC), Acute Toxicity LUMIStox Bioassay and 

Actinometry. Samples were measured at least in duplicate and the deviations between runs 

were always lower than 8 % for TPh and COD, and 20 % for BOD5 determinations. For the 

Acute Toxicity LUMIStox Bioassay the deviations do not pass 2 %. 

 

3.3.1 TOTAL PHENOL CONTENT (TPH) 

Total Phenolic Content (TPh) was measured by the Folin-Ciocalteau method. Thus, 20 

μL of sample were introduced in a 2 mL cuvette and 1.58 mL of distilled water, as well as 100 

μL of the Folin-Ciocalteau reagent (Fluka). Then, after 3 – 6 minutes were added 300 μL of a 

saturated sodium carbonate solution (Riedel-de Häen). The cuvettes were left in the dark for 2 

h. The absorbance was determined with a T60 PG Instruments spectrophotometer, at 765 nm, 

against a blank solution containing 20 μL of distilled water instead of the sample. The results 

are expressed as milligrams of gallic acid equivalents (GAE) since the calibration curve was 

prepared using different concentrations of this compound as described elsewhere by Martins 

et al., 2008.  

 

3.3.2 CHEMICAL OXYGEN DEMAND (COD) 

Chemical Oxygen Demand (COD) indirectly measures the amount of oxygen 

necessary to totally oxidize the organic matter contained in a water sample. 

COD was determined by the method stipulated in Standard Methods 5220 D: closed 

reflux, colorimetric method, commonly known as dichromate method (Greenberg et al., 

1985). The test procedure involves a known sample volume with excess of potassium 

dichromate in presence of acid (H2SO4), in a vial glass. Mercury sulphate was also included to 

avoid the interference of halides and silver sulphate was used to act as catalyst for the 

oxidation of organic matter. The samples were digested for 2 h at 148 °C in a WTW CR3000 

instrument. After this process, the vials were cooled to room temperature and measured at 605 

nm in a WTW MPM3000 photometer. The accuracy of the measurement was verified with a 

potassium acid phthalate standard solution. 
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3.3.3 BIOCHEMICAL OXYGEN DEMAND (BOD5) 

Biochemical Oxygen Demand (BOD5) estimates the amount of biodegradable organic 

matter present in a water sample. This technique was applied by measuring the quantity of 

dissolved oxygen (WTW INOLab 740) before and after 5 days of incubation of a population of 

microorganisms obtained from a garden soil suspension at 20 ºC in the dark. This analysis 

was performed according to the Standard Methods (Greenberg et al., 1985).  

Initially, all samples were adjusted to pH 6.5 – 7.5. Then, the dilution water was 

prepared, which consists in a buffered solution containing essential nutrients, MgSO4.7H2O, 

FeCl3.6H2O and CaCl2. This water sample should be aerated in a period of 24 h to ensure 

oxygen saturation. The volume of sample to be tested was carefully selected since very high 

pollutant concentration can lead to a final oxygen concentration below 2 mgO2/L, meaning 

that, after a certain point, bacteria could degrade anaerobically the organic compounds. In 

another hand, very low loads can promote negligible oxygen consumption. In this context, it 

was assumed as guideline BOD equal to COD to select the sample volume. Depending on the 

BOD range the total volume of solution used in the test changes. The range of BOD and the 

correlated volume needed are shown in Figure 3.2. 

 

 

Figure 3.2. The amount of effluent sample to be used in the BOD5 experimental procedure. 

Adapted from Metcalf and Eddy, 2003. 

 

In all BOD5 analysis were used a blank sample, containing the bacteria and dilution 

water. The biological test consists of filling the 300 mL erlenmeyer with inoculum, selected 

sample volume and dilution water. When slapping the cork, care must be taken into avoiding 

the appearance of air bubbles.  
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3.3.4 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 

A Knauer HPLC system was used to measure the concentration of each compound of 

the synthetic effluent. Samples were injected via autosampler (Knauer, Smartline 3800) with 

an injection volume of 20 μL. The mobile phase (20 % of methanol in water slightly acidified 

with phosphoric acid) was pumped using a Knauer WellChrom K-1001 pump at a flow rate of 

1 mL/min through a C18 column at 85 °C, and detection was performed at 280 nm in an UV-

detector (Knauer). 

Prior to the analysis of the samples it was necessary to calibrate the HPLC. For this 

purpose, several samples with a known concentration of the studied compounds were 

analysed and with the results, a calibration curve was attained based on the areas of the peaks 

observed. These analysis are considered of special importance because they allow the 

determination of the concentration (and consequently level of degradation) of the target 

compounds at each moment of the reaction. 

In order to determine the retention time of each compound of the effluent, solutions 

containing a single pure substance and known concentration, were injected. 

 

3.3.5 ACUTE TOXICITY LUMISTOX BIOASSAY 

The bioluminescence test was performed using a LUMIStox (Dr. Lange, Germany) 

according to the standard method DIN/EN/ISO 11348-2, which is based on the light emission 

inhibition of the luminescent marine bacteria Vibrio Fischeri. The eco-toxicity levels were 

expressed as EC value; it represents the concentration of a sample that restrains 20 % (EC20) 

and 50 % (EC50) of bacteria light emission.  

The test kits were used without modification. All samples were prepared in aqueous 

solutions with 2 % of NaCl and pH 7. Prior to the use of bacteria, they were reactivated with 

the solution provided and maintained at 15   1 °C in LUMIStherm (Dr. Lange, Germany). 

The light produced was measured before and after the bacteria being incubated during 15 

minutes at 15 ºC with different dilutions of the pollutants. The EC20 and EC50 values were 

treated and directly supplied by the LUMIStox equipment. 
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3.3.6 ACTINOMETRY 

Actinometry is a typical method to determine the intensity of radiation source. 

