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Resumo 

É aceite pela comunidade científica que alterações na expressão genética 

poderão estar envolvidas na plasticidade neuronal associada a processos de 

aprendizagem e memória. De facto, o aumento da acetilação nas caudas de 

histonas, induzido pelo uso da Trichostatina A (TSA), um inibidor das 

desacetilases de histonas (HDAC), facilita a potenciação de longa duração 

(LTP) no hipocampo. Portanto, a desacetilação mediada pelas HDAC funciona 

como um “interruptor” molecular intranuclear na modulação da actividade 

sináptica e alterações de longa duração dos circuitos neuronais. Embora o ciclo 

de acetilação/desacetilação dos resíduos de lisina nas histonas, mediado por 

acetil-transferases (HATs) e desacetilases, seja um factor obrigatório na 

regulação da transcrição, outros substratos para essas mesmas enzimas têm 

vindo a ser identificados ao longo dos últimos anos, sugerindo que a acetilação 

de proteínas pode modular um grande número de processos além da 

expressão genética. Neste trabalho abordámos alterações na composição das 

sinapses excitatórias desencadeadas por alterações do nível de acetilação das 

proteínas. Os nossos estudos demonstraram que o tratamento de neurónios do 

hipocampo mantidos em cultura durante 15 dias (15DIV) com TSA, um inibidor 

das desacetilases do tipo I e II, aumenta a intensidade da fluorescência, área e 

densidade dos agregados de PSD95, uma proteína pós-sináptica que funciona 

como regulador principal da força das sinapses excitatórias, e também da 

Shank, uma proteína âncora pós-sináptica, sem contudo alterar os níveis 

proteicos totais de qualquer destas proteínas. Por outro lado, a TSA teve um 

efeito oposto sobre os agregados de cortactina e p140Cap, proteínas 

relacionadas com o citoesqueleto, cuja área foi diminuída após tratamento com 

TSA. A intensidade, número, e área dos agregados de gefirina, proteína âncora 

das sinapses inibitórias e por isso usada como marcador deste tipo de 

sinapses, não foram alterados em neurónios tratados com TSA, indicando um 

efeito específico para acetilação de proteínas nas sinapses excitatórias. 
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Os efeitos da inibição das HDAC na plasticidade sináptica e memória, bem 

como nos componentes moleculares das sinapses excitatórias, podem 

potencialmente envolver variações no estado de acetilação de outras proteínas 

para além das histonas. Na verdade, além das histonas, as HDACs e HATs, 

também possuem outros substratos, sendo um desses substratos a cortactina 

(Zhang et al., 2007). A cortactina é uma proteína que interage com a F-actina 

facilitando a nucleação de novos filamentos laterais de actina a partir de 

filamentos pré-existentes. Nos neurónios, a cortactina encontra-se enriquecida 

nas espículas dendríticas, as estruturas pós-sinápticas das sinapses 

excitatórias, desempenhando um papel na sua morfogénese. A depleção da 

cortactina resulta na redução no número e tamanho das espículas dendríticas, 

enquanto que a sua sobre-expressão resulta no alongamento das espículas 

(Hering & Sheng, 2003). Estudos recentes mostraram que a acetilação da 

cortactina altera a sua capacidade para interagir com a F-actina, regulando a 

mobilidade celular em células cancerígenas (Zhang et al., 2007), mas a função 

da acetilação da cortactina em células neuronais é até agora desconhecida. 

Descobrimos que os níveis de acetilação da cortactina aumentam em 

neurónios tratados com TSA, e que a cortactina acetilada é redistribuída das 

espículas para o corpo da dendrite. Tendo em conta o papel da cortactina na 

morfogénese espicular, testámos se a acetilação da cortactina poderia 

influenciar a agregação dendrítica de PSD95. Para tal, sobre-expressámos 

cortactina tipo selvagem, ou mutantes que mimetizam a cortactina acetilada ou 

desacetilada, em neurónios do hipocampo, e descobrimos que a acetilação da 

cortactina tem um impacto na regulação da agregação de PSD95, 

independente da sua função como regulador da dinâmica da actina, uma vez 

que a sobre-expressão do mutante acetilado alterou a área e intensidade dos 

agregados de PSD95, mas não teve efeito sobre o número ou tamanho dos 

agregados de F-actina. Outra observação importante, foi a diminuição dos 

agregados de PSD95, resultante da depleção de cortactina em neurónios 

através de RNA de interferência (shRNA), a qual foi resgatada por uma forma 

insensível ao shRNA da cortactina tipo-selvagem e também por uma forma da 

cortactina que mimetiza o seu estado acetilado. Tendo em conta que as 
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modificações pós-traducionais funcionam em conjunto a diversos níveis, 

testámos se a acetilação da cortactina poderia de alguma forma influenciar a 

sua fosforilação, e descobrimos que a acetilação da cortactina está 

correlacionada com uma menor fosforilação na tirosina 421.  Além disso, 

determinámos se a acetilação da cortactina está correlacionada com o nível de 

interação da cortactina com parceiros de interação conhecidos, como p140Cap 

e Shank1. Sabendo que o factor neurotrófico neuronal (BDNF), neurotrofina 

conhecida por desempenhar um papel na regulação da estrutura e função das 

sinapses glutamatérgicas promovendo, por exemplo, a agregação sináptica de 

PSD95  (Hu et al., 2011; Yoshii and Constantine-Paton, 2007) testámos se o 

mesmo poderia regular os níveis de acetilação da cortactina. Observámos que 

o BDNF promove a acetilação da cortactina em neurónios do hipocampo em 

cultura, e este efeito é dependente da activação das vias de sinalização 

MEK1/2 e PLCγ. Estas evidências sugerem que o BDNF pode regular a 

estrutura sináptica, alterando o nível de acetilação da cortactina. 

 

Analisados em conjunto, os nossos dados sugerem que a acetilação das 

proteínas afecta as sinapses excitatórias e que a acetilação reversível da 

cortactina pode funcionar como um mecanismo atractivo na maturação das 

sinapses através de uma regulação indiscutivelmente única da agregação 

dendrítica de PSD95. No entanto, o ciclo de desacetilação/acetilação da 

cortactina pode também regular o desenvolvimento das espículas através 

duma possível via distinta, dependente da dinâmica da actina, relacionada com 

a sua função na promoção da ramificação e alongamento necessários para a 

formação dos filopodia e consequente “alargamento”. As nossas descobertas 

desvendam um papel inesperado para a acetilação da cortactina na regulação 

da agregação dendrítica de PSD95, a qual pode actuar em conjunto com o 

papel da cortactina no desenvolvimento da espícula dendrítica.  
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Abstract 

Changes in gene expression are thought to be involved in neuronal plasticity 

associated with learning and memory. In effect, increased histone-tail 

acetylation induced by the use of the histone deacetylase (HDAC) inhibitor 

trichostatin A (TSA) enhances induction of long term potentiation in the 

hippocampus. Therefore, HDAC-mediated deacetylation functions as an 

intranuclear molecular switch in the modulation of synaptic activity and long-

lasting changes of neuronal circuits. Although acetylation/deacetylation of lysine 

residues on histones by histone acetyltransferases (HAT) and HDACs is an 

obligatory component of transcription regulation, other substrates of HATs and 

HDACs have lately been identified, suggesting that protein acetylation can 

modulate a myriad of processes besides gene expression. Here we addressed 

alterations in the composition of excitatory synapses triggered by changing the 

acetylation level of proteins. We show that treatment of hippocampal neurons in 

culture (15 DIV) with the inhibitor of types I and II histone deacetylase TSA 

increases the fluorescence intensity, area and density of the clusters for the 

excitatory postsynaptic protein PSD95, a major regulator of the strength of 

excitatory synapses, and for the postsynaptic scaffold protein Shank, without 

changing their total protein levels. Conversely, TSA had an opposite effect on 

cortactin and p140Cap, cytoskeleton-related proteins which cluster area was 

decreased by the TSA treatment. The intensity, number or area of the clusters 

for the inhibitory synaptic marker gephyrin were not altered in neurons treated 

with TSA, indicating a specific effect for protein acetylation at excitatory 

synapses. 

The effects of HDAC inhibition on synaptic plasticity and memory and also on 

the molecular components of excitatory synapses may potentially involve 

variations in the acetylation status of proteins other than histones. In fact, in 

addition to histones, HDACs and HATs target nonhistone proteins, and one 

characterized nonhistone HDAC substrate is cortactin (Zhang et al., 2007). 

Cortactin is an F-actin-binding protein which facilitates the nucleation of actin 
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branches on the side of pre-existing filaments of actin. In neurons, cortactin is 

enriched in dendritic spines, the postsynaptic structures for excitatory synapses, 

and has a role in spine morphogenesis. Knockdown of cortactin results in 

depletion of dendritic spines, whereas overexpression of cortactin causes the 

elongation of spines (Hering & Sheng, 2003). Recent studies showed that 

cortactin acetylation changes its ability to bind F-actin, and regulates cellular 

motility in cancer cells (Zhang et al., 2007), but the function of cortactin 

acetylation in neuronal cells is so far unknown. We found that the cortactin 

acetylation levels are increased in neurons treated with TSA, and that 

acetylated cortactin is redistributed from spines to the dendritic shaft. Since 

cortactin plays a role in the morphogenesis of spines, we tested whether 

acetylation of cortactin influences the dendritic clustering of PSD95. We 

overexpressed wild-type cortactin, or the mimetic mutants for acetylated or 

deacetylated cortactin, in hippocampal neurons, and found that cortactin 

acetylation has an impact on regulating PSD95 clustering, independent from its 

function as a regulator of actin dynamics, since overexpression of the cortactin 

acetylation mutants altered the area and intensity of PSD95 clusters, but had no 

effect on the number or size of F-actin clusters. Importantly, depletion of 

cortactin in neurons using shRNA resulted in a decrease on the dendritic 

clustering of PSD95, which was rescued by a form of wild-type cortactin 

refractory to shRNA or by the mutant mimicking acetylated cortactin. Since 

posttranslational modifications work jointly at several levels, we tested whether 

cortactin acetylation affects its phosphorylation, and found that acetylation of 

cortactin is correlated with lower phosphorylation of cortactin at tyrosine 421. 

Additionally, we found that cortactin acetylation is correlated with decreased 

interaction with known interaction partners, such as p140Cap and Shank1. 

Since the neurotrophin BDNF (Brain-derived neurotrophic factor) is known to 

play a role in the regulation of the structure and function of glutamatergic 

synapses, for example by promoting the synaptic clustering of PSD95 (Hu et 

al., 2011; Yoshii and Constantine-Paton, 2007), we tested whether BDNF 

regulates cortactin acetylation. BDNF promotes the acetylation of cortactin in 

hippocampal neurons in culture, and this effect is dependent on activation of the 
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MEK1/2 and PLC signaling pathways. These evidences suggest that BDNF 

may regulate the synaptic structure by changing the acetylation level of 

cortactin. 

Taken together our data suggest that protein acetylation affects excitatory 

synapses, and that reversible acetylation of cortactin may function as an 

attractive mechanism in synapse maturation through an undoubtedly unique 

regulation of the dendritic clustering of PSD95. Nevertheless, cortactin 

acetylation/deacetylation may also regulate spine development through a 

distinct possible pathway, dependent on actin assembly, which implicates its 

actin-branching and elongation activity for filopodia formation and outgrowth. 

Our findings unravel an unsuspected role for cortactin acetylation in the 

regulation of PSD95 dendritic clustering, which may work in concert with 

cortactin’s role in spine development. 
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The Synapse and the Postsynaptic site 

Glutamatergic Synapse 

All our behaviors, thoughts, emotions, dreams, and memories are triggered 

by a hundred billion neurons interconnected into functional neuronal circuits, 

which constitute the human brain. At the cellular level, communication between 

neurons arises and is mediated via specialized cell junctions called synapses. 

These structures can transmit information through electrical or chemical 

signaling (Kandel et al., 2000). Electrical synapses provide rapid, bi-directional 

ionic conductivity between neurons, but offer a limited repertoire for signal 

transduction. On the other hand chemical synapses produce a mostly 

asymmetric transmission of information. When an action potential generated 

near the cell body arrives at the axon terminal, the opening of voltage-gated 

Ca
2+

 channels induces the release of neurotransmitters stored in the synaptic 

vesicles, and these neurotransmitters released into the synaptic cleft are 

ultimately detected by receptors on the postsynaptic cell. Therefore, variety in 

distinct presynaptic neurotransmitters and diverse postsynaptic specializations 

for downstream signaling, provide a vast combination for neuronal 

communication (Kandel et al., 2000).  

Depending on the effect of presynaptic stimulation on the postsynaptic 

potential, synapses can be classified as excitatory or inhibitory. Activation of 

inhibitory synapses hyperpolarizes the postsynaptic membrane away from the 

threshold required for activation of an action potential (IPSP – inhibitory 

postsynaptic potential) (Hausser et al., 2000). Contrariwise, stimulation of 

excitatory synapses induces an excitatory postsynaptic potential that 

depolarizes the postsynaptic membranes towards the threshold potential (EPSP 

– excitatory postsynaptic potential) (reviewed in Sheng and Lin, 2001). 
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In the mammalian brain, the majority of synapses use glutamate as a 

neurotransmitter. Fusion of presynaptic vesicles promotes the release of this 

neurotransmitter which then transverses the synaptic cleft to bind to specific 

receptors on the postsynaptic membrane conducting to excitatory transmission. 

Clusters of these receptors are usually in direct apposition to the presynaptic 

active zone. The effects of glutamate are mediated by activation of ionotropic 

(Rosenmund et al., 1998) and metabotropic receptors (Ozawa et al., 1998), 

differing in their molecular, biochemical, pharmacological and physiological 

properties (Hollmann and Heinemann, 1994; Kew and Kemp, 2005). Ionotropic 

glutamate receptors (iGluRs) are a major class of heteromeric ligand-gated ion 

channels, which mediate the majority of the excitatory neurotransmission in the 

vertebrate central nervous system (CNS) and have been classified into three 

major subtypes according to their most selective agonist (Watkins et al., 1981): 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, and N-

methyl-D-aspartate (NMDA)  receptors . iGluRs couple the energy of agonist 

binding to the opening of a transmembrane ion pore, allowing influx of Na
+
, K

+
 

or Ca
2+

 ions and thereby cause membrane depolarization and neuronal 

excitation to produce an electrical signal from the chemical stimulus. AMPA and 

kainate are voltage-independent ion channels permeable to Na
+
 and K

+
 and 

mediate the majority of fast excitatory postsynaptic transmission. The rapid flow 

of Na
+
 and K

+
 through activated AMPA receptor channels produces brief 

excitatory postsynaptic currents (EPSCs) and the summation of these EPSCs 

can conjoin in the bridging of neuronal membrane potential threshold and elicit 

potential firing (Etherington et al., 2001). The rapid positioning or removing of 

AMPA receptors from the postsynaptic membrane, which elicit synaptic 

changes, makes these receptors important for events of synaptic potentiation 

(Malinow and Malenka, 2002). The precise physiological role of kainate 

receptors remains the least understood of the glutamate receptors, especially in 

their proposed role in presynaptic signaling (Nicoll et al., 2000). NMDA 

receptors are ligand-gated ion channels that exhibit a strong voltage 

dependence owing to the blocking of the receptor channels at negative voltages 

by extracellular magnesium (Kauer et al., 1988; Watkins et al., 1981). Due to 
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this unique property, NMDA receptors contribute little to the postsynaptic 

response during low-frequency synaptic activity. Nevertheless, when the cell is 

depolarized, Mg2+ dissociates from its binding site within the NMDA receptors 

channel, allowing Ca
2+

 as well as Na
+
 to enter the dendritic spine (Malenka and 

Nicoll, 1999). Metabotropic glutamate receptors (mGluRs) are indirectly linked 

with ion-channels on the plasma membrane of the cell through signal 

transduction mechanisms, often G proteins. Hence, they are a type of G 

protein-coupled receptor. When a metabotropic receptor is activated, a series of 

intracellular events are triggered that also results in ion channel opening but 

must involve a range of second messengers, thus they mediate slower synaptic 

responses (occurring over seconds and minutes, rather than milliseconds as 

occurs for ionotropic glutamate receptors) (Sheng & Lin, 2001).  

This neurochemical transmission of information is regulated by several 

interesting mechanisms. In fact, one fascinating aspect resides in 

understanding the role of the intense specialization found at postsynaptic sites 

and how the regulation of the components of this system correlates to neuronal 

communication, affecting neural circuits and behavior.  

Dendritic Spines 

Most excitatory synapses in the mammalian brain are formed at tiny 

dendritic protrusions, named dendritic spines (Bourne and Harris, 2008). Spines 

were first observed more than 100 years ago by the Spanish neuroscientist 

Ramon y Cajal (Cajal, 1888), and since then, many scientists and 

neuroscientists have been trying to understand their function. Spines are 

postsynaptic compartments composed of a complex biochemistry and 

cytoskeletal organization, which also harbor organelles and macromolecular 

complexes involved in protein synthesis, protein degradation, membrane 

trafficking and calcium signaling. Most mature spines have a club-like 

morphology, with variably-shaped bulbous tips (spine heads), ~0.5-2 µm in 

diameter, connected to the parent dendrite by thin stalks (spine necks) 0.04-1 
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µm long (Harris and Stevens, 1989). The spine neck is usually thinner than the 

spine head and can function as a molecular bottleneck to promote 

compartmentalization and biochemical isolation of the spine from the dendrite 

(Kennedy et al., 2005; Nimchinsky et al., 2002). The narrow neck of the spine 

creates a spatially isolated compartment where biochemical signals can rise 

and fall without spreading to neighboring synapses along the parent dendrite, 

thus allowing the isolation and/or amplification of incomplete signals. This 

“isolation” effect can also be expanded to the cellular signaling cascades 

occurring inside spines, since they are not homogeneously distributed. In fact, 

the current view of the biochemical processes involved in signal transduction is 

that molecular interactions arise within close proximity to sites of signal initiation 

(Eungdamrong and Iyengar, 2004) and progress through intracellular pathways 

whose components are at well-defined localization (Kennedy, 2000; Pawson 

and Scott, 1997). 

Morphologically, some of the most commonly observed spines are either 

mushroom shaped with heads exceeding 0.6 microns in diameter or thin 

shaped with smaller heads (Harris et al., 1992). However, extensive electron 

microscopy studies of brain tissue have shown that individual spines can vary 

greatly in size and shape (Harris and Kater, 1994; Hering and Sheng, 2001) 

and that these different shapes can be found at the same time on the same 

dendrites (Spacek and Harris, 1998). For example, in addition to mushroom and 

thin shaped spines, there are sessile spines and stubby spines, that show no 

obvious constriction between the head and its attachment to the dendritic shaft, 

and also filopodia-like or branched spines, typically among the longest spines 

found in the brain (Fig. 1). Nevertheless, the real in vivo situation cannot be 

reflected by this static view, because the majority of the spines change their 

shape over periods of minutes or hours, at least in developing neurons 

(Parnass et al., 2000). In terms of density, spines range from 1 to 10 per 10 

micrometer length of dendrite, depending on neuronal cell type and 

maturational stage. For example, pyramidal neurons in the visual cortex present 

1 to 2 spines per 10 µm (Larkman, 1991), while striatal medium spiny neurons 
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display a spine density as high as 7 to 8 spines per 10 µm (Graveland et al., 

1985).  

 

 

Dendritic spines are different also in the intracellular composition, which 

mainly consists of postsynaptic density (PSD) facing the presynaptic button and 

a cytoskeletal structure formed almost exclusively by F-actin. The PSD 

occupies 10 % of the surface area of the spine and is probably the most 

complex spine organelle in which hundreds of components are associated with 

each other in a complex based on a series of protein-protein interactions 

(Sheng and Hoogenraad, 2007; Sheng and Sala, 2001). This structure contains 

glutamate receptors anchored to scaffolding proteins and serves as the major 

site for the local initiation of intracellular signaling (Kennedy, 2000). Other 

organelles are localized at dendritic spines. In many spines, the smooth 

endoplasmatic reticulum (SER) can be detected stretching from the dendritic 

shaft into to the spine neck (Spacek and Harris, 1997), and some pyramidal cell 

spines contain the spine apparatus, which is an organelle formed by two or 

more disks of SER separated by an electron-dense material (Westrum et al., 

1980), shown to be required for some forms of synaptic plasticity (Deller et al., 

2003). It has been observed that both SER and spine apparatus are usually 

associated with larger spines and are formally absent in small spines (Spacek 

and Harris, 1997). Since it is thought that SER plays a role in Ca
2+

 handling, 

functioning as a Ca
2+

 reservoir (Spacek and Harris, 1997; Verkhratsky, 2002), 

Fig. 1 – Dendritic branch from a 15 DIV hippocampal neuron filled with GFP. 

Dendritic spines of varied lengths and shapes can be observed. m) Mushroom 
spine, s) stubby spine, t) thin spine. Scale bar 5 µm. 
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differently sized spines may have different ways of controlling calcium 

homeostasis.  

Larger spines are more likely to contain endosomal compartments (Cooney 

et al., 2002; Park et al., 2006). The endosome machinery is critical in sorting 

endocytic vesicles from the plasma membrane and selecting internalized 

proteins for either degradation in lysosomes or redirection to the membrane 

(Maxfield and McGraw, 2004). Among other roles, this system can aid in the 

rapid delivery of glutamate receptors to the postsynaptic membrane (Ehlers, 

2000).   

Spines are often associated with polyribosomes, so protein synthesis may 

be locally regulated in individual spines. Polyribosomes and protein translational 

machinery are found occasionally in spine heads or necks, but most commonly 

anchored at the base of the spines (Ostroff et al., 2002; Spacek, 1985; Steward 

and Schuman, 2001). In fact, local protein synthesis occurs locally in dendrites, 

although it is unclear how much can occur inside spines (Steward and 

Schuman, 2001). Conversely, protein degradation by the proteasome system 

has also been shown to be an active process in the postsynaptic metabolism, 

playing a role in activity dependent protein degradation (Ehlers, 2003). 

Taken together these evidences suggest that individual spines represent 

partially autonomous compartments, having their own regulated membrane-

trafficking events that shuttle components into and out of the spine membrane. 

When associated, these specialized molecular assemblies determine spine 

shape and, most importantly, enable the postsynaptic neuron to respond 

biochemically to glutamate or other transmembrane signals (reviewed in Hering 

and Sheng, 2001; Smart and Halpain, 2000; Zhang and Benson, 2001). 

Spines are highly dynamic structures capable of changing rapidly in both 

number and morphology. In the mammalian brain, a critical phase occurs during 

early postnatal development in which a period of robust spine genesis is 

followed by pronounced pruning (Bourgeois et al., 1994; Huttenlocher and 
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Dabholkar, 1997; Markus and Petit, 1987). Recent studies have measured the 

turnover of dendritic spines in vivo, using two-photon microscopy of GFP-

labeled dendrites in mouse cortex (Holtmaat et al., 2005; Zuo et al., 2005a). 

These studies found that a substantial fraction of thin spines appeared and 

disappeared over several days, whereas large spines were stable for months, 

and this fraction of stable spines increased during development and into 

adulthood. The convergent opinion is that the majority of mature spines are 

stable over months in the adult neocortex. Furthermore, sensorial manipulation 

and genetic mutations in animals are also known to affect spine density. In the 

binocular zone of the visual cortex, monocular deprivation during the critical 

period leads to reduced density and increased motility of dendritic spines 

(Mataga et al., 2004; Oray et al., 2004). However, it was recently reported that 

spine loss was prevented by long-term sensory deprivation, in primary 

somatosensory cortex (Zuo et al., 2005b). Another well-known factor that can 

perturb spine number and morphology is in vivo manipulation of neuronal 

genes. For example, animals with a disruption in the postsynaptic gene Shank 1 

(SH3 and multiple ankyrin repeat domains protein 1) display reduced spine 

numbers in hippocampal neurons (Hung et al., 2008), while disruption of Fragile 

X mental retardation 1 (FMR1) gene leads to an increased spine density in 

mutant mice during the first postnatal weeks (Nimchinsky et al., 2001). 

Moreover, alterations in spine density, morphology, and maturation strongly 

correlate with neuronal disorders, such as mental retardation, Fragile-X 

syndrome, Down’s syndrome and epilepsy (Chechlacz and Gleeson, 2003; 

Ferrer and Gullotta, 1990; Grossman et al., 2006; Suetsugu and Mehraein, 

1980; Swann et al., 2000). In advanced stages of Huntington’s, Parkinson’s and 

Alzheimer’s disease, patients frequently display reduced levels of spines in 

discrete brain regions (Catala et al., 1988; el Hachimi and Foncin, 1990; 

Ferrante et al., 1991; McNeill et al., 1988), and abnormal spine density was also 

reported in schizophrenic patients (Garey et al., 1998; Glantz and Lewis, 2000). 

Changes in spine density where also seen in animal models of substance 

abuse, since chronic cocaine administration produced an increase in spine 
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density in the ventral striatum (Robinson and Kolb, 1997). Additionally, a large 

body of evidences has pointed to changes occurring in spine density and spine 

morphology during learning and memory formation (reviewed in Bhatt et al., 

2009). It is now widely believed that information in the brain can be stored by 

strengthening or weakening existing synapses, as well as appearance and 

disappearance of dendritic spines, which subsequently leads to the formation 

and elimination of synapses. These functional and structural changes at spine 

and synapses are now considered to be the basis of learning and memory in 

the brain (Holtmaat and Svoboda, 2009; Kasai et al., 2010). 

Morphological, biochemical and electrophysiological properties of dendritic 

spines may offer powerful insights into the understanding of neuronal circuitries 

during development, since these sub-cellular structures are the key sites of 

synaptic transmission for over 90% of excitatory synapses. 

Postsynaptic Density 

In the mammalian brain, excitatory neurotransmission is predominantly 

mediated by release of the neurotransmitter glutamate. At these excitatory 

synapses, receptors for glutamate are concentrated within a postsynaptic 

specialization termed the PSD, originally defined by electron microscopy (EM) 

as an accumulation of electron-dense material located on the cytoplasmic 

surface of the synaptic membrane (Fig. 2), immediately beneath the 

postsynaptic membrane (De Robertis and Bennett, 1955; Palay and Palade, 

1955). Further understanding of the PSD was facilitated by its biochemical 

isolation, which confirmed the proteinaceous nature of this tight molecular 

network (Bloom and Aghajanian, 1966, 1968; Cotman and Taylor, 1972). 

Biochemical isolation of the PSD led to the idea that its composition of specific 

transmembrane and intracellular components reflects its unique structural and 

functional properties, which makes it a distinct structural and functional 

microdomain within neurons (Carlin et al., 1980). Another important contribution 

came from Gray through the detailed characterization of synapses as type I or 
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type II (assymetric or symmetric) according to the location of axonal enervation 

and PSD ultrastructural morphology (Gray, 1959). 

Ultrastructurally, PSDs form a 30-nm- to 40-nm-thick protein meshwork with 

a diameter of a few hundred nanometers (Carlin et al., 1980). When isolated by 

differential centrifugation, PSDs appear as neuronal disc-shaped organelles 

that are relatively insoluble in non-ionic detergents (Ziff, 1997). Moreover, PSDs 

exhibit attached or juxtaposed filamentous structures that extend deeply into the 

spine cytoplasm, which can anchor the PSD to the underlying spinous 

cytoskeleton, or limit receptor mobility within the PSD (Landis and Reese, 1983; 

Landis et al., 1987; Pozzo Miller and Landis, 1993). 

 

The PSD contains a variety of molecules, which mediate physical linkage 

and/or functional communication with the presynaptic specialization as well as 

function in postsynaptic signaling. The extremely high concentration of 

ionotropic glutamate receptors, associated anchoring proteins, scaffolding 

proteins and signaling proteins maximizes the transduction of information 

Fig. 2 – EM morphology of an excitatory synapse. The presynaptic terminal contains 

synaptic vesicles loaded with glutamate, facing the PSD located on the tip of the 
dendritic spine. The synaptic cleft separating pre- and postsynaptic membranes is 20-
25 nm wide. SV: synaptic vesicles. Scale bar is ~400 nm. [Reproduced from (Sheng 
and Hoogenraad, 2007)]. 
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between the presynaptic and postsynaptic neuron. Classic approaches to 

identify the components of the PSD have utilized subcellular fractionation and 

differential centrifugation to purify PSD components (Carlin et al., 1980). In the 

early days, PSD proteins were separated by SDS PAGE (sodium dodecyl 

sulfate polyacrylamide gel electrophoresis) and two-dimensional gel 

electrophoresis, resulting in a few major and minor bands that were sequenced 

to identify abundant constituents such as Tubulin, actin and αCaMKII 

(Ca
2+/

calmodulin-dependent protein kinase II) (Cho et al., 1992; Kelly and 

Cotman, 1978; Kennedy et al., 1983; Walsh and Kuruc, 1992). Classic 

biochemical methods however, only allowed the identification of these and few 

other proteins. More recently, the combination of different procedures, including 

mass spectrometry (MS) methods, led to the identification and partial 

sequenciation of a large number of proteins in the PSD, which helped unravel 

the true molecular complexity of PSD preparations (Cheng et al., 2006; Collins 

et al., 2006; Husi et al., 2000; Yoshimura et al., 2004). Recent investigations 

have even measured the mass of a single postsynaptic density (1.1±0.36 GDa) 

and the relative or absolute amounts of single proteins within the one PSD, 

which is thought to number between several hundreds to over one thousand 

different proteins of varied stoichiometric levels (Chen et al., 2005; Kennedy, 

2000; Sugiyama et al., 2005). The proteomic analysis also made possible the 

sorting and functional profiling of PSD proteins. In fact, identified proteins in the 

PSD serve a myriad of roles, from cell surface receptors to cytoplasmic 

signaling enzymes (including protein kinases and phosphatases), cytoskeleton 

associated and cell adhesion proteins and scaffolding proteins that hold them 

together (Collins et al., 2006; Peng et al., 2004) (Fig. 3). 

Since the complex PSD protein assembly is the molecular basis for locally 

distinct but diverse intracellular events, it is not surprising that this intricate and 

rich protein network is also a highly organized structure composed of several 

partially overlapping protein complexes, regulated by intercommunication of 

these protein networks in selective protein-protein interactions. One example of 

these individual, tightly associated, multiprotein networks that organize within 



Introduction 

   13 

the larger PSD ultrastructure are the complexes formed by neurotransmitter 

receptors and associated scaffolding or signaling molecules (Kim and Sheng, 

2004; Kneussel, 2005). Proteomic approaches for GluR complexes have helped 

to identify individual protein networks such as NMDA receptor/MAGUK-

associated signaling complex, AMPAR complex (ARC) and an mGluR complex 

(mGC) (Collins et al., 2006; Farr et al., 2004; Husi et al., 2000). The MASC 

complex, which is considered to be the largest, interacting with up to 186 

identified proteins in order to form a 2000-kDa structure, is believed to strongly 

anchor NMDA receptors to the PSD (Husi et al., 2000). The mGC is another 

large complex and is known to assemble with 64 different proteins (Farr et al., 

2004), whereas the ARC complex has been described as being much smaller 

with only 9 identified associated proteins until recently (Collins et al., 2006). 

