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“Para ser grande, sê inteiro: nada 

Teu exagera ou exclui. 
Sê todo em cada coisa. Põe quanto és 

No mínimo que fazes. 
Assim como em cada lago a lua toda 

Brilha, porque alta vive.” 

(Ricardo Reis, heterónimo de Fernando Pessoa, 1888-1935) 
 
 
 

“To be great, be whole: exclude nothing, 
Exaggerate nothing that is not you. 

Be whole in everything. Put all you are 
Into the smallest thing you do. 

So, in each lake, the moon shines with splendor 
Because it blooms up above.” 

 (Ricardo Reis, Fernando Pessoa’s heteronym, 1888-1935) 
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Abstract 

Over the years, there has been a growing interest in the design of artificial structured 

materials (known as “metamaterials”) that may interact in a controlled and desired way 

with electromagnetic radiation. Among the variety of media belonging to the class of 

metamaterials, a structure that has attracted significant attention due to its interesting 

potentials in the manipulation of electromagnetic fields is that formed by arrays of parallel 

metallic wires, known as "wire medium". 

This thesis is devoted to the analytical, numerical and experimental study of structured 

materials formed by arrays of metallic wires (not necessarily straight wires). The main 

topics that are studied are near-field transport and manipulation, negative refraction and far-

field focusing, and subwavelength waveguiding. 

The possibility of near-field transport using an array of tilted metallic wires is 

analytically and numerically investigated. It is demonstrated that wire media may enable 

the restoration of the electric field component parallel to the wires at the image plane, even 

when there is no electric field normal to interface. Moreover, we experimentally verified 

the full reconstruction (both in amplitude and phase) of the near-field using a lens formed 

by tilted wires. This suggests exciting applications for the tilted wire medium lens in near-

field measurement. 

The phenomenon of negative refraction and the prospects of far-field focusing are 

investigated in two different wire medium configurations. Firstly, we demonstrate 

analytically and numerically that an array of helical shaped metallic wires (or helices) may 

be regarded as a local uniaxial Epsilon-Negative (ENG) material even when the 

conductivity of the metal is very large (e.g., in the microwave regime) and, as a result, 
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enables a strong negative refraction over a wide frequency range. Then, taking advantage of 

the negative refraction, we demonstrate partial focusing of electromagnetic radiation using 

a planar lens formed by such composite material. On the other hand, the phenomenon of 

negative refraction and the related far-field focusing effect are also investigated in a 

spatially dispersive material formed by nonconnected crossed metallic wires. It is 

analytically, as well as numerically and experimentally demonstrated that a flat slab of such 

structured material may also provide partial focusing of electromagnetic radiation. Quite 

interestingly, it is shown that, in this case, the strength of the negative refraction effect can 

be controlled by changing the angle between the two sets of parallel metallic wires. 

A very promising route to achieve broadband and ultra-subwavelength waveguiding 

(e.g., at infrared, terahertz and microwave frequencies) is proposed. The idea is to couple 

the electromagnetic radiation to the spatially induced charge density waves supported by 

strongly coupled grids of metallic wires. It is shown both theoretically and experimentally 

that the characteristic spatial scale of these mesoscopic excitations (which are designated as 

“interlaced plasmons”) is determined by geometrical features, rather than from the 

electrical length of the metal elements, and that due to their wide band nature, weak 

sensitivity to metallic absorption, and subwavelength mode sizes, such spatially induced 

plasmons may have exciting applications in waveguiding in the nanoscale. 

Keywords 

Metamaterials, Wire Media, Spatial Dispersion, Subwavelength Imaging, Negative 

Refraction, Partial Focusing, Subwavelength Waveguiding. 
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Resumo 

Ao longo dos anos tem havido um interesse crescente em materiais artificialmente 

estruturados (designados por "metamateriais") que interajam de uma forma controlada e 

desejada com a radiação electromagnética. Entre a variedade de meios pertencentes à classe 

dos metamateriais, uma estrutura que tem atraído grande interesse em virtude das suas 

potencialidades na manipulação dos campos electromagnéticos é aquela formada por 

agregados de fios metálicos paralelos, designada por wire medium. 

Esta tese é dedicada ao estudo analítico, numérico e experimental de materiais 

estruturados formados por agregados de fios metálicos (não necessariamente fios rectos). 

Os principais tópicos estudados são o transporte e manipulação do campo próximo, a 

refracção negativa e focagem de campo distante, e o guiamento sub-λ  (λ  representa o 

comprimento de onda) de ondas electromagnéticas. 

A possibilidade de transporte do campo próximo usando um agregado de fios metálicos 

inclinados é investigada analiticamente e numericamente. É demonstrado que os agregados 

de fios (wire media) permitem a restauração da componente do campo eléctrico paralela 

aos fios, mesmo quando não existe campo eléctrico incidente normal à interface. Para além 

disso, demonstra-se experimentalmente a reconstrução total do campo próximo (amplitude 

e fase) utilizando uma lente de fios inclinados. Tal resultado sugere aplicações muito 

interessantes para a lente de fios inclinados na medição do campo próximo. 

Em seguida, investiga-se o fenómeno da refracção negativa e a focagem do campo 

distante em duas configurações diferentes de agregados de fios. Em primeiro lugar, 

demonstra-se analiticamente e numericamente que um agregado de fios metálicos em forma 

helicoidal (ou hélices) se comporta como um meio local uniaxial com permitividade 
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negativa (ENG) mesmo quando a condutividade do metal é muito grande (como acontece 

para frequências microondas). Como consequência, este meio estruturado possibilita uma 

refracção negativa forte numa banda de frequências larga. Em seguida, tirando partido da 

refracção negativa, demonstra-se um efeito de focagem parcial da radiação usando uma 

lente formada por fios helicoidais e com interfaces planas. Por outro lado, investiga-se 

também o fenómeno da refracção negativa e focagem do campo distante num meio com 

forte dispersão espacial formado por agregados de fios metálicos cruzados e não 

conectados. Demonstra-se analiticamente, bem como numericamente e experimentalmente 

que uma lente formada por tal material estruturado com interfaces planas também 

possibilita uma focagem parcial da radiação. De forma muito interessante, demonstra-se 

que neste caso a intensidade da refracção negativa pode ser controlada através da alteração 

do ângulo entre os dois conjuntos de fios metálicos paralelos.  

Por último, propõe-se uma nova e promissora forma de conseguir guiamento sub-λ  e de 

banda-larga de ondas electromagnéticas nas bandas de frequências de microondas, terahertz 

e infra-vermelho. A ideia é acoplar a radiação electromagnética às ondas de densidade de 

carga espacialmente induzidas que são suportadas por grelhas de fios metálicos fortemente 

acopladas. É demonstrado, tanto teoricamente como experimentalmente, que o período 

espacial característico destas excitações mesoscópicas (que são designadas como 

“plasmons entrelaçados”) é determinado por características geométricas, e não pelo 

comprimento eléctrico dos elementos metálicos. O facto de estas excitações existirem numa 

banda-larga de frequências, a sua fraca sensibilidade à absorção metálica, e a sua dimensão 

característica sub-λ  fazem com que os plasmons espacialmente induzidos possam ter 

aplicações promissoras no guiamento de ondas electromagnéticas na nano-escala. 
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I. INTRODUCTION 

I.1. Overview 

Nowadays, controlling and manipulating electromagnetic waves is essential in a broad 

variety of technologies and applications including telecommunication networks, and 

imaging and sensing systems. Lenses and optical fibers are some examples of important 

instruments developed for this purpose. These established devices exploit the interaction 

between electromagnetic waves and their constituent materials in order to achieve 

advantageous electromagnetic responses. 

Over the last years, however, a tremendous technological progress in several different 

areas has placed challenging demands related to the properties of materials. The desired 

electromagnetic responses are, in most cases, beyond the reach of naturally available 

materials. In fact, the electromagnetic properties of the materials directly available in nature 

correspond to a small subset of the physically realizable electromagnetic responses, 

implying that sometimes it may not be possible to find a natural material with the desired 

electromagnetic response. Hence, the study and design of artificial structured materials with 

tailor-made and often hitherto unattainable electromagnetic responses has been sought 

during the last years, stimulated by a continuous improvement of the characterization and 

fabrication technologies. 

Photonic and electromagnetic crystals (or band-gap materials) [1-4] are one of the 

examples of artificial structured media developed over the last twenty years that may go 

beyond the limitations of conventional materials. They consist of periodic arrangements of 
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dielectric or metal-dielectric elements. Similar to semiconductor materials in which the 

periodic potential affects the electron motion by creating allowed and forbidden electronic 

energy bands, in photonic and electromagnetic crystals the periodically distributed 

refractive index results in frequency band-gaps where the propagation of electromagnetic 

waves is forbidden. This anomalous response gives rise to multiple opportunities. The first 

reported application of photonic crystals was the inhibition of the spontaneous emission [1, 

5]. Later, photonic crystals have proven to be useful in many other applications such as 

waveguide and resonator components [6-9], antennas setups [10-11], lasing systems [12-

14], etc. 

In photonic crystals, the periodicity of the structure has to be comparable with the 

radiation wavelength ( a λ≈ , where a  is the lattice period of the crystal and λ  the 

wavelength) so that electromagnetic waves undergo diffraction effects and, as a 

consequence, there are electromagnetic band-gaps. On one hand, such requirement strongly 

restricts the range of frequencies where the structure can be operated. On the other hand, it 

precludes the treatment of the structure as a homogeneous material, and hence, the 

homogenization approach is not the most convenient way to describe the electromagnetic 

response of photonic crystals. 

A more recent and perhaps even more revolutionary development in the field of artificial 

structured materials goes by the name of metamaterials. This relatively new class of 

artificial materials typically consists of dielectric or metallic inclusions properly tailored in 

shape and size and arranged in a regular lattice, similarly to photonic crystals. However, 

unlike photonic crystals, the unit cell of metamaterials is much smaller than the wavelength 

of radiation ( a λ<< ). Hence, in contrast to photonic crystals and somehow similar to 

conventional solid-state materials, the waves which pass through a metamaterial see the 
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medium as a bulk material, or in other words, the waves do not feel the granularity of the 

material. Therefore, metamaterials can be characterized by physically meaningful 

homogenized constitutive parameters, i.e., effective permittivities and permeabilities [15-

16]. 

The main difference between metamaterials and standard solid-state materials is that the 

electromagnetic properties of such man-made materials are mainly determined by the 

geometry of the constitutive materials (inclusions), rather from the chemical composition of 

the constituent basic units. Hence, metamaterials offer a tremendous flexibility and an 

uncountable number of degrees of freedom in terms of possibly realizable electromagnetic 

responses. As a result, such microstructured composites may enable a meticulous and 

powerful manipulation of the electromagnetic fields and consequently an unprecedented 

control of the propagation of electromagnetic waves. 

Complex materials with anomalous properties such as negative index of refraction [17-

19], high index of refraction [20-23], extreme anisotropy [24], or near zero permittivity [25] 

have been a topic of intense research, mainly due to the possibility of overcoming the 

resolution and miniaturization barriers imposed by diffraction effects. This is known as 

diffraction limit and it is the major obstacle to the imaging of the fine details of an object 

source, as well as to the confinement and concentration of energy in small volumes. 

Nevertheless, it has been demonstrated that unlike what was believed before, the diffraction 

limit does not strictly prohibit spatial resolution and field confinement smaller than half of 

wavelength ( / 2λ ). This opens exciting new possibilities in several fields such as the 

realization of imaging devices with super-resolution [24, 26-27], fabrication of compact 

subwavelength waveguides and cavities [28-30], realization of recording media with ultra-
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high storage capacity [31], delivery and concentration (nanofocusing) of the optical energy 

on the nanoscale [32], just to name a few. 

An important class of metamaterials consists of periodic arrays of metallic wires. Such 

“wire media” have attracted considerable attention mainly due to their potentials in 

transporting and manipulating the electromagnetic radiation in the subwavelength scale [24, 

31, 33-35]. Moreover, several other interesting opportunities such as superlensing [36-38] 

and negative refraction [39-40] were reported in recent works. In this thesis, we investigate 

in detail novel potential applications of metamaterials structures formed by arrays of 

metallic wires (not necessarily straight wires). The electromagnetic problems are initially 

analyzed and discussed from a theoretical perspective using analytical models, and 

subsequently, numerically validated. Finally, using the insights given by the analytical and 

numerical approaches, we design and test experimentally the proposed solutions. 

Throughout this work the time dependence j te ω  is assumed. 

I.2. Organization of the Thesis 

The thesis is organized in 5 chapters and 1 appendix. 

In Chapter II, we investigate the near-field imaging capabilities of a metamaterial lens 

formed by tilted metallic wires. In order to provide sufficient background to this study, we 

start the chapter by reviewing some of the most well-known and relevant near-field 

imaging mechanisms. After this review, we address the problem of plane wave reflection 

and refraction at the interfaces of a metamaterial slab formed by tilted metallic wires using 

a nonlocal homogenization model and full-wave simulations. Moreover, we study the 

potentials of near-field transport of the proposed lens in different scenarios and for different 

source polarizations. In the last part of this chapter, we investigate theoretically and 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 5 

 

 

experimentally the possibility of reconstructing all the near-field Cartesian components of 

the electric field at the image plane by using the proposed tilted wire medium lens. 

The third chapter of the thesis is dedicated to the study of the related topics of negative 

refraction and far-field focusing in two different metamaterial structures formed by metallic 

wires. In the first part of the chapter (Sec. III.2), the electromagnetic response of a 

structured material formed by helical shaped wires (or helices) is thoroughly investigated 

using a developed analytical model based on homogenization theory and numerical 

simulations. In particular, the effective parameters of the composite material, as well as the 

band structures and the isofrequency contours are analytically and numerically 

characterized. In addition, the transmission characteristics of finite-thickness slabs formed 

by helical shaped wires are also characterized using the proposed analytical model and full-

wave simulations. Then, in Sec. III.2.4.3 we investigate the refraction of a Gaussian beam 

at the interfaces of the considered metamaterial slab. Finally, in Sec. III.2.5 we numerically 

study the imaging of a magnetic line source by a flat slab made of helical shaped wires. On 

the other hand, in Sec. III.3 we study the phenomenon of negative refraction in a crossed 

wire mesh of nonconnected metallic wires, and the possibility of taking advantage of this 

effect to obtain partial focusing. Specifically, in Sec. III.3.4 we investigate analytically, as 

well as numerically and experimentally, the possibility of using a flat slab of the considered 

structured material to produce a partial focusing of the electromagnetic radiation. Finally, in 

Sec. III.3.5 we discuss theoretically and numerically a strategy to boost the negative 

refraction effect in the crossed wire mesh. 

In Chapter IV, we discuss the possibility of trapping and guiding the radiation field far 

beyond the diffraction limit in an ultra-compact waveguide made of two mutually 

orthogonal and nonconnected meshes of parallel metallic wires. Specifically, we study the 
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dispersion properties of the surface wave modes supported by the considered metamaterial 

slab for a configuration with magnetic field perpendicular to both the arrays of wires and 

the direction of propagation (TM guided modes). In a first stage, we discuss heuristically 

the physical nature of these transverse magnetic guided modes. After this, we analyze 

analytically and numerically the dispersion characteristic of the guided modes, firstly 

assuming perfectly electric conducting (PEC) wires and then considering realistic metals 

(specifically, Ag wires). Finally, in Sec. IV.3.5, the dispersion properties of the TM guided 

modes supported by the structured slab are experimentally verified at microwaves using a 

fabricated prototype.  

In chapter V, the main conclusions of this work are outlined, as well as some future 

work. In Appendix A we study the transverse magnetic modes supported by a crossed wire 

grid formed by sets of wires perpendicular and parallel to the interface plane. 

I.3. Main Contributions 

The key contributions of the present thesis are: 

• Improvement of the polarization sensitivity of the wire medium lenses. 

• Establishment of a simple and practical method to fully restore the near-field 

radiated by an arbitrary source using a tilted wire medium lens. 

• Establishment of a new way to suppress the spatial dispersion effects that are 

inherent to wire media at microwave and low infrared frequencies by using helical 

shaped wires. 

• Demonstration of all-angle broadband negative refraction and partial focusing of 

electromagnetic radiation with a flat slab formed by helical shaped metallic wires. 
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• Demonstration that a spatially dispersive material formed by nonconnected crossed 

metallic wires may be used as a planar lens that focuses electromagnetic radiation. 

• Establishment of a novel route to achieve broadband and ultra-subwavelength 

waveguiding in the perfectly conducting limit using strongly coupled wire grids. 

In the next chapters we expand each of the above topics, and compare the new 

contributions with the open literature. 

I.4. List of Author Publications 

I.4.1. Articles in Journal 

[J.1] T. A. Morgado, J. S. Marcos, M. G. Silveirinha, S. I. Maslovski, “Ultraconfined 

Interlaced Plasmons”, Phys. Rev. Lett., vol. 107, no. 6, p. 063903 (4 pages), August 

2011. 

[J.2] S. I. Maslovski, T. A. Morgado, M. G. Silveirinha, C. S. R. Kaipa, A. B. Yakovlev, 

"Generalized additional boundary conditions for wire media", New J. Phys., vol. 12, 

no. 11, p. 113047 (19 pages), November 2010. 

[J.3] T. A. Morgado, J. S. Marcos, M. G. Silveirinha, S. I. Maslovski, “Experimental 

verification of full reconstruction of the near-field with a metamaterial lens”, Appl. 

Phys. Lett., vol. 97, no. 14, p. 144102 (3 pages), October 2010. 

[J.4] T. A. Morgado, M. G. Silveirinha, “Focusing of electromagnetic radiation by a flat 

slab of a crossed wire mesh metamaterial”, Metamaterials, vol. 4, no. 2-3, pp. 112-

118, February 2010. 

[J.5] T. A. Morgado, M. G. Silveirinha, “Transport of an arbitrary near-field component 

with an array of tilted wires”, New J. Phys., vol. 11, no. 8, p. 083023 (21 pages), 

August 2009. 



8  I. INTRODUCTION 

 

 

I.4.2. Articles in Conference Proceedings 

[C.1] T. A. Morgado, J. S. Marcos, M. G. Silveirinha, S. I. Maslovski, "Trapping the 

light in a crossed wire mesh: broadband and ultra-subwavelength waveguiding", in 

Proc. Metamorphose International Congress on Advanced Electromagnetic 

Materials in Microwaves and Optics – Metamaterials 2011, Barcelona, Spain, 

October 2011. 

[C.2] T. A. Morgado, M. G. Silveirinha, "Partial Focusing of Electromagnetic Radiation 

by a Planar Lens Formed by Crossed Metallic Wires", in Proc. Metamorphose 

International Congress on Advanced Electromagnetic Materials in Microwaves and 

Optics – Metamaterials 2010, Karlsruhe, Germany, September 2010. 

[C.3] S. I. Maslovski, T. A. Morgado, M. G. Silveirinha, “The auxiliary source method 

and its application to the reflection problem at an interface with tilted wires”, in 

Proc. International Symposium on Electromagnetic Theory, Berlin, Germany, 

August 2010. 

[C.4] T. A. Morgado, J. S. Marcos, S. I. Maslovski, M. G. Silveirinha, “Experimental 

Study of the Transport of an Arbitrary near-Field Component with an Array of 

Tilted Wires”, in Proc. IEEE AP-S/URSI International Symposium on Antennas and 

Propagation, Toronto, Canada, July 2010. 

[C.5] T. A. Morgado, M. G. Silveirinha, "Transport of an Arbitrary Near-Field 

Component with an Array of Tilted Wires", in Proc. Metamorphose International 

Congress on Advanced Electromagnetic Materials in Microwaves and Optics – 

Metamaterials 2009, London, United Kingdom, September 2009. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 9 

 

 

[C.6] T. A. Morgado, M. G. Silveirinha, "Guided Modes in a Metamaterial Slab Formed 

by Crossed Metallic Wires", in Proc. Conf. on Telecommunications- ConfTele, 

Santa Maria da Feira, Portugal, May 2009. 

References 

[1] E. Yablonovitch, “Photonic band-gap crystals”, J. Phys: Condens. Matter, vol. 5, p. 

2443, 1993. 

[2] J. B. Pendry, “Photonic band structures”, J. Mod. Opt., vol. 41, p. 209, 1994. 

[3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of 

Light, Princeton, NJ: Princeton University Press, 1995. 

[4] J. D. Joannopoulos, P. R. Villeneuve, S. Fan, “Photonic crystals: putting a new twist 

on light”, Nature, vol. 386, p. 143, 1997. 

[5] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and 

Electronics”, Phys. Rev. Lett., vol. 58, p. 2059, 1987. 

[6] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, 

“High Transmission through Sharp Bends in Photonic Crystal Waveguides”, Phys. 

Rev. Lett., vol. 77, p. 3787, 1996. 

[7] S. G. Johnson, S. Fan, P. R. Villeneuve, and J. Joannopoulos, L. A. Kolodziejski, 

“Guided modes in photonic crystal slabs”, Phys. Rev. B, vol. 60, p. 5751, 1999. 

[8] M. Loncar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, 

“Waveguiding in planar photonic crystals”, Appl. Phys. Lett., vol. 77, p. 1937, 2000. 

[9] M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A 

waveguiding mechanism through localized coupled cavities in three-dimensional 

photonic crystals”, Phys. Rev. B, vol. 61, p. 11855, 2000. 

[10] E. R. Brown, C. D: Parker, and E. Yablonovitch, “Radiation properties of a planar 

antenna on a photonic-crystal substrate”, J. Opt. Soc. Am. B, vol. 10, p. 404, 1993. 

[11] B. Temerkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. 

M. Hom “Photonic crystal-based resonant antenna with a very high directivity”, J. 

Appl. Phys., vol. 87, p. 603, 2000. 



10  I. INTRODUCTION 

 

 

[12] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. I. 

Kim., “Two-Dimensional Photonic Band-Gap Defect Mode Laser”, Science, vol. 284, 

p. 1819, 1999. 

[13] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single 

defect in a photonic bandgap structure”, Nature, vol. 407, p. 608, 2000. 

[14] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization 

Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure 

Design”, Science, vol. 293. p. 1123, 2001. 

[15] M. G. Silveirinha, “Metamaterial homogenization approach with application to the 

characterization of microstructured composites with negative parameters”, Phys. Rev. 

B, vol. 75, p. 115104, 2007. 

[16] C. R. Simovski and S. A. Tretyakov, “Local constitutive parameters of metamaterials 

from an effective medium perspective”, Phys. Rev. B, vol. 75, p. 195111, 2007. 

[17] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, 

“Composite Medium with Simultaneously Negative Permeability and Permittivity”, 

Phys. Rev. Lett., vol. 84, p. 4184, 2000. 

[18] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental Verification of Negative 

Index of Refraction”, Science, vol. 292, p. 77, 2006. 

[19] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, 

“Three-dimensional optical metamaterials with a negative refractive index”, Nature, 

vol. 455, p. 376, 2008. 

[20] J. T. Shen, P. B. Catrysse, S. Fan, “Mechanism for Designing Metallic Metamaterials 

with a High Index of Refraction”, Phys. Rev. Lett., vol. 94, p. 197401, 2005. 

[21] J. Shin, J.-T. Shen, S. Fan, “Three-Dimensional Metamaterials with an Ultrahigh 

Effective Refractive Index over a Broad Bandwidth”, Phys. Rev. Lett., vol. 102, p. 

093903, 2009. 

[22] M. G. Silveirinha, C. A. Fernandes, “Nonresonant structured material with extreme 

effective parameters”, Phys. Rev. B, vol. 78, p. 033108 , 2008. 

[23] M. G. Silveirinha, C. A. Fernandes, J. R. Costa, C. R. Medeiros, “Experimental 

Demonstration of a Structured Material with Extreme Effective Parameters at 

Microwaves”, Appl. Phys. Lett., vol. 93, p. 174103, 2008. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 11 

 

 

[24] P. A. Belov, Y. Hao, and S. Sudhakaran, “Subwavelength microwave imaging using 

an array of parallel conducting wires as a lens”, Phys. Rev. B, vol. 73, p. 033108, 

2006. 

[25] M. Silveirinha, N. Engheta, “Tunneling of Electromagnetic Energy through 

Subwavelength Channels and Bends using ε-Near-Zero Materials”, Phys. Rev. Lett., 

vol. 97, p. 15703, 2006. 

[26] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett., vol. 85, p. 

3966, 2000. 

[27] A. Grbic, and G. V. Eleftheriades, “Overcoming the diffraction limit with a planar left 

handed transmission line lens”, Phys. Rev. Lett., vol. 92, p. 117403, 2004. 

[28] N. Engheta, “An Idea for Thin Subwavelength Cavity Resonators Using Materials 

with Negative Permittivity and Permeability”, IEEE Antennas Wireless Propag. Lett., 

vol. 1, p. 10, 2002. 

[29] A. Alù, N. Engheta, “Mode Excitation by a Line Source in a Parallel-Plate Waveguide 

with a Pair of Parallel Double-Negative and Double Positive Slabs”, Proc. 2003 IEEE 

Antennas and Propag. Soc. Int. Symposium, vol. 3, p. 359, 2003. 

[30] A. Alù, N. Engheta, “Optical Nanotransmission Lines: Synthesis of Planar Left-

Handed Materials in the Infrared and Visible Regimes”, J. Opt. Soc. Am. B, vol. 23, p. 

571, 2006. 

[31] M. G. Silveirinha, P. A. Belov, and C. R. Simovski, “Subwavelength Imaging at 

Infrared Frequencies Using an Array of Metallic Nanorods”, Phys. Rev. B, vol. 75, p. 

035108, 2007. 

[32] M. I. Stockman, “Nanofocusing of Optical Energy in Tapered Plasmonic 

Waveguides”, Phys. Rev. Lett., vol. 93, p. 137404, 2004. 

[33] P. A. Belov, Y. Zhao, S. Tse, M. G. Silveirinha, C. R. Simovski, S. Tretyakov, Y. 

Hao, and C. Parini, “Transmission of images with subwavelength resolution to 

distances of several wavelengths in the microwave range”, Phys. Rev. B, vol. 77, p. 

193108, 2008. 

[34] P. Ikonen, C. Simovski, S. Tretyakov, P. Belov, and Y. Hao, “Magnification of 

subwavelength field distributions at microwave frequencies using a wire medium slab 

operating in the canalization regime”, Appl. Phys. Lett., vol. 91, p. 104102, 2007. 



12  I. INTRODUCTION 

 

 

[35] G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, “Guiding, Focusing, and 

Sensing on the Subwavelength Scale using Metallic Wire Arrays”, Phys. Rev. Lett., 

vol. 99. p. 053903, 2007. 

[36] M. G. Silveirinha, “Artificial plasma formed by connected metallic wires at infrared 

frequencies”, Phys. Rev. B, vol. 79, p. 035118, 2009. 

[37] M. G. Silveirinha, C. A. Fernandes, and J. R. Costa, “Superlens made of a 

metamaterial with extreme effective parameters”, Phys. Rev. B, vol. 78, p. 195121, 

2008. 

[38] M. G. Silveirinha, C. R. Medeiros, C. A. Fernandes, and J. R. Costa, “Experimental 

verification of broadband superlensing using a metamaterial with an extreme index of 

refraction”, Phys. Rev. B, vol. 81, p. 033101, 2010. 

[39] Y. Liu, G. Bartal, X. Zhang, “All-angle negative refraction and imaging in a bulk 

medium made of metallic nanowires in the visible region”, Opt. Express, vol. 16, p. 

15439, 2008. 

[40] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical 

Negative Refraction in Bulk Metamaterials of Nanowires”, Science, vol. 321, p. 930, 

2008. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 13 

II. MANIPULATING THE NEAR-FIELD WITH A 
TILTED WIRE MEDIUM LENS 

II.1. Introduction 

It is well known, since the works of Lord Rayleigh [1] and Ernst Abbe [2] that the 

resolution of common imaging devices is restricted by the wavelength of light (diffraction 

limit). According to their studies, features smaller than approximately half-wavelength of 

the light are invariably absent from the image created by conventional optical lenses. But 

why does this resolution restriction occurs? As discussed next, the answer is enclosed in the 

near-field spectrum of the object source. 

The near-field can be seen as the slight extension of the electromagnetic fields existing 

inside a certain material beyond its physical boundary. Its existence results from the 

necessary continuity of the field amplitudes and energy across the interface of the media. In 

contrast with the far-field that radiates freely from the source and hence can be captured by 

common lenses, the near-field has an inherent evanescent wave character, which causes the 

exponential decay of its amplitude in usual natural available materials, and thus the 

conventional optical systems are unable to interact with such high-frequency spatial 

harmonics fields. Since the subwavelength details of the object spatial structure are locked 

away in the near-field, the answer to realize imaging devices with super-resolution may be 

given by complex materials that could interact with these evanescent fields. 

In this chapter, some of the most significant and promising subwavelength imaging 

approaches and technologies are introduced and explained. After this, we investigate the 
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potentials of near-field transport of a metamaterial lens formed by tilted metallic wires. 

Finally, in the last part of the chapter we propose a simple and innovative approach to full 

reconstruct the near-field of an excitation source using the structured lens formed by tilted 

wires. 

II.2. Subwavelength Imaging Mechanisms 

II.2.1. Superlensing 

In the beginning of last decade, J. B. Pendry introduced a theoretical possibility to surpass 

the diffraction limit that affects conventional imaging devices. It was theoretically 

demonstrated in the manuscript of Ref. [3] that a material slab with negative index of 

refraction ( 1n = − ), specifically a double-negative material with 1ε μ= = − , makes a 

perfect lens, with unlimited resolution independent of the wavelength of light and of the 

polarization of the light. Such lens was designated in Ref. [3] as “superlens”, and its 

operation is based on two distinct phenomena: the propagating modes (associated with the 

far-field) of a source are focused due to the negative refraction, whereas the evanescent 

modes (associated with the near-field) are restored due to resonant excitation of surface 

plasmons supported by the double-negative medium. The superlens proposed by Pendry is 

exactly the same structure studied by Veselago about thirty years before in his pioneering 

work [4], denominated there as pseudo-lens. Nevertheless, Veselago only perceived the 

existence of the negative refraction effect at the interfaces of the double negative lens. The 

possibility of enhance the near-field spectrum of the source taking advantage of the 

resonant excitation of surface waves was unnoticed to him. Here, we are specifically 

interested in the discussion of this possibility of restoring the near-field spectrum. The 
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phenomenon of negative refraction that is directly related to far-field excitations will be 

discussed later in Chapter III. 