Potassium ferrioxalate is a commonly used actinometer, as it is simple to handle and sensitive 

over a wide range of relevant wavelengths (254 to 500 nm). Green crystals of this actinometer 

were prepared by mixing 500 mL of 1.5 M ferric chloride (Riedel-de Häen) with 1.5 L of 1.5 

M potassium oxalate solution (Panreac), at 60 ºC. The resulting mixture was cooled with an 

ice bath, to 0 º C. This temperature was maintained until the crystallization of salt was 

complete. Then, the final product was filtered through 0.45 μm disposable filters in a Büchner 

funnel, washed with a small amount of cold water and a small volume of cold methanol to 

remove water excess. Thereafter, the product was left in the desiccator to dry, kept in the 

dark, protected from light. Finally, the crystals were stored in a plastic bottle covered with 

aluminium foil, to prevent the entry of light (Santiago, 2004; Montalti and Murov, 2006; 

Santos, 2009). 

 

The next step is the preparation of a 0.006 M solution by dissolving 2.947 g of the 

crystals in 100 mL H2SO4 (1 N) (Panreac) and dilute with distilled water to make 1 L. This 

solution is irradiated in the photoreactor under efficient stirring, during 3 minutes. After, 2.0 

mL of the irradiated solution is placed in a 10 mL volumetric flask, containing a mixture of 

1.0 mL of 0.12 % 1.10-phenanthroline solution (Panreac) and 2.5 mL of a buffer solution of 

sodium acetate (stock solution: 600 mL of 1.0 M of sodium acetate solution (Riedel-de Häen), 

360 mL of 0.5 M of H2SO4, diluted to 1 L with distilled water) which is then diluted to the 

mark with distilled water. A blank is prepared in the same way except that it has not been 

irradiated. Both solutions are kept in the dark (about an hour) until full colour development is 

achieved, and the absorbance difference between the two samples is measured at 510 nm in a 

spectrophotometer (Santiago, 2004; Santos, 2009).  
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4 RESULTS AND DISCUSSION 

In this chapter, the synthetic effluent is characterized. In addition, the results of non-

catalytic ozonation are presented and discussed, as well as the effect of the presence of the 

Pt/Al2O3 catalyst. The experimental conditions of photo-Fenton’s process were also studied. 

 

4.1 CHARACTERIZATION OF THE SYNTHETIC EFFLUENT 

The synthetic effluent was composed by six phenolic acids, typically present in olive 

mill wastewaters. Figure 4.1 shows the molecular formula of the compounds used in this study. 

 

 

 
 

3,4,5-trimethoxybenzoic acid 4-hydroxybenzoic acid gallic acid 

 

 

 

 

 

 

protocatechuic acid trans-cinnamic acid veratric acid 

Figure 4.1. The structure of the six phenolic acids that performed the synthetic effluent. 

 

The wastewater characteristics play a significant role on its treatment. Raw wastewater 

parameters were measured and listed in Table 4.1.  
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Table 4.1. The main characteristics of synthetic effluent. 

Characteristics Values 

TPh (mgGA/L) 352   46 

COD (mgO2/L) 1068   30 

BOD5 (mgO2/L) 372   20 

BOD5/COD 0.35 

EC20 (%) 10.0   2 

EC50 (%) 35.5   2 

pH 3.0 

 

The wastewater treatment main objective is to obtain an effluent in accordance with 

the legal limits expected to be discharged into natural bodies of water. When this is not 

possible or not economically viable the ultimate goal will be settled on improving its 

biodegradability and reducing its toxicity in order to reach a stream more amenable for further 

depuration on biological systems. According to the actual environmental laws, an effluent 

should not have COD and BOD5 values higher than 150 mgO2/L and 40 mgO2/L, 

respectively, to be released into the environment (Portuguese Decree Law Nº 236/98, de 1 de 

Agosto). 

The synthetic effluent shows then a high organic charge featuring 1068 mgO2/L in 

COD besides 352 mgGA/L in what regards its phenolic content. The low BOD5 value (372 

mg O2/L) does not allow the direct application of a biological treatment. In fact, the ratio 

BOD5/COD is equal to 0.35, while a wastewater is considered as totally biodegradable when 

this ratio is greater than 0.4 (Esplugas et al., 2004). This was expected, due to the high 

amount of phenolic compounds in the mixture, 352 mg GA/L which are known to be 

refractory and toxic to microorganisms. Therefore, this effluent is not suitable for direct 

biological treatment, sustaining the necessity of a chemical oxidation process (Beltran et al., 

2001). In order to assess the environmental impact on ecosystems, if the effluent was directly 

discharged into natural waterways, the toxicity of the mixture was evaluated using for that 

luminescence techniques based on the non-pathogenic, marine bacteria Vibrio Fischeri, which 

is sensitive to a wide range of toxicants. When properly grown, these bacteria produce light as 

a by-product of its cellular respiration. Any inhibition of cellular activity results in a 

decreased rate of respiration and a corresponding decrease in the luminescence. Toxicity was 

assessed by testing the restrain induced on luminescent bacteria, allowing the estimation of 

the values of EC20 and EC50. It was verified that a dilution involving 10.0 % and 35.5 % of the 

pollutant sample led to 20 and 50 % of the Vibrio Fischeri’s population light production 

inhibition respectively, demonstrating its high negative impact over life forms.  
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4.2 SINGLE OZONATION 