However, a recent study unraveled new constituents of the macromolecular 

complex of long-form calcium-permeable AMPA receptors (Santos et al., 2010). 

The proteomic screening led to the identification of several interactors, most of 

which are novel AMPA receptor partners, namely, cytoskeleton proteins, motor 

proteins, RNA processing proteins which are part of neuronal RNA granules, 

and kinases, among others.  

Better functional insight into postsynaptic molecular architecture requires an 

understanding of the stoichiometry and 3D structure of individual PSD 

components, since not all proteins represented in the PSD share the same 

absolute number of copies. Recently, thanks to several powerful approaches, 

quantitative information on the stoichiometry of proteins in the PSD has come to 

the forefront (Chen et al., 2005; Cheng et al., 2006; Sugiyama et al., 2005). One 

of the first identified PSD proteins, αCaMKII, was determined to be the most 

abundant protein in the PSD fraction, representing ~7.4% mass of the PSD 

(Cheng et al., 2006). The next most abundant protein among those measured 

was SynGAP, a postsynaptic RasGAP. Other highly abundant proteins in the 

adult forebrain PSD are the postsynaptic protein 95 (PSD95), which is a 

scaffold protein that binds to NMDAR subunits, synapse associated protein 
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90/postsynaptic density95-associated proteins 1-4 (SAPAP1-4) and SH3 and 

multiple ankyrin repeat domains protein 1-3 (Shank 1-3) (Cheng et al., 2006). 

 

Fig. 3 – Components of dendritic spines. Schematic diagram of a mature 

mushroom-shaped spine showing the postsynaptic membrane containing the 
postsynaptic density, glutamate receptors, scaffold proteins, the actin filaments, and 
organelles. Subtypes of glutamate receptors are clustered at the postsynaptic site, 
within the postsynaptic density and connected to scaffold proteins such as PSD95. 
The actin network is spread in spine base, neck and head, exhibiting a continuous 
network of both straight and branched filaments. Actin filaments indirectly link up 
with neurotransmitter receptors and other transmembrane proteins that provide the 
main structural basis for spine shape, thus regulating spine shape and development. 
[Adapted from (Calabrese et al., 2006)]. 
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The PSDs exhibit a striking and important feature, despite their molecular 

complexity, which is the capacity for dynamic change. The complex protein 

composition of the PSDs can change as a consequence of external stimuli, 

synaptic activity and normal development (Colledge et al., 2003; Lu et al., 2001; 

van Zundert et al., 2004). Dynamic regulation of abundance and activity of 

PSDs constituent proteins occurs through protein phosphorylation (Collins et 

al., 2005; Sheng and Kim, 2002; Trinidad et al., 2006), local protein translation 

(Schuman et al., 2006), the ubiquitin-proteasome system for protein 

degradation (Ehlers, 2003; Pak and Sheng, 2003) and redistribution of specific 

proteins to and away from the PSD (Dosemeci et al., 2001; Hu et al., 1998; 

Inoue and Okabe, 2003; Malinow and Malenka, 2002). In fact, changes in 

activity levels in a neuron culture model were show to produce a global 

remodeling in PSD composition through even altered expression, post-

translational modifications or ubiquitination and activity dependent degradation 

of several PSD proteins (Colledge et al., 2003; Ehlers, 2003; Malinow and 

Malenka, 2002; Sheng and Kim, 2002). Similarly, during development, 

synapses change their functional properties and this is reflected in changes in 

the PSD. The most striking identified changes in PSD composition during 

development seem to represent a gain of one family member at the expense of 

another. During postnatal development synaptic levels of NMDA receptor 

subunits undergo a shift from a composition rich in NR1-NR2B to a 

predominantly NR1-NR2A receptor configuration (Sheng et al., 1994). Using 

immune-gold EM at several developmental time points to observe precise 

molecular localization and abundance, it was later determined that NR1 and 

NR2B subunits of the NMDAR predominate in young PSDs together with 

SAP102, and with postnatal development, NR2A, PSD95 and PSD93 increase 

while NR2B and SAP102 decline (Petralia et al., 2005; Sans et al., 2000). 

AMPARs and CamKII also accumulate greatly during development of PSDs, 

correlating with increased transmission strength during maturation of synapses 

(Petralia et al., 1999). A well-established developmental alteration at molecular 

level is the increased expression and inclusion of GluA2 (Glutamate receptor 

subunit 2) in functional AMPA receptors (Brill and Huguenard, 2008; Ho et al., 



Chapter 1 

16 

2007; Kumar et al., 2002). Finally, the major PSD scaffold proteins and 

SynGAP levels also change during development, since they are present in 

PSDs at birth and generally increase in abundance with maturation (Petralia et 

al., 2005). Although it is possible that some of these major scaffolds exist in a 

preformed complex for incorporation into growing PSDs (Gerrow et al., 2006). 

Scaffolding Proteins 

The PSD is the most prominent spine microdomain in which glutamate 

receptors concentrate to mediate excitatory transmission. The PSD of excitatory 

synapses seems to be arranged in a clear-cut laminar hierarchical structure, 

and this hierarchy appears to be determined by the targeting and binding 

characteristics of the individual proteins (Valtschanoff and Weinberg, 2001; 

Zuber et al., 2005). GluRs span the plasma membrane and are concentrated 

within the PSD, organized as distinct nanometer-sized compartments. 

Immediately subcellular to GluRs within the PSD is a layer of scaffolding 

molecules that serve to anchor the receptors subunits and other postsynaptic 

transmembrane proteins. Both biochemical and imaging studies demonstrate 

that PSD scaffolding proteins (e.g. PSD95, GKAP, SAP97, Shank and Homer; 

60-400 molecules of each per synapse) outnumber glutamate receptors (1-200 

glutamate receptors per synapse) (Sheng and Hoogenraad, 2007). As a class 

these scaffolding proteins are characterized by the presence of one or more 

PDZ [PSD95-kDa/disks large (Dlg)/zona occludens (ZO-1)] domains (Stuart et 

al., 2007). PDZ domains are found in a wide variety of eukaryotic proteins and 

display significant sequence variation, presumably underlying functional 

diversity and binding specificities (Sheng and Sala, 2001). The majority of 

known PDZ domains are 80-100-amino-acid domains that interact with specific 

short C-terminal sequences present in GluR (NMDAR and AMPAR) subunits or 

accessory proteins (Sheng and Sala, 2001; Tomita et al., 2003). However, PDZ 

domains are also known to heterodimerize or bind to certain internal β–hairpin 

structures (Brenman et al., 1996; Hillier et al., 1999). These scaffolding proteins 

are consisted of multiple domains that mediate protein-protein interactions. 
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Therefore, not only they anchor the C-termini of receptors and transmembrane 

proteins within the PSD, but are also capable of organizing large multiprotein 

complexes within the PSD, and these assembled protein units mediate specific 

functions related to the coassembled neurotransmitter receptors.  

The PSD95 Family of Proteins 

A group of membrane-associated guanylate kinase homologs (MAGUKs) 

has emerged as central organizers of multicomponent protein signaling 

complexes. MAGUKs form a superfamily of scaffolding proteins present in 

several organisms and appear to play various cellular roles, including 

fundamental roles in the transport, anchoring and signaling of specific 

subclasses of synaptic receptors and ion channels (Montgomery et al., 2004). 

In the mammalian brain, special consideration is given to a sub-family of 

MAGUKS, which is the commonly defined PSD95 family of proteins. This family 

comprises structurally similar proteins, namely SAP102 (synapse-associated 

protein 102), SAP97 (synapse-associated protein 97, PSD93 (postsynaptic 

density 93) and PSD95. These distinct proteins are encoded by unique genes 

and exhibit different expression patterns and functional properties. The best 

characterized of the synaptic PDZ proteins is PSD95, which was amongst the 

original proteins identified as being enriched in the PSD (Sampedro et al., 

1981). Nonetheless, the molecular identity of PSD95 by protein sequencing and 

the recognition that it was highly homologous to dlg only came some years later 

(Cho et al., 1992). 

Structurally, from the N-terminus to the C-terminus, the PSD95 family of 

proteins consists of an L27 domain, three PDZ domains (PDZ1, PDZ2 and 

PDZ3), a Src homology domain (SH3), and a guanylate kinase-like (Aoki et al.) 

domain, all of which mediate different protein-protein interactions. Yeast-two 

hybrid screening assays contributed to unravel the role of PSD95 as a central 

organizer of synaptic function by revealing numerous specific binding partners 

for PSD95. Some of the most noteworthy binding partners to the first two PDZ 

domains of PSD95 include the Shaker-type K
+
 channels and NR2 subunits of 
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the NMDA receptor, both through C-terminal PDZ binding motifs (Kim et al., 

1995; Kornau et al., 1995). Later, other members of the PSD95 family were 

included in these interactions; PDZ1 and PDZ2 from SAP97 were shown to 

interact, with equal affinity, with both NR2A and NR2B subunits, whereas all 3 

PDZ domains in SAP102 were shown to bind to NR2B (Muller et al., 1996; 

Niethammer et al., 1996). PSD93 was also shown to interact and promote the 

clustering of both NMDA receptor subunits and Shaker K
+
 channels in 

heterologous cells (Kim et al., 1996). Indeed, it was shown that PSD93 and 

PSD-95 can heteromultimerize with each other, being recruited into the same 

NMDA receptor and K
+
 channel clusters. Other notable binding partners to the 

PDZ domains of the PSD95 family include the neuronal isoform of nitric oxide 

synthase (nNos), a Ca
2+

/Calmodulin activated enzyme implicated in the 

regulation of neurotransmission and excitotoxicity, through a PDZ-PDZ 

interaction (Brenman et al., 1996); SynGAP to PDZ1-3 domains of PSD95 and 

SAP102 (Kim et al., 1998); and neuroligin to PDZ3 domain (Irie et al., 1997).  

PDZ domains are also responsible for the regulation of AMPAR. 

Specifically, SAP97 directly interacts with the AMPAR subunit GluR1, and this 

interaction is involved in the trafficking of these receptors (Leonard et al., 1998). 

However, the interaction between PSD95 and GluR subunits is not direct. In 

fact, AMPARs are localized to synapses through direct binding of the first two 

PDZ domains of synaptic PSD-95 to the AMPAR regulatory protein, stargazin 

(Chen et al., 2000; Schnell et al., 2002; Tomita et al., 2004). 

The two remaining conventional domains in PSD95 family are the SH3 and 

GK domains. The SH3 domains classically mediate protein-protein interactions 

by binding to proline-rich sequences (PXXP) (Mayer and Eck, 1995; Musacchio 

et al., 1994), but in MAGUKs, SH3 domains seem to have an atypical ligand 

binding specificity, distinct from classical SH3 domains. One of the most well 

known features is that SH3 domain interacts in an intramolecular manner with 

the GK region of PSD95 family proteins and this intramolecular interaction 

appears to be important for regulating the ion channel-clustering activity of 
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PSD95 (McGee and Bredt, 1999; Shin et al., 2000). In PSD95, both domains 

were shown to bind and promote clustering of kainate receptors (Garcia et al., 

1998). 

The GK domains of MAGUKs are highly homologous to the enzyme 

guanylate kinase, but catalytic activity has not been reported. Instead, the GK 

domains of certain MAGUKs have been characterized as protein-protein 

interaction interfaces, and have provided clearly established binding partners. In 

1997, three independent research groups reported that GK domain of the PSD-

95 family of MAGUKs interacts with the GKAP/SAPAP/DAP family of 

postsynaptic density proteins, which is of critical importance for the normal 

function of the PSD (Kim et al., 1997; Satoh et al., 1997; Takeuchi et al., 1997). 

The GK domain of PSD-95 also binds with high affinity to both microtubule-

associated protein 1A (MAP1A) (Brenman et al., 1998) and brain-enriched 

guanylate kinase-associated protein (BEGAIN) (Deguchi et al., 1998). An 

additional partner to PSD95 GK domain is SPAR (spine-associated RapGAP), 

which regulates spine morphology and displays actin-reorganization activity 

(Pak et al., 2001). Thus, the GK domain of PSD-95 can interact directly with 

multiple postsynaptic proteins. Although this is not a comprehensive list of all 

known interactions to PSD95 family of proteins, this list of interactions serves to 

highlight the central role that PSD95 family of proteins may play at the PSD. 

The functional importance of PSD95 as a synaptic scaffolding molecule was 

initially demonstrated by mutations of Drosophila homolog of PSD95, Dlg, which 

eliminates postsynaptic clustering of Shaker K
+
 channels (Gramates and 

Budnik, 1999). Moreover, manipulation of the expression levels of PSD95 family 

of proteins has conceded several insights into the role that these proteins play 

at synapse and in the regulation of glutamate receptors. PSD-95 

overexpression, in hippocampal neurons, causes an enhancement of 

postsynaptic clustering and activity of glutamate receptors and also increases 

the number and size of dendritic spines (El-Husseini et al., 2000). Conversely, 

acute knockdown of PSD-95 in brain slice cultures arrests the normal 
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development of synaptic structure and function that is driven by spontaneous 

activity, suggesting not only a decrease in synaptic AMPA receptors but also a 

decrease in total number of functional synapses (Ehrlich et al., 2007). 

Manipulations in SAP97, PSD93 and SAP102 protein levels also led to similar 

functional alterations (Elias et al., 2006; Schluter et al., 2006). Therefore, it is 

not surprising that PSD95 is considered a potent regulator of synaptic strength 

through its dominant role in controlling AMPA receptor numbers at synapses 

(Bats et al., 2007; Chen et al., 2000; Elias et al., 2006). Despite the lack of 

information on how PSD-95 actually organizes the molecular architecture of the 

PSD to support its functional properties, recent studies using electron 

microscopy tomography (Chen et al., 2011) revealed that the knockdown of 

PSD-95 leads to loss of entire patches of PSD material. This patchy loss 

correlates with loss of PSD-95-containing vertical filaments, horizontal elements 

associated with the vertical filaments, and putative AMPA receptor-type, but not 

NMDA receptor-type, structures (Chen et al., 2011). Additionally, the role of 

PSD95 family of proteins can be further explored by in vivo studies through 

analysis of mouse models for the deletion of these genes. SAP97 mutant mice 

are the less suitable to study, since the SAP97 null mice die in the neonatal 

period due to craniofacial abnormalities (Caruana and Bernstein, 2001; Zhou et 

al., 2008). SAP102 (Cuthbert et al., 2007), PSD93 (McGee et al., 2001) and 

PSD95 (Beique et al., 2006; Migaud et al., 1998) knockout animals display mild 

phenotypes, with no effect on AMPA receptor mediated transmission, which 

conflict with the results from in vitro and ex vivo experiments that credit a key 

role for PSD95 and PSD93 in a dramatic regulation of AMPA receptor mediated 

synaptic strength. The mild phenotypes displayed by these animals have to be 

interpreted with great caution owing to compensation that can occur due to 

synaptic specificity of each of these genes, since the expression patterns of the 

MAGUKs in the central nervous system mostly overlap (Elias and Nicoll, 2007). 

Comparing the effects of acute knockdown with the corresponding knockouts 

(and double knockouts) of these proteins (PSD93, PSD95 and SAP102), this 

work illustrated how synaptic specificity and developmental regulation of 

AMPAR is influenced by PSD95 and PSD93 in non-overlapping populations of 
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mature synapses. On the other hand, SAP-102 was shown to be the dominant 

MAGUK for AMPA receptor trafficking early in development as well as being 

able to partially compensate for the absence of both PSD-95 and PSD-93 in 

adults (Elias et al., 2006). Not only this work confirmed the difficulties 

encountered when observing neurobiological relevant alterations in models of 

genetic manipulations when closely related genes overlap in the same 

population of genes, but also reconciled the in vivo and in vitro observations on 

the role of PSD95 family of proteins in regulating synaptic glutamate receptors.  

In addition to its role as organizer of intracellular signaling and anchor for 

the NMDA receptor at the synaptic plasma membrane, PSD95 also binds to 

other synaptic scaffolding molecules deeper within the PSD, through protein 

interactions. Yeast two-hybrid assays revealed the interaction between the 

GKAP/SAPAP family of proteins and the GK domain of PSD95 (described 

above). In turn, SAPAP proteins were used as the bait in yeast two-hybrid 

screens that permitted the identification of the Shank family of proteins, another 

family of core PSD proteins (Lim et al., 1999; Naisbitt et al., 1999; Tu et al., 

1999). This family of proteins will be discussed in the next section. 

The Shank Family of proteins 

Shank and GKAP are probably two of the major scaffold proteins organizing 

the PSD. Shank is made of five domains that are likely involved in protein-

protein interactions: ankyrin repeats, an SH3 domain, a PDZ domain, a Sterile 

Alpha Motif (Sampedro et al.) domain and a proline reach region. The Shank 

family contains three known members, Shank1, Shank2, and Shank3 (also 

called ProSAP, SSTRIP, cortBP, synamon, and Spank) and despite sharing 

essential identical domain structure, the long proline-rich regions (900-1000 

residues) of Shanks share relatively low amino acid sequence identity as 

compared with the other recognizable domains (Lim et al., 1999). Binding to 

SAPAP proteins occurs through the PDZ domain of Shank to the C-terminal 

QTRL motif of SAPAP (Naisbitt et al., 1999). PSD95, SAPAP and Shank all 

enrich in biochemically isolated PSD samples, and also display a prominent 
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presence at the PSD when investigated by immune-gold EM (Naisbitt et al., 

1999; Petralia et al., 2005). In fact, the interaction between these three proteins 

is well documented and supported by several lines of evidences, including the 

above mentioned yeast two-hybrid interaction screens, and also demonstrations 

that this complex co-clusters and co-precipitates in heterologous cells. 

Shank proteins are associated with the NMDA receptor-PSD95 complex by 

their binding to GKAP, and they are also associated with type I metabotropic 

glutamate receptors (mGluRs) via an interaction with the EVH1 (Ena/VASAP 

homoly 1) domain of Homer in the proline rich-domain (Brakeman et al., 1997) 

(Fig. 3). Recent studies, using crystallographic analysis, found that Homer and 

Shank form a high-order polymerized complex, which recruits another 

postsynaptic protein (SAPAP), with a mesh like network forming a tetrameric 

structure (Hayashi et al., 2009). This Homer-Shank structure may serve as a 

structural framework and as an assembly platform for other PSD proteins. 

Therefore, Shank may bridge two different glutamate receptors (NMDA and 

mGluRs), regulating the interaction between glutamatergic ionotropic and 

metabotropic signaling (Ehlers, 1999; Tu et al., 1999).  

Shank also acts as a molecular bridge linking multiple glutamate receptors 

subtypes to the postsynaptic cytoskeleton, since a number of actin regulatory 

molecules bind to both proline-rich or PDZ domains of the protein. Cortactin 

was found to bind to Shank 2 (originally named cortBP1 – cortactin binding 

protein 1) and later confirmed to also bind to Shank 1 and -3 through the 

proline-rich region (Du et al., 1998; Naisbitt et al., 1999). A further link to the 

actin cytoskeleton also occurs through the interaction between α-Fodrin with the 

ankyrin repeats (Bockers et al., 2001), IRSp53 (insulin receptor tyrosine kinase 

substrate p53) (Bockmann et al., 2002) and AbP1 (actin binding protein 1) with 

the proline-rich domain (Qualmann et al., 2004), and β-PIX (p21-activated 

kinase interacting exchange factor) with the PDZ domain of Shank (Park et al., 

2003).  
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There is strong evidence for Shank proteins concerning the regulation of 

synaptogenesis and morphology of dendritic spines. In hippocampal neuron 

cultures, Shank1 overexpression was found to promote the maturation and 

enlargement of dendritic mushroom spines, although the effect was further 

potentiated by co-expression of Homer (Sala et al., 2001). Shank3 was also 

characterized as a modulator of dendritic spines. Knockdown of Shank3 

reduces spine density in hippocampal neurons, whereas transgene expression 

of Shank 3 is sufficient to induce spine formation in aspiny cerebellar neuron. 

This dramatic effect was also observed using Shank3 mutation/deletion 

approaches. These manipulations promoted an increase of frequency and 

amplitude of miniature EPSCs, as well as increases in the number and size of 

synaptic contacts, demonstrating the ability of Shank3 to recruit functional 

glutamate receptors and inducing the formation of functional synapses 

(Roussignol et al., 2005). 

Further components of the Shank master complexes are molecules that 

have the potential to alter the shape of the spines and PSDs by recruiting 

and/or regulating small GTPases within the PSD. Densin-180, which has been 

identified as a constituent of the postsynaptic densities in excitatory synapses, 

interacts with the SH3 domain and proline-rich region of Shank (Shank 1-3) 

proteins (Quitsch et al., 2005). In cultured hippocampal neurons, Densin-180 

overexpression induces excessive branching of neuronal dendrites, but co-

expression of Shank3 abrogates branch formation and targets Densin-180 into 

postsynaptic clusters instead, antagonizing the dendritic branching induced by 

Densin-180 overexpression. Furthermore, dynamin-2 (GTPase), which is 

specifically enriched in the postsynaptic densities of culture hippocampal 

neurons, interacts with at least two members of the Shank family of proteins 

(Okamoto et al., 2001). This interaction indicates a close association between 

the endocytic machinery and the PSD, providing another insight into the 

dynamics of this structure. 
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Another binding partner to Shank3, involved in spine and dendritic 

rearrangements, is the Abelson interacting protein 1 (Abi-1), an important 

component for controlled actin assembly. During early neuronal development, 

Abi-1 is present in neurites and growth cones, and at later stages, the protein is 

enriched in dendritic spines and in the PSD. Knockdown of Abi-1 in cultured 

neurons results in excessive dendrite branching, immature spine and synapse 

morphology and a reduction of synapses, whereas Abi-1 overexpression 

produced an opposite effect (Proepper et al., 2007). It is likely that during 

development Abi-1 is recruited to the PSD via the Shank3 interaction. The 

direct role Shank3 may play in dendritic branching is still unclear. Nevertheless, 

this protein has proven to be a good candidate for a role in the regulation of 

neuronal arbor complexity. In fact, crystallization of the SAM domain from 

Shank3 revealed that it can oligomerize and form large sheets of stacked fibers, 

possibly forming a platform for the construction
 
of the PSD complex (Hayashi et 

al., 2009). 

Each Shank form shows distinct tissue distribution of mRNA. Therefore, 

Shank proteins are differentially expressed in different regions and at different 

developmental stages of the rat brain (Lim et al., 1999). The perinatal 

expression of Shank1-3 is relatively low but rapidly increases during the first 

weeks of development, peaking at 3-4 weeks in the rat brain (Lim et al., 1999). 

Shank1 and Shank2 mRNAs are widely expressed early in postnatal brain 

development, whereas Shank3 expression increases during postnatal 

development, especially in the cerebellum and thalamus. Shank1 and Shank3 

(but not Shank2) mRNAs are present in the molecular layers of the 

hippocampus (Bockers et al., 2004).  

Analysis of mouse models for the deletion of genes can be used to study 

the in vivo role of Shank proteins. Genetic disruption of Shank1 in mice 

promotes the development of smaller dendritic spines and thinner PSDs, 

accompanied by reduced synaptic strength and reduced levels of PSD proteins 

such as SAPAP and Homer (Hung et al., 2008). At the behavior level, these 
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animals had increased anxiety-related behavior and impaired contextual fear 

memory. They also displayed enhanced performance in a spatial learning task; 

however, their long-term memory retention in this task was impaired (Hung et 

al., 2008). A recent study showed that striatal medium spiny neurons of mice 

genetically engineered with Shank3 gene deletions exhibited neuronal 

hypertrophy, reduced spine number and an abnormal PSD architecture (Peca 

et al., 2011). Behaviorally, these mice displayed self-injurious repetitive 

grooming and deficits in social interaction suggestive of an autist-like 

phenotype. These findings demonstrate a critical role for Shank3 in the normal 

development of neuronal connectivity. 

In humans, the Shank genes have been associated with a form of mild 

mental retardation associated with severe expressive language delay and minor 

facial dysmorphisms called the 22q13.3 deletion syndrome (Phelan-McDermid 

Syndrome). This syndrome is widely regarded as an autism spectrum disorder, 

thought to be caused by the disruption of the Shank3 gene (Durand et al., 2007; 

Moessner et al., 2007), which is also thought to be responsible for other non-

syndromic ASDs (Gauthier et al., 2009). This raises the possibility that, in fact, 

Shank plays a central role in the organization and function of excitatory 

synapses. 

Actin Cytoskeleton 

The cytoskeleton network is composed principally of three types of protein 

filaments - actin, microtubules, and intermediate filaments - that possess unique 

biophysical and biochemical properties. In dendritic spines, actin appears to be 

the major cytoskeletal element and its organization there reflects an elaboration 

of highly conserved mechanisms of actin regulation. Continual growth and 

depolymerization of filaments are likely to mediate most actin functions in the 

spine (Fig. 4). The overall flow within spines, rather than resulting from a single 

network centered at the synapse, likely results from multiple, potentially 
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independent filament networks with distinct sites of polymerization (Frost et al., 

2010a).  

 

 

Actin filaments are closely, and apparently directly, associated with the PSD 

(Capani et al., 2001; Fifkova and Delay, 1982). Ultrastructural examination of 

dendritic spines from the rodent brain has revealed three prevalent forms of 

cytoskeletal filaments, all of which appear to consist of F-actin: a network of 

short filaments extending into the spine from the synaptic junction; a network 

present throughout the spine head; and filament forms (bundles) found in the 

Fig. 4 - Actin cytoskeleton as a key organizer and coordinator of synapse 
function via numerous distributed mechanisms. Several known sites of actin 

regulation throughout individual spines, coordinately control PSD scaffolds and 
synapse function. Arrows indicate direction of actin flow (gray), and potential for 
cargo transport along filaments oriented in either direction (green). (Adapted from 
Frost et al., 2010a) 
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neck of the spine (Cohen et al., 1985; Fifkova and Delay, 1982; Landis and 

Reese, 1983; Matus et al., 1982). More recently, a study using photoactivable 

β-actin confirmed the existence of three distinct actin populations in spines, as 

well as the subspine localization and the kinetics of actin turnover (Honkura et 

al., 2008). This study showed that actin dynamics, and consequently spine 

function, can be regulated by neuronal activity, since they observed the 

formation of a more kinetically stable F-actin pool, in addition to the observed 

dynamic (at the tip of the spine) and stable pools, upon glutamate uncaging, 

which increases synaptic strength.  A recent elegant study of the dendritic spine 

cytoskeletal organization has confirmed and extended these studies using 

electron microscopy to show that spines exhibit a continuous network of both 

branched and long, linear actin filaments (Korobova and Svitkina, 2010).  

The functional role for actin in spines was revealed through 

pharmacological approaches that perturb actin dynamics. Inhibition of 

polymerization with lantruculin A destabilizes synapses in an age dependent 

manner (Zhang and Benson, 2001), and alters the number and localization of 

glutamate receptors and PSD proteins (Allison et al., 1998; Zhou et al., 2001). 

The synaptic localization is altered for scaffolding proteins such as GKAP, 

Shank, Homer 1c, but no effect is observed for the localization of PSD95 (Kuriu 

et al., 2006). A recent study showed that PSD-95 forms an enduring, spatially 

stable matrix within the PSD with extremely limited mixing of molecules over 

submicron distances (Blanpied et al., 2008). This suggests that the 

intermolecular binding of scaffold molecules, which constitute the foundation of 

the PSD architecture, is apparently not sufficient to maintain GKAP, Shank and 

Homer 1c in the absence of polymerizing actin. What these studies reveal is 

that the actin cytoskeleton can organize neurotransmitter receptors, signaling 

molecules and scaffolding proteins into functional subsets that are partially 

autonomous and spatially confined, consenting dispersal of molecules from 

PSD subcompartments, which in turn allows spines to modulate their shape, 

motility and function.  
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Regulation of Actin Dynamics 

The molecular aspects of actin dynamics have to be considered in order to 

better understand the dynamic changes in dendritic spine morphology. Actin 

exists in two states within the cell: as globular or monomeric actin (G-actin) and 

as filamentous actin (F-actin), resulting from the polymerization of G-actin into 

double helical filaments. Actin assembly is determined by the available amount 

of unpolymerized G-actin and the G-actin critical concentration (Carlier, 1990), 

and occurs through three sequential steps: nucleation (rate limiting step), 

elongation, and ultimately steady state, with no net change in the amount of F-

actin. Filamentous actin has a structural polarity, and the two ends lengthen and 

shorten at different rates (Woodrum et al., 1975). The remarkable feature of F-

actin treadmilling, which results in continuous exchanges of actin molecules in 

F-actin, depends on critical monomer concentrations of both ends. At steady 

state, F-actin exhibits net polymerization at a fast growing end (the barbed or 

plus end) and simultaneous depolymerization at a slow growing end (the 

pointed or minus end), which results in continuous actin turnover in filaments. In 

migrating cells, the barbed ends push the plasma membrane and induce cell 

shape changes in the form of lamellipodia (sheet-like extension), which consist 

of short and highly branched actin filaments, or filopodia (rod-like extension), 

which contain long, unbranched actin filaments (Le Clainche and Carlier, 2008; 

Pollard and Borisy, 2003). The rapid turnover of F-actin has been demonstrated 

in dendritic spines by FRAP (fluorescence recovery after photobleaching) 

analysis, suggesting that most F-actin in dendritic spines undergo treadmilling 

(Star et al., 2002). Moreover, G-actin/F-actin equilibrium in dendritic spines is 

regulated in an activity-dependent manner. Measurements of fluorescence 

resonance energy transfer (FRET) between actin monomers revealed that 

synaptic stimulation rapidly changes the equilibrium between F-actin and G-

actin and this regulation depends on the presence of a sequestered G-actin 

pool (Okamoto et al., 2004).  
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Several recent studies have shed light on where actin is polymerized and 

depolymerized in different regions of the spine. Using a barbed-end 

polymerization assay and FRAP analysis Hotulainen and colleagues showed 

that actin is capable of polymerizing not only at the spine tip, which confirmed a 

previous study (Honkura et al., 2008), but also at the base of the spine 

(Hotulainen et al., 2009). Another study using super-resolution optical imaging 

confirmed that the complex process of actin treadmilling takes place throughout 

the spine head and shaft (Tatavarty et al., 2009). These findings were recently 

expanded by Blanpied and colleagues, using single particle tracking 

photoactivated localization microscopy (sptPALM). Tracking the movements of 

individual actin molecules in different sub-regions of dendritic spines they found 

that actin filaments participate in retrograde flow from the periphery towards a 

central region of the spine (Frost et al., 2010b). Taken together these studies 

demonstrate the essential role for the complex and relatively dynamic actin 

filament array for the functional readout of dendritic spines. 