Stimulated by such theoretical works and by the development of advanced fabrication 

technologies, approximately ten years ago researchers have fabricated the first artificially 

structured material (metamaterial) that exhibits negative isotropic index of refraction at 

microwave frequencies [5]. On the other hand, a truly negative isotropic index of refraction 

in the optical domain was only verified very recently [6], owing to the difficulty to create 

magnetic responses at such range of frequencies. 

Despite all the promising imaging potentials of the superlens based on double-negative 

materials, it soon became evident that such imaging mechanism has some fundamental 

physical constraints in obtaining high resolutions that can be hardly surpassed. In addition 

to the numerous practical difficulties related to the realization of materials with negative 

isotropic index of refraction, the strong sensitivity to losses and material dispersion are also 

key limitations [7-8]. 

An alternative solution to the Pendry’s perfect lens was introduced by Maslovski et al. 

in Ref. [9]. In their work it was shown that a system of two phase conjugation planes or 

sheets placed in free-space has the same behavior of the Pendry’s superlens, providing the 

negative refraction effect and also the enhancement of the evanescent waves. The drawback 

of this system is the necessity to involve nonlinear materials or devices, making it only 

feasible for single-frequency (steady-state) operations. Such idea was also later discussed 

by Pendry in its publication of Ref. [10] using the equivalent designation of time reversal 

instead of phase conjugation as in Ref. [9]. 

In situations where only the restoration of the near-field spectrum of the source is 

required, without focusing of the propagating waves, there are interesting alternatives to 
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Pendry’s lens. In fact, such possibility was also pointed out by Pendry in Ref. [3]. He stated 

that “in a system in which all the dimensions are smaller than the wavelength of light… we 

can neglect radiative effects decoupling electrostatic and magnetostatic fields”, which 

means that in the near-field domain the electric and magnetic responses are nearly 

decoupled. As a consequence, only one of the material parameters (ε  or μ ) need to be 

negative to support resonant guided modes for one specific polarization. Hence, it is 

sufficient to use materials with negative permittivity to restore the evanescent spectrum of 

TM-polarized waves (or p-polarized waves; magnetic field parallel to the interface), and 

analogously materials with negative permeability to enhance the near-field of TE-polarized 

waves (or s-polarized waves; electric field parallel to the interface). In Ref. [3] it was 

suggested that a simple way to may restore the near-field of TM-polarized waves at optical 

frequencies is using a slab made of a noble metal (e.g. silver, gold, and copper). The 

underlying idea is that at such range of frequencies the permittivity of metals is 

predominantly real and negative, which may contrast with the real and positive permittivity 

of the surrounding space (e.g. free space). As a consequence, there are plasmonic 

excitations (surface plasmons) at both metal-dielectric interfaces which may enable the 

enhancement of the evanescent waves. Following such findings, in Ref. [11] it was 

experimentally demonstrated the restoration of the near-field using a silver superlens. 

Similarly, it has been shown that artificial material slabs with an effective negative 

permeability may also be used as near-field imaging systems for TE-polarized waves owing 

to the excitation of magnetoinductive surface waves [12-13]. 

In Ref. [14] new ways to restore the evanescent spectrum and thus achieve 

subwavelength near-field imaging were also introduced. It was shown that a system of two 
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coupled planar material sheets possessing surface mode resonances can be used to enhance 

the evanescent waves. This alternative system was proved to be realizable at microwave 

frequencies by grids or arrays of resonant particles. 

In a recent manuscript [15] Silveirinha et al. also proposed a new mechanism of near-

field superlensing based on a material formed by an ultra-dense array of nonconnected 

crossed metallic wires. It was shown by the same authors in a preceding publication [16] 

that such structured material may behave as a material with extremely large positive index 

of refraction that supports the propagation of ultra-subwavelength guided modes. Following 

such results, in Ref. [15] it is theoretically proven the possible excitation of these deeply 

subwavelength guided modes by the evanescent spectrum of a source, enabling in this way 

the enhancement of evanescent waves and thus the restoration of the near-field. Such near-

field imaging mechanism was then experimentally verified at microwave frequencies in 

Ref. [17]. 

II.2.2. Subwavelength Imaging with Photonic Crystals 

The promising electromagnetic properties achievable with double-negative metamaterials 

are difficult to realize in practice, as already discussed above. Hence, alternative 

configurations based on photonic crystals have been also intensively investigated [18-25]. 

In contrast to Pendry’s lens, in photonic crystals negative refraction may be achieved 

without relying on a negative index of refraction of the material. Negative refraction is 

obtained due to a specific form of isofrequency contours, whereas the enhancement of the 

evanescent spectrum arises due to the excitation of resonant surface plasmons. Refs. [20-

21] introduced configurations that exploit the effect of negative refraction and the 
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enhancement of the near-field spectrum close to the band-gap edges of photonic crystals, 

thus allowing subwavelength imaging. 

Nevertheless, similar to the superlens based on double-negative media also the photonic 

crystal–based superlens presents some practical drawbacks. At first, its resolution depends 

on the lattice period of the structure and also of the dielectric permittivity of the host 

medium. Hence, an easy way to increase the resolution could be achieved by 

simultaneously increasing the host permittivity, and by decreasing the lattice period [20]. 

However, in the optical domain large permittivity of real media is associated with high 

losses, which hinder really subwavelength resolutions (less than / 4λ ). On the other hand, 

in order to achieve negative refraction in photonic crystals, the structure has to be operated 

close to the band-gap boundary. Hence, there is a limited range of frequencies (or 

wavelengths) where the photonic crystal can be operated and consequently the crystal-

lattice spacing is also restricted ( a λ≈ ). Moreover, there still is another factor that 

deteriorates the imaging properties of superlenses based on photonic crystals, which is 

related with the multiple reflections suffered at the interfaces and that disturb the image 

quality. Such problem is a consequence of the finite thickness of the lens and of the 

mismatch between the wave impedances of air and photonic crystal. 

II.2.3. Canalization Regime 

Some research groups, during their studies of the imaging properties of photonic crystals 

noticed that, in certain circumstances, the physical mechanism behind the image 

transmission was not the negative refraction effect [26-30]. They found that the imaging 

mechanism was neither based on negative refraction nor on the enhancement of evanescent 

waves [26-30]. Specifically, such regime relies on the transformation of the whole source-
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radiation spatial spectrum (including evanescent free-space harmonics) into propagating 

crystal eigenmodes at the first interface of the crystal. All these eigenmodes travel in a 

fixed direction with speed of light, carrying the near-field distribution with super-resolution 

and delivering it at the back interface. Such regime was designated by canalization in Ref. 

[30], and becomes possible if the crystal has a flat isofrequency contour and its thickness is 

equal to an integer number of half-wavelengths (Fabry-Perot resonance). The first requisite 

allows that all the spatial harmonics created by a source (including evanescent waves) and 

refracted into the interface have the same longitudinal components of the wave vector and 

the same group velocity. On the other hand, the Fabry-Perot resonance condition allows 

eliminating the reflections at the interface of the crystal for any angle of incidence, 

including complex angles (i.e., evanescent waves), and hence there is total transmission of 

the incident radiation. It is important to stress that, in contrast to an ordinary lens, or even 

the Pendry’s superlens, which form a focal spot of the electromagnetic radiation at the 

image plane, in the canalization regime the crystal operates as a waveguide delivering the 

near-field from the input interface to the output interface. 

Based on such ideas, a few years ago it was suggested to use an array of parallel metallic 

wires to achieve such canalization regime at microwave frequencies [31]. In Refs. [31-33], 

it was demonstrated that such “wire medium lens” is able to manipulate and canalize a 

complex near-field distribution in the microwave band with super-resolution (at least five 

times superior to that obtained with conventional lenses). The image resolution of such 

structured lens depends solely of the lattice period of the structure [32], similar to what 

happens in photonic crystals, but in contrast here the structure does not have to necessarily 

operate in a specific frequency band where it exhibits negative refraction and thus the 

lattice period (i.e., the spatial resolution) can be made as small as required. As explained in 
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Refs. [31-32], the “wire medium lens” can be regarded as a set of uncoupled waveguides 

having subwavelength dimensions (each of the metallic wires) that guide the radiation pixel 

to pixel from the object plane to the image plane. In Ref. [34] it was demonstrated that this 

“wire medium lens” provide a unique opportunity to transport the subwavelength details of 

the source without significant distortion to nearly unlimited distances, with good tolerance 

to material losses and a fairly large bandwidth (around 15%). In addition, it was shown that 

arrays of wires in which the space between wires is gradually increased (or decreased) may 

be used to magnify (or demagnify) a near-field distribution [34-35]. Such “magnifying wire 

medium lens” may allow imaging near-field distributions into images with details larger 

than wavelength that can be captured in the far-field (e.g., by conventional lenses). On the 

other hand, the “demagnifying wire medium lens” allows creating complex near-field 

images from far-field distributions. 

The implementation of the canalization regime in terahertz and infrared bands was also 

numerically demonstrated using a structure formed by silver nanorods embedded in a block 

of chalcogenide glass [36-37]. Image resolutions of the order of /10λ  and even larger 

were reported [36-37]. At higher frequencies including the visible range such “wire 

medium lens” does not operate so effectively since metals lose the electric conductive 

properties and begin to exhibit a plasmonic behavior. Nevertheless, it was demonstrated 

that a similar canalization regime can be obtained at the optical range using a layered 

metal-dielectric structure [38]. Structured materials consisting of alternating metal-

dielectric layers but with cylindrical shape, have been explored as imaging devices that, 

similar to the “magnifying wire medium lens” at microwave and terahertz frequencies, 

allow bringing subwavelength images into the far-field at the optical band [39-42]. Such 

far-field subwavelength imaging devices are designated by hyperlenses. 
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II.2.4. Radiationless Electromagnetic Interference 

A distinct subwavelength focusing approach from all already discussed was recently 

introduced by Merlin [43] and is designated by Radiationless Electromagnetic Interference 

(REI). It is based on patterned planar subwavelength structures that interact with an 

incoming plane wave to obtain a desired near-field distribution. Similar to the Fresnel’s 

zone plates [43-44], the designed structure permits to control the near-field so that the 

evanescent waves exit the subwavelength plates in a pattern set by the structure design, 

which forces them to converge to a spot arbitrarily small on the focal plane. 

II.3. Transport of an Arbitrary Near-Field Component with a Tilted 
Wire Medium Lens 

Imaging devices relying on the canalization principle are particularly robust solutions, 

namely those based on arrays of parallel metallic wires [see Sec. II.2.3]. Such “wire 

medium lens” has several advantages in the manipulation of near-field distributions when 

compared to imaging devices based on the enhancement of the evanescent spectrum 

(superlenses). Since the operation of this structured lens does not rely on a resonant 

response of the material as in a superlens, the wire medium lens is dramatically less 

sensitive to losses. Moreover, in contrast to the superlens that, in practice, must have 

thickness less than half-wavelength in order that the evanescent waves can be enhanced, the 

thickness of the “wire medium lens” may be of several wavelengths. Hence, differently 

from the superlens, the “wire medium lens” allows imaging the subwavelength details at 

long distance [34]. 

In this section we study the potentials of near-field manipulation and transport of a 

modified configuration of the conventional setup formed by metallic wires normal to the 
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interfaces [31].  The major motivation for this study is that despite all the qualities referred 

to above (Sec. II.2.3), the standard “wire medium lens” is polarization sensitive and only 

enables subwavelength imaging of p-polarized waves (magnetic field is parallel to the 

interface). To overcome this deficiency, we investigated if by tilting the wires along a 

suitable direction of space (so that the electric field has nontrivial projection onto the 

wires), the near field details can be captured, even when there is only electric field parallel 

to the interface (s-polarized waves). 

II.3.1. Homogenization Model 

The structure considered here consists of a periodic array of parallel metallic wires with 

finite length, as illustrated in Fig. 2.1. The wires are arranged in a square lattice with lattice 

period a  and are embedded in a dielectric host with relative permittivity hε . The wires 

have radius wr  and are oriented along the direction ˆ ˆ ˆsin cosy zα α α= +u u u  (forming an 

angle α  with the z direction) (Fig. 2.1), where ˆ yu  and ˆ zu  are the unit vectors along the 

coordinate axes. 

y  
z  

x  

ûα  seca α  α

a

Lw

 
Fig. 2.1. Tilted square array of metallic wires. The metallic wires lie in planes parallel to yoz plane and are 
oriented along the direction ˆ ˆ ˆsin cosy zα α α= +u u u . 

The tilted wire medium of Fig. 2.1 is characterized by the following dielectric function 

[45-46]: 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 23 

( ) ( )
( )

2

, , 2 2
ˆ ˆ ˆ ˆ ˆ ˆ , , 1

/
p

eff h x x p p eff eff
h

k
c k

αα α α αα α
α

β
ε ε ε ε ω

ε ω
= + + = −

−
u u u u u u ,      (2.1) 

where ˆ ˆ ˆcos sinp y zα α= −u u u  is the unit vector normal to the wires (see Fig. 2.2a), 

ˆ.kα α= k u  is the projection of the wave vector ( , , )x y zk k k=k  onto the direction of the 

wires, and pβ  is the plasma wave number, which only depends on the lattice period a  and 

on the radius of the wires wr  [45], 
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It has been known for some time that the wire media are characterized by a strongly 

spatially dispersive response [45]. This property is a consequence of the fact that the 

metallic wires are spanned over several unit cells. As a result, the polarizability acquired by 

the metallic inclusions in a given unit cell does not depend uniquely on the behavior of the 

macroscopic fields in the considered cell but also on the macroscopic fields at distances 

larger than the characteristic dimension of the unit cell, thus implying a nonlocal response 

of the medium. In fact, this property can be inferred from the dielectric function that 

describes the medium (Eq. (2.1)), since it depends not only on the frequency but also on the 

wave vector. One of the consequences of the nonlocal response of a material is the 

emergence of additional waves, i.e., for a fixed frequency and direction of propagation, the 

number of planes waves that propagates inside a spatially dispersive material may exceed 

the two independent plane waves (each one associated with a different polarization) 

supported by conventional local materials. Specifically, in this particular case the wire 

medium supports the propagation of three different electromagnetic plane wave modes 

(transverse electromagnetic (TEM) mode, transverse electric (TE) mode, and transverse 
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magnetic (TM) mode) [45], in contrast with the usual uniaxial crystals which only support 

two different plane waves (ordinary and extraordinary waves) [47-48]. The emergence of 

the additional wave (TM mode) is a consequence of the discussed strong spatially 

dispersive response (or nonlocal response) that characterizes the wire medium even at low 

frequencies [45]. The dispersion characteristic for the electromagnetic modes can be 

obtained in the same manner as in Refs. [49-50], and the electric field polarization can be 

found in [J.5]. 
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Fig. 2.2. Two different cuts of the tilted wire medium slab (Fig. 2.1). (a) Configuration I: plane of incidence is 
the yoz plane and the incident wave is TM-z polarized inc inc inc ˆ[ (0, , ), ]y z xk k H= =k H u . (b) Configuration II: 
plane of incidence is the xoz plane and the incident wave is TE-z polarized inc inc inc ˆ[ ( ,0, ), ]x z yk k E= =k E u . 

Next, we concentrate our study on the analysis of the plane wave scattering problem for 

two different configurations (Fig. 2.2a-b). In the first configuration, it is assumed that the 

incident plane wave has wave vector inc inc(0, , )y zk k=k  and that the magnetic field is 

parallel to the interface (TM-z polarization) (Fig. 2.2a). On the other hand, in the second 

configuration the incoming wave propagates in the xoz plane with wave vector 

inc inc( ,0, )x zk k=k , and the incident electric field is parallel to the interface (TE-z 

polarization) (Fig. 2.2b).  

The electromagnetic fields in all space for both configurations (Fig. 2.2a-b) can be 

written as 
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where co co( , )tρ  are the reflection and transmission coefficients for the co-polarized wave, 

respectively, whereas cr cr( , )tρ  are the reflection and transmission coefficients for the cross-

polarized wave, respectively. incE , ref
coE , ref

crE , tr
coE , and tr

crE  are the incident, reflected co-

polarized, reflected cross-polarized, transmitted co-polarized, and transmitted cross-

polarized electric fields, respectively. TE,TM,TEMA±  are the unknowns amplitudes of the 

excited modes in the titled wire medium, TE,TM,TEM
±k  are the wave vectors of the excited 

modes [49-50], and TE,TM,TEM
±E  are the electric fields inside the metamaterial and are defined 

consistently with Eqs. (3)-(5) of [J.5]. The reflected co-polarized and cross-polarized 

electric fields are defined by Eqs. (8a-b) of [J.5]. The transmitted co-polarized and cross-

polarized electric fields are given by analogous equations. The magnetic field either in the 

air regions or in the wire medium region can be easily obtained using the classical 

Maxwell-Faraday equation. For more details about the spatially dispersive homogenization 

model the reader is referred to the journal publication [J.5] and to Ref. [50]. 

As a consequence of the strong spatial dispersion effects that characterize the structured 

medium under study (Fig. 2.1) and which causes the emergence of an additional 

propagating plane wave, the classical boundary conditions which impose that the tangential 

components of the electric and magnetic fields are continuous at the interfaces are 

insufficient to solve the plane wave scattering problem. An additional boundary condition 



26 II. MANIPULATING THE NEAR-FIELD WITH A TILTED WIRE MEDIUM LENS 

(ABC) is required at the interfaces between the effective wire medium and air ( 0z =  and 

L ). In Refs. [49, 50], it was proven that the normal component of the electric field 

multiplied by the host permittivity hε  must be continuous at both interfaces, i.e. 

air side wire medium side
ˆ ˆ. .z h zε=E u E u .    (2.4) 

This ABC is equivalent to impose that the microscopic electric current that flows along 

each wire vanishes at both interfaces ( d,av ˆ. 0α =J u  at 0z +=  and z L−= ) [50]. Using this 

ABC and the classical boundary conditions, we obtain a 10 10×  linear system which can be 

easily solved numerically with respect to the unknowns. 

When the metallic wires are densely packed (limit / 0wa L →  with /wr a  fixed, being a  

the lattice constant and wL  the length of the wires), it is a good approximation to describe 

the wire medium as a material with extreme anisotropy being the optical axis parallel to the 

wires, i.e., with dielectric function of the form 

( )ˆ ˆ ˆ ˆ ˆ ˆeff h x x p p α αε ε= + +∞u u u u u u .    (2.5)  

In such circumstances, the effect of the additional wave (TM mode) can be ignored since its 

attenuation constant is very large, and thus the wave propagation in the wire medium can be 

described solely in terms of the TE and of the TEM modes. Hence, the electromagnetic 

response of the wire medium can be regarded as local (spatial dispersion effects are 

negligible when / 0wa L → ), and thus the ABCs are not required. 

II.3.2. Reflection and Transmission Characteristics 

It was shown in previous works [31-34] that an array of metallic wires normal to the 

interface enables the transport of the subwavelength details associated with the component 
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of electric field parallel to the wires. The subwavelength information associated with the 

remaining Cartesian components of the field is not imaged. Consequently, the setup 

introduced in [31] is polarization sensitive, being transparent to the s-polarized waves 

(electric field parallel to the interface). Our objective is to study if by tilting the wires it is 

still possible to capture and propagate the component of the electric field parallel to the 

wires. In particular, we want to show that by tilting the wires along a suitable direction of 

space (so that the electric field has a nontrivial projection onto the wires), it is possible to 

transport the subwavelength information associated with s-polarized waves. 

In order to analyze the electromagnetic response of the tilted wire medium slab when 

illuminated by p-polarized waves (configuration I; see Fig. 2.2a) and also s-polarized waves 

(configuration II; see Fig. 2.2b), we define the effective reflection and transmission 

coefficients in the parallel direction to the wires ( ˆαu ) as follows: 

( ) ( )ref ref inc tr tr inc
eff co co cr cr eff co co cr crˆ ˆ ˆ ˆ. . , . . .t t tα α α αρ ρ ρ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= + = +⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦E E u E u E E u E u  (2.6) 

Using Eqs. (2.6), next we study the dependence of the effective reflection and transmission 

coefficients on the transverse component of the wave vector for the two different 

configurations (Fig. 2.2), using the spatially dispersive homogenization model (Eq. (2.1)), 

the extreme anisotropy model (Eq. (2.5)), and full-wave simulations obtained with the 

electromagnetic simulator CST Microwave Studio 2008 [51]. 

II.3.2.1 Configuration I 

To begin with, we consider the case where the tilted wire medium is illuminated by a plane 

wave that propagates in the yoz plane and is TM-z polarized (configuration I; see Fig. 2.2a). 

It is simple to verify that for such configuration the cross-polarized fields vanish and 
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consequently the cross-polarized coefficients are zero ( cr cr 0tρ = = ). Hence, Eqs. (2.6) 

reduce to 

ref inc tr inc
eff co co eff co coˆ ˆ ˆ ˆ. . , . . .t tα α α αρ ρ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦E u E u E u E u  (2.7) 

The dependence of the effective reflection and transmission coefficients (absolute 

values) on the normalized transverse component of the wave vector yk  ( ( / )siny ik cω θ=  

for a propagating incoming wave, being iθ  the angle of incidence) are depicted in Fig. 2.3. 

The solid curves are associated with the spatially dispersive model (nonlocal model), the 

dashed curves with the extreme anisotropy model (local model), and the discrete symbols 

represent the full-wave results calculated with [51]. Clearly, the agreement between the 

three different approaches is very satisfactory. 
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Fig. 2.3. Amplitude of the effective reflection (a) and transmission (b) coefficients as a function of the 
normalized transverse component of the wave vector yk  for configuration I (Fig. 2.2a), for a fixed normalized 
frequency / 0.1a cω =  and different wire lengths wL . The permittivity of the dielectric substrate is 1hε = , the 
radius of the wires is 0.05wr a= , and the tilt angle is 45α = . Solid lines: spatially dispersive model (or 
nonlocal model). Dashed lines: extreme anisotropy model (or local model). Discrete symbols: full-wave 
results obtained with the electromagnetic simulator [51]. Notice that the reflection coefficient calculated using 
the extreme anisotropy model is exactly zero at the Fabry-Perot resonance ( /wL cω π= ), and thus the 
corresponding curve in panel (a) is coincident with the horizontal axis. 

One can see from Fig. 2.3 that, similar to the case of a slab with wires normal to 

interface [31], when the Fabry-Perot condition is satisfied ( /wL cω π= ), the absolute value 
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of the transmission coefficient in the direction parallel to the wires ( efft ) is very close to 

unity (even for evanescent waves), whereas the absolute value of effρ  is relatively small for 

all spatial harmonics. Hence, the obtained dependence of the effective reflection and 

transmission coefficients confirms that the slab of tilted wires can indeed be operated in a 

canalization regime and is capable of transporting the electric field component parallel to 

the wires. When / 1yk c ω =  (grazing incidence), the effective transmission coefficient 

exhibits an abrupt decay, and conversely the effective reflection coefficient has a very steep 

growth, exactly as occurs in the standard “wire medium lens”. It is important to stress that 

the Fabry-Perot resonance is determined by the length of the wires wL  and not by the 

thickness of the slab ( coswL L α= ). The results associated with the extreme anisotropy 

model (dashed curves) correspond to the ideal situation, since for /wL cω π=  the effective 

reflection coefficient vanishes and the transmission coefficient is unity for the entire spatial 

spectrum. 
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Fig. 2.4. Amplitude of the reflection (green) and transmission (blue) coefficients as a function of the 
normalized transverse component of the wave vector yk  for configuration I, for a fixed normalized frequency 

/ 0.1a cω =  and different wire lengths wL . The permittivity of the dielectric substrate is 1hε = , the radius of 
the wires is 0.05wr a= , and the tilt angle is 45α = . Solid lines: spatially dispersive model (or nonlocal 
model). Discrete symbols: full-wave results obtained with the electromagnetic simulator [51]. 
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Naturally, the behavior of the effective reflection and transmission coefficient is 

sensitive to variations in the frequency of operation (or equivalently to variations in the 

electrical length of the wires). If the frequency is slightly lower than the frequency of 

operation (corresponding to the Fabry-Perot condition) then a resonant phenomenon is 

observed, as illustrated in Fig. 2.4. The effective reflection and transmission coefficients are 

greatly enhanced by the excitation of guided modes propagating along the y direction of the 

slab, consistent with the results of Ref. [32]. 
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Fig. 2.5. The same as in Fig. 2.4 but for lengths of wires above Fabry-Perot condition. 

On the other hand, for wire lengths slightly larger than half-wavelength (or equivalently 

for frequencies above the Fabry-Perot resonance), the effective reflection and transmission 

coefficients do not exhibit a resonant behavior. In contrast, and similar to the behavior of 

the usual wire medium slab [32], the transmission coefficient ( efft ) for evanescent waves 

becomes weaker as the frequency increases (or the length of the wires), as shown in Fig. 

2.5. 

To conclude the analysis of the reflection and transmission properties of the slab of tilted 

wires for configuration I, it is important to discuss the peculiar resonant behavior exhibited 

by the effective reflection coefficient at / 0.7yk c ω ≈ , more specifically when the direction 

of the incoming wave is parallel to the wires (see Fig. 2.3-Fig. 2.5). The reason for such 
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strong variation in effρ  is only related to its definition (Eq. (2.7)). Indeed, when the incident 

field is normal to the wires (or equivalently the wave vector is parallel to the wires) both 

the numerator and the denominator of Eq. (2.7) vanish, since inc ˆ. 0α =E u  and co 0ρ =  

because the wave does not interact with the wires. This explains the abrupt variations in 

effρ  seen in Fig. 2.3-Fig. 2.5 around / 0.7yk c ω ≈ . Nevertheless, even though effρ  may be 

reasonably large in those circumstances, in practice the reflections are negligible since the 

projection of the incident wave along the wires is nearly zero. 

II.3.2.2 Configuration II 

In this section, we study the reflection and transmission properties of the tilted wire 

medium for configuration II (Fig. 2.2b). Now the incoming wave propagates in the xoz 

plane and is TE-z polarized (s-polarization). It can be verified that in this configuration the 

cross components of the reflection and transmission coefficients ( crρ  and crt , respectively) 

may be different from zero. 

We calculate the effective reflection and transmission coefficients as a function of the 

normalized transverse component of the wave vector xk  ( ( / )sinx ik cω θ= ) using again the 

nonlocal homogenization model, the extreme anisotropy model (Eq. (2.5)), and full-wave 

simulations [51]. As seen in Fig. 2.6, similar to the results of configuration I (Sec. II.3.2.1), 

also here the results for the effective reflection and transmission coefficients obtained using 

the three different methods concur relatively well. 
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Fig. 2.6. Amplitude of the reflection (a) and transmission (b) coefficients as a function of the normalized 
transverse component of the wave vector xk  for configuration II (Fig. 2.2b), for a fixed normalized frequency 

/ 0.1a cω =  and different wire lengths wL . The permittivity of the dielectric substrate is 1hε = , the radius of 
the wires is 0.05wr a= , and the tilt angle is 45α = . Solid lines: spatially dispersive model (or nonlocal model). 
Dashed lines: extreme anisotropy model (or local model). Discrete symbols: full-wave results obtained with 
the electromagnetic simulator [51]. Notice that the reflection coefficient calculated using the extreme 
anisotropy model is exactly zero at the Fabry-Perot resonance ( /wL cω π= ), and thus the corresponding 
curve in panel (a) is coincident with the horizontal axis. 

In Fig. 2.6 it is seen that the behavior of the effective reflection and transmission 

coefficients for this configuration is similar to that of configuration I (see Fig. 2.3). In 

particular, when the Fabry-Perot condition is satisfied ( /wL cω π= ), the amplitude of the 

transmission coefficient (for the electric field component parallel to the wires) is still close 

to unity for all spatial harmonics (including evanescent harmonics). Thus, these results 

confirm, indeed, that even though for this configuration there is only electric field parallel 

to interface (see Fig. 2.2b), it is still possible to operate the tilted wire medium in the 

canalization regime, and hence transport the component of the electric near-field parallel to 

the wires. As in configuration I, the extreme anisotropy condition corresponds to the ideal 

situation where at the Fabry-Perot resonance eff 1t =  and eff 0ρ =  for the entire spatial 

spectrum. 
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Fig. 2.7. Amplitude of the reflection (green) and transmission (blue) coefficients as a function of the 
normalized transverse component of the wave vector xk  for configuration II, for a fixed normalized frequency 

/ 0.1a cω =  and different wire lengths wL . The permittivity of the dielectric substrate is 1hε = , the radius of 
the wires is 0.05wr a= , and the tilt angle is 45α = . Solid lines: spatially dispersive model (or nonlocal 
model). Discrete symbols: full-wave results obtained with the electromagnetic simulator [51]. 

In the same manner as in configuration I, the response of the system change when the 

wires length (or the frequency) is altered. For wire lengths below half-wavelength 

( /wL cω π< ) it is clearly visible the sharp resonances in effρ  and efft  (Fig. 2.7). This 

property reveals the presence of guided modes that propagate along the x direction and that 

cause an undesired strong enhancement of certain spatial harmonics. 
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Fig. 2.8. The same as in Fig. 2.7 but for length of wires above the Fabry-Perot condition. 

In contrast, for /wL cω π>  the amplitude of the effective reflection coefficient tends to 

increase with frequency, whereas the amplitude of the effective transmission coefficient 
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tends to decrease (Fig. 2.8), similarly to what occurs in configuration I as well as in the 

standard configuration of the “wire medium lens” [32]. 