Single ozonation process is influenced by some parameters, as mentioned before. In 

this particular study, pH was chosen to be investigated, since it determines both kinetics and 

pathways of ozone reactions. Indeed, depending on the solution pH, the double action of 

ozone over organic matter, can lead to a direct or a free radical pathway. The direct pathway 

occurs at low pH when ozone molecule reacts exclusively with compounds with specific 

functional groups through selective reactions such as electrophilic, nucleophilic and dipolar 

addition. At alkaline conditions, takes place the indirect ozonation route, in which ozone 

decomposes yielding hydroxyl radicals, that are highly oxidizing species reacting in a non-

selectively way with a wide range of organic and inorganic compounds in water (Pera-Titus et 

al., 2004; Agustina et al., 2005). In order to examine this parameter’s effect on the process’s 

efficiency, tests were accomplished at four different pH values 3, 5, 7 and 9. For experiments 

involving alkaline pHs, NaOH (3 M) was used to maintain the desired level. 

Figure 4.2a demonstrates the removal increase of TPh of at different pHs, along the 

treatment time, although fully degradation was not achieved in any of the experiments 

(maximum 93.8 % after 120 minutes of ozonation for pH 9). The pH values affect the reaction 

process by impacting on the rate of the ozone decomposition and formation of hydroxyl 

radicals, which is favoured at high pH´s (Lin et al., 2009). Ozone is very efficient in phenolic 

compounds removal, due to the strong electrophilic nature of its molecule that reacts directly 

with nucleophilic positions of the aromatic rings (Beltrán et al., 2006). In fact, the presence of 

electron donor groups such as hydroxyl (HO), which is a strongly activating group and 

methoxyl (CH3O) a moderate one, favours oxidation reactions of these compounds (Martins 

and Quinta-Ferreira, 2009b). After 120 minutes, no significant differences were observed 

between pH 3 and pH 9 profiles (93.5 % and 93.8 % TPh removal, respectively the most 

efficient in phenolic compounds removal, benefiting of the increase of either ozone direct 

reactions (molecular pathway) or radicals formation (radical pathway), respectively. For 

experiments involving pH 5 and 7, the lower efficiency (83.5 % and 83.4 % TPh decrease), 

can be explained by the fact that in these conditions those two routes may compete with each 

other leading to a lower degradation of the effluent. Chemical oxygen demand (COD) 

abatement over time for the different pH values is shown in Figure 4.2b, following a similar 

trend to the one attained for the TPh removal previously described but involving poorer 

degradation levels. For all pHs, COD decay exhibited a similar pattern until up to 15 minutes 

with 10.0 % decrease, diverging afterwards within the range 30.9 % (pH 5) - 47.1 % (pH 3). 

The lower COD depuration evidences that, despite the degradation of phenols, there is a 
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subsequent formation of more refractory intermediate compounds contributing to the final still 

significant chemical oxygen demand values. 
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Figure 4.2. Effect of the medium pH on TPh (a) and COD (b) degradation by single ozonation. (20 gO3/Nm3). 

 

To verify the biodegradability of the effluent, BOD5 analysis were carried out; 

however the results were not viable, resulting in standard deviations above 20.0 %. In 

principle, these errors are due to malfunction of the oxygen meter. Thus new measurements 

must be done with the aid of a standard solution of glutamic acid, to take into account the 

accuracy of the method. 

  

a) b) 
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4.3 CATALYTIC OZONATION 

Catalytic ozonation was investigated with Pt/Al2O3 in order to appraise its potential on 

enhancing ozonation process efficiency. 

 

4.3.1 EFFECT OF PH 

Since pH is a key operating parameter for ozone solubility and stability in aqueous 

solution besides influencing the catalysts surface properties, it is important to examine its 

influence in the catalytic ozonation of the phenolic solution. The catalytic system efficiency 

was checked within the same medium pH range used for single ozonation. Figure 4.3a 

represents the wastewater phenolic content depletion along time and as it can be observed 

total depletion is also not achieved whichever the pH in use. Increasing pH from 3 to 7 leads 

to a removal enhancement from 79.4 % to 93.0 %, after 120 minutes whereas at pH 9 

phenolic depletion decreases to 90.3 %. The highest activity of the catalyst was observed at 

pH 7 that is close to its pHzpc value, which for Pt/Al2O3 is 7.7. At higher reaction medium pH 

the catalyst is negatively charged as well as the phenolic acids, creating therefore repulsive 

electrostatic interactions with pollutants that may inhibit the surface reactions. The slowest 

reaction velocity was attained for pH 3.  

As can be observed, Figure 4.3b illustrates that the COD removal was slightly affected 

by pH, evolving as follows: 31.3 % (pH 9), 44.8 % (pH 5), 47.5 % (pH 3) and 47.7 % (pH 7), 

after 120 minutes of reaction.  
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Figure 4.3. Effect of the medium pH on TPh (a) and COD (b) degradation by catalytic ozonation over Pt/Al2O3. (10 g/L of 

catalyst and 20 gO3/Nm3). 

  

a) b) 
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4.3.2 INFLUENCE OF THE PRESENCE OF FREE RADICAL SCAVENGERS 

Catalytic ozonation pathway is complex and depends on the catalyst and its action 

over pollutant compounds and ozone molecules. Some studies concluded that the generation 

of aqueous hydroxyl radicals due to ozone decomposition at the solid surface is mainly 

responsible for the improvement of this process (Kasprzyk-Hordern et al., 2003; Ma et al., 

2005). In order to verify the possible intervention of such radicals in this catalytic system, 

tests involving the presence of inorganic (sodium carbonate) and organic (tert-butanol) 

radicals scavenger were performed at pH 3. This pH value was selected since it warrants that 

if hydroxyl radicals are produced in such circumstances this would be due to the interaction 

between O3 and the catalyst and not to O3 decomposition promoted by the hydroxide ions. 