The steady-state treadmilling of pure actin polymers is much slower in vitro 

than that of F-actin in vivo (Pollard, 1986; Zigmond, 1993). This is due to the 

presence of actin binding proteins (ABPs), which serve additional roles in 

regulating actin dynamics and are responsible for promoting actin 

polymerization and depolymerization. 

Actin binding proteins in dendritic spines 

A cohort of actin-binding proteins determines the characteristic of the 

organization of F-actin, such as the assembly of networks and straight or 

tangled bundles. In neurons, F-actin organizes various structures in a 

subcellular location-dependent manner, and each F-actin organization is 

accompanied by a certain set of actin-binding proteins. In fact, the interplay 

between many of these proteins is responsible for the growth or disassembly 

rate of actin, and ultimately the morphology of dendritic spines and 

development of synapses. In fact, these proteins can interfere with the 

clustering of postsynaptic proteins and with the regulation of neurotransmitter 
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receptor activities, creating functional synaptic connections. Many actin-binding 

proteins that regulate elongation, branching, and bundling or that trigger 

severing and depolymerization of actin filaments are found in dendritic spines 

(Ethell and Pasquale, 2005). These proteins can be organized according to 

their essential roles in the F-actin organization. 

Actin Filaments Severing and Depolymerization 

These proteins control F-actin length by severing F-actins and also by 

regulating the dynamics of treadmilling.  

Gelsolin, which decreases F-actin length, has a variety of functions, such as 

binding and severing F-actin and capping fast-growing barbed ends (Harris and 

Weeds, 1984; Janmey et al., 1985), as well as nucleating new filament 

polymerization (Ditsch and Wegner, 1994). Gelsolin severing activity in 

combination with its capping activity leads to an increase in the number of 

pointed ends, promoting F-actin shortening. The actin severing and nucleating 

activities of gelsolin are inhibited by phosphatidylinositol 4,5-biphosphate 

(Janmey and Stossel, 1987), and are upregulated by micromolar concentrations 

of Ca
2+

, which was shown to promote gelsolin severing activity, and to increase 

the efficiency of its capping activity (Janmey et al., 1985). Gelsolin is detected in 

cultured hippocampal neurons where it is implicated in plasticity (Petrucci et al., 

1983). Gelsolin knockout mice exhibit increased Ca
2+

 influx following glutamate 

exposure and fail to display an NMDA receptor-dependent decrease in the actin 

turnover rate (Furukawa et al., 1997). In humans, mutations in the gelsolin gene 

were linked to Alzheimer’s and Parkinson’s diseases (Haltia et al., 1991), 

whereas gelsolin levels were implicated in Down syndrome (Ji et al., 2009). All 

these evidences support the idea that gelsolin mediates actin remodeling in 

dendritic spines. 

Cofilin is a member of the ADF/Cofilin family of actin-depolymerizing 

proteins. It decreases F-actin length in a Ca
2+

-independent and a pH-dependent 

manner (Bamburg et al., 1980; Nishida et al., 1984; Yonezawa et al., 1985). 



Introduction 

   31 

ADF/Cofilin preferentially binds to ADP-actin subunits in a minor twisted 

conformation of F-actin, severing the filaments (Maciver et al., 1991). This 

increases the pool of G-actin monomers used by actin polymerizing factors 

(described below) and also creates free barbed ends that can nucleate filament 

growth. However, the depolymerization activity of ADF/cofilin is mainly derived 

from its ability to increase the rate of dissociation from the pointed end of F-

actin (Carlier et al., 1997). Cofilin activity is regulated by phosphorylation, which 

inhibits its binding to F-actin, and also through other mechanisms that influence 

the actin-severing ability of cofilin [reviewed in (Pontrello and Ethell, 2009)]. 

Cofilin is expressed at high levels in the adult brain, being more abundant than 

ADF in mammalian neurons (Garvalov et al., 2007; Moriyama et al., 1990). 

Using EM, Cofilin was found to accumulate near the specific “shell” region of 

the spine that contains a dynamic F-actin pool, while it avoids the spine “core” 

region with a stable F-actin pool (Racz and Weinberg, 2006). Moreover, cofilin-

1 knockdown in cultured hippocampal neurons was shown to decrease the 

number of mature dendritic spines and to induce the formation of abnormal 

protrusions-like branches (Hotulainen et al., 2009). Formation of cofilin-actin 

rods structures was detected in brains of subjects with Alzheimeir’s disease 

(Bamburg et al., 2010; Bamburg and Bloom, 2009). It is possible that 

recruitment of a large number of cofilin molecules to actin rods in neurites 

depletes the cofilin pool in dendritic spines, affecting spine maintenance and 

synaptic plasticity in affected neurons. Together, these evidences support a role 

for  cofilin in dendritic spine plasticity, due to the contribution of its actin-

remodeling activity to dendritic spine morphology and also to its localization 

within spines. 

Actin Polymerization and Elongation 

Most of the proteins that participate in actin polymerization are considered 

cross-linking proteins, organizing F-actin into bundles or networks. 

The Arp2/3 Complex enhances actin nucleation and causes the branching 

and cross-linking of F-actin. It nucleates branches from the sides of existing 
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actin filaments and caps the pointed ends, thus creating additional fast-growing 

barbed ends for further actin polymerization and elongation (Amann and 

Pollard, 2001; Mullins et al., 1997; Pantaloni et al., 2000), and ensuring that the 

newly produced filaments are short ad rigid. Spatially, Arp2/3 is positioned at 

the pointed end of the newly forming filament (Pollard, 2007). The nucleation 

activity and localization of the Arp2/3 complex is regulated by phosphorylation 

(LeClaire et al., 2008), which can be achieved by proteins such as MAPK-

activated protein kinase 2 (MAPKPK2) and the p21-activated kinase (PAK) 

(Singh et al., 2003; Vadlamudi et al., 2004). Activation and regulation of this 

complex can also occur through interactions with several proteins such as 

proteins of the Wiskott-Aldrich Syndrome protein (WASP) family, Neural-WASP 

(N-WASP) Scar, the WASP-family verprolin-homologous protein (WAVE) 

(Takenawa and Suetsugu, 2007) and cortactin, which will be discussed in detail 

in a subsequent section. Concerning the balance between assembly and 

disassembly of actin filaments, some proteins work in cooperation with the 

Arp2/3 complex, like gelsolin and cortactin, while others compete against it, like 

ADF/cofilin. The Arp2/3 complex is sparsely distributed in the PSD of dendritic 

spines, concentrating in specific domains, which suggests that actin branching 

occurs in restricted spine regions (Racz and Weinberg, 2008). Knockdown of 

several regulatory proteins of the Arp2/3 complex in cultured hippocampal 

neurons, like N-WASP, WAVE and also Abp1, a protein structurally similar to 

cortactin that activates N-WASP or phosphorylates Arp2/3 complex directly, 

promoted a decrease in spine number and changes in spine morphology 

(Haeckel et al., 2008; Kim et al., 2006; Wegner et al., 2008). WAVE-1 knockout 

mice, as well as mice targeted with a WAVE-1 mutation, showed an impairment 

in synaptic plasticity and reduced learning and memory (Soderling et al., 2007; 

Soderling et al., 2003). Recently, knockdown of Arp2/3 complex in hippocampal 

neurons promoted a decrease in mushroom, thin, and stubby spines, as well as 

an overall decrease in protrusion density (Hotulainen et al., 2009). Taken 

together, these results suggest a tight regulation for the Arp2/3 complex in 

dendritic spines, which induces formation of mature dendritic spines and 

synapses, and regulates synaptic plasticity. 
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α-actinin promotes bundling and cross-linking of F-actin in a concentration-

dependent manner (Grazi et al., 1991; Sjoblom et al., 2008). α-actinin activity 

depends on certain conditions and factors, such as the α-actinin/actin ratio, 

Ca
2+

 concentration, and binding partners (Wachsstock et al., 1993). Isotropic 

networks of F-actin are formed at low α-actinin concentrations, whereas at 

higher α-actinin concentrations formation of bundles of F-actin takes place. α-

actinin is enriched at the PSD of excitatory synapses, and this localization 

depends on F-actin (Walikonis et al., 2000). In dendritic spines, the function of 

α-actinin to promote both actin filament elongation and branching depends on 

its interacting proteins. Interaction of α-actinin with SPAR (Spine Associated 

Rap GTPase) has been shown to promote mature dendritic spines, i.e., 

dendritic spines with large heads (Hoe et al., 2009). Conversely, 

overexpression of α-actinin in cultured hippocampal neurons led to an increase 

of both the length and number of dendritic filopodia-like (immature) extensions 

(Nakagawa et al., 2004). α-actinin is thought to modulate NMDA receptor 

function, since it interacts with the NMDA receptor in dendritic spines (Dunah et 

al., 2000). By cross-linking F-actin, α-actinin anchors the NMDA receptor to the 

postsynaptic membrane, and regulates NMDA receptor activity (Wyszynski et 

al., 1998). Using mouse models, it was shown that α-actinin can be linked to 

neural pathologies such as Alzheimer’s and Huntington’s disease. Decreases in 

postsynaptic α-actinin were observed in both cases, and these differences may 

be due to the cross-linking activity of α-actinin leading the formation of neuronal 

inclusions (Galloway et al., 1987; Luthi-Carter et al., 2003). Therefore, α-actinin 

is also in the pole position for modulating synaptic plasticity, due to its actin 

branching and elongation activity.  

Debrin is considered a F-actin side-binding protein, altering its configuration 

from kinky to straight at the filament level, thus strongly modifying the structural 

property of F-actin (Ishikawa et al., 1994). These so-called side-binding proteins 

sometimes prevent filaments from interacting with other actin-binding proteins, 

such as α-actinin, fascin, gelsolin, cofilin, and myosin, regulating many 

interactions of F-actin. Of all isoforms, debrin A is neuron-specific (Shirao and 
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Obata, 1986), and was found to accumulate in the head of mushroom dendritic 

spines, specifically at postsynaptic sites of excitatory synapses, and is barely 

detected in presynaptic terminals, neuronal cell bodies or axons (Aoki et al., 

2005; Hayashi et al., 1996). Overexpression of debrin A in immature neurons 

induces accumulation of F-actin and PSD95 at postsynaptic sites (Mizui et al., 

2005), whereas its knockdown decreases spine density, width and also 

filopodia, and disrupts PSD95 postsynaptic localization (Takahashi et al., 2006; 

Takahashi et al., 2003). These findings suggest that debrin A is implicated in 

the development of dendritic spines and synapses. Debrin A localization was 

shown to change upon AMPA and NMDA receptor activation, suggesting that it 

is regulated by synaptic activity (Takahashi et al., 2009). NMDA receptor 

activation induces a loss of debrin A from dendritic spines, whereas AMPA 

receptor activation induces debrin clustering at postsynaptic sites. This 

reinforces the idea that debrin A is involved in postsynaptic differentiation during 

spine development, and also in spine remodeling. Debrin A was also implicated 

in learning and memory and the regulation of dendritic spine plasticity (Hayashi 

and Shirao, 1999). Furthermore, isoforms of debrin are markedly reduced in 

hippocampi of Alzheimer’s patients, as well as in frontal temporal cortex of 

Down syndrome’s patients (Harigaya et al., 1996; Shim and Lubec, 2002). 

Taken together, these observations support the significance of debrin in normal 

synapse development and synaptic plasticity. 

Profilin is a multifunctional G-actin-binding protein. It has opposite effects: 

profilin can inhibit actin polymerization and elongation by sequestering actin 

monomers, decreasing their free concentration available to form F-actin 

polymers (Carlsson et al., 1977; Tobacman and Korn, 1982), but it also can 

promote actin polymerization by binding the barbed ends of actin filaments and 

directly elongating them, and also by catalyzing the exchange of ADP for ATP 

on G-actin, since ATP-bound actin has a higher efficiency of assembly into 

filaments (Frieden and Patane, 1985; Pring et al., 1992; Tilney et al., 1983). 

Profilin activity can be regulated by phosphorylation, which increases its 

association with G-actin, inhibiting actin polymerization (Ackermann and Matus, 



Introduction 

   35 

2003), and also through interaction with PIP2, which dissociates the profilin-

actin complex leading to release of free G-actin monomers and polymerization 

(Lassing and Lindberg, 1988). Profilin is detected at synaptic sites in the adult 

cerebellar cortex (Faivre-Sarrailh et al., 1993). In fact, of both profilin subtypes, 

profilin II is the one targeted to spine heads in an activity-dependent manner, 

stabilizing spine morphology (Ackermann and Matus, 2003). This suggests that 

profilin may be involved in the regulation of the dendritic spine during 

experience-dependent plasticity. Furthermore, Profilin II has been suggested to 

mediate cytoskeletal changes related with diseases such as Huntington’s, 

Miller-Dieker syndrome and fragile X mental retardation (Pontrello and Ethell, 

2009). Due to remarkably diverse functions, profilin controls actin dynamics 

underlying formation, stabilization or remodeling of dendritic spines. 

Neurabin-I and Neurabin-II (Spinophilin) are structurally related and display 

actin cross-linking and bundling activity. Neurabin-I was originally identified as a 

neuronal F-actin binding protein, and has been shown to accumulate in 

dendritic spines and the lamellipodia of the growth cone of immature neurons 

(Nakanishi et al., 1997). On the other hand, despite being ubiquitous, 

Spinophilin is expressed most abundantly in the brain, where it localizes in the 

PSDs (Satoh et al., 1998). Spinophilin phosphorylation by protein kinase A 

(PKA) or CaMKII regulates not only its activity, but also its expression and 

specific localization within dendritic spines, by reducing the affinity of spinophilin 

for F-actin (Grossman et al., 2004; Hsieh-Wilson et al., 2003). Spinophilin binds 

to a multitude of partners (Sarrouilhe et al., 2006), including protein 

phosphatase-1 (PP1), which is highly abundant in dendritic spines. Spinophilin 

allows PP1 to desphosphorylate its substrates, such as AMPA and NMDA, by 

participating in PP1 targeting to the postsynaptic membrane (Allen et al., 1997). 

Despite being structurally similar and localizing in dendritic spines, where they 

share some partners, Neurabins I and II have variable effects on dendritic spine 

morphology (Pontrello and Ethell, 2009). 
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Actin-based Molecular motor: Myosins 

Actin motor proteins are actin-binding proteins, which are responsible for 

moving organelles along F-actin as well as for moving the F-actin filaments 

themselves. Myosin is an ATP-driven, actin-based molecular motor that 

influences actin dynamics (Sellers, 2000). There are various types of myosins, 

such as myosins I, II, V, and VI, which have been observed in neurons 

(Bridgman, 2004). The myosin II, V and VI isoforms are found in dendritic 

spines, where they are suggested to regulate dendritic spine shape, since they 

contribute to the formation of mushroom and stubby spines, and synaptic 

plasticity (Morales and Fifkova, 1989). The interaction between actin and 

myosin, specifically myosin II, is inhibited by debrin, and this was concluded 

due to differences in the immunoreactivity of both proteins in various dendritic 

domains (Hayashi et al., 1996). Myosin motors can also interact with NMDA 

receptor subunits, and controlling the trafficking of the GluA1 subunit of AMPA 

receptors to dendritic spines, in a Ca
2+

-dependent manner. Increasing 

evidences suggest that myosins, at least the isoforms II, V and VI, execute 

important roles in promoting mature dendritic spine morphology and regulating 

synaptic plasticity (Pontrello and Ethell, 2009). 

Actin cytoskeleton and spine formation 

(morphogenesis) 

During synaptogenesis, a transitional stage in spine formation has to follow 

the initial contact between an axon and a dendrite, and this process involves 

the conversion of a dynamic filopodium to a stable mushroom spine (Arikkath 

and Reichardt, 2008; Craig et al., 2006; Yoshihara et al., 2009). Filopodia 

initiation, elongation, and spine head formation are controlled by specific 

mechanisms of actin regulation. Dendritic filopodia are most prevalent in young 

neurons undergoing active synaptogenesis, which suggests a major role in 

synapse formation. However, the molecular mechanisms involved in this initial 

step of dendritic filopodia formation are currently unknown. It has been shown 
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that these structures initiate from preexisting patches of branched actin or small 

lamellipodia, from the dendritic shafts, and these actin-rich sites may 

subsequently become the filopodial base (Andersen et al., 2005; Korobova and 

Svitkina, 2010). In fact, Korobova and colleagues showed that dendritic 

filopodia have network-like cytoskeletal organization, which is unusual for highly 

elongated membrane protrusions, where a tight actin filament bundle is 

considered to be obligatory (Chhabra and Higgs, 2007). The structural 

organization of dendritic filopodia suggests potential mechanisms of their 

differentiation into spines, since their network-like organization makes them 

more plastic, which allows frequent changes of direction (Portera-Cailliau et al., 

2003).  

Several possible mechanisms may be involved in the initiation and 

elongation process, which can be random or signal-induced [reviewed in 

(Hotulainen and Hoogenraad, 2010)]. It has been shown that glutamate 

released from presynaptic sites influences filopodia initiation and elongation. 

There is possibly a contribution from membrane-deforming proteins, such as 

IRSp53 (insulin receptor tyrosine kinase substrate protein 53) (Choi et al., 2005; 

Mattila and Lappalainen, 2008), which can induce and support tubular 

membrane protrusions (Saarikangas et al., 2009; Yang et al., 2009). Enhanced 

polymerization of actin filaments assisted by formin mDia2 or Ena/VASP-

induced anti-capping of filaments generated by the Arp2/3 complex may also 

contribute to initiate filament elongation (Hotulainen et al., 2009). Moreover, and 

surprisingly, some actin structures frequently reside directly on the microtubule 

array and these filaments seem to branch off of a microtubule in the neurite 

suggesting involvement of a microtubule-associated actin filament nucleator(s) 

or actin–microtubule cross-linkers, which remain to be identified (Korobova and 

Svitkina, 2010).   

The dendritic filopodium, due to the plastic network-like organization of its 

cytoskeleton, performs a wide range of movements searching for an axon. 

Once the axonal contact is made and an appropriate signal is received, a 
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dendritic filopodia is formed, spine motility gradually decreases and the spine 

structure is stabilized, which requires the assembly of both pre- and 

postsynaptic components (Arikkath and Reichardt, 2008; Craig et al., 2006; 

Yoshihara et al., 2009). The filopodium-to-spine transformation occurs as 

swelling of the filopodial tip and shortening, which has been observed by 

imaging techniques (Marrs et al., 2001). The swelling, or spine head growth, 

may occur through Arp2/3 complex-dependent extensive actin filament 

branching at the filopodial tip, which would drive the head expansion (Fig. 5). In 

fact, Hotulainen and colleagues proposed the attractive mechanism of a switch 

from formin mDia2 (mammalian diaphanous-related)-based actin 

polymerization, which promote formation of unbranched actin filaments, to Arp 

2/3 complex-based actin polymerization leading to the initiation of spine head 

growth (Hotulainen et al., 2009). In support to this model, other studies showed 

that a complex with WAVE and Arp2/3 inhibits formin mDia2-induced filopodia 

formation in fibroblast cells (Beli et al., 2008). The filopodia shortening during 

spine maturation was proposed to involve myosin II (Ryu et al., 2006). 

Accordingly, myosin II, as well as actin filaments of mixed polarity were 

detected in the shafts of dendritic filopodia (Korobova and Svitkina, 2010). 

Myosin II-dependent contractility within the head and the neck can modulate the 

shape of the spine to fit the requirements of synaptic transmission.  

Newly formed spines are usually thin and elongated and generally possess 

a small spine head. Out of three structural domains of a mushroom spine, the 

base is a previously unrecognized compartment whose structure ranges from 

an elaborate mixture of branched and linear filaments to a few converging linear 

filaments. Surprisingly, the spine neck is supported by a longitudinally stretched 

network of branched and linear filaments of different lengths, which are only 

roughly aligned with each other (Korobova and Svitkina, 2010). In fact, the 

presence of long bundled filaments has been revealed in other studies 

(Korobova and Svitkina, 2008; Svitkina et al., 2003; Yang et al., 2007). 



Introduction 

   39 

 

 

The spine head undergoes constant actin-dependent shape changes, probably 

regulated by synaptic stimulation (Bourne and Harris, 2008; Tada and Sheng, 

2006). Dynamic actin-dependent processes are frequently associated with 

extensively branched actin networks nucleated by the Arp2/3 complex in the 

distal regions of the spines (Goley and Welch, 2006; Pollard and Borisy, 2003). 

Spine head formation not only requires actin filament polymerization, but a 

three-dimensional organization of actin filaments is also vital. Mechanisms for 

size and shape remodeling, like protrusion and retraction, cooperate in 

Fig. 5 – Schematic of actin regulatory mechanisms during spine formation. A) 

Dendritic filopodium initiation and its elongation start spine development. B) Filopodia 
elongation is promoted by actin filament polymerization, in which myosin and 
Ena/VASP participate. C) Spine head begins to form and enlarge due to extensive 
actin branching leaded by the large Arp 2/3 complex at the filopodium tip. Proper 
length of actin filaments is controlled by ADF/cofilin function, which also replenishes 
the cytoplasmic actin monomer pool. D) Mature dendritic spine with  dynamic 
properties. Despite maintaining its overall morphology, spine head shape can be 
further modulated by the combined activity of different actin-binding regulatory 
proteins, during synaptic plasticity. (Adapted from Hotulainen and Hoogenraad, 2010) 



Chapter 1 

40 

generating a proper shape, which may explain the presence of myosin II in 

spines (Morales and Fifkova, 1989; Ryu et al., 2006). Both activation and 

inhibition of myosin II-induced contractility is an important process in dendritic 

spine morphogenesis (Zhang et al., 2005). Furthermore, proper morphology 

and stabilization of spines can also be achieved by regulation of cofilin activity 

(Hotulainen et al., 2009). Moreover, actin cross-linking proteins such as 

CaMKIIβ, neurabin I, and debrinA can also be important for spine head 

modification and stabilization (Ivanov et al., 2009; Okamoto et al., 2007; Terry-

Lorenzo et al., 2005). 

In conclusion, a likely sequence of cytoskeletal reorganization events 

underlying the spine morphogenesis is suggested by the complex cytoskeletal 

organization and molecular composition of dendritic spines and dendritic 

filopodia. 

Actin Remodeling and Synaptic plasticity 

Synaptic plasticity is associated with a rapid and persistent reorganization 

of the spine actin cytoskeleton (Cingolani and Goda, 2008). The synapse is a 

highly dynamic structure that can rapidly respond and adapt to different intrinsic 

or extrinsic cues, via regulation of the actin cytoskeleton. The strength of a 

synapse is defined by the change in transmembrane potential resulting from 

activation of the postsynaptic neurotransmitter receptors and activity-dependent 

changes in synaptic strength are called synaptic plasticity (Malinow and 

Malenka, 2002). Synaptic plasticity is the cellular basis of learning and memory 

and is exemplified by two extensively characterized models involving changes 

that last for hours or longer: long-term potentiation (LTP), which enhances 

synaptic transmission, and long-term depression (LTD), which decreases 

synaptic transmission (Bliss and Lomo, 1973). The most common approach to 

induce these two forms of plasticity is to apply high frequency or low frequency 

stimulation to induce LTP or LTD, respectively (Malenka and Bear, 2004). Long-

term potentiation (LTP) and long-term depression (LTD) occur as a result of 

correlated or uncorrelated activity of two coupled neurons and are controlled by 
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glutamate receptors (Malenka and Bear, 2004). In many synapses, LTP is 

dependent on the activation of postsynaptic NMDA receptors, upon which 

calcium flows through the NMDAR channel into the postsynaptic cell and 

transduces information into biochemical signals. This includes activation of 

several protein kinases such as CaMKII, PKA, PKC, and protein phosphatases, 

that in turn regulate the phosphorylation and trafficking of AMPAR to the plasma 

membrane, increasing the number o AMPAR on synaptic membranes, thereby 

potentiating synaptic transmission (Esteban, 2003; Malinow and Malenka, 2002; 

Sheng and Kim, 2002; Shepherd and Huganir, 2007). In contrast, long-term 

depression (LTD), which is the weakening of a neuronal synapse that lasts from 

hours to days, is also thought to result from changes in postsynaptic receptor 

density, since AMPA receptors are rapidly internalized in response to LTD-

inducing stimuli (Beattie et al., 2000; Carroll et al., 1999; Ehlers, 2000). During 

LTP and LTD, synapses undergo structural remodeling. LTP-inducing stimuli 

causes growth of new dendritic spines, enlargement of pre-existing spines and 

their associated postsynaptic densities (PSDs), and the splitting of single PSDs 

and spines into two functional synapses (Abraham and Williams, 2003; Yuste 

and Bonhoeffer, 2001), whereas, LTD-inducing stimulation is associated with 

shrinkage and/or retraction of spines (Nagerl et al., 2004; Okamoto et al., 2004; 

Zhou et al., 2004). Therefore, this structural remodeling links the regulation of 

underlying actin dynamics and reorganization to synaptic plasticity. 

Actin rearrangements drive the formation and loss of dendritic filopodia and 

spines as well as their morphological plasticity (Matus, 2000). The activity-

dependent change of actin-binding proteins is a highly possible mechanism of 

F-actin reorganization. In fact, F-actin and several ABPs are regulated within 

dendritic spines in an activity dependent manner. Through imaging techniques it 

was shown that LTP inducing stimulation increases actin polymerization in 

spines of hippocampal neurons (Fukazawa et al., 2003; Okamoto et al., 2004), 

In addition, a FRET-based approach also showed that induction of LTP results 

in a higher F-actin/G-actin ratio followed by the enlargement of spine heads, 

whereas LTD inducing stimulation shifts the actin equilibrium toward G-actin, 
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resulting in depolymerization of actin and spine shrinkage (Okamoto et al., 

2004). Disruption of the actin cytoskeleton by actin depolymerizing agents 

affects AMPAR-mediated basal synaptic transmission, as well as the 

maintenance of the early and late stages of LTP (Kim and Lisman, 1999; 

Krucker et al., 2000). These findings suggest a close relationship among 

synaptic activity, spine size, and F-actin/G-actin ratios in spines (Lin et al., 

2005). Furthermore, some actin binding proteins, such as profilin (Ackermann 

and Matus, 2003) and cofilin (Fukazawa et al., 2003), accumulate in dendritic 

spines, and others, such as cortactin (Hering and Sheng, 2003), debrin (Sekino 

et al., 2006), and SPAR (Pak and Sheng, 2003), disappear from dendritic 

spines after NMDA receptor activation, implicating these proteins in the activity-

dependent regulation of spine morphogenesis.  

NMDA and AMPA-type glutamate receptors regulate the actin signaling 

pathways in spines. The major signaling hot spots in actin cytoskeleton 

regulation are small GTPases of the Rho and Ras families, which regulate the 

ABPs that control actin dynamic (Ethell and Pasquale, 2005; Tada and Sheng, 

2006). RhoA, Rac1, and Cdc42 are ubiquitously expressed but present at high 

levels in neurons having profound influence on dendritic spine morphogenesis 

(Hall, 1998; Nakayama et al., 2000). Constitutively active Rac1 causes a 

reduction in the size of the dendritic spines but increases their density, in 

parallel with increasing the number of synapses (Nakayama et al., 2000), 

whereas Cdc42 induces spine head enlargement in dendritic spines (Irie and 

Yamaguchi, 2002; Wegner et al., 2008). RhoA activation has been shown to be 

necessary for expression of LTP via cofilin inactivation in dendritic spines (Rex 

et al., 2009). Thereby, RhoA is important to inhibit cofilin activity, which will 

result in actin filament and spine stabilization. On the other hand, Rac and 

Cdc42 regulate spine head formation, mainly by activating Arp2/3 complex-

induced nucleation and inhibiting actin depolymerization via cofilin.  

The Ras family of GTPases and their downstream MAP kinase signaling 

pathways, as well as many of the Rho and Ras GTPase activators (GEFs – 
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guanine nucleotide exchange factors) and inhibitors (GAPS – GTPase 

activating proteins), also regulate spine morphogenesis and neuronal 

functioning (Kennedy et al., 2005).  Deletion of synGAP (synaptic Ras GAP), 

which is a major postsynaptic inhibitor of Ras signaling abundantly enriched in 

the PSD, has been shown to accelerate spine development and to cause an 

increase in the number of mushroom spines on hippocampal neurons (Vazquez 

et al., 2004). On the other hand, Rap GTPases appear to play opposing roles in 

synaptic plasticity. In fact, Rap1 and Rap2 mediate LTD and depotentiation, 

respectively, whereas Ras promotes LTP (Zhu et al., 2005). Also, the RapGAP 

SPAR (spine associated Rap GAP) in contrast to SynGAP, promotes the 

growth of spines (Pak and Sheng, 2003; Pak et al., 2001). 

Various receptor tyrosine kinases, such as members of the Trk (Menna et 

al., 2009) and Eph/ephrin families (Schubert and Dotti, 2007), as well as 

synaptic adhesion molecules (Yoshihara et al., 2009), have been shown to be 

important in regulating actin in spines. Members of the Src family of non-

receptor tyrosine kinases were also found in dendritic spines and implicated in 

spine reorganization, most likely through controlling actin polymerization (Morita 

et al., 2006).  

Formation of protrusions from the spine head is stimulated by glutamate 

and blocked by AMPA receptor antagonists, suggesting that AMPAR activation 

may play a part in spine morphogenesis (Richards et al., 2005). Interestingly, 

AMPAR themselves, specifically the N-terminal domain which extends far 

enough from the postsynaptic membrane potentially to interact with presynaptic 

membrane, may induce spine enlargement, although the mechanism is 

unknown (Nakagawa et al., 2005; Passafaro et al., 2003). 