II.3.3. Near-Field Transport 

In order to verify the results of the previous section (Sec. II.3.2) and evaluate the potentials 

of near-field transport by the tilted wire medium lens, several numerical simulations of the 

structure were performed for both configurations. Such results are presented and discussed 

next. 

II.3.3.1  Configuration I 

In the first example, we consider a setup based on configuration I (Fig. 2.2a) and formed by 

an array of 20 20×  metallic wires tilted by an angle of 45 . This structure was illuminated 

by a source which consists in a plane wave ( inc ˆ yE=E u , inc ˆ xH=H u ) incident onto a 

perfectly conducting screen with two extremely narrow (subwavelength) slits along the x 

direction (see Fig. 2.9). The wave diffracted by each slit mimics closely the field radiated 

by a magnetic line current directed along the direction of the slit [37], and thus the 

polarization of the wave that impinges on the wire medium slab is predominantly transverse 

magnetic (TM-z polarized; p-polarization). The length of the wires ( 15 cmwL = ) is tuned so 

that the first Fabry-Perot resonance occurs at 1 GHz. We have used the electromagnetic 

simulator [51] to simulate the performance of this setup. 
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Fig. 2.9. Geometry of the finite-sized slab of tilted wires. The image is created by a metallic screen with two 
narrow slits that is illuminated by a plane wave. (a) Perspective view. (b) Top view. The wires stand in free 
space ( 1hε = ), their length is 15 cmwL =  and they are tilted by an angle 45α = . The period of the lattice is 

1 cma = , and the radius of the wires is 0.5 mmwr = . The screen is at a distance of 1 8 mmd =  from the front 
interface of the slab, and the slits have dimensions 1 10 cml =  and 2 2 mml = . The slits are separated by 

7, 07 cmsd = . 

In Fig. 2.10 the amplitude of the electric near-field component parallel to the wires 

( ˆ. αE u ) is depicted for frequencies in the interval 950 MHz – 1.05 GHz. It is clear from Fig. 

2.10a that, notwithstanding the distance between the slits being very small ( 00.24sd λ≈ ), at 

the Fabry-Perot resonance ( 0 / 2wL λ= ) the two slits are perfectly resolved in the image 

plane. Therefore, consistently with the homogenization model, the tilted wire medium 

enables, indeed, the transfer of the subwavelength details of the object source from the front 

interface to the back interface through an oblique projection. It is important to refer that by 

properly scaling the structure it may be possible to obtain similar results at terahertz and 

infrared frequencies [37]. 
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Fig. 2.10. Distribution of the normalized electric field along the direction of the wires ( Eα ) at the source 
plane (i) and at the image plane (ii), obtained from the simulation in [51] of the performance of the setup of 
Fig. 2.9 for different frequencies of operation. (a) 1 GHzf = ; (b) 950 MHzf = ; (c) 1.05 GHzf = . 

At frequencies lower than the design frequency (Fig. 2.10b), and consistent with the 

results of [32], the imaging properties are clearly deteriorated, and the two slits are hardly 

discernible, even at the source plane (Fig. 2.10b(i)). This happens due to strong reflections 

that occur for frequencies below the design frequency (which correspond to the Fabry-Perot 

resonance), mainly due to the excitation of guided modes (Fig. 2.4). 

At higher frequencies, e.g. 1.05 GHz (Fig. 2.10c), the imaging properties are still very 

good and subwavelength imaging is still achieved. This could be expected from the results 

of Fig. 2.3 and Fig. 2.5. For frequencies higher than 1.05 GHz it is expected that the 

imaging properties will be progressively deteriorated due to the decrease of the amplitude 

of the transmission for high-frequency spatial harmonics (Fig. 2.5). 
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II.3.3.2  Configuration II 

In this section, we consider a setup related to configuration II (Fig. 2.2b) with a source that 

radiates TE-z polarized waves (or s-polarized waves; electric field perpendicular to the 

plane of incidence). Specifically, we study the radiation problem where two electric line 

sources fed by currents in opposition of phase (and infinitely extended along y direction) 

are placed at a distance 1d  from the front interface (see Fig. 2.11a). The electric field 

radiated by the line sources is of the form ( )( ) ( ) ( )( )(2) (2)
0 0 0 1 0 0 2/ 4yE E j H k H kρ ρ= − , 

where 0E  is some constant that depends on the line current, 1ρ  and 2ρ  are the radial 

distances relative to the sources, and (2)
0H  is the Hankel function of second kind and order 

zero. Using the method of moments (MoM), taking into account in this manner all the fine 

details of the microstructure of the artificial material, we have calculated the electric field 

profile along the direction of the wires, at the source and image planes. In the MoM 

simulation the artificial material slab was assumed periodic along the y direction, and finite 

along the x direction with width W. 

In Fig. 2.11b the amplitude of the normalized electric field along the direction of the 

wires ( Eα ) is represented at the source and image planes for a metamaterial slab formed by 

tilted wires (the wires are tilted in the yoz plane) and with different lengths of the wires 

( [ ]0 00.45 ,0.54wL λ λ∈ ), whereas in Fig. 2.11c are depicted the density plots of 2Eα  in the 

xoz plane for the same wire lengths. In all the simulations of Fig. 2.11b we only show the 

field profiles for one of the sources, since it is obvious that by symmetry Eα  is an even 

function of x. 



38 II. MANIPULATING THE NEAR-FIELD WITH A TILTED WIRE MEDIUM LENS 

E
y x

E sd

z

Image Plane 

L

Source Plane 
1d

(a)        (b) 

(c) 
 (i)               (ii)           (iii) 

(iii) 

y x

0

E
E

Perfect 
Imaging 

0/x

(i) 

(ii) 

0

z

0/x

0

z

0/x

1 0.75 0.5 0.250 

0/x

0

z

 
Fig. 2.11. (a) Geometry of the problem: two electric line sources are fed by currents in opposition of phase. 
The line sources are placed at a distance 1d  above the tilted wire medium slab and are separated by a distance 

sd . The source and image planes are located at a distance 1 / 2d  from the front and back interfaces, 
respectively. The width of the structure in the x direction is W . (b) Amplitude of the normalized electric field 
component parallel to the wires at the image and source planes; (i) 0 / 2wL λ= , / (10 )wa L π= , 0.05wr a= , 

1hε = , 45α = , 1 00.016d λ= , 00.2sd λ=  and, 00.8W λ≈  (50 rows of wires along the x direction); (ii) 

00.54wL λ= , / (10.8 )wa L π= , 0.05wr a= , 1hε = , 45α = , 1 00.016d λ= , 00.2sd λ=  and, 00.8W λ≈  (50 
rows of wires along the x direction); (iii) 00.45wL λ= , / (9 )wa L π= , 0.05wr a= , 1hε = , 45α = , 

1 00.016d λ= , 00.2sd λ=  and, 00.8W λ≈  (50 rows of wires along the x direction). Solid black curve: perfect 
imaging (i.e. field profile at the source plane when the array of wires is removed); dashed curves: field profile 
at the source plane; solid colored curves: field profile at the image plane. The vertical black dashed lines 
represent the position of the sources. (c) 2Eα  for an array of tilted wires with the same geometry as in (b): (i) 
same parameters as (bi), (ii) same parameters as (bii), and (iii) same parameters as (biii). 

Fig. 2.11b(i) shows that, despite the distance between the sources being as small as 

00.2sd λ= , at the Fabry-Perot condition ( 0/ / 2w wL c Lω π λ= ⇒ = ) the field profile at the 

image plane (solid curve) and at the source plane (dashed curve) are similar except in the 

close vicinity of the line sources, where the field has a steep variation. Such abrupt 

variations of the near-field are associated with very high-frequency spatial harmonics. It is 
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expected that if the density of wires is increased the transported field will mimic more 

closely the field at the source plane [32, 37]. The same result can be seen in the density plot 

of Fig. 2.11c(i), where it is seen that the two sources are clearly resolved at the image 

plane. Hence, these full-wave results confirm the findings of Sec. II.3.2.2, and further 

demonstrate that a tilted wires lens can indeed transfer the subwavelength details of the 

source, restoring the component of the electric field parallel to the wires at the image plane, 

even when there is no electric field normal to the input interface. It is important to stress 

that the imaging of the considered object would be impossible using the usual configuration 

of the wire medium lens [31], since that in the present configuration the sources radiate TE-

z polarized waves. 

At the source plane, it is possible to observe a slight decrease of the amplitude of the 

electric field Eα  in comparison to the situation in which the array of wires is removed 

(perfect imaging). This is completely consistent with the results of Sec. II.3.2.2 (Fig. 2.6), 

and is explained by the fact that the amplitude of the effective reflection coefficient ( effρ ) 

is not negligible at the considered frequency ( 0/ / 2w wL c Lω π λ= ⇒ = ), while its phase is 

equal to π  for the evanescent spatial harmonics, which causes the incident and reflected 

fields to interact destructively. 

When 00.54wL λ=  (Fig. 2.11b-c(ii)) the sources become more difficult to distinguish at 

the image plane, consistent with the results of Fig. 2.8, which predict a decrease in the 

amplitude of the transmission coefficient. As discussed before, if the length of the wires is 

further increased it is expected that the imaging properties are progressively deteriorated 

and eventually the source may become indistinguishable. At the source plane, the amplitude 

of Eα  is higher than at the Fabry-Perot resonance ( 0 / 2wL λ= ). This is also completely 
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consistent with the reflection characteristics of the system (see Fig. 2.6 and Fig. 2.8), given 

that the amplitude of effρ  for 00.54wL λ=  is lower than for 0 / 2wL λ= . 

When 00.45wL λ=  the imaging properties are very poor, and the sources are hardly 

perceptible even at the source plane (see Fig. 2.11b-c(iii)). Clearly, the field profile is 

completely corrupted by high-frequency noise. As discussed in Sec. II.3.2.2, the reason for 

this phenomenon is related to the excitation of the guided modes propagating along the x 

direction of the slab, which cause the enhancement of some spatial harmonics (see Fig. 

2.11b-c(iii)). 

II.4. Full Reconstruction of the Near-Field with a Tilted Wires Lens 

Following the results of the previous section and the finding that the tilted wire medium 

lens (Fig. 2.1) enables improving the polarization sensitivity of the standard wire medium 

lens [31], here we introduce a strategy to fully restore the near-field radiated by an arbitrary 

source using the proposed metamaterial lens [52]. Indeed, since for a fixed orientation of 

the metallic wires it is possible to transport and restore the electric near-field component 

parallel to the wires (i.e. the component ˆEα α= E.u ), then by rotating the tilted wire 

medium lens around the direction perpendicular to the interface plane (or around the z-axis; 

see Fig. 2.1) it is possible to change the orientation of the wires ( ˆαu ), and consequently the 

projection of the electric field along a different direction of space can be captured. 

Specifically, if the array of tilted wires is sequentially rotated three times by 120  around 

the z-axis, it is possible to measure the projections of the electric field along three directions 

of space that are not coplanar. Since the three-dimensional space is completely determined 

by three linearly independent vectors, this makes possible to reconstruct all the near-field 
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Cartesian components of the electric field at the image plane by making only these three 

measurements. The magnetic field may be then easily computed from the electric field 

using the Stratton-Chu formulas [53], and in this manner fully restore the near-field 

electromagnetic spectrum. 

As an alternative to the previous procedure, we can successively rotate the source by 

120  around the direction normal to the lens interface, instead of rotating the tilted wires 

lens. Clearly, such approach is completely equivalent and also enables the capture of three 

linearly independent components of the electric field radiated by the source. 

At this point, it should be underlined that the proposed approaches to retrieve all near-

field Cartesian components of the electric field clearly require that the wires are tilted with 

respect to the interface, and cannot be implemented using the standard configuration of Ref. 

[31]. Moreover, such procedures obviously require that the image source is stationary with 

respect to time. 

II.4.1. Experimental Setup and Post-Processing Approach 

In order to verify the possibility of retrieving all the electric near-field components radiated 

by a source using the approach introduced above, we fabricated a prototype of the tilted 

wire medium lens (Fig. 2.12). The lens consists of an array of 21 21×  copper wires scaled 

to operate at 1 GHz. Thus, the length of the wires is 15wL =  cm so that it corresponds to 

half-wavelength in the free-space at the design frequency. The wires have radius 

0.5 mmwr =  and are arranged in a square lattice with lattice period 1cma = . The angle 

between the wires and the direction perpendicular to the interface planes is 45α = , and the 
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wires are supported by thin styrofoam slabs which have relative permittivity close to unity 

around the design frequency. 

(a)         (b) 

 

 

 

 

 

45
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near-field scanner
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wL

 
Fig. 2.12. Photos of the prototype of the tilted wire medium lens. (a) Top view of the metamaterial lens. (b) 
General view of the complete experimental setup. The fabricated prototype together with the printed dipole 
antenna (fed by a balun) and the near-field scanner based on a robotic arm. 

A standard printed dipole antenna was taken as the near-field source. The printed 

antenna is fed by a coaxial cable through a balun and is placed at a distance / 2a  from the 

front interface of the lens. A near-field scanner based on a robotic arm was used to measure 

the electric field distributions at the source and image planes ( / 2a  from the back interface 

of the lens). 
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Fig. 2.13. Illustration of the principle used to restore the near-field: the dipole antenna is sequentially rotated 
by 120  around the z-axis and the zE  component of the electric field is measured for each configuration at the 
image plane. 
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Our experimental approach is based on the sequential rotation of the printed dipole by 

120  around the z direction (direction normal to the lens interface) (Fig. 2.13) rather than on 

the equivalent rotation of the lens. We found more convenient to rotate the printed dipole 

because its rotation is in practice more easily performed than the rotation of the lens. For 

each dipole rotation, the wire medium lens captures the component of the electric field 

parallel to the wires ( Eα ) and transports it to the image plane with nearly no distortions of 

amplitude and phase, provided the length of the wires is a multiple of 0 / 2λ . In practice, it 

is possible to measure Eα  simply by measuring the electric field component normal to the 

interface ( zE ) at the image plane. This can be easily done using a tiny metallic probe ( 1≈  

mm) perpendicular to the lens interface (i.e., directed along z). Indeed, even if the probe is 

not parallel to the wires its response is always proportional to Eα  (calculated at the source 

plane), since as demonstrated above (Sec. II.3.2) Eα  is the only component transported by 

the tilted wires lens. 

Next, in order to explain the post-processing of the experimental data, it is convenient to 

introduce a set of coordinates ( , , )x y z  attached to the lens and a set of coordinates 

dip dip( , , )x y z  attached to the dipole antenna. The coordinates dip dip( , )x y  are such that, 

whatever the orientation of the dipole in the xoy plane, dipx  runs always along the direction 

parallel to the dipole arms, whereas the dipy  direction is perpendicular to the dipole arms 

(see Fig. 2.13). The rotation of the dipole is done in such a way that the center of the dipole 

is kept fixed with respect to the lens interface, and has coordinates ( , , ) (0,0,0)x y z = . Thus, 

the center of the dipole is imaged into the point ( , , ) (0,0, cos )wx y z L α= − , independent of 

the orientation of the dipole. The result of each measurement at the output plane, for a 
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specific orientation of the dipole antenna ( 1,2,3)i = , can be represented by a complex 

valued function 0 ( , )iF x y . At the design frequency (Fabry-Perot resonance) 0 ( , )iF x y  is 

proportional to Eα  ( 0 ( , )iF x y Eα∝ ) since, as already discussed, the metamaterial lens 

transports the component of the electric field parallel to the wires with negligible distortion. 

Then, using simple trigonometric relations for the two sets of coordinates, ( , , )x y z  and 

dip dip( , , )x y z , it follows that the electric field components in the reference frame of the 

dipole satisfy the following 3 3×  linear system, 

dip dip dip dip0 ( cos sin , sin cos )

sin cos ( sin sin ) cos

      i i i i

i i
x y z

i

x y x y

E E E

F
θ θ θ θ

α θ α θ α

− +

′ ′ ′+ − + =
,   (2.8) 

where 0 ,120 , 240iθ =  for 1,2,3i = , respectively, and the prime indicates that the electric 

components are defined with respect to the dipole coordinate system. By solving this linear 

system with respect to { }, ,x y zE E E′ ′ ′ , we can retrieve both the amplitude and phase of the 

electric near-field. 

II.4.2. Experimental Results 

Following the explanation of the experimental approach and of the data post-processing of 

the previous subsection, here we present the results of the experimental measurements. 
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Fig. 2.14. Normalized amplitudes (i) and phases (in degrees) (ii) of the three near-field scan measurements for 
the design frequency of 1 GHz at the image plane. (a) The arms of the dipole are along the x-axis (parallel to 
the planes of the wires of the lens). (b) and (c): the dipole is rotated by 120  and 240  relatively to first 
position, respectively. 

In Fig. 2.14 it is depicted the unprocessed data 0 ( , )iF x y  (amplitude and phase) obtained 

from the measurements at the image plane for each angle of rotation of the dipole antenna 

and at the design frequency ( 1f =  GHz). The orientation of the dipole antenna in each 

measurement is clearly perceptible in the density plots of the amplitude as well as in the 

representations of the phase. In addition, the subwavelength imaging properties of the wire 

medium lens are quite evident from Fig. 2.14. The resolution is determined by the spacing 

between the wires and is roughly / cos 1.4a aα ≈  along the x direction, and a  along the y 

direction. 

The near-field of the dipole antenna is obtained from the unprocessed data (Fig. 2.14) by 

solving Eq. (2.8). Fig. 2.15 depicts the retrieved amplitude and phase of the x, y, and z 

components of the electric near-field (relative to the coordinate system attached to the 

dipole) for frequencies in the interval 975 MHz – 1.05 GHz. 
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Fig. 2.15. Retrieved normalized amplitude (i) and phase (in degrees) (ii) of all components of the electric field 
of the dipole antenna. (A) 1f = GHz; (B) 1.025f = GHz; (C) 1.05f = GHz; (D) 975f = MHz. (a), (b) and 
(c) represent the x, y, and z components, respectively. 

In order to have a benchmark for the post-processed results (Fig. 2.15), we depict in Fig. 

2.16 the field distributions of the electric near-field of the printed dipole when it stands 

alone in free-space, calculated using the electromagnetic simulator [51]. 
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Fig. 2.16. Normalized amplitude (i) and phase (in degrees) (ii) of the near-field components of the electric 
field of the printed dipole antenna when it stands alone in free-space, obtained using CST Microwave Studio 
[51]. The frequency of operation is 1 GHz and the rest of the legend is as in Fig. 2.15. 
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It is clear from Fig. 2.15A, which corresponds to the Fabry-Perot resonance 

( 0 / 2wL λ= ), that the near-field distributions of all Cartesian components of the electric 

field and obtained from the post-processing approach introduced in Sec. II.4.1, reproduce 

accurately the theoretical field distributions (Fig. 2.16). In particular, consistent with Fig. 

2.16a(i), Fig. 2.15Aa(i) shows three maxima for xE  at both dipole arm ends and at the 

center of the dipole (i.e., at the feeding point). The phase of xE  also follows closely the 

theoretical results (Fig. 2.16a(ii)), varying approximately by 90  from the center to the 

arms ends. We note that in the unprocessed data (Fig. 2.14) the position corresponding to 

the center of the dipole ( ( , ) (0,0)x y = ) corresponds invariably to a minimum, and thus it is 

quite remarkable that the extraction algorithm is, indeed, able to reconstruct the fine 

features of the near-field. In the same manner, it is seen from Fig. 2.15Ab that the 

reconstructed yE  is also completely consistent with the simulation results (Fig. 2.16b), 

being the four lobes and the null in the plane of symmetry 0y =  accurately predicted, as 

well as the behavior of the phase that alternates by 180  between the top and bottom lobes 

and the left and right lobes. As could be expected, zE  is the component more accurately 

restored, since besides being the electric field component normal to the lens interface it is 

the component radiated by the dipole antenna that has highest amplitude. The two lobes 

associated with the left and right arms of the dipole, as well as the 180  phase-shift, are 

clearly visible in Fig. 2.15Ac. 

At higher frequencies, e.g., 1.025 GHz and 1.05 GHz (Fig. 2.15B-C), the three 

components of the electric near-field are still well retrieved. However, it is expected that for 

frequencies larger than 1.05 GHz the results become progressively less accurate, since as 
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discussed in Secs. II.3.2-3 the wire medium lens introduces amplitude and phase distortions 

in the transmitted fields. As a consequence, we cannot assume anymore that Eα  at the 

image and source planes are proportional, as we did in the derivation of Eq. (2.8). 

Nevertheless, in principle it is possible to include the effect of these distortions in the 

extraction algorithm, and in this manner we may improve even more the bandwidth of the 

proposed system. 

At frequencies a few percent lower than 1 GHz (Fig. 2.15D), it is impossible to 

reconstruct the near-field because of the excitation of the guided modes that completely 

corrupt the transmitted image. This result is also completely coherent with the results of 

Secs. II.3.2-3. 

An important point to underline is that the reconstructed fields may reproduce even 

more closely the theoretical results (Fig. 2.16) if the density of the wires is increased since, 

as already discussed in the previous sections, the resolution of the wires lens is only limited 

by the period of the structure. Moreover, by properly scaling the structure, and provided it 

is possible to measure both the amplitude and phase of the fields, it is in principle feasible 

to fully reconstruct the near-field up to terahertz frequencies [37]. Finally, it is important to 

emphasize again that such procedure is out of reach of the standard configuration with 

wires normal to the interface [31]. 

II.4.3. Application to Near-Field Measurements 

The experimental results of the previous subsection confirm that the tilted wire medium 

lens can be used to access all the electric near-field Cartesian components of a certain 

object at a significant distance of its location, independent of the wave polarization. 
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Following these findings, here we speculate if such property can be advantageously 

exploited in near-field measurement. 

A high-quality near-field measurement system must capture and measure the field 

details with subwavelength spatial resolution. This means that, in standard conditions, the 

measurement has to be performed in the near-field region, i.e., the scanning probe must be 

placed in the immediate vicinity of the source. However, such requirement of proximity of 

the probe to the object source may introduce significant and unpredictable perturbations to 

the near-field radiation and, consequently, the accuracy of the measurement may be 

completely corrupted. 

In contrast, operating a tilted wire medium lens close to the Fabry-Perot resonance 

( 0 / 2wL λ= ) we are able to transport the near-field with nearly no distortions from the input 

interface to the output interface of the lens. As a result, the near-field can now be measured 

at a significant electrical distance from the object source, and in this way the disturbing 

effect caused by the near-field probe in the radiation of the source may be drastically 

reduced. Naturally, it is obvious that under such circumstances it is also important to take 

into account the perturbation perhaps induced by the metamaterial lens. However, such 

perturbation may be roughly negligible because the reflected field at the interface of a wire 

medium lens tuned to the Fabry-Perot resonance is relatively weak (see Sec. II.3.2-3). 

As a final note, it should be pointed out that the minimization of the disturbing effects 

caused by the near-field probe may be particularly crucial if we use an extraction algorithm 

similar to the one reported in Sec. II.4.1 based on three different independent measurements 

of the near-field, since in order that Eq. (2.8) makes sense it is necessary that the field 

radiated by the antenna is independent of the measurement. 
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II.4.4. Experimental Validations 

In order to confirm the theoretical considerations of the previous subsection we have 

measured the near-field of the same dipole antenna directly at the source plane (without the 

metamaterial lens) and using two different strategies. In the first configuration, similarly to 

the configuration with the tilted wires lens, the dipole antenna is successively rotated by 

120  around the direction perpendicular to the interface (z direction). The scanning probe is 

tilted so that it makes an angle 45α =  with the z direction and in this way we can, as 

before, theoretically measure three linearly independent components of the electric near-

field. The reconstructed near-field obtained using this approach is depicted in Fig. 2.17. 
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Fig. 2.17. Normalized amplitude (i) and phase (in degrees) (ii) of the electric near-field of the printed dipole 
antenna at the source plane and when the near-field scanning is performed directly at the source plane 
(without the lens). The frequency of operation is 1f = GHz, and the rest of the legend is as in Fig. 2.15A. 

Notwithstanding the fact that in this scenario the resolution of the images is only limited 

by the step of the near-field scanner (1 mm) and thus is nearly ten times higher than in the 

previous setup with the tilted wires lens, Fig. 2.17 undoubtedly shows a much coarser 

agreement with the theoretical results (Fig. 2.16) than the results obtained with tilted wires 

lens (Fig. 2.15A), particularly for the xE  and yE  field components. In order to verify that 
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such result is indeed due to an increased perturbation of the antenna by the measurement 

system, we measured the S11 as a function of the position of the sensor in the two following 

scenarios: (i) near-field measurements in the presence of the lens; (ii) the same without the 

lens. The experimental results show that the standard deviation of the S11 in scenario (ii) is 

larger than in scenario (i) by a factor of 10%. Thus, our theoretical speculation that the 

tilted wires lens can minimize the disturbing effect introduced by the near-field probe in the 

measurements was experimentally validated. 

In the second configuration, we obtained the near-field of the dipole antenna by directly 

measuring each Cartesian electric field component at the source plane, i.e., without using 

the approach based on the mechanical rotations of the source around the z direction. In 

order to measure the x and y components we had to bend the tip of the electric probe by 

90 . In contrast, the z component is measured by simply placed the electric probe parallel 

to the z direction. 
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Fig. 2.18. Normalized amplitude (i) and phase (in degrees) (ii) of the electric near-field of the printed dipole 
antenna at the source plane when each of the Cartesian components of the electric field is directly measured 
(without using the experimental procedure introduced in Sec. II.4.1). 

Similarly to Fig. 2.17, Fig. 2.18 reproduces much more inaccurately the theoretical 

electric near-field distributions (Fig. 2.16) than the results obtained with tilted wires lens 

(Fig. 2.15A). Particularly, the fine details of the x and y components, both the amplitude 
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and phase, are completely lost from the image. It is possible that using a more sophisticated 

near-field probe the retrieved near-field would be more accurate. However, it is very 

interesting that when the near-field measurement is performed using the tilted wire medium 

lens, the retrieved near-field components are quite accurate, even though the same 

simplistic near-field probe is used. 

Once again, the inaccuracy in the near-field reconstruction may be related to the 

perturbation introduced by the near-field probe in the measurement. In addition, there is 

another probable reason to the degradation of the near-field results when the scanning is 

directly performed at the source plane without using the metamaterial lens. In particular, 

when we bend the probe tip to measure the tangential components of the electric field (x 

and y components), an edge is formed, which unfortunately makes possible that the currents 

induced in the sensor may suffer a significant contribution of the normal component of the 

electric field (z component). This can be seen in the near-field results of yE  (Fig. 2.18b), 

which clearly show a great similarity with the near-field distribution of the z component 

(Fig. 2.18c). Instead of the four lobes and the null in the plane of symmetry 0y = , and the 

180  phase-shift between the top and bottom lobes and the left and right lobes (see Fig. 

2.16b), one can see only two lobes and a 180  phase-shift between the left and right lobes 

that are characteristic of the z component. 

On the other hand, when using the tilted wires lens the component of the electric field 

required for the reconstruction process is effectively isolated by the lens before the actual 

measurement is done, and hence, the contribution of other electric field components to the 

currents induced in the near-field probe is completely prevented.  
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II.5. Summary 

In this chapter, we have investigated the potentials of near-field transport of an array of 

tilted metallic wires. It was shown that, consistent with the standard wire medium 

configuration with wires normal to the interface [31-34], the considered setup also enables 

the transport of the subwavelength details associated with the electric field component 

parallel to the wires. The improvement achieved with this novel setup is that it allows 

restoring the electric near-field component parallel to the wires at the image plane, even 

when there is no electric field normal to the input interface, or in other words, it enables 

subwavelength imaging of not only TM-z polarized waves (or p-polarized waves) but also 

of TE-z polarized waves (or s-polarized waves). This is an important advance since the 

standard wire medium lens configuration [31-34] does not interact with s-polarized waves. 

Based on these findings, we have suggested a simple approach to retrieve all the electric 

field Cartesian components of an arbitrary near-field source [52]. The underlying idea is to 

mechanically rotate the metamaterial lens (or equivalently rotate the near-field source) 

around the direction perpendicular to the interface so that three linearly independent 

components of the electric field can be measured. In order to experimentally verify such 

possibility, a prototype of the tilted wire medium lens scaled to operate at 1GHz was 

fabricated. Then, using a printed dipole antenna as the near-field source, we have 

experimentally demonstrated the total reconstruction of the electric near-field. In addition, 

it was experimentally verified that the retrieved near-field may be more accurate if obtained 

using the tilted wire medium lens than by direct measurement at the source plane. Such 

fact, as theoretically argued, besides being result of the reduction of the perturbation 

induced by the near-field probe when the measurement is done at a significant distance 
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from the source using the metamaterial lens, it may be also a consequence of the ability of 

the lens of isolating the near-field component of interest. 

In conclusion, the simplicity of the measurement system, the relative robust bandwidth 

of the lens, as well as the discussed minimal disturbing effect introduced in the 

measurement by the lens may open exciting avenues for the tilted wire medium lens in 

near-field measurement in a broad spectral range that includes microwaves and terahertz 

frequencies. 
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III. NEGATIVE REFRACTION AND PARTIAL 
FOCUSING WITH WIRE MEDIA 

III.1. Introduction 

Refraction is one of the most fundamental phenomena in optics and forms the basis of 

imaging devices (e.g. lenses). Such phenomenon describes the change of direction that a 

light beam undergoes when it passes from a medium to another. The laws of refraction are 

long-established and were formulated in the seventeenth century by Willebrord Snellius 

and then published by René Descartes in its present form 1 1 2 2sin sinn nθ θ= , where 1n  and 2n  

are the indices of refraction of the media and 1θ  and 2θ  are the angle of incidence and 

refraction (or transmission), respectively. Since then, it has been widely accepted that when 

a beam of light passes from one transparent medium to another it is always bent in such a 

way that the beam emerges from the interface on the opposite side of the surface normal. 