Figure 4.4a and b indicate that ozonation catalysed by Pt/Al2O3 is negatively affected 

in the presence of organic and inorganic radical scavengers. TPh removal (Figure 4.4a) 

decreases from 79.4 % without radical scavengers to 71.5 % with t-butanol and to 71.0 % 

with carbonate. COD profiles (Figure 4.4b) follow the same trend, although with lower 

values: 47.5 %, 38.7 % and 33.0 % of COD depletion, without radical scavengers, with the 

addition of t-butanol and carbonate, respectively. These results reveal that, in these 

conditions, the oxidation mechanism of the effluent in study over Pt/Al2O3 should 

predominantly occur via a radical pathway probably due to the decomposition of O3 on 

Pt/Al2O3 surface. In this regards, an identical conclusion was taken from previous results of 

our research group comprising the commercial N-150 catalyst when used in the 

decomposition of a similar phenolic wastewater (Martins and Quinta-Ferreira, 2011). 

Contrarily, the laboratorial Mn-Ce-O 70/30 showed to mainly pursue a mechanism involving 

the adsorption of both pollutants and O3 over the catalyst followed by surface oxidation 

without significant production of hydroxyl radicals (Martins and Quinta-Ferreira, 2009). 
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Figure 4.4. Effect of the presence of radical scavengers on the efficiency of catalytic ozonation over Pt/Al2O3 regarding TPh 

(a) and COD (b) removal. (10 g/L of catalyst, 20 gO3/Nm3 and pH 3). 

 

a) b) 
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4.3.3 CATALYST STABILITY 

Catalyst is defined as a substance that speeds up the reactions rate without being 

consumed; however, many deactivation mechanisms contribute to reduce its life time. 

Catalyst deactivation is the loss of catalytic activity and/or selectivity over time, and is of 

crucial importance in the practice of industrial catalytic processes. Subsequently, the catalyst 

choice is essential to maintain a good catalytic performance. This material has not only to be 

active but it should be also stable in terms of premature deactivation. The most significant 

deactivation factors investigated in the literature are the active metal leaching from the 

catalytic structure to the liquid phase and the deposition of carbonaceous materials resulting in 

the irreversible loss of active sites through the poisoning of catalyst pores. It is known that 

metal leaching to the liquid bulk can be relieved with the subsequent metal recovery step in 

order to purge this new pollution source, but its application implies a new industrial unit with 

relevant economical costs. 

In heterogeneous catalysis, pH is a parameter of main importance due to the strong 

impact exerted in the stability of the catalyst, especially when transient metallic species are 

used (Ma et al., 2005). Platinum (Pt) leaching was not considered because of its low amount 

in the catalyst. However, aluminium (Al) present in the support can leak from the solid as 

seen in Figure 4.5, reporting that after 120 minutes of oxidation the maximum leaching was 

18.4 mgAl/L (0.35 % of the initial Al) for pH 3, with a decreasing trend down to 4.33, 0.60 

and 0.49 mgAl/L for pH 5, 7 and 9, respectively, which are below the legal limits of 

discharged of 10 mgAl/L. A high dependence was then observed within the pH range 3 – 9.  
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Figure 4.5. Al leached from the Pt/Al2O3 catalyst after 120 minutes of catalytic ozonation at different pH values. 
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As stated above, the efficiency of a catalyst as well as its stability and reutilization are 

important factors in catalysed reactions. In this regards, sequential feed-batch trials were also 

performed aiming to gather a first idea about the catalyst activity for longer operation times. 

Systematic injections of fresh synthetic effluent were carried out, at each 120 minutes, to 

guarantee the same initial concentration for five consecutive tests. After every run, the 

catalyst was filtered and dried before the next use. In all cases the experimental conditions 

were the same and the pH value was controlled during all reaction time and it was equal to 3. 

Figure 4.6a and b represent TPh and COD removal, respectively. Even though TPh removal 

keeps practically unchanged, a slight decrease on COD efficiency is found. After each 120 

minutes batch, TPh elimination was always within the range 79.4 % - 86.6 % and COD 

stabilized around 35 - 40 % after the second run. 
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Figure 4.6. Effect of the catalyst reuse on TPh (a) and COD (b) degradation by catalytic ozonation over Pt/Al2O3. (10 g/L of 

catalyst, 20 gO3/Nm3 and pH 3). 

 

Figure 4.7 shows the evolution of the quantity of aluminium leached along the reuses. 

The obtained values are not below the legal limits of discharge; still, the maximum Al 

concentration in the liquid corresponds to 0.35 % of the initial Al in the catalyst. From the 

study performed by Martins and Quinta-Ferreira (2009) using a similar phenolic wastewater, 

the Mn-Ce-O 70/30 catalyst revealed a higher leaching problem associated to Mn than the one 

observed in the present study with Al released in the liquid phase. In this follow-up, the 

applicability of noble metal supported catalyst seems to be less acquiescent to elution than the 

catalysts based on transition metals. 

 

 

  

a) b) 
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Figure 4.7. Al leached from Pt/Al2O3 as function of time for a sequential batch experiment with phenolic mixture injection 

each 120 minutes (10 g/L of catalyst, 20 gO3/Nm3 and pH 3). 