Taken together, these findings suggest that many of the mechanisms that 

affect the development, maintenance and plasticity of excitatory synapses, 

which are the most regulated and heterogeneous of all neuronal structures, 

may influence the number and shape of dendritic spines.  
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Cortactin 

Cortactin was discovered over two decades ago, and was initially 

characterized as both an F-actin binding protein and a v-Src substrate (Kanner 

et al., 1990; Wu et al., 1991), which suggested that it was one key molecule 

involved in cortical actin regulation, possibly linking structural (cytoskeletal) 

organization and signal transduction. This idea was further supported when 

cortactin was recognized as binding partner of the Arp2/3 complex, potentiating 

is function (Uruno et al., 2001; Weaver et al., 2002; Weed et al., 2000). In fact, 

the multi-domain protein cortactin was shown to play an essential role in many 

actin-based cellular processes such as cell migration an invasion (Yamaguchi 

and Condeelis, 2007), axon guidance (Knoll and Drescher, 2004), neuronal 

morphogenesis (Gray et al., 2005; Martinez et al., 2003), endocytosis (Cosen-

Binker and Kapus, 2006) and tumor cell metastasis (Li et al., 2001), including 

cancer progression and invasion (Ayala et al., 2006; Buday and Downward, 

2007; Weaver, 2006, 2008; Yamaguchi and Condeelis, 2007). One can say that 

cortactin is always present when changes in the cortical actin skeleton initiate, 

modify, or accompany major membrane events.  

As a nearly ubiquitous protein, cortactin is also present in the brain. 

Cortactin is enriched in growth cones of developing neurons (Du et al., 1998) 

and also in dendritic spines, where it colocalizes with F-actin. Two pools of 

cortactin were identified in EM studies: a large pool in the actin core within the 

dendritic spine, which is implicated in regulating its shape, and a smaller pool 

near the PSD that may be involved in the regulation of synaptic function (Racz 

and Weinberg, 2004). Indeed, cortactin plays a key role in the morphogenesis 

of dendritic spines as suggested by the findings that its overexpression leads to 

spine elongation, whereas its down-regulation results in loss of spines (Hering 

and Sheng, 2003). 
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Cortactin Structure 

Cortactin is a 63-65kDa protein, which migrates as an 80/85kDa doublet in 

SDS-PAGE gels, when purified from most cell types as well as from 

recombinant cell-free sources (Huang et al., 1997a; Wu and Parsons, 1993; Wu 

et al., 1991). These two bands, the 80 kDa and 85 kDa, are likely to represent 

different conformational isomers of cortactin (Evans et al., 2011). Analytical 

ultracentrifugation and electron microscopy experiments of full-length cortactin 

revealed a monomeric rod-shaped molecule between 220 and 290 Å long and 

20 Å wide (Weaver et al., 2002), which may represent the “open” form of the 

protein, opposing the partially globular conformation of the folded protein 

(Cowieson et al., 2008). 

The domain structure of cortactin gives clues to its function and potential 

mode of action. The cortactin protein is composed of ~550 amino acids 

“divided” in five discrete regions (Fig 6): the N-terminal acidic (NTA) region, the 

actin-binding repeats region, the helical region, the proline-rich region, and the 

SH3 domain (Weed and Parsons, 2001). The N-terminal acidic region 

incorporates the conserved DDW region that is responsible for interaction with 

Arp3 and subsequent activation of the Arp2/3 complex (Higgs and Pollard, 

2001; Weed et al., 2000). Following the NTA region, there are six-and-a-half 

repeats of a 32-amino-acid motif that together bind to F-actin (ABR – actin 

binding region), with maximal binding activity centered on the fourth repeat. 

These repeats have also been reported to bundle actin into filaments (Weed 

and Parsons, 2001). Thereby this half of the molecule is responsible for 

coupling cortactin to structural elements of the cytoskeleton. The COOH-

terminal half of cortactin can be regarded as the regulatory segment of the 

protein, since it is composed of an α-helical domain comprising a site of calpain 

cleavage (Perrin et al., 2006), followed by a proline-rich region that contains 

many sites of serine, threonine, and tyrosine phosphorylation (PST), and finally 

a Src homology 3 domain. The PST region is targeted by kinases that 

transduce signals from cell surface receptors, such as p21-activated kinase 
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(PAK) (Vidal et al., 2002) and the MAP kinase ERK (Campbell et al., 1999; 

Martinez-Quiles et al., 2004), implicated in serine phosphorylation, and also 

members of the Src kinase family, like v-Src, c-Src, and Fyn, that phosphorylate 

tyrosine residues (Huang et al., 1997a; Kapus et al., 2000; Kapus et al., 1999; 

Wu and Parsons, 1993).  Other non-receptor tyrosine kinases such as Fer 

(Kapus et al., 2000; Kim and Wong, 1998) and Syk (Gallet et al., 1999) also 

phosphorylate cortactin. The C-terminal SH3 domain of cortactin binds to 

several proteins, including modulators of actin polymerization, through their 

proline-rich binding sequences, thus linking cortactin-mediated actin remodeling 

to various specific loci and processes. These partners include the Arp2/3 

activating proteins N-WASP (Arp2/3-stimulating Wiscott-Aldrich protein) 

(Mizutani et al., 2002) and WIP (WASP-interacting protein) (Kinley et al., 2003), 

the endocytic GTPase dynamin 2 (McNiven et al., 2000) and several PSD 

scaffolding proteins such as dynamin 3 (Gray, 2005) and proteins of the Shank 

family (Naisbitt et al., 1999). This plethora of interactions indicates that cortactin 

is in fact used as a link between the array of processes where these proteins 

interfere and cytoskeleton remodeling. 
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Cortactin molecular interactions 

The association of cortactin with the Arp2/3 complex, and its activation, was 

the breakthrough to understand the basic function of cortactin. The NTA region 

is sufficient to directly bind the Arp2/3 complex, and mutation of both acidic 

residues, or of the tryptophan residue, in the DDW motif abolishes Arp2/3 

binding (Uruno et al., 2001; Weed et al., 2000). As it has been previously 

described, the activation of the seven protein complex – Arp2/3 complex - 

initiates the nucleation and formation of “daughter” filaments in a 70-degree 

angle, on the side of “mother” actin filament (Higgs and Pollard, 2001). Arp2/3 is 

activated by nucleation promoting factors (NPFs), and cortactin, along with 

members of WASP superfamily, is the most important. Generally, NPFs are 

proteins that directly bind to and activate, due to conformational changes, de 

novo nucleation and elongation functions of Arp2/3 complex (Welch and 

Mullins, 2002), Cortactin functions as an NPF for Arp2/3, since it stabilizes the 

active conformation of the Arp 2/3 complex through its ability to bridge Arp3 with 

other proteins of the complex, facilitating the addition of actin monomers to the 

Arp2 and Arp3 subunits on the side of the mother filament (Pollard, 2007; 

Weaver et al., 2002). In vitro, cortactin is a substantially weaker activator of F-

actin assembly than N-WASP; nevertheless, cortactin possesses a unique 

property since it simultaneous binds to F-actin, thus coupling the Arp2/3-

dependent actin polymerization to an existing actin filament (Fig.7).  

 

Fig. 6 – Schematic representation of the domain structure and interactions of 
cortactin. The various functional domains are shown, and described in the text. The 

different outlined proteins represent kinases known to phosphorylate cortactin at the 
indicated sites (green), and also SH3 binding partners (red). [Adapted from (Ammer 
and Weed, 2008)] 
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Fig. 7 – Cortactin-mediated activation of Arp2/3 complex. Cortactin functions as 

an NPF for Arp2/3 complex (consists of seven subunits, including Arp2, Arp3, and five 
other actin related proteins, represented by the green and purple circles), binding the 
Arp2/3 through its NTA domain and F-actin through the fourth tandem repeat, 
resulting in direct activation Arp2/3 actin nucleation activity. [Adapted from (Ammer 
and Weed, 2008)] 

 

 

     

 

 

 

In fact, cortactin has a 20-fold higher affinity for F-actin than the Arp2/3 

complex (Uruno et al., 2001). Contrariwise, cortactin has a much higher affinity 

for Arp2/3 once it has been associated with an actin filament (Uruno et al., 

2003). Furthermore, cortactin preferentially binds to F-actin filaments containing 

ATP or ATP/ADP-Pi, demonstrating a higher affinity for newly polymerized actin 

filaments (Bryce et al., 2005). Thereby the NPF function of cortactin requires 

both the NTA and ABR regions of the protein, demonstrating the importance of 

interaction with both F-actin and Arp2/3 to efficient actin polymerization, and 

additional stabilization of newly formed branches (Weaver et al., 2001). 

 

The WASP family of proteins, including WASP and N-WASP, and the 

related WAVE/Scar proteins also function as NPFs for Arp2/3 (Pollard, 2007). 

These proteins bind to F-actin through a basic region, and not an ABR like 

cortactin (Kelly et al., 2006; Suetsugu et al., 2003). These proteins can bind the 

Arp2/3 complex and, unlike cortactin, WASP, N-WASP and WAVE/Scar bind G-

actin monomers through a Wasp Homology-2 (WH2)-central-acidic (WCA) 

region (Marchand et al., 2001) (Fig. 8). Despite the importance of F-actin 
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Fig. 8 – N-WASP-mediated activation of Arp2/3 complex. Cortactin facilitates N-

WASp mediated Arp2/3 activation through binding of its SH3 domain to the PRR 
region of N-WASp, thereby disrupting N-WASp autoinhibition The WCA domain of 
N-WASp binds to and activates Arp2/3, and also binds ATP-loaded G-actin. 
[Adapted from (Ammer and Weed, 2008)]. 

binding for WASP-family protein function, the binding of G-actin to the WCA 

region is extremely significant since it results in dramatic enhancement of NPF 

activity by placing actin monomers in close proximity to activated Arp2/3 

(Machesky et al., 1999).  

 

 

 

 

 

 

Cortactin can stimulate Arp2/3 through a number of potential mechanisms. 

First, it directly binds to Arp3, inducing a conformational change. N-WASP-

cortactin-Arp2/3 may form a ternary complex since the binding site on Arp3 for 

both proteins only partially overlap, resulting in enhanced NPF activity. In fact, 

the binding of the cortactin NTA domain displaces the N-WASP WCA domain 

from the Arp3 subunit, but not from the other subunits involved in the interaction 

between N-WASP and Arp2/3 complex (Weaver et al., 2002). Therefore, though 

cortactin-mediated Arp2/3 activation is weaker than that of N-WASP, both 

proteins synergize in activating Arp2/3, enhancing N-WASP mediated actin 

nucleation (Weaver et al., 2001). In turn, the activation of Arp2/3 by N-WASP 

and cortactin may occur in a sequential manner: after Arp2/3 is activated by N-

WASP, cortactin effectively binds and displaces N-WASP, since it has higher 
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binding affinity for activated Arp2/3 complex, presumably stabilizing the 

Arp2/3/cortactin/F-actin complex (Uruno et al., 2003). Cortactin may promote 

actin-nucleation activity, through a second mechanism, via the SH3 domain. 

The SH3 domain of cortactin binds directly to a proline-rich region on N-WASP, 

liberating N-WASP from its auto-inhibited state, resulting in N-WASP-mediated 

Arp2/3 nucleation activity (Martinez-Quiles et al., 2004; Mizutani et al., 2002). 

WASP-interacting protein (WIP) also binds to the SH3 domain of cortactin and 

enhances cortactin-mediated Arp2/3 activation (Kinley et al., 2003). When the 

cortactin-WIP complex is associated with actin filaments, maximal Arp2/3 

activity is achieved, suggesting a novel role for cortactin in linking WIP to pre-

existing filaments. Stabilization of actin branch points and inhibition of filament 

depolymerization is also achieved by cortactin-WIP interaction, since WIP also 

inhibits the depolymerization of actin filaments (Martinez-Quiles et al., 2001). 

Collectively these studies suggest cortactin and N-WASP are intimately 

intertwined in regulating Arp2/3 activity responsible for cortical actin assembly. 

Topical mapping analysis determined that the repeat region was 

responsible for F-actin binding, and deletion mapping of these repeats indicated 

that the fourth repeat is required for optimal F-actin branching (Weed et al., 

2000). These repeats have also been reported to bundle actin into filaments 

(Weed and Parsons, 2001). Three naturally-occurring cortactin splice isoforms 

have been identified that lack one or two of these repeats. These isoforms bind 

F-actin, although F-actin bundling activity is reduced in the 5.5-repeat isoform 

(lacks the 6
th
 ABR) as compared with the 6.5-repeat isoform, and absent in the 

4.5-repeat isoform (lacks both 5
th
 and 6

th
 ABRs). In addition, these splice 

variants retain the ability to activate Arp2/3-mediated actin nucleation (van 

Rossum et al., 2003). The importance of the fourth repeat in maintaining the 

actin binding activity of the protein is supported by these studies. Recent 

elegant studies combining a variety of techniques, demonstrated that cortactin 

adopts a globular conformation, thereby bridging distant parts of the molecule 

into close proximity, like the helical domain residing next to the actin-binding 

region (Cowieson et al., 2008). The deduced conformation has important 
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implications regarding how cortactin can interact with F-actin. In addition these 

authors showed that cortactin can assemble fully polymerized actin filaments 

into sheet-like structures, thereby bundling F-actin into parallel arrays. 

Discovering that cortactin interacts with members of the Shank family was a 

major step to understand the role of cortactin at the synapse (Du et al., 1998; 

Naisbitt et al., 1999). The SH3 domain of cortactin binds to the proline-rich 

region of Shank, forming a multiprotein bridge between excitatory receptors and 

the cytoskeleton, since Shank is linked to both ionotropic and metabotropic 

glutamate receptors through various adaptor proteins (PSD95, GKAP, and 

Homer respectively) located under the membrane (Ehlers, 1999) (Fig. 9). 

 

 

Fig. 9 - Cortactin as a key organizer and coordinator of cytoskeleton 
remodeling and membrane dynamics. Cortactin is a dynamic regulator of the 

excitatory synapse, where it links the adaptor protein Shank to the cytoskeleton. 
Shank is coupled to metabotropic receptors, through Homer and to ionotropic 
glutamate receptors through the postsynaptic density protein-95 (PSD) and the 
guanylate kinase-associated protein (GKAP). Cortactin (via its tyrosine 
phosphorylation) regulates the stability of the postsynaptic density. 
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Cortactin interaction with the large GTPase dynamin 3, specifically the 

Dyn3baa variant, appears to be critical for dendritic spine maturation, since it 

promotes the formation of immature dendritic filopodia in cultured neurons. 

Disruption of the complex cortactin-dyn3baa leads to formation of mature 

dendritic spines with PSDs, whereas the presence of the complex enables the 

formation of immature dendritic filopodia (Gray et al., 2005). These findings 

provide evidence that, in developing neurons, an enhanced interaction between 

cortactin and a specific Dyn3 splice variant modulate actin-membrane 

dynamics, thus regulating the morphogenesis of dendritic spines, through the 

ability of cortactin to use its actin-branching and elongation activity for filopodia 

formation and outgrowth. 

In addition, cortactin regulates spine morphology by mediating the 

interaction between actin and microtubules. Microtubules are highly dynamic 

and participate intimately with actin filaments in many processes, such as 

polarization, migration, and areas of cellular growth or reorganization during cell 

division (Rodriguez et al., 2003; Siegrist and Doe, 2007), serving as a primary 

spatial regulator of cell shape in non-neuronal cells. MTs were thought not to 

play any role in dendritic spines directly, since stable MTs are confined to the 

dendritic shaft and do not branch off into spines (Matus, 2000). Modern 

advances in high-resolution live-cell microscopy have now shown that, while 

stable microtubules that express microtubule-associated protein 2 (MAP2) are 

concentrated in dendritic shafts, dynamic microtubules do in fact enter dendritic 

spines and affect actin dynamics (Jaworski et al., 2009). By entering dendritic 

spines, dynamic microtubules may induce a signaling cascade affecting actin 

dynamics through the microtubule plus-end tracking protein EB3. This protein 

may act through a p140Cap-Src pathway to promote cortactin activity, leading 

to Arp2/3 complex activation and spine head growth. These authors showed 

that p140Cap is in fact an abundant PSD protein in spines that interacts with 

cortactin. Additionally, they found that p140Cap or cortactin overexpression 

reversed the effects of EB3 knockdown, which induces a loss of F-actin in 

dendritic protrusions, as well as a reduction of mature mushroom spines and an 
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increase in filopodia like structures (Jaworski et al., 2009). Therefore, cortactin 

arrangement and activity may be indirectly regulated by its interaction with 

dynamic microtubules, and this interaction might serve as a signaling device to 

locally reorganize the actin cytoskeleton, thus shaping dendritic spines.  

Cortactin interacts directly with several other actin-associated proteins that 

aid in its ability to alternatively regulate cortical actin dynamics. Cortactin is in 

fact involved in multiple actin-based cellular processes, exerting differential 

effects on cortical actin cytoskeleton organization and assembly. These 

interactions can shed light into how cortactin regulates actin polymerization and 

organization [reviewed in (Ammer and Weed, 2008)]. 

Cortactin Post-translational Modifications 

Protein phosphorylation serves as a key switch for many cellular signaling 

events. Phophorylation of cortactin can modify the interaction with other 

proteins that promote F-actin assembly, having a major impact in actin 

organization. In the case of tyrosine phosphorylation, initial mapping studies 

identified the major Src phosphorylation sites on murine cortactin (Huang et al., 

1998; Huang et al., 1997a). Cortactin tyrosine phosphorylation may serve a 

variety of functions: it can provide binding sites for specific signaling proteins 

with SH2 domains, such as Src family kinases and Nck (Okamura and Resh, 

1995), regulating the cellular functions performed by cortactin; or it may alter 

the conformational state of the protein, since the sites of Src phosphorylation 

reside within the PRD, which may act as an axis separating the repeat region 

and SH3 domain. In fact, enhanced cortactin function by the binding of select 

SH3-ligands, such as MLCK (myosin light chain kinase) (Dudek et al., 2002), 

CD2AP (adaptor protein) (Lynch et al., 2003), and dynamin 2 (Zhu et al., 2007), 

can be regulated by tyrosine phosphorylation. The conformational change also 

regulates the cellular level of cortactin, since the phosphorylated form is 

preferentially degraded by calpain proteases (Perrin et al., 2006). Tyrosine 

phosphorylation of cortactin by Src occurs at tyrosine residues 421, 466 and 

482 through a progressive manner with initial phosphorylation at tyrosine 421 
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followed by 466, and this “triple” phosphorylation has known biochemical and 

cellular processes consequences with regards to actin dynamics (Head et al., 

2003). Phosphorylation of these tyrosine residues attenuates cortactin ability to 

cross-link F-actin in vitro (Huang et al., 1997a), and also inhibits its activation on 

N-WASP (Martinez-Quiles et al., 2004). This suggests a negative regulatory 

role, which may regulate the flexibility and/or turnover of actin networks. 

However, cortactin tyrosine phosphorylation is associated with and appears to 

be necessary for many positive functions as well. The majority of reports 

indicate that high levels of tyrosine phosphorylation correlate with elevated cell 

migration and cancer metastasis (Bourguignon et al., 2001; Huang et al., 1998; 

Huang et al., 2003; Li et al., 2001; Liu et al., 1999), as well as formation and 

turnover of structures associated with invasive potential (Ayala et al., 2008; 

Luxenburg et al., 2006; Tehrani et al., 2006). In fact, additional work now points 

to a positive effect for Src-mediated cortactin phosphorylation on Arp2/3-

mediated actin polymerization through Nck and N-WASP, since trimeric 

phosphocortactin/Nck1/N-WASP (or WIP) complexes enhance Arp2/3 

nucleation activity (Tehrani et al., 2007). Therefore, the binding of Nck1 to 

phosphorylated cortactin, in turn interacting with N-WASP or WIP, provides an 

indirect link to Arp2/3 regulation. 

Additionally to tyrosine phosphorylation, cortactin is also a substrate for 

several serine/threonine kinases. The extracellular signal-regulated kinase (Erk) 

targets cortactin at serine 405 and serine 418 and their phosphorylation 

facilitates cortactin binding to N-WASP for actin polymerization, through 

activation of Arp2/3 actin nucleation (Martinez-Quiles et al., 2004). This binding 

between cortactin and N-WASP is inhibited by Src-mediated tyrosine 

phosphorylation, possibly due to the absence of Nck, resulting in decreased 

Arp2/3 nucleation [reviewed in (Lua and Low, 2005)]. Increases in 

phosphorylation on these residues are accompanied by a mobility shift of 

cortactin upon SDS/PAGE, from p80 to p85, potentially due to the disruption of 

intramolecular interactions between the cortactin amino-terminal residues and 

the SH3 domain (Campbell et al., 1999; Martinez-Quiles et al., 2004). A second 
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serine/threonine kinase, p21-activated kinase (PAK), has been implicated in 

cortactin regulation (Vidal et al., 2002). Cortactin association with PAK is related 

with cortactin translocation, however it remains unclear whether this is indeed 

due to phosphorylation per se. Phosphorylation of S405 and S418 is also 

required for efficient invadipodia formation and extra cellular matrix degradation 

(Ayala et al., 2008). Both tyrosine and serine phospho-mimetic forms of 

cortactin promote lamellipodia protrusion and cell migration, in living cells; 

however, serine phosphorylation of cortactin preferentially promotes actin 

assembly, which suggests that Src-mediated tyrosine phosphorylation of 

cortactin may contribute to these dynamic processes in a way distinct from actin 

assembly. In fact, it has been shown that cortactin mutants mimicking serine 

phosphorylation predominantly affect actin polymerization, whereas mutation of 

cortactin tyrosine residues results in alterations of focal adhesion turnover 

(Kruchten et al., 2008). Observation of actin comet tails indicated that serine 

phosphorylation of cortactin preferentially promotes actin assembly in cells, 

while tyrosine phosphorylation by Src increases focal adhesions turnover, 

regulating their sizes and dynamics. Consequently, to function properly, 

cortactin has to be dynamically recycled through a continuous series of 

phosphorylation and dephosphorylation events. 

In neurons, cortactin localization can be regulated by synaptic activity. In 

fact, cortactin is regulated by NMDA receptor activity and brain-derived 

neurotrophic factor (BDNF), and these regulations occur through 

phosphorylation. Activation of Src kinases, by NMDAR activation, induces 

cortactin phosphorylation and depletion from the postsynaptic sites. On the 

other hand, activation of a MAP kinase, by BDNF application, stimulates 

redistribution of cortactin from the dendritic shaft to spines (Iki et al., 2005). 

Serine phosphorylation of cortactin dissociates intramolecular associations and 

facilitates SH3 domain-dependent association at the postsynaptic sites, 

whereas tyrosine phosphorylation not only reduces its ability to initiate actin 

polymerization, but also results in dissociation of cortactin from the postsynaptic 

actin cytoskeleton, probably due to reduced affinity of the cortactin SH3 domain 
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for Shank. This shift in cortactin localization, paralleled by the control exerted 

over cortactin activity, may play an important role in spine development, 

synaptogenesis and also activity dependent spine remodeling. 

Beside phosphorylation, cortactin activity can be further regulated by other 

post-translational modifications. A recently identified regulatory mechanism that 

governs cortactin binding to F-actin involves the histone deacetylase HDAC6, 

and depends on cortactin regulation by acetylation (Zhang et al., 2007). In fact, 

cortactin was identified as a substrate for the histone acetyltransferase PCAF 

(p300/CBP-associated factor). In a subsequent study, Zhang and colleagues 

also showed that SIRT1 (a class III histone deacetylase) binds to and 

deacetylates cortactin, whereas the histone acetyltransferase p300 acetylates 

cortactin (Zhang et al., 2008). Cortactin is acetylated within its ABR domain, 

where eight lysine residues are located and postulated to form two positively 

“charged patches” that facilitate the favorable interaction of cortactin with F-

actin. PCAF and p300 acetylate these lysine residues, neutralizing the 

“patches” and inhibiting binding of the ABR to F-actin. Conversely, 

deacetylation reverses this process and restores the ability of cortactin to bind 

F-actin. Cortactin regulation by acetylation also has physiological 

consequences, mainly by influencing actin-dependent cell motility and 

migration. Therefore, reversible acetylation status of cortactin provides another 

distinct signaling mechanism that regulates F-actin binding activity. 

Protein Acetylation in Synaptic Plasticity 

Memory consolidation and an in vitro analog, long-term potentiation (LTP), 

require a cascade of signaling events that include activation of NMDA 

receptors, protein kinases and transcription factors; events that ultimately lead 

to changes in gene transcription. The pivotal role of phosphorylation in synaptic 

plasticity and memory has been extensively recognized using several different 

model systems (Bliss and Collingridge, 1993; Lynch, 2004; Raymond, 2007). 

However, another posttranslational modification of proteins, acetylation, has 
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recently emerged as having an important role in both synaptic plasticity and 

memory. Specifically, acetylation refers to the process of introducing an acetyl 

group from acetyl-coenzyme A to the lysine residue of a protein, and is 

determined by the relative activities of acetyltransferases and deacetylases. 

Acetylation/deacetylation is emerging as a significant post-translational 

regulatory mechanism, analogous to phosphorylation by the action of kinases or 

dephosphorylation by the action of phosphatases, in the sense that it is 

reversible. Several proteins, such as transcription factors, effector proteins, 

molecular chaperones, and cytoskeletal proteins, are regulated by acetylation, 

suggesting this modification regulates various processes including protein 

stability, protein-protein interactions and gene transcription (Kouzarides, 2000; 

Spange et al., 2009). 

Recent evidence indicates that regulation of chromatin structure, especially 

histone-tail acetylation, serves as an additional level of control for regulating 

gene expression, implicated in synaptic plasticity and learning behavior. In 

particular, memory formation has been shown to be associated with histone 

acetylation (Alarcon et al., 2004; Guan et al., 2002; Korzus et al., 2004; 

Levenson et al., 2004; Vecsey et al., 2007). Histone acetylation relaxes 

chromatin structure, changing the accessibility of DNA to the transcriptional 

machinery and in general promoting gene transcription (Lunyak et al., 2002; 

Turner, 2002; Varga-Weisz and Becker, 1998). Core histones are primarily 

targeted by histone deacetylases (HDACs) and histone acetyltranferases 

(HACs); acetylation correlates with transcriptional activity, whereas 

deacetylation correlates with gene silencing (Kouzarides, 2007). Mammalian 

HDACs have been classified into three classes: class I (HDACs 1, 2, 3 & 8) that 

localizes to the nucleus; class II (HDACs 4, 5, 6, 7, 9 & 10), found in both the 

nucleus and the cytoplasm; class III (Sirt1 - Sirt7), forms a structurally distinct 

class of NAD-dependent enzymes found in both the nucleus and the cytoplasm. 

Classes I and II HDACs are inhibited by trichostatin A. 
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The effect of histone acetylation in long-term potentiation has been widely 

studied since the late phases of LTP require the synthesis of new proteins and 

transcription. Levenson and colleagues investigated the effects of HDAC 

inhibitors (HDACis), which modulate the acetylation levels of histones, on LTP, 

and found that TSA and sodium butyrate (HDACis) enhance LTP in the 

hippocampus, without affecting basal signal transmission (Levenson et al., 

2004). These findings were somehow confirmed by another study by Vecsey 

and colleagues. These authors found TSA-induced enhancement of LTP 

dependent upon CREB (cAMP response element-binding protein) and CBP 

(CREB-binding protein), proteins that play critical roles in synaptic plasticity and 

memory (Vecsey et al., 2007) [reviewed in (Sharma, 2010)]. 

Histone acetylation has also been associated with memory consolidation, a 

process which has been shown to require new protein and RNA synthesis along 

with several signaling molecules. In fact, several different studies have pointed 

out the important role of histone acetylation in memory formation, 

demonstrating that inhibition of HDACs facilitates not only LTP, but also 

memory (Sharma, 2010). This fact suggests that HDACs may be considered as 

memory suppressor genes, since they act to limit LTP and memory. A recent 

study substantiated this idea; Guan and colleagues showed that HDAC2 

deficiency enhanced memory formation and increased synapse number, 

whereas HDAC2, but not HDAC1, overexpression impaired LTP and memory 

and also decreased dendritic spine density and synapse number (Guan et al., 

2009). 

Histones are not the only substrates of the so-called HDACs. In fact, there 

has been a rapid proliferation in the description of new non-histone targets of 

HDACs and also HATs. Of these, transcription factors, like C/EBP beta 

(Cesena et al., 2007) and CREB (Lu et al., 2003), comprise the largest class of 

new targets. The substrates for these enzymes extend to cytoskeletal proteins, 

such as α-tubulin (Haggarty et al., 2003; Hubbert et al., 2002; Matsuyama et al., 

2002; Zhang et al., 2003) and cortactin (Zhang et al., 2007; Zhang et al., 2008), 
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molecular chaperones (Bali et al., 2005; Kovacs et al., 2005), and also 

acetyltransferases themselves (Spange et al., 2009). These substrates open 

yet another exciting new field of discovery in the role of the dynamic acetylation 

and deacetylation on cellular function. Indeed, a possibility is raised concerning 

the facilitatory effects of deacetylases inhibition described above in synaptic 

plasticity and memory, which may potentially involve, at least in some cases, 

changes in the acetylation status of other proteins in addition to histones. 
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Objectives of the present study 

The reversible acetylation of lysine residues is an important post-

translational modification for the regulation of histones, transcription factors, 

chaperones, and microtubules, i.e, it regulates many cellular processes, 

especially gene regulation activities such as transcription, DNA replication and 

damage repair.  Synaptic plasticity and memory have been shown to be 

regulated by protein acetylation, but surprisingly the impact of protein 

acetylation on the molecular composition of synapses has never been 

addressed.  Therefore, we explored the effects of protein acetylation, enhanced 

by HDACs inhibitors, on the synaptic localization and expression levels of 

scaffold proteins for excitatory and inhibitory synapses, as well as of 

cytoskeletal proteins, in cultured rat hippocampal neurons. The results 

presented in this thesis point to a selective role for protein acetylation in the 

clustering of excitatory postsynaptic scaffold proteins.  

A recent study by Zhang and colleagues (Zhang et al. 2007) described 

cortactin as a new target for reversible acetylation in cancer cells. These 

authors found that the histone deacetylase HDAC6 associates with and 

deacetylates cortactin in vitro and in vivo, and demonstrated that 

hyperacetylation of cortactin prevents its translocation to the cell periphery, 

blocks its association with F-actin and impairs the motility of cancer cells. The 

role of cortactin acetylation on its targeting to dendritic spines, its interactions 

with postsynaptic proteins, as well as the changes in cortactin acetylation 

induced by alterations in synaptic activity, have never been addressed. Since 

the activity of cortactin is modulated upon acetylation, especially its association 

with F-actin, it is important to determine how acetylation can modulate cortactin 

function in dendritic spines. The goal of the present study was to contribute to a 

better understanding of the function of cortactin acetylation on hippocampal 

neurons, by characterizing its localization and describing how it regulates the 

rearrangement/redistribution of the important postsynaptic player PSD95. The 

following specific objectives were pursued: 
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1. We examined the localization and function of cortactin under 

acetylation regulation in hippocampal neurons. Our studies were 

based on the novel observation that cortactin acetylation levels 

regulate the clustering of the postsynaptic scaffolding protein 

PSD95, in the dendrites of hippocampal neurons. 