However, in 1968 Veselago published a study [1] that contradicted such empirical 

understanding of refraction laws and would have key implications in the image formation 

and in the manner how it is perceived by the human brain. Specifically, as already briefly 

mentioned in Chapter II, Veselago theoretically demonstrated that the light refracted in a 

material with simultaneously negative permittivity and permeability (negative isotropic 

index of refraction) obeys a reversed Snell’s law, so that the refracted wave emerges on the 

same side of the surface normal. As a consequence, it was theoretically predicted in his 

manuscript that – if available – a planar slab of a double negative material would permit the 

focusing of a divergent beam of light rays. Subsequently, as already discussed in the 
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introduction to Chapter II, this idea was further developed many years later by Pendry [2], 

who showed that besides focusing light rays such double negative medium also enables the 

restoration of the near-field spectrum. In this chapter, however, we are only interested in 

the propagating waves associated with the far-field spectrum of the source. 

Because there are no naturally available materials with a negative isotropic index of 

refraction, Veselago’s prediction did not receive much attention until recently, when such 

exotic material was experimental realized in the form of an artificial composite medium 

(metamaterial) based on thin metallic wires combined with split-ring resonators [3]. Shortly 

after this finding, the phenomenon of negative refraction was experimentally demonstrated 

at microwave frequencies using the same metamaterial structure [4]. However, since 

structuring materials in the nanoscale is truly challenging, the realization of a 

microstructured material exhibiting a negative isotropic index of refraction at higher 

frequencies revealed to be extremely complicated. As a result, the phenomenon of negative 

refraction was only very recently demonstrated at optical frequencies using a three-

dimensional metamaterial made of cascaded “fishnet” structures [5]. 

An alternative possibility to obtain negative refraction is to engineer the dispersion 

characteristic of photonic crystals [6-7]. However, this solution has also several practical 

constraints, as pointed out in Chapter II. Another robust solution to achieve negative 

refraction is through the use of anisotropic media in which not all of the principal 

components of the permittivity and/or permeability tensors have the same sign [8-14]. This 

kind of media is designated as indefinite media and enables negative refraction for specific 

polarizations and directions of propagation. These structures allow negative refraction and 

consequently a potential focusing effect with the advantage of being much easier to 

manufacture and very likely less sensitive to losses than materials with negative isotropic 
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index of refraction. Yet another alternative route to obtain all-angle broadband negative 

refraction was recently introduced in Ref. [15] and is based on a spatially dispersive 

material formed by a crossed wire mesh. 

In this chapter we investigate two different configurations to obtain negative refraction 

and subsequently, we analyze the prospects of partial focusing of electromagnetic radiation 

with a flat lens. In Sec. III.2, we propose a new way to realize an indefinite anisotropic 

material in the microwave regime. We discuss the potential negative refraction effect at the 

interfaces between the proposed material and air (or dielectric), as well as the partial 

focusing of electromagnetic radiation by a planar lens of such material. In Sec. III.3, we 

analyze and extend the negative refraction effect in the nonlocal material formed by 

nonconnected crossed metallic wires introduced in Ref. [15]. Subsequently, we investigate 

the possibility of taking advantage of this effect to obtain partial focusing with a planar 

crossed wires lens. 

III.2. Negative Refraction and Partial Focusing with a Local Uniaxial 
ENG Material formed by Helical Shaped Wires 

III.2.1. Introduction 

As already mentioned, one of the most effective ways to achieve negative refraction is 

through the use of indefinite media. In particular, the negative refraction effect using an 

indefinite anisotropic material was recently demonstrated in the optical domain using an 

array of metallic nanorods [13-14]. In fact, in the long wavelength limit this structure 

behaves as an indefinite medium, whose effective permittivity along the direction parallel 

to the wires is negative, whereas the perpendicular components to the wires of the 

permittivity tensor are positive. Hence, such configuration provides broadband all-angle 
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negative refraction and partial focusing of p-polarized waves1. However, such configuration 

is only effective at optical frequencies where the metals exhibit a plasmonic-type response. 

At lower frequencies (microwave and low infrared frequencies), owing to the large 

conductivity of the metals, the array of nanowires has a strongly spatially dispersive 

response, as already discussed in the previous chapter (see Sec. II.3.1). Consequently, the 

array of metallic wires behaves quite differently from a material with indefinite parameters 

and thus the negative refraction is hindered in such range of frequencies. 

Despite these difficulties, it has been shown recently [16], that the spatial dispersion 

effects can be tamed either by increasing the capacitance of the wires or the inductance. It 

was suggested in Ref. [16] that the capacitance of the wires may be increased by attaching 

plates to the wires, whereas the inductance may be increased by coating the wires with a 

magnetic material. The first possibility was further developed in several works [17-21], and 

a strong negative refraction effect using a wire medium with metallic patches attached was 

finally demonstrated in [22-23]. Even though very effective, this approach has a drawback: 

attaching plates to the wires increases dramatically the transverse permittivity of the 

medium which is obviously undesirable because it deteriorates the matching with the 

external medium and, consequently, reduces the available bandwidth. On other hand, the 

second approach based on coated wires with a magnetic material is not practical. 

In Ref. [17] it was briefly mentioned an alternative way to increase the inductance of the 

wires, and thereby may suppress the spatial dispersion effects, that consists in using helical 

shaped wires instead of straight wires. Such solution may provide a smaller value of the 

                                                            
1 As an aside, it should be noted that negative refraction of s-polarized waves can be conversely achieved 
using anisotropic media for which the permeability component along the direction of propagation is negative, 
whereas all other permeability components are positive [9]. 
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transverse effective permittivity than the approach based on attached plates and 

consequently a likely broader bandwidth of operation. 

Here, we investigate such an idea to realize an indefinite uniaxial material with a local 

response at microwave and low infrared frequencies using an array of helical shaped wires. 

We study the possibility of using such material to obtain a broadband negative refraction 

effect. In addition, we will also investigate the possibility of focusing p-polarized 

electromagnetic radiation using a planar lens of the proposed metamaterial. 

III.2.2. Non-Bianisotropic Helices Medium – Homogenization Model 

In this subsection, based on the homogenization model of the artificial medium formed by 

an array of perfectly electrical conducting (PEC) helical shaped wires (helices) introduced 

in Ref. [24], we present a brief overview of the nonlocal homogenization model of an 

alternative configuration of such structured medium (Fig. 3.1). 
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Fig. 3.1. Geometry of the non-bianisotropic helices medium: a periodic array of perfectly electrical 
conducting helical shaped wires arranged in a rectangular lattice ( 2a  along the x direction and a  along the y 
direction). Each unit cell includes two helices with opposite handedness, specifically one helix right-handed 
( 0p > ) and another helix left-handed ( 0p < ). (a) Perspective view; (b) Top view. R  represents the radius 
of the helices, whereas wr  is the wires radius. The helices stand in free-space. 
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Instead of an array of helices with fixed handedness (right-handed or left-handed 

helices) arranged in a square lattice with lattice constant a as in [24], we consider a 

configuration wherein the unit cell is rectangular ( 2a  along the x direction and a  along the 

y direction) and includes two helices with opposite handedness in the same unit cell, i.e., 

one helix right-handed and another helix left-handed (see Fig. 3.1). The metamaterial 

structure is then obtained by periodic repetition of the unit cell defined by the primitive 

vectors 1 ˆ2 xa=a u , 2 ˆ ya=a u , and 3 ˆ zp=a u , where p represents the pitch of the helix and is 

positive ( 0p > ) when the helix is right-handed and negative ( 0p < ) when the helix is left-

handed. 

The homogenization approach proposed in Ref. [24] is based on a nonlocal dielectric 

function ( , )ε ω k , where ω is the frequency and k is the wave vector, that thoroughly 

describes the electromagnetic properties of the metamaterial structure [25]. In the same 

work [24], analytical expressions for the conventional material parameters (effective 

permittivity, effective permeability, and magnetoelectric coupling parameters) were derived 

using the following constitutive relation [24-25]: 

1 1 1 1

0 0 0 0 0

( , ) . . . .r r r r rk k k k
ε ω ε ξ μ ζ ξ μ μ ζ μ
ε

− − − −⎛ ⎞ ⎛ ⎞= − + × − × + × − ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

k k k kk I , (3.1) 

where rε  is the relative permittivity tensor, rμ  is the relative permeability tensor, ξ  and ζ  

are dimensionless parameters that characterize the magnetoelectric coupling, 0 0 0k ω ε μ=  is 

the free-space wave number, and I is the identity dyadic. 

Since the magnetoelectric coupling (gyrotropy) can only be observed in media that 

possess no center of symmetry [26], it is expected that using the non-bianisotropic helices 

medium formed by unit cells that contain a pair of helices with opposite handedness (Fig. 
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3.1), the bianisotropic effects that are inherent to the standard helices medium configuration 

[24] are eliminated ( 0ξ ζ= = ). Hence, from Eq. (3.1) the dielectric function of the non-

bianisotropic helices medium (Fig. 3.1) should verify the following constitutive relation: 

1

0 0 0

( , ) r rk k
ε ω ε μ
ε

−⎛ ⎞= + × − ×⎜ ⎟
⎝ ⎠

k kk I .     (3.2) 

On the other hand, it is straightforward verify that Eq. (3.2) is equivalent to the following 

relation: 

1 1 1

0 0 0 0Eq.(3.2) Eq.(3.1)

. . . .r r rk k
ε ε ξ μ ζ ξ μ μ ζ
ε ε

− − −⎛ ⎞
= + − × − ×⎜ ⎟

⎝ ⎠

k k ,  (3.3) 

where 0 Eq.(3.2)
/ε ε  represents the dielectric function of the non-bianisotropic helices medium 

(Fig. 3.1), whereas 0 Eq.(3.1)
/ε ε  represents the dielectric function of the standard helices 

medium that is given by Eq. (15) of Ref. [24]. The constitutive parameters rμ , ξ , and ζ  are 

obtained from Eqs. (20) of Ref. [24]. Thus, using Eq. (3.3) we obtain the desired dielectric 

function of the non-bianisotropic helices medium: 
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,  (3.4) 

where 2 /A R pπ=  and  
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2

cell 1

( ) 11t
R

V C
πε = + ,      (3.5) 

2

1 2 2 2
0 cell 1 cell

(2 )
8p
p

C p V C R V
πβ

π
=

+
,    (3.6) 

2

2
0 cell

(2 )
p C V

πβ = .      (3.7) 

2
cellV a p=  is the volume of the unit cell, and 0C  and 1C  are parameters that only depend on 

the geometry of the artificial material and are evaluated numerically in Ref. [24]. 

Now, using Eq. (3.2), it is found after straightforward substitutions that the constitutive 

parameters that characterize the non-bianisotropic helices medium are given by the 

following analytical expressions: 

( )ˆ ˆ ˆ ˆ ˆ ˆr t x x y y zz z zε ε ε= + +u u u u u u ,      

2 2
0

2 2
0

22 2 2 2 2 2
1 2 0 0

2 2 2 2
0 1 2
2 2
1 2

11

1

zz
z

p p z

z p p

p p
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k k

A k k k
k k

ε

β β
β β
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= − +
⎛ ⎞− ⎜ ⎟⎛ ⎞⎜ ⎟+ −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠−⎜ ⎟
⎝ ⎠

,  (3.8) 

ˆ ˆ ˆ ˆ ˆ ˆr x x y y zz z zμ μ= + +u u u u u u ,       

2 2
0

2 2
0
2 2
1 2

1

1
zz

z

p p

A k
k k

μ

β β

=
+

−

.      (3.9) 

As one can see, similar to the constitutive parameters of the standard helices medium 

studied in Ref. [24], the relative permittivity and permeability tensors of the helices 

medium with suppressed bianisotropic effects are not local parameters, since Eqs. (3.8-3.9) 

depend explicitly on zk  (z component of the wave vector). Nevertheless, it is worth noting 
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that if 2pβ  is much greater than zk  ( 2p zkβ >> ), then the term 2 2
2/z pk β  can be discarded and 

hence rε  and rμ  become exclusively frequency dependent, which means that the 

electromagnetic response of the metamaterial is local. In particular, the dielectric tensor is 

anisotropic and indefinite. This topic will be further discussed in the next subsection. 

III.2.3. Properties of the Structured Medium: Quasi-Local Response 

The goal of this subsection is to characterize the electromagnetic response of the non-

bianisotropic helices medium (Fig. 3.1) under plane wave excitation. For this purpose, we 

want to calculate the dispersion characteristic of the plane waves supported by the 

structured material. This can be done by solving the following equation [26]: 

2

2
0 0 0

1det 0k
k k

ε
ε

⎛ ⎞
⎜ ⎟+ − =
⎜ ⎟
⎝ ⎠

kk I ,    (3.10) 

where 0/ε ε  is the dielectric function given by Eq. (3.4), = ⊗kk k k, and 2 2 2 2
x y zk k k k= + + . It 

can be shown that the characteristic equation (3.10) reduces to a fourth degree polynomial 

in the variable 2
0k  (or equivalently in the variable 2

zk ). Thus, the homogenization model 

described in the previous subsection predicts that the non-bianisotropic helices medium 

supports four independent plane wave modes. It can be verified that these solutions are 

associated with two distinct types of excitations: two of them are associated with TM-z 

polarized incident waves (or p-polarized waves), whereas the other pair of solutions is 

associated with TE-z polarized incident waves (or s-polarized waves). In fact, this 

polarization separation was expected since in the proposed configuration of the helices 

medium the bianisotropic effects are eliminated, and hence, there is no excitation of cross-

polarized fields, contrarily to what happens in the standard helices medium [24]. 
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In this study, however, we are only interested in the case of propagation in the xoz-plane 

( 0yk = ) with the magnetic field along the y direction. In such circumstances, the dispersion 

characteristic of the plane waves supported by the non-bianisotropic helices medium can be 

easily calculated using the following relation [28]: 

2 2 2
0 0t

t x z
zz

k k kεε
ε

− − = ,     (3.11) 

where tε  is given by Eq. (3.5) and zzε  is given by Eq. (3.8). This equation may be reduced to 

a polynomial equation of second degree in the variable 2
0k  

( ) (
)

2 2 2 2 4 2 2 2 2 2 2 2 2 2 2
1 2 2 0 1 2 1 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 4 2
1 2 1 2 0 1 2 1 1 0

p p t p t x p p t z p p x p t

z p t z p p p t z p p x z p t z p

A k A k A k k

k k k k k k k

β β ε β ε β β ε β β β ε

β ε β β β ε β β β ε β

− + + + +

+ + + − − − =
.  (3.12) 

Hence, in agreement with Eq. (3.10), Eq. (3.11) also predicts that the non-bianisotropic 

helices medium supports two independent plane wave modes with magnetic field along the 

y direction. The emergence of an additional eigenwave is a consequence of the spatially 

dispersive response of the metamaterial, since as already referred to in the previous chapter 

(see Sec. II.3.1), in conventional local materials each fixed polarization is associated with a 

single plane wave mode. Nevertheless, it is expected that the contribution of the high-

frequency mode may be discarded when 2p zkβ >> , i.e., under such condition the spatial 

dispersion effects may be negligible. So, the important question is, “how to get large values 

for 2pβ ?” The answer is intrinsically related with the geometry of the structure. In fact, as 

one can see from Eq. (3.7), the parameter 2pβ  is inversely proportional to 0C  and cellV . 

Thus, in order to get large values for 2pβ  we are interested in geometries in which 0C  and 

cellV  are as small as possible. For a fixed lattice constant a , one can get small values for 

cellV  by considering helices with short pitch p . On the other hand, as one can see from 
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Fig.2 of Ref. [24], the helices geometry with a small value for the constant 0C  corresponds 

to a configuration of helices with radius 0.4R a=  and wires radius 0.05wr a= . 

2p a

/p a

(i) 
(ii) 

(iii) 

 
Fig. 3.2. 2pβ  as a function of the normalized helix pitch p for different geometries, calculated using Eq. (3.7). 
(i) 0.4R a=  and 0.05wr a= ; (ii) 0.4R a=  and 0.01wr a= ; (iii) 0.2R a=  and 0.01wr a= . 

To clarify the discussed dependence of the parameter 2pβ  on the metamaterial 

geometries, we depict 2pβ  as a function of the helix pitch p in Fig. 3.2. From this figure, 

and consistent with our previous prediction, one can clearly see that, in fact, by decreasing 

the helix pitch p the parameter 2pβ  increases. This is particularly true for the configuration 

of helices with radius 0.4R a=  and wires radius 0.05wr a= , such as also anticipated from 

the behavior of the geometrical constant 0C  illustrated in Fig.2 of Ref. [24]. Hence, it is 

expected that using a configuration of helices with short pitch p, the spatial dispersion term 

2 2
2/z pk β  in the analytical expression of zzε  may be discarded, and therefore the 

electromagnetic response of the structured material becomes solely frequency dependent. 

In fact, the suppression of the spatial dispersion effects in wire media formed by helical 

shaped wires with short helix pitch p can be also predicted from a physical point of view. 

As already explained in Chapter II (see Sec. II.3.1), the spatial dispersion effects emerge in 

the standard wire medium formed by straight metallic wires mainly due to two physical 
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reasons: firstly, because the metallic wires are good conductors, and secondly, because the 

wires are spanned over several unit cells. As a consequence of these properties, a localized 

fluctuation of the electric field may be propagated along a significant number of lattice 

periods, causing the strongly spatially dispersive response of the medium. However, if we 

consider helical shaped wires instead of straight wires, the path length along the wires is 

evidently increased and, consequently, the distance that a perturbation can travel in terms of 

lattice periods decreases considerably. Therefore, it is also expected from a physical point 

of view that an array of metallic helices (or helical shaped wires) with short helix pitch p 

may behave as a local material. 

In order to demonstrate in a conclusive manner the possible suppression of the spatial 

dispersion effects in the proposed medium formed by helical shaped wires (Fig. 3.1), we 

have calculated the dispersion diagrams for propagation along z direction. Specifically, we 

illustrate in Fig. 3.3a-b the dispersion characteristics of the non-bianisotropic helices 

medium (Fig. 3.1) with helices with radius 0.4R a=  and wires radius 0.05wr a=  for two 

configurations with distinct values of helix pitch p: (a) 0.3p a= ; (b) 0.9p a= . In addition, 

so that we have a benchmark for these results, we have also computed the dispersion 

characteristic of the standard wire medium formed by straight wires (Fig. 3.3c). The 

dispersion curves predicted by the homogenization model (solid lines) are compared with 

the full wave hybrid method results [27] (star symbols). It is clearly seen in Fig. 3.3a-b that 

the results obtained from both approaches concur well, predicting the existence of two 

dispersion branches: a transversal mode or quasi-TEM mode (blue curves) and a 

longitudinal mode or quasi-TM mode (green curves). The agreement between the 

theoretical and numerical methods is particularly good for relatively low frequencies 
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(roughly, 0 0.8k a = ). For higher frequencies, there is a slight lack of agreement that is a 

consequence of the approximations made in the derivation of the analytical model [24]. On 

the other hand, the agreement between the nonlocal homogenization results and the full 

wave hybrid method results for the standard wire medium formed by straight wires is 

excellent, even for high frequencies (Fig. 3.3c), being the propagation of the TEM mode 

(blue curves) and the TM mode (green curves) predicted by both models. 

(a)        (b)            (c)    

zk a zk a zk a

a
c

a
c

a
c

 
Fig. 3.3. Dispersion diagrams for three different geometries of wire arrays (helical shaped wires and straight 
wires). (a) Non-bianisotropic helices medium with 0.4R a= , 0.05wr a=  and 0.3p a= ; (b) The same as in (b) 
but for 0.9p a= ; (c) Standard wire medium with 0.05wr a= . Solid lines: Homogenization results; Star 
symbols: full wave numerical results. 

The suppression of the spatial dispersion effects is evident if we compare the results of 

Fig. 3.3a with Fig. 3.3b and Fig. 3.3c. Indeed, it is clear that by decreasing the helix pitch 

p, or in others words, by increasing the inductance of the wires, the dispersion of the quasi-

TM mode (green curves) is dramatically reduced since the slope of the curve tends to 

become almost flat for small values of p  (Fig. 3.3a). Hence, the frequency of the quasi-TM 

mode becomes almost independent of zk  and, since the group velocity is / 0g zv d dkω= ≈ , 

the mode is unable to propagate in the medium. As a result, in such circumstances the non-

bianisotropic helices medium of Fig. 3.1 may be regarded as a local uniaxial Epsilon-

Negative (ENG) material. 
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Fig. 3.4. Effective permittivity components as a function of the normalized frequency for an array of helical 
shaped wires (Fig. 3.1) with 0.4R a= , 0.05wr a= , and 0.3p a= . The solid lines correspond to the analytical 
results and are obtained using Eqs. (3.5) and (3.8) discarding the term 2 2

2/z pk β  (or considering 0zk = ), 
whereas the discrete symbols are numerical results obtained from an homogenization approach based on the 
Method of Moments (MoM). 

In order to demonstrate such fact, are depicted the effective permittivity components in 

Fig. 3.4 as a function of the frequency, assuming that 2 2
2/ 0z pk β = . The accuracy of the 

analytical results calculated from Eqs. (3.5) and (3.8) is checked against the numerical 

results obtained from an approach based on the Method of Moments (MoM) [25]. As 

clearly seen in Fig. 3.4, the agreement between the two distinct approaches is very good. 

Moreover, it is evident that at low frequencies, specifically for / 0.4a cω < , the structured 

material actually behaves as a local uniaxial ENG material with effective permittivity along 

the direction parallel to the axes of the helices negative ( 0zzε < ) and effective permittivity 

in the perpendicular directions positive ( 0xxε > ).  

III.2.4. Negative Refraction in an Array of Helical Shaped Wires 

Following the results of the previous subsection, here we investigate the potential negative 

refraction effect achieved at the interfaces of the proposed structured material. As shown in 

the previous subsection, for low frequencies the artificial medium exhibit a negative 

effective permittivity along the direction parallel to the axes of the helices, whereas the 
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permittivity in the perpendicular directions is positive (see Fig. 3.4). Hence, we expect that 

the considered metamaterial may negatively refract p-polarized waves (or TM-z polarized 

waves) [8]. This is studied in what follows. 

III.2.4.1 Properties of the fundamental electromagnetic mode 

In order that the electromagnetic fields scattered by the slab of helical shaped wires under 

TM-z excitation (Fig. 3.5) can be completely characterized, it is useful to study first the 

properties of the plane wave modes supported by the structured material with further detail. 

z  y  
x  

inck  

incE
incH

iθ

2a a  

p  

L  

 
Fig. 3.5. Geometry of the metamaterial slab formed by metallic helical shaped wires. The radius of the helical 
wires (or helices) is R  and the radius of the wires is wr . The plane of incidence is the xoz plane and the wave 
is TM-z polarized [ inc inc( ,0, )x zk k=k , inc inc ˆ yH=H u ]. 

In subsection III.2.3 it was shown that, for a fixed frequency, the considered 

metamaterial slab supports two independent plane waves with magnetic field along the y 

direction, which means that the structured medium is characterized by a spatially dispersive 

response. However, it was also proven in subsection III.2.3 that the contribution of the 

high-frequency mode (quasi-TM mode) may be negligible for metamaterial geometries in 

which the helix pitch p is short. Hence, in such circumstances the spatial dispersion effects 

may be suppressed and consequently the wave propagation in the non-bianisotropic helices 

medium can be described almost exclusively in terms of the fundamental electromagnetic 

mode. In addition, the longitudinal mode is cut-off for low frequencies, more specifically it 
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only propagates for frequencies 2 2
1 1/ / 1p pa c a Aω β β> + , which corresponds to the 

frequency in which 0zzε = . Here, we are only interested in the frequency band wherein 

0zzε < , since it is in this range of frequencies that we expect to achieve a negative 

refraction effect. Thus, we will only concentrate our attention on the study of the 

electromagnetic properties of the fundamental mode. 

The isofrequency contours of the fundamental plane wave mode, calculated from Eq. 

(3.12), are depicted in Fig. 3.6 for two different metamaterial configurations. 
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Fig. 3.6. Isofrequency contours of the fundamental plane wave mode supported by the non-bianisotropic 
helices medium for propagation in the xoz plane with magnetic field perpendicular to this plane (Fig. 3.5). (a) 

0.4R a= , 0.05wr a= , and 0.3p a= ; (b) 0.4R a= , 0.05wr a= , and 0.5p a= . In (c) we represent the 
isofrequency contour of the fundamental mode supported by the metamaterial (blue curves) for the 
normalized frequency / 0.45a cω =  and for the same configuration as in (b), as well as the isofrequency 
contour in the air region (brown circle). The transmitted wave vector tk  (green arrow) is determined by the 
conservation of the tangential component of the wave vector xk , whereas the Poynting vector tS  (red arrow) 
is normal to the isofrequency curves and is oriented towards increasing frequencies. 
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As one can see from Fig. 3.6a-b, the fundamental electromagnetic mode is characterized 

by hyperbolic shaped isofrequency contours. Hence, as illustrated in Fig. 3.6c, the Poynting 

vector (energy flow) is always negatively refracted for any angle of incidence (assuming 

incidence from the air side), since it must be normal to the isofrequency contours. 

Therefore, this electromagnetic mode undergoes negative refraction at the interface 

between the non-bianisotropic helices medium and air. 

In order to investigate the negative refraction effect at the interfaces between the non-

bianisotropic helices medium and air (Fig. 3.5), we consider the geometry shown in the 

inset of Fig. 3.7, which shows an incoming plane wave with wave vector 

i i i/ (sin ,0, cos )cω θ θ= −k  illuminating the considered metamaterial. The angle of 

refraction tθ  for the energy flow (determined by the Poynting vector of the transmitted wave 

tS ) can be calculated using the relation ( )g kv ω= ∇ k  and taking into account the fact that 

the projection of the wave vector onto the interface, i.e. the x component of the wave vector 

xk , must be preserved [6]. 
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Fig. 3.7. Angle of transmission of the energy flow (Poynting vector) as a function of the angle of incidence 
for different frequencies of operation and configurations. (i) 0.4R a= , 0.05wr a= , 0.3p a= , and / 0.25a cω = ; 
(ii) 0.4R a= , 0.05wr a= , 0.3p a= , and / 0.3a cω = ; (iii) 0.4R a= , 0.05wr a= , 0.3p a= , and / 0.35a cω = ; (iv) 

0.4R a= , 0.05wr a= , 0.5p a= , and / 0.45a cω = ; (v) 0.4R a= , 0.05wr a= , 0.5p a= , and / 0.55a cω = . The 
inset represents the geometry of the problem showing the incident, reflected and refracted waves. 
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In Fig. 3.7 we depict the angle of transmission tθ  as a function of the angle of incidence 

iθ  for different frequencies of operation and two distinct structure configurations. It is clear 

that for positive angles of incidence, the angle of transmission is negative. Therefore, 

consistently with the hyperbolic shaped isofrequency contours (Fig. 3.6), the Poynting 

vector of the transmitted wave tS  undergoes, indeed, negative refraction at the interface of 

the non-bianisotropic helices medium with air. 

III.2.4.2 Transmission Characteristics 

In this subsection, the transmission properties of the metamaterial slab formed by helical 

shaped wires (Fig. 3.5) are studied under plane wave incidence using the nonlocal 

homogenization model (Sec. III.2.2) and full wave simulations obtained with an 

electromagnetic simulator [29]. The negative refraction effect at an interface between the 

considered metamaterial slab and air (or a dielectric) is then characterized from the 

obtained transmission properties. 

To begin with, we focus our attention on the study of a simple plane wave scattering 

problem using the nonlocal homogenization model derived in Sec. III.2.2. The 

metamaterial slab formed by metallic helical shaped wires is assumed infinite and periodic 

along the x and y directions with lattice period 2a and a, respectively, and finite with 

thickness L along the z direction (Fig. 3.5). The incident wave propagates in the xoz plane 

( 0yk = ) and the incoming magnetic field is polarized along the y direction (see Fig. 3.5). 

Thus, the magnetic field in the three regions of space can be written as follows (the x 

dependence and the time variation j te ω  are suppressed): 
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 (3.13) 

where, inc
yH  is the incident magnetic field, 2 2

0 0 0xkγ ω ε μ= −  is the free-space propagation 

constant, 0 0 isinxk ω ε μ θ= , and ρ  and t are the reflection and transmission coefficients, 

respectively. The propagation constants (1,2)
zk  [calculated by solving Eq. (3.12) with respect 

to zk ] and the amplitudes 1,2A±  are associated with the two distinct electromagnetic modes 

excited inside the metamaterial slab. For each plane wave with magnetic field of the form 

.
0 ˆj

yH e−= k rH u , the corresponding electric field is given by 

.0 0

0

ˆ ˆ jxz
x z

t zz

H kk e
k

η
ε ε

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
k rE u u .    (3.14) 

In order to calculate the reflection and transmission coefficients, we need to impose that 

the tangential components of the electromagnetic fields ( xE  and yH ) are continuous at the 

interfaces 0x =  and x L= − . However, as a consequence of the existence of two plane wave 

modes with the same polarization, these classical boundary conditions are insufficient to 

solve the scattering problem (Eq. (3.13)). Actually, in order to remove the extra degrees of 

freedom and thus solve the scattering problem, the classical boundary conditions must be 

complemented with an additional boundary condition (ABC) at both interfaces. Similar to 

the scattering problem of an array formed by tilted straight wires solved in the previous 

chapter (Sec. II.3.1), also here it is necessary to impose that the normal component of the 

electric field ( zE ) is continuous at the interfaces 0x =  and x L= −  (assuming that the helices 

stand in air) [30-31]. Such ABC guarantees that the microscopic electric current that flows 

in each helical shaped wire vanishes at both interfaces, as proved in Ref. [30-31]. Imposing 
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the ABC and the classical boundary conditions, we obtain a 6 6×  linear system which can 

be easily solved numerically with respect to the unknowns. 