 

4.3.4 FRESH AND USED CATALYST CHARACTERIZATION 

The morphology of Pt/Al2O3 was assessed at different magnifications of SEM 

(Scanning Electron Microscope) photographs for the fresh and used catalyst (for pH 3). SEM 

is an electron microscope that images a sample by scanning it with a high-energy beam of 

electrons in a raster scan pattern. SEM produces images of high resolution, which means that 

closely spaced features can be examined at high magnifications. The electrons interact with 

the atoms that make up the sample producing signals that contain information about sample’s 

morphology. Preparation of the samples is relatively easy since most SEMs only require the 

sample to be conductive. The combination of higher magnification, larger depth of focus, 

greater resolution, and ease of sample observation makes the SEM one of the most heavily 

used instruments in research areas today.  

Through Figure 4.8, both fresh (a1, a2, a3 and a4) and used (b1, b2, b3 and b4) 

Pt/Al2O3 can be compared for different scales. From the  3,500 to the  20,000 

magnification, no significant differences were found after the catalytic ozonation. However, 

for the  50,000 magnification one can observe the formation of filaments in the used catalyst, 

which can be caused by the fractionation of particles resulting from mechanical agitation. 

From the particle size distribution analysis, d(50) represents the average equivalent 

diameter, which is defined as the diameter where 50 mass-% (of the particles) of the powder 

have a larger equivalent diameter, and the other 50 mass-% have a smaller equivalent 

diameter. Thus, the fresh catalyst have a diameter lower than 16 μm while inferior values (less 

than 7 μm) are attained for the used sample pointing out that the catalyst may have a low 

resistance to mechanical agitation.  
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Figure 4.8. SEM photographs showing different scales/magnifications of fresh (a) and used (b) Pt/Al2O3 catalyst. 

a2) b2) 

a3) b3) 

a4) b4) 

a1) b1) 
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X-ray diffraction (XRD) is a versatile, non-destructive technique that reveals detailed 

information about the chemical composition and crystallographic structure of natural and 

manufactured materials. The X-ray diffraction pattern of a pure substance is, therefore, like a 

fingerprint of the substance (Figueiredo and Ribeiro, 2007). 

Figure 4.9 represents X-ray diffraction of the fresh and used catalyst (pH 3) and no 

differences were detected in terms of the solid structure before and after catalytic ozonation of 

the synthetic effluent, since the two diffractograms are almost superimposed. The samples are 

amorphous, with some crystals and/or crystalline phases. 
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Figure 4.9. X-ray diffraction of fresh and used Pt/Al2O3 catalyst. 

 

As both diffractograms overlap, it was only used one to do the peaks indexation 

(Figure 4.10). The only compound that can justify the two peaks at the beginning is the 

hydration of alumina forming gibbsite. Platinum was also indexed, but its low amount may 

not be detectable and the peaks can be also attributed to alumina. In order to index all the 

remaining peaks, two types of alumina with different structure were used, one is a simple 

cubic (γ-Al2O3) and the other is face-centred cubic (χ-Al2O3). 
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Figure 4.10. X-ray diffraction of Pt/Al2O3 catalyst, with Pt, γ-Al2O3 (50-0741), χ-Al2O3 (04-0880) and gibbsite identified. 

 

BET theory aims to explain the physical adsorption of gas molecules on a solid surface 

and serves as the basis for an important analysis technique, which measures the specific 

surface area of a material. The nitrogen adsorption isotherms, presented in Figure 4.11a for 

fresh and used Pt/Al2O3 catalyst, shows a type IV isotherm with a hysteresis loop in the high 

range of relative pressure suggesting a hysteresis type H1 according with IUPAC (Figueiredo 

and Ribeiro, 2007). It is noticed that for high relative pressures, in this case higher than 0.8, 

capillary condensation takes place giving an extraordinary adsorption volume increase, 

corresponding to mesoporous (2 10
-3

 – 0.05 μm pore diameter). The initial part of the type 

IV isotherm is attributed to monolayer-multilayer adsorption. The determined Brunauer-

Emmett-Teller (BET) surface area (SBET) for used catalyst was 88 m
2
/g that is similar to the 

one obtained for the fresh solid (84 m
2
/g). This analysis corroborates the fact that there are no 

significant textural changes in the morphology of the catalyst, as demonstrated by SEM 

results.  Moreover, from the pore size distribution analysis (Figure 4.11b) the average pore 

diameter with mercury porosimetry was 0.0331 and 0.0351 μm, from fresh and used catalyst, 

respectively, which is in agreement with the range of mesoporous associated to the isotherm. 

It should be kept in mind that the mercury porosimetry only allows detecting pores with 

diameters in the range of 3 nm – 20 μm (for a maximum intrusion pressure of 30,000 psia). 

Figure 4.11c represents pore size distribution with nitrogen porosimetry that in turn detects 

pores with diameters between 0.3 and 300 nm, the average pore diameter decreased very 



CHAPTER 4. RESULTS AND DISCUSSION 

TREATMENT OF LIQUID EFFLUENTS BY CATALYTIC OZONATION AND PHOTO-FENTON’S PROCESSES 47 

slightly from 0.0182 to 0.0171 μm, from the fresh to the used catalyst. These slightly different 

values are negligible and are within the margin error of the measurement device. Mercury 

porosimetry determines larger pores that are out of the detection range of nitrogen adsorption, 

while in this case the smallest pores can be determined. 
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Figure 4.11. Fresh and used Pt/Al2O3, BET isotherm (a) and Pore size distribution with mercury (b) and nitrogen (c) 

porosimetry. 
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4.3.5 ROLE OF THE CATALYST OVER CATALYTIC OZONATION PATHWAY 

The efficiency of the catalytic ozonation process depends to a great extent on the 

catalyst and its surface properties as well as the pH of the solution that influences the 

properties of the active sites and ozone decomposition reactions in aqueous solutions. There 

are three possible mechanisms for the heterogeneous catalysed ozonation reaction (Kasprzyk-

Hordern et al., 2003; Pullabhotla et al., 2008), adsorption of ozone on the catalyst surface 

leading to the formation of active species (such as hydroxyl radicals) which will react with the 

pollutants in liquid phase; adsorption of the organic pollutant and reaction with free ozone or 

adsorption of both reactants with further surface reaction. 