2. We investigated possible consequences of cortactin acetylation in 

terms of cortactin interaction with synaptic binding partners as well 

as cortactin phosphorylation at tyrosine residues. 

3. We determined how synaptic activity regulates cortactin acetylation. 

We tested whether treatments of hippocampal neurons in culture 

with BDNF or glutamate, which change the cellular localization of 

cortactin, have an effect on the acetylation state of cortactin. 

Our findings provide the first evidence that cortactin acetylation, which can 

be regulated by BDNF and glutamate levels, regulates the dendritic clustering 

of PSD95 in hippocampal neurons, and affects tyrosine phosphorylation of 

cortactin as well as its intracellular interactions. These studies reveal an 

unsuspected role for cortactin acetylation in the regulation of excitatory 

synapses. 
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Materials 

Dulbecco’s modified Eagle’s medium (DMEM), Trichostatin A, as well as the 

protease inhibitors chymostatin, leupeptin, antipain and pepstatin (CLAP, stock 

solution 1mg/ml in dimethyl sulfoxide – DMSO) were purchased from Sigma-

Aldrich Química S.A. (Sintra, Portugal). Fetal bovine serum (FBS), horse serum 

(HS), trypsin and gentamycin were purchased from Gibco, as part of Invitrogen 

Life Technologies (Barcelone, Spain). The QIAGEN Plasmid midi, maxi and 

mini kits were obtained from QIAGEN (QIAGEN GmbH, Hilden, Germany). 

OptiMEM was purchased from Invitrogen Life Technologies (Barcelone, Spain). 

QuikChange II XL-site-directed mutagenesis kit was purchased from Stratagene 

(Cambridge, UK). Protein A Sepharose CL-4B and the ECF immunodetection 

substrate were obtained from GE Healthcare (Carnaxide, Portugal). The BCA 

assay kit, EZ-link Sulfo-NHS-SS-biotin and UltraLink Plus Immobilized 

Neutravidin Gel were purchased from Pierce, as part of Thermo Fisher 

Scientific (Rockford, Illinois, USA). All other reagents were from Sigma (Sintra, 

Portugal) or from Merck (Darmstadt, Germany).  

Antibodies 

Primary Antibodies Application (dilution) Source 

Acetylated cortactin 
ICC (1:200) 

WB (1:300) 

kind gift from Dr. Xiaohong 
Zhang 

Acetylated tubulin WB (1:2000) Sigma (Sintra, Portugal) 

Acti-Stain 555 
Fluorescent Phaloidin 

ICC (follow 
manufacturers 

instruction) 
Cytoskeleton, Inc. (Denver, USA) 

Actin WB (1:5000) Sigma (Sintra, Portugal) 

Cortactin 
ICC (1:500) 

WB (1:750) 

Santa Cruz Biotechnology, Inc. 
(Santa Cruz, CA) 

Cortactin pY421 WB (1:200) 
Biosource-Invitrogen (Leiden, 

The Netherlands) 
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Flag monoclonal 
ICC (1:500) 

WB (1:1000) 
Sigma (Sintra, Portugal) 

Flag polyclonal 
ICC (1:500) 

WB (1:1000) 
Sigma (Sintra, Portugal) 

Gephyrin 
ICC (1:1000) 

WB (1:1000) 

Synaptic Systems (Goettingen, 
Germany) 

GluA1 N-terminal ICC (1:200) kind gift from Dr. Andrew Irving 

GluA1 N-terminal 
ICC (1:10) 

WB (1:1000) 
Merck (Darmstadt, Germany) 

MAP2 ICC (1:5000) Abcam (Cambridge, UK) 

Pan-Shank (1,2 & 3) WB (1:200) 
Santa Cruz Biotechnology, Inc. 

(Santa Cruz, CA) 

PSD95 ICC (1:200) 
Affinity BioReagents (Golden, 

CO) 

PSD95 WB (1:2000) 
Cell Signaling Technology 

(Danvers, Massachusetts, USA) 

Shank1 ICC (1:200) 
UC Davis/NIH NeuroMab Facility 

(University of California, USA) 

SNIP/140Cap ICC (1:200) 
Cell Signalling Technology 

(Danvers, Massachusetts, USA) 

Synaptophysin WB (1:10000) Abcam (Cambridge, UK) 

Tubulin WB (1:200000) Sigma (Sintra, Portugal) 

VGAT N-terminal ICC (1:750) 
Synaptic Systems (Goettingen, 

Germany) 

VGLUT1 ICC (1:100000) Millipore (MA, USA) 

VGLUT1 WB (1:5000) 
Synaptic Systems (Goettingen, 

Germany) 

GFP 
ICC (1:500) 

WB (1:1000) 
MBL International (MA, USA) 

Secondary Antibodies 
  

AMCA-conjugated anti-
chicken 

ICC (1:200) 
Jackson ImmunoResearch 

(Pennsylvania, USA) 
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Alexa 647-conjugated 

anti-guinea pig 
ICC (1:1000) 

Molecular Probes (Leiden, The 
Netherlands) 

Alexa 647-conjugated 

anti-mouse  
ICC (1:500) 

Molecular Probes (Leiden, The 
Netherlands) 

Texas Red-conjugated 

anti-mouse 
ICC (1:200) 

Molecular Probes (Leiden, The 
Netherlands) 

Alexa 488-conjugated 

anti-rabbit 
ICC (1:1000) 

Molecular Probes (Leiden, The 
Netherlands) 

Alexa 594-conjugated 

anti-rabbit 
ICC (1:200) 

Molecular Probes (Leiden, The 
Netherlands) 

Alexa 568-conjugated 

anti-sheep 
ICC (1:500) 

Molecular Probes (Leiden, The 
Netherlands) 

Alkaline phosphatase-
conjugated anti-mouse 

WB (1:20000) 
GE Healthcare (Carnaxide, 

Portugal) 

Alkaline phosphatase-
conjugated anti-rabbit 

WB (1:20000) 
GE Healthcare (Carnaxide, 

Portugal) 

ICC – Immunocytochemistry 
WB – Western Blot 
 

 

Constructs and primers for transfection of neurons and HEK293FT Cells 

Cortactin-FLAG constructs were a kind gift from Dr. Zhang (University of South 

Florida, Tampa, FL, USA). Cortactin shRNA resistant constructs were prepared 

with the QuikChange II XL-site-directed mutagenesis kit (Stratagene), using 

cortactin constructs (kind gift from Xiaohong Zhang and Edward Seto from 

University of South Florida, Tampa, FL, USA) as template and the primers 5′ tcc 

aag cat tgc tca caa gtt gac tca gtc t 3′ and  5’ gac tga gtc aac ttg tga gca atg ctt 

gga 3’. For the generation of the shortinterfering RNA construct, pll3.7shRNA, 

the following DNA oligonucleotides, 5’ 

gatccccgcactgctcacaagtggacttcaagagagtccacttgtgagcagtgctttttggaaa-3’ and 

5_’agcttttccaaaaagcactgctcacaagtggactctcttgaagtccacttgtgagcagtgcggg- 3’ 

(corresponding to nucleotides 331-348 of the rat and mouse cortactin sequence 

with the first nucleotide of the start codon counted as nucleotide 1) were 

annealed and subcloned into the XhoI and HpaI sites of the pll3.7 vector. 
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Methods 

HEK 293FT cells cultures  

HEK 293FT cells were maintained at 37ºC in a humidified incubator of 5% 

CO2/95% air and diluted 1:5 every three days. Cells were incubated in 

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal calf serum, 

1% penicillin/streptomycin, 1% Geneticin, 1% 200mM L-Glutamine (100x), 1% 

10 mM MEM Non-Essential Amino Acids (100x) (GIBCO Invitrogen), 1% 

100mM MEM Sodium Pyruvate (100x) and 44 mM NaHCO3, pH 7.2. HEK 

293FT cells were transiently transfected with 10-11 g of DNA, using calcium 

phosphate method.  

Hippocampal cultures (high density cultures)  

Primary cultures of rat hippocampal neurons were prepared from the 

hippocampi of E18-E19 Wistar rat embryos, after treatment with trypsin (0.06%, 

15 min, 37 ºC; GIBCO Invitrogen), in Ca
2+

- and Mg
2+

-free Hank’s balanced salt 

solution (HBSS: 5.36 mM KCl, 0.44 mM KH2PO4, 137 mM NaCl, 4.16 mM 

NaHCO3, 0.34 mM Na2HPO4.2H2O, 5 mM glucose, 1 mM sodium pyruvate, 10 

mM HEPES and 0.001% phenol red). The hippocampal cells were then washed 

with 10% fetal bovine serum prepared in HBSS, to stop trypsin activity, and 

then washed once with HBSS to remove serum and avoid glia growth. Finally, 

hippocampal cells were transferred to Neurobasal medium (GIBCO Invitrogen) 

supplemented with B27 supplement (1:50 dilution; GIBCO Invitrogen), 25 M 

glutamate, 0.5 mM glutamine and 0.12 mg/ml gentamycin, the cells were 

mechanically dissociated and then plated in 6 well plates (8,9x10
4
 cells/cm

2
), 

coated with poly-D-lysine (0.1 mg/mL). The cultures were maintained in a 

humidified incubator of 5% CO2/95% air, at 37 C, for seven or fourteen days.  

Preparation of hippocampal culture extracts 

Hippocampal cultures were washed twice with ice-cold PBS, and once more 

with PBS buffer supplemented with 1 mM dithiothreitol (DTT) and a cocktail of 

protease inhibitors (0.1 mM phenylmethylsulfonyl fluoride (PMSF), CLAP (1 
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μg/ml chymostatin, 1 μg/ml leupeptin, 1 μg/ml antipain, 1 μg/ml pepstatin; 

Sigma). The cells were then lysed with RIPA buffer (150 mM NaCl, 50 mM Tris–

HCl, pH 7.4, 5 mM EGTA, 1% Triton, 0.5% DOC and 0.1% SDS at a final pH 

7.5) supplemented with 50 mM sodium fluoride (NaF), 1.5 mM sodium 

ortovanadate (Na3VO4) and the cocktail of protease inhibitors. After 

centrifugation at 16,100xg for 10 min at 4ºC, protein in the supernatants was 

quantified using the Bicinchoninic acid (BCA) assay kit (Singh et al.), and the 

samples were denaturated with 2× concentrated denaturating buffer (125 mM 

Tris, pH 6.8, 100 mM glycine, 4% SDS, 200 mM DTT, 40% glycerol, 3 mM 

Na3VO4, and 0.01% bromophenol blue). Extracts used for VGLUT1 analysis 

were not subjected to a boiling step to avoid VGLUT aggregation.  

 

Hippocampal cultures (low density cultures - Banker cultures) 

Cultures were prepared from hippocampal neurons using previously described 

methods (Goslin et al., 1998). Briefly, hippocampi were dissected from E18 rat 

embryos and dissociated using trypsin (0.25%) and trituration. Neurons were 

plated at a final density of 1-5 x 10
4
 cells/dish on poly-D-lysine-coated 

coverslips in 60 mm culture dishes in neuronal plating medium (MEM 

supplemented with 10% horse serum, 0.6% glucose and 1 mM pyruvic acid). 

After 2-4 hr, coverslips were flipped over an astroglial feeder layer in 

Neurobasal medium supplemented with B27 supplement (1:50 dilution), 25 M 

glutamate, 0.5 mM glutamine and 0.12 mg/ml gentamycin. The neurons grew 

face down over the feeder layer but were kept separate from the glia by wax 

dots on the neuronal side of the coverslips. To prevent the overgrowth of the 

glia, neuron cultures were treated with 5 µM cytosine arabinoside after 3 days in 

vitro (Meyers et al.). Cultures were maintained in a humidified incubator with 5% 

CO2/95% air, at 37 C, for up to 3 weeks, feeding the cells once per week by 

replacing one-third of the medium per dish.  

Synaptoneurosomes Preparation 

Synaptoneurosomes (SNSs) were prepared as previously described with slight 

modifications (Yin et al., 2002). Briefly, 6-8 hippocampi were dissected from 
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adult Wistar rats and the tissue was minced with scissors and homogenized 

with a glass homogenizer in a buffer containing 0.32 M sucrose, 10 mM 

HEPES-Tris pH 7.4 and 0.1 mM EGTA. After centrifugation for 3 min at 1000x 

g, the supernatant was collected and passed initially through nylon membranes 

(150 and 50 µm, VWR) and finally through an 8 µm pore size filter (Millipore, 

MA). The flow-through was centrifuged for 15 min at 10,000x g, and the pellet 

was resuspended in incubation buffer (in mM: 8 KCl, 3 CaCl2, 5 Na2HPO4, 2 

MgCl2, 33 Tris, 72 NaCl, 100 sucrose). All the procedure was done at 4°C.  

Subcellular fractionation of rat hippocampus 

The procedure for purification of postsynaptic density fractions (PSDs) was 

adapted from Peça et al., 2011. Two hundred mg of hippocampi, dissected from 

adult Wistar rats were collected and homogenized in a motor driven glass teflon 

homogenizer (30 stokes, 900rpm) in HBS (0.32 M sucrose, 4 mM HEPES, pH 

7.4) containing protease and phosphatase inhibitors (0.2 mM PMSF, 0.1 mM 

Na3VO4, 50 mM NaF, 1µg/ml CLAP), as described above. The culture 

homogenate was centrifuged at 900×g for 15min to obtain the non-nuclear 

fraction (S1). The resultant supernatant was centrifuged at 18.000×g for 15min 

to yield the crude synaptosomal pellet (P2). P2 was resuspended in HBS and 

centrifuged at 18.000×g for 15min to yield the washed crude synaptosomal 

fraction. This fraction was submitted to hypo-osmotic shock by resuspending 

the pellet in HEPES buffer (4 mM HEPES, pH 7.4, plus protease and 

phosphatase inhibitors) and incubated for 1 hour with orbital rotation at 4°C. 

The lysate was centrifuged at 25.000×g for 20min to yield supernatant (crude 

synaptical vesicle fraction – S3) and a pellet (lysed synaptosomal membrane 

fraction), which was resuspended in HBS (without Na3VO4) and placed on top 

of a continuous sucrose gradient (0.8 M, 1 M, 1.2 M). The tube was filled with 

0.16 M sucrose solution and spun at 150.000×g for 2h in a swinging bucket 

rotor (Beckman Optima™ L-100 XP). Synaptic plasma membranes (SPM) were 

recovered between the 1.0 M and 1.2 M layers, diluted to 0.32 M sucrose, and 

centrifuged at 150.000×g for 30 min. SPMs were resuspended in HEPES/EDTA 
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(HE) buffer (50 mM HEPES, 2 mM EDTA, pH 7.4) containing protease and 

phosphatase inhibitors and washed with 0.5% Triton X-100 for 15 min with 

orbital rotation at 4°C, followed by 20 min centrifugation at 200.000×g for 20 

min. PSD pellet was resuspended in HE with 0.5% SDS. Homogenate, S1 and 

P2, S3, PSD fractions were collected (50µl) throughout the fractionation 

procedure and kept at -80ºC. All experimental procedures and centrifugations 

were performed on ice or at 4°C. 

Neuron transfection with the calcium phosphate protocol.  

Constructs were recombinantly expressed
 
in primary cultures of hippocampal 

neurons using a calcium phosphate transfection
 
protocol adapted from Jiang 

and collaborators (Jiang et al., 2004). Plasmid DNAs (4µg per coverslip) were 

diluted in Tris-EDTA
 
transfection buffer (10 mM Tris-HCl and 2.5 mM EDTA, pH 

7.3).
 
A

 
CaCl2 solution (2.5 M in 10 mM HEPES) was then added, drop-wise,

 
to 

the DNA solution to give a final concentration of 250 mM
 
CaCl2. This was then 

added to an equivalent volume of HEPES-buffered
 
transfection solution (274 

mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4,
 
11 mM dextrose, and 42 mM HEPES, 

pH 7.2). The DNA solution was added, a small fraction at a time (1/8
th
),

 
to the 

HEPES-buffered transfection
 
solution. This was then vortexed gently for 2 to 3 

s, and the
 
precipitate was allowed to develop at room temperature for 30

 
min, 

protected from light, and vortexed every 5 min. Then, 100 µl of precipitate
 
was 

added, drop-wise, to each coverslip, and the cultures were
 
incubated with the 

precipitate for 1 to 3 h in the presence of kynurenic
 
acid (2 mM). Each coverslip 

was transferred to a fresh well
 
of the 12-well plate containing 1 ml of culture 

medium with
 
kynurenic acid (2 mM), slighltly acidified with HCl (~5 mM final 

concentration), and the plate was returned to a 37°C/5%
 
CO2/95% O2 incubator 

for 10 to 15 min. Each coverslip was then
 
transferred to the original dish 

containing the conditioned medium. The cells were then returned to
 
a 37°C and 

5% CO2/95% incubator to allow expression of the transfected
 
constructs. 
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HEK 293FT transfection with the calcium phosphate protocol.  

For each well of a 6-well multiwell culture plate (MW6), 250 µl 2X HBS were 

aliquoted into a sterile 1.5 ml microfuge tube. In a separate tube, 10 µg of DNA, 

37.5 l of 2 M CaCl2 and enough distilled water to bring the total volume to 250 

µl, were also aliquoted. The CaCl2/DNA mix was added to the HBS slowly with 

a P1000 pipette, mixing gently during the addition. The mixture was pippeted 

directly to the cells by dropping slowly and evenly into medium, trying to cover 

as much of the well as possible. Without mixing, the multiwell was simply 

carried to the incubator and placed at 37°C/5% CO2 for 5 hrs. The medium was 

removed and cells were washed once with warm PBS, then fresh, warm 

complete medium was added and the incubation was resumed for 48 hrs, prior 

to assaying. 

 

Gel electrophoresis and western-blot 

Samples were resolved by SDS-PAGE in 7.5% polyacrylamide gels. For 

western blot analysis, proteins were transferred onto a PVDF membrane 

(Millipore, Madrid, Spain) by electroblotting (40V, overnight, at 4ºC). The 

membranes were blocked for 1 hour with 5% (w/v) BSA or skim milk and 0.1% 

Tween 20 in TBS [(20 mM Tris, 137 mM NaCl, pH 7.6 (TBS-T)], and probed 

during 1 hour, at room temperature, or overnight, at 4ºC, with the primary 

antibody. Following several washes with TBS-T, the membranes were 

incubated for 1 hour, at room temperature, with alkaline phosphatase-

conjugated IgG secondary antibody (anti-mouse or anti-rabbit, depending on 

the primary antibody host-species). The membranes were then washed again 

and immunostaining was visualized by the enhanced chemifluorescence 

method (ECF) on a Storm 860 Gel and Blot Imaging System (GE Healthcare, 

Carnaxide, Portugal).  

 

Immunoprecipitation assays 

Co-immunoprecipitaton assays were performed using HEK 293FT lysates 

transfected with the constructs of interest. Nine hundred µg of protein from HEK 
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293FT lysates were solubilized in Immunoprecipitation Buffer [IPB: 10 mM Tris 

(pH 7.0), 50 mM NaCl, 1 mM EDTA, 1 mM EGTA and 1% Triton X-100] and 

protease inhibitors (0.2 mM PMSF, 100 mM DTT, 1 g/ml each of chymostatin, 

pepstatin, antipain, and leupeptin or Complete mini protease inhibitor mixture – 

Roche Diagnostics)]. The samples were sonicated with a probe sonicator, on 

ice, for 30 s. The insoluble material was removed by centrifuging the sample at 

13 000×g during 10 min, at 4ºC. At this point the supernatant was collected and 

50 µl were removed for analysis by Western blot (input). The supernatant was 

transferred to a tube containing 30 µl of a 50% slurry of protein A sepharose 

beads suspended in IPB. The tube was rotated at 4ºC, for 1 hour; this step 

preabsorbs any protein that may stick non-specifically to the protein A 

sepharose beads. After a 5 min centrifugation step the sedimented sepharose 

beads were discarded. The supernatant was incubated with 3 µg of anti-FLAG 

antibody. This incubation step was performed at 4ºC, overnight. The tubes were 

then incubated with 100 µl of a 50% slurry of protein A sepharose beads and 

rotated for 2h at 4ºC. Five steps of washing were performed in order to avoid 

non-specific bindings: 2x IPB+1% Triton, 3x IPB+1% Triton+ 500 mM NaCl and 

2x IPB. The proteins were eluted by boiling the beads in 50 l of sample buffer 

(125 mM Tris, pH 6.8, 100 mM glycine, 4% SDS, 200 mM DTT, 40% glycerol, 3 

mM sodium orthovanadate, and 0.01% bromophenol blue) for 5 min. Proteins 

were separated by SDS-PAGE in 7.5% polyacrylamide gel, followed by 

western-blot for the proteins of interest. 

 

Immunocytochemistry 

Neurons were fixed for 10 min in 4% sucrose/4%paraformaldehyde in PBS, and 

permeabilized with PBS + 0.25% Triton X-100 for 5 min, at 4ºC. The neurons 

were then incubated in 10% BSA in PBS for 30 min at 37ºC to block nonspecific 

staining, and incubated in appropriate primary antibody diluted in 3% BSA in 

PBS (2h, 37ºC). After washing 6 times in PBS, cells were incubated in 

secondary antibody diluted in 3% BSA in PBS (45 min, 37ºC). The coverslips 

were mounted using florescent mounting medium from DAKO (Glostrup, 



Chapter 2 

 

74 

Denmark). For labeling surface GluA1-containing receptors, live neurons were 

incubated for 30 min at room temperature with the GluA1 N-terminal antibody 

diluted in PBS, after which the cells were briefly rinsed in PBS and were then 

fixed and probed as described above. Imaging was performed on a Zeiss 

Axiovert 200 M microscope, using a 63× 1.4 NA oil objective. 

 

Microscopy and quantitative fluorescence analysis 

Images were quantified using image analysis software (ImageJ). For 

quantitation, sets of cells were cultured and stained simultaneously, and imaged 

using identical settings. The protein (the ones studied in this work) signals were 

analyzed after thresholds were set, such that recognizable clusters were 

included in the analysis. Synaptic proteins were selected by colocalization with 

VGLUT1. Regions around thresholded puncta were overlaid as a mask in the 

VGLUT1 channel, and colocalization was determined. For quantifying the 

protein signals in transfected neurons, fields for imaging were chosen by the 

GFP channel, for the presence of transfected, GFP-positive, neurons. 

Measurements were performed in three or four independent preparations, and 

at least 9 cells per condition were analyzed for each preparation. Statistical 

analysis was performed using unpaired student t-test or One way ANOVA 

followed by the Dunnett’s test. 

For analysis of F-actin organization experimental and control samples were 

encoded for blind analysis; hippocampal neurons, labeled with Alexa555-

coupled phalloidin, were chosen by the GFP channel. F-actin clusters 

(branched F-actin) were defined operationally as 0.3-3.0 µm
2
 F-actin-enriched 

puncta along dendrites (with an average pixel intensity at least 50% above that 

in the adjacent dendritic region). Six to 11 neurons were selected for each 

experimental group, and three to four proximal dendrites per each neuron were 

analyzed.  
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Statistical Analysis 

The immunoreactivity obtained in each experimental condition was calculated 

as a percentage of the control. Data are presented as mean ± SEM of at least 

three different experiments, performed in independent preparations. Statistical 

analysis of the results was performed using unpaired student t-test or one-way 

ANOVA analysis followed by either Dunnett’s or Bonferroni post test: n.s. non 

significant, ***p<0.001, **p<0.01, *p<0.05. 
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Introduction 

It is widely known that posttranslational modifications (PTM) of proteins 

regulate various aspects of cellular processes. In fact, the critical role of 

phosphorylation in synaptic plasticity and memory has been established using a 

variety of different model systems (Sharma, 2010). In synaptic terminals, 

protein phosphorylation is the primary PTM that contributes to the control of the 

activity and localization of synaptic proteins. More recently, acetylation, which is 

another posttranslational modification of proteins, has been attributed an 

important role in these processes. 

Modification by acetylation regulates various processes including protein 

stability, protein-protein interaction and gene transcription (Kouzarides, 2000; 

Spange et al., 2009) and several proteins can be altered by this modification. 

The critical role of transcription factors in synaptic plasticity and memory in 

different model systems has been recognized for a long time, and it recently 

became clear that histone acetylation is important in these processes (Barrett 

and Wood, 2008; Borrelli et al., 2008; Graff and Mansuy, 2008; Levenson and 

Sweatt, 2005; Reul and Chandramohan, 2007; Roth and Sweatt, 2009; Sweatt, 

2009) 

Learning and memory in wild-type mice as well as in mouse models of 

neurodegeneration is facilitated by increased histone-tail acetylation induced by 

histone deacetylases inhibitors (HDACis). Fischer A. et al. (2007) showed that a 

non-selective HDAC inhibitor (sodium butyrate) promotes the retrieval of long-

term memory and reinstates learning ability in mice even after massive memory 

loss. Another structurally distinct HDAC inhibitor, Thricostatin A, enhanced LTP 

in the hippocampus, without affecting basal synaptic transmission (Levenson et 

al., 2004). HDACis were reported to enhance memory formation and synapse 

plasticity through CREB-CBP-dependent transcriptional activation (Vecsey et 

al., 2007). 
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Conversely, it has been shown that neuron specific overexpression of 

HDAC2, but not that of HDAC1, decreases dendritic spine density, synapse 

number, synaptic plasticity and memory formation (Guan et al., 2009). These 

authors suggested that HDAC2 suppresses the expression of synaptic 

remodeling and plasticity genes. 

In addition to histones, acetylation of other proteins may also be important 

for memory formation. In fact, histones are not the only substrates of HDACs 

and several other proteins including transcription factors, transport proteins, -

tubulin and acetyltransferases are acetyl-proteins themselves (Kouzarides, 

2000; Spange et al., 2009; Yang and Seto, 2008). Some proteins which play 

important roles in synaptic plasticity and memory, such as C/EBP and CREB, 

are acetyl-proteins and their activity is modulated by acetylation (Cesena et al., 

2007; Lu et al., 2003). Therefore, it is to be expected that changes in the 

acetylation status of other proteins, in addition to histones, may potentially be 

involved in the facilitatory effects of deacetylase inhibition in synaptic plasticity 

and memory. 

Despite the evidences indicating a role for protein acetylation in synapse 

number (Guan et al., 2009), synaptic plasticity and memory (Chwang et al., 

2007; Fischer et al., 2007; Fontan-Lozano et al., 2008; Guan et al., 2009; 

Levenson et al., 2004; Miller et al., 2008; Stefanko et al., 2009; Vecsey et al., 

2007; Yeh et al., 2004), the impact of protein acetylation on the molecular 

composition of synapses has never been addressed. Therefore, in order to 

explore the effects of protein acetylation, enhanced by HDACs inhibitors, on 

synapses, we used immunocytochemical methods to characterize the 

localization of several synaptic proteins in rat hippocampal neurons, a model 

where the protein localization relative to synapses is very amenable to study. 
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Results 

Acetylation affects scaffold proteins of excitatory synapses 

Several studies showed that acetylation plays important roles in LTP, and 

that enhancing acetylation by inhibiting HDACs facilitates LTP in the 

hippocampus and amygdala (Sharma, 2010). Additionally, Levenson et al. 

(2004) investigated the effects of HDAC inhibitors on LTP and found that 

Thricostatin A (TSA), which increases the acetylation status of histones, 

enhanced LTP in the hippocampus. 

To assess the effect of protein acetylation on excitatory synapses, we 

performed quantitative immunofluorescence analysis of the expression of 

synaptic proteins in hippocampal neurons at 15 DIV. At first we looked at the 

postsynaptic density-95 (PSD95), a scaffolding protein that has been identified 

as a marker for synaptic strength. It has been shown that overexpression of 

PSD-95 promotes synaptic maturation (El-Husseini et al., 2000), while 

knockdown of PSD-95 results in decreased synaptic strength and spine density 

(Ehrlich et al., 2007). PSD-95 remains mobile in mature neurons, and can 

transit in and out of spines on the order of minutes (Marrs et al., 2001). In fact, a 

pool of dendritic PSD95 molecules is shared and redistributed among 

neighboring spines through diffusion (Gray et al., 2006; Tsuriel et al., 2006). 

Hippocampal neurons cultured at low-density were treated with TSA, an 

inhibitor of types I and II histone deacetylases, or vehicle (ethanol at 99%) for 

12 hours. After fixation, neurons were stained with an antibody against PSD95 

(postsynaptic marker), to visualize excitatory synapses and an antibody against 

MAP2, a somatodendritic marker. Compared with neurons treated with vehicle, 

neurons treated with TSA showed a significant increase in the fluorescence 

intensity of PSD95 clusters (Figures 10A). The area and the density of PSD95 

clusters were also increased in TSA treated neurons (Fig. 10B).  
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The effect of TSA stimulus on the clustering of PSD95 could be explained by 

an effect at the protein expression levels. So, in order to investigate potential 

effects of TSA on PSD95 expression levels we assessed PSD95 expression 

levels by western blot (Fig. 10C) and observed that the TSA treatment did not 

Fig. 10 – Incubation of cultured hippocampal neurons with the HDACI/II inhibitor 
trichostatin A (TSA) leads to an increase in the number, area and intensity of 
PSD95 clusters. A) Hippocampal neurons at 15 DIV were treated with vehicle or TSA 

(400ng/ml) for 12hr. After fixation, neurons were stained for PSD95 and for the 
somatodendritic marker MAP2. (Scalebar: 10µm, insert: 2µm). B) Neurons were 
analysed for PSD95 cluster fluorescence intensity, area and number, per dendritic area. 
Results are presented as % of vehicle-treated control cells, and are averaged from four 
independent experiments (n≥81 cells). Errorbars, ± S.E.M. Significance, ***p<0,001 
relative to control neurons (unpaired student t-test). C, D) TSA treatment does not 
change PSD95 or Tubulin expression levels. Hippocampal neurons at 15 DIV were 

treated with vehicle or TSA (400ng/ml) for 12hr. Western blot was performed using an 
anti-PSD95 (C) or an anti-Tubulin antibody (D). Quantitative analysis was performed 

with ImageQuant. Data are presented as average  S.E.M. of five experiments (for 
PSD95) or nine experiments (Tubulin) performed in independent preparations, and are 
expressed as a percentage of PSD95 or Tubulin expression levels in control conditions. 
Data were statistically analysed with Graphpad software, using One-way ANOVA. 
p>0.05. 
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alter total PSD95 protein levels. Tubulin expression levels were also assessed, 

in order to use it as a loading control, and no differences were observed (Fig. 