Now, we are able to calculate analytically the transmission coefficient of the considered 

system. The negative refraction at the interfaces between the slab of helical shaped wires 

and air can be investigated using the approach proposed in Ref. [15], which is based on the 

variation in the phase of ( , ) jt t e φω =k  ( arg tφ = ) with xk . Specifically, it was proven in 

Ref. [15] that the spatial shift Δ undergone by an incoming beam when it crosses an 

arbitrary slab (see Fig. 3.8a) is equal to the slope of φ , i.e., / xd dkφΔ = . In particular, 

negative refraction occurs when Δ is negative, or equivalently, when φ  decreases with xk . It 

is worth noting that such criterion is completely general, and the only assumption is that the 

amplitude of the transmission coefficient varies smoothly with xk . 
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Fig. 3.8. (a) Illustration of the spatial shift Δ  undergone by a beam that illuminates an arbitrary slab. (b) 
Amplitude and (c) phase of the transmission coefficient as a function of the normalized xk  for different 
structure configurations. Solid lines: nonlocal homogenization model; Discrete symbols: full wave results 
[29]. (d) Spatial shift Δ as a function of the angle of incidence iθ  for different structure configurations 
calculated using the analytical model based on the homogenization theory. (i) 0.4R a= , 0.05wr a= , 0.3p a= , 

/ 0.35a cω = , and 7L a= ; (ii) 0.4R a= , 0.05wr a= , 0.3p a= , / 0.4a cω = , and 7L a= ; (iii) 0.4R a= , 
0.05wr a= , 0.5p a= , / 0.55a cω = , and 10L a= . 
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Following such criterion, we show in Fig. 3.8b-c the dependence of the transmission 

coefficient (amplitude and phase) on the normalized transverse component of the wave 

vector xk , using both the nonlocal homogenization model and full-wave simulations [29]. 

Firstly, it is important to highlight the good agreement between the nonlocal 

homogenization results and the full wave simulation results, further demonstrating the 

accuracy of the homogenization model derived in Sec. III.2.2. On the other hand, Fig. 3.8b 

shows that the amplitude of the transmission coefficient varies slowly with xk  and is close 

to unity for all propagating waves, satisfying in this manner the requirement of Ref. [15], 

besides indicating that the non-bianisotropic helices medium is well matched to free-space. 

In addition, one can see in Fig. 3.8c that the phase of the transmission coefficient φ  

decreases steadily with xk , which undoubtedly proves the emergence of negative refraction 

at the interfaces of the considered metamaterial slab. Such evidence can be confirmed in 

Fig. 3.8d, wherein it is depicted the spatial shift Δ as a function of iθ  obtained using the 

analytical model based on the homogenization theory. It can be seen that Δ  is indeed 

always negative for any positive angle of incidence iθ . In fact, the negative refraction effect 

in the metamaterial slab formed by helical shaped wires may be quite strong, particularly 

for frequencies slightly below 2 2
1 1/ / 1p pa c a Aω β β= +  (this corresponds to the frequency 

in which 0zzε = ). For instance, for / 0.4a cω = , an incoming beam with i 33θ °=  undergoes 

a spatial shift 01.35λΔ = −  when it crosses a metamaterial slab with a thickness of only 

00.45L λ=  (see Fig. 3.8d(ii)). As expected, the negative refraction effect becomes 

progressively weaker away from the frequency corresponding to 0zzε = . However, for 

/ 0.35a cω =  an incoming beam with i 33θ °=  still suffers a considerable spatial shift 
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00.59λΔ = − , even though the thickness of the slab is only 00.39L λ=  (see Fig. 3.8d(i)). 

Although the absolute value of the negative spatial shift decreases by decreasing the 

frequency of operation, the negative refraction effect can be observed over a wide 

frequency band within the range corresponding to 0zzε < . Specifically, it was verified in 

additional studies (not shown here) that the negative refraction is observed in nearly 60% of 

the frequency band below the plasma frequency 2 2
1 1/ / 1p pa c a Aω β β= + . Of course, for 

frequencies corresponding to 0zzε >  an incoming beam is positively refracted. 

Next, we consider a modified configuration of the non-bianisotropic helices medium that 

is formed by “segmented” helices instead of cylindrical ones (see inset of Fig. 3.9). The 

motivation for considering such alternative structure is that it may be much easier to 

fabricate using printed circuit technology. Specifically, this alternative configuration may 

be fabricated using a planar design, i.e., several layers of boards with printed metallic strips 

and connected by vias, similar to the mushroom structures [20-21]. 

In order that this modified structure (C2 in inset of Fig. 3.9) may mimic closely the 

electromagnetic response of the original structure (C1 in inset of Fig. 3.9), the area of the 

transverse cross section of the metallic wires as well as the fraction of volume of metal in 

the unit cell are chosen the same as in the cylindrical helices. As a result, we define the 

following geometrical parameters to describe the modified geometry: 1 ww rπ=  and 

2 1 ( ) / 3pw w l p= + −  (see inset of Fig. 3.9), where 22(2 )pl R pπ= +  represents the length 

of a cylindrical helix pitch.  
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Fig. 3.9. Full-wave results [29] of the amplitude (a) and phase (b) of the transmission coefficient as a function 
of the normalized xk  for the non-bianisotropic helices medium formed by cylindrical helices (solid lines) and 
for a modified structure formed by segmented helices (discrete symbols). (i) 0.4R a= , 0.05wr a= , 0.3p a= , 

/ 0.35a cω = , and 7L a= ; (ii) 0.4R a= , 0.05wr a= , 0.3p a= , / 0.4a cω = , and 7L a= ; (iii) 0.4R a= , 
0.05wr a= , 0.5p a= , / 0.55a cω = , and 10L a= . Note that in the modified configuration (C2 in the inset of 

(a)) R  and wr  are replaced by 1 ww rπ=  and 2 1 ( ) / 3pw w l p= + − , where 22(2 )pl R pπ= +  represents the 
length of a cylindrical helix pitch. 

To verify the accuracy of the segmented helices approximation, the transmission 

coefficients of both original and approximated configurations are compared in Fig. 3.9. 

Specifically, the figure shows the amplitude and phase of the transmission coefficients of 

the two configurations as a function of the normalized transverse component of the wave 

vector xk , calculated using the electromagnetic simulator [29]. One can see that the general 

agreement between the amplitudes and phases of the two transmission coefficients is quite 

good. Consistently with the transmission coefficient for the metamaterial slab formed by 

cylindrical helices, it is seen that the amplitude of the transmission coefficient for the 

metamaterial slab formed by segmented helices is close to unity for all propagating waves, 

whereas the phase of t  is a decreasing function of xk  with slope very similar to the slope of 

the phase of the original geometry. Hence, it is expected that the modified configuration 

mimics closely the electromagnetic response of the original configuration formed by 

cylindrical helices and similarly enables a strong negative refraction effect. 
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III.2.4.3 Gaussian beam excitation 

To further confirm the findings of Secs. III.2.4.1-2 and demonstrate in a conclusive manner 

the appearance of negative refraction at the interfaces between a slab of helical shaped 

wires (Fig. 3.5) and air, here we consider the scenario wherein the metamaterial slab is 

illuminated by an incoming Gaussian beam with transverse magnetic polarization (TM-z 

polarized). Firstly, we use the derived nonlocal homogenization model (Sec. III.2.2) to 

analyze the refraction of a Gaussian beam at the interfaces of an infinite width metamaterial 

slab. In a later stage, and so that the homogenization results are validated, the 

electromagnetic response of a finite width metamaterial slab illuminated by a beam with 

Gaussian profile is simulated using CST Microwave Studio [29]. 

To begin with, we will consider a Gaussian beam excitation with beam waist 0w , angle 

of incidence iθ , and placed at 0z z=  in front of the metamaterial slab (Fig. 3.5). The 

magnetic field created by the considered source can be expanded in a Fourier integral of 

plane waves (spatial Fourier harmonics), 

0 0( )GB GB( , ) ( , ) xz z jk x
y y x xH x z H k e e dkγω
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− −
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=  (3.17) 

The response of the system to this excitation can be obtained by analyzing the scattering of 

each plane wave of (3.17), and then adding up for all scattered waves. Thus, the magnetic 

field in the three regions of space can be written as follows: 
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where GB ( , )y xH kω  is given by Eq. (3.17), (2) ( , )y xH k z  is the magnetic field inside the slab 

( 0L z− < < ) and defined in Eq. (3.13), and ( , )xkρ ω  and ( , )xt kω  are the reflection and 

transmission coefficients obtained by solving the plane wave scattering problem (Eq. 

(3.13)). Using the above equations we are able to calculate the magnetic field profile in all 

regions of space. 
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Fig. 3.10. Time snapshot of the normalized magnetic field ( 0)yH t =  calculated using Eq. (3.18). A Gaussian 
beam with transverse magnetic polarization characterized by 0 02 4w λ=  and an incident angle of i 33θ °=  
illuminates a structured slab formed by helical shaped wires. The metamaterial slab is periodic along the x and 
y directions. The black dashed lines represent the interfaces of the slab. (a) 0.4R a= , 0.05wr a= , 0.3p a= , 

/ 0.35a cω = , and 20L a= ; (b) 0.4R a= , 0.05wr a= , 0.3p a= , / 0.4a cω = , and 7L a= ; (c) 0.4R a= , 
0.05wr a= , 0.5p a= , / 0.55a cω = , and 10L a= . 

In Fig. 3.10 we represent time snapshots ( 0t = ) of the magnetic field associated with a 

Gaussian beam characterized by an angle of incidence i 33θ °=  and a beam waist 0 02 4w λ=  

for different structure configurations, calculated from Eq. (3.18). In all figures it is manifest 

that the beam undergoes a significant negative spatial shift Δ, demonstrating the emergence 

of strong negative refraction. Specifically, the spatial shift suffered by the Gaussian beam, 

calculated by looking to the maximum amplitude of the magnetic field profiles at the input 

and output interfaces, is: (a) 01.65λΔ ≈ − ; (b) 01.38λΔ ≈ − ; (c) 01.205λΔ ≈ − . These values 

are strongly consistent with the results for the spatial shift Δ  shown in Fig. 3.8d, and 

calculated from the slope of the phase of the transmission coefficient. It is also evident from 
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the results of Fig. 3.10 that the considered metamaterial slab is well-matched to free-space, 

since it is almost imperceptible any field reflection at both interfaces. This is completely 

consistent with the magnitude of the transmission coefficient shown in (Fig. 3.8b). 

In order to confirm the previous results based on homogenization theory, we have 

simulated the electromagnetic response of the metamaterial slab illuminated by a beam with 

Gaussian profile using the electromagnetic simulator [29]. However, due to the difficulty in 

modeling the homogenized metamaterial structure formed by cylindrical helices (C1 in 

inset of Fig. 3.9) in CST Microwave Studio, we have simulated instead the electromagnetic 

response of the modified configuration formed by segmented helices (C2 in inset of Fig. 

3.9). The structured metamaterial slab is assumed to be periodic along y  direction with 

period a , and finite along the x  direction with width 122xW a= . In all the simulated 

structures, the lattice constant was taken equal to 5 mma = . The incoming beam with 

Gaussian profile is also considered periodic along y direction and along the x direction is 

characterized by a beam waist 0 02 3w λ=  at the frequency of operation. Since a Gaussian 

beam excitation is not directly available in CST Microwave Studio 2010, the desired beam 

is created using an approach based on the simultaneous excitation of 11 adjacent waveguide 

ports. The electrical width of each port is about 00.27λ  at each frequency of operation, and 

its amplitude and phase are chosen so that the wave radiated by the port array mimics 

closely the field profile of a Gaussian beam propagating along a direction i 33θ °=  in the 

xoz plane. In all the simulations, the host dielectric is assumed to be air and the effects of 

metallic losses are taken into account by assuming that the constituent metallic elements are 

made of copper ( 75.8 10 S/mσ = × ). 
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Fig. 3.11. Time snapshot of the magnetic field ( 0)yH t =  [A/m] obtained from full-wave simulations done in 
the electromagnetic simulator [29]. A Gaussian beam with transverse magnetic polarization characterized by 

0 02 3w λ=  and an incident angle i 33θ °=  illuminates a finite width metamaterial slab formed by segmented 
helices (see inset of Fig. 3.9). The metamaterial slab is finite with width xW  along x direction and periodic 
along y direction with lattice period 5 mma = . The remaining geometrical parameters of the structure are: 

1 0.05w aπ= , 2 0.832w a , 0.3p a= , and 7L a= ; (a) / 0.35a cω = , (b) / 0.4a cω = ; (c) Normalized 
magnetic field profile of the Gaussian beam at the input interface (solid lines) and at the output interface 
(dashed lines) for the cases (a) (blue lines) and (b) (green lines). 

The time snapshots ( 0t = ) of the normal y component of the magnetic field obtained 

with CST Microwave Studio for two different frequencies of operation are depicted in Fig. 

3.11a-b. These results clearly show that the Gaussian beam is bent in an unusual way at 

both interfaces, confirming the prediction made in the previous subsection based on the 

negative slope of the phase of the transmission coefficient (see Fig. 3.9). Moreover, the 

simulation results appear to be qualitatively consistent with the homogenization results 

shown in Fig. 3.10 for the original metamaterial structure formed by cylindrical helices. In 

order to check such fact, the magnetic field profiles at the input (solid lines) and output 

(dashed lines) interfaces of the structured slab are depicted in Fig. 3.11c. They undoubtedly 

show that the Gaussian beam is negatively refracted by the metamaterial slab and that the 

spatial shift Δ undergone by the beam is quantitatively similar to the values of the spatial 

shift for the homogenized configuration formed by cylindrical helices (Fig. 3.5). 

Specifically, the values for the spatial shift inferred from Fig. 3.11c for the cases associated 

with panel (a) and (b) are, respectively, 00.6λΔ ≈ −  and 01.2λΔ ≈ − , which are reasonably 

consistent with the values of Δ obtained from the homogenization model of the structure 
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configuration formed by cylindrical helices (see Fig. 3.8d and discussion of the results of 

Fig. 3.10). Hence, these results further demonstrate that the modified metamaterial 

configuration formed by segmented helices mimics, indeed, the electromagnetic response 

of the homogenized structure formed by cylindrical helices, and thus such structure also 

enables a strong negative refraction. It is also worth noting from the results of Fig. 3.11 

that, similar to the homogenized structure (Fig. 3.10), in this modified configuration formed 

by segmented helices the level of reflections is also very weak, indicating in this manner 

that the metamaterial structure is well-matched to free-space. 

III.2.5. Partial Focusing by a Planar Lens formed by Helical Shaped 
Wires 

As already mentioned in the introduction to this chapter, the concept of negative refraction 

has led to novel fundamental approaches and potential applications in optics, being the 

partial focusing of rays emerging from a point source and impinging on a flat slab perhaps 

the most interesting possibility. Hence, given the successful observation of negative 

refraction at the interfaces between the metamaterial slab formed by helical shaped wires 

and air, here we investigate the possibility of taking advantage of this phenomenon to 

obtain partial focusing with a planar lens. 

III.2.5.1 Guidelines for the design of the flat lens 

In order to study the possibility of partial focusing, we suppose that a line source is placed 

at a distance 1d  from the front interface of the metamaterial slab (inset of Fig.3.12a), and we 

investigate what is the required thickness L for the slab so that the radiation of the source is 
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refocused to a point located at a distance 1 2d d=  from the back interface. In general, this 

thickness depends on the angle of incidence iθ . 

(a) ( )b
(i) (ii) 1/L d  

iθ  
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,2sd
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Fig.3.12. (a) Normalized thickness of the metamaterial slab as a function of the angle of incidence calculated 
in order that 1 2d d= . (i) 0.4R a= , 0.05wr a= , 0.3p a= , and / 0.28a cω = ; (ii) 0.4R a= , 0.05wr a= , 

0.5p a= , and / 0.45a cω = . The inset represents the geometry of the problem. (b) Ray-tracing diagrams 
showing that the structured material refocuses the rays coming from a magnetic line source both inside and 
outside the slab. The rays represent the direction of the Poynting vector (energy flow). The source is placed at 
a distance 1 0.5d L=  from the front interface, the thickness of the slab is 20L a= , and the remaining 
parameters are the same as in (a): (i) same parameters as (ai), and (ii) same parameters as (aii). 

From the inset of Fig.3.12a and using simple geometrical arguments, it is 

straightforward to obtain the following equations: 

1 i s,1 ttan tand dθ θ= ,     (3.19) 

2 i s,1 ttan ( ) tand L dθ θ= − ,    (3.20) 

The angle tθ  represents the angle of refraction of the energy flow (determined by Poynting 

vector of the transmitted wave) and is calculated using the relation ( )g kv ω=∇ k  in the 

same manner as in Sec. III.2.4.1 (see Fig. 3.7). Then, substituting Eq. (3.19) in Eq. (3.20) 

and considering that 1 2d d=  we easily obtain the following formula for the normalized 

thickness of the slab L 
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In Fig.3.12a we depict the required normalized thickness for the slab as function of the 

angle of incidence for two different configurations, characterized using Eq. (3.21). We only 

show the curve associated with each configuration for positive or negative angles of 

incidence, since it is evident that by symmetry i( )L θ  is an even function of iθ . As seen 

from Fig.3.12a, the required thickness for the slab is not constant and depends on the angle 

of incidence. This was expected, since as shown in Fig. 3.7, the angle of transmission tθ  is 

a nonlinear function of iθ . Hence, unlike what happens in Veselago’s lens where t iθ θ= −  

and consequently the thickness 12L d=  provides perfect focusing2, this structured slab does 

not possess pairs of pure aplanatic points [32]. Nevertheless, despite this non-ideal 

characteristic, the proposed lens may enable a partial focusing of the radiation. To illustrate 

this possibility, we depict in Fig.3.12b the ray-tracing diagrams showing the path of the 

rays inside and outside the slab for 1 0.5d L= . Clearly, the rays coming from the line source 

(located above the slab) are partially refocused inside the slab, and also after crossing the 

metamaterial lens at a partial focus located at a distance 1 2d d≈ . 

III.2.5.2 Imaging a magnetic line source 

To verify the ray-tracing diagrams and characterize the effects of diffraction, here we 

consider the scenario where a magnetic line source (infinitely extended along the y 

direction) is placed at a distance 1d  above the helical shaped wires slab (Fig. 3.13a). The 

                                                            
2 In order to avoid misunderstanding, it should be underlined that in this context perfect focusing has nothing 
to do with the restoration of the near-field and consequent super-resolution, but only with the fact that all the 
light rays (far-field) converge into the same exact geometrical point. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 89 

magnetic field radiated by the line source is of the form ( )(2)
0( / 4 ) ( / )yH A j H cω ρ= , where 

A is some constant that depends on the line current, ρ  is the radial distance to the source, 

and (2)
0 0 0H J jY= −  is the Hankel function of second kind and order zero. Theoretically, the 

line source can be decomposed into a spectrum of plane waves, i.e., the Hankel function 

can be represent as a Fourier integral of plane waves. Hence, considering that the magnetic 

line source is located at 1z d= , its magnetic field is of the form: 
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Now, similarly to what was done in the derivation of Eq. (3.18), the magnetic field in the 

free regions of space can be written in terms of Sommerfeld-type integrals: 
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where (2) ( , )y xH k z  is the magnetic field inside the slab ( 0L z− < < ) and defined in Eq. (3.13), 

and ( , )xkρ ω  and ( , )xt kω  are the reflection and transmission coefficients obtained by 

solving the plane wave scattering problem (Eq. (3.13)). Using the above equations we have 

calculated the magnetic field profile in all regions of space. 

In Fig. 3.13b the density plots of the normalized squared amplitude of the magnetic field 

2H  are depicted in the xoz plane for the same metamaterial configurations of the ray-

tracing diagrams of Fig.3.12b. 
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Fig. 3.13. Geometry of the problem: a magnetic line source is placed at a distance 1d  above the helical shaped 
wires lens. (b) Squared (normalized) amplitude of the magnetic field 2H . (i) 0.4R a= , 0.05wr a= , 0.3p a= , 

/ 0.28a cω = , and 100L a= ; (ii) 0.4R a= , 0.05wr a= , 0.5p a= , / 0.45a cω = , and 60L a= . The white 
dashed lines represent the interfaces of the slab. (c) Amplitude of the normalized 2H  at the focal plane 
( 1( )z L d= − + ). The parameters are the same as in (b): (i) same parameters as (bi), and (ii) same parameters 
as (bii). We only show the magnetic field profiles for 0x <  or 0x > , since it is obvious that 2H  is an even 
function with respect to the x direction. 

In both figures it is evident an intense and elongated focal point of the magnetic field 

inside the helical shaped wires lens, and also after the structured lens. The slight aberration 

along the z direction results from the aforementioned fact that the angle of transmission tθ  

inside the lens is a nonlinear function of iθ . Clearly, these results are completely consistent 

with the ray-tracing diagrams of Fig.3.12b, and prove that a slab thick enough of helical 

shaped wires can work, indeed, as a planar focusing device, redirecting the electromagnetic 

radiation of a p-polarized source to a narrow spot at the focal plane. Moreover, and 

consistent with the results of Sec. III.2.4.3 for a Gaussian beam excitation (see Fig. 3.10), it 

is visible from Fig. 3.13b that the helical shaped wires lens is well-matched to free-space, 
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since it is hardly noticeable any field reflections in the region above the lens (where the 

source is located). 

The resolution of the this structured lens is limited by diffraction, since the half-power 

beamwidth (HPBW) at the focal plane is 0 / 2λ  (see Fig. 3.13c) as in any conventional 

optical system. Nevertheless, and despite the referred resolution restriction, the considered 

metamaterial lens has the important property that the imaging characteristics are 

independent of the position of the source because of the flat interfaces. 

III.2.6. Concluding Remarks 

In Sec. III.2, we have shown that a metamaterial structure formed by helical shaped wires 

(or helices) behaves effectively as a local (with no spatial dispersion) uniaxial ENG 

material and, as a result, enables a strong negative refraction effect over a wide frequency 

band. It was demonstrated that as an alternative to the arrays of metallic wires loaded with 

metallic patches (multilayered mushroom-type metamaterial), the considered structure 

formed by arrays of helical shaped wires also enables the suppression of the strong spatial 

dispersion effects that are inherent to wire media at microwave and low infrared 

frequencies. The proposed configuration may have the advantage of being better matched 

to the surrounding medium (e.g., free-space) than the mushroom-type metamaterial 

structure, and hence the level of reflections at their interfaces may be weaker. Finally, and 

taking advantage of the phenomenon of negative refraction, we have also shown the 

possibility of using the proposed metamaterial structure to design a planar lens that 

provides partial focusing. The reported results were obtained using a derived 

homogenization model and then fully confirmed by full wave simulations [29], showing a 

remarkable agreement. 
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III.3. Negative Refraction and Partial Focusing by a Crossed Wire 
Mesh 

III.3.1. Introduction 

In the previous section we have shown that the suppression of the spatial dispersion effects 

that are inherent to wire media at microwave and low infrared frequencies is directly related 

to the emergence of the phenomenon of negative refraction. Even though in this specific 

situation the nonlocal response of the arrays of metallic wires may hinder the phenomenon 

of negative refraction, in other circumstances it may open novel routes to obtain negative 

refraction. In particular, in a recent publication [15] a distinct approach was proposed to 

obtain all-angle broadband negative refraction at low frequencies that relies on the spatially 

dispersive response of a wire metamaterial structure formed by nonconnected crossed 

metallic wires. 

Following these findings, in this section we will give further insights on the negative 

refraction effect in a crossed wire mesh. Particularly, the full wave numerical results of Ref. 

[15] that demonstrate unequivocally the emergence of negative refraction at the interfaces 

of the crossed wire mesh will be complemented with numerical results based on nonlocal 

homogenization theory. In addition, we investigate partial focusing of electromagnetic 

waves by a flat lens of nonconnected crossed metallic wires. Specifically, this is firstly 

analyzed numerically using both homogenization theory and full-wave simulations, and 

subsequently it will be experimentally verified. Finally, it will be also discussed the 

phenomenon of negative refraction and partial focusing in modified crossed wire mesh 

configurations in which the angle between the arrays of parallel wires is different from 90 . 

The physical motivation behind the study of these modified configurations is the prospect 
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of boost the strength of the negative refraction effect by increasing the angle between the 

two sets of parallel wires. 

III.3.2. The Crossed Wire Mesh - Homogenization Model 

The metamaterial considered here consists of a crossed wire mesh of nonconnected metallic 

wires with radius wr  and arranged in a square lattice with lattice constant a . The two arrays 

of parallel wires are orthogonal to each other and are placed at a distance of / 2a  from each 

other. The orientation of the two wire arrays is determined by the perpendicular unit vectors 

1ˆ (1,0,1) / 2=u  and 2ˆ ( 1,0,1) / 2= −u  (Fig. 3.14). The wires are embedded in a dielectric 

with relative permittivity hε  and thickness L . 
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Fig. 3.14. Geometry of the crossed wires metamaterial formed by two orthogonal arrays of nonconnected 
metallic wires. One set of wires is oriented along the direction defined by 1û , whereas the complementary set 
is oriented along 2û . The distance between perpendicular adjacent planes of wires is / 2a . The plane of 
incidence is the xoz  plane and the incident wave is TM- z  polarized [ inc inc( ,0, )x zk k=k , inc inc ˆ yH=H u ]. 

In the long wavelength regime ( aλ >> ) the “double wire medium” can be described 

using homogenization techniques [15, 33-36], being characterized by the following 

dielectric function 

( )11 1 1 22 2 2ˆ ˆ ˆ ˆ ˆ ˆeff h y yε ε ε ε= + +u u u u u u  .   (3.24) 

Assuming that the wires are perfectly electrical conducting (PEC), the permittivity 

components 11ε  and 22ε  are given by, 
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( )
( )
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   (3.25) 

where c is the speed of light in vacuum, ( , , )x y zk k k=k  is the wave vector, ˆ.i ik = k u , and 

1/2[2 / (ln( / 2 ) 0.5275)] /p wa r aβ π π= +  is the plasma wave number. 

Before considering the more complicated problem of radiation of a source above the 

metamaterial lens, let us concentrate first on the analysis of a simple plane-wave scattering 

problem such that the incident wave vector is in the xoz  plane ( 0yk = ) and the incoming 

magnetic field is polarized along the y direction, as illustrated in Fig. 3.14. Under this 

excitation, the dispersion characteristic of the plane wave modes supported by the 

considered structured material are given by the following dispersion characteristic 

( ) ( )

2 2
1 2

2 22 2
11 22

1
h h

k k
k c k cε ω ε ε ω ε

+ =
− −

,   (3.26) 

which, as shown in Ref. [15], is equivalent to a polynomial equation of third degree in the 

variable 2
zk . Thus, the homogenization model predicts that the crossed wire mesh supports 

three independent plane wave modes with the magnetic field along the y direction, an effect 

which is only possible because of the strongly nonlocal response of the metamaterial [33-

36], since for conventional local materials each fixed polarization is associated with a 

single plane wave. Here, we write the magnetic field in the three regions of space as 

follows (the x  dependence and the time variation j te ω  of the fields are suppressed), 

0 0
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In the above, inc
yH  is the incident field, 2 2

0 0 0xkγ ω ε μ= −  is the free space propagation 

constant, 0 0 isinxk ω ε μ θ= , being iθ  the angle of incidence, and ρ  and t  are the 

reflection and transmission coefficients, respectively. The propagation constants (1,2,3)
zk  

[calculated by solving Eq. (3.26) with respect to zk ] and the amplitudes 1,2,3A±  are 

associated with the electromagnetic modes excited inside the metamaterial slab. For each 

plane wave with magnetic field of the form .
0 ˆj

yH e−= k rH u , the corresponding electric field 

is given by 

.0 2 1
1 2

0 11 22

ˆ ˆ j

h

H k k e
ωε ε ε ε

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
k rE u u .    (3.28) 

In order to calculate the reflection and transmission coefficients, it is necessary to 

impose the following boundary conditions: 

xE  and yH  are continuous at z L= −  and 0z = ,   (3.29a) 

,av 1ˆ. 0d =J u , ,av 2ˆ. 0d =J u  at z L+= −  and 0z −=    (3.29b) 

The first set of boundary conditions corresponds to the classical boundary conditions which 

impose that the tangential electric and magnetic fields are continuous at the interfaces. The 

second set corresponds to the so-called additional boundary conditions (ABCs) introduced 

in Refs. [31, 37], and guarantee that the electric current that flows along each individual 

metallic wire vanishes at both interfaces [for the definition of the averaged current ,avdJ  in 

Eq. (3.29b) the reader is referred to Refs. [31, 37]]. It is worth noting that in this case where 

there is more than one wire inside the unit cell the continuity of the normal component of 

the electric field multiplied by the host permittivity cannot be regarded as equivalent to all 

the ABCs [37], in contrast to, for example, the tilted wire medium considered in Chapter II. 
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Once again, these additional boundary conditions are necessary to remove the degrees of 

freedom characteristic of nonlocal materials, which are manifested through the existence of 

“additional waves”. In this manner, the scattering problem is reduced to an 8 8×  linear 

system, which can be easily numerically solved (see Ref. [37] for further details). 

III.3.3. Negative Refraction by the Crossed Wire Mesh 

Here, we shed more light on the phenomenon of negative refraction in the crossed wire 

mesh introduced in Ref. [15], giving further physical insights and presenting new numerical 

results based on nonlocal homogenization theory. 

As described in Ref. [15], the key ingredient for the emergence of negative refraction is 

the fact that the crossed wire mesh supports, for propagation in the xoz plane (Fig. 3.14) 

and long wavelengths, an electromagnetic mode with hyperbolic shaped isofrequency 

contours (Fig. 3.15).  
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i i,k S

tk

tS t
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Fig. 3.15. Isofrequency contour of the fundamental plane wave mode supported by the crossed wire mesh 
(Fig. 3.14) for the normalized frequency / 0.6a cω = , 1hε =  and 0.05wr a=  (green lines), as well as the 
isofrequency contour in the air region (brown circle). The gray dashed lines represent the asymptotes of the 
two hyperbolas. The transmitted wave vector tk  (blue arrow) is determined by the conservation of the 
tangential component of the wave vector xk  at the interface, whereas the Poynting vector tS  (red arrow) is 
normal to the isofrequency curves and is oriented towards increasing frequencies. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 97 

As illustrated in Fig. 3.15, this electromagnetic mode undergoes negative refraction at 

the interfaces with air. One can easily see that the Poynting vector (energy flow) is always 

negatively refracted for any incident wave vector (or angle of incidence) since it must be 

normal to the isofrequency contours. On the other hand, the transmitted wave vector is 

positively refracted, making an acute angle with the Poynting vector as in indefinite media. 