The Pt/Al2O3 adsorption capacity of the organic compounds present in the synthetic 

solution was tested at the different medium pH values that have been used throughout the 

study (pH 3 - Figure 4.12a; pH 5 - Figure 4.12b; pH 7 -Figure 4.12c; pH 9 - Figure 4.12d). 

COD removal by adsorption was compared with the COD abatement along time for single 

and catalytic ozonation for the same pH values. As it can be observed, for pH 3 and 9, the 

COD eliminated by adsorption reached 5.2 % and 4.9 %, respectively, whereas the greatest 

adsorption occurred at pH 7 with 17.6 % of COD decrease, followed by pH 5 with 15.3 %. 

These results may be explained by the pHzpc of the catalyst (7.7) and the pKa of the phenolic 

acids (between 4.0 and 4.5). In fact, for medium pH values higher than 7.7 both catalyst 

surface and phenolic acids are negatively charged, leading therefore to repulsive electrostatic 

interactions developed between Pt/Al2O3 and the phenolic acids anions, inhibiting as a 

consequence the adsorption process. Apparently, a surface positively charged (pH 3) seems to 

be unfavourable for the phenolic compounds adsorption. From the results it appears that this 

process is enhanced when the catalyst surface is near neutrality. The catalytic removal 

efficiency of COD by ozone over Pt/Al2O3 is related with the medium pH value and the 

catalyst ability to decompose O3 into hydroxyl groups, since, as was already referred, an 

inhibition of the oxidation reactions is observed with the presence of radical scavengers. The 

main catalytic ozonation pathway Pt/Al2O3 is believed to involve the pollutants oxidation in 

the liquid bulk by hydroxyl radicals produced by ozone decomposition at the catalyst surface. 

However, the adsorption tests showed that this catalyst also has some capacity to adsorb the 

phenolic acids present on the synthetic solution. This means that some surface oxidation 

reactions may still occur. 

Continuing the observation of the results in Figure 4.12, it is verified that the presence 

of the catalyst improves the efficiency of the process for all pHs when compared with single 

ozonation, except for pH 9. This because, by one side higher pH promotes ozone 

decomposition in the reaction mixture enhancing this way the non-catalytic process, while on 
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another hand alkaline conditions may not be favourable to ozone adsorption in the catalyst 

surface besides inhibiting some pollutants degradation through surface reactions. 
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Figure 4.12. Evolution of COD removal, during single ozonation, catalytic ozonation over Pt/Al2O3 and adsorption on 

catalyst at pH 3 (a), pH 5 (b), pH 7 (c) and pH 9 (d). 
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4.4 COMPARISON BETWEEN SINGLE AND CATALYTIC OZONATION 

The individual concentration of gallic, protocatechuic, 4-hydroxybenzoic, veratric, 

3,4,5-trimethoxybenzoic, and trans-cinnamic acids were monitored by HPLC. Figure 4.13 

represents the removal profile for all compounds along single (a) and catalytic (b) ozonation 

system, for pH 3.  

In the single ozonation process the high efficiency of ozone in the total degradation of 

the phenolic compounds after 120 minutes of reaction is noticeable. Veratric acid was the 

exception since, at the end of the experiment, 2.5 % of the compound still remained in 

solution. Gallic acid showed the highest reactivity since total removal was achieved within 30 

minutes of ozonation. After this experimental time the following order of degradation rate 

was achieved for non-catalytic ozonation: gallic acid (3 OH) > protocatechuic acid (2 OH) > 

trans-cinnamic acid (1 external double bond) ≈ 3,4,5-trimetoxybenzoic acid (3 CH3O) ≈ 4-

hydroxybenzoic acid (1 OH) > veratric acid (2 CH3O). The most susceptible compounds to 

ozonation are those containing C=C double bonds outside the aromatic ring and specific 

functional groups (e.g. OH, CH3, CH3O) (Chang et al., 2009b). It is therefore possible to 

establish a relation between the number and type of aromatic ring substitutes groups, the type 

of bounds and the reactivity of the acids once molecular ozone attacks preferentially through 

electrophilic pathways, which is enhanced by the presence of a high electronic density due to 

donating groups in the benzenic ring, such methoxy (CH3O) and hydroxyl (OH) (Martins et 

al., 2008). Indeed, gallic acid has three strong electron donating group (OH), which is a 

highly reactive substitute, followed by protocatechuic acid with two OH groups. Trans-

cinnamic acid has an external double bond susceptible to be broken and form intermediate 

compounds. The 3,4,5-trimetoxybenzoic acid has three moderate electron donating groups 

(CH3O), being therefore less reactive than the former acids, even with three substituent 

groups. The reactivity of 4-hydroxybenzoic acid is slightly higher than veratric acid due to the 

presence of one strong electron donating group (OH) in 4-hydroxybenzoic acid structure, 

while veratric acid only possesses one moderate electron donating group (CH3O). 

When the catalyst is added, it leads to a slightly higher degradation rate till 30 minutes 

(Figure 4.13b). After this time, the phenolic acids removal slows down. Once more, gallic 

acid showed to be more reactive than the other acids, since total degradation of this compound 

occurred after 30 minutes of reaction. Then, the following order of reactivity can be 

established: gallic acid > trans-cinnamic acid protocatechuic acid > 3,4,5-trimetoxybenzoic 

acid > 4-hydroxybenzoic acid > veratric acid. There are two main changes comparing single 

and catalytic ozonation; in the reactivity order, trans-cinnamic acid was more reactive than 
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protocatechuic acid in the catalytic system. Moreover, in these reaction conditions, 4-

hydroxybenzoic acid beyond veratric acid was not completely degraded. 