10D). These observations suggest that protein acetylation is correlated with the 

accumulation of PSD95 at synapses, and this accumulation is due to 

redistribution of the protein and not to increased synthesis of PSD95. 

Hippocampal neurons treated with TSA or vehicle for 12 hours were also 

stained with an antibody against VGLUT1 (vesicular glutamate transporter) (Fig. 

11A), a presynaptic marker of excitatory synapses. When comparing 

treatments, no differences were observed concerning density, area or intensity 

of VGLUT1 clusters (Fig. 11B). VGLUT1 protein levels were also assessed by 

western blot and no differences were observed (Fig 11C). 

To further investigate the effect of TSA on excitatory synapses, we 

performed quantitative immunofluorescence analysis of the expression of 

Shank1, a scaffold protein, using 15 DIV hippocampal neurons. Shank proteins 

have multiple binding partners that include both membrane-associated proteins 

and cytoskeletal proteins, and are therefore thought to integrate the 

submembranous molecular assembly and the cytoskeletal polymers at the 

postsynaptic interface (Okabe, 2007). In fact, it was shown that overexpression 

of Shank has a profound effect on the morphology of synapses in a culture 

system (Sala et al., 2001).  

Low density cultured neurons were submitted to the treatments with TSA, 

and neurons were stained with an antibody against Shank1, an antibody 

against VGLUT1, used as a presynaptic marker of excitatory synapses, and an 

antibody against MAP2 (Fig 12A). TSA-treated neurons showed a significant 

increase in the fluorescence intensity of total dendritic Shank1 clusters, as well 

as in the density and area of those clusters (Fig. 12B). The intensity, area and 

density of Shank1 clusters that colocalized with VGLUT1 (synaptic clusters) 

were also increased in TSA treated neurons (Fig. 12C). 
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To determine if the increased clustering of Shank1 was due to changes in 

the expression level of Shank1, we assessed Shank1 total levels by western 

blot and observed that Shank 1 protein levels were not altered by the TSA 

treatments (Fig. 12D). As for PSD95, these observations suggest that protein 

acetylation, promoted by inhibition of HDACs, is correlated with the 

Fig. 11 – TSA treatment in hippocampal neurons in culture has no effect on the 
number, area and intensity of VGLUT1 clusters. A) Hippocampal neurons at 15 DIV 

were treated with vehicle or TSA (400ng/ml) for 12hr. After fixation, neurons were 
stained for VGLUT1 and for the  somatodendritic marker MAP2. (Scalebar: 10µm, 
insert: 2μm) B) Neurons were analysed for VGLUT1 cluster fluorescence intensity, area 
and number, per dendritic area.Results are presented as % of vehicle-treated control 
cells, and are averaged from three independent experiments (n≥64 cells). Errorbars, ± 
S.E.M. (unpaired student t-test).. C) TSA treatment does not change VGLUT1 total 
expression levels. Hippocampal neurons at 15 DIV were treated with vehicle or TSA 
(400ng/ml) for 12hr. Western blot was performed using an anti-VGLUT1 antibody.  
Staining for Tubulin was used for normalization of VGLUT1 values. Quantitative 

analysis was performed with ImageQuant. Data are presented as average  S.E.M. of 
three experiments performed in independent preparations, and are expressed as a 
percentage of VGLUT1 expression levels in control conditions. Data were statistically 
analysed with Graphpad software, using One-way ANOVA. p>0.05. 
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accumulation of Shank1 at synapses, and this accumulation is due to 

redistribution of Shank1 and not to changes in the expression level of Shank1. 

 

Fig. 12 – Incubation of hippocampal neurons with TSA leads to an increase in 
the number, area and intensity of total and synaptic Shank1 clusters. 

Hippocampal neurons at 15 DIV were treated with vehicle or TSA (400ng/ml) for 12hr. 
After fixation, neurons were stained for Shank1, VGLUT1 and for the somatodendritic 
marker MAP2. (Scale bar: 2μm) Neurons were analysed for total (B) and synaptic (C) 
Shank1 cluster fluorescence intensity, area and number, per dendritic area. Synaptic 
Shank1 is defined as Shank1 signal that overlaps with VGLUT1. Results are 
presented as % of vehicle control cells, and are averaged from three independent 
experiments (n≥61 cells). Errorbars, ± S.E.M. Significance, **p<0,01 ***p<0,001 
relative to control neurons (unpaired student t-test).. D) TSA treatment does not 
change Shank expression levels. Hippocampal neurons at 15 DIV were treated with 
vehicle or TSA (400ng/ml) for 12hr. Western blot was performed using an anti-
PanShank (for detection of Shank 1, 2 and 3) antibody. Staining for Tubulin was used 
for normalization of Shank expression level.  Quantitative analysis was performed with 

ImageQuant. Data are presented as average  S.E.M. of three experiments performed 
in independent preparations, and are expressed as a percentage of Shank expression 
levels in control conditions. Data were statistically analysed with Graphpad software, 
using One-way ANOVA. p>0.05. 
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Since TSA treatment had a significant effect on the clustering of scaffold 

proteins such as PSD95 and Shank1, we then investigated whether this 

treatment could interfere with the clustering of receptors at the membrane 

(surface receptors). Quantitative immunofluorescence analysis was performed 

for the expression of synaptic cell surface GluA1 in hippocampal neurons at 15 

DIV. Neurons were live-stained with an antibody against the N-terminal 

extracellular region of GluA1. After fixation, neurons were stained with an 

antibody against VGLUT1 and an antibody against MAP2 (Fig. 13A). TSA 

treatment had no effect in the fluorescence intensity of total dendritic GluA1 

clusters, or in density or area of total GluA1 clusters (Fig. 13B). The area, 

density and fluorescence intensity of GluA1 synaptic clusters were also 

unaltered in TSA treated neurons (Fig. 13C).  
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GluA1 protein levels were also assessed by western blot and no differences 

were observed in neurons treated with TSA compared with vehicle-treated or 

control neurons (Fig. 13D). 

Acetylation effect on inhibitory synapses 

In order to understand if the TSA effect is specific for excitatory synapses, 

we tested whether this treatment could affect specific proteins of inhibitory 

synapses. Hippocampal neurons (15 DIV) were submitted to TSA and vehicle 

treatments and were stained after fixation using a specific antibody for 

Gephyrin, a protein that is a component of the postsynaptic protein network of 

inhibitory synapses, and VGAT, a presynaptic marker of GABAergic neurons 

(highly concentrated in the nerve endings of GABAergic neurons) (Fig. 14A). 

The TSA treatment had no effect in the density, area or fluorescence intensity 

of total dendritic Gephyrin clusters (Fig. 14B), or of Gephyrin clusters 

colocalized with VGAT (Fig. 14C). Gephyrin protein levels were also assessed 

by western blot and no differences were observed (Fig. 14D). The results 

obtained for proteins of inhibitory synapses suggest that protein acetylation 

effect is specific for excitatory synapses. 

Fig. 13 – TSA treatment of hippocampal neurons does not change the number, 
area or intensity of surface GluA1 clusters. Hippocampal neurons at 15 DIV were 

treated with vehicle or TSA (400ng/ml) for 12hr. Neurons were live-stained for surface 
GluA1 and, after fixation, for VGLUT1 and the somatodendritic marker MAP2. (Scale 
bar: 2μm). Neurons were analysed for total (B) and synaptic (C) surface GluA1 cluster 
fluorescence intensity, area and number, per dendritic area. Synaptic GluA1 is defined 
as GluA1 signal that overlaps with VGLUT1. Results are presented as % of vehicle 
control cells, and are averaged from three independent experiments (n≥63 cells). 
Errorbars, ± S.E.M. (unpaired student t-test). D) TSA treatment does not change 
GluA1 expression levels. Hippocampal neurons at 15 DIV were treated with vehicle or 
TSA (400ng/ml) for 12hr. Western blot was performed using an anti-GluA1 antibody. 
Staining for Tubulin was used for normalization of GluA1 values. Quantitative analysis 

was performed with ImageQuant. Data are presented as average  S.E.M. of three 
experiments performed in independent preparations, and are expressed as a 
percentage of GluA1 expression levels in control conditions. Data were statistically 
analysed with Graphpad software, using One-way ANOVA. p>0.05. 
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Fig. 14 - TSA has no effect on the number, area or intensity of Gephyrin 
clusters. Hippocampal neurons at 15 DIV were treated with vehicle or TSA 

(400ng/ml) for 12hr. Neurons were stained for gephyrin, VGAT and for the 
somatodendritic marker MAP2. (Scale bar: 2μm). Neurons were analysed for total 
(B) and synaptic (C) gephyrin clusters fluorescence intensity, area and number, per 
dendritic length. Synaptic gephyrin is defined as gephyrin signal that overlaps with 
VGAT. Results are presented as % of vehicle treated control cells, and are 
averaged from three independent experiments (n≥61 cells). Errorbars, ± S.E.M. 
(unpaired student t-test). D) TSA treatment does not change gephyrin expression 
levels. Hippocampal neurons at 15 DIV were treated with vehicle or TSA (400ng/ml) 
for 12hr. Western blot was performed using an anti-gephyrin antibody. Staining for 
Tubulin was used for normalization of gephyrin values. Quantitative analysis was 

performed with ImageQuant. Data are presented as average  S.E.M. of three 
experiments performed in independent preparations, and are expressed as a 
percentage of gephyrin expression levels in control conditions. Data were 
statistically analysed with Graphpad software, using One-way ANOVA. p>0.05. 
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Acetylation affects actin-related synaptic proteins 

Having looked at scaffold proteins of the PSD and at AMPA receptors, we 

then sought to dissect if TSA treatment could have any effect on proteins that 

interact directly or indirectly with the actin cytoskeleton, since it is a major 

component of dendritic spines. We focused on Cortactin and p140Cap. 

Cortactin, which is an activator of the Arp2/3 actin nucleation machinery, is 

enriched in dendritic spines, where it co-localizes and interacts with F-actin and 

also with the PSD scaffold Shank. It has been shown that RNAi knockdown of 

cortactin results in depletion of dendritic spines, whereas overexpression of 

cortactin causes elongation of spines (Hering and Sheng, 2003), implicating 

cortactin in spine morphogenesis. Cortactin can regulate spine morphology by 

mediating the interaction between actin and microtubules. In fact, recent work 

showed that dynamic microtubules can enter dendritic spines and affect actin 

dynamics (Jaworski et al., 2009). These authors uncovered p140Cap (SNAP-25 

interacting protein) as an abundant PSD protein in spines, and also as a binding 

partner for the microtubule plus-end tracking protein EB3 in hippocampal 

neurons. They also found that p140Cap interacts with cortactin, suggesting that 

the association between EB3-bound microtubule ends and p140Cap regulates 

cortactin function, leading to Arp2/3 activation and spine head growth (Jaworski 

et al., 2009). 

Quantitative immunofluorescence analysis was performed for expression 

levels of both p140Cap (actin indirect interactor) and cortactin (direct proteic 

partner of F-actin). Hippocampal neurons were used at 15 DIV and TSA and 

vehicle treatments were applied. After fixation neurons were stained with the 

specific antibodies. Neurons were stained with an antibody against p140Cap, 

an antibody against VGLUT1 and an antibody against MAP2 (Fig. 15A). TSA 

treatment did not affect the fluorescence intensity of total dendritic p140Cap 

clusters, or their density or area (Fig. 15B). The density of p140Cap synaptic 

clusters was also unaltered in TSA treated neurons, but the area and the 

fluorescence intensity of those clusters showed a significant decrease (Fig. 
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15C). Total p140Cap protein levels were also assessed by western blot and no 

differences were observed (Fig 15D). 

 

Fig. 15 – TSA treatment of hippocampal neurons leads to a decrease in the area 
and intensity of synaptic p140Cap clusters. Hippocampal neurons at 15 DIV were 

treated with vehicle or TSA (400ng/ml) for 12hr. After fixation, neurons were stained for 
p140Cap, VGLUT1 and for the  somatodendritic marker MAP2. (Scale bar: 2μm). 
Neurons were analysed for total (B) and synaptic (C) p140cap cluster fluorescence 
intensity, area and number, per dendritic area. Synaptic p140cap is defined as p140cap 
signal that overlaps with VGLUT1 Results are presented as % of vehicle control cells, 
and are averaged from three independent experiments (n≥63 cells). Errorbars, ± S.E.M. 
Significance, *p<0,05 relative to control neurons (unpaired student t-test). D) TSA 
treatment does not change p140Cap expression levels. Hippocampal neurons at 15 DIV 
were treated with vehicle or TSA (400ng/ml) for 12hr. Western blot was performed using 
an anti-p140Cap antibody. Staining for Tubulin was used for normalization of p140Cap 
values. Quantitative analysis was performed with ImageQuant. Data are presented as 

average  S.E.M. of three experiments performed in independent preparations, and are 
expressed as a percentage of p140cap expression levels in control conditions. Data 
were statistically analysed with Graphpad software, using One-way ANOVA. p>0.05. 
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Neurons were also stained with an antibody against cortactin, a protein that 

has been identified as a target for reversible acetylation (Zhang et al., 2007), an 

antibody against VGLUT1 and an antibody against MAP2 (Fig 16A). 

 

Fig. 16 - TSA leads to a decrease in the area of synaptic cortactin clusters. 

Hippocampal neurons at 15 DIV were treated with vehicle or TSA (400ng/ml) for 12hr. 
After fixation, neurons were stained for cortactin, VGLUT1 and for the  somatodendritic 
marker MAP2. (Scale bar: 2μm). Neurons were analysed for total (B) and synaptic (C) 
cortactin cluster fluorescence intensity, area and number, per dendritic area. Synaptic 
cortactin is defined as cortactin signal that overlaps with VGLUT1. Results are 
presented as % of vehicle control cells, and are averaged from four independent 
experiments (n≥81 cells). Errorbars, ± S.E.M. Significance, *p<0,05 relative to control 
neurons (unpaired student t-test). D) TSA treatment does not change cortactin 
expression levels. Hippocampal neurons at 15 DIV were treated with vehicle or TSA 
(400ng/ml) for 12hr. Western blot was performed using an anti-cortactin antibody. 
Staining for Tubulin was used for normalization of Cortactin values. Quantitative 

analysis was performed with ImageQuant. Data are presented as average  S.E.M. of 
three experiments performed in independent preparations, and are expressed as a 
percentage of cortactin expression levels in control conditions. Data were statistically 
analysed with Graphpad software, using One-way ANOVA. p>0.05. 
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We observed that TSA treatment did not have an effect in the density or 

fluorescence intensity of total or synaptic cortactin clusters (Fig. 16B and C). On 

the other hand, the area of both total and synaptic cortactin clusters decreased 

(Fig.  16B and C). Cortactin expression levels were also analyzed by western 

blot and no differences were detected (Fig. 16D). 

Taken together, these observations suggest that protein acetylation 

correlates with a decrease in the area of clusters of two cytoskeleton related 

proteins at synapses, probably due their redistribution from dendritic spines to 

shafts. 
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Discussion 

In this chapter we studied the effects of inhibiting types I and II HDACs with 

TSA on the localization of synaptic proteins. We found that TSA treatment of 

hippocampal neurons led to a dramatic increase in density, area and intensity of 

PSD95 and Shank1 clusters. Conversely, TSA treatment resulted in decreased 

cluster area of the cytoskeleton associated proteins cortactin and p140Cap. 

VGLUT1 and GluA1 clustering was not affected by inhibiting HDACs. 

Accumulation of PSD constituent proteins by dynamic regulation of 

abundance and activity may occur through: A) increase in the expression levels 

by local protein translation; B) localized trafficking and/or redistribution to and 

away from the PSD; C) decrease in their degradation process through the 

ubiquitin-proteasome system. Therefore, the changes in the clustering observed 

for some scaffold proteins could be explained by any of these processes. 

 It is known that HDAC inhibitors, like TSA, modulate the acetylation levels 

of histones and thereby affect transcription. Since expression levels of the 

proteins that we tested were not altered by TSA treatment, we suggest that 

transcription of the genes that encode them is not being affected by TSA. The 

observed effect may be due to acetylation and regulation of non-histone 

proteins, which in turn interfere with activity and localization of these synaptic 

proteins. Alternatively, the acetylation of histone tails, which regulates 

chromatin structure and interferes with gene transcription, may regulate the 

expression levels of specific proteins which in turn have an impact on the 

localization of PSD95 and Shank1 and also p140Cap and Cortactin.  

Protein clustering or accumulation could also be explained by a decrease in 

the degradation process. For example Hung et al. (2010) showed that the 

protein TRIM3, present in PSD fractions from rat brain, stimulates ubiquitination 

and proteasome-dependent degradation of GKAP, and induces the loss of 

GKAP and associated scaffold Shank1 from postsynaptic sites. Suppression of 

endogenous TRIM3 by RNA interference (RNAi) results in increased 
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accumulation of GKAP and Shank1 at synapses, as well as enlargement of 

dendritic spine heads (Hung et al., 2010). It was also shown that PSD95 

interacts with and is ubiquitinated by the E3 ligase Mdm2, meaning that PSD95 

is regulated by the ubiquitin-proteasome pathway (Colledge et al., 2003). 

In fact, some molecules involved in protein degradation have been 

identified as targets of HDAC6. Bali et al., (2005) showed that HDAC6 is an 

HSP90 deacetylase and targeted inhibition of HDAC6 leads to acetylation of 

HSP90 and disruption of its chaperone function, resulting in polyubiquitylation 

and depletion of pro-growth and pro-survival HSP90 client proteins including 

Bcr-Abl. HDAC6 is also capable of interacting with ubiquitin (Boyault et al., 

2006). These authors demonstrated that HDAC6-interacting chaperone 

p97/VCP dissociates the HDAC6–ubiquitin complexes and counteracts the 

ability of HDAC6 to promote the accumulation of polyubiquitinated proteins. 

However, and since we observed that the expression levels of the proteins 

were maintained after TSA stimulation, the idea that clustering of synaptic 

proteins could be happening by their increased production and/or impaired 

degradation can be put aside. Nevertheless, a localized effect on either protein 

synthesis or degradation could be occurring without being noticed when 

assessing the total levels of the synaptic proteins. 

Results from previous studies have shown that HDACs associate with and 

regulate the acetylation of several non-histone proteins. One of the most 

extensively studied and best characterized non-histone HDAC substrates is the 

cytoplasmic protein -tubulin (Haggarty et al., 2003; Hubbert et al., 2002; 

Matsuyama et al., 2002; Zhang et al., 2003). Zhang et al. (2003) showed that 

HDAC6 associates with and deacetylates -tubulin in vitro and in vivo, and that 

overexpression of HDAC6 in mammalian cells leads to tubulin hypoacectylation, 

whereas inhibition of HDAC6 leads to hyperacetylation of tubulin and 

microtubules. Consistent with this, Hubbert et al. (2002) found that 3T3 cells 

stably overexpressing HDAC6 have an increased motility, probably due to the 

deacetylation of microtubules. 
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In neurons, it has been shown that an increase of α-tubulin acetylation 

induced by pharmacological inhibition of histone deacetylase 6 (HDAC6) 

corrected the axonal transport defects caused by HSPB1 (heat shock protein 

beta-1) mutations and rescued the Charcot-Marie-Tooth (CMT) phenotype of 

symptomatic mutant HSPB1 mice (d'Ydewalle et al., 2011). Other studies 

showed that pharmacological treatments (TSA) that increase microtubule 

acetylation caused a redirection of kinesin-1 transport of JIP1 (c-Jun N-terminal 

kinase-interacting protein 1) to nearly all neurite tips in vivo, suggesting that 

microtubule PTMs are important markers of distinct microtubule populations 

and that they act to control motor-protein trafficking (Reed et al., 2006). In 

addition to the recruitment of kinesin-1, MT acetylation also leads to the 

recruitment of the retrograde motor dynein. Thus, MT acetylation stimulates not 

only anterograde but also retrograde transport, suggesting a general role for MT 

acetylation in the stimulation of intracellular dynamics through the recruitment of 

both anterograde and retrograde motors (Dompierre et al., 2007). For example, 

the molecular mechanism by which the PSD95-based protein complex is 

trafficked to the postsynaptic site presumably involves specific motor proteins. A 

direct interaction between the PSD95-associated protein guanylate kinase 

domain-associated protein (GKAP) and dynein light chain (DLC), a light chain 

subunit shared by myosin-V (an actin-based motor) and cytoplasmic dynein (a 

microtubule-based motor) has been demonstrated (Naisbitt et al., 2000). This 

PSD95-GKAP complex may also exert a functional and structural role in Shank 

assembly, targeting and stability to synapses (Romorini et al., 2004). One can 

presume that MT acetylation may be involved in the synaptic targeting of 

synaptic proteins such as PSD95 and Shank1. 

Zhang et al. (2007) also identified cortactin, an F-actin binding protein, as a 

HDAC6 substrate. Their findings suggested that, in addition to its role in 

microtubule-dependent cell motility, HDAC6 influences actin-dependent cell 

motility by altering the acetylation status of cortactin, which, in turn, changes the 

F-actin binding activity of cortactin. So acetylation modulates the activity of 
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cortactin. These authors also identified SIRT1 as a cortactin deacetylase and 

p300 as a cortactin acetyl-transferase (Zhang et al., 2008). 

Filamentous (F)-actin in the postsynaptic cytoplasm regulates rapid 

turnover of individual PSD scaffolding molecules, which plays an essential role 

in rapid alterations in the PSD size and composition. Kuriu et al. (2006) 

demonstrated that four major scaffolding molecules, PSD95, GKAP, Shank, and 

PSD-Zip45, show distinct instability in total molecular content per synapse. 

Acute pharmacological disruption of F-actin rapidly eliminated the dynamic 

fraction of GKAP, Shank, and PSD-Zip45, without changing synaptic 

localization of PSD95 and inhibition of F-actin dynamics prevented activity-

dependent redistribution of all three scaffolds (Kuriu et al., 2006). These authors 

also assessed involvement of glutamate receptors in the regulation of PSD 

dynamics and found that genetic manipulations eliminating either NMDA 

receptors or metabotropic glutamate receptors did not primarily influence 

mobility of their binding scaffolds.  

Cortactin not only interacts with F-actin but also binds to Shank proteins 

(Du et al., 1998; Naisbitt et al., 1999) (including Shank1), and in turn, Shank 

interacts, through SAPAP, with PSD95 (Naisbitt et al., 1999). The effect of 

HDACs inhibition with TSA on PSD95 and/or Shank1 clustering in neurons may 

be partially the result of changes in cortactin interaction with F-actin and 

scaffold proteins in hyperacetylation conditions, due to HDAC6 inhibition. In 

addition, acetylation can be responsible for cortactin redistribution, since we 

observed that the area of cortactin clusters was diminished after TSA treatment. 

Considering these evidences, in the next chapter we address the hypothesis 

that cortactin acetylation may play a role in regulating the dendritic clustering of 

PSD95 in hippocampal neurons.  
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Introduction 

Cell motility and directional migration are essential for a wide range of 

cellular processes. These complicated processes require dynamic regulation of 

the actin cytoskeleton, utilizing a network of signaling proteins that coordinate 

regulated changes in the actin architecture. The adaptor protein cortactin is one 

of the key molecules involved in the actin regulation (Ammer and Weed, 2008). 

Cortactin, which is highly enriched in spines where it colocalizes with F-actin 

(Hering and Sheng, 2003; Racz and Weinberg, 2004), has been identified as a 

central player in a number of neuron-specific functions including dendritic spine 

morphogenesis (synaptogenesis) as verified by the observation that its 

downregulation resulted in spine depletion, whereas its overexpression caused 

spine elongation (Hering and Sheng, 2003). The findings of Gray et al., (2005) 

also demonstrated a critical role for the interaction between cortactin and 

dynamin-3 in dendritic spine maturation. These authors showed that disruption 

(or dissociation) of this complex leads to formation of mature dendritic spines 

with postsynaptic proteins, whereas its presence facilitates the formation of 

immature dendritic filopodia (Gray et al., 2005).  

Discovering that cortactin interacts with members of the Shank family, 

scaffold proteins of the postsynaptic density, was an important step to 

understand the role of cortactin at the synapse (Du et al., 1998; Naisbitt et al., 

1999). The binding of Shank, which is linked to both ionotropic and 

metabotropic receptors through various adaptor proteins (Fig.9), to cortactin, 

forms a multiprotein bridge between the cytoskeleton and excitatory receptors 

(reviewed in Cosen-Binker and Kapus, 2006). Furthermore, cortactin 

distribution and therefore postsynaptic cytoskeleton organization, is dynamically 

regulated by synaptic transmission. In fact, some fascinating findings suggested 

that movement of cortactin might be important for activity-dependent 

remodeling of the spine cytoskeleton. Iki et al., (2005) demonstrated that 

overstimulation of NMDA receptors in hippocampal neurons removed cortactin 

and thereby collapsed dendritic spines, an effect due to Src family-mediated 
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tyrosine phosphorylation of cortactin, whereas brain-derived neurotrophic factor 

(BDNF) triggered ERK-mediated serine phosphorylation of cortactin, 

concomitant with its translocation to spines, therefore solidifying synaptic 

transmission. Thus, cortactin may play a role in synaptic plasticity and long term 

potentiation, due to its regulation of ion channels (through Shank) and dynamic 

modification of synapses. 

Recently, cortactin has also been implicated in the regulation of spine 

morphology and synaptic plasticity by dynamic microtubules. The general idea 

is that actin is essential for dendritic spine structure and function. Interestingly, 

new studies revealed that microtubules also enter dendritic spines in both 

hippocampal and cortical neurons (Jaworski et al., 2009) and this microtubule 

invasion into spines is associated with transient morphological changes, such 

as formation of spine head protrusions and spine growth. Additionally, these 

studies showed that cortactin associates with microtubule plus-end binding 

protein EB3, through p140Cap, and this interaction appears to be required for 

EB3-mediated spine expansion. These results raise the possibility that 

cortactin-p140Cap-EB3 interaction can serve as a link between dynamic 

microtubules and the actin cytoskeleton in dendritic spines, which leads to spine 

changes and synaptic plasticity. 

The phosphorylation of cortactin and resulting functional consequences has 

been an intense area of study for many years. Tyrosine phosphorylation of 

cortactin at specific residues was hypothesized to lead to a conformational 

change in the protein (Huang et al., 1997b; Perrin et al., 2006), possibly 

affecting the ability of cortactin to bind to and cross-link actin filaments. In 

addition to tyrosine phosphorylation, cortactin is also a substrate for several 

serine/threonine kinases, and several serine residues were identified as 

phosphorylation targets (Campbell et al., 1999; Webb et al., 2006), with 

functional consequences (Martinez-Quiles et al., 2004). Recent studies 

demonstrated that cortactin is also a target for acetylation. Zhang and 

colleagues (2006) showed that cortactin is a substrate for HDAC6 and identified 
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p300-CBP-associated factor (PCAF) as a potential cortactin acetyl-transferase 

(Zhang et al., 2008). Cortactin acetylation has functional consequences: 

cortactin deacetylation enhances the ability of cortactin to bind F-actin by 

modulating a “charge patch” in its repeat region, whereas acetylation of 

cortactin ablates the interaction between cortactin and F-actin, resulting in 

decreased cell migration (Zhang et al., 2007). These evidences suggest that 

cortactin activity can be regulated by both phosphorylation and acetylation. In 

fact, since cortactin influences actin organization through interactions with 

several proteins that promote F-actin assembly, these interactions can be 

regulated, not only by cortactin phosphorylation, but also acetylation. 

In this chapter we examine how acetylation regulates cortactin localization 

and function in hippocampal neurons. Our studies are focused on how cortactin 

acetylation regulates the clustering of the postsynaptic scaffolding protein 

PSD95, a marker for synaptic strength, in the dendrites of cultured hippocampal 

neurons. Furthermore, we addressed the effects of cortactin acetylation on its 

tyrosine phosphorylation, as well as on its interactions with multiple synaptic 

binding partners. Finally, we characterized the effect of BDNF, which promotes 

an increase on PSD-95 in dendritic spines (Yoshii &Constantine-Paton, 2007), 

on the acetylation of cortactin. Our data support a function for cortactin 

acetylating in the regulation of the clustering of PSD95. 

 

 

 

 

 



Chapter 4   

 

102 

Results 

Acetylation affects synaptic localization of cortactin 

In order to test whether neuronal cortactin is regulated by acetylation, we 

assessed the protein levels of acetylated cortactin in hippocampal neurons 

cultured at high-density (8.9 x 10
4
 cells/cm2) and treated with the classes I and 

II HDAC inhibitor Thricostatin A (TSA), or vehicle, for 12 hours. Protein levels 

were assessed by western blot analysis using an antibody against acetylated 

cortactin (a kind gift of Xiaohong Zhang and Edward Seto) and an antibody for 

total cortactin. Neuronal treatment with TSA led to an increase on the 

acetylation level of cortactin (Fig. 17). 

 

Fig. 17 – Treatment with the classes I and II HDAC inhibitor TSA promotes 
cortactin acetylation in hippocampal neurons. Hippocampal neurons at 15 DIV 

were treated with vehicle or TSA (400 ng/ml) for 12hr. Western blot was performed 
using an anti-acetylated cortactin and an anti-cortactin antibodies. Quantitative 

analysis was performed with ImageQuant. Data are presented as average  S.E.M. 
of ten experiments performed in ten independent preparations, and are expressed as 
a percentage of cortactin acetylation in control conditions. Data were statistically 
analysed with Graphpad software, using One-way ANOVA, followed by Dunnett’s 
Multiple Comparison Test. *p<0.05. 

 



Cortactin Acetylation Regulates PSD95 Dendritic Clustering 

   103 

Cortactin has been described to concentrate with F-actin to dendritic 

spines of hippocampal neurons (Hering and Sheng, 2003). In the previous 

chapter we described that TSA treatment, which leads to an overall increase 

on protein acetylation, decreased the area of synaptic clusters of cortactin (Fig. 

16). Since cortactin is a substrate for HDAC6 (inhibited by TSA) (Zhang et al., 

2007), and as a consequence, is more acetylated when HDACs are inhibited 

(Fig. 17), we used immunocytochemical methods to characterize the 

localization of acetylated cortactin in rat hippocampal neurons in culture (15 

DIV). Hippocampal neurons 15 DIV were double-stained with antibodies for the 

postsynaptic marker PSD95 and for cortactin (Fig 18 A). Cortactin was found to 

strongly colocalize with PSD95 wich is in accordance with previous studies, 

proving that it is highly enriched synaptically in cultured rat hippocampal 

neurons.  