Despite some similarities between these isofrequency contours and those of indefinite 

materials as, for example, the isofrequency contours of the structured medium formed by 

helical shaped wires studied in the previous subsection (Fig. 3.6), there is an evident and 

significant difference between them. The isofrequency contours of a conventional indefinite 

anisotropic material consist of a single hyperbola and hence only yield negative refraction 

when the interface is normal to the principal axis along which the permittivity is negative 

(see Fig. 3.6). On the other hand, the isofrequency contour of the considered spatially 

dispersive material consists of two hyperbolas with asymptotes running along the directions 

1û  and 2û  (see Fig. 3.15), and consequently enables negative refraction if the interface is 

normal either to the x or to the z direction. In fact, the physical mechanism behind the 

negative refraction in the crossed wire mesh is fundamentally different from the mechanism 

exploited in indefinite materials. While in indefinite anisotropic media the hyperbolic 

isofrequency contours and, consequently, the negative refraction effect are related to the 

sign of the principal elements of the permittivity and permeability tensors, in the crossed 

wire mesh they are simply rooted in the geometry of the structure, as is explained in detail 

below. 
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In order to give an intuitive physical picture of the mechanism that yields negative 

refraction in the crossed wire mesh, let us consider each array of parallel tilted wires that 

make up the crossed wires metamaterial separately (Fig. 3.16a).  
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2û  

y  

z  
1û  
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Fig. 3.16. (a) The two arrays of tilted wires that form the crossed wire mesh (Fig. 3.14). (i) Array of parallel 
wires with wires tilted by an angle 45α °= −  (wires directed along 1û ); (ii) Array of parallel wires with wires 
tilted by an angle 45α °=  (wires directed along 2û ). (b) The isofrequency contours of the TEM mode 
supported by the tilted wire medium configurations of (a) (green lines), as well the isofrequency contour in 
the air region (gray circle). (i) 45α °= − ; (ii) 45α °= ; The remaining parameters are 1hε =  and 0.05wr a= . 
The transmitted wave vector tk  (blue arrow) is determined by the conservation of the tangential component 
of the wave vector xk , whereas the Poynting vector tS  (red solid arrow) is normal to the isofrequency curves 
and oriented along the increasing frequencies. 

The electromagnetic response of the arrays of tilted wires was already studied in Chapter 

II. It was demonstrated that such arrays of wires perform pixel-to-pixel imaging, working in 

such a way that for any angle of incidence iθ  the angle of transmission inside the 

metamaterial slab is invariant and equal to tθ α= . This property clearly implies that for a 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 99 

certain range of incident angles, the group velocity (which is parallel to the Poynting 

vector) will suffer negative refraction. 

To demonstrate this property, we analyze the isofrequency contours of the TEM mode 

supported by the tilted wire medium. As already discussed in Sec. II.3.1, the TEM mode 

becomes the dominant propagating mode in the wire medium when the wires are densely 

packed ( / 0wa L → ), being its dispersion characteristic given by ˆ ( / )i hcω ε= ±k.u  [31, 

J.5], where 1ˆ ˆi =u u  for the configuration of Fig. 3.16a(i) and 2ˆ ˆi =u u  for the configuration 

of Fig. 3.16a(ii). This equation is equivalent to sin cos ( / )x z hk k cα α ω ε− + = ± , where α  

is the angle between the wires direction and the z-axis (see Fig. 3.16a). Thus, the 

isofrequency contours of the TEM mode for the tilted wire medium configuration of Fig. 

3.16a(i) correspond to two planar surfaces normal to the direction of the wires 1û , as 

represented in Fig. 3.16b(i). Conversely, the isofrequency contours of the TEM mode for 

the configuration illustrated in Fig. 3.16a(ii) correspond to two planar surfaces normal to 

the 2û  direction, as shown in Fig. 3.16b(ii). Therefore, since the Poynting vector is normal 

to the isofrequency contours, it follows that the transmission angle is necessarily such that 

tθ α= , as already anticipated. Moreover, as a consequence of this property that tθ α=  for 

any angle of incidence, the isofrequency contours predict that the tilted wire medium may 

enable negative refraction when the angle of incidence verify i 0θα < . This means that for 

the tilted wire medium configuration illustrated in Fig. 3.16a(i) negative refraction occurs 

for positive angles of incidence, and conversely, negative refraction arises in the 

configuration of Fig. 3.16a(ii) for all the range of negative angles of incidence. For more 
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details about the negative refraction effect in the tilted wire medium the reader is referred to 

Ref. [J.5]. 

What is really interesting to note from Fig. 3.16b(i)-(ii) is that the isofrequency contours 

of the TEM mode supported by both tilted wire medium configurations correspond to the 

asymptotes of the hyperbolic isofrequency contours of the crossed wire mesh (Fig. 3.15). 

Therefore, this suggests that the phenomenon of negative refraction in the crossed wire 

mesh is, indeed, rooted in the geometry of the structure. Specifically, the emergence of 

negative refraction in the crossed wires metamaterial (Fig. 3.14) can be intuitively 

understood by noting that each array of parallel wires provides a different channel of 

propagation for the incoming wave, and that the dominant channel, i.e. the channel that is 

better coupled to the incoming wave, is such that the angle of refraction of the energy flow 

is negative. Thus, a wave that illuminates the metamaterial with a positive angle of 

incidence i 0θ >  interacts mainly with the set of wires directed along 1û , and conversely an 

incident wave with negative angle of incidence i 0θ <  will be transmitted essentially by the 

array of wires oriented along 2û . 

Next, in order to complement the MoM results presented in Ref. [15] and graphically 

demonstrate the emergence of negative refraction in the crossed wire mesh, we use the 

nonlocal homogenization model (Sec. III.3.2) to investigate the refraction of a Gaussian 

beam at the interfaces of an infinite width metamaterial slab. As in Sec. III.2.4.3, we use 

Fourier theory to write the incoming beam as a superposition of planes waves, in the form 

of a Sommerfeld-type integral. Following this approach, we can calculate the magnetic 

field distribution in all space using again Eq. (3.18). 
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Fig. 3.17. Normalized amplitude of the magnetic field yH  inside and outside the crossed wire mesh 
calculated using the nonlocal homogenization approach. The incoming wave (illuminating the slab from 
above) has a Gaussian beam profile and is characterized by 0 02 4w λ=  and an incident angle of i 33θ °= . The 
metamaterial slab is periodic along the x and y directions. The gray dashed lines represent the interfaces of the 
slab. The frequency of operation is / 0.6a cω = , the radius of the wires is 0.05wr a= , and the permittivity of 
the host is 1hε = . (a) 10L a= ; (b) 20L a= . 

In Fig. 3.17 we present the calculated normalized amplitude of the magnetic field inside 

and outside the crossed wire mesh for different thicknesses of the slab. The results clearly 

show that the Gaussian beam is negatively refracted at both interfaces of the slab. 

Moreover, these results reveal to be qualitatively very similar to the MoM results presented 

in Fig. 4 of Ref. [15], confirming in this manner the accuracy of the nonlocal 

homogenization model. Particularly, the spatial shift suffered by the beam in the two 

examples is of the same order of the numerical results reported in Ref. [15]. In addition, the 

level of reflections perceptible in both results of Fig. 3.17 is also very similar to the 

numerical results of Ref. [15]. As explained in Ref. [15], this reflection is a consequence of 

the slight impedance mismatch between the structured material and free-space, owing to the 

fact that the effective impedance of the metamaterial is relatively low.  
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III.3.4. Partial Focusing by a Planar Lens formed by Crossed Metallic 
Wires 

Following the results of the previous subsection, which confirm the emergence of negative 

refraction at the interfaces of a crossed wire mesh, and originally introduced in Ref. [15], 

here we investigate partial focusing by a flat slab of this structured material, similar to the 

focusing effect achieved with the helical shaped wires lens analyzed in Sec. III.2.5. 

Firstly, we provide the guidelines for the design of a planar crossed lens. Next, we 

numerically study the imaging of a magnetic line source by the proposed lens. In addition, 

we also analyze the imaging of a more realistic electric current source by the lens. Finally, 

we report our experimental results that confirm the partial focusing of electromagnetic 

radiation, based on a fabricated crossed wires lens prototype.  

III.3.4.1 Guidelines for the design of the flat lens 

Here, using the same geometrical argumentation as in Sec. III.2.5.1, we investigate what 

should be the thickness L  of the crossed wires lens so that the electromagnetic radiation of 

a point source placed at a distance 1d  from the front interface is partial focused at a 

distance 1 2d d=  from the back interface. 

The required normalized thickness for the slab as a function of the angle of incidence is 

depicted in Fig. 3.18a. Similar to the helical shaped wires lens (see Fig.3.12a), also here the 

required thickness is angle-dependent, as a consequence of the nonlinear relation between 

the angle of incidence iθ  and the angle of transmission tθ  (see Fig. 2 in Ref. [15]). This 

angle-dependency implies that the light rays will not converge into a single perfect point, as 

already mentioned in Sec. III.2.5.1. However, the proposed structured lens should enable a 
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partial focusing of the radiation somewhat similar to what was demonstrated in Sec. III.2.5 

using a uniaxial ENG material formed by helical shaped wires. 
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Fig. 3.18. (a) Normalized thickness of the metamaterial slab as a function of the angle of incidence calculated 
in order that 1 2d d= . The frequency of operation is / 0.6a cω = , the radius of the wires is 0.05wr a= , and 
the permittivity of the host is 1hε = . The inset represents the geometry of the problem. (b) Ray-tracing 
diagram showing that the structured material refocuses the rays coming from a line source both inside and 
outside the slab. The rays represent the direction of the Poynting vector (energy flow). The source is placed at 
distance 1 0.25d L=  from the front interface and the thickness of the slab is 20L a= . 

From Fig. 3.18a, it is clear that the thickness of the slab should be chosen so that 

12.8L d>  to ensure that 1 2d d≈ . Taking this into account, we represent in Fig. 3.18b the 

ray-tracing-diagram showing the path of the rays inside and outside the slab for 1 0.25d L= . 

It is seen that the rays coming from the line source (located above the slab) are partially 

refocused inside the slab, and also after passing through the metamaterial lens at a partial 

focus located at a distance 1 2d d≈ . Other numerical tests that we have performed suggest 

that 1 0.25d L=  is a good compromise solution, which despite the non-ideality of the lens 

yields a well-defined focus at the image plane. 
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III.3.4.2 Imaging a magnetic line source 

In order to verify the results of the previous subsection and to characterize the imaging 

properties of the considered structure, in the following we study the canonical problem 

where a magnetic line source (infinitely extended along y direction) is placed at a distance 

1d  above the crossed wires slab (Fig. 3.19a). Using the same approach as in Sec. III.2.5.2 

(Eqs. 3.22-3.23) based on the decomposition of the electromagnetic fields radiated by the 

line source into a spectrum of plane waves, we have calculated the magnetic field profile in 

all regions of space. 
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Fig. 3.19. (a): Geometry of the problem: a magnetic line source is placed at a distance 1d  above the crossed 
wires lens. (b) and (c): Squared (normalized) amplitude of the magnetic field 2H . The frequency of 
operation is / 0.6a cω = , the radius of the wires is 0.05wr a= , the permittivity of the host is 1hε = , and the 
source is located at a distance 1 0.25d L=  from the front interface of the slab. The white dashed lines 
represent the interfaces of the slab. (b) 20L a= ; (c) 50L a= . 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 105 

In Fig. 3.19b-c the density plots of 2H  are depicted in the xoz plane for the 

configuration illustrated in Fig. 3.19a with 1 0.25d L= . In both figures it is clearly seen an 

intense partial focus of the magnetic field inside the crossed wires lens, and also behind the 

lens. Hence, these results confirm the findings of Sec. III.3.4.1, and prove that a flat slab of 

nonconnected crossed wires can indeed redirect the electromagnetic radiation of a p-

polarized line source (such that the electric field is in the plane of the wires) to a narrow 

spot at the focal plane. 

It is seen in Fig. 3.19b that for a slab with thickness 20L a=  the focal point behind the 

lens spreads somewhat along the z direction, and partially overlaps the back interface of the 

slab. In order to achieve a focal point clearly detached from the interface, we can use a slab 

with larger thickness L , as shown in Fig. 3.19c, for a lens with 50L a= . This can be 

understood by noting that for a fixed frequency of operation, the characteristic dimension of 

the system as compared to the wavelength increases with L , and thus the laws of 

geometrical optics and the ray-tracing analysis become more accurate (or in other words, 

the effects of wave diffraction are mitigated). Furthermore, it is noticeable in Fig. 3.19c that 

the focal region is somewhat elongated, consistent with the ray-tracing analysis of Fig. 

3.18b, as a consequence of the fact that the angle of refraction tθ  inside the lens is angle-

dependent, as already discussed in Sec. III.3.4.1. 

In the region above the slab of crossed wires (where the source is located) some effects 

of reflections can be detected. Indeed, as already mentioned in Sec. III.3.3, there is some 

mismatch between the impedances of the structured material and free space, because the 

effective impedance of the metamaterial is relatively low [15]. 
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The half-power beamwidth (HPBW) measured at the focal plane for the example 

reported in Fig. 3.19c is 00.4λ , similar to the conventional diffraction limit value ( 0 / 2λ ) 

that is obtained with planar lens formed by anisotropic indefinite materials such as the 

proposed in the previous section formed by helical shaped wires. 

The results described above were obtained using the analytical model [Eq. (3.23)], and 

assume that the metamaterial slab is infinitely extended along the x and y directions. In 

order to confirm these homogenization results and also the ray-tracing diagram (Fig. 

3.18b), we used a homemade Method of Moments (MoM) code to numerically simulate the 

focusing properties of a finite width metamaterial slab illuminated by a magnetic line 

source. The MoM code takes into account all the fine details of the microstructure of the 

artificial material. In the MoM simulation the structured material slab is periodic along the 

y direction, and finite along the x direction with width W. It is assumed that each plane of 

wires (parallel to xoz plane) is formed by 100 wires, so that the width of the slab is 

approximately 100 2W a= . 
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Fig. 3.20. Normalized 2H  (a) and 2E  (b) for an array of crossed wires with thickness 20L a= , radius of 
the wires 0.05wr a= , and permittivity of the host 1hε = . The magnetic line source is placed at distance 

1 0.25d L=  from the front interface of the slab. The frequency of operation is / 0.6a cω = . 
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The spatial maps of the normalized squared amplitude of the magnetic and electric fields 

calculated with the MoM are shown in Fig. 3.20. An intense partial focus of the magnetic 

field (Fig. 3.20a) on the far side of the slab relative to the line source is clearly seen, 

confirming the homogenization results and further demonstrating that this structure works, 

indeed, as a planar focusing device. Contrary to what happens with the intensity of the 

magnetic field, the intensity of the electric field (Fig. 3.20b) inside the metamaterial slab is 

significantly weaker than in the free-space regions [15]. Indeed, as mentioned before, the 

crossed wire mesh is a low impedance material. Due to this property, which implies some 

impedance mismatch with free-space, some reflections can be detected in the region above 

the first interface, consistent with the results of the homogenization model. 

III.3.4.3 Imaging a realistic electric current source – numerical and 
experimental results 

In the previous subsection, we have numerically demonstrated the focusing of the 

electromagnetic radiation by the crossed wires metamaterial, using both an analytical model 

based on homogenization theory as well as using a homemade method of Moments (MoM) 

code, assuming that the metamaterial lens is illuminated by a magnetic line source 

(infinitely extended along y-direction). Following this, it would be very interesting to verify 

such results through an experiment. However, an obstacle arises at this point. Specifically, 

a truly magnetic line source is an unrealistic excitation. Hence, here we study the possibility 

of using a more realistic electric current source as the excitation of the structured lens. Such 

possibility is numerically investigated using CST Microwave Studio [29], and then 

experimentally verified using a fabricated prototype of the crossed wires lens. 
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To begin with, we used the commercial software [29] to simulate the electromagnetic 

response of a finite width crossed wires slab illuminated by an array of dipole-type 

antennas with length 0 / 4l λ . The dipoles are modeled in CST Microwave Studio through 

the excitation of two 0 / 8λ  metallic wires by a discrete port. The antennas are parallel to 

the xoz plane and the array period along y is equal to the lattice constant of the material a. 

Such excitation creates an electric field distribution that is mainly confined to the xoz plane, 

which is the condition required for the proper operation of the lens. The structured material 

is periodic along the y direction, and finite along the x direction with width 80 2W a . 

The cylindrical metallic wires of the original structure (Fig. 3.14) are replaced by metallic 

strips with width s ww rπ= , and the metallic components (wires and dipole-type antennas) 

are assumed to be made of copper ( 75.8 10σ = ×  S/m). 

(a)         (b) 

0

z

0/x

0

z

0/x
10.750.50.250  

Fig. 3.21. (a) Normalized squared amplitude of the normal y component of the magnetic field, and (b) 
normalized squared amplitude of the in-plane component of the electric field, obtained with CST Microwave 
Studio [29]. The frequency of operation is / 0.6a cω = , the width of the metallic strips is / 20sw aπ= , the 
permittivity of the host is 1hε = , and the thickness of the slab is 50L a= . The source (array of dipole-type 
antennas) is located at a distance 1 0.25d L=  above the lens, and each dipole has a length 0 / 4l λ . The white 
dashed lines represent the interfaces of the slab. 

The simulation results, shown in Fig. 3.21, confirm that the crossed wires slab enables 

the focusing of the electromagnetic radiation created by the array of electric sources, 
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extending the results of Sec. III.3.4.2. It is clearly seen, both in the distribution of the 

normal component of the magnetic field (Fig. 3.21a) as well as in the in-plane (xoz) 

component of the electric field (Fig. 3.21b), an intense partial focus both behind the lens 

and also inside the lens. Moreover, in agreement with the results of Sec. III.3.4.2, it is also 

noticeable in Fig. 3.21 that the crossed wire mesh is a low impedance material [15, J.4], 

since the intensity of the electric field inside the structured lens is weaker than outside, 

whereas the intensity of the magnetic field is of the same order. As a result, there is a slight 

impedance mismatch with free-space, perceptible in the reflections observed in the region 

above the first interface of the lens. 

So, we have shown that, similar to what happens with a magnetic line source excitation, 

the crossed wires lens also works as a planar focusing device for an array of dipoles parallel 

to the planes of wires. Thus, the main obstacle to the fabrication of the prototype of the 

crossed wires lens that was directly related to the excitation source is surpassed, since now 

we can use a realistic electric current source to demonstrate the partial focusing of the 

electromagnetic radiation by the proposed lens. However, at this point there is still a detail 

hindering the fabrication of the prototype and that concerns to the infinite size of the 

structure along the y direction. Obviously, this is an undesired characteristic in practical 

terms. Hence, in order to circumvent this drawback, next we analyze the electromagnetic 

response of a simplified setup (Fig. 3.22a). Specifically, instead of infinitely periodic along 

the y direction, the crossed wire lens is formed by only four planes of wires along such 

direction of space. In order to ensure that the electromagnetic fields radiated by the dipole 

are strongly attached to the structure and thus interact with the crossed wires lens, we use a 

dielectric substrate with high permittivity ( 10.2hε = ). Moreover, in this case the excitation 
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is a single balanced dipole-type antenna rather than an array of ideal dipoles as before. It is 

important to underline that now the geometry of the dipole-type antenna and of the feeding 

point are modelled exactly (see Fig. 3.22a), unlike previously where the simulated dipoles 

consisted simply in two very small metallic wires excited by a discrete port.  
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Fig. 3.22. (a) Crossed wires lens as simulated in CST Microwave Studio [29]. The metamaterial lens is 
formed by only four planes of wires along the y direction, and is excited by a balanced dipole-type antenna 
illustrated in detail in the zoom-in view. (b) (i) Normalized squared amplitude of the normal y component of 
the magnetic field and (ii) normalized squared amplitude of the in-plane component of the electric field, 
obtained with CST Microwave Studio [29] ( hλ  is the wavelength in the dielectric host). The scanning is 
performed 2 mm above the lens. The frequency of operation is 3.53f =  GHz, the width of the metallic strips 
is / 20 0.4sw aπ=  mm, the permittivity of the host is 10.2hε = , and the thickness of the slab is 

50 127L a= =  mm. The source is located at a distance 1 0.25 31.75d L= =  mm above the lens, and the dipole 
has a length 7.08l  mm. The white dashed lines represent the interfaces of the slab. (c) Photo of the crossed 
wires lens prototype. (d) Experimental results of the normalized squared amplitude of the normal y 
component of the magnetic field for (i) 3.47f =  GHz; (ii) 3.51f =  GHz; (iii) 3.53f =  GHz. The 
remaining parameters are the same as in (b) as well as the plane of scanning. 

The squared amplitude of the normal y component of the magnetic field and of the in-

plane component of the electric field obtained from the commercial electromagnetic 

simulator [29] are represented in Fig. 3.22b. It is manifest from Fig. 3.22b that, despite the 
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imperfect radiation profile of the dipole-type antenna and consistent with the results of Fig. 

3.21, the electromagnetic fields are partially focused inside and outside the structured lens. 

It is worth noting that in this case the electromagnetic field distributions are not symmetric 

along the x direction. Of course, the non-ideal radiation of the source contributes in part to 

this lack of symmetry. However, the asymmetry visible inside the structured lens is 

essentially a consequence of the finite number of planes of wires, since can be verified (not 

shown here) that even using an ideal dipole source to excite this finite-height lens the 

asymmetry is revealed. In particular, the inner partial focus appears slightly tilted to the 

right in Fig. 3.22b as a consequence of the metallic wires of the upper plane being tilted by 

45°  relatively to z axis (see Fig. 3.16a(ii)). 

Following the results of Fig. 3.22b, we have fabricated a prototype of the crossed wires 

lens using a layer by layer design and printed circuit techniques (Fig. 3.22c). The geometry 

of the fabricated structure is exactly the same as that modeled and simulated in CST 

Microwave Studio. The lens is formed by a stack of four printed circuit boards of thickness 

1.27 mm and two printed circuit boards of thickness 0.635 mm of RT/DUROID 6010LM 

with dielectric constant 10.2hε =  and loss tangent tan 0.0023δ = . The metallic strips tilted 

by 45±  with respect to the z direction are printed in the four thicker boards. The metallic 

strips in adjacent boards are mutually orthogonal. The width of the metallic strips is 

0.4sw =  mm, the lattice constant is 2 1.27 2.54a = × =  mm, and the thickness of the lens is 

50 127L a= =  mm. On the other hand, the balanced dipole-type antenna is printed in the 

two thinner boards. These two boards are placed between each pair of thicker boards with 

perpendicular printed strips so that the printed dipole is located exactly at the center of the 

structure. In addition, microwave absorbers (Eccosorb LS 26) were positioned at the sides 
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of the boards to avoid diffraction from the edges. Finally, the y component of the magnetic 

field was measured using a near-field scanner with a round shielded loop probe and a 

vector analyzer (R&S ZVB20). 

The measured amplitude of 2H  is depicted in Fig. 3.22d for three different frequencies 

around 3.5 GHz. One can see that, notwithstanding the non-ideal radiation of the balanced 

printed dipole, the crossed wires lens prototype enables the partial focusing of the 

electromagnetic radiation both inside and outside the lens. In particular, the experimental 

results are in reasonable agreement with the full-wave simulations results (Fig. 3.22b(i)). 

Similar to Fig. 3.22b(i), it is noticeable in the experimental results (Fig. 3.22d) an 

asymmetry of the magnetic field distributions inside the lens along the x direction. This fact 

is mainly a consequence of the finite number of boards of wires, as already explained 

above. Despite the obvious similarities, there are also some slight discrepancies between 

the experimental and numerical results. Such disagreements are related to fabrication 

imperfections, especially in the printed dipole antenna used as the source excitation. In fact, 

owing to its subwavelength dimensions and fabrication complexity, the printed dipole is 

extremely sensitive to perturbations, and hence, is likely to be the main responsible in the 

slight mismatch between the experimental and numerical results. This extreme sensitivity 

of the printed subwavelength dipole and its inherent narrow-band preclude the estimation of 

the bandwidth of operation of the fabricated lens. It should be underlined, however, that it 

is expected that the fabricated lens may operate over a wide frequency band, such as 

theoretically predicted in Refs. [15, J.4]. 

 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 113 

III.3.5. Boosting the Strength of Negative Refraction in the Crossed Wire 
Mesh 

As explained in Sec. III.3.3, the emergence of negative refraction in the crossed wire mesh 

can be intuitively understood by noticing that the two sets of parallel wires behave as two 

different waveguides for the incoming wave, and that the transmission occurs mainly along 

the set of wires that is better coupled to the incoming electric field. Based on this simple 

physical interpretation of the mechanism behind the negative refraction in the crossed wire 

mesh, the following question arises naturally: “What happens to the negative refraction 

effect if the angle between the two sets of parallel wires is increased?” From our 

understanding of the physical mechanism, it is expected that the negative refraction effect is 

enhanced. In order to answer the question and check the correctness of our prediction, here 

we study in detail the electromagnetic response of configurations where the angle between 

the two arrays of parallel wires 0θ  is different from 90  (Fig. 3.23), namely 0 90θ > .  
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1û2û
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Fig. 3.23. Geometry of the crossed wires metamaterial with arbitrary angle between the two arrays of wires. 
One array of wires is oriented along the direction 1 0 0ˆ ˆ ˆsin( / 2) cos( / 2)x zθ θ= +u u u , whereas the other array is 
oriented along 2 0 0ˆ ˆ ˆsin( / 2) cos( / 2)x zθ θ= − +u u u . The distance between each of the adjacent sets of wires is 

/ 2a . The plane of incidence is the xoz plane and the incident wave is TM-z polarized. 

Similar to the standard nonconnected crossed wire medium (Fig. 3.14), the dielectric 

function of the crossed wires configuration with arbitrary angle between the two sets of 

wires can be obtained using the nonlocal homogenization approach introduced in Ref. [25]. 
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Following this approach, one can prove that, consistent with the conventional crossed wire 

mesh (Fig. 3.14), the dielectric function that characterizes the alternative crossed wire 

medium (Fig. 3.23) is given by Eq. (3.24), with 1 0 0ˆ ˆ ˆsin( / 2) cos( / 2)x zθ θ= +u u u  and 

2 0 0ˆ ˆ ˆsin( / 2) cos( / 2)x zθ θ= − +u u u  in this case. The permittivity components 11ε  and 22ε  are 

given again by Eq. (3.25). 
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Fig. 3.24. Isofrequency contour of the fundamental plane wave mode supported by the crossed wire mesh 
(Fig. 3.23) for the normalized frequency / 0.6a cω = , 1hε = , 0.05wr a= , and (a) 0 105θ =  (b) 0 120θ =  
(green lines), as well as the isofrequency contour in the air region (brown circle). The gray dashed lines 
represent the asymptotes of the two hyperbolas. The transmitted wave vector tk  (blue arrow) is determined 
by the conservation of the tangential component of the wave vector xk  at the interface, whereas the Poynting 
vector tS  (red arrow) is normal to the isofrequency curves and is oriented towards increasing frequencies. 

Consistent with the standard crossed wire medium formed by two orthogonal arrays of 

parallel wires, it can be shown that the dispersion characteristic of crossed wire 

configurations with 0 90θ ≠  (Fig. 3.23) for propagation in the xoz plane is equivalent to a 

third degree polynomial in the variable 2
zk . Moreover, the isofrequency contours of the 

fundamental plane wave mode correspond again to two perpendicular hyperbolas (Fig. 

3.24). However, as one can see by comparing Fig. 3.15 and Fig. 3.24, the shape of the two 

hyperbolas is progressively modified by gradually increasing the angle 0θ  between the two 
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sets of parallel wires. This reshaping of the hyperbolic isofrequency contours is forced by 

the asymptotes of the hyperbolas that, as already discussed in Sec. III.3.3, are perpendicular 

to the direction of the wires of both arrays, i.e., normal to 1û  and 2û . In particular, it is seen 

from Fig. 3.24 that by increasing the angle 0θ  between the two sets of wires, the aperture of 

the two branches of the hyperbola related with the desired propagation direction (z 

direction; see Fig. 3.23) progressively decreases, which means that the Poynting vector is 

more negatively refracted since it has to be normal to the hyperbolic curve (see Fig. 3.24). 

Hence, these results predict that the strength of the negative refraction may be, indeed, 

boosted by increasing the angle 0θ  between the two arrays of wires. 

In order to clarify such possibility, we have calculated the angle of transmission (or 

refraction) tθ  for the energy flow (determined by the Poynting vector) as a function of the 

angle of incidence iθ  of plane waves incident onto crossed wires slabs with different values 

of 0θ  (see inset of Fig. 3.25a), using the relation ( )g kv ω= ∇ k . One can see from Fig. 3.25a 

that the angle of transmission tθ  for the energy flow becomes increasingly negative as the 

angle 0θ  between the two sets of wires is increased. Hence, these results are in agreement 

with the isofrequency contours of Fig. 3.24, and confirm that by increasing 0θ  it is possible 

to boost the strength of the negative refraction in the crossed wire mesh. 

To further confirm these homogenization results, we used the full wave electromagnetic 

simulator CST Microwave Studio [29] to calculate the transmission coefficient t of crossed 

wire mesh configurations with different angles 0θ  under plane wave incidence (see Fig. 