The presence of the catalyst promotes the formation of     radicals, which are less 

selective species than ozone, reacting with a wider range of pollutants and not exclusively 

with molecules encompassing high electronic density sites. Thus, molecular O3 reacts more 

quickly with the phenolic compounds while     is able to decompose also organic 

byproducts formed during the oxidation. 
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Figure 4.13. Parent phenolic acids (gallic acid, protocatechuic acid, 4-hydroxybenzoic, veratric acid, 3,4,5-

trimethoxybenzoic acid and trans-cinnamic acid) removal profile by single (a) and catalytic ozonation (b), for pH 3. 

 

These results should be compared with those obtained for the degradation of the total 

phenolic species (TPh) (Figure 4.14a). TPh total removal was not achieved after 120 minutes 

of reaction, while almost all parent phenolic acids were destroyed along the treatment. It was 

also verified that TPh removal profile had slower kinetics than the initial pollutants 

degradation. In fact, TPh is a global parameter involving all phenolic compounds, whether 

they are parent or intermediates formed during the oxidation process. In this regards, it is 

possible to conclude that new products with phenolic character were created during the 

ozonation process (Figure 4.14a). 

Through the much lower COD abatement resumed in Figure 4.14b, one can observe 

that during ozone oxidation intermediates may be further transformed into more refractory 

saturated compounds such as small chain of carboxylic acids not easily oxidized by direct 

ozone attack. In this specific case for pH 3, ozonation efficiency is slightly improved by the 

addition of Pt/Al2O3 catalyst, because it leads to better results in less reaction time, for 

example after 60 minutes of reaction the catalyst application permits 35.6 % of COD removal 

instead of 28.1 % obtained for single ozonation. Therefore, the presence of the solid catalyst 

favours this process, leading to a more economical process than single ozonation since ozone 

a) b) 
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generator works less time reducing, thus, electrical energy consumption. However, a detailed 

economic analysis should be performed.  
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Figure 4.14. TPh (a) and COD (b) removal profile along single and catalytic ozonation, for pH 3. 
 

The phenolic compounds are well known by their phytotoxicity and, therefore, by their 

negative impact over our sensitive ecosystems. Within this context, a depuration treatment 

should be able to reduce the effluents toxicity to safeguard life when the wastewater is 

discharged into natural stream waters. Hence, the eco-toxicity of the synthetic effluent was 

checked, in order to assess the effect of the treatment technologies studied over that 

parameter, using luminescence techniques based on marine bacteria Vibrio Fischeri. Toxicity 

was evaluated by testing inhibition of luminescent bacteria, allowing estimation of the values 

of EC20 and EC50 along the depuration time by single and catalytic ozonation at pH 3 (Table 

4.2). As expected, the initial effluent has high toxicity as a mixture involving only 10.0 % and 

33.5 % of the wastewater resulted in the inhibition of 20 % and 50 % of the bacterial 

luminescent population.  

According to the values reported in Table 4.2, for single ozonation, EC20 increased for 

the first 30 minutes of reaction (15.0 %), having a slight reduction after 60 minutes (13.9 %), 

probably due to the formation of more toxic intermediate compounds, and at the end of 120 

minutes EC20 was 22.4 %. The EC50 values were not able to be calculated, since even when 

used the undiluted effluent no inhibition of 50 % of bacteria population was detected. 

Nonetheless, the effluent may still present a significant ecological impact due to the low value 

obtained at the end of EC20 determination, 22.4 %. In catalytic ozonation the eco-toxicity 

removal for EC20 was 28.4 % (after 120 minutes) and after 60 minutes a high decrease was 

achieved reported by the EC50 value out of the scope of the instrument, which means that even 

the undiluted treated solution can not provoke the inhibition of 50 % of the bacteria.  

a) b) 
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Table 4.2. Values of EC20 and EC50 along the depuration time by single and catalytic ozonation. 

Time (min) 
Single Ozonation Catalytic Ozonation 

EC20 (%) EC50 (%) EC20 (%) EC50 (%) 

0 10.0 35.5 10.0 35.5 

30 15.0 - 19.9 52.1 

60 13.9 - 11.1 42.6 

120 22.4 - 28.4 - 
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4.5 PHOTO-FENTON´S TREATMENT: PRELIMINARY RESULTS 

One of the main objectives of this work was to verify the efficiency of the photo-

Fenton’s process on phenolic acids mixture. Some experiments were carried out in order to 

evaluate the operational conditions and the effect of relevant variables to the performance of 

the process under review. In this context, some typical tests with UV light and different 

values of hydrogen peroxide or ferrous ions concentration were performed.  

Figure 4.15a and b shows TPh and COD removal along the experimental time, 

respectively. As can be observed no significant differences were obtained between 

experiences and little degradation was achieved for the phenolic mixture in use. According to 

these results, it was found that the conditions used were not the most appropriate in this 

wastewater treatment. One of the parameters that may have contributed to these results was 

the type of reactor used and therefore the scattering of light. This conclusion could be better 

grounded if it had been possible to carry out the analytical technique, actinometry, which 

would indicate us the amount of radiation effectively entering to the reactor. However, the 

time took until the photoreactor being operational did not allow its implementation in a timely 

fashion. 
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Figure 4.15. TPh (a) and COD (b) removal along photo-Fenton's process operating time. 