 

Fig. 18 – Acetylated cortactin is less abundant in synapses. Hippocampal 

neurons at 15 DIV were stained with an antibody for cortactin (A), or an antibody for 
acetylated cortactin (B). Synaptic localization was determined by colocalization with 
the excitatory postsynaptic marker PSD95. Scalebar: 2 µm. 
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Additionaly, hippocampal neurons were stained using antibodies for PSD95 and 

acetylated cortactin; acetylated cortactin immunoreactivity is absent from 

dendritic spines, and concentrates in the cell bodies of neurons and in dendritic 

shafts (Fig. 18 B). 

Immunolabelling of cultured hippocampal neurons for acetylated cortactin 

demonstrated that the protein is distributed to shafts of dendrites but is not 

accumulated at synaptic sites, since it shows little colocalization with the 

postsynaptic protein PSD95. To further evaluate the subcellular localization of 

acetylated cortactin, we biochemically isolated postsynaptic densities (PSDs) 

from hippocampi of adult rats. We first used western blotting to assess the level 

of enrichment of PSD95 in PSD fractions, and the presence of the presynaptic 

marker synaptophysin in these fractions (Fig. 19IA). Western blot analysis 

indeed showed that synaptophysin is enriched in synaptosomes and crude 

synaptic vesicles fraction and not in the PSDs, whereas PSD95 is enriched in 

the PSD preparations and is absent in the crude synaptic vesicles fraction (Fig. 

19IA). Taken together these evidences indicate that the subsynaptic fractions 

obtained display the expected differential expression of post- and presynaptic 

proteins. When compared with total cortactin, acetylated cortactin is less 

enriched in the synaptic fractions, since we observed smaller amounts in the 

crude synaptosomes and reduced amounts in the isolated PSDs (Fig. 19IB), 

and these results were substantiated by normalizing the levels of total or 

acetylated cortactin to actin levels in each fraction (Fig. 19IC). Additionally, to 

confirm the subcellular localization of acetylated cortactin, we used a 

preparation of synaptic bodies, termed “synaptoneurosomes”, which contains 

the presynaptic (synaptosome) and postsynaptic (neurosome) vesicularized 

components. Reports suggest that synaptoneurosomes are physiologically 

active synapses and can be useful in studying synaptic events (Titulaer and 

Ghijsen, 1997). Using western blot to assess the level of acetylated cortactin in 

synaptoneurosome fractions (Fig. 19IIA), we found that acetylated cortactin is 

less abundant in synaptoneurosomes than in total hippocampal homogenates 

(Fig. 19IIB). We also used western blotting to assess the level of enrichment of 
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PSD95 and of the presynaptic marker VGLUT1 in synaptoneurosome fractions 

(Fig. 19 IIA), in order to validate the synaptoneurosomes preparation. Both 

proteins are enriched in the synaptoneurosome fractions. 

 

 

Taken together, these data suggest that acetylation of cortactin triggers its 

redistribution from spines to shafts of dendrites. 

Fig. 19 – Acetylated cortactin is less abundant in synaptic fractions. I) PSD 

preparations from rat hippocampus. A) Synaptic profile of non-nuclear fraction (S1), 
crude synaptosomes (P2), crude synaptical vesicle fraction (S3) and postsynaptic 
densities (PSDs) isolated from rat hippocampus. Western blot was performed using 
the following antibodies: anti-PSD95, anti-synaptophysin, anti-acetylated cortactin 
antibody, anti-cortactin and anti-actin. B) Quantitative analysis was performed with 
ImageQuant. Data represent one experiment, and is expressed as a percentage of 
cortactin acetylation in the S1 fraction. Equal amounts of protein (9 µg) were applied 
to each lane. C) The plot represents protein enrichment in each fraction, normalized 
to actin levels, and is expressed as a percentage of the S1 fraction. II) 
Synaptoneuromose preparations from rat hippocampus A) Western blot profiles of 
total homogenate (Hm) and synaptoneurosome fractions (Stefanovic et al.) from rat 
hippocampus were performed using an anti-PSD95, anti-VGLUT1, anti-acetylated 
cortactin antibody and an anti-cortactin antibody. B) Quantitative analysis was 

performed with ImageQuant. Data are presented as average  S.E.M. of five 
experiments performed in independent preparations, and are expressed as a 
percentage of cortactin acetylation in total homogenate condition. Data were 
statistically analysed with Graphpad software, using paired student t-test. *p<0.05.  
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Acetylation of cortactin: role on PSD95 clustering 

It has been shown that cortactin plays a role in the morphogenesis of 

spines. Hering & Sheng (2003) observed that knockdown of cortactin by short-

interfering RNA (siRNA) results in depletion of dendritic spines in hippocampal 

neurons, whereas overexpression of cortactin caused elongation of spines. 

Correlating with this loss of spines, these authors also observed that the 

density of F-actin and PSD95 clusters on dendrites of cortactin–deficient 

neurons were diminished greatly. This effect of cortactin depletion on PSD95 

clustering can be an indirect effect of the collapse of spines, or a specific effect 

that results from the loss of cortactin. Having observed that neuronal cortactin 

is a substrate for acetylation, we tested whether acetylation of cortactin can 

influence the clustering of PSD95, a scaffolding protein which is a member of 

the membrane-associated guanylate kinase (MAGUK) family, and which 

clusters at the synapse NMDA receptors as well as complexes of AMPA 

receptors with TARPs.  

To perform these experiments, we resorted to specific acetylation mimetic 

forms of cortactin. Zhang et al. (2007) identified the repeat region of cortactin 

as the target for acetylation. Additionally, these authors identified eleven lysine 

residues within the protein targeted for acetylation, and eight of the targeted 

lysine residues are located in this repeat region. Therefore, in order to mimic 

the non-acetylated form of cortactin we used a charge preserving cortactin 

mutant in which all of the nine repeat-region lysines were mutated to arginine 

(9KR), and which is able to efficiently bind to F-actin. To mimic the acetylated 

form of cortactin we used a charge-neutralizing cortactin mutant in which all 

nine of the repeat-region lysine residues were mutated to glutamine (9KQ) and 

which, therefore, is not able to bind to F-actin (kind gifts of Xiaohong Zhang 

and Edward Seto). 

Hippocampal neurons cultured at low-density were transfected at 7 DIV 

with GFP together with wild-type FLAG-tagged cortactin, or the FLAG-tagged 

mimetic mutants for acetylated or deacetylated cortactin. At 15 DIV, when 
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neurons have established mature synapses, the preparations were fixed and 

neurons were triple-stained with antibodies against PSD95, the FLAG epitope 

and MAP2 (Fig. 20A). Transfected neurons were identified by GFP 

fluorescence, and the FLAG signal was observed for confirmation of 

overexpression of the cortactin constructs. Quantitative analysis of the PSD95 

signal showed that in neurons transfected with the mutant that mimics the 

deacetylated form of cortactin (9KR) the fluorescence intensity and area of 

PSD95 clusters are decreased (Fig. 20B), whereas no changes relatively to 

control cells (transfected with the empty vector) were observed in neurons 

expressing wild-type cortactin or the mutant form of cortactin that mimics the 

acetylated protein (9KQ). No significant difference was detected in the number 

of PSD95 puncta observed in the neurites of cells transfected with 

deacetylated mimetic mutant (Fig 20B). Conversely, we found that the number 

of PSD95 puncta was increased in hippocampal neurons expressing wild-type 

cortactin (Fig. 20B). These data suggest that acetylation of cortactin may be 

required for the clustering of PSD95 in synapses. 

In the experiments reported in Fig. 20, we overexpressed wild-type 

cortactin or the acetylation mutants for cortactin in hippocampal neurons 

expressing endogenous cortactin. Therefore, interpretation of the observed 

effects is confounded by the functional role of endogenous cortactin, which is 

likely a combination of acetylated and non-acetylated cortactin. To further 

assess the effect of cortactin acetylation on excitatory synapses we used a 

short-hairpin RNA (shRNA) sequence against cortactin to knockdown the 

expression of endogenous cortactin. We used a lentiviral vector, 

pLentiLox3.7(CMV)EGFP (pLL3.7), which was engineered by introducing the 

mouse U6 promoter upstream of a cytomegalovirus promoter-based GFP 

expression cassette to create a vector that simultaneously produces cortactin 

shRNA and GFP, allowing us to easily identify shRNA transfected neurons. 

The sequence used was as follows: rat cortactin shRNA, 5′-

CACTGCTCACAAGTGGAC -3′ (Hering and Sheng, 2003). Hippocampal 

neurons in culture were transfected at 12 DIV with cortactin-shRNA and 



Chapter 4   

 

108 

analyzed at 15 DIV for cortactin expression (Fig. 21). The cortactin-shRNA 

construct decreased the expression of cortactin to a great extent, specially at 

dendrites and spines, even though some expression of cortactin is still 

detected in the cell body.  
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The clustering of PSD95 was evaluated in control neurons and in neurons 

expressing cortactin-shRNA (Fig. 22A). In agreement with what was previously 

suggested by the study of Hering & Sheng (2003), the knockdown of cortactin in 

hippocampal neurons at this age results in a decrease in the density (70.29 ± 

29.9 % of GFP) and size (62.16 ± 29 % of GFP) of PSD95 clusters (Fig. 22B). 

 

Fig. 20 - Acetylation of cortactin may be required for PSD95 clustering. A) 

Hippocampal neurons were transfected at 7 DIV with GFP along with FLAG, 
cortactinWT-FLAG, cortactin9KR-FLAG or cortactin9KQ-FLAG. Neurons (15 DIV) 
were stained for FLAG, MAP2 and for the postsynaptic marker PSD95. Transfected 
neurons, identified by GFP fluorescence, were analysed for PSD95 cluster 
fluorescence intensity, number and area, per dendritic area. B) Results are presented 
as % of control cells (transfected with empty vector), and are averaged from four 
independent experiments (n≥29 cells). Errorbars, ± S.E.M. Significance, *p<0.05, 
**p<0,01, relative to non-transfected neurons (One-way ANOVA followed by 
Dunnett’s Multiple Comparison Test). Scalebar: 10 µm, insert: 2 μm. 

Fig. 21 – shRNA inhibition of cortactin expression. Hippocampal neurons at 15 

DIV, transfected with pLL3.7EGFP (A) or pLL3.7EGFP-cortactin-shRNA (B) at 12 
DIV, were stained with an antibody for cortactin. Hippocampal neurons transfected 
with cortactin-shRNA showed a strong decrease in the staining intensity for cortactin. 
Scalebar: 10 µm, insert:2 µm 
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In order to exclude the contribution of off-target effects of the cortactin-

shRNA, a rescue construct was generated with silent mutations in the cortactin 

region targeted by the cortactin-shRNA. The mRNAs rescue experiments are 

usually used to demonstrate the specificity of a knockdown. In these 

experiments, an shRNA is co-administered with a construct that encodes the 

protein which the shRNA putatively knocked down. This rescue construct 

should not be targeted by the shRNA. In fact, in neurons co-transfected with 

the cortactin-shRNA plasmid and the cortactin construct refractory to cortactin-

shRNA-mediated knockdown (Cortactin-wt*) the levels of PSD95 were 

recovered (Fig. 22B). In these neurons, the density, area and fluorescence 

intensity of PSD95 clusters were rescued to the levels observed in neurons 

transfected with the empty pLentiLox 3.7 vector (Fig. 22B). These results 

indicate that the defects observed for PSD95 clustering with cortactin-shRNA 

are specifically due to the loss of cortactin. 

Knowing that cortactin knockdown causes loss of PSD95 clusters, and 

considering the effect of cortactin acetylation mutants on PSD95 clustering 

(Fig. 20), we tested the ability of the acetylation mutants of cortactin to rescue 

the decrease on PSD95 clustering observed upon loss of endogenous 

cortactin. For this purpose, we introduced silent mutations in the acetylation 

mutant constructs of cortactin to render them insensitive to the cortactin-

shRNA, and co-expressed them with the cortactin-shRNA plasmid in cultured 

hippocampal neurons. Transfected neurons, identified by the GFP 

fluorescence, were evaluated for PSD95 clustering. Hippocampal neurons 

cultured at low-density were transfected at 12 DIV (and analyzed at 15 DIV) 

with the cortactin-shRNA construct together with the cortactin-shRNA-resistant 

mimetic mutants for acetylated (Cortactin-9KQ*) or deacetylated (Cortactin-

9KR*) cortactin. After fixation, neurons were stained with an antibody against 

PSD95, an antibody against the FLAG epitope (to check for co-expression of 

the cortactin constructs) and also an antibody against MAP2 (Fig. 22A).  
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Fig. 22 – Effects of cortactin shRNA on the number, area and fluorescence 
intensity of PSD95 clusters, in hippocampal neurons. A) Hippocampal neurons 

were transfected at 12 DIV with pLentiLox3.7, with the cortactin-shRNA construct or 
co-transfected with the cortactin-shRNA construct along with constructs encoding 
shRNA resistant cortactinWT-FLAG*, cortactin9KR-FLAG* or cortactin9KQ-FLAG*. 
After fixation neurons were stained for cortactin or the FLAG epitope, MAP2 and for 
the postynaptic marker PSD95. Transfected neurons at 15 DIV, identified by GFP 
fluorescence, were analysed for PSD95 cluster number, area and fluorescence 
intensity. B) Results are presented as % of GFP-expressing control cells, and are 
averaged from two independent experiments (n≥20 cells). Errorbars, ± S.E.M. 
Significance, *p<0.05, **p<0,01, relative to GFP-transfected neurons (One-way 
ANOVA followed by Dunnett’s Multiple Comparison Test). Scalebar: 10 µm, insert: 2 
μm. 
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Expression in hippocampal neurons of the acetylated cortactin mimetic mutant 

rescued the cortactin-shRNA-mediated decrease on the area and density of 

PSD95 clusters (but not their fluorescence intensity) (Fig. 22B). On the other 

hand, expression of deacetylated mimetic form of cortactin could not rescue the 

cortactin-shRNA-mediated decrease on PSD95 clustering. These observations 

indicate that the acetylation of cortactin is important for its effect on PSD95 

clustering.  

Expression of wild type cortactin or of the acetylated cortactin mimetic 

mutant rescue the PSD95 clustering phenotype produced by cortactin-shRNA, 

whereas the deaceylated cortactin mimetic mutant is uncapable of such 

achievement. These evidences unravel an important function of cortactin 

acetylation in synapse maturation. As mentioned previously, dendrites of 

cortactin-deficient neurons not only showed a decrease in the density of 

protrusions and of PSD95 clusters, but also on the density of F-actin clusters 

(Hering & Sheng, 2003). Therefore, we sought to investigate if acetylation of 

cortactin could also promote changes in the density and size of F-actin 

clusters.  

Hippocampal neurons cultured at low-density were transfected at 7 DIV 

with GFP together with cortactin constructs, including the mimetic forms for 

deacetylated and acetylated cortactin (9KR and 9KQ, respectively). After 

fixation at 15 DIV, neurons were stained with antibodies against the FLAG 

epitope and MAP2 and with Alexa 555 conjugated-phalloidin (Fig. 23A). 

Phalloidin binds to F-actin and is therefore a very useful tool for investigating 

the distribution of F-actin in cells. Surprisingly, analysis of F-actin clusters 

showed no significant difference in the number of clusters observed in the 

neurites of cells transfected with any of the cortactin constructs (Fig. 23B and 

C). The same experiment should be performed using an antibody against 

VGLUT1, to serve as a presynaptic marker. Colocalization of F-actin with 

VGLUT1 could be very useful to understand the effect of cortactin acetylation 

in synaptic F-actin clusters.  
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Fig. 23 – Acetylation of cortactin does not change the number or size of 
dendritic F-actin clusters in hippocampal neurons A) Images of 15 DIV 

hippocampal neurons expressing GFP alone, or GFP along with different cortactin 
constructs. Hippocampal neurons were transfected at 7 DIV with GFP alone, or GFP 
along with FLAG, cortactinWT-FLAG, cortactin9KR-FLAG or cortactin9KQ-FLAG. 
Dendritic spine morphology was observed with GFP fluorescence (green). 
Polymerized F-actin was detected in dendrites with rhodamine-coupled phalloidin 
(red). B) Transfected neurons, identified by GFP fluorescence, were analysed for F-
actin cluster number. Data represent the average number of F-actin clusters per 
dendritic area. Results are presented as % of GFP-transfected control cells, and are 
averaged from three independent experiments (n≥32 cells). C) Analysis of size 
distribution for dendritic F-actin cluster. Errorbars, ± S.E.M. (One-way ANOVA). 
(scalebar: 10 µm, insert: 2μm). 
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We then tested whether cortactin acetylation has an impact on the synaptic 

localization of AMPA receptors. We resorted to quantitative 

immunofluorescence analysis of the expression of synaptic cell surface GluA1 

AMPA receptor subunit in hippocampal neurons cultured at low-density and 

transfected at 7 DIV with GFP together with wild type cortactin, or the mimetic 

mutants for acetylated (9KQ) or deacetylated (9KR) cortactin. Neurons were 

live-stained at 15 DIV with an antibody against the N-terminal extracellular 

region of GluA1. After fixation, neurons were stained with an antibody against 

the presynaptic marker for excitatory synapses VGLUT1 (Fig. 24A).  
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Analysis of GluA1 surface expression showed no significant differences in the 

number, area or fluorescence intensity of total or synaptic (VGLUT1 co-

localized) GluA1 clusters observed in the neurites of cells transfected with the 

cortactin constructs, compared to cells transfected with the empty vector (Flag) 

(Fig. 24B).  VGLUT1 expression was also assessed, and no differences were 

observed concerning any of the analyzed parameters (Fig. 24B). These results 

suggest that, despite altering PSD95 clustering at synapses, acetylation of 

cortactin does not have an effect on surface GluA1 levels. 

For many years, the phosphorylation of cortactin and the resulting 

functional consequences have been an intense area of study. Tyrosine (Y) 

phosphorylation of cortactin has been widely studied, and several residues 

have been identified as targets of phosphorylation. Phosphorylation of Y421, 

Y466 and Y482 has known biochemical and cellular consequences with regards 

to actin dynamics, possibly affecting the ability of cortactin to bind to and cross-

link actin filaments (Ammer and Weed, 2008). Considering these evidences, we 

hypothesized that the acetylation status of cortactin could regulate cortactin 

Y421 phosphorylation, since acetylation also interferes with the ability of 

cortactin to interact with F-actin (Zhang et al., 2007) In order to test this 

hypothesis, HEK 293 FT cells were transfected with the different FLAG-tagged 

constructs of cortactin, wild type and acetylation mimetic forms, and the levels 

of cortactin phosphorylated at Y421 were assessed by western blot. Notably, 

cortactinY421 phosphorylation levels are much higher in the deacetylated 

Fig. 24 - Acetylation of cortactin does not change the number, area or intensity 
of surface GluA1 clusters in hippocampal neurons. A) Hippocampal neurons 

were transfected at 7 DIV with GFP along with FLAG, cortactinWT-FLAG, 
cortactin9KR-FLAG or cortactin9KQ-FLAG. Neurons were live-stained for surface 
GluA1 and, after fixation, for MAP2 and for the presynaptic marker VGLUT1. 
Transfected neurons, identified by GFP fluorescence, were analysed for total and 
synaptic surface GluA1, as well as total VGLUT1 cluster fluorescence intensity, area 
and number, per dendritic area. Synaptic GluA1 is defined as GluA1 signal that 
overlaps with. B) Results are presented as % of control cells, transfected with the 
empty vector (FLAG), and are averaged from five independent experiments (n≥27 
cells). Errorbars, ± S.E.M. (One-way ANOVA ). (scalebar: 10 µm, insert: 2 μm). 
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cortactin mimetic mutant when compared with the acetylated cortactin mimetic 

mutant (Fig. 25).  

These results strongly suggest that cortactin acetylation regulates its 

phosphorylation at tyrosine residues, which has consequences with regard to 

actin dynamics (reviewed in Ammer and Weed, 2008). Tyrosine 

phosphorylation of cortactin has been shown to increase cell motility and 

invasion in vivo, but has been reported to have both positive and negative 

effects on actin polymerization in vitro (Martinez-Quiles et al., 2004; Tehrani et 

al., 2007). A recent study showed that tyrosine phosphorylation of cortactin 

promotes formation of lamellipodial protrusions and cell migration through an 

effect on cell adhesion (Kruchten et al., 2008), This study suggests that 

cortactin phosphorylated at tyrosine residues increases the turnover of focal 

adhesions by promoting focal adhesion disassembly. Interestingly, this study 

raises the hypothesis for a function of cortactin other than its role as an actin 

nucleation promoting factor. 
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Deacetylated cortactin associates with Shank1 and p140Cap 

in an heterologous system 

Given the evidences that cortactin phosphorylation can regulate its 

interactions with SH3 binding proteins, and our observation that cortactin 

acetylation regulates its phosphorylation state, we tested whether acetylation of 

cortactin interferes with its binding to synaptic proteins. In order to study the 

interaction between cortactin in its acetylated and deacetylated forms and 

known synaptic interactors we performed co-immunoprecipitation experiments 

in an heterologous system. It has been showed that cortactin interacts through 

its SH3 domain with the Shank family of proteins that are localized to the PSD 

of excitatory synapses (Naisbitt et al., 1999), and through this interaction 

cortactin may stabilize postsynaptic clusters of glutamate receptors during 

synaptogenesis. Another known cortactin interactor is p140Cap, a regulator of 

the Src tyrosine kinase (Di Stefano et al., 2007). p140Cap also interacts with 

(growing) microtubule plus-end, through EB3 tracking protein and was shown to 

be an abundant PSD protein (Jaworski et al., 2009). The current idea is that 

association between EB3-bound microtubule ends and p140 controls Src 

kinase activity and regulates cortactin function, which could lead to Arp2/3 

complex activation and spine head growth (Hotulainen and Hoogenraad, 2010). 

Considering the two different types of cortactin interaction (to scaffold proteins 

and to cytoskeleton related proteins), we were interested in determining if 

Fig. 25 - Cortactin acetylation regulates its phosphorylation at Tyrosine 421. 

Wild-type FLAG-tagged cortactin or the FLAG-tagged cortactin acetylation mutant 
constructs were transfected in HEK 293FT cells. Cortactin phosphorylation levels 
were assessed by Western blot using an antibody against phosphorylated cortactin 
at Tyrosine 421, and normalized to total cortactin levels using an anti-FLAG epitope 
antibody. Quantitative analysis was performed with ImageQuant. Results are 
presented as % of wt cortactin, and are averaged from seven independent 
experiments. Errorbars, ± S.E.M.  Statistical significance was determined by One-
Way ANOVA, followed by the Bonferroni’s and Dunnett’s Multiple Comparison Tests. 
** indicates a significant difference from the control with p<0.01 (Dunnett’s post-hoc 
test) and ## indicates a significant difference from control and cort9KR-FLAG with 
p<0.01 (Bonferroni’s post-hoc test). 
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cortactin modification by acetylation could interfere with the binding to either 

Shank1 or p140Cap proteins. HEK 293 FT cells were co-transfected with the 

FLAG-tagged wild type or acetylation mimetic forms of cortactin, along with 

GFP-tagged Shank1 (a kind gift from Carlo Sala) or GFP-tagged p140Cap (a 

kind gift from Casper C. Hoogenraad). Immunoprecipitation of FLAG-tagged 

constructs using a specific antibody to the FLAG epitope resulted in the co-

precipitation of both Shank1 and p140Cap, as assessed by western blot for 

GFP (Fig. 26). Notably, both p140Cap and Shank1 coimmunoprecipitated to 

higher levels with the deacetylated cortactin mimetic mutant than with the wild-

type cortactin or with the mutant that mimics acetylated cortactin. These results 

confirm that cortactin interacts with both Shank 1 and p140Cap, and suggest 

that these interactions are modulated by the acetylation state of cortactin. 

 

Fig. 26 - Deacetylated cortactin associates with Shank1 and p140Cap in HEK 
293FT cells. Cortactin acetylation mutant constructs were co-transfected with 

p140Cap-GFP (A) or Shank-GFP (B) in HEK 293FT cells. Cortactin constructs were 
immunoprecipitated using a specific antibody against their tag (FLAG), as indicated. 
Co-immunoprecipitations were assessed by Western blot. (HEK: non transfected 
cells; IP+: cells transfected with cortactinwt-FLAG only; IP-: Cells transfected with 
p140Cap-GFP (A), or Shank1-GFP (B) only; Wt: cells transfected with GFP tagged 
construct plus cortactinWt-FLAG; 9KR: cells transfected with GFP tagged construct 
plus cortactin9KR-FLAG; 9KQ: cells transfected with GFP tagged construct plus 
cortactin9KQ-FLAG. The efficiency of immunoprecipitation was assessed by probing 
the immunoprecipitated samples for the FLAG epitope (lower panels), whereas the 
coimmunoprecipitation was assessed using an anti-GFP antibody (upper panels).  
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Effect of BDNF on cortactin acetylation 

There are no described stimuli in neurons, or in other cell types, that 

regulate acetylation of cortactin. The neurotrophin BDNF plays a key role in the 

regulation of the structure and function of the glutamatergic synapses (Carvalho 

et al., 2008). BDNF is secreted at glutamatergic synapses in response to 

activity (Pang et al., 2004), increases synaptic AMPA and NMDA receptors 

(Caldeira et al., 2007), induces the transport of PSD95 to dendrites (Yoshii and 

Constantine-Paton, 2007), and increases PSD95 in dendritic spines (Hu et al., 

2011). BDNF has also been shown to promote cortactin redistribution in 

neurons, an effect dependent on MAP kinase activation and cortactin 

phosphorylation (Iki et al., 2005). Therefore, we tested whether BDNF could 

also change the acetylation state of cortactin in hippocampal neurons. 

 

 

Fig. 27 – Acetylation of cortactin is increased in response to BDNF treatment 
whereas tubulin acetylation is not affected. 15 DIV neurons (A) and 7 DIV neurons 

(B) were incubated with 100 ng/ml BDNF for 60 min. Western blot was performed 
using an anti-acetylated cortactin antibody, and an anti-cortactin antibody. C) 
Hippocampal neurons (15 DIV) were treated with BDNF (100 ng/ml) for 60 min. 
Western blot was performed using an anti-acetylated tubulin antibody, and an anti-
cortactin antibody. Quantitative analysis was performed with ImageQuant. Data are 

presented as average  S.E.M. of several experiments (n≥5) performed in 
independent preparations, and are expressed as a percentage of cortactin and tubulin 
acetylation in control conditions. Data were statistically analysed with Graphpad 
software, using paired student t-test. **p<0.01. 
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The acetylation of cortactin was assessed by western blot in control 

hippocampal neuron extracts as well as in extracts of hippocampal neurons 

treated with 100 ng/ml BDNF for 60 minutes. Neuron treatment with BDNF led 

to increased acetylation of cortactin in relatively mature hippocampal neurons 

(15 DIV) (Fig. 27A), whereas the same treatment did not significantly alter the 

acetylation level of cortactin in developing neurons (7 DIV) (Fig. 27B). To 

determine the specificity of the BDNF effect on cortactin, we assessed the 

acetylation levels of tubulin, another cytoskeleton protein targeted for 

acetylation. We observed that acetylation of tubulin is not increased in response 

to BDNF stimulation (Fig. 27C). 

Iki and colleagues (2005) observed that cortactin localization within neurons 

is not only regulated by BDNF, but also by NMDA receptor activity. NMDA 

receptor activation induced cortactin redistribution from dendritic spines to the 

shaft, which was mediated by cortactin phosphorylation by Src-receptor tyrosine 

kinases in hippocampal cultures. Previous studies have also reported that 

NMDA receptor activation induces loss of cortactin from spines. Hering and 

Sheng (2003) showed that glutamate excitation induces the specific 

translocation of cortactin from postsynaptic sites in dendritic spines, and this 

glutamate-induced dispersal of cortactin is mediated by NMDA receptors. 

Therefore, we tested whether glutamate could also promote acetylation of 

cortactin in hippocampal neurons. 

Western blot was used to assess the acetylation of cortactin in control 

hippocampal neuron extracts as well as in extracts of hippocampal neurons 

treated with 100 µM glutamate for 15 minutes. The levels of acetylated cortactin 

were increased in relatively mature hippocampal neurons (15 DIV) treated with 

glutamate (Fig. 28A), whereas the acetylation levels of tubulin were not altered 

in response to glutamate treatment (Fig. 28B), showing the specificity of the 

glutamate effect on cortactin. 
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BDNF has been shown to promote the translocation of cortactin to dendritic 

spines, through an effect dependent on ERK activity (Iki et al. 2005). In order to 

compare the effect of BDNF treatment on cortactin acetylation vs 

phosphorylation, we assessed the levels of phosphorylated cortactin at tyrosine 

421, since it has already been shown that tyrosine 421 (along with tyrosines 

466 and 481) is phosphorylated by Src family kinases (Huang et al., 1998). 

Hippocapampal neurons in culture at 15 DIV were treated with BDNF or H2O2. 

Treatment of neuronal cultures with H2O2 activates Src family tyrosine kinases 

directly (Martinez et al., 2003), inducing a dramatic increase in tyrosine 

phosphorylation of cortactin (Iki et al., 2005). So we used it as a positive control 

for Src induced tyrosine phosphorylation (Fig. 29).  

Fig. 28 – Acetylation of cortactin is increased in response to glutamate 
treatment. 15 DIV neurons were incubated with glutamate (100 µM) for 15 min. A) 

Western blot was performed using an anti-acetylated cortactin antibody, and an anti-
cortactin antibody. B) Western blot was performed using an anti-acetylated tubulin 
antibody, and an anti-cortactin antibody. Quantitative analysis was performed with 

ImageQuant. Data are presented as average  S.E.M. of seven experiments 
performed in independent preparations, and are expressed as a percentage of 
cortactin (A) and tubulin (B) acetylation in control conditions. Data were statistically 
analysed with Graphpad software, using paired student t-test. *p<0.05. 
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Western blot analysis shows that in fact H2O2 significantly increases the 

levels of phosphorylated cortactinY421. BDNF treatment also leads to an 

increase in the Y421 phosphorylated levels, although this effect is not 

statistically significant, even though thirteen independent experiments were 

performed (Fig. 29). Considering these evidences, BDNF promotes both 

acetylation and phosphorylation of cortactin, but the effect is more pronounced 

when considering acetylation, potentially because cortactin acetylation 

negatively regulates its tyrosine phosphorylation. 