3.23). In addition, we have also calculated the transmission coefficient t using the nonlocal 
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homogenization theory, i.e., solving a system of equations similar to Eq. (3.27). The results 

obtained using the two different methods are shown in Fig. 3.25b. 
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Fig. 3.25. (a) Angle of transmission of the energy flow (Poynting vector) as a function of the angle of 
incidence for different angles 0θ  between the two arrays of wires. The frequency of operation is / 0.6a cω = , 
the radius of the wires is 0.05wr a= , and the host permittivity is 1hε = . The inset illustrates the geometry of 
the problem showing the incident, reflected and transmitted (or refracted) waves. (b) Amplitude and phase of 
the transmission coefficient as a function of the normalized xk  component of the wave vector for different 
angles 0θ  between the two arrays of wires. The frequency of operation is / 0.6a cω = , the radius of the wires 
is 0.05wr a= , the host permittivity is 1hε = , and the thickness of the slab is 25L a= . The solid curves (solid 
curves: amplitude, solid dashed curves: phase) correspond to the nonlocal homogenization results, whereas 
the discrete symbols (circles: amplitude, crosses: phase) correspond to full wave results [29]. 

Firstly, it should be stressed the very good agreement between the nonlocal 

homogenization results and the full wave results, demonstrating the accuracy of the 

nonlocal homogenization model. Moreover, Fig. 3.25b shows that the phase of the 

transmission coefficient decreases with xk , which based on the criterion introduced in Ref. 

[15] indicates unequivocally the emergence of negative refraction. In particular, one can see 

that the absolute value of the slope of the curves of the phase of t increases by increasing 

the angle 0θ  between the two arrays of parallel wires, which is a clear proof that, in fact, by 

increasing 0θ  the negative refraction effect is enhanced. On the other hand, it is seen from 

Fig. 3.25b that the amplitude of the transmission coefficient deteriorates slightly for some 

spatial harmonics (or angles of incidence) with the increase of the angle 0θ  between the 
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two arrays of parallel wires. Despite that inconvenience, its amplitude remains at an 

acceptable level. 

In order to provide a conclusive evidence for the enhanced negative refraction in the 

crossed wire mesh with 0 90θ > , we used the nonlocal homogenization theory to analyze 

the refraction of a beam with a Gaussian profile at the interfaces of infinite width 

metamaterial configurations with 0 90θ > . The approach used is the same of Sec. III.2.4.3 

and Sec. III.3.3 that relies on Fourier theory. 
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Fig. 3.26. Normalized amplitude of the magnetic field yH  inside and outside two crossed wire mesh 
configurations with 0 90θ >  calculated using the nonlocal homogenization approach. (a) 0 105θ = ; (b) 

0 120θ = . The excitation is a Gaussian beam with transverse magnetic polarization characterized by 

0 02 4w λ=  and an incident angle of i 33θ °= . The metamaterial slab is periodic along the x and y directions. 
The gray dashed lines represent the interfaces of the slab. The frequency of operation is / 0.6a cω = , the 
radius of the wires is 0.05wr a= , the permittivity of the host is 1hε = , and the thickness of the slab is 20L a= . 

Comparing Fig. 3.26 and Fig. 3.17b, it can be seen that the absolute value of the spatial 

lateral shift Δ  suffered by the Gaussian beam at the interfaces of the slab is progressively 

increased by increasing 0θ . Hence, based on these results we come to the conclusion that, 

in fact, it is possible to boost the strength of the negative refraction by increasing the angle 

0θ  between the two arrays of parallel wires. On the other hand, and also consistent with the 
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transmission profiles of Fig. 3.25b, one can notice that the level of reflections at the first 

interface of the slab increases slightly for larger values of 0θ . 

Following this achievement, next we investigate the focusing properties of the crossed 

wires lens configurations with angles between the two arrays of parallel wires 0 90θ > . 

Taking advantage of the enhanced negative refraction effect, it is expected that these 

alternative configurations may provide further degrees of freedom in the design of the 

lenses. In order to analyze the focusing possibilities, we consider again that the structured 

lens is illuminated by a magnetic line source infinitely extended along the y direction (Fig. 

3.27a). Then, using the nonlocal homogenization theory together with Fourier theory (see 

Sec. III.2.5.2), we have calculated the magnetic field distribution inside and outside a lens 

infinitely periodic along the x and y direction. In addition, in order to verify the analytical 

results we have also used a homemade MoM code to compute the magnetic field reflected 

and refracted by a finite-width lens ( 080 / cos( / 2)W a θ= ). 

The spatial maps of the squared normalized amplitude of the magnetic fields calculated 

using both methods are shown in Fig. 3.27b-c. In all figures it is seen an intense elongated 

(or partial) focus of the magnetic field inside and outside the lens, demonstrating in this 

manner that the modified crossed wire lenses with 0 90θ >  enable the partial focusing of p-

polarized electromagnetic radiation. At the same time, it is important to stress the good 

agreement between the analytical results (Fig. 3.27b(i)) and the numerical results (Fig. 

3.27b(ii)), further confirming the good accuracy of the nonlocal homogenization model. 
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Fig. 3.27. Geometry of the problem: a magnetic line source is placed at a distance 1d  above crossed wires 
lens configurations with angles between the two arrays of wires 0 90θ > . (b) and (c) Squared (normalized) 
amplitude of the magnetic field 2H . The frequency of operation is / 0.6a cω = , the radius of the wires is 

0.05wr a= , and the permittivity of the host is 1hε = . (b) Nonlocal homogenization result (i) and MoM result 
(ii) for a configuration with 25L a= , 1 0.275d L=  and 0 105θ = . (c) Nonlocal homogenization result for a 
configuration with 35L a= , 1 0.5d L=  and 0 115θ = . 

Moreover, by comparing Fig. 3.27b(i) and Fig. 3.19b-c, one can recognize one of the 

possibilities opened by these alternative lens configurations with obtuse angles 0θ . 

Specifically, it may be possible to reduce considerably the thickness of the metamaterial 

lens and still obtain partial focusing of the electromagnetic radiation. Indeed, whereas using 

a configuration with orthogonal arrays of wires the lens has to have a thickness of the order 

of 05L λ  to achieve a focal point detached from the interface (Fig. 3.19b-c) of a source 
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located at a distance of about 1 / 4d L= , the thickness of the lens can be reduced to 

approximately half using a configuration with an angle between the two arrays of wires of 

0 105θ =  (Fig. 3.27b). Conversely, it can be seen by comparison of Fig. 3.27c with Fig. 

3.19c that it is also possible to move farther away the source from the input interface and 

still obtain partial focusing of the radiation using a lens with 0 90θ >  rather than 0 90θ = . 

Particularly, a structured lens with 0 115θ =  and thickness 03.3L λ  permits the partial 

focusing of the electromagnetic radiation of a source located at a distance 1 / 2d L=  of its 

input interface. 

In summary, we have demonstrated that by increasing the angle between the two sets of 

parallel wires it is possible to boost the strength of the negative refraction effect, and in this 

manner obtain partial focusing with a significantly thinner metamaterial slab and/or 

increase the focal depth of the lens. 

III.3.6. Concluding Remarks 

In Sec. III.3, we have numerically as well as experimentally demonstrated partial focusing 

of electromagnetic radiation taking advantage of the all-angle broadband negative 

refraction effect that emerges at the interfaces of a spatially dispersive material formed by 

nonconnected crossed wires. Despite some similarities of the reported focusing effect and 

the results achievable using an indefinite anisotropic material (e.g., the uniaxial ENG 

material formed by helical shaped wires studied in Sec. III.2), its physical origin is 

completely distinct. In the crossed wire mesh the hyperbolic isofrequency contours are 

rooted in the existence of two propagation channels, whereas in indefinite media it is 

related to the sign of the principal elements of the permittivity and/or permeability tensors. 
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In addition, it was shown that the negative refraction in the crossed wires lens may be 

considerable enhanced by simply increasing the angle between the two arrays of wires (i.e., 

the two propagation channels) and, as a result, it may be possible to obtain partial focusing 

of the electromagnetic radiation using significantly thinner structured lenses and/or increase 

the focal depth of the lens. 

References 

[1] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative 

Values of ε  and μ ”, Sov. Phys. Usp., vol. 10, p. 509, 1968. 

[2] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett., vol. 85, p. 

3966, 2000. 

[3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, “Composite 

Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. 

Lett., vol. 84, p. 4184, 2000. 

[4]  R. A. Shelby, D. R. Smith, S. Schultz, “Experimental Verification of a Negative 

Index of Refraction”, Science, vol. 292, p. 77, 2001. 

[5] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, 

“Three-dimensional optical metamaterials with a negative refractive index”, Nature, 

vol. 455, p. 376, 2008. 

[6] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: 

Refractionlike behavior in the vicinity of the photonic band gap”, Phys. Rev. B, vol. 

62, p. 10696, 2000. 

[7] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, 

“Electromagnetic waves: Negative refraction by photonic crystals”, Nature (London), 

vol. 423, p. 604, 2003. 

[8] D. R. Smith and D. Schurig, “Electromagnetic Wave Propagation in Media with 

Indefinite Permitivitty and Permeability Tensors”, Phys. Rev. Lett., vol. 90, p. 077405, 

2003. 



122  III. NEGATIVE REFRACTION AND PARTIAL FOCUSING WITH WIRE MEDIA 

[9] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of 

radiation by a slab of indefinite media”, Appl. Phys. Lett., vol. 84, p. 2244, 2004. 

[10] X. Fan, G. P. Wang, J. C. W. Lee, C. T. Chan, “All-Angle Broadband Negative 

Refraction of Metal Waveguide Arrays in the Visible Range: Theoretical Analysis and 

Numerical Demonstration”, Phys. Rev. Lett., vol. 97, p. 073901, 2006. 

[11] A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. 

Podolskiy, E. E. Narimanov, D. L. Sivco, G. Gmachl, “Negative refraction in 

semiconductor metamaterials”, Nature Mater., vol. 6, p. 946, 2007. 

[12] A. Fang, T. Koschny, C. M. Soukoulis, “Optical anisotropic metamaterials: Negative 

refraction and focusing”, Phys. Rev. B, vol. 79, p. 245127, 2009. 

[13] Y. Liu, G. Bartal, X. Zhang, “All-angle negative refraction and imaging in a bulk 

medium made of metallic nanowires in the visible region”, Opt. Express, vol. 16, p. 

15439, 2008. 

[14] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, X. Zhang, “Optical 

Negative Refraction in Bulk Metamaterials of Nanowires”, Science, vol. 321, p. 930, 

2008. 

[15] M. G. Silveirinha, “Broadband negative refraction with a crossed wire mesh”, Phys. 

Rev. B,vol. 79, p. 153109, 2009. 

[16] J. Demetriadou and J. B. Pendry, “Taming spatial dispersion in wire metamaterial”, J. 

Phys.: Condens. Matter, vol. 20, p. 295222, 2008. 

[17] S. I. Maslovski and M. G. Silveirinha, “Nonlocal permittivity from a quasistatic model 

for a class of wire media”, Phys. Rev. B, vol. 80, p. 245101, 2009. 

[18] O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and 

S. A. Tretyakov, “Effects of Spatial Dispersion on Reflection From Mushroom-Type 

Artificial Impedance Surfaces”, IEEE Trans. Microwave Theory Tech., vol. 57, p. 

2692, 2009. 

[19] O. Luukkonen, M. G. Silveirinha, A. B. Yakovlev, C. R. Simovski, I. S. Nefedov, and 

S. A. Tretyakov, “Characterization of Surface-Wave and Leaky-Wave Propagation on 

Wire-Medium Slabs and Mushroom Structures Based on Local and Nonlocal 

Homogenization Models”, IEEE Trans. Microwave Theory Tech., vol. 57, p. 2700, 

2009. 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 123 

[20] O. Luukkonen, P. Alitalo, F. Costa, C. Simovski, A. Monorchio, and S. Tretyakov, 

“Experimental verification of the suppression of spatial dispersion in artificial 

plasma”, Appl. Phys. Lett., vol. 96, p. 081501, 2010. 

[21] M. J. Lockyear, A. P. Hibbins, and J. R. Sambles, “Microwave Surface-Plasmon-Like 

Modes on Thin Metamaterials”, Phys. Rev. Lett., vol. 102, p. 073901, 2009. 

[22] M. G. Silveirinha, A. B. Yakovlev, “Negative refraction by a uniaxial wire medium 

with suppressed spatial dispersion”, Phys. Rev. B, vol. 81, p. 233105, 2010. 

[23] C. S. R. Kaipa, A. B. Yakovlev, M. G. Silveirinha, “Characterization of negative 

refraction with multilayered mushroom-type metamaterials at microwaves”, J. Appl. 

Phys., vol. 109, p. 044901, 2011. 

[24] M. G. Silveirinha, “Design of Linear-to-Circular Polarization Transformers Made of 

Long Densely Packed Metallic Helices”, IEEE Trans. Antennas Propag., vol. 56, p. 

390, 2008. 

[25] M. G. Silveirinha, “Metamaterial homogenization approach with application to the 

characterization of microstructured composites with negative parameters”, Phys. Rev. 

B, vol. 75, p. 115104, 2007. 

[26] V. Agranovich and V. Ginzburg, Spatial Dispersion in Crystal Optics and the Theory 

of Excitons, Wiley-Interscience, New York, 1966. 

[27] M. G. Silveirinha, C. A. Fernandes, “A Hybrid Method for the Efficient Calculation of 

the Band Structure of 3-D Metallic Crystals”, IEEE Trans. Microwave Theory Tech., 

vol. 52, p. 889, 2004. 

[28] S. Tretyakov, Analytical Modeling in Applied Electromagnetics, Norwood, MA: 

Artech House, 2003. 

[29] CST Microwave Studio 2010 (http://www.cst.com). 

[30] M. G. Silveirinha, “Additional Boundary Condition for the Wire Medium”, IEEE 

Trans. Antennas Propag., vol. 54, p. 1766, 2006. 

[31] M. G. Silveirinha, C. A. Fernandes, J. R. Costa, “Additional boundary condition for a 

wire medium connected to a metallic surface”, New J. Phys., vol. 10, p. 053011, 2008. 

[32] M. Born, E. Wolf, Principles of Optics, 6th ed., Pergamon Press, Oxford, 1993. 



124  III. NEGATIVE REFRACTION AND PARTIAL FOCUSING WITH WIRE MEDIA 

[33] M. G. Silveirinha, C. A. Fernandes, “Homogenization of 3D- Connected and Non-

Connected Wire Metamaterials”, IEEE Trans. Microwave Theory Tech., vol. 53, p. 

1418, 2005. 

[34] C. R. Simovski, P. A. Belov, “Low-frequency spatial dispersion wire media”, Phys. 

Rev. E, vol. 70, p. 046616, 2004. 

[35] I. S. Nefedov, A. J. Viitanen, S. A. Tretyakov, “Electromagnetic wave refraction at an 

interface of a double wire medium”, Phys. Rev. B, vol. 72, p. 245113, 2005. 

[36] M. G. Silveirinha, C. A. Fernandes, “Nonresonant structured material with extreme 

effective parameters”, Phys. Rev. B, vol. 78, p. 033108, 2008. 

[37] M. G. Silveirinha, “Additional Boundary Conditions for Nonconnected Wire Media”, 

New J. Phys., vol. 11, p. 113016, 2009. 

 



TAILORING THE NEAR- AND FAR- FIELDS WITH WIRE MEDIA 125 

IV. BROADBAND AND ULTRA-SUBWAVELENGTH 
WAVEGUIDING WITH A CROSSED WIRE MESH 

IV.1. Introduction 

The development of methods for confining and guiding the electromagnetic radiation has 

been instrumental to the progress of telecommunication systems and beyond. Waveguides 

and optical fibers are some examples of technologies developed for this purpose, and are 

nowadays crucial instruments for guiding electromagnetic waves. However, despite all the 

remarkable guiding properties of these structures, they have a fundamental constraint: the 

transversal dimension of a common hollow-pipe waveguide [1] as well as the diameter of 

an optical fiber [2-3] must be at least half of the wavelength inside the structure 0 / 2nλ  ( 0λ  

is the wavelength in free space and n  is the refractive index of the dielectric material). 

Such physical limitation is simply a consequence of the well-known phenomenon of wave 

diffraction and represents a serious barrier to the miniaturization of several devices. 

In the last few years, however, stimulated by the advent of nanotechnology, scientists 

have been working on novel mechanisms that may allow confining and guiding 

electromagnetic radiation in small volumes far beyond the diffraction limit. Perhaps the 

most effective approach is based on coupling the electromagnetic radiation to the collective 

oscillations of free electrons supported by metal-dielectric interfaces, forming the so-called 

surface plasmon polaritons (SPPs) [4-7]. Since this is a surface phenomenon, the degree of 

field concentration is not restricted by diffraction as in conventional waveguides and optical 
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fibers. Actually, the field confinement achieved with SPPs is only dictated by the 

permittivity contrast between metal and dielectric, and by metallic losses. In particular, the 

SPP is strongly attached to the metal surface at optical frequencies where the dielectric 

constant of metals is predominantly real and negative (Fig. 4.1a) and thus contrasts with the 

positive permittivity of dielectrics. At these frequencies, the field confinement can be, 

indeed, deeply subwavelength (Fig. 4.1b)1 - about two orders of magnitude smaller than the 

wavelength of the light in air (on the order of 10 nm). Such possibility of field localization 

on the nanoscale has triggered tremendous interest to this subdiscipline of photonics called 

plasmonics, owing to its promising applications in integrated optical circuits [6-11], sensing 

[10, 12], nanoscopy [7, 12], solar cells [6, 12], and even cancer therapy [9, 12]. 
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Fig. 4.1. (a) The real (black solid line) and imaginary (red dashed line) parts of the complex relative 
permittivity ( ' ' '

r r rjε ε ε= − ) of Ag as a function of the frequency calculated with the Drude model2. (b) 
Dispersion relation of SPPs on lossy Ag cylindrical wires of different radii R : (i) 15 nmR = ; (ii) 30 nmR = . 
These results were calculated using Eq. (7) of [14]. 

                                                            
1 It should be noted that the degree of field confinement is directly related to the value of ' /zk c ω , since the 

decay length into the dielectric material is given by ' '1/r rl k= , with 2( / ) 1 ( / )r zk c k cω ω= − . 
2 It was assumed that Ag follows the Drude dispersion model 2 / ( ( ))m p jε ε ω ω ω∞= − − Γ , with 5ε∞ = , 

/ 2 2175 THzpω π = , and / 0.002pωΓ = , consistent with Ref. [13]. 
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In contrast with optical frequencies, the prospects for low-frequency SPPs (i.e., far-

infrared, terahertz, and microwave frequencies) are not so high. This fact is simply a 

consequence of the frequency dispersion of the permittivity of the metals (given by the 

Drude model [15]). Specifically, as we move from the optical to the microwave regime, 

both the real and imaginary parts of the metal’s permittivity become huge (Fig. 4.1a), 

which means that metals lose the plasmonic-type response and begin to resemble perfect 

electric conductors (PECs), leading to weakly bounded SPPs (sometimes called Zenneck 

waves [16] or Sommerfeld waves [17] if the surface is cylindrical). Therefore, the 

electromagnetic fields are now extended over distances of several wavelengths into the 

dielectric region and, consequently, SPPs are no longer useful for compact waveguiding. 

Hence, alternative approaches are needed to achieve subwavelength confinement and 

guiding at microwave and terahertz frequencies. 
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Fig. 4.2. (a) Real part of the normalized propagation constant '

zk  of the SPP as a function of the frequency for 
a InSb [18] cylindrical wire in air with radius 10 mR μ= , calculated using Eq. (7) of [14]. The permittivity of 
the semiconductor at 225 K is described by the Drude model with 15.7ε∞ =  and / 2 3.42 THzpω π = . Black 
curve: / 0pωΓ = ; blue curve: / 0.02pωΓ = ; green curve: / 0.04pωΓ = . (b) Normalized propagation 
constant zk of the fundamental guided mode as a function of the frequency for a corrugated metallic wire 
[ 10 ma μ= , 50 md μ= , 100 mR μ= , 65 mh μ=  and 2L R= ]. These results were calculated using Eq. (3) 
of [19]. 
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One possibility at terahertz frequencies consists in using doped semiconductors (e.g., 

InSb) instead of metals, since these materials have a plasmonic-type response in the 

terahertz range [18]. However, the practical applications of this solution are greatly limited 

by the effects of losses (see Fig. 4.2a). Another possibility to mimic the role of SPPs at 

terahertz or even microwaves frequencies relies on structuring metal surfaces. In particular, 

several works have developed the concept of spoof SPPs [19-25] – geometry-controlled 

surface waves supported by metal surfaces tailored with subwavelength corrugations. 

However, these spoof SPPs topologies suffer from an important drawback: the 

characteristic size of the spoof plasmon waveguides is close to / 2λ  (see Fig. 4.2b), which 

contrasts markedly with the ultra-subwavelength sizes of plasmonic wires at optical 

frequencies (see Fig. 4.1b). Moreover, even though these structured metal surfaces enable 

strong field confinement, all of them exhibit a narrowband electromagnetic response. 

It would be highly desirable, however, that besides the strong field confinement, the 

subwavelength dimensions as well as the reasonably wide band of operation that 

characterize plasmonic waveguides at optical frequencies could also be achieved in the 

terahertz and microwave regimes. With this purpose in mind, we propose in this chapter a 

novel waveguiding solution based on strongly coupled grids of metallic wires that may 

enable overcoming the aforementioned physical limitations of the conventional spoof 

plasmon topologies, providing in this manner a truly broadband ultra-subwavelength 

waveguiding at microwave and terahertz frequencies. 

IV.2. Resonantly Induced Surface Waves – Spoof Plasmons 

Before introducing our subwavelength waveguiding proposal, it is helpful to briefly analyze 

the physics behind some relevant spoof plasmons topologies. In particular, we want to 
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expose here in a simple form the physical origin of the narrowband response and physical 

size restriction intrinsic to all conventional spoof plasmons configurations. 

To this end, let us first consider a periodically corrugated metallic wire (see inset of Fig. 

4.2b). The possibility of exciting surface waves tightly bound to the structured surface of a 

corrugated metallic wire was hinted about sixty years ago [26], and explored in the last few 

years in some publications [19, 27]. In simple physical terms, the corrugated metallic wire 

can be seen as a set of coupled cavities (resonators). Each resonator is associated with a 

groove whose wavelength of resonance (for the configurations of Ref. [19-21, 27]) is about 

4hλ ≈ , where h  is the depth of the groove (see inset of Fig. 4.2b). When the driving 

frequency is close to the resonance, the cavities are very strongly coupled by evanescent 

fields leaking out from them, and consequently an excitation can be propagated closely 

attached to the corrugated rod (spoof plasmon). Nevertheless, this phenomenon is resonant 

and extremely narrowband. Moreover, even at resonance, the overall diameter of the 

corrugated wire is roughly 2 / 2R λ≈ , as already anticipated in the previous section (see 

Fig. 4.2b).  

xk c

/L c

L

wr a

y x
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Fig. 4.3. Normalized propagation constant xk of the fundamental guided mode as a function of the frequency 
for an array of metallic wires with lattice period /10a L=  and wire radius 0.05wr a= . 
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Next, we consider an array of metallic wires with no corrugations, instead of a single 

continuous corrugated wire. Specifically, we examine a wire medium slab with thickness L, 

being all the wires perpendicular to the interfaces at 0z =  and z L=  (inset of Fig. 4.3). 

The array period is a, and we are interested in propagation along the x direction with 

propagation constant xk . Fig. 4.3 shows the dispersion of the fundamental guided mode 

(with field components xE , zE , and yH ), numerically calculated assuming perfectly 

electrical conducting (PEC) wires3. Similar to a periodically corrugated cylindrical wire 

(Fig. 4.2b), the array of metallic wires enables a strong field confinement, but only when 

the characteristic size of the waveguide is about / 2λ . This is not really surprising since 

these strongly confined guided modes are rooted in the same physical mechanism in both 

cases. Indeed, in the wire medium slab each metallic wire may be regarded as a resonator 

(with resonant wavelength equal to 2Lλ =  for metals with high conductivity), and, similar 

to the corrugated wire, when 2Lλ ≈  the resonators are strongly coupled by evanescent 

field tails. Interestingly, consistent with this intuitive explanation, it can be proven [28] that 

the dispersion relation of the guided modes supported by the wire medium slab is the same 

as the one obtained in Ref. [21] for the spoof plasmons supported by an array of grooves. 

The question that arises at this point is the following: “How can we overcome these 

apparently fundamental limitations of bandwidth and physical size inherent to conventional 

spoof plasmon topologies?” Following the discussion above, an intuitive possibility is to 

                                                            
3 We used the approach described in detail in Sec. II.3.1, which takes into account the effects of spatial 
dispersion and additional boundary conditions. In particular, we considered TM polarization (configuration I) 
and 0α =  (α  is the angle between the wires and the z direction). The dispersion characteristic was then 
obtained by calculating the values of xk  for which the wire medium can sustain a propagating wave attached 

to the interface with no incident field, inc 0yH = . It should be noted that the coordinate system in this case is 

different from the considered in Sec. II.3.1 (see inset of Fig. 4.3 and Fig. 2.2a). 
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have strongly coupled resonators in a broad range of frequencies. In the next section, we 

will discuss in detail how this can be done. 

IV.3. Spatially Induced Surface Waves – Interlaced Plasmons 

IV.3.1. Heuristic Considerations 

After the brief introduction into the physics of spoof plasmons made in the previous 

section, here we heuristically explain how their intrinsic limitations may be surpassed, so 

that broadband ultra-subwavelength waveguiding in the perfectly conducting limit (i.e. 

when mε → −∞, which corresponds to microwave and terahertz frequencies; see Fig. 4.1a) 

can be indeed achieved. The underlying idea is to force the surface plasmons to strongly 

interact on a length scale not determined by the wavelength of light. To see how this can be 

done, let us consider again the wire medium slab described before (inset of Fig. 4.3). From 

a microscopic point of view, the electric field associated with a guided mode supported by 

the array of parallel metallic wires is a superposition of the electromagnetic fields created 

by the currents flowing in each wire, and thus it can be regarded as the result of the 

interaction of weakly bounded and weakly coupled surface plasmons. On the other hand, 

from a macroscopic perspective (after some spatial averaging is considered) the only non-

zero electric field components associated with the guided mode propagating along the x 

direction are xE  and zE . Moreover, since the tangential electric field at the metallic wires is 

weak, for long wavelengths the dominant (macroscopic) electric field component is xE  

(TEM mode). In order to explain how this can be used to enhance the interaction between 

surface plasmons, first let us suppose that all the wires are rotated by 45−  around the y-

axis, so that they become parallel to the unit vector 1ˆ (1,0,1) / 2=u . In this case, nothing 
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particularly exciting happens, except that the dominant component of the electric field is no 

longer xE , but instead it is the projection of the electric field on 2ˆ ( 1,0,1) / 2= −u . 

However, something really dramatic happens if we entangle two of such tilted wire medium 

slabs, with wires oriented along perpendicular directions. Specifically, we want to consider 

a crossed wire mesh such that the planes y la=  contain wires oriented along 1û , and the 

planes / 2y la a= +  contain wires oriented along 2û , where l is an integer number (Fig. 

4.4)4. 

L  

H
E  

a

2a  

/ 2a
y  

z  

x  
2û  

1û  

 
Fig. 4.4. Two tilted wire medium slabs are geometrically entangled resulting in the hybridization of the 
weakly bounded plasmons supported by each of them. The structure is formed by two sets of parallel wires 
arranged in square lattices with lattice constant a . The set of wires oriented along the direction 1û  is located 
in planes y la=  ( l is an integer), whereas the complementary set is oriented along 2û  and located in planes 

( 1/ 2)y l a= + . The wires are embedded in a dielectric with relative permittivity hε . 

In fact, this “double wire medium” has been considered in some previous works in many 

other contexts [29-31], and also in Sec. III.3 of this thesis, and thus some of its unique and 

unusual features have already been highlighted. What is really peculiar about this structure 

is that the wire mesh formed by wires oriented along 1û  creates an electric field mainly 

oriented along the direction 2û , which is thus strongly interacting with the set of wires 

                                                            
4 It should be noted that the metamaterial geometry of Fig. 4.4 is exactly the same as that considered in the 
previous chapter (see Fig. 3.14 of Sec. III.3.2). However, the context of the problems is completely different 
in the two cases. While in Sec. III.3.2 the physical response of the crossed wire mesh was analyzed in terms 
of far-field excitation, here we are interested in the study of the guided modes excited by the near-field 
evanescent spectrum of a given source. 
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oriented along 2û , and vice-versa. Thus, each wire mesh effectively blocks the electric field 

created by the currents flowing in the complementary wire mesh, and thus effectively repels 

the electric field away forcing fluctuations of the charge density in a subwavelength scale, 

and thus a strong confinement of the associated fields. This enables a mesoscopic excitation 

designated here as “interlaced plasmon pair” to emphasize that its physical origin is rooted 

on the spatial entanglement of the charge density waves supported by perpendicular wire 

dipoles.  

In order to verify these heuristic considerations, in the next section we introduce an 

analytical model to characterize the dispersion characteristic of the interlaced plasmons. 

After this, the dispersion properties of such spatially induced plasmons are presented and 

discussed in detail in the following sections. 

IV.3.2. Analytical Model 

The dispersion of the guided modes supported by the considered metamaterial slab (Fig. 