 

a) b) 
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5 CONCLUSIONS AND FORTHCOMING WORK 

In this part of the thesis, a general overview of the main results is presented, along 

with the most relevant conclusions. Suggestions for future work are also bring forward. 

 

5.1 CONCLUSIONS 

The ambit of this research was to study the application of single and catalytic 

ozonation as well as photo-Fenton’s process for the depuration of a simulated wastewater 

comprising six phenolic acids usually presents in agro-effluents. 

In single and catalytic ozonation, it was verified that the solution pH values affect the 

rate of ozone decomposition and the formation of hydroxyl radicals, which influences 

phenolic compounds degradation. In the first process concerning TPh removal, after 120 

minutes of reaction no significant differences were observed between pH 3 and pH 9. These 

two pHs were those showing a higher removal of phenolic compounds, 93.5 % and 93.8 %, 

respectively. The COD degradation values were lower than the ones obtained for TPh, which 

evidences that, despite the degradation of the phenols there is a subsequent formation of 

intermediate organic compounds more refractory that still contribute for chemical oxygen 

demand. 

The heterogeneous system for pH 7 was found to be an interesting solution with 93.0 

% and 47.7 % of TPh and COD removal, after 120 minutes, being around the catalyst pHzpc = 

7.7. The catalytic process was affected by the presence of radical scavengers meaning that the 

reaction pathway developed mainly through hydroxyl radicals produced by the decomposition 

of ozone over the catalyst surface. The study of the effect of pH in Al leaching pointed out 

that no major leaching problems are associated to this metal. Several feed-batch trials were 

performed in order to assess the catalyst activity for long time operations. After the second 

run COD removal stabilized in 35 - 40 % after 120 minutes of reaction whereas TPh was 

always around 79.4 % - 86.6 %. According to the catalyst characterization, no significant 

effect over its properties was observed after five reuses. 

The ability of Pt/Al2O3 catalyst to adsorb pollutants was analysed in order to realize 

the catalyst role in catalytic ozonation. In this regard, the main catalytic ozonation pathway of 

Pt/Al2O3 is believed to involve the pollutants oxidation in the liquid bulk by hydroxyl radicals 

produced by ozone catalysed decomposition at the catalyst surface, with the possibility of also 

occur the adsorption of phenolic acids present on the synthetic solution followed by 

subsequent surface reactions. 
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Single and catalytic processes were compared, for pH 3, in terms of parent phenolic 

compounds removal, TPh and COD removal, as well as eco-toxicity. Fully degradation of all 

initial phenolic acids was not achieved for any treatment strategy. In single ozonation, veratric 

acid was only removed in 97.5 % of its concentration. And, in catalytic ozonation, not only 

veratric acid was not totally degraded but also 4-hydroxybenzoic (87.5 % and 94.8 % of acids 

removal, respectively). Veratric and 4-hydroxybenzoic are the hardest compounds to remove 

due to their lower reactivity compared with other four phenolic acids. According to eco-

toxicological tests, ecological impact was reduced after the treatment of the initial effluent. 

According to the obtained results, Pt/Al2O3 seems to be a promising catalyst to industrial 

scale, since catalytic ozonation leads to a slightly better COD results in a lower reaction time, 

although a complete economic analysis is needed. 

The photo-Fenton’s process experiments were just preliminary being required a deeper 

research to optimize the operating conditions. 
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5.2 FORTHCOMING WORK  

The results of the present study are important to understand the methodologies of 

single and catalytic ozonation and, also, of photo-Fenton’s process for the depuration of bio-

refractory liquid effluents. And, it is necessary to continue these studies to achieve a better 

performance of those technologies. 

In the ozonation system is still essential to determine BOD5, in order to verify the 

biodegradability (BOD5/COD) of the effluent. This parameter allows inferring the 

biodegradability of the resulting effluents which still do not accomplish the legal thresholds 

for direct discharge throughout the natural water natural bodies. Thus they should be disposed 

into the municipal sewage to be further depurated in activated sludge tanks. Another 

interesting analysis is the identification of intermediate compounds of phenolic acids by 

HPLC equipment, because they may induce ozone decomposition or negatively affect the 

toxicity of the water matrix. The knowledge of their formation, reactivity and evolution are 

important to clarify about their significance in wastewaters depuration and if it is necessary to 

modify the operating conditions. In general, the activities of catalyst and ozonation process 

are depended on several variables. All variables must be considered in order to achieve the 

highest degradation of phenolic compounds, as well as TOC removal. This parameter was not 

studied in this work, but it is of great importance to evaluate the mineralization degree of the 

compounds involved in the oxidation reaction. 

Regarding photo-Fenton’s process, the actinometry technique must be the first step to 

be taken into account in this area. Through this technique the intensity of radiation source 

entering the reactor will be determined, allowing an insight if UV-light has a good dispersion 

in this type of photoreactor. Moreover, the concentrations of hydrogen peroxide and iron must 

be optimize, since with the results achieved were not yet the ones desired for an efficient 

removal of phenolic acids in the effluent in use. After the optimization of concentrations, 

experiments involving hydrogen peroxide, iron and UV-light should be performed. The 

introduction of a heterogeneous catalyst in this process is not an idea to put aside, since 

reliable results have been already obtained with the use of titanium-based catalysts 

(Apolinário, 2006). To assess this process efficiency, analysis such TPh, COD, BOD5, TOC, 

HPLC identification and eco-toxicity tests should also be executed. 

Bearing in mind the industrial application of ozonation and photo-Fenton´s process, it 

is recommended that in the future, these processes would be carried out on a continuous 

process, in order to evaluate the organic compounds degradation and provide the best 

depuration solutions. 
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