Fig. 29 – Phosphorylation of cortactin at tyrosine 421 is increased in response to 
BDNF treatment. 15 DIV neurons were incubated with 100 ng/ml BDNF for 60 min, or 

100 µM H2O2 for 60 min. Western blot was performed using an antibody against 
phosphorylated cortactin at tyrosine 421, and an antibody against cortactin. 
Quantitative analysis was performed with ImageQuant. Data are presented as average 

 S.E.M. of thirteen experiments performed in independent preparations, and are 
expressed as a percentage of cortactinY421 phosphorylation in control conditions. 
Data were statistically analysed with Graphpad software, using One-Way ANOVA, 
followed by Dunnett’s Multiple Comparison Test . *p<0.05. 
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Having observed that BDNF treatment leads to acetylation of cortactin, we 

then investigated how BDNF regulates cortactin acetylation. We focused on the 

various signalling pathways activated by activation of the TrkB receptors by 

BDNF (namely PLC, PI3K and MEK), and acetylation of cortactin was 

evaluated, in 15 DIV cultured hippocampal neurons, in the presence or absence 

of specific inhibitors of each pathway: U0126 for the MEK1/2 pathway, LY29400 

for the PI3K pathway, and U73122 for the PLC pathway (Fig. 30). 

 

Fig. 30 – BDNF promotes the acetylation of cortactin and this effect is 

dependent on the MEK1/2 and PLC pathways. 15 DIV hippocampal neurons were 

incubated with or without 100 ng/ml BDNF for 60 min, in the presence or absence of 
specific inhibitors (200 nM) of BDNF activated intracellular signaling pathways. When 
present, the inhibitor was preincubated 30 min before stimulation with BDNF. 
Western blot was performed using an anti-acetylated cortactin antibody, and an anti-
cortactin antibody. Quantitative analysis was performed with ImageQuant. Data are 

presented as average  S.E.M. of several experiments performed in independent 
preparations, and are expressed as a percentage of cortactin acetylation in control 
conditions. Statistical significance was determined by One-Way ANOVA, followed by 
the Bonferroni’s and Dunnett’s Multiple Comparison Tests. ** indicates a significant 
difference from the control with p<0.01 (Dunnett’s post-hoc test); # and ## indicate a 
significant difference from BDNF60’ with p<0.05 and p<0.01, respectively 
(Bonferroni’s post-hoc test). 
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We found that BDNF promotes the acetylation of cortactin through a 

complex effect, dependent on the MEK1/2 and PLC pathways (Fig. 30). The 

LY29400 compound used to inhibit the PI3K pathway by itself increased the 

acetylation level of cortactin; therefore, our results concerning the involvement 

of this pathway in the observed effect are inconclusive. These evidences 

suggest that BDNF possibly regulates the synaptic structure at least partially by 

changing the acetylation level of cortactin. 
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Discussion 

Several conclusions about the relationship between cortactin acetylation 

and synaptic clustering of PSD95 can be drawn from the results presented in 

this chapter: 

1) Cortactin is acetylated in neurons, and acetylated cortactin is 

redistributed from dendritic spines to dendrites and the cell body. BDNF 

promotes cortactin acetylation in hippocampal neurons 15 DIV. 

2) Cortactin acetylation regulates PSD95 clustering, but not the 

size and density of F-actin clusters in cultured hippocampal neurons. 

3) Acetylated cortactin can rescue the decrease on PSD95 

clustering mediated by loss of cortactin, which is not rescued by the 

deacetylated form of cortactin. 

4) Acetylation of cortactin is correlated with lower phosphorylation 

at tyrosine 421 and with decreased interaction with p140Cap and 

Shank1 interaction partners. 

We confirmed that cortactin is in fact a substrate for 

acetylation/deacetylation in neurons. Using the specific HDAC inhibitor TSA, we 

determined that the levels of actetylated cortactin in relatively mature 

hippocampal neurons were increased. Zhang et al. (2007) showed that 

inhibition of HDAC6 activity led to cortactin hyperacetylation, and consequently 

changed the F-actin binding activity of cortactin, influencing actin-dependent 

cell motility. These authors also identified SIRT1 (a class III histone 

deacetylase) as a cortactin deacetylase and p300 as a cortactin acetyl-

transferase, in ovarian cancer cells (Zhang et al., 2008).  

Taken together our results indicate that cortactin acetylation has an impact 

on regulating PSD95 clustering. The effect of cortactin acetylation on PSD95 

may be independent from the function of cortactin as a regulator of actin 

dynamics, since the size and number of F-actin clusters was not changed by 

overexpression of the cortactin acetylation mutants that changed the 
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fluorescence intensity and area of PSD95 clusters. A previous study showed 

that the synaptic clustering of PSD-95 is unaffected by actin depolymerization, 

suggesting that PSD-95 is a core scaffolding component and that its localization 

at synapses is independent of the actin cytoskeleton (Allison et al., 2000). This 

study suggests that F-actin is necessary for the initial formation or transport of 

the synaptic structure, but not for the maintenance of PSD95 at the 

postsynaptic density. Once a synapse has formed, actin dynamics is involved in 

mediating activity-dependent changes in spine morphology, rather than in the 

localization of core synaptic proteins. In agreement with this model, our data 

suggest that cortactin acetylation may affect PSD95 synaptic clustering 

independently of its effects on F-actin polymerization. 

When the spine head is forming, dynamic actin assembly is required. A 

function for cortactin at this stage is supported by the data showing that 

knockdown of cortactin dramatically decreases spine density in cultured 

neurons (Hering & Sheng 2003). We propose that deacetylated cortactin binds 

to F-actin and interacts with the Arp2/3 complex, and the large Arp2/3-

nucleated branched actin filament network leads to enlargement of spine head. 

During spine maturation, in order for the assembly of postsynaptic components 

to occur, spine motility must gradually decrease so that the spine structure can 

stabilize. Cortactin acetylation may play a role at this stage, since in its 

acetylated form cortactin is not able to bind to F-actin, and will therefore not act 

as a bridge to couple Arp2/3-dependent actin polymerization to an existing actin 

filament. Therefore, the continuous dynamic branching of F-actin may be 

slowed down by cortactin acetylation, leading to a stabilized actin structure, and 

a stabilized mature spine head (Fig. 31). Indeed, overexpression of wild-type 

cortactin in hippocampal neurons promoted longitudinal spine growth and 

resulted in longer immature spines, as a result of enhanced actin polymerization 

(Hering & Sheng, 2003). In parallel, it has been shown that while the activity of 

the actin-severing protein cofilin is important in mediating dendritic spine 

remodelling, its suppression by phosphorylation plays an important role in the 

stabilization of mature dendritic spines (Shi et al., 2009). These evidences 
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support the idea that F-actin maintenance in mature spines may depend on 

mechanisms that slow down F-actin turnover.  

 

 

In the present study we investigated whether expression of wild-type cortactin 

or the acetylation mutants of cortactin influenced the density or area of F-actin 

Fig. 31 – Cortactin de/acetylation regulatory mechanisms during spine 
development and plasticity. Spine development starts with the initiation of the 

dendritic filopodium and its elongation. During synaptogenesis, dendrites are bristled 
with many diffuse-type filopodia where actin filaments are elongated from the tip of 
filopodia by different actin binding proteins. In addition to tip polymerization, actin 
filaments in dendritic filopodia elongate from the base. Extensive actin branching occurs 
at the fillopodium tip and the spine head begins to form. The mechanism of actin 
assembly is now increased and the large Arp2/3-nucleated branched actin filament 
network leads to enlargement of the spine head. We propose that deacetylated 
cortactin induces actin branching. ADF/cofilins depolymerize pointed ends of actin 
filaments to replenish the actin monomer pool, and create free barbed ends that can 
nucleate filament growth, controlling the proper length of actin filaments. Mature spines 
spines are still dynamic but mantain their overall morpholy, through the stabilization of 
the actin filament network. Suppression of cofilin activity by phosphorylation is known to 
be involved in the stabilization of mature dendritic spines. We propose that acetylation 
of cortactin occurs in order to aid in the stabilization of the F-actin structure in the spine 
head. During LTP, the activity of all actin-binding proteins, including cortactin, is 
modulated in order to promote the dynamic changes in the spine head morphology. 
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clusters in hippocampal neurons. We could not detect changes in the total 

number of F-actin clusters per dendritic length, or in the size of F-actin clusters 

(Fig. 23 A and B) induced by overexpression of these proteins in neurons 

expressing endogenous cortactin, but our data do not exclude that cortactin 

acetylation may have an impact on the spine morphology, namely on the width 

or length of spines, or on spine motility. 

 

The localization of acetylated cortactin in neurons 

Immunocytochemical studies in mature cultures of rat hippocampal neurons 

confirmed that cortactin is concentrated in dendritic spines, whereas acetylated 

cortactin was found to be distributed throughout dendrites, and cell bodies (Fig. 

18). These observations for cortactin localization are in agreement with 

previous immunocytochemical studies which showed that cortactin is enriched 

in spines in hippocampal neurons in culture (Hering and Sheng, 2003). Racz & 

Weinberg (2004) obtained a similar result through immunogold electron 

microscopy, proving that cortactin concentrates within the spine core. Our 

analysis of biochemically purified synaptoneurosomes from adult rat brain 

showed that cortactin is present in the synaptoneurosomal fractions. On the 

other hand, acetylated cortactin was decreased in the synaptoneurosomal 

fraction, compared to the total homogenate from adult rat brain (Fig. 19). 

Accordingly, the fraction of cortactin that is acetylated is lower in synaptosomes 

or in the isolated PSDs than in the total extract from rat hippocampus (Fig. 19). 

In agreement with our data, it has been reported that acetylation of cortactin 

inhibits its Rac-mediated translocation to the cell periphery and its presence in 

membrane ruffles in transfected NIH 373 cells (Zhang et al., 2007). 

Ultrastructural studies suggested the presence of two distinct pools of 

cortactin within the spine (Racz and Weinberg, 2004). These authors revealed 

the existence of a small synaptic pool and a larger core pool (only indirectly 

coupled to synaptic activity) of cortactin, and proposed that these two pools 

may have distinct functions. The core pool is situated to mediate changes in 



Cortactin Acetylation Regulates PSD95 Dendritic Clustering 

   129 

spine shape, whereas the synaptic pool might help to modify the composition or 

shape of the PSD in response to specific patterns of activity (Desmond and 

Levy, 1986; Geinisman et al., 2000; Harris et al., 2003; Malinow and Malenka, 

2002; Marrone and Petit, 2002). Acetylation of cortactin in neurons may be 

exerting different effects depending on which “pool” cortactin is being targeted 

to acetylation/deacetylation. 

We found that cortactin acetylation is increased by neuronal treatment with 

BDNF at 15 DIV, whereas no effect was of BDNF was detected in younger 

(7DIV) neurons (Fig. 27). BDNF has been previously found to trigger ERK-

mediated serine phorphorylation of cortactin in 12-16 DIV neurons, concomitant 

with cortactin translocation from the dendritic shaft to spines. This effect of 

BDNF on cortactin redistribution was not observed in more mature hippocampal 

neurons (20 DIV), indicating that BDNF may have different effects depending 

on the maturation stage of the culture (Iki et al 2005). In our culture conditions, 

where neurons are cultured on inverted coverslips on top of a glia cell feeder 

layer, at 15 DIV BDNF promotes the acetylation of cortactin, which we find to 

lead to the relocalization of cortactin away from synapses. 

Our findings are in accordance with the well known increase in PSD95 

within spines after BDNF treatment (Yoshii and Constantine-Paton, 2007). 

These authors showed that when BDNF is applied to cultured visual cortical 

neurons, the size of PSD95 puncta in spines and the overall amount of PSD95 

in dendrites are increased within 60 min. We saw that a 60 min BDNF treatment 

promotes cortactin acetylation, and we also observed that inhibition of HDAC6 

activity, by TSA, leads to clustering of PSD95 in dendritic spines (Chapter 3, 

Fig. 1). It is therefore possible to speculate that cortactin acetylation plays a role 

in the BDNF-triggered accumulation of PSD95 in dendritic spines. Furthermore, 

Yoshii and Constantine-Paton sowed that PI3K, Akt and an intact Golgi 

apparatus are essential for TrkB-dependent increases in PSD95 at synapses. 

We found that the BDNF effect on cortactin acetylation may also require 

activation of the MEK1/2 or PLC pathways. BDNF may induce PSD95 

accumulation through different post-translational modifications of cortactin, 
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depending on which BDNF signaling pathway is activated, and also on the 

targeted pool (synaptic or core) of cortactin.  

In addition, we found that cortactin acetylation is increased by neuronal 

treatment with glutamate at 15 DIV (Fig. 28). NMDA receptor stimulation was 

described to induce cortactin redistribution from the spine to the shaft (Hering & 

Sheng 2003) and this effect was attributed to Src-mediated phosphorylation of 

cortactin at tyrosine residues, since it was blocked by a Src inhibitor (Iki et al., 

2005). Alongside, glutamate-induced cortactin acetylation may be involved in 

cortactin translocation from spines to the shafts of dendrites. Our studies 

identify cortactin acetylation as another cortactin modification that can impact 

on its cellular localization in neurons. Moreover, our data show that cortactin 

acetylation is negatively correlated to its tyrosine phosphorylation, suggesting 

that the acetylation-mediated redistribution of cortactin is not secondary to the 

tyrosine phosphorylation-mediated relocalization of cortaction to dendritic 

shafts.  

 

Cortactin acetylation vs. tyrosine phosphorylation 

Protein post-translational modifications tend to work in concert at several 

levels on a given protein, and it would be important to test whether acetylation 

affects phosphorylation or vice-versa. Interestingly, we found that the cortactin 

mutant that mimics deacetylation is more phosphorylated at Y421 than the 

acetylated cortactin mutant (Fig. 25). This suggests that acetylation of cortactin 

at the tandem repeats region may affect its phosphorylation at tyrosine residues 

downstream the tandem repeats domain of the protein. The role of tyrosine 

phosphorylation in the regulation of cortactin function, localization and 

interaction with other proteins is far from being fully understood, and 

contradictory evidences have been reported [reviewed in (Ammer and Weed, 

2008)]. An early study showed that the N-terminal domain of cortactin is 

essential for Src-targeted phosphorylation at the C terminus (Head et al., 2003). 

Considering that acetylation primarily occurrs within the N-terminal domain of 
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cortactin, it is possible to speculate that acetylation in the N-terminal domain 

may influence Src-induced phosphorylation at the C terminus, including 

phosphorylation at Y421, or vice versa (maybe due to conformational changes). 

It has been shown that tyrosine phosphorylation of cortactin by Src, which 

occurs at tyrosine residues 421, 466 and 482 (Head et al., 2003) in a 

progressive manner, attenuates its ability to cross-link F-actin in vitro (Huang et 

al., 1997a) and also inhibits its activation of N-WASp (neuronal Wiskott–Aldrich 

Syndrome protein), consequently inhibiting actin branching through Arp2/3 

(Martinez-Quiles et al., 2004). Our finding that the deacetylated cortactin form, 

which binds F-actin, is more phosphorylated at Y421 suggests that 

phosphorylation of this form of cortactin can regulate its ability to bind to F-actin. 

Additional work now points to a positive effect for Src-mediated cortactin 

phosphorylation on Arp2/3 mediated actin polymerization through Nck (non-

catalytic region of tyrosine kinase adaptor protein) and N-WASp (Tehrani et al., 

2007). These authors showed that Nck1 binds to Src-phosphorylated cortactin 

through its SH2 domain, with the Nck1/phosphocortactin complex in turn 

interacting with either WIP (WASp interacting protein) or N-WASp through its 

SH3 domain, and this trimeric complex enhances Arp2/3 nucleation activity. 

The binding of Nck1 to phosphorylated cortactin therefore provides an indirect 

link to Arp2/3 complex regulation, as well as involving cortactin, possibly 

cortactin acetylation, in an additional layer of complexity in regulating actin 

nucleation (Ammer and Weed, 2008).  

 

Cortactin acetylation and cortactin interaction partners 

Biochemical evidences demonstrated that the deacetylation mimetic mutant 

of cortactin not only interacts with Shank1 but also with p140Cap (Fig. 26). 

Confirmation that the interaction of cortactin with both Shank1 and p140Cap 

occurs was obtained in immunoprecipitation assays performed in HEK 293FT 

cells. These results are also in accordance with the previous described theory 

of the cortactin “pools” in the spine (Racz and Weinberg, 2004). The interaction 

between deacetylated cortactin (able to bind to F-actin) and p140Cap may 
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occur in the mentioned “core pool”, situated to mediate changes in spine shape. 

The localization of this “pool” of cortactin is compatible with the suggested link 

between actin cytoskeleton and dynamic microtubules, since these authors 

showed that dynamic MTs in fact enter dendritic spine (Jaworski et al., 2009). 

By transiently targeting dendritic spines, the function microtubules serve, along 

with actin cytoskeleton, is likely to involve transport of essential proteins into 

and out of the spine (reviewed in Dent et al., 2011). This could explain the 

results obtained in the previous chapter, concerning the clustering of some 

scaffold proteins; when acetylated, cortactin may not be able to interact with 

p140Cap, thus disrupting the interaction between actin and microtubules, which 

in turn could result in the accumulation of scaffold proteins in spines. On the 

other hand, Shank1 can bind to deacetylated cortactin present in the “synaptic 

pool”, and may modify the composition or shape the PSD in response to 

synaptic activity. Sheng et al. (2001) showed that overexpression of Shank 

promotes maturation of dendritic spines and the enlargement of spine heads via 

its ability to recruit Homer to postsynaptic sites. Since Shank may play a role at 

the interface between the PSD and the postsynaptic cytoplasm and 

cytoskeleton (Sala et al., 2001), one could say that the enlargement of spine 

head effect of Shank overexpression could be facilitated by its interaction with 

de/acetylated cortactin.  

Recent work showed that the increase in PSD95 within spines after BDNF 

treatment is dependent on MT invasions of dendritic spines (Hu et al., 2011). 

We found that p140Cap, which interacts with MT through EB3 protein, binds to 

the deacetylated mutant to a large extent. Additionally, we also determined that 

the deacetylation mimetic form of cortactin is more phosphorylated at Y421. 

Possibly, when acetylation occurs in the actin-binding region (ABR) of cortactin, 

it induces conformational changes that impair tyrosine or serine/threonine 

phosphorylation, in the PRD (proline rich domain), inhibiting some of the SH3 

interactions. On the other hand, the deacetylation mimetic mutant, since it 

cannot be acetylated, may be a perfect target for tyrosine phosphorylation at 

Y421 due to its conformational sate. In fact, some work has been done 
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concerning the conformational changes of cortactin and its regulation by 

serine/threonine and tyrosine phosphorylation (Campbell et al., 1999; Lua and 

Low, 2005; Martinez-Quiles et al., 2004; van Damme et al., 1997). It has been 

proposed that non-phosphorylated cortactin exists in the 80 kDa “closed” form 

with the carboxyl-terminal SH3 domain binding back upon the proline-rich 

cortactin domain, blocking the ability of the SH3 domain binding interface to 

interact with other ligands. ERK1/2 phosphorylation in turn results in displacing 

the SH3-proline-rich homotypic cortactin interaction, rendering cortactin in an 

“open” 85kDa state where the SH3 domain can bind N-WASp and other 

cortactin SH3 binding proteins (reviewed in Evans et al., 2011).  

 

Undisputedly, the reversible acetylation status of cortactin provides a 

unique mechanism that regulates its F-actin binding activity. We have now 

revealed an important role for cortactin acetylation in regulating synapse 

maturation. What may be necessary for proper cortactin function is not so much 

a net change in serine or tyrosine phosphorylation or de/acetylation in the ABR 

of cortactin, but a continuous cycle of these processes allowing the dynamic 

regulation and recycling of the protein. 
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How global changes in protein acetylation change synapse composition 

This work sought to describe the effects of protein acetylation, enhanced by 

HDACs inhibitors, on synapses, using immunocytochemical methods to 

characterize the localization of several synaptic proteins in rat hippocampal 

neurons. Treatment of hippocampal neurons with the types I and II histone 

deacetylase inhibitor Thricostatin A (TSA) increases density, area and intensity 

of the dendritic clusters for excitatory synapse scaffold proteins such as PSD95 

and Shank1, whereas the postsynaptic inhibitory synapse protein gephyrin was 

unaffected. Cytoskeleton associated proteins such as cortactin and p140Cap 

show decreased cluster areas, after the same treatment. Given the regulatory 

role for protein acetylation at the level of the cytoskeleton, it would be important 

to explore the effect of TSA treatment on synaptic F-actin, in order to conclude 

if the observed clustering effects are accompanied by changes in actin 

dynamics within dendritic spines. For this purpose, we plan to detect 

polymerized F-actin with Alexa 555-coupled phalloidin, and co-localize it with a 

presynaptic marker; this will enable us to investigate the effects of protein 

acetylation on the synaptic cytoskeleton. Ideally, the study should also focus on 

the effect of protein acetylation on the morphology of dendritic spines. 

Quantitative analysis of spine morphologies (morphometric analysis) are usually 

performed using hippocampal neurons whose basal dendritic tree is completely 

filled, e.g. GFP filled dendrites. The area, major and minor axis of the head of 

spines and the length of the necks (usually measured from the point of 

attachment of the dendrite to the beginning of the spine head) in each portion of 

the analyzed dendrites are determined with the aid of suitable imaging software. 

This technical approach would provide the first evidence for whether protein 

acetylation regulates actin reorganization, accompanied, or not, by marked 

changes in spine morphology, in dendritic spines. 
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Cortactin acetylation & PSD95 clustering 

After the validation of cortactin as a target for TSA induced acetylation in 

neurons, our efforts concentrated in exploring the physiological role for 

acetylation of cortactin in the clustering of PSD95, particularly in the synaptic 

region. Analysis of PSD95 expression in mature hippocampal neurons showed 

a significant decrease in the average area and fluorescence intensity of the 

PSD95 clusters observed in the neurites of cells transfected with the 

deacetylation mimetic mutant of cortactin. On the other hand, the cortactin 

mutant that mimics acetylated cortactin rescued the cortactin knockdown-

induced decrease on PSD95 clustering, similarly to wild-type cortactin, whereas 

the deacetylation mimetic mutant did not. These results suggest that cortactin 

acetylation promotes PSD95 clustering at synapses. In hippocampal neurons in 

culture, de/acetylation of cortactin did not have an effect on surface GluA1 or F-

actin levels. We propose that when the functional deacetylation mimetic mutant 

of cortactin is overexpressed, and since it is able to bind to and cross-link F-

actin, extensive actin branching keeps occurring at the spine head, preventing 

the gradual decrease of spine motility necessary to stabilize the spine structure. 

This could explain the differences observed in the area and fluorescence 

intensity of PSD95 clusters. On the other hand, overexpression of the 

acetylation mimetic mutant of cortactin has the opposite effect. This mutant is 

not able to bind to F-actin, which can prevent a continuous branching led by the 

interaction between cortactin, Arp2/3 complex and F-actin, leading to a 

stabilized actin structure in spines. Since cortactin binds to Shank, and 

indirectly Shank interacts with PSD95 (Shank-PSD95-GKAP complex), the 

acetylation of cortactin, its removal from spines and a decrease on its 

interaction with Shank may be leading to a clustering of PSD95 in spines. In 

order to determine whether cortactin acetylation and its contribution to PSD95 

clustering are implicated in the TSA-induced clustering of PSD95 observed by 

us, hippocampal neurons, transfected with the cortactin acetylation mutants, will 

be submitted to TSA treatment. If the effect of TSA on PSD95 clustering is 

partially mediated by an increase on cortactin acetylation, we expect the 
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expression of the acetylated cortactin mimetic mutant to occlude at least 

partially the TSA effect. These data would reveal whether cortactin acetylation 

is a central player in the TSA effect on PSD95 clustering, or whether other 

crucial mechanisms are involved. 

Cortactin acetylation & actin dynamics 

To a certain extent, our data suggest that the effect of cortactin acetylation 

on PSD95 may be independent from the function of cortactin as a regulator of 

actin dynamics, since the size and number of F-actin clusters were not changed 

by overexpression of the cortactin acetylation mutants. However, we aim to 

further investigate a possible role for cortactin acetylation in regulating actin 

dynamics. For this purpose, three different experiments are proposed. On one 

hand, changes in the synaptic clusters of F-actin should be investigated, by 

detecting colocalization of polymerized F-actin with a presynaptic marker, in 

hippocampal neurons transfected with cortactin acetylation mutants. In the 

present study, the effect of the overexpression of the cortactin acetylation 

mutants was tested on the total F-actin clusters, and an effect on synaptic 

clusters may be diluted in the total population of F-actin aggregates. On the 

other hand, it would be important to test whether the morphology of spines, 

largely dictated by the actin cytoskeleton, is changed in neurons expressing the 

acetylated/deacetylated mimetic mutants of cortactin. Finally, actin tagged with 

a fluorescent protein could be used to look at the motility of spines. Transfection 

of neurons with actin fused to mEos2, which fluoresces green until exposed to 

UV light that irreversible converts its emission to red (Frost et al., 2010b) would 

help to track polymerized actin molecules by eye over consecutive frames, 

allowing measurement of orientation and dynamics of filaments within the small 

confines of dendritic spines.  

The cellular localization of acetylated cortactin 

Immunocytochemical studies in cultures of rat hippocampal neurons 

indicate that both cortactin and acetylated cortactin distribute to dendrites. 
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Cortactin is co-localized with a synaptic marker, whereas acetylated cortactin is 

less abundant in dendritic spines. Additionally to the immunolabeling methods, 

these observations were consolidated by rat brain/hippocampi subcellular 

fractionation techniques. Based on these results, and considering the effect 

observed in the area of cortactin clusters after TSA treatment, we propose that 

cortactin acetylation triggers its redistribution from spines to the shafts of 

dendrites. Moreover, we found that cortactin acetylation is increased by 

neuronal treatment with BDNF and glutamate, suggesting that synaptic activity 

may regulate cortactin localization within neurons, through cortactin acetylation, 

in a similar way to what happens with cortactin phosphorylation regulation and 

localization through synaptic activity. In fact, activation of Src kinases induces 

cortactin phosphorylation and cortactin depletion from the postsynaptic sites, 

whereas MAP kinase activation promotes redistribution from shafts to the 

spines (Iki et al., 2005). We propose that cortactin localization within neurons 

may be regulated by synaptic activity, not only through phosphorylation, but 

also acetylation. This control possibly has a critical role in spine development 

and synaptogenesis, as well as synaptic plasticity. 

BDNF, cortactin acetylation and PSD95 clustering 

Another speculation arises from our findings, concerning the importance of 

cortactin acetylation in the accumulation of PSD95 in dendritic spines. Since we 

found that BDNF treatment promotes cortactin acetylation, and inhibition of 

HDACs activity, by TSA, leads to clustering of PSD95 in dendritic spine, we 

propose that cortactin acetylation is part of the mechanism through which BDNF 

induces PSD95 accumulation in spines. To further test this possibility, we intend 

to use fluorescence microscopy to monitor PSD95 levels and clustering in 

dendritic spines of hippocampal neurons transfected with cortactin acetylation 

mutants and stimulated with BDNF. According to the results obtained and 

described in this work, we expect that transfection of hippocampal neurons with 

the deacetylated cortactin mutant, submitted to a 60’ BDNF treatment, will 

prevent the characteristic PSD95 clustering on dendritic spines triggered by 
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BDNF (Yoshii and Constantine-Paton, 2007), whereas we expect neuron 

transfection with the acetylated cortactin mutant to partially occlude the effect of 

BDNF on PSD95 application, since the expression of the mutant itself promotes 

PSD95 clustering, as we have observed. 

It was proposed that the mobility of PSD95 occurs through diffusion and is 

primarily regulated by PSD95 interactions with proteins in the spine head, such 

as CaMKII and Shank (Gray et al., 2006). Recently, a novel mechanism 

whereby MT invasions regulate PSD95 in the spine head has been proposed, 

and BDNF treatment has been shown to promote a robust increase of PSD95 in 

spines invaded by MTs (Hu et al., 2011). Since this accumulation effect does 

not seem to depend on the direct interaction between polymerizing MT tips and 

PSD95, another intriguing possibility emerges. Possibly, F-actin cytoskeleton, 

along with MTs, may be delivering unknown cargo that causes PSD95 to be 

captured or retained in the spine head. To study this hypothesis, we plan to 

perform fluorescence microscopy experiments using hippocampal neurons 

treated with BDNF and labelled with Alexa55-coulped phaloidin, focusing on the 

quantification of F-actin staining colocalized with VGLUT1 (presynaptic marker), 

to identify F-actin clusters localized in active synapses. Analysis of F-actin 

organization after BDNF treatment may be useful to better understand the 

possible role of actin assembly/disassembly, and consequently cortactin post-

translational modifications, in the characteristic PSD95 clustering in dendritic 

spines. 

Cortactin acetylation, phosphorylation & binding partners 

Our biochemical evidences suggest that the interaction between cortactin 

and two known interactors, Shank1 and p140Cap, is mediated by the 

acetylation status of cortactin. Additionally, we found that acetylated cortactin 

presents lower levels of tyrosine phosphorylation (Y421). This suggests that 

acetylation of cortactin at the tandem repeats region may affect its 

phosphorylation at tyrosine residues downstream the tandem repeats domain of 

the protein, consequently interfering with SH3-dependent interactions of 



Chapter 5 

142 

cortactin. Apparently, both post-translational modifications of cortactin, which 

work in concert at several levels, may affect each other concerning the 

regulation of cortactin function, localization and interaction with other proteins. 

How cortactin impacts actin dynamics during vertebrate development still 

remains unknown, in part due to the lack of transgenic knock-out rodent 

models. Nevertheless, unveiling the role of additional post-translational 

modifications, such as phosphorylation and acetylation, in the regulation of 

cortactin’s activity, may help to better understand the impact of cortactin in the 

regulation and formation of actin-rich motility structures, as well as the interplay 

between cortactin and different actin-regulating factors under an array of 

physiological and pathological conditions. In fact, cortactin has been described 

to have precise roles in tumor progression and other disease types, and these 

roles are just beginning to be identified. Since cortactin is widely involved in the 

regulation of spine dynamics including variations in the shape and number of 

spines, a challenge for future research will be to understand the implication of 

cortactin post-translational modifications in processes of learning and memory 

and neurodegenerative diseases, as well as some forms of mental retardation 

and autistic spectrum disorders, which are largely associated with dendritic 

spine dynamics abnormalities. Indeed, evidence is accumulating that cortactin 

impacts on complex functions such as learning and sleep (Davis et al., 2006; 

Meighan et al., 2006), clearly demonstrating an important neuronal role for 

cortactin that is only starting to be identified. 
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