4.4) can be obtained in the usual way by expanding the electromagnetic fields in the air and 

metamaterial regions in terms of plane waves. Supposing that the magnetic field is along 

the y direction we have that (a variation ( )xj t k xe ω −  of the fields is assumed but omitted): 
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In the above, 2 2
0 0 0xkγ ω ε μ= −  is the free space propagation constant, xk  is the wave 

number of the guided mode, (1,2,3)
zk  are the propagation constants of the modes excited inside 

the double wire medium, and 1,2A  and 1,2,3B±  are the complex amplitudes of the excited plane 
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waves in the air and metamaterial regions, respectively. As in Sec. III.3.2, the propagation 

constants (1,2,3)
zk  can be obtained by solving the plane wave dispersion characteristic given 

by Eq. (3.26) with respect to zk . However, whereas in the problem of Sec. III.3 the wires 

are assumed to be perfectly electrical conducting (PEC) and thus 11ε  and 22ε  are simply 

given by Eq. (3.25), here we want to take into account the effect of finite conductivity of 

the metal. In such circumstances, it can be found that the permittivity components 11ε  and 

22ε  are given by [32], 

( )
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m h V p
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  (4.2) 

where c is the speed of light in vacuum, 1 2[2 / (ln( / 2 ) 0.5275)] /p wa r aβ π π= +  is the 

plasma wave number, ˆi ik = ⋅k u  (i=1,2), hε  is the permittivity of the host dielectric, mε  is 

the complex permittivity of the metal, wr  is the radius of the wires, and 2( / )V wf r aπ= . (As 

an aside, it is worth noting that the particular case of PEC wires (Eq. (3.25)) can be 

regarded as the limit situation in which mε = −∞  in Eq. (4.2)). It can be verified that, as in 

Sec. III.3.2, the characteristic equation is equivalent to a polynomial of degree three in the 

variable 2
zk , and this is why the magnetic field inside the metamaterial is a superposition of 

six waves (Eq. (4.1)); three waves propagate along the direction z+  and the other three 

along the direction z− , all of them associated with a magnetic field of the form 

0 ˆj
yH e− ⋅= k rH u . It should be recalled that the emergence of additional waves is a 

consequence of the strong spatially dispersive of the crossed wire mesh [29, 33-34], as 

already discussed in the previous chapters. 
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As in Sec. III.3.2, the electric field can be written in all space using Eq. (3.28). Then, by 

applying the classical boundary conditions that impose the continuity of the tangential 

components of the electromagnetic fields, together with the set of additional boundary 

conditions (ABCs) that guarantee that the microscopic current associated with each wire 

vanishes at the interfaces (see Eq. 3.29 in Sec. III.3.2), we can obtain a 8 8×  linear system. 

The dispersion characteristic of the guided modes supported by the structured material is 

then obtained by setting the determinant of this linear system equal to zero, and by 

computing the wave number xk  as a function of the frequency ω . 

IV.3.3. Dispersion Characteristics 

IV.3.3.1 PEC approximation 

Here, we characterize the dispersion of the guided modes (interlaced plasmons) supported 

by the crossed wires substrate, assuming that the metallic wires are perfect electric 

conductors (PECs) (Fig. 4.4). In particular, Fig. 4.5a depicts the dispersion characteristic of 

the interlaced plasmons for structured slabs with a fixed thickness L  and different densities 

of wires /a L . The results (solid lines) were calculated analytically using the procedure 

outlined in the previous section based on the nonlocal homogenization model. In order to 

check the accuracy of these results, we have as well calculated the dispersion characteristic 

of the guided modes with the eigenmode solver of CST Microwave Studio [35] (discrete 

symbols). Fig. 4.5a clearly shows that the analytical results follow remarkably well the full 

wave results. 
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Fig. 4.5. (a) Normalized propagation constant xk  of the interlaced plasmons as a function of the normalized 
frequency, for a fixed waveguide thickness L  and different lattice periods a . The wires are assumed to be 
PEC and its radius is 0.05wr a= . (i) /10a L= , (ii) /15a L= , and (iii) / 20a L= . The black solid curves 
were obtained from the homogenization model (Sec. IV.3.2), whereas the green discrete symbols were 
calculated using the eigenmode solver of CST Microwave Studio [35]. (b) Profiles of [ / ]yH A m  and 

[ / ]zE V m ; (i) and (ii) correspond to the points (bi) and (bii) of Fig. 4.5a(ii). 

As seen in Fig. 4.5a, the considered slab has an exotic and intriguing dispersion diagram, 

where the peculiarity of the different branches of the dispersion characteristic being 

strongly interlaced one with another clearly stands out: a feature not seen in the dispersion 

diagrams of either dielectric or metal based planar waveguides. The physical origin of this 

dispersion entanglement is simply rooted in the geometry of the structure, as already 

heuristically predicted in Sec. IV.3.1.  Specifically, it is a consequence of the strong non-

resonant interaction between the weakly bounded plasmons supported by each array of 

wires. 

The dispersion diagrams of Fig. 4.5a clearly show that the metamaterial slab supports 

highly confined guided modes (with / 1xk c ω >> ) even when the thickness L of the 

waveguide is ultra-subwavelength ( / 1/10L λ ≤ ). This occurs, for example, in Fig. 4.5a(ii) 

for frequencies larger than / 0.5L cω ≈  as well as in Fig. 4.5a(iii) for frequencies larger 
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than / 0.4L cω ≈ , extending over a wide frequency band. Thus, unlike the spoof plasmons 

(see Fig. 4.2b and Fig. 4.3), the interlaced plasmons exhibit, indeed, a truly subwavelength 

nature and an extremely broadband response. Therefore, the crossed wires waveguide is 

significantly more robust in terms of bandwidth and reduced physical size than approaches 

based on spoof surface plasmons, which makes it a quite interesting solution for 

subwavelength field confinement and waveguiding. It is worth underlining, moreover, that 

since the spatial period of oscillations of the interlaced plasmons is mainly determined by 

the lattice constant of the wire grids rather than by the electrical length of the metal 

structures as is the case of spoof plasmons, the degree of field confinement can be simply 

enhanced by increasing the density of wires, i.e. by reducing /a L , even if the metal 

volume fraction is kept fixed (see Fig. 4.5a(i)-(iii)). 

In order to further characterize the interlaced plasmons, we depict in Fig. 4.5b the 

transverse electromagnetic fields distributions of the guided modes for some chosen points 

marked in Fig. 4.5a(ii), calculated using the analytical model delineated in Sec. IV.3.2. 

These plots clearly confirm that the electromagnetic fields associated with the interlaced 

plasmons may be strongly confined inside the substrate despite its subwavelength 

thickness. In fact, these results were expected from the dispersion diagrams of the 

interlaced plasmons (Fig. 4.5a), since we should notice that the fields in the air regions 

decay with the attenuation constant ( ) ( )2
0 / / 1xc k cγ ω ω= − , and thus the characteristic 

decay length in the transverse direction can be a tiny fraction of the wavelength in free-

space. Moreover, it is interesting to note in Fig. 4.5b that the normal zE -field component 

flips sign within a small layer close to the interface, similar to what happens in optics [36]. 

On the other hand, it is also noticeable in the results of Fig. 4.5b that, consistent with the 
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results of the previous chapter (Sec. III.3), the transverse impedance of the crossed wire 

mesh may be relatively low, since the amplitudes of the transverse electric and magnetic 

fields inside the structured material are approximately of the same order. Finally, we should 

refer that in order to achieve a same level of confinement (same value of xk ) in a dielectric 

waveguide with the same thickness as in the example of Fig. 4.5a(ii), at the normalized 

frequency / 0.5L cω = , it would be necessary to use a dielectric with permittivity 130dε ≈ . 

At this point, it is also important to emphasize that the coupling between the two wire 

grids is particularly strong when the wires make angles 1 45α =  and 2 45α = −  with respect 

to the interfaces. As shown in Appendix A in detail, if 1 90α =  and 2 0α =  the 

electromagnetic response of the structure is completely different. In particular, the 

dispersion characteristics of the guided modes are no longer characterized by that peculiar 

entanglement depicted in Fig. 4.5a. Moreover, the degree of field confinement provided in 

this case is significantly reduced, especially for low frequencies. 

IV.3.3.2 Effects of losses and material dispersion 

So far we have assumed that the metallic wires were perfect electric conductors (PECs). 

Even though the PEC approximation may be very accurate at microwaves, at higher 

frequencies (terahertz, infrared, and optical regimes) the effect of losses and the plasmonic 

response of metals cannot be neglected. Thus, in order to provide a more comprehensive 

understanding of the dispersion of the interlaced plasmons and better evaluate their 

waveguiding capabilities, we analyze next the variation of the propagation constant 

' ''
x x xk k jk= −  with the frequency assuming that the wires are made up of a realistic metal 

(specifically, Ag) that follows the Drude dispersion model 2 / ( ( ))m p jε ε ω ω ω∞= − − Γ , with 
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the same parameters introduced above (see Fig. 4.1) and taken from the literature [13]. 

More specifically, we analyze the field confinement (related to the real part of the 

propagation constant '
xk ) and the propagation length (given by ''1 /x xkδ = ) of the 

fundamental guided mode at different spectral windows from microwave to near-infrared 

frequencies using the analytical model described in Sec. IV.3.2 (Fig. 4.6). 
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Fig. 4.6. Real part of the normalized propagation constant '

xk  (solid blue curves) and normalized propagation 
length ''1 /x xkδ =  (dashed green curves) of the fundamental (even) interlaced plasmon pair at different 
frequency windows. (a) 0.2 mmL = , / 20 10 ma L μ= = , and 0.05 0.5 mwr a μ= = ; (b) 20 mL μ= , 

/ 20 1 ma L μ= = , and 0.05 50 nmwr a= = ; (c) 3 mL μ= , /15 0.2 ma L μ= = , and 0.125 25 nmwr a= = ; (d) 
0.2 mL μ= , / 3 66.7 nma L= = , and 0.2 13.3 nmwr a= = . The wires are made of Ag. The results were 

obtained with the analytical model introduced in Sec. IV.3.2. 

By comparing Fig. 4.6a with Fig. 4.5a(iii), one can conclude that in the microwave 

regime the behavior of the fundamental interlaced plasmon is, indeed, nearly unaffected by 

the metallic losses. In particular, the degree of field confinement (related to the real part of 

the propagation constant '
xk ) is very similar to that in PEC case (Fig. 4.5a(iii)). Moreover, 

the imaginary part of the propagation constant ''
xk  is quite small ( '' '/ 1x xk k << ) and, 
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consequently, the highly confined fundamental interlaced plasmon pair can propagate long 

distances before vanishes (of the order of twenty free-space wavelengths) (Fig. 4.6a). In 

fact, these results were completely expected, since at microwave frequencies real metals 

mimic closely perfect electric conductors (PECs), specifically, when the radius of the wires 

is much larger than the metal skin depth. 

A closer look to Fig. 4.6a reveals, however, that there are some specific frequency 

regions where the effect of loss is more pronounced (i.e., 0xδ → ). Specifically, this 

happens in the frequency points where the dispersion curve bends over itself (we designate 

it as “dispersion elbows”), because in such regions the group velocity is extremely low and 

may vanish. This topic of the group velocity of the fundamental interlaced plasmon will be 

discussed in the next section. 

At higher frequencies the metal progressively loses the conducting properties, and the 

plasmonic and loss effects become gradually more important (see Fig. 4.1a). Nevertheless, 

at terahertz frequencies (or low far-infrared frequencies) the level of field confinement 

(related to ' /xk c ω ) remains very similar to the PEC case (see Fig. 4.6b and Fig. 4.5a(iii)). 

Hence, in contrast to the surface plasmons supported by semiconductor plasmonic-type 

waveguides at terahertz frequencies (see Fig. 4.2a), the behavior of the interlaced plasmons 

is weakly sensitive to material losses (Fig. 4.6b). On the other hand, the propagation length 

xδ  of the fundamental interlaced plasmon at terahertz frequencies is naturally shorter 

compared to the corresponding in the microwave regime. Still, Fig. 4.6b shows that a 

propagation length xδ  of two free-space wavelengths (which corresponds to about twenty 

guided wavelengths inside the structure) can be achieved. Actually, ensuring that w sr δ>  

(where sδ  is the skin depth of Ag), the strongly confined mode (with a similar field 
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confinement as in Fig. 4.6a-b) can propagate nearly two free-space wavelengths before the 

amplitude of the field decreases by a factor 1 0.37e− =  (37%) even at higher far-infrared 

frequencies (Fig. 4.6c). 

Naturally, by moving to an even higher frequency of operation (or shorter wavelength), 

the propagation length is further decreased. For example, it is seen in Fig. 4.6d that at near-

infrared frequencies the fundamental interlaced plasmon propagates as far as 0λ  with a 

field attenuation less or equal than 37%. We would like to point out that, this value of the 

propagation length of the fundamental interlaced plasmon ( 0xδ λ= ), which may seem too 

small at first sight for waveguiding applications, corresponds to a considerably long 

distance when compared to the width of the waveguide ( 10 2 mx Lδ μ≈ ≈ ). In fact, even if 

a propagation length of 2 mxδ μ≈  at near-infrared frequencies may not be enough in some 

specific waveguiding contexts, the deeply subwavelength characteristic of the interlaced 

plasmons may have other interesting applications. In particular, a tapered version of our 

structure can be potentially used to confine in a very subwavelength volume the 

electromagnetic radiation (nanofocusing) somehow similar to the effects reported in Refs. 

[19, 27]. 

Finally, it should be mentioned that due to the intrinsic plasmonic properties of noble 

metals in the infrared and optical regimes, it may be possible to have comparable values of 

' /xk c ω  (i.e. the same level of field confinement) at higher frequencies with less dense 

meshes (i.e. meshes with larger values of /a L ). In principle, the crossed wire mesh may be 

designed to operate at larger (near-infrared and optical) frequencies, but in such frequency 

bands its advantages as compared to a single metal rod (Fig. 4.1b) may be less evident 

(notice that the density of wires in Fig. 4.6d is already relatively low). Moreover, it is 
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important to underline that in all the examples of Fig. 4.6 longer propagation distances are 

feasible if the radiation confinement is reduced (e.g. if the density of wires is decreased). 

IV.3.4. Group Velocity 

As already noted in the previous sections, an interesting part of the dispersion diagram of 

the interlaced plasmons (Fig. 4.5a and Fig. 4.6) corresponds to the regions where 

eff /xn k c ω=  varies very steeply and then bends over itself. Notice that effn  may be 

regarded as the effective index of refraction seen by the guided mode. In such branches the 

group velocity of the interlaced plasmon, given by eff 0 eff 0/ / ( / )g xv d dk c n k dn dkω= = +  

(with 0 /k cω= ), can be extremely small, and even become negative (backward wave). 

Moreover, also in the wideband regions where eff 1n >>  and effn  varies little with the 

frequency, the group velocity eff/gv c n≈  can be quite small. These properties of the 

interlaced plasmons may be quite interesting for slow light applications [37-39]. 
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Fig. 4.7. Normalized group velocity /gv c  of the fundamental (even) interlaced plasmon pair as a function of 
the frequency for the metamaterial configurations of Fig. 4.6c (a) and Fig. 4.6d (b). 

In order to illustrate these potential slow light regimes, in Fig. 4.7 we depict the group 

velocity of the fundamental interlaced plasmon for the metamaterial configurations of Fig. 

4.6c-d at specific frequency ranges. Fig. 4.7a(i) shows the group velocity of the 

fundamental interlaced plasmon for the waveguide configuration of Fig. 4.6c at the 
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frequency window 4.8 THz 5.5 THzf< < . The group velocity in such frequency range is 

negative and approximately fifty times lower than the speed of light; hence there is a 

propagation of a slow backward guided wave. As the dispersion curve moves toward the 

dispersion elbow (see Fig. 4.6c), the fundamental interlaced plasmon turns from a 

backward wave into an extremely confined forward wave ( / 1xk c ω >>  and 0gv > ), 

passing, of course, through a region of stopped light ( 0gv = ) at the intermediate point. It is 

shown in Fig. 4.7a(ii) that in this wideband region of strong field confinement 

(approximately from 5 THz  to 13 THz ), the group velocity of the fundamental interlaced 

plasmon may be of the order of 0.1c  (where c  is the speed of light in vacuum). At higher 

frequency regimes, the ultra-confined fundamental interlaced plasmon can propagate even 

more slowly and over a much wider spectral band (Fig. 4.7b). Specifically, in the near-

infrared regime, the group velocity of the interlaced plasmon can be as low as 0.04c  over a 

frequency band of about 40 THz  (specifically, from 115 THz  to 155 THz ).  

As a final note, it is worth noting that in this wideband regime characterized by strong 

field confinement ( eff / 1xn k c ω= >> ), despite the fact that effn  decreases with the 

frequency, the group velocity remains positive. This effect is closely related to the 

anomalous dispersion effect identified in Ref. [31].  

IV.3.5. Experimental Verification 

In order to further validate the theoretical findings of the previous sections, and to 

demonstrate that to obtain a huge field confinement it is enough to consider a few planes of 

metallic wires, we fabricated a prototype of the crossed wires waveguide (scaled to operate 

at microwaves) using standard printed circuit techniques (Fig. 4.8a). The width of the 
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waveguide is 20 31.48 mmL a= = , the length along the x direction is 4xL L= , and along the 

y direction the waveguide is formed by only four planes of wires. The cylindrical metallic 

wires are replaced by metallic strips with width / 20 0.25 mms ww r aπ π= = ≈ , and the host 

dielectric is RT/duroid 5880, characterized by 2.2hε = , loss tangent 4tan 6.5 10δ −≈ × , and 

thickness 0.787 mm. The metamaterial waveguide is excited by a short printed dipole-type 

antenna, and the y component of the magnetic field along and across the waveguide was 

measured using a near-field scanner with a round shielded loop probe and a vector analyzer 

(R&S ZVB20).  
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Fig. 4.8. (a) Photo of the crossed wires waveguide prototype. (i) General view; (ii) View of the four printed 
boards; The width of the waveguide is 31.48L = mm, the length is 4xL L= , the lattice constant is / 20a L= , 
and the width of the metallic strips is 0.25sw = mm. (b) Normalized measured amplitude of yH  for (i) 950 
MHz; (ii) 1.05 GHz; (iii) 1.3 GHz. (c) Crossed wires waveguide as simulated in Microwave Studio [35]. (d) 
The same as in panel (b), but calculated with Microwave Studio. 
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The measured normalized amplitude of yH  is depicted in Fig. 4.8b for different values of 

frequency (0.95-1.3 GHz). In all the density plots of Fig. 4.8b the excitation of the ultra-

subwavelength guided modes (interlaced plasmons) inside the crossed wires waveguide by 

the near-field spectrum of the dipole antenna is quite evident, confirming the results of Fig. 

4.5a(iii). One can clearly see that, notwithstanding the deeply subwavelength dimensions of 

the waveguide (of the order of one tenth of the wavelength), the considered substrate 

supports the propagation of the strongly confined interlaced plasmons. Notice that since the 

waveguide is not matched to the dipole antennas, in general, the field inside the slab is the 

superposition of two waves propagating along opposite directions (a standing wave). 

Moreover, it should be noted that the electromagnetic mode excited in the crossed wires 

waveguide corresponds to the fundamental one, since the magnetic field exhibits an even 

symmetry with respect to the transverse direction (z direction) (see Fig. 4.5b(i)).  

In order to validate the experimental results, we have also simulated the response of the 

metamaterial waveguide using CST Microwave Studio [35]. The full wave results are 

depicted in Fig. 4.8d, from which one can see that the numerical and experimental results 

are in good agreement. Nevertheless, some minor discrepancies can be observed between 

the simulated and measured magnetic field distributions. The reason for the slight 

disagreement may be either related to fabrication imperfections or with deviations in the 

dielectric substrate permittivity. On the other hand, owing to its subwavelength dimensions, 

the printed dipole antenna used as the near-field source is extremely sensitive, and hence, 

may also contribute to the slight mismatch between the numerical and experimental results. 

As a final note, we would like to point out that, consistent with our discussion in Sec. 

IV.3.3.2, the proposed structure may be scaled down to shorter wavelengths. Thus, it would 
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be very interesting to fabricate a prototype of the crossed wires waveguide to operate at 

higher frequency regimes (terahertz or infrared ranges) using nanoimprint techniques. 

IV.4. Concluding Remarks 

In this chapter, it was shown that a crossed wire mesh supports highly confined eigenmodes 

and a slow light regime, even when the thickness of the waveguide is deeply 

subwavelength. Such charge density waves designated here as interlaced plasmons are 

mesoscopic excitations rooted in the strong non-resonant interaction between perpendicular 

wire grids that support weakly bounded plasmons, and their characteristic spatial period is 

determined by intrinsic geometrical features rather from the electric size of the metal 

elements (as is the case of conventional spoof surface plasmons). We have compared our 

crossed wires waveguide with other structures based on spoof plasmons or materials with a 

plasmonic response at terahertz frequencies, demonstrating the superior potential of 

waveguiding based on interlaced plasmons in terms of physical size, bandwidth and 

tolerance to absorption. Therefore, these spatially interlaced plasmons may have exciting 

applications in subwavelength waveguiding in the microwave, terahertz, and infrared 

frequency bands. Finally, the emergence of interlaced plasmons was experimentally 

verified at microwave frequencies. 
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V. CONCLUSIONS 

V.1. Main Results 

In this thesis, we have presented a collection of exciting theoretical, numerical and 

experimental results on the potential applications of several different configurations of 

structured materials formed by metallic wires (not necessarily straight wires). 

In Chapter II, we investigated the near-field imaging capabilities of a wire medium lens 

formed by tilted metallic wires. It was shown, as a generalization of the results of [1-2], that 

the considered metamaterial lens enables the transport of the subwavelength details 

associated with the electric field component parallel to the wires through an oblique 

projection. Such property implies that it is possible to image fields created by s-polarized 

sources, for which the electric field is parallel to the interfaces of the lens. This is a key 

advance since the standard wire medium lens configuration [1] is polarization sensitive and 

only enables subwavelength imaging of p-polarized waves. Then, taking advantage of the 

increased degrees of freedom provided by the tilted wire medium lens, we have established 

a simple and novel method to fully restore the electric near-field of an arbitrary source. The 

strategy is to rotate successively by 120  the near-field source (or equivalently the 

metamaterial lens) around the direction perpendicular to the interface plane so that three 

linearly independent components of the electric field can be measured. This theoretical 

possibility was successfully demonstrated experimentally at microwave frequencies using a 

fabricated prototype of the tilted wire medium lens. It is envisioned that the proposed 
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system may find exciting applications in near-field measurement at the microwave and 

terahertz regimes. 

In Chapter III, we explored two distinct routes to achieve negative refraction and, 

consequently, far-field focusing. In particular, in Sec. III.2 we demonstrated theoretically 

and numerically that by using helical shaped wires instead of straight wires, it is possible to 

suppress the spatial dispersion effects that characterize wire media even at low frequencies 

(microwave and low infrared frequencies), and that this enables a strong all-angle negative 

refraction effect. Subsequently, it was shown that a partial focusing of electromagnetic 

radiation may be achieved with a planar lens formed by such metamaterial structure by 

exploiting the negative refraction effect at both metamaterial interfaces. In Sec. III.3, we 

demonstrated numerically as well as experimentally a similar partial focusing effect using a 

different metamaterial structure formed by nonconnected crossed metallic wires. In this 

case, however, it was shown that the phenomenon of negative refraction responsible for this 

focusing effect relies on the spatially dispersive (or nonlocal) response of the metamaterial 

structure, in contrast to the local response of the helices medium. Lastly, it was 

theoretically predicted and numerically verified a simple way to boost the strength of the 

negative refraction effect in the crossed wire mesh, which consists in using crossed wire 

mesh configurations with angles between the two sets of parallel wires larger than 90 . 

In Chapter IV, we studied both theoretically and experimentally the waveguiding 

properties of ultra-compact metamaterials formed by crossed metallic wires. It was 

analytically, numerically, and experimentally demonstrated that a waveguide formed by 

such structured material supports highly confined modes with a very peculiar entangled 

dispersion (interlaced plasmons), even for very long wavelengths (or ultra-subwavelength 
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thicknesses). Moreover, it was shown that this waveguiding solution is significantly more 

robust in terms of bandwidth, reduced physical size, and tolerance to absorption than the 

known approaches based on spoof plasmons or materials with a plasmonic response at 

terahertz frequencies (semiconductor plasmonic-type waveguides). These characteristics 

are very encouraging for future practical applications of the proposed structure in ultra-

subwavelength waveguiding from microwave to near-infrared frequencies. 

V.2. Future Work 

To conclude the thesis, we discuss possible extensions for the presented studies as well as 

other research directions. 

Future work on the near-field reconstruction with a tilted wires lens might include 

testing the accuracy of the proposed experimental setup under different and more complex 

radiation sources. On the other hand, it would be interesting to numerically investigate the 

possibility of fully restoring the electric near-field at terahertz or even infrared frequencies 

using the introduced approach based on three independent measurements. This can be done 

using an electromagnetic simulator (e.g., CST Microwave Studio). This problem can also 

be studied analytically by expanding the field source into a Fourier integral of plane waves. 

In particular, the electromagnetic field at the image plane can be obtained in the usual way 

by integrating the incident electromagnetic field multiplied by the transmission coefficient 

of the metamaterial lens over all spatial harmonics. To this end, a general analytical 

formula for the transmission coefficient, applicable to arbitrarily polarized waves incident 

from arbitrary directions, should be derived. In principle, this can be done using an 

approach similar to the one reported in [C.3]. 
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Another topic that merits further investigation is the negative refraction and partial 

focusing with a metamaterial lens formed by helical shaped wires. In particular, we intend 

to fabricate a prototype of the proposed focusing lens. For this purpose, instead of using the 

original configuration formed by cylindrical helical shaped wires, we will consider the 

alternative configuration formed by segmented helices (see inset of Fig. 3.9). As already 

anticipated in Sec. III.2.4.2, this alternative configuration may be fabricated using a layer 

by layer design with interconnecting vias, similarly to the mushroom-type structures [3-4]. 

At the same time, it may be interesting to investigate the effect of introducing air gaps in 

between the several metamaterial layers, as was done for the mushroom structures in [5]. 

Such modified structure may be much easier to fabricate than the original one formed by 

continuous helical shaped wires. 

Still regarding the artificial medium formed by helical shaped metallic wires, it would be 

interesting to study the electromagnetic response of this structured material under 

transverse electric (TE) excitations (i.e, s-polarized waves), and to investigate if the non-

bianisotropic helices medium (Fig. 3.1) may behave as an array of magnetic wires 

somewhat similar to the so-called Swiss rolls [6-7]. If so, this structure may be capable of 

transferring the subwavelength details of s-polarized waves from the source to the image 

plane. 

As to the crossed wires waveguide, it would be interesting to fabricate a high-frequency 

prototype to operate at mid-infrared or even near-infrared frequencies using nanoimprint 

lithography. In addition, the physics of interlaced plasmons propagation in an adiabatically 

tapered crossed wires waveguide deserves a careful study. Based on the dispersion 

properties of the interlaced plasmons presented in Chapter IV, one may expect that a 

funnel-shaped version of the crossed wires waveguide may allow broadband and ultra-
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subwavelength energy concentration at terahertz and infrared frequencies. Also the 

possibility of slowing down or even stopping light in the crossed wires waveguide deserves 

further investigations. 
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APPENDICES 

A1. Guided Modes in a Crossed Wire Mesh with 1 90α =  and 

2 0α =  

In the present appendix, we characterize the dispersion characteristic of the guided modes 

supported by a crossed wire grid formed by sets of wires perpendicular and parallel to the 

interface plane (Fig. A.1). More specifically, one set of wires is oriented along the x 

direction, whereas the complementary set is oriented along the z direction. The two 

orthogonal sets of wires are spaced by / 2a . 

L  

H
E  

a  

/ 2a  y

z  

x  

a  

 
Fig. A.1. Modified crossed wire mesh configuration formed by two mutually orthogonal and nonconnected 
sets of wires oriented along x and z directions. The spacing between parallel wires is a , and the spacing 
between orthogonal wires is / 2a . 

In order to calculate the guided modes supported by a crossed wire grid slab with finite 

thickness L , we use an analytical model based on the transverse averaged (TA)-field 

approach introduced in Ref. [1], which takes into account the effects of spatial dispersion 

and additional boundary conditions [2]. The propagation problem (calculation of the guided 

modes) can be solved by setting the determinant of the linear system obtained from the 

matching of the tangential TA-electromagnetic fields (i.e., xE  and yH ) as well as of the 
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normal component of the TA-electric field ( zE ), and by computing the wave number xk  as 

a function of frequency. For more details about the analytical model the reader is referred to 

Ref. [1], especially Sec. VI.E. 

Fig. A.2 depicts the dispersion characteristic of the TM-guided modes supported by a 

crossed wire grid slab (Fig. A.1) with a fixed thickness L  and different densities of wires 

/a L . The solid curves were obtained using the analytical model based on the transverse 

averaged (TA)-field approach, whereas the discrete symbols were calculated with the 

eigenmode solver of CST Microwave Studio [3]. As seen in Fig. A.2, the results obtained 

using the two different methods concur very well. 

(a)                        (b) 
                     
           

 

 

 

 

xk c

/L c

xk c

/L c  
Fig. A.2. Normalized propagation constant xk  of the guided modes as a function of the normalized frequency, 
for a fixed waveguide thickness L  and different lattice periods a . The wires are assumed to be PEC and its 
radius is 0.05wr a= . (a) /10a L= , and (b) / 20a L= . The black solid curves were obtained from the 
homogenization model, whereas the green discrete symbols were calculated using the eigenmode solver of 
CST Microwave Studio [3]. 

As one can see from Fig. A.2, the dispersion characteristic of the guided modes 

supported by the modified crossed wires waveguide (Fig. A.1) is completely different from 

that of the configuration studied in Sec. IV.3 (Fig. 4.5a). In particular, the absence of the 

entanglement of the different branches of the dispersion characteristic that characterizes the 

interlaced plasmons (Fig. 4.5a) promptly stands out from Fig. A.2. In contrast, this crossed 

wire mesh configuration (Fig. A.1) supports the propagation of several nearly 
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dispersionless (flat) bands that are likely to be related to the weakly bounded surface 

plasmons supported by the wires oriented along the x direction. In addition, it sustains the 

propagation of a considerably more confined guided mode along the entire frequency band. 

Similar to the guided mode supported by the array of parallel metallic wires (Fig. 4.3), the 

degree of field confinement of the considered guided mode is strongly enhanced when the 

frequency is close to /L cω π= . However, in contrast to the single wire medium where 

/ 1xk c ω >>  only for /L cω π≈  (see Fig. 4.3), in this case /xk c ω  is substantially above the 

light line even for /L cω π<<  (or equivalently, 0 / 2L λ<< ). Most likely, this fact is a 

consequence of some kind of interaction between the two perpendicular wire grids, which 

may deserve a more detailed investigation in the future. 
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